


	

Summary	Guide	Disclaimer
	
	
	
This	publication	is	not	associated	with	or	endorsed	by	the	publisher
Pearson	Education	or	the	author	Robert	C	Martin.	This	publication	is
not	intended	to	replace	the	reading	of	the	original	work.	The
publication	is	a	uniquely	written	analysis	summary	and	commentary
guide	of	the	original	book.		It	is	intended	as	a	summary	reference.
	
	
	
This	publication	is	an	analysis,	summary,	and	commentary	that
includes	original	references	and	thoughts	of	“Clean	Code:	A
Handbook	of	Agile	Software	Craftsmanship”.	You	are	encouraged	to
buy	the	full	version.
	
	
	
Martin,	Robert	C.	(2008-08-01).	Clean	Code:	A	Handbook	of	Agile
Software	Craftsmanship	.	Pearson	Education.
	
	
	
This	publication	is	presented	solely	for	educational	and	entertainment
purposes	as	a	reference.	The	author	and	publisher	are	not	offering	it	as
legal	or	other	professional	services	advice.	While	best	efforts	have
been	used	in	preparing	this	book,	the	author	and	publisher	make	no
representations	or	warranties	of	any	kind	and	assume	no	liabilities	of



representations	or	warranties	of	any	kind	and	assume	no	liabilities	of
any	kind	with	respect	to	the	accuracy	or	completeness	of	the	contents
and	specifically	disclaim	any	implied	warranties	of	merchantability	or
fitness	of	use	for	a	particular	purpose.	Neither	the	author	nor	the
publisher	shall	be	held	liable	or	responsible	to	any	person	or	entity
with	respect	to	any	loss	or	incidental	or	consequential	damages
caused,	or	alleged	to	have	been	caused,	directly	or	indirectly,	by	the
information	or	programs	contained	herein.	No	warranty	may	be
created	or	extended	by	sales	representatives	or	written	sales	materials.
	
	
	
Neither	the	publisher	nor	the	individual	author(s)	shall	be	liable	for
any	physical,	psychological,	emotional,	financial,	or	commercial
damages,	including,	but	not	limited	to,	special,	incidental,
consequential	or	other	damages.	You	are	responsible	for	your	own
choices,	actions,	and	results.	References	are	provided	for
informational	purposes	only	and	do	not	constitute	endorsement	of	any
websites	or	other	sources.	Readers	should	be	aware	that	the	websites
listed	in	this	book	may	change.
	
	
	
	
	
	



	

Copyright	©	2016	Supergloo,	inc
	
	
	
All	rights	reserved.		No	part	of	this	publication	may	be	reproduced,
stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any
means,	electronic,	mechanical,	photocopying,	recording,	scanning,	or
otherwise,	without	the	prior	written	permission	of	Supergloo,	inc.
	
	
	
partner@supergloo.com
	
http://www.supergloo.com
	
	
	
This	book	contains	the	opinions	of	Supergloo,	Inc.	It	is	sold	with	the
understanding	the	publication	content	is	a	commentary,	educational
summary,	comparison,	and	analysis	on	some	of	the	original	book’s
main	ideas	and	concepts.	You	are	encouraged	to	check	out	the	original
book,	if	you	haven’t	already	done	so.
	
	
	
	
	

http://www.supergloo.com


	
	
	
	



Special	Offers
	
For	deeper	exploration	and	learning	of	software	engineering,	you	are	
also	encouraged	to	visit	http://www.supergloo.com/	for	free	resources	
and	significant	discount	coupons	of	online	training.
	

http://www.supergloo.com/


	

Clean	Code	Chapter	1
	
Even	if	you	believe	tools	will	allow	all	code	to	be	generated	automatically
someday,	it	still	represents	the	details	of	the	software	requirements.		So,	code
will	remain.
	
	
	
The	level	of	abstraction	in	languages	will	continue	to	increase	as	well	as	a	rise	in
the	number	of	domain-specific	languages.	The	increase	in	abstraction	is	good
and	will	still	not	eliminate	code.
	



	

Bad	Code
	
Bad	code	can	bring	companies	down.		While	this	might	seem	extreme,	any
programmer	with	a	few	years	experience	has	been	impeded	by	bad	code.
	
	
	
Writing	bad	code	can	happen	for	a	variety	of	reasons,	but	let’s	not	fool	ourselves
into	believing	it	will	be	cleaned	up	later.		We’ve	all	said	we’d	go	back	and	clean
it	up	later,	but	we	didn’t	know	LeBlanc’s	law:	Later	equals	never.
	
The	Total	Cost	of	Owning	a	Mess

	
Messy	code	can	slow	things	down.		The	degree	of	the	slowdown	can	be
significant.
	
The	Grand	Redesign	in	the	Sky

	
What	happens	if	this	slowdown	eventually	leads	to	management	buying	into	the
idea	of	a	complete	rewrite?
	
	
	
Two	teams	emerge:	the	Tiger	team	and	Maintenance	team.		The	Tiger	team
chooses	only	the	best	and	brightest	to	write	the	new	system	while	everyone	else
must	continue	to	maintain	the	current	system.	Now	the	two	teams	are	in	a	race.
	
	
	
By	the	time	the	new	system	is	done,	the	original	members	of	the	Tiger	team	are



By	the	time	the	new	system	is	done,	the	original	members	of	the	Tiger	team	are
long	gone,	and	the	current	members	are	demanding	that	the	new	system	is
redesigned	because	it’s	such	a	mess.
	



	
Attitude

	
How	does	good	code	evolve	into	bad?	There	are	many	explanations	and	excuses
for	it	such	as	requirements	changed,	schedules	too	tight,	stupid	managers,	irate
customers,	useless	marketing	types.
	
	
	
We	need	to	stop	blaming	everyone	and	everything	but	ourselves.		What	if	you
were	a	doctor	and	had	a	patient	with	demands.		The	patient	demanded	you	stop
hand-washing	in	preparation	for	surgery	because	it	was	taking	too	much	time.
Although	the	patient	is	the	boss,	the	doctor	should	refuse	to	comply.
	
	
	
	
	
Programmers	should	avoid	bending	to	the	will	of	managers	who	don’t
understand	the	risks	of	making	code	messes.
	



	
The	Primal	Conundrum

	
All	developers	feel	the	pressure	to	meet	deadlines.		But,	real	professionals	know
this	is	wrong.		The	only	way	to	make	the	deadline	and	continue	to	go	fast	is	to
keep	the	code	as	clean	as	possible	at	all	times.
	
The	Art	of	Clean	Code?

	
How	do	I	write	clean	code?
	
Writing	clean	code	is	a	lot	like	painting	a	picture	which	means	the	answer	to
how	to	write	clean	code	is	vague.
	
	
	
Most	of	us	appear	to	know	when	a	picture	is	painted	well	or	badly.	But	being
able	to	recognize	good	art	from	bad	does	not	mean	that	we	know	how	to	paint.
Similar	to	being	able	to	recognize	clean	code	vs.	messy	code	does	not	mean
knowing	how	to	write	clean	code!
	
	
	
Writing	clean	code	requires	the	use	of	techniques	applied	through	an	acquired
code-sense	of	“cleanliness.”
	
	
	
A	programmer	who	writes	clean	code	is	like	an	artist	who	creates	clean	code
from	blank	screen	canvas.
	



What	is	Clean	Code?

	
The	author	as	well-known	and	deeply	experienced	programmers	what	they	
thought.	Their	responses	included	descriptions	such	as	readability,	elegant,	
detailed,	focused,	undistracted,	etc.
	



	
Schools	of	Thought

	
Within	martial	artists	schools,	students	and	teachers	do	not	all	agree	about	which
one	is	best	or	even	which	technique	is	best	within	a	particular	martial	art.		No
school	is	entirely	right.	Bias	within	schools	does	not	invalidate	the	teachings	of	a
different	school.	In	a	similar	light,	the	techniques	and	teachings	of	clean	code	are
the	way	the	art	of	programming	is	practiced.
	



	
The	Boy	Scout	Rule

	
Code	needs	to	be	kept	clean	over	time.		Over	time,	apply	the	boy	scout	rule	of
leaving	things	better	than	you	found	it.
	



	
Conclusion

	
Just	like	art	books	can	not	promise	to	make	you	an	artist,	this	book	cannot
promise	to	make	you	a	good	programmer.		This	book	can	give	you	tools,
techniques,	and	thought	processes	of	other	programmers.
	
	
	
	
	
	
	
	
	



	

Meaningful	Names	Chapter	2
	
Simple	rules	for	creating	good	names:
	
Use	Intention-Revealing	Names

	
The	name	of	a	variable,	function,	or	class,	should	tell	you	why	it	exists,	what	it
does,	and	how	it	is	used.	If	a	name	requires	a	comment,	it	does	not	reveal
intention.
	



	
Avoid	Disinformation

	
Programmers	must	avoid	using	names	that	obscure	the	meaning	of	the	code.	For	
example,	avoid	using	hp,	aix,	and	sco	because	they	are	variants	of	Unix	
platforms.		Another	example	is	referring	to	a	group	of	accounts	as	an	accountList	
unless	it’s	actually	a	List.
	



	
Make	Meaningful	Distinctions

	
Programmers	can	create	problems	naming	code	solely	to	satisfy	a	compiler	or	
interpreter.		For	example,	the	practice	of	creating	a	variable	named	klass	just	
because	the	name	class	is	reserved	by	the	compiler
	
	
	
Number-series	naming	(a1,	a2,	..	aN)	is	not	meaningful.
	
	
	
If	you	have	a	Product	class	and	other	classes	called	ProductInfo	or	ProductData,	
you	have	made	the	names	noisy	because	differences	in	meaning	are	not	clear.
	



	
Use	Pronounceable	Name

	
Make	names	pronounceable.		A	variable	name	of	genymdhms	(generation	date,	
year,	month,	day,	hour,	minute,	and	second)	is	not	pronounceable.
	



	
Use	Searchable	Names

	
The	common	practice	of	using	single-letter	names	create	a	particular	problem
because	they	are	not	easy	to	locate	by	searching	in	code.
	



	
Avoid	Encodings

	
Encoding	names	with	type	indicators	such	as	String	in	a	variable	phoneString	is	
unneeded	and	creates	noise.		Type	indicator	encoding	is	especially	unneeded	in	
languages	such	as	Java	because	Java	is	a	strongly	typed	language	and	the	
compiler	forces	correct	typing	anyhow.		
	



	
Member	Prefixes

	
Prefixing	member	variables	with	conventions	such	as	m_	is	not	needed	anymore.
	



	
Interfaces	and	Implementations

	
Preceding	and	interface	with	letter	I	as	seen	in	IShapeFactory	for	example	is	a	
distraction.
	



	
Avoid	Mental	Mapping

	
A	problem	arises	from	a	choosing	to	use	neither	problem	domain	terms	nor
solution	domain	terms.		It	forces	readers	to	mentally	translate	names.		Example
using	the	letter	r	to	indicate	a	URL.
	



	
Class	Names

	
Classes	and	objects	should	noun	names	and	should	avoid	using	verbs	such	as	
Manager,	Processor,	etc.
	



	
Method	Names

	
Use	verbs	in	method	names	like	postPayment,	deletePage,	or	save.
	
Don’t	Be	Cute

	
If	names	are	too	clever,	they	will	be	memorable	only	to	people	who	share	the
author’s	sense	of	humor,	so	choose	clarity	over	entertainment	value.
	



	
Pick	One	Word	per	Concept

	
It’s	confusing	to	have	fetch,	retrieve,	and	get	as	equivalent	methods	of	different	
classes.	Stay	consistent	with	abstract	concepts.
	
Don’t	Pun

	
Using	the	same	name	for	two	different	purposes	is	essentially	a	pun	and	should	
be	avoided.		Example:	using	add	that	adds	to	a	collection	in	one	case,	while	in	
another,	add	concatenates	a	string	to	another	string.
	



	
Use	Solution	Domain	Names

	
People	who	read	your	code	will	be	programmers,	so	use	computer	science	(CS)	
terms,	algorithm	names,	pattern	names,	math	terms,	and	so	forth	vs.	problem	
domain	names.		The	name	AccountVisitor	means	more	to	a	programmer	familiar	
with	the	VISITOR	pattern.
	



	
Use	Problem	Domain	Names

	
Building	on	previous	rule,	use	problem	domain	names	when	solution	domain
names	are	not	available.
	



	
Add	Meaningful	Context

	
If	you	have	variables	named	firstName,	lastName,	street,	city,	state,	and	zipcode,	
but	saw	the	state	variable	being	used	alone	in	a	method?	Would	it	be	clear	the	
context	is	an	address?
	
Don’t	Add	Gratuitous	Context

	
Add	no	more	context	to	a	name	than	is	necessary	and	shorter	names	are	usually
better	than	longer	ones,	if	they	are	clear.
	



	
Final	Words

	
Choosing	good	names	a	teaching	issue	rather	than	a	technical,	business,	or
management	issue	and	many	programmers	don’t	learn	to	do	it	very	well.
	
	
	



	

Functions	Chapter	3
	
A	function	is	a	type	of	procedure	or	routine	in	computer	programs.		What	
makes	good	functions?
	



	
Small

	
• Lines	should	not	be	150	characters	long.	
	
• Functions	should	not	be	100	lines	long.	
	
• Functions	should	hardly	ever	be	20	lines	long.
	



	
Blocks	and	Indenting

	
• Blocks	within	statements	should	be	one	line	long.
	
• The	indent	level	of	a	function	should	not	be	greater	than	one	or	two.
	



	
Do	One	Thing

	
The	following	advice	has	appeared	in	one	form	or	another	for	over	30	years:
	
Functions	should	do	only	one	thing	and	do	it	well.
	
One	Level	of	Abstraction	per	Function

	
To	make	sure	our	functions	are	doing	“one	thing,”	we	need	to	make	sure	that	the
statements	within	our	function	are	all	at	the	same	level	of	abstraction.
	
	
	
To	determine	abstraction	level,	use	the	“Step	Down”	rule.		This	rule	is	reading
the	program	as	though	it	were	a	set	of	TO	paragraphs,	each	of	which	is
describing	the	current	level	of	abstraction	and	referencing	subsequent	TO
paragraphs	at	the	next	level	down.
	
	
	
Making	the	code	read	like	a	top-down	set	of	TO	paragraphs	is	a	useful	technique
for	keeping	the	abstraction	level	consistent.
	



	
Switch	Statements

	
Switch	statements	may	be	tolerated	using	the	following	guidelines:
	

■ appear	only	once
	

■ used	to	create	polymorphic	objects
	

■ hidden	behind	an	inheritance	relationship	so	that	the	rest	of	the	system	
can’t	see	them

	



	
Use	Descriptive	Names

	
Choosing	good	names	rely	on	small	functions	that	do	one	thing.		And	with	this
kind	of	function	in	place,	consider	the	following:
	

■ Don’t	be	afraid	of	using	long	names
	

■ Don’t	be	afraid	of	spending	time	to	choose	a	descriptive	name
	

■ Be	consistent	in	naming
	



	
Function	Arguments

	
How	many	arguments	should	functions	allow?		The	ideal	number	of	arguments
is	zero	(niladic),	followed	by	one	(monadic),	followed	closely	by	two	(dyadic).
Avoid	three	arguments	where	possible	and	do	not	use	more	than	three
(polyadic).
	
	
	
Other	argument	considerations:
	
• Do	not	use	flag	arguments	such	as	booleans	because	it	implies	the	function	
doing	more	than	one	thing

	
• Two	arguments	make	the	function	more	complicated	to	understand	and	three	
arguments	even	more	so

	
• Wrap	multiple	arguments	into	a	class	of	their	own
	



	
Have	No	Side	Effects

	
Ensure	functions	have	no	side	effects	and	especially	side	effects	that	include	
temporal	coupling.		Temporal	coupling	creates	dependencies	between	code	and	
timing.
	



	
Command	Query	Separation

	
Functions	should	either	perform	an	action	or	answer	a	question,	but	not	both.
	
Prefer	Exceptions	to	Returning	Error	Codes

	
And	when	using	exceptions,	it’s	often	preferable	to	extract	try/catch	block
include	into	functions.
	
Don’t	Repeat	Yourself

	
Avoid	duplication.		(For	summary	version	of	this	principle,	check	out	my	
summary	guide	The	Pragmatic	Programmer	Summary	on	Amazon)
	
	
	

http://www.amazon.com/gp/product/B019WYUXG0


	
Conclusion

	
How	do	you	write	functions	as	previously	described?		Writing	functions	within
these	guidelines	doesn’t	happen	right	away.		It	requires	iterating	over	versions.
	
	
	
	
	
	
	
	
	



	

Comments	Chapter	4
	
Comments	are	used	to	address	shortcomings	in	our	code.		But	proceed	with
caution,	because	nothing	can	be	more	helpful	(or	cluttering	or	even	damaging)
than	code	comments.
	
	
	
Warning:	over	time,	comments	rarely	evolve	with	code	because	they	are	not
often	maintained.		Fnd	Truth	can	only	be	found	in	the	code	and	not	the
comments.
	
Comments	Key	Factors:

	
• Comments	Do	Not	Make	Up	for	Bad	Code
	
• Explain	Yourself	in	Code	(not	comments)
	
	
	
What	attributes	make	good	comments?
	
1) Legal	Comments	(copyright,	all	rights	reserved,	etc.)
	
2) Informative	Comments	(example:	comment	for	intention	of	regular	

expression	matching	because	regular	expression	code	can	be	confusing	to	
some	people.)

	



3) Clarification
	
4) Warning	of	Consequences	
	
5) TODO	comments	are	sometimes	reasonable,	and	IDEs	can	help	find	them
	
6) Amplification	of	importance
	
7) Javadocs
	
	
	
What	attributes	are	found	in	bad	comments?
	
1) Mumbling	(take	time	to	construct	comments)
	
2) Redundant	
	
3) Misleading
	
4) Mandated	(re:	rules	declaring	every	function	must	have	a	comment)
	
5) Journaling	(redundant	with	source	code	control	systems)
	
6) Noise	(re:	documenting	the	default	constructor	when	it’s	obvious	in	code)
	
7) Scary	Noise	(blatantly	incorrect)
	
8) When	the	comment	could	be	avoided	by	better	naming	or	succinctly	written	

code
	



9) Position	markers	(example:	declaring	a	section	of	particular	kinds	of	
functions)

	
10)Closing	Brace	Comments	(re:	try	to	shorten	your	functions	instead)
	
11) Attributions	and	Bylines	(again,	redundant	with	source	code	control	systems)
	
12)Commented	out	code
	
13)HTML	comments.		Do	not	use	HTML	in	comments
	
14)Nonlocal	Information	
	
15)No	Obvious	Connection	(re:	the	connection	between	the	comment	and	the	

code	should	be	obvious)
	
16) Function	Headers	(short	functions	do	not	need	much	description)
	
17) Javadocs	in	Nonpublic	Code
	
	
	
	
	
	
	
	



	

Formatting	Chapter	5
	
We	want	people	to	realize	and	appreciate	the	neatness,	consistency	and	attention
to	detail	in	our	code.
	



	
Purpose	of	Code	Formatting

	
In	essence,	code	formatting	is	about	professional	communication.
	
	
	
Formatting	guidelines	include:
	



	
Vertical	Formatting

	
1) File	size	consistency

	
2) Openness	Between	Concepts	(example:	line	breaks	between	the	end	of	

one	function	and	beginning	of	new)
	
3) Density	(tightly	related	code	should	appear	together)

	
4) Distance	(closely	related	concepts	should	vertically	close	to	each	other	to	

avoid	jumping	around)
	
5) Ordering	(generally	speaking,	function	call	dependencies	should	point	in	

the	downward	direction)
	



	
Horizontal	Formatting

	
1) Openness	and	Density	(example:	spaces	around	assignment	operators)

	
2) Alignment	(horizontal	length	can	imply	need	to	refactor	into	more	

succinct	code	such	as	extracting	new	methods)
	
3) Indentation	(indent	to	signify	hierarchy	of	scoping;	re:	methods	should	be	

indented	to	first	level)
	
4) Dummy	scores	(example:	a	while	code	block	should	be	broken	into	lines	

rather	than	consolidating	into	one	line)	
	



	
Team	Rules

	
Teams	should	agree	on	formatting	rules.
	
	
	
	
	
	
	



	

Objects	and	Data	Structures	Chapter	6
	



	
Data	Abstraction

	
Hiding	implementation	is	about	abstractions	and	not	just	a	matter	of	putting	a
layer	of	functions	between	the	variables.		Abstractions	through	layers	allows	the
manipulation	of	the	essence	of	data	rather	than	requiring	to	know	and	expose	the
implementation.
	
Data/Object	Anti-Symmetry

	
The	distinction,	or	anti-symmetry	between	objects	and	data	structures	such	as
data	transfer	objects	(DTOs):	objects	hide	their	data	behind	abstractions	and
expose	functions	to	operate	on	their	data	while	data	structures	expose	their	data
for	convenience	and	contain	no	meaningful	functions.		Avoid	mixing	these	two
constructs	together	into	a	structure	called	a	Hybrid.
	



	
The	Law	of	Demeter

	
A	heuristic	called	the	Law	of	Demeter	says	a	module	should	not	know	about	the	
innards	of	the	objects	it	manipulates.		
http://en.wikipedia.org/wiki/Law_of_Demeter
	
	
	

http://en.wikipedia.org/wiki/Law_of_Demeter


	
Conclusion

	
Objects	are	best	utilized	to	expose	behavior	rather	than	data.		Conversely,	data
structures	such	as	DTOs	are	designed	to	expose	data	rather	than	behavior.
	
	
	
	
	

	
	



	

Error	Handling	Chapter	7
	
Techniques	and	considerations	for	writing	code	that	handles	errors	with	grace
and	style	include:	Use	Exceptions	Rather	Than	Return	Codes	Take	advantage	of
exception	handling	in	languages	that	support	them.
	
Write	Your	Try-Catch-Finally	Statement	First	The	code	in	try	blocks	is	
similar	to	transactions	because	the	catch	block	can	leave	a	program	in	a	
consistent	state.			This	helps	define	expectations,	no	matter	what	could	go	wrong	
during	execution.

	
Use	Unchecked	Exceptions	The	debate	of	unchecked	vs.	checked	exceptions
is	over.

	
Provide	Context	with	Exceptions	Provide	enough	context	to	determine	the
source	and	location	of	the	error.

	
Define	Exception	Classes	in	Terms	of	a	Caller’s	Needs	The	most	important
concern	should	be	how	exceptions	are	caught.		Also,	wrapping	code	to
throw	your	own	exceptions	rather	than	coding	to	specific	third-party	API
exceptions	is	good	practice.

	



	
Define	the	Normal	Flow

	
Don’t	use	exceptions	which	clutters	the	business	logic.
	
Don’t	Return	Null

	
If	you	are	tempted	to	return	null	from	a	method,	consider	throwing	an	exception
or	returning	a	SPECIAL	CASE	object	instead.
	
Don’t	Pass	Null

	
Returning	null	from	methods	is	bad,	but	passing	null	into	methods	is	worse.
	
	
	
	
	
	
	
	
	
	
	

	
	



	

Boundaries	Chapter	8
	
It’s	rare	to	be	in	control	of	all	software	in	our	systems.		Therefore,	we	need
practices	for	keeping	software	clean	when	crossing	software	boundaries.
	
Using	Third-Party	Code

	
Avoid	passing	3rd-party	interfaces	at	boundaries	in	your	system.		Use	wrapper
code	instead.
	



	
Exploring	and	Learning	Boundaries

	
Sometimes	third-party	code	can	help	us	get	more	functionality	than	writing	out
own.		It	may	be	in	our	best	interest	to	write	tests	for	the	third-party	code	we	use
because	we	can	write	them	to	help	learn	third-party	APIs.		So,	in	this	case,	they
cost	us	nothing.
	
Using	Code	That	Does	Not	Yet	Exist

	
To	keep	from	being	blocked,	explore	writing	your	own	interface	for	working
with	boundaries	of	code	that	does	not	exist	yet.
	



	
Clean	Boundaries

	
When	using	code	outside	our	control,	special	care	must	be	taken	to	ensure
possible	future	change	is	not	too	costly.		Boundary	code	needs	clear	separation
through	wrappers/adapters	and	tests	that	define	expectations.
	
	
	
	
	
	
	

	
	



	

Unit	Tests	Chapter	9
	
The	Agile	and	Test	Driven	Development	(TDD)	movements	have	encouraged
many	programmers	to	write	automated	unit	tests.		But,	many	programmers	have
missed	some	of	the	more	subtle,	and	important,	points	of	writing	good	tests.
	



	
The	Three	Laws	of	TDD

	
1) No	writing	production	code	until	you	have	written	a	failing	unit	test.	

	
2) No	writing	more	of	a	unit	test	than	is	sufficient	to	fail.		Not	compiling	is	

failing.
	
3) No	writing	more	production	code	than	is	sufficient	to	pass	the	currently	

failing	test.
	



	
Keeping	Tests	Clean

	
Do	not	fall	into	the	trap	of	having	different	quality	standards	for	test	code	vs.
production	code.
	



	
Clean	Tests

	
Three	factors	to	make	tests	clean:	1) Readability	2) Readability	
3) Readability	
	
Characteristics	of	readable	code:	clarity,	simplicity,	and	density	of	expression.
	



	
One	Assert	Per	Test

	
Although	it	may	seem	draconian,	many	believe	unit	tests	should	only	have	one
assert	per	test.
	
Five	Rules	of	Clean	Tests	1) Fast	2) Independent	3) Repeatable	4) Self-
Validating	(means	boolean	output)	5) Timely	Final	Advice

	
Keep	test	code	clean.
	
	
	
	
	
	
	

	
	



	

Classes	Chapter	10
	
Class	Organization	Ordering	(if	present)

	
1) Public	static	constants

	
2) Private	static	variables

	
3) Private	instance	variables

	
4) Public	functions	(followed	immediately	by	any	private	function	used	by	a	

particular	public	function;	re:	follows	previously	described	step	down	
rule)

	



	
Encapsulation

	
Keep	variables	and	utility	functions	private,	but	do	not	be	fanatic	about	it.		Make
protected	if	needed	by	the	test	in	the	same	package.
	
Classes	Should	Be	Small!

	
As	already	noted	with	functions,	smaller	is	the	primary	rule	when	it	comes	to
designing	classes.
	



	
The	Single	Responsibility	Principle

	
The	Single	Responsibility	Principle	(SRP)	states	that	a	class	or	module	should
have	only	one	reason	to	change.		By	trying	to	identify	reasons	to	change	(aka:
responsibilities)	we	recognize	and	create	better	abstractions	in	code.
	



	
Cohesion

	
Classes	should	have	a	small	number	of	instance	variables,	and	each	method	of	a
class	should	manipulate	one	or	more	of	those	variables.		Maintaining	this
cohesion	results	in	many	small	classes.
	



	
Organizing	for	Change

	
One	way	to	organize	for	change	is	to	support	an	object	oriented	design	principle
called	“Open-Closed	Principle”	or	OCP.		Design	classes	to	be	open	for	extension
but	closed	for	modification.
	
	
	
Also,	we	isolate	from	change	by	utilizing	concrete	classes	of	implementation
details	with	abstract	concept	classes	and	interfaces.
	
	
	
	
	

	
	



	

Systems	Chapter	11
	
Rather	than	focus	on	any	frameworks	such	as	Enterprise	Java	Beans	(EJB),
EJB2,	JNDI,	Spring	and	AspectJ,	this	chapter	will	concentrate	on	the	essence	of
what	these	frameworks	are	attempting	to	deliver	to	keep	things	more	current.
Frameworks	attempt	to	systemize	software	development	through	separating
concerns	such	as	startup,	scaling	up	and	out,	testing	and	decision	making.
	



	
Startup	Process

	
Segment	the	startup	process	of	starting	the	application.		Or,	in	other	words,
separate	the	concern	of	starting	an	application.
	
	
	
Ways	to	separate	concern	of	startup:
	



	
The	main	Method

	
main	builds	the	objects	necessary	for	the	system	and	passes	them	to	the	
application.
	



	
Factories

	
Consider	the	Abstract	Factory	pattern	that	provides	interfaces	for	creating	related
or	dependent	objects	without	specifying	their	concrete	classes.
	
Dependency	Injection	(DI)

	
An	object	should	not	take	responsibility	for	instantiating	dependencies	itself.
Instead,	the	object	should	delegate	this	responsibility	to	another	mechanism,
thereby	inverting	the	control.		DI	supports	the	Single	Responsibility	Principle
(SRP)	mentioned	earlier	in	this	book.
	
	
	
DI	is	also	known	as	Inversion	of	Control	(IoC).
	



	
Scaling	Up

	
It	is	a	myth	that	we	can	get	systems	“right	the	first	time.”	Instead,	we	should
implement	only	today’s	stories,	then	refactor	and	expand	as	needed.		System
architectures	can	grow	incrementally	if	the	proper	separation	of	concerns	is
maintained.
	



	
Test	Drive	the	System	Architecture

	
The	power	of	separating	concerns	can	not	be	overstated.	It	facilitates	being	able
to	test	drive	your	architecture	and	puts	you	in	a	position	to	evolve	it	from	simple
to	sophisticated.		It	also	allows	you	adopt	new	technologies	on	demand.
	



	
Optimize	Decision	Making

	
No	one	person	can	make	all	the	decisions,	so	modularity	and	separation	of
concerns	make	decentralized	management	and	decision	making	possible.
	
Use	Standards	Wisely,	When	They	Add	Demonstrable	Value

	
Be	wary	of	strongly	hyped	standards	if	it	distracts	your	team	from	implementing
value	for	customers.
	
Systems	Need	Domain	Specific	Languages	(DSLs)

	
DSLs	are	separate,	small	scripting	languages	or	APIs	in	standard	languages.
They	are	intended	to	permit	code	to	be	written	so	that	it	reads	like	a	domain
expert	might	write.
	



	
Conclusion

	
Systems	design	should	use	the	simplest	thing	that	can	work	rather	than	an
invasive	architecture.
	

	
	

	
	



	

Emergence	Chapter	12
	
According	to	Kent	Beck,	there	are	four	simple	rules	to	follow	to	facilitate	the
emergence	of	good	design.		A	design	is	simple	if	it	follows	these	rules:
	
	
	
1) Runs	all	tests

	
2) Contains	no	duplication

	
3) Expresses	the	intent	of	the	programmer

	
4) Minimizes	the	number	classes	and	methods

	
	
	



	
Runs	All	the	Tests

	
A	simple	way	to	verify	the	system	works	as	intended	is	running	comprehensive
tests	passing	all	of	the	time.		Making	systems	testable	is	a	way	to	lead	toward	a
design	where	classes	are	small	and	follow	SRP.		Testable	systems	also	provide
confidence	during	refactoring	efforts.
	



	
No	Duplication

	
Duplication	represents	additional	work,	risk,	and	unnecessary	complexity.
	



	
Expressive

	
The	majority	of	the	cost	of	a	software	project	is	in	long-term	maintenance.		So,	a
convoluted	code	base	that	is	difficult	to	maintain	increases	costs.		Instead,	code
should	clearly	express	the	intent	of	its	author.
	
	
	
This	book	has	already	covered	ways	to	be	expressive	such	as:
	
1) Good	naming

	
2) Keep	functions	and	classes	small

	
3) Use	standard	nomenclature	

	
4) well	written	unit	tests

	
5) maintain	an	attitude,	desire,	and	effort	to	be	expressive

	
	
	
	
	

	
	



	
	



	

Concurrency	Chapter	13
	
It	is	much	easier	to	write	code	that	executes	in	a	single	thread	than	concurrent
programs.
	
Why	Concurrency?

	
Concurrency	is	a	decoupling	strategy	because	it	helps	us	segment	what	gets	done
from	when	it	gets	done.	In	single-threaded	applications,	the	what	and	when	are
tightly	coupled.
	
	
	
Decoupling	what	from	when	can	improve	both	throughput	and	structure,	but
concurrency	is	difficult.
	



	
Myths	and	misconceptions

	
• Concurrency	always	improves	performance
	
• Design	does	not	change	when	writing	concurrent	programs
	
• Understanding	concurrency	issues	is	not	important	when	working	with	a	
container	such	as	Web	or	EJB	container

	



	
Warnings

	
• Concurrency	incurs	some	overhead	(writing	additional	code)
	
• Correct	concurrency	is	complex
	
• Concurrency	bugs	are	difficult	to	repeat
	
• Concurrency	often	requires	a	fundamental	change	in	design	strategy
	
	
	
What	makes	concurrency	so	difficult?
	
Unlike	single-threaded	applications,	concurrency	allows	multiple	processing
paths	that	can	lead	to	different	results.
	



	
Concurrency	Defense	Principles

	
Techniques	to	defend	your	systems	from	concurrency	issues:
	
	
	
1)	Single	Responsibility	Principle
	
For	concurrency,	this	principle	may	be	applied	in	the	following	ways:
	
• Concurrency	code	could	have	independent	life	cycle,	change	and	tuning	
development	paths

	
• Concurrency	has	unique	challenges
	
• Keep	concurrent	code	separated	from	other	code
	
	
	
2)	Limit	Data	Scope
	
	
	
3)	Use	copies	of	data
	
Copy	objects	and	treating	them	as	read-only	when	possible.
	
	
	
4)	Threads	should	be	as	independent	as	possible



4)	Threads	should	be	as	independent	as	possible
	
Example:	perhaps	a	thread	doesn’t	share	data	with	any	other	thread
	
	
	
5)	Know	Your	Library
	
Is	your	choice	of	collection	class,	3rd-party	library,	etc.	thread-safe?
	
	
	
6)	Know	Your	Execution	Model
	
Models	include	bound	resources,	mutual	exclusion,	starvation,	deadlock,	and
livelock.
	
	
	



	
Known	Concurrent	Execution	Model	Issues
	
	
	
• Producer-Consumer	-	http://en.wikipedia.org/wiki/Producer-consumer
	
• Readers-Writers	-	https://en.wikipedia.org/wiki/Readers-writers_problem
	
• Dining	Philosophers	-	
https://en.wikipedia.org/wiki/Dining_philosophers_problem

	
	
	
7)	Beware	Dependencies	Between	Synchronized	Methods
	
When	you	must	use	more	than	one	method	on	a	shared	object,	three	ways	to
make	the	code	correct:
	
• Client-Based	Locking
	
• Server-Based	Locking
	
• Adapted	Server	(an	intermediary	to	perform	locking)
	
	
	
8)	Keep	Synchronized	Sections	Small
	
	
	
9)	Writing	Correct	Shut-down	Code	is	Hard

http://en.wikipedia.org/wiki/Producer-consumer
https://en.wikipedia.org/wiki/Readers-writers_problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem


9)	Writing	Correct	Shut-down	Code	is	Hard
	
	
	
10)	Write	Tests	With	Potential	to	Expose	Threaded	Code
	
	
	
11)	Treat	Spurious	Failures	as	Potential	Threading	Issues
	
	
	
12)	Get	Non-threaded	Code	Working	First
	
	
	
13)	Make	Your	Threaded	Code	Pluggable
	
Possible	examples	include	allowing	configuration	of	threaded	code	such	as	being
able	to	set	the	number	of	threads	to	use	and	configurable	setting	of	number	test
iterations.
	
	
	
14)	Make	Your	Threaded	Code	Tunable
	
Getting	the	correct	balance	of	threads	usually	involves	some	trial-and-error.
	
	
	
	
	



	
	
	
	
	
15)	Make	Sure	to	Experiment
	
Examples	include	running	with	more	threads	than	processor	cores	and	running
on	different	platforms.
	
	
	
16)	Instrument	Code	and	Try	to	Force	Failures
	
	
	

	
	

	
	



Successive	Refinement	Chapter	14
The	author	walks	through	a	Java	code	case	study	with	the	primary	points	being
clean	code	takes	iterations.		It’s	not	enough	to	get	code	working.		Programmers
(and	their	managers)	must	budget	time	to	iterate	over	working	code	to	make
improvements.
	



JUnit	Internals	Chapter	15
Another	Java	case	study	is	analyzed.		This	chapter	concentrates	on	the	source
code	of	the	prominent	JUnit	testing	library.		Similar	to	the	previous	chapter,	the
emphasis	seems	to	be	refactoring	and	applying	principles	and	recommendations
described	in	earlier	chapters.
	



Refactoring	SerialDate	Chapter	16
A	final	Java	case	study	in	which	the	author	performs	a	code	review	of	SerialDate
found	in	the	JCommon	library.		Again,	the	takeaway	is	applying	principles	and
recommendations	described	in	earlier	chapters	of	this	book.
	

	

	



	

Smells	and	Heuristics	Chapter	17
	
The	following	list	of	software	smells	and	heuristics	is	from	both	the	author	and	
Martin	Fowler’s	book	“Refactoring”.		The	list	is	divided	into	categories	such	as	
code	comments,	environment,	etc.
	



	
Code	Comments

	
1) Inappropriate	Information

	
2) Obsolete

	
3) Redundant	

	
4) Poorly	Written

	
5) Commented-Out	Code

	



	
Environment

	
1) Build	Requires	More	Than	One	Step

	
2) Tests	Require	More	Than	One	Step

	



	
Functions

	
1) Too	Many	Arguments

	
2) Output	Arguments

	
3) Flag	Arguments	(booleans)

	
4) Dead	Functions	(unused	code)

	



	
General

	
1) Multiple	Languages	in	One	Source	File

	
2) Obvious	Behavior	Is	Unimplemented

	
3) Incorrect	Behavior	at	the	Boundaries

	
4) Overridden	Safeties	(i.e.	overriding	serialVersionUID	in	Java)

	
5) Duplication

	
6) Code	at	Wrong	Level	of	Abstraction

	
7) Base	Classes	Depending	on	Their	Derivatives

	
8) Too	Much	Information

	
9) Dead	Code

	
10) Vertical	Separation

	
11) Inconsistency

	
12) Clutter

	
13) Artificial	Coupling

	
14) Feature	Envy	(classes	should	be	interested	in	what	they	have	rather	than	



other	classes)
	
15) Selector	Arguments

	
16) Obscured	Intent

	
17) Misplaced	Responsibility

	
18) Inappropriate	Static	

	
19) Use	Explanatory	Variables

	
20) Function	Names	Should	Say	What	They	Do

	
21) Understand	the	Algorithm

	
22) Make	Logical	Dependencies	Physical

	
23) Prefer	Polymorphism	to	If/	Else	or	Switch/	Case

	
24) Follow	Standard	Conventions

	
25) Replace	Magic	Numbers	with	Named	Constants

	
26) Be	Precise

	
27) Structure	over	Convention

	
28) Encapsulate	Conditionals

	
29) Avoid	Negative	Conditionals

	



	
30) Functions	Should	Do	One	Thing

	
31) Hidden	Temporal	Couplings

	
32) Don’t	Be	Arbitrary

	
33) Encapsulate	Boundary	Conditions

	
34) Functions	Should	Descend	Only	One	Level	of	Abstraction

	
35) Keep	Configurable	Data	at	High	Levels

	
36) Avoid	Transitive	Navigation

	



	
Java

	
1) Avoid	Long	Import	Lists	by	Using	Wildcards

	
2) Don’t	Inherit	Constant

	
3) Constants	versus	Enums	(don’t	use	enums)

	



	
Names

	
1) Choose	Descriptive	Names

	
2) Choose	Names	at	the	Appropriate	Level	of	Abstraction

	
3) Use	Standard	Nomenclature	Where	Possible

	
4) Unambiguous	Names

	
5) Use	Long	Names	for	Long	Scopes

	
6) Avoid	Encodings	(prefixes	such	as	m_)

	
7) Names	Should	Describe	Side-Effects

	



	
Tests

	
1) Insufficient	Tests

	
2) Use	a	Coverage	Tool!

	
3) Don’t	Skip	Trivial	Tests

	
4) An	Ignored	Test	Is	a	Question	about	an	Ambiguity

	
5) Test	Boundary	Conditions

	
6) Exhaustively	Test	Near	Bugs

	
7) Patterns	of	Failure	Are	Revealing

	
8) Test	Coverage	Patterns	Can	Be	Revealing

	
9) Tests	Should	Be	Fast

	
	
	
	
	

	
	



	

Conclusion	and	Special	Offers
	
We	hoped	you	enjoyed	this	summary.	If	you	leave	an	honest	review	on	Amazon
or	wherever	you	obtained	this	book,	it	is	appreciated	and	will	be	used	for	future
iterations	of	this	book.
	
	
	
Thank	you	in	advance.
	
	
	
For	additional	exploration	in	software	development	training	and	eduction,	you	
are	also	encouraged	to	visit	http://www.supergloo.com	for	free	resources	and	
significant	discount	coupons	of	online	training.	
	
	
	
You	are	encouraged	to	check	out	the	full	version	of	the	book	if	you	haven’t
already	done	so.
	
	
	

http://www.supergloo.com/
http://www.supergloo.com/

	Summary Guide Disclaimer
	Copyright © 2016 Supergloo, inc
	Special Offers
	Clean Code Chapter 1
	Meaningful Names Chapter 2
	Functions Chapter 3
	Comments Chapter 4
	Formatting Chapter 5
	Objects and Data Structures Chapter 6
	Error Handling Chapter 7
	Boundaries Chapter 8
	Unit Tests Chapter 9
	Classes Chapter 10
	Systems Chapter 11
	Emergence Chapter 12
	Concurrency Chapter 13
	Successive Refinement Chapter 14
	JUnit Internals Chapter 15
	Refactoring SerialDate Chapter 16
	Smells and Heuristics Chapter 17
	Conclusion and Special Offers

