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Preface

When	asked	about	software	architecture,	people	think	frequently	about	models—
that	is,	the	representations	of	the	structures	that	constitute	the	architecture.	Less
frequently,	people	think	about	the	thought	processes	that	produce	these
structures—that	is,	the	process	of	design.	Design	is	a	complex	activity	to
perform	and	a	complex	topic	to	write	about,	as	it	involves	making	a	myriad	of
decisions	that	take	into	account	many	aspects	of	a	system.	These	aspects	are
oftentimes	hard	to	express,	particularly	when	they	originate	from	experience	and
knowledge	that	is	hard-earned	in	the	“battlefield”	of	previous	software
development	projects.	Nevertheless,	the	activity	of	design	is	the	basis	of
software	architecture	and,	as	such,	it	begs	to	be	explained.	Although	experience
can	hardly	be	communicated	through	a	book,	what	can	be	shared	is	a	method
that	can	help	you	perform	the	process	of	design	in	a	systematic	way.
This	book	is	about	that	design	process	and	about	one	particular	design

method,	called	Attribute-Driven	Design	(ADD).	We	believe	that	this	method	is	a
powerful	tool	that	will	help	you	perform	design	in	a	principled,	disciplined,	and
repeatable	way.	In	this	book,	employing	ADD	and	several	examples	of	ADD’s
use	in	the	real	world,	we	show	you	how	to	perform	architectural	design.	Even
though	you	may	not	currently	possess	sufficient	design	experience,	we	illustrate
how	the	method	promotes	reusing	design	concepts—that	is,	proven	solutions
that	embody	the	experience	of	others.
Although	ADD	has	existed	for	more	than	a	decade,	relatively	little	has	been

written	about	it	and	few	examples	have	been	provided	to	explain	how	it	is
performed.	This	lack	of	published	information	has	made	it	difficult	for	people	to
adopt	the	method	or	to	teach	others	about	it.	Furthermore,	the	documentation
that	has	been	published	about	ADD	is	somewhat	“high	level”	and	can	be	hard	to
relate	to	the	concepts,	practices,	and	technologies	that	architects	use	in	their	day-
to-day	activities.
We	have	been	working	with	practicing	architects	for	several	years,	coaching

them	on	how	to	perform	design,	and	learning	in	the	process.	We	have	learned,
for	example,	that	practicing	architects	take	technologies	into	consideration	early
in	the	design	process	and	this	is	something	that	was	not	part	of	the	original
version	of	ADD.	For	this	reason,	the	method	felt	“disconnected”	from	reality	for
many	practitioners.	In	this	book,	we	provide	a	revised	version	of	ADD	in	which
we	have	tried	to	bridge	the	gap	between	theory	and	practice.
We	have	also	been	teaching	software	architecture	and	software	design	for



We	have	also	been	teaching	software	architecture	and	software	design	for
many	years.	Along	the	way,	we	realized	how	hard	it	is	for	people	without	any
experience	to	perform	design.	This	understanding	motivated	us	to	create	a
roadmap	for	design	that,	we	believe,	is	helpful	in	guiding	people	to	perform	the
design	process.	We	also	created	a	game	that	is	useful	in	teaching	about	software
design;	it	can	be	considered	a	companion	to	this	book.
The	target	audience	for	this	book	is	anyone	interested	in	the	design	of

software	architectures.	We	believe	it	will	be	particularly	useful	for	practitioners
who	must	perform	this	task	but	who	currently	perform	it	in	an	ad	hoc	way.
Experienced	practitioners	who	already	perform	design	following	an	established
method	will	also	find	new	ideas—for	example,	how	to	track	design	progress
using	a	Kanban	board,	how	to	analyze	a	design	using	tactics-based
questionnaires,	and	how	to	incorporate	a	design	method	for	early	estimation.
Finally,	people	who	are	already	familiar	with	the	other	architecture	methods
from	the	Software	Engineering	Institute	will	find	information	about	the	ways	to
connect	ADD	to	methods	such	as	the	Quality	Attribute	Workshop	(QAW),	the
Architecture	Tradeoff	Analysis	Method	(ATAM),	and	the	Cost	Benefit	Analysis
Method	(CBAM).	This	book	will	also	be	useful	to	students	and	teachers	of
computer	science	or	software	engineering	programs.	We	believe	that	the	case
studies	included	here	will	help	them	understand	how	to	perform	the	design
process	more	easily.	Certainly,	we	have	been	using	similar	examples	in	our
courses	with	great	success.	As	Albert	Einstein	said,	“Example	isn’t	another	way
to	teach;	it	is	the	only	way	to	teach.”
Our	hope	is	that	this	book	will	help	you	in	understanding	that	design	can	be

performed	following	a	method,	and	that	this	realization	will	help	you	produce
better	software	systems	in	the	future.
The	book	is	structured	as	follows.
	In	Chapter	1,	we	briefly	introduce	software	architecture	and	the	Attribute-
Driven	Design	method.
	In	Chapter	2,	we	discuss	architecture	design	in	more	detail,	along	with	the
main	inputs	to	the	design	process—what	we	call	architectural	drivers,	plus
the	design	concepts	that	will	help	you	satisfy	these	drivers	using	proven
solutions.
	Chapter	3	presents	the	ADD	method	in	detail.	We	discuss	each	of	the	steps
of	the	method	along	with	various	techniques	that	can	be	used	to	perform
these	steps	appropriately.
	Chapter	4	is	our	first	case	study,	which	illustrates	the	development	of	a
greenfield	system.	For	this	case	study,	we	have	made	an	effort	to	show



how	a	majority	of	the	concepts	described	in	Chapter	3	are	used	in	the
design	process,	so	you	can	think	of	this	case	study	as	being	more
“academic”	in	nature	(although	it	is	derived	from	a	real-world	system).
	Chapter	5	presents	our	second	case	study,	which	was	co-written	with
practicing	software	architects	and	as	such	is	much	more	technical	and
detailed	in	nature.	It	will	show	you	the	nitty-gritty	details	of	how	ADD	is
used	in	the	design	of	a	Big	Data	system	that	involves	many	different
technologies.	This	example	illustrates	the	development	of	a	system	in	what
we	consider	to	be	a	“novel”	domain,	as	opposed	to	the	more	traditional
domain	used	in	Chapter	4.
	Chapter	6	is	a	shorter	case	study	that	illustrates	the	use	of	ADD	in	the
design	of	an	extension	of	a	legacy	(or	brownfield)	system,	which	is	a
common	situation.	This	example	demonstrates	that	architectural	design	is
not	something	that	is	performed	only	once,	when	the	first	version	of	the
system	is	developed,	but	rather	is	an	activity	that	can	be	performed	at
different	moments	of	the	development	process.
	Chapter	7	presents	other	design	methods.	In	our	revision	of	ADD,	we
adopted	ideas	from	other	authors	who	have	also	investigated	the	process	of
design,	and	here	we	briefly	summarize	their	approaches	both	as	an	homage
to	their	work	and	as	a	means	to	compare	ADD	to	these	methods.
	Chapter	8	discusses	the	topic	of	analysis	in	depth,	even	though	this	is	a
book	on	design.	Analysis	is	naturally	performed	as	part	of	design,	so	here
we	describe	techniques	that	can	be	used	both	during	the	design	process	or
after	a	portion	of	the	design	has	been	completed.	In	particular,	we
introduce	the	use	of	tactics-based	questionnaires,	which	are	helpful	in
understanding,	in	a	time-efficient	and	simple	manner,	the	decisions	made
in	the	design	process.
	Chapter	9	describes	how	the	design	process	fits	at	an	organizational	level.
For	instance,	performing	some	amount	of	architectural	design	at	the
earliest	moments	of	the	project’s	life	is	useful	for	estimation	purposes.	We
also	show	how	ADD	can	be	associated	with	different	software
development	approaches.
	Chapter	10	concludes	the	book.

We	also	include	two	appendixes.	Appendix	A	presents	A	Design	Concepts
Catalog,	which,	as	its	name	suggests,	is	a	catalog	of	different	types	of	design
concepts	that	can	be	used	to	design	for	a	particular	application	domain.	This
catalog	includes	design	concepts	that	we	have	gathered	from	different	sources,



reflecting	how	experienced	and	disciplined	architects	work	in	the	real	world.	In
this	case,	our	catalog	contains	a	sample	of	the	design	concepts	used	in	the	case
study	presented	in	Chapter	4.	Appendix	B	provides	a	set	of	tactics-based
questionnaires	(as	introduced	in	Chapter	8)	for	the	seven	most	common	quality
attributes	and	an	additional	questionnaire	for	DevOps.
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Enter	the	product	ISBN	(9780134390789)	and	click	Submit.	Once
the	process	is	complete,	you	will	find	any	available	bonus	content
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1.	Introduction

In	this	chapter	we	provide	an	introduction	to	the	topic	of	software	architecture.
We	briefly	discuss	what	architecture	is	and	why	it	is	fundamental	to	take	it	into
account	when	developing	software	systems.	We	also	discuss	the	different
activities	that	are	associated	with	the	development	of	software	architecture	so
that	architectural	design—which	is	the	primary	topic	of	this	book—can	be
understood	in	the	context	of	these	activities.	We	also	briefly	discuss	the	role	of
the	architect,	who	is	the	person	responsible	for	creating	the	design.	Finally,	we
introduce	the	Attribute-Driven	Design	(ADD)	method,	the	architecture	design
method	that	we	will	discuss	extensively	in	this	book.

1.1	Motivations
Our	goal	in	this	book	is	to	teach	you	how	to	design	software	architecture	in	a
systematic,	predictable,	repeatable,	and	cost-effective	way.	If	you	are	reading
this	book,	then	presumably	you	already	have	an	interest	in	architecture	and
aspire	to	be	an	architect.	The	good	news	is	that	this	goal	is	within	your	grasp.	To
convince	you	of	that	point,	we	will	spend	a	few	moments	talking	about	the	idea
of	design—the	design	of	anything—and	we	will	see	how	and	why	architectural
design	is	not	so	different.	In	most	fields,	“design”	involves	the	same	sorts	of
challenges	and	considerations—meeting	stakeholder	needs,	adhering	to	budgets
and	schedules,	dealing	with	constraints,	and	so	forth.	While	the	primitives	and
tools	of	design	may	vary	from	field	to	field,	the	goals	and	steps	of	design	do	not.
This	is	encouraging	news,	because	it	means	that	design	is	not	the	sole

province	of	wizards.	That	is,	design	can	be	taught,	and	it	can	be	learned.	Most
design,	particularly	in	engineering,	consists	of	putting	known	design	primitives
together	in	(sometimes	innovative)	ways	that	achieve	predictable	outcomes.	Of
course,	the	devil	is	in	the	details,	but	that	is	why	we	have	methods.	It	may	seem
difficult	at	first	to	imagine	that	a	creative	endeavor	such	as	design	can	be
captured	in	a	step-by-step	method;	this,	however,	is	not	only	possible	but	also
valuable,	as	Parnas	and	Clements	have	discussed	in	their	paper	“A	Rational
Design	Process:	How	and	Why	to	Fake	It”.	Of	course,	not	everyone	can	be	a
great	designer,	just	as	not	everyone	can	be	a	Thomas	Edison	or	a	LeBron	James
or	a	Ronaldo.	What	we	do	claim	is	that	everyone	can	be	a	much	better	designer,
and	that	structured	methods	supported	by	reusable	chunks	of	design	knowledge,
which	we	provide	in	this	book,	can	help	pave	the	road	from	mediocrity	to
excellence.
Why	are	we	writing	a	book	on	software	architecture	design?	While	much	has



Why	are	we	writing	a	book	on	software	architecture	design?	While	much	has
been	written	about	design	in	general,	and	while	there	have	been	some	writings
on	software	architecture	design,	there	is	no	existing	book	dedicated	solely	to
architecture	design.	Moreover,	most	of	what	has	been	written	on	architecture
design	is	relatively	abstract.
Our	goal	in	writing	this	book	was	to	provide	a	practical	method	that	can	be

enacted	by	any	competent	software	engineer,	and	also	(and	just	as	important)	to
provide	a	set	of	rich	case	studies	that	realize	the	method.	Albert	Einstein	was
reputed	to	have	said,	“Example	isn’t	another	way	to	teach,	it	is	the	only	way	to
teach”.	We	firmly	believe	that.	Most	of	us	learn	better	from	examples	than	from
sets	of	rules	or	steps	or	principles.	Of	course,	we	need	the	steps	and	rules	and
principles	to	structure	what	we	do	and	to	create	the	examples,	but	the	examples
speak	to	our	day-to-day	concerns	and	help	us	by	making	the	steps	concrete.
This	is	not	to	say	that	architecture	design	will	ever	be	simple.	If	you	are

building	a	complex	system,	then	chances	are	that	you	are	trying	to	balance	many
competing	forces—things	like	time	to	market,	cost,	performance,	evolvability,
usability,	availability,	and	so	on.	If	you	are	pushing	the	boundaries	in	any	of
these	dimensions,	then	your	job	as	an	architect	will	be	even	more	complex.	This
is	true	in	any	engineering	discipline,	not	just	software.	If	you	examine	the
history	of	building	large	ships	or	skyscrapers	or	any	other	complex	“system”,
you	will	see	how	the	architects	of	those	systems	struggled	with	making	the
appropriate	decisions	and	tradeoffs.	No,	architecture	design	may	never	be	easy,
but	our	purpose	is	to	make	it	tractable	and	achievable	by	well-trained,	well-
educated	software	engineers.

1.2	Software	Architecture
Much	has	been	written	on	what	software	architecture	is.	We	adopt	the	definition
of	software	architecture	from	Software	Architecture	in	Practice	(third	edition):

The	software	architecture	of	a	system	is	the	set	of	structures	needed
to	reason	about	the	system,	which	comprise	software	elements,
relations	among	them,	and	properties	of	both.

As	you	will	see,	our	design	method	embodies	this	definition	and	helps	to
guide	the	designer	in	creating	an	architecture	that	has	the	desired	properties.

1.2.1	The	Importance	of	Software	Architecture
Much	has	also	been	written	on	why	architecture	is	important.	Again,	following
Software	Architecture	in	Practice,	we	note	that	architecture	is	important	for	a



wide	variety	of	reasons,	and	a	similarly	wide	variety	of	consequences	stem	from
those	reasons:

	An	architecture	will	inhibit	or	enable	a	system’s	driving	quality	attributes.
	The	decisions	made	in	an	architecture	allow	you	to	reason	about	and
manage	change	as	the	system	evolves.
	The	analysis	of	an	architecture	enables	early	prediction	of	a	system’s
qualities.
	A	documented	architecture	enhances	communication	among	stakeholders.
	The	architecture	is	a	carrier	of	the	earliest	and	hence	most	fundamental,
hardest-to-change	design	decisions.
	An	architecture	defines	a	set	of	constraints	on	subsequent	implementation.
	The	architecture	influences	the	structure	of	an	organization,	and	vice	versa.
	An	architecture	can	provide	the	basis	for	evolutionary,	or	even	throwaway,
prototyping.
	An	architecture	is	the	key	artifact	that	allows	the	architect	and	the	project
manager	to	reason	about	cost	and	schedule.
	An	architecture	can	be	created	as	a	transferable,	reusable	model	that	forms
the	heart	of	a	product	line.
	Architecture-based	development	focuses	attention	on	the	assembly	of
components,	rather	than	simply	on	their	creation.
	By	restricting	design	alternatives,	architecture	channels	the	creativity	of
developers,	reducing	design	and	system	complexity.
	An	architecture	can	be	the	foundation	for	training	a	new	team	member.

If	an	architecture	is	important	for	all	of	these	reasons—if	it	affects	the
structure	of	the	organization,	and	the	qualities	of	the	system,	and	the	people
involved	in	its	creation	and	evolution—then	surely	great	care	must	be	taken	in
designing	this	crucial	artifact.	Sadly,	that	is	most	often	not	the	case.
Architectures	often	“evolve”	or	“emerge”.	While	we	have	nothing	against
evolution	or	emergence,	and	while	we	emphatically	are	not	arguing	for	“big
design	up	front”,	doing	no	architecture	at	all	is	often	too	risky	for	anything	but
the	simplest	projects.	Would	you	want	to	drive	over	a	bridge	or	ride	in	a	jet	that
had	not	been	carefully	designed?	Of	course	not.	But	you	use	software	every	day
that	is	buggy,	costly,	insecure,	unreliable,	fault	prone,	and	slow—and	many	of
these	undesirable	characteristics	can	be	avoided!
The	core	message	of	this	book	is	that	architecture	design	does	not	need	to	be

difficult	or	scary;	it	is	not	the	sole	province	of	wizards;	and	it	does	not	have	to	be



difficult	or	scary;	it	is	not	the	sole	province	of	wizards;	and	it	does	not	have	to	be
costly	and	all	done	up	front.	Our	job	is	to	show	you	how	and	convince	you	that	it
is	within	your	reach.

1.2.2	Life-Cycle	Activities
Software	architecture	design	is	one	of	the	software	architecture	life-cycle
activities	(Figure	1.1).	As	in	any	software	project	life	cycle,	this	activity	is
concerned	with	the	translation	of	requirements	into	a	design	into	an
implementation.	Specifically,	the	architect	needs	to	worry	about	the	following
issues:

	Architectural	requirements.	Among	all	the	requirements,	a	few	will	have	a
particular	importance	with	respect	to	the	software	architecture.	These
architecturally	significant	requirements	(ASRs)	include	not	only	the	most
important	functionality	of	the	system	and	the	constraints	that	need	to	be
taken	into	account,	but	also—and	most	importantly—quality	attributes
such	as	high	performance,	high	availability,	ease	of	evolution,	and	iron-
clad	security.	These	requirements,	along	with	a	clear	design	purpose	and
other	architectural	concerns	that	may	never	be	written	down	or	may	be
invisible	to	external	stakeholders,	will	guide	you	to	choose	one	set	of
architectural	structures	and	components	over	another.	We	will	refer	to
these	ASRs	and	concerns	as	drivers,	as	they	can	be	said	to	drive	the
design.
	Architectural	design.	Design	is	a	translation,	from	the	world	of	needs
(requirements)	to	the	world	of	solutions,	in	terms	of	structures	composed
of	code,	frameworks,	and	components.	A	good	design	is	one	that	satisfies
the	drivers.	Architectural	design	is	the	focus	of	this	book.



FIGURE	1.1	Software	architecture	life-cycle	activities

	Architectural	documentation.	Some	level	of	preliminary	documentation	(or
sketches)	of	the	structures	should	be	created	as	part	of	architectural	design.
This	activity,	however,	refers	to	the	creation	of	a	more	formal	document
from	these	sketches.	If	the	project	is	small	and	has	a	precedent,	then
architecture	documentation	may	be	minimal.	In	contrast,	if	the	project	is
large,	if	distributed	teams	are	collaborating,	or	if	significant	technical
challenges	exist,	then	architectural	documentation	will	repay	the	effort
invested	in	this	activity.	While	documentation	is	often	avoided	and	derided
by	programmers,	it	is	a	standard,	non-negotiable	deliverable	in	almost
every	other	engineering	discipline.	If	your	system	is	big	enough	and	if	it	is
mission	critical,	it	should	be	documented.	In	other	engineering	disciplines,
a	“blueprint”—some	sort	of	documented	design—is	an	absolutely	essential
step	in	moving	toward	implementation	and	the	commitment	of	resources.
	Architectural	evaluation.	As	with	documentation,	if	your	project	is
nontrivial,	then	you	owe	it	to	yourself	and	to	your	stakeholders	to	evaluate
it—that	is,	to	ensure	that	the	decisions	made	are	appropriate	to	address	the
critical	requirements.	Would	you	deliver	code	without	testing	it?	Of	course



not.	Similarly,	why	would	you	commit	enormous	resources	to	fleshing	out
an	architecture	if	you	had	not	first	“tested”	the	design?	You	might	want	to
do	this	when	first	creating	the	system	or	when	putting	it	through	a	major
refactoring.	Typically	evaluation	is	done	informally	and	internally,	but	for
truly	important	projects	it	is	advisable	to	have	a	formal	evaluation	done	by
an	external	team.
	Architectural	implementation/conformance	checking.	Finally,	you	need	to
implement	the	architecture	that	you	have	created	(and	evaluated).	As	an
architect,	you	may	need	to	tweak	the	design	as	the	system	grows	and	as
requirements	evolve.	This	is	normal.	In	addition	to	this	tweaking,	your
major	responsibility	during	implementation	is	to	ensure	conformance	of
the	code	to	the	design.	If	developers	are	not	faithfully	implementing	the
architecture,	they	may	be	undermining	the	qualities	that	you	have	designed
in.	Again,	consider	what	is	done	in	other	fields	of	engineering.	When	a
concrete	foundation	for	a	new	building	is	poured,	the	building	that	rests	on
top	of	that	foundation	is	not	constructed	until	the	foundation	has	first	been
tested,	typically	via	a	core	sample,	to	ensure	that	it	is	strong	enough,	dense
enough,	sufficiently	impermeable	to	water	and	gases,	and	so	forth.	Without
conformance	checking,	we	have	no	way	of	ensuring	the	quality	of	what	is
being	subsequently	constructed.

Note	that	we	are	not	proposing	a	specific	life-cycle	methodology	in	Figure
1.1.	The	stereotype	<<precedes>>	simply	means	that	some	effort	in	an	activity
must	be	performed,	and	hence	precede,	effort	in	a	later	activity.	For	example,
you	cannot	perform	design	activities	if	you	have	no	idea	about	the	requirements,
and	you	cannot	evaluate	an	architecture	if	you	have	not	first	made	some	design
decisions.
Today	most	commercial	software	is	developed	using	some	form	of	Agile

methodology.	None	of	these	architecture	activities	is	incompatible	with	Agile
practices.	The	question	for	a	software	architect	is	not	“Should	I	do	Agile	or
architecture?”,	but	rather	“How	much	architecture	should	I	do	up	front	versus
how	much	should	I	defer	until	the	project’s	requirements	have	solidified
somewhat?”	and	“How	much	of	the	architecture	should	I	formally	document,
and	when?”	Agile	and	architecture	are	happy	companions	for	many	software
projects.
We	will	discuss	the	relationship	between	architecture	design	and	various

software	life-cycle	methods	and	process	models,	including	iterative
development,	in	Chapter	9.



1.3	The	Role	of	the	Architect
An	architect	is	much	more	than	“just”	a	designer.	This	role,	which	may	be
played	by	one	or	more	individuals,	has	a	long	list	of	duties,	skills,	and
knowledge	that	must	be	satisfied	if	it	is	to	be	successful.	These	prerequisites
include	the	following:

	Leadership:	mentoring,	team-building,	establishing	a	vision,	coaching
	Communication:	both	technical	and	nontechnical,	encouraging
collaboration
	Negotiation:	dealing	with	internal	and	external	stakeholders	and	their
conflicting	needs	and	expectations
	Technical	skills:	life-cycle	skills,	expertise	with	technologies,	continuous
learning,	coding
	Project	skills:	budgeting,	personnel,	schedule	management,	risk
management
	Analytical	skills:	architectural	analysis,	general	analysis	mindset	for
project	management	and	measurement	(see	the	sidebar	“The	Meaning	of
Analysis”)

A	successful	design	is	not	a	static	document	that	is	“thrown	over	the	wall”.
That	is,	architects	must	not	only	design	well,	but	must	also	be	intimately
involved	in	every	aspect	of	the	project,	from	conception	and	business
justification	to	design	and	creation,	through	to	operation,	maintenance,	and
eventually	retirement.

The	Meaning	of	Analysis
In	the	Merriam-Webster	Dictionary,	the	word	analysis	is	defined	as
follows:
	The	careful	study	of	something	to	learn	about	its	parts,	what	they
do,	and	how	they	are	related	to	each	other
	An	explanation	of	the	nature	and	meaning	of	something
In	this	book	we	use	the	word	analysis	for	different	purposes,	and

both	of	these	definitions	apply.	For	instance,	as	part	of	the
architectural	evaluation	activity,	an	existing	architecture	is	analyzed
to	gauge	if	it	is	appropriate	to	satisfy	its	associated	drivers.	During
the	design	process,	the	inputs	are	analyzed	to	make	design
decisions.	The	creation	of	prototypes	is	also	a	form	of	analysis.	In
fact,	analysis	is	so	important	to	the	design	process	that	we	devote



Chapter	8	to	just	this	topic.	Here	we	also	discuss,	in	more	detail,	the
relationship	between	analysis	and	evaluation.	In	this	book,	we	focus
primarily	on	the	design	activity,	its	associated	technical	skills,	and
its	integration	into	the	development	life	cycle.	For	a	fuller	treatment
of	the	other	aspects	of	an	architect’s	life,	we	invite	you	to	read	a
more	general	book	on	software	architecture,	such	as	Software
Architecture	in	Practice	or	Just	Enough	Software	Architecture.

1.4	A	Brief	History	of	ADD
While	an	architect	has	many	duties	and	responsibilities,	in	this	book	we	focus	on
what	is	arguably	the	single	most	important	skill	that	a	software	engineer	must
master	to	be	called	“architect”:	the	process	of	design.	To	make	architectural
design	more	tractable	and	repeatable,	in	this	book	we	focus	most	of	our	attention
on	the	Attribute-Driven	Design	(ADD)	method,	which	provides	step-by-step
guidance	on	how	to	iteratively	perform	the	design	activity	shown	in	Figure	1.1.
Chapter	3	describes	the	most	recent	version	of	ADD,	version	3.0,	in	detail,	so
here	we	provide	a	bit	of	background	for	those	who	are	familiar	with	previous
versions	of	ADD.	The	first	version	of	ADD	(ADD	1.0,	originally	called	ABD,
for	“Architecture-Based	Design”)	was	published	in	January	2000,	and	the
second	version	(ADD	2.0)	was	published	in	November	2006.	The	third	edition
of	the	book	Software	Architecture	in	Practice	presents	this	method	with	a
reduced	number	of	steps.	This	discussion,	however,	does	not	introduce	a	new
version	of	ADD,	but	rather	a	repackaged	version	that	summarizes	the	actual
steps	of	the	method.
ADD	is,	to	our	knowledge,	the	most	comprehensive	and	most	widely	used

documented	architecture	design	method.	(We	provide	an	overview	of	a	number
of	alternative	design	methods	in	Chapter	7.)	When	ADD	appeared,	it	was	the
first	design	method	to	focus	specifically	on	quality	attributes	and	their
achievement	through	the	creation	of	architectural	structures	and	their
representation	through	views.	Another	important	contribution	of	ADD	is	that	it
includes	architecture	analysis	and	documentation	as	an	integral	part	of	the	design
process.	In	ADD,	design	activities	include	refining	the	sketches	created	during
early	design	iterations	to	produce	a	more	detailed	architecture,	and	continuously
evaluating	the	design.
While	ADD	2.0	was	useful	for	linking	quality	attributes	to	design	choices,	it

had	several	shortcomings	that	needed	to	be	addressed:
	ADD	2.0	guides	the	architect	to	use	and	combine	tactics	and	patterns	to



achieve	the	satisfaction	of	quality	attribute	scenarios.	Patterns	and	tactics
are	abstractions,	however,	and	the	method	did	not	explain	how	to	map
these	abstractions	to	concrete	implementation	technologies.
	ADD	2.0	was	invented	before	Agile	methods	became	widely	adopted	and,
therefore,	did	not	offer	guidance	for	architecture	design	in	an	Agile	setting.
	ADD	2.0	provided	no	guidance	on	how	to	begin	the	design	process.	While
this	omission	enhanced	its	generalizability,	it	presented	difficulties	for
novice	designers,	who	often	do	not	know	where	to	begin.	Specifically,
ADD	2.0	did	not	explicitly	promote	the	(re)use	of	reference	architectures,
which	are	an	ideal	starting	point	for	many	architects,	as	we	will	discuss
later	in	this	book.
	ADD	2.0	did	not	explicitly	consider	different	design	purposes.	For
example,	one	might	be	doing	design	as	part	of	a	pre-sales	process	or	as
part	of	“standard”	design	for	construction.	These	are	very	different
purposes	and	will	result	in	different	uses	of	ADD.
	ADD	2.0	did	not	consider	that	design	requires	some	architectural	concerns
(i.e.,	internal	requirements)	to	be	addressed	whether	or	not	they	are
expressed	in	the	list	of	“traditional”	drivers	(requirements	and	constraints).
It	is	a	rare	user	who	will	ask	that	a	system	be	“testable”	or	will	require	that
the	system	provide	special	testing	interfaces,	but	a	wise	architect	might
choose	to	include	such	an	infrastructure,	particularly	if	the	system	is
complex	and	used	in	contexts	that	are	difficult	to	control	and	replicate.
	ADD	2.0	iterations	are	always	driven	by	the	selection	and	decomposition
of	architectural	elements.	This	occurs	because	ADD	2.0	instructs	that	first
an	element	to	decompose	must	be	chosen,	and	then	the	drivers	must	be
identified.	In	ADD	3.0,	we	recognize	that	sometimes	a	design	step	is
driven	by	the	critical	architectural	requirements,	which	guides	the	selection
and	decomposition	of	elements.
	ADD	2.0	includes	(initial)	documentation	and	analysis,	but	they	are	not
explicit	steps	of	the	design	process.

ADD	3.0	addresses	all	of	these	shortcomings.	To	be	sure,	ADD	3.0	is
evolutionary,	not	revolutionary.	It	was	catalyzed	by	the	creation	of	ADD	2.5,1
which	was	itself	a	reaction	to	attempting	to	use	ADD	in	the	real	world,	in	many
different	contexts.

1.	This	is	our	own	coding	notation;	the	2.5	number	is	not	used	elsewhere.

We	published	ADD	2.5	in	2013.	In	that	work,	we	advocated	the	use	of
application	frameworks	such	as	JSF,	Spring,	or	Hibernate	as	first-class	design



concepts.	This	change	was	intended	to	address	ADD	2.0’s	shortcoming	of	being
too	abstract	to	apply	easily.	ADD	starts	with	drivers,	systematically	links	them	to
design	decisions,	and	then	links	those	decisions	to	the	available	implementation
options,	including	externally	developed	components.	For	Agile	development,
ADD	3.0	promotes	quick	design	iterations	in	which	a	small	number	of	design
decisions	are	made,	potentially	followed	by	an	implementation	spike.	In
addition,	ADD	3.0	explicitly	promotes	the	(re)use	of	reference	architectures	and
is	paired	with	a	“design	concepts	catalog”,	which	includes	a	broad	selection	of
tactics,	patterns,	frameworks,	reference	architectures,	and	technologies	(see
Appendix	A).

1.5	Summary
Having	covered	our	motivations	and	background,	we	now	move	on	to	the	heart
and	soul	of	this	book.	In	the	next	few	chapters,	we	describe	what	we	mean	by
design	and	by	architectural	design	in	particular,	we	discuss	ADD,	and	we
provide	three	case	studies	showing	in	detail	how	ADD	can	be	used	in	the	real
world.	We	also	discuss	the	critical	role	that	analysis	plays	in	the	design	process
and	provide	examples	of	how	analysis	can	be	performed	on	design	artifacts.

1.6	Further	Reading
Fred	Brooks	has	written	a	thoughtful	series	of	essays	on	the	nature	of	design,
reflecting	his	50	years	of	experience	as	a	designer	and	researcher:	F.	P.	Brooks,
Jr.	The	Design	of	Design:	Essays	from	a	Computer	Scientist.	Addison-Wesley,
2010.
The	usefulness	of	having	a	documented	process	for	design	and	other

development	activities	is	discussed	in	D.	Parnas	and	P.	Clements,	“A	Rational
Design	Process:	How	and	Why	to	Fake	It”,	IEEE	Transactions	on	Software
Engineering,	SE-12,	2,	February	1986.
The	definition	of	software	architecture	used	here,	as	well	as	the	arguments	for

the	importance	of	architecture	and	the	role	of	the	architect,	all	derive	from	L.
Bass,	P.	Clements,	and	R.	Kazman,	Software	Architecture	in	Practice,	3rd	ed.,
Addison-Wesley,	2012.
Several	books	cover	the	different	activities	of	the	architecture	development

life	cycle,	including	G.	Fairbanks,	Just	Enough	Software	Architecture:	A	Risk
Driven	Approach,	Marshall	&	Brainerd,	2010,	and	the	ones	whose	design
approaches	are	described	in	Chapter	7.
An	early	reference	for	the	first	version	of	ADD	can	be	found	in	F.	Bachmann,



L.	Bass,	G.	Chastek,	P.	Donohoe,	and	F.	Peruzzi,	The	Architecture	Based	Design
Method,	CMU/SEI-2000-TR-001.	The	second	version	of	ADD	was	described	in
R.	Wojcik,	F.	Bachmann,	L.	Bass,	P.	Clements,	P.	Merson,	R.	Nord,	and	W.
Wood,	Attribute-Driven	Design	(ADD),	Version	2.0,	CMU/SEI-2006-TR-023.
The	version	of	ADD	that	we	have	referred	to	here	as	ADD	2.5	was	published	in
H.	Cervantes,	P.	Velasco-Elizondo,	and	R.	Kazman,	“A	Principled	Way	of
Using	Frameworks	in	Architectural	Design”,	IEEE	Software,	46–53,
March/April	2013.



2.	Architectural	Design

We	now	dive	into	the	process	of	architecture	design:	what	it	is,	why	it	is
important,	how	it	works	(at	an	abstract	level).	and	which	major	concepts	and
activities	it	involves.	We	first	discuss	architectural	drivers:	the	various	factors
that	“drive”	design	decisions,	some	of	which	are	documented	as	requirements,
but	many	of	which	are	not.	In	addition,	we	provide	an	overview	of	design
concepts—the	major	building	blocks	that	you	will	select,	combine,	instantiate,
analyze,	and	document	as	part	of	your	design	process.

2.1	Design	in	General
Design	is	both	a	verb	and	a	noun.	Design	is	a	process,	an	activity,	and	hence	a
verb.	The	process	results	in	the	creation	of	a	design—a	description	of	a	desired
end	state.	Thus	the	output	of	the	design	process	is	the	thing,	the	noun,	the	artifact
that	you	will	eventually	implement.	Designing	means	making	decisions	to
achieve	goals	and	satisfy	requirements	and	constraints.	The	outputs	of	the	design
process	are	a	direct	reflection	of	those	goals,	requirements,	and	constraints.
Think	about	houses,	for	example.	Why	do	traditional	houses	in	China	look
different	from	those	in	Switzerland	or	Algeria?	Why	does	a	yurt	look	like	a	yurt,
which	is	different	from	an	igloo	or	a	chalet	or	a	longhouse?
The	architectures	of	these	styles	of	houses	have	evolved	over	the	centuries	to

reflect	their	unique	sets	of	goals,	requirements,	and	constraints.	Houses	in	China
feature	symmetric	enclosures,	sky	wells	to	increase	ventilation,	south-facing
courtyards	to	collect	sunlight	and	provide	protection	from	cold	north	winds,	and
so	forth.	A-frame	houses	have	steep	pitched	roofs	that	extend	to	the	ground,
meaning	minimal	painting	and	protection	from	heavy	snow	loads	(which	just
slide	off	to	the	ground).	Igloos	are	built	of	ice,	reflecting	the	availability	of	ice,
the	relative	poverty	of	other	building	materials,	and	the	constraints	of	time	(a
small	one	can	be	built	in	an	hour).
In	each	case,	the	process	of	design	involved	the	selection	and	adaptation	of	a

number	of	solution	approaches.	Even	igloo	designs	can	vary.	Some	are	small	and
meant	for	a	temporary	travel	shelter.	Others	are	large,	often	connecting	several
structures,	meant	for	entire	communities	to	meet.	Some	are	simple	unadorned
snow	huts.	Others	are	lined	with	furs,	with	ice	“windows”,	and	doors	made	of
animal	skin.
The	process	of	design,	in	each	case,	balances	the	various	“forces”	facing	the

designer.	Some	designs	require	considerable	skill	to	execute	(such	as	carving



designer.	Some	designs	require	considerable	skill	to	execute	(such	as	carving
and	stacking	snow	blocks	in	such	a	way	that	they	produce	a	self-supporting
dome).	Others	require	relatively	little	skill—a	lean-to	can	be	constructed	from
branches	and	bark	by	almost	anyone.	But	the	qualities	that	these	structures
exhibit	may	also	vary	considerably.	Lean-tos	provide	little	protection	from	the
elements	and	are	easily	destroyed,	whereas	an	igloo	can	withstand	Arctic	storms
and	support	the	weight	of	a	person	standing	on	the	roof.
Is	design	“hard”?	Well,	yes	and	no.	Novel	design	is	hard.	It	is	pretty	clear	how

to	design	a	conventional	bicycle,	but	the	design	for	the	Segway	broke	new
ground.	Fortunately,	most	design	is	not	novel,	because	most	of	the	time	our
requirements	are	not	novel.	Most	people	want	a	bicycle	that	will	reliably	convey
them	from	place	to	place.	The	same	holds	true	in	every	domain.	Consider
houses,	for	example.	Most	people	living	in	Phoenix	want	a	house	that	can	be
easily	and	economically	kept	cool,	whereas	most	people	in	Edmonton	are
primarily	concerned	with	a	house	that	can	be	kept	warm.	In	contrast,	people
living	in	Japan	and	Los	Angeles	are	concerned	with	buildings	that	can	withstand
earthquakes.
The	good	news	for	you,	the	architect,	is	that	there	are	ample	proven	designs

and	design	fragments,	or	building	blocks	that	we	call	design	concepts,	that	can
be	reused	and	combined	to	reliably	achieve	these	goals.	If	your	design	is	truly
novel—if	you	are	designing	the	next	Sydney	Opera	House—then	the	design
process	will	likely	be	“hard”.	The	Sydney	Opera	House,	for	example,	cost	14
times	its	original	budget	estimate	and	was	delivered	ten	years	late.	So,	too,	with
the	design	of	software	architectures.

2.2	Design	in	Software	Architecture
Architectural	design	for	software	systems	is	no	different	than	design	in	general:
It	involves	making	decisions,	working	with	available	skills	and	materials,	to
satisfy	requirements	and	constraints.	In	architectural	design,	we	make	decisions
to	transform	our	design	purpose,	requirements,	constraints,	and	architectural
concerns—what	we	call	the	architectural	drivers—into	structures,	as	shown	in
Figure	2.1.	These	structures	are	then	used	to	guide	the	project.	They	guide
analysis	and	construction,	and	serve	as	the	foundation	for	educating	a	new
project	member.	They	also	guide	cost	and	schedule	estimation,	team	formation,
risk	analysis	and	mitigation,	and,	of	course,	implementation.



FIGURE	2.1	Overview	of	the	architecture	design	activity	(Architect	image	©
Brett	Lamb	|	Dreamstime.com)

Architectural	design	is,	therefore,	a	key	step	to	achieving	your	product	and
project	goals.	Some	of	these	goals	are	technical	(e.g.,	achieving	low	and
predictable	latency	in	a	video	game	or	an	e-commerce	website),	and	some	are
nontechnical	(e.g.,	keeping	the	workforce	employed,	entering	a	new	market,
meeting	a	deadline).	The	decisions	that	you,	as	an	architect,	make	will	have
implications	for	the	achievement	of	these	goals	and	may,	in	some	cases,	be	in
conflict.	The	choice	of	a	particular	reference	architecture	(e.g.,	the	Rich	Client
Application)	may	provide	a	good	foundation	for	achieving	your	latency	goals
and	will	keep	your	workforce	employed	because	they	are	already	familiar	with
that	reference	architecture	and	its	supporting	technology	stack.	But	this	choice
may	not	help	you	enter	a	new	market—mobile	games,	for	example.
In	general,	when	designing,	a	change	in	some	structure	to	achieve	one	quality

attribute	will	have	negative	effects	on	other	quality	attributes.	These	tradeoffs
are	a	fact	of	life	for	every	practicing	architect	in	every	domain.	We	will	see	this
over	and	over	again	in	the	examples	and	case	studies	provided	in	this	book.	Thus
the	architect’s	job	is	not	one	of	finding	an	optimal	solution,	but	rather	one	of
satisficing—searching	through	a	potentially	large	space	of	design	alternatives



and	decisions	until	an	acceptable	solution	is	found.

2.2.1	Architectural	Design
Grady	Booch	has	said,	“All	architecture	is	design,	but	not	all	design	is
architecture”.	What	makes	a	decision	“architectural”?	A	decision	is	architectural
if	it	has	nonlocal	consequences	and	those	consequences	matter	to	the
achievement	of	an	architectural	driver.	No	decision	is,	therefore,	inherently
architectural	or	non-architectural.	The	choice	of	a	buffering	strategy	within	a
single	element	may	have	little	effect	on	the	rest	of	the	system,	in	which	case	it	is
an	implementation	detail	that	is	of	no	concern	to	anyone	except	the	implementer
or	maintainer	of	that	element.	In	contrast,	the	buffering	strategy	may	have
enormous	implications	for	performance	(if	the	buffering	affects	the	achievement
of	latency	or	throughput	or	jitter	goals)	or	availability	(if	the	buffers	might	not	be
large	enough	and	information	gets	lost)	or	modifiability	(if	we	wish	to	flexibly
change	the	buffering	strategy	in	different	deployments	or	contexts).	The	choice
of	a	buffering	strategy,	like	most	design	choices,	is	neither	inherently
architectural	nor	inherently	non-architectural.	Instead,	this	distinction	is
completely	dependent	on	the	current	and	anticipated	architectural	drivers.

2.2.2	Element	Interaction	Design
Architectural	design	generally	results	in	the	identification	of	only	a	subset	of	the
elements	that	are	part	of	the	system’s	structure.	This	is	to	be	expected	because,
during	initial	architectural	design,	the	architect	will	focus	on	the	primary
functionality	of	the	system.	What	makes	a	use	case	primary?	A	combination	of
business	importance,	risk,	and	complexity	considerations	feed	into	this
designation.	Of	course,	to	your	users,	everything	is	urgent	and	top	priority.	More
realistically,	a	small	number	of	use	cases	provide	the	most	fundamental	business
value	or	represent	the	greatest	risk	(if	they	are	done	wrong),	so	these	are	deemed
primary.
Every	system	has	many	more	use	cases,	beyond	the	primary	ones,	that	need	to

be	satisfied.	The	elements	that	support	these	nonprimary	use	cases	and	their
interfaces	are	identified	as	part	of	what	we	call	element	interaction	design.	This
level	of	design	usually	follows	architectural	design.	The	location	and
relationships	of	these	elements,	however,	are	constrained	by	the	decisions	that
were	made	during	architectural	design.	These	elements	can	be	units	of	work	(i.e.,
modules)	assigned	to	an	individual	or	to	a	team,	so	this	level	of	design	is
important	for	defining	not	only	how	nonprimary	functionality	is	allocated,	but
also	for	planning	purposes	(e.g.,	team	formation	and	communication,	budgeting,



outsourcing,	release	planning,	unit	and	integration	test	planning).
Depending	on	the	scale	and	complexity	of	the	system,	the	architect	should	be

involved	in	element	interaction	design,	either	directly	or	in	an	auditing	role.	This
involvement	ensures	that	the	system’s	important	quality	attributes	are	not
compromised—for	example,	if	the	elements	are	not	defined,	located,	and
connected	correctly.	It	will	also	help	the	architect	spot	opportunities	for
generalization.

2.2.3	Element	Internals	Design
A	third	level	of	design	follows	element	interaction	design,	which	we	call	element
internals	design.	In	this	level	of	design,	which	is	usually	conducted	as	part	of	the
element	development	activities,	the	internals	of	the	elements	identified	in	the
previous	design	level	are	established,	so	as	to	satisfy	the	element’s	interface.
Architectural	decisions	can	and	do	occur	at	the	three	levels	of	design.

Moreover,	during	architectural	design,	the	architect	may	need	to	delve	as	deeply
as	element	internals	design	to	achieve	a	particular	architectural	driver.	An
example	of	this	is	the	selection	of	a	buffering	strategy	that	was	previously
discussed.	In	this	sense,	architectural	design	can	involve	considerable	detail,
which	explains	why	we	do	not	like	to	think	about	it	in	terms	of	“high-level
design”	or	“detailed	design”	(see	the	sidebar	“Detailed	Design?”).
Architectural	design	precedes	element	interaction	design,	which	precedes

element	internals	design.	This	is	logically	necessary:	One	cannot	design	an
element’s	internals	until	the	elements	themselves	have	been	defined,	and	one
cannot	reason	about	interaction	until	several	elements	and	some	patterns	of
interactions	among	them	have	been	defined.	But	as	projects	grow	and	evolve,
there	is,	in	practice,	considerable	iteration	between	these	activities.

Detailed	Design?
The	term	“detailed	design”	is	often	used	to	refer	to	the	design	of	the
internals	of	modules.	Although	it	is	widely	used,	we	really	don’t
like	this	term,	which	is	presented	as	somehow	in	opposition	to
“high-level	design”.	We	prefer	the	more	precise	terms	“architectural
design”,	“element	interaction	design”,	and	“element	internals
design”.
After	all,	architectural	design	may	be	quite	detailed,	if	your

system	is	complex.	And	some	design	“details”	will	turn	out	to	be
architectural.	For	the	same	reason,	we	also	don’t	like	the	terms



“high-level	design”	and	“low-level	design”.	Who	can	really	know
what	these	terms	actually	mean?	Clearly,	“high-level	design”	should
be	somehow	“higher”	or	more	abstract,	and	cover	more	of	the
architectural	landscape	than	“low-level	design”,	but	beyond	that	we
are	at	a	loss	to	imbue	these	terms	with	any	precise	meaning.
So	here	is	what	we	recommend:	Just	avoid	using	terms	such	as

“high”,	“low”,	or	“detailed”	altogether.	There	is	always	a	better,
more	precise	choice,	such	as	“architectural”,	“element	interaction”,
or	“element	internals”	design!
Think	carefully	about	the	impact	of	the	decisions	you	are	making,

the	information	that	you	are	trying	to	convey	in	your	design
documentation,	and	the	likely	audience	for	that	information,	and
then	give	that	process	an	appropriate,	meaningful	name.

2.3	Why	Is	Architectural	Design	So	Important?
There	is	a	very	high	cost	to	a	project	of	not	making	certain	design	decisions,	or
of	not	making	them	early	enough.	This	manifests	itself	in	many	different	ways.
Early	on,	an	initial	architecture	is	critical	for	project	proposals	(or,	as	it	is
sometimes	called	in	the	consulting	world,	the	pre-sales	process).	Without	doing
some	architectural	thinking	and	some	early	design	work,	you	cannot	confidently
predict	project	cost,	schedule,	and	quality.	Even	at	this	early	stage,	an
architecture	will	determine	the	key	approaches	for	achieving	architectural
drivers,	the	gross	work-breakdown	structure,	and	the	choices	of	tools,	skills,	and
technologies	needed	to	realize	the	system.
In	addition,	architecture	is	a	key	enabler	of	agility,	as	we	will	discuss	in

Chapter	9.	Whether	your	organization	has	embraced	Agile	processes	or	not,	it	is
difficult	to	imagine	anyone	who	would	willingly	choose	an	architecture	that	is
brittle	and	hard	to	change	or	extend	or	tune—and	yet	it	happens	all	the	time.
This	so-called	technical	debt	occurs	for	a	variety	of	reasons,	but	paramount
among	these	is	the	combination	of	a	focus	on	features—typically	driven	by
stakeholder	demands—and	the	inability	of	architects	and	project	managers	to
measure	the	return	on	investment	of	good	architectural	practices.	Features
provide	immediate	benefit.	Architectural	improvement	provides	immediate	costs
and	long-term	benefits.	Put	this	way,	why	would	anyone	ever	“invest”	in
architecture?	The	answer	is	simple:	Without	architecture,	the	benefits	that	the
system	is	supposed	to	bring	will	be	far	harder	to	realize.
Simply	put,	if	you	do	not	make	some	key	architectural	decisions	early	and	if



you	allow	your	architecture	to	degrade,	you	will	be	unable	to	maintain	sprint
velocity,	because	you	cannot	easily	respond	to	change	requests.	However,	we
vehemently	disagree	with	what	the	original	creators	of	the	Agile	Manifesto
claimed:	“The	best	architectures,	requirements,	and	designs	emerge	from	self-
organizing	teams”.	Indeed,	our	demurral	with	this	point	is	precisely	why	we
have	written	this	book.	Good	architectural	design	is	difficult	(and	still	rare),	and
it	does	not	just	“emerge”.	This	opinion	mirrors	a	growing	consensus	within	the
Agile	community.	More	and	more,	we	see	techniques	such	as	“disciplined	agility
at	scale”,	the	“walking	skeleton”,	and	the	“scaled	Agile	framework”	embraced
by	Agile	thought	leaders	and	practitioners	alike.	Each	of	these	techniques
advocates	some	architectural	thinking	and	design	prior	to	much,	if	any,
development.	To	reiterate,	architecture	enables	agility,	and	not	the	other	way
around.
Furthermore,	the	architecture	will	influence,	but	not	determine,	other

decisions	that	are	not	in	and	of	themselves	design	decisions.	These	decisions	do
not	influence	the	achievement	of	quality	attributes	directly,	but	they	may	still
need	to	be	made	by	the	architect.	For	example,	such	decisions	may	include
selection	of	tools;	structuring	the	development	environment;	supporting	releases,
deployment,	and	operations;	and	making	work	assignments.
Finally,	a	well-designed,	properly	communicated	architecture	is	key	to

achieving	agreements	that	will	guide	the	team.	The	most	important	kinds	to
make	are	agreements	on	interfaces	and	on	shared	resources.	Agreeing	on
interfaces	early	is	important	for	component-based	development,	and	critically
important	for	distributed	development.	These	decisions	will	be	made	sooner	or
later.	If	you	don’t	make	the	decisions	early,	the	system	will	be	much	more
difficult	to	integrate.	In	Section	3.6,	we	will	discuss	how	to	define	interfaces	as
part	of	architectural	design—both	the	external	interfaces	to	other	systems	and
the	internal	interfaces	that	mediate	your	element	interactions.

2.4	Architectural	Drivers
Before	commencing	design	with	ADD	(or	with	any	other	design	method,	for	that
matter),	you	need	to	think	about	what	you	are	doing	and	why.	While	this
statement	may	seem	blindingly	obvious,	the	devil	is,	as	usual,	in	the	details.	We
categorize	these	“what”	and	“why”	questions	as	architectural	drivers.	As	shown
in	Figure	2.1,	these	drivers	include	a	design	purpose,	quality	attributes,	primary
functionality,	architectural	concerns,	and	constraints.	These	considerations	are
critical	to	the	success	of	the	system	and,	as	such,	they	drive	and	shape	the
architecture.
As	with	any	other	important	requirements,	architectural	drivers	need	to	be



As	with	any	other	important	requirements,	architectural	drivers	need	to	be
baselined	and	managed	throughout	the	development	life	cycle.

2.4.1	Design	Purpose
First,	you	need	to	be	clear	about	the	purpose	of	the	design	that	you	want	to
achieve.	When	and	why	are	you	doing	this	architecture	design?	Which	business
goals	is	the	organization	most	concerned	about	at	this	time?

1.	You	may	be	doing	architecture	design	as	part	of	a	project	proposal	(for	the
pre-sales	process	in	a	consulting	organization,	or	for	internal	project
selection	and	prioritization	in	a	company,	as	discussed	in	Section	9.1.1).	It
is	not	uncommon	that,	as	part	of	determining	project	feasibility,	schedule,
and	budget,	an	initial	architecture	is	created.	Such	an	architecture	would
not	be	very	detailed;	its	purpose	is	to	understand	and	break	down	the
architecture	in	sufficient	detail	that	the	units	of	work	are	understood	and
hence	may	be	estimated.

2.	You	may	be	doing	architecture	design	as	part	of	the	process	of	creating	an
exploratory	prototype.	In	this	case,	the	purpose	of	the	architecture	design
process	is	not	so	much	to	create	a	releasable	or	reusable	system,	but	rather
to	explore	the	domain,	to	explore	new	technology,	to	place	something
executable	in	front	of	a	customer	to	elicit	rapid	feedback,	or	to	explore
some	quality	attribute	(such	as	performance	scalability	or	failover	for
availability).

3.	You	may	be	designing	your	architecture	during	development.	This	could
be	for	an	entire	new	system,	for	a	substantial	portion	of	a	new	system,	or
for	a	portion	of	an	existing	system	that	is	being	refactored	or	replaced.	In
this	case,	the	purpose	is	to	do	enough	design	work	to	satisfy	requirements,
guide	system	construction	and	work	assignments,	and	prepare	for	an
eventual	release.

These	purposes	may	be	interpreted	and	realized	differently	for	greenfield
systems	in	mature	domains,	for	greenfield	systems	in	novel	domains,	and	for
existing	systems.	In	a	mature	domain,	the	pre-sales	process,	for	example,	might
be	relatively	straightforward;	the	architect	can	reuse	existing	systems	as
examples	and	confidently	make	estimates	based	on	analogy.	In	novel	domains,
the	pre-sales	estimation	process	will	be	far	more	complex	and	risky,	and	may
have	highly	variable	results.	In	these	circumstances,	a	prototype	of	the	system,
or	a	key	part	of	the	system,	may	need	to	be	created	to	mitigate	risk	and	reduce
uncertainty.	In	many	cases,	this	architecture	may	also	need	to	be	quickly	adapted
as	new	requirements	are	learned	and	embraced.	In	brownfield	systems,	while	the
requirements	are	better	understood,	the	existing	system	is	itself	a	complex	object



requirements	are	better	understood,	the	existing	system	is	itself	a	complex	object
that	must	be	well	understood	for	planning	to	be	accurate.
Finally,	the	development	organization’s	goals	during	development	or

maintenance	may	affect	the	architecture	design	process.	For	example,	the
organization	might	be	interested	in	designing	for	reuse,	designing	for	future
extension	or	subsetting,	designing	for	scalability,	designing	for	continuous
delivery,	designing	to	best	utilize	existing	project	capabilities	and	team	member
skills,	and	so	forth.	Or	the	organization	might	have	a	strategic	relationship	with	a
vendor.	Or	the	CIO	might	have	a	specific	like	or	dislike	and	wants	to	impose	it
on	your	project.
Why	do	we	bother	to	list	these	considerations?	Because	they	will	affect	both

the	process	of	design	and	the	outputs	of	design.	Architectures	exist	to	help
achieve	business	goals.	The	architect	should	be	clear	about	these	goals	and
should	communicate	them	(and	negotiate	them!)	and	establish	a	clear	design
purpose	before	beginning	the	design	process.

2.4.2	Quality	Attributes
In	the	book	Software	Architecture	in	Practice,	quality	attributes	are	defined	as
being	measurable	or	testable	properties	of	a	system	that	are	used	to	indicate	how
well	the	system	satisfies	the	needs	of	its	stakeholders.	Because	quality	tends	to
be	a	subjective	concept	in	itself,	these	properties	allow	quality	to	be	expressed
succinctly	and	objectively.
Among	the	drivers,	quality	attributes	are	the	ones	that	shape	the	architecture

the	most	significantly.	The	critical	choices	that	you	make	when	you	are	doing
architectural	design	determine,	in	large	part,	the	ways	that	your	system	will	or
will	not	meet	these	driving	quality	attribute	goals.
Given	their	importance,	you	must	worry	about	eliciting,	specifying,

prioritizing,	and	validating	quality	attributes.	Given	that	so	much	depends	on
getting	these	drivers	right,	this	sounds	like	a	daunting	task.	Fortunately,	a
number	of	well-understood,	widely	disseminated	techniques	can	help	you	here
(see	sidebar	“The	Quality	Attribute	Workshop	and	the	Utility	Tree”):

	Quality	Attribute	Workshop	(QAW)	is	a	facilitated	brainstorming	session
involving	a	group	of	system	stakeholders	that	covers	the	bulk	of	the
activities	of	eliciting,	specifying,	prioritizing,	and	achieving	consensus	on
quality	attributes.
	Mission	Thread	Workshop	serves	the	same	purpose	as	QAW,	but	for	a
system	of	systems.



	The	Utility	Tree	can	be	used	by	the	architect	to	prioritize	quality	attribute
requirements	according	to	their	technical	difficulty	and	risk.

We	believe	that	the	best	way	to	discuss,	document,	and	prioritize	quality
attribute	requirements	is	as	a	set	of	scenarios.	A	scenario,	in	its	most	basic	form,
describes	the	system’s	response	to	some	stimulus.	Why	are	scenarios	the	best
approach?	Because	all	other	approaches	are	worse!	Endless	time	may	be	wasted
in	defining	terms	such	as	“performance”	or	“modifiability”	or	“configurability”,
as	these	discussions	tend	to	shed	little	light	on	the	real	system.	It	is	meaningless
to	say	that	a	system	will	be	“modifiable”,	because	every	system	is	modifiable
with	respect	to	some	changes	and	not	modifiable	with	respect	to	others.	One	can,
however,	specify	the	modifiability	response	measure	you	would	like	to	achieve
(say,	elapsed	time	or	effort)	in	response	to	a	specific	change	request.	For
example,	you	might	want	to	specify	that	“a	change	to	update	shipping	rates	on
the	e-commerce	website	is	completed	and	tested	in	less	than	1	person-day	of
effort”—an	unambiguous	criterion.
The	heart	of	a	quality	attribute	scenario,	therefore,	is	the	pairing	of	a	stimulus

with	a	response.	Suppose	that	you	are	building	a	video	game	and	you	have	a
functional	requirement	like	this:	“The	game	shall	change	view	modes	when	the
user	presses	the	<C>	button”.	This	functional	requirement,	if	it	is	important,
needs	to	be	associated	with	quality	attribute	requirements.	For	example:

	How	fast	should	the	function	be?
	How	secure	should	the	function	be?
	How	modifiable	should	the	function	be?

To	address	this	problem,	we	use	a	scenario	to	describe	a	quality	attribute
requirement.	A	quality	attribute	scenario	is	a	short	description	of	how	a	system	is
required	to	respond	to	some	stimulus.	For	example,	we	might	annotate	the
functional	requirement	given	earlier	as	follows:	“The	game	shall	change	view
modes	in	<	500	ms	when	the	user	presses	the	<C>	button”.	A	scenario	associates
a	stimulus	(in	this	case,	the	pressing	of	the	<C>	button)	with	a	response
(changing	the	view	mode)	that	is	measured	using	a	response	measure	(<	500
ms).	A	complete	quality	attribute	scenario	adds	three	other	parts:	the	source	of
the	stimulus	(in	this	case,	the	user),	the	artifact	affected	(in	this	case,	because	we
are	dealing	with	end-to-end	latency,	the	artifact	is	the	entire	system)	and	the
environment	(are	we	in	normal	operation,	startup,	degraded	mode,	or	some	other
mode?).	In	total,	then,	there	are	six	parts	of	a	completely	well-specified	scenario,
as	shown	in	Figure	2.2.



FIGURE	2.2	The	six	parts	of	a	quality	attribute	scenario

Scenarios	are	testable,	falsifiable	hypotheses	about	the	quality	attribute
behavior	of	the	system	under	consideration.	Because	they	have	explicit	stimuli
and	responses,	we	can	evaluate	a	design	in	terms	of	how	likely	it	is	to	support
the	scenario,	and	we	can	take	measurements	and	test	a	prototype	or	fully	fleshed-
out	system	for	whether	it	satisfies	the	scenario	in	practice.	If	the	analysis	(or
prototyping	results)	indicates	that	the	scenario’s	response	goal	cannot	be	met,
then	the	hypothesis	is	deemed	falsified.
As	with	other	requirements,	scenarios	should	be	prioritized.	This	can	be

achieved	by	considering	two	dimensions	that	are	associated	with	each	scenario
and	that	are	assigned	a	rank	of	importance:

	The	first	dimension	corresponds	to	the	importance	of	the	scenario	with
respect	to	the	success	of	the	system.	This	is	ranked	by	the	customer.
	The	second	dimension	corresponds	to	the	degree	of	technical	risk
associated	with	the	scenario.	This	is	ranked	by	the	architect.

A	low/medium/high	(L/M/H)	scale	is	used	to	rank	both	dimensions.	Once	the
dimensions	have	been	ranked,	scenarios	are	prioritized	by	selecting	those	that
have	a	combination	of	(H,	H),	(H,	M),	or	(M,	H)	rankings.
In	addition,	some	traditional	requirements	elicitation	techniques	can	be

modified	slightly	to	focus	on	quality	attribute	requirements,	such	as	Joint
Requirements	Planning	(JRP),	Joint	Application	Design	(JAD),	discovery
prototyping,	and	accelerated	systems	analysis.
But	whatever	technique	you	use,	do	not	start	design	without	a	prioritized	list

of	measurable	quality	attributes!	While	stakeholders	might	plead	ignorance	(“I
don’t	know	how	fast	it	needs	to	be;	just	make	it	fast!”),	you	can	almost	always



elicit	at	least	a	range	of	possible	responses.	Instead	of	saying	the	system	should
be	“fast”,	ask	the	stakeholder	if	a	10-second	response	time	is	acceptable.	If	that
is	unacceptable,	ask	if	5	seconds	is	OK,	or	1	second.	You	will	find	that,	in	most
cases,	users	know	more	than	they	realize	about	their	requirements,	and	you	can
at	least	“box	them	in”	to	a	range.

The	Quality	Attribute	Workshop	and	the	Utility	Tree

The	Quality	Attribute	Workshop	(QAW)
The	QAW	is	a	facilitated,	stakeholder-focused	method	to	generate,
prioritize,	and	refine	quality	attribute	scenarios.	A	QAW	meeting	is
ideally	enacted	before	the	software	architecture	has	been	defined
although,	in	practice,	we	have	seen	the	QAW	being	used	at	all
points	in	the	software	development	life	cycle.	The	QAW	is	focused
on	system-level	concerns	and	specifically	the	role	that	software	will
play	in	the	system.	The	steps	of	the	QAW	are	as	follows:
1.	QAW	Presentation	and	Introductions
The	QAW	facilitators	describe	the	motivation	for	the	QAW	and
explain	each	step	of	the	method.

2.	Business	Goals	Presentation
A	stakeholder	representing	the	project’s	business	concerns
presents	the	system’s	business	context,	broad	functional
requirements,	constraints,	and	known	quality	attribute
requirements.	The	quality	attributes	that	will	be	refined	in	later
QAW	steps	will	be	derived	from,	and	should	be	traceable	to,	the
business	goals	presented	in	this	step.	For	this	reason,	these
business	goals	must	be	prioritized.

3.	Architectural	Plan	Presentation
The	architect	presents	the	system	architectural	plans	as	they
currently	exist.	Although	the	architecture	has	frequently	not	been
defined	yet	(particularly	for	greenfield	systems),	the	architect
often	knows	quite	a	lot	about	it	even	at	this	early	stage.	For
example,	the	architect	might	already	know	about	technologies
that	are	mandated,	other	systems	that	this	system	must	interact
with,	standards	that	must	be	followed,	subsystems	or	components
that	could	be	reused,	and	so	forth.

4.	Identification	of	Architectural	Drivers
The	facilitators	share	their	list	of	key	architectural	drivers	that



The	facilitators	share	their	list	of	key	architectural	drivers	that
they	assembled	during	steps	2	and	3	and	ask	the	stakeholders	for
clarifications,	additions,	deletions,	and	corrections.	The	idea	here
is	to	reach	a	consensus	on	a	distilled	list	of	architectural	drivers
that	covers	major	functional	requirements,	business	drivers,
constraints,	and	quality	attributes.

5.	Scenario	Brainstorming
Given	this	context,	each	stakeholder	now	has	the	opportunity	to
express	a	scenario	representing	that	stakeholder’s	needs	and
desires	with	respect	to	the	system.	The	facilitators	ensure	that
each	scenario	has	an	explicit	stimulus	and	response.	The
facilitators	also	ensure	traceability	and	completeness:	At	least	one
representative	scenario	should	exist	for	each	architectural	driver
listed	in	step	4	and	should	cover	all	the	business	goals	listed	in
step	2.

6.	Scenario	Consolidation
Similar	scenarios	are	consolidated	where	reasonable.	In	step	7,
the	stakeholders	vote	for	their	favorite	scenarios,	and
consolidation	helps	to	prevent	votes	from	being	spread	across
several	scenarios	that	are	expressing	essentially	the	same
concern.

7.	Scenario	Prioritization
Prioritization	of	the	scenarios	is	accomplished	by	allocating	to
each	stakeholder	a	number	of	votes	equal	to	30	percent	of	the
total	number	of	scenarios.	The	stakeholders	can	distribute	these
votes	to	any	scenario	or	scenarios.	Once	all	the	stakeholders	have
voted,	the	results	are	tallied	and	the	scenarios	are	sorted	in	order
of	popularity.

8.	Scenario	Refinement
The	highest-priority	scenarios	are	refined	and	elaborated.	The
facilitators	help	the	stakeholders	express	these	in	the	form	of	six-
part	scenarios:	source,	stimulus,	artifact,	environment,	response,
and	response	measure.
The	output	of	the	QAW	is	therefore	a	prioritized	list	of	scenarios,

aligned	with	business	goals,	where	the	highest-priority	scenarios
have	been	explored	and	refined.	A	QAW	can	be	conducted	in	as
little	as	2–3	hours	for	a	simple	system	or	as	part	of	an	iteration,	and
as	much	as	2	days	for	a	complex	system	where	requirements



as	much	as	2	days	for	a	complex	system	where	requirements
completeness	is	a	goal.

Utility	Tree
If	no	stakeholders	are	readily	available	to	consult,	you	still	need	to
decide	what	to	do	and	how	to	prioritize	the	many	challenges	facing
the	system.	One	way	to	organize	your	thoughts	is	to	create	a	Utility
Tree.	The	Utility	Tree,	such	as	the	one	shown	in	the	following
figure,	helps	to	articulate	your	quality	attribute	goals	in	detail,	and
then	to	prioritize	them.

It	works	as	follows.	First	write	the	word	“Utility”	on	a	sheet	of
paper.	Then	write	the	various	quality	attributes	that	constitute	utility
for	your	system.	For	example,	you	might	know,	based	on	the
business	goals	for	the	system,	that	the	most	important	qualities	for
the	system	are	that	the	system	be	fast,	secure,	and	easy	to	modify.	In
turn,	you	would	write	these	words	underneath	“Utility”.	Next,
because	we	don’t	really	know	what	any	of	those	terms	actually



means,	we	describe	the	aspect	of	the	quality	attribute	that	we	are
most	concerned	with.	For	example,	while	“performance”	is	vague,
“latency	of	database	transactions”	is	a	bit	less	vague.	Likewise,
while	“modifiability”	is	vague,	“ease	of	adding	new	codecs”	is	a	bit
less	vague.
The	leaves	of	the	tree	are	expressed	as	scenarios,	which	provide

concrete	examples	of	the	quality	attribute	considerations	that	you
just	enumerated.	For	example,	for	“latency	of	database
transactions”,	you	might	create	a	scenario	such	as	“1000	users
simultaneously	update	their	own	customer	records	under	normal
conditions	with	an	average	latency	of	1	second”.	For	“ease	of
adding	new	codecs”,	you	might	create	a	scenario	such	as	“Customer
requests	that	a	new	custom	codec	be	added	to	the	system.	Codec	is
added	with	no	side	effects	in	2	person-weeks	of	effort”.
Finally,	the	scenarios	that	you	have	created	must	be	prioritized.

We	do	this	prioritization	by	using	the	technique	of	ranking	across
two	dimensions,	resulting	in	a	priority	matrix	such	as	the	following
(where	the	numbers	in	the	cells	are	from	a	set	of	system	scenarios).

Our	job,	as	architects,	is	to	focus	on	the	lower-right-hand	portion	of
this	table	(H,	H):	those	scenarios	that	are	of	high	business
importance	and	high	risk.	Once	we	have	satisfactorily	addressed
those	scenarios,	we	can	move	to	the	(M,	H)	or	(H,	M)	ones,	and
then	move	up	and	to	the	left	until	all	of	the	system’s	scenarios	are
addressed	(or	perhaps	until	we	run	out	of	time	or	budget,	as	is	often
the	case).
It	should	be	noted	that	the	QAW	and	the	Utility	Tree	are	two

different	techniques	that	are	aimed	at	the	same	goal—eliciting	and
prioritizing	the	most	important	quality	attribute	requirements,	which
will	be	some	of	your	most	critical	architectural	drivers.	There	is	no
reason,	however,	to	choose	between	these	techniques.	Both	are
useful	and	valuable	and,	in	our	experience,	they	have



useful	and	valuable	and,	in	our	experience,	they	have
complementary	strengths:	The	QAW	tends	to	focus	more	on	the
requirements	of	external	stakeholders,	whereas	the	Utility	Tree
tends	to	excel	at	eliciting	the	requirements	of	internal	stakeholders.
Making	all	of	these	stakeholders	happy	will	go	a	long	way	toward
ensuring	the	success	of	your	architecture.

2.4.3	Primary	Functionality
Functionality	is	the	ability	of	the	system	to	do	the	work	for	which	it	was
intended.	As	opposed	to	quality	attributes,	the	way	the	system	is	structured	does
not	normally	influence	functionality.	You	can	have	all	of	the	functionality	of	a
given	system	coded	in	a	single	enormous	module,	or	you	can	have	it	neatly
distributed	across	many	smaller,	highly	cohesive	modules.	Externally	the	system
will	look	and	work	the	same	way	if	you	consider	only	functionality.	What
matters,	though,	is	what	happens	when	you	want	to	make	changes	to	such
system.	In	the	former	case,	changes	will	be	difficult	and	costly;	in	the	latter	case,
they	should	be	much	easier	and	cheaper	to	perform.	In	terms	of	architectural
design,	allocation	of	functionality	to	elements,	rather	than	the	functionality	per
se,	is	what	matters.	A	good	architecture	is	one	in	which	the	most	common
changes	are	localized	in	a	single	or	a	few	elements,	and	hence	easy	to	make.
When	designing	an	architecture,	you	need	to	consider	at	least	the	primary

functionality.	Primary	functionality	is	usually	defined	as	functionality	that	is
critical	to	achieve	the	business	goals	that	motivate	the	development	of	the
system.	Other	criteria	for	primary	functionality	might	be	that	it	implies	a	high
level	of	technical	difficulty	or	that	it	requires	the	interaction	of	many
architectural	elements.	As	a	rule	of	thumb,	approximately	10	percent	of	your	use
cases	or	user	stories	are	likely	to	be	primary.
There	are	two	important	reasons	why	you	need	to	consider	primary

functionality	when	designing	an	architecture:
1.	You	need	to	think	how	functionality	will	be	allocated	to	elements	(usually
modules)	to	promote	modifiability	or	reusability,	and	also	to	plan	work
assignments.

2.	Some	quality	attribute	scenarios	are	directly	connected	to	the	primary
functionality	in	the	system.	For	example,	in	a	movie	streaming	application,
one	of	the	primary	use	cases	is,	of	course,	to	watch	a	movie.	This	use	case
is	associated	with	a	performance	quality	attribute	scenario	such	as	“Once
the	user	presses	play,	the	movie	should	begin	streaming	in	no	more	than	5
seconds”.	In	this	case,	the	quality	attribute	scenario	is	directly	associated



with	the	primary	use	case,	so	making	decisions	to	support	this	scenario
also	requires	making	decisions	about	how	its	associated	functionality	will
be	supported.	This	is	not	the	case	for	all	quality	attributes.	For	example,	an
availability	scenario	can	involve	recovery	from	a	system	failure,	and	this
failure	may	occur	when	any	of	the	system’s	use	cases	are	being	executed.

Decisions	regarding	the	allocation	of	functionality	that	are	made	during
architectural	design	establish	a	precedent	for	how	the	rest	of	the	functionality
should	be	allocated	to	modules	as	development	progresses.	This	is	usually	not
the	work	of	the	architect;	instead,	this	activity	is	typically	performed	as	part	of
the	element	interaction	design	process	described	in	Section	2.2.2.
Finally,	bad	decisions	that	are	made	regarding	the	allocation	of	functionality

result	in	the	accumulation	of	technical	debt.	(Of	course,	these	decisions	may
reveal	themselves	to	be	bad	only	in	hindsight.)	This	debt	can	be	paid	through	the
use	of	refactoring,	although	this	impacts	the	project’s	rate	of	progress,	or
velocity	(see	the	sidebar	“Refactoring”).

Refactoring
If	you	refactor	a	software	architecture	(or	part	of	one),	what	you	are
doing	is	maintaining	the	same	functionality	but	changing	some
quality	attribute	that	you	care	about.	Architects	often	choose	to
refactor	because	a	portion	of	the	system	is	difficult	to	understand,
debug,	and	maintain.	Alternatively,	they	may	refactor	because	part
of	the	system	is	slow,	or	prone	to	failure,	or	insecure.
The	goal	of	the	refactoring	in	each	case	is	not	to	change	the

functionality,	but	rather	to	change	the	quality	attribute	response.	(Of
course,	additions	to	functionality	are	sometimes	lumped	together
with	a	refactoring	exercise,	but	that	is	not	the	core	intent	of	the
refactoring.)	Clearly,	if	we	can	maintain	the	same	functionality	but
change	the	architecture	to	achieve	different	quality	attribute
responses,	these	requirement	types	are	orthogonal	to	each	other—
that	is,	they	can	vary	independently.

2.4.4	Architectural	Concerns
Architectural	concerns	encompass	additional	aspects	that	need	to	be	considered
as	part	of	architectural	design	but	that	are	not	expressed	as	traditional
requirements.	There	are	several	different	types	of	concerns:



	General	concerns.	These	are	“broad”	issues	that	one	deals	with	in	creating
the	architecture,	such	as	establishing	an	overall	system	structure,	the
allocation	of	functionality	to	modules,	the	allocation	of	modules	to	teams,
organization	of	the	code	base,	startup	and	shutdown,	and	supporting
delivery,	deployment,	and	updates.
	Specific	concerns.	These	are	more	detailed	system-internal	issues	such	as
exception	management,	dependency	management,	configuration,	logging,
authentication,	authorization,	caching,	and	so	forth	that	are	common	across
large	numbers	of	applications.	Some	specific	concerns	are	addressed	in
reference	architectures	(see	Section	2.5.1),	but	others	will	be	unique	to
your	system.	Specific	concerns	also	result	from	previous	design	decisions.
For	example,	you	may	need	to	address	session	management	if	you
previously	decided	to	use	a	reference	architecture	for	the	development	of
web	applications.
	Internal	requirements.	These	requirements	are	usually	not	specified
explicitly	in	traditional	requirement	documents,	as	customers	usually
seldom	express	them.	Internal	requirements	may	address	aspects	that
facilitate	development,	deployment,	operation,	or	maintenance	of	the
system.	They	are	sometimes	called	“derived	requirements”.
	Issues.	These	result	from	analysis	activities,	such	as	a	design	review	(see
Section	8.6),	so	they	may	not	be	present	initially.	For	instance,	an
architectural	evaluation	may	uncover	a	risk	that	requires	some	changes	to
be	performed	in	the	current	design.

Some	of	the	decisions	surrounding	architectural	concerns	might	be	trivial	or
obvious.	For	example,	your	deployment	structure	might	be	a	single	processor	for
an	embedded	system,	or	a	single	cell	phone	for	an	app.	Your	reference
architecture	might	be	constrained	by	company	policy.	Your	authentication	and
authorization	policies	might	be	dictated	by	your	enterprise	architecture	and
realized	in	a	shared	framework.	In	other	cases,	however,	the	decisions	required
to	satisfy	particular	concerns	may	be	less	obvious—for	example,	in	exception
management	or	input	validation	or	structuring	the	code	base.
From	their	past	experience,	wise	architects	are	usually	aware	of	the	concerns

that	are	associated	with	a	particular	type	of	system	and	the	need	to	make	design
decisions	to	address	them.	Inexperienced	architects	are	usually	less	aware	of
such	concerns;	because	these	concerns	tend	to	be	tacit	rather	than	explicit,	they
may	not	consider	them	as	part	of	the	design	process,	which	often	results	in
problems	later	on.
Architectural	concerns	frequently	result	in	the	introduction	of	new	quality



Architectural	concerns	frequently	result	in	the	introduction	of	new	quality
attribute	scenarios.	The	concern	of	“supporting	logging”,	for	example,	is	too
vague	and	needs	to	be	made	more	specific.	Like	the	quality	attribute	scenarios
that	are	provided	by	the	customer,	these	scenarios	need	to	be	prioritized.	For
these	scenarios,	however,	the	customer	is	the	development	team,	operations,	or
other	members	of	the	organization.	During	design,	the	architect	must	consider
both	the	quality	attribute	scenarios	that	are	provided	by	the	customer	and	those
scenarios	that	are	derived	from	architectural	concerns.
One	of	the	goals	of	our	revision	of	the	ADD	method	was	to	elevate	the

importance	of	architectural	concerns	as	explicit	inputs	to	the	architecture	design
process,	as	will	be	highlighted	in	our	examples	and	case	studies	in	Chapters	4,	5,
and	6.

2.4.5	Constraints
You	need	to	catalog	the	constraints	on	development	as	part	of	the	architectural
design	process.	These	constraints	may	take	the	form	of	mandated	technologies,
other	systems	with	which	your	system	needs	to	interoperate	or	integrate,	laws
and	standards	that	must	be	complied	with,	the	abilities	and	availability	of	your
developers,	deadlines	that	are	non-negotiable,	backward	compatibility	with	older
versions	of	systems,	and	so	on.	An	example	of	a	technical	constraint	is	the	use	of
open	source	technologies,	whereas	a	nontechnical	constraint	is	that	the	system
must	obey	the	Sarbanes-Oxley	Act	or	that	it	must	be	delivered	by	December	15.
A	constraint	is	a	decision	over	which	you	have	little	or	no	control	as	an

architect.	Your	job	is,	as	we	mentioned	in	Chapter	1,	to	satisfice:	to	design	the
best	system	that	you	can,	despite	the	constraints	you	face.	Sometimes	you	might
be	able	to	argue	for	loosening	a	constraint,	but	in	most	cases	you	have	no	choice
but	to	design	around	the	constraints.

2.5	Design	Concepts:	The	Building	Blocks	for	Creating	Structures
Design	is	not	random,	but	rather	is	planned,	intentional,	rational,	and	directed.
The	process	of	design	may	seem	daunting	at	first.	When	facing	the	“blank	page”
at	the	beginning	of	any	design	activity,	the	space	of	possibilities	might	seem
impossibly	huge	and	complex.	However,	there	is	some	help	here.	The	software
architecture	community	has	created	and	evolved,	over	the	course	of	decades,	a
body	of	generally	accepted	design	principles	that	can	guide	us	to	create	high-
quality	designs	with	predictable	outcomes.
For	example,	some	well-documented	design	principles	are	oriented	toward	the

achievement	of	specific	quality	attributes:



	To	help	achieve	high	modifiability,	aim	for	good	modularity,	which	means
high	cohesion	and	low	coupling.
	To	help	achieve	high	availability,	avoid	having	any	single	point	of	failure.
	To	help	achieve	scalability,	avoid	having	any	hard-coded	limits	for	critical
resources.
	To	help	achieve	security,	limit	the	points	of	access	to	critical	resources.
	To	help	achieve	testability,	externalize	state.
	.	.	.	and	so	forth.

In	each	case,	these	principles	have	been	evolved	over	decades	of	dealing	with
those	quality	attributes	in	practice.	In	addition,	we	have	evolved	reusable
realizations	of	these	abstract	approaches	in	design	and,	eventually,	in	code.	We
call	these	reusable	realizations	design	concepts,	and	they	are	the	building	blocks
from	which	the	structures	that	make	up	the	architecture	are	created.	Different
types	of	design	concepts	exist,	and	here	we	discuss	some	of	the	most	commonly
used,	including	reference	architectures,	deployment	patterns,	architectural
patterns,	tactics,	and	externally	developed	components	(such	as	frameworks).
While	the	first	four	are	conceptual	in	nature,	the	last	one	is	concrete.

2.5.1	Reference	Architectures
Reference	architectures	are	blueprints	that	provide	an	overall	logical	structure
for	particular	types	of	applications.	A	reference	architecture	is	a	reference	model
mapped	onto	one	or	more	architectural	patterns.	It	has	been	proven	in	business
and	technical	contexts,	and	typically	comes	with	a	set	of	supporting	artifacts	that
eases	its	use.
An	example	of	a	reference	architecture	for	the	development	of	web

applications	is	shown	in	Figure	2.3	on	the	next	page.	This	reference	architecture
establishes	the	main	layers	for	this	type	of	application—presentation,	business,
and	data—as	well	as	the	types	of	elements	that	occur	within	the	layers	and	the
responsibilities	of	these	elements,	such	as	UI	components,	business	components,
data	access	components,	service	agents,	and	so	on.	Also,	this	reference
architecture	introduces	cross-cutting	concerns,	such	as	security	and
communication,	that	need	to	be	addressed.	As	this	example	shows,	when	you
select	a	reference	architecture	for	your	application,	you	also	adopt	a	set	of	issues
that	you	need	to	address	during	design.	You	may	not	have	an	explicit
requirement	related	to	communications	or	security,	but	the	fact	that	these
elements	are	part	of	the	reference	architecture	require	you	to	make	design
decisions	about	them.





FIGURE	2.3	Example	reference	architecture	for	the	development	of	web
applications	from	the	Microsoft	Application	Architecture	Guide	(Key:	UML)

Reference	architectures	may	be	confused	with	architectural	styles,	but	these
two	concepts	are	different.	Architectural	styles	(such	as	“Pipe	and	Filter”	and
“Client	Server”)	define	types	of	components	and	connectors	in	a	specified
topology	that	are	useful	for	structuring	an	application	either	logically	or
physically.	Such	styles	are	technology	and	domain	agnostic.	Reference
architectures,	in	contrast,	provide	a	structure	for	applications	in	specific
domains,	and	they	may	embody	different	styles.	Also,	while	architectural	styles
tend	to	be	popular	in	academia,	reference	architectures	seem	to	be	preferred	by
practitioners—which	is	also	why	we	favor	them	in	our	list	of	design	concepts.
While	there	are	many	reference	architectures,	we	are	not	aware	of	any	catalog

that	contains	an	extensive	list	of	them.

2.5.2	Architectural	Design	Patterns
Design	patterns	are	conceptual	solutions	to	recurring	design	problems	that	exist
in	a	defined	context.	While	design	patterns	originally	focused	on	decisions	at	the
object	scale,	including	instantiation,	structuring,	and	behavior,	today	there	are
catalogs	with	patterns	that	address	decisions	at	varying	levels	of	granularity.	In
addition,	there	are	specific	patterns	to	address	quality	attributes	such	as	security
or	integration.
While	some	people	argue	for	the	differentiation	between	what	they	consider	to

be	architectural	patterns	and	the	more	fine-grained	design	patterns,	we	believe
there	is	no	principled	difference	that	can	be	solely	attributed	to	scale.	We
consider	a	pattern	to	be	architectural	when	its	use	directly	and	substantially
influences	the	satisfaction	of	some	of	the	architectural	drivers	(see	Section	2.2).
Figure	2.4	shows	an	example	architectural	pattern	that	is	useful	for	structuring

the	system,	the	Layers	pattern.	When	you	choose	a	pattern	such	as	this	one,	you
must	decide	how	many	layers	you	will	need	for	your	system.	Figure	2.5	shows	a
pattern	to	support	concurrency,	which	is	useful	to	increase	performance.	This
pattern,	too,	needs	to	be	instantiated—that	is,	it	needs	to	be	adapted	to	the
specific	problem	and	design	context.	Instantiation	is	discussed	in	Chapter	3.



FIGURE	2.4	The	Layers	pattern	for	structuring	an	application	from	Pattern-
Oriented	Software	Architecture



FIGURE	2.5	The	Half-Sync/Half-Async	pattern	to	support	concurrency	from
Pattern-Oriented	Software	Architecture	(Source:	Softserve)

Although	reference	architectures	may	be	considered	as	a	type	of	pattern,	we
prefer	to	consider	them	separately	because	of	the	important	role	they	play	in
structuring	an	application	and	because	they	are	more	directly	connected	to
technology	stacks.	Also,	a	reference	architecture	typically	incorporates	other
patterns	and	often	constrains	these	patterns.	For	example,	the	reference
architecture	for	web	applications	shown	in	Figure	2.3	incorporates	the	Layers
pattern	but	also	establishes	how	many	layers	need	to	be	used.	This	reference
architecture	also	incorporates	other	patterns	such	as	an	Application	Facade	and



Data	Access	Components.

2.5.3	Deployment	Patterns
Another	type	of	pattern	that	we	prefer	to	consider	separately	is	deployment
patterns.	These	patterns	provide	models	on	how	to	physically	structure	the
system	to	deploy	it.	Some	deployment	patterns,	such	as	the	one	shown	in	Figure
2.6,	are	useful	to	establish	an	initial	physical	structure	of	the	system	in	terms	of
tiers	(physical	nodes).	More	specialized	deployment	patterns,	such	as	the	Load-
Balanced	Cluster	in	Figure	2.7,	are	used	to	satisfy	quality	attributes	such	as
availability,	performance,	and	security.

FIGURE	2.6	Four-tier	deployment	pattern	from	the	Microsoft	Application
Architecture	Guide	(Key:	UML)

FIGURE	2.7	Load-Balanced	Cluster	deployment	pattern	for	performance
from	the	Microsoft	Application	Architecture	Guide	(Key:	UML)

In	general,	an	initial	structure	for	the	system	is	obtained	by	mapping	the



In	general,	an	initial	structure	for	the	system	is	obtained	by	mapping	the
logical	elements	that	are	obtained	from	reference	architectures	(and	other
patterns)	into	the	physical	elements	defined	by	deployment	patterns.

2.5.4	Tactics
Architects	can	use	collections	of	fundamental	design	techniques	to	achieve	a
response	for	particular	quality	attributes.	We	call	these	architectural	design
primitives	tactics.	Tactics,	like	design	patterns,	are	techniques	that	architects
have	been	using	for	years.	We	do	not	invent	tactics,	but	simply	capture	what
architects	actually	have	done	in	practice,	over	the	decades,	to	manage	quality
attribute	response	goals.
Tactics	are	design	decisions	that	influence	the	control	of	a	quality	attribute

response.	For	example,	if	you	want	to	design	a	system	to	have	low	latency	or
high	throughput,	you	could	make	a	set	of	design	decisions	that	would	mediate
the	arrival	of	events	(requests	for	service),	resulting	in	responses	that	are
produced	within	some	time	constraints,	as	shown	in	Figure	2.8.

FIGURE	2.8	Tactics	mediate	events	and	responses.

Tactics	are	both	simpler	and	more	primitive	than	patterns.	They	focus	on	the
control	of	a	single	quality	attribute	response	(although	they	may,	of	course,	trade
off	this	response	with	other	quality	attribute	goals).	Patterns,	in	contrast,
typically	focus	on	resolving	and	balancing	multiple	forces—that	is,	multiple
quality	attribute	goals.	By	way	of	analogy,	we	can	say	that	a	tactic	is	an	atom,
whereas	a	pattern	is	a	molecule.
Tactics	provide	a	top-down	way	of	thinking	about	design.	A	tactics

categorization	begins	with	a	set	of	design	objectives	related	to	the	achievement
of	a	quality	attribute,	and	presents	the	architect	with	a	set	of	options	from	which
to	choose.	These	options	then	need	to	be	further	instantiated	through	some
combination	of	patterns,	frameworks,	and	code.
For	example,	in	Figure	2.9,	the	design	objectives	for	performance	are	“Control



Resource	Demand”	and	“Manage	Resources”.	An	architect	who	wants	to	create
a	system	with	“good”	performance	needs	to	choose	one	or	more	of	these	options.
That	is,	the	architect	needs	to	decide	if	controlling	resource	demand	is	feasible,
and	if	managing	resources	is	feasible.	In	some	systems,	the	events	arriving	at	the
system	can	be	managed,	prioritized,	or	limited	in	some	way.	If	this	is	not
possible,	then	the	architect	can	manage	resources	only	as	part	of	an	attempt	to
generate	responses	within	acceptable	time	constraints.	Within	the	“Manage
Resources”	category,	an	architect	might	choose	to	increase	resources,	introduce
concurrency,	maintain	multiple	copies	of	computations,	maintain	multiple	copies
of	data,	and	so	forth.	These	tactics	then	need	to	be	instantiated.	As	an	example,
an	architect	might	choose	the	Half-Sync/Half-Async	pattern	(see	Figure	2.5)	as	a
way	of	introducing	(and	managing)	concurrency,	or	the	Load-Balanced	Cluster
deployment	pattern	(see	Figure	2.7)	to	maintain	multiple	copies	of	computations.
As	we	will	see	in	Chapter	3,	the	choice,	combination,	and	tailoring	of	tactics	and
patterns	are	some	of	the	key	steps	of	the	ADD	process.	There	are	existing	tactics
categorizations	for	the	quality	attributes	of	availability,	interoperability,
modifiability,	performance,	security,	testability,	and	usability.



FIGURE	2.9	Performance	tactics	from	Software	Architecture	in	Practice

2.5.5	Externally	Developed	Components
Patterns	and	tactics	are	abstract	in	nature.	However,	when	you	are	designing	a
software	architecture,	you	need	to	make	these	design	concepts	concrete	and
closer	to	the	actual	implementation.	There	are	two	ways	to	achieve	this:	You	can
code	the	elements	obtained	from	tactics	and	patterns	or	you	can	associate
technologies	with	one	or	more	of	these	elements	in	the	architecture.	This	“buy
versus	build”	choice	is	one	of	the	most	important	decisions	you	will	make	as	an
architect.
We	consider	technologies	to	be	externally	developed	components,	because

they	are	not	created	as	part	of	the	development	project.	Several	types	of
externally	developed	components	exist:

	Technology	families.	A	technology	family	represents	a	group	of	specific
technologies	with	common	functional	purposes.	It	can	serve	as	a
placeholder	until	a	specific	product	or	framework	is	selected.	An	example
is	a	relational	database	management	system	(RDBMS)	or	an	object-
oriented	to	relational	mapper	(ORM).	Figure	2.10	shows	different
technology	families	in	the	Big	Data	domain	(in	regular	text).





FIGURE	2.10	A	technology	family	tree	for	the	Big	Data	application	domain

	Products.	A	product	(or	software	package)	refers	to	a	self-contained
functional	piece	of	software	that	can	be	integrated	into	the	system	that	is
being	designed	and	that	requires	only	minor	configuration	or	coding.	An
example	is	a	relational	database	management	system,	such	as	Oracle	or
Microsoft	SQL	Server.	Figure	2.10	shows	different	products	in	the	Big
Data	domain	(in	italics).
	Application	frameworks.	An	application	framework	(or	just	framework)	is
a	reusable	software	element,	constructed	out	of	patterns	and	tactics,	that
provides	generic	functionality	addressing	recurring	domain	and	quality
attribute	concerns	across	a	broad	range	of	applications.	Frameworks,	when
carefully	chosen	and	properly	implemented,	increase	the	productivity	of
programmers.	They	do	so	by	enabling	programmers	to	focus	on	business
logic	and	end-user	value,	rather	than	underlying	technologies	and	their
implementations.	As	opposed	to	products,	framework	functions	are
generally	invoked	from	the	application	code	or	are	“injected”	using	some
type	of	aspect-oriented	approach.	Frameworks	usually	require	extensive
configuration,	typically	through	XML	files	or	other	approaches	such	as
annotations	in	Java.	A	framework	example	is	Hibernate,	which	is	used	to
perform	object-oriented	to	relational	mapping	in	Java.	Several	types	of
frameworks	are	available:	Full-stack	frameworks,	such	as	Spring,	are
usually	associated	with	reference	architectures	and	address	general
concerns	across	the	different	elements	of	the	reference	architecture,	while
non-full-stack	frameworks,	such	as	JSF,	address	specific	functional	or
quality	attribute	concerns.
	Platforms.	A	platform	provides	a	complete	infrastructure	upon	which	to
build	and	execute	applications.	Examples	of	platforms	include	Java,	.Net,
or	and	Google	Cloud.

The	selection	of	externally	developed	components,	which	is	a	key	aspect	of
the	design	process,	can	be	a	challenging	task	because	of	their	extensive	number.
Here	are	a	few	criteria	you	should	consider	when	selecting	externally	developed
components:

	Problem	that	it	addresses.	Is	it	something	specific,	such	as	a	framework
for	object-oriented	to	relational	mapping	or	something	more	generic,	such
as	a	platform?
	Cost.	What	is	the	cost	of	the	license	and,	if	it	is	free,	what	is	the	cost	of
support	and	education?



	Type	of	license.	Does	it	have	a	license	that	is	compatible	with	the	project
goals?
	Support.	Is	it	well	supported?	Is	there	extensive	documentation	about	the
technology?	Is	there	an	extensive	user	or	developer	community	that	you
can	turn	to	for	advice?
	Learning	curve.	How	hard	is	it	to	learn	this	technology?	Have	others	in
your	organization	already	mastered	it?	Are	there	courses	available?
	Maturity.	Is	it	a	technology	that	has	just	appeared	on	the	market,	which
may	be	exciting	but	still	relatively	unstable	or	unsupported?
	Popularity.	Is	it	a	relatively	widespread	technology?	Are	there	positive
testimonials	or	adoption	by	mature	organizations?	Will	it	be	easy	to	hire
people	who	have	deep	knowledge	of	it?	Is	there	an	active	developer
community	or	user	group?
	Compatibility	and	ease	of	integration.	Is	it	compatible	with	other
technologies	used	in	the	project?	Can	it	be	integrated	easily	in	the	project?
	Support	for	critical	quality	attributes.	Does	it	limit	attributes	such	as
performance?	Is	it	secure	and	robust?
	Size.	Will	the	use	of	the	technology	have	a	negative	impact	on	the	size	of
the	application	under	development?

Unfortunately,	the	answers	to	these	questions	are	not	always	easy	to	find	and
the	selection	of	a	particular	technology	may	require	you	do	some	research	or,
eventually,	to	create	prototypes	that	will	help	you	in	the	selection	process.	These
criteria	will	have	a	significant	effect	on	your	total	cost	of	ownership.

2.6	Architecture	Design	Decisions
As	we	said	at	the	beginning	of	this	chapter,	design	is	the	process	of	making
decisions.	But	the	act	of	making	a	decision	is	a	process,	not	a	moment	in	time.
Experienced	architects,	when	faced	with	a	design	challenge,	typically	entertain	a
set	of	“candidate”	decisions	(as	shown	in	Figure	2.1);	from	this	set,	they	choose
a	best	candidate	and	instantiate	that.	They	might	select	this	“best”	candidate
based	on	experience,	constraints,	or	some	form	of	analysis	such	as	prototyping
or	simulation.	The	reality	is	that	an	architect	will	often	make	a	choice	and	“ride
the	horse	until	it	drops”—that	is,	commit	to	a	decision	and	revisit	it	only	if	it
appears	to	be	compromising	the	success	of	the	project.	These	decisions	have
serious	consequences!
Recall	that,	in	the	early	stages	of	design,	decisions	focus	on	the	biggest,	most



critical	choices	that	will	have	substantial	downstream	consequences:	reference
architectures,	major	technologies	(such	as	frameworks),	and	patterns.	Reference
architectures,	deployment	patterns,	and	other	kinds	of	patterns	have	been	widely
discussed—there	are	many	books,	websites,	and	conferences	devoted	to	the
creation	and	validation	of	patterns	and	pattern	languages.	Nevertheless,	the
output	of	these	activities	is	always	a	set	of	documented	patterns.	Interpreting	the
patterns	from	a	pattern	catalog	is	a	critical	part	of	the	selection	activity	for	an
architect.	Each	candidate	pattern	must	be	chosen	and	its	instantiation	must	be
analyzed.	For	example,	if	you	chose	the	Layers	pattern	from	Figure	2.4,	you
would	still	have	many	decisions	to	make:	how	many	layers	there	will	be,	how
strict	the	layering	will	be,	which	specific	services	will	be	placed	into	each	layer,
what	the	interfaces	between	these	functions	will	be,	and	so	forth.	If	you	chose
the	Load-Balanced	Cluster	deployment	pattern	from	Figure	2.7,	you	would	have
to	decide	how	many	servers	will	be	balanced,	how	many	load	balancers	you	will
use,	where	these	servers	and	load	balancers	will	physically	reside,	which	kinds
of	networks	will	connect	these	servers,	which	form	of	encryption	you	will	use	on
those	network	connections,	which	form	of	health	monitoring	the	load	balancers
will	employ,	and	so	forth.	These	decisions	are	important	and	will	affect	the
success	of	the	instantiated	pattern,	so	they	need	to	be	analyzed.	In	addition,	the
quality	of	the	implementation	of	these	decisions	will	affect	the	success	of	the
pattern.	As	we	like	to	quip,	the	architecture	giveth	and	the	implementation	taketh
away.
Furthermore,	the	many	catalogs	and	web	pages	that	present	design	concepts

use	different	conventions	and	notations.	The	focus	of	our	book	is	on	the	design
method	and	how	it	can	be	used	with	these	external	sources.	For	this	reason	we
just	take	examples	from	outside	sources	and	show	them	here	as	they	were
originally	presented.	This	book	is	not	intended	to	be	another	design	patterns
catalog—we	want	to	alert	you	to	the	presence	of	these	catalogs	and	show	how
they	can	be	an	incredibly	useful	resource	for	an	architect,	but	they	must	be
interpreted	and	used	with	care!	In	fact,	one	of	your	many	jobs	as	an	architect	is
to	understand	and	interpret	these	catalogs,	with	their	different	notations	and
conventions.	This	is	the	reality	that	you	will	have	to	deal	with.
Finally,	once	a	design	decision	has	been	made,	you	should	think	about	how

you	will	document	it.	You	could,	of	course,	do	no	documentation.	This	is,	in
fact,	what	is	most	common	in	practice.	Architectural	concepts	are	often	vague
and	conveyed	informally,	in	“tribal	knowledge”:	personal	communications,
emails,	naming	conventions,	and	so	forth.	Alternatively,	you	could	create	and
maintain	full,	formal	documentation,	as	is	done	for	some	projects	with



demanding	quality	attribute	requirements,	such	as	safety-critical	or	high-security
systems.	If	you	are	designing	flight-control	software,	you	will	probably	end	up	at
this	end	of	the	spectrum.	In	between	these	endpoints	is	a	broad	set	of
possibilities,	and	in	this	space	we	see	less	formal	(and	less	costly)	forms	of
architecture	documentation,	such	as	sketches	(as	we	will	discuss	in	Section	3.7).
The	decision	of	what,	when,	and	how	to	document	should	be	risk	based.	You

should	ask	yourself:	What	is	the	risk	of	not	documenting	this	decision?	Could	it
be	misinterpreted	and	undermined	by	future	developers?	Could	it	contribute	to
near-term	or	long-term	problems	in	the	system?	For	example,	if	the	rationale	for
layering	is	not	carefully	documented,	the	layering	will	inevitably	break	down,
losing	coherence	and	tending	toward	increased	coupling.	Over	time,	this	trend
will	increase	the	system’s	technical	debt,	making	it	harder	to	find	and	fix	bugs	or
add	new	features.	To	take	another	example,	if	the	rationale	for	allocation	of	a
critical	resource	is	not	documented,	that	resource	might	become	an	unintended
contention	area,	resulting	in	bottlenecks	and	failures.

2.7	Summary
In	this	chapter,	we	introduced	the	idea	of	design	as	a	set	of	decisions	to	satisfy
requirements	and	constraints.	We	also	introduced	the	notion	of	“architectural”
design	and	showed	that	it	does	not	differ	from	design	in	general,	other	than	that
it	addresses	the	satisfaction	of	architectural	drivers:	the	purpose,	primary
functionality,	quality	attribute	requirements,	architectural	concerns,	and
constraints.	What	makes	a	decision	“architectural”?	A	decision	is	architectural	if
it	has	nonlocal	consequences	and	those	consequences	matter	to	the	achievement
of	an	architectural	driver.
We	also	discussed	why	architectural	design	is	so	important:	because	it	is	the

embodiment	of	early,	far-reaching,	hard-to-change	decisions.	These	decisions
will	help	you	meet	your	architectural	drivers,	will	determine	much	of	your
project’s	work-breakdown	structure,	and	will	affect	the	tools,	skills,	and
technologies	needed	to	realize	the	system.	Thus	architectural	design	decisions
should	be	scrutinized	well,	as	their	consequences	are	profound.	In	addition,
architecture	is	a	key	enabler	of	agility.
Architectural	design	is	guided	by	certain	principles.	For	example,	to	achieve

good	modularity,	high	coupling,	and	low	cohesion,	the	wise	architect	will
probably	include	some	form	of	layering	in	the	architecture	being	designed.
Similarly,	to	achieve	high	availability,	an	architect	will	likely	choose	a	pattern
involving	some	form	of	redundancy	and	failover,	such	as	active–passive
redundancy,	where	an	active	server	sends	real-time	updates	to	a	passive	server,
so	that	the	passive	server	can	replace	the	active	server	in	case	it	fails,	with	no



so	that	the	passive	server	can	replace	the	active	server	in	case	it	fails,	with	no
loss	of	state.
Design	concepts,	such	as	reference	architectures,	deployment	patterns,

architectural	patterns,	tactics,	and	externally	developed	components,	are	the
building	blocks	of	design,	and	they	form	the	foundation	for	architectural	design
as	it	is	performed	using	ADD.	As	you	will	see	in	our	step-by-step	explanation	of
ADD	in	Chapter	3,	some	of	the	most	important	design	decisions	that	an	architect
makes	are	how	design	concepts	are	selected,	how	they	are	instantiated,	and	how
they	are	combined.	Also,	in	Appendix	A,	we	present	a	design	concepts	catalog
that	includes	several	instances	of	the	design	concepts	presented	here.
From	these	foundations,	an	architecture	can	be	confidently	and	predictably

constructed.

2.8	Further	Reading
A	more	in-depth	treatment	of	scenarios	and	architectural	drivers	can	be	found	in
L.	Bass,	P.	Clements,	and	R.	Kazman,	Software	Architecture	in	Practice,	3rd
ed.,	Addison-Wesley,	2012.	Also	found	in	this	book	is	an	extensive	discussion	of
architectural	tactics,	which	are	useful	in	guiding	an	architecture	to	achieve
quality	attribute	goals.	Likewise,	this	book	contains	an	extensive	discussion	of
QAW	and	Utility	Trees.
The	Mission	Thread	Workshop	is	discussed	in	R.	Kazman,	M.	Gagliardi,	and

W.	Wood,	“Scaling	Up	Software	Architecture	Analysis”,	Journal	of	Systems	and
Software,	85,	1511–1519,	2012;	and	in	M.	Gagliardi,	W.	Wood,	and	T.	Morrow,
Introduction	to	the	Mission	Thread	Workshop,	Software	Engineering	Institute
Technical	Report	CMU/SEI-2013-TR-003,	2013.
An	overview	of	discovery	prototyping,	JRP,	JAD,	and	accelerated	systems

analysis	can	be	found	in	any	competent	book	on	systems	analysis	and	design,
such	as	J.	Whitten	and	L.	Bentley,	Systems	Analysis	and	Design	Methods,	7th
ed.,	McGraw-Hill,	2007.	The	combination	of	architectural	approaches	with
Agile	methods	will	be	discussed	in	Chapter	9.
A	catalog	of	reference	architectures	and	deployment	patterns	appears	in	the

book	by	the	Microsoft	Patterns	and	Practices	Team:	Microsoft®	Application
Architecture	Guide,	2nd	ed.,	Microsoft	Press,	2009.	This	book	also	provides	an
extensive	list	of	architectural	concerns	associated	with	the	reference
architectures	that	are	documented.
An	extensive	collection	of	architectural	design	patterns	for	the	construction	of

distributed	systems	can	be	found	in	F.	Buschmann,	K.	Henney,	and	D.	Schmidt,



Pattern-Oriented	Software	Architecture	Volume	4:	A	Pattern	Language	for
Distributed	Computing,	Wiley,	2007.	Other	books	in	the	POSA	(Patterns	Of
Software	Architecture)	series	provide	additional	pattern	catalogs.	Many	other
pattern	catalogs	specializing	in	particular	application	domains	and	technologies
exist.	A	few	examples	are	listed	here:

	E.	Gamma,	R.	Helm,	R.	Johnson,	and	J.	Vlissides.	Design	Patterns:
Elements	of	Reusable	Object-Oriented	Software.	Addison-Wesley,	1995.
	M.	Fowler.	Patterns	of	Enterprise	Application	Architecture.	Addison-
Wesley,	2003.
	E.	Fernandez-Buglioni.	Security	Patterns	in	Practice:	Designing	Secure
Architectures	Using	Software	Patterns.	Wiley,	2013.
	G.	Hohpe	and	B.	Woolf.	Enterprise	Integration	Patterns:	Designing,
Building,	and	Deploying	Messaging	Solutions.	Addison-Wesley,	2004.

The	evaluation	and	selection	of	software	packages	is	discussed	in	A.	Jadhav
and	R.	Sonar,	“Evaluating	and	Selecting	Software	Packages:	A	Review”,
Journal	of	Information	and	Software	Technology,	51,	555–563,	2009.
The	“bible”	for	software	architecture	documentation	is	P.	Clements,	F.

Bachmann,	L.	Bass,	D.	Garlan,	J.	Ivers,	R.	Little,	P.	Merson,	R.	Nord,	and	J.
Stafford,	Documenting	Software	Architectures:	Views	and	Beyond,	2nd	ed.,
Addison-Wesley,	2011.
The	technology	family	tree	for	the	Big	Data	application	domain	is	based	on

the	Smart	Decisions	Game	by	H.	Cervantes,	S.	Haziyev,	O.	Hrytsay,	and	R.
Kazman,	which	can	be	found	at	http://smartdecisionsgame.com.

http://smartdecisionsgame.com


3.	The	Architecture	Design	Process

In	this	chapter	we	provide	a	detailed	discussion	of	ADD,	the	design	method	that
is	the	focus	of	this	book.	We	begin	with	an	overview	of	the	method	and	of	each
one	of	its	steps.	This	overview	is	followed	by	more	detailed	discussions	of
different	aspects	that	need	to	be	considered	when	performing	these	steps.	We
suggest	different	roadmaps	that	provide	guidance	on	when	different	types	of
design	concepts	can	be	used	depending	on	which	type	of	system	is	being
designed.	We	also	discuss	the	identification	and	selection	of	design	concepts,	the
production	of	structures	from	these	design	concepts,	the	definition	of	interfaces,
the	production	of	preliminary	documentation,	and,	finally,	a	technique	to	track
design	progress.

3.1	The	Need	for	a	Principled	Method
In	Chapter	2,	we	discussed	the	various	concepts	associated	with	design.	The
question	is,	how	do	you	actually	perform	design?	Performing	design	to	ensure
that	the	drivers	are	satisfied	requires	a	principled	method.	By	“principled”,	we
refer	to	a	method	that	takes	into	account	all	of	the	relevant	aspects	that	are
needed	to	produce	an	adequate	design.	Such	a	method	provides	guidance	that	is
necessary	to	guarantee	that	your	drivers	are	satisfied.	To	achieve	this	goal	in	a
cost-effective,	repeatable	way,	you	need	a	method	that	guides	you	in	combining
and	incorporating	reusable	design	concepts.
Performing	design	adequately	is	important	because	architecture	design

decisions	have	significant	consequences	at	different	points	in	a	project’s
lifetime.	For	example,	during	a	pre-sales	phase,	an	appropriate	design	will	allow
for	a	better	estimation	of	cost,	scope,	and	schedule.	During	development,	an
appropriate	design	will	be	helpful	to	avoid	later	rework	and	facilitate
development	and	deployment.	Finally,	a	clear	understanding	of	what
architectural	design	involves	is	necessary	to	better	manage	aspects	of	technical
debt.

3.2	Attribute-Driven	Design	3.0
Architecture	design	is	performed	in	a	series	of	rounds	across	the	development	of
a	software	project.	Each	design	round	may	take	place	within	a	project	increment
such	as	a	sprint.	Within	these	rounds,	a	series	of	design	iterations	is	performed.
Perhaps	the	most	important	characteristic	of	the	ADD	method	is	that	it	provides
detailed,	step-by-step	guidance	on	the	tasks	that	have	to	be	performed	inside	the



design	iterations	(see	Chapter	7	for	a	comparison	with	other	design	methods).
When	ADD	appeared,	it	was	the	first	method	to	focus	specifically	on	quality
attributes	and	their	achievement	through	the	selection	of	different	types	of
structures	and	their	representation	through	views.	Another	important
contribution	of	ADD	was	that	it	recognized	that	analysis	and	documentation	are
an	integral	part	of	the	design	process.	Although	ADD	was	and	is	a	major
contribution	in	the	field	of	software	architecture,	we	believe	that	its	adoption
within	the	practitioner	community	has	been	limited	by	a	number	of	inherent
weaknesses,	as	discussed	in	Section	1.4.
ADD	has	been	used	successfully	for	more	than	15	years.	The	world	of

software	has	changed	dramatically	since	ADD’s	introduction,	however,	and	even
more	since	version	2.0	was	published	in	2006.	For	this	reason,	and	to	address	the
weaknesses	of	version	2.0,	we	have	decided	to	create	ADD	3.0.	Henceforth,	we
will	simply	refer	to	this	method	as	ADD.	Figure	3.1	shows	the	steps	and	artifacts
associated	with	ADD	and	in	the	following	subsections	we	provide	an	overview
of	the	activities	in	each	of	its	steps.



FIGURE	3.1	Steps	and	artifacts	of	ADD	version	3.0

3.2.1	Step	1:	Review	Inputs
Before	starting	a	design	round,	you	need	make	sure	that	the	inputs	to	the	design
process	are	available	and	correct.	First,	you	need	to	ensure	that	you	are	clear
about	the	purpose	for	the	design	activities	that	will	ensue.	The	purpose	may	be,
for	example,	to	produce	a	design	for	early	estimation,	to	refine	an	existing
design	to	build	a	new	increment	of	the	system,	or	to	design	and	generate	a
prototype	to	mitigate	certain	technical	risks	(see	Section	2.4.1	for	a	discussion	of
the	design	purpose).	Also,	you	need	to	make	sure	that	the	other	drivers	needed
for	the	design	activity	are	available.	These	include	primary	functional
requirements,	quality	attribute	scenarios,	architectural	constraints,	and	concerns.



Finally,	if	this	is	not	the	first	design	round,	or	if	this	is	not	greenfield
development,	an	additional	input	that	you	need	to	consider	is	the	existing
architecture	design.
At	this	point,	we	assume	that	primary	functionality	and	quality	attribute

scenarios	have	been	prioritized,	ideally	by	your	most	important	project
stakeholders.	(If	not,	there	are	techniques	that	you	can	employ	to	elicit	and
prioritize	them,	as	discussed	in	Sections	2.4.2	and	2.4.3.)	You,	as	the	architect,
must	now	“own”	these	drivers.	You	need	to	check,	for	example,	whether	any
important	stakeholders	were	overlooked	in	the	original	requirements	elicitation
process,	or	whether	any	business	conditions	have	changed	since	the
prioritization	was	performed.	These	drivers	really	do	“drive”	design,	so	getting
them	right	and	getting	their	priority	right	is	crucial.	We	cannot	stress	this	point
strongly	enough.	Software	architecture	design,	like	most	activities	in	software
engineering,	is	a	“garbage	in,	garbage	out”	process.	The	results	of	ADD	cannot
be	good	if	the	inputs	are	poorly	formed.
As	a	rule	of	thumb,	you	should	be	able	to	start	designing	if,	besides	the	design

purpose,	constraints,	and	initial	architectural	concerns,	you	have	established	the
primary	use	cases	and	the	most	important	quality	attribute	scenarios.	This,	of
course,	does	not	mean	you	will	make	decisions	only	about	these	drivers:	You
still	need	to	address	other	quality	attribute	scenarios,	use	cases	and	architectural
concerns,	but	these	can	be	treated	later	on.
The	drivers	become	part	of	an	architectural	design	backlog	that	you	should

use	to	perform	the	different	design	iterations.	We	discuss	this	idea	in	more	depth
in	Section	3.8.1.

3.2.2	Step	2:	Establish	the	Iteration	Goal	by	Selecting	Drivers
A	design	round	represents	the	architecture	design	activities	performed	within	a
development	cycle	if	an	iterative	development	model	is	used,	or	the	whole	set	of
architecture	design	activities	if	a	waterfall	model	is	used.	Through	one	or	more
rounds,	you	produce	an	architecture	that	suits	the	established	design	purpose.
A	design	round	is	generally	performed	in	a	series	of	design	iterations,	where

each	iteration	focuses	on	achieving	a	particular	goal.	Such	a	goal	typically
involves	designing	to	satisfy	a	subset	of	the	drivers.	For	example,	an	iteration
goal	could	be	to	create	structures	from	elements	that	will	support	a	particular
performance	scenario,	or	that	will	enable	a	use	case	to	be	achieved.	For	this
reason,	when	performing	design,	you	need	to	establish	a	goal	before	you	start	a
particular	design	iteration.



As	we	will	discuss	in	Section	3.3,	depending	on	the	type	of	system	whose
architecture	is	being	designed,	there	may	be	a	“best”—or	at	least	strongly
suggested—ordering	of	the	iteration	goals	that	need	to	be	addressed.	For
example,	for	a	greenfield	system	in	a	mature	domain,	your	initial	goal	is
typically	to	identify	an	overall	structure	for	the	system	by	choosing	a	reference
architecture.

3.2.3	Step	3:	Choose	One	or	More	Elements	of	the	System	to
Refine
Satisfying	drivers	requires	you	to	produce	one	or	more	architectural	structures.
These	structures	are	composed	of	interrelated	elements,	and	those	elements	are
generally	obtained	by	refining	other	elements	that	you	previously	identified	in	an
earlier	iteration.	Refinement	can	mean	decomposition	into	finer-grained
elements	(top-down	approach),	combination	of	elements	into	coarser-grained
elements	(bottom-up	approach),	or	improvement	of	previously	identified
elements.	For	greenfield	development,	you	can	start	by	establishing	the	system
context	and	then	selecting	the	only	available	element—that	is,	the	system	itself
—for	refinement	by	decomposition.	For	existing	systems	or	for	later	design
iterations	in	greenfield	systems,	you	normally	choose	to	refine	elements	that
were	identified	in	prior	iterations.
The	elements	that	you	will	select	are	the	ones	that	are	involved	in	the

satisfaction	of	specific	drivers.	For	this	reason,	when	design	is	performed	for	an
existing	system,	you	need	to	have	a	good	understanding	of	the	elements	that	are
part	of	the	as-built	architecture	of	the	system.	This	may	involve	some	“detective
work”,	reverse	engineering,	or	discussions	with	developers.
We	have	presented	steps	2	and	3	in	the	order	they	appear	in	the	method.	That

is	to	say,	step	2	precedes	step	3.	However,	in	some	cases	you	may	need	to
reverse	this	order.	For	example,	when	designing	a	greenfield	system	or	when
fleshing	out	certain	types	of	reference	architectures	(as	we	will	show	in	Chapter
5),	you	will,	at	least	in	the	early	stages	of	design,	focus	on	elements	of	the
system	and	start	the	iteration	by	selecting	a	particular	element	and	then	consider
the	drivers	that	you	want	to	address.

3.2.4	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy
the	Selected	Drivers
Choosing	the	design	concepts	is	probably	the	most	difficult	decision	you	will
face	in	the	design	process,	because	it	requires	you	to	identify	alternatives	among



design	concepts	that	can	be	used	to	achieve	your	iteration	goal,	and	to	make	a
selection	from	these	alternatives.	As	we	saw	in	Section	2.5,	different	types	of
design	concepts	exist,	and,	for	each	type,	there	may	be	many	options.	This	can
result	in	a	considerable	number	of	alternatives	that	need	to	be	analyzed	to	make
a	choice.	In	Section	3.4,	we	discuss	the	identification	and	selection	of	design
concepts	in	more	detail.

3.2.5	Step	5:	Instantiate	Architectural	Elements,	Allocate
Responsibilities,	and	Define	Interfaces
Once	you	have	selected	one	or	more	design	concepts,	you	must	make	another
design	decision,	which	involves	instantiating	elements	out	of	the	design
concepts	that	you	selected.	For	example,	if	you	selected	the	Layers	pattern	as	a
design	concept,	you	must	decide	how	many	layers	will	be	used,	since	the	pattern
itself	does	not	prescribe	a	specific	number.	In	this	example,	the	layers	are	the
elements	that	are	instantiated.	In	certain	cases,	instantiation	can	mean
configuration.	For	example,	you	may	have	dedicated	an	iteration	to	selecting
technologies	and	associating	them	with	the	elements	in	your	design.	In	further
iterations,	you	might	refine	these	elements	by	making	finer-grained	decisions
about	how	they	should	be	configured	to	support	a	particular	driver,	such	as	a
quality	attribute.
After	instantiating	the	elements,	you	need	to	allocate	responsibilities	to	each

of	them.	For	example,	in	a	typical	web-based	enterprise	system,	at	least	three
layers	are	usually	present:	the	presentation	layer,	the	business	layer,	and	the	data
layer.	The	responsibilities	of	these	layers	differ:	The	responsibilities	of	the
presentation	layer	include	managing	all	of	the	user	interactions,	whereas	the
responsibilities	of	the	data	layer	include	managing	the	persistence	of	data.
Instantiating	elements	is	just	one	of	the	tasks	you	need	to	perform	to	create

structures	that	satisfy	a	driver	or	a	concern.	The	elements	that	have	been
instantiated	also	need	to	be	connected,	to	allow	them	to	collaborate	with	one
another.	This	requires	the	existence	of	relationships	between	the	elements	and
the	exchange	of	information	through	some	kind	of	interface.	The	interface	is	a
contractual	specification	of	how	information	should	flow	between	the	elements.
Section	3.5	provides	more	details	on	how	the	different	types	of	design	concepts
are	instantiated	and	how	structures	are	created,	and	Section	3.6	discusses	how
interfaces	can	be	defined.

3.2.6	Step	6:	Sketch	Views	and	Record	Design	Decisions
At	this	point,	you	have	finished	performing	the	design	activities	for	the	iteration.



At	this	point,	you	have	finished	performing	the	design	activities	for	the	iteration.
Nevertheless,	you	may	not	have	taken	any	actions	to	ensure	that	the	views—the
representations	of	the	structures	you	created—are	preserved.	For	instance,	if	you
performed	the	previous	step	in	a	conference	room,	you	probably	ended	up	with	a
series	of	diagrams	on	a	whiteboard.	This	information	is	essential,	and	you	need
to	capture	it	so	that	you	can	later	analyze	and	communicate	it	to	other
stakeholders.
The	views	that	you	have	created	are	almost	certainly	incomplete,	so	these

diagrams	may	need	to	be	revisited	and	refined	in	a	subsequent	iteration.	This	is
typically	done	to	accommodate	elements	resulting	from	other	design	decisions
that	you	will	make	to	support	additional	drivers.	This	factor	explains	why	we
speak	of	“sketching”	the	views	in	ADD—that	is,	creating	a	preliminary	type	of
documentation.	The	more	formal,	more	fully	fleshed-out	documentation	of	these
views—should	you	choose	to	produce	them—occurs	only	after	a	number	of
design	iterations	have	been	finished	(as	part	of	the	architectural	documentation
activity	discussed	in	Section	1.2.2).
In	addition	to	storing	the	sketches	of	the	views,	you	should	record	the

significant	decisions	that	are	made	in	the	design	iteration,	and	the	reasons	that
led	to	these	decisions	(i.e.,	the	rationale),	to	facilitate	later	analysis	and
understanding	of	the	decisions.	For	example,	decisions	about	important	tradeoffs
might	be	recorded	at	this	time.	During	a	design	iteration,	decisions	are	primarily
made	in	steps	4	and	5.	Section	3.7	provides	further	information	on	how	to	create
preliminary	documentation	during	design,	including	creating	sketches,	recording
design	decisions	and	their	rationale.

3.2.7	Step	7:	Perform	Analysis	of	Current	Design	and	Review
Iteration	Goal	and	Achievement	of	Design	Purpose
By	the	time	you	reach	step	7,	you	should	have	created	a	partial	design	that
addresses	the	goal	established	for	the	iteration.	Making	sure	that	this	is	actually
the	case	is	a	good	idea,	so	as	to	avoid	unhappy	stakeholders	and	later	rework.
You	can	perform	the	analysis	yourself	by	reviewing	the	sketches	of	the	views
and	design	decisions	that	you	recorded,	but	an	even	better	idea	is	to	have
someone	else	help	you	review	this	design.	We	do	this	for	the	same	reason	that
organizations	frequently	have	a	separate	testing/quality	assurance	group:
Another	person	will	not	share	your	assumptions,	and	will	have	a	different
experience	base	and	a	different	perspective.	Pulling	in	someone	with	a	different
point	of	view	can	help	you	find	“bugs”,	in	both	code	and	architecture.	We
discuss	analysis	in	more	depth	in	Chapter	8.



Once	the	design	performed	in	the	iteration	has	been	analyzed,	you	should
review	the	state	of	your	architecture	in	terms	of	the	established	design	purpose.
This	means	considering	if,	at	this	point,	you	have	performed	enough	design
iterations	to	satisfy	the	drivers	that	are	associated	with	the	design	round	as	well
as	considering	whether	the	design	purpose	has	been	achieved	or	if	additional
design	rounds	are	needed	in	future	project	increments.	Section	3.8	describes
simple	techniques	that	allow	you	to	keep	track	of	design	progress.

3.2.8	Iterate	If	Necessary
Ideally,	you	should	perform	additional	iterations	and	repeat	steps	2	to	7	for	every
driver	that	was	considered	as	part	of	the	input.	More	often	than	not,	such
iterations	are	not	possible	because	of	time	or	resource	constraints	that	force	you
to	stop	the	design	activities	and	move	on	to	the	next	activities	in	the
development	process—typically	implementation.
What	are	the	criteria	for	evaluating	if	more	design	iterations	are	necessary?

We	let	risk	be	our	guide.	You	should	at	least	have	addressed	the	drivers	with	the
highest	priorities.	Ideally,	you	should	have	assured	that	critical	drivers	are
satisfied	or,	at	least,	that	the	design	is	“good	enough”	to	satisfy	them.	Finally,
when	performing	iterative	development,	you	can	choose	to	perform	one	design
round	in	every	project	iteration.	The	first	rounds	should	focus	on	addressing	the
drivers,	while	subsequent	rounds	focus	on	making	design	decisions	for	other
requirements	that	were	not	selected	as	drivers	but	that	need	to	be	addressed
nonetheless.

3.3	Following	a	Design	Roadmap	According	to	System	Type
When	writing,	you	might	have	experienced	the	much-dreaded	“fear	of	the	blank
page”.	Similarly,	when	you	start	designing	an	architecture,	you	may	face	a
situation	in	which	you	ask	yourself,	“How	do	I	begin	designing?”	To	answer	this
question,	you	need	to	consider	which	type	of	system	you	are	designing.
Design	of	software	systems	falls	into	three	broad	categories:	(1)	the	design	of

a	greenfield	system	for	a	mature	(i.e.,	well-known)	domain;	(2)	the	design	of	a
greenfield	system	for	a	domain	that	is	novel	(i.e.,	a	domain	that	has	a	less
established	infrastructure	and	knowledge	base);	and	(3)	the	design	for	making
changes	to	an	existing	system	(brownfield).	Each	one	of	these	categories
involves	a	different	roadmap	in	terms	of	the	sequence	of	goals	that	you	should
perform	across	the	design	iterations.

3.3.1	Design	of	Greenfield	Systems	for	Mature	Domains



The	design	of	a	greenfield	system	for	a	mature	domain	occurs	when	you	are
designing	an	architecture	for	a	system	that	is	built	from	“scratch”	and	when	this
type	of	system	is	well	known	and	understood—that	is,	when	there	is	an
established	infrastructure	of	tools	and	technologies,	and	an	associated	knowledge
base.	Examples	of	mature	domains	include	the	following:

	Traditional	desktop	applications
	Interactive	applications	that	run	on	a	mobile	device
	Enterprise	applications	accessed	from	a	web	browser,	which	store
information	in	a	relational	database,	and	which	provide	support	for
partially	or	fully	automating	business	processes

Since	these	types	of	applications	are	relatively	common,	some	general
architectural	concerns	associated	with	their	design	are	well	known,	well
supported,	and	well	documented.	If	you	are	designing	a	new	system	that	falls
into	this	category,	we	recommend	the	following	roadmap	(shown	in	Figure	3.2).

FIGURE	3.2	Design	concept	selection	roadmap	for	greenfield	systems

The	goal	of	your	initial	design	iteration(s)	should	be	to	address	the	general



architectural	concern	of	establishing	an	initial	overall	system	structure.	Is	this	to
be	a	three-tier	client-server	application,	a	peer-to-peer	application,	a	mobile	app
connecting	to	a	Big	Data	back-end,	and	so	on?	Each	of	these	options	will	lead
you	to	different	architectural	solutions,	and	these	solutions	will	help	you	to
achieve	your	drivers.	To	achieve	this	iteration	goal,	you	will	select	some	design
concepts.	Specifically,	you	will	typically	choose	one	or	more	reference
architectures	and	deployment	patterns	(see	Sections	2.5.1	and	2.5.3).	You	may
also	select	some	externally	developed	components,	such	as	frameworks.	The
types	of	frameworks	that	are	typically	chosen	in	early	iterations	are	either	“full-
stack”	frameworks	that	are	associated	with	the	selected	reference	architectures,
or	more	specific	frameworks	that	are	associated	with	elements	established	by	the
reference	architecture	(see	Section	2.5.5).	In	this	first	iteration,	you	should
review	all	of	your	drivers	to	select	the	design	concepts,	but	you	will	probably
pay	more	attention	to	the	constraints	and	to	quality	attributes	that	are	not
associated	with	specific	functionalities	and	that	favor	particular	reference
architectures	or	require	particular	deployment	configurations.	Consider	an
example:	If	you	select	a	reference	architecture	for	Big	Data	systems,	you	have
presumably	chosen	a	quality	attribute	such	as	low	latency	with	high	data
volumes	as	your	most	important	driver.	Of	course,	you	will	make	many
subsequent	decisions	to	flesh	out	this	early	choice,	but	this	driver	has	already
exerted	a	great	influence	on	your	design	such	as	the	selection	of	a	particular
reference	architecture.
The	goal	of	your	next	design	iteration(s)	should	be	to	identify	structures	that

support	the	primary	functionality.	As	noted	in	Section	2.4.3,	allocation	of
functionality	(i.e.,	use	cases	or	user	stories)	to	elements	is	an	important	part	of
architectural	design	because	it	has	critical	downstream	implications	for
modifiability	and	allocation	of	work	to	teams.	Furthermore,	once	functionality
has	been	allocated,	the	elements	that	support	it	can	be	refined	in	later	iterations
to	support	the	quality	attributes	associated	with	these	functionalities.	For
example,	a	performance	scenario	may	be	associated	with	a	particular	use	case.
Achieving	the	performance	goal	may	require	making	design	decisions	across	all
of	the	elements	that	participate	in	the	achievement	of	this	use	case.	To	allocate
functionality,	you	usually	refine	the	elements	that	are	associated	with	the
reference	architecture	by	decomposing	them.	A	particular	use	case	may	require
the	identification	of	multiple	elements.	For	example,	if	you	have	selected	a	web
application	reference	architecture,	supporting	a	use	case	will	probably	require
you	to	identify	modules	across	the	different	layers	associated	with	this	reference
architecture.	Finally,	at	this	point	you	should	also	be	thinking	about	allocating



functionality—associated	with	modules—to	(teams	of)	developers.
The	goal	of	your	subsequent	design	iterations	should	be	to	refine	the

structures	you	have	previously	created	to	fully	address	the	remaining	drivers.
Addressing	these	drivers,	and	especially	quality	attributes,	will	likely	require	you
to	use	the	three	major	categories	of	design	concepts—tactics,	patterns,	and
externally	developed	components	such	as	frameworks—as	well	as	commonly
accepted	design	best	practices	such	as	modularity,	low	coupling,	and	high
cohesion.	For	example,	to	(partially)	satisfy	a	performance	requirement	for	the
search	use	case	in	a	web	application,	you	might	select	the	“maintain	multiple
copies	of	data”	tactic	and	implement	this	tactic	by	configuring	a	cache	in	a
framework	that	is	used	inside	an	element	responsible	for	persisting	data.
This	roadmap	is	appropriate	for	the	initial	project	iterations,	but	it	is	also

extremely	useful	for	early	project	estimation	activities	(see	the	discussion	about
the	architecture	design	process	during	pre-sales	in	Section	9.1.1).	Why	have	we
created	such	a	roadmap?	First,	because	the	process	of	starting	an	architectural
design	is	always	complex.	Second,	because	many	of	the	steps	in	this	roadmap
are	frequently	overlooked	or	done	in	an	intuitive	and	ad	hoc	way,	rather	than	in	a
well-considered,	reflective	way.	Third,	because	different	types	of	design
concepts	exist,	and	it	is	not	always	clear	at	which	point	in	the	design	they	should
be	used.	This	roadmap	encapsulates	best	practices	that	we	have	observed	in	the
most	competent	architecture	organizations.	Simply	put,	the	use	of	a	roadmap
results	in	better	architectures,	particularly	for	less	mature	architects.

3.3.2	Design	of	Greenfield	Systems	for	Novel	Domains
In	the	case	of	novel	domains,	it	is	more	challenging	to	establish	a	precise
roadmap,	because	reference	architectures	may	not	exist	and	there	may	be	few,	if
any,	externally	developed	components	that	you	can	use.	You	are,	more	than
likely,	working	from	first	principles	and	creating	your	own	home-grown
solutions.	Even	in	this	case,	however,	general-purpose	design	concepts	such	as
tactics	and	patterns	can	guide	you,	aided	by	strategic	prototyping.	In	essence,
your	iteration	goals	will	mostly	be	to	continuously	refine	previously	created
structures	to	fully	address	the	drivers.
Many	times,	your	design	goal	will	focus	on	the	creation	of	prototypes	so	that

you	can	explore	possible	solutions	to	the	challenge	that	you	are	facing.	In
particular,	you	may	need	to	focus	on	quality	attributes	and	design	challenges
oriented	toward	issues	such	as	performance,	scalability,	or	security.	We	discuss
the	creation	of	prototypes	in	Section	3.4.2.
Of	course,	the	notion	of	“novel”	is	fluid.	Mobile	application	development	was



Of	course,	the	notion	of	“novel”	is	fluid.	Mobile	application	development	was
a	novel	domain	10	or	15	years	ago,	but	now	it	is	a	well-established	field.

3.3.3	Design	for	an	Existing	System	(Brownfield)
Architecture	design	for	an	existing	system	may	occur	for	different	purposes.	The
most	obvious	is	maintenance—that	is,	when	you	need	to	satisfy	new
requirements	or	correct	issues,	and	doing	so	requires	changes	to	the	architecture
of	an	existing	system.	You	may	also	be	making	architectural	changes	to	an
existing	system	for	the	purpose	of	refactoring.	When	refactoring,	you	change	the
architecture	of	an	existing	system,	without	altering	its	functions,	to	reduce
technical	debt,	to	introduce	technology	updates,	or	to	fix	quality	attribute
problems	(e.g.,	the	system	is	too	slow,	or	insecure,	or	frequently	crashes).
To	be	able	to	choose	elements	to	decompose	as	part	of	the	design	process

(step	3	of	ADD),	you	need	to	first	identify	which	elements	are	present	in	the
architecture	of	the	existing	system.	In	this	sense,	before	starting	the	design
iterations,	your	first	goal	should	be	to	make	sure	that	you	have	a	clear
understanding	of	the	existing	architecture	of	the	system.
Once	you	understand	the	elements,	properties,	and	relationships	that	constitute

the	architecture	of	the	system,	and	the	characteristics	of	the	existing	code	base,
you	can	perform	design	similar	to	what	is	done	for	greenfield	systems	after	the
initial	design	iteration.	Your	design	iteration	goals	here	will	be	to	identify	and
refine	structures	to	satisfy	architectural	drivers,	including	new	functionality	and
quality	attributes,	and	to	address	specific	architectural	concerns.	These	design
iterations	will	typically	not	involve	establishing	a	new	overall	system	structure
unless	you	are	dealing	with	a	major	refactoring.
It	might	seem	that	the	preceding	discussion	of	the	different	contexts	of	design

is	rather	abstract	and	perhaps	even	confusing.	In	the	next	three	chapters	we	will
be	presenting	examples	of	design	of	a	system	in	a	mature	domain	(Chapter	4),
design	for	a	system	in	a	relatively	novel	domain	(Chapter	5),	and	design	to
modify	an	existing	system	(Chapter	6).	These	extended	examples	will	make	the
previously	described	concepts	clearer	and	more	concrete.

3.4	Identifying	and	Selecting	Design	Concepts
Freeman	Dyson,	the	English	physicist,	once	said	the	following:	“A	good
scientist	is	a	person	with	original	ideas.	A	good	engineer	is	a	person	who	makes
a	design	that	works	with	as	few	original	ideas	as	possible”.	This	quotation	is
particularly	relevant	in	the	context	of	software	architecture	design:	Most	of	the
time	you	don’t	need	to,	and	shouldn’t,	reinvent	the	wheel.	Rather,	your	major
design	activities	are	to	identify	and	select	design	concepts	to	address	the



design	activities	are	to	identify	and	select	design	concepts	to	address	the
challenges	and	drivers	that	you	encounter	across	the	design	iterations.	Design	is
still	an	original	and	creative	endeavor,	but	the	creativity	resides	in	the
appropriate	identification	of	these	existing	solutions	and	then	on	combining	and
adapting	them	to	the	problem	at	hand.

3.4.1	Identification	of	Design	Concepts
The	identification	of	design	concepts	can	appear	to	be	daunting,	because	of	the
vast	number	of	design	concepts	that	exist.	There	are	likely	dozens	of	design
patterns	and	externally	developed	components	that	you	could	use	to	address	any
particular	issue.	To	make	things	worse,	these	design	concepts	are	scattered
across	many	different	sources:	in	the	popular	press,	in	research	literature,	in
books,	and	on	the	Internet.	Moreover,	in	many	cases,	there	is	no	canonical
definition	of	a	concept.	Different	sites,	for	example,	will	define	the	Broker
pattern	in	different,	largely	informal,	ways.	Finally,	once	you	have	identified	the
alternatives	that	might	potentially	help	you	achieve	the	design	goals	of	the
iteration,	you	need	to	select	among	them.
To	identify	which	design	concepts	you	need	at	a	particular	point,	you	should

consider	what	we	previously	discussed	regarding	the	design	roadmap.	Different
points	in	the	design	process	usually	require	different	types	of	design	concepts.
For	example,	when	you	are	designing	a	greenfield	system	in	a	mature	domain,
the	types	of	design	concepts	that	will	help	you	initially	structure	the	system	are
reference	architectures	and	deployment	patterns.	As	you	progress	in	the	design
process,	you	will	use	all	of	the	categories	of	design	concepts:	tactics,	architecture
and	design	patterns,	and	externally	developed	components.	Keep	in	mind	that	to
address	a	specific	design	problem,	you	can	and	often	will	use	and	combine
different	types	of	design	concepts.	For	example,	when	addressing	a	security
driver,	you	may	employ	a	security	pattern,	a	security	tactic,	a	security
framework,	or	some	combination	of	these.
Once	you	have	more	clarity	regarding	the	types	of	design	concepts	that	you

wish	to	use,	you	still	need	to	identify	alternatives—that	is,	design	candidates.
There	are	several	ways	to	do	so,	although	you	will	probably	use	a	combination
of	these	techniques	rather	than	a	single	one:

	Leverage	existing	best	practices.	You	can	identify	alternatives	for	your
required	design	concepts	by	making	use	of	catalogs	that	are	available	in
printed	or	online	form.	Some	design	concepts,	such	as	patterns,	are
extensively	documented;	others,	such	as	externally	developed	components,
are	documented	in	a	less	thorough	way.	The	benefits	of	this	approach	are



that	you	can	identify	many	alternatives,	and	that	you	can	leverage	the
considerable	knowledge	and	experience	of	others.	The	downsides	are	that
searching	for	and	studying	the	information	can	require	a	considerable
amount	of	time,	the	quality	of	the	documented	knowledge	is	often
unknown,	and	the	assumptions	and	biases	of	the	authors	are	unknown.
	Leverage	your	own	knowledge	and	experience.	If	the	system	you	are
designing	is	similar	to	other	systems	you	have	designed	in	the	past,	you
will	probably	want	to	begin	with	some	of	the	design	concepts	that	you
have	used	before.	The	benefit	of	this	approach	is	that	the	identification	of
alternatives	is	performed	rapidly	and	confidently.	The	downside	is	that	you
may	end	up	using	the	same	ideas	repeatedly,	even	if	they	are	not	the	most
appropriate	for	all	the	design	problems	that	you	are	facing,	and	if	they	have
been	superseded	by	newer,	better	approaches.	As	the	saying	goes,	“If	you
give	a	small	child	a	hammer,	all	the	world	looks	like	a	nail”.
	Leverage	the	knowledge	and	experience	of	others.	As	an	architect,	you
have	background	and	knowledge	that	you	have	gained	through	the	years.
This	foundation	varies	from	person	to	person,	especially	if	the	types	of
design	problems	they	have	addressed	in	the	past	differ.	You	can	leverage
this	information	by	performing	the	identification	and	selection	of	design
concepts	with	some	of	your	peers	through	brainstorming.

3.4.2	Selection	of	Design	Concepts
Once	you	have	identified	a	list	of	alternative	design	concepts,	you	need	to	select
which	one	is	the	most	appropriate	to	solve	the	design	problem	at	hand.	You	can
achieve	this	in	a	relatively	simple	way,	by	creating	a	table	that	lists	the	pros	and
cons	associated	with	each	alternative	and	selecting	one	of	the	alternatives	based
on	those	criteria	and	your	drivers.	The	table	can	also	include	other	criteria,	such
as	the	cost	associated	with	the	use	of	the	alternative.	Table	3.1	shows	an	example
of	such	a	table	used	to	support	the	selection	of	different	reference	architectures.



TABLE	3.1	Example	of	a	Table	to	Support	the	Selection	of	Alternatives

You	may	also	need	to	perform	a	more	in-depth	analysis	to	select	the
alternative.	Methods	such	as	CBAM	(cost	benefit	analysis	method)	or	SWOT
(strengths,	weaknesses,	opportunities,	threats)	can	help	you	to	perform	this
analysis	(see	the	sidebar	“The	Cost	Benefit	Analysis	Method”).

The	Cost	Benefit	Analysis	Method
The	CBAM	is	a	method	that	guides	the	selection	of	design
alternatives	using	a	quantitative	approach.	This	method	considers
that	architectural	strategies	(i.e.,	combinations	of	design	concepts)
affect	quality	attribute	responses,	and	that	the	level	of	each	response
in	turn	provides	system	stakeholders	with	some	benefit	called
utility.	Each	architectural	strategy	provides	a	different	level	of
utility,	but	also	has	a	cost	and	takes	time	to	implement.	The	idea
behind	the	CBAM	is	that	by	studying	levels	of	utility	and	costs	of
implementation,	particular	architectural	strategies	can	be	selected
based	on	their	associated	return	on	investment	(ROI).	The	CBAM
was	conceived	to	be	performed	after	an	ATAM	(architecture
tradeoff	analysis	method),	but	it	is	possible	to	use	the	CBAM	during
design—that	is,	prior	to	the	moment	where	the	architectural
evaluation	is	performed.
The	CBAM	takes	as	its	input	a	collection	of	prioritized	traditional

quality	attribute	scenarios,	which	are	then	analyzed	and	refined	with
additional	information.	The	addition	is	to	consider	several	levels	of
response	for	each	scenario:



response	for	each	scenario:
	The	worst-case	scenario,	which	represents	the	minimum
threshold	at	which	a	system	must	perform	(utility	=	0)
	The	best-case	scenario,	which	represents	the	level	after	which
stakeholders	foresee	no	further	utility	(utility	=	100)
	The	current	scenario,	which	represents	the	level	at	which	the
system	is	already	performing	(the	utility	of	the	current	scenario	is
estimated	by	stakeholders)
	The	desired	scenario,	which	represents	the	level	of	response	that
the	stakeholders	are	hoping	to	achieve	(the	utility	of	the	desired
scenario	is	estimated	by	stakeholders)
Using	these	data	points,	we	can	draw	a	utility–response	curve,	as

shown	in	the	figure.	After	the	utility–response	curve	is	mapped	for
each	of	the	different	scenarios,	a	number	of	contemplated	design
alternatives	may	be	considered,	and	their	expected	response	values
can	be	estimated.	For	example,	if	we	are	concerned	about	mean
time	to	failure,	we	might	consider	three	different	architectural
strategies	(i.e.,	redundancy	options)—for	example,	no	redundancy,
cold	spare,	and	hot	spare.	For	each	of	these	strategies,	we	could
estimate	their	expected	responses	(i.e.,	their	expected	mean	times	to
failure).	In	the	graph	shown	here,	the	“e”	represents	one	such
option,	placed	on	the	curve	based	on	its	expected	response	measure.
Using	these	response	estimates,	the	utility	values	of	each

architectural	strategy	can	now	be	determined	via	interpolation,
which	provides	its	expected	benefit.	The	costs	of	each	architectural
strategy	are	also	elicited—one	would	expect	hot	spare	to	be	the
most	costly,	followed	by	cold	spare	and	no	redundancy.
Given	all	of	this	information,	architectural	strategies	can	now	be

selected	based	on	their	expected	value	for	cost.



Although	the	CBAM	may	seem	relatively	complex	and	time-
consuming	at	first,	you	need	to	consider	that	some	design	decisions
can	have	enormous	economic	consequences—in	terms	of	their
costs,	their	benefits,	and	their	effects	on	project	schedule.	You	must
decide	if	you	are	willing	to	take	the	chance	of	making	these
decisions	solely	using	a	gut-feeling	approach	versus	this	more
rational	and	systematic	approach.

In	case	the	previous	analysis	techniques	do	not	guide	you	to	make	an
appropriate	selection,	you	may	need	to	create	throwaway	prototypes	and	collect
measurements	from	them.	The	creation	of	early	throwaway	prototypes	is	a	useful
technique	to	help	in	the	selection	of	externally	developed	components.	This	type
of	prototype	is	usually	created	in	a	“quick	and	dirty”	fashion	without	too	much
consideration	for	maintainability	or	reuse.	For	these	reasons,	it	is	important	to
keep	in	mind	that	throwaway	prototypes	should	not	be	used	as	a	basis	for	further
development.
Although	the	creation	of	prototypes	can	be	costly	compared	to	analysis	(the

ratio	of	costs	is	between	10	and	5	to	1,	according	to	our	sources),	certain
scenarios	strongly	motivate	the	creation	of	prototypes.	Aspects	that	you	should



scenarios	strongly	motivate	the	creation	of	prototypes.	Aspects	that	you	should
consider	when	deciding	whether	you	will	create	a	prototype	include	the
following:

	Does	the	project	incorporate	emerging	technologies?
	Is	the	technology	new	in	the	company?
	Are	there	certain	drivers,	particularly	quality	attributes,	whose	satisfaction
using	the	selected	technology	presents	risks	(i.e.,	it	is	not	understood	if
they	can	be	satisfied)?
	Is	there	a	lack	of	trusted	information,	internal	or	external,	that	provides
some	degree	of	certainty	that	the	selected	technology	will	be	useful	to
satisfy	the	project	drivers?
	Are	there	configuration	options	associated	with	the	technology	that	need	to
be	tested	or	understood?
	Is	it	unclear	whether	the	selected	technology	can	be	integrated	with	other
technologies	that	are	used	in	the	project?

If	most	of	your	answers	to	these	questions	are	“yes”,	then	you	should	strongly
consider	the	creation	of	a	throwaway	prototype.
When	identifying	and	selecting	design	concepts,	you	need	to	keep	in	mind	the

constraints	that	are	part	of	the	architectural	drivers,	because	some	constraints
will	restrict	you	from	selecting	particular	alternatives.	For	example,	a	constraint
might	require	that	all	libraries	and	frameworks	in	the	system	do	not	use	the	GPL
license;	thus,	even	if	you	have	found	a	framework	that	could	be	useful	for	your
needs,	you	may	need	to	discard	it	if	it	has	a	GPL	license.	Also,	you	need	to	keep
in	mind	that	the	decisions	regarding	the	selection	of	design	concepts	that	you
have	made	in	previous	iterations	may	restrict	the	design	concepts	that	you	can
select	in	the	future	because	of	incompatibilities.	For	example,	if	you	selected	a
web	application	reference	architecture	for	use	in	an	initial	iteration,	you	cannot
select	a	user	interface	framework	intended	for	local	applications	in	a	subsequent
iteration.
Finally,	you	need	to	remember	that	even	though	ADD	provides	guidance	on

how	to	perform	the	design	process,	it	cannot	ensure	that	you	will	make
appropriate	design	decisions.	Thorough	reasoning	and	considering	different
alternatives	(not	just	the	first	thing	that	comes	to	mind)	are	the	best	means	to
improve	the	odds	of	finding	a	good	solution.	We	discuss	doing	“analysis	in	the
design	process”	in	Chapter	8.

3.5	Producing	Structures



Design	concepts	per	se	won’t	help	you	satisfy	your	drivers	unless	you	produce
structures;	that	is,	you	need	to	identify	and	connect	elements	that	are	derived
from	the	selected	design	concepts.	This	process	is	the	instantiation	of
architectural	elements	in	ADD:	creating	elements	and	relationships	between
them,	and	associating	responsibilities	with	these	elements.	It	is	important	to
remember	that	the	architecture	of	a	software	system	is	composed	of	a	set	of
structures,	which	can	be	grouped	into	three	major	categories:

	Module	structures:	composed	of	logical	and	static	elements	that	exist	at
development	time,	such	as	files,	modules,	and	classes
	Component	and	connector	(C&C)	structures:	composed	of	dynamic
elements	that	exist	at	runtime,	such	as	processes	and	threads
	Allocation	structures:	composed	of	both	software	elements	(from	a	module
or	C&C	structure)	and	non-software	elements	that	may	exist	both	at
development	time	and	at	runtime,	such	as	file	systems,	hardware,	and
development	teams

When	you	instantiate	a	design	concept,	you	may	actually	produce	more	than
one	structure.	For	example,	in	a	particular	iteration	you	may	instantiate	the
Layers	pattern,	which	will	result	in	a	Module	structure.	As	part	of	instantiating
this	pattern,	you	will	need	to	choose	the	number	of	layers,	their	relationships,
and	the	specific	responsibilities	of	each	layer.	As	part	of	the	iteration,	you	may
also	study	how	a	scenario	is	supported	by	the	elements	that	you	have	just
identified.	For	example,	you	could	create	instances	of	the	logical	elements	in	a
C&C	structure	and	model	how	they	exchange	messages	(see	Section	3.6).
Finally,	you	may	want	to	decide	who	will	be	responsible	for	implementing	the
modules	inside	each	of	the	layers,	which	is	an	allocation	decision.

3.5.1	Instantiating	Elements
The	instantiation	of	architectural	elements	depends	on	the	type	of	design	concept
that	you	are	working	with:

	Reference	architectures.	In	the	case	of	reference	architectures,
instantiation	typically	means	that	you	perform	some	sort	of	customization.
As	part	of	this	work,	you	will	add	or	remove	elements	that	are	part	of	the
structure	that	is	defined	by	the	reference	architecture.	For	example,	if	you
are	designing	a	web	application	that	needs	to	communicate	with	an
external	application	to	handle	payments,	you	will	probably	need	an
integration	layer	in	addition	to	the	traditional	presentation,	business,	and
data	layers.



	Architectural	and	design	patterns.	These	patterns	provide	a	generic
structure	composed	of	elements,	their	relationships	and	their
responsibilities.	As	this	structure	is	generic,	you	will	need	to	adapt	it	to
your	specific	problem.	Instantiation	usually	involves	transforming	the
generic	structure	defined	by	the	pattern	into	a	specific	one	that	is	adapted
to	the	needs	of	the	problem	that	you	are	solving.	For	example,	consider	the
Pipe	and	Filters	architectural	pattern.	It	establishes	the	basic	elements	of
computation—filters—and	their	relationships—pipes—but	does	not
specify	how	many	filters	you	should	use	for	your	problem	or	what	their
relationships	should	be.	You	will	instantiate	this	pattern	by	defining	how
many	pipes	and	filters	are	needed	to	solve	your	problem,	by	establishing
the	specific	responsibilities	of	each	of	the	filters,	and	by	defining	their
topology.
	Deployment	patterns.	Similar	to	the	case	with	architectural	and	design
patterns,	the	instantiation	of	deployment	patterns	generally	involves	the
identification	and	specification	of	physical	elements.	If,	for	example,	you
are	using	a	Load-Balanced	Cluster	pattern,	instantiation	may	involve
identifying	the	number	of	replicas	to	be	included	in	the	cluster,	the	load-
balancing	algorithm,	and	the	physical	location	of	the	replicas.
	Tactics.	This	design	concept	does	not	prescribe	a	particular	structure,	so
you	will	need	to	use	other	design	concepts	to	instantiate	a	tactic.	For
example,	you	may	select	a	security	tactic	of	authenticating	actors	and
instantiate	it	by	creating	a	custom-coded	ad	hoc	solution,	or	by	using	a
security	pattern,	or	by	using	an	externally	developed	component	such	as	a
security	framework.
	Externally	developed	components.	The	instantiation	of	these	components
may	or	may	not	imply	the	creation	of	new	elements.	For	example,	in	the
case	of	object-oriented	frameworks,	instantiation	may	require	you	to	create
specific	classes	that	inherit	from	the	base	classes	defined	in	the	framework.
This	will	result	in	new	elements.	Other	approaches,	which	do	not	involve
the	creation	of	new	elements,	might	include	choosing	a	specific	technology
from	a	technology	family	that	was	identified	in	a	previous	iteration,
associating	a	particular	framework	to	elements	that	were	identified	in	a
previous	iteration,	or	specifying	configuration	options	for	an	element
associated	with	a	particular	technology	(such	as	a	number	of	threads	in	a
thread	pool).

3.5.2	Associating	Responsibilities	and	Identifying	Properties
When	you	are	creating	elements	by	instantiating	design	concepts,	you	need	to



When	you	are	creating	elements	by	instantiating	design	concepts,	you	need	to
consider	the	responsibilities	that	are	allocated	to	these	elements.	For	example,	if
you	instantiate	the	Layers	pattern	and	decide	to	use	the	traditional	three-layer
structure,	you	might	decide	that	one	of	the	layers	will	be	responsible	for
managing	the	interactions	with	the	users	(typically	known	as	the	presentation
layer).	When	instantiating	elements	and	allocating	responsibilities,	you	should
keep	in	mind	the	high	cohesion/low	coupling	design	principle:	Elements	should
have	high	cohesion	(internally),	defined	by	a	narrow	set	of	responsibilities,	and
low	coupling	(externally),	defined	by	a	lack	of	knowledge	of	the	implementation
details	of	other	elements.
One	additional	aspect	that	you	need	to	consider	when	instantiating	design

concepts	is	the	properties	of	the	elements.	This	may	involve	aspects	such	as	the
configuration	options,	statefulness,	resource	management,	priority,	or	even
hardware	characteristics	(if	the	elements	that	you	created	are	physical	nodes)	of
the	chosen	technologies.	Identifying	these	properties	supports	analysis	and	the
documentation	of	the	design	rationale.

3.5.3	Establishing	Relationships	Between	the	Elements
The	creation	of	structures	also	requires	making	decisions	with	respect	to	the
relationships	that	exist	between	the	elements	and	their	properties.	Once	again,
consider	the	Layers	pattern.	You	may	decide	that	two	layers	are	connected,	but
these	layers	will	eventually	be	allocated	to	components	that	are,	in	turn,
allocated	to	hardware.	In	such	a	case,	you	need	to	decide	how	communication
will	take	place	between	these	layers,	as	they	have	been	allocated	to	components:
Is	the	communication	synchronous	or	asynchronous?	Does	it	involve	some	type
of	network	communication?	Which	type	of	protocol	is	used?	How	much
information	is	transferred	and	at	what	rate?	These	design	decisions	can	have	a
significant	impact	with	respect	to	achieving	certain	quality	attributes	such	as
performance.

3.6	Defining	Interfaces
Interfaces	are	the	externally	visible	properties	of	elements	that	establish	a
contractual	specification	that	allows	elements	to	collaborate	and	exchange
information.	There	are	two	categories	of	interfaces:	external	and	internal.

3.6.1	External	Interfaces
External	interfaces	include	interfaces	from	other	systems	that	are	required	by	the
system	that	you	are	developing	and	interfaces	that	are	provided	by	your	system



to	other	systems.	Required	interfaces	are	part	of	the	constraints	for	your	system,
as	you	usually	cannot	influence	their	specification.	Provided	interfaces	need	to
be	formally	defined,	which	can	be	performed	in	a	similar	way	to	defining
internal	interfaces—that	is,	by	considering	interactions	between	the	external
systems	and	your	system	and	seeing	them	as	elements	of	a	bigger	structure.
Establishing	a	system	context	at	the	beginning	of	the	design	process	is	useful

to	identify	external	interfaces.	This	context	can	be	represented	using	a	system
context	diagram,	as	shown	in	Figure	3.3.	Given	that	external	entities	and	the
system	under	development	interact	via	interfaces,	there	should	be	at	least	one
external	interface	per	external	system	(each	relationship	in	the	figure).

FIGURE	3.3	A	system	context	diagram

3.6.2	Internal	Interfaces
Internal	interfaces	are	interfaces	between	the	elements	that	result	from	the
instantiation	of	design	concepts.	To	identify	the	relationships	and	the	interface
details,	you	generally	need	to	understand	how	the	elements	exchange
information	at	runtime.	You	can	achieve	this	with	the	help	of	modeling	tools
such	as	UML	sequence	diagrams	(Figure	3.4),	which	allow	you	to	model	the
information	that	is	exchanged	between	elements	during	execution	to	support	use
cases	or	quality	attribute	scenarios.	This	type	of	analysis	is	also	useful	for
identifying	relationships	between	elements:	If	two	elements	need	to	exchange
information	directly,	then	a	relationship	between	these	elements	must	exist.	The
information	that	is	exchanged	becomes	part	of	the	specification	of	the	interface.
Interfaces	typically	consist	of	a	set	of	operations	(such	as	methods)	with



specified	parameters,	return	values,	and	possibly,	exceptions	and	pre	and	post
conditions.	Some	interfaces,	however,	may	involve	other	information	exchange
mechanisms,	such	as	a	component	that	writes	information	to	a	file	or	database
and	another	component	that	then	accesses	this	information.	Interfaces	may	also
establish	quality	of	service	agreements.	For	example,	the	execution	of	an
operation	specified	in	the	interface	may	be	time-constrained	to	satisfy	a
performance	quality	attribute	scenario.

The	following	is	an	initial	sequence	diagram	for	Use	Case	UC-2	(Detect
Fault)1	from	the	FCAPS	case	study	in	Chapter	4.	This	diagram	shows	the
interactions	between	an	actor	and	the	five	components	that	participate	in	UC-
2.	In	creating	this	diagram,	we	identify	the	information	that	is	exchanged,	the
methods	that	are	invoked,	and	the	values	that	are	passed	and	returned.
1.	More	detail	about	this	example	is	presented	in	Chapter	4.



Key:	UML
From	this	interaction,	initial	methods	for	the	interfaces	of	the	interacting
elements	can	be	identified:
Name:	TimeServerConnector

FIGURE	3.4	A	sequence	diagram	used	to	identify	interfaces

The	identification	of	interfaces	is	usually	not	performed	equally	across	all
design	iterations.	When	you	are	starting	the	design	of	a	greenfield	system,	for
example,	your	first	iterations	will	produce	only	abstract	elements	such	as	layers,



example,	your	first	iterations	will	produce	only	abstract	elements	such	as	layers,
with	these	elements	then	being	refined	in	later	iterations.	The	interfaces	of
abstract	elements	such	as	layers	are	typically	underspecified.	For	example,	in	an
early	iteration	you	might	simply	specify	that	the	UI	layer	sends	“commands”	to
the	business	logic	layer,	with	the	business	logic	layer	sending	“results”	back.	As
you	advance	in	the	design	process	and	particularly	when	you	create	structures	to
address	specific	use	cases	and	quality	attribute	scenarios,	you	will	need	to	refine
the	interfaces	of	the	specific	elements	that	participate	in	the	interaction.
In	some	special	cases,	identification	of	interfaces	is	greatly	simplified.	For

example,	in	the	Big	Data	case	study	we	present	in	Chapter	5,	interfaces	are
already	defined	by	the	technologies	that	are	selected.	The	specification	of
interfaces	then	becomes	a	relatively	trivial	task,	as	the	chosen	technologies	are
designed	to	interoperate	and	hence	have	already	“baked	in”	many	interface
assumptions	and	decisions.
Finally,	you	need	to	consider	that	not	all	of	the	internal	interfaces	of	the

system	element	will	be	identified	as	part	of	the	design	process	(see	the	sidebar
“Identifying	Interfaces	in	Element	Interaction	Design”).

Identifying	Interfaces	in	Element	Interaction	Design
Although	defining	interfaces	is	an	essential	part	of	the	architecture
design	process,	it	is	important	to	recognize	that	not	all	of	the
internal	interfaces	are	identified	during	architectural	design.	As	part
of	the	architecture	design	process,	you	typically	consider	the
primary	use	cases	as	part	of	the	architectural	drivers,	and	you
identify	elements	(usually	modules)	that	support	this	primary
functionality	along	with	the	other	drivers.	This	process	will,
however,	not	uncover	all	of	the	elements	and	interfaces	for	the
system	that	are	required	to	support	the	entire	set	of	use	cases.	This
lack	of	specificity	is	intended:	Architecture	is	about	abstraction,	so
necessarily	some	information	is	less	important,	particularly	in	the
earliest	stages	of	design.
Identifying	the	modules	that	support	the	nonprimary	use	cases	is

often	necessary	for	estimation	or	work-assignment	purposes.
Identifying	their	interfaces	is	also	necessary	to	support	the
individual	development	and	integration	of	the	modules	and	to
perform	unit	testing.	This	identification	of	modules	may	be	done
early	in	the	project	life	cycle,	but	it	must	not	be	confused	with	a	big
design	up	front	(BDUF)	approach.	This,	at	most,	is	a	BDUF	that,	in



certain	contexts	such	as	early	estimation	or	iteration	planning,	is
hard	to	avoid.
As	an	architect,	you	may	identify	the	set	of	modules	that	supports

the	complete	set	of	use	cases	for	the	system	or	for	a	particular
release	of	the	system,	but	the	identification	of	the	interfaces
associated	with	the	modules	that	support	the	nonprimary	use	cases
is	typically	not	your	responsibility,	as	it	would	require	a	significant
amount	of	your	time	and	does	not	usually	have	a	major	architectural
impact.	This	task,	which	we	call	element	interaction	design	(see
Section	2.2.2),	is	usually	performed	after	architectural	design	ends
but	before	the	development	of	(most	of)	the	modules	begins.
Although	this	task	should	be	performed	by	other	members	in	the
development	team,	you	play	a	critical	role	in	it,	since	these
interfaces	must	adhere	to	the	architectural	design	that	you
established.	You,	as	the	architect,	must	communicate	the
architecture	to	the	engineers	who	are	responsible	for	identifying	the
interfaces	and	ensure	that	they	understand	the	rationale	for	the
existing	design	decisions.
A	good	way	to	achieve	this	communication	is	to	use	the	active

reviews	for	intermediate	design	(ARID)	method.	In	this	method,	the
architecture	design	(or	part	of	it)	is	presented	to	a	group	of
reviewers—in	this	case,	the	engineers	who	will	make	use	of	this
design.	After	the	design	presentation,	a	set	of	scenarios	is	selected
by	the	participants.	The	selected	scenarios	are	used	for	the	core	of
the	exercise,	where	the	reviewers	use	the	elements	present	in	the
architecture	to	satisfy	them.	In	standard	ARID,	the	reviewers	are
asked	to	write	code	or	pseudo-code	for	the	purpose	of	identifying
interfaces.	Alternatively,	the	architect	can	present	the	architecture,
select	a	nonprimary	functional	scenario	and	ask	the	participants	to
identify	the	interfaces	of	the	components	that	support	the	scenario
using	sequence	diagrams	or	a	similar	method.
Aside	from	the	fact	that	the	architectural	design	is	reviewed	in

this	exercise,	there	are	additional	benefits	to	this	approach.
Specifically,	in	a	single	meeting,	the	architecture	design	or	part	of	it
is	presented	to	the	entire	team,	and	agreements	can	be	reached	with
respect	to	how	the	interfaces	should	be	defined	(e.g.,	the	level	of
detail	or	aspects	such	as	parameter	passing,	data	types,	or	exception
management).



3.7	Creating	Preliminary	Documentation	During	Design
A	software	architecture	is	typically	documented	as	a	set	of	views,	which
represent	the	different	structures	that	compose	the	architecture.	The	formal
documentation	of	these	views	is	not	part	of	the	design	process.	Structures,
however,	are	produced	as	part	of	design.	Capturing	them,	even	in	an	informal
manner	(i.e.,	as	sketches),	along	with	the	design	decisions	that	led	you	to	create
these	structures,	is	a	task	that	should	be	performed	as	part	of	normal	design
activities.

3.7.1	Recording	Sketches	of	the	Views
When	you	produce	structures	by	instantiating	the	design	concepts	that	you	have
selected	to	address	a	particular	design	problem,	you	will	typically	not	produce
these	structures	in	your	mind,	but	rather	will	create	some	sketches	of	them.	In	the
simplest	case,	you	will	produce	these	sketches	on	a	whiteboard,	a	flip-chart,	or
even	a	piece	of	paper.	Otherwise,	you	may	use	a	modeling	tool	in	which	you	will
draw	the	structures.	The	sketches	that	you	produce	are	the	initial	documentation
for	your	architecture	that	you	should	capture	and	may	flesh	out	later,	if
necessary.	When	you	create	sketches,	you	don’t	need	to	always	use	a	more
formal	language	such	as	UML.	If	you	use	some	informal	notation,	you	should	at
least	be	careful	in	maintaining	consistency	in	the	use	of	symbols.	Eventually,
you	will	need	to	add	a	legend	to	your	diagrams	to	provide	clarity	and	avoid
ambiguity.
You	should	develop	discipline	in	writing	down	the	responsibilities	that	you

allocate	to	the	elements	as	you	create	the	structures.	The	reasons	for	this	are
simple:	As	you	identify	an	element,	you	are	determining	some	responsibilities
for	that	element	in	your	mind.	Writing	it	down	at	that	moment	ensures	that	you
won’t	have	to	remember	it	later.	Also,	it	is	easier	to	write	down	the
responsibilities	associated	with	your	elements	gradually,	rather	than	compiling
all	of	them	at	a	later	time.
Creating	this	preliminary	documentation	as	you	design	requires	some

discipline.	But	the	benefits	are	worth	the	effort—you	will	be	able	to	produce	the
more	detailed	architecture	documentation	relatively	easily	and	quickly	at	a	later
point.	One	simple	way	that	you	can	document	responsibilities	if	you	are	using	a
whiteboard,	a	flip-chart,	or	a	PowerPoint	slide	is	to	take	a	photo	of	the	sketch
that	you	have	produced	and	paste	it	in	a	document,	along	with	a	table	that
summarizes	the	responsibilities	of	every	element	depicted	in	the	diagram	(Figure



3.5	provides	an	example).	If	you	are	using	a	computer-aided	software
engineering	(CASE)	tool,	you	can	select	an	element	to	create	and	use	the	text
area	that	usually	appears	in	the	properties	sheet	of	the	element	to	document	its
responsibilities,	and	then	generate	the	documentation	automatically.

This	diagram	presents	a	sketch	of	a	module	view	depicting	the	overall	system
structure	from	the	case	study	in	Chapter	5.

The	diagram	is	complemented	with	a	table	that	describes	the	element’s
responsibilities:

FIGURE	3.5	Sample	preliminary	documentation

Of	course,	it	is	not	necessary	to	document	everything.	The	three	purposes	of
documentation	are	analysis,	construction,	and	education.	At	the	moment	you	are
designing,	you	should	choose	a	documentation	purpose	and	then	document	to



fulfill	that	purpose,	based	on	your	risk	mitigation	concerns.	For	example,	if	you
have	a	critical	quality	attribute	scenario	that	your	architecture	design	needs	to
satisfy,	and	if	you	will	need	to	prove	this	requirement	is	met	in	an	analysis,	then
you	must	take	care	to	document	the	information	that	is	relevant	for	the	analysis
to	be	satisfactory.	Alternatively,	if	you	anticipate	having	to	train	new	team
members,	then	you	should	make	a	sketch	of	a	C&C	view	of	the	system,	showing
how	it	operates	and	how	the	elements	interact	at	runtime,	and	perhaps	construct
a	crude	module	view	of	the	system,	showing	at	least	the	major	layers	or
subsystems.
Finally,	it	is	a	good	idea	to	remember,	as	you	are	documenting,	that	your

design	may	eventually	be	analyzed.	Consequently,	you	need	to	think	about
which	information	should	be	documented	to	support	this	analysis	(see	the
sidebar	“Scenario-Based	Documentation”).

Scenario-Based	Documentation
An	analysis	of	an	architecture	design	is	based	on	your	most
important	use	cases	and	quality	attribute	scenarios.	Simply	put,	a
scenario	is	selected	and	you	must	explain	to	reviewers	how	the
architecture	supports	the	scenario,	and	justify	your	decisions.	To
start	preparing	for	the	analysis	while	you	design,	it	is	useful	to
produce	and	document	structures	that	contain	the	elements	that	are
involved	in	the	satisfaction	of	a	scenario.	This	should	come
naturally	given	that	the	design	process	is	guided	by	scenarios,	but
keeping	this	point	firmly	in	mind	is	always	helpful.
During	the	design	process,	you	should	at	least	try	to	capture	the

following	elements	in	a	single	document:
	The	primary	presentation:	the	diagram	that	represents	the
structure	that	you	produced
	The	element	responsibilities	table:	it	will	help	you	record	the
responsibilities	of	the	elements	that	are	present	in	the	structure
	The	relevant	design	decisions,	and	their	rationales	(see	Section
3.7.2)
You	might	also	capture	two	other	pieces	of	information:
	A	runtime	representation	of	the	element’s	interaction—for
example,	a	sequence	diagram
	The	initial	interface	specifications	(which	can	also	be	captured	in



a	separate	document)
As	you	can	see,	all	of	this	information	needs	to	be	produced	as

part	of	the	design	process.	One	way	or	another,	you	need	to	decide
which	elements	are	present	in	the	system	and	how	they	interact.	The
only	question	is	whether	you	bother	to	write	this	information	down,
or	whether	its	sole	representation	is	in	the	code.
If	you	follow	the	approach	that	we	advocate	here,	at	the	end	of

the	design	you	will	have	a	set	of	preliminary	views	documented,	in
which	each	of	the	views	is	associated	with	a	particular	scenario,	and
you	will	have	this	documentation	at	little	cost.	This	preliminary
documentation	can	be	used	“as	is”	to	analyze	the	design,	and
particularly	through	scenario-based	evaluations.

3.7.2	Recording	Design	Decisions
In	each	design	iteration,	you	make	important	design	decisions	to	achieve	your
iteration	goal.	As	we	saw	previously,	these	design	decisions	include	the
following:

	Selecting	a	design	concept	from	several	alternatives
	Creating	structures	by	instantiating	the	selected	design	concept
	Establishing	relationships	between	elements	and	defining	interfaces
	Allocating	resources	(e.g.,	people,	hardware,	computation)
	Others

When	you	study	a	diagram	that	represents	an	architecture,	you	see	the	end
product	of	a	thought	process,	but	it	may	not	be	easy	to	understand	the	decisions
that	were	made	to	achieve	this	result.	Recording	design	decisions	beyond	the
representation	of	the	chosen	elements,	relationships,	and	properties	is
fundamental	to	help	in	understanding	how	you	arrived	at	the	result:	the	design
rationale.
When	your	iteration	goal	involves	satisfying	a	specific	quality	attribute

scenario,	some	of	the	decisions	that	you	make	will	play	significant	roles	in	your
ability	to	achieve	the	scenario	response	measure.	These	are,	therefore,	the
decisions	that	you	should	take	the	greatest	care	in	recording.	You	should	record
these	decisions	because	they	are	essential	to	facilitate	analysis	of	the	design	you
created;	then	to	facilitate	implementation;	and,	still	later,	to	aid	in	understanding
of	the	architecture	(e.g.,	during	maintenance).	Also	every	design	decision	is
“good	enough”	but	seldom	optimal,	so	you	need	to	justify	the	decisions	made,



and	possibly	revisit	the	remaining	risks	later.
You	might	think	that	recording	design	decisions	is	a	tedious	task.	In	reality,

depending	on	the	criticality	of	the	system	being	developed,	you	can	adjust	the
amount	of	information	that	is	recorded.	For	example,	to	record	a	minimum	of
information,	you	can	use	a	simple	table	such	as	the	one	shown	in	Table	3.2.	If
you	decide	to	record	more	than	this	minimum,	the	following	information	can
prove	useful:

	What	evidence	was	produced	to	justify	decisions?
	Who	did	what?
	Why	were	shortcuts	taken?
	Why	were	tradeoffs	made?
	What	assumptions	did	you	make?

TABLE	3.2	Example	of	a	Table	to	Document	Design	Decisions

And,	in	the	same	way	that	we	suggest	you	record	responsibilities	as	you
identify	elements,	you	should	record	the	design	decisions	as	you	make	them.	The
reason	for	this	is	simple:	If	you	leave	it	until	later,	you	may	not	remember	why
you	did	things.

3.8	Tracking	Design	Progress
Even	though	ADD	provides	clear	guidelines	to	perform	design	systematically,	it
does	not	provide	a	mechanism	to	track	design	progress.	When	you	are
performing	design,	however,	there	are	several	questions	that	you	want	to	answer:

	How	much	design	do	we	need	to	do?
	How	much	design	has	been	done	so	far?



	Are	we	finished?
Agile	practices	such	as	the	use	of	backlogs	and	Kanban	boards	can	help	you

track	the	design	progress	and	answer	these	questions.	These	techniques	are	not
limited	to	Agile	methods,	of	course.	Any	development	project	using	any
methodology	should	track	progress.

3.8.1	Use	of	an	Architectural	Backlog
The	concept	of	an	architecture	(or	design)	backlog	has	been	proposed	by	several
authors	(see	Section	7.1).	This	is	similar	to	what	is	found	in	Agile	development
methods	such	as	Scrum.	The	basic	idea	is	that	you	need	to	create	a	list	of	the
pending	actions	that	still	need	to	be	performed	as	part	of	the	architecture	design
process.
Initially,	you	should	populate	the	design	backlog	with	your	drivers,	but	other

activities	that	support	the	design	of	the	architecture	can	also	be	included.	For
example:

	Creation	of	a	prototype	to	test	a	particular	technology	or	to	address	a
specific	quality	attribute	risk
	Exploration	and	understanding	of	existing	assets	(possibly	requiring
reverse	engineering)
	Issues	uncovered	in	a	review	of	the	design
	Review	of	a	partial	design	that	was	performed	on	a	previous	iteration

For	example,	when	using	Scrum,	the	sprint	backlog	and	the	design	backlog
are	not	independent:	Some	features	in	the	sprint	backlog	may	require
architecture	design	to	be	performed,	so	they	will	generate	items	that	go	into	the
architectural	design	backlog.	These	two	backlogs	can	be	managed	separately,
however.	The	design	backlog	may	even	be	managed	internally,	as	it	contains
several	items	that	are	typically	not	discussed	or	prioritized	by	the	customer	(or
product	owner).
Also,	additional	architectural	concerns	may	arise	as	decisions	are	made.	For

example,	if	you	choose	a	reference	architecture,	you	will	probably	need	to	add
specific	architectural	concerns,	or	quality	attribute	scenarios	derived	from	them,
to	the	architectural	design	backlog.	An	example	of	such	a	concern	is	the
management	of	sessions	for	a	web	application	reference	architecture.

3.8.2	Use	of	a	Design	Kanban	Board
As	design	is	performed	in	rounds	and	as	a	series	of	iterations	within	these



rounds,	you	need	to	have	a	way	of	tracking	the	design’s	degree	of	advancement.
You	must	also	decide	whether	you	need	to	continue	making	more	design
decisions	(i.e.,	performing	additional	iterations).	One	tool	that	can	be	used	to
facilitate	this	task	is	a	Kanban	board,	such	as	the	one	shown	in	Figure	3.6



FIGURE	3.6	A	Kanban	board	used	to	track	design	progress

At	the	beginning	of	a	design	round,	the	inputs	to	the	design	process	become
entries	in	the	backlog.	Initially,	that	activity	occurs	in	step	1	of	ADD;	the
different	entries	in	your	backlog	for	this	design	round	should	be	added	to	the
“Not	Yet	Addressed”	column	of	the	board	(except	if	you	have	some	entries	that
were	not	concluded	in	previous	design	rounds	that	you	wish	to	address	here).
When	you	begin	a	design	iteration,	in	step	2	of	ADD,	the	backlog	entries	that
correspond	to	the	drivers	that	you	plan	to	address	as	part	of	the	design	iteration
goal	should	be	moved	to	the	“Partially	Addressed”	column.	Finally,	once	you
finish	an	iteration	and	the	analysis	of	your	design	decisions	reveals	that	a
particular	driver	has	been	addressed	(step	7	of	ADD),	the	entry	should	be	moved
to	the	“Completely	Addressed”	column	of	the	board.	It	is	important	to	establish
clear	criteria	that	will	allow	a	driver	to	be	moved	to	the	“Completely	Addressed”
column	(think	of	this	as	the	“Definition	of	Addressed”	criteria,	similar	to	the
“Definition	of	Done”	criteria	used	in	Scrum).	A	criterion	may	be,	for	example,
that	the	driver	has	been	analyzed	or	that	it	has	been	implemented	in	a	prototype.
Also,	drivers	that	are	selected	for	a	particular	iteration	may	not	be	completely
addressed	in	that	particular	iteration,	in	which	case	they	should	remain	in	the



“Partially	Addressed”	column	and,	in	preparation	for	subsequent	iterations,	you
should	consider	how	they	can	be	allocated	to	the	elements	that	exist	at	this	point.
It	can	be	useful	to	select	a	technique	that	will	allow	you	to	differentiate	the

entries	in	the	board	according	to	their	priority.	For	example,	you	might	use
different	colors	of	Post-it	notes	depending	on	the	priority.
With	such	a	board,	it	is	easy	to	visually	track	the	advancement	of	design,	as

you	can	quickly	see	how	many	of	the	(most	important)	drivers	are	being	or	have
been	addressed	in	the	design	round.	This	technique	also	helps	you	decide
whether	you	need	to	perform	additional	iterations	as,	ideally,	the	design	round	is
terminated	when	a	majority	of	your	drivers	(or	at	least	the	ones	with	the	highest
priority)	are	located	under	the	“Completely	Addressed”	column.

3.9	Summary
In	this	chapter,	we	presented	a	detailed	walk-through	of	the	Attribute-Driven
Design	method,	version	3.0.	We	also	discussed	several	important	aspects	that
need	to	be	considered	in	the	various	steps	of	the	design	process.	These	aspects
include	the	use	of	a	backlog,	the	various	possible	design	roadmaps	(for
greenfield,	brownfield,	and	novel	contexts),	the	identification	and	selection	of
design	concepts	and	their	use	in	producing	structures,	the	definition	of
interfaces,	and	the	production	of	preliminary	documentation.
Even	though	the	overall	architecture	development	life	cycle	includes

documenting	and	analyzing	architecture	as	activities	that	are	separate	from
design,	we	have	argued	that	a	clean	separation	of	these	activities	is	artificial	and
harmful.	We	stress	that	preliminary	documentation	and	analysis	activities	need
to	be	regularly	performed	as	integral	parts	of	the	design	process.
In	Chapters	4,	5,	and	6,	we	will	instantiate	ADD	3.0	in	several	extended

examples,	showing	how	the	method	works	in	the	real	world,	in	both	greenfield
and	brownfield	contexts.

3.10	Further	Reading
Some	of	the	concepts	of	ADD	3.0	were	first	introduced	in	an	IEEE	Software
article:	H.	Cervantes,	P.	Velasco,	and	R.	Kazman,	“A	Principled	Way	of	Using
Frameworks	in	Architectural	Design”,	IEEE	Software,	46–53,	March/April
2013.	Version	2.0	of	ADD	was	first	documented	in	the	SEI	Technical	Report:	R.
Wojcik,	F.	Bachmann,	L.	Bass,	P.	Clements,	P.	Merson,	R.	Nord,	and	B.	Wood,
“Attribute-Driven	Design	(ADD),	Version	2.0”,	SEI/CMU	Technical	Report
CMU/SEI-2006-TR-023,	2006.	An	extended	example	of	using	ADD	2.0	was



documented	in	W.	Wood,	“A	Practical	Example	of	Applying	Attribute-Driven
Design	(ADD),	Version	2.0”,	SEI/CMU	Technical	Report:	CMU/SEI-2007-TR-
005.
Several	alternative	methods	exist	to	support	the	design	of	software

architectures.	These	are	discussed	in	more	detail	and	referenced	in	Chapter	7.
The	concept	of	an	architecture	backlog	is	discussed	in	C.	Hofmeister,	P.

Kruchten,	R.	Nord,	H.	Obbink,	A.	Ran,	and	P.	America,	“A	General	Model	of
Software	Architecture	Design	Derived	from	Five	Industrial	Approaches”,
Journal	of	Systems	and	Software,	80:106–126,	2007.
The	ARID	method	is	discussed	in	P.	Clements,	R.	Kazman,	and	M.	Klein,

Evaluating	Software	Architectures:	Methods	and	Case	Studies,	Addison-Wesley,
2002.
The	CBAM	method	is	presented	in	L.	Bass,	P.	Clements,	and	R.	Kazman,

Software	Architecture	in	Practice,	3rd	ed.,	Addison-Wesley,	2013.
The	ways	in	which	an	architecture	can	be	documented	are	covered	extensively

in	P.	Clements	et	al.	Documenting	Software	Architectures:	Views	and	Beyond,
2nd	ed.,	Addison-Wesley,	2011.	More	Agile	approaches	to	documenting	are
discussed	in	books	such	as	S.	Brown,	Software	Architecture	for	Developers.
Lean	Publishing,	2015.
The	importance	and	challenges	of	capturing	design	rationale	are	discussed	in

A.	Tang,	M.	Ali	Babar,	I.	Gorton,	and	J.	Han,	“A	Survey	of	Architecture	Design
Rationale”,	Journal	of	Systems	and	Software,	79(12):1792–1804,	2007.	A
minimalistic	technique	for	capturing	rationale	is	discussed	in	U.	Zdun,	R.
Capilla,	H.	Tran,	and	O.	Zimmermann,	“Sustainable	Architectural	Design
Decisions”,	IEEE	Software,	30(6):46–53,	2013.



4.	Case	Study:	FCAPS	System

We	now	present	a	case	study	of	using	ADD	3.0	for	a	greenfield	system	in	a
mature	domain.	This	case	study	details	an	initial	design	round	composed	of	three
iterations	and	is	based	on	a	real-world	example.	We	first	present	the	business
context,	and	then	we	summarize	the	requirements	for	the	system.	This	is
followed	by	a	step-by-step	summary	of	the	activities	that	are	performed	during
the	ADD	iterations.

4.1	Business	Case
In	2006,	a	large	telecommunications	company	wanted	to	expand	its	Internet
Protocol	(IP)	network	to	support	“carrier-class	services”,	and	more	specifically
high-quality	voice	over	IP	(VOIP)	systems.	One	important	aspect	to	achieve	this
goal	was	synchronization	of	the	VOIP	servers	and	other	equipment.	Poor
synchronization	results	in	low	quality	of	service	(QoS),	degraded	performance,
and	unhappy	customers.	To	achieve	the	required	level	of	synchronization,	the
company	wanted	to	deploy	a	network	of	time	servers	that	support	the	Network
Time	Protocol	(NTP).	Time	servers	are	formed	into	groups	that	typically
correspond	to	geographical	regions.	Within	these	regions,	time	servers	are
organized	hierarchically	in	levels	or	strata,	where	time	servers	placed	in	the
upper	level	of	the	hierarchy	(stratum	1)	are	equipped	with	hardware	(e.g.,
Cesium	Oscillator,	GPS	signal)	that	provides	precise	time.	Time	servers	that	are
lower	in	the	hierarchy	use	NTP	to	request	time	from	servers	in	the	upper	levels
or	from	their	peers.
Many	pieces	of	equipment	depend	on	the	time	provided	by	time	servers	in	the

network,	so	one	priority	for	the	company	was	to	correct	any	problems	that	occur
on	the	time	servers.	Such	problems	may	require	dispatching	a	technician	to
perform	physical	maintenance	on	the	time	servers,	such	as	rebooting.	Another
priority	for	the	company	was	to	collect	data	from	the	time	servers	to	monitor	the
performance	of	the	synchronization	framework.
In	the	initial	deployment	plans,	the	company	wanted	to	field	100	time	servers

of	a	particular	model.	Besides	NTP,	time	servers	support	the	Simple	Network
Management	Protocol	(SNMP),	which	provides	three	basic	operations:

	set()	operations:	change	configuration	variables	(e.g.,	connected	peers)
	get()	operations:	retrieve	configuration	variables	or	performance	data
	trap()	operations:	notifications	of	exceptional	events	such	as	the	loss	or



restoration	of	the	GPS	signal	or	changes	in	the	time	reference
To	achieve	the	company’s	goals,	a	management	system	for	the	time	servers

needed	to	be	developed.	This	system	needed	to	conform	to	the	FCAPS	model,
which	is	a	standard	model	for	network	management.	The	letters	in	the	acronym
stand	for:

	Fault	management.	The	goal	of	fault	management	is	to	recognize,	isolate,
correct,	and	log	faults	that	occur	in	the	network.	In	this	case,	these	faults
correspond	to	traps	generated	by	time	servers	or	other	problems	such	as
loss	of	communication	between	the	management	system	and	the	time
servers.
	Configuration	management.	This	includes	gathering	and	storing
configurations	from	network	devices,	thereby	simplifying	the
configuration	of	devices	and	tracking	changes	that	are	made	to	device
configurations.	In	this	system,	besides	changing	individual	configuration
variables,	it	is	necessary	to	be	able	to	deploy	a	specific	configuration	to
several	time	servers.
	Accounting.	The	goal	here	is	to	gather	device	information.	In	this	context,
this	includes	tracking	device	hardware	and	firmware	versions,	hardware
equipment,	and	other	components	of	the	system.
	Performance	management.	This	category	focuses	on	determining	the
efficiency	of	the	current	network.	By	collecting	and	analyzing	performance
data,	the	network	health	can	be	monitored.	In	this	case,	delay,	offset,	and
jitter	measures	are	collected	from	the	time	servers.
	Security	management.	This	is	the	process	of	controlling	access	to	assets	in
the	network.	In	this	case,	there	are	two	important	types	of	users:
technicians	and	administrators.	Technicians	can	visualize	trap	information
and	configurations	but	cannot	make	changes;	administrators	are
technicians	who	can	visualize	the	same	information	but	can	also	make
changes	to	configurations,	including	adding	and	removing	time	servers
from	the	network.

Once	the	initial	network	was	deployed,	the	company	planned	to	extend	it	by
adding	time	servers	from	newer	models	that	might	potentially	support
management	protocols	other	than	SNMP.
The	remainder	of	this	chapter	describes	a	design	for	this	system,	created	using

ADD	3.0.

4.2	System	Requirements
Requirement	elicitation	activities	had	been	previously	performed,	and	the



Requirement	elicitation	activities	had	been	previously	performed,	and	the
following	is	a	summary	of	the	most	relevant	requirements	collected.

4.2.1	Use	Case	Model
The	use	case	model	in	Figure	4.1	presents	the	most	relevant	use	cases	that
support	the	FCAPS	model	in	the	system.	Other	use	cases	are	not	shown.

FIGURE	4.1	Use	case	model	for	the	FCAPS	system

Each	of	these	use	cases	is	described	in	the	following	table:



4.2.2	Quality	Attribute	Scenarios
In	addition	to	these	use	cases,	a	number	of	quality	attribute	scenarios	were



In	addition	to	these	use	cases,	a	number	of	quality	attribute	scenarios	were
elicited	and	documented.	The	six	most	relevant	ones	are	presented	in	the
following	table.	For	each	scenario,	we	also	identify	the	use	case	that	it	is
associated	with.

4.2.3	Constraints
Finally,	a	set	of	constraints	on	the	system	and	its	implementation	were	collected.
These	are	presented	in	the	following	table.



4.2.4	Architectural	Concerns
Given	that	this	is	greenfield	development,	only	a	few	general	architectural
concerns	are	identified	initially,	as	shown	in	the	following	table.

Given	these	sets	of	inputs,	we	are	now	ready	to	proceed	to	describe	the	design
process,	as	described	in	Section	3.2.	In	this	chapter,	we	present	only	the	final
results	of	the	requirements	collection	process.	The	job	of	collecting	these
requirements	is	nontrivial,	but	is	beyond	the	scope	of	this	chapter.

4.3	The	Design	Process
We	now	ready	to	make	the	leap	from	the	world	of	requirements	and	business
concerns	to	the	world	of	design.	This	is	perhaps	the	most	important	job	for	an
architect—translating	requirements	into	design	decisions.	Of	course,	many	other
decisions	and	duties	are	important,	but	this	is	the	core	of	what	it	means	to	be	an
architect:	making	design	decisions	with	far-reaching	consequences.

4.3.1	ADD	Step	1:	Review	Inputs
The	first	step	of	the	ADD	method	involves	reviewing	the	inputs	and	identifying
which	requirements	will	be	considered	as	drivers	(i.e.,	which	will	be	included	in



which	requirements	will	be	considered	as	drivers	(i.e.,	which	will	be	included	in
the	design	backlog).	The	inputs	are	summarized	in	the	following	table.

4.3.2	Iteration	1:	Establishing	an	Overall	System	Structure
This	section	presents	the	results	of	the	activities	that	are	performed	in	each	of	the
steps	of	ADD	in	the	first	iteration	of	the	design	process.

4.3.2.1	Step	2:	Establish	Iteration	Goal	by	Selecting	Drivers
This	is	the	first	iteration	in	the	design	of	a	greenfield	system,	so	the	iteration	goal
is	to	achieve	the	architectural	concern	CNR-1	of	establishing	an	overall	system



structure	(see	Section	3.3.1).
Although	this	iteration	is	driven	by	a	general	architectural	concern,	the

architect	must	keep	in	mind	all	of	the	drivers	that	may	influence	the	general
structure	of	the	system.	In	particular,	the	architect	must	be	mindful	of	the
following:

	QA-1:	Performance
	QA-2:	Modifiability
	QA-3:	Availability
	QA-4:	Performance
	CON-2:	System	must	be	accessed	through	a	web	browser	in	different
platforms—Windows,	OSX,	and	Linux
	CON-3:	A	relational	database	server	must	be	used
	CON-4:	Network	connection	to	users	workstations	can	have	low
bandwidth	and	be	unreliable
	CRN-2:	Leverage	team’s	knowledge	about	Java	technologies

4.3.2.2	Step	3:	Choose	One	or	More	Elements	of	the	System	to	Refine
This	is	a	greenfield	development	effort,	so	in	this	case	the	element	to	refine	is
the	entire	FCAPS	system,	which	is	shown	in	Figure	4.2.	In	this	case,	refinement
is	performed	through	decomposition.

FIGURE	4.2	Context	diagram	for	the	FCAPS	system

4.3.2.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the



4.3.2.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the
Selected	Drivers
In	this	initial	iteration,	given	the	goal	of	structuring	the	entire	system,	design
concepts	are	selected	according	to	the	roadmap	presented	in	Section	3.3.1.	The
following	table	summarizes	the	selection	of	design	decisions.	Note	that	all	of	the
design	concepts	used	in	this	case	study	are	also	described	in	Appendix	A.





4.3.2.4	Step	5:	Instantiate	Architectural	Elements,	Allocate	Responsibilities,
and	Define	Interfaces
The	instantiation	design	decisions	considered	and	made	are	summarized	in	the
following	table:



The	results	of	these	instantiation	decisions	are	recorded	in	the	next	step.	In
this	initial	iteration,	it	is	typically	too	early	to	precisely	define	functionality	and
interfaces.	In	the	next	iteration,	which	is	dedicated	to	defining	functionality	in
more	detail,	interfaces	will	begin	to	be	defined.

4.3.2.5	Step	6:	Sketch	Views	and	Record	Design	Decisions
The	diagram	in	Figure	4.3	shows	the	sketch	of	a	module	view	of	the	two
reference	architectures	that	were	selected	for	the	client	and	server	applications.
These	have	now	been	adapted	according	to	the	design	decisions	we	have	made.





FIGURE	4.3	Modules	obtained	from	the	selected	reference	architectures
(Key:	UML)

This	sketch	was	created	using	a	CASE	tool.	In	the	tool,	each	element	is
selected	and	a	short	description	of	its	responsibilities	is	captured.	Note	that	the
descriptions	at	this	point	are	quite	crude,	just	indicating	major	functional
responsibilities,	with	no	details.	The	following	table	summarizes	the	information
that	is	captured:



The	deployment	diagram	in	Figure	4.4	sketches	an	allocation	view	that
illustrates	where	the	components	associated	with	the	modules	in	the	previous
diagram	will	be	deployed.

FIGURE	4.4	Initial	deployment	diagram	for	the	FCAPS	system	(Key:	UML)



The	responsibilities	of	the	elements	are	summarized	here:

Also,	information	about	relationships	between	some	elements	in	the	diagram
that	is	worth	recording	is	summarized	in	the	following	table:

4.3.2.6	Step	7:	Perform	Analysis	of	Current	Design	and	Review	Iteration
Goal	and	Achievement	of	Design	Purpose
The	following	table	summarizes	the	design	progress	using	the	Kanban	board
technique	discussed	in	Section	3.8.2.





4.3.3	Iteration	2:	Identifying	Structures	to	Support	Primary



4.3.3	Iteration	2:	Identifying	Structures	to	Support	Primary
Functionality
This	section	presents	the	results	of	the	activities	that	are	performed	in	each	of	the
steps	of	ADD	in	the	second	iteration	of	the	design	process	for	the	FCAPS
system.	In	this	iteration,	we	move	from	the	generic	and	coarse-grained
descriptions	of	functionality	used	in	iteration	1	to	more	detailed	decisions	that
will	drive	implementation	and	hence	the	formation	of	development	teams.
This	movement	from	the	generic	to	the	specific	is	intentional,	and	built	into

the	ADD	method.	We	cannot	design	everything	up	front,	so	we	need	to	be
disciplined	about	which	decisions	we	make,	and	when,	to	ensure	that	the	design
is	done	in	a	systematic	way,	addressing	the	biggest	risks	first	and	moving	from
there	to	ever	finer	details.	Our	goal	for	the	first	iteration	was	to	establish	an
overall	system	structure.	Now	that	this	goal	has	been	met,	our	new	goal	for	this
second	iteration	is	to	reason	about	the	units	of	implementation,	which	affect
team	formation,	interfaces,	and	the	means	by	which	development	tasks	may	be
distributed,	outsourced,	and	implemented	in	sprints.

4.3.3.1	Step	2:	Establish	Iteration	Goal	by	Selecting	Drivers
The	goal	of	this	iteration	is	to	address	the	general	architectural	concern	of
identifying	structures	to	support	primary	functionality.	Identifying	these
elements	is	useful	not	only	for	understanding	how	functionality	is	supported,	but
also	for	addressing	CRN-3—that	is,	the	allocation	of	work	to	members	of	the
development	team.
In	this	second	iteration,	besides	CRN-3,	the	architect	considers	the	system’s

primary	use	cases:
	UC-1
	UC-2
	UC-7

4.3.3.2	Step	3:	Choose	One	or	More	Elements	of	the	System	to	Refine
The	elements	that	will	be	refined	in	this	iteration	are	the	modules	located	in	the
different	layers	defined	by	the	two	reference	architectures	from	the	previous
iteration.	In	general,	the	support	of	functionality	in	this	system	requires	the
collaboration	of	components	associated	with	modules	that	are	located	in	the
different	layers.

4.3.3.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the
Selected	Drivers



In	this	iteration,	several	design	concepts—in	this	case,	architectural	design
patterns—are	selected	from	the	book	Pattern	Oriented	Software	Architecture,
Volume	4.	The	following	table	summarizes	the	design	decisions.	The	words	in
bold	in	the	following	table	refer	to	architectural	patterns	from	this	book,	and	can
be	found	in	Appendix	A.

4.3.3.4	Step	5:	Instantiate	Architectural	Elements,	Allocate	Responsibilities,



and	Define	Interfaces
The	instantiation	design	decisions	made	in	this	iteration	are	summarized	in	the
following	table:

While	the	structures	and	interfaces	are	identified	in	this	step	of	the	method,
they	are	captured	in	the	next	step.

4.3.3.5	Step	6:	Sketch	Views	and	Record	Design	Decisions
As	a	result	of	the	decisions	made	in	step	5,	several	diagrams	are	created.

	Figure	4.5	shows	an	initial	domain	model	for	the	system.



FIGURE	4.5	Initial	domain	model	(Key:	UML)

	Figure	4.6	shows	the	domain	objects	that	are	instantiated	for	the	use	case
model	in	Section	4.2.1.



FIGURE	4.6	Domain	objects	associated	with	the	use	case	model	(Key:	UML)

	Figure	4.7	shows	a	sketch	of	a	module	view	with	modules	that	are	derived
from	the	business	objects	and	associated	with	the	primary	use	cases.	Note
that	explicit	interfaces	are	not	shown	but	their	existence	is	assumed.





FIGURE	4.7	Modules	that	support	the	primary	use	cases	(Key:	UML)

The	responsibilities	for	the	elements	identified	in	Figure	4.7	are	summarized
in	the	table	that	begins	on	page	95.

The	following	sequence	diagrams	for	UC-1	and	UC-2	were	created	in	the
previous	step	of	the	method	to	define	interfaces	(as	discussed	in	Section	3.6).	A



similar	diagram	was	also	created	for	UC-7	but	is	not	shown	here	due	to	space
limitations.

UC-1:	Monitor	Network	Status
Figure	4.8	shows	an	initial	sequence	diagram	for	UC-1	(monitor	network	status).
It	shows	how	the	user	representation	of	the	topology	is	displayed	on	startup
(after	the	user	has	successfully	logged	into	the	system).	Upon	launch,	the
topology	is	requested	from	the	TopologyController	on	the	server.	This
element	retrieves	the	root	region	through	the	RegionDataMapper	and	returns
it	to	the	client.	The	client	can	then	populate	the	view	by	traversing	the
relationships	within	the	Region	class.



FIGURE	4.8	Sequence	diagram	for	use	case	UC-1	(Key:	UML)

From	the	interactions	identified	in	the	sequence	diagram,	initial	methods	for
the	interfaces	of	the	interacting	elements	can	be	identified:



UC-2:	Detect	Fault
Figure	4.9	shows	an	initial	sequence	diagram	for	UC-2	(detect	fault)	shows	only
the	components	on	the	server	side.	The	interaction	starts	with	a	TimeServer
sending	a	trap,	which	is	received	by	the	TimeServerConnector.	The	trap	is
transformed	into	an	Event	and	sent	to	the
TimeServerConfigurationController.	The	Event	is	sent
asynchronously	to	the	TopologyController	for	publication	to	the	clients
and	is	then	persisted.



FIGURE	4.9	Sequence	diagram	for	use	case	UC-2	(Key:	UML)

From	this	interaction,	initial	methods	for	the	interfaces	of	the	interacting
elements	can	be	identified:



4.3.3.6	Step	7:	Perform	Analysis	of	Current	Design	and	Review	Iteration
Goal	and	Achievement	of	Design	Purpose
The	decisions	made	in	this	iteration	provided	an	initial	understanding	of	how
functionality	is	supported	in	the	system.	The	modules	associated	with	the
primary	use	cases	were	identified	by	the	architect,	and	the	modules	associated
with	the	rest	of	the	functionality	were	identified	by	another	team	member.	From
the	complete	list	of	modules,	a	work	assignment	table	was	created	(not	shown
here)	to	address	CRN-3.
Also,	as	part	of	module	identification,	a	new	architectural	concern	was

identified	and	added	to	the	Kanban	board.	Drivers	that	were	completely
addressed	in	the	previous	iteration	are	removed	from	the	table.





4.3.4	Iteration	3:	Addressing	Quality	Attribute	Scenario	Driver
(QA-3)
This	section	presents	the	results	of	the	activities	that	are	performed	in	each	of	the
steps	of	ADD	in	the	third	iteration	of	the	design	process.	Building	on	the
fundamental	structural	decisions	made	in	iterations	1	and	2,	we	can	now	start	to
reason	about	the	fulfillment	of	some	of	the	more	important	quality	attributes.
This	iteration	focuses	on	just	one	of	these	quality	attribute	scenarios.

4.3.4.1	Step	2:	Establish	Iteration	Goal	by	Selecting	Drivers
For	this	iteration,	the	architect	focuses	on	the	QA-3	quality	attribute	scenario:	A
failure	occurs	in	the	management	system	during	operation.	The	management
system	resumes	operation	in	less	than	30	seconds.

4.3.4.2	Step	3:	Choose	One	or	More	Elements	of	the	System	to	Refine
For	this	availability	scenario,	the	elements	that	will	be	refined	are	the	physical
nodes	that	were	identified	during	the	first	iteration:

	Application	server
	Database	server

4.3.4.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the
Selected	Drivers



Selected	Drivers
The	design	concepts	used	in	this	iteration	are	the	following:

4.3.4.4	Step	5:	Instantiate	Architectural	Elements,	Allocate	Responsibilities,
and	Define	Interfaces
The	instantiation	design	decisions	are	summarized	in	the	following	table:

The	results	of	these	instantiation	decisions	are	recorded	in	the	next	step.

4.3.4.5	Step	6:	Sketch	Views	and	Record	Design	Decisions
Figure	4.10	shows	a	refined	deployment	diagram	that	includes	the	introduction
of	redundancy	in	the	system.



FIGURE	4.10	Refined	deployment	diagram	(Key:	UML)

The	following	table	describes	responsibilities	for	elements	that	have	not	been
listed	previously	(in	iteration	1):

The	UML	sequence	diagram	shown	in	figure	4.11	illustrates	how	the
TrapReceiver	that	was	introduced	in	this	iteration	exchanges	messages	with
other	elements	shown	in	the	deployment	diagram	to	support	UC-2	(detect	fault),
which	is	associated	with	both	QA-3	(availability)	and	QA-1	(performance).



FIGURE	4.11	Sequence	diagram	illustrating	the	messages	exchanged
between	the	physical	nodes	to	support	UC-2	(Key:	UML)

As	the	purpose	of	this	diagram	is	to	illustrate	the	communication	that	occurs
between	the	physical	nodes,	the	names	of	the	methods	are	only	preliminary;	they
will	be	refined	in	further	iterations.

4.3.4.6	Step	7:	Perform	Analysis	of	Current	Design	and	Review	Iteration
Goal	and	Achievement	of	Design	Purpose
In	this	iteration,	important	design	decisions	have	been	made	to	address	QA-3,
which	also	impacted	QA-1.	The	following	table	summarizes	the	status	of	the
different	drivers	and	the	decisions	that	were	made	during	the	iteration.	Drivers
that	were	completely	addressed	in	the	previous	iteration	have	been	removed
from	the	table.



4.4	Summary
In	this	chapter,	we	presented	an	example	of	using	ADD	to	design	a	greenfield
system	in	a	mature	domain.	We	illustrated	three	iterations	with	different	foci:



system	in	a	mature	domain.	We	illustrated	three	iterations	with	different	foci:
addressing	a	general	concern,	addressing	functionality,	and	addressing	one	key
quality	attribute	scenario.
The	example	followed	the	roadmap	discussed	in	Section	3.3.1.	It	is	interesting

to	observe	that	in	the	first	iteration,	two	different	reference	architectures	were
used	to	structure	the	system.	Also,	the	selection	of	externally	developed
components—in	this	case,	frameworks—was	carried	out	across	the	different
iterations.	Finally,	the	example	illustrates	how	new	architectural	concerns	appear
as	the	design	progresses.
This	example	demonstrates	how	architectural	concerns,	primary	use	cases,

and	quality	attribute	scenarios	can	be	addressed	as	part	of	architectural	design.	In
a	real	system,	more	iterations	would	be	necessary	to	create	a	complete
architecture	design	by	addressing	other	scenarios	with	high	priority.
In	this	example,	we	assumed	that	the	architect	is	using	a	CASE	tool	during

design,	so	diagrams	were	produced	using	UML.	This	is	certainly	not	mandatory,
as	we	will	see	in	the	case	study	presented	in	Chapter	5.	Also,	note	that	it	is
relatively	simple	to	generate	preliminary	view	sketches	by	using	the	information
that	is	generated	as	part	of	the	design	process.

4.5	Further	Reading
Appendix	A	provides	descriptions	and	bibliographical	references	of	all	the
design	concepts	used	in	this	case	study.



5.	Case	Study:	Big	Data	System

With	Serge	Haziyev	and	Olha	Hrytsay

We	now	present	an	extended	design	example	of	using	ADD	3.0	in	a	greenfield
system	for	a	challenging	domain—that	of	Big	Data.	As	of	the	time	of	writing,
this	domain	was	still	relatively	new	and	rapidly	evolving.	As	such,	the	architects
could	not	solely	rely	on	past	experience	to	guide	them.	They	instead
complemented	the	design	process	with	periodic	analyses	and	strategic
prototyping,	as	we	will	now	describe.

5.1	Business	Case
This	case	study	involves	an	Internet	company	that	provides	popular	content	and
online	services	to	millions	of	web	users.	Besides	providing	information
externally,	the	company	collects	and	analyzes	massive	logs	of	data	that	are
generated	from	its	infrastructure	(e.g.,	application	and	server	logs,	system
metrics).	Such	an	approach	of	dealing	with	computer-generated	log	messages	is
also	called	log	management
(http://en.wikipedia.org/wiki/Log_management_and_intelligence).
Because	of	very	fast	infrastructure	growth,	the	company’s	IT	department

realizes	that	the	existing	in-house	systems	can	no	longer	process	the	required	log
data	volume	and	velocity.	Moreover,	requests	for	a	new	system	are	coming	from
other	company	stakeholders,	including	product	managers	and	data	scientists,
who	would	like	to	leverage	the	various	kinds	of	data	that	can	be	collected	from
multiple	data	sources,	not	just	logs.
The	marketecture	diagram	(informal	depiction	of	the	system’s	structure)

shown	in	Figure	5.1	represents	the	desired	solution	from	a	functional	perspective
for	three	major	groups	of	users.

http://en.wikipedia.org/wiki/Log_management_and_intelligence


FIGURE	5.1	Marketecture	diagram	for	the	Big	Data	system

5.2	System	Requirements
Requirement	elicitation	activities	have	been	previously	performed.	The	most
important	requirements	collected	are	summarized	here.	They	comprise	a	set	of
primary	use	cases,	a	set	of	quality	attribute	scenarios,	a	set	of	constraints,	and	a
set	of	architectural	concerns.

5.2.1	Use	Case	Model
The	primary	use	cases	for	the	system	are	described	in	the	following	table.



5.2.2	Quality	Attribute	Scenarios
The	most	relevant	quality	attribute	(raw)	scenarios	are	presented	in	the	following
table.	For	each	scenario,	we	also	identify	the	use	case	that	it	is	associated	with.





5.2.3	Constraints
The	constraints	associated	with	the	system	are	presented	in	the	following	table.

5.2.4	Architectural	Concerns
The	initial	architectural	concerns	that	are	considered	are	shown	in	the	following
table.

5.3	The	Design	Process
Now	that	we	have	enumerated	the	requirements,	we	are	ready	to	begin	the	first
iteration	of	ADD.	This	is	a	system	from	a	relatively	novel	domain	that	is	being
created	from	scratch.	Hence	we	follow	the	roadmap	of	design	for	greenfield
systems	in	mature	domains	(as	discussed	in	Section	3.3.1),	albeit	with	some
modifications	to	address	the	uncertainties	inherent	in	the	Big	Data	domain,	such
as	the	rapid	emergence	and	evolution	of	technologies.

5.3.1	ADD	Step	1:	Review	Inputs
The	first	step	of	the	method	involves	reviewing	the	inputs.	They	are	summarized
in	the	following	table.



5.3.2	Iteration	1:	Reference	Architecture	and	Overall	System
Structure
This	section	presents	the	results	of	the	activities	that	are	performed	in	each	of	the



This	section	presents	the	results	of	the	activities	that	are	performed	in	each	of	the
steps	of	the	ADD	method	in	the	first	iteration	of	the	design	process.

5.3.2.1	Step	2:	Establish	Iteration	Goal	by	Selecting	Drivers
This	is	the	first	iteration	in	the	design	of	a	greenfield	system,	so	the	iteration	goal
is	to	establish	an	initial	overall	structure	for	the	system	(CRN-1).	Even	though
this	first	iteration	is	driven	by	a	general	architectural	concern,	the	architect	must
keep	in	mind	all	of	the	drivers	and,	in	particular,	constraints	and	quality
attributes:

	CON-1:	Leverage	open	source	technologies	whenever	applicable	 	CON-2:
Use	corporate	BI	tool	with	SQL	interface	for	static	reports	 	CON-3:	Two
deployment	environments:	private	and	public	clouds	 	QA-1,	2,	3,	4,	5:
Performance
	QA-6,	7,	8:	Scalability
	QA-9:	Extensibility
	QA-10:	Availability
	QA-11:	Deployability

5.3.2.2	Step	3:	Choose	One	or	More	Elements	of	the	System	to	Refine
Again,	as	this	is	greenfield	development,	and	we	are	in	the	initial	iteration,	the
element	to	refine	is	the	entire	system.

5.3.2.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the
Selected	Drivers
In	this	iteration,	design	concepts	are	selected	from	a	group	of	data	analytics
reference	architectures	(a	list	of	such	reference	architectures	can	be	found	in	the
design	concepts	catalog	of	the	Smart	Decisions	Game;	see	the	Further	Reading
section	for	more	information).







TABLE	5.1	Alternatives	and	Reasons	for	Discarding



FIGURE	5.2	Lambda	Architecture



FIGURE	5.3	Tradeoffs	among	data	analytics	reference	architectures

5.3.2.4	Step	5:	Instantiate	Architectural	Elements,	Allocate	Responsibilities,
and	Define	Interfaces
The	instantiation	design	decisions	considered	and	made	are	summarized	in	the
following	table.



In	this	initial	iteration	it	is	typically	too	early	to	precisely	define	functionality
and	interfaces.

5.3.2.5	Step	6:	Sketch	Views	and	Record	Design	Decisions
Figure	5.4	shows	the	result	of	the	prior	instantiation	design	decisions.	The	table



that	begins	on	the	next	page	summarizes	each	element’s	responsibilities.

FIGURE	5.4	Instantiation	of	the	Lambda	architecture





5.3.2.6	Step	7:	Perform	Analysis	of	Current	Design	and	Review	Iteration
Goal	and	Achievement	of	Design	Purpose
The	decisions	made	in	this	iteration	address	important	early	considerations
affecting	the	overall	system	structure.	You	do	not	need	to	start	from	a	“blank
page”,	because	the	selected	reference	architecture	already	offers	a	proven	initial
decomposition	and	data	flow	that	significantly	saves	design	time	and	effort.
Further	design	decisions	will	need	to	be	made	to	selected	candidate	technologies
and	more	details	provided	on	how	use	cases	and	quality	attributes	will	be
supported.
The	following	table	summarizes	the	design	progress	using	the	Kanban	board

technique	discussed	in	Section	3.8.2.







5.3.3	Iteration	2:	Selection	of	Technologies
This	section	presents	the	results	of	the	activities	that	are	performed	in	each	of	the
steps	of	ADD	in	the	second	iteration	of	the	design	process.
Technology	choices	often	influence	the	system	architecture,	meaning	that	we

need	to	select	technologies	at	the	earliest	stages	of	architecture	design.	Choosing
technologies	starts	with	the	identification	and	selection	of	technology	families
that	are	further	instantiated	into	specific	technologies.	Starting	with	technology
families	allows	us	to	make	specific	technologies	interchangeable	and	thus	keep
the	right	level	of	technology	agnosticism	to	avoid	vendor	lock-in	(and	as	a	result,
there	is	less	risk	and	less	cost	to	change	a	technology	to	a	better	one	in	the
future).
In	this	iteration	we	will	show	a	technology	tree	that	helps	us	choose	optimal

building	blocks	when	designing	Big	Data	greenfield	systems.

5.3.3.1	Step	2:	Establish	Iteration	Goal	by	Selecting	Drivers
The	goal	of	this	iteration	is	to	address	CRN-2	(leverage	the	team’s	knowledge	of
the	Apache	Big	Data	ecosystem)	by	selecting	technologies	to	support	system
requirements	defined	in	Section	5.2,	particularly	keeping	in	mind	CON-1	(favor
open	source	technologies).

5.3.3.2	Step	3:	Choose	One	or	More	Elements	of	the	System	to	Refine
The	reference	architecture	selected	in	the	previous	iteration	(the	Lambda
architecture)	was	decomposed	into	elements	that	facilitate	the	selection	of
technology	families	and	their	associated	specific	technologies.	These	elements



technology	families	and	their	associated	specific	technologies.	These	elements
include	the	Data	Stream,	Raw	Data	Storage,	Ad	Hoc	and	Static	Views
Precomputing,	Ad	Hoc	and	Static	Batch	Views,	Real-Time	Views,	and
Dashboard/Visualization	Tool.

5.3.3.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the
Selected	Drivers
The	design	concepts	used	in	this	iteration	are	externally	developed	components.
Initially,	technology	families	are	selected	and	associated	with	the	elements	to	be
refined.	A	technology	family	represents	a	group	of	technologies	with	common
functional	purposes	(see	Section	2.5.5).	The	family	names	are	indicative	of	their
function,	and	some	specific	technologies	may	belong	to	several	families	at	the
same	time,	but	having	such	a	classification	helps	us	make	rational	design
decisions	that	eventually	pay	off	in	less	rework	and	better	readiness	for	changes.
The	history	of	the	software	industry	shows	that	technology	implementations	are
emerging,	evolving,	and	disappearing	much	faster	than	the	patterns	and
principles	represented	by	their	families.
Figure	5.5	illustrates	family	groups,	technology	families	(in	regular	text),	and

their	associated	specific	technologies	(in	italic	text)	for	the	Big	Data	domain.
Further	details	about	a	number	of	these	technologies	can	be	found	in	the	design
concepts	catalog	of	the	Smart	Decisions	Game	(see	the	Further	Reading	section).





FIGURE	5.5	An	example	of	a	Big	Data	analytics	design	concepts	catalog
(Source:	Softserve)

The	BI	Platform	family	group	and	related	technologies	are	not	considered
further	in	this	design	exercise	because	the	corporate	BI	tool	is	external	to	the
target	system.









5.3.3.4	Step	5:	Instantiate	Architectural	Elements,	Allocate	Responsibilities,
and	Define	Interfaces
In	this	iteration,	instantiation	is	performed	by	associating	specific	technologies
with	the	technology	families	that	were	previously	selected.	The	instantiation
design	decisions	considered	and	made	are	summarized	in	the	following	table:







The	data	exchanged	between	the	elements	will	be	defined	more	precisely	in
subsequent	iterations.	The	format	of	this	data	constitutes	the	“interfaces”
between	the	elements.

5.3.3.5	Step	6:	Sketch	Views	and	Record	Design	Decisions
Figure	5.6	illustrates	the	result	of	the	instantiation	decisions.	The	responsibilities
of	the	elements	shown	in	the	diagram	were	discussed	in	step	6	of	Iteration	1.	The
following	table	summarizes	the	technology	families	and	candidate	specific
technologies	selected	for	these	elements:



FIGURE	5.6	Iteration	2	instantiation	design	decisions

The	next	table	explains	the	relationships	between	elements	based	on	the
selected	technologies:

5.3.3.6	Step	7:	Perform	Analysis	of	Current	Design	and	Review	Iteration
Goal	and	Achievement	lf	Design	Purpose



Goal	and	Achievement	lf	Design	Purpose
The	following	Kanban	table	summarizes	the	design	progress	and	the	decisions
made	during	the	iteration.	Note	that	drivers	that	were	completely	addressed	in
the	previous	iteration	are	not	shown.





5.3.4	Iteration	3:	Refinement	of	the	Data	Stream	Element
This	section	presents	the	results	of	the	activities	that	are	performed	in	each	of	the
steps	of	ADD	for	the	third	iteration	of	the	design	process.
Some	design	decisions	made	in	this	iteration	require	the	creation	of	a	proof-

of-concept	prototype,	as	they	cannot	be	addressed	in	a	purely	conceptual
manner.	Given	that	the	Big	Data	field	is	young	and	technologies	are	rapidly
evolving,	proofs-of-concepts	of	key	elements	are	necessary	to	mitigate
technology	risks	(e.g.,	incompatibility,	slow	performance,	unsatisfactory
reliability,	limitations	of	claimed	features)	and	to	have	the	option	to	switch	to	an
alternative	early	in	the	design	and	development	process,	thereby	saving	overall
time	and	budget	by	avoiding	later	rework.

5.3.4.1	Step	2:	Establish	the	Iteration	Goal	by	Selecting	Drivers
The	goal	of	this	iteration	is	to	address	several	concerns	associated	with	the
selection	of	Apache	Flume,	as	the	technology	to	be	used	for	the	Data	Collector
element.	Apache	Flume	provides	a	reference	structure—a	data-flow	model—
depicted	in	the	informal	diagram	shown	in	Figure	5.7.
The	elements	in	Flume’s	structure	include:



	The	source:	consumes	events	delivered	to	it	by	external	data	sources	such
as	web	servers	 	The	channel:	stores	events	received	by	the	source
	The	sink:	removes	events	from	the	channel	and	puts	them	in	an	external
repository	(i.e.,	destination)

FIGURE	5.7	Apache	Flume	data-flow	reference	structure

The	selection	of	Apache	Flume	raises	several	specific	architectural	concerns
that	need	to	be	addressed:

	Selecting	a	mechanism	for	getting	data	from	the	external	sources	
Selecting	specific	input	formats	in	the	Source	element	 	Selecting	a	file
data	format	in	which	to	store	the	events	 	Selecting	a	mechanism	for	the
channeling	events	in	the	channel	 	Establishing	a	deployment	topology	for
the	Data	Source	elements	Addressing	these	specific	architectural	concerns
will	contribute	to	the	satisfaction	of	the	following	quality	attributes:
	QA-1	(Performance)
	QA-7	(Scalability)
	QA-9	(Extensibility)
	QA-10	(Availability)

5.3.4.2	Step	3:	Choose	One	or	More	Elements	of	the	System	to	Refine
In	this	iteration,	the	focus	is	on	the	elements	in	Flume’s	structure.

5.3.4.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the
Selected	Drivers
In	this	iteration	most	of	the	decisions	are	about	instantiation,	since	they	primarily
involve	configuring	the	elements	that	are	already	established	by	Flume.	The	only
selection	design	decision	involves	choosing	tactics	to	satisfy	the	availability	and
performance	quality	attributes.



performance	quality	attributes.

5.3.4.4	Step	5:	Instantiate	Architectural	Elements,	Allocate	Responsibilities,
and	Define	Interfaces
The	instantiation	design	decisions	made	in	this	iteration	are	summarized	in	the
following	table:



following	table:







5.3.4.5	Step	6:	Sketch	Views	and	Record	Design	Decisions
Figure	5.8	illustrates	the	result	of	the	instantiation	decisions.



FIGURE	5.8	Iteration	3	instantiation	design	decisions

5.3.4.6	Step	7:	Perform	Analysis	of	Current	Design	and	Review	Iteration
Goal	and	Achievement	of	Design	Purpose
The	following	Kanban	table	summarizes	the	design	progress	and	the	decisions
made	during	the	iteration.	Note	that	drivers	that	were	completely	addressed	in
the	previous	iteration	are	not	shown.



5.3.5	Iteration	4:	Refinement	of	the	Serving	Layer
We	now	present	the	results	of	the	activities	that	are	performed	in	each	of	the
steps	of	ADD	in	the	fourth	iteration	of	the	design	process.
We	selected	the	Serving	Layer	for	refinement	(not	the	Batch	Layer)	because

the	risk	of	not	achieving	requirements	is	higher	for	this	layer.	This	layer	is
directly	involved	in	use	cases	UC-3	and	UC-4	and	a	number	of	quality	attribute
scenarios	in	which	performance	and	scalability	are	critical	factors.
As	in	the	previous	iteration,	design	activities	involve	the	creation	of

prototypes.	In	this	iteration,	UI	prototypes	are	also	created.	There	are	at	least	two
reasons	for	this:	 	It	will	facilitate	receiving	early	feedback	from	users,	which
can	help	to	update	requirements.

	Data	visualization	scenarios	often	have	an	influence	on	data	modeling.

5.3.5.1	Step	2:	Establish	the	Iteration	Goal	by	Selecting	Drivers
The	goal	of	this	iteration	is	to	address	the	newly	identified	concern	of	data



The	goal	of	this	iteration	is	to	address	the	newly	identified	concern	of	data
modeling	and	developing	proof-of-concept	prototypes	for	key	system	elements
(CRN-3)	so	as	to	satisfy	the	primary	use	cases	and	system	requirements
associated	with	the	analysis	and	visualization	of	historic	data.	These	use	cases
include:

	UC-3
	UC-4

The	quality	attribute	scenarios	associated	with	these	use	cases	are:
	QA-4	(Performance)
	QA-5	(Performance)
	QA-7	(Scalability)
	QA-8	(Scalability)

5.3.5.2	Step	3:	Choose	One	or	More	Elements	of	the	System	to	Refine
In	this	iteration,	the	elements	that	are	refined	are	the	ones	that	support	historical
data,	which	include	the	Serving	Layer	elements:	the	Ad	Hoc	and	Static	Batch
Views.	Given	that	both	types	of	elements	use	the	same	technology	(Impala),	the
decisions	made	in	this	iteration	affect	both	types	of	elements.

5.3.5.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the
Selected	Drivers
As	in	the	previous	iteration,	the	design	activities	here	involve	the	configuration
of	the	technologies	that	were	associated	with	the	elements.	For	this	reason,	no
new	design	concepts	are	selected	and	all	of	the	decisions	belong	to	the
instantiation	category.

5.3.5.4	Step	5:	Instantiate	Architectural	Elements,	Allocate	Responsibilities,
and	Define	Interfaces
In	this	iteration,	design	concepts	are	instantiated	based	on	the	best	practices	of
using	the	chosen	technologies.







5.3.5.5	Step	6:	Sketch	Views	and	Record	Design	Decisions
Figure	5.9	depicts	the	star	schema	data	model	implemented	using	Impala	and
Parquet.



FIGURE	5.9	Star	schema	implemented	in	Impala	and	Parquet

The	screenshot	in	Figure	5.10	presents	a	sample	static	report	implemented
with	Tableau	to	demonstrate	a	possible	view	through	a	corporate	BI	tool.	The
report	was	created	using	test	data	stored	in	Parquet	and	provided	by	Impala
through	the	ODBC	interface.



FIGURE	5.10	Sample	static	report	implemented	with	Tableau

5.3.5.6	Step	7:	Perform	Analysis	of	Current	Design	and	Review	Iteration
Goal	and	Achievement	of	Design	Purpose
The	following	Kanban	table	summarizes	the	design	progress	and	the	decisions
made	during	the	iteration.	Note	that	drivers	that	were	completely	addressed	in
the	previous	iteration	are	not	shown.



5.4	Summary
In	this	chapter	we	presented	an	extended	example	of	using	ADD	3.0	in	a
relatively	novel	domain,	that	of	Big	Data.	As	this	example	shows,	architectural
design	can	require	many	detailed	decisions	to	be	made	to	ensure	that	the	quality
attributes	will	be	satisfied.
Also,	this	example	shows	that	a	large	number	of	decisions	rely	on	knowledge

of	many	different	patterns	and	technologies.	The	more	novel	the	domain,	the
more	likely	that	preexisting	information	(e.g.,	design	concepts	catalog,	books	of
patterns,	and	reference	architectures)	will	not	be	available	for	it.	In	such	a	case,
you	need	to	rely	on	your	own	judgment	and	experience,	or	you	need	to	perform
experiments	and	build	prototypes.	One	way	or	another,	such	decisions	must	be
made.
This	instance	of	ADD	also	differed	from	the	example	presented	in	Chapter	4

in	that	we	spent	relatively	little	time	and	effort	on	building	sequence	diagrams	as
a	means	of	deriving	interface	specifications.	The	example	presented	here	relied
on	a	relatively	simple	data-flow	architecture	with	a	modest	number	of
components,	so	sequence	diagrams	were	not	needed	to	understand	the
relationships	between	the	components.	The	“contracts”	between	the	elements
were	determined	by	the	information	exchanged,	as	exemplified	in	step	5	of
Iteration	3	(Section	5.3.4.4).



5.5	Further	Reading
The	design	of	a	data	warehouse	has	been	extensively	studied.	Two	good
approaches	are	documented	in	R.	Kimball	and	M.	Ross,	The	Data	Warehouse
Toolkit,	3rd	ed.,	Wiley,	2013;	and	W.	Inmon,	Building	the	Data	Warehouse,	4th
ed.,	Wiley,	2005.
The	Lambda	architecture	was	first	presented	by	N.	Marz	and	J.	Warren,	Big

Data:	Principles	and	Best	Practices	of	Scalable	Realtime	Data	Systems,
Manning,	2015.
A	good	discussion	of	how	to	engineer	for	scalability	can	be	found	in	M.

Abbott	and	M.	Fisher,	The	Art	of	Scalability:	Scalable	Web	Architecture,
Processes,	and	Organizations	for	the	Modern	Enterprise,	Addison-Wesley,
2010.
P.	Sadalage	and	M.	Fowler.	NoSQL	Distilled:	A	Brief	Guide	to	the	Emerging

World	of	Polyglot	Persistence,	Addison-Wesley,	2009.
A	discussion	of	how	and	when	to	prototype	as	part	of	the	architecture	design

process	can	be	found	in	H-M	Chen,	R.	Kazman,	and	S.	Haziyev,	“Strategic
Prototyping	for	Developing	Big	Data	Systems”,	IEEE	Software,	March/April
2016.
A	design	concepts	catalog	that	includes	many	of	the	reference	architectures

and	technologies	used	in	this	case	study	is	part	of	the	Smart	Decisions	Game,
which	can	be	found	at	H.	Cervantes,	S.	Haziyev,	O.	Hrytsay,	and	R.	Kazman,
“Smart	Decisions	Game”,	http://smartdecisionsgame.com.

http://smartdecisionsgame.com


6.	Case	Study:	Banking	System

Chapters	4	and	5	were	both	instances	of	greenfield	development.	In	truth,	that
kind	of	development	is	relatively	rare.	Most	of	the	time	you,	as	an	architect,	will
be	working	on	evolving	an	existing	system	rather	than	creating	one	from	scratch.
In	this	chapter,	we	present	an	example	of	using	ADD	3.0	for	a	brownfield
system	in	a	mature	domain	(as	discussed	in	Section	3.3.3).	We	first	present	the
business	context	and	then	examine	the	project’s	existing	architectural
documentation.	This	is	followed	by	a	step-by-step	summary	of	the	activities	that
are	performed	during	the	ADD	iterations	to	evolve	the	system.	While	this	is	a
real	system,	some	of	the	details	have	been	changed	to	protect	the	identities	of	the
actors.

6.1	Business	Case
In	2010,	the	government	of	a	Latin	American	country	issued	a	regulation	that
required	banking	institutions	to	digitally	sign	bank	statements.	To	comply	with
the	regulation,	“ACME	Bank”	decided	to	commission	the	development	of	a
software	system,	which	we	will	call	BankStat,	whose	main	purpose	was	the
generation	of	digitally	signed	bank	statements.
Figure	6.1	presents	a	context	diagram	that	illustrates	how	the	BankStat	system

works.	At	its	core,	the	system	executes	a	batch	process,	which	retrieves	raw	bank
statement	information	from	a	data	source	(an	external	database)	and	then
performs	a	series	of	validations	on	this	data	to	generate	the	bank	statements	and
prepare	them	for	digital	signature	by	an	external	provider.	The	statements	are
sent	to	the	provider,	which	returns	the	signed	bank	statements.	These	statements
are	then	stored	by	BankStat	for	further	processing,	including	sending	the
statements	to	customers.	This	batch	process	is	triggered	automatically	once	a
month	and,	during	its	execution,	approximately	2	million	bank	statements	are
processed.



FIGURE	6.1	Context	diagram	for	the	BankStat	system

The	following	quality	attributes	scenarios	are	primary	for	this	system:
	Reliability:	Under	normal	operating	conditions,	the	batch	process	is
executed	in	its	entirety	100%	of	the	time.
	Performance:	Under	normal	operating	conditions,	when	the	batch	process
starts,	2	million	bank	statements	are	read,	processed,	and	sent	to	the
signing	provider	in	at	most	one	hour.
	Availability:	During	normal	processing,	a	failure	may	occur	when	reading
information	from	the	data	source	or	when	sending	information	for	digital
signature.	A	notification	is	then	sent	to	the	administrator,	who	manually
restarts	the	process.	When	it	is	restarted,	only	the	information	that	had	not
already	been	processed	is	treated.

Due	to	time	constraints	imposed	by	the	government,	only	the	core	batch
process	for	the	system	was	developed	and	put	into	production.	This	initial
release,	however,	did	not	provide	a	friendly	interface	with	the	system,	which	is
necessary	to	monitor	the	state	of	the	bank	statement	processing,	to	request	the
reprocessing	of	incorrect	statements.	and	to	generate	reports.	In	the	first	release,
the	process	could	only	be	started	or	stopped	manually	from	a	console.	For	a
second	release	of	the	system,	the	ACME	Bank	requested	an	extension	of	the
BankStat	system	to	better	address	these	shortcomings.
The	following	subsections	present	the	drivers	for	this	second	release	of	the

system.

6.1.1	Use	Case	Model



Figure	6.2	presents	the	use	case	model	for	the	second	release	of	BankStat.

FIGURE	6.2	Use	cases	for	the	BankStat	system	(Key:	UML)

These	use	cases	are	described	in	more	detail	here:

6.1.2	Quality	Attribute	Scenarios
The	following	table	presents	the	new	quality	attribute	scenario	that	is	considered
for	this	extension	of	the	system.



6.1.3	Constraints
The	following	table	presents	the	constraints	that	are	considered	for	this	extension
of	the	system.

6.1.4	Architectural	Concerns
The	following	table	presents	the	concerns	that	are	initially	considered	for	this
extension	of	the	system.

6.2	Existing	Architectural	Documentation
This	section	presents	a	simplified	version	of	the	system’s	views,	which	provide
relevant	information	for	the	changes	in	the	architecture.

6.2.1	Module	View
The	package	diagram	shown	in	Figure	6.3	depicts	the	system	layers	and	the



modules	that	they	contain.

FIGURE	6.3	Existing	modules	and	layers	in	the	BankStat	system	(Key:
UML)

The	responsibilities	of	the	elements	depicted	in	the	diagram	are	described	in
the	following	table.



6.2.2	Allocation	View
The	deployment	diagram	shown	in	Figure	6.4	presents	an	allocation	view
consisting	of	nodes	and	their	relationships.



FIGURE	6.4	Existing	deployment	diagram	for	the	BankStat	system	(Key:
UML)

The	responsibilities	of	the	elements	depicted	in	the	diagram	are	described	in
the	following	table.

6.3	The	Design	Process
We	now	describe	the	design	process	through	the	different	steps	of	ADD	(as
discussed	in	Section	3.2).	As	this	is	not	a	huge	change	to	the	existing	system,	the



architect	expects	that	the	design	activities	will	require	only	a	single	iteration	of
ADD.

6.3.1	ADD	Step	1:	Review	Inputs
The	first	step	of	the	ADD	method	involves	reviewing	the	inputs.	They	are
summarized	in	the	following	table.

6.3.2	Iteration	1:	Supporting	the	New	Drivers
This	section	presents	the	results	of	the	activities	that	are	performed	in	each	of	the
steps	of	ADD	in	the	single	iteration	performed	in	this	example.

6.3.2.1	Step	2:	Establish	Iteration	Goal	by	Selecting	Drivers
Only	a	limited	number	of	drivers	need	to	be	addressed,	so	the	architect	has
decided	that	a	single	iteration	is	sufficient.	The	goal	of	this	iteration	is	to	modify
the	existing	design	to	support	all	of	the	new	drivers	listed	in	Section	6.1

6.3.2.2	Step	3:	Choose	One	or	More	Elements	of	the	System	to	Refine
The	elements	to	refine	include	the	main	modules	from	BankStat	and	the	node
where	the	system	is	deployed	(BankStat	Server).	In	addition	to	refining	these
modules,	the	physical	node	where	the	application	is	hosted	is	a	candidate	for
refinement.

6.3.2.3	Step	4:	Choose	One	or	More	Design	Concepts	That	Satisfy	the
Selected	Drivers
The	following	table	summarizes	the	design	decisions	made	with	respect	to	the



The	following	table	summarizes	the	design	decisions	made	with	respect	to	the
selection	of	design	concepts.



6.3.2.4	Step	5:	Instantiate	Architectural	Elements,	Allocate	Responsibilities,
and	Define	Interfaces
The	instantiated	design	decisions	considered	and	made	are	summarized	in	the
following	table.

The	results	of	these	instantiation	decisions	are	recorded	in	the	next	step.

6.3.2.5	Step	6:	Sketch	Views	and	Record	Design	Decisions
The	deployment	diagram	shown	in	Figure	6.5	depicts	the	new	server	that	will



host	the	application	and	the	external	user	directory	server,	along	with	their
connections	to	the	existing	nodes.

FIGURE	6.5	Refined	deployment	diagram	(Key:	UML)

The	responsibilities	of	the	newly	introduced	elements	are	described	in	the
following	table.

The	package	diagram	shown	in	Figure	6.6	illustrates	how	the	reference



architecture	is	instantiated	and	identifies	the	modules	that	are	introduced	to
support	the	primary	use	case	(UC-1).	It	also	shows	how	these	newly	introduced
elements	are	integrated	with	the	existing	layers	and	modules	from	the	previous
system	release.

FIGURE	6.6	Modules	introduced	to	support	the	use	case	UC-1	(Key:	UML)

The	responsibilities	of	the	newly	introduced	elements	are	described	in	the
following	table.



The	sequence	diagram	shown	in	Figure	6.7	illustrates	how	UC-1	is	performed.
The	user	requests	the	state	of	bank	statements	to	be	displayed.	This	information
is	retrieved	from	the	local	database	by	the	Local	Database	Connector.	Once
displayed,	the	user	selects	the	statements	to	reprocess.	These	bank	statements	are
marked	for	reprocessing	(by	changing	a	flag)	and	the	information	is	updated	on
the	local	database.	Finally,	the	batch	job	is	restarted.	Note	that	the	interactions
with	the	system	are	recorded	by	Spring	Security	in	the	view.	In	addition,	the
invocation	of	the	Batch	Job	Coordinator	is	asynchronous,	which	avoids	the
problem	of	blocking	the	user	interface.



FIGURE	6.7	Sequence	diagram	for	use	case	UC-1	(Key:	UML)

From	the	interactions	identified	in	the	sequence	diagram,	initial	methods	for
the	interfaces	of	the	interacting	elements	can	be	identified.

BankStatementReprocessingService

6.3.2.6	Step	7:	Perform	Analysis	of	Current	Design	and	Review	Iteration
Goal	and	Achievement	of	Design	Purpose
The	following	Kanban	table	summarizes	the	status	of	the	various	architectural
drivers	and	the	decisions	that	were	made	during	the	iteration	to	address	them.	As
all	the	drivers	were	completely	addressed,	just	a	single	iteration	of	ADD	was
required.



6.4	Summary
In	this	chapter,	we	presented	a	simple	(but	real-world)	example	of	the	use	of
ADD	in	the	context	of	a	brownfield	system.	As	this	example	illustrates,	the	steps
of	ADD	are	followed	in	exactly	the	same	manner	as	in	the	context	of	the	design
of	greenfield	systems.	The	main	difference	is	that	one	of	the	inputs	of	the	design
process	is	the	existing	architecture.	This	highlights	the	importance	of
documenting	the	architecture:	If	this	information	was	not	present,	a	great	deal	of
time	would	need	to	be	spent	in	understanding	and	reverse-engineering	the	code
to	create	an	appropriate	model	of	the	architecture	before	proceeding	with	the
design	and	eventual	implementation	process.



Design	in	the	context	of	brownfield	systems	usually	involves	more	extensive
changes	than	the	ones	illustrated	by	this	example.	Such	changes	often	require
refactoring	and	modification	of	the	existing	architecture	to	support	the
introduction	of	new	elements	and	new	relationships	that	result	from	the	design
activity.	Modifying	an	existing	architecture	is	oftentimes	the	most	challenging
aspect	of	designing	in	the	context	of	brownfield	systems.	In	brownfield	systems,
it	is	all	too	common	that	detailed	knowledge	of	some	parts	of	the	system	has
been	lost.	Because	this	process	can	be	complex	and	some	uncertainty	exists
regarding	the	consequences	of	changes,	we	recommend	that	you	perform	an
analysis	of	the	proposed	design	changes	before	committing	them	to	code.

6.5	Further	Reading
The	Shared	Database	Integration	pattern	is	discussed	in	G.	Hohpe	and	B.	Woolf,
Enterprise	Integration	Patterns:	Designing,	Building	and	Deploying	Messaging
Solutions,	Addison	Wesley	Professional,	2003.
In-depth	discussions	of	software	maintenance	and	evolution	can	be	found	in

the	classic	book	by	F.	Brooks,	The	Mythical	Man	Month,	Addison-Wesley,
1995,	and	also	in	M.	M.	Lehman,	“On	Understanding	Laws,	Evolution,	and
Conservation	in	the	Large-Program	Life	Cycle”,	Journal	of	Systems	and
Software,	1:213–221,	2010.



7.	Other	Design	Methods

Over	the	past	two	decades,	a	number	of	architecture	design	methods	have	been
proposed	and	documented.	In	this	chapter	we	briefly	present	some	of	the	most
well-known	methods,	which	we	then	relate	and	compare	to	ADD.	We	begin	with
a	“general	model”	of	architecture	design,	then	briefly	present	five	other	design
methods.	We	conclude	the	chapter	with	a	discussion	of	how	ADD	differs	from
these	other	methods.

7.1	A	General	Model	of	Software	Architecture	Design
In	their	paper	“A	General	Model	of	Software	Architecture	Design	Derived	from
Five	Industrial	Approaches”,	Hofmeister	and	her	colleagues	compared	five
industrial	software	architecture	design	methods	and	extracted	from	their
commonalities	a	generic	software	architecture	design	approach.	The	five	models
they	reviewed	were	ADD	2.0,	Siemens	4	views,	RUP’s	4+1	Views,	Business
Architecture	Process	and	Organization	(BAPO),	and	Architecture	Separation	of
Concerns	(ASC).
The	derived	general	model,	shown	in	Figure	7.1,	consists	of	three	main

activities	that	are	present	in	all	five	models	reviewed:
	Architectural	analysis.	In	this	activity,	requirements	(called	concerns)	and
the	system	context	are	used	as	inputs	to	determine	a	set	of	architecturally
significant	requirements	(ASRs).
	Architectural	synthesis.	This	activity	is	described	as	being	the	core	of
architecture	design.	It	proposes	architecture	solutions	to	a	set	of	ASRs,
moving	from	the	problem	to	the	solution	space.	The	results	of	this	activity
are	candidate	architectural	solutions,	which	are	partial	or	complete
architecture	designs	and	include	information	about	the	rationale.
	Architectural	evaluation.	This	activity	ensures	that	the	architectural
decisions	are	the	right	ones.	Candidate	architectural	solutions	are	measured
against	ASRs.	Several	evaluations	of	different	architectural	solutions	are
expected,	but	the	eventual	result	is	the	validated	architecture.



FIGURE	7.1	Architectural	design	activities

Hofmeister	and	her	colleagues	further	explain	that	these	activities	do	not
proceed	sequentially,	but	rather	architects	proceed	in	small	“leaps”	as	they	move
from	one	activity	to	another.	Progress	is	driven	by	an	implicit	or	explicit	backlog
of	smaller	needs,	issues,	problems,	and	ideas	that	architects	need	to	address
(Figure	7.2).

FIGURE	7.2	Architecture	backlog

This	general	model	presented	by	Hofmeister	et	al.	is	not	detailed,	by	intent,
because	it	abstracts	the	specific	techniques	found	in	other	design	processes,
including	ADD.	Thus	the	model	can	represent	ADD,	but	also	covers	a	bigger
scope	of	architecture	development,	where	architectural	requirements	gathering



and	analysis	are	performed	using	methods	such	as	QAW,	architectural	synthesis
is	performed	using	methods	such	as	the	ones	presented	in	the	paper,	and
architectural	evaluation	is	performed	using	methods	such	as	ATAM.

7.2	Architecture-Centric	Design	Method
The	Architecture-Centric	Design	Method	(ACDM)	is	a	software	architecture
development	method	that	covers	the	complete	life	cycle	of	the	architecture.	This
iterative	method	consists	of	8	stages,	as	shown	in	Figure	7.3.



FIGURE	7.3	ACDM	stages

Stage	3	is	focused	on	design;	it	is	where	an	initial	architectural	design	is
created	or	refined.	For	new	systems,	the	first	iteration	of	this	process	promotes
the	rapid	creation	of	a	“notional”	or	initial	architecture.	This	iteration	proceeds
by	first	establishing	the	system	context	and	then	performing	decomposition	in	an
iterative	manner	to	produce	structures.	In	ACDM,	decomposition	is	driven	by
quality	attribute	scenarios	and	constraints,	but	functional	requirements	are	also
considered.	In	subsequent	iterations,	issues	uncovered	in	the	architecture	review



(Stage	4)	also	serve	as	inputs.	ACDM	suggests	using	patterns	to	support
decomposition	and	using	more	than	one	perspective	(static,	dynamic)	during	the
process.	After	decomposition	occurs,	responsibilities	are	associated	with	the
elements	and	interfaces	are	defined.
ACDM	has	a	broader	scope	than	ADD,	as	it	encompasses	the	whole

architecture	development	life	cycle	(requirements,	design,	evaluation,	and
documentation)	in	its	8	stages.	Stage	3	of	ACDM	is	the	equivalent	of	ADD.
However,	ACDM	provides	less	detailed	guidance	than	ADD	on	how	to	perform
this	crucial	step.	ADD	and	ACDM	can	be	used	together,	however.	To	do	so,	you
can	simply	use	ADD	directly	in	stage	3	of	ACDM.

7.3	Architecture	Activities	in	the	Rational	Unified	Process
The	Rational	Unified	Process	(RUP)	has	been	a	popular	software	development
process	framework	for	more	than	a	decade.	The	framework	is	extensive	and	the
version	we	reviewed	(7.0.1)	provides	two	flavors:	one	for	large	projects	(used
here	for	discussion)	and	one	for	small	projects.	Every	project	in	RUP	is
developed	iteratively	and	iterations	are	performed	across	four	sequential	phases:

	Inception.	In	this	phase,	the	project	is	conceived	and	feasibility	is
evaluated.
	Elaboration.	In	this	phase,	many	aspects	that	are	necessary	to	successfully
perform	the	project	are	handled.	One	of	these	aspects	is	the	design	of	the
architecture.
	Construction.	In	this	phase,	the	system	is	built	iteratively.
	Transition.	In	this	phase,	the	completed	system	is	transitioned	from	the
development	environment	to	the	end-user	environment.

For	RUP,	architecture	is	a	fundamental	aspect	of	system	creation,	and
activities	are	associated	with	it	across	the	different	phases	and,	in	particular,	in
the	inception	and	elaboration	phases.	In	the	inception	phase,	RUP	defines	an
activity	called	“perform	architectural	synthesis”,	whose	goal	is	to	construct	and
assess	an	architectural	proof-of-concept	to	demonstrate	the	feasibility	of	the
system.	This	activity	includes	tasks	such	as	defining	a	system	context,
performing	architectural	analysis	(which	actually	refers	to	defining	a	candidate
architecture),	constructing	an	architectural	proof-of-concept	(a	prototype),	and
evaluating	the	viability	of	the	proof-of-concept.
The	elaboration	phase	includes	two	activities	associated	with	software

architecture:
	Define	a	candidate	architecture.	In	this	activity,	an	initial	sketch	of	the



software	architecture	is	created.	This	includes	defining	architecturally
significant	elements,	identifying	a	set	of	analysis	mechanisms,	defining	the
initial	layering	and	organization	of	the	system,	and	defining	use-case
realizations	for	the	current	iteration.	The	key	tasks	are	performing
architectural	analysis	and	use	case	analysis;	other	tasks	include	operation
analysis	and	identifying	security	patterns.
	Refine	the	architecture.	This	activity	is	focused	on	completing	the
architecture	for	an	iteration.	It	involves	making	a	transition	from	analysis
activities	to	design	activities	by	identifying	design	elements	from	analysis
elements	and	design	mechanisms	from	analysis	mechanisms.	In	addition,
the	runtime	and	deployment	architecture	is	described,	along	with	an
implementation	model	to	facilitate	the	transition	between	design	and
implementation.	To	achieve	this,	the	RUP	suggests	performing	tasks	such
as	identifying	design	mechanisms,	identifying	design	elements,	performing
operation	analysis,	incorporating	existing	design	elements,	structuring	the
implementation	model	and	describing	the	runtime	architecture,	describing
distribution,	and	reviewing	the	architecture.

RUP	provides	an	extensive,	detailed	process	for	architectural	development.	It
also	makes	clear	distinctions	between	analysis,	design,	and	implementation
aspects.	Initially,	the	architecture	is	designed	in	a	conceptual	fashion	in	the
analysis	tasks,	and	then	it	is	made	concrete	in	the	design	and	implementation
tasks.	For	example,	initially	an	analysis	mechanism	such	as	persistence	can	be
identified.	This	is	refined	into	a	design	mechanism	such	as	a	DBMS,	which	is
further	refined	into	an	implementation	mechanism	such	as	a	specific	Oracle	or
MySQL	database.
The	process	in	RUP	is	iterative	by	nature,	as	several	iterations	of	the

architectural	activities	defined	in	the	inception	and	elaboration	phases	can	be
performed.	A	nice	aspect	of	the	process	defined	by	RUP	is	that	it	provides
detailed	guidance	with	respect	to	architectural	concerns	such	as	defining	the
system	context	and	establishing	an	initial	structure	for	the	system	both	in	a
logical	and	a	physical	way.	The	architecture	process	in	RUP	also	has	a	strong
focus	on	use	cases.	Even	though	quality	attributes	are	mentioned	(as
“supplementary	requirements”),	they	do	not	drive	the	architecture	design	process
as	much	as	the	use	cases.	Also,	this	process	explicitly	considers	the	creation	of
an	executable	architectural	prototype.
Even	though	the	architecture	process	in	RUP	is	comprehensive,	it	does	not

give	as	much	detail	as	ADD	in	terms	of	the	concrete	steps	to	perform	the	design.
In	this	sense,	ADD	and	RUP	can	be	seen	as	being	complementary	methods,	and
ADD	can	be	integrated	into	RUP	(as	can	other	more	detailed	architecture-based



ADD	can	be	integrated	into	RUP	(as	can	other	more	detailed	architecture-based
methods	such	as	the	QAW,	ATAM,	and	CBAM).

7.4	The	Process	of	Software	Architecting
In	the	book	The	Process	of	Software	Architecting,	Peter	Eeles	and	Peter	Cripps,
who	are	architects	at	IBM,	describe	how	they	approach	architecture.	Their
process	covers	the	entire	architecture	life	cycle	and	is	independent	of	any
software	development	methodology,	but	the	book	makes	several	references	to	its
use	with	RUP.
The	process	described	by	Eeles	and	Cripps	includes	three	major	activities:

“define	requirements”,	“create	logical	architecture”,	and	“create	physical
architecture”.	The	last	two	are	the	activities	where	architectural	design	is
performed.	According	to	the	authors,	the	logical	architecture	is	“a	stepping	stone
in	getting	from	the	requirements	to	the	solution—a	first	step	that	considers	the
architecture	in	a	largely	technology-independent	manner.	A	physical
architecture,	on	the	other	hand,	is	more	specific—and	takes	technology	into
account”.	The	creation	of	the	logical	architecture	and	the	physical	architecture
comprises	the	same	tasks	(see	Figure	7.4),	but	in	the	creation	of	the	physical
architecture	the	focus,	not	surprisingly,	is	on	its	physical	aspects.



FIGURE	7.4	Tasks	in	the	“create	logical	architecture”	and	“create	physical
architecture”	activities

This	process	acknowledges	the	existence	of	different	types	of	architects:	lead,
application,	infrastructure,	and	data	architects.	Also,	it	makes	a	distinction
between	“outlining”	tasks,	which	are	associated	with	the	most	important
architectural	elements	and	are	the	responsibility	of	the	lead	architect,	and
“detailing”	tasks,	which	are	focused	on	less	significant	elements	and	are	the
responsibility	of	the	other	architects,	depending	on	the	task.	For	example,
whereas	outlining	tasks	deal	with	subsystems	and	components,	detailing	tasks
deal	with	interfaces	and	operation	signatures.
The	method	described	by	Eeles	and	Cripps	also	emphasizes	two	different

models:	(1)	the	functional	model,	which	is	composed	of	components	with
responsibilities	and	relationships	and	their	collaborations	to	deliver	the	required
functionality,	and	(2)	the	deployment	model,	which	shows	the	configuration	of
nodes,	communication	links	between	them,	and	the	components	that	are
deployed	on	the	nodes.	Both	functional	and	quality	attribute	requirements
influence	the	functional	and	deployment	models.	The	authors	mention	that	they
adopt	the	“systems	engineering	philosophy”	of	treating	software	and	hardware	as
peers	that	collaborate	to	achieve	system	qualities.
The	following	list	summarizes	the	purposes	of	the	tasks	in	the	create	logical

and	physical	architecture	activities	that	are	related	to	design.	The	role	that	has
primary	responsibility	for	the	task	appears	in	parentheses,	while	other	types	of
architects	may	take	a	secondary	role:

	Survey	architecture	assets	(lead	architect).	Identify	reusable	architecture
assets	that	can	be	applied	to	the	system	under	development.
	Define	architecture	overview	(lead	architect).	Identify	and	describe	the
major	elements	of	the	system	under	development	from	a	functional	and
deployment	perspective.
	Document	architecture	decisions	(lead	architect).	Capture	key	decisions
made	in	shaping	the	architecture	and	the	rationale	behind	them.	This	step
includes	assessing	options	and	selecting	a	preferred	option.
	Outline	functional	elements	(application	architect).	Identify	the	major
functional	elements	(subsystems	and	components)	of	the	system	under
development.
	Outline	deployment	elements	(infrastructure	architect).	Identify	the
locations	to	which	the	system	under	development	will	be	deployed	and	the
nodes	within	each	location.



	Verify	architecture	(lead	architect).	Verify	that	the	architecture	work
products	are	consistent	and	ensure	that	any	concerns	that	cut	across	the
architecture	work	products	have	been	addressed	consistently.
	Build	architecture	proof-of-concept	(lead	architect).	Synthesize	at	least
one	solution	(which	can	be	conceptual)	that	satisfies	the	architecturally
significant	requirements	to	determine	whether	such	a	solution,	as
envisaged	by	the	architects,	exists.
	Detail	functional	elements	(application	architect).	Refine	the	functional
elements	to	the	point	that	they	can	be	handed	off	to	detailed	design.	This
includes	defining	component	interfaces	in	a	detailed	way	(e.g.,	operation
signatures,	pre	and	post	conditions)	using	sequence	diagrams.
	Detail	deployment	elements	(infrastructure	architect).	Refine	the
deployment	elements	to	the	point	they	can	be	handed	off	to	detailed
design.	This	includes	assigning	components	to	nodes	and	defining
connections	between	nodes	and	locations.

In	a	spirit	that	is	similar	to	RUP,	the	Process	of	Software	Architecting	is	a
framework,	and	it	needs	to	be	adjusted	according	to	the	type	of	project	that	is
being	tackled.	For	instance,	the	amount	of	logical	architecture	that	needs	to	be
established	can	vary;	indeed,	in	some	cases,	no	logical	architecture	may	be
created	if	the	system	being	designed	is	similar	to	existing	ones.	Also,	the
elaboration	phase	emphasizes	the	logical	architecture,	whereas	the	construction
phase	emphasizes	the	physical	architecture.	Finally,	the	logical	and	physical
architectures	need	not	be	created	sequentially	and	the	process	acknowledges	that
some	technology	choices	may	be	made	early.
The	Process	of	Software	Architecting	is	a	comprehensive	framework,	and	this

book	provides	a	detailed	example	of	how	to	execute	the	different	tasks.	The
tasks	related	to	creating	the	logical/physical	architecture	are	similar	to	the	steps
of	ADD	combined	with	the	roadmap	discussed	in	Section	3.3.	The	Process	of
Software	Architecting,	however,	puts	less	emphasis	on	guiding	iterations	by
specific	scenarios	and	provides	less	guidance	on	how	to	actually	make	design
decisions.

7.5	A	Technique	for	Architecture	and	Design
In	the	book	Application	Architecture	Guide,	second	edition,	Microsoft	proposes
a	technique	for	sketching	an	architecture.	This	technique	consists	of	five	steps
that	are	performed	iteratively	(Figure	7.5):

1.	Identify	architecture	objectives.	These	goals	and	constraints	shape	the



design	process,	provide	scope,	and	help	determine	when	you	are	finished.
Examples	include	building	a	prototype,	exploring	technologies,	and
developing	an	architecture.	Also,	at	this	point,	the	consumers	for	the
architecture	are	identified	and	the	scope,	time,	and	resources	that	will	be
dedicated	to	design	activities	are	established.

2.	Identify	key	scenarios.	Key	scenarios	represent	issues,	architecturally
significant	use	cases,	intersections	between	quality	attributes	and
functionality,	or	tradeoffs	between	quality	attributes.

3.	Create	application	overview.	This	step	refers	to	creating	an	overview	of
what	the	application	will	look	like	when	it	is	complete.	At	the	end	of	this
step,	the	process	suggests	“whiteboarding”	the	architecture—that	is,
creating	an	informal	representation	of	the	architecture.	This	step	is	divided
into	the	following	set	of	activities:
a.	Determining	application	type:	involves	the	selection	of	a	reference
architecture.

b.	Identifying	deployment	constraints:	involves	the	selection	of	a
deployment	topology.

c.	Identifying	important	architecture	design	styles.
d.	Determining	relevant	technologies:	based	on	the	application	type	and
constraints.

4.	Identify	key	issues.	Key	issues	are	grouped	into	quality	attributes	and
crosscutting	concerns.	Crosscutting	concerns	are	features	of	the	design	that
may	apply	across	all	layers,	components,	and	tiers,	such	as	the	following:
a.	Authentication	and	authorization
b.	Caching
c.	Communication
d.	Configuration	management	(information	that	must	be	configurable)
e.	Exception	management
f.	Logging	and	instrumentation
g.	Validation	(of	input	data)

5.	Define	candidate	solutions.	Candidate	architectures	include	an	application
type,	deployment	architecture,	architectural	style,	technology	choices,
quality	attributes,	and	crosscutting	concerns.	If	a	candidate	architecture
satisfies	the	requirements	and	issues,	then	it	becomes	a	baseline
architecture	and	is	refined	in	further	iterations.



FIGURE	7.5	Iterative	steps	of	the	technique	for	architecture	and	design

Besides	these	five	main	steps,	the	technique	discussed	by	the	Microsoft	team
suggests	performing	reviews	of	the	architecture	and	representing	and
communicating	the	design.	This	technique	is	independent	of	a	particular
development	process	and	there	is	only	a	suggestion	that,	when	using	an	Agile
process,	iterations	should	combine	architecture	and	development	activities.
The	technique	presented	by	the	Microsoft	team	is	not	very	detailed,	but	the

discussion	of	this	technique	is	only	a	small	part	of	Microsoft’s	book.	The	rest	of
the	book	provides	pragmatic	and	detailed	information	on	the	considerations	that
must	be	taken	into	account	for	different	types	of	applications,	including	web,
rich	client,	rich	internet,	and	mobile	applications,	among	others.	For	example,
the	book	devotes	a	chapter	to	the	specific	aspects	of	the	design	of	the	business
layer.	Although	much	of	the	information	is	technology	agnostic,	Microsoft	has
also	done	an	excellent	job	of	showing	how	its	own	technologies	can	be	used	in
this	process.	In	addition,	the	book	provides	an	extensive	discussion	of	the
concerns	that	must	be	addressed	for	a	series	of	reference	architectures.
This	technique	is	similar	in	purpose	to	ADD	but	less	detailed	in	terms	of	how

to	perform	the	actual	design	steps.	ADD	can	be	used	as	an	alternative,	but	it	is	a
good	idea	to	keep	Microsoft’s	book	on	hand	to	identify	the	many	specific
architectural	concerns	that	you	will	need	to	address	during	design	and	to



architectural	concerns	that	you	will	need	to	address	during	design	and	to
leverage	all	of	the	practical	advice	that	is	provided,	particularly	if	you	are
designing	one	of	the	types	of	applications	discussed	in	the	book.	The	ideas
presented	in	Microsoft’s	book	inspired	us	when	creating	several	aspects	of	this
book.

7.6	Viewpoints	and	Perspectives	Method
The	viewpoints	and	perspectives	method	is	described	in	the	book	Software
Systems	Architecture:	Working	with	Stakeholders	Using	Viewpoints	and
Perspectives,	by	Nick	Rozanski	and	Eoin	Woods.	Two	critical	concepts,
highlighted	in	the	book	title,	are	viewpoints	and	perspectives,	which	the	authors
define	in	the	following	way:

	A	viewpoint	is	a	collection	of	patterns,	templates,	and	conventions	for
constructing	one	type	of	view.	It	defines	the	stakeholders	whose	concerns
are	reflected	in	the	viewpoint	and	the	guidelines,	principles,	and	template
models	for	constructing	its	views.	The	viewpoints	defined	include
functional,	information,	concurrency,	development,	deployment,	and
operational.
	An	architectural	perspective	is	a	collection	of	activities,	tactics,	and
guidelines	that	are	used	to	ensure	a	system	exhibits	a	set	of	quality
properties	that	must	be	considered	across	the	system’s	architectural	views.
The	primary	perspectives	that	are	covered	in	Rozanski	and	Woods’s	book
are	security,	performance	and	scalability,	availability	and	resilience,	and
evolution.

Perspectives	are	orthogonal	to	viewpoints	because	a	particular	perspective	can
be	applied	across	different	viewpoints.	For	example,	the	security	perspective
involves	aspects	from	the	functional,	information	and	operational	viewpoints.
The	architecture	is	established	in	the	architecture	definition	process	illustrated

in	Figure	7.6.	The	steps	in	this	process	are	outlined	here:
1.	Consolidate	the	inputs.	Understand,	validate,	and	refine	the	initial	inputs.
2.	Identify	the	scenarios.	Identify	a	set	of	scenarios	that	illustrate	the
system’s	most	important	requirements.

3.	Identify	relevant	architectural	styles.	Identify	one	or	more	proven
architectural	styles	that	could	be	used	as	a	basis	for	the	overall
organization	of	the	system.

4.	Produce	a	candidate	architecture.	Create	a	first-cut	architecture	for	the
system	that	reflects	its	primary	concerns	(requirements	and	goals)	and	that



can	act	as	a	basis	for	further	architectural	evaluation	and	refinement.
5.	Explore	architectural	options.	Explore	various	architectural	possibilities
for	the	system	and	make	the	key	decisions	to	choose	among	them.

6.	Evaluate	the	architecture	with	stakeholders.	Work	through	an	evaluation
of	the	architecture	with	your	key	stakeholders,	capture	any	problems	or
deficiencies,	and	gain	the	stakeholders’	acceptance	of	the	architecture.

7.	Two	steps	are	performed	in	parallel	at	this	point:
A.	Rework	the	architecture.	Address	any	concerns	that	have	emerged
during	the	evaluation	task.

B.	Revisit	the	requirements.	Consider	any	changes	to	the	system’s	original
requirements	that	may	have	to	be	made	in	light	of	architectural
evaluations.



FIGURE	7.6	Viewpoints	and	perspectives	method	steps

This	method	suggests	the	creation	of	a	candidate	architecture	that	is	obtained
from—or	at	least	based	on—architectural	styles.	This	candidate	architecture	is
further	refined	through	a	series	of	iterations	until	it	is	deemed	acceptable	after	an
evaluation	is	performed.
In	comparison	with	ADD,	this	method	does	not	provide	step-by-step	guidance

on	how	to	perform	steps	4	and	5.	One	benefit	of	this	approach,	however,	is	that
the	six	viewpoints	it	defines	can	be	related	to	general	architectural	concerns	in
our	approach.	Furthermore,	tactics	and	perspectives	are	related,	and	the	idea	of
applying	perspectives	across	the	different	viewpoints	is	valuable	and	may	be	a
complement	to	a	scenario-based	approach.	For	example,	if	you	have	only	one



complement	to	a	scenario-based	approach.	For	example,	if	you	have	only	one
security	scenario	in	your	drivers	list,	you	may	consider	only	elements	that
support	this	particular	scenario.	Thinking	of	a	security	perspective,	however,
may	be	useful	in	making	design	decisions	concerning	security,	which	may	not	be
directly	related	to	the	particular	scenario	but	flow	across	different	areas	of
concern	such	as	deployment	or	operation.

7.7	Summary
In	this	chapter,	we	reviewed	a	number	of	design	methods	and	compared	them	to
ADD.	As	you	can	see,	there	are	several	methods	to	choose	from.	So	why	should
you	use	ADD	instead	of,	or	in	addition	to,	these	alternatives?	Quite	simply,
ADD	is	more	concrete	and	specific	in	its	steps	and	guidance	for	accomplishing
the	architecture	design	activity.	Having	read	this	far,	you	should	now	be
convinced	of	that.
ADD	is	focused	specifically	on	design	and,	as	such,	provides	more	detailed

guidance	to	an	(aspiring)	architect.	This	is	not	a	weakness	of	ADD.	Many	other
methods	can	guide	you	in	the	other	phases	of	the	architecture	life	cycle,	such	as
QAW	for	eliciting	and	prioritizing	architectural	requirements,	ATAM	for
analyzing	an	architecture,	the	Views	and	Beyond	technique	for	documenting	an
architecture.	In	several	parts	of	this	book	we	have	discussed	how	such	methods
can	be	seamlessly	integrated	into	ADD.
In	the	interest	of	full	disclosure,	ADD	3.0	borrows	from,	benefits	from,	and

owes	a	debt	of	gratitude	to	all	of	the	approaches	described	in	this	chapter.

7.8	Further	Reading
The	architecture	design	methods	discussed	in	this	chapter	can	be	found	in	the
following	sources:

	P.	Eeles,	P.	Cripps.	The	Process	of	Software	Architecting.	Addison-Wesley
Professional,	2009.
	C.	Hofmeister,	P.	Kruchten,	R.	Nord,	H.	Obbink,	A.	Ran,	P.	America.	“A
General	Model	of	Software	Architecture	Design	Derived	from	Five
Industrial	Approaches”,	Journal	of	Systems	and	Software,	80:106–126,
2007.
	A.	Lattanze.	Architecting	Software	Intensive	Systems:	A	Practitioner’s
Guide.	CRC	Press,	2009.
	P.	Kruchten.	The	Rational	Unified	Process:	An	Introduction,	3rd	ed.,
Addison-Wesley,	2003.



	Microsoft,	Application	Architecture	Guide,	2nd	ed.	Microsoft	Press,	2009.
	N.	Rozanski,	E.	Woods.	Software	Systems	Architecture.	Addison	Wesley,
2005.



8.	Analysis	in	the	Design	Process

While	this	is	a	book	focused	on	architectural	design,	we	have	always	believed
that	design	and	analysis	are	two	sides	of	the	same	coin.	Design	is	the	process	of
making	decisions;	analysis	is	the	process	of	understanding	those	decisions,	so
that	the	design	may	be	evaluated.	To	reflect	this	intimate	relationship,	we	now
turn	our	attention	to	why,	when,	and	how	to	analyze	architectural	decisions
during	the	design	process.	We	look	at	various	techniques	for	analysis,	discuss
when	they	can	be	done,	and	explore	their	costs	and	benefits.

8.1	Analysis	and	Design
Analysis	is	the	process	of	breaking	a	complex	entity	into	its	constituent	parts	as	a
means	of	understanding	it.	The	opposite	of	analysis	is	synthesis.	Analysis	and
design	are	therefore	intertwined	activities.	During	the	design	process,	the	activity
of	analysis	can	refer	to	several	aspects:

	Studying	the	inputs	to	the	design	process	to	understand	the	problem	whose
solution	you	are	about	to	design.	This	includes	giving	priority	to	the
drivers	as	discussed	in	Section	3.2.2.	This	type	of	analysis	is	performed	in
steps	1	and	2	of	ADD.
	Studying	the	alternative	design	concepts	that	you	identified	to	solve	a
design	problem	so	as	to	select	the	most	appropriate	one.	In	this	situation,
analysis	forces	you	to	provide	concrete	evidence	for	your	choices.	This
activity	is	performed	in	step	4	of	ADD	and	was	discussed	in	Section	3.2.4.
	Ensuring	the	decisions	made	during	the	design	process	(or	an	iteration)
are	appropriate.	This	is	the	type	of	analysis	that	you	perform	in	step	7	of
ADD.

The	decisions	that	you	make	when	designing	the	architecture	are	not	only
critical	to	achieve	the	quality	attribute	responses,	but	frequently	the	cost
associated	with	correcting	them	at	a	later	time	can	be	significant,	as	these
decisions	may	affect	many	parts	of	the	system.	For	these	reasons,	it	is	necessary
to	perform	analysis	during	the	design	process,	so	that	problems	can	be	identified,
possibly	quantified,	and	corrected	quickly.	Remember,	being	too	confident	and
following	your	gut	instincts	may	not	be	the	best	idea	(see	the	sidebar	“‘I	believe’
Isn’t	Good	Enough”).	Fortunately,	if	you	have	followed	the	recommendations
that	we	have	given	up	to	this	point,	you	should	be	able	to	conduct	analysis	either
by	yourself	or	with	the	help	of	peers	by	using	the	preliminary	sketches	and	views



that	have	been	produced	as	you	perform	the	design	process.

“I	Believe”	Isn’t	Good	Enough
Even	if	you	are	following	a	systematic	approach	to	designing	your
architecture	and	using	design	concepts	from	well-established
sources,	and	even	if	you	have	nice-looking	diagrams	that	represent
your	structures,	nothing	really	guarantees	that	the	decisions	you	are
making	will	actually	satisfy	a	particular	quality	attribute	scenario.
Certain	quality	attributes	are	critical	to	the	success	of	your	system;
particularly	for	these	decisions,	the	rationale	of	“I	believe”	is	not
good	enough.	Studies	of	practicing	software	architects	have	shown
that	most	follow	an	“adequacy”	approach	to	making	design
decisions—that	is,	they	adopt	the	first	decision	that	appears	to	meet
their	needs.	All	too	often,	they	have	no	rationale	to	substantiate
those	decisions	other	than	their	gut	instincts,	their	beliefs,	based	on
their	(inevitably	limited)	experience.	Thus	important	decisions	are
frequently	made	after	insufficient	reasoning,	which	can	add	risk	to	a
system.
For	drivers	that	are	critical	to	your	system,	you	owe	it	to	yourself

and	to	your	organization	to	perform	a	more	detailed	analysis	rather
than	just	trusting	your	gut	instinct,	relying	on	analogy	and	history,
or	performing	a	couple	of	superficial	tests	to	ensure	that	your
drivers	are	satisfied.	The	following	options	will	deepen	your
analysis	and	hence	support	your	rationale	for	the	decisions	made:
	Analytic	models.	These	well-established	mathematical	models
allow	you	to	study	quality	attributes	such	as	performance	or
availability.	They	include	Markov	and	statistical	models	for
availability,	and	queuing	and	real-time	scheduling	theory	for
performance.	Analytic	models—particularly	those	that	address
performance—are	highly	mature	but	may	require	considerable
education	and	training	to	be	used	adequately.
	Checklists.	Checklists	are	useful	tools	that	allow	you	to	ensure	in
a	systematic	way	that	certain	decisions	that	need	to	be	taken	into
account	are	not	forgotten.	Checklists	are	available	for	particular
quality	attributes	in	the	public	domain—for	example,	the
OWASP	checklist	guides	you	in	performing	black	box	security
testing	of	web	applications.	Also,	your	organization	may	develop
proprietary	checklists	that	are	specific	to	the	application	domains



that	you	are	developing.	Tactics-based	questionnaires,	which	we
will	discuss	shortly,	are	a	type	of	checklist	for	the	most	important
quality	attributes,	based	on	the	use	of	tactics.
	Thought	experiments,	reflective	questions,	and	back-of-the-
envelope	analyses.	Thought	experiments	are	informal	analyses
performed	by	a	small	group	of	designers	in	which	important
scenarios	are	studied	to	identify	potential	problems.	For	example,
you	might	use	a	sequence	diagram	produced	inside	step	5	of
ADD	and	perform	a	walk-through	of	the	interaction	of	the	objects
that	support	the	scenario	modeled	in	the	diagram	with	a
colleague.	Reflective	questions	(discussed	in	depth	in	Section
8.5)	are	questions	that	challenge	the	assumptions	included	in	the
decision-making	process.	Back-of-the-envelope	analyses	are
rough	calculations	that	are	less	precise	than	analytic	models,	but
can	be	performed	quickly.	These	calculations,	which	are
frequently	based	on	analogies	to	other	similar	systems	or	on	prior
experience,	are	useful	to	obtain	ballpark	estimates	for	desired
quality	attribute	responses.	For	example,	by	summing	the
latencies	of	a	number	of	processes	in	a	pipeline,	you	can	derive	a
crude	estimate	of	the	end-to-end	latency.
	Prototypes,	simulations,	and	experiments.	Purely	conceptual
techniques	for	analyzing	a	design	are	sometimes	inadequate	to
accurately	understand	whether	certain	design	decisions	are
appropriate,	or	whether	you	should	favor	one	particular
technology	over	another.	In	such	situations,	the	creation	of
prototypes,	simulations,	or	experiments	can	be	an	invaluable
option	to	obtain	a	better	understanding.	For	example,	in	the	back-
of-the-envelope	estimate	of	latency	described	previously,	you
may	not	have	taken	into	account	that	several	of	the	processes	are
sharing	(and	hence	competing	for)	the	same	resources;	thus	we
cannot	simply	sum	their	individual	latencies	and	expect	to	get
accurate	results.	Prototypes	and	simulations	provide	a	deeper
understanding	of	system	dynamics,	but	may	require	a	significant
effort	that	needs	to	be	considered	in	the	project	plan.
As	always,	none	of	these	techniques	is	inherently	better	than	the

others.	Thought	experiments	and	back-of-the-envelope	calculations
are	inexpensive	and	can	be	done	early	in	the	design	process,	but
their	validity	may	be	questionable.	Prototypes,	simulations,	and
experiments	typically	produce	much	higher-fidelity	results,	but	at	a



experiments	typically	produce	much	higher-fidelity	results,	but	at	a
far	greater	cost.	The	choice	of	which	technique	to	employ	depends
on	the	context,	the	risk	involved,	and	the	priorities	of	your	quality
attributes.
Even	so,	applying	any	of	these	techniques	will	be	helpful	in	going

from	“I	believe”	(that	my	design	is	appropriate)	to	an	approach	that
is	backed	by	documented	evidence	and	argumentation.

8.2	Why	Analyze?
Analysis	and	design	are	two	sides	of	the	same	coin.	Design	is	(the	process	of)
making	decisions.	Analysis	is	(the	process	of)	understanding	the	consequences—
in	terms	of	cost,	schedule,	and	quality—of	those	decisions.	No	sensible	architect
would	make	any	decision,	or	at	least	any	nontrivial	decision,	without	first
attempting	to	understand	the	implications	of	that	decision:	its	near-term	effects
and	possibly	its	long-term	consequences.	Architects,	of	course,	make	thousands
of	decisions	in	the	course	of	designing	a	large	project,	and	clearly	not	all	of	them
matter.	Furthermore,	not	all	of	the	decisions	that	matter	are	carriers	of	quality
attributes.	Some	may	deal	with	which	vendor	to	select,	or	which	coding
convention	to	follow,	or	which	programmer	to	hire	or	fire,	or	which	IDE	to	use
—important	decisions,	to	be	sure,	but	not	ones	that	are	directly	linked	to	a
quality	attribute	outcome.
Of	course,	some	of	these	decisions	will	affect	the	achievement	of	quality

attributes.	When	the	architect	breaks	down	the	development	into	a	system	of
layers	or	modules,	or	both,	this	decision	will	affect	how	a	change	ripples	through
the	code	base,	who	needs	to	talk	to	who	when	adding	a	feature	or	fixing	a	bug,
how	easy	or	difficult	it	is	to	distribute	or	outsource	some	of	the	development,
how	easy	it	is	to	port	the	software	to	a	different	platform,	and	so	forth.	When	the
architect	chooses	a	distributed	resource	management	system,	how	it	determines
which	services	are	masters	and	which	are	slaves,	how	it	detects	failures,	and	how
it	detects	resource	starvation	will	all	affect	the	availability	of	the	system.
So	when	and	why	do	we	analyze	during	the	design	process?	First,	we	analyze

because	we	can.	An	architecture	specification,	whether	it	is	just	a	whiteboard
sketch	or	something	that	has	been	more	formally	documented	and	circulated,	is
the	first	artifact	supporting	an	analysis	that	sheds	insight	into	quality	attributes.
Yes,	we	can	analyze	requirements,	but	we	mainly	analyze	them	for	consistency
and	completeness.	Until	we	translate	those	requirements	into	structures	resulting
from	design	decisions,	we	will	have	little	to	say	about	the	actual	consequences	of



those	decisions,	their	costs	and	benefits,	and	the	tradeoffs	among	them.
Second,	and	more	to	the	point,	we	analyze	because	it	is	a	prudent	way	of

informing	decisions	and	managing	risk.	No	design	is	completely	without	risk,
but	we	want	to	ensure	that	the	risks	that	we	take	on	are	commensurate	with	our
stakeholders’	expectations	and	tolerances.	For	a	banking	application	or	a
military	application,	our	stakeholders	will	demand	low	levels	of	risk,	and	they
should	be	willing	to	pay	accordingly	for	higher	levels	of	assurance.	For	a	startup
company,	where	time	to	market	is	of	the	essence	and	budgets	are	tight,	we	might
be	prepared	to	accept	far	higher	levels	of	risk.	As	with	every	important	decision
in	software	engineering,	the	answer	is	clear:	It	depends.
Finally,	analysis	is	the	key	to	evaluation.	Evaluation	is	the	process	of

determining	the	value	of	something.	Companies	are	evaluated	to	determine	their
share	price.	A	company’s	employees	are	evaluated	annually	to	determine	their
raises.	In	each	case,	the	evaluation	is	built	upon	an	analysis	of	the	properties	of
the	company	or	employee.

8.3	Analysis	Techniques
Different	projects	will	demand	different	responses	to	risk.	Fortunately	we,	as
architects,	have	a	wide	variety	of	tools	at	our	disposal	to	analyze	architectures.
With	a	bit	of	planning,	we	can	match	our	risk	tolerance	with	a	set	of	analysis
techniques	that	both	meet	our	budget	and	schedule	constraints	and	provide
reasonable	levels	of	assurance.	The	point	here	is	that	analysis	does	not	need	to
be	costly	or	complex.	Just	asking	thoughtful	questions	is	a	form	of	analysis,	and
that	exercise	is	pretty	inexpensive.	Building	a	simple	prototype	is	more
expensive,	but	in	the	context	of	a	large	project	this	analysis	technique	may	be
well	worth	the	additional	expense	owing	to	how	it	explores	and	mitigates	risks,
as	we	saw	in	Chapter	5.
Examples	of	(relatively	economical,	relatively	low	ceremony)	analysis

techniques	already	in	widespread	use	include	design	reviews	and	scenario-based
analyses,	code	reviews,	pair	programming,	and	Scrum	retrospective	meetings.
Other	commonly	used,	albeit	somewhat	more	costly,	analysis	techniques	include
prototypes	(throw-away	or	evolutionary)	and	simulations.
At	the	high	end	of	expense	and	complexity,	we	can	build	formal	models	of

our	systems	and	analyze	them	for	properties	such	as	latency	or	security	or	safety.
When	a	candidate	implementation	or	a	fielded	system	finally	exists,	we	can
perform	experiments,	including	instrumenting	running	systems	and	collecting
data,	ideally	from	executions	of	the	system	that	reflect	realistic	usages.



As	indicated	in	Table	8.1,	the	cost	of	these	techniques	typically	increases	as
you	proceed	through	the	software	development	life	cycle.	A	prototype	or
experiment	is	more	expensive	than	a	checklist,	which	is	more	expensive	than	an
experience-based	analogy.	This	expected	cost	correlates	fairly	strongly	with	the
confidence	that	you	can	have	in	the	analysis	results.	Unfortunately,	there	is	no
free	lunch!

TABLE	8.1	Analysis	at	Different	Stages	of	the	Software	Life	Cycle

8.4	Tactics-Based	Analysis
Architectural	tactics	(discussed	in	Section	2.5.4)	have	been	presented	thus	far	as
design	primitives.	However,	because	these	taxonomies	are	intended	to	cover	the
entire	space	of	architectural	design	possibilities	for	managing	a	quality	attribute,
we	can	use	them	in	an	analysis	setting	as	well.	Specifically,	we	can	use	them	as
guides	for	interviews	or	questionnaires.	These	interviews	help	you,	as	an	analyst,
to	gain	rapid	insight	into	the	architectural	approaches	taken	or	not	taken.
Consider,	for	example,	the	tactics	for	availability,	shown	in	Figure	8.1.



FIGURE	8.1	Availability	tactics

Each	of	these	tactics	is	a	design	option	for	the	architect	who	wants	to	design	a
highly	available	system.	Used	in	hindsight,	however,	they	represent	a	taxonomy
of	the	entire	design	space	for	availability	and	hence	can	be	a	way	of	gaining
insight	into	the	decisions	made,	and	not	made,	by	the	architect.	To	do	this,	we
simply	turn	each	tactic	into	an	interview	question.	For	example,	consider	the
(partial)	set	of	tactics-inspired	availability	questions	in	Table	8.2.





TABLE	8.2	Example	Tactics-Based	Availability	Questions

When	the	questions	in	Table	8.2	are	used	in	an	interview	setting,	we	can
record	whether	each	tactic	is	supported	by	the	system’s	architecture,	according
to	the	opinions	of	the	architect.	For	example,	in	the	table,	the	questions	have
been	answered	with	respect	to	design	decisions	made	for	the	FCAPS	system
presented	in	Chapter	4.	Note	that	the	answers	shown	in	the	table	are	rather
succinct	because	this	is	an	example;	more	detailed	explanations	are	encouraged
in	real-world	applications.	If	we	are	analyzing	an	existing	system	we	can
additionally	investigate	the	following	issues:

	Whether	there	are	any	obvious	risks	in	the	use	(or	nonuse)	of	this	tactic.	If
the	tactic	has	been	used,	we	can	record	here	how	it	is	realized	in	the	system
(e.g.,	via	custom	code,	frameworks,	or	other	externally	produced
components).	For	example,	we	might	note	that	the	active	redundancy	tactic
has	been	employed	by	replicating	the	application	server	and	other	critical
components	such	as	the	database	(as	in	the	case	study	presented	in	Chapter
4).
	The	specific	design	decisions	made	to	realize	the	tactic	and	where	in	the
code	base	the	implementation	(realization)	may	be	found.	This	information
is	useful	for	auditing	and	architecture	reconstruction	purposes.	Continuing
the	example	from	the	previous	bullet,	we	might	probe	how	many	replicas
of	the	application	server	have	been	created	and	where	these	replicas	are
located	(e.g.,	on	the	same	rack	in	a	data	center,	on	different	racks,	in
different	data	centers).



	Any	rationale	or	assumptions	made	in	the	realization	of	this	tactic.	For
example,	we	might	assume	that	there	will	be	no	common-mode	failure,	so
it	is	acceptable	that	the	replicas	are	identical	virtual	machines,	running	on
identical	hardware.

While	this	interview-based	approach	might	sound	simplistic,	it	can	actually	be
quite	powerful	and	insightful.	In	your	daily	activities	as	an	architect,	you	may
not	always	take	the	time	to	step	back	and	consider	the	bigger	picture.	A	set	of
interview	questions	such	as	those	shown	in	Table	8.2	force	you	to	do	just	that.
This	approach	is	also	quite	efficient:	A	typical	interview	for	a	single	quality
attribute	takes	between	30	and	90	minutes.
A	set	of	tactics-based	questionnaires,	covering	the	seven	most	important

system	quality	attributes—availability,	interoperability,	modifiability,
performance,	security,	testability,	and	usability—can	be	found	in	Appendix	B.	In
addition,	we	have	included	an	eighth	questionnaire,	on	DevOps,	as	an	example
of	how	you	can	combine	the	other	(more	fundamental)	questionnaires	to	create	a
new	questionnaire	to	address	a	new	set	of	quality	concerns.

8.5	Reflective	Questions
Similar	to	the	tactics-based	interviews,	a	number	of	researchers	have	advocated
the	practice	of	asking	(and	answering)	reflective	questions	to	augment	the	design
process.	The	idea	behind	this	process	is	that	we	actually	think	differently	when
we	are	problem-solving	and	when	we	are	reflecting.	For	this	reason,	researchers
have	advocated	a	separate	“reflection”	activity	in	design	that	both	challenges	the
decisions	made	and	challenges	us	to	examine	our	biases.
Architects,	like	all	humans,	are	subject	to	bias.	For	example,	we	are	subject	to

confirmation	bias—the	tendency	to	interpret	new	information	in	a	way	that
confirms	our	preconceptions—and	we	are	subject	to	anchoring	bias—the
tendency	to	rely	too	heavily	on	the	first	piece	of	information	that	we	receive
when	investigating	a	problem,	using	this	information	to	filter	and	judge	any
subsequent	information.	Reflective	questions	help	to	uncover	such	biases	in	a
systematic	way,	which	can	lead	us	to	revise	our	assumptions	and	hence	our
designs.
In	their	research	on	reflective	questions,	Razavian	et	al.	have	proposed	that

one	can	and	should	reflect	on	context	and	requirements	(Are	the	contexts	and
requirements	identified	relevant,	complete,	and	accurate?),	design	problems
(Have	they	been	properly	and	fully	articulated?),	design	solutions	(Are	they
appropriate	given	the	requirements?),	and	design	decisions	(Are	they	principled



and	justified?).	Examples	of	reflective	questions	that	they	propose	include	the
following:

	Which	assumptions	are	made?	Do	the	assumptions	affect	the	design
problem?	Do	the	assumptions	affect	the	solution	option?	Is	an	assumption
acceptable	in	a	decision?
	What	are	the	risks	that	certain	events	would	happen?	How	do	the	risks
cause	design	problems?	How	do	the	risks	affect	the	viability	of	a	solution?
Is	the	risk	of	a	decision	acceptable?	What	can	be	done	to	mitigate	the
risks?
	What	are	the	constraints	imposed	by	the	contexts?	How	do	the	constraints
cause	design	problems?	How	do	the	constraints	limit	the	solution	options?
Can	any	constraints	be	relaxed	when	making	a	decision?
	What	are	the	contexts	and	the	requirements	of	this	system?	What	does	this
context	mean?	What	are	the	design	problems?	Which	are	the	important
problems	that	need	to	be	solved?	What	does	this	problem	mean?	Which
potential	solutions	exist	for	this	problem?	Are	there	other	problems	to
follow	up	in	this	decision?
	Which	contexts	can	be	compromised?	Can	a	problem	be	framed
differently?	What	are	the	solution	options?	Can	a	solution	option	be
compromised?	Are	the	pros	and	cons	of	each	solution	treated	fairly?	What
is	an	optimal	solution	after	tradeoff?

Of	course,	you	might	not	employ	all	of	these	questions,	and	you	would	not
employ	this	technique	for	every	decision	that	you	make.	Used	judiciously,
however,	these	kinds	of	questions	can	help	you	to	reflect	mindfully	on	the
decisions	that	you	are	making.

8.6	Scenario-Based	Design	Reviews
Comprehensive	scenario-based	design	reviews,	such	as	the	ATAM,	have
typically	been	conducted	outside	the	design	process.	The	ATAM	is	an	example
of	a	comprehensive	architecture	evaluation	(see	the	sidebar	“The	ATAM”).
An	ATAM	review,	as	it	was	initially	conceived,	was	a	“milestone”	review.

When	an	architect	or	other	key	stakeholder	believed	that	there	was	enough	of	an
architecture	or	architecture	description	to	analyze,	an	ATAM	meeting	could	be
convened.	This	might	occur	when	an	architectural	design	had	been	done	but
before	much,	if	any,	implementation	had	been	completed.	More	commonly,	it
occurred	when	an	existing	system	was	in	place	and	some	stakeholders	wanted	an
objective	evaluation	of	the	risks	of	the	architecture	before	committing	to	it,
evolving	it,	acquiring	it,	and	so	forth.



evolving	it,	acquiring	it,	and	so	forth.

The	ATAM
The	ATAM—Architecture	Tradeoff	Analysis	Method	(ATAM)	is	an
established	method	for	analyzing	architectures,	driven	by	scenarios.
Its	purpose	is	to	assess	the	consequences	of	architectural	decisions
in	light	of	quality	attribute	requirements	and	business	goals.
The	ATAM	brings	together	three	groups	in	an	evaluation:
	A	trained	evaluation	team
	An	architecture’s	“decision	makers”
	Representatives	of	the	architecture’s	stakeholders
The	ATAM	helps	stakeholders	ask	the	right	questions	to	discover

potentially	problematic	architectural	decisions—that	is,	risks.	These
discovered	risks	can	then	be	made	the	focus	of	mitigation	activities
such	as	further	design,	further	analysis,	prototyping,	and
implementation.	In	addition,	design	tradeoffs	are	often	identified—
hence	the	name	of	the	method.	The	purpose	of	the	ATAM	is	not	to
provide	precise	analyses:	This	method	typically	is	applied	in	two	2-
day	meetings	and	this	(relatively)	short	time	frame	does	not	permit	a
deep	dive	into	any	specific	concern.	Those	kinds	of	analyses	are,
however,	appropriate	as	part	of	the	risk	mitigation	activities	that
could	follow	and	be	guided	by	an	ATAM.
The	ATAM	can	be	used	throughout	the	software	development

life	cycle.	For	example,	it	can	be	used	in	the	following
circumstances:
	After	an	architecture	has	been	specified	but	there	is	little	or	no
code
	To	evaluate	potential	architectural	alternatives
	To	evaluate	the	architecture	of	an	existing	system
The	outputs	of	the	ATAM	evaluation	are	as	follows:
	A	concise	presentation	of	the	architecture.	The	architecture	is
presented	in	one	hour.
	A	concise	articulation	of	the	business	goals	for	the	system	under
scrutiny.	Frequently,	the	business	goals	presented	in	the	ATAM
are	being	seen	by	some	of	the	assembled	participants	for	the	first
time	and	these	are	captured	in	the	outputs.



	A	set	of	prioritized	quality	attribute	requirements,	expressed	as
scenarios.
	A	mapping	of	architectural	decisions	to	quality	requirements.	For
each	quality	attribute	scenario	examined,	the	architectural
decisions	that	help	to	achieve	it	are	identified	and	recorded.
	A	set	of	sensitivity	and	tradeoff	points.	These	architectural
decisions	have	a	marked	effect	on	one	or	more	quality	attributes.
	A	set	of	risks	and	non-risks.	A	risk	is	defined	as	an	architectural
decision	that	may	lead	to	undesirable	consequences	in	light	of
quality	attribute	requirements.	A	non-risk	is	an	architectural
decision	that,	upon	analysis,	is	deemed	safe.	The	identified	risks
form	the	basis	of	an	architectural	risk	mitigation	plan.
	A	set	of	risk	themes.	The	evaluation	team	examines	the	full	set	of
discovered	risks	to	identify	overarching	themes	that	reveal
systemic	weaknesses	in	the	architecture	(or	perhaps	even	in	the
architecture	process	and	team).	If	left	untreated,	these	weaknesses
will	threaten	the	project’s	ability	to	meet	the	business	goals.
There	are	also	intangible	results	of	an	ATAM-based	evaluation:	a

sense	of	community	developed	among	the	stakeholders,	open
communication	channels	between	the	architect	and	the	stakeholders,
a	better	overall	understanding	of	the	architecture	and	its	strengths
and	weaknesses.	While	these	results	are	difficult	to	measure,	they
are	no	less	important	than	the	others	and	often	are	the	longest-
lasting	artifacts.
An	ATAM	evaluation	takes	place	in	four	phases.	The	first	phase

(phase	0)	and	the	final	phase	(phase	3)	are	managerial:	setting	up
the	evaluation	at	the	start	and	reporting	results	and	follow-on
activities	at	the	end.	The	middle	phases	(phases	1	and	2)	are	when
the	actual	analysis	takes	place.	The	steps	enacted	in	phases	1	and	2
are	as	follows:
1.	Present	the	ATAM
2.	Present	the	business	drivers
3.	Present	the	architecture
4.	Identify	the	architectural	approaches
5.	Generate	a	quality	attribute	utility	tree
6.	Analyze	the	architectural	approaches



7.	Brainstorm	and	prioritize	scenarios
8.	Analyze	the	architectural	approaches
9.	Present	the	results
In	phase	1,	we	enact	steps	1–6	with	a	small,	internal	group	of

stakeholders—typically	just	the	architect,	project	manager	and
perhaps	one	or	two	senior	developers.	In	phase	2,	we	invite	a	larger
group	of	stakeholders	to	attend—all	the	people	who	attended	phase
1	plus	external	stakeholders,	such	as	customer	representatives,	end-
user	representatives,	quality	assurance,	operations,	and	so	forth.	In
phase	2,	we	review	steps	1–6	and	enact	steps	7–9.
The	actual	analysis	takes	place	in	step	6,	where	we	analyze

architectural	approaches	by	asking	the	architect	to	map	the	highest-
priority	scenarios,	one	at	a	time,	onto	the	architectural	approaches
that	have	been	described.	During	this	step,	the	analysts	ask	probing
questions,	motivated	by	a	knowledge	of	quality	attributes,	and	risks
are	discovered	and	documented.

The	idea	of	having	a	separate,	distinct	evaluation	activity	once	the	architecture
is	“done”	fits	poorly	with	the	way	that	most	organizations	operate	today.	Today,
most	software	organizations	are	practicing	some	form	of	Agile	or	iterative
development.	There	is	no	distinct	monolithic	“architecture	phase”	in	Agile
processes.	Rather,	architecture	and	development	are	co-created	in	a	series	of
sprints.	For	example,	as	discussed	in	Chapter	2,	many	Agile	thought	leaders	are
promoting	practices	such	as	“disciplined	agility	at	scale”,	the	“walking
skeleton”,	and	the	“scaled	Agile	framework”,	all	of	which	embrace	the	idea	that
architectures	continuously	evolve	in	relatively	small	increments,	addressing	the
most	critical	risks.	This	may	be	aided	by	developing	a	small	proof-of-concept	or
minimum	viable	product	(MVP),	or	doing	strategic	prototyping.
To	better	align	with	this	view	of	software	development,	a	lightweight

scenario-based	peer	review	method,	based	on	the	ATAM,	has	been	promoted.	A
lightweight	ATAM	evaluation	can	be	conducted	in	a	half-day	meeting.	It	can
also	be	carried	out	internally,	using	just	project	members.	Of	course,	an	external
review	gives	more	objectivity	and	may	produce	better	results,	but	this	exercise
may	be	too	costly	or	infeasible	due	to	schedule	or	intellectual	property	(IP)
constraints.	A	lightweight	ATAM	therefore	provides	a	reasonable	middle	ground
between	a	costly	but	more	objective	and	comprehensive	ATAM	and	doing	no
analysis	whatsoever,	or	only	doing	ad	hoc	analysis.



An	example	schedule	for	a	lightweight	ATAM	evaluation	conducted	by
project	members	on	their	own	project	is	given	in	Table	8.3.

TABLE	8.3	A	Typical	Agenda	for	a	Lightweight	ATAM	Evaluation

A	half-day	review	such	as	this	is	similar,	in	terms	of	effort,	to	other	quality
assurance	efforts	that	are	typically	conducted	in	a	development	project,	such	as
code	reviews,	inspections,	and	walk-throughs.	For	this	reason,	it	is	easy	to
schedule	a	lightweight	ATAM	evaluation	in	a	sprint,	particularly	in	those	sprints
where	architectural	decisions	are	being	made,	challenged,	or	changed.

8.7	Architecture	Description	Languages
If	the	application	that	you	are	building	has	stringent	quality	requirements	in	the
areas	of	runtime	performance	(latency,	throughput),	reliability/availability,
safety,	or	security,	then	you	might	consider	documenting	your	design	decisions,



in	the	form	of	architectural	structures,	in	an	architecture	description	language
(ADL).	ADLs	lend	themselves	to	formal,	automated	analysis,	which	is	precisely
why	we	include	them	here.	ADLs	typically	employ	both	a	graphical	and	a
(formally	defined)	textual	notation	to	describe	an	architecture—primarily	the
computational	(runtime)	components	and	interactions	among	them—and	its
properties.	The	Unified	Modeling	Language	(UML)	is	the	most	widely	used
notation	for	documenting	architectures	in	industrial	practice,	though	even	it	is
not	universally	used.	Few	industrial	projects	endeavor	to	describe	all,	or	even
most,	of	their	architectures	in	any	ADL.
Some	ADLs,	such	as	AADL,	strive	to	be	formal	models	that	have	precise	and

decidable	semantics.	This	regimentation	means	that	they	can	be	automatically
checked	for	properties	of	interest,	typically	performance,	availability,	and	safety,
although	in	principle	other	quality	attributes	can	be	accommodated.	While	there
is	an	often	a	steep	learning	curve	for	becoming	proficient	with	the	language	and
the	surrounding	tool	suite,	using	a	formalized	ADL	offers	several	benefits.	First,
an	ADL	forces	you	to	document	your	architectural	decisions,	and	hence	to
explicitly	acknowledge	when	and	where	your	architectural	understanding	is
incomplete	or	vague.	This	benefit	accrues	with	any	form	of	documentation—it
forces	you	to	be	explicit—but	is	especially	true	of	ADLs.	This	leads	to	the
second	benefit	of	ADLs:	They	are	typically	accompanied	by	a	tool	suite	that	can
analyze	the	architecture	description	for	various	properties	at	the	click	of	a
button.
So	why	are	ADLs	seldom	used	outside	of	academia?	A	number	of	possible

reasons	for	this	reluctance	exist.	First,	it	is	not	in	our	common	practice.	ADLs—
even	the	UML—are	typically	not	taught	in	computer	science	or	software
engineering	curricula	and	are	not	well	supported	in	most	popular	IDEs.	Second,
ADLs	are	perceived	as	being	challenging	to	use	and	not	user-friendly,	requiring
both	a	large	up-front	effort	and	a	large	continuing	effort	to	maintain.	This	point
is,	perhaps,	the	most	significant	one:	Architects	and	programmers	generally	do
not	want	to	maintain	a	second,	parallel	base	of	knowledge	about	their	systems.
For	some	systems,	this	may	be	the	right	choice.	For	others—typically	those	with
stringent	and	uncompromising	quality	attribute	requirements—having	a	separate
and	separately	analyzable	representation	of	the	design	might	be	the	most	prudent
course	of	action.	In	civil	engineering,	by	way	of	contrast,	no	project	may	be
approved	for	construction	without	first	being	represented	in	a	separate
analyzable	document.

8.8	Summary
No	one	would	consider	fielding	code	that	they	had	not	tested—yet	architects	and



No	one	would	consider	fielding	code	that	they	had	not	tested—yet	architects	and
programmers	regularly	commit	to	(implement)	architectural	decisions	that	have
not	been	analyzed.	Why	the	dichotomy?	Surely,	if	testing	code	is	important,	then
“testing”	the	design	decisions	you	have	made	is	an	order	of	magnitude	more
important,	as	these	decisions	often	have	long-term,	system-wide,	and	significant
impacts.
The	most	important	message	of	this	chapter	is	that	design	and	analysis	are	not

really	separate	activities.	Every	important	design	decision	that	you	make	should
be	analyzed.	A	variety	of	techniques	can	be	applied	to	do	this	continuously,	in	a
relatively	disruption-free	manner,	as	part	of	the	process	of	designing	and
evolving	a	system.
The	interesting	questions	are	not	whether	to	analyze,	but	rather	how	much	to

analyze	and	when.	Analysis	is	inherent	in	doing	good	design,	and	it	should	be	a
continuous	process.

8.9	Further	Reading
The	sets	of	architectural	tactics	used	here	have	been	documented	in	L.	Bass,	P.
Clements,	and	R.	Kazman,	Software	Architecture	in	Practice	(3rd	ed.),	Addison-
Wesley,	2012.	The	availability	tactics	were	first	created	in	J.	Scott	and	R.
Kazman,	“Realizing	and	Refining	Architectural	Tactics:	Availability”,
CMU/SEI-2009-TR-006,	2009.
The	idea	of	reflective	questions	was	first	introduced	in	M.	Razavian,	A.	Tang,

R.	Capilla,	and	P.	Lago,	“In	Two	Minds:	How	Reflections	Influence	Software
Architecture	Design	Thinking”,	VU	University	Amsterdam,	Tech.	Rep.	2015-
001,	April	2015.	The	idea	that	software	designers	satisfice—that	is,	they	look	for
a	“good	enough”,	as	opposed	to	an	optimal,	solution—has	been	discussed	in	A.
Tang	and	H.	van	Vliet,	“Software	Designers	Satisfice”,	European	Conference	on
Software	Architecture	(ECSA	2015),	2015.
The	ATAM	was	comprehensively	described	in	P.	Clements,	R.	Kazman,	and

M.	Klein,	Evaluating	Software	Architectures:	Methods	and	Case	Studies,
Addison-Wesley,	2001.	The	lightweight	ATAM	was	first	presented	in	L.	Bass,
P.	Clements,	and	R.	Kazman,	Software	Architecture	in	Practice	(3rd	ed.),
Addison-Wesley,	2012.	In	addition,	ATAM-style	peer	reviews	have	been
described	in	F.	Bachmann,	“Give	the	Stakeholders	What	They	Want:	Design
Peer	Reviews	the	ATAM	Style”,	Crosstalk,	November/December	2011.
Architecture	description	languages	have	a	history	almost	as	long	as	the	history

of	software	architecture	itself.	The	most	widely	used	ADL	in	practice	is	AADL
(Architecture	Analysis	and	Design	Language),	which	is	described	in	P.	Feiler



and	D.	Gluch,	Model-Based	Engineering	with	AADL:	An	Introduction	to	the
SAE	Architecture	Analysis	&	Design	Language,	Addison-Wesley,	2013.	An
overview	of,	and	analysis	of	industrial	requirements	for,	ADLs	can	be	found	in	I.
Malavolta,	P.	Lago,	H.	Muccini,	P.	Pelliccione,	and	A.	Tang,	“What	Industry
Needs	from	Architectural	Languages:	A	Survey”,	IEEE	Transactions	on
Software	Engineering,	39(6):869–891,	June	2013.



9.	The	Architecture	Design	Process	in	the
Organization

Chapter	1	introduced	a	set	of	software	architecture	life-cycle	activities—things
like	collecting	requirements,	designing	the	architecture,	and	evaluating	and
implementing	the	architecture.	We	called	these	“life-cycle	activities”	because	we
recognize	that	not	all	organizations	do	all	of	them;	those	that	do	them	might	do
them	in	different	ways,	and	might	embed	them	into	different	life-cycle	models
and	organizational	contexts.	This	chapter	takes	a	closer	look	at	those	aspects	of
software	development	and	considers	how	architecture	design	fits	in	with	them.

9.1	Architecture	Design	and	the	Development	Life	Cycle
Two	important	phases	that	occur	in	most	development	projects,	as	illustrated	in
Figure	9.1,	are	pre-sales	and	development	and	operations.

FIGURE	9.1	The	two	major	phases	of	project	development

	During	the	pre-sales	phase,	the	scope	of	the	project	is	established	and	a
business	case	is	established.	Although	we	call	this	phase	“pre-sales”,	it
occurs	in	every	organization,	whether	they	engage	in	“sales”	or	not.	One
frequent	and	important	product	of	this	phase	is	an	estimation	of	the	cost
and	duration	of	the	project.	This	estimation	is	used	by	the	customers	(or
funders)	to	decide	if	they	want	to	pursue	the	project.
	The	development	and	operations	phase	occurs	when	the	pre-sales	proposal
has	been	accepted	by	the	customer.	Development	can	be	performed
following	different	methodologies	including	Agile,	RUP,	or	TSP.	Once	the
system	(or	part	of	it)	is	developed,	it	is	put	into	operation.	Newer
approaches	such	as	DevOps	intend	to	reduce	the	gap	that	is	usually	present
between	development	and	operation.

Architectural	design	plays	an	important	role	in	these	two	major	phases,	as	we



Architectural	design	plays	an	important	role	in	these	two	major	phases,	as	we
will	now	discuss.

9.1.1	Architecture	Design	During	Pre-Sales
In	many	types	of	development	projects,	but	particularly	in	the	context	of	custom
software	development,	organizations	typically	need	to	provide	an	initial	estimate
of	the	time	and	cost	of	the	project	during	the	pre-sales	phase.	Frequently	the	pre-
sales	activities	must	be	performed	in	a	short	time	period,	and	the	information
that	is	available	to	inform	this	process	is	always	limited.	For	example,	typically
only	high-level	requirements	or	features	(rather	than	detailed	use	cases)	are
available	at	this	phase.
The	problem	with	limited	information	is	that	the	estimate	that	is	produced

frequently	has	a	lot	of	uncertainty,	as	illustrated	by	the	cone	of	uncertainty
depicted	in	Figure	9.2.	The	cone	of	uncertainty	refers	to	the	uncertainty
surrounding	estimates	in	a	project,	typically	those	of	cost	and	schedule,	but	also
risk.	All	of	these	estimates	get	better	as	a	project	progresses,	and	the	cone
narrows.	When	the	project	is	done,	uncertainty	is	zero.	The	issue	for	any
development	methodology	is	how	to	narrow	the	cone	of	uncertainty	earlier	in	the
project’s	life	cycle.



FIGURE	9.2	Example	cone	of	uncertainty

Architectural	practices	can	be	applied	in	the	pre-sales	phase	to	help	reduce	the
cone	of	uncertainty:

	Architectural	drivers	can	be	identified	in	the	pre-sales	phase.	Even	if	it
may	be	complicated	to	describe	detailed	quality	attribute	scenarios	at	this
point,	the	most	important	quality	attributes	with	initial	measures	and
constraints	should	be	identified.
	ADD	can	be	used	to	produce	an	initial	architecture	that	is	then	used	as	the
basis	for	early	cost	and	schedule	estimates.
	Sketches	of	this	initial	architecture	are	useful	for	communication	with	the
customer.	They	are	also	useful	as	a	basis	to	perform	lightweight
evaluations	of	this	initial	design.

Generating	an	initial	architecture	allows	estimation	to	be	performed	using	the
“standard	components”	technique.	Standard	components	are	a	type	of	proxy;
they	include	web	pages,	business	rules,	and	reports,	among	other	things.	When
estimating	with	standard	components,	companies	typically	build	historic



databases	that	contain,	for	example,	measurements	and	size	data	for	components
that	have	been	built	into	previously	developed	systems.	To	estimate	with
standard	components,	you	need	to	identify	the	components	that	will	be	required
for	the	problem	that	you	are	trying	to	solve,	and	then	use	historical	data	(or	some
other	technique	such	as	Wideband	Delphi)	to	estimate	the	size	of	these
components.	The	total	size	can	then	be	translated	into	effort,	and	these	estimates
can	be	rolled	up	to	produce	a	project-level	time	and	cost	estimate.
Identifying	the	components	that	are	required	to	create	estimates	with	this

technique	can	be	achieved	in	a	short	time	frame	through	the	use	of	ADD.	This
approach	is	similar	to	what	we	just	recommended	for	the	design	of	greenfield
systems:

	The	goal	of	your	first	design	iteration	should	be	to	address	the	concern	of
establishing	an	initial	overall	structure	for	the	application.	The	reference
architecture,	if	you	employ	one,	dictates	the	types	of	standard	components
that	will	be	used	in	the	estimation.	At	this	point,	the	most	relevant
technologies	to	use	in	the	project	can	also	be	selected,	particularly	if	your
historical	data	is	tied	to	specific	technologies.
	The	goal	of	your	second	design	iteration	should	be	to	identify	components
to	support	all	of	the	functionality	that	needs	to	be	considered	for	the
estimation.	As	opposed	to	what	we	discussed	for	the	design	of	greenfield
systems,	when	designing	to	produce	an	estimate,	you	need	to	consider
more	than	just	primary	functionality.	To	identify	the	standard	components,
you	need	to	consider	all	of	the	important	functional	requirements	that	are
part	of	the	scope	and	map	them	to	the	structure	that	you	defined	in	the	first
iteration.	Doing	so	ensures	you	will	have	a	more	accurate	estimation.

This	technique	will	help	you	estimate	costs	and	schedule	for	meeting	the	most
important	functional	requirements.	At	this	point,	however,	you	will	likely	not
have	taken	quality	attributes	into	account.	As	a	consequence,	you	should
perform	a	few	more	iterations	focusing	on	where	you	will	make	design	decisions
to	address	the	driving	quality	attributes.	If	the	time	available	to	perform	the	pre-
sales	process	is	limited,	you	will	not	be	able	to	design	it	in	much	detail,	so	the
decisions	that	you	should	take	here	are	the	ones	that	will	have	a	significant
impact	in	the	estimate.	Examples	include	identifying	redundant	hardware	or
additional	standard	components	to	address	quality	attributes	such	as
performance,	availability,	and	security.
When	this	technique	is	used	in	the	pre-sales	process,	an	initial	architecture

design	is	produced—the	pre-sales	architecture	design	(see	Figure	9.1).	If	the



project	proposal	is	accepted	by	the	customer	and	the	project	proceeds,	this	initial
architecture	can	become	one	of	the	bases	for	a	contract.	This	architecture	should
be	used	as	a	starting	point	in	the	subsequent	architecture	design	activities	that	are
performed	during	the	Development	and	Operation	phase	of	the	project.	In	this
case,	the	roadmap	for	designing	brownfield	systems	(discussed	in	Section	3.3.3)
can	be	used.
The	preliminary	documentation	produced	for	this	initial	architecture	can	also

be	included	as	part	of	the	technical	proposal	that	is	provided	to	the	customer.
Finally,	this	initial	architecture	design	can	be	evaluated,	preferably	before
estimation	occurs.	This	can	be	performed	using	a	technique	such	as	the
lightweight	ATAM	presented	in	Section	8.6.

9.1.2	Architecture	Design	During	Development	and	Operation
The	development	of	a	software	system	can	be	performed	using	different
methodologies.	Architectural	design,	however,	is	performed	independently	of
the	chosen	development	methodology.	For	this	reason,	a	design	method	such	as
ADD	can	be	used	in	conjunction	with	different	development	methodologies.	We
now	discuss	the	relationship	between	architectural	design	and	some	development
methodologies	that	are	commonly	used	in	industry.

9.1.2.1	Agile	Methods
The	relationship	between	software	architecture	and	agility	has	been	the	subject
of	some	debate	over	the	past	decade.	Although	we	believe,	and	much	research
has	shown,	that	architectural	practices	and	Agile	practices	are	actually	well
aligned,	this	position	has	not	always	been	universally	accepted.
Agile	practices,	according	to	the	original	Agile	Manifesto	emphasize,

“Individuals	and	interactions	over	processes	and	tools,	working	software	over
comprehensive	documentation,	customer	collaboration	over	contract	negotiation,
and	responding	to	change	over	following	a	plan”.	None	of	these	values	is
inherently	in	conflict	with	architectural	practices.	So	why	has	the	belief	arisen—
at	least	in	some	circles—that	the	two	sets	of	practices	are	somehow
incompatible?	The	crux	of	the	matter	is	the	one	principle	on	which	Agile
practices	and	architectural	practices	differ.
The	original	creators	of	the	Agile	Manifesto	described	12	principles	behind

the	manifesto.	While	11	of	these	are	fully	compatible	with	architectural
practices,	one	of	them	is	not:	“The	best	architectures,	requirements,	and	designs
emerge	from	self-organizing	teams”.	While	this	principle	may	have	held	true	for
small	and	perhaps	even	medium-sized	projects,	we	are	unaware	of	any	cases



where	it	has	been	successful	in	large	projects,	particularly	those	with	complex
requirements	and	distributed	development.	The	heart	of	the	problem	is	this:
Software	architecture	design	is	“up-front”	work.	You	could	always	just	start	a
project	by	coding	and	doing	minimal	or	no	up-front	analysis	or	design.	This	is
what	we	call	the	emergent	approach,	as	shown	in	Figure	9.3b.	In	some	cases—
small	systems,	throw-away	prototypes,	systems	where	you	have	little	idea	of	the
customer’s	requirements—this	may,	in	fact,	be	the	optimal	decision.	At	the
opposite	extreme,	you	could	attempt	to	collect	all	the	requirements	up	front,	and
from	that	synthesize	the	ideal	architecture,	which	you	would	then	implement,
test,	and	deploy.	This	so-called	Big	Design	Up	Front	approach	(BDUF;	Figure
9.3a)	is	usually	associated	with	the	classic	Waterfall	model	of	software
development.	The	Waterfall	model	has	fallen	out	of	favor	over	the	past	decade
due	to	its	complexity	and	rigidity,	which	led	to	many	well-documented	cases	of
cost	overruns,	schedule	overruns,	and	customer	dissatisfaction.	With	respect	to
architectural	design,	the	downside	of	the	BDUF	approach	is	that	it	can	end	up
producing	an	extensively	documented	but	untested	design	that	may	not	be
appropriate.	This	occurs	because	problems	in	the	design	are	often	discovered	late
and	may	require	a	lot	of	rework,	or	the	original	design	may	end	up	being	ignored
and	the	true	architecture	is	not	documented.



FIGURE	9.3	Three	approaches	to	architectural	design

Clearly,	neither	of	these	extremes	makes	sense	for	most	real-world	projects,
where	some	(but	not	all)	of	the	requirements	are	well	understood	up	front	but
there	is	also	a	risk	of	doing	too	much	too	soon	and	hence	becoming	locked	in	to
a	solution	that	will	inevitably	need	to	be	modified,	at	significant	cost.	So	the
truly	interesting	question	is	this:	How	much	up-front	work,	in	terms	of
requirements	analysis,	risk	mitigation,	and	architecture,	should	a	project	do?
Boehm	and	Turner	have	presented	evidence	arguing	that	there	is	no	single	right
answer	to	this	question,	but	that	you	can	find	a	“sweet	spot”	for	any	given
project.	The	“right”	amount	of	project	work	depends	on	several	factors,	with	the
most	dominant	being	project	size,	but	other	important	factors	include
requirements	complexity,	requirements	volatility	(related	to	the	precedentedness
of	the	domain),	and	degree	of	distribution	of	development.



of	the	domain),	and	degree	of	distribution	of	development.
So	how	do	architects	achieve	the	right	amount	of	agility?	How	do	they	find

the	right	balance	between	up-front	work	and	technical	debt	leading	to	rework?
For	small,	simple	projects,	no	up-front	work	on	architecture	is	justifiable.	It	is
easy	and	relatively	inexpensive	to	turn	on	a	dime	and	refactor.	In	projects	where
there	is	some	understanding	of	the	requirements,	begin	by	performing	a	few
ADD	iterations.	These	design	iterations	can	focus	on	choosing	the	major
architectural	patterns	(including	a	reference	architecture,	if	one	is	appropriate)
and	frameworks.	This	is	the	iteration	0	approach	depicted	in	Figure	9.3c.	This
will	help	to	structure	the	project,	define	work	assignments	and	team	formation,
and	address	the	most	critical	quality	attributes.	If	and	when	requirements	change
—particularly	if	these	are	driving	quality	attribute	requirements—adopt	a
practice	of	Agile	experimentation,	where	spikes	are	used	to	address	new
requirements.	A	spike	is	a	time-boxed	task	that	is	created	to	answer	a	technical
question	or	gather	information;	it	is	not	intended	to	lead	to	a	finished	product.
Spikes	are	developed	in	a	separate	branch	and,	if	successful,	merged	into	the
main	branch	of	the	code.	In	this	way,	emerging	requirements	can	be	welcomed
and	managed	without	being	too	disruptive	to	the	overall	process	of	development.
Agile	architecture	practices,	however,	help	to	tame	some	of	the	complexity,

narrowing	the	cone	of	uncertainty	and	hence	reducing	project	risk.	A	reference
architecture	defines	families	of	technology	components	and	their	relationships.	It
guides	integration	and	indicates	where	abstraction	should	be	built	into	the
architecture,	to	help	reduce	rework	when	a	new	technology	(from	within	a
family)	replaces	an	existing	one.	Agile	spikes	allow	prototypes	to	be	built
quickly	and	to	“fail	fast”,	thereby	guiding	the	eventual	selection	of	technologies
to	be	included	on	the	main	development	branch.

9.1.2.2	Rational	Unified	Process
The	Rational	Unified	Process	(RUP)	is	a	software	development	process
framework	that	puts	a	strong	emphasis	on	architecture.	In	the	RUP	(which	we
also	discussed	in	Section	7.3),	development	projects	are	divided	in	four	major
phases,	which	are	carried	out	sequentially;	within	these	phases,	a	number	of
iterations	are	performed.	The	four	phases	of	the	RUP	are	as	follows:

	Inception.	In	this	first	phase,	the	goal	is	to	achieve	concurrence	among
project	stakeholders.	During	this	phase	the	scope	of	the	project	and	a
business	architecture	are	defined.	Also,	a	candidate	architecture	is
established.	This	phase	is	the	equivalent	to	the	pre-sales	phase	discussed
previously.



	Elaboration.	In	the	second	phase,	the	goal	is	to	baseline	the	architecture	of
the	system	and	to	produce	architectural	prototypes.
	Construction.	In	the	third	phase,	the	goal	is	to	incrementally	develop	the
system	from	the	architecture	that	was	defined	in	the	previous	phase.
	Transition.	In	the	fourth	phase,	the	goal	is	to	ensure	that	the	system	is
ready	for	delivery.	The	system	is	transitioned	from	the	development
environment	to	its	final	operation	environment.

We	could	argue	that,	from	the	elaboration	phase	until	the	end	of	the	project,
RUP	intrinsically	follows	the	iteration	0	approach	described	earlier.	RUP	also
provides	some	guidance	with	respect	to	architectural	design,	although	this
guidance	is	far	less	detailed	than	that	offered	by	ADD.	As	a	consequence,	ADD
can	be	used	as	a	complement	to	the	RUP.	ADD	iterations	can	be	performed
during	inception	to	establish	the	candidate	architecture	by	following	the
approach	described	in	Section	9.1.1.	Furthermore,	during	the	elaboration	phase,
the	initial	architecture	is	taken	as	a	starting	point	for	performing	additional
design	iterations	until	an	architecture	that	can	be	baselined	is	produced.	During
construction,	additional	ADD	iterations	may	be	performed	as	part	of	the
development	iterations.

9.1.2.3	Team	Software	Process
The	Team	Software	Process	(TSP)	is	a	development	process	that	strongly
emphasizes	quality	and	measurement.	A	TSP	software	project	proceeds	through
a	series	of	development	cycles,	where	each	cycle	begins	with	a	planning	process
called	a	launch	and	ends	with	a	closing	process	called	a	postmortem.	Within
each	development	cycle,	activities	belonging	to	different	phases	can	be
performed.	These	phases	include	requirements	(REQ),	high-level	design	(HLD),
implementation	(IMPL),	and	testing	(TEST).	The	REQ	phase	of	TSP	focuses	on
producing	a	complete	system	requirements	specification	(SRS)	document.	The
main	goal	of	the	HLD	phase	is	to	produce	a	high-level	design	that	will	guide
product	implementation.	This	high-level	design	must	define	the	components
(i.e.,	modules)	that	constitute	the	system	and	that	have	to	be	designed	and
developed	independently	following	the	Personal	Software	Process	(PSP)	in	the
IMPL	phase.	Finally,	the	TEST	phase	focuses	on	performing	integration	and
system	testing	and	on	preparing	the	delivery	of	the	system.	Note	that	the	life-
cycle	model	of	a	particular	project	(Waterfall,	incremental)	is	defined	by	the
phases	that	are	performed	in	each	development	cycle:	An	iterative	project	will
typically	include	activities	from	all	four	phases	in	a	single	development	cycle.
The	TSP	does	not	give	full	consideration	to	software	architecture



development.	For	instance,	none	of	the	roles	defined	in	the	TSP	is	that	of
software	architect.	There	is	also	no	emphasis	on	quality	attributes	in	the	REQ
phase.	Furthermore,	the	process	script	for	the	HLD	phase	(see	Table	9.1)	does
not	provide	detailed	guidance	on	how	to	design	the	system	architecture.	These
issues	can,	however,	be	addressed	by	introducing	ADD,	and	other	architectural
practices,	into	TSP.

TABLE	9.1	Summary	of	TSP	High-Level	Design	(HLD)	Script	Steps

ADD	can	be	used	in	the	context	of	TSP	in	a	straightforward	way.	In	step	1	of



the	HLD	script,	ADD	can	be	used	to	produce	the	overall	product	design	concept,
similar	to	what	was	discussed	for	the	pre-sales	process.	Furthermore,	in	each
development	cycle,	one	or	more	ADD	iterations	can	be	performed	(steps	4	and	5
of	the	HLD	script).	Also,	the	HLD	phase	should	consider	a	separation	between
architectural	design	and	element	interaction	design	(discussed	in	Section	2.2.2).
A	TSP	development	cycle	can	involve	a	few	ADD	iterations	followed	by	the
element	interaction	design	activities	that	include	identification	of	elements	and
their	interfaces.	These	interfaces	are	later	used	in	the	development	phase	(IMPL)
for	performing	detailed	design	and	development	of	the	elements.

9.1.2.4	DevOps
DevOps	is	a	natural	outgrowth	of	the	Agile	mindset.	DevOps	refers	to	a	set	of
practices	that	help	achieve	continuous	delivery	of	software.	Such	practices	are
intended	to	reduce	the	time	between	making	a	change	to	a	system	and	the	change
being	placed	into	normal	production,	while	ensuring	high	quality.	This	term
intentionally	blurs	the	distinction	between	“development”	and	“operations”.
While	DevOps	is	not	inherently	tied	to	architectural	practices,	if	architects	do
not	consider	DevOps	as	they	design,	build,	and	evolve	the	system,	then	critical
activities	such	as	continuous	build	integration,	automated	test	execution,	high
availability,	and	scalable	performance	will	be	more	challenging	and	less
efficient.	By	embracing	DevOps,	small	iterations	are	supported	and	encouraged,
creating	an	environment	where	Agile	spikes	are	easy	to	create,	deploy,	and	test,
thereby	providing	crucial	feedback	to	the	architect.
For	example,	a	tightly	coupled	architecture	can	become	a	barrier	to	continuous

integration	because	even	small	changes	may	require	a	rebuild	of	the	entire
system,	which	limits	the	number	of	builds	possible	in	a	day.	To	fully	automate
testing,	the	system	needs	to	provide	architectural	(system-wide)	test	capabilities
such	as	interfaces	to	record,	play	back,	and	control	system	state.	To	support	high
availability,	the	system	must	be	self-monitoring,	requiring	architectural
capabilities	such	as	self-test,	ping/echo,	heartbeat,	monitor,	hot	spares,	and	so
forth.
In	large-scale	systems,	DevOps	can	be	achieved	only	with	architectural

support.	Any	ad	hoc	or	manual	process	would	put	the	growth	and	success	of
such	a	system	at	risk.	Adopting	the	DevOps	approach	requires	a	small	change	in
the	mindset	of	an	architect.	Instead	of	just	designing	the	system,	you	now	need
to	think	about	the	design	of	the	entire	deployment	pipeline.	Is	the	pipeline	easy
to	change,	and	can	these	changes	be	deployed	at	the	click	of	a	button?	Is	the
pipeline	easy	to	scale?	Is	it	easy	to	test?	Fortunately,	there	are	good	answers	to
all	of	these	questions,	and	they	do	not	require	a	distinct	mindset	or	strategy.



all	of	these	questions,	and	they	do	not	require	a	distinct	mindset	or	strategy.
ADD	can	help	design	a	system	to	achieve	DevOps	goals,	in	exactly	the	same
ways	and	employing	exactly	the	same	design	primitives	as	in	design	for	any
other	driver.	The	different	aspects	that	need	to	be	considered	to	allow	DevOps	to
be	performed	successfully	can	be	included	as	part	of	the	system	drivers,	either	as
architectural	concerns	or	as	quality	attributes.	The	design	concepts	that	help	us
to	achieve	modifiability	or	testability	or	scalability	or	high	availability	in	a
system	can	also	be	applied	to	the	deployment	pipeline.	To	slightly	misquote
Gertrude	Stein,	“Architecture	is	architecture	is	architecture”.

9.2	Organizational	Aspects
In	addition	to	the	choice	of	a	specific	development	method	and	the	introduction
of	a	design	method	such	as	ADD	into	this	method,	other	aspects	of	the	design
process	can	be	supported	by	a	software	development	organization	to	facilitate
design	activities.	Here	we	briefly	discuss	some	of	these	aspects.

9.2.1	Designing	as	an	Individual	or	as	a	Team
In	large	and	complex	projects,	it	seems	straightforward	that	an	architecture	team
should	be	responsible	for	performing	the	design.	Even	in	smaller	projects,
however,	you	may	find	that	having	more	than	one	person	participate	in	the
design	process	yields	important	advantages.	You	can	decide	if	only	one	person	is
the	architect	and	the	others	are	observers	(as	in	the	practice	of	pair
programming)	or	if	the	group	actively	collaborates	on	design	decisions	(although
even	here	we	recommend	that	you	have	one	lead	architect).
There	are	various	benefits	from	this	approach:
	Two	(or	more)	heads	can	be	better	than	one,	particularly	if	the	design
problem	that	you	are	trying	to	solve	is	different	from	ones	that	you	have
addressed	before.
	Different	people	can	have	different	areas	of	expertise	that	are	useful	in	the
design	of	the	architecture.	For	example,	you	might	have	distinct	software
and	infrastructure	architects,	or	people	who	specialize	in	different	domains
or	different	types	of	design	concepts.
	Design	decisions	are	reflected	upon	and	reviewed	as	they	are	being	made
and,	as	a	consequence,	can	be	corrected	immediately.
	Less	experienced	people	can	participate	in	the	design	process,	which	can
be	an	excellent	mentoring	practice.

You	should,	however,	be	aware	of	certain	difficulties	with	this	approach:



	Design	by	committee	can	be	complicated	if	agreement	is	not	achieved	in	a
reasonable	time	frame.	The	search	for	consensus	can	lead	to	“analysis
paralysis”.
	The	cost	of	design	increases	and,	in	many	cases,	the	time	for	design	also
increases.
	Managing	the	logistics	can	be	complex,	because	this	approach	requires	the
regular	availability	of	the	group	of	people.
	You	may	encounter	personality	and	political	conflicts,	resulting	in
resentment	or	hurt	feelings	or	in	design	decisions	being	heavily	influenced
by	the	person	who	shouts	longest	and	loudest	(“design	by	bullying”).

9.2.2	Using	a	Design	Concepts	Catalog	in	Your	Organization
Design	concepts	are	used	in	the	design	process	to	satisfy	drivers	(see	Section
2.5).	In	general,	drivers	can	be	seen	as	recurring	design	problems.	Whether	it	is
the	concern	of	structuring	an	application,	allocating	functionality,	or	satisfying	a
particular	quality	attribute,	these	drivers	have	most	certainly	been	addressed	in
other	systems	previously.	Furthermore,	people	have	taken	the	time	to	document
ways	to	address	these	design	problems	or	to	develop	components	that	serve	this
purpose.	As	we	saw	in	Section	3.4,	the	selection	of	design	concepts	is	one	of	the
most	challenging	aspects	of	the	design	process.	This	problem	is	exacerbated	by
the	fact	that	information	is	scattered	in	many	places:	Architects	usually	need	to
consult	several	pattern	and	tactics	catalogs	and	do	extensive	research	to	find	the
design	concepts	that	can	be	considered	and	used.
One	possible	way	to	resolve	this	issue	is	the	creation	of	design	concepts

catalogs.	These	catalogs	group	collections	of	design	concepts	for	particular
application	domains.	Such	catalogs	are	intended	to	facilitate	the	identification
and	selection	of	design	concepts	when	performing	design.	They	are	also	useful
in	enhancing	consistency	in	the	designs	across	the	organization.	For	example,
designers	may	be	required	to	use	the	technologies	in	a	particular	catalog	as	much
as	possible	because	this	facilitates	estimation,	reduces	learning	curves,	and	may
lead	to	opportunities	for	reuse.	Catalogs	can	also	be	useful	for	training	purposes.
An	example	of	a	design	concepts	catalog	appears	in	Appendix	A.	This	catalog

is	oriented	toward	the	design	of	enterprise	applications.	A	similar	catalog	for	the
Big	Data	domain	could	be	created	from	the	technology	families	and	specific
technologies	illustrated	in	Figure	2.10	(Section	2.5.5).
The	creation	of	these	catalogs	involves	considerable	effort	and,	once	created,

they	should	be	maintained	as	new	design	concepts,	and	particularly	new
technologies,	are	introduced	or	removed	in	the	organization.	This	effort	is



technologies,	are	introduced	or	removed	in	the	organization.	This	effort	is
worthwhile,	however,	as	these	catalogs	are	a	valuable	organizational	asset.

9.3	Summary
In	this	chapter	we	discussed	how	ADD	can	be	used	in	relation	to	several
organizational	aspects.	ADD	can	be	used	from	the	project’s	inception,	when	a
pre-sales	proposal	is	developed,	to	facilitate	estimation	using	standard
components.	As	the	project	evolves,	ADD	can	be	used	in	conjunction	with	any
modern	software	development	life-cycle	method.	In	general,	ADD	is	a	valuable
complement	to	life-cycle	methods	that	do	not	provide	detailed	guidance	on	how
to	perform	architectural	design.
We	also	briefly	reviewed	some	related	concerns,	such	as	the	composition	of

the	design	team	and	the	development	of	organizational	assets,	such	as	a	design
concepts	catalog,	that	are	useful	during	the	design	process.

9.4	Further	Reading
Organizational	structure	and	its	influences	on	software	architecture	are
addressed	in	the	field	of	enterprise	architecture	management.	Enterprise
architecture	frameworks	are	discussed	in	F.	Ahlemann	et	al.	(Eds.),	Strategic
Enterprise	Architecture	Management:	Challenges,	Best	Practices,	and	Future
Developments,	Springer-Verlag	Berlin	Heidelberg,	2012.
A	nice	set	of	articles	looking	at	the	relationship	between	architecture	and

Agile	methods	can	be	found	in	the	April	2010	IEEE	Software	magazine	special
issue	on	this	topic.
A	number	of	studies	have	looked	at	how	architecture	and	agility	methods

complement	and	support	each	other,	such	as	S.	Bellomo,	I.	Gorton,	and	R.
Kazman,	“Insights	from	15	Years	of	ATAM	Data:	Towards	Agile	Architecture”,
IEEE	Software,	September/October	2015,	and	S.	Bellomo,	R.	Nord,	and	I.
Ozkaya,	“A	Study	of	Enabling	Factors	for	Rapid	Fielding:	Combined	Practices
to	Balance	Speed	and	Stability”,	Proceedings	of	ICSE	2013,	982–991,	2013.
Barry	Boehm	and	Richard	Turner	have	taken	an	empirical	look	at	the	topic	of

the	relationship	between	agility	and	“discipline”	(not	just	architecture)	in	their
book	Balancing	Agility	and	Discipline:	A	Guide	for	the	Perplexed	(Boston:
Addison-Wesley,	2004).
The	practice	of	creating	architectural	“spikes”	as	a	means	of	resolving

uncertainty	in	Agile	sprints	is	discussed	in	T.	C.	N.	Graham,	R.	Kazman,	and	C.
Walmsley,	“Agility	and	Experimentation:	Practical	Techniques	for	Resolving



Architectural	Tradeoffs”,	Proceedings	of	the	29th	International	Conference	on
Software	Engineering	(ICSE	29),	(Minneapolis,	MN),	May	2007.	A	general
discussion	of	spikes	can	be	found	at
https://www.scrumalliance.org/community/articles/2013/march/spikes-and-the-
effort-to-grief-ratio.
Many	practitioners	and	researchers	have	thought	deeply	about	how	Agile

methods	and	architectural	practices	fit	together.	Some	of	the	best	examples	of
this	thinking	can	be	found	in	the	following	sources:

	S.	Brown.	Software	Architecture	for	the	Developers.	LeanPub,	2013.
	J.	Bloomberg.	The	Agile	Architecture	Revolution.	Wiley	CIO,	2013.
	Dean	Leffingwell.	“Scaled	Agile	Framework”.
http://scaledagileframework.com/
	A.	Cockburn.	“Walking	Skeleton”.
http://alistair.cockburn.us/Walking+skeleton
	“Manifesto	for	Agile	Software	Development”.	http://agilemanifesto.org/
	Scott	Ambler	and	Mark	Lines.	“Scaling	Agile	Software	Development:
Disciplined	Agility	at	Scale”.
http://disciplinedagileconsortium.org/Resources/Documents/ScalingAgileSoftwareDevelopment.pdf

An	extensive	treatment	of	estimation	techniques,	including	estimation	using
standard	components,	is	given	in	S.	McConnell,	Software	Estimation:
Demystifying	the	Black	Art,	Microsoft	Press,	2006.
An	overview	of	the	Team	Software	Process	can	be	found	in	W.	Humphrey,

The	Team	Software	ProcessSM	(TSPSM),	Technical	Report	CMU/SEI-2000-TR-
023,	November	2000.	Extensive	details	about	TSP	can	be	found	in	the	different
books	written	by	Humphrey	about	this	process.
The	integration	of	ADD	2.0	(as	well	as	other	architecture	development

methods)	with	RUP,	is	discussed	in	R.	Kazman,	P.	Kruchten,	R.	Nord,	and	J.
Tomayko,	“Integrating	Software-Architecture-Centric	Methods	into	the	Rational
Unified	Process”,	Technical	Report	CMU/SEI-2004-TR-011,	July	2004.
There	are	now	several	excellent	books	on	the	topic	of	DevOps,	such	as	L.

Bass,	I.	Weber,	and	L.	Zhu,	DevOps:	A	Software	Architect’s	Perspective,
Addison-Wesley,	2015.	A	set	of	architectural	tactics	for	DevOps	was	described
in	H-M	Chen,	R.	Kazman,	S.	Haziyev,	V.	Kropov,	and	D.	Chtchourov,
“Architectural	Support	for	DevOps	in	a	Neo-Metropolis	BDaaS	Platform”,	IEEE
34th	Symposium	on	Reliable	Distributed	Systems	Workshop	(SRDSW),	Montreal,
Canada,	September	2015.

https://www.scrumalliance.org/community/articles/2013/march/spikes-and-the-effort-to-grief-ratio
http://scaledagileframework.com/
http://alistair.cockburn.us/Walking+skeleton
http://agilemanifesto.org/
http://disciplinedagileconsortium.org/Resources/Documents/ScalingAgileSoftwareDevelopment.pdf


Considerable	attention	has	been	given	to	the	problem	of	architecture
knowledge	representation	and	management.	For	a	good	overview	of	this	area,
see	P.	Kruchten,	P.	Lago,	and	H.	Van	Vliet,	“Building	Up	and	Reasoning	About
Architectural	Knowledge”,	in	Quality	of	Software	Architectures,	Springer,	2006.
For	a	perspective	on	tools	for	architecture	knowledge	management,	see	A.	Tang,
P.	Avgeriou,	A.	Jansen,	R.	Capilla,	and	M.	Ali	Babar,	“A	Comparative	Study	of
Architecture	Knowledge	Management	Tools”,	Journal	of	Systems	and	Software,
83(3):352–370,	2010.



10.	Final	Words

In	this	chapter	we	reflect,	once	again,	on	the	nature	of	design	and	why	we	need
methods	for	design.	This	is,	after	all,	the	major	point	of	this	book!	And	we	leave
you	with	a	few	words	about	where	to	go	with	the	information	and	skills	that	you
have	gleaned	from	reading	this	book.

10.1	On	the	Need	for	Methods
Given	that	you	have	prevailed	and	reached	this	final	chapter,	we	can	assume	that
you	are	committed	to	being	a	professional	software	architect.	Being	a
professional	means	that	you	can	perform	(at	least)	adequately	and	repeatedly	in
all	sorts	of	contexts.	To	achieve	this	level	of	performance,	you	need	methods.
We	all	need	methods	when	we	are	performing	complex	tasks	that	have	serious

consequences	if	we	get	them	wrong.	Consider	this:	Jet	pilots	and	surgeons	are
two	of	the	most	highly	trained	groups	of	professionals	in	the	world,	and	yet	they
use	checklists	and	standardized	procedures	for	every	important	task	that	they
perform.	Why?	Because	the	consequences	of	making	a	mistake	are	serious.	You
probably	will	not	be	designing	the	architectures	for	systems	that	have	life-and-
death	consequences.	Even	so,	the	systems	that	you	do	design,	particularly	if	they
are	large	and	complex,	may	very	well	have	consequences	for	the	health	and
well-being	of	your	organization.	If	you	are	designing	a	throwaway	prototype	or	a
trivial	system,	perhaps	an	explicit	architecture	design	step	may	be	omitted.	If
you	are	designing	the	nth	variant	of	a	system	that	you	have	created	over	and	over
in	the	past,	perhaps	architecture	design	is	little	more	than	a	cut-and-paste	from
your	prior	experiences.
But	if	the	system	you	are	charged	with	creating	or	evolving	is	nontrivial	and	if

there	is	risk	associated	with	its	creation,	then	you	owe	it	to	yourself,	you	owe	it
to	your	organization,	and	you	owe	it	to	your	profession	to	do	the	best	job	that
you	can	in	this	most	critical	step	in	the	software	development	life	cycle.	To
achieve	that	goal,	you	need	a	method.	Methods	help	to	ensure	uniformity,
consistency,	and	completeness.	Methods	help	you	take	the	right	steps	and	ask	the
right	questions.
Of	course,	no	method	can	substitute	for	proper	training	and	education.	No	one

would	trust	a	novice	pilot	at	the	controls	of	a	787	or	a	first-year	medical	student
wielding	a	scalpel	in	an	operating	theater,	armed	only	with	a	method	or	a
checklist.	A	method,	however,	is	a	key	to	producing	high-quality	results
repeatedly.	And	this	is,	after	all,	what	we	all	desire	as	software	engineering



repeatedly.	And	this	is,	after	all,	what	we	all	desire	as	software	engineering
professionals.
Fred	Books,	writing	about	the	design	process,	said:

Any	systematization	of	the	design	process	is	a	great	step	forward
compared	to	“Let’s	just	start	coding,	or	building”.	It	provides	clear
steps	for	planning	a	design	project.	It	furnishes	clearly	definable
milestones	for	planning	a	schedule	and	for	judging	progress.	It
suggests	project	organization	and	staffing.	It	helps	communication
within	the	design	team,	giving	everyone	a	single	vocabulary	for	the
activities.	It	wonderfully	helps	communication	between	the	team	and
its	manager,	and	between	the	manager	and	other	stakeholders.	It	is
readily	teachable	to	novices.	It	tells	novices	facing	their	first	design
assignments	where	to	begin.

Design	is	just	too	important	to	be	left	to	chance.	And	there	needs	to	be	a	better
way	of	getting	good	at	design	than	“shoot	yourself	in	the	foot	repeatedly”.	As
the	Nobel	Prize–winning	scientist	Herbert	Simon	wrote	in	1969,	“Design	.	.	.	is
the	core	of	all	professional	training;	it	is	the	principal	mark	that	distinguishes	the
professions	from	the	sciences.	Schools	of	engineering,	as	well	as	schools	of
architecture,	business,	education,	law,	and	medicine,	are	all	centrally	concerned
with	the	process	of	design”.	Simon	went	on	to	say	that	lack	of	professional
competence	is	caused	by	the	relative	neglect	of	design	in	universities’	curricula.
This	trend	is,	we	are	happy	to	note,	gradually	reversing,	but	nearly	50	years	later
it	is	still	a	cause	for	concern.
In	this	book	we	have	provided	you	with	a	road-tested	method—ADD	3.0—for

doing	architectural	design.	Methods	are	useful	in	that	they	provide	guidance	for
the	novice	and	reassurance	for	the	expert.	Like	any	good	method,	ADD	3.0	has	a
set	of	steps,	and	these	steps	have	been	updated	somewhat	from	prior	versions	of
ADD.	But	just	as	important,	we	have	focused	on	the	broader	architecture	life
cycle	and	shown	how	some	changes	to	the	design	process	can	help	make	your
life	as	an	architect	better,	and	provide	you	with	better	outcomes.	For	example,
we	have	expanded	the	set	of	inputs	that	you	need	to	think	about	to	include	things
like	design	purpose	and	architectural	concerns.	This	broader	view	helps	you
create	an	architecture	that	not	only	meets	your	customer’s	requirements,	but	also
is	aligned	with	the	business	needs	of	your	team	and	your	organization.	In
addition,	we	have	shown	that	design	can	and	should	be	guided	by	a	“design
concepts	catalog”—a	corpus	of	reusable	architectural	knowledge	consisting	of
reference	architectures,	patterns,	tactics,	and	externally	developed	components
such	as	frameworks	and	technology	families.	By	cataloging	these	concepts,
design	can	be	made	more	predictable	and	repeatable.	Finally,	we	have	argued



that	design	should	be	documented,	perhaps	informally	in	sketches,	and	should	be
accompanied	by	a	consistent	practice	of	analyzing	the	decisions	made.
If	we	are	to	conceive	of	ourselves	as	software	engineers,	we	need	to	take	the

title	of	“engineer”	seriously.	No	mechanical	or	electrical	or	structural	engineer
would	commit	significant	resources	to	a	design	that	was	not	based	on	sound
principles	and	components,	or	that	was	not	analyzed	and	documented.	We	think
that	software	engineering	in	general,	and	software	architecture	specifically,
should	strive	for	similar	goals.	We	are	not	“artistes”,	for	whom	creativity	is
paramount;	we	are	engineers,	so	predictability	and	repeatability	should	be	our
most	cherished	goal.

10.2	Next	Steps
Where	should	you	go	from	here?	We	see	four	answers	to	this	question.	One
answer	focuses	on	what	you	can	do	as	an	individual	to	hone	your	skills	and
experience	as	an	architect.	The	second	answer	revolves	around	how	you	might
engage	your	colleagues	to	think	more	consciously	about	architecture	design.	The
third	answer	is	where	your	organization	can	go	with	a	more	explicit	commitment
to	architecture	design.	And	the	fourth	answer	is	about	how	you	can	contribute	to
your	community,	and	to	the	larger	community	of	software	architects.
Our	advice	to	you,	as	an	individual,	about	how	to	proceed	is	simple:	practice.

Like	any	other	complex	skill	worth	having,	your	skill	as	an	architect	will	not
come	immediately,	but	your	confidence	should	increase	steadily.	“Fake	it	till
you	make	it”	is	the	best	advice	that	we	can	give.	Having	a	method	that	you	can
consult,	and	a	ready	supply	of	common	design	concepts,	gives	you	a	solid
foundation	on	which	to	“fake	it”	and	learn.
To	help	you	practice	your	skills	and	to	engage	your	colleagues,	we	have

developed	an	architecture	game.	This	game,	which	is	called	“Smart	Decisions”,
can	be	found	at	http://www.smartdecisionsgame.com.	It	simulates	the
architecture	design	process	using	ADD	3.0	and	promotes	learning	about	it	in	a
fun,	pressure-free	way.	The	game	is	currently	focused	on	the	Big	Data	Analytics
application	domain,	similar	to	the	extended	design	example	in	Chapter	5,	but	it
can	be	easily	adapted	to	other	application	domains.
You	might	also	think	about	next	steps	to	be	taken	in	your	organization.	You

can	be	an	agent	for	change.	Even	if	your	company	does	not	“believe	in”
architecture,	you	can	still	practice	many	of	the	ideas	embodied	in	this	book	and
in	ADD.	Ensure	that	your	requirements	are	clear	by	insisting	on	response	goals
for	your	requirements.	Even	when	facing	tight	deadlines	and	schedule	pressures,

http://www.smartdecisionsgame.com


try	to	get	agreement	on	the	major	architectural	design	concepts	being	employed.
Do	quick,	informal	design	reviews	with	colleagues,	huddled	around	a
whiteboard,	and	ask	yourself	reflective	questions.	None	of	these	“next	steps”
needs	to	be	daunting	or	hugely	time-consuming.	And	we	believe—and	our
industrial	experience	has	shown—that	they	will	be	self-reinforcing.	Better
designs	will	lead	to	better	outcomes,	which	will	lead	you	and	your	group	and
your	organization	to	want	to	do	more	of	the	same.
Finally,	you	can	contribute	to	your	local	software	engineering	community,	and

even	to	the	worldwide	community	of	software	architects.	You	could,	for
example,	play	the	architecture	game	in	a	local	software	engineering	meetup	and
then	share	your	experiences.	You	could	contribute	case	studies	about	your
successes	and	failures	as	an	architect	with	real-world	projects.	We	strongly
believe	that	example	is	the	best	way	to	teach	and	while	we	have	provided	three
case	studies	in	this	book,	more	is	always	better.	Self-publishing	is	easy	in
today’s	web.
Happy	architecting!

10.3	Further	Reading
The	long	quotation	by	Fred	Books	in	this	chapter	comes	from	his	thought-
provoking	book	The	Design	of	Design:	Essays	from	a	Computer	Scientist,
Pearson,	2010.
Many	of	the	ideas	in	this	chapter,	in	this	book,	and	in	the	field	of	software

architecture	in	general	can	be	traced	back	to	Herbert	Simon’s	seminal	book	on
the	science	of	design:	The	Sciences	of	the	Artificial,	MIT	Press,	1969.



A.	A	Design	Concepts	Catalog

This	chapter	presents	an	excerpt	from	a	catalog	that	groups	design	concepts	that
are	associated	with	the	domain	of	enterprise	applications,	such	as	the	one
presented	in	the	case	study	in	Chapter	4.	As	opposed	to	traditional	catalogs	that
list	just	a	single	type	of	design	concept,	such	as	pattern	catalogs,	the	catalog
presented	here	groups	different	varieties	of	related	design	concepts.	In	this	case,
the	catalog	includes	a	selection	of	reference	architectures,	deployment	patterns,
design	patterns,	tactics,	and	externally	developed	components	(frameworks).
Also,	the	design	concepts	that	are	included	in	this	catalog	are	gathered	from
different	sources,	reflecting	what	occurs	in	real-life	design.	The	design	concepts
are	presented	in	a	very	succinct	way,	and	the	reader	looking	for	more	detail
should	refer	to	the	original	sources	using	the	references	provided	at	the	end	of
the	chapter.

A.1	Reference	Architectures
Reference	architectures	provide	a	blueprint	for	structuring	an	application	(see
Section	2.5.1).	This	section	is	based	on	the	catalog	in	the	Microsoft	Application
Architecture	Guide.

A.1.1	Web	Applications
This	web	application	is	typically	initiated	from	a	web	browser	that
communicates	with	a	server	using	the	HTTP	protocol.	The	bulk	of	the
application	resides	on	the	server,	and	its	architecture	is	typically	composed	of
three	layers:	the	presentation,	business,	and	data	layers.	The	presentation	layer
contains	modules	that	are	responsible	for	managing	user	interaction.	The
business	layer	contains	modules	that	handle	aspects	related	to	the	business	logic.
The	data	layer	contains	modules	that	manage	data	that	is	stored	either	locally	or
remotely.	In	addition,	certain	functionality	that	is	common	to	modules	across	the
layers	is	organized	as	cross-cutting	concerns.	This	cross-cutting	functionality
includes	aspects	related	to	security,	logging,	and	exception	management.	Figure
A.1	presents	the	components	associated	with	the	modules	in	web	applications.





FIGURE	A.1	Web	Application	reference	architecture	(Key:	UML)

The	following	table	summarizes	the	responsibilities	of	the	components	present
in	this	reference	architecture:



You	should	consider	using	this	type	of	application	when:
	You	do	not	require	a	rich	user	interface.
	You	do	not	want	to	deploy	the	application	by	installing	anything	on	the
client	machine
	You	require	portability	of	the	user	interface.
	Your	application	needs	to	be	accessible	over	the	Internet.
	You	want	to	use	a	minimum	of	client-side	resources.

A.1.2	Rich	Client	Applications
Rich	client	applications	are	installed	and	run	on	a	user’s	machine.	Because	the
application	runs	on	the	user’s	machine,	its	user	interface	can	provide	a	high-
performance,	interactive,	and	rich	user	experience.	A	rich	client	application	may
operate	in	stand-alone,	connected,	occasionally	connected,	or	disconnected
mode.	When	connected,	it	typically	communicates	with	remote	services
provided	by	other	applications.
Rich	client	application	modules	are	structured	in	three	main	layers	or	in	a

cross-cutting	grouping,	similar	to	a	web	application	(see	Section	A.1.1).	Rich
client	applications	can	be	“thin”	or	“thick.”	Thin-client	applications	consist
primarily	of	presentation	logic,	which	obtains	user	data	and	sends	it	to	a	server
for	processing.	Thick-client	applications	contain	business	and	data	logic	and
typically	connect	to	a	data	storage	server	only	to	exchange	information	that
needs	to	be	persisted	remotely.	Figure	A.2	presents	the	components	associated
with	the	modules	in	rich	client	applications.



FIGURE	A.2	Rich	Client	Application	reference	architecture	(Key:	UML)

You	should	consider	using	this	type	of	application	when:
	You	want	to	deploy	your	application	on	the	users’	machines.



	You	want	your	application	to	support	intermittent	or	no	network
connectivity.
	You	want	your	application	to	be	highly	interactive	and	responsible.
	You	want	to	leverage	the	user’s	machine	resources	(such	as	a	graphics
card).

Since	these	applications	are	deployed	on	the	user’s	machine,	they	are	less
portable	and	deployment	and	updating	is	more	complicated.	A	range	of
technologies	to	facilitate	their	installation	are	available,	however.

A.1.3	Rich	Internet	Applications
Rich	Internet	applications	(RIAs)	typically	run	inside	a	browser	and	may	be
developed	using	code	that	is	executed	by	the	browser	such	as	Asynchronous
JavaScript	and	XML	(AJAX).	RIAs	may	also	run	inside	a	browser	plug-in,	such
as	Silverlight.	These	applications	are	more	complex	than	standard	web
applications	and	support	rich	user	interaction	and	business	logic.	They	are,
however,	typically	restricted	with	respect	to	accessing	local	resources	because	of
security	concerns.
Typical	RIAs	are	structured	using	the	same	three	layers	and	modules	found	in

web	applications	(see	Section	A.1.1).	In	RIAs,	some	business	logic	may	be
executed	on	the	client	machine,	and	some	data	may	be	stored	locally.	Like	rich
client	applications,	RIAs	may	range	from	relatively	thin	to	quite	thick	clients.
The	following	table	summarizes	the	responsibilities	of	the	components	of	this

reference	architecture	(shown	in	Figure	A.3)	that	are	not	present	in	the	Web
Application	reference	architecture:







FIGURE	A.3	Rich	Internet	Application	reference	architecture	(Key:	UML)

You	should	consider	using	this	type	of	application	when:
	You	want	your	application	to	have	a	rich	user	interface	but	still	run	inside
a	browser.
	You	want	to	perform	some	of	the	processing	on	the	client	side.
	You	want	to	deploy	and	update	your	application	in	a	simple	manner,
without	having	to	perform	installations	on	the	user	machine.

However,	there	are	some	limitations	associated	with	this	type	of	application:
	Access	to	local	resources	can	be	limited,	because	the	application	may	run
in	a	sandbox.
	Loading	time	is	non-negligible.
	Plug-in	execution	environments	may	not	be	available	in	all	platforms.

A.1.4	Mobile	Applications
A	mobile	application	is	typically	executed	on	a	handheld	device	and	usually
works	in	collaboration	with	a	support	infrastructure	that	resides	remotely.	These
applications	are	structured	using	modules	and	layers	similar	to	those	found	in	a
web	application	(see	Section	A.1.1),	although	many	of	the	components	derived
from	these	modules	may	be	optional	depending	on	whether	a	thin-client	or	a
thick-client	approach	is	followed.	As	shown	in	Figure	A.4,	at	a	minimum,	the
components	responsible	for	user	interaction	are	typically	present.
Communication	with	the	support	infrastructure	is	frequently	unreliable,	and
these	applications	normally	include	some	type	of	local	data	store	that	is
periodically	synchronized	with	data	in	the	support	infrastructure.





FIGURE	A.4	Mobile	Application	reference	architecture	(Key:	UML)

You	should	consider	using	this	type	of	application	when:
	You	want	your	application	to	run	in	a	handheld	device.
	The	network	connectivity	is	unreliable,	so	the	application	needs	to	run	in
both	offline	and	occasionally	connected	modes.

However,	there	is	a	substantial	limitation	associated	with	this	type	of
application:

	Resources	on	the	handheld	device	may	be	limited.

A.1.5	Service	Applications
Service	applications	are	non-interactive	applications	that	expose	functionality
through	public	interfaces	(i.e.,	services).	Services	may	be	invoked	by	service
consumer	components	remotely	or	from	the	same	machine	in	which	the	service
application	is	running.	Services	can	be	defined	using	a	description	language	such
as	the	Web	Services	Description	Language	(WSDL);	operations	are	invoked
using	XML-based	message	schemas	that	are	transferred	over	a	transport	channel.
As	a	consequence,	services	promote	interoperability.
Similar	to	the	other	types	of	reference	architectures,	service	applications	are

structured	using	layers	(Figure	A.5).	These	applications	are	not	interactive,	so
the	presentation	layer	is	not	needed.	It	is	replaced	by	a	service	layer	that	contains
components	responsible	for	exposing	the	services	and	exchanging	information,
similar	to	the	server	part	of	RIAs	(see	Section	A.1.3).





FIGURE	A.5	Service	Application	reference	architecture	(Key:	UML)

You	should	consider	using	this	type	of	application	when:
	Your	application	is	not	used	by	humans	but	rather	by	other	systems	and,	as
a	consequence,	does	not	have	a	user	interface.
	Your	application	and	the	clients	should	be	loosely	coupled.

Except	in	cases	where	services	are	consumed	by	applications	that	reside	in	the
same	machine,	network	connectivity	is	required	for	the	clients	to	communicate
with	the	service	application.

A.2	Deployment	Patterns
Deployment	patterns	provide	guidance	on	how	to	structure	the	system	from	a
physical	standpoint	(see	Section	2.5.3).	Good	decisions	with	respect	to	the
deployment	of	the	software	system	are	essential	to	achieve	important	quality
attributes	such	as	performance,	usability,	availability,	and	security.	This	section
is	a	summary	from	the	catalog	included	in	the	Microsoft	Application
Architecture	Guide.

A.2.1	Nondistributed	Deployment
In	nondistributed	deployment,	all	of	the	components	from	the	modules	in	the
different	layers	reside	on	a	single	server	except	for	data	storage	functionality
(Figure	A.6).	Because	the	components	communicate	locally,	this	may	improve
performance	due	to	the	lack	of	network	communication	delays.	However,
performance	may	be	affected	by	other	aspects	of	the	system,	such	as	resource
contention.	Also,	this	type	of	application	must	support	the	peak	usage	of	the
largest	consumers	of	system	resources.	Scalability	and	maintainability	may	be
negatively	affected	because	the	same	physical	hardware	is	shared	by	all	of	the
components.



FIGURE	A.6	Nondistributed	deployment	example	(Key:	UML)

A.2.2	Distributed	Deployment
In	a	distributed	deployment,	the	components	of	the	application	reside	on	separate
physical	tiers	(Figure	A.7).	Typically,	the	components	associated	with	specific
layers	are	deployed	in	different	tiers.	Tiers	can	be	configured	differently	to	best
meet	the	requirements	of	the	components	that	it	hosts.

FIGURE	A.7	Distributed	deployment	example	(Key:	UML)

Distributed	deployment	facilitates	scalability	but	the	addition	of	tiers	also
brings	additional	costs,	network	latency,	complexity,	and	deployment	effort.
More	tiers	may	also	be	added	to	promote	security.	Different	security	policies
may	be	applied	according	to	the	particular	tier,	and	firewalls	may	be	placed



between	the	tiers.	The	following	subsections	describe	various	alternatives	of
distributed	deployment	that	can	be	used	in	conjunction	with	the	reference
architectures	from	Section	A.1.

Two-Tier	Deployment	(Client-Server)
Two-tier	deployment	is	the	most	basic	layout	for	distributed	deployment.	The
client	and	the	server	are	usually	deployed	on	different	physical	tiers,	as	shown	in
Figure	A.8.

FIGURE	A.8	Two-tier	deployment	pattern	(Key:	UML)

Three-Tier	Deployment
In	three-tier	deployment,	the	application	is	deployed	in	a	tier	that	is	separate
from	the	one	that	hosts	the	database,	as	shown	in	Figure	A.9.	This	is	a	very
common	physical	layout	for	web	applications.

FIGURE	A.9	Three-tier	deployment	pattern	(Key:	UML)

Four-Tier	Deployment



Four-Tier	Deployment
In	four-tier	deployment,	shown	in	Figure	A.10,	the	web	server	and	the
application	server	are	deployed	in	different	tiers.	This	separation	is	usually	done
to	improve	security,	as	the	web	server	may	reside	in	a	publicly	accessible
network	while	the	application	resides	in	a	protected	network.	Additionally,
firewalls	may	be	placed	between	the	tiers.

FIGURE	A.10	Four-tier	deployment	pattern	(Key:	UML)

A.2.3	Performance	Patterns:	Load-Balanced	Cluster
In	the	Load-Balanced	Cluster	pattern,	the	application	is	deployed	on	multiple
servers	that	share	the	workload,	as	shown	in	Figure	A.11.	Client	requests	are
received	by	a	load	balancer,	which	redirects	them	to	the	various	servers
according	to	their	current	load.	The	different	application	servers	can	process
several	requests	concurrently,	which	results	in	performance	improvements.

FIGURE	A.11	Load-balanced	cluster	deployment	pattern	(Key:	UML)



A.3	Architectural	Design	Patterns
This	section	includes	architectural	design	patterns	(see	Section	2.5.2)	used	in	the
case	study	in	Chapter	4.	The	patterns	presented	here	are	based	on	the	book
Pattern-Oriented	Software	Architecture:	A	Pattern	Language	for	Distributed
Computing,	Volume	4.	The	numbers	in	parentheses	[e.g.,	Domain	Model	(182)]
indicate	the	page	in	the	book	where	the	pattern	is	documented.
Note	that	we	are	using	a	home-grown	notation	for	the	patterns	here,	which	is

common	in	the	patterns	community.	We	define	the	symbols	in	a	legend
accompanying	the	first	diagram	(Layers)	and	use	these	symbols	throughout	this
section.

A.3.1	Structural	Patterns
These	patterns	are	used	to	structure	the	system	but	they	provide	less	detail	than
the	reference	architectures.





A.3.2	Interface	Partitioning





A.3.3	Concurrency



A.3.4	Database	Access





A.4	Tactics
Tactics	were	presented	in	Section	2.5.4.	Here	we	present	a	summarized	catalog
of	tactics	for	seven	commonly	encountered	quality	attributes.	This	catalog	comes
from	the	book	Software	Architecture	in	Practice.

A.4.1	Availability	Tactics
Figure	A.12	summarizes	the	tactics	to	achieve	availability.



FIGURE	A.12	Availability	tactics

Detect	Faults
	Ping/echo:	An	asynchronous	request/response	message	pair	exchanged
between	nodes	is	used	to	determine	reachability	and	the	round-trip	delay
through	the	associated	network	path.
	Monitor:	A	component	is	used	to	monitor	the	state	of	health	of	other	parts
of	the	system.	A	system	monitor	can	detect	failure	or	congestion	in	the
network	or	other	shared	resources,	such	as	from	a	denial-of-service	attack.



	Heartbeat:	A	periodic	message	exchange	occurs	between	a	system	monitor
and	a	process	being	monitored.
	Timestamp:	Detect	incorrect	sequences	of	events,	primarily	in	distributed
message-passing	systems.
	Sanity	checking:	Check	the	validity	or	reasonableness	of	a	component’s
operations	or	outputs;	typically	based	on	a	knowledge	of	the	internal
design,	the	state	of	the	system,	or	the	nature	of	the	information	under
scrutiny.
	Condition	monitoring:	Check	conditions	in	a	process	or	device,	or
validates	assumptions	made	during	the	design.
	Voting:	Check	that	replicated	components	are	producing	the	same	results.
Comes	in	various	flavors,	such	as	replication,	functional	redundancy,
analytic	redundancy.
	Exception	detection:	Detect	a	system	condition	that	alters	the	normal	flow
of	execution,	such	as	a	system	exception,	parameter	fence,	parameter
typing,	or	timeout.
	Self-test:	Procedure	for	a	component	to	test	itself	for	correct	operation.

Recover	from	Faults	(Preparation	and	Repair)
	Active	redundancy	(hot	spare):	All	nodes	in	a	protection	group	receive	and
process	identical	inputs	in	parallel,	allowing	redundant	spare(s)	to	maintain
synchronous	state	with	the	active	node(s).
	Passive	redundancy	(warm	spare):	Only	the	active	members	of	the
protection	group	process	input	traffic;	one	of	their	duties	is	to	provide	the
redundant	spare(s)	with	periodic	state	updates.
	Spare	(cold	spare):	Redundant	spares	of	a	protection	group	remain	out	of
service	until	a	failover	occurs,	at	which	point	a	power-on-reset	procedure
is	initiated	on	the	redundant	spare	prior	to	its	being	placed	in	service.
	Exception	handling:	Deal	with	the	exception	by	reporting	it	or	handling	it,
potentially	masking	the	fault	by	correcting	the	cause	of	the	exception	and
retrying.
	Rollback:	Revert	to	a	previous	known	good	state,	referred	to	as	the
“rollback	line.”
	Software	upgrade:	Perform	in-service	upgrades	to	executable	code	images
in	a	non-service-affecting	manner.
	Retry:	When	a	failure	is	transient,	retrying	the	operation	may	lead	to



success.
	Ignore	faulty	behavior:	Ignore	messages	sent	from	a	source	when	it	is
determined	that	those	messages	are	spurious.
	Degradation:	Maintain	the	most	critical	system	functions	in	the	presence
of	component	failures,	dropping	less	critical	functions.
	Reconfiguration:	Reassign	responsibilities	to	the	resources	that	continue	to
function,	while	maintaining	as	much	functionality	as	possible.

Recover	from	Faults	(Reintroduction)
	Shadow:	Operate	a	previously	failed	or	in-service	upgraded	component	in
a	“shadow	mode”	for	a	predefined	time	prior	to	reverting	the	component
back	to	an	active	role.
	State	resynchronization:	Passive	redundancy;	state	information	is	sent
from	active	to	standby	components,	in	this	partner	tactic	to	active
redundancy.
	Escalating	restart:	Recover	from	faults	by	varying	the	granularity	of	the
component(s)	restarted	and	minimizing	the	level	of	service	affected.
	Non-stop	forwarding:	Functionality	is	split	into	supervisory	and	data
variants.	If	a	supervisor	fails,	a	router	continues	forwarding	packets	along
known	routes	while	protocol	information	is	recovered	and	validated.

Prevent	Faults
	Removal	from	service:	Temporarily	place	a	system	component	in	an	out-
of-service	state	for	the	purpose	of	mitigating	potential	system	failures.
	Transactions:	Bundle	state	updates	so	that	asynchronous	messages
exchanged	between	distributed	components	are	atomic,	consistent,
isolated,	and	durable.
	Predictive	model:	Monitor	the	state	of	health	of	a	process	to	ensure	that	the
system	is	operating	within	nominal	parameters;	take	corrective	action
when	conditions	are	detected	that	are	predictive	of	likely	future	faults.
	Exception	prevention:	Prevent	system	exceptions	from	occurring	by
masking	a	fault,	or	prevent	them	via	smart	pointers,	abstract	data	types,
and	wrappers.
	Increase	competence	set:	Design	a	component	to	handle	more	cases—
faults—as	part	of	its	normal	operation.

A.4.2	Interoperability	Tactics



A.4.2	Interoperability	Tactics
Figure	A.13	summarizes	the	tactics	to	achieve	interoperability.

FIGURE	A.13	Interoperability	tactics

Locate
	Discover	service:	Locate	a	service	by	searching	a	known	directory	service.
There	may	be	multiple	levels	of	indirection	in	this	location	process—that
is,	a	known	location	may	point	to	another	location	that	in	turn	can	be
searched	for	the	service.

Manage	Interfaces
	Orchestrate:	Use	a	control	mechanism	to	coordinate,	manage,	and
sequence	the	invocation	of	services.	Orchestration	is	used	when	systems
must	interact	in	a	complex	fashion	to	accomplish	a	complex	task.
	Tailor	interface:	Add	or	remove	capabilities	to	an	interface	such	as
translation,	buffering,	or	data	smoothing.

A.4.3	Modifiability	Tactics
Figure	A.14	summarizes	the	tactics	to	achieve	modifiability.



FIGURE	A.14	Modifiability	tactics

Reduce	Size	of	a	Module
	Split	module:	If	the	module	being	modified	includes	a	great	deal	of
capability,	the	modification	costs	will	likely	be	high.	Refining	the	module
into	several	smaller	modules	should	reduce	the	average	cost	of	future
changes.

Increase	Cohesion
	Increase	semantic	coherence:	If	the	responsibilities	A	and	B	in	a	module
do	not	serve	the	same	purpose,	they	should	be	placed	in	different	modules.
This	may	involve	creating	a	new	module	or	moving	a	responsibility	to	an
existing	module.

Reduce	Coupling
	Encapsulate:	Encapsulation	introduces	an	explicit	interface	to	a	module.
This	interface	includes	an	API	and	its	associated	responsibilities,	such	as
“perform	a	syntactic	transformation	on	an	input	parameter	to	an	internal
representation.”
	Use	an	intermediary:	Given	a	dependency	between	responsibility	A	and



responsibility	B	(for	example,	carrying	out	A	first	requires	carrying	out	B),
the	dependency	can	be	broken	by	using	an	intermediary.
	Restrict	dependencies:	Restrict	the	modules	that	a	given	module	interacts
with	or	depends	on.
	Refactor:	Refactoring	is	undertaken	when	two	modules	are	affected	by	the
same	change	because	they	are	(at	least	partial)	duplicates	of	each	other.
	Abstract	common	services:	When	two	modules	provide	not	quite	the	same
but	similar	services,	it	may	be	cost-effective	to	implement	the	services	just
once	in	a	more	general	(abstract)	form.

Defer	Binding
	Defer	binding:	Allow	decisions	to	be	bound	after	development	time.

A.4.4	Performance	Tactics
Figure	A.15	summarizes	the	tactics	to	achieve	performance.

FIGURE	A.15	Performance	tactics



Control	Resource	Demand
	Manage	sampling	rate:	If	it	is	possible	to	reduce	the	sampling	frequency	at
which	a	stream	of	data	is	captured,	then	demand	can	be	reduced,	albeit
typically	with	some	loss	of	fidelity.
	Limit	event	response:	Process	events	only	up	to	a	set	maximum	rate,
thereby	ensuring	more	predictable	processing	when	the	events	are	actually
processed.
	Prioritize	events:	If	not	all	events	are	equally	important,	you	can	impose	a
priority	scheme	that	ranks	events	according	to	how	important	it	is	to
service	them.
	Reduce	overhead:	The	use	of	intermediaries	(important	for	modifiability)
increases	the	resources	consumed	in	processing	an	event	stream;	removing
them	improves	latency.
	Bound	execution	times:	Place	a	limit	on	how	much	execution	time	is	used
to	respond	to	an	event.
	Increase	resource	efficiency:	Improving	the	algorithms	used	in	critical
areas	will	decrease	latency.

Manage	Resources
	Increase	resources:	Faster	processors,	additional	processors,	additional
memory,	and	faster	networks	all	have	the	potential	to	reduce	latency.
	Increase	concurrency:	If	requests	can	be	processed	in	parallel,	the	blocked
time	can	be	reduced.	Concurrency	can	be	introduced	by	processing
different	streams	of	events	on	different	threads	or	by	creating	additional
threads	to	process	different	sets	of	activities.
	Maintain	multiple	copies	of	computations:	The	purpose	of	replicas	is	to
reduce	the	contention	that	would	occur	if	all	computations	took	place	on	a
single	server.
	Maintain	multiple	copies	of	data:	Keep	copies	of	data	(with	one	potentially
being	a	subset	of	the	other)	on	storage	with	different	access	speeds.
	Bound	queue	sizes:	Control	the	maximum	number	of	queued	arrivals	and
consequently	the	resources	used	to	process	the	arrivals.
	Schedule	resources:	When	there	is	contention	for	a	resource,	the	resource
must	be	scheduled.

A.4.5	Security	Tactics



Figure	A.16	summarizes	the	tactics	to	achieve	security.

FIGURE	A.16	Security	tactics

Detect	Attacks
	Detect	intrusion:	Compare	network	traffic	or	service	request	patterns
within	a	system	to	a	set	of	signatures	or	known	patterns	of	malicious
behavior	stored	in	a	database.
	Detect	service	denial:	Compare	the	pattern	or	signature	of	network	traffic
coming	into	a	system	to	historic	profiles	of	known	denial-of-service
attacks.
	Verify	message	integrity:	Use	techniques	such	as	checksums	or	hash	values
to	verify	the	integrity	of	messages,	resource	files,	deployment	files,	and
configuration	files.
	Detect	message	delay:	By	checking	the	time	that	it	takes	to	deliver	a
message,	it	is	possible	to	detect	suspicious	timing	behavior.

Resist	Attacks
	Identify	actors:	Identify	the	source	of	any	external	input	to	the	system.



	Authenticate	actors:	Ensure	that	an	actor	(user	or	a	remote	computer)	is
actually	who	or	what	it	purports	to	be.
	Authorize	actors:	Ensure	that	an	authenticated	actor	has	the	rights	to	access
and	modify	either	data	or	services.
	Limit	access:	Control	what	and	who	may	access	which	parts	of	a	system,
such	as	processors,	memory,	and	network	connections.
	Limit	exposure:	Reduce	the	probability	of	a	successful	attack,	or	restrict
the	amount	of	potential	damage—for	example,	by	concealing	facts	about	a
system	(“security	by	obscurity”)	or	by	dividing	and	distributing	critical
resources	(“don’t	put	all	your	eggs	in	one	basket”).
	Encrypt	data:	Apply	some	form	of	encryption	to	data	and	to
communication.
	Validate	input:	Validate	input	from	a	user	or	an	external	system	before
accepting	it	in	the	system.
	Separate	entities:	Use	physical	separation	on	different	servers	attached	to
different	networks,	virtual	machines,	or	an	“air	gap.”
	Change	default	settings:	Force	the	user	to	change	settings	assigned	by
default.

React	to	Attacks
	Revoke	access:	Limit	access	to	sensitive	resources,	even	for	normally
legitimate	users	and	uses,	if	an	attack	is	suspected.
	Lock	computer:	Limit	access	to	a	resource	if	there	are	repeated	failed
attempts	to	access	it.
	Inform	actors:	Notify	operators,	other	personnel,	or	cooperating	systems
when	an	attack	is	suspected	or	detected.

Recover	from	Attacks
In	addition	to	the	availability	tactics	for	recovery	of	failed	resources,	an	audit
may	be	performed	to	recover	from	attacks.

	Maintain	Audit	Trail:	Keep	a	record	of	user	and	system	actions	and	their
effects,	to	help	trace	the	actions	of,	and	to	identify,	an	attacker.

A.4.6	Testability	Tactics
Figure	A.17	summarizes	the	tactics	to	achieve	testability.



FIGURE	A.17	Testability	tactics

Control	and	Observe	System	State
	Specialized	interfaces:	Control	or	capture	variable	values	for	a	component
either	through	a	test	harness	or	through	normal	execution.
	Record/playback:	Capture	information	crossing	an	interface	and	use	it	as
input	for	further	testing.
	Localize	state	storage:	To	start	a	system,	subsystem,	or	module	in	an
arbitrary	state	for	a	test,	it	is	most	convenient	if	that	state	is	stored	in	a
single	place.
	Abstract	data	sources:	Abstracting	the	interfaces	lets	you	substitute	test
data	more	easily.
	Sandbox:	Isolate	the	system	from	the	real	world	to	enable	experimentation
that	is	unconstrained	by	the	worry	about	having	to	undo	the	consequences
of	the	experiment.
	Executable	assertions:	Assertions	are	(usually)	hand-coded	and	placed	at



desired	locations	to	indicate	when	and	where	a	program	is	in	a	faulty	state.

Limit	Complexity
	Limit	structural	complexity:	Avoid	or	resolve	cyclic	dependencies	between
components,	isolate	and	encapsulate	dependencies	on	the	external
environment,	and	reduce	dependencies	between	components	in	general.
	Limit	nondeterminism:	Find	all	the	sources	of	nondeterminism,	such	as
unconstrained	parallelism,	and	weed	them	out	as	far	as	possible.

A.4.7	Usability	Tactics
Figure	A.18	summarizes	the	tactics	to	achieve	usability.

FIGURE	A.18	Usability	tactics

Support	User	Initiative
	Cancel:	The	system	must	listen	for	the	cancel	request;	the	command	being
canceled	must	be	terminated;	resources	used	must	be	freed;	and
collaborating	components	must	be	informed.
	Pause/resume:	Temporarily	free	resources	so	that	they	may	be	reallocated
to	other	tasks.
	Undo:	Maintain	a	sufficient	amount	of	information	about	system	state	so
that	an	earlier	state	may	be	restored	at	the	user’s	request.
	Aggregate:	Aggregate	lower-level	objects	into	a	group,	so	that	a	user
operation	may	be	applied	to	the	group,	freeing	the	user	from	the	drudgery.



Support	System	Initiative
	Maintain	task	model:	Determine	the	context	so	the	system	can	have	some
idea	of	what	the	user	is	attempting	and	provide	assistance.
	Maintain	user	model:	Explicitly	represent	the	user’s	knowledge	of	the
system,	the	user’s	behavior	in	terms	of	expected	response	time,	and	other
characteristics	of	the	system.
	Maintain	system	model:	The	system	maintains	an	explicit	model	of	itself.
This	tactic	is	used	to	determine	expected	system	behavior	so	that
appropriate	feedback	can	be	given	to	the	user.

A.5	Externally	Developed	Components
Externally	developed	components,	including	frameworks,	were	discussed	in
Section	2.5.5.	Here	we	present	a	small	sample	of	Java	frameworks	used	in	the
case	study	in	Chapter	4.	Each	framework	is	described	very	briefly	and	is
associated	with	particular	technology	families,	patterns,	and	tactics.	Full	details
for	the	different	frameworks	can	be	found	by	visiting	the	URL	that	is	provided.

A.5.1	Spring	Framework







A.5.2	Swing	Framework



A.5.3	Hibernate	Framework





A.5.4	Java	Web	Start	Framework

A.6	Summary



A.6	Summary
In	this	appendix	we	presented	a	design	concepts	catalog	for	the	application
domain	of	enterprise	applications.	Catalogs	such	as	this	one	can	become	useful
organizational	assets,	and	we	can	readily	imagine	catalogs	for	other	application
domains	such	as	Big	Data	(which	we	employ	in	Chapter	5)	or	mobile
development.
The	catalog	presented	here	is	not	intended	to	be	exhaustive,	as	it	contains	only

the	design	concepts	used	in	the	Chapter	4	case	study.	A	real	catalog,	however,
would	contain	a	larger	number	of	design	concepts	with	more	detailed
descriptions	and	would	be	a	valuable	asset	in	a	software	development
organization.

A.7	Further	Reading
Reference	architectures	and	deployment	patterns	are	taken	from	Microsoft,
Application	Architecture	Guide	(2nd	ed.),	October	2009.
The	tactics	catalog	is	derived	primarily	from	L.	Bass,	P.	Clements,	and	R.

Kazman,	Software	Architecture	in	Practice	(3rd	ed.),	2012.	Some	of	these	tactics
were	earlier	described	in:	F.	Bachmann,	L.	Bass,	and	R.	Nord,	“Modifiability
Tactics”,	SEI/CMU	Technical	Report	CMU/SEI-2007-TR-002,	2007,	and	J.
Scott	and	R.	Kazman,	“Realizing	and	Refining	Architectural	Tactics:
Availability”,	CMU/SEI-2009-TR-006,	2009.
The	architectural	patterns	are	taken	from	R.	Buschmann,	K.	Henney,	and	D.

Schmidt,	Pattern-Oriented	Software	Architecture,	Volume	4,	Wiley,	2007.
The	Spring	framework	is	discussed	in	C.	Walls,	Spring	in	Action	(4th	ed.),

Manning	Publications,	2014.
The	Swing	framework	is	discussed	in	J.	Elliot,	R.	Eckstein,	D.	Wood,	and	B.

Cole,	Java	Swing	(2nd	ed.),	O’Reilly	Media,	2002.
The	Hibernate	framework	is	discussed	in	C.	Bauer	and	G.	King,	Java

Persistence	with	Hibernate,	Manning	Publications,	2015.



B.	Tactics-Based	Questionnaires

This	appendix	provides	a	set	of	tactics-based	questionnaires	for	the	seven	most
important	quality	attributes:	availability,	interoperability,	modifiability,
performance,	security,	testability,	and	usability.	How	do	we	know	that	these	are
the	seven	most	important	ones?	This	decision	was	based	on	an	analysis	of	the
quality	attributes	that	were	elicited	from	stakeholders	in	more	than	15	years	of
SEI	ATAM	data.
In	addition	to	these	“top	seven”,	we	include	a	tactics-based	questionnaire	for

DevOps,	which	is	a	combination	of	tactics	from	modifiability,	availability,
performance,	and	testability,	to	illustrate	how	simple	it	is	to	tailor	such
questionnaires	for	your	own	use.

B.1	Using	the	Questionnaires
These	questionnaires	could	be	used	by	an	analyst,	who	poses	each	question,	in
turn,	to	the	architect	and	records	the	responses,	as	a	means	of	conducting	a
lightweight	architecture	review.	Alternatively,	the	questionnaires	could	be
employed	as	a	set	of	reflective	questions,	that	you	could,	on	your	own,	use	to
examine	your	architecture.
In	either	case,	to	use	these	questionnaires,	simply	follow	these	four	steps:
1.	For	each	tactics	question,	fill	the	“Supported”	column	with	Y	if	the	tactic
is	supported	in	the	architecture	and	with	N	otherwise.	The	tactic	name	in
the	“Tactics	Question”	column	appears	in	bold.

2.	If	the	answer	in	the	“Supported”	column	is	Y,	then	in	the	“Design
Decisions	and	Location”	column	describe	the	specific	design	decisions
made	to	support	the	tactic	and	enumerate	where	these	decisions	are
manifested	(located)	in	the	architecture.	For	example,	indicate	which	code
modules,	frameworks,	or	packages	implement	this	tactic.

3.	In	the	“Risk”	column,	indicate	the	anticipated/experienced	difficulty	or
risk	of	implementing	the	tactic	using	a	(H	=	high,	M	=	medium,	L	=	low)
scale.	For	example,	a	tactic	that	was	of	medium	difficulty	or	risk	to
implement	(or	which	is	anticipated	to	be	of	medium	difficulty,	if	it	has	not
yet	been	implemented)	would	be	labeled	M.

4.	In	the	“Rationale”	column,	describe	the	rationale	for	the	design	decisions
made	(including	a	decision	to	not	use	this	tactic).	Briefly	explain	the
implications	of	this	decision.	For	example,	you	might	explain	the	rationale



and	implications	of	the	decision	in	terms	of	the	effort	on	cost,	schedule,
evolution,	and	so	forth.

B.2	Availability













B.3	Interoperability



B.4	Modifiability







B.5	Performance







B.6	Security









B.7	Testability





B.8	Usability







B.9	DevOps











B.10	Further	Reading
The	tactics	catalog	from	which	the	questionnaires	are	derived	can	be	found	in	L.
Bass,	P.	Clements,	and	R.	Kazman,	Software	Architecture	in	Practice	(3rd	ed.),
2012.
An	analysis	of	quality	attribute	data	from	SEI	ATAMs,	showing	which

qualities	are	the	most	common	in	practice,	can	be	found	in	I.	Ozkaya,	L.	Bass,	R.
Sangwan,	and	R.	Nord,	“Making	Practical	Use	of	Quality	Attribute
Information”,	IEEE	Software,	March/April	2008,	and	in	a	later	study	by	S.
Bellomo,	I.	Gorton,	and	R.	Kazman,	“Insights	from	15	Years	of	ATAM	Data:
Towards	Agile	Architecture”,	IEEE	Software,	32:5,	38-45,	September/October



2015.
The	set	of	DevOps	tactics	was	developed	and	presented	in	H-M	Chen,	R.

Kazman,	S.	Haziyev,	V.	Kropov,	and	D.	Chtchourov,	“Architectural	Support	for
DevOps	in	a	Neo-Metropolis	BDaaS	Platform”,	IEEE	34th	Symposium	on
Reliable	Distributed	Systems	Workshop	(SRDSW),	Montreal,	Canada,	September
2015.



Glossary

Active	Reviews	for	Intermediate	Design	(ARID)	method	A	method	in	which
the	architecture	design	(or	part	of	it)	is	presented	to	a	group	of	reviewers—
typically	the	engineers	who	will	use	the	design.	After	the	presentation,	a	set	of
scenarios	is	selected.	The	reviewers	attempt	to	use	the	elements	in	the
architecture	to	satisfy	the	scenarios.	The	reviewers	are	asked	to	write	code	or
pseudocode	or	to	create	sequence	diagrams	for	the	purpose	of	identifying
interfaces.	This	method	can	be	used	in	preparation	for	element	interaction
design.
ADD	See	Attribute	Driven	Design	method.
ADL	See	Architecture	Description	Language.
Analysis	The	process	of	breaking	a	complex	entity	into	its	constituent	parts	as	a
means	of	understanding	it.	Analysis	is	used	at	different	moments	in	the	design
process;	for	example,	the	inputs	are	analyzed	to	make	design	decisions	and	the
resulting	architecture	is	also	analyzed	to	gauge	if	it	is	appropriate	to	satisfy	its
associated	drivers.
Application	framework	A	reusable	software	element,	constructed	out	of
patterns	and	tactics,	that	provides	generic	functionality	addressing	recurring
domain	and	quality	attribute	concerns	across	a	broad	range	of	applications.	Also
called	a	framework.
Architectural	concern	An	additional	aspect	that	needs	to	be	considered	as	part
of	architectural	design	but	that	is	not	expressed	as	a	traditional	requirement.
Examples	include	general	concerns,	such	as	creating	an	overall	system	structure,
and	more	specific	concerns,	such	as	managing	exceptions	or	generating	logs.
Other	architectural	concerns	include	internal	requirements,	which	are	seldom
expressed	by	customers,	and	issues	resulting	from	analysis	activities,	such	as
architectural	evaluations.
Architectural	design	The	activity	of	making	decisions	to	translate	ideas	from
the	world	of	needs	(architectural	drivers)	to	the	world	of	solutions,	in	terms	of
structures.
Architectural	drivers	The	design	purpose,	architecturally	significant
requirements,	and	architectural	concerns	that	serve	as	an	input	to	the	design
process.	These	considerations	are	critical	to	the	success	of	the	system	and,	as
such,	they	drive	and	shape	the	architecture.



Architectural	evaluation	A	technique	to	analyze	and	assess	the	value	of
architectural	decisions.
Architectural	pattern	See	Patterns	(Architectural	and	Design).
Architecturally	significant	requirement	(ASR)	A	system	requirement	that	has
a	particular	importance	with	respect	to	the	software	architecture.	ASRs	include
quality	attributes,	primary	functional	requirements,	and	constraints.
Architecture	Description	Language	(ADL)	A	notation	to	document	an
architecture.	ADLs	typically	employ	both	a	graphical	notation	and	a	(formally
defined)	textual	notation	to	describe	an	architecture—primarily	the
computational	(runtime)	components	and	interactions	among	them—and	its
properties.
Architecture	Tradeoff	Analysis	Method	(ATAM)	An	established	method	for
analyzing	architectures,	driven	by	scenarios.	Its	purpose	is	to	assess	the
consequences	of	architectural	decisions	in	light	of	quality	attribute	requirements
and	business	goals.
ARID	See	Active	Reviews	for	Intermediate	Design	method.
ASR	See	Architecturally	significant	requirement.
ATAM	See	Architecture	Tradeoff	Analysis	Method.
Attribute-Driven	Design	(ADD)	method	An	iterative	architecture	design
method	that	takes	drivers	as	inputs	and	produces	an	architecture.	In	each
iteration,	structures	are	produced	by	refining	elements	identified	in	previous
iterations.	These	structures	are	created	primarily	from	design	concepts,	which
are	selected	and	instantiated	to	address	a	subset	of	the	drivers	that	are	selected
for	the	iteration.
Big	Design	Up	Front	(BDUF)	The	(now	largely	discredited)	practice	of
attempting	to	do	all	of	the	architectural	design	at	the	beginning	of	a	project.	It	is
usually	associated	with	a	waterfall	software	development	life	cycle.
Brownfield	development	Software	development	that	builds	upon	an	existing
asset.	Contrast	with	greenfield	development.
Constraint	A	decision	over	which	the	architect	has	little	or	no	control.	It	may	be
either	technical	or	organizational.
Cost	Benefit	Analysis	Method	(CBAM)	A	method	that	associates	costs,
benefits,	and	schedule	implications	with	strategies	chosen	to	make
improvements	in	an	architecture.	This	method	is	used	to	rank	the	strategies,	as	a
means	of	finding	an	optimal	set	of	strategies	to	implement	in	the	next	iteration.
Design	concept	The	building	blocks	from	which	the	structures	that	make	up	the



architecture	are	created.	Different	types	of	design	concepts	exist,	including
reference	architectures,	deployment	patterns,	architectural	patterns,	tactics,
technology	families,	and	externally	developed	components	(such	as
frameworks).
Design	concepts	catalog	A	collection	of	design	concepts	for	a	particular
application	domain.
Design	decision	A	decision	that	is	made	during	the	design	process,	including	the
selection	of	a	design	concept	and	the	instantiation	of	the	selected	design	concept.
Design	iteration	A	group	of	design	decisions	through	which	a	subset	of	the
drivers	is	transformed	into	structures.	One	or	more	design	iterations	are
performed	within	a	design	round.
Design	pattern	See	Patterns	(Architectural	and	Design).
Design	purpose	The	reason	why	the	architecture	design	is	performed.	For
example,	the	design	may	be	performed	for	estimation	during	pre-sales,
prototyping,	or	development	purposes.
Design	round	The	architecture	design	activities	performed	within	a
development	cycle	if	an	iterative	development	model	is	used,	or	the	entire	set	of
architecture	design	activities	if	a	waterfall	model	is	used.
Deployment	pattern	A	pattern	that	provides	a	model	for	how	to	physically
structure	the	system	to	deploy	it.
Development	cycle	The	development	of	a	project	increment	(i.e.,	a	project
iteration).
DevOps	A	portmanteau	word,	combining	“development”	and	“operations”.
DevOps	stands	in	contrast	to	earlier	forms	of	running	a	software	project,	in
which	development	teams	developed	software	and	then	“tossed	it	over	the	wall”
to	operations.	In	DevOps,	the	two	teams	work	closely	together	and	adopt
processes,	tools,	and	architectures	to	make	it	easier	to	rapidly	modify,	build,	test,
release,	and	monitor	software.
Element	(in	definition	of	software	architecture)	One	of	the	parts	that	compose
the	structures	of	the	architecture.	Elements	may	exist	at	runtime	or	development
time	or	they	may	exist	physically.	Elements	are	connected	by	relations.
Element	interaction	design	The	identification	of	the	modules	and	their
associated	interfaces	to	support	the	nonprimary	use	cases.	This	is	typically
performed	using	sequence	diagrams	according	to	the	decisions	made	during
architectural	design.
Element	internals	design	The	internal	design	of	the	elements	identified	as	part



of	element	interaction	design,	so	as	to	satisfy	the	element’s	interface.
Externally	developed	component	A	design	concept	that	is	concrete	in	nature
and	that	is	not	built	as	part	of	the	system	development,	but	rather	is	acquired	and
reused.	Such	components	include	application	frameworks,	products,	and
platforms.
Greenfield	development	Software	development	that	begins	with	little	or	no
legacy	code	base	to	build	upon.
Instantiation	The	process	of	adapting	a	design	concept	to	the	particular	problem
being	addressed.	It	involves	creating	elements	and	relations,	and	associating
responsibilities	with	the	elements,	from	the	selected	design	concept.	Instantiation
can	also	refer	to	configuration	when	design	concepts	are	externally	developed
components.
Interface	The	externally	visible	properties	of	elements	that	establish	a
contractual	specification	that	allows	elements	to	collaborate	and	exchange
information,	via	relations.
Marketecture	A	single-page,	typically	informal,	representation	of	a	software
system	architecture.	This	representation	is	aimed	primarily	at	nontechnical
people,	and	is	used	to	present	a	system	vision.
Minimum	viable	product	(MVP)	An	evolutionary	prototype	with	only	those
core	features	that	allow	the	product	to	be	deployed.	It	emphasizes	hypothesis
testing	by	fielding	the	product	with	real	users	and	collecting	usage	data	that	then
helps	to	confirm	or	reject	the	hypothesis.
Patterns	(architectural	and	design)	Conceptual	solutions	to	recurring	design
problems	that	exist	in	a	defined	context.	When	they	are	used	to	address	an
architectural	driver,	they	are	“architectural	patterns”;	when	their	use	has	just	a
local	influence—for	example,	when	used	to	perform	element	internals	design—
they	are	“design	patterns”.
Platform	A	complete	infrastructure	upon	which	to	build	and	execute
applications.
Pre-sales	A	phase	in	project	development	in	which	the	scope	of	the	project,	a
business	case,	and	an	initial	plan	are	established.	This	phase	is	used	by	the
customers	(or	funders)	to	decide	whether	they	want	to	pursue	the	project.
Primary	functional	requirements	Functionality	is	the	ability	of	the	system	to
do	the	work	for	which	it	was	intended.	Primary	functionality	is	usually	defined
as	functionality	that	is	critical	to	achieve	the	business	goals	that	motivate	the
development	of	the	system.



Product	A	self-contained	functional	piece	of	software	that	can	be	integrated	into
the	system	that	is	being	designed	and	that	requires	only	minor	configuration	or
coding.	Also	called	a	software	package.
Proof	of	concept	(PoC)	A	prototype	that	is	used	to	quickly	evaluate	a
technology,	thereby	determining	whether	it	can	satisfy	critical	architecture
scenarios,	usually	related	to	quality	attributes	such	as	performance	and
scalability.
QAW	See	Quality	Attribute	Workshop.
Quality	attribute	A	measurable	or	testable	property	of	a	system	that	is	used	to
indicate	how	well	the	system	satisfies	the	needs	of	its	stakeholders.	Quality
attributes	are	orthogonal	to	functionality.
Quality	attribute	scenario	See	Scenario.
Quality	Attribute	Workshop	(QAW)	A	facilitated	brainstorming	session
involving	a	group	of	system	stakeholders	in	eliciting,	specifying,	prioritizing,
and	achieving	consensus	on	quality	attributes.
Rationale	A	line	of	reasoning	and	justification	that	led	to	a	design	decision.
Refactoring	Changing	the	system’s	architecture	or	code,	without	affecting	its
functionality,	to	achieve	different	quality	attribute	responses.
Reference	Architecture	Blueprints	that	provide	an	overall	logical	structure	for
types	of	applications,	consisting	of	a	reference	model	that	is	mapped	onto	one	or
more	architectural	patterns.	It	has	been	proven	in	business	and	technical
contexts,	and	typically	comes	with	a	set	of	supporting	artifacts	that	facilitates	its
use.
Relation	(in	definition	of	software	architecture)	One	of	the	parts	that	compose
the	structures	of	an	architecture.	Relations	may	exist	at	runtime	or	development
time	or	they	may	exist	physically.	Relations	connect	elements.
Scenario	A	technique	to	specify	quality	attributes	that	describes	a	stimulus
received	by	the	system	and	a	measurable	response	to	this	stimulus.	Scenarios	are
testable,	falsifiable	hypotheses	about	the	quality	attribute	behavior	of	the	system
under	consideration.	Completely	developed	scenarios	are	described	using	six
parts,	but	less	elaborate	(“raw”)	scenarios	can	also	be	described.
Sketch	of	a	view	A	preliminary	type	of	documentation	that	is	created	as	part	of
the	design	process.	The	sketch	can	be	refined	to	become	a	full-fledged	view,
typically	after	the	design	activity	has	finished.
Software	architecture	“The	set	of	structures	needed	to	reason	about	the	system,
which	comprise	software	elements,	relations	among	them,	and	properties	of



both”.
Spike	A	time-boxed	task	that	is	created	to	answer	a	technical	question	or	gather
information.
Structure	A	coherent	set	of	software	elements,	relations,	and	properties.
Structures	are	represented	in	views.
Tactic	A	proven	design	strategy	that	influences	the	control	of	a	quality	attribute
response.
Technical	debt	The	decisions—often	called	“hacks”—made	in	a	software
project	that	trade	off	short-term	gains,	such	as	ease	of	implementation,	at	the
cost	of	long-term	sustainability	of	the	system.	By	taking	such	shortcuts,	the
software	base	“goes	into	debt”.
Technology	family	A	group	of	technologies	with	common	functional	purposes.
View	A	representation	of	an	architectural	structure.	A	view	usually	includes	a
graphical	representation	of	the	structure	and	additional	information	that
complements	the	information	presented	in	the	diagram.
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security	management,	76
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design	concepts,	selecting,	82–84,	90–91,	101
design	purpose,	reviewing,	88–89
identifying	structures	to	support	primary	functionality,	89–99
inputs,	reviewing,	80–81
instantiating	elements,	84,	91–92,	101–102
iteration	goals,	establishing,	90,	101
iteration	goals,	reviewing,	88–89
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quality	attribute	scenarios,	101–104
recording	design	decisions,	84–87,	92–99,	102–103
refining	elements,	82,	90,	101
satisfying	architectural	drivers,	82–84,	90,	101
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Greenfield	development	for	novel	domains
definition,	50
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roadmap	for,	52

Greenfield	development	for	novel	domains	case	study
business	case,	107–108
reviewing	inputs,	111–112

Greenfield	development	for	novel	domains	case	study,	design	process
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defining	interfaces,	116,	126–128,	134–136,	139–141
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reference	architecture,	112–120
server	layer,	refining,	138–143
sketching	views,	116–118,	128–129,	136–137,	141–142
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technologies,	selecting,	120–131

Greenfield	development	for	novel	domains	case	study,	system	requirements
architectural	concerns,	110
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quality	attribute	scenarios,	109–110
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H
Hacks.	See	Technical	debt.
Half	Sync/Half	Async,	pattern	example,	32,	228
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registering	Designing	Software	Architecture,	xiii
skills	practice,	209–210

Hibernate	framework,	design	concepts	catalog,	244–245
High-level	design,	16
HLD	(high-level	design)	phase,	200–201
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Inception	phase	of	RUP,	165,	199
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overview,	59–60
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in	element	interaction	design,	64–65
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overview,	29–32
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Product,	definition,	272
Products,	externally	developed	components,	36
Progress,	tracking.	See	Tracking	design	progress.
Project	proposals.	See	Pre-sales	process.
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internal,	for	architectural	drivers,	27
primary	functional	requirements,	272

Responsibilities,	allocating
brownfield	development	case	study,	154
to	elements,	47–48
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overview,	165–166
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S
Satisficing	vs.	optimal	solutions,	14
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Security,	tactics-based	questionnaire,	257–259
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overview,	48
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ASRs	(architecturally	significant	requirements),	4

Software	Architecture	in	Practice,	3rd	ed.	(Bass	et	al.),	3,	7,	8,	19,	35,	230
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