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preface
Our biggest hope with this book is that we’ve done a good job of providing you with a
deep overview of what the future of the Internet of Things (IoT) might look like.
Despite the oceans of e-ink used every day to talk about the IoT, we know that practi-
cal and authoritative content about this topic is still hard to come by. We hope that
this book will bring some order to the chaos by proposing a pragmatic and structured
methodology to building IoT devices and services, one inherited from our own expe-
rience building large-scale commercial systems for connected devices. 

 Because every actor wants to get a slice of the future pie, there are literally hun-
dreds of competing standards for connected devices. The “my protocol is better than
yours” attitude has been the major cause of the fragmentation of the IoT world and
the reason why it’s plagued by constant wheel reinventions and a severe lack of proper
innovation. All existing applications, tools, and mechanisms need to include support
for every new protocol that appears. And with the hundreds of protocols already out
there that need to be integrated and maintained---well, you get the idea! 

 When we started working on the Web of Things about a decade ago, our objective
was to pause a bit and reflect on what could be done to realize the full potential of the
IoT. At that time, it was clear that most projects tackled only smaller issues of the IoT.
Few projects tried to look at the bigger picture of the IoT and ask, “What problems are
we really trying to solve and how can we make it easier to innovate?”

 Almost everyone was trying to build a global network optimized for devices and
data-driven applications—from scratch! Web of Things people like us, on the other
hand, decided to look into and learn from the most successful application layer of
them all: the web. The web scales, it’s open and easy to take part in, and best of all, it’s
xiii
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versatile! If it’s good enough for banking services, games, chat rooms, and changing
the media industry, why wouldn’t it be good enough for the Internet of Things? 

 Turns out, it is! We wrote this book to show you not only the why but also the how.
We hope it will equip you with the understanding and tools necessary to thrive in a
world where most physical objects have a digital life of their own thanks to web proto-
cols. This book is about not reinventing the wheel where it isn’t needed. And, as you’ll
see, it can be a lot of fun to reuse solid web protocols to build ever bigger, smarter, and
simpler Things—to build the Web of Things!

DOM & VLAD
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about this book
Over the last few years, the Internet of Things (IoT) has become one of the most pop-
ular topics in the technology and business worlds. From blogs to executive reports to
conferences, everyone seems to be asking the same question: “What is this IoT thing
and how can I use it for my business and my life?”

 Because the potential of the IoT is so massive, everyone is rushing to build a strat-
egy or solution, which usually sounds like this: “Hey, let’s connect everything in our
building, supply chain, factory, office, and so on, so we can track and analyze this huge
amount of data!” 

 Sounds great, but the question everyone should be asking first is, “What exactly do
we want to connect and, more importantly, why?” The real challenge with the IoT has
much less to do with the technology (the how) than the actual use case (the what).
True, the IoT is so young that the landscape is highly fragmented. There are hundreds
of tools, standards, devices, protocols, and IoT cloud platforms to choose from, and
more are appearing every day. And with all the self-proclaimed IoT experts and blog-
gers who’ve appeared overnight, it’s certainly not easy to separate the wheat from the
chaff. Sure, you can easily find great tutorials online that will teach you how to con-
nect your cat or car to the internet using an Arduino and some sensors, but when it
comes to building an end-to-end, scalable, secure system and putting together the
hardware, data collection, storage, processing, visualization, and interaction, it’s a dif-
ferent story!

 There are some great books about the IoT available. Some are very specific and
technical; for example, they talk in great detail about hardware or data processing,
xviii
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but they don’t address the bigger picture and how to build the IoT. Other books are
written at a high level; they talk about most elements of the IoT but only superficially,
so you won’t learn how to use any of them. 

 This is exactly the void we wanted to fill. We wanted to write a book that was easy
enough for an IoT novice to read, that covered all the tools needed in a complete
end-to-end IoT toolbox, and that was technical enough so you would actually learn
how to create each element yourself.

 With this objective in mind, we decided to distill everything we’ve learned from
working for over a decade in the Internet of Things as engineers, researchers, and
entrepreneurs, so that you can become a proficient IoT developer with a minimum of
effort. Our goal was to teach the skills required to build IoT prototypes, products, and
applications by using the web ecosystem and infrastructure. And we’re glad to say that
Building the Web of Things is therefore the first and most comprehensive hands-on
guide to learning about the intersection of the IoT and web technologies. After a
broad introduction to the nuts and bolts of the IoT, such as devices, sensors, stan-
dards, and tools, we quickly move up the protocol stack and focus on the Web of
Things—the Application layer of the IoT.

Roadmap

This book will provide you with the skills needed to architect and implement IoT
products, applications, and services by using the scalability and flexibility of the web.
With the right balance between theory and practice, you’ll be able to rapidly navigate
the complexity of the Web of Things and learn about a wide range of tools and tech-
niques for connecting IoT devices to the web and building interactive applications on
top. The book is divided into two parts for a total of 10 chapters.

 Part 1 introduces the basics of the Web of Things. You’ll learn about the underly-
ing technologies, protocols, tools, and issues related to connecting all sorts of devices
to the web. After reading part 1, you’ll have a solid understanding of the many issues
in today’s IoT, the various techniques available, and when to use each one: 

■ Chapter 1 introduces the general idea of the Web of Things—what it is, why it’s
different from the Internet of Things, and when using a WoT approach is ideal.

■ Chapter 2 offers a hands-on walkthrough of the WoT. You’ll interact with a
remote, web-connected device across the world and build simple web applica-
tions with a few lines of code.

■ Chapter 3 is a succinct overview of why Node.js is a great framework for imple-
menting web-connected devices. This chapter also offers an introduction to the
key concepts of Node.js and how to run it on embedded systems.

■ Chapter 4 is a quick overview of the hardware side of the IoT. You’ll learn how
to configure a Raspberry Pi (or other Linux device) and connect it to the web,
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as well as how to wire various sensors and actuators to a Pi and how to write
Node.js code to access them.

■ Chapter 5 is a broad and condensed overview of today’s IoT landscape, focusing
on the networking aspects. You’ll learn about the various networking and com-
munication protocols used today, how they relate to each other, and when to
use each one. This sets the stage for the WoT architecture stack, its layers, and
the role of each layer.

Part 2 builds on everything you learned in part 1 and teaches you how to implement
the various layers of the WoT stack. You’ll already have a real device that’s connected
to the internet after part 1. Now you’ll learn how to design a clean web API for that
device and how to use a variety of tools to build interactive, scalable, and extensible
WoT products and applications:

■ Chapter 6 introduces layer 1 (Access) of the WoT architecture and offers a solid
introduction to the HTTP and REST APIs. You’ll learn various features of HTTP
such as content negotiation, error codes, and verbs, and how to use them to
implement great APIs for web-connected products. You’ll also learn how to use
WebSockets to cover the real-time aspects of sensors and actuators.

■ Chapter 7 shows how to implement the Access layer in different situations and
how to put into practice the concepts introduced in chapter 6. You’ll learn
about integration patterns and look into the integration of other protocols,
such as MQTT and CoAP to the WoT.

■ Chapter 8 focuses on layer 2 (Find) of the WoT and describes how to employ
the features of web-connected products so they can be automatically discovered
and used by web clients. It also offers a brief overview of the Semantic Web and
how it relates to the IoT.

■ Chapter 9 describes layer 3 (Share) of the WoT and discusses the various consid-
erations and issues involved in connecting the real world to the web. You’ll learn
about best practices of web security and how to safely share data and services of
a product with trusted applications and users. You’ll also learn about the Social
Web of Things, or how to use social networks to build networks of Things.

■ Chapter 10 focuses on layer 4 (Compose) of the WoT and shows how to rapidly
build complex applications that merge data from various sources. You’ll learn
about physical mashups and how to build and scale them.

We use the Raspberry Pi as a reference device in examples throughout the book. How-
ever, we’ve also included an appendix with the basics for integrating three other pop-
ular embedded systems—the BeagleBone, the Intel Edison, and the Arduino—into
the Web of Things. 

Who should read this book?
This book has been designed to provide a rich yet accessible introduction to the Inter-
net of Things. We wrote it assuming that our readers have no prior experience with
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building embedded devices and application development. We expect you to have only
a basic understanding of how the web works and some skills in programming. Our pri-
mary objective is to rapidly equip you with a broad and sufficiently deep understand-
ing of a number of technologies, techniques, and challenges you’ll encounter when
building complex web-based applications that interact with the physical world. You
won’t become an expert in embedded sensing or web application design, but you’ll
certainly gain a well-stocked toolbox of frameworks, tools, standards, and application
design patterns, along with the know-how required to combine those building blocks
to build production-ready web-based IoT applications and systems.

How to use this book

You should first read chapter 1 to get a broad overview of the Web of Things, how it’s
different from the Internet of Things, and why this difference matters. If you’re not
familiar with web APIs and JavaScript, we encourage you to follow the various exer-
cises in chapter 2. If you’re not familiar with Node.js, you should definitely read chap-
ter 3. If you have no experience with embedded devices such as sensors or processors,
be sure to read chapter 4. If you’re new to networking protocols and standards and
can’t tell your Bluetooth from your TCP/IP, definitely read sections 5.1 and 5.2 in
chapter 5; otherwise, you could jump directly to section 5.3. Even if you have some
experience with REST APIs, you should read chapter 6 to understand how to create
REST APIs for devices, followed by chapter 7 to learn how to implement those APIs.
Afterward, you can read chapter 8 or 9 and then chapter 10 at the end. 

Code conventions and downloads

This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. 

 You can find all the code samples used throughout the book on GitHub at
github.com/webofthings/wot-book. The code is also available from this book’s web-
site, located at manning.com/books/building-the-web-of-things. 

 All the links listed in the book as well as news and more information are available
at http://book.webofthings.io.

Other online resources

There are many outlets where you can find new inspiration:
■ The Web of Things community is where all this started back in 2007. You’ll find

lots of articles, news, and other technical whitepapers about the WoT here:
http://webofthings.org.

■ The W3C is actively looking at standardizing the Web of Things. You’ll find the
latest developments in this field at http://www.w3.org/WoT/. With EVRYTHNG,
Dom and Vlad are also part of this W3C standardization effort.

https://github.com/webofthings/wot-book
http://book.webofthings.io
http://webofthings.org
http://www.w3.org/WoT/
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■ Postscapes is a great site for news on the IoT. It’s not limited to the WoT, but
you’ll find lots of inspiration and interesting projects there: http://
postscapes.com/.

■ The community site of Element14 is a great place to discover projects and tuto-
rials for building all sorts of web-connected devices: http://www.element14
.com/community/. For more hardware and electronics projects, make sure you
follow Make magazine (http://makezine.com/) and Instructables (http://
www.instructables.com/).

Author Online

Purchase of Building the Web of Things includes free access to a private web forum run
by Manning Publications; you can make comments about the book, ask technical
questions, and receive help from the lead author and from other users. To access the
forum and subscribe to it, point your web browser to manning.com/books/building-
the-web-of-things. This page provides information on how to get on the forum after
you’re registered, what kind of help is available, and the rules of conduct on the
forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

Dominique Guinard and Vlad Trifa are the cofounders of EVRYTHNG, a large-scale
Web of Things cloud powering millions of web Things. They also cofounded http://
webofthings.org, the earliest community and conference series for practitioners and
researchers in web-connected devices. Both are veterans of WoT and IoT technologies
and have pioneered this field at SAP, ETH, and MIT. In 2011, they were listed fifth
among the world’s top 100 IoT thinkers by Postscapes. 

Dominique “Dom” Guinard is the CTO and cofounder of
EVRYTHNG, a large-scale Web of Things cloud platform that makes
products smart by connecting them to the web. Dom holds a PhD
from ETH Zurich, where he worked on the early concepts of the WoT
architecture: an open Application layer for the Internet of Things.
Early in 2012, his PhD thesis was granted the ETH Medal. Before this,
Dom spent a decade working on a number of IoT projects: exploring
large-scale RFID networks, in partnership with Sun Microsystems;

http://postscapes.com/
http://postscapes.com/
http://www.element14.com/community/
http://www.element14.com/community/
http://makezine.com/
http://www.instructables.com/
http://www.instructables.com/
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researching the role of mobile phones as IoT gateways, at the Auto-ID Lab of ETH
Zurich with Nokia Research; bringing the EPCglobal RFID network to the Web of
Things at the Auto-ID lab of MIT; and four years integrating tagged objects and wire-
less sensor networks with enterprise software at SAP.

Vlad Trifa is the cofounder and EVP of Research and Development
of EVRYTHNG. Widely published, he is a recognized expert in dis-
tributed embedded sensing and the integration of interactive
devices with enterprise applications using web technologies. Previ-
ously, he worked as a researcher in urban and mobile computing at
the MIT Senseable City Lab in the United States and in Singapore;
in bioacoustics and distributed signal processing at UCLA; and in
human-robot interaction and neuroscience at ATR in Kyoto, Japan.

He also gained industrial experience in factory automation and enterprise computing
while working as a research associate at SAP. Vlad graduated with a PhD in computer
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Part 1

Basics of the IoT
and the WoT

In part 1 we lay the basis of the Web of Things, what it is, and how it compares
and relates to the Internet of Things. At the end of the first part you’ll have a
broad understanding of the problems and challenges of building Internet of
Things systems.

 Chapter 1 introduces the Web of Things approach and discusses the various
advantages it offers in numerous use cases and contexts.

 Chapter 2 offers a high-level yet hands-on first encounter with the Web of
Things. You’ll learn how to send requests to a real device in London and quickly
write simple applications that interact with the device.

 Chapter 3 describes why JavaScript is an excellent fit for embedded devices
and the Web of Things and also provides a crash course on the Node.js frame-
work and ecosystem.

 Chapter 4 provides an introduction to the world of embedded systems, their
various types, and their differences. Next, you’ll become familiar with the Rasp-
berry Pi platform, learn how to connect sensors and actuators to your device,
and then control it from Node.js applications. 

 Chapter 5 is a broad introduction to the various approaches and methods for
interconnecting physical objects. In particular, you’ll learn about the benefits of
and differences between the various networking protocols commonly used in
the Internet of Things. At the end of the chapter, we propose a layered architec-
ture for the Web of Things.



2 CHAPTER 



From the Internet of Things
to the Web of Things
If you’re holding this book in your hands, it’s very likely that you’ve already heard
the terms Internet of Things (IoT) and Web of Things (WoT). Maybe you want to under-
stand what this trend is all about. Or maybe you already understand why this topic
has become so popular and you’d like to be part of it, but you’re not sure where to
start. Or—even further than that—you realize what the IoT could mean for your
industry and you’d like to gain the hard technical skills needed to build web-
connected products and services. If any of those ring true, you’re in for a treat!

This chapter covers
■ An introduction to the concept and history of

the Internet of Things (IoT)
■ When and why we should digitally connect

physical objects
■ The limitations of traditional approaches to the

Internet of Things
■ How and why the Web of Things (WoT) is

different and why it’s promising
3
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 What is the IoT, anyway? When and where was it invented? What new types of appli-
cations and scenarios does the IoT enable? How will this change the technology and
business landscape for the coming years? The next chapters will answer all these ques-
tions and many more. But don’t throw away this book yet, because it won’t just discuss
theory. It will also cover in detail all the web technologies and tools that will help you
make the Internet of Things a reality. On the other hand, we believe that starting with
some background will help you better understand what the IoT really is and how you
can use it in your own projects, not just stick to the superficial and stereotypical
descriptions of it. Diving into the history of the IoT will help you understand the sub-
tle difference between the Internet of Things and the Web of Things and especially
why this distinction matters.

 In the last few years, the Internet of Things has become one of the most promising
and exciting developments in technology and business. The vision of a world where tiny
computers with sensors and communication interfaces that are embedded in the infra-
structure of our cities or in cars, offices, or clothes is likely to revolutionize every area
of our lives—how we play, how we work and do business, and how we live. Until recently,
IoT projects mostly focused on building small-scale, closed, and isolated deployments
where devices were not designed to be easily accessible or reprogrammable. The
bespoke coupling between devices and applications in a given use case means that any
change to an existing deployment is complex and expensive. This limits both the main-
tenance and evolution of the Internet of Things because considerable resources (time,
money, and technical skills) are required each time a new function is added. 

 In contrast, the web has become widely successful in the last two decades because
it’s simple to learn and use and it also emphasizes loose coupling between servers,
browsers, and applications. The simple and clearly defined programming model of
HTTP makes it possible for anyone to change pieces of the system without breaking
the whole system. Therefore, building new web applications has been relatively inex-
pensive and accessible to a much larger group of technology enthusiasts. 

 The Web of Things is a specialization of the Internet of Things that uses what
made the web so successful and applies it to embedded devices in order to make the
latest developments in the Internet of Things accessible to as many developers as pos-
sible. On the Web of Things—just like on the web—anyone with a text editor and the
basic understanding of web standards (HTML and HTTP) can quickly start connecting
devices and objects to the web. But it also enables going to the next level and helps
you to effectively build interactive and innovative real-world applications that blend
the physical and digital worlds.

1.1 Defining the Internet of Things
Capturing the essence of the Internet of Things in one sentence is nearly impossible.
The concepts have been around for decades and there are no clear boundaries to
what the IoT is or isn’t. Nevertheless, the broad definition of the Internet of Things
vision is a world where the internet is much more than the collection of multimedia
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content it is today: it extends into the physical, real-time world using a myriad of small
or even tiny computers. In short, the simplest definition we can offer for the Internet
of Things is the following. 

DEFINITION The Internet of Things is a system of physical objects that can be
discovered, monitored, controlled, or interacted with by electronic devices
that communicate over various networking interfaces and eventually can be
connected to the wider internet.

Two decades ago, a world where everyday objects could feel the world through sensors
and then analyze, store, or exchange information existed only in science-fiction nov-
els or in the Jetsons. Today, such scenarios are increasingly becoming reality, thanks to
the colossal progress in embedded devices that brought into the world a new class of
objects: smart things. A smart thing (which we’ll refer to as a Thing—with a capital
T—in the rest of this book) is a physical object that’s digitally augmented with one or
more of the following: 

■ Sensors (temperature, light, motion, and so on)
■ Actuators (displays, sound, motors, and so on)
■ Computation (can run programs and logic)
■ Communication interfaces (wired or wireless)

Things extend the world we live in by enabling a whole new range of applications; see
figure 1.1. By deploying a bunch of tiny and cheap—yet increasingly powerful—com-
puters everywhere around us, it becomes possible to monitor and interact with the
physical world with a much finer spatial and temporal resolution than ever before.

Devices
Machines

Environments

NFC/RFID tag Philips Hue

Tags

Arduino Smart building

Computational power and complexity

Smart citySmart carRaspberry PiiBeacon/BLEQR code

Figure 1.1 The Internet of Things landscape. The IoT is a network of Things, which are 
anything that can be connected in some form to the internet. From a box of oranges with 
an RFID tag, to a smart city, to every Thing in between, all digitally augmented objects 
make up the Internet of Things.
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Concretely, the Things in the Internet of Things can range from simple tagged prod-
ucts such as your FedEx package with an Auto-ID tag (Automatic Identification meth-
ods such as bar codes, QR codes, and NFC and RFID tags) attached to it so it can be
tracked from the shipping center to your door; to more elaborate, complex, and wire-
lessly connected products, devices, or machines such as security systems, your car, or a
factory assembly line; and all the way up to a building or even a city. The internet part
of the term means that the Thing (or at least its services or data about/from it) can be
accessed and processed by other applications through the existing internet infrastruc-
ture. Note that this does not imply that the Thing itself must be directly connected to
the internet. The communication network used can be an Auto-ID method, short-
range radio (Bluetooth, ZigBee, and the like), or the Wi-Fi network in a building. 

 Unfortunately, building a single and global ecosystem of Things that communicate
with each other seamlessly is virtually impossible today. There’s no unique and univer-
sal application protocol for the Internet of Things that can work across the many net-
working interfaces available today. To put it bluntly, the Internet of Things of today is
essentially a growing collection of isolated Intranets of Things that can’t be connected
to each other.

 For the Internet of Things to become real, we need a single universal application
layer protocol (think language) for devices and applications to talk to each other,
regardless of how they’re physically connected. Rather than inventing yet another
protocol from scratch (as many IoT projects have been—and keep—doing), why not
reuse something that’s already widely used to build scalable and interactive applica-
tions, such as the web itself? This is what the Web of Things (and this book) is all
about: using and reusing readily available and widely popular web protocols, stan-
dards, and blueprints to make data and services offered by Things more accessible to
a larger pool of (web) developers.

1.2 Enter the Web of Things
As we’ll describe in detail in section 1.4, the limitations of the Internet of Things
become visible as soon as one wants to integrate devices from various manufacturers
into a single application or system. To illustrate how the Web of Things can deal with
these limitations, let’s consider the life of Johnny B., the owner of a famous hotel chain
in several cities around the world. Johnny would like to digitally connect all the appli-
ances in all the rooms of all his hotels, so that he can monitor, control, and improve the
management of his hotels from the deck of his yacht in the Bahamas via a single control
center application. Meanwhile, this system could also offer a more pleasant and per-
sonalized experience to each guest in his hotels, as shown in figure 1.2.

1.2.1 Web of Things scenario: connected hotel

Building this smart hotel system will likely require electronic door locks made by com-
pany Alpha, security cameras from company Beta, and a control application to manage
all of this made by company Gamma. Making these devices and systems talk and work
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with each other will require lots of custom system integration. Johnny could contract
with a specialized company and spend his well-earned resources on a substantial pro-
ject that will take months to complete. Such a complex and bespoke project will have
the robustness of a Jenga tower (touch the wrong piece and all hell breaks loose): it
will be swamped with bugs and hacks and therefore will be a nightmare to maintain
and to extend. In this scenario, there’s little doubt that Johnny will run out of money
before he gets the system he wants. 

 If Johnny is into DIY (do it yourself), he can certainly decide to build the whole sys-
tem himself. He’ll need to buy all the equipment from the same company so he won’t
run into any incompatibilities. Unfortunately, it’s unlikely that he’ll find a single man-
ufacturer that has all the sensors and equipment he needs. Even if he finds this per-
fect system, chances are high that the control application that comes with it won’t be
what he wants: easy to use and to configure. He’ll likely have to write a whole new con-
trol center application himself, from scratch. Oh, and if he also wants the system to be
scalable, reliable, and secure, he can easily double—if not triple—the time he’ll need
to build it. Should we also talk about the mobile apps that will need to be built for the
hotel guests? You get the idea.

 Johnny’s life may seem surreal. Sadly, it’s pretty much what the IoT looks like
today. We know this because we’ve had the chance to work with many Johnnies over
the last decade, ranging from shop managers wanting to combine their existing secu-
rity cameras with RFID gates to create smarter security systems, to LED manufacturers
wanting their lights to be controlled from the web. We’ve experienced this scenario
over and over. 

Play my favorite
music Control temperature

and humidity in room

Watch movies,
games, shows on TV

Book tennis court,
yoga classes, etc.

Set alarm
clock/call

Lisa
(hotel guest)

Johnny
(hotel owner)

Control lights, blinds, etc.

Room 202 Room 203 Room 204 Room 301

• Turn off lights or air conditioning in all 
empty rooms

• Control security systems, cameras, 
smoke alarms, etc.

• Optimize room cleaning service
• Manage room services (Wi-Fi, TVs, etc.)
• Enable/disable room access for guests

Hotel
control center

Figure 1.2 Johnny would like to digitally connect the appliances in all rooms of his hotel. First, 
guests could have access to a variety of services from controlling their room (lights, air-
conditioning, entertainment, and so on), to booking hotel facilities, to ordering food and drinks—
all of this on their mobile phones. Second, this system would allow Johnny to coordinate and 
optimize all aspects of his hotel in a centralized and efficient manner, without having to use a 
variety of siloed applications and tools.
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Wouldn’t it be wonderful if any device could be easily integrated and consumed by
any application, regardless of the networking protocols or standards they use? This is
exactly what the Web of Things enables, as illustrated in figure 1.3. 

1.2.2 Comparing IoT and WoT

Because more everyday objects will be digitally augmented, the next logical step is to
use the World Wide Web ecosystem and infrastructure to build applications for the
Internet of Things, effectively breaking this ongoing “one device, one protocol, one
app” pattern. It would be particularly interesting to push down to each of those tiny
devices the exact same technology that helped modern websites such as Facebook or
Google scale to millions of concurrent users, without compromising on security or
performance. The idea of maximizing existing and emerging tools and techniques
used on the web and applying them to the development of Internet of Things scenar-
ios is the ultimate goal of the Web of Things.

ZigBee

enOcean

Heating
and cooling

Lights

Security

Bacnet

Bluetooth

X10

Web

Hotel
control center

Web of ThingsInternet of Things

“I hate 
my life!” “Easy 

Peasy!”

Figure 1.3 In the Internet of Things, hundreds of incompatible protocols coexist today. This makes 
the integration of data and services from various devices extremely complex and costly. In the Web of 
Things, any device can be accessed using standard web protocols. Connecting heterogeneous devices 
to the web makes the integration across systems and applications much simpler.
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While the Internet of Things has been busy resolving networking problems, the Web of
Things relies exclusively on Application-level protocols and tools (layer 7 of the Open
Systems Interconnection (OSI) model described in chapter 5); see figure 1.4. Mapping
any device into a web mindset makes the Web of Things agnostic to the Physical and
Transport layer protocols used by devices. As you’ll learn to do in the next chapters, the
good news is that pretty much any custom IoT protocol or standard can be linked to the
web thanks to software or hardware bridges called gateways. 

 Abstracting the complexity and variety of the lower-level protocols behind the sim-
ple model of the web offers many advantages. Just like the web has become the global
integration platform for distributed applications over the internet, the Web of Things
facilitates the integration of all sorts of devices and the applications that interact with
them. In other words, by hiding the complexity and differences between various trans-
port protocols used in the IoT, the Web of Things allows developers to focus on the
logic of their applications without having to bother about how this or that protocol or
device actually works. 

 Coming back to our smart hotel scenario, if all devices (regardless of their manu-
facturer) could offer a standard web API, integration of data across devices and appli-
cations will pretty much come out of the box because all devices would speak the same
language. In this case, the hotel owner (or system integrator) will only need to worry
about building the control center application that’s likely going to be a web mashup—
a single web application that combines data and services from various sources. He

Internet:
TCP/IP, Ethernet, ...

Web:
HTTP, HTML, JSON, ...

Internet of Things:
Bluetooth, ZigBee, Wi-Fi,...

Web of Things:
HTTP, JSON, WebSockets, ...

Application level
(OSI layer 7)

Encoding and Transport
(OSI layers 1-6) 

Easier to program, faster to integrate data and services, simpler 
to prototype, deploy, and maintain large systems.

More lightweight and optimized for embedded devices 
(reduced battery, processing, memory and bandwidth usage), 
more bespoke and hard-wired solutions. 

Figure 1.4 The Web of Things is concerned with only the highest OSI layer (7), 
which handles applications, services, and data. Working with such a high level of 
abstraction makes it possible to connect data and services from many devices 
regardless of the actual transport protocols they use. In contrast, the Internet of 
Things doesn’t advocate a single Application-level protocol and usually focuses on 
the lower layers of the OSI stack. 
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won’t have to bother learning the specifics of each protocol used by the various
devices he wants to use.1 This will not only take significantly less time to build but will
also minimize the effort required to maintain the system each time a device or service
is added, removed, or updated. 

 Making this vision a reality has been the objective of the Web of Things community
we started in 2007.2 Using HTTP and other web standards or tools to interact with
embedded devices made perfect sense to us. At the time, this idea seemed unrealistic
and even pointless to some, and we got our fair share of criticism, mainly because
embedded web servers in an Internet of Things generally have more limited resources
than the clients who access them (such as browsers or mobile phones). But things
have changed: recent embedded web servers with advanced features can be imple-
mented with only 8 KB of memory. Thanks to efficient cross-layer TCP/HTTP optimiza-
tions, they can run on tiny embedded systems or even smart cards. Also, thanks to the
massive developments in the JavaScript community, it has become increasingly easy to
shift a lot of the workload from devices to client applications and even to the cloud.

 In the Web of Things, devices and their services are fully integrated in the web
because they use the same standards and techniques as traditional websites. This
means that you can write applications that interact with embedded devices in exactly
the same way as you would interact with any other web service that uses web APIs— in
particular, RESTful architectures.

1 A not so short list of automation protocols: https://en.wikipedia.org/wiki/List_of_automation_protocols
2 http://webofthings.org

Social Web Real-time Web

Semantic Web Programmable Web

Mashups
REST APIs

JSON

Web services

WebSockets
Web hooks

Push notifications

Facebook
Twitter

OAuth

Microdata

RDFaschema.org

Link headers

RSS/ATOM

JSON-LD

Delegated
authentication

Figure 1.5 The Web of Things is the ability to use modern web standards on 
embedded devices. By using all these standards for Internet of Things scenarios, 
we both enable new types of interactive applications to be built and make sure 
that devices can be integrated with modern web applications and services with 
minimal effort.

https://en.wikipedia.org/wiki/List_of_automation_protocols
http://webofthings.org
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As we’ll describe in chapter 6, REST is an architectural style for developing distributed
applications and is the basis upon which the modern web is built. The essence of REST
is to focus on creating loosely coupled services that can be easily reused, which are
implemented using URIs, HTTP, and standardized media types. Abstracting the ser-
vices from their application-specific semantics thanks to a uniform interface (HTTP
verbs and response codes) makes it easy to build loosely coupled services because it
provides a simple mechanism for clients to select the best possible representations for
interactions. This makes the web the ideal substrate to build a universal architecture
and application programming interface (API) to interact with Things, as shown in
figure 1.5.

 In practice, this means you can start interacting with Things via web browsers and
explore the Web of Things as you would surf the web (via links to other related
Things). Real-time data collected from distributed sensors can then be easily
retrieved, processed, and displayed on web pages using HTML, CSS, and JavaScript. 

 In contrast to many protocols and standards existing in the Internet of Things, the
programming model behind the Web of Things is significantly easier to learn and to
use. This is particularly interesting because it enables anyone with basic web program-
ming skills to build websites and applications, not only around multimedia content
but also with real-time data from the physical world, as figure 1.6 illustrates.

 Although the Web of Things emphasizes the use of web standards to exchange
data between devices, it doesn’t imply anything about how the devices should be phys-
ically connected to each other. In other words, devices can (but don’t have to) be

• Web developers
• Native/desktop apps
• Web services and APIs
• Analytics, storage

WWW/LAN

GET
http://myhome.london/fire/alerts.rss

PUT
http://hotel.ar/room105/lock

GET
http://geneva.ch/weather/

HTTP

Figure 1.6 The Web of Things allows developers and applications to exchange data with any 
physical object or device using standard HTTP requests, regardless of how the device is connected.
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openly connected to the web and publicly accessible by anyone just like websites. The
Web of Things works equally well in a local network (for example, the intranet of your
company or your Wi-Fi network at home).

 In some cases, it makes sense for Things to have a public URL and be openly acces-
sible over the web—for example, traffic or pollution sensors in a city operated by the
public authorities. In this case, devices could also be crawled and indexed by search
engines like any other web page and allow users to literally Google the physical world
or bookmark the URL of a smart object and share it with friends. Web-connected objects
can also become active and participate in the web just like other users by publishing
their own blogs or talking to each other using the APIs of services such as Twitter. 

 Using services such as IFTTT,3 users can create small, logical rules that mix real-
world devices such as sensors in their home with virtual services in the cloud; for
example, an SMS gateway or a weather forecast service. Such applications are called
physical mashups and are the topic of chapter 10, where you’ll learn the principles and
tools that will allow you to create physical mashups on top of your Things.

 To really understand why the Web of Things represents an interesting next stage in
the evolution of the IoT, we first need to look at the history of this field up to today.
Why did the idea of connected devices emerge in the first place? And if the vision of a
global network of connected devices is so promising, why doesn’t it exist yet? We
attempt to answer these questions in the next section. 

1.2.3 The Internet of Things—a brief history

To understand where the notion of the Internet of Things comes from, we have to
look into a field of computer science research that goes by many names, most com-
monly ubiquitous computing or pervasive computing. One of the founding fathers of this
discipline was Mark Weiser. While leading the Xerox PARC research lab in the early
’90s, Weiser started to think about the next wave of computers:

The most profound technologies are those that disappear. They weave themselves into the
fabric of everyday life until they are indistinguishable from it.…Silicon-based informa-
tion technology, in contrast, is far from having become part of the environment. More
than 50 million personal computers have been sold, and nonetheless the computer
remains largely in a world of its own. It is approachable only through complex jargon
that has nothing to do with the tasks for which people actually use computers. 

Mark Weiser, “The Computer for the Twenty-First Century,” 1991

What Weiser understood before anyone else was that computers were clearly evolving
from the big, bulky boxes on desktops and in offices toward smaller and smarter
devices that would soon be seamlessly embedded everywhere in the world around us
and become invisible.

3 https://ifttt.com/

https://ifttt.com/
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 The years that followed 1991 were the early years of the internet we know today,
which has grown into a massive public global network of computers, thanks to the
invention, by Sir Tim Berners-Lee, and development of the web (HTTP and HTML)—
the Application layer on top of the internet.

 No wonder the stunning success of the internet had a strong impact on the ubiqui-
tous computing research community. A number of researchers started to think about
connecting physical objects to the internet. In particular, these included researchers
from the Auto-ID Labs (an international cluster of research laboratories originally
founded at MIT), such as Sanjay Sarma, Kevin Ashton, David Brock, and Daniel Engels
at MIT and Friedemann Mattern and Elgar Fleisch at ETH Zurich. Their primary focus
was on automatically identifying goods using radio frequency identification (RFID)
tags in order to create a global network of electronically tagged products and to be
able to optimize logistics and supply chains. Looking for a term to describe this global
network, Kevin Ashton came up with the term Internet of Things.4 The rest is history.

 Although the term Internet of Things was coined in 1999, this concept has remained
under the radar of the general public until the last few years, when people realized it
was more than just a trendy term. According to Google Trends, since December 2013
the term Internet of Things clearly took over Web 2.0 in news headlines (figure 1.7).
Although Web 2.0 has been one of the most popular emerging web trends of the
2000s, in the last few years it has faded away from the spotlight as the popularity of the
Internet of Things has grown exponentially. 

 When Google acquired NEST for a “modest” $3.3 billion USD in December 2013, a
collective “Aha!” moment took place: Hold on! There is actually money to be made with the
Internet of Things. And lots of it! In 2014, Gartner predicted a population of over 25 bil-
lion connected devices by 2020.5 Cisco was a bit more optimistic and predicted that by
2020 there would be more than 50 billion Things connected to the internet.6 

4 http://www.rfidjournal.com/articles/view?4986
5 http://www.gartner.com/newsroom/id/2905717 
6 https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

2005 2007 2009

Internet of
Things

Web 2.0

2011 2013 2015

June 2007

Web 2.0: 100
Internet of Things: 5

Figure 1.7 Since December 2013, the term Internet of Things has become more popular in news 
headlines than Web 2.0. [Source: Google Trends, September 25, 2015]

http://www.rfidjournal.com/articles/view?4986
http://www.gartner.com/newsroom/id/2905717
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
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It doesn’t really matter who is right or wrong because one thing is certain: in the next
decade, there will be a lot more internet-connected devices around us. A significant
milestone was reached in 2008 when the number of Things connected to the Internet
exceeded the number of people. In consequence, many of the largest companies in
the world, from Cisco to Samsung to IBM, mentioned the IoT as a key strategic invest-
ment in 2014.7 

 We can learn two things from this sudden interest in the Internet of Things. First,
regardless of whether you are a back-end guru, a front-end developer, or a hobbyist
hacker, now is the ideal time to brush up on your Internet of Things skills. Second, the
years of the Intranet of Things, where Things only ever communicate in their own lit-
tle world, are numbered. But for the IoT to become a reality and unleash its potential,
all those objects need to speak the same language. For devices and applications to
interact with each other easily, securely, and in an ad hoc manner, we need a universal
and open standard that promotes loose coupling, scalability, and flexibility. 

1.3 Use cases—why connected objects?
It would be incorrect to ask when the IoT will be here because it already is. Countless
examples can be found everywhere today. Your smart TV connects to the internet and
records the shows you prefer to watch. The Nike+ sensor in your shoes uploads all
your runs to the internet so you can compete with your friends. And your mobile
phone streams your location so you can track it or disable it remotely if it gets stolen. 

 Nonetheless, the IoT is still in its early teenage years and will certainly influence
our world in a much more profound way than these early use cases did. Let’s look at
the areas where the IoT will most likely have a big impact. This is an opportunity to
see what benefits the Web of Things can bring to multiple areas. Hopefully, this will
inspire you for your future weekend hacks or more serious product developments. 

1.3.1 Wireless sensor networks and distributed sensing

The incredible progress in computing in the ’80s and ’90s, especially the miniaturiza-
tion of embedded computers and radio networking chips, led to the emergence in the
early 2000s of wireless sensor networks (WSNs). Those networks are composed of tiny,
single-board computers such as the ones shown in figure 1.8.8 Those devices, being
cheap and battery-powered, could be deployed in large areas to continuously monitor
various physical environments or structures using a multitude of sensors. For exam-
ple, WSNs have been used to monitor the structure of historical buildings such as the
Torre Aquila in Italy,9 to understand the impact of humans on bird habitats,10 and to
monitor agricultural crops for food production.11

7  http://postscapes.com/internet-of-things-investment
8  http://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
9  http://d3s.disi.unitn.it/projects/torreaquila
10  http://www.cs.berkeley.edu/~culler/papers/wsna02.pdf
11  http://www.mdpi.com/1424-8220/9/6/4728/htm

http://postscapes.com/internet-of-things-investment
http://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
http://d3s.disi.unitn.it/projects/torreaquila
http://www.cs.berkeley.edu/~culler/papers/wsna02.pdf
http://www.mdpi.com/1424-8220/9/6/4728/htm
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Although early WSN deployments weren’t connected to the internet, these systems
influenced the IoT in many ways because this prolific research community gave birth
to innovative ideas that shaped IoT technologies. The techniques, tools, and protocols
developed for WSNs made it possible to use low-power platforms for large-scale distrib-
uted sensing applications in the real world. 

 The requirements and operating context of those devices also gave birth to a num-
ber of operating systems optimized for low-power sensing, such as TinyOS12 or Con-
tiki.13 Indeed, when battery-powered devices are deployed in natural and
unpredictable environments, it’s essential to ensure robustness and minimal energy
consumption because human intervention to debug or fix software and hardware
problems—or even to change the batteries—is clearly impractical. 

WSNS AND THE WEB OF THINGS

It’s clear that the majority of WSN devices weren’t designed for the public. Those plat-
forms were intended to be mainly programmed by experts. Although web protocols
are heavier (more verbose) than the optimized protocols used on embedded devices,
there has been a lot of progress in optimized HTTP libraries that run on constrained
devices.14 Additionally, devices are becoming increasingly powerful and many come
with Wi-Fi connectivity on board. The ability to interact with embedded sensors using
standard web protocols makes the collection, storage, and analysis of data from het-
erogeneous sensors much simpler. Indeed, integrating data across several cloud ser-
vices is much faster thanks to the simplicity and ubiquity of REST APIs.

12  http://www.tinyos.net
13  http://www.contiki-os.org
14  http://research.microsoft.com/pubs/73067/tws.pdf

Mica Mote (~2004):
CPU: Atmel ATmega 128 @ 4 MHz
Flash: 128 KB RAM + 512 KB Flash
Radio: 868/916 MHz

Sun SPOT (~2010):
CPU: ARM ARM920T @ 180 MHz
Flash: 512 KB RAM + 4 MB Flash
Radio: 2.4 MHz IEEE 802.15.4

Intel Edison (~2014):
CPU: Atom dual core @ 500 MHz
Flash: 1 GB RAM + 4 GB Flash
Radio: Wi-Fi + Bluetooth

Figure 1.8 Three generations of wireless sensor nodes 

http://www.tinyos.net/
http://www.contiki-os.org
http://research.microsoft.com/pubs/73067/tws.pdf
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1.3.2 Wearables and quantified self

Another interesting use case for the IoT is building tiny sensors that people can carry
or wear to passively monitor their daily activities or even body factors such as heart-
beats or chemicals in their blood or sweat. Heartbeat monitors have long been com-
mercialized for long-distance runners to keep track of and regulate their heart activity.
A major breakthrough in this domain was the Nike+, which was easy to use and could
connect out of the box to an iPhone (see figure 1.9).

 This trend has experiences a boom in the last few years with many more products
ranging from activity trackers,15 to smart scales connected to your phone helping you
to control your weight and body fat,16 to smart pedals tracking your rides and working
as antitheft devices,17 to smart pillows, smart pill boxes, alarm clocks, and smart
watches giving you access to a whole new world of information about yourself.

WEARABLES AND THE WEB OF THINGS

Integrating wearable and quantified self devices on the web, so that the data is directly
accessible by other devices and applications, will make it much easier to develop new
classes of extensible applications for elder care, health and fitness, or fun and sports.
It will also ensure you don’t need a separate app for each of them (with interesting
security and privacy challenges that we’ll discuss in chapter 9).

15  For example: http://misfit.com or https://jawbone.com/up
16  http://www.withings.com/us/en/products/smart-body-analyzer
17  http://connectedcycle.com

Figure 1.9 The Nike+ ecosystem was one of the pioneers in the quantified self 
or wearables trend. [Photo by ivyfield on Flickr licensed under CC BY 2.0]

http://misfit.com
https://jawbone.com/up
http://www.withings.com/us/en/products/smart-body-analyzer
http://connectedcycle.com/
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 As illustrated by Nike’s success story, early wearable devices focused on the social
aspects of sports by sharing and comparing personal data such as race times, dis-
tances, and so on. Here again, the Web of Things helps because it allows a seamless
connection between wearable devices and social networks on the web.

1.3.3 Smart homes and buildings

In the ’60s and ’70s, the house of the future was envisioned as an entirely automated
and responsive system, like the ones you could see in The Jetsons or Star Trek. Doors
would open automatically; food and coffee would be made by robots and readily
served as soon as you pop out of your bed. Your environment would make your life
easier and take care of everything you needed when you needed it. 

 Domotics—the technical term for smart and connected homes—became all the
rage in the 2000s, and these systems included entertainment systems, lighting systems,
heating, ventilation, air-conditioning systems (HVAC), and so on. But smart homes
existed way before the Internet of Things was invented. The most important differ-
ence between the legacy systems and the second wave of smart homes is the use of
internet or internet-friendly protocols, pushing home automation away from the
world of proprietary systems by connecting devices directly to the internet or through
residential gateways.

 Interestingly enough, this trend toward digitalizing our homes went even further
with the development of open-source hardware and software platforms such as Ardu-
ino.18 Indeed, many amateurs started hacking around and connecting various bits in
their houses. From energy and gas meters to lighting and presence detectors, ama-
teur developers were suddenly interested and empowered to connect their houses to
the internet. 

SMART HOMES AND THE WEB OF THINGS

The smart home environment is probably symptomatic of the (too) vast number of
standards and protocols that exist for connecting things to networks. Although all
devices in your home should talk to each other, they can’t because those protocols
are incompatible and you end up with more apps and remote controls than ever
before. The Web of Things offers an alternative approach where web languages are
the baseline, the minimal API that devices should offer either directly or indirectly
through gateways. In our own company—EVRYTHNG19—we used the Web of Things
approach to connect, at scale, a number of home automation devices from different
manufacturers.

 The Web of Things allows interoperability between devices from different manufac-
turers and fosters cross-device applications. It also makes it possible for a larger group
of amateurs to buy all sorts of devices, build rapidly their smart home systems, and espe-
cially reuse and customize these systems easily for their unique needs and desires.

18  http://www.arduino.cc
19  http://evrythng.com

http://www.arduino.cc/
http://evrythng.com
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1.3.4 Smart cities and energy grids

One of the most promising use cases for the Internet of Things might well be the
emergence of smart cities. As more humans move from rural areas to cities each year,
it becomes clear that changes are necessary to the way large cities are designed and
operate to ensure the safety and well-being of their inhabitants. The ability to monitor
urban environments in real time thanks to a plethora of sensors and computers is an
incredibly promising substrate to make our cities smarter and more efficient.

 Smart cities have always been at the heart of what WSN researchers do: getting
more insights about our environment based on data gathered by tiny computers. But
most of this work was based on an asynchronous and linear workflow: 

1 Deploy wireless sensor nodes.
2 Collect data.
3 Analyze data in the lab.
4 Write reports.
5 Take actions based on these reports.

The Internet of Things gives new dimension to this domain by drastically short-circuit-
ing the required steps. The data is now available on the internet as real-time streams
upon which direct actions can be taken. These can be used to monitor safety, traffic,
or utilities (water, waste disposal, and more) in real time and react rapidly when any
anomaly is detected—ideally before a serious problem occurs. 

 The interest in smart cities has significantly increased in the past few years with a
number of cities betting a lot on the potential of the Internet of Things, such as Mil-
ton Keynes in the UK,20 Santander in Spain,21 New York in the United States,22 and
Songdo in South Korea.23 

 As a stepping-stone to this vision of future cities, smart grids are using the Internet
of Things to optimize the way we consume and distribute energy. Thanks to real-world
services, home and industrial appliances can increasingly communicate their energy
consumption in real time and raise consumers’ energy awareness. Furthermore, appli-
ances can communicate with each other to make whole buildings smarter by optimiz-
ing HVAC among other things. Even more important, through composite applications
using real-world services, industrial machinery and citywide infrastructures will be
able to negotiate energy consumption and limit consumption peaks.

SMART CITIES AND THE WEB OF THINGS

Using web standards in the context of smart cities is particularly interesting because
they make it much easier to share sensor data with the public and make it easy for
developers to consume real-time data about traffic, pollution, or public transportation
in their own urban applications.

20 http://www.mksmart.org
21 http://www.smartsantander.eu
22 https://nycopendata.socrata.com
23 http://www.bbc.co.uk/news/technology-23757738

http://www.mksmart.org/
https://nycopendata.socrata.com/
http://www.bbc.co.uk/news/technology-23757738
http://www.smartsantander.eu
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1.3.5 Smart manufacturing and Industry 4.0

Manufacturing went through three main cycles of evolution. First came the mechani-
zation of production processes using water and steam power in the Industrial Era dur-
ing the 19th century. Afterwards, mass production of goods was enabled thanks to
electric power. The third revolution was the digital age, where electronics and com-
puters made it possible to further automate production, distribution, and communi-
cation processes. 

 The IoT is enabling a fourth revolution in manufacturing and industrial systems
commonly referred to as Industry 4.0. Germany has been at the forefront of this
change driven by companies such as Bosch, Siemens, and SAP. The IoT can bring two
main benefits to traditional industries. First is access to unparalleled amounts of data.
Connecting machines to the internet and feeding them real-time data is one step
toward more transparent and efficient industrial systems. Second, the IoT brings ser-
vices to machines. Rather than being bound to a single set of operations, industrial
machines can now offer services, making it possible to use and reuse these machines
in combination with other machines by connecting their respective services. This abil-
ity will transform manufacturing machines and plants into flexible ecosystems of
reconfigurable production lines that can rearrange themselves to perform any given
tasks as efficiently as possible. Industry 4.0 is an ongoing revolution and most of the
activities in this field are still taking place in research labs all over the world. But in the
last two years, most large companies have actively engaged in IoT projects and prod-
ucts, showing that this isn’t just a trend: it’s a massive opportunity to reinvent any busi-
ness. And it’s here to stay.

INDUSTRY AND THE WEB OF THINGS 

Using web standards to interconnect all the elements in a business process, such as
the shop-floor machinery, enterprise software, employees in various departments,
products, customer, and suppliers, will represent a significant change in how compa-
nies do business. Turning all the elements in a factory into easy-to-combine LEGO-like
bricks will make it much easier and faster for companies to adapt to changing environ-
ments, get their products to market more quickly, optimize their business and manu-
facturing processes, and so on. When all the actors in those processes are able to
automatically decide how best to perform their duty based on real-time data, there’s
no doubt that the way we design, manufacture, and distribute physical products will
be profoundly changed.

1.3.6 Smart logistics and supply chains

As explained before, the first mention of the Internet of Things comes from the world
of Auto-ID of the everyday consumer packaged goods (CPGs) or even the cheaper and
short-lived fast-moving consumer goods (FMCGs). It’s no wonder that the world of
logistics and supply chains was the first to explore the connectivity between all kinds
of real-world objects and the internet. Indeed, the Internet of Things isn’t limited to
devices but can include any physical object. Even if the object itself doesn’t have any
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communication capabilities, one can use a mobile phone or an RFID reader to recog-
nize the product and interact with it. In consequence, CPGs such as food products and
also more expensive and long-lived items such as a luxury watch or a handbag only
need a machine-readable tag to be part of the Internet of Things.

 The EPCglobal network24 was probably the first standardized system for applying
the Internet of Things to logistics. The EPCglobal network is a set of standards that
describe how to connect RFID-tagged objects to standard readers, which in turn are
connected via the internet to RFID information systems and databases.

 Passive RFID tags are tiny computers that harvest energy from the electromagnetic
field generated by nearby RFID readers. RFID tags are certainly not the only way to
identify FMCGs, but they present a key advantage over other technologies such as bar-
codes, image recognition, or QR codes: they can be read automatically, without
human intervention or line of sight, and they’re already widely deployed in live sys-
tems throughout the whole supply chain. 

 The biggest barrier of adoption for RFID in logistics and supply-chain operations
has always been the relatively high cost of RFID, making it expensive to tag every
object. But recent developments are producing radical changes in this space: a num-
ber of companies in the world have managed to print RFID tags, sensors, and batteries
(see figure 1.10). In a few years, it will be easy and cheap to print embedded comput-
ers and sensors on products and/or their packaging.

 Large-scale adoption of automated identification and tracking methods on prod-
ucts will have a massive impact on supply chains, allowing them to be much more effi-
cient and also to offer better services to consumers. 

SMART LOGISTICS AND THE WEB OF THINGS

 Imagine a web-enabled supply chain that knows in real time the temperature of
your strawberries and can send alerts as soon as the conditions change or even regu-
late automatically the temperature of trucks, ships, and warehouses according to the
type of the products being stored and transported—all of that information accessible
over web APIs. Sharing historical data about devices using web standards will make it
much easier for multiple applications to work together across the whole lifecycle of
products. This means much lower integration costs and high data integrity across the
different systems that will process and handle those products. 

Figure 1.10 A Thinfilm25 printed NFC 
tag and temperature sensor. RFID tags, 
sensors, and batteries can now be 
printed, reducing the costs and allowing 
packages to become smart. [Source: 
Thinfilm, used with permission]

24  http://www.gs1.org/epcglobal
25 http://thinfilm.no/products-nfc-solutions/

http://www.gs1.org/epcglobal
http://thinfilm.no/products-nfc-solutions/
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1.3.7 Marketing 2.0

The ability to connect CPGs and FMCGs to the internet enables many interesting appli-
cations for product manufacturers and retailers, but beyond the supply chain, on the
consumer side, it also allows new services, commonly referred to as Marketing 2.0.
The ability to identify products with mobile phones using bar codes, QR codes, or
image recognition makes it possible to launch personalized marketing campaigns by
turning a product into a direct communication and service delivery channel between
consumers and retailers. Typical applications in this field range from product person-
alization and gifting to customer loyalty, digital user guides and after-sales services,
and personalized warranties and product recalls. 

 The use of IoT technologies for marketing purposes isn’t limited to tagged prod-
ucts. Smart devices can be used to fuel the craziest and most creative (we’ll let you be
the judge of that.) marketing campaigns as well. Examples of those are the Evian
Drop, a small device that lets you order water directly from your fridge for delivery to
your doorstep,26 the Dom Pérignon button (figure 1.11) that lets you order cham-
pagne at the push of a button in your hotel room at the prestigious Savoy Hotel in
London,27 and the Budweiser Red Light that glows bright red when your favorite team
scores a goal.28

26 http://theinspirationroom.com/daily/2012/evian-smart-drop/
27 http://www.altomagazine.com/newsdetails/travel/hotels/dom-prignon-at-the-press-of-a-button-4310934/
28 http://www.wired.com/2013/02/budweiser-red-light/

Figure 1.11  The Press for DP button manages the delivery of Dom Pérignon 
champagne in Savoy Hotel rooms within a few minutes. [Source: LVMH, used with 
permission]

http://theinspirationroom.com/daily/2012/evian-smart-drop/
http://www.altomagazine.com/newsdetails/travel/hotels/dom-prignon-at-the-press-of-a-button-4310934/
http://www.wired.com/2013/02/budweiser-red-light/
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MARKETING AND THE WEB OF THINGS

Mobile applications can retrieve data about CPG and FMCG products, interact with
them to attach digital content, and share information about them on social networks
much quicker and more easily over the web. If every product in the world had its own
URL and web API, it would be easy for any application to recognize a product and
access its data without much integration effort. At EVRYTHNG we used our Web of
Things platform to connect products to the web and deliver such Marketing 2.0 appli-
cations. As an example, Diageo in Brazil printed unique QR codes on its whiskey bot-
tles so that their customers could attach a personalized message to each bottle; in that
case, it was a video created on the customer’s smartphone for Father’s Day.29 

1.4 The Web of Things—a supercharged Internet of Things
As described previously, the majority of IoT systems paid little attention to the issues
of an open and large-scale system of heterogeneous devices talking to each other. This
is partially because the IoT focused strongly on the lower layers of the networking
stack (how data can be transmitted between actors) and much less on how to facilitate
the development of new applications (how data can be collected, visualized, or pro-
cessed). In particular, limited effort has been devoted to enable ad hoc interoperabil-
ity, and consequently it’s still difficult to build scalable applications on top of
heterogeneous devices.

 The reason for that isn’t as much technical as it is commercial. A plethora of proto-
cols for the IoT have been proposed in the last decade by standardization bodies,
industrial alliances, and vendors. In essence this is a good thing. But the crude reality
is that none of those standards has reached sufficient traction to be “the one” univer-
sal protocol for the IoT (see figure 1.12).Today, if you want a smart house, at best
you’ll have to buy all components from the same manufacturer. Because of this, your
only option to control that system will be through the application that comes with it. If
that application has been designed mainly for iPhone and isn’t available on Android,
well, that’s too bad. If that application is badly designed, is painfully slow, or doesn’t
have half the features you need, you’re stuck with it. 

29 http://adage.com/article/global-news/diageo-personalizes-whiskeys-videos-gift-givers/238015/

Figure 1.12 The problem with Internet 
of Things. The Web of Things builds upon 
and extends existing and widely used 
web standards so that it can use the 
whole web ecosystem in place. [Source: 
http://xkcd.com/927/ used under 
Creative Commons 2.5 license]

http://adage.com/article/global-news/diageo-personalizes-whiskeys-videos-gift-givers/238015/
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Put simply, most IoT solutions on the market today have little in common with the
Internet—a unique, open, global network where everything is interconnected. The
Internet of Things of today should rather be called the Intranets of Things, because it’s
a set of isolated islands of functionality that weren’t designed to talk to each other.
Even though an increasing number of networked devices offer APIs to control and
access data about them, a custom application still needs to be developed specifically
for each of those APIs. This is the case not only because different devices have differ-
ent functionalities, but also because each API is implemented using different applica-
tion protocols and has a different data model without a shared and standardized
language.

 The simplicity and openness of the web and its standards (URL, HTTP, HTML, JavaS-
cript, and so on) is likely what enabled the web we know today. This lingua franca
enabled any user in the world to read any other web page without installing anything
and has been a major factor in the success of the web. By enabling web pages, browsers,
servers, and services to all speak the same application language, the integration of a
large variety of content was incredibly simplified. The equivalent enabler has unfortu-
nately not yet been found for devices and applications in the Internet of Things. 

 In this section, we describe the limitations and problems with the existing
approaches to IoT that don’t prioritize an open, universal, and simple Application
layer protocol for devices. For each of those limitations, we show the benefits of using
a Web of Things approach instead.

1.4.1 Easier to program

First, let’s look at the way Things are programmed.

INTERNET OF THINGS

The first problem with existing solutions and products today is that many of those pro-
tocols are complex and difficult to use. Such a high barrier for adoption, like the
internet had in the 70s, puts the IoT out of reach for most people. Learning to con-
nect to various devices that use a variety of interfaces and protocols is an especially
arduous task that will deter the most tenacious amateur who wants to get started with
programming their smart house. If you have any doubt about this, we invite you to
consult the specifications of the ZigBee30 protocol or of the Devices Profile for Web
Services (DPWS).31

WEB OF THINGS

Web protocols can easily be used to read and write data from/to devices, and are espe-
cially much simpler to use and faster to learn than the complex IoT protocols. In addi-
tion, if all devices could offer a Web API, developers could use the same programming
model to interact with any of them. Once you get the basic skills needed to build sim-
ple web applications, you can rapidly talk to new devices with minimal effort. 

30  http://zigbee.org/zigbee-for-developers/zigbee3-0/
31  http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-1.1-spec.html

http://zigbee.org/zigbee-for-developers/zigbee3-0/
http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-1.1-spec.html


24 CHAPTER 1 From the Internet of Things to the Web of Things
1.4.2 Open and extensible standards

Next, we look at how open the standards are in both worlds.

INTERNET OF THINGS

Another issue is that many of those protocols have been continually evolving as new
use cases are made possible by new technological developments. Because some of
those standards are funded and governed by one or a limited number of large corpo-
rations, they aren’t as neutral as a community-led open-source project. Besides, these
companies could decide to introduce breaking changes as they wish, thereby render-
ing existing devices and applications unable to talk to each other. 

 Moreover, some of those standards aren’t publicly documented and can’t be sim-
ply used and implemented without paying a significant annual fee. This automatically
limits, which automatically limits their adoption to only large industrial organizations.
Closed and proprietary protocols also lead to vendor lock-in. Ensuring that switching
to a different vendor is time- and cost-intensive is a well-known business strategy for
big software players—nothing new here. But in an IoT context the barriers are much
higher because switching protocols sometimes also implies changing the hardware
(e.g. using a different radio chip). Similarly, switching application protocols requires
firmware updates, which are hard to apply in the real world. 

WEB OF THINGS

The reason web standards have reached such popularity is that they’re entirely open
and free, so there’s virtually zero risk that they would change overnight. They ensure
that data can be rapidly and easily moved across systems, hence HTTP and REST are an
obvious choice when one wants to offer public access to some data.

1.4.3 Fast and easy to deploy, maintain, and integrate

Let’s look at the impact on deployment, maintenance, and integration for each
approach.

INTERNET OF THINGS

Because entire systems would need to use a single protocol, significant effort is
required to write custom convertors for each new device or application that needs to
be integrated. Maintenance of such a delicate assemblage of custom code is a risky
task and in business applications would mean significant investments.

WEB OF THINGS

There’s no risk that the web will suddenly stop working and require an upgrade. Yet,
the limits of what can be done on the web have not ceased to be redefined in a
decade, such as the ability to capture images from a camera or share one’s location. In
contrast, there are always new devices and protocols in the IoT world, and each time
one of the many protocols changes, all the other pieces of the puzzle that use the
device need to be updated. 
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1.4.4 Loose coupling between elements 

Next, we look at the dependencies of each approach, focusing on reusability.

INTERNET OF THINGS 

The implication of the previous sections is most importantly a tight coupling between
the devices and applications in the network. The system works well as long as all pieces
behave as expected and are used as intended. Sadly, this doesn’t leave much space for
ad hoc, unplanned interactions and repurposing of services into new use cases, which
are essential requirements in large-scale open networks of devices.

WEB OF THINGS

HTTP is loosely coupled by design because the contract (API specification) between
actors on the web is both simple and well defined, which leaves little room for ambigu-
ity. This allows any actor to change and evolve independently from each other (as long
as the contract doesn’t change). That’s why you can still visit a web page that hasn’t been
updated since the early ’90s (we’ll skip any comments about its visual design). The abil-
ity for devices on the Internet of Things to talk to new devices as they get added without
requiring any firmware updates is essential for a global Web of Things.

1.4.5 Widely used security and privacy mechanisms 

The issue of personal data, privacy, and security of IoT/WoT systems has always been a
major concern when building and deploying real-world applications. The two angles
to consider are these: 

■ Security—How to ensure a system can’t be easily accessed or used in a harmful
way by unauthorized users or systems. In other words, this is about ensuring
that no one can access data or a device they aren’t supposed to have access to.

■ User privacy—Assuming security is in place and only authorized and authenti-
cated parties or applications can access some data, how do we ensure that no
private information about users (for example, personal information or behav-
ioral data—where the user is, what the user is doing, and the like) could be
accessed or derived from it? This is particularly difficult because even if a piece
of data available about a user is harmless on its own, when combined with
another piece of data available from another sensor or system, it can be used to
unambiguously identify a user and their behaviors.

The truth is that even though there have been many projects and efforts to improve
the security of those systems, as of today, the Holy Grail of security and privacy in the
IoT world remains to be found. The real challenge is that capabilities of the IoT are
relatively new at this scale, and the risks associated with those technologies are both
largely unknown and hard to identify or measure in real-world applications. 

INTERNET OF THINGS

As explained earlier, because applications in the IoT are often developed individually,
the security mechanisms for these deployments are too often written from scratch, not
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tested sufficiently in the real world, or simply non-existing. Even today, a number of
IoT devices are being deployed without using a sufficient level of security, dangerously
exposing their authentication keys to the world.32 This is mainly because IoT-specific
security systems have quite often been designed to work well in closed ecosystems,
where every element is controlled.

WEB OF THINGS

The web can help here, too, and we’ll look into this in chapter 9. Looking back at the
history of the web, we can see that we’ve made tremendous progress in building
usable and reliable security mechanisms and protocols. These methods are not bullet-
proof—no security system is—but are a practical compromise of dependability, ease of
use, performance, and availability. 

 The fact is that even today it isn’t uncommon to hear that a large and famous
online company has been hacked and the data about millions of its users has been
leaked publicly. Even worse, protocols that have been viewed as secure and trusted
might still suffer from tiny unknown problems, making them vulnerable when found
(SSL Heartbleed33 anyone?). With a few exceptions, as long as those systems are imple-
mented correctly, the possibility of them being hacked remains minor, especially given
that those systems are used daily by billions of users. The advantage of using web-
based common standards, as opposed to custom and novel ones developed for the
IoT, is that they have been and still are extensively used and tested. Many implementa-
tions of such systems are open source (for example, OpenSSL), which means the code
is constantly used, tested, updated, and fixed by thousands of developers. Using such
established methods reduced the risk of failures as opposed to the bleeding-edge
(pun intended) techniques being developed from scratch for the IoT that have been
tested and used in the wild only marginally.

1.4.6 WoT—the shortcomings

We realize that at this stage you might be thinking, “These guys got a little carried
away with their WoT!” Maybe. But after using traditional IoT tools for over a decade,
it’s hard to describe the pleasure we feel after creating the same type of applications
directly in our browser with a few lines of JavaScript and with much less effort, time,
and suffering. 

 Nevertheless, the Web of Things isn’t the “Answer to the Ultimate Question of Life,
the Universe, and Everything” (aka 42).34 As with every disruptive technology or
approach, it comes with its own share of challenges. Security and general data privacy
are some of these. Connecting all Things in our physical world to the internet and
making them accessible on the web also means we potentially expose them to intrusive

32 http://www.ioactive.com/news-events/IOActive_advisory_belkinwemo_2014.html
33 The Heartbleed Bug is a serious vulnerability that was found in the popular OpenSSL cryptographic software

library (see more at http://heartbleed.com/)
34 http://goo.gl/l4rG1b

http://www.ioactive.com/news-events/IOActive_advisory_belkinwemo_2014.html
http://heartbleed.com/
http://goo.gl/l4rG1b
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governments, viruses, or disreputable companies that could use this to run denial of
service attacks or mine information about the real world. We should assume they will.
Thinking about security is already a must for the IoT; the WoT adds a few more con-
cerns, especially on the data privacy side of things. We’ll cover these advanced topics in
chapter 9, but the short answer is that a largely connected system will always be more
vulnerable than an isolated one. But a system connected using open standards is usu-
ally better off than one based on custom security mechanisms. Moreover, this isn’t the
first time we’ve had to face such a dilemma: our computers could be isolated, but this
would reduce their range of applications. The IoT and the WoT are no exceptions: we,
as citizens, have a choice and should weigh each of these new technologies on the bal-
ance between risks and benefits. The WoT should be about making our lives easier and
more enjoyable, not harder.

 It’s important to realize that pushing web standards on every single device isn’t
always the right thing to do, and in some cases it isn’t practical or feasible. Under cer-
tain constraints (such as when a battery-powered device needs to operate for a very
long time), you might be better off using an optimized IoT protocol. In chapter 5,
we’ll help you understand what these tradeoffs are and give you a framework to decide
the best options for various situations. The good news is that the Web of Things is all
about integration patterns: we’ll show you how to integrate non-web or even non-IP
devices to the web via proxies, gateways, or clouds. This type of hybrid solution some-
times makes deployments more complex but is more practical because it allows for
optimizations where needed. We’ll discuss these integration patterns in chapter 7. 

1.5 Summary 
■ The Internet of Things has been around for much longer than you think and

certainly before it was called this.
■ Early IoT systems were designed to operate in isolation; therefore, the IoT

today is a fragmented world—the Intranets of Things.
■ The Web of Things is different because it doesn’t care about underlying net-

working protocols or standards, only about how to weave various isolated sys-
tems and devices into a single, web-based ecosystem.

■ Using simple and ubiquitous web standards such as HTTP, Web Socket, and
JSON to integrate all sorts of devices and applications makes it much easier to
rapidly prototype all sorts of applications and then scale them for enterprise-
grade solutions.

■ The IoT is still in its infancy, and there are many opportunities ahead for those
who want to master the complexity of a world where the physical world
becomes connected.

■ This book will teach you how to use the Web of Things to build a new genera-
tion of IoT solutions that are more flexible, scalable, and interoperable by
building upon and using the infrastructure, tools, and experience accumulated
since the web was invented in the early 90s.
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In the next chapter, we’ll give you a first taste of what the Web of Things feels like. By
working on a few hands-on exercises, you’ll experience first-hand how easy it is to
build Web of Things applications that read sensor data, send commands to devices,
and merge information from various sources to create hybrid applications where the
real world becomes accessible on the Web. We kept the next chapter simple by hiding
the complexity of the devices behind web standards so that you are able to rapidly
build and customize your first Web of Things application without having to deal with
how to implement it directly on devices (yet!). In the chapters after that, you’ll learn
the details of how you can apply those principles to create elaborate applications and
connectors for any device and scenario you might have in mind.



Hello, World Wide Web
of Things
Before we dive head first into the Web of Things architecture and show how to
implement it from scratch, we want to give you a taste of what the Web of Things
looks like. This chapter is structured as a set of exercises where you’ll build tiny web
applications that use data generated by a real device. Each exercise will be a
smooth introduction to the many problems and technical issues that you’ll face
when building web-connected devices and applications that interact with them.

 In this chapter, you’ll have the opportunity to get your hands dirty and code some
simple (and less simple) Web of Things applications. Oh, you don’t have a device
yet? No problem; just use ours! To make it possible for you to do those exercises

This chapter covers
■ A sneak peek at the different levels of the Web of

Things architecture
■ Accessing devices with HTTP, URLs, WebSockets,

and browsers
■ Working with REST APIs to consume JSON data
■ Learning about the notion of web semantics
■ Creating your first physical mashup
29
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without having to buy a real device, we connected our own device to the web so you can
access it from your computer over the Web. Of course, if you already have a device, you
can also download the source code used in this chapter and run it on your own device.
How to run the code on the device will be detailed later, in chapter 7. 

2.1 Meet a Web of Things device
This chapter is organized as a series of short and sweet exercises. Each exercise allows
you to interact with an actual Web of Things device in our office that’s live 24/7. This
will allow you to do the exercises without having a real device next to you. 

The device in our office is the Raspberry Pi 2 (or just Pi for friends and family) shown
in figure 2.1, which we’ll describe in detail in chapter 4. If you’ve never seen one, you
can think of a credit card–sized computer board with a few sensors attached to it and
connected to our local network and the web via an Ethernet cable. In our setup, the Pi
acts as a gateway to various sensors or devices attached to it, so you can interact with
those resources through the Web. Gateways are described in detail in chapter 7, but

Temperature and humidity sensor

PIR sensor The Pi The camera

LCD

Figure 2.1 The Raspberry Pi and webcam you are accessing as they are set up in our London office
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for now just remember that the Pi runs a web server that allows you to access those
resources over the Web, as shown in figure 2.2.. 

 At the time of writing, we have a liquid crystal display (LCD), a camera, a tempera-
ture sensor, and a PIR sensor connected to our Raspberry Pi. We’ll keep adding vari-
ous sensors and actuators to it over time, so you’re welcome to experiment and go well
beyond the examples we provide here. You’ll soon realize that the various techniques
and patterns described in this book will allow you to quickly extend and customize the
examples we provide to any device, sensor, or object you can think of.

2.1.1 The suspect: Raspberry Pi

We’ll introduce the Raspberry Pi in greater detail in chapter 4, so all you need to
understand for now is that a Pi is a small computer to which you can connect multiple
sensors and accessories. It offers all the features you would expect from a desktop
computer but with a lower power consumption and smaller form factor. Moreover,
you can attach all sorts of digital sensors or actuators to it using the input/output
(I/O) pins. Actuator is an umbrella term for any element attached to a device that has
an effect on the real world, for example, turning on/off some LEDs, displaying a text
on an LCD panel, rotating an electric motor, unlocking a door, playing some music,
and so on. In the Web of Things, just as you send write requests to a web API using
HTTP, you do the same to activate an actuator. Now back to our exercises. The first
thing you need to do is to download the examples used in these pages from our repos-
itory here: http://book.webofthings.io.

 You can check out the repository on your own computer, and in it you’ll find a few
folders—one for each chapter. The exercises in this chapter are located in the folder

Your HTTP
client application

devices.webofthings.io/camera
A Wi-Fi connected camera

Our office in London

devices.webofthings.io/pi/sensors/pir
Passive infrared sensor

HTTP

Your house

devices.webofthings.io/pi
Raspberry Pi 2 with LCD and sensors

devices.webofthings.io/pi/sensors/temperature
Temperature sensor

HTTP

devices.webofthings.io
Public URL of the Pi 

in our office

Figure 2.2 The setup of devices and sensors used in the examples of this chapter

http://book.webofthings.io
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chapter2-hello-wot/client. If you’re wondering about the code for the server, worry
not! You’ll learn how to build this in the rest of the book.

2.2 Exercise 1—Browse a device on the Web of Things
We’ll start our exploration of the Web of Things with a simple exercise where you have
almost nothing to do but click on a few links in your browser. The first point we want
to illustrate is that on the Web of Things, devices can offer simultaneously a visual user
interface (web pages) to allow humans to control and interact with them and an appli-
cation programming interface (API) to allow machines or applications to do the same.

2.2.1 Part 1—The web as user interface

In this first exercise, you’ll use your browser to interact with some of the real Web
of Things devices connected in our office. First, have a glimpse of what the setup in
our office looks like through a webcam; see figure 2.3. Open the following link in
your favorite browser to access the latest image taken by the web cam: http://
devices.webofthings.io/camera/sensors/picture. This link will always return the latest
screenshot taken by our camera so you can see the devices you will play with (try it at
night—at night it’s even more fun!). You won’t see the camera itself, though.

 You probably noticed that the URL you typed had a certain path structure. Let’s play
a bit with this structure and go back to the root of this URL, where you’ll see the
homepage of the gateway that allows you to browse through the devices in our office
(figure 2.4). Enter the following URL in your browser: http://devices.webofthings.io.

How to get the code examples in this chapter

We use the GitHuba service to synchronize code between our computer and our Pi.
As an alternative, the Bitbucketb service works and is configured in a similar manner.
Both services are based on the Git source version control system, and the source
code for all the chapters is available from GitHub (here’s the link: http://book
.webofthings.io). The examples for this chapter are located in the chapter2-hello-wot
folder.

If you’re unfamiliar with Git and its commands, don’t worry—there’s plenty of infor-
mation about this on the web, but here are the most vital commands to work with it:

■ git clone—Fetches a version of a repository locally. For the book code you
need to use the recursive option that will clone all the sub-projects as well:
git clone https://github.com/webofthings/wot-book --recursive.

■ git commit –a –m "your message"—Commits code changes locally.
■ git push origin master—Pushes the last commits to the remote reposi-

tory (origin) on the master branch.

a GitHub is a widely popular, web-based, source code management system. Many open source 
projects are hosted on GitHub, because, well, it’s pretty awesome. Here’s an excellent intro to 
GitHub: http://bit.ly/intro-git.

b https://bitbucket.com

http://book.webofthings.io
http://book.webofthings.io
http://devices.webofthings.io/camera/sensors/picture
http://devices.webofthings.io/camera/sensors/picture
http://devices.webofthings.io
http://bit.ly/intro-git
https://bitbucket.com
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Your logo here!

Your text here!

Figure 2.3 The web page of the camera used in our setup. The image is a live screenshot 
taken by the camera.

The WoT Pi

Figure 2.4 The HTML homepage of the gateway of our WoT device. The two hyperlinks at the 
bottom of the page allow you to access the pages of the devices connected to the gateway.
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This URL will always redirect you to the root page of the gateway running in our office,
which shows the list of devices attached to it. Here, you can see that two devices are
attached to the gateway: 

■ A Raspberry Pi with various sensors and actuators
■ A webcam (the one you accessed earlier)

Note that this page is automatically generated based on which physical devices we
have attached to it, so you might see a few more devices or sensors as we attach them.
Yes, although it looks like any other web page, it’s actually real data served in real time
from real devices that are in a real office!

 Now, click the My WoT Raspberry Pi link to access the root page of the device
itself. Because you followed a link in your browser, you’ll see that the URL has changed
to http://devices.webofthings.io/pi, as shown in figure 2.5.

 This is another root page—the one of the device this time. In this case, we just
appended /pi to the root URL of the gateway.

 Coming back to our device root page, hover with your mouse above the various
links to see their structure, and then click The list of sensors link. You’ll see the URL
change again to this (figure 2.6): http://devices.webofthings.io/pi/sensors.

Other links

Sensors

Actuators

Device metadata

Figure 2.5 The homepage of the Raspberry Pi. Here, you can use the links at the bottom to browse and 
explore the various resources offered by this device; for example, its sensors and actuators.

http://devices.webofthings.io/pi
http://devices.webofthings.io/pi/sensors
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So far, it’s pretty straightforward: your browser is asking for an HTML page that shows
the list of /sensors of the device /pi connected to the devices.webofthings.io gate-
way. Remember that there’s also a camera connected to this, so in your browser address
bar replace /pi/ with /camera/ in the URL and you’ll be taken directly to the Sensors
page of the camera: http://devices.webofthings.io/camera/sensors; see figure 2.7.

Temperature
sensor

Figure 2.6 The list of sensors on the Pi. You can click each of them and see the latest known value 
for each.

Link to the sensor

Figure 2.7 The sensors on the camera. There’s only one sensor here, which is the current image.

http://devices.webofthings.io/camera/sensors
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Now, go back to the list of sensors on your Pi and see the various sensors attached to
the device. Currently, you can access three sensors: temperature, humidity, and pas-
sive infrared. Open the Temperature Sensor link and you’ll see the temperature sen-
sor page with the current value of the sensor. Finally, just like you did for the sensors,
go to the actuators list of the Pi and open the Actuator Details page (see figure 2.13)
at the following URL: http://devices.webofthings.io/pi/actuators/display.

 The display is a simple LCD screen attached to the Pi that can display some text,
which you’ll use in exercise 2.4. You can see the information about this actuator—in
particular the current value being displayed, the API description to send data to it, and
a form to display new data. You won’t use this form for now, but this is coming in sec-
tion 2.4.

2.2.2 Part 2—The web as an API

In part 1, you started to interact with the Web of Things from your browser. You’ve
seen how a human user can explore the resources of a device (sensors, actuators, and
so on) and how to interact with that device from a web page. All of that is done by
browsing the resources of a physical device, just as you’d browse the various pages of a
website. But what if instead of a human user, you want a software application or
another device to do the same thing, without having a human in the loop? How can
you make it easy for any web client to find a device, understand what it does, see what
its API looks like, determine what commands it can send, and so on? 

 Later in the book, we’ll show you in detail how to do this. For now, we’ll illustrate
how the web makes it easy to support both humans and applications by showing you
what another device or application sees when it browses your device. 

 For this exercise, you’ll need to have Chrome installed and install one of our favor-
ite browser extensions called Postman.1 Or you could use cURL2 if you’d rather use
the command line. Postman is a handy little app that will help you a lot when working
with a web API because it allows you to easily send HTTP requests and customize the
various options of these requests, such as the headers, the payload, and much more.
Postman will make your life easier throughout this book, so go ahead and install it. 

 In part 1, your browser is simply a web client requesting content from the server.
The browser automatically asks for the content to be in HTML format, which is
returned by the server and then displayed by the browser. 

 In part 2, you’ll do almost the same exercise as in part 1 but this time by requesting
the server to return JSON documents instead of an HTML page. JSON is pretty much
the most successful data interchange format used on the internet. It has an easy-to-
understand syntax and is lightweight, which makes it much more efficient to transmit

1 Get it here: http://www.getpostman.com/
2 cURL is a command-line tool that allows you to transfer data using various protocols, among which is HTTP.

If it’s not preinstalled on your machine, you can easily install it on Mac, Linux, or Windows. Website: http://
curl.haxx.se/

http://devices.webofthings.io/pi/actuators/display
http://www.getpostman.com/
http://curl.haxx.se/
http://curl.haxx.se/
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when compared to its old parent, XML. In addition, JSON is easy for humans to read
and write and also for machines to parse and generate, which makes it particularly
suited to be the data exchange format of the Web of Things. The process of asking for
a specific encoding is called content negotiation in the HTTP 1.1 specification and will be
covered in detail in chapter 6.

STEP 1—GETTING THE LIST OF DEVICES FROM THE GATEWAY

Just as you did before, you’ll send a GET request to the root page of the gateway to get
the list of devices. For this you’ll enter the URL of the gateway in Postman and click
Send, as shown in figure 2.8. 

 Because most web servers return HTML by default, you’ll see in the body area the
HTML page content returned by the server (4). This is basically what happens behind
the scenes each time you access a website from your browser. Now to get JSON instead
of HTML, click the Headers button and add a header named Accept with applica-
tion/json in the value, and click Send again, as shown in figure 2.9. Adding this
header to your request is telling the HTTP server, “Hey, if you can, please return me

1. Verb 2. URL 3. Click Send

4. Tada! The response.

Figure 2.8 Getting the root page of the gateway using the Postman web client. The request is an HTTP GET (1) 
on the URL of the gateway (2). The response body will contain an HTML document (4).
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the results encoded in JSON.” Because this is supported by the gateway, you’ll now see
the same content in JSON, which is the machine equivalent of the web page you’ve
retrieved before, but this time with only the content and no visual elements (that is,
the HTML code).

 The JSON body returned contains a machine-readable description of the devices
attached to the gateway and looks like this:

{ 
  "pi": { 
    "id": "1", 
    "name": "My WoT Raspberry Pi", 
    "description": "A simple WoT-connected Raspberry Pi for the WoT book.", 
    "url": "http://devices.webofthings.io/pi/", 
    "currentStatus": "Live", 
    "version": "v0.1", 
    "tags": [ 

"raspberry", 
"pi", 
"WoT" 

    ], 
    "resources": { 

"sensors": { 
"url": "sensors/", 
"name": "The list of sensors" 

}, 
"actuators": { 
"url": "actuators/", 
"name": "The list of actuators" 

1. Toggle the headers 2. Ask for JSON

Figure 2.9 Getting the list of devices connected to the gateway via Postman. The Accept header is now set to 
application/json to ask for the results to be returned in JSON.
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} 
    }, 
    "links": { 

"meta": { 
"rel": "http://book.webofthings.io", 
"title": "Metadata" 

}, 
"doc": { 

    "rel": "https://www.raspberrypi.org/products/raspberry-pi-2-model-b/", 
"title": "Documentation" 

}, 
"ui": { 
"rel": ".", 
"title": "User Interface" 

} 
    } 
  }, 
  "camera": { 
    [ ... description of the camera object... ] 
  } 
} 

In this JSON document, you can see two first-level elements (pi and camera) that rep-
resent the two devices attached to the gateway, as well as a few details about them, such
as their URL, name, ID, and description. Don’t worry for now if you don’t understand
everything here; all of this will become crystal clear to you in a few chapters. 

STEP 2—GETTING A SINGLE DEVICE

Now change the URL of the request in Postman so it points back to the Pi device
(which is exactly the same as the one you typed in your browser in part 1), and click
Send again, as shown in figure 2.10.

Figure 2.10 Getting the JSON representation of the Raspberry Pi. The JSON payload contains 
metadata about the device as well as links to its sub-resources.
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The body now contains the JSON object of the Pi except with the same information as
shown previously, and you can see that the resources object has sensors, actuators,
and so on: 

"resources": {
  "sensors": {
    "url": "sensors/",
    "name": "The list of sensors"
  },
  "actuators": {
    "url": "actuators/",
    "name": "The list of actuators"
  }
}

STEP 3—GETTING THE LIST OF SENSORS ON THE DEVICE

To get to the list of sensors available on the device, just as you did before, append
/sensors to the URL of the Pi in Postman and send the request again. An HTTP GET
there will return this JSON document in the response:

{
  "temperature": {
    "name": "Temperature Sensor",
    "description": "A temperature sensor.",
    "type": "float",
    "unit": "celsius",
    "value": 23.4,
    "timestamp": "2015-10-04T14:39:17.240Z",
    "frequency": 5000
  },
  "humidity": {
    "name": "Humidity Sensor",
    "description": "A temperature sensor.",
    "type": "float",
    "unit": "percent",
    "value": 38.9,
    "timestamp": "2015-10-04T14:39:17.240Z",
    "frequency": 5000
  },
  "pir": {
    "name": "Passive Infrared",
    "description": "A passive infrared sensor. True when someone present.",
    "type": "boolean",
    "value": true,
    "timestamp": "2015-10-04T14:39:17.240Z",
    "gpio": 20
  }
}

You can see that the Pi has three sensors attached to it (respectively, temperature,
humidity, and pir), along with details about each sensor and its latest value. 
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STEP 4—GET DETAILS OF A SINGLE SENSOR

Finally, you’ll get the details of a specific sensor, so append /temperature to the URL
in Postman and click Send again. The URL should now be http://devices.webofth-
ings.io/pi/sensors/temperature, as shown in figure 2.11.

 You will get detailed information about the temperature sensor, in particular the
latest value that was read (the value field). If you only want to retrieve the sensor
value, you can append /value to the URL of the sensor to retrieve it, which also work
for other sensors:  

{
  "value":22.4
} 

2.2.3 So what?

Now it’s time for you to play around with the different URLs you’ve seen so far in this
exercise. Look at how they differ and are structured, browse around the device, and try
to understand what data each sensor has, its format, and so on. As an extension look at
the electronic devices around you—the appliances in your kitchen or the TV or sound
system in your living room, the ordering system in the café, or the train notification sys-
tem, depending on where you’re reading this book from. Now imagine how the services
and data offered by all these devices could all have a similar structure: URLs, content,
paths, and so on. Try to map this system using the same JSON structure you’ve just seen,
and write the URLs and JSON object that would be returned.

1. URL of the temperature sensor

2. Latest sensor value 3. Timestamp when the value was measured

Figure 2.11 Retrieve the temperature sensor object from the Raspberry Pi. You can see the latest 
reading (23.4 degrees Celsius) and when it took place (at 14:43 on October 4, 2015).

http://devices.webofthings.io/pi/sensors/temperature
http://devices.webofthings.io/pi/sensors/temperature
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 What you have seen is that both humans and applications get data using exactly
the same URL but using different encoding formats (HTML for humans, JSON for
applications). Obviously, the data in both cases is identical, which makes it easy for
application developers to go back and forth from one format to the other. This is one
example of how simple—yet powerful—web technologies can be. Thanks to
immensely popular web standards such as HTTP and URLs, it becomes straightforward
to interact with the real world from any web browser. You'll learn much more about
these concepts in chapter 6 onward.

2.3 Exercise 2—Polling data from a WoT sensor
In the first exercise you learned about the structure of a WoT device and how it works.
In particular, you saw that every element of the device is simply a resource with a
unique URL that can be used by both people and applications to read and write data.
Now you’re going to put a developer hat on and start coding your first web application
that interacts with this Web of Things device. 

2.3.1 Part 1—Polling the current sensor value 

For this exercise, go to the folder you checked out from GitHub into the chapter2-
hello-wot/client folder. Double-click the ex-2.1-polling-temp.html file to open it in a
modern browser.3 This page displays the value of the temperature sensor on the Pi in
our office and updates this value every five seconds by retrieving it in JSON, exactly as
you saw in figure 2.11.

 This file uses jQuery4 to poll data from the temperature sensor on our Pi. Now
open this file in your favorite code editor and look at the source code. You’ll see two
things there:

■ An <h2> tag showing where the current sensor value will be written.
■ A JavaScript function called doPoll() that reads the value from the Pi, displays

it, and calls itself again five seconds later. This function is shown in the follow-
ing listing.

$(document).ready(
  function doPoll() {
    $.getJSON('http://devices.webofthings.io/pi/sensors/temperature',
 function (data) {

console.log(data);

3 We fully tested our examples on Firefox (>41) and Chrome (>46) and suggest you install the latest version of
these. Safari (>9) should also work. If you really want to use Internet Explorer, please be aware that you’ll need
version 10 onward; older versions won’t work.

4 jQuery is a handy JavaScript library that makes it easier to do lots of things, such as talk to REST APIs, manip-
ulate HTML elements, handle events, and so on. Learn more here: http://jquery.com/.

Listing 2.1 Polling for the temperature sensor 

 until the 
 is loaded and 
call doPoll().

Use the AJAX helper to ge
the JSON payload from th

temperature senso

When the response arrives, 
this function is called.

http://jquery.com/
http://jquery.com/
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ent 
ue) 

d.
$('#temp').html(data.value + ' ' + data.unit);
setTimeout(doPoll, 5000);

    });
  });

When developing (and especially debugging!) web applications, it might be useful to
display content from JavaScript outside the page; for this you have a JavaScript con-
sole. To access it in Chrome, right-click somewhere on the page and select Inspect Ele-
ment; then look for the console that appears below where you can see the HTML code
of the current page. The console.log(data) statement displays the data JSON object
received from the server in this console.

2.3.2 Part 2—Polling and graphing sensor values

This is great, but in some cases you’d like to display more than the current value of the
sensor—for example, a graph of all readings in the last hour or week. Open the sec-
ond HTML file in the exercises (ex-2.2-polling-temp-chart.html). This is a slightly
more complex example that keeps track of the last 10 values of the temperature sen-
sor and displays them in a graph. When you open this second file in your browser,
you’ll see the graph being updated every two seconds, as shown in figure 2.12. 

 We built this graph using Google Charts,5 a nice and lightweight JavaScript library
for displaying all sorts of charts and graphs. See our annotated code sample in the
next listing.

5 https://developers.google.com/chart/

Select the "temp" HTML 
element and update its cont
using the data.value (the val
and data.unit (the unit) 
returned in the JSON payloa

The doPoll() function sets a
timer to call itself again in 5

seconds (5000 milliseconds).

Figure 2.12 This graph gets a new value every few seconds from the device and 
is updated automatically.

https://developers.google.com/chart/
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$(document).ready(function () {
  var maxDataPoints = 10;
  var chart = new google.visualization.LineChart($('#chart')[0]);
  var data = google.visualization.arrayToDataTable([
    ['Time', 'Temperature'],
    [getTime(), 0]
  ]); 

  var options = {
    title: 'Temperature',
    curveType: 'function',
    animation: {

duration: 1000,
easing: 'in'

    },
    legend: {position: 'bottom'}
  };

  function addDataPoint(dataPoint) {
    if (data.getNumberOfRows() > maxDataPoints) {

data.removeRow(0);
    }
    data.addRow([getTime(), dataPoint.value]);
    chart.draw(data, options);
  }

  function getTime() {
    var d = new Date();
    return d.toLocaleTimeString();
  }

  function doPoll() {
    $.getJSON('http://devices.webofthings.io/pi/sensors/temperature/value',

function (result) {
addDataPoint(result);
setTimeout(doPoll, 2000);

});
    }

    doPoll();
  });

2.3.3 Part 3—Real-time data updates

In the previous exercises, polling the temperature sensor of the Pi worked just fine.
But this seems somewhat inefficient, doesn’t it? Instead of having to fetch the temper-
ature from the device every two seconds or so, wouldn’t it be better if our script was
informed of any change of temperature when it happens, and only if the value changes?

 As we’ll explore to a greater extent in chapter 6, this has been one of the major
impedance mismatches between the model of the web and the event-driven model of
wireless sensor applications. For now, we’ll look at one way of resolving the problem

Listing 2.2 Polling and displaying a sensor reading

lize the
e chart. Create an ar

that will con
the data poi

Configure the parameters 
of the chart.

Add a data point to the chart 
data and remove the oldest 
one if needed (if there are 
already 10 points available).

Redraw the chart 
with the new data.

Poll the temperature 
sensor like before.

When the new readings are 
returned, use them to call the 
addDataPoint() function.
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using a relatively recent add-on to the web: WebSockets. In a nutshell, WebSockets are
simple yet powerful mechanisms for web servers to push notifications to web clients
introduced as part of the efforts around the HTML5 standards.

 The WebSockets standard comprises two distinct parts: one for the server and one
for the client. Since the server is already implemented for us, the only specification
we’ll use here is the client part. The client WebSockets API is based on JavaScript and
is relatively simple and straightforward. The two lines of code in the following listing
are all you need to connect to a WebSocket server and display in the console all mes-
sages received.

var socket = new WebSocket('ws://ws.webofthings.io');
socket.onmessage = function (event) {console.log(event);};

Let’s get back to our examples. Go to the folder. Double-click the ex-2.3-websockets-
temp-graph.html file to open it in your favorite browser. What you see on the page is
exactly the same as in the previous exercise, but under the hood things are quite dif-
ferent. Have a look at the new code shown in the next listing.

var socket = new 

WebSocket('ws://devices.webofthings.io/pi/sensors/temperature');

socket.onmessage = function (event) {
  var result = JSON.parse(event.data);
  addDataPoint(result);
};

socket.onerror = function (error) {
  console.log('WebSocket error!');
  console.log(error);
};

In this exercise, you don’t poll periodically for new data but only register your interest
in these updates by subscribing to the /sensors/temperature endpoint via Web-
Sockets. When the server has new temperature data available, it will send it to your cli-
ent (your web browser). This event will be picked up by the anonymous function you
registered and will be given as a parameter the event object that contains the latest
temperature value.

2.3.4 So what? 

Let’s take a step back and reflect on what you did in this exercise: you managed to
communicate with an embedded device (the Raspberry Pi) that might be on the other

Listing 2.3 Connecting to a WebSocket and listening for messages

Listing 2.4 Register to a WebSocket and get real-time temperature updates

Create a WebSocket subscription to the
temperature sensor. Note that the URL
uses the WebSocket protocol (ws://...).

Register this anonymous function 
to be called when a message 
arrives on the WebSocket.

Register this other anonymous 
function to be triggered when an 
error occurs on the WebSocket.
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side of the world (if you don’t happen to be living in rainy and beautiful England).
From a web page you were able to fetch, on a regular basis, data from a sensor
connected to the device and display it on a graph. Not bad for a simple web page of 60
lines of HTML, JavaScript, and CSS code. You didn’t stop there: with fewer than 10
lines of JavaScript you also subscribed to notifications from our Pi using WebSockets
and then displayed the temperature in our office in real time. As an extension of this
exercise, you could write a simple page that automatically fetches the image from the
camera (ideally, you’d avoid doing this 25 times per second!).

 If this was your first encounter with the Web of Things, what should strike you at
this stage is the simplicity of these examples. Let’s imagine for a second that our Pi
wasn’t actually providing its data through HTTP, JSON, or WebSockets but via a “vin-
tage” XML-based machine-to-machine application stack such as DPWS (if you’ve never
heard about it, don’t worry; that’s exactly our point!). Basically, you wouldn’t be able
to talk directly to the device from your browser without a lot more effort. You would
have be forced to write your application using a lower-level and more complex lan-
guage such as C or Java. You wouldn’t have been able to use widespread concepts and
languages such as URLs, HTML, CSS, and JavaScript. This is also what the Web of
Things is about: making things from the real world programmable and universally
accessible by bringing them closer to the masses of web developers, where a lot of
today’s innovations are happening.

 As mentioned before, in this book you’ll learn a lot more about the art of API craft-
ing for physical things. In chapter 6 we’ll look at HTTP, REST, and JSON as well as at
the real-time web, and in chapter 7 we'll discover how to use gateways to bring other
protocols and systems closer to the goodness of the web.

2.4 Exercise 3—Act on the real world
So far, you’ve seen various ways to read all sorts of sensor data from web devices. What
about “writing” to a device? For example, you’d like to send a command to your
device to change a configuration parameter. In other cases, you might want to control
an actuator (for example, open the garage door or turn off all lights). 

2.4.1 Part 1—Use a form to update text to display

To illustrate how you can send commands to an actuator, this exercise will show you
how to build a simple page that allows you to send some text to the LCD connected to
the Pi in our office. To test this functionality first, open the actuator page of the LCD:
http://devices.webofthings.io/pi/actuators/display.

 On this page (shown in figure 2.13), you now see the various properties of the LED
actuator. First, you see brightness, which you could change (but can’t, because we
made it read-only). Then, you have content, which is the value you want to send, and
finally there is the duration, which specifies how long the text will be displayed on
our LCD. Use Postman to get the JSON object that describes the display actuator by

http://devices.webofthings.io/pi/actuators/display
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entering the URL shown in the last paragraph, as you learned in the first exercise of
this chapter: 

{
  "name": "LCD Display screen",
  "description": "A simple display that can write commands.",
  "properties": {
    "brightness": {

"name": "Brightness",
"timestamp": "2015-02-01T21:06:02.913Z",
"value": 80,
"unit": "%",
"type": "integer",
"description": "Percentage of brightness of the display. Min is 0
which is black, max is 100 which is white."

    },
    "content": {

"name": "Content",
"timestamp": "2015-02-01T21:06:32.933Z",
"type": "string",
"description": "The text to display on the LCD screen."

    },
    "duration": {

"name": "Display Duration",
"timestamp": "2015-02-01T21:06:02.913Z",
"value": 5000,
"unit": "milliseconds",
"type": "integer",
"read-only": true,
"description": "The duration for how long text will be displayed 
on the LCD screen."

    }
  },
  "commands": [
    "write",
    "clear",
    "blink",
    "color",
    "brightness"
  ]
}

Obviously, it wouldn’t be much fun to display something in our office if you couldn’t
see what was being displayed. For this reason, we’ve set up a webcam where you can
see the LCD on our Pi, so you can always see what is displayed on it. Here’s the URL:
http://devices.webofthings.io/camera/sensors/picture. Go ahead; open this page,
and you’ll see the latest picture of the camera you saw in figure 2.3 (to see the latest
image, refresh the page). 

 Now you’ll send a new message to the Pi for it to be displayed by the LCD. The
content property is always the current message displayed on the LCD, so to update it

http://devices.webofthings.io/camera/sensors/picture
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you POST a new value for that property with the message to be displayed (for example,
{"value": "Hello World!"}) as a body. You can go ahead and try this in Postman, but
the simplest way to do it is through the page of the display actuator in your browser:
http://devices.webofthings.io/pi/actuators/display. See figure 2.13 for the details of
the LCD actuator.

  On this page you can see the various properties of the LCD actuator. Some are
editable, and some aren’t. The content property is the one you want to edit, so enter
the text you’d like to display and click Update. If all works fine, you’ll see a JSON pay-
load like this: 

{
  "id":11,
  "messageReceived":"Make WoT, not war!",
  "displayInSeconds":20
}

The returned payload contains the message that will be displayed, a unique ID for
your message, and an estimated delay for when your text will appear on the LCD
screen (in seconds), so you know when to look at the camera image to see your text.  

2.4.2 Part 2—Create your own form to control devices

Now let’s build a simple HTML page that allows you to send all sorts of commands to a
web device using a simple form. From your browser, open the file ex-3.1-actuator-
form.html in the exercises folder and you’ll see the screen shown in figure 2.14.

Enter some 
text here.

Figure 2.13 The details of the LCD actuator, with the various properties that you can set, for example, 
the text that should be displayed next on the device

http://devices.webofthings.io/pi/actuators/display
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This page has an input text field and a Send to Pi button, as shown in the following
listing. Whatever text you enter will be displayed on the LCD screen of the Pi in our
office. Please keep it courteous, and because the API of our Pi is open to the public, we
decline all responsibility for what people write there.

<form action="http://devices.webofthings.io/pi/actuators/display/content/" 
 method="post">
  <label>Enter a message:</label>
  <input type="text" name="value" placeholder="Hello world!">
  <button type="submit">Send to Pi</button>
</form>

This is a simple HTML form that sends an HTTP POST (value of method) to the URL of
the display (the value of action). The input text bar is called value (name="value") so
that the Pi knows what text to display. This method works well for a basic website. Unfor-
tunately, what you don’t see behind the scenes is that web browsers do not submit (nor
do they make it possible to submit) data to the server using a JSON payload body (as you
could easily do with Postman previously) but instead use a format called application/
x-www-form-urlencoded. The Pi needs to be able to understand this format in addition
to application/json in order to handle data input from HTML forms.

 HTML forms can use only the verbs POST or GET, not DELETE or PUT. It’s rather
unfortunate that even modern browsers don’t send the content of HTML forms as
JSON objects because of some obscure legacy reasons, but hey, c’est la vie!

 As you’ll see later in this book, the ability for all entities on the Web of Things to
receive and transmit JSON content is essential to guarantee a truly open ecosystem.
For this reason, we’ll show you how to send actual JSON from an HTML form page (by
using AJAX and JavaScript), because doing so is an essential part of communicating
with web devices. 

 Open the ex-3.2-actuator-ajax-json.html file to see a similar form but this time with
a large piece of JavaScript, shown in the following listing.

(function($){ function processForm(e){
  $.ajax({ 
    url: 'http://devices.webofthings.io/pi/actuators/display/content/',
    dataType: 'json',
    method: 'POST',

Listing 2.5 Simple HTML form to send a command to an actuator

Listing 2.6 Send an HTTP POST with JSON payload from a form

Figure 2.14 This simple client-side 
form allows you to send new text to 
be displayed by the Pi.

The URL the request will be sent to

ormat of
data you
ct to get

The HTTP verb this 
request will send
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contentType: 'application/json',
data: JSON.stringify({"value": $('#value').val()}),
processData: false, 
success: function( data, textStatus, jQxhr ){
$('#response pre').html( JSON.stringify( data ) ); 

}, 
error: function( jqXhr, textStatus, errorThrown ){ 
console.log( errorThrown ); 

} 
    });

e.preventDefault();
  } 
  $('#message-form').submit(processForm); 
})(jQuery);

In this code, a function called processForm() is defined, which takes the data from
the form, packs it into a JSON object, POSTs it to the Pi, and displays the result if suc-
cessful (or displays an error in the console otherwise). The url parameter specifies
the end-point URL (the Pi display), the method is the HTTP method to use, and the
contentType is the format of the content sent to the server (in this case application
/json). The last line attaches the event generated by a click of the Submit button of
the form #message-form to call the processForm() function. 

 There is a variation of this code, ex-3.2b-actuator-ajax-form.html, which encodes
the data in the application/x-www-form-urlencoded format in place of JSON, as it’s
done with the simple form we showed in part 1 of exercise 3.

2.4.3 So what?

In this section you learned the basics of how to send data and commands to a device,
both using a form on a web page and from an API. You had a crash course in the limi-
tations, challenges, and problems of the modern web (don’t worry; there are many
more ahead!), in particular how different web browsers can interpret and implement
the same web standards differently. Finally, you learned how to use AJAX to bypass
these limitations and send JSON commands to a Raspberry Pi and control it remotely. 

 We hope that after doing this exercise you realize that it’s straightforward to send
actuator commands over the web to all sorts of devices—as long as these are con-
nected to the web and offer a simple HTTP/JSON interface. But the last problem is
how to find a device nearby, understand its API, determine what functions are offered
by the device, and know what parameters you need to include in your command,
along with their type, unit, limitations, and the like. The next section will show you
how to solve this problem, so keep reading.

2.5 Exercise 4—Tell the world about your device
In the previous exercises you learned how devices can be easily exposed over the web
and then explored and used by other client applications. But those examples assumed
that you (as a human developer or as the application you wrote) know what the fields

The encoding of the 
data you are sendingtual data

e sending
e content
the form) The callback to 

invoke if the request 
was successfulallback to

oke if the
est failed

Attach the processForm() 
function to be called when 
someone clicks Submit.
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of the JSON objects (for example, sensor or actuator) mean and how to use them. But
how is this possible? What if the only thing you know about a device is its URL and
nothing else? 

 Imagine you’d like to build a web application that can control home automation
devices present in your local network. How can you ensure this application will always
work, even if you’re in someone else’s network and you don’t know anything about
the devices there? 

 First, you need to find the devices at a network level (the device discovery problem).
In other words, how can your web application discover the root URL of all the devices
around you? 

 Second, even if you happen to know (by some magic trick) the root URL of all Web
of Things–compatible devices around you, how can your application “understand”
what sensors or actuators these devices offer, what formats they use, and the meaning
of those devices, properties, fields, and so on?

 As you saw in exercise 2 (section 2.3.2), if you know the root URL of a device, you
can easily browse the device and find data about it and its sensors, services, and more.
This is easy because you’re a human, but imagine if you had a JSON document with
unintelligible words or characters and no documentation that explain what those
words mean—how would you know what the device does? And how would you know
it’s a device, for that matter?

 Open ex-4-parse-device.html in your browser and you’ll see a form prepopulated
with the URL of the Pi (figure 2.15). Click Browse This Device. 

 This JavaScript code of ex-4-parse-device.html will read the root document of the
Raspberry Pi (as JSON) and generate a simple report about the device and its sensors,

Figure 2.15 A mini-browser that parses your device metadata and displays the results
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along with link to the documentation for this device. First, let’s look at the HTML code
to display the report, as shown in the next listing.

<form id="message-form"> 
    <input type="text" id="host" name="host" value="http://devices.webofth-

ings.io/pi" 
placeholder="The URL of a WoT device" /> 
    <button type="submit">Browse this device</button> 
</form> 

<h4>Device Metadata</h4>
<p><b>Metadata.</b> A general model used by this device can be found here:
<div id="meta"></div></p>
<p><b>Documentation.</b> A human-readable documentation specifically for
this device can be found here: <div id="doc"></div></p>
<p><b>Sensors.</b> The sensors offered by this device: 

<div id="sensors"></div></p>
<ul id="sensors-list">
</ul>

The first thing you can see is a form where you can enter the root URL of a device with
a Browse button. Then, there are some HTML text elements that will act as placehold-
ers (meta, doc, and so on). Now let’s look at the AJAX calls in the following listing. 

(function ($) {
  function processForm(e) {

    var sensorsPath = '';

    $.ajax({
url: $('#host').val(),
method: 'GET',
dataType: 'json',
success: function (data) {
$('#meta').html(data.links.meta.title + " <a href=\"" + 

  data.links.meta.rel + "\">" + data.links.meta.rel + "</a>"); 
$('#doc').html(data.links.doc.title + " <a href=\"" + 

 data.links.doc.rel + "\">" + data.links.doc.rel + "</a>");

sensorsPath = data.url + data.resources.sensors.url;

$.ajax({
  url: sensorsPath,
  method: 'GET',
  dataType: 'json',
  success: function (data) {
    var sensorList = "";

    $('#sensors').html(Object.keys(data).length + " sensors 
    found!");

Listing 2.7 A basic device browser 

Listing 2.8 Retrieve and parse device metadata using AJAX JSON calls

GET the ROOT JSON of the device 
and extract data from it.

pdate the 
eta" and "doc" 

lements with 
e links found 
 the root JSON 
ocument. Store the URL 

of the sensors 
resource.T the list of

 sensors on
the device.

Callback function that 
processes the sensors JSON 
document; 'data' contains the 
JSON object of the sensors.
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     for (var key in data) {  
 sensorList = sensorList + "<li><a href=\"" + sensorsPath + 

key + "\">" + data[key].name + "</a></li>";
    }

    $('#sensors-list').html(sensorList);
  },
  error: function (data, textStatus, jqXHR) {
    console.log(data);
  }
});

},
error: function (data, textStatus, jqXHR) {
console.log(data);

}
    });

e.preventDefault();
  }

  $('#message-form').submit(processForm);
})(jQuery);

Looking at this code, you can see that you first set the root JSON document of the
device using the URL entered in the form ($('#host').val()). If the JSON file has
been successfully retrieved, the success callback function will be triggered with the
data variable containing the root JSON document of the device (which was shown in
step 2 of section 2.2.2). Then you parse this JSON to extract the elements you’re look-
ing for; in this case the code is looking for a links element in the returned JSON
object (hence the data.links), which contains various links to get more information
about this device, which looks like the following code:

"links": {
  "meta": {
    "rel": "http://book.webofthings.io",
    "title": "Metadata"
   },
  "doc": {
    "rel": 
"https://www.raspberrypi.org/products/raspberry-pi-2-model-b/",
    "title": "Documentation"
  },
  "ui": {
    "rel": ".",
    "title": "User Interface"
  }
} 

In particular, the meta element contains a link (value of rel) to the general model
used by this device (which describes the grammar used to describe the elements of
this device) and then a doc that links to a human-readable documentation that
describes the meaning (the semantics) and specific details of this particular device
(that is, which sensors are present and what they measure). 

Loop through
all sensors.

Display the list 
in the HTML.
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 The metadata document linked in the previous code is nothing more than a
machine-readable JSON document model that allows users to describe WoT devices in
a structured manner, along with a definition of the logic elements all WoT devices
must have. If hundreds of device manufacturers would use this same data model to
expose the services of their devices, it would mean that any application that can read
and parse this file would be able to read the JSON file returned by the device and
understand the components of the devices (how many sensors it has, their names or
limitations, their type, and so on). 

 Now, what about the sensors or actuators themselves? The links element only
defined metadata (such as documentation) about the device, not the device contents
itself. To find the sensors contained in the device, you’ll have to parse the sensors
field of the resources element, which is what happens in the second AJAX call where
you do a GET on the sensors resource of the device. Once you get the sensors JSON
document, you iterate over each sensor and create a link to it using this pattern:

<li><a href=\""+sensorsPath+key+"\">"+data[key].name+"</a></li>

Here sensorsPath is the URL of the sensors resource (in this case http://devices
.webofthings.io/pi/sensors) to which you add the sensor ID of each sensor (key),
along with the name of the respective sensor (data[key].name).

2.5.1 So what?

If you didn’t understand all the details of the previous exercises, it’s perfectly fine—
there’s nothing wrong with you! What happened is that you got your first hands-on
crash course on the Semantic Web, or rather, on the hard problems it tries to solve. The
reason you’ve heard a lot about it yet never seen or used it (or understood it, for that
matter) is that it’s a complex problem for computers and people who program them:
how the hell do you explain the real world—and its existential questions—to a com-
puter? Well, it turns out you can’t really teach philosophy to your machine yet. But as
we’ve shown here and will detail in chapter 8, there are quite a few small tricks that you
can apply successfully that make the web—and computers—just a little smarter. 

 You’ve seen how web devices can advertise their basic capabilities, data, and ser-
vices in a machine-readable manner. The fact that we used well-known web patterns
made it easy to build a web app interacting with our Things. Unfortunately, there’s no
single standard to define this information universally, and the JSON model we use is
something born out of trial and error over the years. In order to unlock the full poten-
tial of the Web of Things, we must be able to define all the details about an object
using a single data model with clear semantics that all machines and applications can
understand without any room for ambiguity. We’ll explore how to get there using web
and lightweight Semantic Web technologies in much more detail in chapter 8.

2.6 Exercise 5—Create your first physical mashup 
In the previous exercises, you learned how to access a web device, understand the ser-
vice and data it offers, and read and write data from devices. In this exercise, we’ll

http://devices.webofthings.io/pi/sensors
http://devices.webofthings.io/pi/sensors
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show you how to build your first mashup. The concept of mashups originates from the
hip-hop scene to describe a song composed by taking samples of other songs. Simi-
larly, a web mashup is a web application that gets data from various sources, processes
it, and combines it to create a new application. 

 Here, you’ll create not only a web mashup but a physical mashup—a web applica-
tion that uses data from a real sensor connected to the web. In this exercise you’re
going to take local temperature data from the Yahoo! Weather service, compare it
with the temperature sensor attached to the Pi in our office, and publish your results
to the LCD screen attached to the Pi in London. Finally, to see what your message
looks like, you’ll use the web API of the webcam to take a picture and display it on our
web page! See figure 2.16 for an illlustration of this process.

 Go ahead and open the file ex-5-mashup.html in both your editor and your
browser. This code is a little longer than what you’ve seen so far but not much more
complicated, as shown in the following listing.

$(document).ready(function () {
  var rootUrl = 'http://devices.webofthings.io';

  function mashup(name, location) {
    var yahooUrl = "https://query.yahooapis.com/v1/public/yql?q=select item 
    from weather.forecast where woeid in (select woeid from geo.places(1) 
    where text='" + location + "') and u='c'&format=json";
    $.getJSON(yahooUrl, function (yahooResult) {

var localTemp = 
yahooResult.query.results.channel.item.condition.temp;
console.log('Local @ ' + location + ': ' + localTemp);
$.getJSON(rootUrl + '/pi/sensors/temperature', function (piResult) {
console.log('Pi @ London: ' + piResult.value);
publishMessage(prepareMessage(name, location, localTemp, 
piResult.value));

});
    });
  }

Listing 2.9 Mashup function

Temperature
sensor

+
Yahoo

Weather

Message on
LCD screen

Webcam

Figure 2.16 A physical mashup 
application. First (1), you retrieve the 
local temperature from Yahoo Weather 
and then the remote temperature from the 
sensor attached to our Pi (2). You 
compare it with the temperature in 
London and send the results to an LCD 
screen (3). When the screen displays the 
text you’ve sent, you retrieve a picture of 
the screen form the webcam (4) and 
display it on the mashup.
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  function publishMessage(message) {
    $.ajax(rootUrl + '/pi/actuators/display/content', {

data: JSON.stringify({"value": message}),
contentType: 'application/json',
type: 'POST',

 success: function (data) {
 $('#message').html('Published to LCD: ' + message);
 $('#wait').html('The Webcam image with your message will appear 
 below in : ' + (data.displayInSeconds+2) + ' seconds.');
 console.log('We will take a picture in ' + 
 (data.displayInSeconds+2) + ' seconds...');
 setTimeout(takePicture, (data.displayInSeconds+2) * 1000); 

}
    });
  }

  function prepareMessage(name, location, localTemp, piTemp) {
    return name + '@' + location + ((localTemp < piTemp) ? ' < ' : ' > ') 

+ piTemp;
  }

  function takePicture() {
    $.ajax({

type: 'GET',
url: rootUrl + '/camera/sensors/picture/',
dataType: 'json',
success: function (data) {
console.log(data);
$('#camImg').attr('src', data.value);

},
error: function (err) {
console.log(err);

}
    });
  }

  mashup('Rachel', 'Zurich, CH');
});

The mashup() function is responsible for running the different bits of the mashup. It
takes two parameters: the first parameter is your name; the second one is the name of
the city where you live formatted as city, country code (for example, Zurich, CH;
London, UK; or New York, US). It’s then essentially composed of two HTTP GET calls
over AJAX requesting a response as application/json representations. The first call is
to the Yahoo! Weather Service API, which given a location returns its current weather
and temperature.

 Once this call has returned (that is, the anonymous callback function has been
invoked), the second function is called to fetch the latest value from the Pi tempera-
ture sensor, just as you did in section 2.3.1. 

 Next, you call prepareMessage(), which formats your message and passes the
result to publishMessage(). This last function runs an HTTP POST call over AJAX with
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a JSON payload containing the message to push to the LCD screen, as done in Exercise
3—Act on the real world. 

 Because you need to wait in the queue for your message to be displayed, you set a
timer that will trigger the takePicture() function. This last function runs a final
HTTP GET request to fetch a picture of what the LCD screen shows, via the web-
enabled camera. You then dynamically add the returned picture to the image con-
tainer of your HTML page.

 To start this chain of real-world and virtual-world events, all you need to do is edit
the source code so it invokes the mashup(x,y) function using your own name and city.
For example, Rachel from Zurich in Switzerland needs to call this function as follows: 

mashup('Rachel', 'Zurich, CH')

Then open the file in your browser, and voilà! Within a few seconds, you’ll see a live
image from the webcam with your message appearing on the screen of the Pi in our
office.

2.6.1 So what?

You’ve built your first web-based physical mashup using data from various sources,
both physical and real-time, and run a simple algorithm to decide whether your
weather is better than ours (although competing against London on the weather is
somewhat unfair). Think about it for a second. This mashup involves a temperature
sensor connected to an embedded device, a video camera, an LCD screen, and a vir-
tual weather service, yet you were able to create a whole new application that fits into
80 lines of HTML and JavaScript, UI included! Isn’t that nice? All this thanks to the fact
that all the actors (devices and other services) expose their APIs on the web and there-
fore are directly accessible using JavaScript! You’ll learn much more about physical
mashups throughout the book and especially in chapter 10, where we’ll survey the var-
ious tools and techniques available.

2.7 Summary
■ You experienced your first hands-on encounter with web-connected devices

across the world and could browse their metadata, content, sensors, actuators,
and so on.

■ Web-connected devices can be surfed just like any other website. Real-time data
from sensors can be consumed via an HTTP or WebSocket API just like other
content on the web.

■ It’s much easier and faster to understand the basics of HTTP APIs than the vari-
ous and complex protocols commonly used in the IoT.

■ In only a few minutes you were able to read and write data to a device across the
world by sending HTTP requests with Postman.

■ Connecting the physical world to the web enables rapid prototyping of interac-
tive applications that require only a few lines of HTML/JavaScript code.
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■ As data and services from various devices are made available as web resources, it
becomes easy to build physical mashups that integrate content from all sorts of
sources with minimal integration effort.

We hope you enjoyed this first encounter with the Web of Things enough to read the
ensuing chapters and learn how to implement these concepts on your own device. In
the next chapters, we’ll look at how to implement JavaScript on devices and we’ll pro-
vide a short and sweet introduction to Node.js. Then, we’ll look into configuring your
own device and making it fit for the Web of Things. We’ll show you how to create and
deploy a Node.js application on a Raspberry Pi device, and you’ll be able to create
your first web-connected device and adapt these examples for your own use case.



Node.js for the Web
of Things
The previous chapter provided a first encounter with web-connected devices. We
hope it made you realize how easy it is to build applications that interact with vari-
ous web-connected devices. But this was only the tip of the iceberg because we did
all the hard work for you. In the rest of the book, we’ll teach you all you need to
know in order to implement your own web-connected devices and applications.

 Before we jump straight to the code and other juicy bits, you have two impor-
tant decisions to make. First, you have to pick an embedded platform on which

This chapter covers
■ An overview of how JavaScript can be used for

the IoT and the WoT
■ A thorough yet accessible introduction to

Node.js
■ The implementation of a simple HTTP server

with Node.js
■ An introduction to Node.js modularity and NPM
■ The basics of asynchronous programming and

control-flow libraries
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your applications will run. This will be the subject of chapter 4. Second, you need to
choose the programming language in which you’ll write your code, and this is the
topic of this chapter.

 To choose a programming language for building your Web of Things prototypes
you have two basic requirements: first, the language you pick should fully support web
protocols and standards. Well, this doesn’t help much because just about any serious
language today (who said “whitespace”?1) provides tools and libraries to support
HTTP. The second requirement is that you should be able to use a single language to
build the client application, the cloud engine or gateways (which we’ll present in
chapter 6), and even the code running on the embedded device. It turns out that
JavaScript can be The One.

 In consequence, this chapter first looks into the recent developments around the
JavaScript community and its massively growing importance for the internet and the
Web of Things. Afterward, we’ll introduce you to Node.js, an environment for writing
server- side applications with JavaScript. This introduction won’t make you a Node.js
expert, but it will certainly give you all the elements you need to understand how
Node.js works and to be able to build and deploy the examples of this book.

3.1 The rise of JavaScript: from clients 
to servers to things!
JavaScript is a dynamic programming language where client-side scripts executed by
web browsers can process data asynchronously and alter the page being displayed.
Long gone are the days when JavaScript was solely used to animate banners on a web
page! Thanks to its widespread support by virtually all web browsers, relative ease of
use, and flexibility, JavaScript has become the de facto solution for writing dynamic,
client-side applications. According to the number of public repositories on GitHub, it
has also become one of the most popular programming languages ever,2 with a com-
munity of developers growing faster than any other; see figure 3.1.

 This ongoing JavaScript revolution aligns well with the core idea of the Web of
Things, which is to integrate devices to the web so they become more accessible and
easier to program. In other words, make it possible to interact with devices just like
any other resource on the web by using well-known web standards. When the services
exposed by physical objects can be accessed via simple HTTP requests, writing

1 https://en.wikipedia.org/wiki/Whitespace_(programming_language)

How to get the code

If you don’t want to write the code samples we show from scratch, you can clone our
GitHub repository (find the link here: http://book.webofthings.io). All code examples
in this chapter are located in the chapter3-node-js folder.

2 http://www.tiobe.com/tiobe_index

http://www.tiobe.com/tiobe_index
https://en.wikipedia.org/wiki/Whitespace_(programming_language)
http://book.webofthings.io
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interactive applications for the physical world becomes as easy as creating any basic
web application: by writing with HTML, CSS, and JavaScript!

 On the server side, applications are often implemented using various languages
such as PHP, Ruby, Python, or Java. But here JavaScript has recently become quite a
popular option. Indeed, JavaScript is increasingly adopted for writing highly scalable
server-side applications, particularly in runtime environments such as Node.js,3 which
we introduce shortly. 

 The convergence of all these platforms has a fortunate implication for this book: it
means we can mainly focus on using JavaScript to write all the examples in this book.
We’ll use JavaScript and jQuery to build the client-side examples (as we did already in
chapter 2), JavaScript with Node.js to build the servers offering the Things’ services
on the web, and even JavaScript and Node.js code to manage hardware resources of
the Things themselves, as we explain next.

3.1.1 Pushing JavaScript to things

Interestingly enough, the JavaScript revolution fueled by Node.js didn’t stop at the
browser. Nor did it stop at the servers. In the last few years, it also infiltrated the world
of devices themselves! In a world massively dominated by devices running low-level C
programs, JavaScript and Node.js have managed to stand out as a viable and easy-to-use

3 Node.js isn’t the only framework for server-side JavaScript. Another example is Vert.x: http://vertx.io.

Figure 3.1 The ranking of the most popular languages on GitHub. Since 2008 JavaScript has 
experienced a steady growth that led it to outnumber all other languages in terms of available projects 
on GitHub. [Source: GitHub.com]

http://vertx.io
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alternative for powering all kinds of things from robots (for example, with the Cylon.js4

library) to wireless sensor nodes. A number of embedded device platforms today
directly support JavaScript and Node.js to write embedded code. This is the case for
most Linux-based platforms that we’ll introduce in the next chapter, such as the Rasp-
berry Pi, the Intel Edison, and Beagle Board,5 as well as some low-power platforms such
as the Tessel6 and Espruino.7

 “When you have a hammer, everything looks like a nail!” we hear you say. Not
exactly; we don’t advocate using JavaScript and Node.js for every IoT implementation.
We’d rather compare JavaScript and Node.js to the Swiss army knife of modern IoT
and WoT development than to a hammer. It certainly isn’t the optimal solution for
every IoT project we can think of, but it’s a great option for many of them. 

 An embedded application that requires absolutely predictable and real-time per-
formance (for example, the code running in a high-speed train) is better off being
written in a low-level language such as C. Moreover, JavaScript as a language is often
criticized by its detractors for its lack of static typing and a plethora of different pro-
gramming patterns and styles leading to code that’s sometimes harder to maintain,
typically in large projects involving a large number of people. Nevertheless, its ubiq-
uity, portability, and asynchronous event-driven model, along with a large and vibrant
online community, make it a solid candidate to consider seriously. This is certainly
true when using Node.js to build scalable and real-time web systems, but is also
increasingly true for the blazing-fast prototyping of hardware projects.

3.2 Introduction to Node.js 
Node.js—or Node, as its aficionados call it—first emerged in 2009 when a brilliant
developer named Ryan Dahl started to build it in “starving artist” mode in Germany.
Later on, Ryan was hired by Joyent, a cloud provider company that was an early sup-
porter of Node. In 2015, the Node.js foundation was formed, with key companies such
as Joyent, IBM, Microsoft, and Intel getting on board, giving Node.js a great hope for a
bright professional future.8

 Node.js provides an event-driven architecture and a non-blocking I/O API (more
details about that to follow) that optimizes an application’s throughput and scalability.
This model is commonly used to design high-performance real-time web applications.

 The idea behind Node is to provide a framework in which high-performance
server-side web applications can be written. Unlike other servers where you deploy
your application in a running server instance, with Node your application is the
server. Node builds on the highly efficient Google V8 JavaScript engine, which is at
the heart of the Chrome browser. Node isn’t JavaScript, but JavaScript is the language

4 http://cylonjs.com/
5 http://beagleboard.org/
6 http://tessel.io/
7 http://www.espruino.com
8 https://nodejs.org/en/foundation/

http://cylonjs.com/
http://beagleboard.org/
http://tessel.io/
http://www.espruino.com
https://nodejs.org/en/foundation/
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you use to build Node applications, although other languages such as CoffeeScript
can be used as well. 

 Although this book assumes you have some basic knowledge of client-side Java-
Script, it will introduce you to server-side and device-side JavaScript. Node.js is the
framework we’ll use to build the servers running in the cloud or on the devices them-
selves. We’ll also use Node.js to access the physical peripherals of the devices such as
sensors or actuators.

 This book is by no means a comprehensive Node.js manual: there are a number of
great books dedicated to Node. See, for example, Mike Cantelo’s Node.js in Action, Sec-
ond Edition (Manning, 2015);9 Alex Young and Marc Harter’s Node.js in Practice (Man-
ning, 2014);10 or some good tutorials such as Manuel Kiessling’s The Node Beginner
Book.11 But although we can assume that the basics of client-side JavaScript are known
to most developers, Node is still fairly new and has some rather uncommon aspects
that make it both powerful and, at times, tricky to grasp.

 In the next sections we’ll cover the basics of Node to make sure you’re not too puz-
zled by the examples in the following chapters. First, we’ll show you how to write your
first Node web application (and, yes, Node HTTP server, too). Then, because we reuse
many great libraries to build our examples, we’ll look at the aspects of modularity and
package management in Node. Then we’ll dig a bit more into the way Node and other
single-threaded web and networking frameworks work. Finally, we’ll look at the core
concepts of asynchronous programming in Node, providing you with the tools to
build increasingly complex Node code.

3.2.1 Installing Node.js on your machine

If you don’t have a Raspberry Pi, don’t worry! Thanks to the awesomeness of Node.js,
you can run all the examples in this chapter (and even in this book) without actually
owning a device! It’s just way nicer on a device. 

 You’ll start by installing Node.js on your local machine.12 Fortunately, this is as sim-
ple as installing any application on your favorite platform. Once it’s installed, open a
terminal window and type the following:

$ node --version

This should return the version of Node.js you installed (which should be at least 4.2.2 to ensure
the code in this book runs). You’re now ready to run your first example!

3.2.2 Your first web server in Node.js

Now that Node is installed on your computer, you can start using it. One thing Node is
especially good at is building servers with only a few lines of code. You can use it to

9 http://manning.com/cantelon2/?a_aid=wot&a_bid=9b654188
10 http://www.manning.com/young/?a_aid=wot&a_bid=f45747b3
11 http://www.nodebeginner.org/
12 You can find the different installers on the official Node.js page at http://nodejs.org/en/download/.

http://manning.com/cantelon2/?a_aid=wot&a_bid=9b654188
http://www.manning.com/young/?a_aid=wot&a_bid=f45747b3
http://www.nodebeginner.org/
http://nodejs.org/en/download/
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build all kinds of servers accepting all kinds of protocols: from sockets, to TCP/IP, to
HTTP, to WebSockets.

 You’ll use Node to build all kinds of servers in this book, but you’ll get started with
a web server based on HTTP because this is built into Node and doesn’t require you to
import any dependencies; see figure 3.2.

 If you’re used to PHP and Apache or Java and web servers like Tomcat, you’re
familiar with creating a web application and then deploying it to an existing server. In
Node, things are different because your application is the server. Let’s get started with
building a simple web server that always returns “Hello World” to all incoming
requests; see the following listing.

var http = require("http"); 
http.createServer(function(req,res){
  res.writeHeader(200, {'Content-Type': 'text/plain'}); 
  res.end('Hello World!');
}).listen(8585); 
console.log('Server started!');

This is as small as it gets! First, you require the http module. This basically loads the
HTTP module and makes it available to your application (we’ll detail the way Node
dependencies work in the next section). Afterward, you use the HTTP object to create
a new server. You pass to this server a function that will be called whenever a client
connects to your server. When a client actually connects, the function is called with
two parameters: 

■ req represents the client request and offers a number of functions to retrieve
information about it, such as the requested URL or the payload that was sent.

■ res represents the response you’d like to send back to the client.

Listing 3.1 A Hello World HTTP server in Node.js

Figure 3.2 Starting your first web server with Node (bottom) and returning the traditional 
“Hello World” to your web browser (top)

ire()
used
port
ries.

Create an HTTP server and pass it 
a function to be called whenever 
a client sends a request.

Write the response, 
beginning with the 
HTTP headers.Start the HTTP 

server on port 8585.
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With res.writeHeader() you can write the HTTP headers. In this example you write
the Status header with a value of 200 (meaning everything went well) and the
Content-Type header to text-plain, meaning that you’ll return plain text to the cli-
ent. For now, don’t panic if you don’t understand exactly what this means because
we’ll cover this at length in chapter 6. You then start the server by invoking
listen(PORT), which will start the server on port 8585.

 To run your first server, copy and paste listing 3.1 into a file13 with a .js extension
(for example, helloworld.js). Copy this file into a folder called hello-node, open a ter-
minal window, go to this folder, and start your application with the command "node"
followed by the name of your file, like this:

$ node helloworld.js

You should see the text Server Started! appearing in your terminal telling you that your
Node application is running. Now go to http://localhost:8585 in your browser. You
should see the “Hello World” message, as shown in figure 3.2. Not utterly impressive,
but think about it: with only five lines of code you created a web application that talks
to your browser. You didn’t even need to install and configure an Apache server for your
specific OS! You can now stop the server by pressing Ctrl-C in the terminal window.

3.2.3 Returning sensor data as JSON

Let’s shift gears and build a server that actually delivers some values! You’ll build a
server that returns a temperature sensor value when browsing to /temperature, as
shown in figure 3.3, and a light sensor value when browsing to /light. You’ll connect
real sensors to your Node code in the next chapter, but for now you’ll return random

13 You can create simple JavaScript files with any text editor, but for more serious projects you might need an
advanced text editor such as Sublime Text (http://www.sublimetext.com), Atom (https://atom.io/), or
Brackets (http://brackets.io/). You can also use a feature-rich IDE (Integrated Development Environment)
such as WebStorm (https://www.jetbrains.com/webstorm/) or NetBeans (https://netbeans.org/).

Figure 3.3 A simple Node web server returning temperature data with a JSON 
representation in Firefox

http://www.sublimetext.com
https://atom.io/
http://brackets.io/
https://www.jetbrains.com/webstorm/
https://netbeans.org/
http://localhost:8585
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data. You’ll also change the data format that the browser returns to JSON, which you
encountered in chapter 2. 

 Just as you did before, you first create an HTTP server, as shown in listing 3.2. But
this time you inform the client that the response is in JSON using the {'Content-
Type': 'application/json'} header. You then look into the request using req.url,
which will contain the path, after the domain, that the client requested (for example,
/temperature). You then create a switch that handles the requests to your different
paths. For each path you generate the corresponding random value and return it
as JSON.

var http = require("http");
var port = 8686;

function randomInt (low, high) {
  return Math.floor(Math.random() * (high - low) + low);
}

http.createServer(function(req,res){
  console.log('New incoming client request for ' + req.url);
  res.writeHeader(200, {'Content-Type': 'application/json'}); 
  switch(req.url) { 
    case '/temperature':

res.write('{"temperature" :' + randomInt(1, 40) + '}');
break;

    case '/light':
res.write('{"light" :' + randomInt(1, 100) + '}');
break;

    default:
res.write('{"hello" : "world"}');

  }
  res.end();  
}).listen(port);
console.log('Server listening on http://localhost:' + port);

Now save this file and run your application like you did before:

$ node listing-3.2-webserver.js

Use your browser to navigate to http://localhost:8686/temperature and http://local
host:8686/light to see a random sensor value in JSON.

3.3 Modularity in Node.js 
You’ve created your first server based on built-in Node modules. That worked well, but
what if you’d like to benefit from the work of the growing and active community of
Node developers by using third-party modules for specific tasks? This is what this sec-
tion is about: first understanding the Node modules management system and then
understanding the structure of the modules themselves.

Listing 3.2 A simple HTTP server returning JSON data

Set the header to
announce you’ll

return JSON
representations.

Read the request URL
and provide response
accordingly.

Write the
perature
 as JSON.

Return the results 
to the client.

http://localhost:8686/temperature
http://localhost:8686/light
http://localhost:8686/light
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3.3.1 npm—the Node package manager

Just as Java has Maven repositories, Ubuntu has apt-get, and Ruby has Gem, Node has
its own package or module manager (and a great one!) called npm. As the npm team
members put it, 

“npm” doesn’t stand for “Node Package Manager.” It stands for “npm Is Not An Acro-
nym.” Why not “NINAA”? Because then it would be an acronym.

Joke aside, the reason for not calling npm the Node Package Manager is that it is not
only a package manager for Node, but also a package manager for client-side JavaScript.

 If you installed Node the way we suggested in section Installing Node.js on your
machine, you should be all set to use npm through the npm command-line utility. The
first step is obviously choosing a module to install. This can be done in several ways,
but a popular one is by searching for modules by keywords using the search engine of
the main npm repository at https://www.npmjs.com/. As an exercise, look for the
request module that you’ll use later. All npm modules are identified by a unique
name, so once you’ve found the one you want, write its name down. 

 Because of the popularity of Node.js, each search query will return a large number
of options, and choosing the module you should use is sometimes overwhelming.
Choosing the right module is especially relevant in a booming ecosystem such as
Node where a lot of code is committed at a fast pace, sometimes at the cost of stability
and quality. A good way to quickly evaluate the relevance and maturity of a project is
to look at its GitHub page, which is accessible on the detail page of each module, as
shown in figure 3.4. On this page you can find the number of people following the
module (Watch), how many developers liked the module (Star), and how many cre-
ated a new version of this module (Fork); these are good indicators of the popularity
and stability of the module.

Followers Likers Differing copies

Contributing developers Latest changes

Figure 3.4 The GitHub page of a Node module. Look for the popularity metrics of the module when 
choosing it. 

https://www.npmjs.com/
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Now that you’ve picked a module, you can install it using the npm command-line tool
with the unique name of the module. Let’s install request, an intuitive module
designed to make HTTP calls as simple and straightforward as possible. Create a new
folder (here we name it hello-npm) and change the directory to this folder; then run
the following command:

$ npm install request

This will communicate with the npm server and install the new module into a direc-
tory called node_modules/. Then you can use the module from any Node source file
inside the hello-npm folder by using the require instruction, which loads the module
into memory and makes it accessible to your source code. This is done with the follow-
ing statement: 

var request = require('request');

3.3.2 Clean dependencies with package.json and npm

The system we just illustrated works well, but adding more modules to your project
and shifting it from one place to another requires a lot of manual runs of the npm
command. Fortunately, npm solved this issue by allowing you to specify the modules
your code depends on in a single JSON file called package.json. You can see the struc-
ture of a typical package.json file in the following listing.

{
  "name": "hello-npm", 
  "version": "0.0.1",
  "description": "Experimenting with npm modules",
  "author": "Me self <my@email.com>",
  "repository" : "https://github.com/...",
  "dependencies": {
    "request": "0.1.x"
  },
  "devDependencies": {
    "mocha": "2.x.x"
  },
  "engine": "node >= 4.2.2"
}   

First, you give your project a name and a version. Note that if you ever decide to also
publish your project as a module on npm, this name will be used. Then, you add a
short description and an author, as well as a link to a source control system where the
code of your project can be found (it can be private as well). Next comes the core of
the file: the modules your project depends on. Here you have a single module:

Listing 3.3 A simple package.json file

The name of your own 
module (your project name)

rsion of
 project A short description of

 what your project does

A link to GitHub or another 
source control system 
where your code will live

The list of
es required
our project

The list of modules required for the development 
of your project (for example, test dependencies)

The version of Node 
required for your project
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request. Node modules usually follow the semantic versioning pattern,14

MAJOR.MINOR.PATCH:

■ MAJOR version when you make incompatible API changes
■ MINOR version when you add functionality in a backward-compatible manner
■ PATCH version when you make backward-compatible bug fixes

Wildcards are supported, so 2.x.x means that npm will fetch the latest MINOR and
PATCH versions of request MAJOR version 2. devDependencies is required for depen-
dencies only when you build your project in a developer environment. A good exam-
ple of such a dependency is a testing library that wouldn’t need to be imported when
deploying the final version of your code. Finally, with engine you can also specify the
version of Node your project should run with. This is a minimal example of a pack-
age.json file because much more can be specified there. A great interactive guide to
building your package.json files is provided online.15

 Of course, you don’t have to write your package.json file manually. Instead, you
can use the npm init command, which will ask you for basic information about your
application and generate a package.json file for you automatically. 

 Another useful feature of npm is that you don’t have to manually add each
new module to your package.json. Instead, you can install them with the –-save flag
as follows: 

$ npm install request –-save

This command will automatically add this dependency to your package.json file. 

3.3.3 Your first Node module

Now that you’ve seen how to manage packaged modules in Node, we’ll show how to
organize your code by creating your own simple modules. Imagine you want to create
a module that offers arithmetic operations to an application. The structure of the
folders for your first module is shown in the following code. The module file (opera-
tions.js) is located in the /lib folder and accessed from the modules-client.js file:

hello-modules/
|— lib
|   |—  operations.js
 — module-client.js
 — package.json

Begin by creating a folder for your project called hello-modules. To keep your code
tidy and respect the Node conventions, create a lib folder inside hello-modules. You
then write the module itself in a file called operations.js that you put into the lib
folder; the code for operations.js is shown in the following listing.

14 http://semver.org/
15 http://browsenpm.org/package.json

http://semver.org/
http://browsenpm.org/package.json
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exports.add = function(a, b) {  
  logOp(a, b, '+');
  return a + b;
}

exports.sub = function(a, b) {
  logOp(a, b, '-');
  return a - b;
}

exports.mul = function(a, b) {
  logOp(a, b, '*');
  return a * b;
}

function logOp(a, b, op) {  
  console.log('Computing ' + a + op + b);
}

This module contains three functions that you want to make available to module
users: add, sub, and mul. You make them available by defining properties on the
exports object. Note that you can also make any other object, string, or variable avail-
able through this mechanism. Other functions used only in your module file (for
example, logOp) won’t be available to files outside your module because you don’t
attach them to the exports object.

 The last step is to create a client for your library. In the root folder of the project
(that is, the hello-modules folder), create a new file called module-client.js (note that
unlike the module name, the name of the client file doesn't matter). The code of this
file is fairly straightforward, as shown in the next listing.

var ops = require('./lib/operations'); 

console.log(ops.add(42, 42));
console.log(ops.mul(42, 42));
console.log(ops.sub(42, 42));

The key lies in require, where you import your new module. Essentially, you’re telling
Node to go fetch the module operations in the lib subdirectory and save it in the ops
variable. Note that you don’t need to specify the .js extension when using require.

 That’s it! Your first module is ready to be used. Run node module-client.js to
test it. If everything works fine, you should see the following output in your console:

Computing 42+42
84
Computing 42*42
1764
Computing 42-42
0

Listing 3.4 operations.js: a mathematics module in Node.js

Listing 3.5 A simple Node application using the operations module

The exports object makes a 
function of your module available 
to the module users.

The logOp function is internal to 
this module and won’t be available 
from outside this file.

Imports the 
operations.js module
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There’s much more to modules than what we covered here, but this will help you to
get started and understand how we use modules in the rest of this book.

3.4 Understanding the Node.js event loop
Building server-side web applications such as the one you used in chapter 2—or gen-
erally any web server that needs to deal with more than a single client at a time—
requires the ability to handle a large number of connections in a concurrent manner.
If the connections couldn’t be accepted concurrently, each new web client would have
to wait until the clients that arrived earlier were served. This would be almost as slow
as taking London’s underground from Waterloo to Bank during rush hour! To use a
more appropriate analogy, imagine a single gas station on a busy intersection, with a
single pump used by a single attendant.

3.4.1 Multithreaded web servers

Two common patterns can be
used to resolve this issue. As
shown in figure 3.5, the first pat-
tern is to create one process—or
better, one thread—per request. A
thread is essentially a lightweight
process because it’s able to share
some of the process’s resources
(for example, some of the allo-
cated memory) while executing
largely independently.

 Consider this code snippet,
which fetches data from a data-
base and then displays it: 

var result = database.query("SELECT things FROM deviceTable");
console.log(result);

If you ever worked with a server-side web language such as PHP running on Apache or
Java on Tomcat, you most likely used code like this, working in a sequential manner
white waiting for I/O operations to finish. This works fine in the PHP and Java worlds
because while one client waits to be served, the underlying server (for example,
Apache) serves the next clients. It does this by creating one thread for each incoming
client.

3.4.2 Single-threaded, non-blocking web servers

Let’s think about this example by applying it to our gas station: imagine each thread is
a pump with an attendant, each web client is a customer, and the database is the cen-
tral tank. We’re better off than with a single pump and attendant, but each attendant
is still idle some of the time, waiting for our tank to get filled. What if we had only one

Thread 1

Response

Request

Thread 2

Response

Request

Thread 3

Response

Request

Thread 4

Response

Request

Figure 3.5 Dealing with a number of concurrent 
requests with a threading or process-forking approach: 
for each new client a new thread or process is created.
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attendant managing several pumps in an efficient manner? Wouldn’t this be more
economical in terms of costs?

 In a nutshell, this is what modern non-blocking web servers are all about: being
able to handle more requests by minimizing the memory overhead required for each
new client. This second pattern is an event-driven system often based on the idea of a
single thread (or a limited number of threads) with an event loop and non-blocking
or asynchronous I/O.

 The Node.js runtime is built on
these principles. It runs a single
thread with an event loop, as shown
on figure 3.6, and strongly favors
asynchronous I/O operations. When
the Node server accepts a client, it
puts it on hold until the I/O opera-
tions it requested (for example, read-
ing from the database, reading a
value from a sensor, or uploading a
file on a remote server) have
returned and goes on serving other
clients in the meanwhile.

 A direct consequence of the
event-loop pattern with a single
thread is that Node really doesn’t like waiting actively because it completely blocks the
Node server and prevents it from serving any subsequent request! 

 To better understand the difference between blocking and non-blocking calls,
imagine that we run the synchronous code shown previously in a Node server. The
Node runtime will fetch data from the database, wait until it gets it, and then execute
the console.log() instruction. If there’s a lot of data to fetch, you might have to wait
for quite some time, during which the Node server wouldn’t be able to serve or accept
any other incoming request—not a good idea to scale your system! Let’s rewrite the
database function in a non-blocking way that fits the Node model, as shown in the
next listing.

database.query("SELECT things FROM deviceTable", 
  function(results) { 
    // do something with the results   
  }
);
console.log(results); 

The major difference with this version is that you pass a function as a parameter when
calling the database.query function (we’ll talk more about these functions, called
callbacks, in the next section). The Node event loop will then put this call on hold

Listing 3.6 An asynchronous call to the database

Response

Request

Response

Request

Response

Request

Response

Request

Event loop (one thread)

Figure 3.6 Dealing with a number of concurrent 
requests with a single-threaded event-driven 
approach. The event loop puts the clients on hold 
until the I/O operations have returned. 

Here the content of the results variable 
will be undefined because the results 
will be accessible later on and only to 
the anonymous function.
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until a response arrives from the database. This time, while waiting for the response,
other instructions will be executed until the results have been fetched from the data-
base and are ready to be consumed. When the results are retrieved, the event loop will
call the callback function(results) with the results. 

 Interestingly enough, this means that the database.query instruction will return
directly after it’s called. As a consequence, the console.log(results) will execute
right away, before the results are actually ready! Moreover, the results themselves will
be available only to the anonymous function (injected in the callback by the event
loop), and the variable will be undefined for the console.log instruction.

 This way of serving requests on a single thread while not blocking all clients works
only if all calls in the chain are asynchronous, so all the libraries you use and the code
you write should be asynchronous unless there’s a really good reason for them not to
be. An example of a justified synchronous call occurs when loading configurations or
dependencies at the startup of a Node program. As a convention, to make sure you
keep track of your synchronous calls, Node functions that are synchronous end with
the Sync suffix and do not usually take a function as a parameter. For example,
fs.readFileSync(filename) reads a file synchronously (that is, blocking the single
thread until the file is fully read) as opposed to fs.readFile(filename,callback),
which reads a file asynchronously (that is, releasing the thread to do other work while
waiting for the file to be read).

 Don’t get us wrong: single-threaded servers with asynchronous I/O are not trivial
to work with and aren’t a silver bullet, either. But they’ve been shown to yield better
performance and scaling in a number of situations, particularly for data-intensive real-
time (DIRT) applications. Interestingly, the nature of real-world Things like sensors
does perfectly fit into the DIRT type of applications, which partially explains the grow-
ing interest is these types of servers in the context of the Internet of Things. Reading
data from the real world requires gathering a lot of sensor data (through I/O opera-
tions on physical sensors), and clients expect to be informed about changes of these
sensors’ state in a timely, event-driven, and almost real-time manner! This fits nicely
the definition of DIRT applications and will be covered in chapter 6. 

 We hope we didn’t lose you! If we did, don’t worry, because you’ll see many more
examples of this throughout the book. For now, remember one thing: Node.js only
has one thread, so you need to make sure your code isn’t blocking waiting for I/O
while reading files, fetching resources from the web, or reading data from onboard
sensors. The simple way to ensure this doesn’t happen is to pass callback functions
that will be called by the event loop when the data becomes available.

3.5 Getting started with asynchronous programming
As demonstrated in the previous section, Node is largely based on the principle of
asynchronous programming. Let’s be honest: asynchronous programming is a good
step toward scaling your server, but it isn’t easy to master. The sequential model of
PHP, where you can rely on the fact that instructions are executed one after the other,
makes for clear and easily understandable code. But things that scale well rarely come
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without a cost. Having to deal with asynchronous programming is one of the prices we
pay for using event-driven runtimes such as Node.

 Node offers two main patterns for dealing with asynchronous calls: callbacks and
event listeners. We’ll use event listeners later in the book and will briefly talk about the
concept when the time comes. Callbacks, on the other hand, are so important and
ubiquitous in Node that we’ll dig into them here.

3.5.1 Anonymous callbacks

Consider a function F that performs
some asynchronous operation such
as fetching some data from the net-
work, as shown on figure 3.7. We
need a way to express what to do
next when F returns so we give F
another function to call whenever F
finishes with the message-sending
operation. This is an example of a
callback—that is, a function passed
as a parameter to an asynchronous
function describing what to do after
the async function has completed.

 As an example, the anonymous
function passed as an argument of
database.query() in listing 3.6 is a
callback. Note that we call these
anonymous functions because they don’t have a name, and hence, unlike named call-
backs that we’ll address shortly, they can’t be called by any piece of code except for the
function they’re passed to in the first place. Another good example of using callbacks
is the mashup of listing 2.9 in chapter 2; the mashup() function it contained had a
number of client-side JavaScript callbacks, calling one physical thing after the other
had responded. 

 Although you can use any function for your callbacks, it’s a good practice to create
your callback functions with two parameters; the first parameter, usually named err or
error, will contain an error in case anything went wrong with the asynchronous func-
tion you called. The second parameter, usually named resp, response, or anything that
reflects what you expect back, will contain the expected result if everything worked fine.

 To better grasp how asynchronous calls and callbacks are used, let’s create a
mashup similar to the one in listing 2.9 but on the server side, as shown in figure 3.8.
Our application will run the following operations when a request comes in for the
/log resource:

Function F Other
function

Event loop

Fetch
data from
network

Data ready, 
invoke callback

Callback
of other
function

Callback
of

function F

Figure 3.7 Callbacks and the event loop 
(simplification). F asynchronously fetches data from the 
network. Meanwhile, other functions are being served. 
When the data F requested is ready, the event loop calls 
the function specified by F for when the data is ready. 
This type of function is called a callback.

1 Fetch a temperature value from the server.
2 Fetch a light value from the server.
3 Create a log entry for these two values and append it to a log.txt file.
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code of t
The crucial point here is that all three operations require I/O operations: 1 and 2
require fetching data from your HTTP server; 3 requires writing to the disk. Hence, if
you were to run them in a blocking, synchronous manner, the whole Node event loop
would be blocked for several CPU cycles, being unable to accept any connection from
additional clients until these I/O operations return. You certainly wouldn’t want that!
The following code illustrates how to build this mashup in a non-blocking way using
callbacks.

 For this code you’ll use the external module called request that you installed pre-
viously. Create a package.json file in a new directory and install the module using npm
as shown earlier:

$ npm install request –-save

Calling an HTTP resource with request is easy! The following listing will get the Web
of Things homepage and return its HTML content.

var request = require('request');
request('http://webofthings.org',function(error,response,body){ 
  if (!error && response.statusCode === 200) {
    console.log(body) 
  }
});

You probably noticed that the call to request takes a callback as a parameter. This is
expected because the call will be executed asynchronously. With the request library,

Listing 3.7 Using the request library

Figure 3.8 Running the server of listing 3.2 (terminal window, top) and consuming its 
data through a server-side mashup with callbacks called from a browser (bottom)

An anonymous callback that will
be invoked when the request

library fetches the webofthings
homepage from the web

e HTML
he page
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your mashup becomes pretty straightforward, as you can see in listing 3.8. You begin
by fetching the temperature from your server using request. Then, inside the call-
back of the temperature request, you fetch the light, and inside the callback of the
light, you write to a file using the asynchronous built-in Node fs.appendFile() func-
tion and eventually reply to the client with the values you fetched.

var http = require('http'),
  request = require('request'),
  fs = require('fs');

var port = 8787;
var serviceRootUrl = 'http://localhost:8686';

http.createServer(function (servReq, servResp) {
  console.log('New incoming client request...');

  if (servReq.url === '/log') {
    request({url: serviceRootUrl + '/temperature', json: true},  

function (err, resp, body) {
if (err) throw err;
if (resp.statusCode === 200) {
  console.log(body);
  var temperature = body.temperature;

  request({url: serviceRootUrl + '/light', json: true}, 
      function (err, resp, body) {
  if (err) throw err;

if (resp.statusCode === 200) {
console.log(body);
var light = body.light;
var logEntry = 'Temperature: '+ temperature + ' Light: ' 
+ light;

         fs.appendFile('log.txt', logEntry + '\n',
         encoding = 'utf8', function (err) {
         if (err) throw err;

servResp.writeHeader(200, {"Content-Type": 
"text/plain"});

servResp.write(logEntry);
servResp.end();

});
}

    });
}

});
  } else {
    servResp.writeHeader(200, {"Content-Type": "text/plain"});
    servResp.write('Please use /log');
    servResp.end();
  }

}).listen(port);
console.log('Server listening on http://localhost:' + port);

Listing 3.8 A mashup with asynchronous calls leading to a “callback hell”

Fetch the JSON
representation of the

temperature sensor
using request.

Fetch the JSON
presentation of
he light sensor.

Log the result into
a new log entry

in the log.txt file.
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Save this code and test it by first starting the server of listing 3.2:

$ node listing-3.2-webserver.js
Server listening on http://localhost:8686

Then, in a new terminal window run the mashup:

$ node listing-3.8-callbacks.js
Server listening on http://localhost:8787

Now point your browser to http://localhost:8787/log; if everything works as expected,
you should see output similar to that of figure 3.8. This way of calling a callback inside
another and so forth is known as nesting callbacks. Unfortunately, as you can see in the
code of listing 3.8, nesting callbacks quickly pushes your code to the right, making it
harder to read and manage with every additional callback. This unfortunate conse-
quence of asynchronous programming with callbacks is known as callback hell. As you
can see, this problem appears with a relatively low number of callbacks. A rule of thumb
to keep your sanity is to not attempt to nest more than three callbacks like these.

3.5.2 Named callbacks

Don’t lose hope just yet! There are number of ways to resolve your callback hell. The
first one is to use actual named functions instead of anonymous functions. Using
named functions leads to more readable code because it encapsulates the asynchro-
nous calls. It reduces the callback hell to a chain of function calls, each first calling one
asynchronous function and then calling the next function in the chain. If you were to
rewrite your mashup with this strategy, it would look like the code listing that follows.

var http = require('http'),
  request = require('request'),
  fs = require('fs');

var serviceRootUrl = 'http://localhost:8686';

http.createServer(function (req, res) {
  console.log('New incoming client request...');

  if (req.url === '/log') {
    getTemperature(res);  
  } else {
    res.writeHeader(200, {"Content-Type": "text/plain"});
    res.write('Please use /log');
    res.end();
  }

}).listen(8787);

function getTemperature(res) {  
  request({url: serviceRootUrl + '/temperature', json: true}, function (err, 

resp, body) {

Listing 3.9 A mashup with asynchronous calls and named callbacks

Get the temperature and 
start the chain of calls.

A named temperature 
function
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    if (err) throw err;
    if (resp.statusCode === 200) {

console.log(body);
var temp = body.temperature;
getLight(res, temp);  

    }
  });
}

function getLight(res, temp) {
  request({url: serviceRootUrl + '/light', json: true}, function (err, resp, 

body) {
    if (err) throw err;
    if (resp.statusCode === 200) {

console.log(body);
var light = body.light;
logValuesReply(res, temp, light); 

    }
  });
}

function logValuesReply(res, temp, light) {
  var logEntry = 'Temperature: ' + temp + ' Light: ' + light;
 fs.appendFile('log.txt', logEntry + '\n', encoding = 'utf8', function (err) 
{

    if (err) throw err;
    res.writeHeader(200, {"Content-Type": "text/plain"}); 
    res.write(logEntry);
    res.end();
  });
}

This code is essentially the same as listing 3.8, but this time the workflow is split across
several functions. In the callback of the server you invoke getTemperature(); this
function asynchronously gets the temperature and calls the getLight() function as
soon as the temperature arrives. getLight() fetches the light from the server and
invokes logValuesReply() as soon as the light value is ready. Finally, logValuesRe-
ply() asynchronously logs the value to a file and replies to the client.

 The result is much more readable code with a manageable level of indentation. But
on the flipside, you now have to pass the values manually across the chain of invocation
as function parameters; these include the res argument, which contains a handle to the
response object you need at the end of the chain. Furthermore, each function needs to
know which function to call next. This means your functions are tightly coupled with
each other and the code can’t easily be reused for other workflows.

3.5.3 Control flow libraries

We clearly aren’t the first developers to face the challenges of nested callbacks; as a
consequence, a number of developers have contributed their methods of dealing with
the problem to the community. This has led to a number of control flow modules.
Essentially, these modules provide elegant solutions to the callback hell problem; they

Once the callback for temperature 
has been called, proceed with 
calling the getLight function.

Then call the named 
function to log values.

Return to 
the client.
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also address the shortcomings of using named callbacks in a clean, flexible, and reus-
able manner. We can’t list all control flow libraries here, but we recommend using
Async.16 This library is probably the most comprehensive set of tools for dealing with
asynchronous JavaScript in the browser and for Node.

 Let’s rewrite our mashup using the async control flow library that you install with
the following command:

$ npm install async --save

You’ll use the async.series([]) construct, taking an array of functions as a parame-
ter, as well as an optional final callback function to be invoked when all others have
returned. The general structure of this construct is shown in the next listing.

async.series([
  function(callback){ 
    // some logic...
    callback(null, 'first result');
    },
  function(callback){ 
    // some logic...
    callback(null, 'second result');
  }
],
function(err, results){ 
  // some logic...
});

Applying this construct to your mashup, you obtain the code in listing 3.11, which
resembles your first attempt to solve the problem (using nested callbacks) except that
the whole structure is much flatter and a lot more readable. To foster reusability, we also
make use of the named functions we created before. The key in the control flow pattern
is in calling in each function in the chain the callback(err, result) method, which
calls the next function in the array (through the control flow library) and adds the
result to an array of results made available to the last callback function. In this case the
result array contains the temperature and light values in an ordered manner as
expected in an array (note that an alternative with objects is also provided by Async).

[...] var async = require('async');

var port = 8787;
var serviceRootUrl = 'http://localhost:8686';

http.createServer(function (req, res) {

16 https://github.com/caolan/async

Listing 3.10 Using async.series for serial control flow

Listing 3.11 Using a control flow library

First asynchronous 
function call in the series

ers a call
 the next
function

the series
Second function 
call in the series

Final function call; if all the calls in the series 
worked so far, results will be equal to ['first 
result', 'second result'] inside this function.

https://github.com/caolan/async
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  console.log('New incoming client request...');
  if (req.url === '/log') {
    async.series([  

getTemperature,
getLight

],

function (err, results) { 
console.log(results);  
var logEntry = 'Temperature: ' + results[0] + ' Light: ' +
    results[1];
fs.appendFile('log.txt', logEntry + '\n', encoding = 'utf8',
 function (err) {
   if (err) throw err;
   res.writeHeader(200, {"Content-Type": "text/plain"});
   res.write(logEntry);
   res.end();
 })

}
    );
  } else {
    res.writeHeader(200, {"Content-Type": "text/plain"});
    res.write('Please use /log');
    res.end();
  }
}).listen(port);
console.log('Server listening on http://localhost:' + port);

function getTemperature(callback) {
  request({url: serviceRootUrl + '/temperature', json: true}, 
   function (err, res, body) {

if (err) callback(err);
if (res && res.statusCode === 200) {

console.log(body);
var temp = body.temperature;
callback(null, temp);   

} else callback(null, null);
  });
}

function getLight(callback) {
  request({url: serviceRootUrl + '/light', json: true}, 
   function (err, res, body) {

if (err) callback(err);
if (res && res.statusCode === 200) {

console.log(body);
var light = body.light;
callback(null, light); 

} else callback(null, null);
   });
}

Not only is this model much more readable, it’s also much more flexible. As an exam-
ple, although you executed the calls for temperature and light in series, there’s nothing

Create an array of functions 
to be invoked in series.

 function is
d when the
function in
es returns.

results is now equal to
[light, temperature].

This will call the next 
function in the series.
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that forces you to do so; you just need the responses in any order. Now, using another
construct of the Async library called async.parallel, you can speed up your mashup
by running the calls in parallel. All you need for that is to change the initial call from
async.series([…]) to async.parallel([…]).

 As you’ve seen in this section, asynchronous programming isn’t always straightfor-
ward and there’s a learning curve to master it. Luckily enough, there are a number of
techniques and tools that can help you keep your code clean and structured despite
this complexity. Moving forward in the book, we’ll use simple anonymous and named
callbacks for examples not requiring more than three levels of callbacks nesting. For
all other examples we’ll use the great Async library we just introduced. 

3.6 Summary and beyond the book
■ Embedded devices have become increasingly powerful over the last few years,

which makes it possible and appealing to use JavaScript and Node.js directly on
devices.

■ Using only JavaScript end to end to build IoT prototypes offers considerable
flexibility and makes it much easier to maintain your code.

■ You can run Node.js applications on multiple platforms and environments with-
out adapting your code, which makes it easy to develop and scale applications
in heterogeneous deployments.

■ The modularity of Node.js allows you to tap into thousands of community
libraries to rapidly build complex applications.

■ Single-threaded systems such as the Node runtime and the event loop call for
a new way of designing applications. Code and libraries must be kept
asynchronous.

■ The basic idea of asynchronous programming is to pass callback functions that
will be called later on when the results are available.

■ Working with anonymous and named callbacks can lead you to experience call-
back hell! Control flow libraries such as the async module help you resolve it
and better structure your code.

The nerd corner—You promised me more!

The previous section is an introduction to patterns that help you work efficiently with
asynchronous programming. There are a number of other popular patterns such as
promises and events. Promises mainly come from the client-side JavaScript world,
but you can also use this with Node with libraries such as Bluebird (https://www.npmjs
.com/package/bluebird). The events pattern is used by many Node core modules and
is a good way of implementing asynchronous libraries (https://nodejs.org/api/
events.html). Don’t hesitate to go ahead and experiment with these patterns to find
the one that best suits your needs!

https://www.npmjs.com/package/bluebird
https://www.npmjs.com/package/bluebird
https://nodejs.org/api/events.html
https://nodejs.org/api/events.html
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If we piqued your curiosity about Node, it’s probably a good time for you to buy a
Node.js book17 and follow the official Node.js18 blog.

 Now that you have all the software foundations of your WoT toolbox in place,
you’re ready to learn about the hardware bits, in particular which devices to choose
and how to configure them. In the next chapter, we’ll first provide a high-level over-
view of the world of embedded devices and the existing types of platforms to consider.
Afterward, we’ll dig into setting up a Raspberry Pi device, connecting to it a number
of sensors and actuators, and managing them with Node, and then you’ll have every-
thing ready to make your Pi part of the Web of Things.

17 http://www.manning.com/catalog/by/subject/
18 http://blog.nodejs.org/

http://www.manning.com/catalog/by/subject/
http://blog.nodejs.org/


Getting started with
embedded systems
As we discussed before, there are two broad categories of physical objects on the
Web of Things: tagged objects and connected objects. The first category comprises
various tagging technologies that are attached to a product, such as barcodes, QR
codes, NFC or RFID tags, and so on. In this case, objects aren’t connected directly to
the web, only passively, because there’s a need for another device or application to
interact with the product. Connected objects are directly connected to the Web of
Things and are the world of embedded systems and embedded devices, which are
essentially small, relatively inexpensive, low-power computers with limited
resources and capabilities. You can apply the techniques and architecture you’ll

This chapter covers
■ Understanding the various categories of

embedded systems
■ An introduction to working with the Raspberry Pi
■ An introduction to setting up and using Node.js

for IoT prototyping
■ Learning to connect sensors and actuators

using GPIOs
83
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learn about in this book to both tagged and connected objects, but the focus of this
book is mainly on connected objects.

 In chapter 2, you learned how to consume services from a real embedded device—
a Raspberry Pi located in our office—to get a first glimpse of the Web of Things. But
this wasn’t very physical because the device you interacted with was neither yours nor
next to you. 

 In this chapter, we’ll show you how to set up and configure your very own IoT
device. By the end of this chapter, you’ll have a real device connected to the Web of
Things, and you’ll have all the tools at hand to be able to program it and implement
all the concepts presented in the next chapters of this book. You’ll start by choosing a
hardware platform. There are many options out there, so we’ll make sure to help you.
You’ll then make your device fit for the Web of Things by installing various software
packages and libraries. You’ll also learn the basics of IoT prototyping with a hint of
electronics by connecting real sensors and actuators directly to your Raspberry Pi. 

 If this is your first encounter with embedded devices and electronics, this chapter
will be a gentle (yet challenging) and fun crash course!

4.1 The world of embedded devices
Literally thousands of embedded platforms types are available, ranging from small pro-
duction runs of general-purpose sensor nodes built for researchers or hackers to cheap
and mass-produced circuits built specifically for smoke alarms, microwave ovens, and
alarm clocks. Obviously, we won’t have time to get into a deep review of these platforms
in this book. What you should remember is that there are two big leagues of embedded
devices: those targeted at hobbyists (less specific and optimized but more reusable and
flexible) and those meant to be built into real-world industrial products (more opti-
mized for specific use cases, so harder to extend and use in other contexts).

4.1.1 Devices for hobbyists vs. industrial devices

The idea of embedding computers into everyday objects isn’t so novel: our washing
machines have contained integrated circuits for decades. But they didn’t connect to
the internet, nor were they designed to be easily accessible or reprogrammable by
application developers or customers. The emergence of the Internet of Things
changes the game quite a bit. First, IoT devices are connected to the internet, which
can be challenging for low-power devices. This constraint gave birth to a number of
industrial-grade embedded platforms that support various networking protocols out
of the box, ready to be used for commercial applications. Second, the research com-
munity and hobbyists started to get increasingly interested in tiny computers that not
only were easy to program but also could support all sorts of sensors or actuators. 

 These two trends gave birth to a myriad of platforms for both real-world and indus-
trial use cases as well as for hobbyists and DIY projects. The main difference between
these two categories is the focus of their users. For industrial platforms, the objective
has been to reduce the costs so they could be embedded in all kinds of consumer
products while maintaining a high level of stability (you wouldn’t want to have to
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reboot your washing machine every now and then). Hobbyists, however, were less sen-
sitive to industrial-grade performance and robustness and preferred platforms that
were open and easier to use and extend and that also came with an elaborate and
easy-to-use tool suite.

 Having said that, the traction around the Internet of Things in the recent years
blurred the line between the two worlds, and you can observe industrial platforms
manufacturers working hard to make their devices more accessible with better tools.
Likewise, hobbyist platforms are getting more robust and cheaper and hence are now
also embedded in real-world products.

 Providing a detailed overview of those platforms could easily consume the rest of
this book, so we describe only some of the most popular ones in table 4.1. Note that
this table is an oversimplification of the brands and their offerings and is provided as a
high-level overview of some of the big players. Please refer to the respective sites of the
platforms for more details. 

4.1.2 Real-time operating systems vs. Linux

In table 4.1, you probably noticed the Type column showing RTOS and Linux devices.
There are basically two categories of operating system (OS) used for embedded devices:
real-time OS (RTOS) and, well, not so real-time OS! 

Table 4.1 An overview of some IoT embedded platforms. Platforms targeting hobbyists usually cost more but
also have more resources (RAM, CPU, and so on). Industrial platforms tend to offer lower specifications but the
costs are usually lower.

Brand Models CPU RAM + Price Type Connectivity

Arduino 20+ and many 
clones (Spark, 
Intel, and so on)

ATmega, 
8–64 MHz, Intel 
Curie, Linino

16 KB–
64 MB

Largest 
community

~30 USD RTOS, Linux, 
hobbyists

Pluggable exten-
sion boards (Wi-
Fi, GPRS, BLE, 
ZigBee, and so on)

Raspberry 
Pi

A, A+, B, B+, 2, 
3, Zero

ARMv6 or v7, 
700 MHz -1.2 
GHz

256–1 GB Full Linux, 
GPU, large 
community

~5-35 USD Linux, 
hobbyists

Ethernet, 
extension through 
USB, BLE (Pi3)

Intel Edison Intel Atom 500 
MHz

1 GB X86, 
full Linux

~50 USD Linux, 
hobbyist to 
industrial

Wi-Fi, BLE

BeagleBoard BeagleBone 
Black, X15, and 
so on

AM335x 1 GHz 
ARMv7

512 MB–
2 GB

Stability, full 
Linux, SDK

~50 USD Linux, 
hobbyist to 
industrial

Ethernet, exten-
sion through USB 
and shields

Texas Instru-
ments

CC3200, SoC 
IoT, and so on

ARM 80 MHz, 
etc.

from 
256 KB

Cost, Wi-Fi <10 USD RTOS, 
industrial

Wi-Fi, BLE, ZigBee

Marvell 88MC200, SoC 
IoT, and so on

ARM 200 MHz, 
etc.

from 
256 KB

Cost, Wi-Fi, 
SDK

<10 USD RTOS, indus-
trial

Wi-Fi, BLE, ZigBee

Broadcom WICED, and so 
on (also at the 
heart of the 
Raspberry PIs)

ARM 120 MHz, 
and so on

from 
256 KB

Cost, Wi-Fi, 
SDK

<10 USD RTOS, 
industrial

Wi-Fi, BLE, Zig-
Bee, Thread
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 In essence, what makes an OS real-time is its ability to respond quickly and predict-
ably to data that comes in. Real-time OSs are necessary for applications that control
“big and hairy things” such as nuclear power plants, manufacturing chains, and air-
planes, where determinism and response time are more critical selection factors than
anything else. They also usually lead to lower power consumption or at least quite pre-
dictable power consumption.

 When it comes to embedded devices, the world of RTOS is dominated by Free-
RTOS,1 an open source real-time operating system, although some viable alternatives
exist, such as Contiki,2 TinyOS,3 mbed OS,4 and the commercial VxWorks.5

 One of the drawbacks of a real-time OS is that it isn’t very good at operating many
tasks in parallel, which makes it hard to build complex layers offering simple abstrac-
tions. This is where a non-real-time OS can help. It becomes particularly helpful for
things that are not so mission-critical where user experience and features are more
important than a constant, very fast response time. In this world—even more than in
the RTOS world—one operating system rules them all: Linux.6

 Because of its large community, plethora of tools, abstractions, and supported
architectures, Linux is the ideal environment in which to start tinkering and innovat-
ing with IoT devices. But don’t get it wrong; it’s also increasingly a solid candidate for
real-world and robust IoT applications such as for home automation or for building
application gateways as described in chapter 5.

1 http://www.freertos.org/
2 http://www.contiki-os.org/
3 http://www.tinyos.net/
4 https://www.mbed.com/en/development/software/mbed-os/
5 http://www.windriver.com/products/vxworks/
6 Note that a number of projects offer modified versions of the Linux kernel to transform it into a real-time OS;

see, for instance, http://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html.

The nerd corner—I want more operating systems!

Over the past few years, Linux has become such a popular operating system used on
embedded devices that a project from the Linux Foundation called Yoctoa is now ded-
icated to creating custom Linux distributions for embedded devices. Similarly, Google
is working on Brillo,b an extension of Android (which is built on Linux as well) for the IoT,
and Ubuntu launched Ubuntu Core for the IoT.c Although Linux is massively dominating,
there are a few alternatives to Linux in this space, such as Windows 10 for IoT.d We’ll
be using Linux Raspbian on the Pi, but you can also try Yocto, Ubuntu Core, or Windows
10, all of which run on the Pi (from the Pi 2 onward).

a https://www.yoctoproject.org/
b https://developers.google.com/brillo/?hl=en
c http://www.ubuntu.com/internet-of-things
d https://dev.windows.com/en-us/iot

https://www.mbed.com/en/development/software/mbed-os/
http://www.freertos.org/
http://www.contiki-os.org/
http://www.tinyos.net/
http://www.windriver.com/products/vxworks/
http://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html
http://www.ubuntu.com/internet-of-things
https://dev.windows.com/en-us/iot
https://developers.google.com/brillo/?hl=en
https://www.yoctoproject.org/
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4.1.3 Summary and beyond the Pi

In this section, we offer a condensed introduction to the world of embedded devices.
Obviously, entire books have been written on this topic, so we didn’t try to be exhaus-
tive in our search, but rather tried to give you a general understanding of the options
and elements to consider when choosing a hardware platform for your project.7 

 We decided to use the Raspberry Pi as the reference platform for the remainder of
this book. Why the Raspberry Pi? First, because it’s arguably the most popular embed-
ded platform along with the Arduino. But unlike the Arduino,8 it was built for Linux
and was designed from the beginning to be a powerful and accessible platform for
automation and the Internet of Things. Basically it will let you dig into the web and
the Internet of Things without having to deal with all the challenges (for example, C
programming, limited RAM, and rough tools) that come with RTOS platforms.

 Moreover, as you’ll see in the next section, it’s inexpensive and is available in many
countries, and it comes with several USB ports for accessories and an HDMI output to
connect it to your TV or screen. Because it’s based on Linux and offers direct access to
the OS and therefore Node.js, all the required dependencies can be easily installed on
it as you would install things on your PC. 

 This does not mean the Pi is the only option to run the code provided in this book
or to learn the Web of Things. As long as you pick a device that can run Node.js,
you’re pretty much good to go. 

FROM PROOF OF CONCEPT TO INDUSTRIAL PROTOTYPE

The Pi is definitely one of the easiest ways to get started with the WoT and to build all
sorts of prototypes. But for anything more serious, such as industrial and commercial-
grade prototypes or actual products, the classic version of the Pi isn’t the best choice.
There are a number of reasons for this, but the two main ones are the use of an SD
card as storage and the form factor of the Pi.

 Relying on an SD card doesn’t work well in the real world. SD cards have a limited
lifespan. They also occasionally break, get corrupted, or could be easily dislodged. A
more practical way to store the operating system and the data you need is to rely on
on-board flash memory. Like SD cards, flash memories are persistent, meaning that
the data will be kept even if the device isn’t powered. They’re soldered to the boards
and are also faster and more stable than SD cards.

 Furthermore, the Pi wasn’t primarily designed to be used in commercial applica-
tions and therefore has more components and connectors that might not be required
for most use cases. 

 Does that mean you won’t be able to apply what you learn here to building a com-
mercial-strength prototype? Not at all! Real-world-ready platforms are available that
are compatible with what you’ll learn in this book and with the code you’ll write.

7 A good roundup of popular hardware platforms can be found here: http://postscapes.com/internet-of-
things-hardware.

8 It’s worth noting that there are also a number of new Linux-based Arduinos; for example, the Arduino Yun.

http://postscapes.com/internet-of-things-hardware
http://postscapes.com/internet-of-things-hardware
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 First, there’s a version of the Pi that’s much more realistic for the real world: the Pi
Compute Module.9 The Compute Module is an embedded platform similar to the
classic Pi, but with a much smaller form factor and an on-board flash memory. Also,
the Pi Zero is the latest addition to the Pi family and the smallest (65mm x 30mm).
Add to that a shocking $5 price tag and it also becomes a viable candidate to be
embedded within a commercial solution, although it lacks network connectivity or on-
board flash memory. Similarly to the Pi Zero, the C.H.I.P10 has a small form factor and
for $9 also offers Wi-Fi and Bluetooth connectivity.

 Other very good (but slightly more expensive) alternatives exist, such as the Intel
Edison,11 which, like the Pi 3, also supports Bluetooth Low Energy (see chapter 5) and
Wi-Fi out of the box but is much smaller and has an onboard flash.

 If you’re looking for a device to build more mechanically stable prototypes without
having to solder too much, you should consider the BeagleBoard12 platform from
BeagleBone, a platform similar to the Pi but known for its robustness and stability.
Moreover, the BeagleBone offers both SD card and flash-based storage, making it easy
to move your prototype from a concept to a real-world trial.

 Plenty of other platforms are available, but what’s interesting with the Pi, Beagle-
Bone, and Edison is that they all run on Linux and support Node.js. This means that
most of the examples will run out of the box on these three platforms (and many oth-
ers), but some more advanced examples, such as those using GPIOs, might need a
slightly different setup or alternative libraries. The appendix gives you a number of
pointers on using the architecture, concepts, and code examples of this book with
other devices such as the BeagleBone Black, the Intel Edison, and the Arduino boards.

4.2 Set up your first WoT device—Raspberry Pi
So far, this chapter has described the world of embedded systems and the various
aspects to consider when choosing the most appropriate hardware platform for your
own project. Next, we briefly cover the software layer running on top of your hardware
platform by discussing the operating system on the device and describing how Java-
Script and particularly Node.js are a very interesting application-development ecosys-
tem for building Web of Things devices. 

4.2.1 Meet the Raspberry Pi

The Raspberry Pi is a popular series of single-board computers: think of an entire com-
puter not much larger than the credit card you used to buy it (see figure 4.1). These
devices were developed by the Raspberry Pi foundation primarily as educational tools
for more people to learn about basic computer science and physical computing. 

9 https://www.raspberrypi.org/products/compute-module/
10 http://getchip.com
11 http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
12 http://beagleboard.org/BLACK

https://www.raspberrypi.org/products/compute-module/
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://beagleboard.org/BLACK
http://getchip.com
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The most disruptive model to date is the Raspberry Pi Zero. This device kicked off a
little revolution: a full Linux computer for $5, a price tag usually reserved to the
resource limited, low-cost RTOS devices out there. The Pi Foundation went so far as to
give it away for free, attached to the December 2015 issue of The MagPi magazine,13

showing that the days when computers will be attached to any object for a ridiculously
low cost aren’t that far away! 

 In terms of performance, the Pi Zero is pretty similar to the Pi A, but its ARMv6
CPU is overclocked at 1 GHz and it boasts twice as much RAM. For only 9 grams, it also
features a micro-SD card slot, a mini-HDMI socket, and two micro USB ports (one for
power, the other for data). 

 The latest Pi model at the time of writing is the Pi 3. It’s more expensive than the
Pi Zero, but it also has significantly more to offer. The Pi 3 boasts a quad-core 1.2 GHz
CPU, 1 GB RAM, a micro-SD slot, and a Broadcom VideoCore IV graphic unit. In terms
of connectivity, the Pi 3 has four USB ports (and a Micro USB, which is used to power
it), an HDMI port, a 3.5mm jack, an Ethernet connector, and 40 general-purpose
input/output ports (GPIO). Finally, unlike its predecessors, the Pi 3 also offers out-of-
the-box Wi-Fi and Bluetooth connectivity, making a fully WoT-ready device. All of that
for a mere 45 grams in total weight!

4.2.2 Choosing your Pi

All the examples in this book were tested on the Pi B+, Pi 2, Pi 3 and Pi Zero. Which
one should you grab? 

13 https://www.raspberrypi.org/magpi/raspberry-pi-zero-out-today-get-it-free-with-the-magpi-40/
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Figure 4.1 The Raspberry Pi 3 and the Pi Zero and their different ports and interfaces

https://www.raspberrypi.org/magpi/raspberry-pi-zero-out-today-get-it-free-with-the-magpi-40/
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 If you’re just beginning with the IoT and embedded devices, the Pi 3 (or any suc-
cessor) is a safe choice: it offers all the required connectivity out of the box and
doesn’t require any soldering to connect sensors and actuators to the GPIOs. But the
Pi 3 is significantly larger and also more power hungry (4 watts for the Pi 2 or 3 versus
0.8 watts for the Pi Zero). 

 If size matters to you or if you plan on battery-powering your WoT device, then the
Pi Zero is an interesting option. But it will require a bit more soldering and tinkering.

 Ideally, by now we’ve convinced you to go ahead and buy a Pi. If we didn’t, all hope
is not lost! Most of the examples can run on any platform supporting client-side Java-
Script and Node.js (like, hmm, your laptop!). For those who require a Pi—essentially
the examples interfacing directly with sensors and actuators connected to the embed-
ded device—we’ve created a small library that simulates them. Finally, the beauty of
using JavaScript and Node for the Physical Web is that these examples will work on
pretty much any device out of the box. The only significant exception is the last mile
of code that actually talks to your sensors, which you’ll likely have to customize for
each device.

 It goes without saying that you’ll have much more fun with this book if you actually
do have a real device next to you to implement the examples. After all, discovering the
Web of Things without a Thing to work with sounds like skiing in the summer without
any snow: a tad frustrating.

4.2.3 Shopping list

If you do decide to acquire a Raspberry Pi, you might as well get the other items on
our shopping list. Again, they’re not mandatory to follow the book, but they will add a
physical touch to the virtual examples of the book. Table 4.2 lists all the things you
should buy or gather to be able to create all the prototypes of the book.

Table 4.2 The components needed to create the physical prototypes described later in this 
 section and the rest of this book

Description Price

Raspberry Pi (any model from the B+ onward, Pi 3 recommended) ~35 USD

A 4–16 GB SD card (e.g., SanDisk Ultra Class 10 MicroSDHC, 16 GB) ~10 USD

HCSR501 PIR sensor for Raspberry Pi ~5 USD

DHT22 humidity and temperature sensor ~5 USD

Small breadboard or protoboard ~2 USD

Jumper wires for Raspberry Pi (4 M/M and 4 M/F) ~2 USD

330 Ohm resistor <1 USD

LEDs <1 USD
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To know where to buy those items and your Pi, have a look on the book’s official web-
site, http://book.webofthings.io, where you’ll find a list of our partner retailers, along
with special offers or bundles they provide to readers of this book.

4.2.4 Setting up your Raspberry Pi

A detailed tutorial on how to use a Raspberry Pi is beyond the scope of this book, and
its usage has been widely documented on the web.14 Nevertheless, we’ll help you set
up your Pi to make it fit for the WoT.

 Start by installing the right operating system. A number of operating systems can
run on a Raspberry Pi. For practical reasons, in this book we’ll focus on Raspbian,
which is essentially a port of the Debian Linux system tailored to fit the needs of the Pi
and its users. The advantage of Raspbian is that it has been widely used and tested on
the Pi and is easy to install and customize; therefore, it provides a stable and popular
operating system to build on.

 The easiest way to get Raspbian installed on your Pi is to use a tool called NOOBS
(New Out Of the Box Software). NOOBS is an OS manager that will assist you with the
installation, and we’ll show you how to use it in this section.

 Should you want to take the fastest possible route, we also created a WoT version of
Raspbian that contains everything you need to get started already set up. You can find
it on http://book.webofthings.io and jump directly to section 4.3. Taking the manual
route will let you learn more and will ensure you have a custom and up-to-date system
at hand, so it’s your call.

Wi-Fi USB dongle (optional, for Pi Zero) ~ 10 USD

Pi Zero cables bundle (optional, for Pi Zero) ~ 5 USD

14  A good place to start is the Pi portal at http://www.raspberrypi.org/.

The nerd corner—Let’s have a word about current

The Pi gets all the power it needs from the Micro USB connector (shown in figure 4.1);
this means that the current provided on this cable should be high enough. Under
stress, a Pi B+ or Zero will draw about 500 mA. A Pi 2 will need about 1000 mA and a
Pi 3 about 1.5 mA. Exactly how much current you’ll need depends on what you connect
to the Pi, especially to the male USB ports of the Pi. We won’t connect power-hungry
accessories in this book, so you can consider the power requirements for a bare-bones
Pi but a good compromise is a USB power source that provides 2000 mA (check the
back of the USB adapter or the specs of your computer’s USB ports to find this out).

Table 4.2 The components needed to create the physical prototypes described later in this 
 section and the rest of this book (continued)

Description Price

http://book.webofthings.io
http://www.raspberrypi.org/
http://book.webofthings.io
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INSTALLING RASPBIAN WITH NOOBS

First, you’ll need to format your micro SD card as FAT32. Make sure your card is large
enough because it’s the primary storage space of the Pi. It should be at least 4 GB, but
we recommend using a larger one to ensure you have plenty of space for the software
you’ll install. 

ATTENTION! According to the SD specification, a card with more than 32 GB
will be formatted using exFAT instead of FAT. This means it might not work on
the Raspberry Pi using NOOBS. You can use a formatting tool such as GParted
on Linux or Disk Utility on a Mac OS to transform it to FAT32, but some users
reported problems with this as well. To avoid any hassle, choose an SD card
between 4 GB and 32 GB, ideally a fast one from a trusted brand. We had good
success with SanDisk Ultra Class 10 16 GB cards.

To install Linux on your SD card so that you can plug it in your Pi and use it, follow
these instructions: 

1 Format the micro SD card where Raspbian will be installed. 
On Linux, open GParted15 and use the Devices menu to select the device corre-
sponding to your SD card (make sure you’re formatting the SD card and not
your computer). Then, right-click the biggest partition to format it to FAT32.

On Mac OSX, use Disk Utility. Select the SD card reader and click Erase. Select
MS-DOS (FAT) as the format, give it a name (for example, WOT_PI), and select
Erase to proceed with formatting the card; see figure 4.2. Alternatively, you can
install the free ApplePi-Baker16 utility—a nice little tool that also lets you
backup and restore your Pi images.

On Windows, download and use the SD Card Formatter tool.17 Select the Over-
write Format option; note, however, that this tool won’t work on cards bigger
than 32 GB because it will format them in exFAT.

2 Download the latest NOOBS software from the download page of the Raspberry
Pi community18 (select NOOBS). The fastest way to download the distribution is
usually using a Torrent file (before you ask: yes, it’s absolutely legal in this case).

3 Unzip the content of the NOOBS archive and transfer it to the freshly formatted
SD card. Don’t put the content in a subfolder; copy all the content to the root
folder of the SD card. Eject (or unmount) the card once you’ve copied the files.

4 Plug the SD card into the slot on the side of your Pi and plug the HDMI cable
into a screen, a USB mouse and keyboard into the USB slots, and finally the
micro USB cable to power (see figure 4.1 to find the right ports).

15 http://gparted.org/
16 http://www.tweaking4all.com/hardware/raspberry-pi/macosx-apple-pi-baker/
17 https://www.sdcard.org/downloads/formatter_4/
18 http://www.raspberrypi.org/downloads/

http://gparted.org/
https://www.sdcard.org/downloads/formatter_4/
http://www.raspberrypi.org/downloads/
http://www.tweaking4all.com/hardware/raspberry-pi/macosx-apple-pi-baker/
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5 NOOBS should now boot. After about a minute you’ll see a splash screen allow-
ing you to install the different OSs supported by the Pi. Select Raspbian (a
special version of the Linux Debian operating system tailored for the Pi) and
click Install. This will start installing the OS, which may take up to 30 minutes. 

The OS should now be ready. When you start it for the first time, the Pi boots up with
the X Window graphical environment. If you want to disable this graphical user inter-
face, select Menu > Preferences > Raspberry Configuration, and in the System tab select
To CLI as Boot option. Now restart your Pi; choose Menu > Shutdown > Reboot. The Pi
should restart, and you’ll soon see a terminal. Should any of these steps turn sour, please
read the complete install manual online19 or post a message on the book forum.20

CONNECTING THE PI TO A NETWORK

Next, you need to connect the Pi to a network. We’ll discuss a range of networking
protocols in chapter 5, but for now we’ll use Ethernet or Wi-Fi. If you opted for a Pi B,
B+, or 2, this step is straightforward: plug an Ethernet cable from your router into the
Pi (see figure 4.1). 

19 https://www.raspberrypi.org/help/noobs-setup/
20 http://book.webofthings.io

Figure 4.2 Formatting an SD card for the NOOBS installer using Disk Utility on Mac 
OS. Make sure you format the card using the MS-DOS (FAT) format.

https://www.raspberrypi.org/help/noobs-setup/
http://book.webofthings.io
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 If you chose a Pi Zero or Pi 3 and don’t have the option of connecting a cable to
your router, you’ll need a little more work to add Wi-Fi connectivity to your Pi. This
extra work also brings the advantage of portability: your Pi becomes wireless and can
be placed wherever you want as long as it’s within range of your wireless router.

 The software to support Wi-Fi connectivity is already present in Raspbian, but you
need to enable this feature by modifying the Wi-Fi network configuration file, as
shown in the next listing.

$ sudo nano /etc/wpa_supplicant/wpa_supplicant.conf 

network={ 
  ssid="YOUR NETWORK NAME" 
  psk="YOUR WIFI PASSWORD"
}
$ 

You can now save and close this file by pressing CTRL+X, then Y, and then ENTER. Once
this is done, perform a clean shutdown with sudo shutdown –h now. Then, if you use
a Pi Zero, insert a compatible Wi-Fi USB dongle into any free USB port (no need to do
this on a Pi 3 because the Wi-Fi is onboard). Note that when using the Pi Zero you’ll
need to unplug any other device (for example, your keyboard) and use a USB-to–
Micro USB converter. Check the shopping list in table 4.2 for more details about these
components.

 Once your Pi restarts, it should connect to your Wi-Fi network. This process can
take up to a minute on some networks. In the next section we’ll verify that this all
worked by remotely accessing the Pi.

REMOTELY ACCESSING YOUR PI

Your Pi should now be up, running, and connected. Although you can write and run
all exercises directly on the Pi using a keyboard, mouse, and screen, a more practical
option is to run it “headless” (that is, without a display/keyboard attached to it) and
remotely connect to it via SSH. The only problem in this mode is finding your Pi in the

Listing 4.1 Modifying the Wi-Fi configuration file

The nerd corner—I want more Wi-Fi

The method described here works to connect your Pi to a WPA (Wireless Protected
Access) or the more secure WPA2. It may not work if your Wi-Fi is set up using a different
security protocol such as (the not-so-secure) WEP or WPA2 Enterprise. All hope is not
lost, however, and you’ll find a number of good tutorials on the web on how to connect
a Pi to different Wi-Fi networks. A good place to start is https://www.raspberrypi.org/
documentation/configuration/wireless.

Open the Wi-Fi network’s 
configuration file.

Add these lines; 
replace with the values 
for your network.

https://www.raspberrypi.org/documentation/configuration/wireless
https://www.raspberrypi.org/documentation/configuration/wireless
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Replies to
ping req

from t
first place. This is actually a well-known problem in the Internet of Things known as
the bootstrap or discovery problem: given a device connecting the very first time to a net-
work, how do you find its address? 

 To resolve this problem, use the Avahi mDNS server of your Pi. mDNS is a discovery
protocol that we’ll cover in chapter 8, but for now it’s enough to understand that it
gives your Pi an address that nearby computers can use to find it. Avahi is installed by
default on the latest versions of Raspbian, so you can go ahead and use it.21 By default,
Avahi will set up the Pi to respond to the raspberrypi.local domain. You can check
this by running the command shown in listing 4.2 from a terminal on Linux/Mac OS.
Windows users should try the ping command shown in the following listing with the
command prompt (cmd.exe). Unfortunately, you might not find your Pi, because
mDNS isn’t supported out of the box on Windows machines. It will work if you
installed an application bundling an mDNS service such as iTunes. But if you didn’t,
you’ll need to install an mDNS service such as Bonjour Print Services for Windows.22

$ ping raspberrypi.local             
> PING raspberrypi.local (192.168.0.150): 56 data bytes
> 64 bytes from 192.168.0.150: icmp_seq=0 ttl=64 time=1.326 ms
> 64 bytes from 192.168.0.150: icmp_seq=1 ttl=64 time=8.084 ms [...]
CTRL+C

If everything worked well, you should now be able to access your Pi via its local DNS
address: raspberrypi.local. Note that you can change this address should you need
to; for example, if you have more than one Pi at home.23

CREATING A NETWORK FOR YOUR PI

The method just described works well if you have access to a nearby router with an
Ethernet port available or have added a Wi-Fi dongle to your Pi. If that’s not the
case—for example, if you’re in a hotel room—there’s another nice and easy way of
working with your Pi: creating a wired network between your Pi and your desktop/lap-
top computer.

 This process is supported on Windows, Mac OS, and Linux and is well-documented
on the internet.24 As an example, we’ll describe how to do this on a Mac OS machine. 

21 If it isn’t installed on your Pi, run sudo apt-get install avahi-daemon to install it.

Listing 4.2 Pinging your Pi

22 You can download it for free from http://www.apple.com/support/bonjour.
23 See http://www.howtogeek.com/167195/how-to-change-your-raspberry-pi-or-other-linux-devices-hostname/.
24 https://pihw.wordpress.com/guides/direct-network-connection/

Send a PING message 
to your Pi. 

Your Pi was found via mDNS
and is bound to the local

address: 192.168.0.150.

 the
uest

he Pi
Interrupt the PING with the Ctrl-C 
keys (not necessary on Windows).

http://www.apple.com/support/bonjour
https://pihw.wordpress.com/guides/direct-network-connection/
http://www.howtogeek.com/167195/how-to-change-your-raspberry-pi-or-other-linux-devices-hostname/
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If your machine doesn’t have an Ethernet port, you’ll need an Ethernet-to-USB or
Thunderbolt adapter. To get started, plug your Pi into the Ethernet port on your
machine. Then, open your System Preferences and select Sharing. Enable Internet
Sharing from Wi-Fi to Thunderbolt Ethernet, as shown on figure 4.3. This will effec-
tively share the internet connection that your machine gets through Wi-Fi with the Pi.

 If you didn’t change the configuration of the Ethernet port, this should work out
of the box. If it doesn’t, go to System Preferences again and check that the Ethernet
connection (for example, USB Ethernet or Thunderbolt Ethernet) is set to Using
DHCP.

4.2.5 Connecting to your device

Once the Pi has started successfully, you’ll be able connect to it using SSH (Secure
Shell). 

SSH TO YOUR PI ON LINUX OR MAC OS

On a Linux or Mac OS machine, an SSH client is already installed, so all you need to
do is open your terminal with the command (the default password is “raspberry”) in
the following listing.

Figure 4.3 Sharing internet with your Pi over Thunderbolt Ethernet on Mac OS
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$ ssh pi@raspberrypi.local
The authenticity of host '192.168.0.150 (192.168.0.150)' can't be 
established.
RSA key fingerprint is 7c:4e:ad:4f:42:cf:d2:a4:0f:75:38:83:a7:03:63:58.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.150' (RSA) to the list of known 
hosts.
pi@192.168.0.174's password: 
[...]
Last login: Sat Jan 17 12:05:36 2015

pi@raspberrypi ~ $ 

SSH YOUR PI ON WINDOWS

To use SSH on Windows you can download the PuTTy SSH client.25 This client is light-
weight and doesn’t even require an installation: download it and double-click to start
it. Write the address of your Pi (raspberrypi.local or the IP address) in the Host
Name field and click Open. Your Pi should then prompt you for a username (the
default is “pi”) and a password (the default is “raspberry”).

ATTENTION! Once you’re logged in, use the passwd command to change your
password. Provided you’ll connect your device to the world wild web, this is
probably a good idea unless you’re ready to literally open source your home!

4.3 Installing Node.js on the Raspberry Pi
As explained in the previous chapter, Node is slowly but steadily making its way in the
world of embedded systems, providing a nice alternative to the traditional C environ-
ments of the embedded world, so let’s see how to use Node on a Raspberry Pi.

 The Node.js framework is installed by default on the most recent versions of Rasp-
bian, but you need to install the latest version on your Pi. The installation is pretty
straightforward, but you need a special version of Node. “Why can’t I just use the stan-
dard Node.js version?” we hear you say. Well, as mentioned before, the Pi—and most of
the embedded devices out there—run on CPU architectures that aren’t compatible with
the ones your PCs run on (x86 or x64). More precisely, a lot of embedded devices run
on ARM26 processors, which is what’s on your Pi. As a consequence, the node binaries
that you need on your Pi are not the same as the ones you need on your PC. Fortunately,
since Node version 4.0.0, ARM binaries are also available from the official Node website.

 To install the ARM version of Node.js, go to the Node download page at https://
nodejs.org/en/download/ and select the right version for your Pi or other embedded

Listing 4.3 Connecting to the Pi using ssh

25 http://www.chiark.greenend.org.uk/~sgtatham/putty/
26 If you decide to use a non-ARM-based platform, you’ll need to find a compiled version of Node.js for the sys-

tem you have or compile it from the source on your target platform.

Connects (using the SSH protocol) 
to your Pi using the pi user

You’re connected to your Pi via 
SSH, ready to enter commands.

https://nodejs.org/en/download/
https://nodejs.org/en/download/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
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Unzip
binar
device. As shown in figure 4.4, the archive to download depends on the version of
the ARM architecture your device uses. As an example, the Pi 3 runs on an ARMv7
architecture.

 Once you locate the right link, copy it (right-click Copy Link Location) and run
the commands shown in the following listing. This will install Node on your Pi.

$ wget https://nodejs.org/dist/v4.4.2/node-v4.4.2-linux-armv7l.tar.gz    
$ tar -xvf node-v4.4.2-linux-armv7l.tar.gz
$ cd node-v4.4.2-linux-armv7l
$ sudo cp -R * /usr/local/
$ node –-version
> v4.4.2

Listing 4.4 Installing Node.js on your Pi

Pi: A, A+, B, B+, Zero, 
Compute Module

Always select an LTS 
(long-term support) 
version

Intel Edison Pi 2, 3
BeagleBone Black

Figure 4.4 Node.js download page: ARM CPUs are supported, but you need to select the right 
architecture for your embedded device model. As an example, the Pi 2 and 3 are built on an ARMv7 
CPU architecture whereas the Pi Zero uses an ARMv6 architecture.

Download version 4.4.2 for
the Pi 3 (ARMv7); newer 4.x
versions should also work.

 the
ies.

Replace the current Node with 
the version you just downloaded.

If everything worked fine, the 
command should output the 
version you just installed.
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Pull the la
changes (if

are availa
from

rem
reposit
If the installation was successful (of course it was!), this command should give you the
version of Node.js installed on the Pi. At the time of writing, 4.x is the latest long-term
support (LTS) version of Node.js and the code has been tested with this version. 

4.3.1 Using Git and GitHub on the Pi

Now that Node.js is installed on the Pi, you need a way to write code to work with it.
Although you could use an editor like Nano/Pico or Vi, you should find it much more
efficient and comfortable to write code on your desktop or laptop machine using your
favorite text editor or integrated development environment (IDE) and sync it with the
Pi whenever you want to test the code.

 Start by forking our project on GitHub. In case you’re not familiar with Git, forking
means creating your own copy of the WoT-Book code repository, which will allow you
to modify the code as you fancy. This is especially useful because it lets you write code
on your desktop machine or Pi, commit it locally, push it to your fork on GitHub, and
then pull it back on your Pi. To fork the project, go to our GitHub repository at
https://github.com/webofthings/wot-book and click the Fork button. This creates a
copy of the WoT-Book repository in your own GitHub space. Then you can install Git
on your Pi and clone the project, as shown in the next listing. 

$ sudo apt-get install git
$ git config --global user.name "YOUR NAME"
$ git config --global user.email "YOUR EMAIL ADDRESS"
$ git clone https://github.com/ADDRESS-OF-YOUR-FORK --recursive
$ cd wot-book
$ git pull
$ ... make some changes
$ git commit –am "Some changes"
$ git push origin master
> Username for 'https://github.com':

4.3.2 So what?

Hopefully, you’ve made it this far without too many scars and you’ve been able to do
everything as described. If that’s the case, you’re doing absolutely great and can pat
yourself on the back. You now have a fully functional and WoT-ready Raspberry Pi on
which you’ll be able to connect not only your first sensors and actuators, as shown in
the next section, but also run all the code examples waiting for you in the upcoming
chapters. 

Listing 4.5 Configuring GitHub on the Pi and forking the project

Install the Git package on 
the Pi using apt-get, the 
Debian package manager. Configure Git, using the 

email address you used 
to register on GitHub.

Fetch a version of the forked repository;
replace the URL with the address of your fork.test

 any
ble)
 the
ote
ory.

Commit your code 
changes and 
push them back 
to your own fork.

Authenticate with 
your GitHub username 
and password.

https://github.com/webofthings/wot-book
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4.4 Connecting sensors and actuators to your Pi
Your Pi is now ready to conquer the World Wide Web of Things, but it doesn’t have
much to work with in the real world yet. To make it more real-world-connected you’ll
need to connect some sensors (for example, a humidity sensor) and actuators (an
LED) to the Pi. 

4.4.1 Understanding GPIO ports

The way to do this on most platforms, Pi included, is to connect the sensors and actu-
ators using the general-purpose input/output (GPIO) ports. Essentially, a GPIO is a pin
on which current can be read or output. GPIOs have two modes: an input mode and
an output mode. When the output mode is selected, the pin can be set to HIGH,
which means it outputs 3.3 volts; when the pin is set to LOW, it is off and doesn’t out-
put any voltage. With the input mode, you essentially can read a value on the pin.
Unlike other embedded platforms (such as Arduino), the Pi supports only digital
input. This means that you can work only with components that supply series of 0s
(LOW, ~0 volts) or 1s (HIGH, 3.3 volts) to the input pins—that is, with digital compo-
nents. As an example, an LED is a digital actuator and a button is a digital sensor. 

 Analog components, on the other hand, are those that do not provide or consume
only LOWs and HIGHs but also supply or consume variable voltages on the pins. As an
example, a cheap, light-dependent resistor is an analog light sensor and a potentiom-
eter button is an analog actuator. If you’d like to experiment with analog sensors and
actuators, there are a number of extensions boards you can connect to your Pi to
make it analog-friendly.27 

 Back to our GPIOs: their numbering differs depending on the model of the Pi.
Unfortunately, the numbering is anything but intuitive! Figure 4.5 helps you to under-
stand what each GPIO pin corresponds to for the Raspberry Pi 3, 2, and B+. The GPIO
pins have had exactly the same layout since the Pi A+. 

 In this book when we refer to, for example, pin 12, we mean pin 12 in figure 4.5,
not GPIO12, which would be pin 32.

 In the following section, you’ll get your hands dirty and connect a passive infrared
sensor, temperature sensor, and humidity sensor to the Pi through the GPIOs. 

4.4.2 Working with breadboards and electronic components

Let’s begin with the hardware part. For this you’ll need a breadboard, but not the kind
you’re likely to find in your kitchen. As shown on figure 4.6, a breadboard is a board
made of plastic and metal that prevents you from having to solder components when
creating a prototype. Basically, the exterior blue row is the one that gets connected to
the ground (GND, -). All holes in this row are connected through a metal plate. The
exterior red row is the one that will receive the power (VCC, +). All rows are connected.
The inner columns are meant to hold components like LEDs and sensors or resistors.

27 Here’s a simple tutorial for how to read analog sensors from your Pi: https://learn.adafruit.com/reading-a-
analog-in-and-controlling-audio-volume-with-the-raspberry-pi/overview.

https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-raspberry-pi/overview
https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-raspberry-pi/overview
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Pi 3

Pi Zero

Key

Pin No.

Power +
GND
I2C

UART
SPI

GPIO

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

5V
5V
GND
GPIO14
GPIO15
GPIO18
GND
GPIO23
GPIO24
GND
GPIO25
GPIO8
GPIO7
DNC
GND
GPIO12
GND
GPIO16
GPIO20
GPIO21

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

3.3V
GPIO2
GPIO3
GPIO4

GND
GPIO17
GPIO27
GPIO22

3.3V
GPIO10

GPIO9
GPIO11

GND
DNC

GPIO5
GPIO6

GPIO13
GPIO19
GPIO26

GND

Figure 4.5 Layout of the GPIO, power, and ground pins on the Raspberry Pi Zero and Pi 3 

Thin blue line for connecting ground (GND, -).

All holes across each
line are connected.

Thin red line for connecting power source (VCC, +).

All holes across each
column are connected.

Figure 4.6 A typical breadboard where the outer rows as well as the inner columns are 
connected. The line marked with a thin blue line is usually used for connecting to the 
ground, and the line marked with a thin red line is for connecting to the power source.
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For our “Hello World” blinking LED example, we’ll start by placing the elements on
the breadboard, as shown in figure 4.7.28 If it’s the first time you’ve worked with elec-
tronics, we recommend you use an antistatic mat or a grounding strap to avoid damag-
ing your Pi.29

 Place the LED and the 330 Ohm resistor (color code: orange, orange, brown,
gold/silver) on the breadboard according to the schematics shown in the figure. Note
that resistors don’t have a direction; they must simply be plugged in, so you can con-
nect them in any manner. In case you’re wondering what’s the purpose of the resistor,
it prevents the LED from melting by limiting the current going through it. It also
makes sure that the LED doesn’t blow if you invert the connection of the VCC and
GND pins. Note that you can also use resistors with a greater resistance; for example,
1K Ohm—brown, black, red, gold/silver. This will reduce the brightness of the LED.
Then connect the column with the short leg of the LED to the GND (-, blue) line using
the resistor and the one with the long leg to the VCC (+, red) line using a cable.
Finally, connect a cable (ideally a black one to signify ground) to pin 6 (GND) and one
(ideally a red one to signify power) to pin 7 (GPIO4).

4.4.3 Accessing GPIOs from Node.js

The hardware is now ready, so you can start working with GPIOs. On Linux, GPIOs
aren’t that mysterious. The values that are being read or written to the pins are avail-
able through files, so you could theoretically read these virtual files directly from your

28 This was created with Fritzing, a very cool tool for creating electronic schematics: http://fritzing.org/.
29 Learn more about antistatic products here: http://www.explainthatstuff.com/howantistaticcoatingswork

.html. 

GND (black) Short leg (GND)

VCC (red)

Figure 4.7 Wiring an LED to 
the GPIO ports of the Pi through 
a resistor. The resistor and the 
LED are plugged into the holes 
of the breadboard. No need to 
solder anything!

http://www.explainthatstuff.com/howantistaticcoatingswork.html
http://www.explainthatstuff.com/howantistaticcoatingswork.html
http://fritzing.org/
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This inte
will be ca

every 
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Node code. Doing this correctly is not the easiest thing for a beginner, so we won’t
cover this method in this book but we’ll use a library that others have made. You can
find a dozen Node GPIO libraries for the Pi, offering different abstraction layers and
functionality. We decided to use one we like called onoff.30 For more advanced users,
pi-gpio31 would be an excellent alternative. 

 To do the next exercises in this chapter, you can either fork them from our GitHub
repository and go to the folder chapter4-gpios or create a new folder from scratch. Go
to that folder and install onoff with NPM (npm install onoff --save).

 Note that the following examples that use the onoff library won’t work on your PC
because it doesn’t have accessible GPIOs; they will only run on your Pi. 

BLINK.JS—THE HELLO WORLD FOR THE IOT

You’re now ready to interface the Pi with sensors and actuators. In software engineer-
ing, the simplest piece of code one can write—the famous Hello World—displays
“Hello World” in the console. The Hello World equivalent of the IoT is to make a real
LED blink, so let’s build exactly that, as shown in listing 4.6.

 As mentioned before, you’ll use pin 7, corresponding to GPIO4 (see figure 4.5).
You’ll then create a function that opens the pin in output mode, which means you’ll
“push” current on it. It then either activates or deactivates the pin, depending on the
result of the modulo function, and launches itself again at a specified interval.

 Finally, you listen for SIGINT, which corresponds to pressing Ctrl-C, and ensure
that you release the pin and turn the LED off before exiting.

var onoff = require('onoff');    

var Gpio = onoff.Gpio,
  led = new Gpio(4, 'out'),
  interval;

interval = setInterval(function () {
  var value = (led.readSync() + 1) % 2;
  led.write(value, function() {  
    console.log("Changed LED state to: " + value);
  });
}, 2000);

process.on('SIGINT', function () {
  clearInterval(interval);
  led.writeSync(0);
  led.unexport();
  console.log('Bye, bye!');
  process.exit();
});

30 https://github.com/fivdi/onoff
31 https://github.com/rakeshpai/pi-gpio

Listing 4.6 blink.js: the Hello World of the IoT

Import the 
onoff library.

Initialize GPIO 4 
to be an output pin.

rval
lled
two
nds.

Synchronously read the 
value of pin 4 and 
transform 1 to 0 or 0 to 1.

Asynchronously write 
the new value to pin 4.

Listen to the event 
triggered by Ctrl-C.

Cleanly close the GPIO 
pin before exiting.

https://github.com/fivdi/onoff
https://github.com/rakeshpai/pi-gpio
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Save this file and run it by typing node blink.js. If everything works as expected, you
should now see your LED blinking. Well done if this is your first physical prototype!

PIR.JS—CONNECTING A PROXIMITY SENSOR

Let’s now move to a slightly more interesting use case by adding a sensor to your Pi.
The sensor you’ll add is known as a passive infrared (PIR) sensor. A PIR is sensitive to
infrared light and captures the beams emitted by warm bodies like humans—or your
cat, for that matter, but not zombies. This makes it a cheap and ideal sensor to detect
movements and intrusions somewhere, so these sensors are commonly used in simple
burglar alarms or automatic light switches to turn on/off lights when needed. 

 Again, let’s begin with the hardware part of the project. You’ll need a digital PIR
sensor such as the ones we mentioned on the shopping list of section Meet the Rasp-
berry Pi, as well as five cables and a breadboard.

 As you can see in figure 4.8, the PIR sensor has three pins: one marked VCC (which
is its 5-volt power source), one marked OUT (which will contain a digital value of sen-
sor status at any point in time: 1 if a warm body is detected, 0 otherwise), and the last
marked GND (for ground). The pin marked OUT needs to be connected to a data pin
(GPIO 17 in our example).

 Connect the components as shown in figure 4.8. First, connect the GND pin to a
ground GPIO on the Pi (for example, pin 39) either directly if you have a female-female
cable (a cable that can plug into a pin on each side) or through the breadboard.

 Then, connect the OUT pin of the PIR to the GPIO 17 (pin 11) on the Pi; this is the
pin you’ll read the results from. Finally, connect the VCC pin to a GPIO (for example,
pin 4), providing 5 volts on the Pi, again either directly or through the breadboard.

VCC (red)GPIO17

GND (black)

Figure 4.8 Connecting a passive infrared sensor to the Pi. The big sensor on the breadboard 
is the PIR, which is connected to a 5-volt power source, a GPIO pin, and the ground.
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You’re now ready to move to the coding part. To make this work, you could regularly
poll the PIR sensor with the onoff readSync() function. But instead of constantly poll-
ing the sensor for its state and reading the same state several times, it would be much
better to have your code called whenever the state of the physical world changes. This
is precisely the level of abstraction that the onoff library offers; see listing 4.7. The
watch(callback) function lets you enable your code to listen for state changes on a
GPIO port. The library then automatically calls the callback function you pass it
whenever the state changes. This is a good example of event-driven programming, where
your code reacts only to events that you’re interested in, in which case your code
doesn’t need to continuously check a certain value but only do something when it
changes. It allows your code to be simpler, which also reduces the chance of obscure
bugs occurring. The event-driven approach fits a number of real-world things quite
well, and this is somewhat of a challenge for the web, as you’ll see in chapter 6.

var Gpio = require('onoff').Gpio,
  sensor = new Gpio(17, 'in', 'both');    

sensor.watch(function (err, value) {
  if (err) exit(err);
  console.log(value ? 'there is some one!' : 'not anymore!');
});

function exit(err) {
  if (err) console.log('An error occurred: ' + err);
  sensor.unexport();
  console.log('Bye, bye!')
  process.exit();
}
process.on('SIGINT', exit);

As you can see in this listing, the onoff library will listen to both rising and falling
hardware interrupts, and each time the state of the GPIO pin changes, it will call the
callback function that was registered with the watch() function.

DHT.JS—CONNECTING A TEMPERATURE AND HUMIDITY SENSOR

Finally, you’ll make your Pi sense the environment by connecting it to a sensor com-
bining temperature and humidity readings. The sensor we’ll use is a DHT22 (aka
AM2302).32 Begin by connecting it to your Pi, as shown in figure 4.9. The DHT22 has
four pins. Working from right to left, follow these steps: 

b Connect the first DH22 pin to a ground (GND) pin; for example, pin 39. You don’t
connect anything to the second pin. 

Listing 4.7 pir.js: reading a PIR sensor using the onoff library

32 This can also work with a DHT11 sensor.

Initialize pin 17 in input mode; 'both' 
means you want to handle both 
rising and falling interrupt edges.

Listen for state changes on
pin 17; if a change is

detected, the anonymous
callback function will be

called with the new value.
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U
the c
c Connect the third DH22 pin to
the GPIO12 of your Pi (pin 32) and
place a 4.7K Ohm resistor (yellow,
violet, red, gold/silver)33 between
the DH22 pin and the connection to
the pin of the Pi. 

d Connect this resistor to the VCC
line on the breadboard, the red line.

e Connect the fourth DH22 pin to
the VCC line on the breadboard.

f Connect the 3.3-volt power source
to the VCC line on the breadboard. 

Figure 4.9 Connecting a DHT22 
temperature and humidity sensor to the Pi

Because the DHT22 uses a special protocol, you’ll first need to install an additional
driver on the Pi called the BCM 2835 C Library.34 The next listing shows how to install it. 

$ cd chapter4-gpios/drivers   
$ tar zxvf bcm2835-1.50.tar.gz  
$ cd bcm2835-1.50 
$ ./configure 
$ make 
$ sudo make check 
$ sudo make install   

You’re now ready to interact with the sensor using Node code. To do this, you’ll use a
Node library called node-dht-sensor that you first need to install with npm install -
-save node-dht-sensor. The code to run on the Pi is shown in the following listing.

var sensorLib = require('node-dht-sensor');
sensorLib.initialize(22, 12);    
var interval = setInterval(function () {    
  read();
}, 2000);

33 You can use resistances from 4.7K to 10K Ohms.

Listing 4.8 Installing the BCM2835 driver

34 See http://www.airspayce.com/mikem/bcm2835/index.html.

Listing 4.9 dht.js: communicating with the DHT22 sensor

VCC (3.3 V)

We packaged a version 
of the driver for you.nzip

ode.

This driver is written in C, so 
you need to compile it yourself.

22 is for DHT22/AM2302; 12 is the 
GPIO you connect to on the Pi.

Create an interval to read the 
values every two seconds.

http://www.airspayce.com/mikem/bcm2835/index.html
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function read() {
  var readout = sensorLib.read();
  console.log('Temperature: ' + readout.temperature.toFixed(2) + 'C, ' + 
    'humidity: ' + readout.humidity.toFixed(2) + '%');
};
[...]

Save this file and run it as superuser with the sudo command because accessing the
BCM 2835 driver requires it: sudo node dht.js. If everything works fine, you should
see temperature and humidity values appearing every two seconds.

 This concludes your first encounter with GPIOs, which are a great way to add func-
tionality to your Pi—or any other embedded device, really!—so that it can sense or
actuate the real world. Now that you have the basics, nothing prevents you from add-
ing other sensors and actuators to your Pi; you’ll find plenty of tutorials on the web.

4.4.4 Beyond the book

If you want to learn more about embedded platforms, sensors, and hardware proto-
typing, there are many excellent resources and books that can help. A good source of
information for emerging embedded platforms is Postscapes35 and their IoT Toolkit.36

For the more industrial side of things, you can use the Embedded portal.37 For
resources about hardware prototyping and electronics, make sure you check the
Make38 blog posts, books, and magazines. You might also look into the Instructables,39

Element 14,40 and Sparkfun communities,41 where you’ll find many step-by-step tutori-
als and lots of good advice.

The nerd corner—I want to see bits!

Libraries like onoff or node-dht-sensor prevent you from having to deal with the nitty-
gritty details of interacting with low-level hardware sensors and actuators. This is also
what the Web of Things is about: abstracting these (complex) details so that you can
focus on your creative applications and build them using web tools. You might still want
to know roughly how these libraries work. Basically, onoff puts watches on virtual files
that Linux uses to update the values of GPIOs (1 or 0) using a library called epoll.
node-dht-sensor needs to retrieve more complex binary data and uses a C library that
communicates over the GPIOs using two popular protocols in the low-level embedded
world of bits: I2C (Inter-Integrated Circuit) and SPI (Serial Peripheral Interface). If you
want to dig deeper, reading about these protocols is a good start.

35 http://postscapes.com
36 http://postscapes.com/internet-of-things-resources/
37 http://www.embedded.com/
38 http://makezine.com/
39 http://www.instructables.com/
40 http://www.element14.com/community/welcome
41 https://learn.sparkfun.com/

Read the sensor values.

Readout contains two values:
temperature and humidity.

https://learn.sparkfun.com/
http://postscapes.com
http://postscapes.com/internet-of-things-resources/
http://www.embedded.com/
http://makezine.com/
http://www.instructables.com/
http://www.element14.com/community/welcome
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 No doubt this chapter was a challenging one! Covering so many different technol-
ogies and concrete skills in a single chapter isn’t easy, so you’ve done a great job mak-
ing it so far. But getting your Pi ready for the Web of Things is only the beginning. 

4.5 Summary
■ Many types of embedded platforms are commonly used in the Internet of

Things, and you learned how to pick the right one for your use case.
■ There are two main categories of operating systems for devices: RTOS and

Linux.
■ By installing Linux on a Raspberry Pi, you can easily access it remotely over SSH

and configure it to be ready for the Web of Things.
■ Embedded devices allow you to use breadboard, wires, and resistors to wire var-

ious sensors and actuators to the GPIO pins.
■ Using Node.js on your Pi makes it easy to write simple applications that read

data from your sensors and control the LED using the onoff library asynchro-
nously over the GPIO ports.

Now that you have a real embedded device at home, it’s time to connect it to the Web
of Things. The next chapters will be about making sure it seamlessly integrates with
the World Wide Web of Things. The first step comes with the next chapter: architect-
ing an API for your Pi, its sensors, and actuators and using REST, HTTP, WebSockets,
and JSON. In the following chapters you’ll see how to make these sensors and actua-
tors accessible through web APIs.



Building networks
of Things
In the previous chapter you learned how to configure a single device—your Pi—and
how it can interact with the real world using various sensors and actuators. But your
Pi is still very lonely: it’s not part of any large network and it can’t talk (yet!) with
other Things. Nor is it able to communicate with other applications and services
over the internet. Obviously, the real value of the IoT is realized when devices
become social and are able to talk to other devices or applications. Today, hundreds

This chapter covers
■ An introduction to network classification

models and layered architectures
■ An overview of the various protocols for

networking Things
■ A review of the difference between the

Transport and Application layers
■ A systematic approach to pick the right

communication method for your use case
■ An overview of the Web of Things layered

architecture
109



110 CHAPTER 5 Building networks of Things
of different and incompatible networking protocols are being used in IoT systems, and
sadly, we’re still far from the Internet of Things, where all apps and devices can easily
talk to each other. How did we end up here and why isn’t there a single official proto-
col for the IoT? Which one is “The” best networking protocol I should use for my
device? Should I use Bluetooth or Wi-Fi for my smart bird feeder? Those are all valid
questions, and the goal of this chapter is to give you a broad overview of the most com-
mon protocols and which one is best for a given scenario. Although the beauty of the
Web of Things is that it doesn’t really matter which one you choose because the WoT is
a level of abstraction above, you’ll benefit greatly from understanding the nuts and
bolts of how devices can be connected to form large networks of things.

 The truth is that if you only want to write client applications and services for the
Web of Things, you don’t need to worry about the underlying protocols and you could
jump directly to section 5.4. But to really understand how the Internet of Things
works, or if you’re building a connected product, the next sections will provide a crash
course in the underlying protocols and technologies that are used for building net-
worked devices. 

 Figure 5.1 shows the three types of connectivity (stages) we consider in this book.
First, we have a lonely device that can sense and interact with its surroundings but
doesn’t have any connectivity. Second, the device supports at least one communica-
tion protocol and can talk to other devices to form a small network of devices. Third,
these devices can be connected to the wider web ecosystem so that any application or
service can talk to these devices over the internet. You had a glimpse of this last stage
in chapter 2, where you interacted with some real web devices across the globe.

Real-time
Web

Programmable
Web

Social
Web

Semantic
Web

Web

Stage 3Stage 2Stage 1

Zigbee

Wi-Fi

Zigbee

Wi-Fi

Figure 5.1 From one Pi to a network of embedded devices to a network of embedded devices 
interacting with the web and its ecosystem
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In this chapter, we explore how an isolated device can move to stages 2 and 3. First, we
look at various networking protocols for devices, such as ZigBee and Bluetooth, and
explain their respective benefits and drawbacks. We don’t expect you to become an
IoT networking protocol specialist overnight, but you’ll have enough understanding
of these protocols to know the differences between them and which one is better
suited for which usage scenario. Next, we’ll introduce you to the application layers for
Things and describe the most common protocols by looking at their strengths and
weaknesses. Finally, we’ll show how to go beyond that and integrate Things to the web
in a systematic manner thanks to the Web of Things architecture that the following
chapters are based on.

5.1 Connecting Things
You probably already know that computers talk to each other by using a networking
protocol. Let’s set the stage for a deeper dive into some of the most common network-
ing protocols for the IoT so that you know which one is best for your next IoT project.
Before diving into the protocols, we have to present two important networking con-
cepts: topologies and classification models.

5.1.1 Network topologies

One way to understand how a network of devices differs from another is to look at its
topology, which is a fancy word for the structure of the connections between the
devices. Members of a network are often called nodes, and the topology is the spatial
organization of the nodes to form a network. Let’s look at the different topologies of a
network and which topology to use in which situation.

POINT-TO-POINT

The simplest network topology occurs when any two devices establish a direct connec-
tion and start talking to each other. This model is called point-to-point and is particu-
larly used in the context of wearable devices: you synchronize your fitness tracker with
your mobile phone over Bluetooth by pairing the two devices. This model can also be
used for the initial configuration of a Wi-Fi device. For example, a thermostat can cre-
ate a point-to-point network called Wi-Fi ad hoc mode, where you can connect with your
mobile phone and send to your thermostat the credentials and configuration of your
home network.

STAR NETWORKS

In a star network topology, shown in figure 5.2, several nodes communicate with a sin-
gle central node and might not be aware of other nodes in the network. This model is
also often used as a star of stars, where each central node is in turn connected to
another nearby central node. 

 In the IoT, cellular phone networks commonly use the star topology, where your
phone (a node) connects to the nearest cell phone antenna (the central node). The
star of stars topology can also be used for home automation systems, such as smart
lighting systems. For example, light bulbs (nodes) can talk to several gateways using a
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wireless radio protocol such as ZigBee. Those gateways are in turn connected to your
internet router (the central node) using Ethernet. 

MESH NETWORKS

The last network topology that you might encounter in the IoT is also the most com-
plex: mesh networks. In a mesh network, there are no central nodes because any node
in the network is able to forward messages from one node to another. As an example,
consider the devices shown in figure 5.3. The Pi on the left is too far from the Intel
Edison on the right to communicate with it directly. In a mesh network, the Pi can use
the nearby devices as intermediate hops, called relays, to forward the message to its
destination. In this particular case, the Pi can use the Arduino, which is connected to
the Edison, to relay the message. In short, a mesh network means that you can extend
the range of each device by adding more nodes. You can also make the network more

Star topology Star of stars topology

Central
node

Central
node

Gateways

Light bulbs

Figure 5.2 Star topology: all nodes communicate with a single central node. Star of stars topology: 
nodes connect to intermediate nodes (gateways), which are in turn connected to a central node using 
a star topology.

From: Pi
To: Edison
Content: Hello World! BeagleBoard

Arduino

Edison

Pi 3

Pi

Figure 5.3 Mesh topology: messages are forwarded across several devices to reach their destination. 
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robust against individual node failures. For instance, if the Arduino fails, the Pi could
still communicate with the Edison by going through all the other devices.

 The internet is the best and largest example of a mesh network: you don’t have a
direct communication (point-to-point) with the server you want to talk to. Instead,
messages travel across the internet by hopping from one router to another until they
reach their final destination.

 You’ll see that mesh networking plays an important role in the IoT. This is particu-
larly useful where no fixed network infrastructure—for example, Ethernet or Wi-Fi—
is available. Take the example of monitoring the pollution level in a remote forest.
There’s no Wi-Fi infrastructure in place, so the best way to form a network is to drop
nodes in the forest and have them communicate with each other by forming a mesh
network. Only a few nodes need to be connected to the internet, using 3/4/5G or even
a satellite link. The mesh topology is supported by a number of specialized IoT proto-
cols that we’ll cover shortly, such as ZigBee and 6LoWPAN.

5.1.2 Network classification models

Computer networking is a vast and complex topic where one can easily get lost. To
make it easier to navigate the complexity of communication system, network classifica-
tion models have been proposed to organize the variety of existing protocols in differ-
ent layers, each having a specific purpose and knowing about only the one directly
below it. After reading the brief introduction to networking models we provide in this
section, you’ll have a decent understanding of where each protocol fits on the map
and especially how all these protocols relate to each other. Once you understand the
difference between Application-level protocols and those at lower levels (Network/
Transport-level protocols), you’ll quickly realize why the Web of Things proposes an
approach to the IoT that’s fundamentally different, yet not necessarily incompatible,
and is complementary in many other cases. Let’s now look at the two most common
models in use today: OSI (Open Systems Interconnection) and TCP/IP.

OSI AND TCP/IP MODELS

If you’re an IT professional, you’ve surely heard about the OSI model or the wide-
spread alternative model known as the internet protocol suite (IPS) or TCP/IP model.
The basic concept of these models is to define layers, which are essentially abstrac-
tions. Each layer builds on the next; a layer serves the layer above and is served by the
layer below. This means that a protocol in a particular layer can only make assump-
tions as to what the layer directly below will offer. As a consequence, each layer focuses
on a particular set of problems and abstracts this problem for the layers above. 

 The OSI defines seven layers, and the IPS lists only four layers, as shown in figure
5.4. We’ll focus on the IPS model here because it’s the model of the internet. Teaching
in detail each layer of the IPS model is beyond the scope of this book,1 so here we’ll
only summarize what they are and what they do.

1 Computer Networks (5th Edition) by Andrew S. Tanenbaum (Pearson, 2010) is a fantastic book to help you bet-
ter grasp the details of the core concepts of computer networking, including the layered models.
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■ The Physical layer (also called the Link layer) cares about the communication
technologies for a single segment of the network as well as the interfaces
required to transmit the information. The key actors here are the bits trans-
formed to packets. This is where the Ethernet or Wi-Fi (IEEE 802.11) protocols
live.

■ The Network layer (also called the Internet layer) looks into connecting hosts
across independent networks. Common actors here are IP addresses; hence,
this is where the Internet Protocol (IP) lives.

■ The Transport layer handles the communication of information between two
hosts. This is where the two well-known internet protocols TCP and UDP live.

■ The Application layer looks at data exchange between two applications. This is
the layer most software developers are usually exposed to. Because this is where
HTTP lives, web browsers or mobile applications use it to let us do all kinds of
things, from managing our online calendars to reading emails to retrieving
Wikipedia content.

As you’ll see later in the chapter, the Application layer is where the Web of Things
architecture lives. Obviously, this means that the Web of Things can’t exist without the
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Figure 5.4 The OSI model (left) compared with the Internet Protocol Suite (aka TCP/IP, right), along 
with examples of some of the most relevant protocols and protocol stacks for the IoT (center)



115Networking protocols for Things
networking layers below the Application layer. In order to consume real-world data
from applications on mobile phones and in browsers, we first need to somehow get
this data from the lower layers of model. The good news here is that if you abstract the
layers below the Application layer, it doesn’t matter which protocols or interfaces are
used underneath.

 When you combine the protocols of these different layers with each other, layer-by-
layer you form a protocol stack. As you’ll see later on, many different protocol stacks
exist; for example, Bluetooth or ZigBee, some of which are shown in figure 5.4. 

5.2 Networking protocols for Things
In chapter 1, we defined the Internet of Things as “a system of physical objects that
can be discovered, monitored, controlled, or interacted with by electronic devices that
communicate over various networking interfaces and eventually can be connected to
the wider internet.” But what does it mean for a Thing to be “connected to the inter-
net?” It means that you can interact with it using the communication protocols of the
Internet Protocol Stack shown in figure 5.4.

 More concretely, this means that the Thing should use the IP on layer 2 and TCP or
UDP on layer 3. If that’s the case, then the Thing “speaks” internet-ese!

5.2.1 Spatial considerations

The last factor we consider when classifying networks is the distance between two
nodes (range). Protocols can be classified according to how far or near nodes need to
be from each other and also if they can be wired or if they must use radio signals. The
various spatial scopes for IoT applications are shown in table 5.1.

This well illustrates a harsh reality: the IoT isn’t running off one single network proto-
col and probably never will because of different needs in terms of ranges of different
devices. Why don’t they all run on WAN protocols? Because the larger the distance, the
more power you need, which is a no-go for battery-operated devices. As you’ll see later
in this chapter, some protocols allow low-power devices to transmit data over long dis-
tances, but the tradeoff is that you can transmit only very small amounts of data, also
referred to as a low bandwidth.

Table 5.1 Spatial scope and range of various IoT networking protocols

Spatial Scope Typical Range Examples

Near field (NFC) < 10 cm NFC Forum

Personal area network (PAN) 1 m–50 m Bluetooth, ZigBee, Thread, IEEE 802.4.15

Local area network (LAN) 50 m–1 km Wi-Fi, Ethernet

Wide area network (WAN) 1 km–50 km SigFox, LoRa, 5G, 4G, GSM
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5.2.2 Internet protocols and the IoT

To help you understand the difference between IoT protocols, let’s review the basics
of the IP, TCP, and UDP protocols. If you’re familiar with those, you’re welcome to skip
this section.

INTERNET PROTOCOL: IPV4 AND IPV6

It’s not accidental that the Internet Protocol shares the same name as what we com-
monly call the internet: this protocol is used for any byte of data that’s sent over the
internet. IP provides any node of a network with a unique IP address and is responsi-
ble for routing packets of information between any nodes using their IP addresses.
When you type a URL in your browser, IP will find the address of the site you want to
visit and retrieve the page across many subnetworks—for example, your local network,
the network of your country, and so on. 

 Currently, IP version 4 (IPv4) is the most widely used version of the protocol. IPv4
addresses have a size of 32 bits (see figure 5.5), which means there are 232 unique IP
addresses, or approximately 4.3 billion. When IPv4 was invented back in 1974, this
seemed more than enough to cater to all the machines that would be connected to the
internet. Back then no one imagined how popular the internet would be 40 years later.
Today, Cisco estimates that there are more than 15 billion things connected to the inter-
net.2 In other words, we’ve been running short of IPv4 address for quite some time. 

With the Internet of Things, this shortage has become a major hurdle. The first coun-
termeasure was the idea of Network Address Translation (NAT). NAT enables several hosts
in a local network to share a single public IP address. Most routers and firewalls can
perform NAT, and it has become a cornerstone of today’s Internet of Things. But NAT
is merely a patch because it adds lots of complexity to the network. This led to the
design of a longer-term solution: IPv6.

 IPv6 is based on 128-bit addresses represented as a series of eight groups of four
hexadecimal (base 16) characters separated by colons (see figure 5.5), which allows

2  See http://blogs.cisco.com/news/cisco-connections-counter.

IPv4 address:

8 bits

4 x 8 bits = 32 bits
= 232 = ~4.3 billion addresses

146.200.15.222
IPv6 address:

16 bits

8 x 16 bits = 128 bits
= 2128 addresses

2001:db8:0:1234:0:567:8:1

Figure 5.5 Comparing the size and addressing space in IPv4 and IPv6

http://blogs.cisco.com/news/cisco-connections-counter
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2128 unique addresses—that is, 340,282,366,920,938,463,463,374,607,431,768,211,456
different IPv6 addresses, in case you didn’t do the mental math. Will that cover IoT’s
hunger for IP addresses? To put things in perspective, this number means that we
could assign an IPv6 to every single atom on earth, and we’d still have enough IP
addresses for every atom on another 100 earths! 

 IPv6 will be instrumental to IoT’s success at scale. But upgrading the whole internet
to IPv6 is no mean feat because this requires upgrading pretty much anything that’s
connected to the internet. From the operating system of your laptop or mobile phone
to the firmware of any router or firewall connected to the internet, all will have to sup-
port IPv6. 

 Your Raspberry Pi isn’t IPv6-enabled out of the box, but adding IPv6 support is
quite straightforward, as shown in the following listing. Simply connect to your Pi via
SSH and run this code.

$ sudo modprobe ipv6
$ ifconfig
> eth0   Link encap:Ethernet  HWaddr b8:27:eb:e6:13:a5

  inet addr:192.168.0.157  Bcast:192.168.0.255  Mask:255.255.255.0
 inet6 addr: fe80::ba27:ebff:fee6:13a5/64 Scope:Link

$ ping6 -I eth0 fe80::ba27:ebff:fee6:13a5
> PING fe80::ba27:ebff:fee6:13a5(fe80::ba27:ebff:fee6:13a5) from

fe80::ba27:ebff:fee6:13a5 eth0: 56 data bytes
64 bytes from fe80::ba27:ebff:fee6:13a5: icmp_seq=1 ttl=64 time=0.227 ms
64 bytes from fe80::ba27:ebff:fee6:13a5: icmp_seq=2 ttl=64 time=0.228 ms

$ sudo pico /etc/modules 
> snd-bcm2835
> i2c-bcm2708
> i2c-dev
> ipv6

If this is your first encounter with IPv6, then welcome to the future! 

TRANSPORT PROTOCOLS OF THE INTERNET

As you’ve just seen, the Network layer is only responsible for how packets are routed
between two hosts on the Internet, not how to deliver data to applications, which is
the responsibility of the layer above—the Transport layer. This layer introduces the
notion of source and destination ports that identify applications. For instance, it gives
one port to a web server and a different one to a mail server. You can think of a port as
a mailbox that an application such as a web server can rent to receive packets. The
combination of source and destination IP addresses along with a port number forms
what’s commonly called a network socket or just a socket. 

Listing 5.1 Enabling IPv6 support on your Raspberry Pi

s the
rnel
dule

 IPv6

Returns the current configuration 
of our network interfaces

 address
of our Pi Pings the Pi IPv6 address using ping6; 

specifies which network interface to u

Adds the IPv6 module to the startup 
modules by adding ipv6 on a single line 
at the end of the /etc/modules file
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On the internet, there are two protocols at this layer: the Transmission Control Proto-
col and the User Datagram Protocol. The best way to learn about TCP and UDP and
their differences is by starting with a joke; see figure 5.6.

 Joking aside, this emphasizes the fundamental difference between UDP and TCP:
UDP does not offer reliability and sequenced delivery, which is why you might never
get the joke, whereas TCP does. On the downside, TCP is more complex and hence
heavier, and it requires synchronization and acknowledgment messages to guarantee
data delivery, as we’ll detail in a moment. 

 Ideally, we should stop here and ignore the details. But some IoT protocols are
based on TCP and others on UDP, so to understand the difference between IoT proto-
cols—and the joke—we’ll now dive into a brief introduction to these two protocols.

USER DATAGRAM PROTOCOL

We’ll start with UDP, which is simpler to understand. UDP is a connectionless protocol,
which means that you don’t need to establish a connection (a handshake) between
the sender and recipient of a message. You send the message and cross your fingers
hoping it will arrive, because delivery is not guaranteed. It usually will be delivered,
but sometimes it won’t, hence the joke! 

 Let’s see a concrete example. A Thing wants to send a temperature update to a
server using UDP. It needs to send a UDP message with the temperature value as con-
tent, along with the IP address and port of the receiver. The Thing also provides its
own IP address and port in case the receiver wants to reply. This is just like when you
send a letter with economy postage and hope it arrives. It’s good enough to send items
of little value. This model is called unicast, because the message is sent to a unique
receiver by providing the address. Because UDP is connectionless, it can also be used
to multicast messages. This means it can also be used to send a message to several
receivers within a range of IP addresses—that is, a subnet.3 Multicast relies on routers
to send the messages to multiple receivers, so it works well in local networks but not so

3 https://en.wikipedia.org/wiki/Subnetwork

Figure 5.6 A good UDP/TCP joke! [Source: http://pcp-comics.com/, used with permission]

https://en.wikipedia.org/wiki/Subnetwork
http://pcp-comics.com/
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much across the global internet because multicast messages are generally blocked by
routers and gateways.

TRANSMISSION CONTROL PROTOCOL

The simplicity of UDP comes at the cost of some
features that are important for some applica-
tions, such as guaranteed delivery of messages. To
send a valuable item to someone across the globe,
economy postage won’t work—you’ll want to use
a trusted service, which will not only require a lot
of paperwork but also flatten your wallet. This is
the price you pay for guaranteed delivery. 

 TCP is the FedEx of the internet. It also deals
with sockets but ensures the communication is
reliable and ordered by adding acknowledge-
ment messages, sequence numbers, retransmis-
sion of missed packets, and also congestion and
flow control, which we’ll explain shortly.

 Figure 5.7 gives you a simplified overview of a
TCP connection. Imagine a Thing wants to send
a super-important message to an application
server on the internet; for example, your smoke
detector wants to tell you that your house is on
fire. Unlike UDP, TCP is a connection-oriented proto-
col, and the first thing it does is establish a con-
nection to the server. Also note the numerous
ACK messages used, which are confirmations
that a message was received. Once the connec-
tion is established, the client can send messages
cut into chunks (called TCP packets). The size of
these packets will vary depending on how con-
gested the network is, which is known as the con-
trol flow mechanism of TCP. Sequence numbers
are also added to packets so that when the sender doesn’t receive an ACK for a given
packet, it will send it again, ensuring that the entire message has been received.
Finally, the Thing terminates the connection.

TCP VS. UDP FOR THE IOT

As you’ve seen, TCP is a necessity when delivery must be guaranteed. Thus, the majority
of the traffic on the internet relies on TCP. But this reliability comes at a price: the pro-
tocol is heavier because it requires many more messages to be sent, and the packets are
also significantly larger because they contain more information to guarantee reliability
and ordering. This means additional overhead on both the client and the server sides
and delays due to messages being retransmitted, which makes TCP generally slower

Establish connection:

ServerThing

ServerThing

SYN

SYN ACK

ACK

Send: window of 2000 bytes

ACK, 2000 bytes

...

FIN

ACK

FIN

ACK

Send data:

Close connection:

Figure 5.7 TCP communication: a 
client establishes a connection (SYN) to 
a server and starts pushing data to it. 
Once the data has been reliably 
transmitted, the client closes the 
connection to the server (FIN).
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than UDP. For this reason, UDP fits better with time-sensitive applications where
dropped packets are preferable to delayed packets. For example, UDP is commonly
used for Voice over IP applications or to stream music or video over the internet.

 In the IoT, both protocols are interesting and there’s no clear winner. Some wide-
spread application protocols such as HTTP or MQTT (Message Queue Telemetry
Transport; see section 5.3.2) use TCP, whereas others such as CoAP (Constrained
Application Protocol; see section 5.3.3) are based on UDP. 

 Being lighter and faster, UDP seems more appropriate for embedded devices with
limited resources. But some IoT applications might need guaranteed delivery; there-
fore, some application protocols on top of UDP are trying to reproduce some of the
guarantees TCP provides. More important, unlike with TCP, routers often reject UDP
traffic coming from the internet to the local network, unless the message was
requested within the last few seconds. This means that if you try to control your con-
nected thermostat with your mobile phone across the internet, your thermostat might
never get the joke. Ahem, we mean the message.

 This will significantly change when IPv6 dominates the internet because all Things
will be able to have an IP address and NAT won’t be needed anymore. But until then,
TCP remains significantly easier to deploy in large heterogeneous networks, hence the
battle for the transport protocol of the IoT goes on.

5.2.3 IoT personal area networks

Personal area network (PAN) protocols are used to communicate with Things located
nearby, from wearable fitness trackers to a smart thermostat in your home to the con-
nected garage door in your building. PAN protocols are hugely popular in the IoT
because they offer an attractive tradeoff between communication range and power con-
sumption. Let’s start by describing and comparing the most common PAN protocols. 

IEEE 802.15.4 AND 6LOWPAN 

As you make new friends in the IoT community, you’ll certainly hear them talk about
“15.4.” What they really mean is IEEE 802.15.4, which is a low-power, low-cost, and low-
rate wireless protocol for communication between devices close to each other. These
characteristics made it an excellent candidate for the IoT, especially when considering
home automation devices with limited resources that are used indoors. As a conse-
quence, 15.4 is the basis of many IoT PAN protocols.

 One drawback of the IEEE 802.15.4 protocol is that it can’t communicate directly
with other devices via the internet—that is, via TCP/IP or UDP. This limitation has
been addressed by the creation of 6LoWPAN, which allows bridging the two worlds.
6LoWPAN stands for “IPv6 over low-power wireless personal area networks.” It gives you
the ability to send and receive IPv6 packets over IEEE 802.15.4-based networks. It not
only uses IPv6 addresses but also optimizes the size of IPv6 headers to be used on
devices with constrained resources.

ZIGBEE

ZigBee has become one of the most popular protocols based on IEEE 802.15.4. ZigBee
has two interesting characteristics: first, it supports mesh networking. Second, ZigBee



121Networking protocols for Things
is much more than a Physical layer protocol. As shown in figure 5.4, it spans from the
Physical layer to the Application layer. Unfortunately, ZigBee is a proprietary standard
controlled by a group of companies and requires a paid membership in order to build
and ship products that use this protocol. Although some industrial and hobbyists plat-
forms (for example, Arduino) do support ZigBee, your Pi does not directly support it.
Adding ZigBee support to your Pi is possible using a special shield4 or by adding a Zig-
Bee dongle, such as Telegesis USB, to your Pi.

THREAD

Thread5 is one of the most recent IoT networking protocols. Like ZigBee, Thread is
based on IEEE 802.15.4 and supports mesh networks. The difference is that Thread
reuses open protocols where possible and implements IP via 6LoWPAN so it can
directly communicate with devices on the internet. Furthermore, at the Transport
layer it uses UDP. Unlike ZigBee or Bluetooth, Thread doesn’t provide an explicit
Application layer and supports the various internet Application layer protocols (web
standards, anyone?).

 Thread allows creating large mesh networks with 250–300 devices that can be
deployed in a house or building. The latency, while not real-time, is fairly low, with less
than 100 milliseconds for typical interactions. It’s also power-efficient and allows bat-
tery-operated devices running Thread to last for several years.

 Although a paid membership is needed to create and sell products that use Thread,
the protocol is built on open standards, which makes it easier to integrate than other
protocols. Adding Thread support to your Pi is not trivial, mainly because the Thread
protocol specification is fairly new. Once the protocol is adopted, you’ll simply need to
add an IEEE 802.15.4 or ZigBee dongle to your device because the Thread protocol
requires only a software (firmware) update of ZigBee controllers to work.

BLUETOOTH

Bluetooth is another interesting IoT protocol and, unlike the other PAN protocols
we’ve examined so far, it isn’t based on the 802.15.4. What makes Bluetooth so appeal-
ing is its popularity: pretty much any mobile phone (and many other devices) sup-
ports Bluetooth out of the box. This makes Bluetooth the ideal candidate for
wearables because most of these IoT devices use mobile phones as a gateway to other
devices and to the web.

 Bluetooth is managed by a nonprofit consortium of several technology partners and
therefore requires a membership to build certified Bluetooth hardware and software
stacks. But many of the standards and documentation are freely accessible.6 Similarly to
ZigBee, the Bluetooth protocol stack also spans several layers from the Physical to the
Application layer (see figure 5.4), which we’ll discuss in more detail in section 5.3.

4 For example, http://www.cooking-hacks.com/documentation/tutorials/raspberry-pi-xbee.
5 Official site: http://threadgroup.org
6 http://bluetooth.com

http://www.cooking-hacks.com/documentation/tutorials/raspberry-pi-xbee
http://threadgroup.org
http://bluetooth.com


122 CHAPTER 5 Building networks of Things

In
Bluet

dr
 Since it was first introduced as a protocol for connecting wireless headsets to your
mobile phone, it has evolved significantly to support many other devices. Bluetooth
4.0, also known as Bluetooth Smart or Bluetooth Low Energy (BLE), has positioned
Bluetooth as an excellent candidate for many IoT applications. BLE focuses on lower-
ing energy consumption, which makes it ideal for battery-powered devices. 

 At the time of writing, the Bluetooth standard doesn’t include support for mesh
networking, although many researchers have shown how it could be done. Neverthe-
less, the Bluetooth consortium announced that it’s working on adding mesh support
to the standard,7 making it likely that Bluetooth-based mesh networks will appear in
the near future.

 A number of devices come with out-of-the-box Bluetooth connectivity. For exam-
ple, the Intel Edison we talked about in chapter 4 offers both Wi-Fi and Bluetooth 4.0
connectivity. The Pi 3 also comes with Bluetooth 4.0 BLE support; for other versions of
the Pi you can add BLE support via USB dongles.8 The following listing shows how to
scan for Bluetooth devices from your Pi.

$ sudo apt-get install pi-bluetooth    
$ sudo service bluetooth status  
> bluetooth start/running, process 766
$ sudo hcitool lescan
> B4:99:4C:64:23 SensorTag

WI-FI AND LOW-POWER WI-FI

Wi-Fi, technically called IEEE 802.11, is the first protocol that comes to mind when talking
about wireless connectivity. Because of its ubiquity, Wi-Fi seems like the perfect match
for the Physical layer of the IoT, and that’s why an increasing number of consumer
electronics such as TV, microwaves, music players, and many more, support Wi-Fi. 

 But the Wi-Fi protocols (802.11a–n) are limited for some IoT applications. The
biggest problem is energy usage. The second problem of Wi-Fi is its range. In a Wi-Fi
network, all nodes must be within range of the access point: there’s no mesh network-
ing with Wi-Fi. Yes, the internet is the greatest example of a mesh network, but at the
level of routers, not at the level of single Wi-Fi nodes acting as clients. These problems
are being worked on, and a new Wi-Fi standard optimized for the IoT (IEEE 802.11ah9)
is in the works and will have a better range and much lower power consumption.

 Since the Pi 3, Wi-Fi is supported onboard. For other Pis, adding Wi-Fi is easy
because the Raspbian Linux OS supports most Wi-Fi USB dongles out of the box.10 We
explained how to set up Wi-Fi on your Pi in chapter 4, section 4.2.3.

7 Read more: http://blog.bluetooth.com/range-limitation-what-range-limitation-introducing-mesh-networks/.
8 http://www.raspberrypi.org/learning/robo-butler/bluetooth-setup/

Listing 5.2 Testing Bluetooth 4.0: BLE on a Raspberry Pi

9 http://en.wikipedia.org/wiki/IEEE_802.11ah
10 More details: http://elinux.org/RPi_USB_Wi-Fi_Adapters.
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A SensorTag is close to the 
Pi so it’s found via BLE scan.

http://blog.bluetooth.com/range-limitation-what-range-limitation-introducing-mesh-networks/
http://www.raspberrypi.org/learning/robo-butler/bluetooth-setup/
http://en.wikipedia.org/wiki/IEEE_802.11ah
http://elinux.org/RPi_USB_Wi-Fi_Adapters
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ENOCEAN

Another lesser-known protocol worth mentioning here is EnOcean,11 which is an
energy-harvesting wireless technology mainly used in buildings and other industrial
solutions. Although you may have never heard about it, EnOcean is particularly rele-
vant for the IoT because it solves the energy problem elegantly. The technology allows
devices to gather the energy they need from their environments. As an example, the
kinetic energy produced when you flick a light switch is captured by the switch and
used to transmit a message. Other products also use electromagnetic, solar, or ther-
moelectric energy converters.

 The EnOcean specification spans the Physical and Networking layers, but addi-
tional specifications are also provided for the Application layer. The protocol is pro-
prietary and requires a dedicated wireless transceiver module on a gateway to receive
messages from various EnOcean devices. This technology saves time and materials
because it allows battery-less devices to be installed rapidly in a building without hav-
ing any wires in place. Interestingly, element14 offers an EnOcean extension board
for the Raspberry Pi so you can turn it into an EnOcean gateway.12

SUMMING UP PAN

The various PAN protocols we’ve discussed are summarized in table 5.2, which com-
pares their characteristics based on IoT-relevant criteria. In the Observed Range col-
umn we consider the range between two nodes when operating indoors. Note that the
range of these protocols strongly depends on environmental variables such as the
presence of thick walls or interferences. Furthermore, if the protocol supports mesh
networking—for example, ZigBee—the maximal range can be much larger because
messages can be relayed across multiple nodes. 

 The ease of use is a subjective evaluation based on our real-world experience with
these different protocols. It merely expresses the pain we went through when using
these different protocols both in lab and real-world settings.

 Finally, if your device will be plugged into the power grid, then you should use Wi-
Fi (great), Ethernet (even better), or both (ideally). If devices will be deployed in a fixed
location rather than mobile and you can install a wired infrastructure, then you should
use Ethernet, ideally with Power over Ethernet, so you only need the network cable. 

11 Online: https://www.enocean.com/.
12 Online: http://www.element14.com/community/community/raspberry-pi/raspberry-pi-accessories/

enocean_pi/.

Table 5.2 Comparison of the most common PAN protocols

Name Battery Usage
Observed

Max Range 
(Indoors)

Mesh 
Networking

Openness Ease of Use
Internet 

Integration

EnOcean Very low <30 m No Low Medium No

ZigBee Low <50 m Yes Low Hard No

Thread Low <50 m Yes Medium Medium Yes

https://www.enocean.com/
http://www.element14.com/community/community/raspberry-pi/raspberry-pi-accessories/enocean_pi/
http://www.element14.com/community/community/raspberry-pi/raspberry-pi-accessories/enocean_pi/
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There are clearly many more PAN protocols than those, ranging from the wireless
Z-Wave13 to the wired KNX.14 A good place to hunt them all down is Wikipedia15 or
Postscapes.16

5.2.4 IoT wide area networks

For some IoT applications, the PAN protocols presented in the previous section are
not appropriate. If you want to deploy thousands of nodes to monitor large areas,
such as a field, a forest, or a city, in theory you could use ZigBee. In practice, however,
deploying and maintaining long-lived (months or years) and large-scale PAN mesh
networks turn out to be extremely complex and costly. You’d have to deploy gateways,
replicators, and amplifiers. Batteries would need to be changed. PANs are mainly
suited for small distances between nodes, hence for smaller-scale deployments.

 This limitation has led to the emergence of a different type of IoT network: wide
area networks. The typical common denominator of IoT WANs is that they involve low-
power nodes communicating directly with very high-power gateways called base sta-
tions or antennas. A good example of a WAN is the mobile phone network. Let’s take a
closer look at the most relevant WAN networks that are relevant for the IoT.

MOBILE NETWORKS: FROM GPRS TO 5G

The most common way to connect Things to the IP network without wires is to use the
mobile phone network if available. You can use the data channel of mobile net-
works—for example, GPRS, 3G, or 4G—or use SMS. All you need is a cellular modem
on your device and you’re good to go—at least, as long as you don’t forget to pay your
phone bill!

 The drawback of cellular connectivity is that it wasn’t designed for the IoT. Nodes
need a lot of energy—how often do you charge your cell phone, again?—so using the
data channel to send data regularly isn’t viable for battery-powered devices. For less
data-intensive scenarios, you could also send SMS periodically and put the device into

Bluetooth Lowa <50 m Coming in 
2016

Medium Medium No 
(upcoming)

Wi-Fi High 
(low upcoming)

<30 m No
(internet)

High Easy Yes

a  With Bluetooth version 4 (Bluetooth Low Energy).

13 http://z-wavealliance.org
14 http://www.knx.org/
15 http://en.wikipedia.org/wiki/Personal_area_network
16 http://postscapes.com/internet-of-things-protocols

Table 5.2 Comparison of the most common PAN protocols (continued)

Name Battery Usage
Observed

Max Range 
(Indoors)

Mesh 
Networking

Openness Ease of Use
Internet 

Integration

http://z-wavealliance.org
http://www.knx.org/
http://en.wikipedia.org/wiki/Personal_area_network
http://postscapes.com/internet-of-things-protocols
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sleep mode most of the time. This will work for sensing use cases where devices only
send data, but it won’t work when you need to send commands to your device because
you’ll have to wait until the device wakes up to process your request. Another limita-
tion is that mobile phone networks weren’t meant for billions of things. Only a limited
number of devices can connect at any given time to a gateway, so you’ll need to deploy
a lot more antennas. Finally, the cost of using mobile networks is relatively high
because pricing was set with a one-person, one-device business model that doesn’t fit
the requirements of the IoT. These limitations imply that current mobile phone net-
works are merely a provisory solution for the IoT. 

 A viable long-term solution will be needed for the many billions of Things that will
want to connect to the internet in the coming years. With this in mind, the NGMN
(Next Generation Mobile Networks) Alliance,17 a mobile telecommunications associa-
tion of powerful mobile operators, vendors, manufacturers, and research institutions,
is working on a mobile network specifically geared for the IoT, code-named 5G. This
network should be rolled out by 2020 and will have several improvements. First, it will
be much more energy-efficient. Second, it will allow a significantly higher number of
simultaneously connected clients per gateway. Third, it will support mesh networking,
which will improve coverage and energy usage. Finally, the cost of 5G subscriptions
will be better suited to the IoT model.

 The use of mobile networks for the IoT is definitely not uncommon, so there are a
number of embedded device platforms that support this mode of communication
either natively or through simple extension shields. Your Pi is no exception; several
shields or Wi-Fi dongles can connect it to mobile networks whether via SMS or data
networks.18 

IOT WIDE AREA NETWORKS: LOW-POWER WANS

Because current cellular mobile networks are ill-suited for most IoT applications, the
number of IoT-dedicated WANs mushroomed over the past few years under the
umbrella term low-power wide area networks (LPWANs). The result is a number of techni-
cally compelling solutions, competing with similar offers. Most of these networks are
organized with a star model: a number of low-power nodes communicate directly with
powerful base stations directly attached to the power grid and to IP networks. Because
of this architecture, LPWAN operators also face a major challenge: deploying their infra-
structure. These dedicated networks require deploying additional communication
antennas in the wild, just as mobile operators had to dot the landscape with antennas.

 The leading network in this field is SigFox.19 Being the first large-scale LPWAN
operator dedicated to the IoT, SigFox has broad coverage in several European coun-
tries. But competition there is fierce and other networks (for example, LoRa20 or
nwave and the Weightless Alliance21) are catching up quickly.

17 https://www.ngmn.org
18 http://postscapes.com/raspberry-pi-wireless-options
19 http://www.sigfox.com/en/
20 https://www.lora-alliance.org/
21 http://www.nwave.io and http://www.weightless.org

https://www.ngmn.org
http://postscapes.com/raspberry-pi-wireless-options
http://www.sigfox.com/en/
https://www.lora-alliance.org/
http://www.nwave.io
http://www.weightless.org
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 These networks have a number of advantages. First, deploying the infrastructure is
the operator’s business, not yours. Then, the range of the base station is quite high, in
the order of several kilometers. In addition, each base station can handle a significant
amount of parallel traffic coming from potentially millions of devices connected to a
single base station. Finally, their power consumption is much lower than that of net-
works using WAN or PAN protocols. Let’s consider a smart meter22 powered by a stan-
dard battery (2.5 Ah) and sending a few messages per day. With most WAN or PAN
protocols, the battery would barely last several months. With LPWAN, that same bat-
tery could last up to 20 years!

 These advantages make the deployment of LPWAN-based devices straightforward—
in theory, at least, because LPWAN coverage remains sparse in comparison with mobile
phone networks. Besides, these networks are often proprietary and closed ecosystems
where your Things will be locked forever and beyond. 

 Where’s the catch? Well, LPWAN is perfect for low-bandwidth sensing scenarios such
as sending data from a smart meter, but it won’t work for actuation, like opening your
garage door, because sending commands to devices is challenging and extremely slow.

 Because of their industrial focus, connecting off-the-shelf embedded devices to
LPWAN IoT is still more complex than with PANs. Fortunately, as LPWAN gains traction,
various modules for embedded devices have appeared.23

SUMMING UP WAN

Most of the WAN protocols we described in this section share more or less the same
capabilities. The only exception is mobile phone networks, which requires much
more power than other IoT WAN protocols. This will likely change with the arrival of
5G networks, but we still have a few years to wait for that. For the other protocols, the
main differentiator is their coverage. Because they’re still far from having the cover-
age of mobile phone networks, deploying IoT use cases with these protocols requires
careful planning with the network providers to ensure the target zones are sufficiently
covered. Coverage of LPWANs will likely improve significantly in the near future, but
it’s still hard to predict which protocol will prevail and dominate the world of IoT
WANs. See table 5.3 for a comparison of WAN protocols.

22 A smart meter is a connected device that measures electricity consumption.
23 http://www.cooking-hacks.com/sx1272-lora-module-for-arduino-raspberry-pi-intel-galileo-900-mhz

Table 5.3 A comparison between most common WAN protocols . 

Name Battery Usage Max Range Downlink Openness Coverage

Weightless Very low 20+ km Limited Medium Medium

SigFox Very low 30+ km Limited Low Medium-high

LoRa Very low 30+ km Limited Medium Medium

GPRS/3G/4G High 50+ km Yes High High

5G Very low ? ? (probable) High Not deployed yet

http://www.cooking-hacks.com/sx1272-lora-module-for-arduino-raspberry-pi-intel-galileo-900-mhz
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5.2.5 So, which one should I choose?

Selecting the right network protocol stack for your next IoT project can be a daunting
task. There are literally hundreds of possibilities for every layer of the stack, and these
choices will be harder to revert. Unlike computers, Things will likely have a longer
lifetime because consumers won’t change the hardware of their fridge just to support
a new Physical layer protocol. The CEO of a major home appliance manufacturer
once told us that his top concern with the IoT was the ongoing war of standards and
the implications of choosing the wrong one: “People don’t want to upgrade the proto-
col stacks of their ovens, do they?” 

 There’s no secret recipe for picking the right networking protocol stack because
all protocols we’ve presented have their respective strengths and weaknesses. In this
section, we’ll provide some considerations and tradeoffs that will help you choose the
right protocols for your application or device. 

POWER SOURCE

The first thing you need to consider is how your device will be powered. Your options
are battery, wired power source, and energy harvesting. This decision will depend on
the context where the device will be used; for example, a power cord is ideal for fixed
devices such as a lamp or a fridge. If wired power isn’t an option in a remote environ-
ment such as a forest, a battery or solar panel will be a better choice, unless you’re in
Scotland. Likewise, a mobile device (for example, a portable Geiger counter) will
have to use a battery or energy-harvesting technique. 

 If your device doesn’t have the luxury of wired power, you’ll need to use low-power
protocols such as those based on IEEE 802.15.4 or LPWAN. Bluetooth LE, Thread, or
SigFox would be a good choice in this case. At the Transport layer, if some data loss is
acceptable, you could use UDP instead of TCP to further reduce power consumption.

 If your device can connect to a power socket, Wi-Fi is the obvious choice, especially
within a building where Wi-Fi can be easily installed. You might also consider Ethernet
or Power Line Communication (PLC). If you have only an Ethernet socket, you might
want to use Power over Ethernet (PoE) because this protocol tends to be more stable.
At the Transport layer, you should use the reliability and good overall support of TCP. 

COST

Cost is an important factor because together with power consumption, it determines
which type of embedded device you can build into your Thing. If your budget per
embedded device is less than 10 USD, you’ll have to look into resource-constrained
SoC (system on chip) platforms such as the ones we looked at in chapter 2—for exam-
ple, Marvell, Broadcom, TI, and NXP. These platforms usually have limited RAM, stor-
age, and processing power, which directly impacts the networking protocol stack you
can use. If every single byte counts, you might be better off with protocols that were
designed for resource-constrained devices at their core, such as IEEE 802.15.4, ZigBee,
and Bluetooth LE. In terms of a Transport protocol, UDP is known to use fewer
resources (RAM, CPU, and bandwidth) than TCP. If your target cost is above $10–$20
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per device, you can start thinking about Linux-based platforms, giving you total free-
dom in terms of the IoT networking protocols you can use.

RANGE AND NETWORK TOPOLOGY

Another aspect to consider is how far a Thing will be from a gateway or from other
Things. This is tightly coupled with how much power your device can use. Roughly
speaking, the more power your device has, the farther away it will be reachable—with
the exception of LPWAN. We described the ranges of the different protocols before, so
you should be able to make a decision. Don’t forget that mesh networking can help. It
lets you use low-power PAN networks like Thread or ZigBee while extending their
range using multi-hop communication.

 The infrastructure already in place is also an important consideration. For
instance, if a star topology is available, you might as well use it. This is the case in a
home environment where a Wi-Fi router is likely to be present, or outdoors in an area
covered by LPWAN, making deployments a lot easier. 

BANDWIDTH, LATENCY, ACTUATION, AND SENSING

You need to clearly know the interaction types and the bandwidth your Things will
require. First, is this a sensing application where devices only need to send data to
other devices or to the cloud? How often will you send messages; that is, will the device
send data a few times per minute? Or will it sleep most of the time and send messages
only a few times per day? Also, will you require sending commands to the device (actu-
ation), and if so, how much latency can your application tolerate? Finally, how large
will those messages be? A few bytes? Much more?

 Some protocols like LPWAN—with the exception of mobile phone networks—
don’t work well with actuation or with use cases requiring large bandwidth. For these,
Wi-Fi and Ethernet are probably the most suitable physical protocols. Other PAN pro-
tocol stacks, like ZigBee, Bluetooth, and Thread, are somewhere in between in terms
of available bandwidth and offer decent communication, so they’re suitable for send-
ing and actuation, although end-to-end latency may increase with the number of hops
messages have to travel through.

INTERNET INTEGRATION AND OPENNESS

Finally, the openness of the protocol stack you choose can be an important factor. Is it
an open or proprietary standard? How open and accessible are the specifications?
How well supported is the protocol in the real world? How integrated with the inter-
net protocols stack is that protocol? If a protocol stack doesn’t provide ways of translat-
ing to internet protocols (IP, TCP, or UDP) easily, it might be fine in closed networks
(industrial machines in a factory, for example), but not if those devices need to be
accessible through the internet.

 Because of the pressure the IoT exerts on protocol stacks to be internet-compati-
ble, all the protocol stacks we described previously can be integrated to the internet in
one way or another. But the question really is this: at what layer and what deployment
effort? The higher in the layers the integration takes place, the harder it is to reuse
the internet infrastructure already in place. For instance, an implementation at only
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the Transport layer (such as by implementing TCP) means that you won’t be able to
use the infrastructure already in place for the layers below, such as internet access
points, bridges, hubs, routers, and switches, and these will need to be replaced by
other actors playing similar roles.

 Basically, if the internet integration takes place at layer 3, someone will need to
deploy hardware and software that covers the services offered by the layers below, lead-
ing to more complex deployments. The key underlying question here is this: who will
deploy these additional components? In the case of a system based on an existing infra-
structure like, say, SigFox, they do this for you so the burden is minimal but you have a
dependency on a single company (SigFox, in this case). In the case of a home environ-
ment, for example, things are quite different, because you’ll need to put in place the
infrastructure if you don’t plan to rely on the existing internet infrastructure.

 Let’s look at a concrete example, as shown in figure 5.8. Imagine you’d like to build
a smart lamp that users can control from their mobile phone. You decide to choose a
ZigBee protocol stack for your lamps. Because mobile phones can’t speak ZigBee
directly, you could decide to use HTTP as an application protocol. Communication
goes down the layer from HTTP to Wi-Fi. Your lamps, on the other hand, use IEEE
802.15.4, which is the physical protocol of the ZigBee stack. Because it’s unlikely that
your customers have access points that support 802.15.4 and this protocol is physically
incompatible with Wi-Fi, you need new hardware to support the 802.15.4, so you need
to package your lamps with a ZigBee access point, too. Then, you need to bridge Wi-Fi
to ZigBee and translate IP to ZigBee addressing, TCP to the transport protocol of Zig-
Bee, and finally, HTTP to the application protocol of ZigBee. Then you need to trans-
late this back to HTTP, TCP, IP, and Wi-Fi to respond to the mobile phone application.

Wi-Fi
light bulb

ZigBee
light bulb
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3. Transport

2. Network
(internet)

1. Physical
(link)
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TCP
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Figure 5.8 Two smart lamps communicating with web applications. Left: a smart lamp with Wi-Fi on 
board and implementing the IP stack. Right: a smart lamp implemented with ZigBee on board and 
implementing a ZigBee stack. In this second case, translators are required between the application 
and the lamp.
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Of course, a number of these translations are standardized; nevertheless, it adds com-
plexity to the deployment of your system and this complexity even reaches your cus-
tomer, who needs to install additional hardware in their house for your system to work.
Now imagine deploying this system in several buildings or in an entire city: you
thought you were deploying smart lamps, but suddenly you’re deploying an entirely
new network! ZigBee isn’t a bad choice per se, but if your main goal is to build a large-
scale network where interoperability is prime, other options will make your life easier. 

 Choosing a protocol stack based on open standards or large alliances will help
here. Popular and/or open protocol stacks—think Wi-Fi, Thread, Bluetooth, and the
like—are far more likely to be supported by future generations of access points, rout-
ers, and mobile phones. In contrast, proprietary technologies like EnOcean and Zig-
Bee will likely continue to require additional hardware and gateways to connect to the
internet.

5.3 Application protocols for Things
So far, we’ve only looked at the lower layers of the networking stacks: the Physical, Net-
work, and Transport layers. These protocols give a voice to Things that can be heard
on the internet. Although those Things can now speak internet, no one else can
understand what these Things are saying—unless they can speak a common language.
What’s the universal language of the internet? Well, just like there isn’t only a single lan-
guage on earth, there are many languages for different purposes. The languages of the
internet are the protocols of the Application layer (layer 4 of figure 5.8). As you’ll see
in this section, many Application layer protocols have been designed for the IoT;
unfortunately, few of them integrate seamlessly with the web.

 Let’s begin by looking at Application layers that aren’t based on internet protocols.
This space is filled with standards that have been used in fields such as home automa-
tion, building management, and manufacturing, so we could easily write another
book just on these. Instead, let’s focus on two built on top of two PAN protocol stacks
we’ve looked at before: ZigBee and Bluetooth. 

5.3.1 ZigBee and Bluetooth application stacks

Both ZigBee and Bluetooth offer a conceptually similar stack for the Application
layer. The key idea is to provide a set of specifications for domain-specific applica-
tions; these are very specific use cases, such as managing security systems or control-
ling industrial machines. These specifications are called application profiles in the case
of ZigBee or just profiles in the Bluetooth case. For example, Bluetooth defines a cus-
tom profile for health monitoring devices called the Health Device Profile (HDP). For
building accessories (such as your car) that can read messages on a mobile phone, it
defines a profile called the Message Access Profile (MAP). For ZigBee there are pro-
files for building lighting systems, fans, HVAC systems, or shades. Profiles define the
protocol, operations, and payloads that can be used to interact with a device that uses
a certain profile.
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 You don’t have to use these profiles to build applications using Things built on top
of ZigBee or Bluetooth; you can also build your own application protocol. But these
profiles ensure that a client application understands what a ZigBee or Bluetooth
device has to offer, so they’re important for facilitating interoperability between ser-
vices running on Things and applications.

 Bluetooth and ZigBee Application layers also address other Application layer
issues. For instance, both standards provide a way to uniquely identify devices as well
as ways to perform network discovery. That is, they provide a way for several devices or
several applications and devices to discover each other without knowing of their exis-
tence in the first place. In Bluetooth, for example, this is achieved by broadcasting a
Bluetooth identifier and a reference to a profile to all listening devices. A similar sys-
tem is in place for ZigBee.

 All in all, Bluetooth and ZigBee have a lot to teach us in terms of what’s needed at
the Application layer. But as you’ve seen before, Bluetooth and ZigBee don’t natively
speak internet or web protocols. Moreover, there’s a lack of SDK support for common
languages: while you have web client libraries available for virtually any programming
language, this isn’t the case of Zigbee or Bluetooth.24 In consequence, the application
protocols of ZigBee and Bluetooth make them largely incompatible with devices that
use other protocol stacks.

 To deal with this, a number of bridges (gateways) have been built. As an example,
a number of Bluetooth vendors have proposed integrations of Bluetooth devices to
6LoWPAN,25 where every Bluetooth device gets an IPv6 address via special Bluetooth
smart gateways. Similar initiatives exist for ZigBee, and the respective working groups
are busy standardizing these bridges.

 There’s a good likelihood that ZigBee and Bluetooth will systematically implement
the Internet Protocol Stack in the near future. This puts them on the internet resolv-
ing the networking of these Things but not their Application layer. Although the
Application layer of Bluetooth or ZigBee is not built on top of IP-based protocols, a
number of IP-based application protocols are available. Some of them, such as XMPP26

(Extensible Messaging and Presence Protocol) and AMQP27 (Advanced Message
Queuing Protocol), were not meant for IoT use cases in the first place, yet people
started adapting them over the years. Others, such as CoAP (Constrained Application
Protocol) and MQTT (Message Queuing Telemetry Transport), were specifically cre-
ated for the Internet of Things and are built on top of internet protocols, so we need
to take a more detailed look at these two. But first, let’s look at two other protocols
pushed by today’s most notorious tech giants: Apple and Google.

24 Although Bluetooth is in a slightly better place in terms of SDKs with standard SDKs for Android and iOS or
Linux (see http://www.bluez.org/)

25 A good example is the Bluetooth IoT SDK for NordicSemic: https://www.nordicsemi.com/eng/Products/
Bluetooth-Smart-Bluetooth-low-energy/nRF51-IoT-SDK.

26 http://xmpp.org
27 https://www.amqp.org

http://www.bluez.org/
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51-IoT-SDK
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51-IoT-SDK
http://xmpp.org
https://www.amqp.org
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5.3.2 Apple HomeKit and Google Weave

In June 2014, Apple announced it
was entering the IoT and in particu-
lar the home automation market
with a protocol called HomeKit,28 to
be supported on all iOS-based
devices. The HomeKit protocol stack
covers several options, as shown in
figure 5.9. There’s an option for
Bluetooth devices that uses the
Bluetooth protocols stack and an
option for internet-ready devices
that uses IP, TCP, HTTP, and JSON.
Finally, a bridge specification allows
other devices to be integrated to
the HomeKit Accessory Protocol.
Regardless of the stack you choose to
use, the Things you connect are
eventually available for applications
through iOS SDK interfaces.

 Although HomeKit is still in its
early days, the presence of Apple
devices in many homes means that
it’s likely to play an important role.
Because it’s based on a number of open standards, integration between HomeKit and
other devices won’t be a major technical challenge. But the HomeKit Protocol itself
isn’t open, so implementing a HomeKit Thing or an application requires being part
of Apple’s MFi (Made for iPhone) program.

 Not surprisingly, Google decided to strike back and announced Google Weave in
2015. Conceptually, Weave is similar to HomeKit because it provides a protocol for an
application (for example, a mobile app) to talk to an IoT device built on web technol-
ogies. But unlike HomeKit, it also specifies a set of cloud APIs and supports both
Android and iOS devices. At the time of writing, Google Weave hasn’t been publicly
released but is likely to also play an important role, especially in home automation.29

5.3.3 Message Queuing Telemetry Transport

The Message Queuing Telemetry Transport (MQTT) Application layer protocol was
invented in 1999 by Andy Stanford-Clark and Arlen Nipper. It was meant as a light-
weight messaging protocol built on top of TCP/IP that allowed constrained devices

28 https://developer.apple.com/homekit/
29 https://developers.google.com/weave/
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with limited bandwidth to talk to each other. MQTT did this very well, with implemen-
tations fitting the constraints of most embedded devices. Over the years, MQTT has
become an important Application layer protocol for machine-to-machine (M2M) com-
munication. See figure 5.10.

 As you’ll learn in the next chapter, MQTT is a publish-subscribe protocol. For now,
all you need to know is that with MQTT clients subscribe to a topic of interest and
receive notifications whenever a new message for this topic is published. The publisher
and subscribers of messages don’t speak to each other directly but through an inter-
mediate called a broker. The broker can be deployed locally if you only require local
communication, or on the internet if the publishers and subscribers are not in the
same local network.

QUALITY OF SERVICE

An interesting feature of MQTT is that it offers three levels of quality of service (QoS)
to guarantee what a client application can expect when it comes to the delivery of
messages. Note that this is complementary to the Transport layer delivery guarantee of
TCP you saw before because it relates to delivery between subscribers and publishers at
the Application layer. Clients can request the following QoS levels from brokers that
support them:

■ QoS 0: fire and forget—A published message might be delivered to the subscrib-
ers, but this is not guaranteed. Receivers won’t acknowledge a message and bro-
kers won’t store or redeliver them.

■ QoS 1: deliver at least once—A published message will be delivered at least once to
the subscribers. This means that if a subscriber temporarily disconnects, it will
receive the message as soon as it reconnects. An example of the messages
required for such a connection is shown in figure 5.11.

■ QoS 2: deliver exactly once—A published message will be delivered once—and
only once—to each subscriber.
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Figure 5.10 Typical protocol stacks for MQTT, MQTT-SN, and CoAP. MQTT is built on top of TCP. 
CoAP is built on top of UDP and usually IPv6 (6LoWPAN). MQTT-SN is usually built on top of UDP.
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PERSISTENT CONNECTIONS

As shown in figure 5.10, MQTT is built on top of TCP
and IP. This means that all the publication and sub-
scription happens via TPC/IP. But one interesting
aspect of MQTT is that it keeps the connection
between a client and a broker open for as long as it
can. To maintain this open connection, the client
sends regular ping requests (PINGREQ) to the server,
as shown in figure 5.11, where a client is connected
to a broker with QoS 1.

SECURITY AND ENCRYPTION

Security in MQTT works via Transport Layer Security
(TLS), the successor of SSL that’s used to encrypt
traffic on the web. On top of encryption, the broker
can request a username and password to identify the
clients.

MQTT FOR TINY DEVICES—MQTT-SN

Even if it was designed to be lightweight, the fact that
MQTT maintains permanent connections over TCP
can be problematic for some devices. This isn’t an
issue for your Pi, but it could be problematic for
resource-constrained devices such as the RTOS plat-
forms we talked about in chapter 4. In particular, this
is clearly a problem for battery-powered devices,
because keeping a TCP connection open perma-
nently will rapidly drain the battery. 

 The MQTT world has a protocol with a similar
objective: MQTT for Sensor Networks (MQTT-SN).
MQTT-SN is conceptually similar to MQTT but with
two major differences, as shown previously in figure
5.10. First, it doesn’t require a permanent connec-
tion and is built on top of UDP and not TCP, which
saves some bandwidth—and introduces some limita-
tions, as you’ve seen before. Then, an MQTT-SN bro-
ker indexes topic names, which are sometimes too
long for very-low-bandwidth networks. Even though
it’s an interesting protocol, MQTT-SN isn’t as popular
as MQTT or CoAP, and the only full-featured broker
freely available to date is the Really Small Message
Broker provided via the Eclipse foundation.30

30 http://git.eclipse.org/c/mosquitto/org.eclipse.mosquitto.rsmb.git/
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5.3.4 Constrained Application Protocol

Focusing on a footprint acceptable for very limited embedded devices as well as saving
battery power are among the raisons d’être of the next Application level protocol we
look at: the Constrained Application Protocol (CoAP).31 CoAP is a set of protocol spec-
ifications designed to work on embedded devices with as little as 10 KB of RAM, and it
yields a code footprint of about 100 KB. CoAP is also the youngest application protocol
we looked at here; it was officially released in June 2014.

UDP FOR NON-PERSISTENT CONNECTIONS

The typical stack CoAP, often referred to as “IP for Smart Objects,” differs from MQTT
in three ways. first, as shown in figure 5.10, CoAP is usually used alongside 6LoWPAN at
the Network layer. Then, at the Transport layer, it uses UDP (just like MQTT-SN), not
TCP. This means that CoAP doesn’t maintain an open TCP connection and thus
requires less power. In practice, though, this also means that CoAP is harder to deploy
in certain environments. As you’ve seen before, UDP poses a number of challenges
when combined with Network Address Translation, and this won’t likely change until
IPv6 is fully deployed; see section 5.2.1.

REQUEST/RESPONSE AND OBSERVE

CoAP is a request/response protocol implemented on the principles of REST. These
principles are at the core of the web and the Web of Things and will be discussed in
great detail in the next chapter. In that respect, CoAP is a very interesting protocol,
and the concepts you’ll learn in the following chapters will be really useful for you to
understand both HTTP for Things and CoAP. 

 In a separate specification called CoAP Observe,32 the request/response paradigm
is extended with support for “observing” resources. In short, this means you can sub-
scribe to a resource in a similar way to what the pub/sub of MQTT offers. But unlike in
MQTT, there’s no broker and the Things themselves push the updates to the clients.
Not relying on an external broker means that every Thing becomes both a client and
a server, which allows devices to easily and directly communicate with each other. 

5.3.5 So, which one should I use?

HomeKit is a promising protocol that will likely evolve a lot over the next few years.
But it has the clear limitation of working only within the boundaries of the Apple eco-
system. Google Weave has yet to prove what it can do for the IoT. MQTT and CoAP are
interesting alternatives, but they have two main challenges in the context of the Web
of Things. 

 First, they don’t integrate directly with the web (of browsers). You can’t build cli-
ent-side JavaScript that directly interacts out of the box with CoAP or MQTT. That
doesn’t mean it’s the end of the story just yet. There are ways to integrate both these
protocols to the web of browsers directly in the browser by channeling MQTT requests

31 http://coap.technology/
32 https://datatracker.ietf.org/doc/draft-ietf-core-observe/

http://coap.technology/
https://datatracker.ietf.org/doc/draft-ietf-core-observe/
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over WebSockets or via an HTTP proxy for CoAP. This topic will be covered in more
detail in chapter 7.

 Second, MQTT and CoAP both propose a way to implement an Application level
protocol for the Internet of Things, but they don’t address the idea of a data model
with fixed semantics and syntax and the possible interactions. In other words, even if
you use MQTT, you’ll still need to create your own model for your Things or applica-
tions. Because this isn’t based on a clearly defined standard, MQTT clients need to
know in advance the custom model of a given device, which limits ad hoc interaction. 

 Bridging this gap is precisely the objective of the Web of Things: creating an appli-
cation protocol for Things using and reusing Web standards and tools. This is what
the Web of Things architecture is all about, and the good news is that what you’ll learn
in the next chapters will also be applicable to other popular Application layer proto-
cols such as MQTT and CoAP. 

5.4 The Web of Things architecture
As you’ve seen, existing IoT Application layer protocols offer a variety of features that
are useful for embedded device deployment, from device and service discovery to reli-
able messaging, to ad hoc secure pairing, and so on. Unlike those protocols, HTTP
and WebSockets alone don’t support these features because they weren’t designed for
embedded devices. To be truly useful, the Web of Things will require those capabili-
ties and also the ability to be easily extended to support additional features when
needed. In this section, we propose a structured architecture for the Web of Things
that will form the basis for the rest of the book. This architecture will show in practice
how web protocols can be extended to support all the features we need for building
any type of WoT application, while remaining truly integrated into the web. 

 Unlike the OSI or the Internet Protocol Stack, the WoT architecture stack is not
composed of layers in the strict sense but rather of levels that add functionality, as
shown in figure 5.12. Each layer helps to integrate Things to the web even more and
hence makes them more accessible for applications and humans. The WoT architec-
ture stack starts where the OSI and Internet Protocol Stack ends: it looks into all proto-
cols and tools that live at the Application layer and above (layer 7 and upward). The
powerful implication of this is that you don’t have to worry about the underlying lay-
ers (1–6), because the Web of Things is concerned only with Application layer proto-
cols and what you do with them—not which underlying protocols are used. 

 The following chapters of this book will describe each layer in detail so you’ll have
all the tools you need to use those device-specific features for your WoT products and
applications in a way that maximizes reuse and interoperability. Let’s now review the
various layers of the WoT architecture and describe their purpose; see figure 5.12. 

5.4.1 Layer 1: Access

The Access layer is also the most fundamental because it looks into the way Things can
be connected to the web by offering a web API. This layer is responsible for turning
any Thing into a programmable web Thing that other devices and applications can
easily talk to.
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Figure 5.12 The Web of Things architecture stack33 with its various layers 

The core idea of this level is simple: Things can be smoothly integrated to the web by
exposing their services through a RESTful API using HTTP, built on top of TCP/IP as
well as the JSON data format. The Access level also describes how to use WebSockets to
accommodate the fact that a number of IoT use cases are real-time or event-driven.
We’ll look into these aspects in chapter 6.

 Not all Things will be able to speak web protocols or even be connected to the
internet, but that doesn’t mean those things won’t be part of the Web of Things. Thus,
we’ll look into the web integration of non-web and non-internet Things using several
integration patterns such as gateways. These aspects of the Access layer are covered in
chapter 7.

5.4.2 Layer 2: Find

Marking things accessible via a web API doesn’t mean a client can “understand” what
the Thing is, what data or services it offers, and so on. This is the goal of the second
layer: Find. In this layer we propose an HTTP-based protocol with a set of resources, data
models, payload syntax, and semantic extensions that web Things and applications

33 This Web of Things architecture was proposed in Dominique Guinard’s PhD thesis: http://webofthings.org/
2011/12/01/phd-web-of-things-app-archi/.
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should follow. This layer ensures that your device can not only be easily used by other
HTTP clients butcan also be findable and automatically usable by other WoT applica-
tions. The approach here is to reuse web semantic standards to describe things and
their services. This enables searching for things through search engines and other web
indexes as well as the automatic generation of user interfaces or tools to interact with
Things. At this level, we also describe Semantic Web technologies such as JSON-LD and
HTML5 microdata and their integration into the API of Things. These topics will be cov-
ered in chapter 8.

5.4.3 Layer 3: Share

The Web of Things is largely based on the idea of Things pushing data to the web,
where more intelligence and big-data techniques can be applied—for example, to
help us manage our health or optimize our energy consumption. But this can only
happen in a large-scale way if some of the data can be efficiently—and securely—
shared across services. This is the responsibility of the Share layer, which specifies how
the data generated by Things can be shared in an efficient and secure manner over
the web.

 At this level, we look into applying fine-grained sharing mechanisms on top of
RESTful APIs. We also look at delegated web authentication mechanisms and integrate
OAuth to our Things’ APIs. Finally, we discuss implementing the Social Web of Things
by using social networks to share Things and their resources. We cover these topics in
chapter 9.

5.4.4 Layer 4: Compose

Finally, once Things are on the web (layer 1) where they can be found by humans and
machines (layer 2) and their resources can be shared securely with others (layer 3),
it’s time to look at how to build large-scale, meaningful applications for the Web of
Things. In other words, we need to understand the integration of data and services
from heterogeneous Things into an immense ecosystem of web tools such as analytics
software and mashup platforms. The goal of the Compose layer is to make it even sim-
pler to create applications involving Things and virtual web services.

 Tools at the Compose layer range from web toolkits—for example, JavaScript SDKs
offering higher-level abstractions—to dashboards with programmable widgets, and
finally to physical mashup tools such as Node-RED. Inspired by Web 2.0 participatory
services and in particular web mashups, the physical mashups offer a unified view of
the classical web and Web of Things and empower people to build applications using
Web of Things services without requiring programming skills. We’ll look at this level
in chapter 10.

5.4.5 Why does the WoT matter?

The good news is that on the Web of Things you needn’t care about how various
devices talk to each other physically, or at the Network layer. Just like on the web, you
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don’t need to worry about whether your phone uses 4G or Wi-Fi to fetch a web page.
All you need to care about in the Web of Things is that those devices share a common
set of languages that allows them to communicate at the Application level regardless
of the way they’re networked. By layering the well-known web standards on top of the
myriad of networking protocols in use, you’re enabling any device and application
across any network to talk to each other and exchange data in a standard and mean-
ingful way. In short, the Web of Things is agnostic to anything below the Application
layer, so that any device can be part of the universal Web of Things regardless of what
protocol(s) it uses connects to the internet.

 As you’ve also learned, a number of Application layer protocols have been pro-
posed for the IoT, but none can be considered “The One.” The premise of the WoT is
different: instead of creating yet another protocol from scratch, why not reuse and
adapt something widely popular and universally supported, like the web? The archi-
tecture we proposed for the Web of Things in section 5.4 puts this exact idea in prac-
tice: have a single uniform architecture for the Web of Things that any WoT device,
service, or application can use to talk to each other. How this can be done is what the
remainder of this book will teach you.

5.4.6 Beyond the book

What you’ve certainly realized is that a single universal protocol stack to rule them all
is both unrealistic and impractical. Certain protocol stacks are much better suited for
some scenarios than others, and compromising on those doesn’t make sense, espe-
cially for commercial use cases. If you were to remember one thing about this chapter,
it would be to ensure that you choose protocols that play well with the internet. It
seems like a pretty obvious statement when working on building the Internet of
Things, but the more straightforward the integration, the easier it will be to develop
and deploy your product. 

 The arena of IoT protocols is likely to remain a hodgepodge of old, new, and
incompatible protocols for many years to come—the battle is far from being over! You
should follow the upcoming developments in this field. A good place to start is the
IPSO (Internet Protocol for Smart Objects) Alliance,34 a consortium of powerful play-
ers promoting the use of internet protocols on embedded devices. Also make sure you
follow the Thread Group,35 which is actively looking at creating a clean and opera-
tional IoT protocol stack up to the Network layer. You should also take a closer look at
the AllSeen Alliance36 and the OIC (Open Interconnect Consortium),37 which are
becoming increasingly popular. 

34 http://www.ipso-alliance.org/
35 http://threadgroup.org/
36 https://allseenalliance.org/
37 http://openinterconnect.org/

http://www.ipso-alliance.org/
http://threadgroup.org/
https://allseenalliance.org/
http://openinterconnect.org/
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5.5 Summary
■ There are various models for classifying network topologies and protocols, and

they help us compare and contrast various tools and use cases commonly used
in the IoT.

■ The IoT today is a hodgepodge of protocols, and few of them are based on the
Internet Protocol suite.

■ Some popular IoT protocols have been designed specifically for the constraints
of embedded devices—low power or bandwidth, for example—and therefore
require specifically designed gateways to be connected to the internet.

■ There are also various Applications layer protocols for the IoT that can’t be eas-
ily integrated with one another. These protocols offer additional capabilities
that are desirable for IoT applications, such as real-time push, device discovery,
and so on.

■ The Web of Things helps maximize interoperability across various physical
networks.

■ Web technologies are widely popular and offer all the flexibility and features
needed for the majority of IoT applications, including discovery, security, and
real-time push.

■ The WoT architecture stack organizes the variety of tools, techniques, and stan-
dards commonly used on the web so they form a complete framework on which
to build IoT systems that are natively part of the web.

If you’re new to IoT and networking, no doubt this chapter was a tough one. It cer-
tainly didn’t turn you into an IoT networking protocol expert, but at least it equipped
you with a solid overview of the variety of technologies that can be used to build net-
worked devices. If you have to deal with hardware and/or infrastructure, knowing
which protocol is good for which use case will definitely help you choose the right
tools for your next project. 



Part 2

Building the WoT

In part 2 we describe how to build the Web of Things, and we show how to
implement the various layers of the Web of Things architecture that was intro-
duced in part 1.

 Chapter 6 is a quick introduction to the modern web architecture and
describes how it can be applied to embedded devices and the Web of Things.

 Chapter 7 shows how to implement the concepts presented in the previous
chapter on various devices.

 Chapter 8 introduces the issues of discoverability and findability and shows
how to use the web techniques to expose and share metadata about the services
and capabilities of web-connected devices.

 Chapter 9 offers a quick introduction to web security and how to connect
devices to the web and share their data in a secure manner.

 Chapter 10 shows how to use the techniques and methods presented in the
previous chapters in order to rapidly build hybrid Web of Things applications
called physical mashups. 
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Access: Web APIs
for Things
By now, it should be clear that the central idea behind the Web of Things is to make
it easy for devices, services, and applications to talk to each other by using patterns
and standards that are similar to anything else on the web. 

 In this chapter, we’ll describe in detail what those patterns are and will show you
how to use them to implement web APIs for physical objects. Before jumping head-
first into code, a little bit of theory is needed, so we’ll start by exploring the funda-
mentals of the modern web architecture. First, we’ll introduce REST, which defines

This chapter covers
■ Designing APIs for Things based on the REST

principles
■ Implementing RESTful Things with HTTP and

WebSockets
■ Representing resources with JSON and MessagePack
■ Allowing cross-site requests using CORS
■ Using WebSockets and web hooks to implement real-

time communication with Things
■ Looking at HTTP/2, the future of HTTP
143



144 CHAPTER 6 Access: Web APIs for Things
the core architecture of the web. Afterward, we’ll propose a set of guidelines and a
methodology to design RESTful APIs for physical devices so that HTTP clients can eas-
ily read data from their sensors or send control commands to them. Finally, we’ll
expose the limitations of REST APIs over HTTP when it comes to real-time sensor data
and notifications, and we’ll describe how the latest developments in web technologies
such as WebSockets can be used to provide push notifications for the Web of Things.

6.1 Devices, resources, and web Things
Let’s start our discovery of the first layer of the Web of Things architecture we pre-
sented in the previous chapter. This layer is aptly named Access because it covers the
most fundamental piece of the WoT puzzle: how to connect a Thing to the web so that
it can be accessed using standard web tools and libraries. By the end of this chapter,
you’ll have gained a sound understanding of HTTP and WebSockets and how to use
them for physical objects. This will allow you to model the services and data offered by
your Things with a clean, RESTful API that other developers and devices can easily
understand and use. Figure 6.1 illustrates the Access layer of the Web of Things.

6.1.1 Representational State Transfer

If you’ve ever used web APIs, you’ve certainly come across the term REST or RESTful.
Representational State Transfer (REST) is a set of architectural principles that any dis-
tributed system can adopt and that was formalized in Roy Fielding’s PhD thesis:1

REST provides a set of architectural constraints that, when applied as a whole, empha-
sizes scalability of component interactions, generality of interfaces, independent deploy-
ment of components, and intermediary components to reduce interaction latency, enforce
security, and encapsulate legacy systems.

1  Source: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
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In short, if the architecture of any distributed system follows the REST constraints, that
system is said to be RESTful. The idea is that when each component of the system
(servers and clients) complies with those constraints, the interactions between the
components are well defined and thus fairly predictable. This maximizes interopera-
bility and scalability of the system, which is essential for a global system such as the
web. These properties are what made the web so successful, and that’s because
HTTP—the Application layer protocol at the heart of the World Wide Web—is based
on REST! Another RESTful protocol is CoAP, which we introduced in chapter 5 and
which will be discussed further in chapter 7. REST was designed to enable a large-scale
distributed system for multimedia content (aka hypermedia), and as the success of the
web can attest, it’s been working pretty well. Let’s see what those constraints are.

CONSTRAINT #1—CLIENT-SERVER

Interactions between components are based on the request-response pattern, where a cli-
ent sends a request to a server and gets back a response. This maximizes decoupling
between components because clients don’t need to know anything about the imple-
mentation of the server, only how to send the request to get the data they want. Like-
wise, servers don’t need to know about the state of clients or how that data will be
used. Such a separation of concerns between data, control logic, and presentation
improves scalability and portability because loose coupling means each component
can exist and evolve independently. 

CONSTRAINT #2—UNIFORM INTERFACES

Loose coupling between components can be achieved only when using a uniform
interface that all components in the system respect. Unambiguous, simple, and stan-
dard interfaces that can be easily extended for all sorts of content and scenarios have
largely contributed to the success of the web as an open and participatory system. This
is also essential for the Web of Things because new, unknown devices can be added to
and removed from the system at any time, and interacting with them will require min-
imal effort.

CONSTRAINT #3—STATELESS

The client context and state should be kept only on the client, not on the server.
Because each request to the server should contain the client state, visibility (monitor-
ing and debugging of the server), robustness (recovering from network or application
failures), and scalability are improved. Of course, servers and applications can be
stateful because this constraint simply requires that interactions between clients and
servers contain information about each other’s state. 

CONSTRAINT #4—CACHEABLE

Caching is a key element in the performance (loading time) of the web today and there-
fore its usability. Clients and intermediaries can store some data locally, which boosts
their loading time, because that data doesn’t need to be fetched from the actual server
for each request. Servers can define policies as when data expires and when updates
must be reloaded from the server. This leads to better performance because fewer cli-
ent-server interactions improve server scalability and also reduce latency. 
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CONSTRAINT #5—LAYERED SYSTEM

Uniform interfaces make it easy to design a layered system, which means that several
intermediate components can hide what’s behind them. Layered systems make it pos-
sible to use intermediary servers to further improve scalability and response times. For
example, distributed caches or content delivery networks (CDNs) such as Akamai2 can
cache data in various locations throughout the globe to allow clients to retrieve some
data faster. This is possible because clients rarely need to know if they interact with the
target server or some other proxy along the way. Another benefit of layered systems is
that it enables encapsulation of legacy protocols and systems–for example, gateways to
proprietary protocols–which makes it simpler to enforce various security policies.

6.1.2 Why do we need a uniform interface?

As you can tell, these constraints are largely responsible for making the web work.
Without them, the web wouldn’t be as open, scalable, flexible, and efficient as it is
today, and it would have become another ghost in the closed and proprietary systems
paradise. Remember CompuServe?3 Exactly!

 The most important of these constraints is the uniform interface because limiting
all possible interactions to a subset of generic and well-defined operations offers sev-
eral advantages. First, using a uniform interface such as that defined by HTTP mini-
mizes the coupling between components, which helps us design more scalable and
robust applications. Second, we can use a web-like mindset to design applications:
markup languages, event-based browser interactions, scripting languages, URLs, and
the like. Third, HTTP traffic on port 80 is the only protocol that’s always permitted by
most firewalls. Fourth, it makes it easy to hide low-level protocol details behind simple,
high-level abstractions, which promotes openness, programmability, and reusability of
services and data regardless of how they’re actually stored or encoded. 

 Our point here is that what REST and HTTP have done for the web, they can also
do for the Web of Things. As long as a Thing follows the same rules as the rest of the
web—that is, shares this uniform interface—that Thing is truly part of the web. In the
end, the goal of the Web of Things is this: make it possible for any physical object to
be accessed via the same uniform interface as the rest of the web. This is exactly what
the Access layer enables and, as we’ll describe in the rest of this section, the uniform
interface of the web is based on these four principles:

■ Addressable resources—A resource is any concept or piece of data in an application
that needs to be referenced or used. Every resource must have a unique identi-
fier and should be addressable using a unique referencing mechanism. On the
web, this is done by assigning every resource a unique URL.

2 http://www.akamai.com
3 CompuServe was the first major commercial online service in the United States. It implemented services on

top of the internet (and other networks) using mainly proprietary protocols. The service competed with the
open World Wide Web for several years but lost the game and was completely shut down in 2011: https://
en.wikipedia.org/wiki/CompuServe.

http://www.akamai.com
https://en.wikipedia.org/wiki/CompuServe
https://en.wikipedia.org/wiki/CompuServe
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■ Manipulation of resources through representations—Clients interact with services
using multiple representations of their resources. Those representations
include HTML, which is used for browsing and viewing content on the web, and
JSON, which is better for machine-readable content.

■ Self-descriptive messages—Clients must use only the methods provided by the pro-
tocol—GET, POST, PUT, DELETE, and HEAD among others—and stick to their
meaning as closely as possible. Responses to those operations must use only
well-known response codes—HTTP status codes, such as 200, 302, 404, and 500.

■ Hypermedia as the engine of the application state (HATEOAS)—Servers shouldn’t keep
track of each client’s state because stateless applications are easier to scale.
Instead, application state should be addressable via its own URL, and each
resource should contain links and information about what operations are possi-
ble in each state and how to navigate across states. HATEOAS is particularly use-
ful at the Find layer, so we’ll discuss it in more detail in chapter 8.

Thanks to such a simple, uniform interface and to the wide availability of HTTP clients
and libraries, RESTful services can be reused and recombined easily, without requiring
prior knowledge about the specifics of any resource, because those can be discovered
and understood on the fly, as will be shown in section Principle 4: Hypermedia as the
Engine of Application State. In the rest of this section, we describe in more detail how
those four principles are put into practice with HTTP, and then we’ll show how to use
them when designing RESTful APIs for Things. Finally, for each of those principles,
we’ll propose a set of rules to help you build web-friendly APIs for your Things.

6.1.3 Principle 1: addressable resources

REST is a resource-oriented architecture (ROA), where every component of a system or an
application (a sensor, its sampling frequency, a variable, and so on) is called a resource.
A resource is explicitly identified and can be individually addressed. With HTTP, this is
done using the well-known Uniform Resource Identifier (URI) standard scheme defined in
RFC 3986.4 Using the exact same standard naming scheme as all other web resources
allows you to seamlessly integrate Things and their properties into the web because
their functions, data, or sensors can be linked to, shared, bookmarked, and used just
like anything else on the web.

 A URI is a sequence of characters that unambiguously identifies an abstract or physi-
cal resource. There are many possible types of URIs, but the ones we care about here are
those used by HTTP to both identify and locate on a network a resource on the web,
which is called the URL (Uniform Resource Locator) for that resource. From this, we gen-
eralize that any URL of resources in the Web of Things must follow the following syntax: 

<scheme> ":" <authority><path> [ "?" query ] [ "#" fragment ]

■ In the Web of Things, <scheme> is always either http or https.
■ <authority> is a host with optional port or access credentials.

4  See https://tools.ietf.org/html/rfc3986.

https://tools.ietf.org/html/rfc3986
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■ <path> is any hierarchical path to the resource, which must start with /.
■ Last come optional query parameters and/or fragments.

An important and powerful consequence of this is the addressability and portability of
resource identifiers: they become unique (internet- or intranet-wide) and can be
resolved by any HTTP library or tool (for example, a browser) and they can be book-
marked, exchanged in emails, used in instant messaging tools, encoded in QR codes,
used in RFID tags, and broadcasted by beacons, as you’ll see in in chapter 7. 

Every device on the Web of Things must have a root URL that corresponds to its net-
work address, and here are a few examples of root URLs for various devices:

http://gateway.api.com/devices/TV/
http://kitchen-raspberry.device-lab.co.uk/
https://192.168.10.10:9002/
https://kitchen:3000/fridge/

In the Web of Things we can have several types of resources. Although some of them
represent Things and their actual properties, others can be entirely virtual (a mashup,
a data processing service, and so on): 

# User with the ID No. 12
https://webofthings.org/users/12

# Sample No. 77654 from october 2009
https://webofthings.org/samples/2009/10/77654

# Device called lamp14
https://devices.webofthings.io/lamp14

Resources on the web are often organized in a hierarchy defined by a path. This hier-
archical way of organizing and linking resources is particularly relevant in the physical
world because it can be used to identify not only the resources of a Thing and how
Things relate to each other but also the relationship between Things and their physical
location. We can also identify collections of resources, which are resources themselves:

# a list of sensors on a device (all the sensors on device ID 24)
http://devices.webofthings.io/24/sensors

# a list of devices in an area (building 4)
http://192.168.44.12/building4/devices/

The nerd corner: URL vs. URI

A URL is a type of URI that identifies a resource via a representation of its primary
access mechanism—for example, its network location—rather than by some other
attributes it may have. On the web, a URL is a URI beginning with the http:// scheme
and resolvable through HTTP. Also, note that the root URL of a device doesn’t require
the device to be connected and accessible publicly over the web. The URL works equal-
ly well inside a local area network.
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# a list of sensor readings
https://webofthings.org/devices/4554/samples

It’s interesting to step back for a second and think about what these URLs mean in the
grand scheme of internet protocols we looked at before. As shown in figure 6.2,
there’s a lot to learn from a Thing URL! 

Let’s make this more concrete by taking the example of our Raspberry Pi. You can see
in figure 6.3 how the different resources are related to each other and how you can
construct the URL for any element of your Pi. From this hierarchy, you can see first

HTTP TLS/SSL DNS TCP Resource

https://mykitchen.com:8007/fridge

= IP(v6)
address

Figure 6.2 A Thing URL and the 
protocols each bit of the URL refers to. 
The first part specifies the protocol we 
use, here HTTP+TLS/SSL (HTTPS); then 
the domain is resolved by DNS to an IP 
address, the port is used by TCP to know 
what process to redirect to, and finally 
the REST resource is shown.

Actuators
/actuators

LEDs
/leds

LED #
/{led#}

Light sensor
/light

Temperature sensor
/temperature

Buttons
/buttons

Sensors
/sensors

Root URL of Raspberry Pi
devices.webofthings.io/pi

Acceleration
/accel

Gyroscope
/tilt

/1

/2

/x

/y

/z

/x

/y

/z

Figure 6.3 An example of URL structure of the various resources on a Raspberry Pi. The full URL 
of the X-axis reading of the acceleration sensor of the Pi highlighted in bold is 
http://devices.webofthings.io/pi/sensors/accel/x. 

http://devices.webofthings.io/pi/sensors/accel/x
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that any device must have a root URL (http://devices.webofthings.io/pi). Then, it has
various sensors (light, temperature, and so on) and actuators (such as LEDs). The URL
of each element is constructed by appending its name to the path of its predecessor in
the hierarchy. For instance, the light sensor will have the following URL:

All the components of a device can be mapped into a similar resource tree, where
each sensor, actuator, or system property of the device is assigned its own URL. This
way, every component of your device fully blends into the web and becomes a distinct
web resource that anyone on the web can address and interact with.

 In chapter 8 we’ll look at semantics and will propose a naming scheme for
resources. For now, it’s worth noting that there are no official rules about the seman-
tics of resources’ identifiers. Nevertheless, you should adhere to the following guide-
lines for all your resources:

■ Use descriptive names. Because the resource names appear in the URLs, using
names with some semantic value can be of great help to developers and users.

■ Don’t use verbs in URLs. Avoid using verbs—for example, lock or start—and use
names where you can: /garagedoor/openDoor is bad; /garagedoor/status is
much better. Verbs are for HTTP methods, not for URLs!

■ Use the plural form for aggregate resources. If a Thing has several sensors, they
should be accessible via a parent resource called /sensors. But you would use
/accel for the accelerometer because there’s only one such sensor, although it
provides values for three dimensions.

DESIGN RULES #1—ADDRESSABLE RESOURCES

The first principle we looked at emphasizes that every element in your web Thing, ser-
vice, or application becomes an addressable web resource. From this, we propose the
following set of design rules to follow when implementing web Things: 

■ Web Things must be an HTTP server. Simply put, if you can’t send an HTTP request
to a device, then it’s not part of the Web of Things. To ensure maximal compati-
bility, web Things must always support HTTP version 1.1—ideally v2 as well, but
not only v2—because it’s currently the most widely used version of the protocol.
Thanks to the layered architecture of REST, the HTTP server doesn’t need to be
actually hosted on the device itself. We’ll describe the various integration pat-
terns in chapter 7.

■ Web Things should use secure HTTP connections (HTTPS). When possible, a Thing
should offer only secure connections. This is essential if the Thing is accessible
from the outside world.

http://devices.webofthings.io/pi/sensors/light

Scheme Authority Path

http://devices.webofthings.io/pi)
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■ Web Things must have a root resource accessible via an HTTP URL. A client applica-
tion must have a URL to send the HTTP request to. The URL doesn’t need to be
externally accessible or public; it can be the IP address of a device on your LAN.

■ Web Things must expose their properties using a hierarchical structure. Things must
expose their properties using a hierarchical structure to facilitate discovery of
their resources. A specific model and resource structure will be proposed in
chapter 8.

6.1.4 Principle 2: manipulation of resources through representations

A challenge in computer-based communication is how to encode information so that
it can be universally decoded and understood. On the web, Multipurpose Internet Mail
Extensions (MIME) types have been introduced as standards to describe various data for-
mats transmitted over the internet, such as images, video, or audio. The MIME type for
an image encoded as PNG is expressed with image/png and an MP3 audio file with
audio/mp3. The Internet Assigned Numbers Authority (IANA) maintains the list of
the all the official MIME media types.5

 A resource as defined previously is only a concept—an abstract idea of a thing—
and not the thing itself. The tangible instance of a resource is called a representation,
which is a standard encoding of a resource using a MIME type. Web browsers typically
support quite a few representations, such as (HTML, GIF, and MPEG; or can use
plugins or external applications to render them, such as PDF, vCards, or Flash). 

 HTTP defines a simple mechanism called content negotiation that allows clients to
request a preferred data format they want to receive from a specific service. Using the
Accept header, clients can specify the format of the representation they want to
receive as a response. Likewise, servers specify the format of the data they return using
the Content-Type header. To illustrate this principle, let’s look at what happens when
you enter the URL of the Pi in your browser. The following listing shows the request
and the response messages.

Request:

GET /pi 
Host: devices.webofthings.io
Accept: text/html

Response:

200 OK HTTP/1.1
Content-Type: text/html

<html>
...

5  Online: http://www.iana.org/assignments/media-types/.

Listing 6.1 A simple HTTP request and response

Request headers

Response headers

Response body

http://www.iana.org/assignments/media-types/
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As you can see, the request, which is a simplified version of what your browser actually
sends, contains the following header: Accept: text/html, which instructs the server
to return an HTML representation of the Pi, the Pi root page you saw in chapter 2. By
default, browsers request HTML files they can render and allow human users to inter-
act with the resource. But in some cases, HTTP clients don’t want HTML and would
prefer a machine-readable format such as JSON OR XML—for example, when the cli-
ent is an application and not a web browser. This can be done by using another value
for the Accept: header, as shown in the next two listings.

Request:

GET /pi 
Host: devices.webofthings.io 
Accept: application/xml  

Response:

200 OK 
Content-Type: application/xml

<device>
  <name>Pi</name>
  ...
</device>

Request:

GET /pi 
Host: devices.webofthings.io 
Accept: application/json  

Response:

200 OK 
Content-Type: application/json

{
  "name" : "Pi"
  ...
}

You can use various encoding formats to describe sensor data so that it can be under-
stood and processed by other applications, and obviously not all servers will support
all of them. 

 The Accept: header of an HTTP request can also contain not just one but a
weighted list of media types the client understands—for example, application/

Listing 6.2 Requesting an XML return payload using the Accept header

Listing 6.3 Requesting a JSON return payload using the Accept header
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json;q=1, application/xml;q=0.5. The server then tries to serve the best possible
format (as requested by the client using the parameter q as a quality factor) it knows
about and specifies it in the Content-Type of the HTTP response. In our case the Pi
can’t offer XML and hence would return a JSON representation and set the HTTP
header to Content-Type: application/json.

JSON AND BEYOND FOR THE WEB OF THINGS

The format we suggest for web Things is JSON. JSON is particularly suited for web
applications because it’s lightweight, portable, and self-contained and can be easily
parsed in browsers using JavaScript, as well as by every programming language out
there! It’s a lighter alternative to XML because it requires less processing power and
bandwidth and is also easier on the eyes of a developer. But even if JSON is lightweight,
it isn’t a binary format because it’s still text. Alternative representation formats make
sense when a more efficient format is needed—for instance, because of the memory
limitations of a device or the fact that it runs on batteries. A number of formats can
translate JSON into a binary format.

 MessagePack6 is one of our favorite alternatives. It’s supported by libraries for all
popular programming languages, including client-side JavaScript, Node.js, and C.
MessagePack isn’t an official MIME media type, but you can still ask for it in a content-
negotiation process. A common way of dealing with unofficial MIME types is to use the
x- extension, so if you want your client to ask for MessagePack, use Content-Type:
application/x-msgpack.

DESIGN RULES #2–CONTENT NEGOTIATION

Based on what you’ve just learned, we propose the following rules to follow when
implementing your web Things:

■ Web Things must support JSON as their default representation. Your Thing can sup-
port as many representations as it wants, as long as it accepts at the minimum
JSON in requests and can return a JSON representation when requested. Always
use CamelCase; for example, lastValue instead of Last-Value or
last_value, for object names in JSON payloads.

■ Web Things support UTF8 encoding for requests and responses. A web Thing can sup-
port many other encoding formats (for example, it can describe the services it
offers in Chinese or Russian), but it has to support UTF8 for any resource at the
very least.

■ Web Things may offer an HTML interface/representation (UI). In addition to a com-
puter-friendly API, devices should also offer a human-friendly user interface
that’s accessible from a web browser. This is especially useful for consumer prod-
ucts to make it easy for users to access, control, and troubleshoot their devices.

6 http://msgpack.org/

http://msgpack.org/
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6.1.5 Principle 3: self-descriptive messages

REST emphasizes a uniform interface between components to reduce coupling
between operations and their implementation. This requires every resource to sup-
port a standard, common set of operations with clearly defined semantics and behav-
ior. HTTP defines a fixed set of operations that every resource can support, also called
verbs or methods. The most commonly used among them are GET, POST, PUT, DELETE,
and HEAD. Although it seems that you could do everything with just GET and POST, it’s
important to correctly use all four verbs to avoid bad surprises in your applications or
introducing security risks.

 Constraining operations to these methods is one of the keys to enabling loose cou-
pling of services because clients only need to support mechanisms to handle these
methods. In the Web of Things, these operations map rather naturally because Things
usually offer quite simple and atomic services that can usually be reduced to the four
basic CRUD operation types: create, read, update, and delete.

GET

GET is a read-only operation, as shown in listing 6.4. It’s both a safe and idempotent
operation. Safe means that invoking a GET doesn’t change the state of the server at all
(read-only). Idempotent means that no matter how many times you apply the operation,
it won’t have an effect on the resource state. Reading an HTML document with an
HTTP GET request once or 10 times won’t change the resource state. 

Request:

GET /pi/sensors/temperature/value 
Accept: application/json 
Host: devices.webofthings.io

Response:

200 OK HTTP/1.1
Content-Type: application/json

{"temperature" : 37}

In this listing, we want to know the latest value of the temperature sensor; therefore, this
is a read-only operation. Because we specify the encoding to be JSON, the response pay-
load contains a JSON message with the value 37. You might be thinking “37 what?” The
answer to this will be provided in chapter 8, when we discuss semantics.

 In some cases, an HTTP client might not need the full response payload, such as
when the client wants only to verify if a resource is available or has been updated
recently. In this situation, the client might use the HEAD verb instead of the GET, which
does essentially the same thing but returns only the headers and not the payload. This
is particularly useful when the request is sent to a resource-constrained device, where
every byte counts. 

Listing 6.4 GET to read a resource (the temperature sensor of our Pi)
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e.
POST

POST is both a non-idempotent and unsafe operation of HTTP, which means it not only
will change the server status but also will have a different result each time it’s called.
POST should be used only to create a new instance of something that doesn’t have its
own URL yet, such as a new user in a system or bank account. The request in the fol-
lowing listing creates a message to be shown on the LCD display for 30 seconds.

Request:

POST /pi/display/messages HTTP/1.1
Host: devices.webofthings.io
Content-Type: application/json   

{"content":"Hello World!","duration":30} 

Response:

201 Created HTTP/1.1 
Location: devices.webofthings.io/pi/display/messages/2210

The URL of the resource you’ve just created, the message to be displayed, should
always be returned in the answer via the Location header. This URL now allows you to
interact with the resource you just created, which you can update or delete later on. 

 As you’ll see in the next chapters, in some cases the result of a POST might not be
instantaneous. For example, when you’d like to control an actuator, such as to move
the arm of a robot, it may take a few seconds or minutes for the operation to be exe-
cuted. Likewise, if your request gets buffered (for example, when messages are
queued instead of being displayed right away), your request will be treated asynchro-
nously. For synchronous requests processed instantly, such as resource creation, you
should return a 201 Created. For all asynchronous operations, you should return a
202 Accepted, which means that the resource will eventually be created.7

PUT

PUT is usually modeled as an idempotent but unsafe update method. You should use
PUT to update something that already exists and has its own URL, such as when you
change the name of a user or add a deposit to their bank account, but not to create a
new resource. Unlike POST, it’s idempotent because sending the same PUT message
once or 10 times will have the same effect, whereas a POST would create 10 different
resources. In the next example we change the color of LED 4 with its new RGB value as
a parameter encoded as a JSON object.

Listing 6.5 POST to create a new resource 

7 RFC 2616, section 10.2.3: https://www.ietf.org/rfc/rfc2616.

A POST request contains a payload, 
here of MIME type application/json.

The server replies with a 201 
status code meaning that the 
rule was created instantly.

The response header 
contains the URL of 
the newly created rul

https://www.ietf.org/rfc/rfc2616
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Request:

PUT /pi/actuators/leds/4 HTTP/1.1 
Host: devices.webofthings.io
Content-Type: application/json

{"red" : 0, "green" : 128, "blue" : 128}

Response:

200 OK HTTP/1.1

You should use PUT only to change something that already exists, not to create a new
resource—use POST for that. In the Web of Things, this means PUT should be used to
change the status of something (LED 4), to open/close the door of the garage, and the
like. As you’ll see later, there’s a thin line when choosing whether to send commands to
a device via PUT or POST. As a rule of thumb, if the command will be executed immedi-
ately without being buffered, then you should use PUT. But if you need to buffer the
requests, typically when several users will access the same resource at the same time (for
example, the LCD screen of our Pi in chapter 2), then you’re creating a resource (an
item in a waitlist) that will change the status at a later stage, so you should use POST. 

DELETE

DELETE is an idempotent, unsafe method that should be used only to delete a
resource. Typically, you’d use this verb to permanently remove a resource from a
Thing, such as when you delete a subscription to a topic or a rule on the device, as the
next listing shows.

Request:

DELETE /rules/24 HTTP/1.1
Host: devices.webofthings.io

Response:

200 OK HTTP/1.1

Because you use DELETE to remove a resource from an object, the URL of the resource
you’re sending the request to will no longer be accessible once the request has been exe-
cuted. If you want to remove a device from a gateway, you should use a DELETE. But if
you want to disable a sensor, it would be a state change; therefore you should use a PUT.

ERROR CODES

HTTP also offers a way of expressing errors and exceptions. The status of an HTTP
response is represented by standardized status codes sent back as part of the header
in the HTTP response message. There are several dozen codes, each of which has

Listing 6.6 PUT to update an existing resource (change the colors of the LEDs)

Listing 6.7 DELETE to remove an existing resource
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well-known meanings for HTTP clients; these codes and their meanings are listed in
the specification of HTTP 1.1. 8 

 In the Web of Things, these codes are valuable because they provide a lightweight
but powerful way of notifying abnormal and successful request execution. As an exam-
ple, a POST request on /pi/sensors/humidity/ in the previous example will return a
405 Method Not Allowed status code. The client understands from that status code
that it can’t send the POST verb to this resource, so there’s no point in trying again in
the future.

 HTTP defines a list of standard status codes to be returned by the server upon
reception of every request. The most commonly used are these:

■ 200 Ok—Returned upon successful completion of a request. Another common
flavor of this code is 204 No Content.

■ 201 Created—Returned when a new resource has been successfully created.
The header Location contains the URI of the resource that has been created.

■ 202 Accepted—Returned for asynchronous operations when the request has
been accepted but the resource not yet created.

■ 401 Unauthorized—Either the request requires user authentication or the
authorization failed using the given credentials.

■ 404 Not Found—The requested resource or document has not been found on
the server.

■ 500 Internal Server Error—The server encountered an error that pre-
vented it from fulfilling the request.

■ 501 Service Unavailable—The server can’t handle the request at this time
due to maintenance or temporary overload.

CORS—ENABLING CLIENT-SIDE JAVASCRIPT TO ACCESS RESOURCES

Although accessing web resources from different origins located on various servers in
any server-side application doesn’t pose any problem, JavaScript applications running
in web browsers can’t easily access resources across origins for security reasons. What
we mean by this is that a bit of client-side JavaScript code loaded from the domain
apples.com won’t be allowed by the browser to retrieve particular representations of
resources from the domain oranges.com using particular verbs.

 Generally speaking, browsers can do only simple cross-site requests, such as load-
ing images from another site, but can’t request other types of representations such as
JSON or JavaScript. For example, the PUT /pi/actuators/leds/4 request of listing 6.6
wouldn’t be authorized by the browser. This security mechanism is known as the same-
origin policy and is there to ensure that a site can’t load any scripts from another
domain. In particular, it ensures that a site can’t misuse cookies to use your credentials
to log onto another site. Let’s look at an example to illustrate this. You log into face-
book.com, which creates a cookie that your browser will send alongside each request
to facebook.com. If the browser would allow cross-site requests, a script loaded from

8  Section 10 of RFC2616.
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apples.com could send a request to facebook.com using your Facebook cookie, thus
pretending to be you on Facebook!

 Clearly, this security mechanism is a good thing, but it also means that interacting
with the API of web Things directly from JavaScript code in the browser is not allowed
by default. Hold on! Then how did you manage to access http://devices.webofthings.io
to talk to our WoT Pi in chapter 2? Fortunately for us, a new standard mechanism called
cross-origin resource sharing (CORS)9 has been developed and is well supported by most
modern browsers and web servers. 

 When a script in the browser wants to make a cross-site request, it needs to include
an Origin header containing the origin domain. The server replies with an Access-
Control-Allow-Origin header that contains the list of allowed origin domains (or *
to allow all origin domains). The next listing provides an example of CORS in action
for the request and response corresponding to exercise 2.1 of chapter 2.

Request:

GET /pi/sensors/temperature HTTP/1.1
Host: devices.webofthings.io
Origin: http://localhost:8090

Response:

200 OK HTTP/1.1
Access-Control-Allow-Origin: "*"

When the browser receives the reply, it will check to see if the Access-Control-
Allow-Origin corresponds to the origin, and if it does, it will allow the cross-site
request.

 For verbs other than GET/HEAD, or when using POST with representations other
than application/x-www-form-urlencoded, multipart/form-data, or text/

plain, an additional request called preflight is needed. A preflight request is an HTTP
request with the verb OPTIONS that’s used by a browser to ask the target server whether
it’s safe to send the cross-origin request. An example of a preflight request is shown in
figure 6.4. 

 Although there are a number of additional options in the CORS specification, we
won’t go into more detail because that would require an entire book.10 But this should
provide you enough understanding of why it’s important to know what CORS is and
how to apply it in the WoT.

9 See http://enable-cors.org/ and http://www.w3.org/TR/cors/.

Listing 6.8 GET request to a resource using CORS 

10 There’s a really good book on the subject called CORS in Action by Monsur Hossain (Manning Publications,
2014). 

If you directly opened 
the file in your browser, 
the Origin would be null.

* means “allow all origins”;
alternatively it could have replied with 
a domain like http://localhost:8090.

http://enable-cors.org/
http://www.w3.org/TR/cors/
http://devices.webofthings.io


159Devices, resources, and web Things
DESIGN RULES #3–SELF-DESCRIPTIVE MESSAGES

To summarize, we can define four simple design rules based on the self-descriptive
messages principle of REST:

■ Web Things must support the GET, POST, PUT, and DELETE HTTP verbs. To benefit
from the advantages offered by RESTful architectures, the uniform interface
constraint is instrumental. In a Web of Things context, GET is used to retrieve a
sensor resource, such as a temperature reading; POST is used to create a new
resource that will get a new URL—for example, to create a rule; PUT to update
an actuator resource given its URL—for example, updating an LED; and DELETE
to remove a resource, such as a rule.

■ Web Things must implement HTTP status codes 20x, 40x, 50x. As mentioned, it’s
important to use HTTP verbs as intended. Of course, it’s unrealistic for every
web Thing to support all of them, but the device should at least support one of
each group—for example, 200 if the request was successful; 400 for client
errors, meaning the request was invalid; and 500 for server error, meaning the
request was valid but couldn’t be fulfilled because of the server.

■ Web Things must support a GET on their root URL. Ideally, every resource should
support the GET verb, so that clients can always retrieve its representations. But

Preflight 
OPTIONS
request

Allowed headers

Allowed verbs

Allowed origins

Client origin

The client wants
to send a POST
request with the 
Content-Type 
header

Figure 6.4 A preflight request corresponding to exercise 5 of chapter 2. The JavaScript needs to send 
a POST to another server with a Content-Type header. The server replies with the allowed origin, 
methods, and headers. Because they match what the script wanted, the call will be authorized.
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at the very least, the root URL must support GET so that a client is always able to
access information about the device. 

■ Web Things should support CORS. Both simple and preflight CORS requests should
be supported to allow direct access by applications in web browsers.

6.1.6 Principle 4: Hypermedia as the Engine of Application State

The fourth principle of REST is known as Hypermedia as the Engine of Application State
(HATEOAS). Although this might be the worst acronym in the history of computer sci-
ence, this principle isn’t as bad as it sounds. It contains two subconcepts: hypermedia
and application state.

HYPERMEDIA

This fourth principle is centered on the notion of hypermedia, the idea of using links as
connections between related ideas. Hypermedia was proposed in the early 1960s by
Ted Nelson as a generalization of hypertext that includes various media formats in
addition to text, such as video, images, or sounds. Links have become highly popular
thanks to web browsers yet are by no means limited to human use. For example,
UUIDs used to identify RFID tags are also links. Consider the abridged HTML fragment
in the following listing.

<html><body>
  <h1 class="device-name">Raspberry Pi</h1>
  <a href="http://devices.webofthings.io/pi" class="self">Root URL</a> of 

this device.
  View the list of <a href="sensors/" class="wot-sensors">sensors</a> and <a 

href="actuators/" class="actuators">actuators</a> on this device. 

  You can also view all <a href="links/" class="links">links</a> available on 
this device.

  Or read the <a href="about/" class="help">documentation</a>.
</body></html>

Based on this representation of the device, you can easily follow these links to retrieve
additional information about the subresources of the device, such as where to find its
documentation. Instead of describing the entire structure of a web Thing and all its
subresources into a single document that has to be maintained separately, such a tree-
based model maps conveniently to the Things’ resource tree shown in figure 6.3
because every layer in the tree acts as a proxy that hides the layer underneath. Conve-
niently, this also enables us to retrieve and parse such a large file every time the struc-
ture changes because we only need to retrieve the resources we’re interested in.

HATEOAS

The application state—the AS in HATEOAS—refers to a step in a process or workflow,
similar to a state machine, and REST requires the engine of application state to be

Listing 6.9 HTML representation of the Raspberry Pi root resource
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hypermedia driven.11 Okay, great, but what does this mean? Simply that each possible
state of your device or application needs to be a RESTful resource with its own unique
URL, where any client can retrieve a representation of the current state and also the
possible transitions to other states. Resource state, such as the status of an LED, is kept
on the server and each request is answered with a representation of the current state
and with the necessary information on how to change the resource state, such as turn
off the LED or open the garage door.

 In other words, applications can be stateful as long as client state is not kept on the
server and state changes within an application happen by following links, which meets
the self-contained-messages constraint. Links are very important in the Web of Things
because they enable clients to discover related resources, either by browsing in the case
of a human user following links on pages, or by crawling in the case of a machine. 

 In short, linking resources allows them to be dynamically discovered and rearranged
without having to keep a sitemap somewhere. We’ll explain this in detail and experi-
ment with it in chapter 8, but for now let’s use the example shown in listing 6.9. From
the HTML representation you can see that there’s a link to a resource called “links.” As
we’ll detail later, you could send a GET request to that resource to retrieve a JSON object
with all the resources offered by the device, which is shown in the next listing.

"links":{
  "sensors": {
    "link": "http://devices.webofthings.io/pi/sensors/",
    "title": "List of Sensors"
  },
  "actions": {
    "link": " http://devices.webofthings.io/pi/actions/",
    "title": "List of actions"
  },
  "meta": {
    "link": "http://w3c.org/schemas/webofthings/",
    "title": "Metadata"
  },
  "self": {
    "link": " http://devices.webofthings.io/pi/",
    "title": "Self"
  },
  "help": {
    "link": "http://webofthings.io/docs/pi/",
    "title": "Documentation"
  },
  "ui": {
    "link": " http://devices.webofthings.io/pi/",
    "title": "User Interface"
  }
}

11 http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Listing 6.10 JSON representation of the “links” resource of a Raspberry Pi

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
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Thanks to this document, any HTTP client will be able to use the methods described
in chapter 8 to find the various resources and services offered by this device, what they
mean, and how to interact with them. When a client requests an HTML representation
of that same resource, such as your browser, you’ll see this same content but with
actual links you can click on.

OPTIONS

In the previous section we looked at HTTP verbs. A less-known HTTP verb imple-
mented by most HTTP servers is quite helpful in terms of discovering what can be per-
formed on resources. The OPTIONS verb can be used to retrieve the list of operations
permitted by a resource, as well as metadata about invocations on this resource. This is
a very useful feature in a programmable Web of Things, because it allows applications
to find out what operations are allowed by a resource at runtime, simply by knowing
the resource’s URL; see the next listing. 

Request:

OPTIONS pi/sensors/humidity/ HTTP/1.1
Host: devices.webofthings.io

Response:

204 No Content HTTP/1.1
Content-Length: 0
Allow: GET, OPTIONS
Accept-Ranges: bytes

As an example, listing 6.10 is an OPTIONS request on pi/sensors/humidity/ return-
ing GET, OPTIONS to tell the client that the resource supports only those two verbs.
Combining links with the OPTIONS verb means that clients can discover the resources
available for a Thing but also what operations can be performed on a newly discov-
ered resource.

DESIGN RULES #4–HATEOAS

The fourth set of design rules emphasizes the ability to link resources logically so that
clients can discover the resources of Things and the links between them, their opera-
tions, and parameters:

■ Web Things should support browsability with links. This means that web Things
should always offer links to the resources related to them in the resource hier-
archy, particularly to parent and children resources. This enables discovering
all the resources of a Thing by browsing the ones that can be used by both
humans and applications (crawlers). Ideally, links should be present in all
representations.

Listing 6.11 Using OPTIONS to retrieve the verbs supported by a resource 
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■ Web Things may support OPTIONS for each of its resources. When possible, sending an
HTTP request to any resource should return the list of verbs supported by that
resource. This is a useful piece of the HATEOAS puzzle because clients can auto-
matically determine what they can do with a resource just by knowing its URL.

6.1.7 Summary—web Things design process

In this section, we’ve shown that APIs for Things can be built by reusing patterns from
the architecture of the web. Instead of using the web solely as a transport protocol, we
make Things an integral part of the web and its infrastructure by using HTTP for what
it was intended: as an Application layer protocol. 

FIVE-STEP DESIGN PROCESS FOR WEB THINGS APIS

We described how a RESTful architecture makes it possible to use HTTP as a universal
protocol for web-connected devices. We described the process of web-enabling Things,
which are summarized in the five main steps of the web Things design process:

1 Integration strategy —Choose a pattern to integrate Things to the internet and
the web, either directly or through a proxy or gateway. This will be covered in
chapter 7, so we’ll skip this step for now.

2 Resource design —Identify the functionality or services of a Thing and organize
the hierarchy of these services. This is where we apply design rule #1: address-
able resources.

3 Representation design —Decide which representations will be served for each
resource. The right representation will be selected by the clients, thanks to
design rule #2: content negotiation.

4 Interface design —Decide which commands are possible for each service, along
with which error codes. Here we apply design rule #3: self-descriptive messages.

5 Resource linking design —Decide how the different resources are linked to each
other and especially how to expose those resources and links, along with the
operations and parameters they can use. In this final step we use design rule #4:
Hypermedia as the Engine of Application State.

6.2 Beyond REST: the real-time Web of Things
Until now, our interface has offered access only through HTTP. With this protocol, cli-
ents always initiate the communication with a server by sending requests and expect-
ing a response in return; this is known as request-response communication. 

 In the Web of Things this pattern works well when the clients only need to send
requests to a Thing. This is the case, for example, when a mobile application wants to
retrieve the value of a sensor reading or when a web application is used to unlock a
door. Unfortunately, the request-response model is insufficient for a number of IoT
use cases. More precisely, it doesn’t match event-driven use cases where events must be
communicated (pushed) to the clients as they happen. In this section we look at this
issue in more detail and propose how to extend the request-response model of HTTP
by using another web-friendly application protocol: WebSocket!
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6.2.1 The WoT needs events!

A client-initiated model isn’t practical for applications where notifications need to be
sent asynchronously by a device to clients as soon as they’re produced. For example, a
security camera or smoke alarm must be able to send an alert immediately when any
anomaly has been detected and shouldn’t have to wait a until a client asks for this
information. Consider the PIR sensor that we added to our Pi in chapter 4. As a recap,
a PIR sensor can detect when a person passes by. Using a request-response pattern with
REST over HTTP isn’t efficient because we have to constantly poll the Pi for the latest
value of the PIR sensor. Not only is this inefficient, but we might also miss an intruder
if we don’t poll at the right moment. As shown in figure 6.5, polling is one way of cir-
cumventing the problem.

The idea is that clients can request updates periodically from a web Thing by sending
a GET request to the Thing on a regular basis. Although near real-time behavior can be
simulated by a client sending the same request continuously—for example, every sec-
ond—this approach is inefficient for most applications because it consumes unneces-
sary bandwidth and processor time. Most of the requests will end up with empty
responses (304 Not Modified) or with the same response as long as the value
observed remains unchanged. This is suboptimal for two reasons. First, it generates a
great number of HTTP calls, and a large part of these calls are void. Because reducing
the number of HTTP calls to the minimum is key in scaling web applications, this
model doesn’t scale well when the number of clients increases. Second, a large
amount of HTTP calls is a problem for battery-powered devices where only strictly nec-
essary data should be sent. 

Request

Client app Web Thing Sensor via GPIO

Response
New value

Request

Response

New value

Request

Response

New value

Figure 6.5 Basic polling: a client app sends requests to a web Thing 
at regular intervals. The results the client app gets are not 
synchronized with new values available from the sensor. 
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6.2.2 Publish/subscribe 

Interactive and reactive applications for the Web of Things require a simple and flexi-
ble mechanism to send events or receive notifications. What’s really needed on top of
the request-response pattern is a model called publish/subscribe (pub/sub) that allows
further decoupling between data consumers (subscribers) and producers (publishers).
Publishers send messages to a central server, called a broker, that handles the routing
and distribution of the messages to the various subscribers, depending on the type or
content of messages. The simplest analogy is a chat room—some are public, and some
are private. Sometimes you chat with only one person, and sometimes thousands. For
devices, it would be the same thing. A publisher can send notifications into a topic
(think chat room). Interested consumers can subscribe to one or several channels to
receive all the notifications pushed by producers in that channel. Topics in pub/sub
protocols are usually specified as arbitrary strings so it’s easy for us to map the REST
resources of our web Things to pub/sub topics. 

 Let’s look at a practical example of how this would work for our Pi. As shown in fig-
ure 6.6, a number of clients subscribe to a topic managed by a broker. Whenever a cli-
ent wants to update a topic, it sends a message to the broker—that is, it publishes the
message via the broker. The broker in turn sends it to all the topic’s subscribers. Note
that the broker could be the Thing itself or an external broker somewhere on the
web. In the left side of figure 6.6, Client A subscribes to the following topic: http://
devices.webofthings.io/pi/sensors/temperature. 

 We’ll shorten the topic here to /temperature for readability. Clients B and C sub-
scribe to /pir via the broker. The right part of figure 6.6 shows the publication mech-
anism. Someone passed by the sensor, so the Thing generates a PIR sensor update

Client
A

Client
B

Broker

Client
C

1. Subscribes to
/temperature

1. Subscribes to
/pir

1. Subscribes to
/pir

Thing

Client
A

Subscribe Publish

Client
B

Broker

Client
C

3. /pir true 2. Publishes
/pir true

3. /pir true

Thing

Figure 6.6 Left: subscription pattern in a pub/sub. Client A subscribes to temperature updates, 
clients B and C to PIR updates. They all subscribe via the broker, which maintains a list of who 
has subscribed to what topic. Right: publication pattern. An intruder is detected, so the Thing 
publishes a PIR update to the broker. The broker delivers the update to clients B and C.

http://devices.webofthings.io/pi/sensors/temperature
http://devices.webofthings.io/pi/sensors/temperature
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notification to inform all the listeners. The broker knows which clients are currently
listening for the /pir topic, so it immediately sends this update to clients B and C.

 Now that we have the pattern we needed on top of request-response interactions,
the question is how to implement it with technologies supported on the web—and
hopefully also by common web browsers. Speaking in terms of layers, we need a web
application protocol that can support the implementation of a pub/sub system. There
are a number of candidates to achieve that, and we’ll look at three techniques: web-
hooks, Comet, and WebSockets.

6.2.3 Webhooks—HTTP callbacks

The simplest way to implement a publish-subscribe system over HTTP without break-
ing the REST model is to treat every entity as both a client and a server. This way, both
web Things and web applications can act as HTTP clients by initiating requests to
other servers, and they can host a server that can respond to other requests at the
same time. This pattern is called webhooks or HTTP callbacks and has become popular
on the web for enabling different servers to talk to each other. For example, this is the
mechanism used by PayPal to confirm to eBay—or any other shopping site—that your
payment has been accepted. 

 The implementation of this model is fairly simple. All we need is to implement a
REST API on both the Thing and on the client, which then becomes a server as well.
This means that when the Thing has an update, it POSTs it via HTTP to the client, as
shown in figure 6.7. This implies that the client must implement an HTTP server with
a REST API that can be accessed by the Thing—for example, by having a public URL.
The detail of the necessary calls is shown in the following listing. 

Client Request:

POST /pi/sensors/humidity/subs HTTP/1.1
Host: devices.webofthings.io
Content-Type: application/json

{"callback" : "https://url-of-client-a.com/pubs"}

Thing Response:

201 Created HTTP/1.1
Content-Type: application/json
Location: devices.webofthings.io/pi/sensors/humidity/subs/1234

{"humidity": 37}

Listing 6.12 Subscription via a webhook 

The client subscribes via a 
POST request on the Thing 
to the humidity events.

The client provides a callback URL that will be used by the
Thing to push the event. Note that sometimes the Referer

header is used to specify the callback, but because the
header was intended for a very different purpose, we

recommend not using it in another way than intended.

The Thing responds
with a reference to
the newly created

subscription.

As a good practice, the 
Thing also sends the 
current humidity value to 
spare another request.
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Thing Request:

POST /pubs HTTP/1.1 
Host: url-of-client-a.com
Referer: http://devices.webofthings.io/pi/sensors/humidity/subs/1234 
Content-Type: application/json

{"humidity" : 50}

Webhooks are a conceptually simple way to implement bidirectional communication
between clients and servers by turning everything into a server. As you’ve just seen,
webhooks can also be used to implement a pub/sub for the Web of Things. But web-
hooks have one big drawback: because they need the subscriber to have an HTTP
server to push the notification, this works only when the subscriber has a publicly
accessible URL or IP address. In the real world this is very limiting because it will rarely
be the case outside server-to-server (or Thing-to-Thing!) communication. Consider
the case of a JavaScript application running in your browser that wants to get notifica-
tions from a Thing: even if there was a hacky way for the application to start an HTTP
server inside your web browser,12 it’s unlikely that the firewall of your network would
allow incoming requests from the internet to your machine.

6.2.4 Comet—hacking HTTP for a real-time web

The limitations of webhooks when it comes to browser applications led to a number of
workarounds to deal with the problem of real-time events on the web. Comet is an

12 Note that this can be done by writing a custom plugin for your browser that will allow it to interact with Things.
But using such non-standard extensions is a no-go in the real world because it severely limits the vision of a
seamlessly accessible Web of Things.

When a new humidity value is 
available, the Thing creates a POST 
request on the client API.
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The payload contains the new 
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Figure 6.7 A webhook mechanism implemented between a Thing and a client. 
The client subscribes to the humidity resource via a POST on the Thing API. The 
Thing then informs the server of humidity changes via a POST on the client API.
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umbrella term that refers to a range of techniques for circumventing the limitations of
HTTP polling and webhooks by introducing event-based communication over HTTP.
This model enables web servers to push data back to the browser without the client
requesting it explicitly. Since browsers were initially not designed with server-sent
events in mind, web application developers have exploited several specification loop-
holes to implement Comet-like behavior, each with different benefits and drawbacks. 

Among them is a technique called long polling, illustrated in figure 6.8. With long poll-
ing, a client sends a standard HTTP request to the server, but instead of receiving the
response right away, the server holds the request until an event is received from the
sensor, which is then injected into the response returned to the client’s request that
was held idle. As soon as the client receives the response, it immediately sends a new
request for an update, which will be held until the next update comes from the sensor,
and so on. The latency for events to reach the client is thus minimized. But the client
must be put on hold with an open HTTP request that’s waiting for an answer and must
send a request after each response. This increases the load on the server and forces
the clients to send unnecessary messages.

6.2.5 WebSockets

Although workarounds like Comet helped move things forward, they are patches, not
solutions. Comet and other long polling solutions are inefficient. Webhooks are
impractical in the case of web browsers.

 But not all hope is lost! A more recent, true web protocol for push communica-
tions has emerged: WebSocket! WebSocket13 is part of the HTML5 specification. The
increasing support for HTML5 in most recent web and mobile web browsers means
WebSocket is becoming ubiquitously available to all web apps. Just like for REST over

13 Reference: http://www.websocket.org/.
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Figure 6.8 Long polling: a client 
sends a request, which is kept on 
hold until an event is received 
from the sensor, at which point it 
gets forwarded by the web Thing 
to the client as the response of 
their initial request. After that, 
they reinitiate a new request, 
which will be kept open in the 
same way until a new value from 
the sensor is retrieved. 

http://www.websocket.org/
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HTTP, this ubiquitous support makes WebSocket a fairly good candidate to implement
pub/sub support in the Web of Things. 

 In chapter 2, you experimented with building a WebSockets client and were
exposed to the simple client API of WebSockets giving access to the protocol directly via
JavaScript running in your browser. Here, we’ll focus in more detail on the WebSockets
protocol and how to use it to implement a pub/sub mechanism for web Things.

WEBSOCKET PROTOCOL HANDSHAKE

WebSockets enables a full-duplex communication
channel over a single TCP connection. In plain
English, this means that it creates a permanent
link between the client and the server that both
the client and the server can use to send messages
to each other. Unlike techniques we’ve seen
before, such as Comet, WebSocket is standard
and opens a TCP socket. This means it doesn’t
need to encapsulate custom, non-web content in
HTTP messages or keep the connection artificially
alive as is needed with Comet implementations.

 A WebSocket connection is initialized, creat-
ing a handshake, as networking nerds would put it,
in three steps, as shown in figure 6.9. The first
step is to send an HTTP call to the server with a
special header asking for the protocol to be
upgraded to WebSockets. If the web server sup-
ports WebSockets, it will reply with a 101 Switch-
ing Protocols status code, acknowledging the
opening of a full-duplex TCP socket.

 Let’s look at a concrete example using the PIR
sensor we set up in chapter 4, which runs on our
Pi at http://devices.webofthings.io/pi/sensors/
pir. If you access this address with your browser,
you’ll get the HTML representation of the PIR sensor. Similarly, if you access it and ask
for it using the Content-Type: application/json header shown previously, you’ll
get the value of the PIR sensor in JSON; this is REST over HTTP, implemented as you’ve
seen before. Now, using the same resource, you can also ask for WebSockets content
by asking for a protocol upgrade, as shown in the next listing.

GET /pi/sensors/pir HTTP/1.1
Origin: http://localhost:63342
Host: devices.webofthings.io

Listing 6.13 Client request in a WebSockets handshake

GET Upgrade /pi/sensors/pir

Client Thing

Client Thing

101: Switching protocols
to WebSocket

Data frames ...

Control frame: close

Control frame: close

Opening handshake

TCP connection is kept open

TCP connection is closed

Figure 6.9 A WebSockets protocol 
handshake. First, the connection is 
opened via a GET request for a protocol 
upgrade. Then the persistent TCP 
connection is opened, and the client 
and server can exchange data frames. 
One of the parties (server or client) 
eventually sends a control frame to 
signal that the communication is over 
and can be closed.

Begin by specifying the URL (host + resource) you wa
to access via WebSockets; note that this is an HTTP c
The host + resource form the subscription topic.

he browser appends the Origin header because WebSockets requests 
re subject to the same-origin policy (see CORS, section 6.1.5)

http://devices.webofthings.io/pi/sensors/pir
http://devices.webofthings.io/pi/sensors/pir
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Upgrade: websocket
Connection: Upgrade
[...]

What’s really interesting here is that the call to upgrade the protocol is issued via
HTTP. This means that a client wanting real-time data can always ask for a REST
resource to be delivered via WebSockets and fall back to pure HTTP in case the server
doesn’t support WebSockets. In the case of our devices.webofthings.io server, it
does support WebSockets and will reply with an acknowledgement of the protocol
upgrade, as shown in the following listing.

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
[...]
Upgrade: websocket
Access-Control-Allow-Origin: http://localhost:63342 

The full handshake between the client and the server offering values for the PIR sen-
sor via WebSockets is shown in figure 6.10.

Listing 6.14 Server response in a WebSockets handshake

Special headers asking to upgrade 
the protocol to “websocket”

The server replies with 
status code 101, 
meaning that it’s okay 
to switch the protocol.

The connection was upgraded 
to a WebSockets connection.

The cross-origin connection (CORS) 
for localhost:63342 is authorized.

1. Request an
upgrade to
WebSocket

2. Use the “wot”
sub-protocol
inside the
data frames

4. Upgraded to
WebSocket

3. All good!

Figure 6.10 A WebSocket protocol handshake in action as seen in the Network tool of Firefox. The 
client requests a protocol upgrade that the server accepts. From then on, the client and the server 
can send each other messages over the TCP connection, which will be kept open until the client or 
server decides to close it.
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Once the initial handshake takes place, the client and the server will be able to send
messages back and forth over the open TCP connection; these messages are not HTTP
messages but WebSockets data frames. Text and binary data frames can be sent in
either direction and simultaneously. The overhead of each WebSockets data frame is 2
bytes, which is small compared to the 871-byte overhead of an HTTP message meta-
data (headers and the like). Add to this the overhead of IP, TCP, and TLS (see chapter
9), and you have an additional 60–100 bytes per message! This makes WebSockets
communication a lot less bandwidth-consuming than HTTP.

 The syntax and semantics of the messages they exchange are open, but the Sec-
WebSocket-Protocol request header can be used to specify a protocol to use inside
the data frames (in this example, we use “wot,” which is a fictive sub-protocol). The
registered sub-protocols are managed by the Internet Assigned Numbers Authority
(IANA).14

WEBSOCKETS FOR THE WOT

What’s really interesting with WebSockets for the Web of Things is that they use stan-
dard internet and web technologies. Because they open a TCP connection over port
80, WebSockets aren’t blocked by firewalls and can traverse proxies. Then, because
they work in the browser and are bootstrapped via HTTP, they let us use a lot of the
principles we looked at when exploring HTTP and REST. First, the hierarchical struc-
ture of Things and their resources as URLs can be reused as-is for WebSockets. As you
saw in listing 6.14, we can subscribe to events for a Thing’s resource by using its corre-
sponding URL and asking for a protocol upgrade to WebSockets. Moreover, Web-
Sockets do not dictate the format of messages that are sent back and forth. This means
we can happily use JSON and give messages the structure and semantics we’ll work on
in chapter 8. 

 Moreover, because WebSockets consist of an initial handshake followed by basic
message framing layered over TCP, they can be directly implemented on many plat-
forms supporting TCP/IP—not just web browsers. They can also be used to wrap sev-
eral other internet-compatible protocols to make them web-compatible. One
example is MQTT, a well-known pub/sub protocol for the IoT that can be inte-
grated to the web of browsers via WebSockets. You’ll see that in more detail in the
next chapter.

 The permanent link created by WebSocket communication is interesting in an
Internet of Things context, especially when considering applications wanting to
observe—or subscribe to—real-world properties such as environmental sensors.
Finally, WebSockets offer all of these benefits with significantly reduced bandwidth
consumption when compared to HTTP polling, for example. The drawback, however,
is that keeping a TCP connection permanently open can lead to an increase in battery
consumption and is harder to scale than HTTP on the server side.

14 http://www.iana.org/assignments/websocket/websocket.xml

http://www.iana.org/assignments/websocket/websocket.xml
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6.2.6 The future: from HTTP/1.1 to HTTP/2

When used correctly, HTTP/1.1 is a great protocol to build web services, as you saw in
this chapter. But it dates back to 1999. Remember that time? Back then, we were using
Windows 95 and using wired phones to call each other, and the IoT term had just
been coined! We also mainly used HTTP to display hit counters, sitemaps, and ani-
mated “under construction” gifs, but not to display much real-time data and certainly
not to interact with devices.

 Clearly, the web has evolved tremendously since then, and the need for scalability,
performance, real-time messaging, and security has increased significantly. As a result,
the internet is about to fully embrace a revolution called IPv6 (see chapter 5) and
another called HTTP/2.15 The new protocol wasn’t designed specifically for the IoT,
but the creators of this new protocol clearly took into account some of the needs of
the IoT. HTTP/2 focuses on a number of improvements over HTTP/1.1 and can easily
run on your Pi!16

PERFORMANCE IMPROVEMENTS

This new version of HTTP allows multiplexing responses—that is, sending responses
in parallel. This fixes the head-of-line blocking problem of HTTP/1.x where only one
request can be outstanding on a TCP/IP connection at a time17. Furthermore, it fos-
ters clients and servers to use a single TCP connection on which requests and
responses are sent in streams.

 This is an interesting feature for the WoT because it leads to a more efficient use of
connections, which reduces the overhead of HTTP. It also leads to faster transmissions
and hence potential savings in terms of battery power required to communicate.18

MORE EFFICIENT FORMATS

HTTP/2 also introduces compressed headers using an efficient and low-memory com-
pression format,19 unlike GZIP, the most common compression format used on top
of HTTP. This reduces the size of each HTTP request and response. In addition,
whereas HTTP/1.1 was an ASCII protocol—that is, a protocol transmitting ASCII char-
acters—HTTP/2 uses binary framing, meaning that it transmits binary streams of data.
Binary protocols are more efficient to parse and more compact.

 All of this is particularly interesting for the “Web of resource-limited Things”
because it means the size of packets is significantly smaller, allowing for devices with
limited RAM to happily deal with HTTP/2.

15 http://http2.github.io
16 There are already several implementations of HTTP/2 for Node.js. Should you want to experiment with

HTTP/2 on your Pi, you should try the node-http2 module available on https://github.com/molnarg/
node-http2.

17 In HTTP/1.1 pipelining was proposed to fix this problem but it did not completely address the problem
and is hard to deploy; see https://devcentral.f5.com/articles/http-pipelining-a-security-risk-without-real-
performance-benefits.

18 Akamai developed a simple page that lets you experiment with these improvements: https://http2.akamai
.com/demo.

19 Called HPACK: Header Compression for HTTP/2. See: https://datatracker.ietf.org/doc/rfc7541/.

http://http2.github.io
https://devcentral.f5.com/articles/http-pipelining-a-security-risk-without-real-performance-benefits
https://devcentral.f5.com/articles/http-pipelining-a-security-risk-without-real-performance-benefits
https://github.com/molnarg/node-http2
https://github.com/molnarg/node-http2
https://http2.akamai.com/demo
https://http2.akamai.com/demo
https://datatracker.ietf.org/doc/rfc7541/
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SERVER PUSH

Finally, HTTP/2 introduces the notion of server push. Concretely, this means that the
server can provide content to clients without having to wait for them to send a
request. In the long run, widespread adoption of server push over HTTP/2 might even
remove the need for an additional protocol for push like WebSocket or webhooks.

HTTP/2 AND THE WEB OF THINGS

This overview of the features of HTTP/2 and what they mean for the Web of Things is
by no means complete, but it shows that the future of the web will make an even better
Web of Things. Interestingly enough, you won’t have to change your approach very
much: the implementation of HTTP will change, but not the API you build on top of it,
because the semantics of HTTP remain unchanged with HTTP/2. Thus, anything
you’ll learn in the reminder of this book will be applicable to HTTP/2 as well!

 The HTTP/2 specification was officially accepted in February 2015, and several
browsers such as Chrome, Firefox, and Opera have started supporting it. This means
that the standard is about to be globally deployed and will soon make the Web of
Things a lot more efficient! 

6.3 Summary 
■ When applied correctly, the REST architecture is an excellent substrate on

which to create large-scale and flexible distributed systems.
■ REST APIs are interesting and easily applicable to enable access to data and ser-

vices of physical objects and other devices.
■ Various mechanisms, such as content negotiation and caching of Hypermedia

as the Engine of Application State (HATEOAS), can help in creating great APIs
for Things.

■ A five-step design process (integration strategy, resource design, representation
design, interface design, and resource linking) allows anyone to create a mean-
ingful REST API for Things based on industry best practices.

■ The latest developments in the real-time web, such as WebSockets, allow creat-
ing highly scalable, distributed, and heterogeneous real-time data processing
applications. Devices that speak directly to the web can easily use web-based
push messaging to stream their sensor data efficiently.

■ HTTP/2 will bring a number of interesting optimizations for Things, such as
multiplexing and compression.

You’ve had an in-depth look at REST and HTTP, but if you’re hungry for more you
might want to have a look at the very good RESTful Web Services by Leonard Richardson
and Sam Ruby (O’Reilly Media, 2007)20 or browse to the WoT Publications page,21

where you’ll find a number of resources about using REST for real-world devices.

20 http://shop.oreilly.com/product/9780596529260.do
21 http://webofthings.org/publications/

http://shop.oreilly.com/product/9780596529260.do
http://webofthings.org/publications/
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 After being introduced to so much theory about REST, HTTP, and WebSockets, you
might be wondering how to actually implement all of this on your Things. Get ready—
this is what the next chapter will focus on. You’ll learn how to implement the patterns
you’ve learned about in this chapter so that you can access any device, regardless of
whether it’s internet-connected or not. Get your coding fingers ready; in the next
chapter you’ll need them a lot more! 



Implementing web Things
In the previous chapter, we focused on how to design a clean web API for physical
Things. This chapter builds on the principles you learned and describes how to
actually implement those APIs for real Things. 

 The next sections detail the three different ways to implement a web Thing API
so it deals with the implementation strategy. Here, we focus on the integration pat-
terns of Things to the web, answering the question, “Where do we actually imple-
ment the API of the Thing to integrate it to the web?” This question is important

This chapter covers
■ Exploring the three possible patterns to

implement web Things
■ Giving access to sensors and actuators via web

protocols
■ Building REST and WebSockets APIs on your Pi

with Node.js and Express
■ Building CoAP devices and connecting them to

the web
■ Using MQTT on your Pi to connect to the

EVRYTHNG API
175



176 CHAPTER 7 Implementing web Things
because not all Things are equal! As you saw in chapter 5, some Things can have inter-
net access and implement web protocols natively. But for other Things that are more
computationally or power-constrained, web protocols might be challenging.

7.1 Connecting devices to the web
The most straightforward integration pattern is the direct integration pattern. It can be
used for devices that support HTTP and TCP/IP and can therefore expose a web API
directly. This pattern is particularly useful when a device can directly connect to the
internet; for example, it uses Wi-Fi or Ethernet. Second, we explore the gateway integra-
tion pattern, where resource-constrained devices can use non-web protocols to talk to a
more powerful device (the gateway), which then exposes a REST API for those non-web
devices. This pattern is particularly useful for devices that can’t connect directly to the
internet; for example, they support only Bluetooth or ZigBee or they have limited
resources and can’t serve HTTP requests directly. Third, the cloud integration pattern
allows a powerful and scalable web platform to act as a gateway. This is useful for any
device that can connect to a cloud server over the internet, regardless of whether it uses
HTTP or not, and that needs more capability than it would be able to offer alone.

 Choosing one of these patterns is the first step in the web Things design process
presented in chapter 6. After that, we can apply steps 2–4 of the design process. Step 5
will be covered in greater detail in chapter 8:

1 Integration strategy—Choose a pattern to integrate Things to the internet and
the web. The patterns are presented in this chapter.

2 Resource design—Identify the functionality or services of a Thing, and organize
the hierarchy of these services.

3 Representation design—Decide which representations will be served for each
resource.

4 Interface design—Decide which commands are possible for each service, along
with which error codes.

5 Resource linking design—Decide how the different resources are linked to each
other.

The reference WoT server—webofthings.js

Over the next few chapters, you’ll learn how to implement a full-featured Web of Things
server that allows connecting any device to the web based on the WoT architecture
and concepts presented throughout this book. Each chapter will extend the code writ-
ten in the previous one, so you’ll get the most out of this book by reading the next
chapters in order. By doing so, at the end of the book you will have built from scratch
a complete, extensible, and secure framework to implement web Things.

If you can’t wait, you could also download the latest version of the reference implemen-
tation of the Web of Things: webofthings.js. You can find it on our  GitHuba  or  directly

 a https://github.com/webofthings/webofthings.js

https://github.com/webofthings/webofthings.js
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7.2 Direct integration pattern—REST on devices
The first and easiest way to implement a web Thing API is directly on a Thing, as
shown in figure 7.1. This requires the Thing to be accessible via internet protocols
(TCP/IP) and be able to host an HTTP server directly. Crazy idea, we hear you say?
Well, web servers aren’t that big and can easily fit on the smallest devices out there.
Some of the smallest HTTP servers can work with less than 50 bytes of RAM,1 TCP/IP
stack included, which makes it possible for even tiny and cheap 8-bit devices to speak
HTTP. This also means that your Pi—or any other Linux device you use—can defi-
nitely implement a web server to provide access to its resources through a REST API. 

 Although it’s possible to implement web protocols on the vast majority of embed-
ded devices, the direct integration pattern is the perfect choice when the device isn’t
battery powered and when direct access from clients such as mobile web apps is
required. A good example is home automation, where power is usually available and

(continued)

on npmb and use it in your own projects, applications, or devices. And please, do send
us your feedback and pull requests—we’d love for this framework to evolve way beyond
this book.

 b https://www.npmjs.com/package/webofthings

1 MiniWeb is an example of an extremely small web server; see http://miniweb.sourceforge.net/.

Web ThingsWeb Thing
clients

HTTP/WS
via Wi-Fi

HTTP/WS
via Wi-Fi

Wi-Fi router
HTTP/WS
via Wi-Fi

HTTP/WS
via Wi-Fi

WoT
API

WoT
API

Figure 7.1 Direct integration pattern. In this pattern the web Things are Wi-Fi–connected 
lamps that run an embedded HTTP server and therefore offer a Web of Things API directly. This 
allows web Thing clients, such as mobile applications or other web Things, to communicate with 
the lamps directly over HTTP. Image used with permission from http://model.webofthings.io.

http://miniweb.sourceforge.net/
http://model.webofthings.io
https://www.npmjs.com/package/webofthings
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low-latency local interactions are important—for instance, turning lights on/off. In
the rest of this section, we’ll show how to implement a WoT server directly on your Pi
so that it can directly speak web protocols and join the Web of Things club.

7.2.1 Creating a WoT server

Let’s begin by setting up a web server on your Pi. Node.js is primarily meant for build-
ing web applications, so you could easily build one from scratch just as you did in
chapter 3. But because we’re switching gears and want to implement a full-blown REST
API, a large number of Node.js frameworks can help us.2 For simplicity’s sake, we’ll use
the most popular: Express.3 

 The architecture of the server you’ll build is shown in figure 7.2. It revolves around
a central model that plugins can update and observe. Furthermore, all the sensors and
actuators are available as web resources thanks to the use of the Express framework.

 We’ll deploy this code on the Pi, but if you don’t yet own a Pi, don’t worry; with a
few exceptions, you’ll be able to run all the examples in this chapter on your com-
puter. But it’ll be more fun on a Pi. Just saying!4

2 A number of the most popular web/REST frameworks for Node.js are listed here: http://nodeframe
work.com/.

3 http://expressjs.com/
4 Check out the special deals offered by our partners: http://book.webofthings.io. 

Hardware
layer

Node
libraries

Plugins

Core data
model

Servers

Main
application

GPIO

onoff dht22 coap

ledsPlugin.js pirPlugin.js DHT22SensorPlugin.js coapPlugin.js

Model

wot-server.js

model.js

websockets.jshttp.jsExpress

Figure 7.2 The components architecture of our WoT server: The servers use the Express framework. 
The rest of the system is built around a model that plugins can observe and change. The plugins are 
built on other Node libraries, providing access to physical resources via GPIOs.

http://nodeframework.com/
http://nodeframework.com/
http://expressjs.com/
http://book.webofthings.io
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EXPRESS: A NODE.JS WEB FRAMEWORK 

Express is much more than a web server; it’s a complete framework that handles pretty
much everything modern web applications need, from RESTful APIs to HTML and CSS
templating engines, database connectors, cookie management, and even social net-
work integration. Express also has a large developer community and a variety of
plugins.

 Although Express will run smoothly on the Pi and most other Linux devices, it’s
worth pointing out that Express isn’t the lightest way to implement web APIs for IoT
devices. But as you’ll see on numerous occasions, such a flexible framework allows us to
quickly extend our web Thing APIs and implement the various patterns we’ll encounter.

 We’ll now show how to create a WoT server based on Express.5 The project’s struc-
ture is shown in the following listing. You could reproduce this structure and install
Express via NPM. Alternatively, you could clone the project from the book’s GitHub
repository,6 which is available in the folder chapter7-implementation/part1-2-direct-
gateway/.

wot-pi
—— middleware

—— converter.js
—— plugins

—— external
—— coapPlugin.js

—— internal
—— DHT22SensorPlugin.js
—— ledsPlugin.js
—— pirPlugin.js

—— public
—— websocketsClient.html

—— resources
—— model.js
—— resources.json

—— routes
—— actuators.js
—— sensors.js
—— things.js

—— servers
—— coap.js
—— http.js
—— websockets.js

—— utils
—— utils.js

—— package.json
—— wot-server.js

5 Although you can certainly run these commands directly on the Pi, it’s easier and more practical to develop
applications on your laptop or desktop computer and then pull the code via Git on the Pi, as explained in
chapter 4.

6 See http://book.webofthings.io.

Listing 7.1 WoT server for Pi project directory structure

http://book.webofthings.io
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7.2.2 Resource design

You now have all the elements in place to implement your API, so let’s start with the
first step of our process: the resource design. You first need to consider the physical
resources on your device and map them into REST resources. Starting from the Pi you
configured in chapter 4, your device should have at least an LED, a passive infrared
(PIR) sensor and possibly a temperature sensor, and a humidity sensor. If you don’t
have all these sensors, don’t worry. We’ll show you how to simulate them as well! These
sensors and actuators can be mapped into the resource tree shown in figure 7.3.

STEP 1: CREATE THE RESOURCE MODEL

You can now map this tree into a JSON file that your application will use to expose
your desired URL structure. Create or open the resources/resources.json file that con-
tains the object shown in the next listing.

{ 
  "pi": { 
    "name": "WoT Pi", 
    "description": "A simple WoT-connected Raspberry PI for the WoT book.", 
    "port": 8484, 
    "sensors": { 

"temperature": { 
"name": "Temperature Sensor", 
"description": "An ambient temperature sensor.", 
"unit": "celsius", 
"value": 0, 
"gpio": 12 

}, 

Listing 7.2 /resources/resources.json: JSON model of the Pi resources

Actuators
/actuators

LEDs
/leds

Sensors
/sensors

Passive infrared sensor
/pir

Temperature sensor
/temperature

Humidity sensor
/humidity

Root URL of your Pi
localhost:8484/pi

/1

/2

Figure 7.3 The resource tree of your Pi with a number of sensors and actuators and their 
hierarchy. Each resource gets a URL formed by following the path to this resource. As an 
example, the URL of the passive infrared sensor would be http://localhost:8484/pi/sensors/pir. 

http://localhost:8484/pi/sensors/pir
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"humidity": { 
"name": "Humidity Sensor", 
"description": "An ambient humidity sensor.", 
"unit": "%", 
"value": 0, 
"gpio": 12 

}, 
"pir": { 
"name": "Passive Infrared", 
"description": "A passive infrared sensor. 
    When 'true' someone is present.", 
"value": true, 
"gpio": 17 

} 
    }, 
    "actuators": { 

"leds": { 
"1": { 
  "name": "LED 1", 
  "value": false, 
  "gpio": 4 
}, 
"2": { 
  "name": "LED 2", 
  "value": false, 
  "gpio": 9 
} 

} 
    } 
  } 
} 

Next, you create the resources/model.js file, which imports our JSON model as follows:

var resources = require('./resources.json');
module.exports = resources;

This file loads the JSON model of our Pi from the resources.json file, and exports will
make this object available as a node module that you can use in your application.

STEP 2: CREATE THE EXPRESS ROUTES

You can now bind these resources to URLs that your web server will reply to. In
Express and many other web frameworks, the URL of a resource is defined by a route.
You define those routes in two files available in the routes/ folder (actuators.js and
sensors.js), which are shown in the next two listings.

var express = require('express'),
  router = express.Router(),    
  resources = require('./../resources/model');

Listing 7.3 /routes/sensors.js: routes for sensors 

Require and instantiate an 
Express router to define 
the path to our resources.
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router.route('/').get(function (req, res, next) {   
  res.send(resources.pi.sensors);    
});

router.route('/pir').get(function (req, res, next) { 
  res.send(resources.pi.sensors.pir);
});

router.route('/temperature').get(function (req, res, next) {  
  res.send(resources.pi.sensors.temperature);
});

router.route('/humidity').get(function (req, res, next) {  
  res.send(resources.pi.sensors.humidity);
});

module.exports = router;  

STEP 3: CREATE AN EXPRESS APPLICATION

Now that the routes are ready, you need to load them inside an HTTP server, which is
done in the servers/http.js file. The content of this file is shown in the following list-
ing and is in essence an HTTP server wrapped inside the Express framework. 

var express = require('express'),
  actuatorsRoutes = require('./../routes/actuators'),
  sensorRoutes = require('./../routes/sensors'),
  resources = require('./../resources/model'), 
  cors = require('cors'); 

var app = express(); 

app.use(cors()); 

app.use('/pi/actuators', actuatorsRoutes); 
app.use('/pi/sensors', sensorRoutes);

app.get('/pi', function (req, res) { 
  res.send('This is the WoT-Pi!')
});

module.exports = app;

You need one more file before you can test your implementation: wot-server.js, shown
in the next listing. This is the entry point of your WoT Pi server and is in charge of
starting the servers with the right configuration.

var httpServer = require('./servers/http'), 
 resources = require('./resources/model');

Listing 7.4 /servers/http.js: Express application 

Listing 7.5 /wot-server.js: application entry point 

Create a new route for a GE
request on all sensors and 
attach a callback function.
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.1.5).

Binds your routes to the Express 
application; bind them to /pi/
actuators/... and /pi/sensors/...

Creates a default 
route for /pi

Load the HTTP server 
and the model.
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 var server = httpServer.listen(resources.pi.port, function () { 
  console.info('Your WoT Pi is up and running on port %s', 

resources.pi.port); 
});

You can now test your server from your PC by starting the app via your terminal as
usual.7 Once it’s started, you’ll be able to access the resources with your browser—for
example, the temperature sensor at http://localhost:8484/pi/sensors/temperature
or the list of actuators at http://localhost:8484/pi/actuators. In both cases, you’ll get
the JSON payload corresponding to your request. Obviously, if you run the code on
your Pi, replace localhost with the IP address or name (raspberrypi.local) of your Pi.

STEP 4: BIND THE SENSORS TO THE SERVER

This is all nice, but currently all we return are bits of the JSON model in listing 7.2, and
the real-world data—the actual temperature—is missing! You need to put some sensor
data from your Pi into the server. You’ll do this by creating a number of plugins, one
per sensor or actuator. Each sensor plugin should update the model each time new
data is read from the sensor. A sensor plugin should at least have the functions shown
in the following listing. All plugins are inside the plugins/ directory. The implementa-
tion of the PIR sensor plugin is shown in the next listing and is essentially an extension
of the pir.js code you wrote in chapter 4. 

var resources = require('./../../resources/model');

var interval, sensor;
var model = resources.pi.sensors.pir;
var pluginName = resources.pi.sensors.pir.name;
var localParams = {'simulate': false, 'frequency': 2000};

exports.start = function (params) { 
  localParams = params;
  if (localParams.simulate) {
    simulate();
  } else {
    connectHardware();
  }
};

exports.stop = function () { 
  if (localParams.simulate) {
    clearInterval(interval);
  } else {
    sensor.unexport();
  }
  console.info('%s plugin stopped!', pluginName);
};

7 After you run an npm install in the wot-pi/ folder, run node wot-server.js or nodemon wot-
server.js, as shown in chapter 3.

Listing 7.6 /plugins/internal/pirPlugin.js: PIR sensor plugin 

Start the HTTP server by
invoking listen() on the

Express application.
Once the server is started, 
the callback is invoked.

Starts and stops the plugin, which 
should be accessible from other 
Node.js files, so you export them

http://localhost:8484/pi/sensors/temperature
http://localhost:8484/pi/actuators
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function connectHardware() { 
  var Gpio = require('onoff').Gpio;
  sensor = new Gpio(model.gpio, 'in', 'both'); 
  sensor.watch(function (err, value) { 
    if (err) exit(err);
    model.value = !!value;
    showValue();
  });
  console.info('Hardware %s sensor started!', pluginName);
};

function simulate() { 
  interval = setInterval(function () {
    model.value = !model.value;
    showValue();
  }, localParams.frequency);
  console.info('Simulated %s sensor started!', pluginName);
};

function showValue() {
  console.info(model.value ? 'there is someone!' : 'not anymore!');
};

The code for the temperature and humidity sensor is shown in the next listing, except
for one new function: connectHardware(), which uses the node-dht-sensor library
introduced in chapter 4.

[...]
function connectHardware() {
 var sensorDriver = require('node-dht-sensor');   
 var sensor = {
   initialize: function () {

return sensorDriver.initialize(22, model.temperature.gpio);
   },
   read: function () {

var readout = sensorDriver.read();   
model.temperature.value = parseFloat(readout.temperature.toFixed(2));
model.humidity.value = parseFloat(readout.humidity.toFixed(2));  
showValue();

setTimeout(function () {
sensor.read();   

}, localParams.frequency);
    }
  };
[...]

The code for the two plugins clearly shares a number of common functions, so as an
exercise you might want to extract the common features into a JavaScript prototype. If

Listing 7.7 /plugins/internal/DHT22SensorPlugin.js: temperature and humidity sensor
plugin

Require and connect the actual 
hardware driver and configure it

figure
IO pin
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Initialize the driver for DHT22 
GPIO 12 (as specified in the mo

Fetch the
alues from
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Update the model with the new
temperature and humidity values; note

that all observers will be notified.

Because the driver doesn’t provide interrupts, you poll the
sensors for new values on a regular basis with a regular 
timeout function and set sensor.read() as a callback.
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you don’t know how to do that, don’t worry; we’ll illustrate this when we improve the
code in chapter 8. 

 You can now install your plugins on your server by requiring them from the wot-
server.js file and starting each plugin with the right parameters, as shown in the follow-
ing listing.

[...]
var ledsPlugin = require('./plugins/ledsPlugin'), 
  pirPlugin = require('./plugins/pirPlugin'), 
  dhtPlugin = require('./plugins/DHT22SensorPlugin'); 

pirPlugin.start({'simulate': true, 'frequency': 2000}); 
dhtPlugin.start({'simulate': true, 'frequency': 10000}); 
[...]

Run your server again and open the humidity sensor page at http://localhost:8484/
pi/sensors/humidity. Refresh the page several times; this should give you different
values each time. 

TEST IT WITH REAL HARDWARE ON YOUR PI

Simulating sensors is nice, but using real ones is way nicer! To use real sensors on your
Pi, you first need to install the libraries that connect the sensors. The problem is that
these libraries aren’t supported on non-IoT platforms like your laptop, so if you add
the dependencies via npm install --save, you won’t be able to install your code on
your PC anymore. Don’t worry: there’s a way out! NPM allows you to set an optional-
Dependencies object for the package.json file. The idea is that npm install won’t fail
if a dependency in optionalDependencies can’t be installed. Go ahead and add the
following code in your package.json file; the first dependency supports the PIR sensor
and LEDs, and the second one supports the temperature and humidity sensor (if you
have one):

  "optionalDependencies": {
    "onoff": "^1.0.4",
    "node-dht-sensor": "^0.0.8"
  }

Finally, run npm install on your Pi to install these dependencies. Now modify the
parameters of the plugins you want to enable with {'simulate': false} and run
your application on the Pi;8 this will connect to physical drivers. Your Pi is now expos-
ing its real sensor data and actuators to the world via a web API. You can access them

Listing 7.8 Integrating the plugins to wot-server.js

8 If you did set up the temperature and humidity sensor, you’ll need to run the code with sudo: sudo node
wot-server.js.

Require all the sensor 
plugins you need.

Start them with a parameter object; here you start them
on a laptop so you activate the simulation function.

http://localhost:8484/pi/sensors/humidity
http://localhost:8484/pi/sensors/humidity
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via REST using the address of your Pi, for example, http://raspberrypi.local:8484/pi/
sensors/pir.

7.2.3 Representation design

The next step of the design process is the representation design. REST is agnostic of a par-
ticular format or representation of the data. We mentioned that JSON is a must to
guarantee interoperability, but it isn’t the only interesting data representation avail-
able. In this section you’ll add support for two more. You’ll add HTML support
because this allows you to browse your Pi and discover its resources in a human-
friendly way. For this first step, you’ll use a simple JSON-to-HTML library called
json2html.

 While you’re at it, let’s also add support for MessagePack, a more compressed and
binary alternative to JSON that was briefly introduced in chapter 6. MessagePack can
easily be mapped to JSON but is more compact than JSON, which makes it interesting
for resource-constrained Things that communicate over low-bandwidth networks.
There are libraries for encoding and decoding MessagePack in most popular pro-
gramming languages, so adding support for it in your server is merely a matter of
installing the msgpack5 module for Node.

IMPLEMENTING A REPRESENTATION CONVERTER MIDDLEWARE

There are several ways of supporting other representations in Express, but we propose
a modular way based on the middleware pattern. Many Node libraries, including
Express, support the idea of chaining functions that have access to the request (req)
response (res) objects in a request-response cycle. This pattern allows for extensibility
while keeping the code clean and modular. In essence, a middleware can execute
code that changes the request or response objects and can then decide to respond to
the client or call the next middleware in the stack using the next() function. The
chain of middleware we’ll implement here is shown in figure 7.4.

 The stub of a typical middleware looks like this:

function myMiddleware(req, res, next) {
  // do something with the request
  // AND/OR add something to the response
  res.send("something");
  next();
}

We use this pattern to implement a representation converter supporting MessagePack
and HTML representations. First, install the two libraries via NPM (npm install node-
json2html msgpack5). The middleware code is located in middleware/converter.js, as
shown in listing 7.9. Essentially, our representation converter middleware will imple-
ment the content negotiation pattern described in chapter 6, where it looks for the
Accept header in a request and tries to deliver a representation in the format the cli-
ent asked for. If it doesn’t recognize the format, it will return JSON by default. 

http://raspberrypi.local:8484/pi/sensors/pir
http://raspberrypi.local:8484/pi/sensors/pir
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var msgpack = require('msgpack5')(),
  encode = msgpack.encode,   
  json2html = require('node-json2html');

module.exports = function() {   
  return function (req, res, next) {
    console.info('Representation converter middleware called!');

    if (req.result) {   
if (req.accepts('json')) { 
console.info('JSON representation selected!');
res.send(req.result);
return;

}

if (req.accepts('html')) {
console.info('HTML representation selected!');
var transform = {'tag': 'div', 'html': '${name} : ${value}'};

 res.send(json2html.transform(req.result, transform));   
 return;
 }

 if (req.accepts('application/x-msgpack')) {
console.info('MessagePack representation selected!');
res.type('application/x-msgpack');
res.send(encode(req.result));   
return;

}

console.info('Defaulting to JSON representation!');
res.send(req.result);   
return;

Listing 7.9 /middleware/converter.js: implementing representation middleware 
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    }
    else {

next(); 
    }
  }
};

Now that the middleware is ready, you need to modify the routes of your server so they
call the next middleware in the chain, the representation converter, rather than
answering the request directly. You can easily implement this inside the two route files,
sensors.js and actuators.js, by replacing every res.send(resource) with req.result =
resource and next(). The following listing shows the changes for the sensor’s routes,
so make sure you apply those changes to the actuator’s routes as well.

[...]
router.route('/').get(function (req, res, next) {
  req.result = resources.pi.sensors;   
  next();   
});

router.route('/pir').get(function (req, res, next) {
  req.result = resources.pi.sensors.pir;
  next();
});

router.route('/temperature').get(function (req, res, next) {
  req.result = resources.pi.sensors.temperature;
  next();
}); 
[...]

Finally, you need to add the middleware to the Express application so that it gets called
in the middleware chain. In http.js, first require the middleware with converter =
require('./../middleware/converter') and add it to the chain by calling
app.use(converter()). Because your converter middleware responds to the client,
make sure you add it last, after app.get('pi'), or it will bypass any other middleware.
Test your new server on your Pi (or PC) from your browser: http://raspberrypi
.local:8484/pi/sensors/pir. You should now see a minimalist HTML representation of
the PIR sensor. Now use cURL to request other types of representations by setting the
Accept header to the desired MIME type (application/json for JSON and applica-
tion/x-msgpack for MessagePack) as shown here:

curl -i -H "Accept: application/json" \
-X GET 'http://raspberrypi.local:8484/pi/sensors/pir'

curl -i -H "Accept: application/x-msgpack" \
-X GET 'http://raspberrypi.local:8484/pi/sensors/pir'

Listing 7.10 Calling the next middleware in sensors.js

If no result was present in req.result, 
there’s not much you can do, 
so call the next middleware.

Assign the results to a new
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middleware to middleware.

Call the next middleware; 
the framework will ensure 
the next middleware gets 
access to req (including the 
req.result) and res.

http://raspberrypi.local:8484/pi/sensors/pir
http://raspberrypi.local:8484/pi/sensors/pir
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Your server is now capable of serving three different representations—JSON, HTML,
and MessagePack—for all the resources it offers. All this thanks to a middleware that’s
20 lines long! How’s that for an illustration of the power of open web standards and
Node.js?

7.2.4 Interface design

So far so good, but you’re only able to GET resources from your Pi over HTTP. What
about the other verbs like PUT and POST? What about HTTP status codes? What about
using WebSockets to subscribe to sensor data? This is the goal of the interface design step.

ADDING A BODY PARSER 

The GET verb is enough for sensors because you only read them, but what if you want
to change the actuators—for example, turning on/off an LED or changing its color?
The first step is to inform Express that you’re happy to receive JSON payloads from cli-
ents. Adding an HTTP body parser to the middleware chain does just this. In http.js
require the body-parser module: bodyParser = require('body-parser'). Also add
the middleware at the beginning of the chain. Why the beginning? You want to parse
the body of the HTTP message first to make it available to all other middleware:
app.use(bodyParser.json()).

SUPPORTING OTHER HTTP VERBS

Your server can now handle incoming JSON messages as well, so let’s add support to
update the state of the Pi LED using a PUT request. To add support for PUT, you need to
extend again the routes in actuators.js. Transform the route for /leds/:id as shown
in the next listing.

[...]
router.route('/leds/:id').get(function (req, res, next) { 
  req.result = resources.pi.actuators.leds[req.params.id];
  next();
}).put(function(req, res, next) { 
  var selectedLed = resources.pi.actuators.leds[req.params.id];
  selectedLed.value = req.body.value; 
 console.info('Changed LED %s value to %s', req.params.id, selectedLed.value);

  req.result = selectedLed;
  next();
});

You can now update the state of the LED by running a PUT request on the LED
resource with the appropriate JSON payload. In cURL this looks like the following:

curl -i -H "Content-Type: application/json" \
-H "Accept: application/json" \
-X PUT 'http://localhost:8484/pi/actuators/leds/1' \
-d '{"value":true}'

Listing 7.11 Adding PUT support for LEDs in /routes/actuators.js
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If you’re successful, you’ll see the following in the Node console: Changed LED 1

value to true.

BINDING ACTUATORS TO THE SERVER

This is all nice but it actually only updates your model; it doesn’t actuate the real
world! To change this behavior you need to write an LED plugin that has a similar
structure to the sensor plugins but with a notable exception: it has an observe() func-
tion. observe() is needed for actuator plugins, and its goal is to observe changes in
the model and report them to the physical world. 

 The core of this implementation is using the Object.observe() function.9 This
allows you to asynchronously observe the changes happening to an object by register-
ing a callback to be invoked whenever a change in the observed object is detected:

Object.observe(obj, function(changes) {
  console.log(changes);
});

Let’s use this feature to implement your LED plugin. It uses the on/off library to
change the state of the GPIO the LED is connected to. Note that to keep things simple,
this code supports only one LED (LED #1), but feel free to extend it to support more
as an exercise. Inside observe you register a callback to be triggered whenever the
model of your LEDs changes. It is inside this callback that you actually change the state
of the GPIO, as shown in the next listing.

[...] 
exports.start = function (params) {
  localParams = params;
  observe(model);   

  if (localParams.simulate) {
    simulate();
  } else {
    connectHardware();
  }
};

exports.stop = function () {
  if (localParams.simulate) {
    clearInterval(interval);
  } else {
    actuator.unexport();

9  Note that this function has been supported by Node since version 0.11.13 and is available in the current Node
LTS v4.X we use for this book, but it could be removed in the future LTS, so make sure you use node 4.X LTS
for this to work. See http://www.infoq.com/news/2015/11/object-observe-withdrawn.

Listing 7.12 /plugins/internal/ledsPlugin.js: LED plugin

Observe the model
for the LEDs.

http://www.infoq.com/news/2015/11/object-observe-withdrawn
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  }
  console.info('%s plugin stopped!', pluginName);
};

function observe(what) {
  Object.observe(what, function (changes) {
    console.info('Change detected by plugin for %s...', pluginName);
    switchOnOff(model.value);   
  });
};

function switchOnOff(value) {
  if (!localParams.simulate) {
    actuator.write(value === true ? 1 : 0, function () { 

console.info('Changed value of %s to %s', pluginName, value);
    });
  }
};

function connectHardware() {
  var Gpio = require('onoff').Gpio;
  actuator = new Gpio(model.gpio, 'out');   
  console.info('Hardware %s actuator started!', pluginName);
};
[...]

Add this plugin to the list of initialized plugins in wot-server.js and set the simulation
to false: ledsPlugin.start({'simulate': false}). Run it on your Pi and try the last
cURL request again against the URL of your Pi; this time the LED should turn on!
Yeah, we know. It’s just an LED, but, oh my, this feels so good. Welcome to the IoT!

7.2.5 Pub/sub interface via WebSockets

The last part in our interface design step is to support publish/subscribe via WebSock-
ets. Our goal is to offer the ability to subscribe via WebSockets on all our resources by
a simple protocol upgrade to WebSockets.

 There are several implementations of WebSockets for Node. The most complete
and best-known one is probably Socket.io, which is more than a WebSocket server. It
also supports fallbacks for clients that don’t support WebSockets; for example, long
polling as shown in chapter 6. We suggest you have a closer look at Socket.io, but for
the server of our Pi we’ll choose a pure and high-performing WebSockets implemen-
tation called WS.

 The implementation of the WS integration is illustrated in figure 7.5. You create a
WebSocket server and attach a listener to the main HTTP server of Express to listen
for protocol upgrade requests to WebSockets; see chapter 5. You then take these
upgrade requests and use the URL of the request to observe the corresponding
resource in the model. Whenever a change is detected, you propagate the change to
the client via the open WebSockets connection.
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To integrate this into your WoT server on the Pi, first install the WS module (npm install
--save ws). Then implement the WebSocket server as shown in the next listing.

[...]
exports.listen = function(server) {
  var wss = new WebSocketServer({server: server}); 
  console.info('WebSocket server started...');
  wss.on('connection', function (ws) { 
    var url = ws.upgradeReq.url;
    console.info(url);
    try {

Object.observe(selectResouce(url), function (changes) { 
ws.send(JSON.stringify(changes[0].object), function () {
});

})
    }
    catch (e) { 

console.log('Unable to observe %s resource!', url);
    };
  });
};

function selectResouce(url) { 
  var parts = url.split('/');
  parts.shift();
  var result = resources;
  for (var i = 0; i < parts.length; i++) {
    result = result[parts[i]];
  }
  return result;
}

Listing 7.13 /server/websockets.js: WebSockets server 
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The last step to enable the support for WebSockets is to initialize the WebSockets
server after starting the HTTP server in wot-server.js. Modify the call to listen() to
include a callback that starts the WebSockets server, as shown in the following listing.

var httpServer = require('./servers/http'),
  wsServer = require('./servers/websockets'),
  resources = require('./resources/model');
[...]
var server = httpServer.listen(resources.pi.port, function () {
  console.log('HTTP server started...');
  wsServer.listen(server);
  console.info('Your WoT Pi is up and running on port %s', 

resources.pi.port);
})

That’s it! You can now subscribe to all the resources on the web Thing with WebSockets
and be informed whenever the state of a resource changes. You can use any Web-
Sockets client—for example, a web page, such as the example you saw in chapter 2. Try
adapting it to subscribe to your WoT Pi, or you can use the /public/websockets-
Client.html file in any recent browser. When you open this file in your browser, you’ll
see the WebSockets messages in the JavaScript console of your developer tools, as
shown in figure 7.6.

Listing 7.14 Enabling the WebSockets server in wot-server.js

Subscribing to 
/temperature 
via a WS 
protocol upgrade

Incoming temperature
updates pushed from 
the Pi via WebSockets

Figure 7.6 Subscribing to temperature updates via WebSockets using a simple WebSockets client in Firefox. 
The upper part shows the protocol upgrade process and the lower part the incoming messages pushed from the 
Thing (a Pi here) directly to the browser-based client.
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7.2.6 Summary—direct integration pattern

In this section, we showed how to rapidly build a complete Web of Things API that not
only can run on actual devices and talk to actual sensors and actuators, but also can
support many advanced capabilities, such as content negotiation and push support via
WebSockets. But there’s a whole range of devices where you won’t have the luxury of
running Node natively. A solution for these cases is described in the next section,
where we provide another pattern for non-HTTP/WebSockets devices: the gateway
integration pattern. 

7.3 Gateway integration pattern—CoAP example
In the previous section, you transformed your Pi into a web Thing by creating an
HTTP and WebSockets API for its sensors. This worked well because your Pi was not
battery powered, had access to a decent bandwidth (Wi-Fi/Ethernet), and had more
than enough RAM and storage for Node. But not all devices are so lucky. Native sup-
port for HTTP/WS or even TCP/IP isn’t always possible or even desirable. For battery-
powered devices, Wi-Fi or Ethernet is often too much of a power drag, so they need to
rely on low-power protocols such as ZigBee or Bluetooth instead. Does it mean those
devices can’t be part of the Web of Things? Certainly not, as illustrated in figure 7.7.

 Such devices can also be part of the Web of Things as long as there’ s an intermedi-
ary somewhere that can expose the device’s functionality through a WoT API like the
one we described previously. These intermediaries are called application gateways (we’ll
call them WoT gateways hereafter), and they can talk to Things using any non-web
application protocols and then translate those into a clean REST WoT API that any
HTTP client can use. Some gateways can also do more than simply translate across pro-
tocols. They can add a layer of security or authentication, aggregate and store data
temporarily, expose semantic descriptions for Things that don’t have any, and so on. 

 To better understand what a WoT gateway is and what it can do for non-web devices,
let’s look at a concrete example where we expose a CoAP device using an HTTP and
WebSockets API. As you’ve seen before, CoAP is an interesting protocol based on REST,
but because it isn’t HTTP and uses UDP instead of TCP, a gateway that translates CoAP
messages from/to HTTP is needed. It’s therefore ideal for device-to-device communi-
cation over low-power radio communication, but you can’t talk to a CoAP device from

The nerd corner—I want better JavaScript!

The WoT server we built in this section was kept extremely simple in terms of the
code to ensure everyone could follow along. The code could be made a lot cleaner
and more reusable by applying a number of JavaScript good practices and patterns.
If you know JavaScript, a good exercise is to modularize the code; for instance, by
starting with prototypes to factorize a large chunk of plugin code. In chapter 8 you’ll
see an improved version of the framework we presented here, but don’t hesitate to
build your own right now!
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a JavaScript application in your browser without installing a special plugin or browser
extension. Let’s fix this by using your Pi as a WoT gateway to CoAP devices. 

7.3.1 Running a CoAP server

Start by creating a simple CoAP resource. For the sake of simplicity—and to keep your
budget in check—you’ll simulate a CoAP device on your computer. Of course, you
could also buy a resource-constrained device such as an Arduino Uno and install CoAP
on it.10 

 There are a number of libraries for CoAP on Node but our favorite is coap (run
npm install coap to install it). An implementation of a minimal CoAP server is pro-
vided in /servers/coap.js, shown in the following listing.

var coap = require('coap'),  
  utils = require('./../utils/utils');

var port = 5683;
coap.createServer(function (req, res) {
  console.info('CoAP device got a request for %s', req.url);
  if (req.headers['Accept'] != 'application/json') {
    res.code = '4.06'; 
    return res.end();
  }

10 For instance, using the microcoap implementation available here: https://github.com/1248/microcoap.

Listing 7.15 coap.js: a simple CoAP server
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Figure 7.7 Gateway integration pattern. In this case, the web Thing can’t directly offer a web API 
because the device might not support HTTP directly. An application gateway is working as a proxy for 
the Thing by offering a web API in the Thing’s name. This API could be hosted on the router in the case 
of Bluetooth or on another device that exposes the web Thing API; for example, via CoAP. 

Require the Node.js CoAP 
module you installed.

You only serve JSON, so you reply with
a 4.06 (= HTTP 406: Not acceptable).

https://github.com/1248/microcoap
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  switch (req.url) { 
    case "/co2":

respond(res, {'co2': utils.randomInt(0, 1000)}); 
break;

    case "/temp":
respond(res, {'temp': utils.randomInt(0, 40)});
break;

    default:
respond(res);

  }
}).listen(port, function () {
  console.log("CoAP server started on port %s", port)
});

function respond(res, content) { 
  if (content) {
    res.setOption('Content-Format', 'application/json');
    res.code = '2.05';
    res.end(JSON.stringify(content));
  } else {
    res.code = '4.04';
    res.end();
  }
};

You’ll likely realize that this code isn’t very different from what you’ve learned in the
last two chapters. That’s because CoAP is heavily inspired by HTTP and REST but
adapted for the requirements of low-power embedded systems. Because CoAP is using
UDP and not HTTP/TCP, you can’t access these resources directly from your browser
via a CoAP URI: coap://localhost:5683/co2. 

 But you can use an excellent plugin for Firefox called Copper.11 Once the plugin is
installed, start the CoAP server (node coap.js in the servers directory) and you’ll be
able to access the resources you just created by typing the CoAP URI; for example,
coap://localhost:5683/co2, in Firefox’s address bar.

7.3.2 Proxying CoAP via a gateway

The next step is to proxy CoAP requests to HTTP so that you can access CoAP devices
from web browsers. Here you’ll extend your WoT gateway to provide access to CoAP
devices via your Pi.

 Transforming your Pi into a WoT gateway requires two simple steps. First, you cre-
ate a CoAP plugin, which is essentially a CoAP client creating a new device in our
model. Second, you create routes for the resources the CoAP device has to offer. The
code for the CoAP plugin is shown in the next listing. Because most of the code is just
like the other temperature/humidity sensor plugins, we focus on what’s different.

11 https://addons.mozilla.org/en-US/firefox/addon/copper-270430/

le the
ferent
urces
ested.

The CO2 resource; 
generate a random v
for it and respond.

Start the CoAP server 
on port 5683 (CoAP’s 
default port).

Send the JSON content 
back or reply with a 4.04 
(= HTTP 404: Not found).

https://addons.mozilla.org/en-US/firefox/addon/copper-270430/
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[...]
function connectHardware() {
  var coap = require('coap'),
    bl = require('bl'); 

  var sensor = {
    read: function () { 

coap.request({ 
  host: 'localhost',
  port: 5683,
  pathname: '/co2',
  options: {'Accept': 'application/json'}
})
.on('response', function (res) { 
  console.info('CoAP response code', res.code);
  if (res.code !== '2.05')
    console.log("Error while contacting CoAP service: %s", 

res.code);
  res.pipe(bl(function (err, data) { 
    var json = JSON.parse(data);
    me.value = json.co2;
    showValue();
  }));
})
.end();

    }
  };
  pollInterval = setInterval(function () { 
    sensor.read();
  }, localParams.frequency);
};

function configure() { 
  utils.addDevice('coapDevice', 'A CoAP Device',
    'A CoAP Device',
    {

'co2': {
'name': 'CO2 Sensor',
'description' : 'An ambient CO2 sensor',
'unit': 'ppm',
'value': 0

}
    });
  me = resources.things.coapDevice.sensors.co2;
  pluginName = resources.things.coapDevice.name;
}; [...]

Then you need to add the routes for the resources for your CoAP device. To keep it
simple, you connect only a CO2 sensor, but feel free to extend this to support any
other resources you want. You need to add these routes in /routes/things.js:

router.route('/coapDevice/sensors/co2').get(function (req, res, next) {
  req.result = resources.things.coapDevice.sensors.co2
  next();
}); 

Listing 7.16 /plugins/external/coapPlugin.js: a simple CoAP plugin
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You load the router as a middleware in /servers/http.js, binding it to /things. This
means the CoAP device will be accessible on /things/coapDevice/sensors/co2,
which makes sense because it’s a Thing managed by the Pi, which acts as a proxy, not
the Pi itself. Finally, you require and start the CoAP plugin in wot-server.js:

var coapPlugin = require('./plugins/external/coapPlugin');
coapPlugin.start({'simulate': false, 'frequency': 10000});

If everything works, you should be able to access the simulated CoAP device through
the Pi gateway using HTTP. First, start the CoAP server on your PC (node coap.js) and
then the gateway on your Pi (node wot-server.js), and finally, try to run the follow-
ing cURL:

curl -i -H "Accept: application/x-msgpack" \
-X GET 'http://raspberrypi.local:8484/things/coapDevice/sensors/co2'

You should get the sensor readings as a MessagePack representation. You can also try
to use a snippet of JavaScript that connects to the CoAP CO2 sensor via WebSockets
(for example, use the file /public/websocketsClient.html) or even point your browser
at http://raspberrypi.local:8484/things/coapDevice/sensors/co2. All of these will
work, even if the CoAP device can’t serve MessagePack or HTML representations and
can’t speak WebSockets. This is the gateway pattern in action: it seamlessly integrates the
CoAP device to the web of browsers! 

 This was a very short introduction to CoAP. If you want to learn more about this
young and growing web-inspired protocol, start by exploring the CoAP technology
portal.12

7.3.3 Summary—gateway integration pattern

For some devices, it might not make sense to support HTTP or WebSockets directly,
or it might not even be possible, such as when they have very limited resources like

The nerd corner—I want a generic CoAP proxy

Even though CoAP isn’t supported by the web of browsers, it offers an interesting trad-
eoff for resource- or battery-constrained devices, especially when considering device-
to-device communication. It’s similar to HTTP, so the translation is easier because
we don’t need to map between different data models and could use the same JSON
model over both HTTP and CoAP. The translation we illustrated here was simple but
not generic: we needed to manually map a CoAP resource to HTTP routes. Building a
generic HTTP proxy for CoAP devices is possible and not overly complex. Should you
want to try, you’ll find a number of examples on the web.a

a For instance, here: https://github.com/morkai/h5.coap/blob/master/example/http-proxy.js.

12 http://coap.technology/

http://raspberrypi.local:8484/things/coapDevice/sensors/co2
http://coap.technology/
https://github.com/morkai/h5.coap/blob/master/example/http-proxy.js
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memory or processing, when they can’t connect to the internet directly (such as your
Bluetooth activity tracker), or when they’re battery-powered. Those devices will use
more optimized communication or application protocols and thus will need to rely
on a more powerful gateway that connects them to the Web of Things, such as your
mobile phone to upload the data from your Bluetooth bracelet, by bridging/translat-
ing various protocols. Here we implemented a simple gateway from scratch using
Express, but you could also use other open source alternatives such as OpenHab13 or
The Thing System.14

7.4 Cloud integration pattern—MQTT over EVRYTHNG
As you saw in the previous sections, it’s possible to implement WoT servers directly on
devices or via gateways. This is sufficient in many situations, but as soon as you need to
manage large quantities of devices and data, you’ll need to have a much more power-
ful and scalable platform to store and process the data. The cloud integration pattern,
shown in figure 7.8, is an extension of the gateway pattern where the gateway is a
remote server that devices and applications access via the internet. 

13 http://www.openhab.org/
14 https://github.com/TheThingSystem/steward

Web Things

Your local network at home

Web Thing
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MQTT

MQTTWAN/internet
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Figure 7.8 Cloud integration pattern. In this pattern, the Thing can’t directly offer a Web API. But a 
cloud service acts as a powerful application gateway, offering many more features in the name of the 
Thing. In this particular example, the web Thing connects via MQTT to a cloud service, which exposes 
the web Thing API via HTTP and the WebSockets API. Cloud services can also offer many additional 
features such as unlimited data storage, user management, data visualization, stream processing, 
support for many concurrent requests, and more.

http://www.openhab.org/
https://github.com/TheThingSystem/steward
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Using a cloud server has several advantages. First, because it doesn’t have the physical
constraints of devices and gateways, it’s much more scalable and can process and store
a virtually unlimited amount of data. This also allows a cloud platform to support
many protocols at the same time, handle protocol translation efficiently, and act as a
scalable intermediary that can support many more concurrent clients than an IoT
device could. Second, those platforms can have many features that might take consid-
erable time to build from scratch, from industry-grade security, to specialized analytics
capabilities, to flexible data visualization tools and user and access management. This
means you can get started building complex applications in a fraction of time. Third,
because those platforms are natively connected to the web, data and services from
your devices can be easily integrated into third-party systems to extend your devices.

 Over the years, many cloud platforms have appeared, and they usually share simi-
lar characteristics: creating virtual devices in the cloud that can permanently talk to
their physical counterparts, storing all the data generated by the devices, and visualiz-
ing that data in multiple ways. Xively15 (ex-Cosm, ex-Pachube) was one of the earliest
ones; its simple API allowed developers throughout the world to quickly connect
devices to the cloud. There are many other ones you can use for your projects, such as
ThingWorx,16 ThingSpeak,17 Carriots,18 and thethings.io.19

15 https://xively.com/
16 http://www.thingworx.com/
17 https://thingspeak.com/
18 https://www.carriots.com/
19 https://thethings.io/

Internet DevicesWeb/native
apps

Thng ID #246
Properties: power,
status, energy...

HTTP/WS

MQTT

MQTT

Cloud platformClient application:
HTML/JavaScript

Smart plugs:
node.js/MQTT

Thng ID #247
Properties: power,
status, energy...

Figure 7.9 A physical device connects to a cloud platform using MQTT over TCP/IP and talks to 
its proxy on the web—called Thng. An external application can then talk to the Thng using a 
simple HTTP client.

https://xively.com/
http://www.thingworx.com/
https://thingspeak.com/
https://www.carriots.com/
https://thethings.io/
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In this section, we’ll teach you how to connect to our favorite IoT platform ever:
EVRYTHNG. Okay, we might be biased because we built it! But at least it will help you
learn quickly about the advantages of the cloud integration pattern. Started in 2011,
EVRYTHNG was also the first IoT platform to apply the Web of Things principles, so it
should feel familiar! In this section, you’ll learn how to implement a basic web-
connected power plug, as shown in figure 7.9. The plug monitors the energy consump-
tion of the device attached to it and permanently sends this data to the cloud. These
readings will be permanently stored in the cloud. In addition, the plug is permanently
connected to the cloud using MQTT (which we described in chapter 5), which means
that the cloud can send commands to it at any time with minimal latency. 

 Afterward, we’ll implement a simple web application using HTML and JavaScript
that subscribes to the plug using WebSockets, displays the current consumption in
real time, and also allows you to turn the plug on and off. You’ll find all the source
code you need in the folder chapter7-implementation/part3-cloud of the book’s
GitHub repository.

7.4.1 Set up your EVRYTHNG account

The first thing you need to do is create an EVRYTHNG account and log into it.20 Don’t
worry; it’s quick and it won’t cost you a dime to implement this exercise. EVRYTHNG
services are completely free for non-commercial projects! To get you up to speed, you
can check out our quick tutorial for how to use it.21 

 Once you’ve created your account, you’ll need your account API key (called opera-
tor API key22). This key will allow you to create and manage the digital identities for
your device in the cloud and interact with them. It’s critical that you don’t share it
with anyone because this API key is so powerful that it can delete every Thng—this is
not a typo; EVRYTHNG likes to drop vowels—in your account. Don’t even share it with
your girlfriend/boyfriend or best buddy! Unless he’s really a great guy, in which case it
might be okay—or not! 

 In this section you set up your account so that you can connect your devices and
applications to the engine. You could also do all the following steps from the
EVRYTHNG dashboard or via POSTman. In this section, we’ll show you how to use
cURL so that you can easily run those requests from your terminal and also see the
details of the various HTTP requests. You can append the --verbose flag to the
request to see more details about your request. 

20 You can do it here: https://dashboard.evrythng.com/signup. 
21 Quick introduction to EVRYTHNG: https://developers.evrythng.com
22 Find it here: https://dashboard.evrythng.com/account.

Set up your account data automatically

You’ll have to manually create a few entities in your EVRYTHNG account by running
various HTTP requests against our cloud, as described in steps 1–4. If you run into
any problems or you don’t want to do this all manually, we’ve prepared a cool script

https://developers.evrythng.com
https://dashboard.evrythng.com/signup
https://dashboard.evrythng.com/account
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STEP 1—CREATE A PROJECT AND AN APPLICATION

Before we start, you must copy and paste these two lines in your terminal, which will
define two shell environment variables that the cURL requests in this section will use:

SERVER="https://api.evrythng.com"
EVRYTHNG_API_KEY="YOUR-API-KEY"

Obviously, replace YOUR-API-KEY with your own operator API key before you run it. You’ll
have to define quite a few other environment variables in the same way in this section.

 The first thing you’ll do is to create a project inside your account. A project is a
placeholder (a scope) that allows you to separate the various elements you’ll generate
(Thngs and data). Also, you’ll need a project to create applications that can access
some of your data because you don’t want to use your operator API key in client appli-
cations. Paste the following request into your terminal:

curl -X POST "$SERVER/projects" \
-H "Authorization: $EVRYTHNG_API_KEY" \
-H "Content-Type: application/json" \
-d '{ "name": "Web of Things Book", "description": "My First WoT
Project" }' --verbose

If this request wasn’t successful make sure the SERVER and EVRYTHNG_API_KEY environ-
ment variables are correct, which you can test by running echo $SERVER in your termi-
nal. If it was successful, you should receive a 201 Created response that looks like this:

HTTP/1.1 201 Created
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: Link, X-Result-Count
Content-type: application/json
Date: Sun, 14 Jun 2015 18:41:52 GMT
location: https://api.evrythng.com/projects/UCkWEEKnPe5wWhgbdhSfwnGc
Content-Length: 150
Connection: keep-alive
{
  "id":"UCkWEEKnPe5wWhgbdhSfwnGc",
  "createdAt":1434810298365,
  "updatedAt":1434810298365,
  "name":"Web of Things Book",
  "description":"My First WoT Project"
}

(continued)

for you that does steps 1–4 automatically, which is described at the end of this section.
The script is called setup.sh and you can run it from the terminal of your Pi with 

$ sh setup.sh XXX 

where XXX is your operator API key. You’ll see a matrix-like effect that not only runs
all the commands you’ve seen to create those entities for you but also saves them
into a config.json file that you’ll need in the next section. You’re now ready to expe-
rience the full power of the cloud implementation pattern.
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Note that there’s now an id field in the object, which contains the EVRYTHNG ID of
the project you created. Go ahead and save this value into the environment variable
$PROJECT_ID as you did when you pasted the EVRYTHNG_API_KEY="XXX" earlier, by
pasting PROJECT_ID=YYY into your terminal, where YYY is the ID of the project you just
created—PROJECT_ID=UCkWEEKnPe5wWhgbdhSfwnGc, in this example.

 Once you’ve created your first project, you can create an application in it. An
application will give you another API key (an App API key) that you can use in the client
application we’ll build later. This one isn’t so dangerous, because what it can do is very
limited; basically it only allows you to create users. To create an application, send the
following cURL request in your terminal:

curl -X POST "$SERVER/projects/$PROJECT_ID/applications" \
-H "Authorization: $EVRYTHNG_API_KEY" \
-H "Content-Type: application/json" \
-d '{ "name": "My Awesome WoT App", "description": "My First WoT Client
Application","tags":["WoT","device","plug","energy"], "socialNetworks":
{} }'

Again, just like you did for projects, store the ID returned in the response inside the
$APP_ID environment variable. Also, note the API key in the response; you’ll use it to
build your web application later on. Now you’re ready to create a web Thing in our
cloud. 

STEP 2—CREATE YOUR FIRST PRODUCTS AND THNGS 

A product is a class of physical objects (think TV model or car type) but not a unique
instance (think serial number). You shouldn’t use products to store data about physical
objects. They’re a conceptual entity, a model of a physical object, and should only con-
tain information that many physical objects of this class share—attributes such as size,
image, weight, and color—but no real-time information such as location, sensor read-
ings, or current state. Create a product using the following request:

curl -X POST "$SERVER/products?project=$PROJECT_ID" \
-H "Authorization: $EVRYTHNG_API_KEY" \
-H "Content-Type: application/json" \
-d '{ "fn": "WoT Smart Plug", "description": "A Web-connected Smart
Plug","tags":["WoT","device","energy"],"photos":["https://
webofthings.github.io/files/plug.jpg"] }'

Note the ?project=$PROJECT_ID query parameter, which tells EVRYTHNG to store this
product inside the project we created earlier. Store the product ID in the $PRODUCT_ID
variable. 

 Thngs, on the other hand, are the digital representation of unique instances of
physical objects: the Thing you hold in your hands! For each unique device or object
you want to web-enable, you’ll need to create a unique Thng. You can do it like this:

curl -X POST "$SERVER/thngs?project=$PROJECT_ID" \
-H "Authorization: $EVRYTHNG_API_KEY" \
-H "Content-Type: application/json" \
-d '{ "name": "My WoT Plug", "product":"'$PRODUCT_ID'", "description":
"My own Smart Plug","tags":["WoT","device","plug","energy"] }'
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You can see that we’re also sending the product ID in this request. Keep track of the ID
of the Thng returned in the payload in the $THNG_ID variable. 

STEP 3—CREATE A DEVICE API KEY

Technically, you could use your operator API key to update the property of your Thng,
but it’s unwise to use this on a production device for various security reasons. Instead,
you can easily generate a Thng API key that allows your device to see and edit only itself.
Send a POST (using your operator API key) to the end point https://
api.evrythng.com/auth/evrythng/thngs with the ID of your Thng, as follows:

curl -X POST "$SERVER/auth/evrythng/thngs" \
-H "Authorization: $EVRYTHNG_API_KEY" \
-H "Content-Type: application/json" \
-d '{ "thngId": "'$THNG_ID'" }'

You’ll get this in return: 

{
  "thngId": "UCE7qfbK8VKwdt8kAfqtbwmd",
  "thngApiKey": "M1ST3RP0TAT0H3ADROCKS"
}

The thngApiKey field contains an API key that allows the device to see and update
itself. Store its value in the $THNG_API_KEY environment variable. 

STEP 4—CHANGE PROPERTIES

If you’ve successfully completed the previous lines, you’ll now have a project, an appli-
cation, a product, and an instance of this product in your account. You can see them
in your dashboard. Now you’re going to update the properties of your smart plug. A
property is an array of data that you can update any time and that’s stored permanently
inside the engine. You can continuously update each property individually and
retrieve it anytime. 

 To update one or more properties, use the device API key and send a POST request
to the thngs/$THNG_ID/properties endpoint, using this request:

curl -X POST "$SERVER/thngs/$THNG_ID/properties" \
-H "Authorization: $THNG_API_KEY" \
-H "Content-Type: application/json" \
-d '[{"key": "status","value": true},

  {"key": "energyConsumption","value": 71}]'

Now you can navigate to the page of your Thng in the EVRYTHNG dashboard, which is
shown in figure 7.10. There you’ll see the information about this plug and its proper-
ties changing in real time as you run this request  several times with different values.

7.4.2 Create your MQTT client application

In the previous section, you learned how to set up your EVRYTHNG account to create
web Things for any physical object you want to connect to the web. You did this using
cURL commands to learn about the endpoints and how they work, but obviously this is
not how your device will talk to the engine. 

https://api.evrythng.com/auth/evrythng/thngs
https://api.evrythng.com/auth/evrythng/thngs
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 For this project, you’ll write a simple Node application that simulates a smart plug
and that you can run from your Pi or on your PC. The application uses the Thng API
key (created in step 3 of the previous exercise) to open a permanent connection to
the EVRYTHNG engine over MQTT and update its properties every five seconds.

 Open the file simple-plug.js and look at the code. Before you can execute it, you’ll
need a config.json file with the IDs and API keys of your EVRYTHNG account. If you
ran the setup.sh bash script instead of going through the four manual steps, it will
have generated this file for you. Otherwise, create a copy of the file config-sample.json
named config.json and put the Thng ID (step 2 of previous section) and the Thng API
key (step 3) in it, as shown in the following listing. 

var mqtt = require('mqtt');

var config = require('./config.json');  
var thngId = config.thngId; 
var thngUrl = '/thngs/'+thngId;
var thngApiKey = config.thngApiKey;
var interval;

console.log('Using Thng #'+thngId+' with API Key: '+ thngApiKey);

var client = mqtt.connect("mqtts://mqtt.evrythng.com:8883", {
  username: 'authorization',
  password: thngApiKey 
});

client.on('connect', function () { 
  client.subscribe(thngUrl+'/properties/'); 
  updateProperty('livenow', true); 

  interval = setInterval(updateProperties, 5000); 
});

client.on('message', function (topic, message) { 
  console.log(message.toString());
});

function updateProperties () {
  var voltage = (219.5 + Math.random()).toFixed(3); 
  updateProperty ('voltage',voltage);

  var current = (Math.random()*10).toFixed(3); 
  updateProperty ('current',current);

  var power = (voltage * current * 
(0.6+Math.random()/10)).toFixed(3); 
  updateProperty ('power',power);
}

Listing 7.17 simple-plug.js: simulated power plug that connects to EVRYTHNG via MQTT

Load configuration from file 
(Thng ID and Thng API key).

ct to
cure
rver

HNG. Callback called once 
when the MQTT 
connection suceeds

e to
ties.

Set the property 
livenow to true.

Call the function 
updateProperties() 
in five seconds.

very
QTT

ge is
from
oker Measures voltage 

(fluctuates around 
~220 volts)

Measures current 
(fluctuates  0–10 amps)

Measures power using P=U*I*PF 
(PF=power factor fluctuates 60–70%)



206 CHAPTER 7 Implementing web Things
function updateProperty (property,value) {
  client.publish(thngUrl+'/properties/'+property, '[{"value":
  '+value+'}]');
}

process.on('SIGINT', function() { 
  clearInterval(interval);
  updateProperty ('livenow', false);
  client.end();
  process.exit();
});

You can see that this example connects to EVRYTHNG via secure MQTT (MQTTS) and
subscribes to all property updates. It then calls the function updateProperties()
every five seconds, which simulates typical current and voltage readings a real plug
might measure, and finally sends the readings to the cloud by updating the properties
of the Thng, as you did in the step 4 of the previous section. 

 You can then go back to the Thngs page in the dashboard and start the simulated
device by running the Node code: npm install and node simple-plug.js. You can
now go back to the Dashboard tab to see the properties of the plug being updated in
real time, as shown in figure 7.10.

7.4.3 Use actions to control the power plug

You’ve built a device that’s permanently connected to the internet and that pushes its
updates to a service via MQTT. This illustrates how using a cloud engine can allow you
to rapidly build web-connected devices without implementing a local gateway. 

Cleanly exit this code and set 
the livenow property to false.

Figure 7.10 See the smart plug directly from the dashboard and the properties being 
updated in real time. 
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 At this point, you’re probably thinking, “Okay, great, but how do I send commands
to the plug to turn it on or off?” Fair enough! The simplest answer is this: because the
device has subscribed to all properties using MQTT, it will receive a message each time
any property in the EVRYTHNG cloud changes. Indeed, the text you see in the termi-
nal is displayed by the console.log() statement in that callback function. With the
Node application running, go to the dashboard, click the property status of the
Thng, and set it to false. You’ll see this change immediately in your terminal:

[{"timestamp":1434823136116,"key":"voltage","value":220.259}]
[{"timestamp":1434823136116,"key":"current","value":0.839}]
[{"timestamp":1434823136898,"key":"status","value":false}]
[{"timestamp":1434823137065,"key":"voltage","value":219.919}]
[{"timestamp":1434823138184,"key":"power","value":913.355}]

You could then modify that callback handler to trigger something else in your code
when this happens, and this will work fine. 

 But this isn’t the best option because you must carefully keep track of which prop-
erties the device should set and which ones should only be changed by applications.
Besides, a property is only a single value; therefore, you’d have to use several proper-
ties if you wanted to send commands to your device that have multiple input parame-
ters; for example, setting the RGB value of several LEDs. 

 For this reason, you’ll use actions to send more complex commands with several
input parameters. For this, you can look at the more advanced plug-with-control.js. If
you’ve run the bash script in section 7.4.1, it will have created an action type called
_setStatus for you. If not, you’ll have to create it yourself using this command:

curl -X POST "$SERVER/actions?project=$PROJECT_ID" \
-H "Authorization: $EVRYTHNG_API_KEY" \
-H "Content-Type: application/json" \
-d '{ "name": "_setStatus", "description": "Changes the Status of the
Thng","tags":["WoT","device"] }'

Before you create actions, you need to change your device application so that it also
subscribes to the actions/ resource and does something each time it receives a spe-
cific action. You can open the file plug-with-control.js where the callback functions
have been modified, as shown in the next listing.

[...]
client.on('connect', function () {
  client.subscribe(thngUrl+'/properties/');
  client.subscribe(thngUrl+'/actions/all'); 
  updateProperty('livenow',true);
  updateInterval = setInterval(updateProperties, 5000); 
});

client.on('message', function(topic, message) {
  var resources = topic.split('/');
  if (resources[1] && resources[1] === "thngs"){ 

Listing 7.18 plug-with-control.js: subscribe and handle actions pushed from the server
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    if (resources[2] && resources[2] === thngId){  
if (resources[3] && resources[3] === "properties"){ 
var property = JSON.parse(message);
console.log('Property was updated: 
  '+property[0].key+'='+property[0].value); 

} else if (resources[3] && resources[3] === "actions"){ 
var action = JSON.parse(message);
handleAction(action); 

}
    }
  }
});

function handleAction(action) {
  switch(action.type) { 
    case '_setStatus':

console.log('ACTION: _setStatus changed to: 
'+action.customFields.status); 

status=Boolean(action.customFields.status);
updateProperty ('status',status);
break;

    case '_setLevel':
console.log('ACTION: _setLevel changed to: 
'+action.customFields.level);

break;
    default:

console.log('ACTION: Unknown action type: '+action.type);
break;

  }
}

You can now run this second code, and you’ll still see when properties are updated.
But for now, open a second terminal and send a _setStatus command to the Thng in
your engine, using the following request: 

curl -X POST "$SERVER/actions/_setStatus?project=$PROJECT_ID" \
-H "Authorization: $EVRYTHNG_API_KEY" \
-H "Content-Type: application/json" \
-d '{ "type": "_setStatus", "thng":"'$THNG_ID'", "customFields":
{"status":"false"} }'

Study carefully the content of the response payload because it contains much more
information that you’ve sent. Our cloud uses your IP address to determine the loca-
tion of the action. If you refresh the page, you’ll see this action appear on your Thng
page in the dashboard, along with a map of it.

7.4.4 Create a simple web control  application 

So far, you’ve written a Node application that allows a Pi to connect to a cloud service
and receive push notifications instantly, even if your device is behind firewalls or NAT
boxes. The benefit of using a cloud service is that it allows you to use a uniform inter-
face such as a REST API, properties, or actions to talk to any device connected to the
cloud, regardless of whether the device talks to EVRYTHNG using the REST API, MQTT,
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erty was
ed; if so,
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Was it an act
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or another protocol. This means you can build a generic client application and it will
work with any Thng in the platform. It also makes access to your Things much more
scalable because clients don’t talk to your Things directly, but rather through a cloud
intermediary representing the state of the Thing, like a mirror or a shadow.

A SIMPLE WEB APPLICATION USING THE CLOUD

The next step is to build a simple web application that can interact with the device via
its Thng, subscribe to its properties using WebSockets, and display them as soon as the
device sends them. This application should also be able to push commands to the
device via the REST API of the cloud platform. 

 We built such an application for you, so go ahead and open the file part3-cloud/
client/plug.html in your editor—or, of course, feel free to build your own! Provide
the Thng ID and your operator API key here as query parameters in the URL:

file:///.../plug.html?key=XXX&thngId=YYY

You can now start the plug-with-control.js Node application we used in the previous
section and open plug.html in your browser. Within a few seconds, you should see the
properties changing and a graph being updated in real time. This application con-
nects to your Thng in EVRYTHNG, subscribes to its properties using WebSockets, and
updates the page as soon as property updates are received from the engine. Because
the code is long and uses quite a few excellent libraries to do the heavy work, we’ll
show only the most interesting bits here. First, you create a toggle button that sends a
_setStatus action each time it’s used, as shown in the following listing. 

<input type="checkbox" id="toggle-status"/>
<script>
  $(function() {
    $('#toggle-status').bootstrapToggle({

on: 'On',
off: 'Off'

    });
  });

  $(function() {
    $('#toggle-status').change(function() {

sendAction("_setStatus",{"status": $(this).prop('checked')});
    });
  });
</script>

You create a button and use the Bootstrap Toggle23 library to make it look pretty. Each
time this button is triggered, the sendAction() function will be called, which looks
like the code shown in the next listing. 

Listing 7.19 client/plug.html: attach a handler to the toggle button

23 http://www.bootstraptoggle.com/

http://www.bootstraptoggle.com/
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function sendAction(type,value){ 
  $.ajax({ 
    url: 'https://api.evrythng.com/actions/'+type+'?access_token='+key, 
    dataType: 'json', 
    type: 'post', 
    contentType: 'application/json', 
    data: JSON.stringify({"type": type, "thng": thngId, 

"customFields":value}), 
    processData: false, 
    success: function( data, textStatus, jQxhr ){  

$('#response pre').html( JSON.stringify( data ) ); 
    }, 
    error: function( jqXhr, textStatus, errorThrown ){  

console.log( errorThrown ); 
    } 
  });
}

Each time this function is called, it will POST an action in the engine that will be
received by your device—exactly as you saw in the previous section. 

 Oh, and don’t forget to turn on the plug with the button you just created; other-
wise you won’t see anything on the graph!

SUBSCRIBING VIA WEBSOCKETS 

Second, you need to subscribe your client application to all property updates using
WebSockets. In principle, this is similar to what you did with MQTT in the previous
section. The idea is that you create a few HTML placeholders to display the current
property values. For each property you want to display, you create a list item that looks
like this:

<li class="list-group-item">
  <span id="value-status" class="badge">false</span>
  status
</li>

Note that the id must be set to value-status and the same property name as in the
engine. Let’s now see how to connect and process WebSockets messages, as the follow-
ing listing shows.

var url = 'wss://ws.evrythng.com:443/thngs/'+thngId+'
/properties?access_token='+key;

var socket = new WebSocket(url);  

socket.onmessage = function (message) { 
  var content = JSON.parse(message.data);
  console.log('Property update : ', content[0]); 
  if (content[0].key === "power"){

Listing 7.20 client/plugs.html: the sendAction() function

Listing 7.21 Connecting to WebSockets and handling property updates
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    updateCharts(content[0].key, content[0].value, content[0].timestamp); 
  }
  $('#value-'+content[0].key).html( content[0].value ); 
};

socket.onerror = function (error) {
  console.log('An error occurred while trying to connect to a 
    WebSocket!');
  console.log(error);
};

This is similar to MQTT but entirely web-based and running in your web browser with
no dependencies to install. Each time any property is updated you’ll receive a corre-
sponding JSON message over the WebSocket channel because you subscribed to the
properties topic.

USING QR CODES TO IDENTIFY THINGS

Before we finish this section, let’s do a final trick. For this, you’ll need to deploy
plug.html and the ui/ folder file somewhere in the cloud—for instance, on GitHub
pages.24 If you want to take the short route, we’ve deployed this file for you as well, and
you can access it here (after replacing XXX with your operator API key and YYY with
your Thng ID): https://webofthings.github.io/wot-book/plug.html?key=XXX&
thngId=YYY. If you ran the script earlier in the previous section, it will have created a
redirection for your Thng automatically; scan the QR code or click the short URL and
you’ll land on that link automatically. Otherwise, you can create it using the Setup
Redirector button as shown in figure 7.11.

24 https://pages.github.com/
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2. Enter the full target URL for the redirection.3. Get a short URL.

Figure 7.11 How to create a short URL redirecting to the user interface of your device 

https://pages.github.com/
https://webofthings.github.io/wot-book/plug.html?key=XXX&thngId=YYY
https://webofthings.github.io/wot-book/plug.html?key=XXX&thngId=YYY
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Put the full path to the file in the redirect expression—the previous URL with your own
credentials—and click Create Redirection. You now have a short URL and a corre-
sponding QR code that you can update anytime and that allows you to see and control
your device by scanning it with your phone. QR codes or NFC tags are a great way to seri-
alize the URLs of Things and make them physically discoverable by mobile phones.

 Note that you should not share this QR code or URL with anyone: it contains your
operator API key! This was only to make a point, but you should never expose your API
keys in this manner. 

7.4.5 Summary—cloud integration pattern

Let’s take some time to reflect on all you’ve done in this section. How did it feel to be
able to do so much in so little time? Thanks to the open and flexible APIs of a Web of
Things cloud platform such as EVRYTHNG, you’ve written a simple Node application
that can talk to its digital identity in the cloud using MQTT. You’ve also built a basic
HTML/JavaScript application that displays data from your device in real time and can
send commands to it even if it doesn’t have a REST API. 

 This is where the cloud integration pattern shines. Because most of the complexity
of this system lives inside the cloud platform, you have less need to worry about scal-
ability, reliability, or security. A cloud platform allows you, a digital product developer,
to drastically reduce the time it takes to build web-connected devices and provides var-
ious powerful features, such as visualization, data storage, and access control. Because
the front-end application uses only HTML/JS/CSS, you have a uniform interface to
control any device regardless of whether it speaks HTTP or not, because the cloud sys-
tem can seamlessly handle the translation across protocols.

 Why would you ever use the direct connectivity pattern? There are several good
reasons for still natively providing APIs on Things. Think, for instance, about latency:
a local call is almost always faster than a call through the cloud. Or think about moni-
toring and control when the internet is down. Because of this, the best compromise
for real-world WoT products is quite often to offer both local and cloud access.

7.5 Summary
■ There are three main integration patterns for connecting Things to the web:

direct, gateway, and cloud.
■ Regardless of the pattern you choose, you’ll have to work through the following

steps: resource design, representation design, and interface design.
■ Direct integration allows local access to the web API of a Thing. You tried this by

building an API for your Pi using the Express Node framework.
■ The resource design step in Express was implemented using routes, each route

representing the path to the resources of your Pi.
■ We used the idea of middleware to implement support for different representa-

tions— for example, JSON, MessagePack, and HTML—in the representation
design step.
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■ The interface design step was implemented using HTTP verbs on routes as well
as by integrating a WebSockets server using the ws Node module.

■ Gateway integration allows integrating Things without web APIs (or not sup-
porting web or even internet protocols) to the WoT by providing an API for
them. You tried this by integrating a CoAP device via a gateway on your cloud.

■ Cloud integration uses servers on the web to act as shadows or proxies for
Things. They augment the API of Things with such features as scalability, analy-
tics, and security. You tried this by using the EVRYTHNG cloud.

Now that we’ve created web APIs for Things, the next few chapters will be about mak-
ing these APIs even more powerful and interesting. In the next chapter, we’ll explore
the resource-linking design step as well as the issues of findability and discoverability.
In essence, we’ll look at how a web Thing can expose its API in a way that makes it
easy to be found, understood, and used by other applications, web Things, or even
human beings! 



Find: Describe and
discover web Things
In the previous two chapters, we explored extensively the various integration pat-
terns for connecting your Things to the web, which is the first layer of the WoT
architecture we introduced in chapter 6. We illustrated how using web standards as
the connective tissue between heterogeneous devices significantly improves
interoperability between components in an internet-scale system and thus is the
core foundation of the Web of Things. Nevertheless, without a universal format to
describe web Things and their capabilities, integrating web Things and applica-
tions still requires a consequent effort for developers. Having a single and common
data model that all web Things can share would further increase interoperability

This chapter covers
■ Learning the basics of discoverability (methods

and protocols)
■ Understanding how to do web-level discovery

(linking/crawling)
■ Proposing a model to describe web Things and

their capabilities
■ Extending the basic model with additional

Semantic Web formats
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and ease of integration by making it possible for applications and services to interact
without the need to tailor the application manually for each specific device. This is an
essential cornerstone of the WoT because it means that the hotel control center exam-
ple we introduced in chapter 1 could seamlessly discover, understand, and read data
and send commands to any device on the Web of Things, regardless of its capabilities
or its manufacturer. The ability to easily discover and understand any entity of the
Web of Things—what it is and what it does—is called findability. 

 How to achieve such a level of interoperability—making web Things findable—is
the purpose of the second layer, Find, of the WoT architecture and is what this chap-
ter focuses on. The goal of the Find layer is to offer a uniform data model that all web
Things can use to expose their metadata using only web standards and best practices.
Metadata means the description of a web Thing, including the URL, name, current
location, and status, and of the services it offers, such as sensors, actuators, com-
mands, and properties. First, this is useful for discovering web Things as they get con-
nected to a local network or to the web. Second, it allows applications, services, and
other web Things to search for and find new devices without installing a driver for that
Thing. By the end of this chapter, you’ll understand how to expose the metadata of
any web Thing in a universal and interoperable way using network discovery proto-
cols, such as mDNS; lightweight data models, such as the Web Thing Model; and
Semantic Web standards, such as JSON-LD.

8.1 The findability problem
Once a device becomes a web Thing using the methods we presented in the previous
two chapters, it can be interacted with using HTTP and WebSocket requests. This
sounds great in theory, but for this to also work in practice, we must first solve three
fundamental problems, as shown in figure 8.1: 

1 How do we know where to send the requests, such as root URL/resources of a
web Thing?

2 How do we know what requests to send and how; for example, verbs and the for-
mat of payloads?

3 How do we know the meaning of requests we send and responses we get, that is,
semantics?

To better understand these problems, let’s get back to the smart hotel scenario from
chapter 1. Imagine Lena, an Estonian guest staying in room 202 of the hotel. Lena
would like to pop up her phone so she can turn on the heat. The first question is how
can Lena—or her phone, or an app on her phone—find the root URL of the heater?
This is often called the bootstrap problem. This problem is concerned with how the ini-
tial link between two entities on the Web of Things can be established. The simplest
solution to this problem would be to write the root URL on the desk or on the wall of
the room. Another solution would be to encode the URL into a QR code printed on a
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card or use an NFC tag upon her check-in, so Lena could scan it with her phone. A
more complex solution would be to install an application on her phone that searches
for devices with heating capabilities nearby. These approaches will be the subject of
section 8.2. Finally, a web-friendly solution would be for her to Google for nearby
heaters; we’ll look into that in section 8.4.

 Let’s assume for now that Lena enters the root URL of the heater on her phone.
Ideally, she would see a pretty user interface in her native Estonian that allows her to
figure out right away which button turns on the heat. In this case, a clean and user-
centric web interface can solve problem 3 because humans would be able to read and
understand how to do this. Problem 2 also would be taken care of by the web page,
which would hardcode which request to send to which endpoint.

 But what if the heater has no user interface, only a RESTful API?1 Because Lena is
an experienced front-end developer and never watches TV, she decides to build a sim-
ple JavaScript app to control the heater. Now she faces the second problem: even
though she knows the URL of the heater, how can she find out the structure of the
heater API? What resources (endpoints) are available? Which verbs can she send to
which resource? How can she specify the temperature she wants to set? How does she
know if those parameters need to be in Celsius or Fahrenheit degrees?

 Usually, application developers rely on written documentation that describes the
various API endpoints and resources available on the Thing (problem 2) and the
meaning of those (problem 3). But in some cases, a more automated way to discover
the resources of a REST API at runtime might be useful. If there was a way for Lena—
or the app she wrote—to interrogate on the fly any web Thing and find out what

1 If the manager ever finds this out, he should probably fire the guy who was responsible for selecting this heater
in the first place because it fails to address design rule #2 of chapter 6 by not providing a user interface. 

Mobile app for
hotel guests

Wi-Fi

Wi-Fi

1. How do I find the root URLs of
web Things near me?

2. What messages (verbs, payloads,
etc.) can I send to those web Things?

3. What are those resources and what 
do those messages mean?

Room 202

hotel.io/room202
URL of the hotel room

hotel.io/room202/heating
URL of the heating unit in room 202

hotel.io/room202/lights
URL of the light system in room 202

Figure 8.1 The three problems of findability in the Web of Things. How can a client application find 
nearby web Things, interact with them, and understand what these things are and do?
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services/data it offers, without having to read the documentation, her app would work
with any heating device, regardless of its manufacturer. 

 Providing a web-based solution for these three problems is the goal of the Find
layer, as shown in figure 8.2. In the rest of this chapter, we’ll propose a set of tools and
techniques for how web Things can expose their data resource so that users, applica-
tions, and Things can easily find and interact with them. 

8.2 Discovering Things
We begin our journey in findability by comparing several solutions to the bootstrap
problem. In short, how can an app or Thing find the root URL of a web Thing it has
never encountered before? This problem deals with two scopes: first, how to find web
Things that are physically nearby—for example, within the same local network—and
second, how to find web Things that are not in the same local network—for example,
find devices over the web. Finding web Things in a local network can be done using
network discovery methods described in section 8.2.1. To find web Things beyond the
same local network, we’ll rely on resource discovery and search, as described in sec-
tion 8.2.2. Let’s now look at these methods in more detail.

8.2.1 Network discovery

In a computer network, the ability to automatically discover new participants is com-
mon. In your LAN at home, as soon as a device connects to the network, it automatically
gets an IP address using DHCP2 (Dynamic Host Configuration Protocol). But only the DHCP

2 DHCP: http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol.
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Figure 8.2 The Find layer of the Web of Things. This layer relates to how one 
can easily understand the nature of things, what they relate to, how to access 
their documentation, what their API endpoints are, and how to access those 
(what parameters and their types). It also relates to the meaning of these 
properties in a standard way. 

http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
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server knows the device is in your network, so what about the other hosts in your
network? Once the device has an IP address, it can then broadcast data packets that can
be caught by other machines on the same network. As you saw in chapter 5, a broadcast
or multicast of a message means that this message isn’t sent to a particular IP address
but rather to a group of addresses (multicast) or to everyone (broadcast), which is done
over UDP. This announcement process is called a network discovery protocol, and it
allows devices and applications to find each other in local networks. This process is
commonly used by various discovery protocols such as multicast Domain Name System
(mDNS),3 Digital Living Network Alliance (DLNA),4 and Universal Plug and Play
(UPnP).5 For example, most internet-connected TVs and media players can use DLNA
to discover network-attached storage (NAS) in your network and read media files from
it. Likewise, your laptop can find and configure printers on your network with minimal
effort thanks to network-level discovery protocols such as Apple Bonjour that are built
into iOS  and OSX.

MDNS

In mDNS, clients can discover new devices on a network by listening for mDNS mes-
sages such as the one in the following listing. The client populates the local DNS tables
as messages come in, so, once discovered, the new service—here a web page of a
printer—can be used via its local IP address or via a URI usually ending with the .local
domain. In this example, it would be http://evt-bw-brother.local. 

service up:  { 
  interfaceIndex: 4,
  type: 
   { name: 'http', 

protocol: 'tcp',
subtypes: [],
fullyQualified: true },

  replyDomain: 'local.',
  flags: 3,
  name: 'Brother MFC-8520DN',
  networkInterface: 'en0',
  fullname: 'Brother\\032MFC-8520DN._http._tcp.local.',
  host: 'EVT-BW-BROTHER.local', 
  port: 80,
  addresses: [ '192.168.0.6' ] } 

This is also the protocol that your Pi uses to broadcast its raspberrypi.local URL (see
chapter 4) to all nearby computers listening with an mDNS client.

 The limitation of mDNS, and of most network-level discovery protocols, is that the
network-level information can’t be directly accessed from the web. You could, of

3 http://en.wikipedia.org/wiki/Multicast_DNS
4 http://en.wikipedia.org/wiki/Digital_Living_Network_Alliance
5 http://en.wikipedia.org/wiki/Universal_Plug_and_Play

Listing 8.1 An mDNS message from a printer

A service of type TCP and 
HTTP was discovered.

The service is reachable on 
http://evt-bw-brother.local.

The service 
local IP address

http://en.wikipedia.org/wiki/Multicast_DNS
http://en.wikipedia.org/wiki/Digital_Living_Network_Alliance
http://en.wikipedia.org/wiki/Universal_Plug_and_Play
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course, write JavaScript code that relies on predefined .local domains, but this would
be merely a hack not supported by all browsers. This is also the reason why many
mobile browsers can’t resolve these addresses: they don’t have an mDNS client popu-
lating the local DNS record in the background. 

NETWORK DISCOVERY ON THE WEB

If mDNS doesn’t work in all browsers, how can a web application running on your
mobile phone or tablet find nearby web Things? Or, why can’t you find the web
Things in your house by following links on a page? An easy solution would be to write
a custom plugin for Firefox or Chrome that can talk to those network-level discovery
protocols. But this doesn’t solve the problem because in place of enabling web-based
resource discovery using web standards, devices would still need to implement one or
more non-web network discovery protocols. In consequence, web Thing client appli-
cations would also need to speak and understand these protocols, which defeats the
purpose of the Web of Things.

 Because HTTP is an Application layer protocol, it doesn’t know a thing about
what’s underneath—the network protocols used to shuffle HTTP requests around. It
also doesn’t need to care—that is, unless a web Thing or application needs to know
about other resources in the same network. The real question here is why the configu-
ration and status of a router is only available through a web page for humans and not
accessible via a REST API. Put simply, why don’t all routers also offer a secure API
where its configuration can be seen and changed by others’ devices and applications
in your network?

 Providing such an API is easy to do.6 For example, you can install an open-source
operating system for routers such as OpenWrt7 and modify the software to expose the

The nerd corner—I want my Pi to say “Bonjour!”

Your Pi already enables mDNS via the Avahi library to broadcast its .local URL, but
you could do a lot more with mDNS, such as describing the HTTP services your WoT
server provides (just like for the printer in listing 8.1). The experimental node_mdns
Node librarya builds on top of Avahi and lets you programmatically implement this and
more. To get started with the library, look at the code sample we provided in the mdns
folder of this chapter on GitHub. 

Note: this module doesn’t always run smoothly on the Pi, so you might have to fall
back to your PC. If you’d still like to try it on the Pi, make sure you install the additionally
required Debian packages via apt-get install libavahi-compat-libdnssd-dev.

a https://github.com/agnat/node_mdns.

6 This was proposed in Vlad’s PhD thesis: http://www.slideshare.net/vladounet/vlad-trifa-final-phd-thesis-
defense-at-eth-zurich.

7 https://openwrt.org/

http://www.slideshare.net/vladounet/vlad-trifa-final-phd-thesis-defense-at-eth-zurich
http://www.slideshare.net/vladounet/vlad-trifa-final-phd-thesis-defense-at-eth-zurich
https://openwrt.org/
https://github.com/agnat/node_mdns
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IP addresses assigned by the DHCP server of the router as a JSON document. This way,
you use the existing HTTP server of your router to create an API that exposes the IP
addresses of all the devices in your network. This makes sense because almost all net-
worked devices today, from printers to routers, already come with a web user inter-
face. Other devices and applications can then retrieve the list of IP addresses in the
network via a simple HTTP call (step 2 in figure 8.3) and then retrieve the metadata of
each device in the network by using their IP address (step 3 of figure 8.3). 

 Because routers usually have the base network address of the local network, you
can easily write a web app that periodically queries the routing table, keeps track of
the new devices connected to the network, and registers the devices in the network.
The same pattern can be used with any other device on the network, where any web
Thing—say, a set-top box or NAS—could continuously search for new devices in the
network using various protocols, understand their services, and then act as a bridge to
these devices by generating on the fly a new WoT API for those devices. 

8.2.2 Resource discovery on the web

Although network discovery does the job locally, it doesn’t propagate beyond the
boundaries of local networks. Thinking in wider terms, several questions remain open:
in a Web of Things with billions of Things accessible on the World Wide Web, how do
we find new Things when they connect, how do we understand the services they offer,
and can we search for the right Things and their data in composite applications?

 The web faced a similar challenge when it shifted from a catalog of a few thousand
pages with text and images in the early nineties to an exponentially growing collection
of web applications, documents, and multimedia content including movies and music,

Step 1: Device connects to router and 
gets an IP address via DHCP

Ethernet

Wi-Fi

Router: LAN 
(ethernet)

Web Thing
client appStep 2: Client app retrieves the

DHCP allocation table on the router

Step 3: Client retrieves the 
root source of web Thing and 
parses its metadata

Web Thing: Device 
with machine-readable
embedded metadata 
(description, API, etc.)

Figure 8.3 LAN-level resource discovery. Assuming that all web Things expose their root 
resource on port 80, web Thing clients can get their IPs from the router and then query each 
device to extract their metadata. 
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games, and other service types. In those early days, AltaVista and Yahoo were success-
ful in curating this growing collection of documents. But as the web started to grow
exponentially, it became obvious that managing the list of resources on the web man-
ually was a dead end. Around this time (~1998), Google appeared out of nowhere and
pretty much wiped out any other search engine because it could automatically index
millions of pages and allow users to rapidly and accurately find relevant content in this
massive catalog.

 On the web, new resources (pages) are discovered through hyperlinks. Search
engines periodically parse all the pages in their database to find outgoing links to
other pages. As soon as a link to a page not yet indexed is found, that new page is
parsed and added to directory. This process is known as web crawling. 

CRAWLING THE API OF WEB THINGS

We can apply the process of web crawling to Things as well: in chapter 2 you used an
HTML-based UI for the WoT Pi, and in chapter 5 you saw how to create HTML repre-
sentations of resources. By adding links to the sub-resources in the HTML code, we make
it possible to crawl web Things with the simple pseudo-code shown in the next listing.

crawl(Link currentLink) {
  r = new Resource();

r.setUri = currentLink.getURI();
r.setShortDescription = currentLink.text();
r.setLongDescription =

currentLink.invokeVerb(GET).extractDescriptionFromResults();
r.setOperations = currentLink.invokeVerb(OPTIONS).getVerbs();

  foreach (Format currentFormat: formats) {
    r.setAcceptedFormats = 

currentLink.invokeVerb(GET).setAcceptHeader(currentFormat);
  }
  if (currentLink.hasNext()) crawl(currentLink.getNext());
}
foreach(Link currentLink: currentPage.extractLinks())
{ crawl(currentLink); }

From the root HTML page of the web Thing, the crawler can find the sub-resources,
such as sensors and actuators, by discovering outgoing links and can then create a
resource tree of the web Thing and all its resources. The crawler then uses the HTTP
OPTIONS method to retrieve all verbs supported for each resource of the web Thing.
Finally, the crawler uses content negotiation to understand which format is available
for each resource. As an exercise, we suggest you try implementing this crawler for the
API of the Pi you created in chapter 7.

HATEOAS AND WEB LINKING

This simple crawling approach is a good start, but it also has several limitations. First,
all links are treated equally because there’s no notion of the nature of a link; the link
to the user interface and the link to the actuator resource look the same—they’re just

Listing 8.2 Pseudocode for crawling the HTML representation of Things
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URLs. Then, it requires the web Thing to offer an HTML interface, which might be too
heavy for resource-constrained devices. Finally, it also means that a client needs to
both understand HTML and JSON to work with our web Things.

 A better solution for discovering the resources of any REST API is to use the
HATEOAS principle we presented in section 6.1.6 to describe relationships between
the various resources of a web Thing. A simple method to implement HATEOAS with
REST APIs is to use the mechanism of web linking defined in RFC 5988.8 The idea is that
the response to any HTTP request to a resource always contains a set of links to related
resources—for example, the previous, next, or last page that contains the results of a
search. These links would be contained in the Link: HTTP header of the response.
Although a similar mechanism was already supported with the LINK9 element in the
HTML 4 specification, encoding the links as HTTP headers introduces a more general
framework to define relationships between resources outside the representation of
the resource—directly at the HTTP level. As a result, links can be always described in
the same way regardless of the media type requested by the client, such as JSON or
HTML. This type of linking is also the one supported by the Constrained Application
Protocol we discussed in the previous chapters.10

 When doing an HTTP GET on any Web Thing, the response should include a Link
header that contains links to related resources. In particular, you should be able to get
information about the device, its resources (API endpoints), and the documentation
of the API using only Link headers. Following is an example HTTP query sent to a
WoT gateway:

HTTP 1.1 GET /
Host: gateway.webofthings.io
Accept: application/html

200 OK
Link: </model/>; rel="model", </properties/>; rel="properties", </actions/>; 

rel="actions", </things/>; rel="things", <http://model.webofthings.io/>; 
rel="type", </help>; rel="help", </>; rel="ui"

In this example, the response contains a set of links to the resources of the web Thing
in the Link header. The URL of each resource is contained between angle brackets
(<URL>) and the type of the link is denoted by rel="X", where X is the type of the rela-
tion. If the URL is not an absolute URL—that is, it doesn’t start with http:// or https://
—it’s interpreted in the context of the current request path, to which the relative URL
will be appended. In this example, the documentation of the web Thing will therefore
become devices.webofthings.io/help. Note that the link element can be any valid
URI and therefore could well be hosted on the device itself, on a gateway, or anywhere
else on the web. Some reserved and standardized relationship types are defined by

8 https://tools.ietf.org/html/rfc5988
9 http://www.w3.org/TR/html401/struct/links.html#edef-LINK
10 https://tools.ietf.org/html/rfc6690

https://tools.ietf.org/html/rfc5988
http://www.w3.org/TR/html401/struct/links.html#edef-LINK
https://tools.ietf.org/html/rfc6690
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IANA, but those are mainly relevant to the classic web of multimedia documents.
Because no set of relationship types has been proposed for physical objects and for
the Web of Things, we’ll propose one in this chapter. In the previous example, you
could see that the root page of the Web of Things gateway contains links to the follow-
ing four resources.

REL="MODEL"

This is a link to a Web Thing Model resource; see section 8.3.1.

REL="TYPE"

This is a link to a resource that contains additional metadata about this web Thing.

REL="HELP"

This relationship type is a link to the documentation, which means that a GET to
devices.webofthings.io/help would return the documentation for the API in a
human-friendly (HTML) or machine-readable (JSON) format. The documentation
doesn’t need to be hosted on the device itself but could be hosted anywhere—for exam-
ple, on the manufacturer’s website, in which case the header would look like this:

Link: <http://webofthings.io/doc/v/1.1>; rel="help"

This allows maintaining and continuously updating the documentation of multiple
devices deployed in the wild and running various firmware versions, without the need
to host it directly on the device but in the cloud. 

REL="UI"

This relationship type is a link to a graphical user interface (GUI) for interacting with
the web Thing. The UI must be implemented using HTML so that it can be accessed
with any browser, and it should be responsive to allow various device types to interact
with the web Thing. Note that the GUI can—but doesn’t have to—be hosted on the
device itself as long as the GUI application can access the web Thing and its resources.
In the following example, the GUI is hosted on GitHub and takes as a parameter the
root URL of the web Thing to control:

Link: <http://webofthings.github.io/ui?url=devices.webofthings.io>; rel="ui"

In some situations you won’t be able to modify the HTTP headers of the response
returned by a web Thing. If this is the case, you’ll need to insert them in the HTML or
JSON representation of the resource. We’ll show how you do this in sections 8.3.3 for
JSON and 8.4.1 for HTML. 

8.3 Describing web Things
The ability to discover the root URL and resources of a web Thing solves the first part
of the findability problem and is enough to interact with the web Thing if it provides a
user interface—the root URL returns an HTML page. But knowing only the root URL
is insufficient to interact with the Web Thing API because we still need to solve the sec-
ond problem mentioned at the beginning of this chapter: how can an application
know which payloads to send to which resources of a web Thing? In other words, what



224 CHAPTER 8 Find: Describe and discover web Things
possible parameters and their type are supported by each end point, what will be the
effect of a given request, what possible error/success messages will be returned, and
what do those mean? 

 This question can be summarized as follows: how can we formally describe the API
offered by any web Thing? As you can see in figure 8.4, there are various ways to do this,
ranging from no shared data model between the API of a web Thing (1), all the way to
semantically defining every possible interaction with a web Thing (4). Semantic Web
Things maximize interoperability by ensuring that client applications can discover new
Things and use them at runtime automatically, without any human in the loop. 

 The simplest solution is to provide a written documentation for the API of your
web Thing so that developers can use it (1 and 2 in figure 8.4). This implies that a
developer must read the documentation about your web Thing, understand what
requests they can send to it and what each does, and finally implement the various API
calls with correct parameters for each call. This approach, however, is insufficient to
automatically find new devices, understand what they are, and what services they offer.
In addition, manual implementation of the payloads is more error-prone because the
developer needs to ensure that all the requests they send are valid. This becomes espe-
cially tricky when the API documentation differs from the actual API running on the
device, which can happen when the API changes but not the documentation. Or sim-
ply when the documentation is…hmm…ungracious in the first place. Sadly, most APIs
in the Internet of Things are in this situation because they don’t make it easy or even
possible to write applications that can dynamically generate a user interface for a
device only by knowing its root URL.

 As will be shown in the rest of this chapter, all hope is not lost—quite the opposite!
By using a unique data model to define formally the API of any web Thing (the Web
Thing Model) as described in section 8.3.2, we’ll have a powerful basis to describe not
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Figure 8.4 The various levels for describing web Things. Any device can have an HTTP API (1). Web Things 
(2) are HTTP servers that follow the requirements proposed in chapter 6; thus, APIs are more consistent,
predictable, and easier to use. Using a shared model will make the web Thing more interoperable (3). Finally,
adding semantic annotations will ensure stronger contracts between web Things and also more flexibility to
define formally each element of the web Thing API (4).
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only the metadata but also the operations of any web Thing in a standard way (cases 3
and 4 of figure 8.4). This is the cornerstone of the Web of Things: creating a model to
describe physical Things with the right balance between expressiveness—how flexible
the model is—and usability— how easy it is to describe any web Thing with that
model. Achieving this balance is necessary in order to achieve global-scale interopera-
bility and adoption, and this is what we’ll do in the remainder of this chapter. 

8.3.1 Introducing the Web Thing Model

Once we find a web Thing and understand its API structure, we still need a method to
describe what that device is and does. In other words, we need a conceptual model of
a web Thing that can describe the resources of a web Thing using a set of well-known
concepts.

 In the previous chapters, we showed how to organize the resources of a web Thing
using the /sensors and /actuators end points. But this works only for devices that
actually have sensors and actuators, not for complex objects and scenarios that are com-
mon in the real world that can’t be mapped to actuators or sensors. To achieve this, the
core model of the Web of Things must be easily applicable for any entity in the real
world, ranging from packages in a truck, to collectible card games, to orange juice bot-
tles. This section provides exactly such a model, which is called the Web Thing Model.11

 Because this model is more abstract and covers more use cases than the ones we
used in previous chapters, it’s also a bit more complex to understand and use, and
that’s why we only introduce it now. But don’t worry—by the end of this chapter, it will
all make sense to you and you’ll see that you can easily adapt it for any Web of Things
scenario you can think of. Not only that, but with the reference implementation of
this model you’ll find in this chapter, you’ll also be able to implement truly interoper-
able web Things and WoT applications that reach the full potential of the Web of
Things. Let’s get started! 

 Note that to make it easier for you to discover the Web Thing Model and try the
examples in this section, we deployed a web Thing in the cloud: http://gate-
way.webofthings.io. In the next section, you’ll learn how to implement and run the
same web Thing server your Pi or laptop, so feel free to revisit these examples on your
own web Things later.

ENTITIES

As we described earlier, the Web of Things is composed of web Things. But what is a
web Thing concretely? A web Thing is a digital representation of a physical object—a
Thing—accessible on the web. Think of it like this: your Facebook profile is a digital
representation of yourself, so a web Thing is the “Facebook profile” of a physical
object. Examples of web Things are the virtual representations of garage door, a bottle

11 At the time of writing, the Web Thing Model (http://model.webofthings.io) is also an official W3C member
submission. This does not mean it is a standard yet, but it means it will influence the standardization efforts
around the Web of Things within the Web of Things Interest Group (http://www.w3.org/WoT/IG/).
EVRYTHNG (and hence Vlad and Dom) is part of the Web of Things Interest Group at W3C.

http://gateway.webofthings.io
http://gateway.webofthings.io
http://model.webofthings.io
http://www.w3.org/WoT/IG/
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of soda, an apartment, a TV, and so on. The web Thing is a web resource that can be
hosted directly on the device, if it can connect to the web, or on an intermediate in
the network such as a gateway or a cloud service that bridges non-web devices to the
web. All web Things should have the following resources as illustrated in figure 8.5:

■ Model—A web Thing always has a set of metadata that defines various aspects
about it such as its name, description, or configurations.

■ Properties—A property is a variable of a web Thing. Properties represent the
internal state of a web Thing. Clients can subscribe to properties to receive a
notification message when specific conditions are met; for example, the value
of one or more properties changed.

■ Actions—An action is a function offered by a web Thing. Clients can invoke a
function on a web Thing by sending an action to the web Thing. Examples of
actions are “open” or “close” for a garage door, “enable” or “disable” for a
smoke alarm, and “scan” or “check in” for a bottle of soda or a place. The direc-
tion of an action is from the client to the web Thing.

■ Things—A web Thing can be a gateway to other devices that don’t have an inter-
net connection. This resource contains all the web Things that are proxied by
this web Thing. This is mainly used by clouds or gateways because they can
proxy other devices.
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- Actions/properties model

Health monitor

/model

URL: http://devices.webofthings.io

/actions
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/things

Bluetooth

ZigBeeLilyPad

Web Thing
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non-web Things
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- reboot
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Figure 8.5 The resources of a web Thing. Web Thing clients can interact with the various resources 
of the web Thing. The model resource provides metadata for discovery, properties are the variables 
of the Things (data, sensor, state, and so on), and actions are the function calls (commands 
supported by the web Thing). When the web Thing is also a gateway to other (non-web) Things, the 
Thing’s resource is a proxy to the non-web Things. 
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Each web Thing can use this model to expose its capabilities. In the next section we
examine these in more detail, especially what they look like. Describing the entire
model in this book would take a few more chapters, so we limit ourselves to the strict
essentials needed to understand what it is and how you can use it. We invite you to
refer to the online description of the Web Thing Model to see the entire description
with the various entities and fields you can use. You won’t need this information to fol-
low this chapter, but it will help when you will want to adapt the model for your own
devices and products. Furthermore, this model is heavily built on the concepts you
learned in chapters 6 and 7, so you’re definitely not starting from scratch!

8.3.2 Metadata

In the Web Thing Model, all web Things must have some associated metadata to
describe what they are. This is a set of basic fields about a web Thing, including its
identifiers, name, description, and tags, and also the set of resources it has, such as the
actions and properties. A GET on the root URL of any web Thing ({WT} in the follow-
ing listing) always returns the metadata using this format, which is JSON by default. 

GET / HTTP/1.1
Host: gateway.webofthings.io
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Link: </model/>; rel="model", </properties/>; rel="properties", 
  </actions/>; rel="actions", </things/>; rel="things", 
  <http://model.webofthings.io/>; rel="type"

{
  "id": "http://gateway.webofthings.io",
  "name": "My WoT Raspberry PI",
  "description": "A simple WoT-connected Raspberry Pi for the WoT 
    book.",
  "tags": ["raspberry","pi","WoT"],
  "customFields": {...}
}

As you can see here, the returned payload contains the basic information about the web
Thing. The links to the various resources of this web Thing are contained in the Link:
header of the response; see section 8.2.2. You can then follow each link to get more
information about each of those resources. A GET {WT}/model will return the entire
model of the web Thing, including the details of the actions or properties available. 

8.3.3 Properties

Web Things can also have properties. A property is a collection of data values that relate
to some aspect of the web Thing. Typically, you’d use properties to model any

Listing 8.3 GET {WT}: retrieve the metadata of a web Thing
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dynamic time series of data that a web Thing exposes, such as the current and past
states of the web Thing or its sensor values—for example, the temperature or humid-
ity sensor readings. Because properties should always capture the most up-to-date state
of the web Thing, they’re generally updated by the web Things themselves as soon as
the value changes and not by web Thing clients or applications. Let’s look at the prop-
erties of our web Thing by doing a GET on the {WT}/properties resource, as shown
in the following listing.

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Link: <http://model.webofthings.io/#properties-resource>; rel="type"

[
  {
    "id": "temperature",
    "name": "Temperature Sensor",
    "values": {

"t": 9,
"timestamp": "2016-01-31T18:25:04.679Z"

    }
  },
  {
    "id": "humidity",
    "name": "Humidity Sensor",
    "values": {

"h": 70,
"timestamp": "2016-01-31T18:25:04.679Z"

    }
  },
  {
    "id": "pir",
    "name": "Passive Infrared",
    "values": {

"presence": false,
"timestamp": "2016-01-31T18:25:04.678Z"

    }
  },
  {
    "id": "leds",
    "name": "LEDs",
    "values": {

"1": false,
"2": false,
"timestamp": "2016-01-31T18:25:04.679Z"

    }
  }
]

You can see the current values of the various sensors on the Raspberry Pi, such as the
temperature and PIR and when they were last changed. Let’s now look at one of them
in more detail in the next listing.

Listing 8.4 GET {WT}/properties: retrieve the properties of a web Thing
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HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Link: <http://model.webofthings.io/#properties-resource>; rel="type"

[
    {"t":21.1,"timestamp":"2015-06-14T15:00:00.000Z"},
    {"t":21.4,"timestamp":"2015-06-14T14:30:00.000Z"},
    {"t":21.6,"timestamp":"2015-06-14T14:00:00.000Z"},
... 
]

A GET on a specific property will return an array of value objects like the one shown
here. Each value object has one or more fields, such as t for the actual temperature
sensor reading, and the timestamp when the value was recorded. Some sensors might
have several dimensions; for example, an acceleration sensor will have three dimen-
sions, called values, one for each axis: X, Y, and Z. 

8.3.4 Actions

Actions are another important type of resources of a web Thing because they represent
the various commands that can be sent to that web Thing. Examples of actions are
“open/close the garage door,” “turn on the living room light, set its brightness to
50%, and set the color to red,” and “turn off the TV in 30 minutes.” In theory, you
could also use properties to change the status of a web Thing, but this can be a prob-
lem when both an application and the web Thing itself want to edit the same property.
This is where actions can help. Let’s draw a parallel to better grasp the concept:
actions represent the public interface of a web Thing and properties are the private
parts. Much like in any programming languages, you can access the public interface,
and whatever is private remains accessible only for privileged parties, like the instance
itself or, in this case, the web Thing. But limiting access to actions—that is, the public
interface—also allows you to implement various control mechanisms for external
requests such as access control, data validation, updating a several properties atomi-
cally, and the like.

 Actions are also particularly useful when the command you want to send to a web
Thing is much more complex than setting a simple value; for example, when you want
to send a PDF to a printer or when the action might not be automatically executed.
You can find the list of actions a given web Thing supports by sending a GET {WT}/
actions request, as in the next listing.

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Link: <http://model.webofthings.io/#actions-resource>; rel="type"

[{"id":"ledState","name":"Changes the status of the LEDs"}]

Listing 8.5 Retrieve the temperature property 

Listing 8.6 GET {WT}/actions: retrieve the actions supported by a web Thing
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The response payload contains an array with the name and ID of each action the web
Thing supports. More details about these actions are available in the {WT}/model
resource, which describes what each action does and how to invoke it (which parame-
ters to use, what their value should be, and so on). Let’s examine the details of the
action ledState in the model in the following listing.

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Link: <model.webofthings.io>; rel="type"

...
"actions": { 
  "link": "/actions",    
  "title": "Actions of this Web Thing",
  "resources": { 
    "ledState": {   

"name":"Changes the status of the LEDs",
"values": {    
"ledId": { 
  "type": "string", 
  "required": true}, 
"state": { 
  "type": "boolean", 
  "required" : true} 

} 
    } 
  } 
},...

The actions object of the Web Thing Model has an object called resources, which
contains all the types of actions (commands) supported by this web Thing. In this
example, only one action is supported: the "ledState":{} object, where ledState is
the ID of this action. The values object contains the possible parameters that can be
sent when creating the action. Here, the action accepts two values: ledId (the ID of
the LED to change as a string) and state (the target state as a Boolean), both of which
are required. Actions are sent to a web Thing with a POST to the URL of the action
{WT}/actions/{id}, where id is the ID of the action (ledState), as shown in the next
listing.

POST {WT}/actions/ledState
Content-Type: application/json

{"ledId":"3","state":true}

HTTP/1.1 204 NO CONTENT

Listing 8.7 GET {WT}/model: the actions object of a web Thing model

Listing 8.8 POST {WT}/actions/ledState: turn on LED 3

The link to the actions 
resource; can be 
changed if needed

efinition
ledState

action New actions must contain two values, ledId 
specifying which LED is to be addressed 
and state for turning the LED on/off.
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You can see that the payload is an object where the different fields correspond to the
values object for that action (see listing 8.7). The response of the request will usually
be 204 NO CONTENT if it is executed immediately or 202 ACCEPTED if the action will be
executed at a later time. If the web Thing keeps track of all actions it receives, you can
see the list of all actions with a GET on the {WT}/actions/{actionId} resource. You’ll
find more details about actions and how to use them in the Web Thing Model refer-
ence online.

8.3.5 Things

As shown in figure 8.5, a web Thing can act as a gateway between the web and devices
that aren’t connected to the internet. In this case, the gateway can expose the
resources—properties, actions, and metadata—of those non-web Things using the web
Thing. The web Thing then acts as an Application-layer gateway for those non-web
Things as it converts incoming HTTP requests for the devices into the various protocols
or interfaces they support natively. For example, if your WoT Pi has a Bluetooth dongle,
it can find and bridge Bluetooth devices nearby and expose them as web Things. 

 The resource that contains all the web Things proxied by a web Thing gateway is
{WT}/things, and performing a GET on that resource will return the list of all web
Things currently available, as shown in the following listing.

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Link: <model.webofthings.io/things>; rel="meta"

[
  {
    "id":"http://devices.webofthings.io/pi",
    "name":"Raspberry Pi",
    "description":"A WoT-enabled Raspberry Pi"
  },  
  {
    "id":"http://devices.webofthings.io/camera",
    "name":"Fooscam Camera",
    "description":"LAN-connected camera."
  },
  {
    "id":"http://devices.webofthings.io/hue",
    "name":"Philips Hue",
    "description":"A WoT-enabled Philips Hue Lamp."
  }
]

You can then access the web Thing for each of those resources by accessing its ID if it’s
an absolute URL, or by appending it to the Things resource URL ({WT}/things/{id})
and send actions or retrieve its properties like you would with any other web Thing.
The Things resource is mainly relevant when a web Thing is a gateway or a cloud

Listing 8.9 GET {WT}/things: the things object of the Web Thing Model
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service but also if the web Thing has a number of other devices connected to it; for
example, via USB, Bluetooth, or any other type of interface.

8.3.6 Implementing the Web Thing Model on the Pi

Now that you’ve seen the basics of the Web Thing Model, it’s time to dig into the most
important parts of its implementation. 

THE WOT PI MODEL

The first thing we want to do now is to use the Web Thing Model to describe the Pi
and its capabilities. This means extending the simpler sensor/actuator model we
wrote in chapter 7. The tree structure of the Pi modeled using the Web Thing Model
is shown in figure 8.6 and the corresponding JSON model can be found in the /
resources/piNoLd.json file. 

How to get the code

There’s a copious amount of code behind the implementation of the Web Thing Model
we just presented, so instead of describing each line of code, we’ll focus on the
most important or tricky parts. You’ll find the full code on GitHub; see http://
book.webofthings.io. The examples for this chapter are located in the chapter8-seman-
tics folder. Go to the webofthingsjs-unsecure folder and run npm install followed
by node wot.js.

Because the code is using the webofthings.js project (the reference implementation
of the Web Thing Model), you must clone the Git repository with the –-recursive
option to make sure all the sub-modules of this chapter are also retrieved.

Root resource of Pi
(Web Thing)

{wt}

Model
/model

Type
http://...

Product
http://...

Properties
/properties

Actions
/actions

ledState
/ledState

PIR
/pir

LEDs
/leds

Humidity
/humidity

Temperature
/temperature

. . .

ledState action
/1235

ledState action
/1234

Figure 8.6 Resource tree of the Pi implementing the Web Thing Model. The notion of sensors and 
actuators is replaced by the idea of properties (variables) and actions (functions). Some of the 
resources, such as type or product, can be external references.

http://book.webofthings.io
http://book.webofthings.io
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The listing that follows shows the model of the temperature property shown in
listing 8.5.

"links": { 
  "product": {   
    "link": "https://.../products/raspberry-pi-2-model-b/",
    "title": "Product this Web Thing is based on"
  },
  "properties": {   
    "link": "/properties",
    "title": "List of Properties",
    "resources": {

"temperature": {
"name": "Temperature Sensor",
"description": "An ambient temperature sensor.",
"values": {

   "t": {   
      "name": "Temperature sensor",
      "description": "The temperature in celsius",
      "unit": "celsius",
      "customFields": {

"gpio": 12
    }
  }
},
"tags": ["sensor","public","indoors"]

} [...]

Remember that the properties of our model are variables or private interfaces of the
web Thing and therefore shouldn’t be changed by external clients, only by the device
itself. Properties can be modified through actions, which you can see as functions or
public interfaces a web client can invoke on a web Thing. 

 An action is a contract between the clients and the Things. When an action is cre-
ated, the web Thing must know what to do with it; you’ll see an implementation of an
action shortly. Likewise, the client must know the format and semantics of the action,
such as which parameters can be sent. 

 In order for clients to easily access the resources of a web Thing, the entire model
of the Thing should be easily retrievable by the client. Once the model is ready,
we make it accessible through the /model resource, which returns the entire
piNoLd.json file.

VALIDATING YOUR MODEL WITH JSON SCHEMA

Creating your model file so that it complies with the Web Thing Model can be a
daunting task because this model is significantly more complex than the one we used
in chapter 7, for example. This is unfortunately the price we pay for better interopera-
bility and real-world readiness. Luckily, there’s a tool that can help us: JSON schemas.12

Listing 8.10 Temperature property for Pi

12 http://json-schema.org/

The model contains a
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the web linking format.perties
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http://json-schema.org/
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A JSON schema is a way to formalize the model of a JSON payload; it’s basically the
XML schema (XSD) of JSON. The Web Thing Model provides a Web Thing Model–
compliant JSON schema that you can use to validate the JSON model of your Things.
To use it, download it13 and then use a JSON schema validator library such as JSON-
Schema for Node.js,14 or use an online validator such as the good JSON Schema Lint.15

EXTENDING THE WOT SERVER FOR DISCOVERY—ARCHITECTURE

There are many ways to implement this model on the Pi, but the simplest way to do it
is to extend the architecture on top of what you implemented in chapter 7. The key
idea is to put the Web Thing Model in the middle. The properties of the model will be
updated by the different plugins connected to the sensors; for example, the tempera-
ture or PIR plugins. The plugins managing actuators will listen for incoming actions
by observing the model. Finally, clients request resources and the server sends them a
subset of the model as a response. Look at figure 8.7 to see the key parts of this imple-
mentation.

DYNAMIC ROUTING

In chapter 7, we manually created Express routes. Here, because we implemented a
well-known contract (the Web Thing Model), we’re able to automatically generate the

13 http://model.webofthings.io/models/wot-schema.json
14 https://github.com/tdegrunt/jsonschema
15 http://jsonschemalint.com/

Clients
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(Web Thing Model)
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Figure 8.7 Implementation strategy of our Pi web Thing: the model is in the middle. It’s used by 
the routes creator to create the REST resources and their corresponding endpoints. Sensor 
plugins—for example, PIR—update the model whenever fresh data is read from a sensor. Actuator 
plugins listen for actions sent by clients, execute the action, and finally update the model when the 
action has been executed successfully; for example, they update the properties that have changed 
as a result of the action.

https://github.com/tdegrunt/jsonschema
http://model.webofthings.io/models/wot-schema.json
http://jsonschemalint.com/
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routes with little effort. To do this we first load the model and create the routes
accordingly inside the /routes/routesCreator.js file. The code in the next listing
shows the creation of the root resource.   

  function createRootRoute(model) {
    router.route('/').get(function (req, res, next) {   

var type = 'http://model.webofthings.io/';
res.links({
model: '/model/',
properties: '/properties/',
actions: '/actions/',
things: '/things/',
type: type

});    

var fields = ['id', 'name', 'description', 'tags', 'customFields'];
req.result = utils.extractFields(fields, model);   

next();   
    });
  };

The code for the Thing (/), model (/model), properties (/properties/...), and
actions (/actions/...) resources is similar. The next listing how to create the routes
related to actions. 

[...]
function createActionsRoutes(model) {
  var actions = model.links.actions;

  router.route(actions.link).get(function (req, res, next) {   
    req.type ='actions';
    req.entityId = 'actions';
    type = 'http://model.webofthings.io/#actions-resource';
    res.links({

type: type
    });   

    req.result = utils.modelToResources(actions.resources, true);   
    next();
  });

  router.route(actions.link + '/:actionType')
  .post(function (req, res, next) {   
    var action = req.body;   
    action.id = uuid.v1();   
    action.timestamp = utils.isoTimestamp();   
    action.status = "pending";

Listing 8.11 /routes/routesCreator.js: root resource route 

Listing 8.12 /routes/routesCreator.js: actions resources routes 
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236 CHAPTER 8 Find: Describe and discover web Things

Add th

resour
s

Location
    actions.resources[req.params.actionType].data.push(action);   

    res.location(req.originalUrl + '/' + action.id);   
    next();
  });  
[...]

You can see that the routes are created using two helper functions, defined in utils.js,
that map the model to the resource representation as specified in the Web Thing Model: 

■ extractFields(fields, model) creates a new object by copying only the nec-
essary fields from the model.

■ modelToResources(subModel, withValue) transforms a subset of the model
into an array of resources; for example, it extracts all the properties from the
model with their latest values to create the /properties resource.

PLUGINS 

Because the Web Thing Model is based on the concepts of actions, not just properties
(like our implementation in chapter 7), we need to adapt the plugins to react to
incoming actions. The basic concept is shown in figure 8.7: sensor plugins (for exam-
ple, the temperature and humidity plugin, the PIR plugin) still update properties just
like in the code of chapter 7. But actuator plugins will listen for incoming actions by
observing the model and will update properties when changing their state after an
action has been executed.

 You can find the code for the new plugins in the /plugins/internal directory. You’ll
notice that unlike in chapter 7, all plugins inherit now from a corePlugin.js module.
This helps us group the code common to all plugins into an abstract plugin that other
concrete plugins will inherit from and extend. This can be done using a JavaScript fea-
ture called prototypal inheritance. If you have no clue what we’re talking about here, don’t
worry. All you need to remember is that the all the code shared by all plugins is imple-
mented in corePlugin.js, whereas all the functionality that’s specific to a plugin is imple-
mented in the concrete plugin modules themselves; for example, pirPlugin.js.16 The
most important part of the corePlugin.js file is shown in the next listing.

[...]
var CorePlugin = exports.CorePlugin = function (params, 

propertyId, 
doStop, 
doSimulate,
actionsIds, 
doAction) {

16 If you’d like to learn more about prototypical inheritance in JavaScript, the Mozilla JavaScript portal is a good
place to start: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype
_chain. Or you can use any of the JavaScript or Node.js books we recommended in chapter 3.

Listing 8.13 /plugins/corePlugin.js: generic plugin for common features

Add the new action to the model; we
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contain the actual instance of actions.

e URL of
the new

ce to the
tandard
 header.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
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  if (params) {   
    this.params = params;
  } else {
    this.params = {'simulate': false, 'frequency': 5000};
  }

  this.doAction = doAction;  
  this.doStop = doStop; 
  this.doSimulate = doSimulate; 
  this.actions = actionsIds;  
  this.model = utils.findProperty(propertyId);  
}; 

CorePlugin.prototype.start = function () { 
  if (this.actions) this.observeActions();   
  if (this.params.simulate) { 
    this.simulate(); 
  } else { 
    this.connectHardware(); 
  } 
  console.info('[plugin started] %s', this.model.name); 
}; 
[...]

CorePlugin.prototype.observeActions = function () { 
  var self = this; 
  _.forEach(self.actions, function (actionId) {   
    Object.observe(resources.links.actions.resources[actionId].data,
    function (changes) { 

var action = changes[0].object[changes[0].object.length -1];  
console.info('[plugin action detected] %s', actionId); 
if (self.doAction) self.doAction(action); 

    }, ['add']); 
  }); 
}; 

As a result, concrete plugins are much shorter and simpler because they can use the
functionality from the corePlugin.js module. All these plugins have to do now is regis-
ter which property they will update and which actions they will listen to (observe).
Obviously, they also have to implement the hardware connectivity part (GPIOs) as well
as what to do with the hardware when an action they listen to is performed through
the REST API. All the plugins are in the /plugins directory. To understand how all this
works, take a closer look at the LED plugin shown in the next listing.

[...]
var actuator, model; 
var LedsPlugin = exports.LedsPlugin = function (params) {  
  CorePlugin.call(this, params, 'leds', 

Listing 8.14 /plugins/ledsPlugin.js: LED plugin working with the Web Thing Model

Initialize a new concrete plugin with 
the given parameters and functions.
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This helper function returns 
the property of this plugin.

Start observing 
the actions.

For each action ID, find it
in the model and register

a callback to doAction.

The changes object contains an
array of all registered changes;

we take the last change.

Call the initialization function of the
parent plugin (corePlugin.js).
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    stop, simulate, ['ledState'], switchOnOff);   
  model = this.model; 
  this.addValue(false); 
}; 
util.inherits(LedsPlugin, CorePlugin);   

function switchOnOff(value) { 
  var self = this; 
  if (!this.params.simulate) { 
    actuator.write(value.state === true ? 1 : 0, function () { 

self.addValue(value.state);  
    }); 
  } else { 
    self.addValue(value.state); 
  } 
  value.status = 'completed';   
  console.info('Changed value of %s to %s', self.model.name, value.state); 
}; 

function stop() { 
  actuator.unexport(); 
}; 

function simulate() { 
  this.addValue(false); 
}; 

LedsPlugin.prototype.createValue = function (data){ 
  return {"1" : data, "2" : false, "timestamp" : utils.isoTimestamp()}; 
}; 

LedsPlugin.prototype.connectHardware = function () {   
  var Gpio = require('onoff').Gpio;   
  var self = this; 
  actuator = new Gpio(self.model.values['1'].customFields.gpio, 'out'); 
  console.info('Hardware %s actuator started!', self.model.name); 
}; 

If you have other devices at home, we invite you to extend the Web Thing Model for
your devices and adapt this implementation so you can expose those devices as web
Things so that they can be part of the Web of Things.

8.3.7 Summary—the Web Thing Model

In this section, we introduced the Web Thing Model, a simple JSON-based data model
for a web Thing and its resources. We also showed how to implement this model using
Node.js and run it on a Raspberry Pi. We showed that this model is quite easy to
understand and use, and yet is sufficiently flexible to represent all sorts of devices and
products using a set of properties and actions. The goal is to propose a uniform way to
describe web Things and their capabilities so that any HTTP client can find web
Things and interact with them. This is sufficient for most use cases, and this model has
all you need to be able to generate user interfaces for web Things automatically, as

Pass it the property you’ll update (leds)
and the actions you want to observe

(ledState) as well as the implementation
of what to do when a ledState action is

created (switchOnOff).
ke the
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we’ll show in chapter 10. If the hotel room where our Estonian friend Lena is staying
would only offer a Web Thing Model and an API like this for all the devices and ser-
vices in the room, she would be happy and could build her dream app in no time!
Sadly, the Web of Things is nowhere near this vision yet because such a model for the
Web of Things has been missing. Until now, that is!

8.4 The Semantic Web of Things
In an ideal world, search engines and any other applications on the web could also
understand the Web Thing Model. Given the root URL of a web Thing, any applica-
tion could retrieve its JSON model and understand what the web Thing is and how to
interact with it. But this is not yet the case because the Web Thing Model we proposed
isn’t a standard. The question now is how to expose the Web Thing Model using an
existing web standard so that the resources are described in a way that means some-
thing to other clients. The answer lies in the notion of the Semantic Web and, more
precisely, the notion of linked data that we introduce in this section. 

 Semantic Web refers to an extension of the web that promotes common data formats
to facilitate meaningful data exchange between machines. Thanks to a set of stan-
dards defined by the World Wide Web Consortium (W3C), web pages can offer a stan-
dardized way to express relationships among them so that machines can understand
the meaning and content of those pages. In other words, the Semantic Web makes it
easier to find, share, reuse, and process information from any content on the web
thanks to a common and extensible data description and interchange format.

8.4.1 Linked data and RDFa

When search engines find and index content from the web, most of the data on web
pages is unstructured. This makes it difficult to understand what a web page is about.
Is this page about someone? Or is it about a restaurant, a movie, a birthday party, or a
product? HTML pages have only a limited ability to tell web clients or search engines
what they talk about. All you can do is to define a summary and a set of keywords. The
HTML specification alone doesn’t define a shared vocabulary that allows you to
describe in a standard and non-ambiguous manner the elements on a page and what
they relate to. 

LINKED DATA

Enter the vision of linked data,17 which is a set of best practices for publishing and
connecting structured data on the web, so that web resources can be interlinked in a
way that allows computers to automatically understand the type and data of each
resource. This is particularly appealing because any application that understands the
type of a resource can then collect, process, and aggregate data from different sources
uniformly, regardless of where it was published.

17 http://linkeddata.org/

http://linkeddata.org/
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 This vision has been strongly driven by complex and heavy standards and tools
centered on the Resource Description Framework18 (RDF) and various controlled
vocabularies, known as ontologies. Although powerful and expressive, RDF would be
overkill for most simple scenarios, and this is why a simpler method to structure con-
tent on the web is desirable. 

 To overcome the limited descriptive power of the web without the heavy machin-
ery of RDF, RDFa19 offers an interesting tradeoff. This standard emerged as a lighter
version of RDF that can be embedded into HTML code. Designed for both humans
and machines, RDFa is a simple and lightweight way to annotate structured informa-
tion such as products, people, places, and events directly within HTML pages. Most
search engines can use these annotations to generate better search listings and make
it easier to find your websites. 

 Using RDFa to annotate the elements of the Web Things Model directly in the
HTML representation of your device is particularly useful because search engines
could then find and understand your web Things, without having to understand the
JSON representation of the Web Thing Model. Putting it bluntly, using RDFa to
describe the metadata of a web Thing will make that web Thing findable and search-
able by Google. Although Google supports several data types, such as products, reci-
pes, and events,20 there is no specific type for the Web of Things. Let’s look at how we
can create our own data types and use them within RDFa. 

RDFA PRIMER

To annotate any content using RDFa, we must either reuse an existing vocabulary or
create a new one. A vocabulary,21 also called a taxonomy, is a set of terms (fields) that
can be used to annotate a certain type of element, along with a definition of what each
field refers to. For example, if we only want to expose basic information about a Rasp-
berry Pi, such as its name, description, or an image, we could use the products vocab-
ulary supported by Google.22 

 Unfortunately, this format doesn’t allow exposing the properties or actions of our
Web Thing Model because there isn’t a vocabulary for the web Things we can reuse.
But we can define our own based on the Web Thing Model reference found here:
http://model.webofthings.io.

 In the following listing,23 we show how the WoT Pi can expose its JSON model using
RDFa and our own Web of Things vocabulary. Start the WoT Pi server from our

18 http://www.w3.org/RDF/
19 http://rdfa.info/
20 Learn more about Google’s support for markups: https://developers.google.com/structured-data/rich-

snippets/.
21 RDFa offers a simple explanation: http://www.w3.org/TR/rdfa-lite/#vocab-typeof-and-property.
22 Google’s Product annotation format: https://developers.google.com/structured-data/rich-snippets/

products.
23 Note that to improve readability, the extract shown in listing 8.15 is a shorter version of the actual HTML code

returned by the web Thing implementation you’re using in this chapter.

https://developers.google.com/structured-data/rich-snippets/
https://developers.google.com/structured-data/rich-snippets/
http://model.webofthings.io
http://www.w3.org/RDF/
http://rdfa.info/
http://www.w3.org/TR/rdfa-lite/#vocab-typeof-and-property
https://developers.google.com/structured-data/rich-snippets/products
https://developers.google.com/structured-data/rich-snippets/products
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GitHub repository, as shown in section 8.3.6. By accessing the root resource of your
WoT Pi with your browser, you’ll see the following HTML code.

<div vocab="http://model.webofthings.io/" typeof="WebThing">
  <h1 property="name">Raspberry Pi</h1>
  <div property="description">

<p>A simple WoT-connected Raspberry PI for the WoT book.</p>
  </div>

<p>ID:<span property="id">1</span></p>
<p>Root URL:<a property="url" href="http://devices.webofthings.io">http://
devices.webofthings.io</a></p>
Resources:
<div property="links" typeof="Product">

    <a property="url" href="https://www.raspberrypi.org/products/raspberry-
pi-2-model-b/">

Product this Web Thing is based on.</a>
  </div>
  <div property="links" typeof="Properties">
    <a property="url" href="properties/">

Properties of this Web Thing.</a>
  </div>
  <div property="links" typeof="Actions">
    <a property="url" href="actions/">
    Actions of this Web Thing.</a>
  </div>
  <div property="links" typeof="UI">
    <a property="url" href="ui/">
    User Interface for this Web Thing.</a>
  </div>
</div>

You can see that most HTML tags have some unfamiliar attributes24 defined by RDFa: 

■ vocab defines the vocabulary used for that element, in this case the Web of
Things Model vocabulary defined previously.

■ property defines the various fields of the model such as name, ID, or descrip-
tion.

■ typeof defines the type of those elements in relation to the vocabulary of the
element.

This allows other applications to parse the HTML representation of the device and
automatically understand which resources are available and how they work. In particu-
lar, because Web of Things search engines will become increasingly popular (or will
when Google supports and understands the Web Thing Model), physical devices,
their data, and services will be easily indexed and searchable in real time. 

Listing 8.15 The HTML representation of the root resource with RDFa annotations 

24  Lean more about HTML attributes here: http://www.w3schools.com/html/html_attributes.asp.

http://www.w3schools.com/html/html_attributes.asp
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ADDING RDFA TO YOUR WOT PI

To offer RDFa annotations for your WoT Pi, you’ll need to extend the HTML represen-
tation of its resources. In chapter 7 you saw a simple way of returning HTML based on
converter middleware. The problem with this approach is that you had to create the
HTML code inside the converter middleware, which wasn’t very clean. A much better
method in Express is to use templating engines. These modules offer the ability to create
HTML templates that are dynamically filled with data when an HTML representation is
requested. We installed a templating engine called Handlebars25 in the project of chap-
ter 8, but feel free to install it yourself as described in the nerd corner that follows. 

 Once the templating engine is installed, all you need to do is to create HTML tem-
plates that contain your RDFa code. As an example, listing 8.16 is a snippet of the
HTML template for the root resource of the Pi.

<p>ID:
<span property="id">

    {{req.result.id}}    
  </span>
</p> 
<p>Name: <span property="name">{{req.result.name}}</span></p>
<p>Description: <span property="description">{{req.result.description}}</

span></p>
<p>Tags: <span property="tags">{{req.result.tags}}</span></p>
<p>Root URL:<a property="url" href="http://devices.webofthings.io">http://

devices.webofthings.io</a></p>
<h3>Custom Fields</h3>
  {{#each req.result.customFields}}

<p>Key: {{@key}} = {{this}}</p>
  {{/each}}

25 https://github.com/wycats/handlebars.js/

The nerd corner—Install a templating engine

To use a templating engine for your WoT Pi, install the consolidate modulea (npm
install –-save consolidate); this module facilitates the integration of many tem-
plating engines to Express. In our case we’ll use the Handlebars templating module,
which you can install via NPM as well (npm install –-save handlebars). Once it’s
installed, you need to tell your Express app to use it by adding the following code to
the http.js file:

app.engine('html', cons.handlebars);
app.set('view engine', 'html');
app.set('views', __dirname + '/../views');

a https://github.com/tj/consolidate.js

Listing 8.16 Templating HTML view in Express with RDFa tags

RDFa
ations
ted in

L span
tags

Handlebars variables that will be filled with the correct
information by Express when the view is rendered

https://github.com/wycats/handlebars.js/
https://github.com/tj/consolidate.js
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Then, extend the converter.js middleware to inject the variables needed for your RDFa
and to invoke the templating engine, as shown in the next listing.

function represent(req, res, next) {
  console.info('Representation converter middleware called!');
  if (req.result) {
    if (req.accepts('html')) {

var helpers = {
json: function(object) {
  return JSON.stringify(object);
},
getById: function(object,id) {
  return object[id];
}

};

if (req.type) res.render(req.type, { req: req , helpers: helpers }); 
else res.render('default', { req: req , helpers: helpers }); 

return;
    }
    [...]

That’s it! The HTML pages of your Pi now offer RDFa annotations, ready for the actors
of the Semantic Web (for example, clients and search engines) to consume that data. 

8.4.2 Agreed-upon semantics: Schema.org

The tools of the Semantic Web can be used to describe pretty much anything. For
instance, we could use RDFa to add more semantic description on top of our Web
Thing Model. We could create a vocabulary that describes that a web Thing is a wash-
ing machine or smart door lock. The issue with the approach would be that only appli-
cations in our ecosystem would understand these specific vocabularies. We could push
it one step further and turn these vocabularies into standards. But this is time-consum-
ing and would often lead to competing standards because each manufacturer would
want their own vocabulary.

 A more recent approach is to rely on more lightweight collaborative repositories.
These repositories offer simple schema for specific semantic descriptions. They pro-
vide de facto ways of describing simple concepts such as things, people, and locations. 

 Schema.org26 has become the most popular of these collaborative repositories. It
hosts a set of well-defined schemas for all sorts of structured data on the internet. In
their own words,

Schema.org is a collaborative, community activity with a mission to create, maintain,
and promote schemas for structured data on the Internet, on web pages, in email

Listing 8.17 /middleware/converter.js: extending the converter

26 http://schema.org/

Inject the variables needed in the
HTML+RDFa representation.

 render()
 calls the
g engine
igured in
Express.

http://schema.org/
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messages, and beyond. Schema.org vocabulary can be used with many different encod-
ings, including RDFa, Microdata and JSON-LD. These vocabularies cover entities,
relationships between entities and actions, and can easily be extended through a well-
documented extension model. Over 10 million sites use Schema.org to markup their web
pages and email messages. Many applications from Google, Microsoft, Pinterest, Yan-
dex and others already use these vocabularies to power rich, extensible experiences.

Extract from http://schema.org/

In other words, not only can anyone directly reuse the models from schema.org to
describe their web resources in a more standard way, but doing so will also make them
automatically findable and understandable by many other websites and services.
Google, Yahoo!, and Microsoft Bing, for instance, can parse the schema.org vocabulary
for people. If you create a product description page using a serialization of this vocab-
ulary—for example, using RDFa—to describe a product, a search engine will know
you’re talking about a product and will render the results accordingly. Similarly, the
Person vocabulary is used to identify pages that describe human beings, and the Place
vocabulary is used to attach physical locations to web pages that are taken into account
when using location-based search queries, such as via Google Maps. Search engines
aren’t the only clients that use these vocabularies; mail clients such as Gmail,27 web
browsers, and other web-based discovery tools are also starting to understand them.

 In the Web of Things, these agreed-upon vocabularies can readily be used to
improve the findability of Things, as we’ll illustrate next with a small example using a
growing format called JSON-LD.

8.4.3 JSON-LD

The schemas available on schema.org aren’t bound to a particular format. You can
obviously use them in RDFa but you can also use them in Microdata28 as another way
of representing linked data within HTML. On top of that, the schemas are available in
a more recent format called JSON-LD (JSON-based serialization for Linked Data). 

 JSON-LD is an interesting and lightweight semantic annotation format for linked
data that, unlike RDFa and Microdata, is based on JSON.29 It’s a simple way to semanti-
cally augment JSON documents by adding context information and hyperlinks for
describing the semantics of the different elements of a JSON objects.

 Getting started with JSON-LD can be a little tricky because at the time of writing
JSON-LD is not yet an official standard, but rather an evolving W3C recommendation.30

A good place to start is the official JSON-LD page,31 where you’ll find a number of

27 https://developers.google.com/gmail/markup/overview
28 https://html.spec.whatwg.org/multipage/microdata.html
29 JSON-LD can also be embedded in HTML: http://www.w3.org/TR/json-ld/#embedding-json-ld-in-html-doc-

uments.
30 The latest version of the recommendation is available here: http://www.w3.org/TR/json-ld/.
31 http://json-ld.org

http://schema.org/
https://developers.google.com/gmail/markup/overview
https://html.spec.whatwg.org/multipage/microdata.html
http://www.w3.org/TR/json-ld/#embedding-json-ld-in-html-documents
http://www.w3.org/TR/json-ld/#embedding-json-ld-in-html-documents
http://www.w3.org/TR/json-ld/
http://json-ld.org
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tutorials, examples, and a playground to test your JSON-LD payloads. In this section,
we focus on only the bare minimum you’ll need to understand how to use it for the
examples we provide.

 JSON-LD extends the JSON language with a number of keywords represented by the
special names of JSON properties starting with the @ sign. The most important key-
words are summarized in table 8.1.

On its own, JSON-LD is just another format for adding semantics to data. But when
using it with standard schemas, such as those available on schema.org, it can be power-
ful because it lets you reference an agreed-upon context to semantically describe your
data.

JSON-LD FOR THINGS

Let’s look at a simple example. We’ll use the Product schema described on
schema.org32 to add some semantic data to our Pi. After all, our Pi is also a product, so
it does make sense! The following listing shows a modified version of the pi.json
model that uses the JSON-LD vocabulary for products.

{
  "@context": "http://schema.org/Product",   
  "@id": "http://localhost:8484",   
  "name": "My WoT Raspberry PI", 
  "description": "A simple WoT-connected Raspberry PI for the WoT book.",  
  "productID" : "asin:B00T2U7R7I",  
  "manufacturer" : "Raspberry Pi",  
  "model" : "100437",   
  "image" : "https://www.raspberrypi.org/wp-

content/uploads/2015/01/Pi2ModB1GB_-comp-500x283.jpeg",   
  [...]

Table 8.1 The three main reserved keywords the JSON-LD language adds to JSON

Key Description Example

@context URL referencing a particular 
schema

http://schema.org/Person

@id Unique identifier (usually a URI) http://dbpedia.org/page/Mahatma_Gandhi

@type A URL referencing the type of a 
value

http://www.w3.org/2001/XMLSchema#dateTime

32 http://schema.org/Product

Listing 8.18 resources/piJsonLd.json: adding JSON-LD to our JSON model 
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JSON-LD uses a different MIME or media type than JSON. Thanks to HTTP’s content-
negotiation mechanism you saw earlier, you only have to add a small bit of code to
your converter.js middleware, as shown in the next listing, to start serving JSON-LD.

[...]
var jsonld = require('./../resources/piJsonLd.json'); 

function represent(req, res, next) {
  [...]

  if (req.accepts('application/ld+json')) {
    console.info('JSON-ld representation selected!');
    res.send(jsonld);
    return;
  }
  [...]
}

Now go ahead and try to request JSON-LD on the root resource of your Pi with the
Accept: application/ld+json header, and you’ll get JSON-LD data returned.

FINDABILITY AND BEYOND

This simple example already illustrates the essence of JSON-LD it gives a context to
the content of a JSON document. As a consequence, all clients that understand the
http://schema.org/Product context will be able to automatically process this informa-
tion in a meaningful way. This is the case with search engines, for example. Google
and Yahoo! process JSON-LD payloads using the Product schema to render special
search results; as soon as it gets indexed, our Pi will be known by Google and Yahoo!
as a Raspberry Pi product. This means that the more semantic data we add to our Pi,
the more findable it will become. As an example, try adding a location to your Pi using
the Place schema,33 and it will eventually become findable by location.

 We could also use this approach to create more specific schemas on top of the Web
Thing Model; for instance, an agreed-upon schema for the data and functions a wash-
ing machine or smart lock offers. This would facilitate discovery and enable automatic
integration with more and more web clients.

8.4.4 Beyond the book

As you’ve realized, a common Application layer protocol is essential but not sufficient
to achieve interoperability. A higher-level model to describe the metadata and func-
tionality of the Web of Things along with a standard set of APIs are needed to build
interoperable applications and devices. The Web Thing Model we introduced in sec-
tion 8.3 bridges this gap and is an excellent starting point for building your next Web
of Things device, gateway, or cloud.

Listing 8.19 middleware/converter.js: adding support for JSON-LD representations

33  http://schema.org/Place

Return just the model as an
example; extend this to retu
JSON-LD for all resources.

application/ld+json is 
the media type 
for JSON-LD.

http://schema.org/Place
http://schema.org/Product 
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 At the time of writing, this model has been published as a W3C Member Submis-
sion. Although it isn’t an official standard, it might serve as a basis for working groups,
and we invite you to follow the upcoming standardization efforts within the W3C Web
of Things consortium.34

 The battle for semantics and models for the IoT is strategic and will not only
involve open standards. In the home automation space, Apple HomeKit and Google
Weave will likely play an important role. We’re at a critical turning point in the devel-
opment of the IoT, and relying on standards created by large companies might not be
the best option for individual consumers. Therefore, independent institutions such as
the W3C will have to play a vital role in the future of the web and WoT.

8.5 Summary
■ The ability to find nearby devices and services is essential in the Web of Things

and is known as the bootstrap problem. Several protocols can help in discover-
ing the root URL of Things, such as mDNS/Bonjour, QR codes or NFC tags.

■ The last step of the web Things design process, resource linking design (also
known as HATEOAS in REST terms), can be implemented using the web linking
mechanism in HTTP headers.

■ Beyond finding the root URL and sub-resources, client applications also need a
mechanism to discover and understand what data or services a web Thing offers.

■ The services of Things can be modeled as properties (variables), actions (func-
tions), and links. The Web Thing Model offers a simple, flexible, fully web-com-
patible, and extensible data model to describe the details of any web Thing.
This model is simple to adapt for your devices and easy to use for your products
and applications.

■ The Web Thing Model can be extended with more specific semantic descriptions
such as those based on JSON-LD and available from the Schema.org repository.

Although internet access is the bare minimum required to be part of the Web of
Things, you’ve seen that a shared and open data model to describe a web Thing will
maximize interoperability without sacrificing flexibility and ease of use. 

 Now that you’ve learned how to open, expose, find, and use web Things in the
World Wide Web, you’re ready for the next challenge—and layer—of the Web of
Things: how to share web Things securely over open networks such as the web. In the
next chapter, we’ll first show you how to secure your web Things using state of the art
methods and best practices. Afterward, you’ll learn how to use your existing social net-
work account in order to share your devices with your friends. Finally, we’ll show how
to implement best practices of web security and data sharing on your WoT Pi. 

34 http://www.w3.org/WoT

http://www.w3.org/WoT
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In most cases, Internet of Things deployments involve a group of devices that com-
municate with each other or with various applications within closed networks—
rarely over open networks such as the internet. It would be fair to call such deploy-
ments the “intranets of Things” because they’re essentially isolated, private net-
works that only a few entities can access. But the real power of the Web of Things
lies in opening up these lonely silos and facilitating interconnection between
devices and applications at a large scale. 

This chapter covers
■ A short overview of security risks and issues on

the Web of Things
■ A brief theoretical introduction to HTTPS,

certificates, and encryption
■ Best practices and techniques for web-based

authorization and access control
■ Learning to implement these best practices

and tools on your Raspberry Pi
■ Implementing the Social Web of Things in the

WoT gateway
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 Why would you even want this? When it comes to a critical IoT system such as a net-
work of industrial machines in a large factory in Shenzhen, the security system of the
British Museum, or simply own collection of smart devices at home, you certainly
don’t want these networks to be open to anyone. But when it comes to public data
such as data.gov initiatives, real-time traffic/weather/pollution conditions in a city, or
a group of sensors deployed in a jungle or a volcano, it would be great to ensure that
the general public or researchers anywhere in the world could access that data. This
would enable anyone to create new innovative applications with it and possibly gener-
ate substantial economic, environmental, and social value. Another use case is the
smart hotel scenario presented in chapter 1, where hotel guests (and only they) should
have access to some services and devices in their room (and only there) during their
stay (and only then). Because the public infrastructure is becoming not only digital but
also pervasive, the earlier we could build, deploy, and scale those systems while maxi-
mizing the ability to share data between devices, users, and applications, the better it
would be for all of us. How to share this data in secure and flexible way is what Layer 3
provides, as shown in figure 9.1.

 The prerequisite for this is to use a common protocol and data format between
devices and applications, which we covered extensively in the previous chapters. But
once devices are connected to a public network, the most important problem to solve
is how to ensure that only a specific set of users can access only a specific set of
resources at a specific time and in a specific manner. In the next sections we’ll show
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Figure 9.1 The Share layer of the Web of Things. This layer focuses on how 
devices and their resources must be secured so that they can only be 
accessed by authorized users and applications. 
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how to do this by building on the concepts and tools you’ve already seen. First, we’ll
show how Layer 3 of the WoT architecture covers the security of Things: how to
ensure that only authorized parties can access a given resource. Then we’ll show how
to use existing trusted systems to allow sharing physical resources via the web.

9.1 Securing Things
Right now, the hottest topic (or potato, to be more accurate!) of the IoT world is argu-
ably security.1 We keep hearing all over the news about the IoT and the endless possi-
bilities of an all-connected world. Sadly, this vision is also continuously tainted by
major security breaches: personal information, credit card data, sensitive documents,
or passwords from millions of users being stolen by hackers. Such happenings not
only can severely hurt the reputation of a company but also can have disastrous effects
for the users. Ultimately, every security breach hurts the entire web because it erodes
the overall trust of users in technology. No one wants their smart fridges sending spam
emails2 about dubious pills, inheritances, or unclaimed lottery gains.

 Security in the Web of Things is even more critical than in the web. Because web
Things are physical objects that will be deployed everywhere in the real world, the risks
associated with IoT attacks can be catastrophic. Digitally augmented devices allow col-
lecting much more information about people with a fine-grained resolution, such as
when you got your last insulin shot, what time you go jogging and where, and the like.
But more important, unauthorized access to physical objects can be dangerous—
remotely controlling your brand new BMW3 or house,4 anyone? Despite those risks,
recent reports have shown a sad state of affairs in the world of IoT security.5 Although
many vulnerabilities—called exploits in hacker parlance—are widely known and patches
for them are readily available, it has been reported that the majority of IoT solutions
don’t comply with even the most basic security best practices; think clear-text passwords
and communications, invalid certificates, old software versions with exploitable bugs,
and so on. In other words, you don’t even have to be a security expert to use existing
weaknesses in many services or devices and gain access to unauthorized content. 

 This book is not about network security, so don’t expect to become an expert in
this field by the end of this chapter. But because it’s such a crucial issue for any pro-
duction system or consumer product connected to the internet, we’ll cover the basics
you need to know when building IoT solutions in the form of a set of best practices for
building secure and reliable devices and applications. If you can’t wait any longer, an
excellent resource is the Open Web Application Security Project (OWASP) Internet of
Things project,6 which contains useful, down-to-earth, and practical information
about how to build safer IoT applications and systems.

1 http://venturebeat.com/2016/01/16/ces-2016-the-largest-collection-of-insecure-devices-in-the-world
2 http://www.theguardian.com/technology/2014/jan/21/fridge-spam-security-phishing-campaign
3 http://www.wired.com/2015/08/bmw-benz-also-vulnerable-gm-onstar-hack/
4 http://www.forbes.com/sites/kashmirhill/2013/07/26/smart-homes-hack/
5 See “Insecurity in the Internet of Things,” https://www.symantec.com/iot/.
6 https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project

https://www.symantec.com/iot/
http://venturebeat.com/2016/01/16/ces-2016-the-largest-collection-of-insecure-devices-in-the-world
http://www.theguardian.com/technology/2014/jan/21/fridge-spam-security-phishing-campaign
http://www.wired.com/2015/08/bmw-benz-also-vulnerable-gm-onstar-hack/
http://www.forbes.com/sites/kashmirhill/2013/07/26/smart-homes-hack/
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
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Roughly speaking, securing the IoT comes down to solving three major problems
summarized in figure 9.2: 

■ First, we must consider how to encrypt the communications between two enti-
ties (for example, between an app and a web Thing) so that a malicious inter-
ceptor—a “man in the middle”—can’t access the data being transmitted in
clear text. This is referred to as securing the channel and will be covered in sec-
tion 9.1.1.

■ Second, we must find a way to ensure that when a client talks to a host, it can
ensure that the host is really “himself,” which is the topic discussed in section
9.1.2. For example, in chapter 4, you downloaded and installed NOOBS from
our website. But you did so via HTTP instead of HTTPS, and we didn’t provide
an SHA checksum available for that image over HTTPS. In essence, you had to
trust that whatever you downloaded was really what we gave you and not a cor-
rupted OS image inserted by an attacker.

■ Third, we must ensure that the correct access control is in place. We need to set
up a method to control which user can access what resource of what server or
Thing and when and then to ensure that the user is really who they claim to be.
This topic will be covered in section 9.2.

Huh? It's
encrypted!  

Yo, heater! 
Set temperature

to 50°F.

Lena’s mobile app
Heater unit

Attacker sniffing network packets

9or8ncnor4zcof8zsilfnlinhoniy
oiunpcs3um984cu98mcpgmpj
macu89znc89tzc9ou89p4cyuk
09tp38a8nv98tmsvz5985zsov
qrprn8c9oqz34ciu47i87znc4iz
89ocrn8zrm8mx389r3fiwmc48
n98zcrsn87z4zm98ct9z8mc34

Am I really talking to 
the heater, or to a fake
device trying to steal

my passwords?

Problem 2

Is it really Lena who 
sent me this request? If so,
is she allowed to change 

my temperature?

Problem 3

Am I sure that
no one can see the

message I am sending
to the heater?

Problem 1

Figure 9.2 The three principal challenges in securing the IoT. First, communications must be 
encrypted to prevent unauthorized entities from reading the messages between a client and a server. 
Second, the client must be sure they are really talking to whom they they are. Third, the server must 
be sure that a message comes from an authorized client allowed to send that request.
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After exploring these three problems and their solutions, in section 9.3 we’ll blur
another line: the one between the Social Web and the Web of Things. We’ll put
together everything you’ve learned so far to build an application that allows you to use
third-party social network identities to share Things with your friends.

9.1.1 Encryption 101

As you’ve seen before, there’s more to security than encryption. Nevertheless, encryp-
tion is an essential ingredient for any secure system. Without encryption, any attempt
to secure a Thing will be in vain because attackers can sniff the communication and
understand the security mechanisms that were put in place.

 Using a web protocol without encryption can be compared to sending a postcard
via snail mail: anyone can read the content of the postcard at any stage. Adding
encryption to a web protocol is like putting the postcard in a thick and sealed enve-
lope: even if you can see the envelope, you can’t read the card!

SYMMETRIC ENCRYPTION

The oldest form of encoding a message is symmetric encryption. The idea is that the
sender and receiver share a secret key that can be used to both encode and decode a
message in a specific way; for example, by substituting or shifting some characters by a
number. This type of encryption is the easiest to put in place for resource-limited IoT
devices, but the problem is that as soon someone discovers the key, they can decode
and encode any message. To use a symmetric key successfully, the key has to be shared
with trusted parties securely, such as by giving the key to the recipient in person. 

ASYMMETRIC ENCRYPTION

In the internet era, another method called asymmetric encryption has become popular
because it doesn’t require a secret to be shared between parties. This method uses two
related keys, one public and the other private (secret), as shown in figure 9.3. A host

Lena’s app encrypts
a message using the
heater’s public key.

Heater decrypts the
message using its
own private key.

Encrypted message

Encrypt Decrypt

Lena’s mobile app
Heater unit

Figure 9.3 Asymmetric encryption in an IoT context. The heater shares its public key with Lena. 
It’s then up to Lena’s mobile app to encrypt messages sent to the heater. Thanks to the power of 
cryptography, the only way to decrypt the message is with the private key of the heater.
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can freely share its public key with anyone over the internet. When any client wants to
send a message to the host, it can use the public key to encode the message before
sending it. Once a message is encoded with the public key, it can be decoded only with
the private key that’s known only by the host. This way, any message sent by a client
(for example, a web app) to a server (for example, a web Thing) can be opened only
by the server and not by an eavesdropper.

9.1.2 Web security with TLS: the S of HTTPS!

Fortunately , there are standard protocols for securely encrypting data between clients
and servers on the web. The best known protocol for this is Secure Sockets Layer
(SSL). SSL has long been the technology that sits behind the S in HTTPS, which is the
method used to encrypt all the communications between your browser and a web
server. But a number of important vulnerabilities in the SSL protocol have been dis-
covered over the years, making it possible for attackers to crack the security SSL pro-
vides. In 2014, major vulnerabilities in the SSL 3.0 protocols were found; for example,
POODLE,7 Heartbleed,8 and Shellshock.9 These events inked the death of this proto-
col, which was replaced by the much more secure but conceptually similar Transport
Layer Security (TLS).10 

 This highlights two important points. First, no method or system is secure forever.
Second, open protocols—and especially web protocols—are closely monitored and
fixed as soon as flaws are identified. In consequence, all communications over the
Web of Things are to be encrypted with TLS. We won’t give a full description of TLS
here because it would take a chapter on its own—or a whole book, for that matter—
but we’ll review the basics of TLS and focus on the key concepts while simplifying the
complex bits.

TLS 101

Despite its name, TLS is an Application layer protocol (see chapter 5). TLS not only
secures HTTP (HTTPS) communication but is also the basis of secure WebSocket
(WSS) and secure MQTT (MQTTS). TLS has two main roles. First, it helps the client
ensure that the server is who it says it is; this is the SSL/TLS authentication. Second, it
guarantees that the data sent over the communication channel can’t be read by any-
one other than the client and the server involved in the transaction (also known as
SSL/TLS encryption).

7 https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
8 https://en.wikipedia.org/wiki/Heartbleed
9 https://en.wikipedia.org/wiki/Shellshock_(software_bug)
10 The long legacy of SSL means that today the acronym SSL is used as an umbrella term for both TLS and SSL.

https://en.wikipedia.org/wiki/Heartbleed
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://en.wikipedia.org/wiki/Shellshock_(software_bug)


254 CHAPTER 9 Share: Securing and sharing web Things
A typical TLS exchange between a client and a server is shown in figure 9.4.11 This is
what happens when you use your browser to connect to an HTTPS website, such as
https://manning.com. Here’s a summary of the most important steps:

1 The client, such as a mobile app, tells the server, such as a web Thing, which
protocols and encryption algorithms it supports. This is somewhat similar to the
content negotiation process we described in chapter 6.

2 The server sends the public part of its certificate to the client. The goal here is
for the client to make sure it knows who the server is. All web clients have a list
of certificates they trust.12 In the case of your Pi, you can find them in /etc/ssl/

11 If you want an even simpler way of explaining TLS to your cat, check “What’s Behind the Padlock”: https://
casecurity.org/wp-content/uploads/2013/01/ssl-1200.jpg.

12 Firefox and Chrome, for example, trust certificates signed by those CAs; see https://mozillacaprogram
.secure.force.com/CA/IncludedCACertificateReport.

Hi, I understand: 
protocols, versions, ciphers

Server

Let’s use: 
protocol, version, cipher

My certificate: certificate chain

Do I trust a certificate in chain? Yes!

encrypt(preMasterSecret,
serverPubKey)

Encrypted preMasterSecret

Derive masterSecret
decrypt(preMasterSecret,
myPrivateKey)

Derive masterSecret

Some content: 
encrypt(content, masterSecret)

Some content: 
encrypt(content, masterSecret)

ServerClient

Client

Figure 9.4 SSL/TLS handshake: the client and the server first negotiate the protocols and encryption 
algorithms, and then the server sends its certificate chain to prove who it is to the client. Finally, the 
client sends a preMasterSecret from which the client and server derive a masterSecret used to encrypt 
all the future messages.

https://mozillacaprogram.secure.force.com/CA/IncludedCACertificateReport
https://mozillacaprogram.secure.force.com/CA/IncludedCACertificateReport
https://casecurity.org/wp-content/uploads/2013/01/ssl-1200.jpg
https://casecurity.org/wp-content/uploads/2013/01/ssl-1200.jpg
https://manning.com
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certs. SSL certificates form a trust chain, meaning that if a client doesn’t trust
certificate S1 that the server sends back, but it trusts certificate S2 that was used
to sign S1, the web client can accept S1 as well.

3 The rest of the process generates a key from the public certificates. This key is
then used to encrypt the data going back and forth between the server and the
client in a secure manner. Because this process is dynamic, only the client and
the server know how to decrypt the data they exchange during this session. This
means the data is now securely encrypted: if an attacker manages to capture
data packets, they will remain meaningless.

9.1.3 Enabling HTTPS and WSS with TLS on your Pi

Now that you’ve seen the theory, it’s time for a bit of practice! Let’s secure the API of
your WoT Pi to ensure that traffic between the Pi and its clients is encrypted. Note that
the process we define here works as well on all the other Linux devices we talked
about—for example, the Intel Edison or the BeagleBone—as well as on any Linux- or
Unix-based machines. Go ahead and generate a certificate. First, you need to make sure
the OpenSSL library is installed. On your Pi go to the /resources directory and run 

sudo apt-get install openssl

This should tell you something along the lines of openssl is already the newest
version. Or it will be installed if not present. Now, to generate the certificates, run

openssl req -sha256 -newkey rsa:2048 -keyout privateKey.pem -out caCert.pem 
-days 1095 -x509

Because this command is self-explanatory we won’t detail it. No? Fine, let’s dig into it!
The command does two things in one. First, it generates a private key (-newkey
rsa:2048 -keyout privateKey.pem) that will be used to sign the certificate using the
sha256 hashing algorithm. While it does this, you’ll see a Generating a 2048 bit RSA
private key message followed by a prompt to provide a passphrase, essentially a pass-
word to protect your private key. Make sure you keep this one safe because you’ll need
it soon! 

 Second, it will generate a new certificate (-out caCert.pem) that will last for 1,095
days using the x509 data format, and it also prompts you with a few questions, as
shown in listing 9.1. The common name is the hostname for which this certificate
should be valid; for example, raspberrypi.local if you’re on your Pi or localhost if
you’re running these examples on your machine. The information you provide here
will be exposed in the certificate and will be visible to all clients. 

You are about to be asked to enter information that will be incorporated 
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

Listing 9.1 Information requested when generating a self-signed certificate 
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 If
mod

t
r

HTT

conf

 

For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]: UK
State or Province Name (full name) [Some-State]: London
Locality Name (eg, city) []:London
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Web of Things
Organizational Unit Name (eg, section) []: Web of Things
Common Name (e.g. server FQDN or YOUR name) []: raspberrypi.local 
Email Address []:book@webofthings.io

At the end of this process, two files will be generated: 
 caCert.pem is the public part of the certificate your Pi server will send to the clients

when connecting to it via TLS. 
 privateKey.pem is the private key of your Pi server and hence should be kept,

well...private. 
 You’re now ready to turn your Pi unencrypted HTTP and WS APIs into secure

HTTPS and WSS APIs. All you need to do is modify the code of the wot-server.js file at
the root of your WoT PI project (see chapters 7 and 8). Copy the content of wot-
server.js into a new wot-server-secure.js file and modify it as shown in the following list-
ing, which enables HTTPS and WSS.

[...]
var createServer = function (port, secure) {
  if (process.env.PORT) port = process.env.PORT;
  else if (port === undefined) port = resources.customFields.port;
  if (secure === undefined) secure = resources.customFields.secure;

  initPlugins(); 

  if(secure) {
    var https = require('https');
    var certFile = './resources/change_me_caCert.pem';
    var keyFile = './resources/change_me_privateKey.pem'; 
    var passphrase = 'webofthings';

    var config = {
cert: fs.readFileSync(certFile),
key: fs.readFileSync(keyFile),
passphrase: passphrase

    };

    return server = https.createServer(config, restApp) 
.listen(port, function () {
wsServer.listen(server); 
console.log('Secure WoT server started on port %s', port);

    })
  } else {
    var http = require('http');
    return server = http.createServer(restApp)

Listing 9.2 Modifying the WoT Pi server to serve HTTPS and WSS content

This should be the
hostname, IP, or domain

name corresponding to your
Pi or the local machine you

test the code from.

Start the internal 
hardware plugins.

 in secure
e, import
he HTTPS
module.

The actual certificate
file of the server

The private key of the 
server generated earlie

The password of 
the private key

Create an
PS server
using the
ig object.

By passing it the server 
you create, the 
WebSocket library will 
automatically detect and
enable TLS support.
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.listen(process.env.PORT | port, function () {
wsServer.listen(server);
console.log('Unsecure WoT server started on port %s', port);

    })
  }
};

function initPlugins() {
  var LedsPlugin = require('./plugins/internal/ledsPlugin').LedsPlugin;
  var PirPlugin = require('./plugins/internal/pirPlugin').PirPlugin;
  var Dht22Plugin = require('./plugins/internal/dht22Plugin').Dht22Plugin;

  pirPlugin = new PirPlugin({'simulate': true, 'frequency': 5000});
  pirPlugin.start();

  ledsPlugin = new LedsPlugin({'simulate': true, 'frequency': 5000});
  ledsPlugin.start();

  dht22Plugin = new Dht22Plugin({'simulate': true, 'frequency': 5000});
  dht22Plugin.start();
}

module.exports = createServer;

process.on('SIGINT', function () {
  ledsPlugin.stop();
  pirPlugin.stop();
  dht22Plugin.stop();
  console.log('Bye, bye!');
  process.exit();
});

Finally, modify the wot.js file to require wot-server-secure.js, and start the server by
running nodewot.js. Now, go to https://localhost:8484/properties/pir in your
browser. You should get a warning saying that the connection is not private. What this
really means appears in the small print: ERR_CERT_AUTHORITY_INVALID. This means
that the certificate was generated by you and not by a certificate authority (CA) trusted
by your browser. There are two ways to fix this: you can buy a certificate from a trusted
CA, as explained in the next section, or you can tell your computer to trust the certi-
ficate you just created. The best way to do this is by adding the certificate to the trust
store of your browser. The operation will differ depending on which environment
you’re using, but here’s how to add it to Firefox: click I Understand The Risk (because
now you do, don’t you?), Add Exception, and finally Confirm Security Exception.
Other browsers like Chrome use the trust store of the underlying operating system.
Hence, to ensure Chrome accepts your certificate, go to Preferences > Settings > Show
Advanced Settings; in HTTPS/SSL click Manage Certificates. This should open the
trust store of your operating system, where you can import the certificate. Adding self-
signed SSL certificates directly to your operating system13 will make it much easier for
you to develop secure applications for your Pi.

13 http://blog.getpostman.com/2014/01/28/using-self-signed-certificates-with-postman/

http://blog.getpostman.com/2014/01/28/using-self-signed-certificates-with-postman/
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Once your browser trusts the certificate of your WoT Pi, you should be able to get the
content returned and the browser should display the usual lock icon on the address
bar. If you click it, you’ll see the details of your TLS certificate, as shown in figure 9.5.

BEYOND SELF-SIGNED CERTIFICATES

Clearly, having to deal with all these security exceptions isn’t nice, but these excep-
tions exist for a reason: to warn clients that part of the security usually covered by SSL/
TLS can’t be guaranteed with the certificate you generated. Basically, although the
encryption of messages will work with a self-signed certificate (the one you created
with the previous command), the authenticity of the server (the Pi) can’t be guaran-
teed. In consequence, the chain of trust is broken—problem 2 of figure 9.2. In an IoT
context, this means that attackers could pretend to be the Thing you think you’re talk-
ing to. This isn’t a big deal when your Things are accessible only on the local network,
but as soon as you make them available on the web, this becomes critical.

 The common way to generate certificates that guarantee the authenticity of the
server is to get them from a well-known and trusted certificate authority (CA). There
are a number of them on the web, such as Thawte, Symantec, and GeoTrust. The good

The certificate is trusted because 
we added it to the trust store.

The domain corresponds 
to this certificate.

The channel is encrypted.

The connection is 
secured by TLS 1.2.

Figure 9.5 The server of the WoT Pi can now be accessed via HTTPS. The details of the secure 
connection and certificates can be reviewed by clicking the small lock icon on the address bar.
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thing about certificates issued by such CAs is that they verify who created the certifi-
cates, albeit with various degrees of rigor. This means that a client has a greater cer-
tainty of which server it’s talking to (authentication). In consequence, these
certificates, or certificates generated using these, are trusted by a number of clients
such as web browsers. More concretely, this means that web browsers and operating
systems have these certificates in their trust store. 

 The problem is that certificates issued by well-known CAs are certainly not free.
The business of selling web security is a lucrative one! A direct and unfortunate conse-
quence of this is that a number of sites use cheaper CAs that do a poorer job of check-
ing to whom they deliver certificates, or they decide to not use secured connections at
all. But this is rapidly changing: a number of major actors on the web, such as Mozilla,
Akamai, Cisco, and the Internet Security Research Group, got together to create the
Let’s Encrypt14 project, an automated CA providing free and secure certificates for the
public’s benefit. There are even ways to automatically generate certificates using Let’s
Encrypt from a Raspberry Pi running a Node server with Express.15 Now that you have
the basics of TLS, you should consider this when moving your Pi to the World Wild
Wide Web.

14 https://letsencrypt.org
15 https://github.com/DylanPiercey/auto-sni

The nerd corner—I want my Pi to be on the web!

Once the development and testing phase of your WoT Pi is finished, you’ll likely want
to make it accessible over the web with its own public domain; for example,
mypi.webofthings.io. To do this, you could use Yaler,a which is a great service and
open source project that offers a relay to securely access your embedded devices
through your firewall and supports mobile Things connecting to different networks.
Alternatively, if you want to go the DIY route, you can use a dynamic DNS service—
unless you already have a fixed IP address—that keeps monitoring the IP address of
your home router to determine when it changes. There are a number of those, but
Duck DNS is straightforward and free. Moreover, it provides clear explanations of how
to install it on a Pi.b Once this is set up, you’ll also have to set up port forwarding on
your home router.c Then, you might also need to generate (or buy) a certificate with
a common name corresponding to the new Duck DNS subdomain of your Pi; for exam-
ple, mypi.duckdns.org. Once you’ve done all of this, your Pi should be truly on the
world-wide Web of Things. But your Pi will also be ready for attackers to try to hack it,
so make sure you protect it well, at the very least by reading to the end of this chapter
and implementing the concepts we describe!

a https://www.yaler.net/raspberrypi
b http://www.duckdns.org/install.jsp#pi
c http://portforward.com/

https://github.com/DylanPiercey/auto-sni
https://www.yaler.net/raspberrypi
https://letsencrypt.org
http://www.duckdns.org/install.jsp#pi
http://portforward.com/
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9.2 Authentication and access control
Once we encrypt the communication between Things and clients as shown in the pre-
vious section, we want to enable only some applications to access it. Let’s get back to
our hotel scenario to understand this issue. The hotel control center application
needs to have full access to all devices in the network and the ability to configure and
administer them. But Lena, who stays in room 212, only needs to access the devices
and services in that room. Besides, she shouldn’t be able to configure them, only to
send a limited set of commands. First, this means that the Things—or a gateway to
which Things are connected—need to be able to know the sender of each request
(identification). Second, devices need to trust that the sender really is who they claim to
be (authentication). Third, the devices also need to know if they should accept or reject
each request depending on the identity of this sender and which request has been
sent (authorization). If encryption is like sending a postcard in a sealed envelope,
authentication and authorization are like sending that envelope via registered mail:
the postman will deliver the letter only to the correct recipient as long as they can
prove their identity with a valid ID.

9.2.1 Access control with REST and API tokens

Nowadays, we go through this authentication process all the time on the web, namely
every time we enter our username and password on a website. When we use our user-
name/password to log into a website, we initiate a secure session with the server that’s
stored for a limited time in the server application’s memory or in a local browser
cookie. During that time, we can send other requests to the server without authenti-
cating again. This method (called server-based authentication) is usually stateful because
the state of the client is stored on the server. But as you saw in chapter 6, HTTP is a
stateless protocol; therefore, using a server-based authentication method goes against
this principle and poses certain problems. First, the performance and scalability of the
overall systems are limited because each session must be stored in memory and over-
head increases when there are many authenticated users. Second, this authentication
method poses certain security risks—for example, cross-site request forgery.16 

 To circumvent these issues, an alternative method called token-based authentication
has become popular and is used by most web APIs. The idea is that a secret token—a
long string of characters—that’s unique for each client can be used to authenticate
each request sent by that client. Because this token is added to the headers or query
parameters of each HTTP request sent to the server, all interactions remain stateless.
Because no session or state needs to be kept on the server(s), applications can be
scaled horizontally without having to worry about where the session of each user is
stored.

16 This method exploits the fact that a malicious website can use your browser to send requests on your behalf
to another website you’re logged into. See https://en.wikipedia.org/wiki/Cross-site_request_forgery.

https://en.wikipedia.org/wiki/Cross-site_request_forgery
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 Obviously, the API token should be generated using a cryptographically secure
pseudo-random generator17 and should be treated like a password: stored in an
encrypted manner. 

 To generate an API token with Node.js, you can use the crypto.randomBytes()
function.18 You’ll find the function in the /utils/utils.js file shown in the next listing. 

exports.generateApiToken = function(length, chars) {
  if (!length) length = 32;
  if (!chars) chars = 

'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
  var randomBytes = crypto.randomBytes(length);
  var result = new Array(length);

  var cursor = 0;
  for (var i = 0; i < length; i++) {
    cursor += randomBytes[i];
    result[i] = chars[cursor % chars.length];
  }

  return result.join('');
}; 

You can call this function by uncommenting the following line in the http.js file: 

console.info('Here is a crypto-secure API Key: ' + utils.generateApiToken());

When you launch the WoT Pi server, you’ll see in the terminal a new API token, which
you can copy and paste into the value of the apiToken key in the resources/auth.json
file. This will be the API token you need to send any request to your Pi.

 You’ll now modify the WoT Pi application so that for each request that comes in, you
check if the request is signed using a valid API token; see the following listing. The best
way to do this is to use the middleware pattern shown in the previous section. You’ll cre-
ate an auth.js file in the middleware folder, which has a function that will be called each
time a new request comes to your API and which checks if it is signed and valid.

var keys = require('../resources/auth');

module.exports = function() {
  return function (req, res, next) {
    console.log(req.method + " " + req.path);
    if (req.path.substring(0, 5) === "/css/") {

next(); 

17 https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

Listing 9.3 utils/utils.js: generate a crypto-secure API token

18 https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback

Listing 9.4 auth.js: authentication middleware 

Allow unauthorized 
access to the css folder.

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
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    } else {
var token = req.body.token || req.get('authorization') || 
req.query.token; 

console.log(req.params);
if (!token) { 
return res.status(401).send({success: false, message: 'API token
  missing.'});

} else {
if (token !== keys.apiToken) { 
  return res.status(403).send({success: false, message: 'API 
    token
    invalid.'});
} else { 
  next();
}

}
    }
  }
};

Finally, you need to add this middleware function to the middleware chain in servers/
http.js. Start by requiring the middleware with auth = require('./../middleware/
auth'), then add it to the chain using app.use(auth()); right after the CORS mid-
dleware. Now, run the WoT server once again and then try accessing https://local-
host:8484/properties/pir. You should now get an error message. Try again with
https://localhost:8484/properties/pir?token=YOUR_TOKEN (or with Postman by
adding the Authorization header with your token as value) and it should work: your
API now requires a valid token!

 In this minimal example, you manually check each request against a hard-coded
API token. We wanted to show you the basics of how token-based authentication
works, so this is not a robust and scalable solution ready for production applications.
You’ll need to use a more elaborate solution that suits your use case and devices. Will
you have many different users that all need to have their own API token, or is it fine to
have only a single token? How granular does your access control need to be? How
often will you need to add, remove, or change these permissions? As an exercise,
you’re welcome to extend this simple token-based implementation to support many
users and tokens and also the various end points of your Thing (including WebSock-
ets interactions; see /servers/websocket.js for a solution). 

The nerd corner—I want better tokens!

Generating tokens manually and implementing a minimal token-based authentication
system from scratch as shown before is a great exercise to help you understand how
it works. But for anything more than that, you’ll be better off using an actual standard.
JSON Web Tokensa (JWT) is particularly interesting here because it not only generates 

a https://jwt.io

ck header or
 parameters
r POST body

for token.

If no token provided, return 
401 UNAUTHORIZED.

en is not the
id API token,

return 403
FORBIDDEN.

If everything is good, save to 
request for use in other routes.

https://jwt.io
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9.2.2 OAuth: a web authorization framework

In the previous section, we gave a brief introduction to API tokens, how they work, and
how you can implement them on web Things. API tokens are a good starting point,
and along with encryption (TLS), they are arguably the bare minimum a WoT device
should offer in terms of security. But as soon as we need to share the resources of a
device with several users having different authorization rights, simple API tokens like
the ones we’ve introduced present two challenges. 

 First, we need a process for web applications to generate and retrieve tokens
dynamically, ideally through an API. Obviously, we can’t just create an API endpoint
that returns tokens. This would be insecure and we’d be back where we started
because we’d need to secure that API as well. Besides, creating a bespoke mechanism
to get tokens wouldn’t foster interoperability; it would make the process complicated
and bespoke for each device and/or API.

 Second, API tokens shouldn’t be valid forever. API tokens, just like passwords,
should change regularly. We should also be able to invalidate any token manually
when needed. This ensures that when an API token has leaked, we can disable it. But
again, creating a custom API to renew tokens wouldn’t foster interoperability between
web clients and web Things. 

 What to do? It turns out there’s a web standard coming to our rescue: OAuth.19

OAuth is an open standard for authorization and is essentially a mechanism for a web
or mobile app to delegate the authentication of a user to a third-party trusted service;
for example, Facebook, LinkedIn, or Google. OAuth makes this delegated authentica-
tion process secure and simple by dynamically generating access tokens using only
web protocols. OAuth also allows sharing resources and between applications. For
instance, you can allow some of your Facebook friends to securely access some of your
documents on Google.

 In short, OAuth standardizes how to authenticate users, generate tokens with an
expiration date, regenerate tokens, and provide access to resources in a secure and
standard manner over the web. Sound like exactly what we need, doesn’t it? Let’s see

secure tokens but also offers a standard mechanism to send encrypted payloads over
insecure connections. In other words, JWT makes it possible to send secure content
over HTTP and WebSocket packets without using TLS. This is particularly appealing
for the WoT because it removes the self-generated certificate warnings in the browser
you encountered earlier because certificates aren’t required for interactions between
an app and Thing within a local network. It’s certainly not as standard and battle-tested
as TLS, but we’ve had some promising results in our own tests. There are JWT libraries
for many languages including Node.js, so go ahead and give it a try!

19 https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749
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how to do this in practice using the most recent version of the OAuth standard:
OAuth 2.0.

OAUTH ROLES

A typical OAuth scenario involves four roles:

■ A resource owner—This is the user who wants to authorize an application to
access one of their trusted accounts; for example, your Facebook account.

■ The resource server—Is the server providing access to the resources the user wants
to share? In essence, this is a web API accepting OAuth tokens as credentials.

■ The authorization server—This is the OAuth server managing authorizations to
access the resources. It’s a web server offering an OAuth API to authenticate
and authorize users. In some cases, the resource server and the authorization
server can be the same, such as in the case of Facebook.

■ The application—This is the web or mobile application that wants to access the
resources of the user. To keep the trust chain, the application has to be known
by the authorization server in advance and has to authenticate itself using a
secret token, which is an API key known only by the authorization server and
the application.

The flow of a typical OAuth-delegated authentication mechanism is shown in figure
9.6. At the end of the token exchange process, the application will know who the user
is and will be able to access resources on the resource server on behalf of the user. The
application can then also renew the token before it expires using an optional refresh
token or by running the authorization process again.

Application

Authorization request

Authorization grant

Authorization grant from user, app ID, and app secret

Access token; refresh token (optional)

Access token

Protected resource

User Authorization server Resource server

Mobile app Lena Heater Heater

Figure 9.6 OAuth delegated authentication and access flow. The application asks the user if they 
want to give it access to resources on a third-party trusted service (resource server). If the user 
accepts, an authorization grant code is generated. This code can be exchanged for an access token 
with the authorization server. To make sure the authorization server knows the application, the 
application has to send an app ID and app secret along with the authorization grant code. The access 
token can then be used to access protected resources within a certain scope from the resource server.
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 OAuth has become a successful protocol, and as a consequence, a large number of
services on the web such as social networks (for example, Facebook, Google+, Linke-
dIn, and Twitter), developer services (for example, GitHub and BitBucket), and many
other websites (such as TripAdvisor and Meetup) support OAuth. But what about the
IoT? How does OAuth relate to our web Things?

OAUTH AND THE WEB OF THINGS

For a start, if all Things become OAuth servers in place of generating API tokens, web
clients will then have a standard way to obtain tokens to access the resources of
devices.

 Let’s get back to our hotel scenario once again. Lena is the user in figure 9.6 and
she has a user account on the heater unit of figure 9.2, which is both the authorization
server and the resource server. Lena uses a mobile app to control the heater, as shown
in figure 9.6. The application asks Lena to log into the heater with her user account,
and then the application exchanges the resulting authorization grant for an access
token from the heater unit. The heater unit accepts the access token and provides
access to the heater to the application on behalf of Lena.

 If Lena was interacting with her heater in her home, this would be a practical sce-
nario. But in the case of the hotel, that means that the heater and all other devices
would need to know about Lena and all the other hotel clients. Besides, all devices
would also need to know all the applications that would interact with them and would
need to have generated a secret token for each of them. It’s pretty obvious this
approach would be a nightmare to maintain! 

 Implementing an OAuth server on a Linux-based embedded device such as the Pi
or the Intel Edison isn’t hard because the protocol isn’t really heavy. But maintaining
the list of all applications, users, and their access scope on each Thing is clearly not
going to work and scale for the IoT. We’ll look at a better approach in the next section.

9.3 The Social Web of Things
Using OAuth to manage access control to Things is tempting, but not if each Thing
has to maintain its own list of users and application. This is where the gateway integra-
tion pattern we discovered in chapter 7 can help. What if you had only a single proxy
that would know the Things you have at home (or in the entire hotel) and also know
the various users involved, so it could manage access control in place of these Things?
“But then I still have to create user accounts on this proxy for each user,” we hear you

The nerd corner—I want my Pi to be an OAuth server!

If you do want to turn your Pi into an OAuth server, go ahead! It will be a good exercise
to help you better understand the protocol and will actually make the implementation
in the next section more secure. A good place to start is the node-oauth2-server
Node.js module for Express, which should run seamlessly on your Pi, Edison, or Bea-
gleBone.
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say. Of course, you could do that, but a much better approach would be to use the
notion of delegated authentication offered by OAuth, which allows you to use the
accounts you already have with OAuth providers you trust, such as Facebook, Twitter,
or LinkedIn. 

 Not only does this approach allow you to reuse the user accounts you already have
in other web services, but it also allows you share access to your devices via existing
social network relationships. These concepts are often referred to as the Social Web of
Things.20 Let’s see what this would look like in more detail. As with all things security,
this won’t be the easiest ride but will definitely be a rewarding one.

9.3.1 A Social Web of Things authentication proxy

The idea of the Social Web of Things is to create an authentication proxy that controls
access to all Things it proxies by identifying users of client applications using trusted
third-party services. The detailed steps for this workflow are shown in figure 9.7.

 Again, we have four actors: a Thing, a user using a client application, an authenti-
cation proxy, and a social network (or any other service with an OAuth server). The
client app can use the authentication proxy and the social network to access resources
on the Thing. This concept can be implemented in three phases:

1 The first phase is the Thing proxy trust. The goal here is to ensure that the proxy
can access resources on the Thing securely. If the Thing is protected by an API
token (device token), it could be as simple as storing this token on the proxy. If
the Thing is also an OAuth server, this step follows an OAuth authentication
flow, as shown in figure 9.6. Regardless of the method used to authenticate,
after this phase the auth proxy has a secret that lets it access the resources of the
Thing.

2 The second phase is the delegated authentication step. Here, the user in the client
app authenticates via an OAuth authorization server as in figure 9.6. The
authentication proxy uses the access token returned by the authorization server
to identify the user of the client app and checks to see if the user is authorized
to access the Thing. If so, the proxy returns the access token or generates a new
one to the client app.

3 The last phase is the proxied access step. Once the client app has a token, it can
use it to access the resources of the Thing through the authentication proxy. If
the token is valid, the authentication proxy will forward the request to the
Thing using the secret (device token) it got in phase 1 and send the response
back to the client app.

In order not to leak any tokens at any step, all the communication has to be encrypted
using TLS. The details for each phase are summarized in figure 9.7.

20 The Social Web of Things was a concept developed in Dom’s thesis (http://webofthings.org/2011/12/01/
phd-web-of-things-app-archi/) based on the Friends and Things project: http://webofthings.org/2010/02/
02/sharing-in-a-web-of-things/.

http://webofthings.org/2011/12/01/phd-web-of-things-app-archi/
http://webofthings.org/2011/12/01/phd-web-of-things-app-archi/
http://webofthings.org/2010/02/02/sharing-in-a-web-of-things/
http://webofthings.org/2010/02/02/sharing-in-a-web-of-things/
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LEVERAGING SOCIAL NETWORKS

You might have noticed that we overlooked one step in the process: how does the auth
proxy know what resources a user can access, or even if they can access any resources
at all? Someone needs to configure the proxy with a number of user identifiers

Auth proxy

Give me a token, this is my secret

Secret token

Redirect to Facebook

Please login

Here are my credentials

Redirect to auth proxy

Redirect to auth proxy

Give me a Facebook access token

Facebook access token

Check user, 
store/generate

user token

Give me access to /temp

Redirected to Facebook

Give me access to /temp, here is my user access token

Give me access to /temp, here is my secret token

Temp is 77°F

Temp is 77°F

Use this user token to access resources

Thing Client app Facebook

Auth proxy Thing Client app Facebook

Phase 1: Thing proxy trust (e.g., via OAuth), refresh on expiration

Phase 2: Delegated authentication via OAuth server (e.g., Facebook, Twitter)

Phase 3: Proxied access via OAuth server (e.g., Facebook, Twitter)

Figure 9.7 Social Web of Things authentication proxy: the auth proxy first establishes a secret with 
the Thing over a secure channel. Then, a client app requests access to a resource via the auth proxy. 
It authenticates itself via an OAuth server (here Facebook) and gets back an access token. This token 
is then used to access resources on the Thing via the auth proxy. For instance, the /temp resource is 
requested by the client app and given access via the auth proxy forwarding the request to the Thing 
and relaying the response to the client app.
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corresponding to the users who can access the system along with a list of resources
they can access. In the case of our hotel, we could ask the guests to log in with their
Facebook accounts or, even better, with the Booking.com profile they used to book
the hotel room in the first place! Then we could save their social identifiers in the
auth proxy, along with the paths to the devices in their room. In the case of a home
automation system, you can even imagine granting access to lists of friends or rela-
tives. Figure 9.8 is an example of a user interface on the auth proxy that can let you
share resources with your friends.

Figure 9.8 User interface of a Social Web of Things authorization proxy: First (upper left), the UI allows 
the user to select a Thing to be shared and (lower left) the resource of the Thing that should be shared; 
for example, /temperature. Then (upper right) it lets the owner of the Thing log into their social network, 
such as Facebook, and (lower right) select a friend to share with or a list of friends. Here we share the 
temperature sensor of the Spot1 device with Dom’s sister via Facebook. [Source: Friends and Things 
Social Web of Things project21] 

The good news is that nothing here needs to be hard-coded. Thanks to the fact that
our Things speak web (see chapters 5 and 6), we can discover their resources (see
chapter 7) and map them to our connections on various OAuth-compliant social net-
works! This is the very idea of the Social Web of Things: instead of creating abstract
access control lists, we can reuse existing social structures as a basis for sharing our

21  hhttp://webofthings.org/2010/02/02/sharing-in-a-web-of-things/

http://webofthings.org/?s=social+web+of+things
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Things. Because social networks increasingly reflect our social relationships, we can
reuse that knowledge to share access to our Things with friends via Facebook, or work
colleagues via LinkedIn. 

9.3.2 Implementing a Social WoT authentication proxy

Now that you’ve seen the theory, let’s put this into practice and implement a simple
authentication proxy for the Social Web of Things, as shown in figure 9.9.

The complete code for this part is located in the chapter9-sharing/social-auth folder,
but we’ll only look at the details of some parts here. The proxy could be built directly
on top of the WoT Pi code we built in the previous chapters, but as we said before, it
makes more sense to implement it as a standalone proxy that can be deployed either
on the Pi or somewhere else because it might proxy the access to more than one
device.

CREATING A FACEBOOK APPLICATION

Before we can begin coding, we need to make sure that Facebook knows our auth
proxy as an authorized Facebook application. To create a Facebook app, you’ll need a
Facebook account and to apply for a Facebook developer account. If you’re not into
cat videos or holiday selfies and therefore don’t have a Facebook account, feel free to
pick another OAuth provider such as Google, Twitter, or GitHub and replace “Face-
book” with the OAuth provider you picked in all the following sections. We won’t
detail how to implement support for other providers, but the principle will be similar,
so you shouldn’t have too much trouble doing this exercise.

 Go to https://developers.facebook.com and apply for a Facebook developer
account if you don’t already have one. Under My Apps select Register As A Developer.
Then you can select My Apps > Add A New App. Select Website, give your app a name,

1. Login 2. Get token

Auth
token

3. GET /temp
and token

HTTPS
token

Social network OAuth
authorization server

Client app

Local network

/pir
Passive infrared sensor

/temp
Temperature sensor

192.168.1.18:8484
Web Thingdevices.webofthings.io:5050

Figure 9.9 A Social Web of Things authentication proxy for your Pi: client apps obtain a token via 
OAuth on Facebook; this token can then be used to access the Pi resources via the auth proxy. The 
auth proxy must be accessible on the web, or at least on the same network as the client app, but the 
Pi can be on a local network as long as the auth proxy can access it.

https://developers.facebook.com
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and select Skip Quick Start. You should now have a new Facebook app; fill the fields as
shown in figure 9.10 by clicking Settings under your app name.

 Once you’ve done this, you can note the two bits of information you need: the app
ID and the app secret of your Facebook application. You’ll need to send these to Face-
book to authenticate your client app. Note that until your app is published publicly,
only you and the people you invite as developers/admins will be able to log in via this
Facebook app.

PASSPORT.JS: THE AUTHENTICATION MIDDLEWARE FOR EXPRESS

Now that your Facebook app is ready, you need to integrate it into your code. You
begin by creating a simple Express application with an HTTPS server. You can find this
application in chapter9-sharing/social-auth/authProxy.js, but we won’t detail it here
because it’s similar to the Express apps you created in chapter 8 and the previous sec-
tions. Next, you’ll create the component that authenticates users via Facebook. You
implement it using one of the most popular Node.js modules, Passport.js.22 Passport is
an impressive authentication middleware that provides simple integration of a num-
ber of authentication techniques—more than 300!—including OAuth and, hence, all
the social networks implementing it. 

 After installing Passport via npm install --s passport, you install the Facebook
authentication module of Passport, called a strategy, via npm install --s passport-
facebook. If you want to authenticate via Twitter, LinkedIn, or GitHub, you’ll need to

22 http://passportjs.org/

App ID and secret

Give your app
a name

The domains
you will use 
for your app

The main page of 
your auth proxy

Figure 9.10 Setting up a new Facebook application for our Social WoT auth proxy. The app ID and 
secret will be used by Facebook to authenticate our app.

http://passportjs.org/
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install the corresponding Passport strategy; for example, passport-twitter or
passport-linkedin. As long as you pick a network that supports OAuth, the imple-
mentation of the proxy with your chosen authentication strategy will be almost the
same as the one used for Facebook.

IMPLEMENTING A FACEBOOK AUTHENTICATION STRATEGY

You’re now ready to add Facebook authentication support to your proxy. The provid-
ers/facebook.js file shows you how to do that. As shown in the following listing, you
have to implement a number of functions to work with a Passport strategy. 

var passport = require('passport'), [...]

var acl = require('../config/acl.json'); 
var facebookAppId = 'YOUR_APP_ID'; 
var facebookAppSecret = 'YOUR_APP_SECRET'; 
var socialNetworkName = 'facebook'; 
var callbackResource = '/auth/facebook/callback'; 
var callbackUrl = 'https://localhost:' + acl.config.sourcePort + 
  callbackResource; 

module.exports.setupFacebookAuth = setupFacebookAuth;
function setupFacebookAuth(app) {
  app.use(cookieParser());
  app.use(methodOverride());
  app.use(session({secret: 'keyboard cat', 

   resave: true, saveUninitialized: true}));
  app.use(passport.initialize());
  app.use(passport.session());

  passport.serializeUser(function (user, done) {
    done(null, user);
  });

  passport.deserializeUser(function (obj, done) {
    done(null, obj);
  });

  passport.use(new FacebookStrategy({
clientID: facebookAppId, 
clientSecret: facebookAppSecret,
callbackURL: callbackUrl 

},
function (accessToken, refreshToken, profile, done) {

auth.checkUser(socialId(profile.id), accessToken, 
   function (err, res) { 
   if (err) return done(err, null);
   else return done(null, profile);
 });

}));

Listing 9.5 providers/facebook.js: a Facebook authentication strategy

Configuration 
variables: FB app 
ID, app secret, 
name, and the UR
to call back after 
user authenticatio
on Facebook

Initialize Passport and support 
storing the user login in sessions.

If you had a database of 
users, you’d use these 
two methods to load and 
save users.

The credentials used to authenticate 
your auth proxy as a Facebook app

 URL will be
called by

ook after a
essful login.

The “verify” function, called by 
the framework after a 
successful authentication with 
the provider; here you check if 
the user is known by the proxy 
and store their token if so.
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  app.get('/auth/facebook',
    passport.authenticate('facebook'), 
    function (req, res) {}); 

  app.get(callbackResource, 
    passport.authenticate('facebook', {session: true, 

failureRedirect: '/login'}),
    function (req, res) {

res.redirect('/account');
    });

  app.get('/account', ensureAuthenticated, function (req, res) { 
    auth.getToken(socialId(req.user.id), function (err, user) {

if (err) res.redirect('/login');
else {
req.user.token = user.token;
res.render('account', {user: req.user});

}
    });
  });

  function socialId(userId) { 
    return socialNetworkName + ':' + userId;
  };
  [...]
};

At first sight, this flow might seem a bit complex. It consists of a number of routes that
redirect the user to a Facebook login page and back from Facebook to your proxy
alongside a code that can be exchanged for a token. Passport takes care of all the
nitty-gritty details for you. The good news is that all authentication strategies have to
implement the same methods, so what you learned here can be applied to other social
networks as well!

 This was the core of the Facebook authentication mechanism, and now you also
need to make sure users have a user interface (HTML views) for all the routes you cre-
ated. You can certainly write HTML pages from scratch, but it’s easier to reuse Handle-
bars, the templating engine we used in the previous chapters. The pages we created
are located in the /views folder. At a minimum you’ll need a login.html page with a
link to /auth/facebook to trigger the authentication process. You’ll also need an
account.html page to which the user will be redirected upon a successful Facebook
authentication.

IMPLEMENTING ACCESS CONTROL LISTS

Now that your application allows users to authenticate via Facebook using OAuth, you
need to decide which user can access which resource on which Thing. In essence, you
need to create an access control list (ACL). There are various ways to implement ACLs,
such as by storing them in the local database. To keep things simple, you’ll use a JSON
configuration file, which can be found in config/acl.json and is shown in the next list-
ing. This file keeps track of which users can access which resources on your Pi.

rigger the
entication
ocess, and
t the user
book.com.

Facebook.com will redirect the user to the 
callbackUrl, so this function will never be called!

This route will be called by Facebook
after user authentication. If it fails you,

redirect to /login; otherwise to /account.

If the user is authenticated,
you get their token and

display their account page;
otherwise redirect to /login.

A unique social identifier is formed 
by concatenating the social userId 
and the social network name.
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 {
  "protected": [ 
    {

"uid": "facebook:10207489314897153", 
"resources": [ 
"/properties", "/properties/temperature", 
"/properties/humidity", 
"/properties/pir", "/leds/1", "/leds/2", "/actions/ledState"

]
    }, {...}
  ],
  "open": [ 
    "/", "/model", "/account", "/login", "/logout", "/auth/facebook", 
    "/auth/facebook/callback"
  ],
  "things": [ 
    {

"id": "WoTPi",
"url": "https://127.0.0.1:8484",
"token": "cKXRTaRylYWQiF3MICaKndG4WJMcVLFz"

    }, {...}
  ],
  "config": {
    "sourcePort" : 5050
  }
}

A difficulty might be finding the user IDs of users you want to share with using their
social network identifier. A good way is to ask them to log in first because this will dis-
play their social network ID on the account page you got back from Facebook. Alter-
natively, you can use the Facebook Graph API explorer23 tool. Make sure you add your
own ID in the ACL!

 Now that your ACL is in place, you need to check what you get back from Facebook
against it to ensure the users who are trying to log in are really welcome. Similarly, you
need to check that they can access the Things’ resources requested. You implement this
using a middleware in /middleware/auth.js, as shown in the next listing.

var acl = require('../config/acl.json'), [...] 

exports.socialTokenAuth = function (req, res, next) {
  if (isOpen(req.path)) { 
    next();
  } else {
    var token = req.body.token || req.param('token') || 

Listing 9.6 config/acl.json: the access control list JSON file

23 https://developers.facebook.com/tools/explorer/

Listing 9.7 Authorizing user requests: /middleware/auth.js

 of the
es you
rotect

User IDs are concatenations 
of the social network name 
and the social network ID.

The list of resources user
facebook:10207489314897153 is allowed to access;

replace the number with your Facebook ID.
ources
ant to

 access
ithout
ication The list of Things this proxy covers alongside thei

root URL and secret token; could also be generat
dynamically via OAuth if the Thing supports it.

Require your 
ACL config file.

If the request is for an open 
path, call the next middleware.

https://developers.facebook.com/tools/explorer/
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Otherw
acces
check
req.headers['Authorization'];
    if (!token) {

return res.status(401).send({success: false, message: 'API token 
missing.'});

    } else {
checkUserAcl(token, req.path, function (err, user) { 
if (err) {
  return res.status(403).send({success: false, message: err}); 
}
next(); 

});
    }
  }
};

function checkUserAcl(token, path, callback) { 
  var userAcl = findInAcl(function (current) {
    return current.token === token && current.resources.indexOf(path) 

!== -1;
  });
  if (userAcl) {
    callback(null, userAcl);
  } else {
    callback('Not authorized for this resource!', null);
  }
};
function findInAcl(filter) {
  return acl.protected.filter(filter)[0];
};

function isOpen(path) { 
  [...] if (acl.open.indexOf(path) !== -1) return true;
}

exports.checkUser = checkUser;
function checkUser(socialUserId, token, callback) { 
  var result = findInAcl(function(current) {
    return current.uid === socialUserId; 
  });
  if(result) {
    result.token = token; 
    callback(null, result);
  } else {
    callback('User not found!', null);
  }
};
[...]

PROXYING RESOURCES OF THINGS

Finally, you need to implement the actual proxying: once a request is deemed valid by
the middleware, you need to contact the Thing that serves this resource and proxy the
results back to the client. This part is no different from any other HTTP proxy. To

ise, get the
s token and
 the ACL for
this token.

If there’s an error, return a
403 Forbidden status code.

Otherwise, the user is 
good to go, and you call 
the next middleware.

Can we find a user with
the given token and

the given path?

Handle open resources.

Called by facebook.js 
when a user is 
authenticated

If the user ID you got from 
Facebook is present in your 
ACL, you have a winner!

Store the user token to 
allow them to make 
subsequent calls to 
resources they can access.
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implement it, you’ll use a blazing-fast Node module for building proxies called
node-http-proxy.24 Install it via npm install --save http-proxy. Then use this
module to build another middleware in /middleware/proxy.js, as shown in the next
listing.

var https = require('https'),
  fs = require('fs'),
  config = require('../config/acl.json').things[0], 
  httpProxy = require('http-proxy');

var proxyServer = httpProxy.createProxyServer({ 
  ssl: {
    key: fs.readFileSync('./config/change_me_privateKey.pem', 'utf8'),
    cert: fs.readFileSync('./config/change_me_caCert.pem', 'utf8'),
    passphrase: 'webofthings'
  },
  secure: false 
});

module.exports = function() {
  return function proxy(req, res, next) {
    req.headers['authorization'] = config.token; 
    proxyServer.web(req, res, {target: config.url}); 
  }
};

That’s it! You should now have a full Social Web of Things authentication proxy. To
test it, run node authProxy.js. Then, start the WoT Pi using node wot.js with simple
token authentication enabled, as shown in section 9.2.1, or with OAuth if you imple-
mented it.

 Try to access a resource of your Pi via the proxy with an invalid token; for example,
https://raspberrypi.local:5050/properties/pir?token=1234. As expected, this will
return an error: Not authorized for this resource!

 Now, let’s get an access token to issue a valid request: start by browsing to https://
IP:5050/login. This should prompt you to log in on Facebook (if your browser doesn’t
have a Facebook login cookie sitting in the cupboard) and then should ask you if you
authorize the proxy Facebook app to access your profile. If you accept, you’ll land on
your profile page, as shown in figure 9.11, where you can see your access token. Copy
it and open https://raspberrypi.local:5050/properties/pir?token=YOUR-TOKEN
once again, but this time with your new token. If everything works, you should get the
HTML representation of the PIR sensor. Take a deep breath and think about what you
just did: you merged the Social Web with the physical world!

24 https://github.com/nodejitsu/node-http-proxy

Listing 9.8 Proxying requests to Things: /middleware/proxy.js

Load the Thing that 
can be proxied 
(there’s only one here).

Initialize the proxy server,
making it an HTTPS proxy to

ensure end-to-end encryption.Do not verify the certificate (true 
would refuse a local certificate).

dleware
; add the
 token of
e Thing.

Proxy the request; notice 
that this middleware doesn’t
call next() because it should
be the last in the chain.

https://github.com/nodejitsu/node-http-proxy
https://raspberrypi.local:5050/properties/pir?token=1234
https://raspberrypi.local:5050/properties/pir?token=YOUR-TOKEN
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9.4 Beyond the book
In this chapter, you learned how to blend the Social Web and the Web of Things to get
to the Social Web of Things. Not a small achievement for a single chapter! Although
you should certainly enjoy the moment, you should also realize that we barely

The nerd corner—I want more of this!

As usual, there are many possible ways of extending this example because we kept
the implementation simple. Here are a few extension ideas: you could use what you
learned in chapter 8 to implement a system for the proxy to automatically discover
web Thing model-compliant Things. You could also make the ACL much easier to deal
with by implementing wildcards; for example, /properties/*. Or you could create a
UI for the proxy that lets you share with your friends or that lets you add authorized
users dynamically (for our hotel scenario). If you’re still hungry for more, you could
also implement proxying for WebSockets; node-http-proxy supports it as well.
Finally, you could implement an OAuth server on the Pi—for example, using node-
oauth2-server—and change the proxy to dynamically get an OAuth access token from
the Pi instead of a simple token; this would make the flow more secure and much
more flexible.

Facebook prompts you to
accept this app request.

Your access token

Figure 9.11 First, Facebook will prompt the user to accept the application request. After a successful 
Facebook authentication, the user is redirected to their Account page on the auth proxy, where they 
can retrieve their access token to be used in subsequent calls to the Things behind the proxy.
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scratched the surface of security for the IoT and the WoT. We didn’t cover a number
of aspects, from ensuring privacy to protecting Things against distributed denial of
service attacks or securing software and firmware updates.

 By definition, perfect security is unattainable. Securing computer networks is a
constant battle between security experts and hackers, where security systems always
need to be one step ahead because the better our machines and tools get, the easier it
is to break secure systems. Network security should be a constant discipline rather
than a one-off event, and you need to keep informed and updated as you pursue your
IoT adventure.25 

 As the IoT moves out of its teenage years and into adulthood, different focal points
will appear. First, security will become ubiquitous and a must-have, rather than a nice-
to-have. But just as HTTP might be too heavy for resource-limited devices, security pro-
tocols such as TLS and their underlying cypher suites are too heavy for the most
resource-constrained devices. This is why lighter-weight versions of TLS are being
developed, such as DTLS,26 which is similar to TLS but runs on top of UDP instead of
TCP and also has a smaller memory footprint. Although such protocols represent
interesting evolutions, some researchers are looking at revolutions! For example,
some researchers started looking at a concept they refer to as device democracy.27 In this
model, devices become more autonomous and favor peer-to-peer interactions over
centralized cloud services. Security is ensured using a blockchain mechanism: similar
to the way bitcoin transactions are validated by a number of independent parties in
the bitcoin network, devices could all participate in making the IoT secure. Without a
doubt, IoT security will change drastically in the next few years, as the web itself will
evolve to match today’s needs.

25 Some good bedside readings: 
- http://h30499.www3.hp.com/t5/Fortify-Application-Security/HP-Study-Reveals-70-Percent-of-Internet-of-
Things-Devices/ba-p/6556284

- https://www.owasp.org/index.php/Main_Page
- http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-
  sleeping-babies/
- http://techcrunch.com/2015/10/24/why-iot-security-is-so-critical

26  https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
27  http://www-935.ibm.com/services/us/gbs/thoughtleadership/internetofthings/

The nerd corner—I want the future of secure application management!

As mentioned before, managing applications or firmware updates on an embedded
device can be tricky to get right and secure: if you don’t do it right, such as by using
an insecure HTTP server, attackers could use your update mechanism to inject what-
ever they like on your customers’ devices! Luckily, as the IoT matures, interesting,
secure, and scalable solutions appear to help you deploy code on your Things. As
an example, resin.io lets you use Git to push new versions of your code to all your
Things or to a selection of them. It also uses Docker containers to package and run

http://h30499.www3.hp.com/t5/Fortify-Application-Security/HP-Study-Reveals-70-Percent-of-Internet-of-Things-Devices/ba-p/6556284#.VIwyo6SsXfo
http://h30499.www3.hp.com/t5/Fortify-Application-Security/HP-Study-Reveals-70-Percent-of-Internet-of-Things-Devices/ba-p/6556284#.VIwyo6SsXfo
https://www.owasp.org/index.php/Main_Page
http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
http://techcrunch.com/2015/10/24/why-iot-security-is-so-critical
https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
http://www-935.ibm.com/services/us/gbs/thoughtleadership/internetofthings/
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9.5 Summary 
■ You must cover four basic principles to secure IoT systems: encrypted commu-

nication, server authentication, client authentication, and access control.
■ Encrypted communication ensures attackers can’t read the content of mes-

sages. It uses encryption mechanisms based on symmetric or asymmetric keys.
■ You should use TLS to encrypt messages on the web. TLS is based on asymmetric

keys: a public key and a private server key.
■ Server authentication ensures attackers can’t pretend to be the server. On the

web, this is achieved by using SSL (TLS) certificates. The delivery of these certif-
icates is controlled through a chain of trust where only trusted parties called
certificate authorities can deliver certificates to identify web servers.

■ Instead of buying certificates from a trusted third party, you can create self-
signed TLS certificates on a Raspberry Pi. The drawback is that web browsers
will flag the communication as unsecure because they don’t have the CA certifi-
cate in their trust store.

■ You can achieve client authentication using simple API tokens. Tokens should
rotate on a regular basis and should be generated using crypto secure random
algorithms so that their sequence can’t be guessed.

■ The OAuth protocol can be used to generate API tokens in a dynamic, standard,
and secure manner and is supported by many embedded Linux devices such as
the Raspberry Pi.

■ The delegated authentication mechanism of OAuth relies on other OAuth pro-
viders to authenticate users and create API tokens. As an example, a user of a
Thing can be identified using Facebook via OAuth.

■ You can implement access control for Things to reflect your social contacts by
creating an authentication proxy using OAuth for clients’ authentication and
contacts from social networks.

Now that you’ve seen how to secure your web-connected Things so that their data and
services can be securely shared and accessed over the web, it’s time to move to the
final layer of the WoT architecture: Compose. In the next chapter, you’ll see how to
take all the components you learned about in this book and combine them to build a
whole new generation of web applications: physical mashups. Integrating real-time
data from numerous physical sources directly within web applications and services is
without doubt the future of the web. We want to make sure you have the tools you
need to get there in no time! 

(continued)

several applications in isolation on embedded devices, which improves portability,
security, and stability. Finally, it works well with Node.js and the Pi and is free if you
have a small number of devices, so go ahead and try it.a

a https://resin.io

http://resin.io


Compose:
Physical mashups
We’ve come quite a long way since the beginning of this book! We’ve implemented
web protocols on Things to make them accessible over the web. We’ve modeled
and semantically described Things with web-friendly formats and languages to facil-
itate their discovery and interoperability. We’ve secured Things with state-of-the-art
web security protocols and best practices and then shared them over the web to
make their resources accessible to our friends on various social networks. Now is
probably a good time to step back and understand why we’ve worked through all
these different layers. Things that are accessible through these layers can now be
integrated to any web application or service seamlessly and effortlessly because web
Things have become first-class citizens of the web! 

This chapter covers
■ Automatically generating user interfaces for

web Things using their model
■ Using box and arrow mashup editors to

combine web Things and web resources.
■ Creating complex workflows for web Things in

minutes with wizard mashup editors
279
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The last layer—Compose, shown in figure 10.1—is all about using what you’ve learned
and built so far to create new applications. You turned Things into web LEGO® bricks;
now it’s time to unleash your inner artist and create a collection of amazing sculp-
tures! In this chapter, we’ll first show you how to use the API of Things to build user
interfaces that can accommodate and adapt to the things they discover. 

 Then we’ll look at physical mashups: composite web applications that combine
Things and web services. You’ll learn how to use mashup tools to rapidly build com-
plex workflows by wiring together data and services from various sources. Because all
components of your application are web APIs, you don’t have to worry about data inte-
gration and can focus solely on the wiring and logic of your application. 

10.1 Building a simple app—automated UI generation
The ultimate goal of the various layers of the Web of Things architecture is to enable
as many applications as possible to discover, understand, and interact with other
Things with minimal effort. Many IoT scenarios involve users interacting with all sorts
of devices using various applications. As you saw earlier, one of the problems of the
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Figure 10.1 The Compose layer of the Web of Things architecture. This layer 
focuses on building web applications that can control Things or combine data 
and services from various sources to deliver complex processes. It brings the 
concept of web mashups to the Internet of Things.
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IoT is that every device needs a custom application, which is inconvenient for users. If
we could have a universal application that’s capable of controlling any device, it would
be much more interesting. The Web of Things makes this possible by using the Web
Thing Model, and this section will show you how to start building this universal
remote control.

10.1.1 A universal user interface for web Things

The Web Thing model you implemented in chapter 8 and secured in chapter 9
describes in a standard format the various actions supported by a device, along with its
properties and additional metadata. Based on this you can easily write a client applica-
tion that automatically generates a user interface for any web Thing and then displays
the properties in real time and sends commands (actions) to the web Thing. The
architecture of this application is shown in figure 10.2 and is the first step toward a
universal remote control for web Things: even without having any a priori knowledge
about a specific web Thing it just discovered, it can use the Thing’s Web Thing Model
document to generate a custom user interface and bind it to the Thing to control it
and/or visualize its data in real time.

You can find a simple application that does that on the GitHub repository of this
book in the folder chapter10-mashups/UI, so let’s open the file UI.html and analyze
its contents. 

 The first thing this web application does is retrieve the model of a Thing with the
getModel() function shown in the following listing. This function is called when the
page is loaded with the URL of the model given as parameter. 

1. Discover a web Thing and retrieve its Web Thing Model

2. Generate custom UI for the web Thing

3. Subscribe to properties of the web Thing

4. App receives property updates and adapts UI

5. App sends actions to the web Thing

Client application:
HTML/JavaScript

Web Thing:
with corresponding
Web Thing Model

Figure 10.2 The universal remote control for web Things. A web Thing client application (pure 
JavaScript/HTML) can find nearby devices, retrieve their Web Thing Model description, and use it 
to generate a custom user interface tailored for that specific device. 



282 CHAPTER 10 Compose: Physical mashups

Ask e
for JSO
HTTP h

 

Generat
for the 

 

function getModel(sourceUrl){ 
  $.ajax({ 
    type: 'GET', 
    url: sourceUrl,  
    dataType: 'json', 
    headers: {Accept : "application/json"}, 
    success: function( data ){ 

baseUrl=data.customFields.hostname+":"+data.customFields.port;
$('#wt-name').html(data.name); 
$('#wt-description').html(data.description); 
generateActions(data.links.actions.resources);
generateProperties(data.links.properties.resources);

}, 
    error: function( jqXhr, textStatus, errorThrown ){

console.log( errorThrown ); 
    } 
  });
}

Once you’ve retrieved the JSON model of the web Thing, you use its contents to gener-
ate the user interface for it. First, you use the metadata of the web Thing—name,
description, hostname, port, and so on—to generate a human-friendly description of
the web Thing and its purpose. Then, you use the description of the actions to create
UI elements that send commands to the web Thing, as shown in figure 10.3. Finally,
you use the description of the properties to generate UI elements that render the data
of the web Thing (you can see this in action in figure 10.4).

 Before we dive headfirst into the code that generates the HTML form, start the
WoT Pi server as you did in the previous chapters with node wot.js and make sure
the secure version is started (the first line of the wot.js should require './wot-
server-secure'). You can now open the UI.html file in your browser and pass the
token of your WoT Pi as a query parameter in the URL (UI.html?token=YOUR_TOKEN).

 Now GET the model of your WoT Pi and review the Actions element of the model,
as shown in the next listing. You can see that the Pi has only one action, called led-
State. This action requires two input parameters, or values: ledId (an enum that can
be 1, 2, or ALL) and state (a boolean for the desired state of the LED).

"actions": {
  "link": "/actions",
  "title": "Actions of this Web Thing",
  "resources": {
    "ledState": {

"name": "Change LED state",
"description": "Change the state of an LED",
"values": {
"ledId": { 
  "type": "enum",

Listing 10.1 Retrieve the JSON model of a web Thing with jQuery

Listing 10.2 The actions object of the Web Thing Model for our Pi

Do a GET on the 
sourceUrl to retrieve 
the model.

xplicitly
N in the
eaders.

Upon success, store
the hostname for

future requests, such
as sending actions.

Update the page with
the device metadata.

e the UI
actions. Generate the UI 

for the properties.

The first parameter, ledId, takes as
a value 1, 2, or ALL and specifies 
which LED should change its state.
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  "enum": {
    "1": "LED 1",
    "2": "LED 2",
    "ALL": "All LEDs"
  },
  "required": true
},
"state": { 
  "type": "boolean",
  "required": true
}

} 
    }
  }
}

The corresponding web form to create such an action is shown in figure 10.3. 

Now, let’s see the corresponding HTML code behind this HTML form, shown in the
following listing. It’s certainly not the simplest piece of code because we use the Boot-
strap library to make it look pretty (hence the complex tree of HTML elements), so
please bear with us.

<div class="panel panel-default">
  <div class="panel-heading">
    <h3 class="panel-title">Change LED state</h3>
  </div>
  <div class="panel-body">Change the state of an LED
    <form class="form-horizontal" id="wt-actions-ledState">

<div class="form-group" id="wt-actions-ledState-ledId-f">
<label class="col-sm-2 control-label">ledId</label>
<div class="col-sm-4" id="wt-actions-ledState-ledId-field">
  <select class="form-control" name="ledId" id="wt-actions

-ledState-ledId-value">
<option value="1">LED 1</option>

Listing 10.3 The HTML code of the form to create an ledState action

The second parameter, state, takes a 
Boolean value and represents the desired 
state to which to switch the LED(s).

Figure 10.3 An HTML form to create ledState actions based on the web Thing 
model for a Raspberry Pi



284 CHAPTER 10 Compose: Physical mashups

Ite
e

param
th
    <option value="2">LED 2</option>
    <option value="ALL">All LEDs</option>
  </select>
</div>

</div>
<div class="form-group" id="wt-actions-ledState-state-f">
<label class="col-sm-2 control-label">state</label>
<div class="col-sm-4" id="wt-actions-ledState-state-field">
  <select class="form-control" name="state" id="wt-actions

-ledState-state-value">
<option value="true">True</option>
<option value="false">False</option>

  </select>
</div>

</div>
<p>
<a class="col-sm-offset-2 col-sm-4 btn btn-primary btn-lg" 
  id="send-ledState" href="#" role="button">Create Action: 
  ledState</a>

</p>
    </form>
  </div>
</div>

In summary, here’s a simple HTML form with two inputs—the LED ID and the desired
state—and a button to send the action. For each action of any web Thing, we need to
generate such a form with the appropriate input parameters they support. Let’s now
dissect the generateActions() function shown in the following listing, which does
exactly this. 

function generateActions(actions){ 
  $.each(actions, function(i,item){ 

    $("<div>").attr("class","panel panel-default")
    .appendTo("#wt-actions")
    .append($("<div>")
    .attr("class","panel-heading")
    .append($("<h3>")
    .attr("class","panel-title")
    .html(item.name)))
    .append($("<div>")
    .attr("class","panel-body")
    .html(item.description)
    .append($("<form>")
    .attr("class","form-horizontal").attr("id","wt-actions-"+i))); 

    var el = "#wt-actions-"+i;  
    $.each(item.values, function(vi,vitem){  

$("<div>").attr("class","form-group").attr("id","wt-actions-"+i+"-

Listing 10.4 The generateActions() function

Iterate over each action 
of this web Thing.

For each action create a UI element
(form) that will hold the parameters
of the action; el is the element ID of

the form for this action.

rate over
ach input

eter for
is action.
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"+vi).appendTo(el); 
var vel=el+"-"+vi; 
$("<label>").attr("class","col-sm-2 control-

        label").html(vi).appendTo(vel);
 $("<div>").attr("class","col-sm-8").attr("id","wt-actions-"+i+"-
 "+vi+"-f").appendTo(vel); 

switch(vitem.type) { 
 case 'boolean':  
   $("<select>").attr("class","form-
            control").attr("name",vi).attr("id","wt-actions-"+i+"-"+vi+"-

    v").appendTo(vel+"-f");
  $("<option>").val(true).html("True").appendTo(vel+"-v");
  $("<option>").val(false).html("False").appendTo(vel+"-v");
  break;

 case 'enum': 
   $("<select>").attr("class","form-
            control").attr("name",vi).attr("id","wt-actions-"+i+"-"+vi+"-
     v").appendTo(vel+"-f");

  $.each(vitem.enum, function(enumi,enumv){
      $("<option>").val(enumi).html(enumv).appendTo(vel+"-v");
    });
    break;

default: 
  $("<input>").attr("class","form-control").attr("type","text")
   .attr("name",vi).attr("placeholder",vitem.type)
   .appendTo(vel+"-f");

};
    });

    $("<p>").html("<a class=\"col-sm-offset-2 col-sm-4 btn btn-primary 
btn-lg\" id=\"send-"+i+"\" href=\"#\" role=\"button\">Create Action: 
"+i+"</a>").appendTo(el); 

    $('#send-'+i).click(function() {  
var data = {};  
$(el).serializeArray().map(function(x){
if (x.value==="true"){
  data[x.name] = true;
} else if (x.value==="false") {
  data[x.name] = false;
} else {
  data[x.name] = x.value;
}

}); 
sendAction(i,data); 

    });
  });
}

Once this code has generated a form for each action of the web Thing, we can now do
the same for its properties. Look at the PIR and LED properties of the model of our Pi
in the next listing.

Create a div element that will contai
form input element for this paramet
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...
"pir": {
  "name": "Passive Infrared",
  "description": "A passive infrared sensor.",
  "values": {
    "presence": {

"name": "Presence",
"description": "Current sensor value (true=motion detected)",
"type": "boolean",
"customFields": {"gpio": 20}

    }
  },
  "tags": ["sensor","public"]
},
"leds": {
  "name": "LEDs",
  "description": "The LEDs of this device.",
  "values": {
    "1": {

"name": "LED 1",
"customFields": {"gpio": 17}

    },
    "2": {

"name": "LED 2",
"customFields": {"gpio": 19}

    }
  },
  "tags": ["sensor","public"]
}
...   

We want our generator to create the HTML output shown in figure 10.4 to display
those properties.

Listing 10.5 The PIR and LED properties of the Pi Web Thing Model

Figure 10.4 An HTML view of the PIR and LED properties of the WoT Pi 
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Just as we did for actions, we’ll generate the HTML elements to display the properties
as shown in figure 10.4 and then create a WebSocket subscription to each property so
we can display the latest value of each property as it’s sent by the web Thing. All of this
is done with the generateProperties() function shown in the next listing.

function generateProperties(properties){ 
  $.each(properties, function(i,item){ 
    $("<h3>").html(item.name).appendTo("#wt-properties");
    $("<p>").html(item.description).appendTo("#wt-properties");
    $("<h5>").html("Values (timestamp: <span id=\"property-"+i+"-value

-timestamp\">unknown</span>)").appendTo("#wt-properties");
    $("<ul>").attr("class","list-group").attr("id","property

-"+i).appendTo("#wt-properties");

    $.each(item.values, function(vi,vitem){ 
$("<li>").attr("class","list-group-item").html("<span 
id=\"property"+i+"-value-"+vi+"\" 
class=\"badge\"></span>"+vi).appendTo("#property-"+i);

    });

    var wsUrl = (secure ? 'wss://' : 'ws://') + hostname 
+'/properties/'+i; 

    var socket = new WebSocket(wsUrl);  

    socket.onopen = function (message) {
console.log("Subscribed to Property : "+wsUrl); 

    };

    socket.onmessage = function (message) { 
var content = JSON.parse(message.data); 
console.log("Property "+i+" updated : ", content);
$.each(content, function(vi,vitem){ 
$("#property-"+i+"-value-"+vi).text(vitem); 

});
    };

    socket.onerror = function (error) {
console.log('Error while connecting to a WebSocket!');
console.log(error);

    };
  });
}

Start a secure WoT Pi server and open https://raspberrypi.local:8484/?token=X.
Make sure you replace X with the actual API token of your WoT Pi, as you did in sec-
tion 9.2.1. Once you accept the certificate by adding a security exception (see section
9.1.3), you should see the root page of your Pi. After that, you can open the UI.html
file and append ?token=X (again, with X being your Pi token) to the URL, and you
should see the WoT UI page that was automatically generated, along with the actions
and properties. 

Listing 10.6 The generateProperties() function
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SO WHAT?

In this section, we explored a simple web application that can generate on the fly a
custom user interface to interact with any web Thing without knowing anything other
than the web Thing’s URL. We hope this was a convincing illustration of the important
role played by the Find layer we presented in chapter 8. By now, it should be clear why
having a uniform format—the web Thing model—to describe physical objects and
their capabilities is a key enabler of the Web of Things at scale.

 With fewer than 200 lines of code, the example we provided is only a starting point
and certainly not a real, production-quality application. There are many more things
we could improve, but we’ll leave this part as an exercise to stimulate your imagina-
tion. For example, you could extend the generateActions() function to display a
slider for numeric input values, or you could validate that all required parameters are
provided before sending an action. Also, you can explore more interesting ways to dis-
play the properties in real time. Let us know what you come up with, and don’t hesi-
tate to send us pull requests with your improvements and ideas—we’re looking
forward to hearing from you!

10.2 Physical mashups
Implementing layers 1–3 of the WoT architecture allows you not only to automatically
create UIs and applications to interact with web Things but also to seamlessly blend
web Things with any other services and data sources on the web. 

 Layer 4 focuses on this problem: how to easily combine data from various sources
to create more-complex applications. A web mashup is an application that takes sev-
eral web resources and uses them to create a new, hybrid application. Unlike tradi-
tional forms of integration, mashups focus mainly on opportunistic integration
occurring on the web for an end user’s personal use. The concept of mashups can also
be applied to the Web of Things, in the form of physical mashups.1 These are web appli-
cations that combine services from physical Things with services from virtual web
resources.

 If you read chapter 2, you should already be familiar with the notion of physical
mashups. In section 2.6 (exercise 5), you combined a temperature sensor on the Pi
with weather data from the web, an LCD screen, and a webcam—all of this with Java-
Script and web APIs.

 Now that your Pi has a web API, you can create mashups with any programming
language that supports HTTP, WebSockets, JSON and TLS (hint: pretty much all of
them). In this chapter you’ll see that you can also create physical mashups without
writing a single line of code! Thanks to great web tools such as boxes and wires or wiz-
ard-based editors, you’ll be able to create complex and powerful composite applica-
tions within minutes!

1 We first described the concept of physical mashups in a research paper called “Towards the Web of Things:
Web Mashups for Embedded Devices,” and this became one of the core topics of Dom’s PhD thesis. Both are
available from http://webofthings.org/publications/.

http://webofthings.org/publications/
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10.2.1 Boxes and wires mashups for the Physical Web: Node-RED

Creating physical mashups using JavaScript  gives you the most flexibility. The fact that
all the Things you include in your mashups are using web protocols makes it straight-
forward. But it still requires a significant amount of work and programming skills
when compared to the mashup technique we’ll look at next: boxes and wires editors.
The idea of these tools is to make the mashup-creation process a lot easier by trans-
forming programming into a visual experience consisting of connecting boxes to
form a workflow.

 Basically, the boxes are ready-made modules that abstract operations, such as GET-
ting data from a REST API, and the wires between the modules represent the flow of
data or control. You can see an example in figure 10.5. There are a number of boxes
and wires mashup tools on the web, but one of them is especially geared for creating
IoT mashups: Node-RED.2 Node-RED is a visual tool for wiring the Internet of Things.
It’s an open source project supporting a number of protocols but with a strong focus
on web protocols and benefiting from a large community of developers creating new
modules on an almost daily basis.

GETTING STARTED WITH NODE-RED

The good news is that Node-RED is a Node.js application, so you should be familiar
with the tools around it. Node-RED can be installed only on your computer or in the
cloud via NPM,3 but it’s also available out of the box on your Pi. If you want the mash-
ups you create to run continuously, it makes sense to deploy Node-RED on your Pi.
This way, your Pi will become an always-on gateway that can orchestrate all the mash-
ups in your home/hotel/business while consuming much less power than a PC. A
number of additional Node-RED community modules are available specifically for the
Pi; for instance, to interface with Pi hardware modules.

2 http://nodered.org/

The nerd corner—Let’s do it in the browser!

Node-RED is built on top of Node.js and hence is a server-side JavaScript mashup
tool. This has the big advantage of being able to run mashup workflows even when
your browser is closed, but it requires installing and running more tools. Running mash-
ups entirely in the browser, without the need for server code, is also possible. Back
when Node-RED didn’t exist, we created our own client-side physical mashup editor
called wot-a-mashup. This tool was built on top of ClickScript,a a nice visual program-
ming language environment running in the browser. You’re more than welcome to give
it a try by cloning it on GitHub.b

a http://clickscript.ch
b https://github.com/webofthings/wot-a-mashup

3 http://nodered.org/docs/getting-started/installation.html

http://nodered.org/
http://clickscript.ch
https://github.com/webofthings/wot-a-mashup
http://nodered.org/docs/getting-started/installation.html
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 Let’s see how you can use Node-RED to create physical mashups on top of your
WoT Pi or any other web Thing. To start it on your Pi, use the following command:

$ node-red-start
> Once Node-RED has started, point a browser ...

That’s it! Note that Node-RED is started as a service, which means that closing the SSH
window from which you started it won’t stop Node-RED. To stop it, use node-red-
stop. If everything works, you should now be able to use the web UI of Node-RED by
accessing http://raspberrypi.local:1880 with any recent version of Firefox or Chrome.

The nerd corner—I want to secure Node-RED!

If you made your Pi directly accessible on the web, you definitely should ensure Node-
RED requires authentication to access it; otherwise, anyone will be able to reprogram
your Pi as they wish! This process is straightforward. It requires you to generate a
password and change a configuration file. This process is well documented online.a

a http://nodered.org/docs/security.html

One workflow
per sheet

Save and run
workflows

Nodes library (boxes) Documentation of the selected node

Debug consoleNode (box)Wire

Figure 10.5 The Node-RED user interface: the nodes (left) are dragged and dropped to create 
workflows by connecting them with wires, sending the data from one node to another.

http://raspberrypi.local:1880
http://nodered.org/docs/security.html
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The Node-RED interface is composed of three main parts, as shown in figure 10.5.
First, you have a library of nodes on the left. This is where you can find all the boxes
representing the functional bits of your mashups. Second, in the flow designer (cen-
ter), you create your workflows (or just flows) by connecting different nodes together.
You can configure nodes by double-clicking them in the flow designer. Third, the
rightmost part is where you can see the documentation of nodes by clicking them and
is also where you see the debug console.

HELLO WORLD NODE-RED

To test all of this, let’s start by creating a simple flow that displays the traditional
“Hello World” message. The flow is shown in figure 10.5; to build it, first drag the
inject input node and the debug output node onto the flow designer. Then, connect
the extremities of both nodes together. Double-click the inject node to change the
content injected by this node. Change the Payload property to a string and to contain
“Hello World!” as shown in figure 10.6.

 That’s it. Your first flow is ready! Now deploy it by clicking the Deploy button on
the top right. This translates your flow into Node.js code and runs it inside the Node-
RED process. Now, to test your flow, make sure you have the Node-RED debug console
(on the right of the Node-RED window) visible and click the blue dot to the left of the
inject module. 

 When you do this, the “Hello World” string is added to a special object called msg.
This object holds the data to be passed from one node to another and can be either

Figure 10.6 Editing nodes: when double-clicking a node, the edit dialog pops up where the 
node can be configured. This edit dialog shows the configuration of an inject output node.
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an object or an array of msg objects, one for the result of each node in the flow. In this
particular case, msg is a single object containing the “Hello World” string in a
msg.payload property. After clicking the blue Inject button, the workflow engine
passes the msg object to the next node: the debug node, which displays data it receives
in msg.payload in the debug console. This system basically allows you to pass data
between the nodes to build workflows. Imagine using this to visually pass the tempera-
ture data from a node representing your Pi to a node representing a database.

SAVING WORKFLOWS

Node-RED flows can be represented and saved as JSON documents to reuse later or to
share on the Web. To save a flow, select the flow by dragging a selection enclosing all
nodes you want to include in the export, and click the menu next to Deploy on the far
right of the screen. Select Export and then Clipboard. You’ll get the JSON document
corresponding to your flow, and you can save it wherever you want. Then, you can use
this JSON representation to share your mashup on the web4 or to reimport a mashup
into Node-RED by using the Import menu.

A PHYSICAL MASHUP WITH NODE-RED

Now that you’ve successfully created a simple virtual mashup with Node-RED, let’s see
how to include the physical world using the web API of your Pi.

 The flow you’ll build is shown in figure 10.7 and is available in the book source
code in chapter10-mashups/node-red/pir-websockets-twitter.json. The idea is to cre-
ate a smart alarm mashup that receives notifications when the state of the PIR
changes, updates the state of an LED accordingly, and sends an intrusion alert via Twit-
ter. If you decided to buy one of the suggested webcams from the shopping list of

4 For instance, on the Node-RED community website: http://flows.nodered.org/.

Figure 10.7 The flow of a physical mashup built with Node-RED. This physical mashup is a smart 
intruder alarm that listens for state changes of the PIR sensor via the WebSocket API b. When an 
event arrives, Node-RED POSTs a ledState action to change the state of the LED c–d, and if the 
event contains a PIR sensor value of true e, it GETs a snapshot from the webcam f and POSTs it 
on Twitter g–h.

http://flows.nodered.org/
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chapter 2, it should also take a snapshot of the intruder via the webcam and attach it
to the tweet. All of this by connecting boxes and wires!

 Let’s get started with building your workflow by referencing the steps of figure 10.7.
First, drag and drop a websocket input node (step 1) and configure it by double-click-
ing it. The configuration of this node is shown in figure 10.8; basically, you make it listen
to the PIR WebSocket resource of your Pi. To do this, select Add a new websocket-client
and configure it to ws://raspberrypi.local:8484/properties/pir5 (the WS address of the
PIR sensor), and make sure you select the Send/Receive Entire Message option. 

 Next, you’ll create a function node (step 2). These nodes contain bits of JavaScript
code that can be used to transform the messages passed from one node to another
based on certain conditions. In step 2, you use the function node to prepare a corre-
sponding POST request to turn the LED on or off depending on the value of the PIR
that was sent over WebSockets. The code of this function node is shown in the follow-
ing listing.

msg.headers = {
  'Accept' : 'application/json',
  'Content-Type' : 'application/json',
  'Authorization' : 'cKXRTaRylYWQiF3MICaKndG4WJMcVLFz'
}
if(msg.presence) { 
  msg.payload = {"ledId" : 1, "state" : true};
  return msg;
} else {

5 Secure WebSockets with self-signed certificates don’t work well on Node-RED, which is why we use the non-
secure version of the WoT Pi for this example. If you have a non-self-signed certificate for your Pi, you can use
the secure URL instead: wss://PI_URL/properties/pir.

Listing 10.7 Prepare LED message function node

WebSocket configurationNode configurationWebSocket input node

Figure 10.8  Configuration of the WebSocket input node and configuration of a new WebSocket client

Prepare the headers for the next
node (an HTTP request node).

 If the WebSocket message contains
a value of true for presence, prepare

a turn LED on request; otherwise
a turn LED off request.
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  msg.payload = {"ledId" : 1, "state" : false};
  return msg;
}

In step 3, you create an http request function node that creates an action on the Pi
via a POST request to http://raspberrypi.local:8484/actions/ledState. The payload of
this action is available to the node in msg.payload as prepared by the previous node;
see listing 10.7.

 You should be able to test this first part of the workflow. Click Deploy and observe
what happens when changing the state of the PIR. You just wired a sensor (PIR) with
an actuator (LED) on the Pi using an external mashup tool!

 Let’s not stop here but build the second part of the workflow. The function node
of step 4 is a conditional node: if the presence value of the PIR sensor is true, it passes
a message to the next node; otherwise, it interrupts this branch of the flow. The corre-
sponding code is simple, the trick being that when a function node returns null the
rest of the flow stops, as follows:

return msg.presence ? msg: null;

If the presence value is true, you move on to step 5, where you take a snapshot using
a WoT-enabled webcam. As mentioned before, if you don’t have a webcam offering an
HTTP API, you can simply remove the nodes of steps 5 and 6. If you do have a webcam,
create an http request function node. Using the GET method, call the snapshot URL
of the webcam (for example, http://[IP]/snapshot.cgi?user=USER&pwd=PWD in the
case of a Foscam) and select binary buffer as a return type. In step 6, create a function
node that prepares the tweet:

msg.media = msg.payload;
msg.payload = 'Intruder Detected!';
return msg;

You must copy the image in msg.media because this is where the twitter node
expects an image to be. Step 7 is where you put the cherry on top: you send an
intruder alert via Twitter. To do this, use a twitter output node and double-click it to
configure your Twitter account by selecting Add new Twitter credentials, which uses
OAuth (see chapter 9) to obtain a Twitter API token for your account.

 That’s it! You can now test your intruder alert workflow. Note that closing your
browser won’t interrupt the workflow. As long as the Node-RED server runs, your work-
flow will be running, watching for the next intruder.

The nerd corner—I want more nodes!

Node-RED goes well beyond what we’ve implemented here. Try creating other mashups
with your Pi and all the available nodes; for example, the MQTT node connecting to
MQTT clients or the sentiment node analyzing if an input string is positive or negative.

http://raspberrypi.local:8484/actions/ledState
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10.3 Using wizards for physical mashups: IFTTT
Visual mashup editors such as Node-RED drastically reduce the time it takes to build
IoT prototypes. They also significantly simplify the programming process, but you still
have to program your mashups. The next mashup technique we look at further pushes
the abstractions to simplify even more the creation of mashups. Wizard-based mashup
tools consist of a user interface that guides you through a number of steps to create a
customized workflow. If you’ve ever used the filter editor of your mail client, you must
know what a wizard interface looks like: a number of steps to create a rule.

 A number of wizard mashup tools are available, with Zapier6 and IFTTT7 being the
most popular. Both tools integrate with a large number of web services ranging from
Google Drive to Instagram or Facebook. IFTTT stands for stands for “If This Then
That” and is especially relevant here because it’s on a mission to incorporate many
IoT devices and platforms, so let’s take a closer look at this tool. 

 Basically, the tool lets you create an if (conditions) then (actions) statement
without having to write a single line of code. The conditions and actions must be
selected from a growing list of prepackaged web integrations ranging from Twitter to
Google Drive, as well IoT integrations such as the Nest Thermostat, the Philips Hue
lighting system, the SmartThings home automation devices, and the Misfit wearable
devices. To create these if-then statements, IFTTT takes you through a seven-step wiz-
ard process. Once the process is finished, the newly created workflow will run for as
long as you want it on the IFTTT servers in the cloud.

 IFTTT is a simple yet powerful system, but it doesn’t allow the general public to
make any integration in any way you want beyond the channels offered. It does, how-
ever, offer the Maker channel,8 which allows you to integrate with arbitrary REST APIs.

(continued)

There are also hundreds of nodes from the community, ranging from database inte-
grations like node-red-node-redis to IoT device integrations like node-red-node-
arduino or IoT cloud integrations like node-red-contrib-evrythng (maintained by
 yours truly). All these nodes are available online.a You install them just as you’d install
any Node.js module via npm. You might also want to create your own nodes; Node-
RED also lets you do this without too much effort.b

a http://flows.nodered.org/
b http://nodered.org/docs/creating-nodes/

6 https://zapier.com
7 https://ifttt.com
8 https://ifttt.com/maker

https://zapier.com
https://ifttt.com/
https://ifttt.com/maker
http://flows.nodered.org/
http://nodered.org/docs/creating-nodes/
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10.3.1 Pushing intruder alert tweets to a Google spreadsheet

Let’s experiment with IFTTT and create a simple integration of our smart intrusion-
detection system. Here’s the first workflow we want to create:

■ If a new Intruder Detected tweet is posted…
■ then log an entry in a Google spreadsheet document.

First, you should create a free IFTTT account9 and log into your account. In the IFTTT
world, workflows are called recipes. Start by creating a new recipe, as shown in figure 10.9.

By clicking the “this” link you set up the condition. In IFTTT, both conditions and
reactions are called channels. The channels are essentially the prepackaged integra-
tions we were talking about before. Select the Twitter channel and then the New
Tweet By A Specific User trigger, and when prompted for a Twitter user, provide the
handle of the Twitter account you want to use—@wotbook in this example. That’s it
for your condition. Basically, what you’ve created so far is an if (new Tweet by

@TwitterAccount). 
 Next, you need to create the reaction. Click the “that” link. Same story: select a

channel for the reaction. We selected the Google Drive Channel and the Add Row To
Spreadsheet option. This prompts you to connect your Google account and then to
set up the spreadsheet and the content you want to be written to the spreadsheet. This
step is shown in figure 10.10.

 Finally, in step #7 of the wizard you’re ready to create your workflow by selecting
Create Recipe, as shown in figure 10.11. This saves the workflow to your account and
runs it continuously for you in the cloud.

9 https://ifttt.com/join

and then here to set up the reaction.Click here to set up the trigger...

Figure 10.9 IFTTT workflows are called recipes. They are composed of two parts: a 
condition (this) and a reaction (that) triggered when the condition is met.

https://ifttt.com/join
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Variables appear
in light gray.

Click here to 
select and add
variables.

Figure 10.10 Setting up the spreadsheet. IFTTT lets you add variables by clicking the Erlenmeyer 
flask icon. Here we use variables such as the Twitter user name (UserName), the content of the tweet 
(Text), and the timestamp of the Tweet (CreatedAt). All these fields will appear in the new row 
created in the Google spreadsheet located in an IFTTT/Twitter folder.

Figure 10.11 Step 7 is the final step of the workflow creation process. It summarizes the workflow 
you just created: if a tweet is pushed, then add a row to the Google Drive spreadsheet.
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To test it, run the Node-RED code of section 10.2 and trigger the PIR sensor, or simu-
late this by tweeting from the account you selected. If everything works according to
plan, you should see a new entry in your Google spreadsheet document in the IFTTT/
Twitter folder, as shown in figure 10.12.

10.3.2 Sending requests to a Thing with the Maker Channel

The mashup we just created is pretty impressive but it impacts only the virtual world, a
spreadsheet. What if it could also impact the physical world, such as by changing the
state of actuators on your WoT Pi? Wouldn’t this be pretty powerful? It turns out you
can do this via the IFTTT Maker channel. This WoT-friendly channel allows you to
send REST requests via HTTP in the “then” part of a workflow, like this:

■ If—A new Intruder Detected tweet is posted
■ Then—Turn on the LED of your Pi.

Start by creating a new recipe. The “if” part of the workflow is exactly the same as
before: select the Twitter channel and then New Tweet By A Specific User. For the
“then” part use the Maker channel and configure it as shown in figure 10.13.

 Note that in order to create this recipe, your Pi needs to be securely accessible on
the web because IFTTT runs on the web and luckily (or hopefully!) doesn’t have access
to your local network. Refer to chapter 9 for more information on how to do that. If
you didn’t put your Pi on the web or don’t want to, you can instead use the connected
Pi you used in chapter 2 and display an alert on its screen whenever an intruder is
detected. You can do this by POSTing to the following URL http://devices.webofthings
.io/pi/actuators/display/content a JSON object with the message to display; for exam-
ple, {"value":"Intruder Detected!"}. Finally, create your workflow by selecting
Create Recipe. Now, whenever a tweet is sent, you’ll see the LED of your Pi turning
on—or a message will be displayed on your Pi.

Figure 10.12 When an intruder is detected by the PIR sensor on your Pi, it tweets it via Node-RED. 
IFTTT detects this and adds a corresponding entry in your Google spreadsheet. Here you can see three 
intruder detection events.

http://devices.webofthings.io/pi/actuators/display/content
http://devices.webofthings.io/pi/actuators/display/content
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10.3.3 Pushing intruder alert tweets to a Google spreadsheet

Let’s step back for a second and reflect on what you just built. When your Raspberry Pi
detects an intruder via the PIR sensor, Node-RED tweets a picture taken from your web-
cam. IFTTT listens for such tweets and adds a corresponding entry in a Google spread-
sheet. The second rule goes even further and uses REST to turn on the LED of your Pi
over the web. We were able to build such complex workflows in minutes thanks to the
power and ubiquity of web APIs: all the actors in our workflow can speak to each other
via web protocols. Node-RED uses the WoT WebSocket API of the Pi and the HTTP API
of Twitter. IFTTT also uses the HTTP API of Twitter and the HTTP API of Google Drive.
Finally, IFTTT uses the RESTful HTTP API of your Pi to actuate it via actions. This is the
true beauty and power of the Web of Things!

The nerd corner—More mashups!

There are many ways to tweak the workflow you just created. As an example, you could
use the Twitter condition “New tweet by you with hashtag” so you trigger the alert only
for tweets with a particular # hashtag. Why stop here? IFTTT opens many more doors
to create interesting workflows! As an example, we created another recipe that sends
us an SMS whenever an intrusion is detected. If you want to create more mashups,

Figure 10.13 Make a REST request via HTTP to your WoT Pi. This creates a new 
ledState action on your Pi by POSTing the corresponding JSON payload.
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SO WHAT?

The key takeaway of this section is that by moving Things and their services closer to
the web, we can seamlessly integrate them with the very large ecosystem of web tools.
Had we not built the API of our Pi based on web standards but rather on closed proto-
cols, creating this integration would have taken significantly more time. The two tools
we used offer different levels of integration. Node-RED is open and supports many
standard web protocols out of the box, but it’s primarily a prototyping tool meant for
developers and makers. On the other hand, IFTTT takes a much more controlled
approach targeting less technically skilled users but doesn’t offer the same level of
flexibility and configurability. In consequence, devices and services need to go
through a selective selection process with the IFTTT team in order to get their own
channels.

 Nevertheless, the common denominator of both platforms is the web. Using a Web
of Things approach radically reduces the prototyping time and open the doors for
new ideas and integration opportunities for the Internet of Things. Devices aren’t
locked in their own closed worlds anymore but become open for integration. 

10.4 Beyond the book
Mashups are important for the Web of Things because they illustrate the simplicity
offered by the WoT approach. Let’s talk about what the future of WoT composite
applications looks like.

10.4.1 From simple mashups to big data mashups

The future will be about big data mashups. Very big data! Things connected to the web
will generate an unprecedented amount of data. Think about it: 1 million connected
devices sending a sensor reading every second to an IoT cloud means 86.4 billion

(continued)

browse https://ifttt.com/channels and look for inspiring channels. Need ideas? Try
using the other sensors of your Pi such as the temperature or humidity sensor, logging
values inside documents, creating visualizations, or sending weather alerts. Be cre-
ative; the cloud is the only limit! Note that you don’t have to use Twitter to integrate
data from your Pi to IFTTT. You can also use the IFTTT Maker channel in the reverse
direction to communicate with IFTTT via REST and trigger workflows. Finally, there’s
a world beyond the mashup tools we looked at here and some are really worth a try.
For example, Freeboarda allows you create visual dashboards mashing up the data
from various devices and integrates nicely with the Web of Things. Some IoT platforms
also conveniently have mashup tools built in. EVRYTHNG, for example, provides a tool
called the Reactor, which lets you write Node.js scripts that are run in the cloud and
can be triggered each time the state of your connected Things change.b

a https://freeboard.io/
b https://developers.evrythng.com/docs/reactor

https://developers.evrythng.com/docs/reactor
https://freeboard.io/
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messages per day (yes, billion!) That’s roughly 170 times more than all tweets posted
globally that same day10!

 Put this in perspective with the 20 to 50 billion connected devices predicted for
2020 (see chapter 1) and we have a significant data challenge ahead of us. Yet data is
the new gold, so we’d be fools not to exploit it! Although currently much of the focus
on the IoT is on raw connectivity, exploiting this data is the next big wave we expect.
IoT data has the potential to make our world smarter and more aware, but the
amount of data it will generate will crush any of the traditional data tools we were
using in the past.

 Many of the new big data techniques and technologies will help. As an example,
considering events as they come and running queries on a stream of events instead of
against databases should help us crunch more IoT data. Large-scale and real-time
stream and data processing systems like Spark11, Storm12, Flink,13 or Samza14 are
mushrooming these days and help us deal with these challenges. Real-time analytics
techniques will help us create applications that can trigger alerts right when abnormal
events happen. 

 Machine learning methods and tools (a modern term for artificial intelligence)
will help us create more intelligent applications that can analyze and learn from huge
amounts of unstructured data and allow applications—from logistics, to public trans-
portation, to city management—to adapt their behavior and make optimal decisions
in real time. Some devices are already using these techniques. Nest15 thermostats, for
instance, use data patterns to predict the temperature you’re likely to prefer in a spe-
cific room at a specific time.

 Most of this data integration and processing is likely to happen in the cloud, so it
makes sense to connect Things to the web to be able to efficiently pipe this data. Hav-
ing said that, a certain level of filtering and intelligence will also be required on
devices. We still have a lot of tools and techniques to build and improve in order to
use in the most efficient manner the massive amount of data the IoT will generate!

10.4.2 A better user experience

Data will not only make Things smarter but will also improve the way we interact with
the physical world. Currently, many consumer products, especially electronic appli-
ances, are still quite cumbersome to use. If everyday products are to become smarter,
the way we interact with the digital world will have to change. The way we interact with
smart products will especially have to become more intuitive and less obtrusive.

10 See “What Happens in an Internet Minute”: http://www.intel.co.uk/content/www/uk/en/communications/
internet-minute-infographic.html. 

11 https://spark.apache.org/
12 https://storm.apache.org/
13 https://flink.apache.org/
14 http://samza.apache.org/
15 https://nest.com/

http://samza.apache.org/
https://storm.apache.org/
http://www.intel.co.uk/content/www/uk/en/communications/internet-minute-infographic.html
http://www.intel.co.uk/content/www/uk/en/communications/internet-minute-infographic.html
http://spark.apache.org/
https://flink.apache.org/
https://nest.com/
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Because sensing technologies will keep evolving, new ways of interacting with the digi-
tal world will become possible—far beyond a keyboard, touchscreen, or mouse. 

 User experience and interaction design for the IoT are yet in their infancy, but the
potential to revolutionize the way we interact with machines—and soon the physical
world, for that matter—is absolutely massive. 

 Rituals that would have sounded weird or futuristic a mere 20 years ago have
become an everyday routine for some of us. From swiping your wallet to pay for the
bus ride home, to unlocking your door with your phone (or even an RFID body
implant!), or the heating turning on automatically when you’re 20 minutes away from
your home—this is only the beginning of a world that’s becoming smarter. Remem-
ber, however, that a better user experience ultimately also means a safer one, and the
WoT pioneer you became through this book shouldn’t forget to put security higher
on the list than pure usability. Don’t mess with the real world!

10.5 Summary
■ Thanks to the semantic layer of the Web Thing Model combined with web APIs,

a universal remote control web app for Things can be created using straightfor-
ward JavaScript code that fetches the model and crawls resources.

■ Physical mashups are composite web applications combining virtual services
with services provided by Things.

■ There are two big types of mashup tools: boxes and wires, and wizards.
■ Boxes and wires editors allow you to visually connect different actors of the vir-

tual world and the physical world. A good example of a physical mashup editor
is Node-RED.

■ Wizard editors guide you through a number of steps to create composite appli-
cations. IFTTT is a physical mashup editor based on the wizard principle; it
allows you to connect all kinds of physical Things to all kind of virtual services
to create simple triggers and reactions.

You’ve just made it through all the layers of the WoT architecture. Congrats! Consider
yourself now ready to build the web of your Things! To keep you inspired for the years
to come, we’ll leave you with a quote from the famed Mark Weiser, one of the grandfa-
thers of the Internet of Things:

The most profound technologies are those that disappear. They weave themselves into the
fabric of everyday life until they are indistinguishable from it.

Mark Weiser, in “The Computer for the 21st Century” (September 1991)



appendix A
Arduino, BeagleBone, Intel

Edison, and the WoT

As mentioned before, although we use the Raspberry Pi as a reference device
throughout this book, all the concepts, architecture, and patterns you learned in
this book are definitely not bound to the Pi: they apply to any embedded device or
any other Thing out there. Should you decide to opt for a different device than the
Pi, this appendix will help you set it up and build the necessary code to integrate
your chosen device with the Web of Things. We won’t give you all the nitty-gritty
details of each platform but will give you all the necessary pointers for three popu-
lar embedded systems: the BeagleBone,1 the Intel Edison,2 and the Arduino.3 For
each of them, we’ll look at these points:

■ Installing the software
■ Installing Node.js
■ GPIO layout and libraries

A.1 Integrating a BeagleBone to the WoT
Let’s start with the closest relative of the Pi: the BeagleBone. This device is made by
BeagleBoard.org, a U.S.-based nonprofit corporation that provides education in
and promotes the design and use of open-source software and hardware in embed-
ded computing. The foundation works with partners such as Texas Instruments to
release the easy-to-use embedded devices called BeagleBones. Although in this
appendix we focus on their best seller, the BeagleBone Black (BBB), most of this
section applies to all BeagleBone models.

1 http://beagleboard.org/
2 http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
3 https://www.arduino.cc/
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A.1.1 Meet the BeagleBone Black

The BeagleBone Black is a member of the Linux-powered family of embedded
devices, and its features and size are similar to those of the Raspberry Pi B+:

■ ARM Cortex-A8
■ 512 MB of RAM
■ 4 GB on-board flash storage
■ Onboard Ethernet adapter
■ A 3D graphics accelerator

The BeagleBone is well-known for its robustness and stability, which makes it an excel-
lent choice even in production applications. Moreover, the BeagleBone offers both SD
card and flash-based storage, making it straightforward to move from a prototype to a
real-world trial (it’s best not to rely on SD cards because they have a limited life span,
they move, and they tend to be slow, among other issues). A BBB will set you back
around $50 USD, which is only slightly more than the Pi. Should you want to buy one,
you’ll find a list of recommended sellers on this book’s website.4

A.1.2 Preparing the BeagleBone Black for the book

As we said earlier, the hardware and software of the BBB are similar to that of the Pi, so
most of the setup procedures shown here will be straightforward.

LINUX

The BeagleBone Black comes preinstalled with Debian Linux, so there’s little you
need to do to have it up and running. Should you feel adventurous, the BB can also
support other Linux distributions such as Ubuntu.5

SSH

To connect to your BBB via SSH, first follow the online getting started guide,6 which
will teach you how to power your BBB and how to access the default onboard web
server. Yes, the BeagleBone is a very WoT-friendly device! Then, connect the BBB to
your router with an Ethernet cable and follow the steps in the wiki to set up and use
the IP of your BBB and access it via SSH.7

NODE.JS

Here again, the BBB plays well with the WoT because Node is the default program-
ming language for the device.8 Should you want to upgrade the version of Node, you
can follow the steps listed in section 4.2.5, but make sure you select a version of Node
that’s suitable for the processor of your BBB (ARMv7 architecture). The BeagleBones

4 http://book.webofthings.io
5 http://elinux.org/BeagleBoardUbuntu
6 http://beagleboard.org/getting-started
7 http://elinux.org/Beagleboard:Terminal_Shells
8 http://beagleboard.org/support/bonescript

http://book.webofthings.io
http://elinux.org/BeagleBoardUbuntu
http://beagleboard.org/getting-started
http://elinux.org/Beagleboard:Terminal_Shells
http://beagleboard.org/support/bonescript
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also come with the Cloud9 IDE that lets you conveniently edit Node.js programs
directly on the board.9

WOT SERVER CODE

All the code samples in this book, including the one for the full WoT server, will work
on the BBB without any changes. Just like for the Pi, the BBB supports Git, so you can
fork the book source code from GitHub (see chapter 7).

GPIOS

The onoff library we used to interface with the GPIO of the Pi is also compatible with
the BBB so you won’t have to change much in the code. The only thing that will differ
is the layout of the GPIOs; therefore, you’ll need to change the GPIO numbers in the
code. For instance, for the blink.js examples in chapter 4 (listing 4.6), you’ll need to
change led = new Gpio(4, 'out') to use a valid GPIO pin such as pin 11: led = new
Gpio(11, 'out'). This also means that you’ll have to connect your circuits to differ-
ent GPIO, GND, or PWR pins on the BBB, so be sure you carefully study the layout of
your device.10 

A.2 Integrating an Intel Edison to the WoT
Unlike the Pi and BeagleBone—and the majority of embedded platforms out there—
the Intel Edison isn’t powered by an ARM processor but by an Intel one (surprise, sur-
prise!). It’s primarily a Linux Yocto device, but it also has a second microcontroller
running an RTOS called Viper OS. The Edison is not much bigger than a postage
stamp and roughly half the size of a Pi Zero, making it the smallest device covered in
this book. Nonetheless, it’s packed with an impressive set of features:

■ Intel Atom dual-core x86 CPU @ 500 MHz for Linux
■ Intel Quark 100 MHz for RTOS
■ 1 GB of RAM
■ 4 GB onboard flash storage
■ Wi-Fi a/b/g/n onboard module
■ Bluetooth 4.0 onboard module

All these features come with a price; an Edison and its mini breakout board will cost
around $70 USD. Check the list of recommended sellers on the book’s website if you
want to get one. 

A.2.1 Preparing the Edison for the Book

Because the Edison is also a Linux device, getting it ready for the Web of Things isn’t
fundamentally different than for the Pi or BBB.

LINUX

The Edison comes with a preinstalled version of Yocto Linux, so it’s ready to use.

9 http://beagleboard.org/Support/bone101/
10 See here for more details about the BBB pin layout: http://beagleboard.org/support/bone101/. 

http://beagleboard.org/Support/bone101/
http://beagleboard.org/support/bone101
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SSH

To access your Edison via SSH, you’ll first need to establish a serial connection
through USB to configure the onboard Wi-Fi. Once the Wi-Fi connection is estab-
lished, you’ll be able to SSH your Edison directly. This process is detailed in the online
getting started guide.11

NODE.JS

The Edison loves Node.js because it comes preinstalled. Like the BeagleBone, the Edi-
son also has its own IDE that lets you write Node.js code that runs on the board. It’s
called the Intel XDK IoT Edition and can be installed on Mac OS, Linux, and Win-
dows.12

WOT SERVER CODE

The full WoT server you wrote in this book will work on the Edison, except for the
part that interacts with the GPIOs; see the next item. Just like for the Pi, the Edison
supports Git so you can fork the book code from GitHub; see chapter 7.

GPIOS

Unfortunately, the code in this book that uses the onoff library for GPIO access won’t
work directly on the Edison. But don’t worry; the Edison board also has its own Node
GPIO access abstraction library called MRAA GPIO.13 You should be able swap onoff for
MRAA and have the different sensors and actuators up and running. Nevertheless, just
like for the BBB, the GPIO layout is different on the Edison than it is on the Pi, so
you’ll have to make sure you connect the right pins.14

A.3 Integrating an Arduino to the WoT
The Arduino is an open-source electronics platform based on easy-to-use hardware and
software. It’s intended for anyone making interactive projects and is probably the most
popular—and one of the oldest!—platforms for hardware prototyping. There isn’t just
one Arduino but rather a dozen Arduino devices, or boards as they’re called in the
Arduino world. Boards range from the all-time best-seller Arduino Uno15 to the beau-
tiful and minimal LilyPad,16 with prices ranging from $80 USD to just a few dollars.

 Unlike the Pi, BeagleBoard, and Edison platforms, Arduino boards belong to the
family of RTOS devices, not Linux. Arduino boards are also much more resource-con-
strained than the other platforms we’ve looked at up to now. The consequence is that
you won’t be able to run Node.js on Arduino boards (except for some special boards;
see the next section). This also means the code samples in this book won’t run on the
Arduino, and you’ll have to rewrite them using the Arduino programming language,
which is based on the C/C++ languages. 

11 https://software.intel.com/en-us/iot/library/edison-getting-started
12 https://software.intel.com/en-us/getting-started-with-the-intel-xdk-iot-edition
13 https://github.com/intel-iot-devkit/mraa
14 Pin layout of the Intel Edison breakout board: http://bit.ly/1Kjc7mj
15 https://www.arduino.cc/en/Main/ArduinoBoardUno
16 https://www.arduino.cc/en/Main/ArduinoBoardLilyPadUSB

https://software.intel.com/en-us/iot/library/edison-getting-started
https://software.intel.com/en-us/getting-started-with-the-intel-xdk-iot-edition
https://github.com/intel-iot-devkit/mraa
http://bit.ly/1Kjc7mj
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardLilyPadUSB
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 The good news is that all the concepts described in this book can be easily ported
to the Arduino platform because the APIs for your device will be quite similar if not
the same. If this book is your first swim in the IoT world and learning about these con-
cepts and implementing them directly on the Arduino will be tough, we recommend
that you get a Pi first. But once you get the gist of it, you’ll be able to further explore
the world of embedded systems. For this, the Arduino platform is a great place to
start, especially if you’re looking around for low-power devices.

A.3.1 Linux, SSH, Node.js

As mentioned before, the Arduino boards are running an RTOS environment where
the C programming language rules. There’s no way to install Linux, SSH, or Node on
an Arduino board. There’s one exception, though: the Arduino Yún supports both
Linux and the Arduino RTOS environment, and although it requires a number of
steps far beyond the scope of this book, it is possible to install Node on a Yún.17

 How do you program the other Arduino boards if you can’t SSH them? You use a
development environment called Arduino Integrated Development Environment
(Arduino IDE). This IDE runs on your computer and lets you develop your programs
on your machine before uploading them to the Arduino board. How to do that is also
beyond the scope of this book, but you’ll find a lot of online resources that can help
you. Or better yet, you might want to get a copy of Arduino in Action by Martin Evans,
et al (Manning Publications, 2013)18

WOT SERVER CODE

Although you won’t be able to reuse the code samples provided in this book, a num-
ber of great Arduino libraries can help you implement a WoT-compliant Arduino.

 In particular, the Webduino19 library lets you implement a REST API on your Ardu-
ino board. The ArdunioWebsocketServer20 library can be used to implement the
WebSocket part of your device’s WoT API. This should let you work through all the
concepts presented in chapters 4 to 8. Chapter 9 is a bit trickier, because the Arduino
platform doesn’t support TLS very well. This is because the underlying encryption
algorithms are resource-demanding, leading to significant times needed to encrypt/
decrypt messages.21 

GATEWAY PATTERN

There’s another way to integrate Arduino boards to the Web of Things: using the gate-
way pattern we explored in chapter 7. You can, for instance, use MQTT or CoAP on
your Arduino board and then use a more powerful embedded device, such as a Pi, to

17 https://blog.arduino.cc/2014/05/06/time-to-expand-your-yun-disk-space-and-install-node-js/
18 Arduino in Action, Manning Publications: https://www.manning.com/books/arduino-in-action?a_aid=wot
19 https://github.com/sirleech/Webduino
20 https://github.com/ejeklint/ArduinoWebsocketServer
21 A great read on the practical considerations of security on very resource constrained devices is available here:

https://tools.ietf.org/html/draft-aks-lwig-crypto-sensors-00.

https://blog.arduino.cc/2014/05/06/time-to-expand-your-yun-disk-space-and-install-node-js/
https://www.manning.com/books/arduino-in-action?a_aid=wot
https://github.com/sirleech/Webduino
https://github.com/ejeklint/ArduinoWebsocketServer
https://tools.ietf.org/html/draft-aks-lwig-crypto-sensors-00
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serve as a gateway. Should you want to do this, there’s a great MQTT22 Arduino library
that can help you and one for CoAP23 too.

GPIOS

The Arduino boards are meant to be used to experiment with lots of sensors and actu-
ators and hence they have a number of GPIOs at hand. The good news is that the
GPIOs are marked directly on the boards, so there’s no need for a picture explaining
the layout. All the sensors and actuators we installed on the Pi in chapter 4 can also be
used with an Arduino board but, again, the code will be quite different. Although
describing the Arduino code is beyond the scope of this book, we provide you with
good links for each sensor and actuator used in this book:

■ LEDs24

■ Passive infrared sensor (PIR)25

■ Temperature and humidity sensor (DHT22)26

A.4 Integrating other embedded systems to the WoT
Literally any embedded device can be integrated to the web by following the WoT
architecture. It will just require a bit of searching or a good book on the device you
pick! Should you want to try other platforms as well, a good place to start is the
Embedded Linux Wiki27 for Linux-based devices or the Element14 community28 for
RTOS devices. If you port these concepts on other platforms, please do reach out via
our GitHub because we’d love to hear about it and link to your project from our
book’s website. 

22 https://github.com/knolleary/pubsubclient
23 https://github.com/1248/microcoap
24 http://playground.arduino.cc/Code/LED
25 http://playground.arduino.cc/Code/PIRsense
26 http://playground.arduino.cc/Main/DHTLib
27 http://elinux.org/Main_Page
28 https://www.element14.com/community

http://playground.arduino.cc/Code/PIRsense
http://playground.arduino.cc/Code/LED
https://github.com/knolleary/pubsubclient
https://github.com/1248/microcoap
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http://elinux.org/Main_Page
https://www.element14.com/community
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control application 208–212
cloud integration 

pattern 212
subscribing via 

WebSockets 210–211
using cloud 209–210
using QR codes to identify 

things 211–212
setting up EVRYTHNG 

account 201–204
changing properties 204
creating device API key 204
creating first products and 

thngs 203–204
creating project and 

application 202–203
using actions to control power 

plug 206–208
cmd.exe 95
CO2 sensor 197
CoAP (Constrained Application

Protocol)
overview 120, 131, 135
proxying via gateway 196–198
running CoAP server 195–196

Comet-hacking HTTP 167–168
command prompt 95
communication 5
complex commands 207
Compose layer 138, 280
compressed headers 172
compression format 172
computation 5
concrete plugins 236–237
concurrent requests 71
config-sample.json file 205
config/acl.json file 272
Confirm Security Exception 

option 257
connected objects use cases

14–22
connected hotel 6–8
Marketing 2.0 21–22
smart cities and energy 

grids 18
smart homes and 

buildings 17
smart logistics and supply 

chains 19–20

smart manufacturing and 
Industry 4.0 19

wearables and quantified 
self 16–17

wireless sensor networks and 
distributed sensing 14–15

connectHardware() function
184

connection-oriented protocol
119

connectionless protocol 118
console.log() 43, 72–73, 207
consolidate module 242
Constrained Application Proto-

col. See CoAP
consumer packaged goods. See 

CPGs
content delivery networks. See 

CDNs
content negotiation 37, 151, 153
content property 46–48
Content-Type header 65, 151, 

159
Content-Type: application/json 

header 169
contentType method 50
Contiki 15, 86
control flow libraries 78
control flow mechanism, 

TCP 119
controlled vocabularies 240
converter middleware 188
Copper plugin 196
corePlugin.js module 236–237
CORS (cross-origin resource 

sharing) 158
coupling between elements

with Internet of Things 25
with Web of Things 25

CPGs (consumer packaged 
goods) 19

crawling API of web Things 221
Create Redirection option 212
CRUD (create, read, update, 

and delete) 154
crypto.randomBytes() 

function 261
cURL 36
Cylon.js library 62

D

Dahl, Ryan 62
Dashboard tab 206

data-intensive real-time applica-
tion. See DIRT

database.query() function 72, 74
Debian Linux system 91
debug output node 291
default representation 153
delegated authentication 

step 266
dependencies, clean 68–69
describing web Things 223–239

actions 229–231
metadata 227
properties 227–229
Things 231–232
Web Thing Model, imple-

menting on Pi 232–238
dynamic routing 234–236
extending WOT server for 

discovery-architecture
234

plugins 236–238
validating your model with 

JSON schema 233–234
WO T Pi Model 232–233

Web Thing Model, overview 
of 225–227

descriptive names 150
Details page 36
devDependencies 69
device discovery 51
devices.webofthings.io 

server 170
DHCP (Dynamic Host Configu-

ration Protocol) 217
DHT22 (AM2302) sensor

105–107
digital actuator 100
Digital Living Network Alliance. 

See DLNA
digital sensor 100
direct integration pattern

176–194
creating WoT server 178–179
interface design 189–191

adding body parser 189
binding actuators to 

server 190–191
supporting other HTTP 

verbs 189–190
pub/sub interface via 

WebSockets 191–194
representation design

186–189
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direct integration pattern 
(continued)

resource design 180–186
binding sensors to 

servers 183–185
creating Express 

application 182–183
creating Express 

routes 181–182
creating resource 

model 180–181
testing with real hardware 

on PI 185–186
DIRT (data-intensive real-time) 

application 73
discovering Things 217–223

network discovery 217–220
mDNS 218–219
on web 219–220

resource discovery on 
web 220–223
crawling API of web 

Things 221
HATEOAS and web 

linking 221
REL= 223

distributed sensing 14–15
DIY (do it yourself) 7
DLNA (Digital Living Network 

Alliance) 218
Dom Pérignon button 21
domotics 17
doPoll() function 42
DPWS (Devices Profile for Web 

Services) 23
Duck DNS 259
duration property 46
Dynamic Host Configuration 

Protocol. See DHCP
dynamic routing 234, 236

E

Edison 305–306
embedded devices 84–88

beyond Pi 87–88
for hobbyists vs. industrial 

devices 84–85
industrial prototypes 87–88
real-time operating systems vs. 

Linux 85–86
encryption 252
energy grids, smart 18

Engels, Daniel 13
EnOcean protocol 123
entities 225–227
environment variables 202
EPCglobal network 20
err parameter 74
ERR_CERT_AUTHORITY_INV

ALID 257
error parameter 74
event loop, Node.js 71–73

multi-threaded web servers 71
single-threaded, non-block-

ing web servers 71–73
event-driven programming 105
Evian Drop 21
EVRYTHNG_API_KEY 

variable 202
EVRYTHNG, setting up 

account 201–204
changing properties 204
creating device API key 204
creating first products and 

Thngs 203–204
creating project and 

application 202–203
ex-2.3-websockets-temp-

graph.html file 45
ex-3.2-actuator-ajax-json.html 

file 49
ex-4-parse-device.html file 51
ex-5-mashup.html file 55
exFAT 92
exploits object 250
exports object 70
Express framework 178
external requests 229
extractFields(fields, model) 236

F

F function 74
Facebook application

authentication strategy 
implementation 271–272

creating 269–270
Facebook Graph API explorer 

tool 273
fast-moving consumer goods. See 

FMCGs
Find layer 137–138, 217
findability problem 215–217
Fleisch, Elgar 13
Flink 301

FMCGs (fast-moving consumer 
goods) 19

forking 99
forms, using to update text

46–48
fragments 148
FreeRTOS 86
fs.appendFile() function 76
fs.readFile(filename, callback)

73
fs.readFileSync(filename) 73

G

gateway pattern 176, 194–199
Arduino and 307–308
proxying CoAP via 

gateway 196–198
running CoAP server 195–196

gateway, getting list of devices 
from 37–39

Geiger counter 127
general-purpose input/output 

ports. See GPIO
generateActions() 

function 284–285, 288
generateProperties() 

function 287
Generating a 2048 bit RSA pri-

vate key message 255
GeoTrust 258
GET {WT}/actions request 229
GET {WT}/actions/{actionId} 

resource 231
GET {WT}/model 227
GET {WT}/properties 

resource 228
GET method 294
GET request 169
GET tag 227
getLight() function 78
getModel() function 281
getTemperature() function 78
GETting data 289
Git and GitHub, using on Rasp-

berry Pi 99
git clone command 32
git commit command 32
git push command 32
GitHub page 67
GitHub repository 281
GND (ground) pin 105
Google 263
Google Charts 43
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Google spreadsheet, pushing 
intruder alert tweets 
to 296–298

Google Weave 132
GParted 92
GPIO (general-purpose input/

output) ports 89, 100, 305
accessing from Node.js

102–107
Arduino and 308
Edison and 306

Graph API explorer tool, 
Facebook 273

graphing, sensor values 43
GUI (graphical user 

interface) 223

H

Handlebars engine 242
hardware bridges 9
Harter, Marc 63
HATEOAS (Hypermedia as 

Engine of Application 
State) 147, 160–163, 221

HDP (Health Device 
Profile) 130

HEAD verb 154
headless option 94
Heartbleed 253
heating, ventilation, and air-con-

ditioning systems. See HVAC
Hello World HTTP server 64
hello-modules folder 70
hello-node folder 65
hello-npm folder 68
hobbyists, embedded devices 

for 84–85
homes, smart 17
Host Name field 97
HTML interface/

representation 153
HTTP (Hypertext Transfer Pro-

tocol)
Comet-hacking HTTP

167–168
webhooks-HTTP 

callbacks 166–167
HTTP GET 40
http module 64
HTTP polling 168
HTTP POST 49
http request function node 294
http.js file 189, 242

HTTPS, enabling with TLS
255–259

humidity sensor 180
HVAC (heating, ventilation, and 

air-conditioning systems) 17
hyperlinks 221
Hypermedia as Engine of Appli-

cation State. See HATEOAS

I

I Understand The Risk 
option 257

I/O (input/output) pins 31
I2C (Inter-Integrated 

Circuit) 107
IANA (Internet Assigned Num-

bers Authority) 151, 171
id field 203
@id keyword 245
IDE (integrated development 

environment) 99
idempotent 154
identification 260
IEEE 802.15.4 standard 120
if-then statements 295
IFTTT (If This Then That) 

wizard 295–300
pushing intruder alert tweets 

to Google 
spreadsheet 296–300

sending requests to Thing 
with Maker channel 298

implementing status codes 159
implementing web Things

175–213
cloud integration 

pattern 199–213
creating MQTT client 

application 204–206
creating simple WebSock-

ets control 
application 208–212

setting up EVRYTHNG 
account 201–204

use actions to control power 
plug 208

using actions to control 
power plug 206

connecting devices to web 176
direct integration 

pattern 177–194
creating WoT server

178–179

direct integration 
pattern 194

interface design 189–191
pub/sub interface via 

WebSockets 191–194
representation design

186–189
resource design 180–186

gateway integration 
pattern 194–199
proxying CoAP via 

gateway 196–198
running CoAP server

195–196
industrial prototypes 87–88
Industry 4.0 19
input mode 100
input parameters 207
input text bar 49
input/output pins. See I/O
installing Node.js 63, 97–99
integrated development envi-

ronment. See IDE
integration strategy 163, 176
Inter-Integrated Circuit. See  I2C
interface design 163, 176, 

189–191
intermediate hops 112
intermediate nodes 112
Internet Assigned Numbers 

Authority. See IANA
Internet layer 114
Internet of Things project 250
internet protocols 116–120

Transmission Control 
Protocol 119

transport protocols of 
Internet 117–118

User Datagram Protocol
118–120

versions 4 and 6 116–117
Internet Security Research 

Group 259
intruder alert tweets, pushing to 

Google spreadsheet
296–298

IoT (Internet of Things)
compared with Web of 

Things 8–12
defining 4–6
disadvantages of

closed and proprietary 
protocols 24
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IoT (Internet of Things) 
(continued)
insufficient level of 

security 25–26
maintenance difficulties 24
programming 

difficulties 23
tight coupling between 

elements 25
history of 12–14

IoT attacks 250
IP (Internet Protocol) 114
IPv4 (Internet Protocol version 

4) 116–117
IPv6 (Internet Protocol version 

6) 116–117
IPv6 over Low power Wireless 

Personal Area Networks. See 
6LoWPAN

J

JavaScript 60–62, 194
jQuery 42, 282
.js extension 65
JSON (JavaScript Object 

Notation) 153
returning sensor data as 65–66
validating Web Thing Model 

with 233–234
JSON Schema Lint 234
JSON-LD format 244–246

findability and beyond 246
JSON-LD for Things 245–246

JSON-LD payloads 246
json2html library 186

K

Kiessling, Manuel 63

L

LAN (local area network) 115
layers 113
LCD screen 31, 36, 47–48, 55, 57
LED message function 

node 293
LED property, of Pi Web Thing 

Model 286–287
ledId parameter 282
ledId value 230
ledState action 230, 282–283, 

292, 299

Lets Encrypt project 259
/lib folder 69
light sensor value 65
LINK element 222
Link header 222, 227
Link layer 114
linked data 239–240
LinkedIn 263
links element 53–54
Linux

BeagleBone Black and 304
Edison and 305
vs. real-time operating 

systems 85–86
List of Sensors link 34
listen() function 183, 193
listen(PORT) function 65
loading time 145
local area network. See LAN
Location header 155
/log resource 74
login cookie, Facebook 275
login.html page 272
logistics, smart 19–20
logValuesReply() function 78
long polling 168
loose coupling 145
LoRa 125
low-power protocols 194
LTS (long-term support) 99

M

M2M (machine-to-machine) 
communication 133

Made for iPhone program. See 
MFi

MagPi magazine 89
maintenance 24
MAJOR version 69
MAJOR.MINOR.PATCH 

pattern 69
Maker channel 295, 298–300
malicious interceptor 251
manipulation of resources, 

through representations
151–153

manufacturing, smart 19
MAP (Message Access 

Profile) 130
Marketing 2.0 21–22
mashup() function 56, 74
mashups, creating 54–57
masterSecret 254

Mattern, Friedemann 13
mbed OS 86
mDNS (multicast Domain Name 

System) 218
mDNS server 95
mesh networks 112–113
Message Access Profile. See MAP
MessagePack 153
metadata 227
MFi (Made for iPhone) 

program 132
Micro USB connector 91
/middleware/auth.js file 273
middleware/converter.js 

file 186
MIME (Multipurpose Internet 

Mail Extensions) 151
MINOR version 69
/model resource 233
model resource, web Thing 226
modelToResources(subModel, 

withValue) 236
modularity, in Node.js 66–71

clean dependencies with pack-
age.json and npm 68–69

first Node module 69–71
npm- Node package 

manager 67–68
module-client.js file 70
Mozilla 259
MQTT (Message Queuing 

Telemetry Transport) 120, 
131–132, 171

creating MQTT client 
application 204–206

persistent connections 134
quality of service 133
security and encryption 134

MQTT-SN (MQTT for Sensor 
Networks) 134

MS-DOS (FAT) format 92–93
msgpack5 library 186
mul function 70
multi-threaded web servers 71
multicast 218
multicast Domain Name System. 

See mDNS
multicast messages 118
Multipurpose Internet Mail 

Extensions. See MIME
My Apps section, Facebook 269
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N

named callbacks 77–78
NAS (network-attached 

storage) 218
NAT (Network Address 

Translation) 116
Nest 301
nesting callbacks 77
Network Address Translation. See 

NAT
network discovery of 

Things 217–220
mDNS 218–219
on web 219–220

Network layer 114
network socket 117
network-attached storage. See 

NAS
Network/Transport-level 

protocols 113
networking protocols 115–130

internet protocols 116–120
Transmission Control 

Protocol 119–120
transport protocols of 

Internet 117–118
User Datagram 

Protocol 118–120
versions 4 and 6 116–117

personal area networks
120–124

personal area networks 
(PANs)
Bluetooth 121–122
EnOcean 123
IEEE 802.15.4 and 

6LoWPAN 120
Thread 121
Wi-Fi and low-power Wi-

Fi 122
ZigBee 120–121

selecting, factors to consider 
when 127–130
bandwidth, latency, actua-

tion, and sensing 128
cost 127–128
internet integration and 

openness 128–130
power source 127
range and network 

topology 128
spatial considerations 115
wide area networks 124–126

wide area networks (WANs)
low-power WANs 125–126
mobile phone 

networks 124–125
networks of Things 109–140

application protocols 130–136
Apple HomeKit and Google 

Weave 132
Constrained Application 

Protocol 135
Message Queuing Teleme-

try Transport 132–134
selecting 135–136
ZigBee and Bluetooth appli-

cation stacks 130
network classification 

models 113–115
network topologies 111

mesh networks 112–113
point-to-point 111
star networks 111–112

Web of Things 
architecture 136–140
Access layer 136–137
Compose layer 138
Find layer 137–138
importance of 138–139
Share layer 138

New Out Of the Box Software. 
See NOOBS

new plugins 236
Next Generation Mobile Net-

works Alliance. See NGMN
next() function 186, 188
NFC tags 115, 212, 216
NGMN (Next Generation 

Mobile Networks) 
Alliance 125

Nike+ 14, 16
Nipper, Arlen 132
node authProxy.js 275
node blink.js 104
node coap.js 196
Node libraries 178
Node module 67
node module-client.js 70
node simple-plug.js 206
$ node --version 63
node wot.js 232, 257, 275, 282
node_mdns library 219
node_modules/ directory 68
node-dht-sensor library 106–107, 

184
node-http-proxy 275–276

node-oauth2-server 265, 276
Node-RED boxes and wires 

editor 289–294
getting started with 289–291
Hello World message, flow for 

creating 291–292
physical mashup with 292–294
saving workflows 292

node-red-contrib-evrythng 295
node-red-node-arduino 295
node-red-node-redis 295
node-red-stop 290
Node.js web framework 59–82, 

178–179
accessing GPIO ports 102–107
asynchronous programming 

and 73–82
anonymous callbacks 74–77
control flow libraries 78
named callbacks 77–78

BeagleBone Black and
304–305

Edison and 306
event loop 71–73

multi-threaded web 
servers 71

single-threaded, non-block-
ing web servers 71–73

first web server in 63–65
installing 63
installing on Raspberry Pi

97–99
modularity in 66–71

clean dependencies with 
package.json and 
npm 68–69

first Node module 69–71
npm- Node package 

manager 67–68
overview 62–66
returning sensor data as 

JSON 65–66
nodes 111
non-IoT platforms 185
NOOBS (New Out Of the Box 

Software) 91–93
Not authorized for this resource! 

error 275
npm command-line utility 67
npm init command 69
npm install 185, 206, 232
npm install coap 195
npm install consolidate 242
npm install handlebars 242
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npm install http-proxy 275
npm install node-dht-sensor 106
npm install node-json2html 

library 186
npm install passport 270
npm install passport-

facebook 270
npm install ws 192
npm- Node package 

manager 67–68
npm, clean dependencies 

with 68–69

O

Object.observe() function 190
on/off library 190
“one device, one protocol, one 

app” pattern 8
online validator 234
onoff library 103, 105, 107
onoff readSync() function 105
@context keyword 245
ontologies 240
OpenSSL library 255
operations module 70
operations.js file 69
operator API key 201
ops variable 70
optional query parameters 148
optionalDependencies 

object 185
OPTIONS (HTTP verb) 158, 

162, 221
Origin header 158
OS (operating system) 85
OSI (Open Systems Intercon-

nection) 9, 113–115
-out caCert.pem 255
OUT pin 104
output mode 100
OWASP (Open Web Applica-

tion Security Project) 250

P

pages 221
PANs (personal area 

networks) 120–124
Bluetooth 121–122
EnOcean 123
IEEE 802.15.4 and 

6LoWPAN 120
Thread 121

Wi-Fi and low-power Wi-Fi
122

ZigBee 120–121
part3-cloud/client/plug.html 

file 209
passive infrared sensor. See PIR
passive RFID tags 20
passport-twitter or passport-

linkedin 271
Passport.js 270–271
PATCH version 69
Payload property 291
Physical layer 114, 121–122, 127
physical mashups 288–294

better user experience
301–302

creating 54–57
from simple mashups to big 

data mashups 300–301
IFTTT wizard for program-

ming of 295–300
pushing intruder alert 

tweets to Google 
spreadsheet 296–300

sending requests to Thing 
with Maker channel 298

Physical Web 90
physically incompatible 

protocols 129
Pi

enabling HTTPS and WSS 
with TLS on 255–259

implementing Web Thing 
Model on 232–238
dynamic routing 234–236
extending WoT server for 

discovery-architecture
234

plugins 236–238
validating your model with 

JSON schema 233–234
WoT Pi Model 232–233

Pi Web Thing Model
actions object of 282–283
LED property of 286–287
PIR property of 286–287

Pi Zero 88
pi-gpio library 103
pi.json model 245
ping command 95
PINGREQ requests 134
piNoLd.json f ile 233
PIR (passive infrared) 

sensor 104–105

PIR plugin 164, 180, 183, 234, 
236

PIR property, of Pi Web Thing 
Model 286–287

pirPlugin.js 236
placeholder 202
PLC (Power Line 

Communication) 127
plug-with-control.js file 207
plugins 183–236, 238
/plugins directory 237
/plugins/internal directory 236
PoE (Power over Ethernet) 127
point-to-point network 

model 111
polling data from sensors 42–46

current sensor value 42–43
real-time data updates 44–45
values 43

POODLE 253
POST request 204
Postman 36
preMasterSecret 254
prepackaged integrations 296
prepareMessage() function 56
presence value 294
Press for DP button 21
private interfaces 233
private key 253
privateKey.pem file 256
process-forking approach 71
processForm() function 50
Product schema 246
programming 23
project 202
?project=$PROJECT_ID 

parameter 203
properties 204, 227, 229
property attribute 241
property resource, web 

Thing 226
protocol stacks 114–115, 

127–128, 130–131, 133, 139
protocols 24
prototypal inheritance 236
prototypes, industrial 87–88
proxied access step 266
proxies 9
proxying resources of 

Things 274–276
proxying, CoAP via 

gateway 196–198
public interface 229
public key 253
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/public/websocketsClient.html 
file 193

publishers 165
publish/subscribe 165–166, 

191–194
publish-subscribe 133

publishMessage() function 56
PUT request 189

Q

QoS 0: fire and forget level 133
QoS 1: deliver at least once 

level 133
QoS 2: deliver exactly once 

level 133
QR codes 211–212, 215
quantified self 16–17

R

Raspberry Pi 31–32, 88–97
choosing version of 89–90
connecting sensors and actua-

tors to 100–108
accessing GPIOs from 

Node.js 102–107
breadboards and electronic 

components 100–102
general-purpose input/out-

put ports 100
connecting to device 96–97
installing Node.js on 97–99
items needed with 90–91
overview 88–89
setting up 91–96

connecting to network
93–94

creating network for
95–96

installing Raspbian with 
NOOBS 92–93

remotely accessing 94–95
using Git and GitHub on 99

raspberrypi.local domain 95
Raspbian 91–92
RDFa

adding to WoT Pi 242–243
overview 240–241

real-time operating systems. See 
RTOS

recipes 296
-recursive option 232

red line, breadboards 101
Register As A Developer option, 

Facebook 269
REL= 223
relays 112
representation design 163, 176, 

186–189
req parameter 64
request module 67, 75
request-response 

communication 163
request-response pattern 145, 

164–165
requests, sending to Thing with 

Maker channel 298–300
res parameter 64
res.writeHeader() function 65
resource design 163, 176, 

180–186
resource discovery on web 220, 

223
crawling API of web 

Things 221
HATEOAS and web 

linking 221
resource linking design 163, 176
resource owner role, OAuth 264
resource server role, OAuth 264
resource-constrained 

devices 195
resource-oriented architecture. 

See ROA
/resources/auth.json file 261
resources element 54
resources object 40
/resources/piNoLd.json 

file 232
resources, of web Thing 226
resp parameter 74
response parameter 74
REST (Representational State 

Transfer) 144
access control with 260–262
constraints 144–146

cacheable 145
client-server 145
layered system 146
stateless 145
uniform interfaces 145

on devices 177–194
creating WoT server

178–179
interface design 189–191

pub/sub interface via 
WebSockets 191–194

representation design
186–189

resource design 180–186
RESTful resource 161
RFID (radio frequency identifi-

cation) tags 13, 160
RGB value 155
ROA (resource-oriented 

architecture) 147
roles, OAuth 264–265
root page 34, 37
/routes/routesCreator.js 

file 235
RTOS (real-time operating 

systems) 85–86

S

same-origin policy 157
Sarma, Sanjay 13
schema validator library 234
schema.org vocabulary 244
scope 202
SD Card Formatter tool 92
SD cards 87
search engines 221
Sec-WebSocket-Protocol request 

header 171
Secure Sockets Layer. See SSL
security 25, 250–259

access control with REST and 
API tokens 260–262

encryption 252
OAuth web authorization 

framework 263–265
TLS (Transport Layer Secu-

rity)
enabling HTTPS and WSS 

with, on Pi 255–259
overview 253–255

with Internet of Things 25–26
with Web of Things 26

self-descriptive messages 147, 
154–160

CORS-enabling client-side 
JavaScript to access 
resources 157–158

DELETE 156
error codes 156–157
GET 154
POST 155
PUT 155–156
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semantic Web of Things 239–247
JSON-LD format 244–246

findability and beyond 246
JSON-LD for Things

245–246
linked data 239–240
RDFa

adding to WoT Pi 242–243
overview 240–241

Schema.org and 243–244
sendAction() function 209
sensing, distributed 14–15
sensor plugins 183, 234, 236
sensor.read() function 184
sensors 5

connecting to Raspberry 
Pi 100–108
accessing GPIOs from 

Node.js 102–107
breadboards and electronic 

components 100–102
general-purpose input/out-

put ports 100
getting details of 41
getting list of on device 40
graphing values 43
polling data from 42–46

current sensor value 42–43
real-time data updates

44–45
values 43

returning sensor data as 
JSON 65–66

/sensors end point 225
Sensors page 35
sensors.js file 181, 188
sentiment node 294
sequence numbers 119
Serial Peripheral Interface. See 

SPI
SERVER variable 202
/servers/websocket.js file 262
server-based authentication 260
server, creating 178–179
/servers/http.js file 182, 262
set-top box 220
_setStatus command 207–209
Setup Redirector button 211
setup.sh bash script 205
sha256 hashing algorithm 255
Share layer 138, 249
Shellshock 253
SIGFOX 125
SIGINT 103

simple interfaces 145
simple-plug.js file 205
single-threaded, non-blocking 

web servers 71–73
Skip Quick Start option, 

Facebook 270
smart cities 18
smart homes and buildings 17
smart logistics 19–20
smart manufacturing 19
smart thing 5
SoC (system on chip) 127
social Web of Things authentica-

tion proxy 266–276
creating Facebook 

application 269–270
implementing access control 

lists 272–274
implementing Facebook 

authentication 
strategy 271–272

Passport.js 270–271
proxying resources of 

Things 274–276
socket 117
Socket.io 191
software bridges 9
Spark 301
SPI (Serial Peripheral 

Interface) 107
SSH client

connecting to BBB via 304
connecting to PI on Linux or 

Mac OS 96
connecting to PI on on 

Windows 97
Edison and 306

SSL (Secure Sockets Layer) 253
SSL certificates 255
SSL Heartbleed 26
SSL/TLS authentication 253
SSL/TLS encryption 253
SSL/TLS handshake 254
standard interfaces 145
standards 24
Stanford-Clark, Andy 132
star networks 111–112
star of stars 111
state parameter 282
state value 230
stateful applications 161
status property 207
Storm 301
strategy 270

sub function 70
subresources 160
subscribers 165
sudo command 107
supply chains, smart 19–20
supporting verbs 159
Symantec 258
symmetric encryption 252
system on chip. See SoC

T

tagged objects 83
takePicture() function 57
taxonomy 240
TCP (Transmission Control 

Protocol) 118–119, 169–170
TCP packets 119
TCP/IP (Transmission Control 

Protocol/Internet 
Protocol) 113–115, 172

/temp resource 267
temperature and humidity 

plugin 236
temperature sensor 180
templating engines 242
text-plain 65
text, using forms to update

46–48
Thawte 258
thethings.io 200
Thinfilm 20
Thing proxy trust step 266
thing resource, web Thing 226
ThingSpeak 200
ThingWorx 200
third-party trusted service 263
Thngs, creating 203–204
Thread protocol 121
threading approach 71
Thunderbolt adapter 96
timestamp 229
TinyOS 15, 86
TLS (Transport Layer 

Security) 134, 253
enabling HTTPS and WSS 

with, on Pi 255–259
overview 253–255

token-based authentication 260, 
262

Transmission Control Protocol. 
See TCP

Transmission Control Protocol/
Internet Protocol. See 
TCP/IP
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Transport layer 9, 114, 117, 121, 
127, 129, 133, 135

transport protocols of 
Internet 117–118

true value 292
trust chain 255
twitter output node 294
@type keyword 245
typeof attribute 241

U

UDP (User Datagram 
Protocol) 118–120

UI (user interface), automated 
generation of 280–288

actions object of Web Thing 
Model for Pi 282–283

generateActions() 
function 284–285

generateProperties() 
function 287

HTML code of form to create 
ledState action 283–284

PIR and LED properties of Pi 
Web Thing Model 286–287

retrieving JSON model of web 
Thing with jQuery 282

universal user interface for 
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