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Preface

When asked about software architecture, people think frequently about models—
that is, the representations of the structures that constitute the architecture. Less
frequently, people think about the thought processes that produce these
structures—that is, the process of design. Design is a complex activity to
perform and a complex topic to write about, as it involves making a myriad of
decisions that take into account many aspects of a system. These aspects are
oftentimes hard to express, particularly when they originate from experience and
knowledge that is hard-earned in the “battlefield” of previous software
development projects. Nevertheless, the activity of design is the basis of
software architecture and, as such, it begs to be explained. Although experience
can hardly be communicated through a book, what can be shared is a method
that can help you perform the process of design in a systematic way.

This book is about that design process and about one particular design
method, called Attribute-Driven Design (ADD). We believe that this method is a
powerful tool that will help you perform design in a principled, disciplined, and
repeatable way. In this book, employing ADD and several examples of ADD’s
use in the real world, we show you how to perform architectural design. Even
though you may not currently possess sufficient design experience, we illustrate
how the method promotes reusing design concepts—that is, proven solutions
that embody the experience of others.

Although ADD has existed for more than a decade, relatively little has been
written about it and few examples have been provided to explain how it is
performed. This lack of published information has made it difficult for people to
adopt the method or to teach others about it. Furthermore, the documentation
that has been published about ADD is somewhat “high level” and can be hard to
relate to the concepts, practices, and technologies that architects use in their day-
to-day activities.

We have been working with practicing architects for several years, coaching
them on how to perform design, and learning in the process. We have learned,
for example, that practicing architects take technologies into consideration early
in the design process and this is something that was not part of the original
version of ADD. For this reason, the method felt “disconnected” from reality for
many practitioners. In this book, we provide a revised version of ADD in which
we have tried to bridge the gap between theory and practice.

We have also been teaching software architecture and software design for



many years. Along the way, we realized how hard it is for people without any
experience to perform design. This understanding motivated us to create a
roadmap for design that, we believe, is helpful in guiding people to perform the
design process. We also created a game that is useful in teaching about software
design; it can be considered a companion to this book.

The target audience for this book is anyone interested in the design of
software architectures. We believe it will be particularly useful for practitioners
who must perform this task but who currently perform it in an ad hoc way.
Experienced practitioners who already perform design following an established
method will also find new ideas—for example, how to track design progress
using a Kanban board, how to analyze a design using tactics-based
questionnaires, and how to incorporate a design method for early estimation.
Finally, people who are already familiar with the other architecture methods
from the Software Engineering Institute will find information about the ways to
connect ADD to methods such as the Quality Attribute Workshop (QAW), the
Architecture Tradeoff Analysis Method (ATAM), and the Cost Benefit Analysis
Method (CBAM). This book will also be useful to students and teachers of
computer science or software engineering programs. We believe that the case
studies included here will help them understand how to perform the design
process more easily. Certainly, we have been using similar examples in our
courses with great success. As Albert Einstein said, “Example isn’t another way
to teach; it is the only way to teach.”

Our hope is that this book will help you in understanding that design can be
performed following a method, and that this realization will help you produce
better software systems in the future.

The book is structured as follows.

» In Chapter 1, we briefly introduce software architecture and the Attribute-
Driven Design method.

» In Chapter 2, we discuss architecture design in more detail, along with the
main inputs to the design process—what we call architectural drivers, plus
the design concepts that will help you satisfy these drivers using proven
solutions.

» Chapter 3 presents the ADD method in detail. We discuss each of the steps
of the method along with various techniques that can be used to perform
these steps appropriately.

» Chapter 4 is our first case study, which illustrates the development of a
greenfield system. For this case study, we have made an effort to show



how a majority of the concepts described in Chapter 3 are used in the
design process, so you can think of this case study as being more
“academic” in nature (although it is derived from a real-world system).

Chapter 5 presents our second case study, which was co-written with
practicing software architects and as such is much more technical and
detailed in nature. It will show you the nitty-gritty details of how ADD is
used in the design of a Big Data system that involves many different
technologies. This example illustrates the development of a system in what
we consider to be a “novel” domain, as opposed to the more traditional
domain used in Chapter 4.

Chapter 6 is a shorter case study that illustrates the use of ADD in the
design of an extension of a legacy (or brownfield) system, which is a
common situation. This example demonstrates that architectural design is
not something that is performed only once, when the first version of the
system is developed, but rather is an activity that can be performed at
different moments of the development process.

Chapter 7 presents other design methods. In our revision of ADD, we
adopted ideas from other authors who have also investigated the process of
design, and here we briefly summarize their approaches both as an homage
to their work and as a means to compare ADD to these methods.

Chapter 8 discusses the topic of analysis in depth, even though this is a
book on design. Analysis is naturally performed as part of design, so here
we describe techniques that can be used both during the design process or
after a portion of the design has been completed. In particular, we
introduce the use of tactics-based questionnaires, which are helpful in
understanding, in a time-efficient and simple manner, the decisions made
in the design process.

Chapter 9 describes how the design process fits at an organizational level.
For instance, performing some amount of architectural design at the
earliest moments of the project’s life is useful for estimation purposes. We
also show how ADD can be associated with different software
development approaches.

» Chapter 10 concludes the book.

We also include two appendixes. Appendix A presents A Design Concepts
Catalog, which, as its name suggests, is a catalog of different types of design
concepts that can be used to design for a particular application domain. This
catalog includes design concepts that we have gathered from different sources,



reflecting how experienced and disciplined architects work in the real world. In
this case, our catalog contains a sample of the design concepts used in the case
study presented in Chapter 4. Appendix B provides a set of tactics-based
questionnaires (as introduced in Chapter 8) for the seven most common quality
attributes and an additional questionnaire for DevOps.

Register your copy of Designing Software Architectures at
informit.com for convenient access to downloads, updates, and
corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account.
Enter the product ISBN (9780134390789) and click Submit. Once
the process is complete, you will find any available bonus content
under “Registered Products.”
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1. Introduction

In this chapter we provide an introduction to the topic of software architecture.
We briefly discuss what architecture is and why it is fundamental to take it into
account when developing software systems. We also discuss the different
activities that are associated with the development of software architecture so
that architectural design—which is the primary topic of this book—can be
understood in the context of these activities. We also briefly discuss the role of
the architect, who is the person responsible for creating the design. Finally, we
introduce the Attribute-Driven Design (ADD) method, the architecture design
method that we will discuss extensively in this book.

1.1 Motivations

Our goal in this book is to teach you how to design software architecture in a
systematic, predictable, repeatable, and cost-effective way. If you are reading
this book, then presumably you already have an interest in architecture and
aspire to be an architect. The good news is that this goal is within your grasp. To
convince you of that point, we will spend a few moments talking about the idea
of design—the design of anything—and we will see how and why architectural
design is not so different. In most fields, “design” involves the same sorts of
challenges and considerations—meeting stakeholder needs, adhering to budgets
and schedules, dealing with constraints, and so forth. While the primitives and
tools of design may vary from field to field, the goals and steps of design do not.

This is encouraging news, because it means that design is not the sole
province of wizards. That is, design can be taught, and it can be learned. Most
design, particularly in engineering, consists of putting known design primitives
together in (sometimes innovative) ways that achieve predictable outcomes. Of
course, the devil is in the details, but that is why we have methods. It may seem
difficult at first to imagine that a creative endeavor such as design can be
captured in a step-by-step method; this, however, is not only possible but also
valuable, as Parnas and Clements have discussed in their paper “A Rational
Design Process: How and Why to Fake It”. Of course, not everyone can be a
great designer, just as not everyone can be a Thomas Edison or a LeBron James
or a Ronaldo. What we do claim is that everyone can be a much better designer,
and that structured methods supported by reusable chunks of design knowledge,
which we provide in this book, can help pave the road from mediocrity to
excellence.



Why are we writing a book on software architecture design? While much has
been written about design in general, and while there have been some writings
on software architecture design, there is no existing book dedicated solely to
architecture design. Moreover, most of what has been written on architecture
design is relatively abstract.

Our goal in writing this book was to provide a practical method that can be
enacted by any competent software engineer, and also (and just as important) to
provide a set of rich case studies that realize the method. Albert Einstein was
reputed to have said, “Example isn’t another way to teach, it is the only way to
teach”. We firmly believe that. Most of us learn better from examples than from
sets of rules or steps or principles. Of course, we need the steps and rules and
principles to structure what we do and to create the examples, but the examples
speak to our day-to-day concerns and help us by making the steps concrete.

This is not to say that architecture design will ever be simple. If you are
building a complex system, then chances are that you are trying to balance many
competing forces—things like time to market, cost, performance, evolvability,
usability, availability, and so on. If you are pushing the boundaries in any of
these dimensions, then your job as an architect will be even more complex. This
is true in any engineering discipline, not just software. If you examine the
history of building large ships or skyscrapers or any other complex “system”,
you will see how the architects of those systems struggled with making the
appropriate decisions and tradeoffs. No, architecture design may never be easy,
but our purpose is to make it tractable and achievable by well-trained, well-
educated software engineers.

1.2 Software Architecture

Much has been written on what software architecture is. We adopt the definition
of software architecture from Software Architecture in Practice (third edition):

The software architecture of a system is the set of structures needed
to reason about the system, which comprise software elements,
relations among them, and properties of both.

As you will see, our design method embodies this definition and helps to
guide the designer in creating an architecture that has the desired properties.

1.2.1 The Importance of Software Architecture

Much has also been written on why architecture is important. Again, following
Software Architecture in Practice, we note that architecture is important for a



wide variety of reasons, and a similarly wide variety of consequences stem from
those reasons:

» An architecture will inhibit or enable a system’s driving quality attributes.

» The decisions made in an architecture allow you to reason about and
manage change as the system evolves.

» The analysis of an architecture enables early prediction of a system’s
qualities.

» A documented architecture enhances communication among stakeholders.

» The architecture is a carrier of the earliest and hence most fundamental,
hardest-to-change design decisions.

» An architecture defines a set of constraints on subsequent implementation.
» The architecture influences the structure of an organization, and vice versa.

» An architecture can provide the basis for evolutionary, or even throwaway,
prototyping.

» An architecture is the key artifact that allows the architect and the project
manager to reason about cost and schedule.

» An architecture can be created as a transferable, reusable model that forms
the heart of a product line.

» Architecture-based development focuses attention on the assembly of
components, rather than simply on their creation.

» By restricting design alternatives, architecture channels the creativity of
developers, reducing design and system complexity.

» An architecture can be the foundation for training a new team member.

If an architecture is important for all of these reasons—if it affects the
structure of the organization, and the qualities of the system, and the people
involved in its creation and evolution—then surely great care must be taken in
designing this crucial artifact. Sadly, that is most often not the case.
Architectures often “evolve” or “emerge”. While we have nothing against
evolution or emergence, and while we emphatically are not arguing for “big
design up front”, doing no architecture at all is often too risky for anything but
the simplest projects. Would you want to drive over a bridge or ride in a jet that
had not been carefully designed? Of course not. But you use software every day
that is buggy, costly, insecure, unreliable, fault prone, and slow—and many of
these undesirable characteristics can be avoided!

The core message of this book is that architecture design does not need to be
diffirnlt ar ecarv: it ic nnt the enle nravinece nf wizarde: and it dnee nnt have tn he
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costly and all done up front. Our job is to show you how and convince you that it
is within your reach.

1.2.2 Life-Cycle Activities

Software architecture design is one of the software architecture life-cycle
activities (Figure 1.1). As in any software project life cycle, this activity is
concerned with the translation of requirements into a design into an
implementation. Specifically, the architect needs to worry about the following
issues:

» Architectural requirements. Among all the requirements, a few will have a
particular importance with respect to the software architecture. These
architecturally significant requirements (ASRs) include not only the most
important functionality of the system and the constraints that need to be
taken into account, but also—and most importantly—quality attributes
such as high performance, high availability, ease of evolution, and iron-
clad security. These requirements, along with a clear design purpose and
other architectural concerns that may never be written down or may be
invisible to external stakeholders, will guide you to choose one set of
architectural structures and components over another. We will refer to
these ASRs and concerns as drivers, as they can be said to drive the
design.

» Architectural design. Design is a translation, from the world of needs
(requirements) to the world of solutions, in terms of structures composed
of code, frameworks, and components. A good design is one that satisfies
the drivers. Architectural design is the focus of this book.
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» Architectural documentation. Some level of preliminary documentation (or
sketches) of the structures should be created as part of architectural design.
This activity, however, refers to the creation of a more formal document
from these sketches. If the project is small and has a precedent, then
architecture documentation may be minimal. In contrast, if the project is
large, if distributed teams are collaborating, or if significant technical
challenges exist, then architectural documentation will repay the effort
invested in this activity. While documentation is often avoided and derided
by programmers, it is a standard, non-negotiable deliverable in almost
every other engineering discipline. If your system is big enough and if it is
mission critical, it should be documented. In other engineering disciplines,
a “blueprint”—some sort of documented design—is an absolutely essential
step in moving toward implementation and the commitment of resources.

» Architectural evaluation. As with documentation, if your project is
nontrivial, then you owe it to yourself and to your stakeholders to evaluate
it—that is, to ensure that the decisions made are appropriate to address the
critical requirements. Would you deliver code without testing it? Of course



not. Similarly, why would you commit enormous resources to fleshing out
an architecture if you had not first “tested” the design? You might want to
do this when first creating the system or when putting it through a major
refactoring. Typically evaluation is done informally and internally, but for
truly important projects it is advisable to have a formal evaluation done by
an external team.

» Architectural implementation/conformance checking. Finally, you need to
implement the architecture that you have created (and evaluated). As an
architect, you may need to tweak the design as the system grows and as
requirements evolve. This is normal. In addition to this tweaking, your
major responsibility during implementation is to ensure conformance of
the code to the design. If developers are not faithfully implementing the
architecture, they may be undermining the qualities that you have designed
in. Again, consider what is done in other fields of engineering. When a
concrete foundation for a new building is poured, the building that rests on
top of that foundation is not constructed until the foundation has first been
tested, typically via a core sample, to ensure that it is strong enough, dense
enough, sufficiently impermeable to water and gases, and so forth. Without
conformance checking, we have no way of ensuring the quality of what is
being subsequently constructed.

Note that we are not proposing a specific life-cycle methodology in Figure
1.1. The stereotype <<precedes>> simply means that some effort in an activity
must be performed, and hence precede, effort in a later activity. For example,
you cannot perform design activities if you have no idea about the requirements,
and you cannot evaluate an architecture if you have not first made some design
decisions.

Today most commercial software is developed using some form of Agile
methodology. None of these architecture activities is incompatible with Agile
practices. The question for a software architect is not “Should I do Agile or
architecture?”, but rather “How much architecture should I do up front versus
how much should I defer until the project’s requirements have solidified
somewhat?” and “How much of the architecture should I formally document,
and when?” Agile and architecture are happy companions for many software
projects.

We will discuss the relationship between architecture design and various
software life-cycle methods and process models, including iterative
development, in Chapter 9.



1.3 The Role of the Architect

An architect is much more than “just” a designer. This role, which may be
played by one or more individuals, has a long list of duties, skills, and
knowledge that must be satisfied if it is to be successful. These prerequisites
include the following:

» Leadership: mentoring, team-building, establishing a vision, coaching

» Communication: both technical and nontechnical, encouraging
collaboration

» Negotiation: dealing with internal and external stakeholders and their
conflicting needs and expectations

» Technical skills: life-cycle skills, expertise with technologies, continuous
learning, coding

» Project skills: budgeting, personnel, schedule management, risk
management

» Analytical skills: architectural analysis, general analysis mindset for
project management and measurement (see the sidebar “The Meaning of
Analysis”)

A successful design is not a static document that is “thrown over the wall”.
That is, architects must not only design well, but must also be intimately
involved in every aspect of the project, from conception and business
justification to design and creation, through to operation, maintenance, and
eventually retirement.

The Meaning of Analysis

In the Merriam-Webster Dictionary, the word analysis is defined as
follows:

» The careful study of something to learn about its parts, what they
do, and how they are related to each other

» An explanation of the nature and meaning of something

In this book we use the word analysis for different purposes, and
both of these definitions apply. For instance, as part of the
architectural evaluation activity, an existing architecture is analyzed
to gauge if it is appropriate to satisfy its associated drivers. During
the design process, the inputs are analyzed to make design
decisions. The creation of prototypes is also a form of analysis. In
fact, analysis is so important to the design process that we devote



Chapter 8 to just this topic. Here we also discuss, in more detail, the
relationship between analysis and evaluation. In this book, we focus
primarily on the design activity, its associated technical skills, and
its integration into the development life cycle. For a fuller treatment
of the other aspects of an architect’s life, we invite you to read a
more general book on software architecture, such as Software
Architecture in Practice or Just Enough Software Architecture.

1.4 A Brief History of ADD

While an architect has many duties and responsibilities, in this book we focus on
what is arguably the single most important skill that a software engineer must
master to be called “architect”: the process of design. To make architectural
design more tractable and repeatable, in this book we focus most of our attention
on the Attribute-Driven Design (ADD) method, which provides step-by-step
guidance on how to iteratively perform the design activity shown in Figure 1.1.
Chapter 3 describes the most recent version of ADD, version 3.0, in detail, so
here we provide a bit of background for those who are familiar with previous
versions of ADD. The first version of ADD (ADD 1.0, originally called ABD,
for “Architecture-Based Design”) was published in January 2000, and the
second version (ADD 2.0) was published in November 2006. The third edition
of the book Software Architecture in Practice presents this method with a
reduced number of steps. This discussion, however, does not introduce a new
version of ADD, but rather a repackaged version that summarizes the actual
steps of the method.

ADD is, to our knowledge, the most comprehensive and most widely used
documented architecture design method. (We provide an overview of a number
of alternative design methods in Chapter 7.) When ADD appeared, it was the
first design method to focus specifically on quality attributes and their
achievement through the creation of architectural structures and their
representation through views. Another important contribution of ADD is that it
includes architecture analysis and documentation as an integral part of the design
process. In ADD, design activities include refining the sketches created during
early design iterations to produce a more detailed architecture, and continuously
evaluating the design.

While ADD 2.0 was useful for linking quality attributes to design choices, it
had several shortcomings that needed to be addressed:

» ADD 2.0 guides the architect to use and combine tactics and patterns to



achieve the satisfaction of quality attribute scenarios. Patterns and tactics
are abstractions, however, and the method did not explain how to map
these abstractions to concrete implementation technologies.

» ADD 2.0 was invented before Agile methods became widely adopted and,
therefore, did not offer guidance for architecture design in an Agile setting.

ADD 2.0 provided no guidance on how to begin the design process. While
this omission enhanced its generalizability, it presented difficulties for
novice designers, who often do not know where to begin. Specifically,
ADD 2.0 did not explicitly promote the (re)use of reference architectures,
which are an ideal starting point for many architects, as we will discuss
later in this book.

ADD 2.0 did not explicitly consider different design purposes. For
example, one might be doing design as part of a pre-sales process or as
part of “standard” design for construction. These are very different
purposes and will result in different uses of ADD.

ADD 2.0 did not consider that design requires some architectural concerns
(i.e., internal requirements) to be addressed whether or not they are
expressed in the list of “traditional” drivers (requirements and constraints).
It is a rare user who will ask that a system be “testable” or will require that
the system provide special testing interfaces, but a wise architect might
choose to include such an infrastructure, particularly if the system is
complex and used in contexts that are difficult to control and replicate.

ADD 2.0 iterations are always driven by the selection and decomposition
of architectural elements. This occurs because ADD 2.0 instructs that first
an element to decompose must be chosen, and then the drivers must be
identified. In ADD 3.0, we recognize that sometimes a design step is
driven by the critical architectural requirements, which guides the selection
and decomposition of elements.

» ADD 2.0 includes (initial) documentation and analysis, but they are not
explicit steps of the design process.
ADD 3.0 addresses all of these shortcomings. To be sure, ADD 3.0 is

evolutionary, not revolutionary. It was catalyzed by the creation of ADD 2.5
which was itself a reaction to attempting to use ADD in the real world, in many
different contexts.

1. This is our own coding notation; the 2.5 number is not used elsewhere.

We published ADD 2.5 in 2013. In that work, we advocated the use of
application frameworks such as JSF, Spring, or Hibernate as first-class design



concepts. This change was intended to address ADD 2.0’s shortcoming of being
too abstract to apply easily. ADD starts with drivers, systematically links them to
design decisions, and then links those decisions to the available implementation
options, including externally developed components. For Agile development,
ADD 3.0 promotes quick design iterations in which a small number of design
decisions are made, potentially followed by an implementation spike. In
addition, ADD 3.0 explicitly promotes the (re)use of reference architectures and
is paired with a “design concepts catalog”, which includes a broad selection of
tactics, patterns, frameworks, reference architectures, and technologies (see

Appendix A).

1.5 Summary

Having covered our motivations and background, we now move on to the heart
and soul of this book. In the next few chapters, we describe what we mean by
design and by architectural design in particular, we discuss ADD, and we
provide three case studies showing in detail how ADD can be used in the real
world. We also discuss the critical role that analysis plays in the design process
and provide examples of how analysis can be performed on design artifacts.

1.6 Further Reading

Fred Brooks has written a thoughtful series of essays on the nature of design,
reflecting his 50 years of experience as a designer and researcher: F. P. Brooks,
Jr. The Design of Design: Essays from a Computer Scientist. Addison-Wesley,
2010.

The usefulness of having a documented process for design and other
development activities is discussed in D. Parnas and P. Clements, “A Rational
Design Process: How and Why to Fake It”, IEEE Transactions on Software
Engineering, SE-12, 2, February 1986.

The definition of software architecture used here, as well as the arguments for
the importance of architecture and the role of the architect, all derive from L.
Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed.,
Addison-Wesley, 2012.

Several books cover the different activities of the architecture development
life cycle, including G. Fairbanks, Just Enough Software Architecture: A Risk
Driven Approach, Marshall & Brainerd, 2010, and the ones whose design
approaches are described in Chapter 7.

An early reference for the first version of ADD can be found in F. Bachmann,



L. Bass, G. Chastek, P. Donohoe, and F. Peruzzi, The Architecture Based Design
Method, CMU/SEI-2000-TR-001. The second version of ADD was described in
R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and W.
Wood, Attribute-Driven Design (ADD), Version 2.0, CMU/SEI-2006-TR-023.
The version of ADD that we have referred to here as ADD 2.5 was published in
H. Cervantes, P. Velasco-Elizondo, and R. Kazman, “A Principled Way of
Using Frameworks in Architectural Design”, IEEE Software, 46-53,
March/April 2013.



2. Architectural Design

We now dive into the process of architecture design: what it is, why it is
important, how it works (at an abstract level). and which major concepts and
activities it involves. We first discuss architectural drivers: the various factors
that “drive” design decisions, some of which are documented as requirements,
but many of which are not. In addition, we provide an overview of design
concepts—the major building blocks that you will select, combine, instantiate,
analyze, and document as part of your design process.

2.1 Design in General

Design is both a verb and a noun. Design is a process, an activity, and hence a
verb. The process results in the creation of a design—a description of a desired
end state. Thus the output of the design process is the thing, the noun, the artifact
that you will eventually implement. Designing means making decisions to
achieve goals and satisfy requirements and constraints. The outputs of the design
process are a direct reflection of those goals, requirements, and constraints.
Think about houses, for example. Why do traditional houses in China look
different from those in Switzerland or Algeria? Why does a yurt look like a yurt,
which is different from an igloo or a chalet or a longhouse?

The architectures of these styles of houses have evolved over the centuries to
reflect their unique sets of goals, requirements, and constraints. Houses in China
feature symmetric enclosures, sky wells to increase ventilation, south-facing
courtyards to collect sunlight and provide protection from cold north winds, and
so forth. A-frame houses have steep pitched roofs that extend to the ground,
meaning minimal painting and protection from heavy snow loads (which just
slide off to the ground). Igloos are built of ice, reflecting the availability of ice,
the relative poverty of other building materials, and the constraints of time (a
small one can be built in an hour).

In each case, the process of design involved the selection and adaptation of a
number of solution approaches. Even igloo designs can vary. Some are small and
meant for a temporary travel shelter. Others are large, often connecting several
structures, meant for entire communities to meet. Some are simple unadorned
snow huts. Others are lined with furs, with ice “windows”, and doors made of
animal skin.

The process of design, in each case, balances the various “forces” facing the
designer. Some designs require considerable skill to execute (such as carving



and stacking snow blocks in such a way that they produce a self-supporting
dome). Others require relatively little skill—a lean-to can be constructed from
branches and bark by almost anyone. But the qualities that these structures
exhibit may also vary considerably. Lean-tos provide little protection from the
elements and are easily destroyed, whereas an igloo can withstand Arctic storms
and support the weight of a person standing on the roof.

Is design “hard”? Well, yes and no. Novel design is hard. It is pretty clear how
to design a conventional bicycle, but the design for the Segway broke new
ground. Fortunately, most design is not novel, because most of the time our
requirements are not novel. Most people want a bicycle that will reliably convey
them from place to place. The same holds true in every domain. Consider
houses, for example. Most people living in Phoenix want a house that can be
easily and economically kept cool, whereas most people in Edmonton are
primarily concerned with a house that can be kept warm. In contrast, people
living in Japan and Los Angeles are concerned with buildings that can withstand
earthquakes.

The good news for you, the architect, is that there are ample proven designs
and design fragments, or building blocks that we call design concepts, that can
be reused and combined to reliably achieve these goals. If your design is truly
novel—if you are designing the next Sydney Opera House—then the design
process will likely be “hard”. The Sydney Opera House, for example, cost 14
times its original budget estimate and was delivered ten years late. So, too, with
the design of software architectures.

2.2 Design in Software Architecture

Architectural design for software systems is no different than design in general:
It involves making decisions, working with available skills and materials, to
satisfy requirements and constraints. In architectural design, we make decisions
to transform our design purpose, requirements, constraints, and architectural
concerns—what we call the architectural drivers—into structures, as shown in
Figure 2.1. These structures are then used to guide the project. They guide
analysis and construction, and serve as the foundation for educating a new
project member. They also guide cost and schedule estimation, team formation,
risk analysis and mitigation, and, of course, implementation.
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Architectural design is, therefore, a key step to achieving your product and
project goals. Some of these goals are technical (e.g., achieving low and
predictable latency in a video game or an e-commerce website), and some are
nontechnical (e.g., keeping the workforce employed, entering a new market,
meeting a deadline). The decisions that you, as an architect, make will have
implications for the achievement of these goals and may, in some cases, be in
conflict. The choice of a particular reference architecture (e.g., the Rich Client
Application) may provide a good foundation for achieving your latency goals
and will keep your workforce employed because they are already familiar with
that reference architecture and its supporting technology stack. But this choice
may not help you enter a new market—mobile games, for example.

In general, when designing, a change in some structure to achieve one quality
attribute will have negative effects on other quality attributes. These tradeoffs
are a fact of life for every practicing architect in every domain. We will see this
over and over again in the examples and case studies provided in this book. Thus
the architect’s job is not one of finding an optimal solution, but rather one of
satisficing—searching through a potentially large space of design alternatives

(Documented) Structures



and decisions until an acceptable solution is found.

2.2.1 Architectural Design

Grady Booch has said, “All architecture is design, but not all design is
architecture”. What makes a decision “architectural”? A decision is architectural
if it has nonlocal consequences and those consequences matter to the
achievement of an architectural driver. No decision is, therefore, inherently
architectural or non-architectural. The choice of a buffering strategy within a
single element may have little effect on the rest of the system, in which case it is
an implementation detail that is of no concern to anyone except the implementer
or maintainer of that element. In contrast, the buffering strategy may have
enormous implications for performance (if the buffering affects the achievement
of latency or throughput or jitter goals) or availability (if the buffers might not be
large enough and information gets lost) or modifiability (if we wish to flexibly
change the buffering strategy in different deployments or contexts). The choice
of a buffering strategy, like most design choices, is neither inherently
architectural nor inherently non-architectural. Instead, this distinction is
completely dependent on the current and anticipated architectural drivers.

2.2.2 Element Interaction Design

Architectural design generally results in the identification of only a subset of the
elements that are part of the system’s structure. This is to be expected because,
during initial architectural design, the architect will focus on the primary
functionality of the system. What makes a use case primary? A combination of
business importance, risk, and complexity considerations feed into this
designation. Of course, to your users, everything is urgent and top priority. More
realistically, a small number of use cases provide the most fundamental business
value or represent the greatest risk (if they are done wrong), so these are deemed
primary.

Every system has many more use cases, beyond the primary ones, that need to
be satisfied. The elements that support these nonprimary use cases and their
interfaces are identified as part of what we call element interaction design. This
level of design usually follows architectural design. The location and
relationships of these elements, however, are constrained by the decisions that
were made during architectural design. These elements can be units of work (i.e.,
modules) assigned to an individual or to a team, so this level of design is
important for defining not only how nonprimary functionality is allocated, but
also for planning purposes (e.g., team formation and communication, budgeting,




outsourcing, release planning, unit and integration test planning).

Depending on the scale and complexity of the system, the architect should be
involved in element interaction design, either directly or in an auditing role. This
involvement ensures that the system’s important quality attributes are not
compromised—for example, if the elements are not defined, located, and
connected correctly. It will also help the architect spot opportunities for
generalization.

2.2.3 Element Internals Design

A third level of design follows element interaction design, which we call element
internals design. In this level of design, which is usually conducted as part of the
element development activities, the internals of the elements identified in the
previous design level are established, so as to satisfy the element’s interface.

Architectural decisions can and do occur at the three levels of design.
Moreover, during architectural design, the architect may need to delve as deeply
as element internals design to achieve a particular architectural driver. An
example of this is the selection of a buffering strategy that was previously
discussed. In this sense, architectural design can involve considerable detail,
which explains why we do not like to think about it in terms of “high-level
design” or “detailed design” (see the sidebar “Detailed Design?”).

Architectural design precedes element interaction design, which precedes
element internals design. This is logically necessary: One cannot design an
element’s internals until the elements themselves have been defined, and one
cannot reason about interaction until several elements and some patterns of
interactions among them have been defined. But as projects grow and evolve,
there is, in practice, considerable iteration between these activities.

Detailed Design?

The term “detailed design” is often used to refer to the design of the
internals of modules. Although it is widely used, we really don’t
like this term, which is presented as somehow in opposition to
“high-level design”. We prefer the more precise terms “architectural
design”, “element interaction design”, and “element internals
design™.

After all, architectural design may be quite detailed, if your
system is complex. And some design “details” will turn out to be
architectural. For the same reason, we also don’t like the terms



“high-level design” and “low-level design”. Who can really know
what these terms actually mean? Clearly, “high-level design” should
be somehow “higher” or more abstract, and cover more of the
architectural landscape than “low-level design”, but beyond that we
are at a loss to imbue these terms with any precise meaning.

So here is what we recommend: Just avoid using terms such as
“high”, “low”, or “detailed” altogether. There is always a better,
more precise choice, such as “architectural”, “element interaction”,
or “element internals” design!

Think carefully about the impact of the decisions you are making,
the information that you are trying to convey in your design
documentation, and the likely audience for that information, and
then give that process an appropriate, meaningful name.

2.3 Why Is Architectural Design So Important?

There is a very high cost to a project of not making certain design decisions, or
of not making them early enough. This manifests itself in many different ways.
Early on, an initial architecture is critical for project proposals (or, as it is
sometimes called in the consulting world, the pre-sales process). Without doing
some architectural thinking and some early design work, you cannot confidently
predict project cost, schedule, and quality. Even at this early stage, an
architecture will determine the key approaches for achieving architectural
drivers, the gross work-breakdown structure, and the choices of tools, skills, and
technologies needed to realize the system.

In addition, architecture is a key enabler of agility, as we will discuss in
Chapter 9. Whether your organization has embraced Agile processes or not, it is
difficult to imagine anyone who would willingly choose an architecture that is
brittle and hard to change or extend or tune—and yet it happens all the time.
This so-called technical debt occurs for a variety of reasons, but paramount
among these is the combination of a focus on features—typically driven by
stakeholder demands—and the inability of architects and project managers to
measure the return on investment of good architectural practices. Features
provide immediate benefit. Architectural improvement provides immediate costs
and long-term benefits. Put this way, why would anyone ever “invest” in
architecture? The answer is simple: Without architecture, the benefits that the
system is supposed to bring will be far harder to realize.

Simply put, if you do not make some key architectural decisions early and if



you allow your architecture to degrade, you will be unable to maintain sprint
velocity, because you cannot easily respond to change requests. However, we
vehemently disagree with what the original creators of the Agile Manifesto
claimed: “The best architectures, requirements, and designs emerge from self-
organizing teams”. Indeed, our demurral with this point is precisely why we
have written this book. Good architectural design is difficult (and still rare), and
it does not just “emerge”. This opinion mirrors a growing consensus within the
Agile community. More and more, we see techniques such as “disciplined agility
at scale”, the “walking skeleton”, and the “scaled Agile framework” embraced
by Agile thought leaders and practitioners alike. Each of these techniques
advocates some architectural thinking and design prior to much, if any,
development. To reiterate, architecture enables agility, and not the other way
around.

Furthermore, the architecture will influence, but not determine, other
decisions that are not in and of themselves design decisions. These decisions do
not influence the achievement of quality attributes directly, but they may still
need to be made by the architect. For example, such decisions may include
selection of tools; structuring the development environment; supporting releases,
deployment, and operations; and making work assignments.

Finally, a well-designed, properly communicated architecture is key to
achieving agreements that will guide the team. The most important kinds to
make are agreements on interfaces and on shared resources. Agreeing on
interfaces early is important for component-based development, and critically
important for distributed development. These decisions will be made sooner or
later. If you don’t make the decisions early, the system will be much more
difficult to integrate. In Section 3.6, we will discuss how to define interfaces as
part of architectural design—both the external interfaces to other systems and
the internal interfaces that mediate your element interactions.

2.4 Architectural Drivers

Before commencing design with ADD (or with any other design method, for that
matter), you need to think about what you are doing and why. While this
statement may seem blindingly obvious, the devil is, as usual, in the details. We
categorize these “what” and “why” questions as architectural drivers. As shown
in Figure 2.1, these drivers include a design purpose, quality attributes, primary
functionality, architectural concerns, and constraints. These considerations are
critical to the success of the system and, as such, they drive and shape the
architecture.



As with any other important requirements, architectural drivers need to be
baselined and managed throughout the development life cycle.

2.4.1 Design Purpose

First, you need to be clear about the purpose of the design that you want to
achieve. When and why are you doing this architecture design? Which business
goals is the organization most concerned about at this time?

1. You may be doing architecture design as part of a project proposal (for the
pre-sales process in a consulting organization, or for internal project
selection and prioritization in a company, as discussed in Section 9.1.1). It
is not uncommon that, as part of determining project feasibility, schedule,
and budget, an initial architecture is created. Such an architecture would
not be very detailed; its purpose is to understand and break down the
architecture in sufficient detail that the units of work are understood and
hence may be estimated.

2. You may be doing architecture design as part of the process of creating an
exploratory prototype. In this case, the purpose of the architecture design
process is not so much to create a releasable or reusable system, but rather
to explore the domain, to explore new technology, to place something
executable in front of a customer to elicit rapid feedback, or to explore
some quality attribute (such as performance scalability or failover for
availability).

3. You may be designing your architecture during development. This could
be for an entire new system, for a substantial portion of a new system, or
for a portion of an existing system that is being refactored or replaced. In
this case, the purpose is to do enough design work to satisfy requirements,
guide system construction and work assignments, and prepare for an
eventual release.

These purposes may be interpreted and realized differently for greenfield
systems in mature domains, for greenfield systems in novel domains, and for
existing systems. In a mature domain, the pre-sales process, for example, might
be relatively straightforward; the architect can reuse existing systems as
examples and confidently make estimates based on analogy. In novel domains,
the pre-sales estimation process will be far more complex and risky, and may
have highly variable results. In these circumstances, a prototype of the system,
or a key part of the system, may need to be created to mitigate risk and reduce
uncertainty. In many cases, this architecture may also need to be quickly adapted
as new requirements are learned and embraced. In brownfield systems, while the



requirements are better understood, the existing system is itself a complex object
that must be well understood for planning to be accurate.

Finally, the development organization’s goals during development or
maintenance may affect the architecture design process. For example, the
organization might be interested in designing for reuse, designing for future
extension or subsetting, designing for scalability, designing for continuous
delivery, designing to best utilize existing project capabilities and team member
skills, and so forth. Or the organization might have a strategic relationship with a
vendor. Or the CIO might have a specific like or dislike and wants to impose it
on your project.

Why do we bother to list these considerations? Because they will affect both
the process of design and the outputs of design. Architectures exist to help
achieve business goals. The architect should be clear about these goals and
should communicate them (and negotiate them!) and establish a clear design
purpose before beginning the design process.

2.4.2 Quality Attributes

In the book Software Architecture in Practice, quality attributes are defined as
being measurable or testable properties of a system that are used to indicate how
well the system satisfies the needs of its stakeholders. Because quality tends to
be a subjective concept in itself, these properties allow quality to be expressed
succinctly and objectively.

Among the drivers, quality attributes are the ones that shape the architecture
the most significantly. The critical choices that you make when you are doing
architectural design determine, in large part, the ways that your system will or
will not meet these driving quality attribute goals.

Given their importance, you must worry about eliciting, specifying,
prioritizing, and validating quality attributes. Given that so much depends on
getting these drivers right, this sounds like a daunting task. Fortunately, a
number of well-understood, widely disseminated techniques can help you here
(see sidebar “The Quality Attribute Workshop and the Utility Tree”):

» Quality Attribute Workshop (QAW) is a facilitated brainstorming session
involving a group of system stakeholders that covers the bulk of the
activities of eliciting, specifying, prioritizing, and achieving consensus on
quality attributes.

» Mission Thread Workshop serves the same purpose as QAW, but for a
system of systems.



» The Utility Tree can be used by the architect to prioritize quality attribute
requirements according to their technical difficulty and risk.

We believe that the best way to discuss, document, and prioritize quality
attribute requirements is as a set of scenarios. A scenario, in its most basic form,
describes the system’s response to some stimulus. Why are scenarios the best
approach? Because all other approaches are worse! Endless time may be wasted
in defining terms such as “performance” or “modifiability” or “configurability”,
as these discussions tend to shed little light on the real system. It is meaningless
to say that a system will be “modifiable”, because every system is modifiable
with respect to some changes and not modifiable with respect to others. One can,
however, specify the modifiability response measure you would like to achieve
(say, elapsed time or effort) in response to a specific change request. For
example, you might want to specify that “a change to update shipping rates on
the e-commerce website is completed and tested in less than 1 person-day of
effort”—an unambiguous criterion.

The heart of a quality attribute scenario, therefore, is the pairing of a stimulus
with a response. Suppose that you are building a video game and you have a
functional requirement like this: “The game shall change view modes when the
user presses the <C> button”. This functional requirement, if it is important,
needs to be associated with quality attribute requirements. For example:

» How fast should the function be?
» How secure should the function be?
» How modifiable should the function be?

To address this problem, we use a scenario to describe a quality attribute
requirement. A quality attribute scenario is a short description of how a system is
required to respond to some stimulus. For example, we might annotate the
functional requirement given earlier as follows: “The game shall change view
modes in < 500 ms when the user presses the <C> button”. A scenario associates
a stimulus (in this case, the pressing of the <C> button) with a response
(changing the view mode) that is measured using a response measure (< 500
ms). A complete quality attribute scenario adds three other parts: the source of
the stimulus (in this case, the user), the artifact affected (in this case, because we
are dealing with end-to-end latency, the artifact is the entire system) and the
environment (are we in normal operation, startup, degraded mode, or some other
mode?). In total, then, there are six parts of a completely well-specified scenario,
as shown in Figure 2.2.
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FIGURE 2.2 The six parts of a quality attribute scenario

Scenarios are testable, falsifiable hypotheses about the quality attribute
behavior of the system under consideration. Because they have explicit stimuli
and responses, we can evaluate a design in terms of how likely it is to support
the scenario, and we can take measurements and test a prototype or fully fleshed-
out system for whether it satisfies the scenario in practice. If the analysis (or
prototyping results) indicates that the scenario’s response goal cannot be met,
then the hypothesis is deemed falsified.

As with other requirements, scenarios should be prioritized. This can be
achieved by considering two dimensions that are associated with each scenario
and that are assigned a rank of importance:

» The first dimension corresponds to the importance of the scenario with
respect to the success of the system. This is ranked by the customer.

» The second dimension corresponds to the degree of technical risk
associated with the scenario. This is ranked by the architect.

A low/medium/high (L/M/H) scale is used to rank both dimensions. Once the
dimensions have been ranked, scenarios are prioritized by selecting those that
have a combination of (H, H), (H, M), or (M, H) rankings.

In addition, some traditional requirements elicitation techniques can be
modified slightly to focus on quality attribute requirements, such as Joint
Requirements Planning (JRP), Joint Application Design (JAD), discovery
prototyping, and accelerated systems analysis.

But whatever technique you use, do not start design without a prioritized list
of measurable quality attributes! While stakeholders might plead ignorance (“I
don’t know how fast it needs to be; just make it fast!”), you can almost always



elicit at least a range of possible responses. Instead of saying the system should
be “fast”, ask the stakeholder if a 10-second response time is acceptable. If that
is unacceptable, ask if 5 seconds is OK, or 1 second. You will find that, in most
cases, users know more than they realize about their requirements, and you can
at least “box them in” to a range.

The Quality Attribute Workshop and the Utility Tree

The Quality Attribute Workshop (QAW)

The QAW is a facilitated, stakeholder-focused method to generate,
prioritize, and refine quality attribute scenarios. A QAW meeting is
ideally enacted before the software architecture has been defined
although, in practice, we have seen the QAW being used at all
points in the software development life cycle. The QAW is focused
on system-level concerns and specifically the role that software will
play in the system. The steps of the QAW are as follows:

1. QAW Presentation and Introductions

The QAW facilitators describe the motivation for the QAW and
explain each step of the method.

2. Business Goals Presentation

A stakeholder representing the project’s business concerns
presents the system’s business context, broad functional
requirements, constraints, and known quality attribute
requirements. The quality attributes that will be refined in later
QAW steps will be derived from, and should be traceable to, the
business goals presented in this step. For this reason, these
business goals must be prioritized.

3. Architectural Plan Presentation

The architect presents the system architectural plans as they
currently exist. Although the architecture has frequently not been
defined yet (particularly for greenfield systems), the architect
often knows quite a lot about it even at this early stage. For
example, the architect might already know about technologies
that are mandated, other systems that this system must interact
with, standards that must be followed, subsystems or components
that could be reused, and so forth.

4. Identification of Architectural Drivers



The facilitators share their list of key architectural drivers that
they assembled during steps 2 and 3 and ask the stakeholders for
clarifications, additions, deletions, and corrections. The idea here
is to reach a consensus on a distilled list of architectural drivers
that covers major functional requirements, business drivers,
constraints, and quality attributes.

5. Scenario Brainstorming

Given this context, each stakeholder now has the opportunity to
express a scenario representing that stakeholder’s needs and
desires with respect to the system. The facilitators ensure that
each scenario has an explicit stimulus and response. The
facilitators also ensure traceability and completeness: At least one
representative scenario should exist for each architectural driver
listed in step 4 and should cover all the business goals listed in
step 2.

6. Scenario Consolidation

Similar scenarios are consolidated where reasonable. In step 7,
the stakeholders vote for their favorite scenarios, and
consolidation helps to prevent votes from being spread across
several scenarios that are expressing essentially the same
concern.

7. Scenario Prioritization

Prioritization of the scenarios is accomplished by allocating to
each stakeholder a number of votes equal to 30 percent of the
total number of scenarios. The stakeholders can distribute these
votes to any scenario or scenarios. Once all the stakeholders have
voted, the results are tallied and the scenarios are sorted in order
of popularity.

8. Scenario Refinement

The highest-priority scenarios are refined and elaborated. The
facilitators help the stakeholders express these in the form of six-
part scenarios: source, stimulus, artifact, environment, response,
and response measure.

The output of the QAW is therefore a prioritized list of scenarios,
aligned with business goals, where the highest-priority scenarios
have been explored and refined. A QAW can be conducted in as
little as 2—3 hours for a simple system or as part of an iteration, and



as much as 2 days for a complex system where requirements
completeness is a goal.

Utility Tree

If no stakeholders are readily available to consult, you still need to
decide what to do and how to prioritize the many challenges facing
the system. One way to organize your thoughts is to create a Utility
Tree. The Utility Tree, such as the one shown in the following
figure, helps to articulate your quality attribute goals in detail, and
then to prioritize them.

Latency (M, M) User displays time server event history. The list of events
from the last 24 hours is displayed within 1 second.
—— Performance

(H, H) The management system collects data from time server during
Peak peak load. All data collected within 5 minutes.
load (M, H) Time servers send traps to the management system at peak
load. 100% of the traps are successfully processed and stored.
- Leamnability (L, L) A new user can configure their account and be operating with
less than 8 hours of training.
—— Usability
Feedback (H, L) Critical events are reported and visible to the userin < 5
seconds.
Utility —
SW failure (H, H) A failure occurs in the management system. The management
system resumes operation in less than 30 seconds.
—— Availability
Network failure
; uthentication ensures 99.999% of unauthorized login
(H, M) Authenticati 99.999% of unauthorized logi

Authentication
. attempts can be detected.
L Security
— Audit trail (H, L) A user changes a system configuration. The change is logged

100% of the time.

It works as follows. First write the word “Utility” on a sheet of
paper. Then write the various quality attributes that constitute utility
for your system. For example, you might know, based on the
business goals for the system, that the most important qualities for
the system are that the system be fast, secure, and easy to modify. In
turn, you would write these words underneath “Utility”. Next,
because we don’t really know what any of those terms actually



means, we describe the aspect of the quality attribute that we are
most concerned with. For example, while “performance” is vague,
“latency of database transactions” is a bit less vague. Likewise,
while “modifiability” is vague, “ease of adding new codecs” is a bit
less vague.

The leaves of the tree are expressed as scenarios, which provide
concrete examples of the quality attribute considerations that you
just enumerated. For example, for “latency of database
transactions”, you might create a scenario such as “1000 users
simultaneously update their own customer records under normal
conditions with an average latency of 1 second”. For “ease of
adding new codecs”, you might create a scenario such as “Customer
requests that a new custom codec be added to the system. Codec is
added with no side effects in 2 person-weeks of effort™.

Finally, the scenarios that you have created must be prioritized.
We do this prioritization by using the technique of ranking across
two dimensions, resulting in a priority matrix such as the following
(where the numbers in the cells are from a set of system scenarios).

Business

Importance/

Technical Risk L M H

L b, 6, 17, 20, 22 1, 14 12, 19
M 9 12, 16 8, 20 3, 13,15
H 10, 18, 21 4,7 8 )

Our job, as architects, is to focus on the lower-right-hand portion of
this table (H, H): those scenarios that are of high business
importance and high risk. Once we have satisfactorily addressed
those scenarios, we can move to the (M, H) or (H, M) ones, and
then move up and to the left until all of the system’s scenarios are
addressed (or perhaps until we run out of time or budget, as is often
the case).

It should be noted that the QAW and the Utility Tree are two
different techniques that are aimed at the same goal—eliciting and
prioritizing the most important quality attribute requirements, which
will be some of your most critical architectural drivers. There is no
reason, however, to choose between these techniques. Both are
useful and valuable and. in our experience. they have



complementary strengths: The QAW tends to focus more on the
requirements of external stakeholders, whereas the Utility Tree
tends to excel at eliciting the requirements of internal stakeholders.
Making all of these stakeholders happy will go a long way toward
ensuring the success of your architecture.

2.4.3 Primary Functionality

Functionality is the ability of the system to do the work for which it was
intended. As opposed to quality attributes, the way the system is structured does
not normally influence functionality. You can have all of the functionality of a
given system coded in a single enormous module, or you can have it neatly
distributed across many smaller, highly cohesive modules. Externally the system
will look and work the same way if you consider only functionality. What
matters, though, is what happens when you want to make changes to such
system. In the former case, changes will be difficult and costly; in the latter case,
they should be much easier and cheaper to perform. In terms of architectural
design, allocation of functionality to elements, rather than the functionality per
se, is what matters. A good architecture is one in which the most common
changes are localized in a single or a few elements, and hence easy to make.

When designing an architecture, you need to consider at least the primary
functionality. Primary functionality is usually defined as functionality that is
critical to achieve the business goals that motivate the development of the
system. Other criteria for primary functionality might be that it implies a high
level of technical difficulty or that it requires the interaction of many
architectural elements. As a rule of thumb, approximately 10 percent of your use
cases or user stories are likely to be primary.

There are two important reasons why you need to consider primary
functionality when designing an architecture:

1. You need to think how functionality will be allocated to elements (usually
modules) to promote modifiability or reusability, and also to plan work
assignments.

2. Some quality attribute scenarios are directly connected to the primary
functionality in the system. For example, in a movie streaming application,
one of the primary use cases is, of course, to watch a movie. This use case
is associated with a performance quality attribute scenario such as “Once
the user presses play, the movie should begin streaming in no more than 5
seconds”. In this case, the quality attribute scenario is directly associated



with the primary use case, so making decisions to support this scenario
also requires making decisions about how its associated functionality will
be supported. This is not the case for all quality attributes. For example, an
availability scenario can involve recovery from a system failure, and this
failure may occur when any of the system’s use cases are being executed.

Decisions regarding the allocation of functionality that are made during
architectural design establish a precedent for how the rest of the functionality
should be allocated to modules as development progresses. This is usually not
the work of the architect; instead, this activity is typically performed as part of
the element interaction design process described in Section 2.2.2.

Finally, bad decisions that are made regarding the allocation of functionality
result in the accumulation of technical debt. (Of course, these decisions may
reveal themselves to be bad only in hindsight.) This debt can be paid through the
use of refactoring, although this impacts the project’s rate of progress, or
velocity (see the sidebar “Refactoring™).

Refactoring

If you refactor a software architecture (or part of one), what you are
doing is maintaining the same functionality but changing some
quality attribute that you care about. Architects often choose to
refactor because a portion of the system is difficult to understand,
debug, and maintain. Alternatively, they may refactor because part
of the system is slow, or prone to failure, or insecure.

The goal of the refactoring in each case is not to change the
functionality, but rather to change the quality attribute response. (Of
course, additions to functionality are sometimes lumped together
with a refactoring exercise, but that is not the core intent of the
refactoring.) Clearly, if we can maintain the same functionality but
change the architecture to achieve different quality attribute
responses, these requirement types are orthogonal to each other—
that is, they can vary independently.

2.4.4 Architectural Concerns

Architectural concerns encompass additional aspects that need to be considered
as part of architectural design but that are not expressed as traditional
requirements. There are several different types of concerns:




» General concerns. These are “broad” issues that one deals with in creating
the architecture, such as establishing an overall system structure, the
allocation of functionality to modules, the allocation of modules to teams,
organization of the code base, startup and shutdown, and supporting
delivery, deployment, and updates.

» Specific concerns. These are more detailed system-internal issues such as
exception management, dependency management, configuration, logging,
authentication, authorization, caching, and so forth that are common across
large numbers of applications. Some specific concerns are addressed in
reference architectures (see Section 2.5.1), but others will be unique to
your system. Specific concerns also result from previous design decisions.
For example, you may need to address session management if you
previously decided to use a reference architecture for the development of
web applications.

» Internal requirements. These requirements are usually not specified
explicitly in traditional requirement documents, as customers usually
seldom express them. Internal requirements may address aspects that
facilitate development, deployment, operation, or maintenance of the
system. They are sometimes called “derived requirements”.

» Issues. These result from analysis activities, such as a design review (see
Section 8.6), so they may not be present initially. For instance, an
architectural evaluation may uncover a risk that requires some changes to
be performed in the current design.

Some of the decisions surrounding architectural concerns might be trivial or
obvious. For example, your deployment structure might be a single processor for
an embedded system, or a single cell phone for an app. Your reference
architecture might be constrained by company policy. Your authentication and
authorization policies might be dictated by your enterprise architecture and
realized in a shared framework. In other cases, however, the decisions required
to satisfy particular concerns may be less obvious—for example, in exception
management or input validation or structuring the code base.

From their past experience, wise architects are usually aware of the concerns
that are associated with a particular type of system and the need to make design
decisions to address them. Inexperienced architects are usually less aware of
such concerns; because these concerns tend to be tacit rather than explicit, they
may not consider them as part of the design process, which often results in
problems later on.

Architectural concerns freauentlv result in the introduction of new aualitv
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attribute scenarios. The concern of “supporting logging”, for example, is too
vague and needs to be made more specific. Like the quality attribute scenarios
that are provided by the customer, these scenarios need to be prioritized. For
these scenarios, however, the customer is the development team, operations, or
other members of the organization. During design, the architect must consider
both the quality attribute scenarios that are provided by the customer and those
scenarios that are derived from architectural concerns.

One of the goals of our revision of the ADD method was to elevate the
importance of architectural concerns as explicit inputs to the architecture design
process, as will be highlighted in our examples and case studies in Chapters 4, 5,
and 6.

2.4.5 Constraints

You need to catalog the constraints on development as part of the architectural
design process. These constraints may take the form of mandated technologies,
other systems with which your system needs to interoperate or integrate, laws
and standards that must be complied with, the abilities and availability of your
developers, deadlines that are non-negotiable, backward compatibility with older
versions of systems, and so on. An example of a technical constraint is the use of
open source technologies, whereas a nontechnical constraint is that the system
must obey the Sarbanes-Oxley Act or that it must be delivered by December 15.

A constraint is a decision over which you have little or no control as an
architect. Your job is, as we mentioned in Chapter 1, to satisfice: to design the
best system that you can, despite the constraints you face. Sometimes you might
be able to argue for loosening a constraint, but in most cases you have no choice
but to design around the constraints.

2.5 Design Concepts: The Building Blocks for Creating Structures

Design is not random, but rather is planned, intentional, rational, and directed.
The process of design may seem daunting at first. When facing the “blank page”
at the beginning of any design activity, the space of possibilities might seem
impossibly huge and complex. However, there is some help here. The software
architecture community has created and evolved, over the course of decades, a
body of generally accepted design principles that can guide us to create high-
quality designs with predictable outcomes.

For example, some well-documented design principles are oriented toward the
achievement of specific quality attributes:



» To help achieve high modifiability, aim for good modularity, which means
high cohesion and low coupling.

» To help achieve high availability, avoid having any single point of failure.

» To help achieve scalability, avoid having any hard-coded limits for critical
resources.

» To help achieve security, limit the points of access to critical resources.
» To help achieve testability, externalize state.
» ... and so forth.

In each case, these principles have been evolved over decades of dealing with
those quality attributes in practice. In addition, we have evolved reusable
realizations of these abstract approaches in design and, eventually, in code. We
call these reusable realizations design concepts, and they are the building blocks
from which the structures that make up the architecture are created. Different
types of design concepts exist, and here we discuss some of the most commonly
used, including reference architectures, deployment patterns, architectural
patterns, tactics, and externally developed components (such as frameworks).
While the first four are conceptual in nature, the last one is concrete.

2.5.1 Reference Architectures

Reference architectures are blueprints that provide an overall logical structure
for particular types of applications. A reference architecture is a reference model
mapped onto one or more architectural patterns. It has been proven in business
and technical contexts, and typically comes with a set of supporting artifacts that
eases its use.

An example of a reference architecture for the development of web
applications is shown in Figure 2.3 on the next page. This reference architecture
establishes the main layers for this type of application—presentation, business,
and data—as well as the types of elements that occur within the layers and the
responsibilities of these elements, such as Ul components, business components,
data access components, service agents, and so on. Also, this reference
architecture introduces cross-cutting concerns, such as security and
communication, that need to be addressed. As this example shows, when you
select a reference architecture for your application, you also adopt a set of issues
that you need to address during design. You may not have an explicit
requirement related to communications or security, but the fact that these
elements are part of the reference architecture require you to make design
decisions about them.
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FIGURE 2.3 Example reference architecture for the development of web
applications from the Microsoft Application Architecture Guide (Key: UML)

Reference architectures may be confused with architectural styles, but these
two concepts are different. Architectural styles (such as “Pipe and Filter” and
“Client Server”) define types of components and connectors in a specified
topology that are useful for structuring an application either logically or
physically. Such styles are technology and domain agnostic. Reference
architectures, in contrast, provide a structure for applications in specific
domains, and they may embody different styles. Also, while architectural styles
tend to be popular in academia, reference architectures seem to be preferred by
practitioners—which is also why we favor them in our list of design concepts.

While there are many reference architectures, we are not aware of any catalog
that contains an extensive list of them.

2.5.2 Architectural Design Patterns

Design patterns are conceptual solutions to recurring design problems that exist
in a defined context. While design patterns originally focused on decisions at the
object scale, including instantiation, structuring, and behavior, today there are
catalogs with patterns that address decisions at varying levels of granularity. In
addition, there are specific patterns to address quality attributes such as security
or integration.

While some people argue for the differentiation between what they consider to
be architectural patterns and the more fine-grained design patterns, we believe
there is no principled difference that can be solely attributed to scale. We
consider a pattern to be architectural when its use directly and substantially
influences the satisfaction of some of the architectural drivers (see Section 2.2).

Figure 2.4 shows an example architectural pattern that is useful for structuring
the system, the Layers pattern. When you choose a pattern such as this one, you
must decide how many layers you will need for your system. Figure 2.5 shows a
pattern to support concurrency, which is useful to increase performance. This
pattern, too, needs to be instantiated—that is, it needs to be adapted to the
specific problem and design context. Instantiation is discussed in Chapter 3.
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FIGURE 2.5 The Half-Sync/Half-Async pattern to support concurrency from
Pattern-Oriented Software Architecture (Source: Softserve)

Although reference architectures may be considered as a type of pattern, we
prefer to consider them separately because of the important role they play in
structuring an application and because they are more directly connected to
technology stacks. Also, a reference architecture typically incorporates other
patterns and often constrains these patterns. For example, the reference
architecture for web applications shown in Figure 2.3 incorporates the Layers
pattern but also establishes how many layers need to be used. This reference
architecture also incorporates other patterns such as an Application Facade and




Data Access Components.

2.5.3 Deployment Patterns

Another type of pattern that we prefer to consider separately is deployment
patterns. These patterns provide models on how to physically structure the
system to deploy it. Some deployment patterns, such as the one shown in Figure
2.6, are useful to establish an initial physical structure of the system in terms of
tiers (physical nodes). More specialized deployment patterns, such as the Load-

Balanced Cluster in Figure 2.7, are used to satisfy quality attributes such as
availability, performance, and security.

Client Tier Web Tier Business Logic Tier Database Tier

Client SWeb - SApp Database
- - erver - erver

FIGURE 2.6 Four-tier deployment pattern from the Microsoft Application
Architecture Guide (Key: UML)
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FIGURE 2.7 Load-Balanced Cluster deployment pattern for performance
from the Microsoft Application Architecture Guide (Key: UML)
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logical elements that are obtained from reference architectures (and other
patterns) into the physical elements defined by deployment patterns.

2.5.4 Tactics

Architects can use collections of fundamental design techniques to achieve a
response for particular quality attributes. We call these architectural design
primitives tactics. Tactics, like design patterns, are techniques that architects
have been using for years. We do not invent tactics, but simply capture what
architects actually have done in practice, over the decades, to manage quality
attribute response goals.

Tactics are design decisions that influence the control of a quality attribute
response. For example, if you want to design a system to have low latency or
high throughput, you could make a set of design decisions that would mediate
the arrival of events (requests for service), resulting in responses that are
produced within some time constraints, as shown in Figure 2.8.

Tactics
— | to control

Events performance | Response
arrive generated
within time

constraints

FIGURE 2.8 Tactics mediate events and responses.

Tactics are both simpler and more primitive than patterns. They focus on the
control of a single quality attribute response (although they may, of course, trade
off this response with other quality attribute goals). Patterns, in contrast,
typically focus on resolving and balancing multiple forces—that is, multiple
quality attribute goals. By way of analogy, we can say that a tactic is an atom,
whereas a pattern is a molecule.

Tactics provide a top-down way of thinking about design. A tactics
categorization begins with a set of design objectives related to the achievement
of a quality attribute, and presents the architect with a set of options from which
to choose. These options then need to be further instantiated through some
combination of patterns, frameworks, and code.

For example, in Figure 2.9, the design objectives for performance are “Control



Resource Demand” and “Manage Resources”. An architect who wants to create
a system with “good” performance needs to choose one or more of these options.
That is, the architect needs to decide if controlling resource demand is feasible,
and if managing resources is feasible. In some systems, the events arriving at the
system can be managed, prioritized, or limited in some way. If this is not
possible, then the architect can manage resources only as part of an attempt to
generate responses within acceptable time constraints. Within the “Manage
Resources” category, an architect might choose to increase resources, introduce
concurrency, maintain multiple copies of computations, maintain multiple copies
of data, and so forth. These tactics then need to be instantiated. As an example,
an architect might choose the Half-Sync/Half-Async pattern (see Figure 2.5) as a
way of introducing (and managing) concurrency, or the Load-Balanced Cluster
deployment pattern (see Figure 2.7) to maintain multiple copies of computations.
As we will see in Chapter 3, the choice, combination, and tailoring of tactics and
patterns are some of the key steps of the ADD process. There are existing tactics
categorizations for the quality attributes of availability, interoperability,
modifiability, performance, security, testability, and usability.

Performance Tactics

Control Resource Demand Manage Resources
i i Response
Manage sampling rate Increase resources Generated
Events within
N T e
Arrive Limit event response Introduce concurrency Time
L 2 . Constraints
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Bound execution times copies of data

Increase resource
efficiency

Bound queue sizes
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FIGURE 2.9 Performance tactics from Software Architecture in Practice

2.5.5 Externally Developed Components

Patterns and tactics are abstract in nature. However, when you are designing a
software architecture, you need to make these design concepts concrete and
closer to the actual implementation. There are two ways to achieve this: You can
code the elements obtained from tactics and patterns or you can associate
technologies with one or more of these elements in the architecture. This “buy
versus build” choice is one of the most important decisions you will make as an
architect.

We consider technologies to be externally developed components, because
they are not created as part of the development project. Several types of
externally developed components exist:

» Technology families. A technology family represents a group of specific
technologies with common functional purposes. It can serve as a
placeholder until a specific product or framework is selected. An example
is a relational database management system (RDBMS) or an object-
oriented to relational mapper (ORM). Figure 2.10 shows different
technology families in the Big Data domain (in regular text).
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FIGURE 2.10 A technology family tree for the Big Data application domain

» Products. A product (or software package) refers to a self-contained
functional piece of software that can be integrated into the system that is
being designed and that requires only minor configuration or coding. An
example is a relational database management system, such as Oracle or
Microsoft SQL Server. Figure 2.10 shows different products in the Big
Data domain (in italics).

Application frameworks. An application framework (or just framework) is
a reusable software element, constructed out of patterns and tactics, that
provides generic functionality addressing recurring domain and quality
attribute concerns across a broad range of applications. Frameworks, when
carefully chosen and properly implemented, increase the productivity of
programmers. They do so by enabling programmers to focus on business
logic and end-user value, rather than underlying technologies and their
implementations. As opposed to products, framework functions are
generally invoked from the application code or are “injected” using some
type of aspect-oriented approach. Frameworks usually require extensive
configuration, typically through XML files or other approaches such as
annotations in Java. A framework example is Hibernate, which is used to
perform object-oriented to relational mapping in Java. Several types of
frameworks are available: Full-stack frameworks, such as Spring, are
usually associated with reference architectures and address general
concerns across the different elements of the reference architecture, while
non-full-stack frameworks, such as JSF, address specific functional or
quality attribute concerns.

» Platforms. A platform provides a complete infrastructure upon which to
build and execute applications. Examples of platforms include Java, .Net,
or and Google Cloud.

The selection of externally developed components, which is a key aspect of
the design process, can be a challenging task because of their extensive number.
Here are a few criteria you should consider when selecting externally developed
components:

» Problem that it addresses. Is it something specific, such as a framework
for object-oriented to relational mapping or something more generic, such
as a platform?

» Cost. What is the cost of the license and, if it is free, what is the cost of
support and education?



» Type of license. Does it have a license that is compatible with the project
goals?

» Support. Is it well supported? Is there extensive documentation about the
technology? Is there an extensive user or developer community that you
can turn to for advice?

» Learning curve. How hard is it to learn this technology? Have others in
your organization already mastered it? Are there courses available?

» Maturity. Is it a technology that has just appeared on the market, which
may be exciting but still relatively unstable or unsupported?

» Popularity. Is it a relatively widespread technology? Are there positive
testimonials or adoption by mature organizations? Will it be easy to hire
people who have deep knowledge of it? Is there an active developer
community or user group?

» Compatibility and ease of integration. Is it compatible with other
technologies used in the project? Can it be integrated easily in the project?

» Support for critical quality attributes. Does it limit attributes such as
performance? Is it secure and robust?

» Size. Will the use of the technology have a negative impact on the size of
the application under development?

Unfortunately, the answers to these questions are not always easy to find and
the selection of a particular technology may require you do some research or,
eventually, to create prototypes that will help you in the selection process. These
criteria will have a significant effect on your total cost of ownership.

2.6 Architecture Design Decisions

As we said at the beginning of this chapter, design is the process of making
decisions. But the act of making a decision is a process, not a moment in time.
Experienced architects, when faced with a design challenge, typically entertain a
set of “candidate” decisions (as shown in Figure 2.1); from this set, they choose
a best candidate and instantiate that. They might select this “best” candidate
based on experience, constraints, or some form of analysis such as prototyping
or simulation. The reality is that an architect will often make a choice and “ride
the horse until it drops”—that is, commit to a decision and revisit it only if it
appears to be compromising the success of the project. These decisions have
serious consequences!

Recall that, in the early stages of design, decisions focus on the biggest, most



critical choices that will have substantial downstream consequences: reference
architectures, major technologies (such as frameworks), and patterns. Reference
architectures, deployment patterns, and other kinds of patterns have been widely
discussed—there are many books, websites, and conferences devoted to the
creation and validation of patterns and pattern languages. Nevertheless, the
output of these activities is always a set of documented patterns. Interpreting the
patterns from a pattern catalog is a critical part of the selection activity for an
architect. Each candidate pattern must be chosen and its instantiation must be
analyzed. For example, if you chose the Layers pattern from Figure 2.4, you
would still have many decisions to make: how many layers there will be, how
strict the layering will be, which specific services will be placed into each layer,
what the interfaces between these functions will be, and so forth. If you chose
the Load-Balanced Cluster deployment pattern from Figure 2.7, you would have
to decide how many servers will be balanced, how many load balancers you will
use, where these servers and load balancers will physically reside, which kinds
of networks will connect these servers, which form of encryption you will use on
those network connections, which form of health monitoring the load balancers
will employ, and so forth. These decisions are important and will affect the
success of the instantiated pattern, so they need to be analyzed. In addition, the
quality of the implementation of these decisions will affect the success of the
pattern. As we like to quip, the architecture giveth and the implementation taketh
away.

Furthermore, the many catalogs and web pages that present design concepts
use different conventions and notations. The focus of our book is on the design
method and how it can be used with these external sources. For this reason we
just take examples from outside sources and show them here as they were
originally presented. This book is not intended to be another design patterns
catalog—we want to alert you to the presence of these catalogs and show how
they can be an incredibly useful resource for an architect, but they must be
interpreted and used with care! In fact, one of your many jobs as an architect is
to understand and interpret these catalogs, with their different notations and
conventions. This is the reality that you will have to deal with.

Finally, once a design decision has been made, you should think about how
you will document it. You could, of course, do no documentation. This is, in
fact, what is most common in practice. Architectural concepts are often vague
and conveyed informally, in “tribal knowledge”: personal communications,
emails, naming conventions, and so forth. Alternatively, you could create and
maintain full, formal documentation, as is done for some projects with



demanding quality attribute requirements, such as safety-critical or high-security
systems. If you are designing flight-control software, you will probably end up at
this end of the spectrum. In between these endpoints is a broad set of
possibilities, and in this space we see less formal (and less costly) forms of
architecture documentation, such as sketches (as we will discuss in Section 3.7).

The decision of what, when, and how to document should be risk based. You
should ask yourself: What is the risk of not documenting this decision? Could it
be misinterpreted and undermined by future developers? Could it contribute to
near-term or long-term problems in the system? For example, if the rationale for
layering is not carefully documented, the layering will inevitably break down,
losing coherence and tending toward increased coupling. Over time, this trend
will increase the system’s technical debt, making it harder to find and fix bugs or
add new features. To take another example, if the rationale for allocation of a
critical resource is not documented, that resource might become an unintended
contention area, resulting in bottlenecks and failures.

2.7 Summary

In this chapter, we introduced the idea of design as a set of decisions to satisfy
requirements and constraints. We also introduced the notion of “architectural”
design and showed that it does not differ from design in general, other than that
it addresses the satisfaction of architectural drivers: the purpose, primary
functionality, quality attribute requirements, architectural concerns, and
constraints. What makes a decision “architectural”? A decision is architectural if
it has nonlocal consequences and those consequences matter to the achievement
of an architectural driver.

We also discussed why architectural design is so important: because it is the
embodiment of early, far-reaching, hard-to-change decisions. These decisions
will help you meet your architectural drivers, will determine much of your
project’s work-breakdown structure, and will affect the tools, skills, and
technologies needed to realize the system. Thus architectural design decisions
should be scrutinized well, as their consequences are profound. In addition,
architecture is a key enabler of agility.

Architectural design is guided by certain principles. For example, to achieve
good modularity, high coupling, and low cohesion, the wise architect will
probably include some form of layering in the architecture being designed.
Similarly, to achieve high availability, an architect will likely choose a pattern
involving some form of redundancy and failover, such as active—passive
redundancy, where an active server sends real-time updates to a passive server,



so that the passive server can replace the active server in case it fails, with no
loss of state.

Design concepts, such as reference architectures, deployment patterns,
architectural patterns, tactics, and externally developed components, are the
building blocks of design, and they form the foundation for architectural design
as it is performed using ADD. As you will see in our step-by-step explanation of
ADD in Chapter 3, some of the most important design decisions that an architect
makes are how design concepts are selected, how they are instantiated, and how
they are combined. Also, in Appendix A, we present a design concepts catalog
that includes several instances of the design concepts presented here.

From these foundations, an architecture can be confidently and predictably
constructed.

2.8 Further Reading

A more in-depth treatment of scenarios and architectural drivers can be found in
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd
ed., Addison-Wesley, 2012. Also found in this book is an extensive discussion of
architectural tactics, which are useful in guiding an architecture to achieve
quality attribute goals. Likewise, this book contains an extensive discussion of
QAW and Utility Trees.

The Mission Thread Workshop is discussed in R. Kazman, M. Gagliardi, and
W. Wood, “Scaling Up Software Architecture Analysis”, Journal of Systems and
Software, 85, 1511-1519, 2012; and in M. Gagliardi, W. Wood, and T. Morrow,
Introduction to the Mission Thread Workshop, Software Engineering Institute
Technical Report CMU/SEI-2013-TR-003, 2013.

An overview of discovery prototyping, JRP, JAD, and accelerated systems
analysis can be found in any competent book on systems analysis and design,
such as J. Whitten and L. Bentley, Systems Analysis and Design Methods, 7th
ed., McGraw-Hill, 2007. The combination of architectural approaches with
Agile methods will be discussed in Chapter 9.

A catalog of reference architectures and deployment patterns appears in the
book by the Microsoft Patterns and Practices Team: Microsoft® Application
Architecture Guide, 2nd ed., Microsoft Press, 2009. This book also provides an
extensive list of architectural concerns associated with the reference
architectures that are documented.

An extensive collection of architectural design patterns for the construction of
distributed systems can be found in F. Buschmann, K. Henney, and D. Schmidt,



Pattern-Oriented Software Architecture Volume 4: A Pattern Language for
Distributed Computing, Wiley, 2007. Other books in the POSA (Patterns Of
Software Architecture) series provide additional pattern catalogs. Many other
pattern catalogs specializing in particular application domains and technologies
exist. A few examples are listed here:

» E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

» M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

» E. Fernandez-Buglioni. Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns. Wiley, 2013.

» G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

The evaluation and selection of software packages is discussed in A. Jadhav
and R. Sonar, “Evaluating and Selecting Software Packages: A Review”,
Journal of Information and Software Technology, 51, 555-563, 2009.

The “bible” for software architecture documentation is P. Clements, F.
Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and J.
Stafford, Documenting Software Architectures: Views and Beyond, 2nd ed.,
Addison-Wesley, 2011.

The technology family tree for the Big Data application domain is based on
the Smart Decisions Game by H. Cervantes, S. Haziyev, O. Hrytsay, and R.
Kazman, which can be found at http://smartdecisionsgame.com.
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3. The Architecture Design Process

In this chapter we provide a detailed discussion of ADD, the design method that
is the focus of this book. We begin with an overview of the method and of each
one of its steps. This overview is followed by more detailed discussions of
different aspects that need to be considered when performing these steps. We
suggest different roadmaps that provide guidance on when different types of
design concepts can be used depending on which type of system is being
designed. We also discuss the identification and selection of design concepts, the
production of structures from these design concepts, the definition of interfaces,
the production of preliminary documentation, and, finally, a technique to track
design progress.

3.1 The Need for a Principled Method

In Chapter 2, we discussed the various concepts associated with design. The
question is, how do you actually perform design? Performing design to ensure
that the drivers are satisfied requires a principled method. By “principled”, we
refer to a method that takes into account all of the relevant aspects that are
needed to produce an adequate design. Such a method provides guidance that is
necessary to guarantee that your drivers are satisfied. To achieve this goal in a
cost-effective, repeatable way, you need a method that guides you in combining
and incorporating reusable design concepts.

Performing design adequately is important because architecture design
decisions have significant consequences at different points in a project’s
lifetime. For example, during a pre-sales phase, an appropriate design will allow
for a better estimation of cost, scope, and schedule. During development, an
appropriate design will be helpful to avoid later rework and facilitate
development and deployment. Finally, a clear understanding of what
architectural design involves is necessary to better manage aspects of technical
debt.

3.2 Attribute-Driven Design 3.0

Architecture design is performed in a series of rounds across the development of
a software project. Each design round may take place within a project increment
such as a sprint. Within these rounds, a series of design iterations is performed.
Perhaps the most important characteristic of the ADD method is that it provides
detailed, step-by-step guidance on the tasks that have to be performed inside the




design iterations (see Chapter 7 for a comparison with other design methods).
When ADD appeared, it was the first method to focus specifically on quality
attributes and their achievement through the selection of different types of
structures and their representation through views. Another important
contribution of ADD was that it recognized that analysis and documentation are
an integral part of the design process. Although ADD was and is a major
contribution in the field of software architecture, we believe that its adoption
within the practitioner community has been limited by a number of inherent
weaknesses, as discussed in Section 1.4.

ADD has been used successfully for more than 15 years. The world of
software has changed dramatically since ADD’s introduction, however, and even
more since version 2.0 was published in 2006. For this reason, and to address the
weaknesses of version 2.0, we have decided to create ADD 3.0. Henceforth, we
will simply refer to this method as ADD. Figure 3.1 shows the steps and artifacts
associated with ADD and in the following subsections we provide an overview
of the activities in each of its steps.
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3.2.1 Step 1: Review Inputs

Before starting a design round, you need make sure that the inputs to the design
process are available and correct. First, you need to ensure that you are clear
about the purpose for the design activities that will ensue. The purpose may be,
for example, to produce a design for early estimation, to refine an existing
design to build a new increment of the system, or to design and generate a
prototype to mitigate certain technical risks (see Section 2.4.1 for a discussion of
the design purpose). Also, you need to make sure that the other drivers needed
for the design activity are available. These include primary functional
requirements, quality attribute scenarios, architectural constraints, and concerns.




Finally, if this is not the first design round, or if this is not greenfield
development, an additional input that you need to consider is the existing
architecture design.

At this point, we assume that primary functionality and quality attribute
scenarios have been prioritized, ideally by your most important project
stakeholders. (If not, there are techniques that you can employ to elicit and
prioritize them, as discussed in Sections 2.4.2 and 2.4.3.) You, as the architect,
must now “own” these drivers. You need to check, for example, whether any
important stakeholders were overlooked in the original requirements elicitation
process, or whether any business conditions have changed since the
prioritization was performed. These drivers really do “drive” design, so getting
them right and getting their priority right is crucial. We cannot stress this point
strongly enough. Software architecture design, like most activities in software
engineering, is a “garbage in, garbage out” process. The results of ADD cannot
be good if the inputs are poorly formed.

As a rule of thumb, you should be able to start designing if, besides the design
purpose, constraints, and initial architectural concerns, you have established the
primary use cases and the most important quality attribute scenarios. This, of
course, does not mean you will make decisions only about these drivers: You
still need to address other quality attribute scenarios, use cases and architectural
concerns, but these can be treated later on.

The drivers become part of an architectural design backlog that you should
use to perform the different design iterations. We discuss this idea in more depth
in Section 3.8.1.

3.2.2 Step 2: Establish the Iteration Goal by Selecting Drivers

A design round represents the architecture design activities performed within a
development cycle if an iterative development model is used, or the whole set of
architecture design activities if a waterfall model is used. Through one or more
rounds, you produce an architecture that suits the established design purpose.

A design round is generally performed in a series of design iterations, where
each iteration focuses on achieving a particular goal. Such a goal typically
involves designing to satisfy a subset of the drivers. For example, an iteration
goal could be to create structures from elements that will support a particular
performance scenario, or that will enable a use case to be achieved. For this
reason, when performing design, you need to establish a goal before you start a
particular design iteration.



As we will discuss in Section 3.3, depending on the type of system whose
architecture is being designed, there may be a “best”—or at least strongly
suggested—ordering of the iteration goals that need to be addressed. For
example, for a greenfield system in a mature domain, your initial goal is
typically to identify an overall structure for the system by choosing a reference
architecture.

3.2.3 Step 3: Choose One or More Elements of the System to
Refine

Satisfying drivers requires you to produce one or more architectural structures.
These structures are composed of interrelated elements, and those elements are
generally obtained by refining other elements that you previously identified in an
earlier iteration. Refinement can mean decomposition into finer-grained
elements (top-down approach), combination of elements into coarser-grained
elements (bottom-up approach), or improvement of previously identified
elements. For greenfield development, you can start by establishing the system
context and then selecting the only available element—that is, the system itself
—for refinement by decomposition. For existing systems or for later design
iterations in greenfield systems, you normally choose to refine elements that
were identified in prior iterations.

The elements that you will select are the ones that are involved in the
satisfaction of specific drivers. For this reason, when design is performed for an
existing system, you need to have a good understanding of the elements that are
part of the as-built architecture of the system. This may involve some “detective
work”, reverse engineering, or discussions with developers.

We have presented steps 2 and 3 in the order they appear in the method. That
is to say, step 2 precedes step 3. However, in some cases you may need to
reverse this order. For example, when designing a greenfield system or when
fleshing out certain types of reference architectures (as we will show in Chapter
5), you will, at least in the early stages of design, focus on elements of the
system and start the iteration by selecting a particular element and then consider
the drivers that you want to address.

3.2.4 Step 4: Choose One or More Design Concepts That Satisfy
the Selected Drivers

Choosing the design concepts is probably the most difficult decision you will
face in the design process, because it requires you to identify alternatives among



design concepts that can be used to achieve your iteration goal, and to make a
selection from these alternatives. As we saw in Section 2.5, different types of
design concepts exist, and, for each type, there may be many options. This can
result in a considerable number of alternatives that need to be analyzed to make
a choice. In Section 3.4, we discuss the identification and selection of design
concepts in more detail.

3.2.5 Step 5: Instantiate Architectural Elements, Allocate
Responsibilities, and Define Interfaces

Once you have selected one or more design concepts, you must make another
design decision, which involves instantiating elements out of the design
concepts that you selected. For example, if you selected the Layers pattern as a
design concept, you must decide how many layers will be used, since the pattern
itself does not prescribe a specific number. In this example, the layers are the
elements that are instantiated. In certain cases, instantiation can mean
configuration. For example, you may have dedicated an iteration to selecting
technologies and associating them with the elements in your design. In further
iterations, you might refine these elements by making finer-grained decisions
about how they should be configured to support a particular driver, such as a
quality attribute.

After instantiating the elements, you need to allocate responsibilities to each
of them. For example, in a typical web-based enterprise system, at least three
layers are usually present: the presentation layer, the business layer, and the data
layer. The responsibilities of these layers differ: The responsibilities of the
presentation layer include managing all of the user interactions, whereas the
responsibilities of the data layer include managing the persistence of data.

Instantiating elements is just one of the tasks you need to perform to create
structures that satisfy a driver or a concern. The elements that have been
instantiated also need to be connected, to allow them to collaborate with one
another. This requires the existence of relationships between the elements and
the exchange of information through some kind of interface. The interface is a
contractual specification of how information should flow between the elements.
Section 3.5 provides more details on how the different types of design concepts
are instantiated and how structures are created, and Section 3.6 discusses how
interfaces can be defined.

3.2.6 Step 6: Sketch Views and Record Design Decisions
At this point, you have finished performing the design activities for the iteration.



Nevertheless, you may not have taken any actions to ensure that the views—the
representations of the structures you created—are preserved. For instance, if you
performed the previous step in a conference room, you probably ended up with a
series of diagrams on a whiteboard. This information is essential, and you need
to capture it so that you can later analyze and communicate it to other
stakeholders.

The views that you have created are almost certainly incomplete, so these
diagrams may need to be revisited and refined in a subsequent iteration. This is
typically done to accommodate elements resulting from other design decisions
that you will make to support additional drivers. This factor explains why we
speak of “sketching” the views in ADD—that is, creating a preliminary type of
documentation. The more formal, more fully fleshed-out documentation of these
views—should you choose to produce them—occurs only after a number of
design iterations have been finished (as part of the architectural documentation
activity discussed in Section 1.2.2).

In addition to storing the sketches of the views, you should record the
significant decisions that are made in the design iteration, and the reasons that
led to these decisions (i.e., the rationale), to facilitate later analysis and
understanding of the decisions. For example, decisions about important tradeoffs
might be recorded at this time. During a design iteration, decisions are primarily
made in steps 4 and 5. Section 3.7 provides further information on how to create
preliminary documentation during design, including creating sketches, recording
design decisions and their rationale.

3.2.7 Step 7: Perform Analysis of Current Design and Review
Iteration Goal and Achievement of Design Purpose

By the time you reach step 7, you should have created a partial design that
addresses the goal established for the iteration. Making sure that this is actually
the case is a good idea, so as to avoid unhappy stakeholders and later rework.
You can perform the analysis yourself by reviewing the sketches of the views
and design decisions that you recorded, but an even better idea is to have
someone else help you review this design. We do this for the same reason that
organizations frequently have a separate testing/quality assurance group:
Another person will not share your assumptions, and will have a different
experience base and a different perspective. Pulling in someone with a different
point of view can help you find “bugs”, in both code and architecture. We
discuss analysis in more depth in Chapter 8.



Once the design performed in the iteration has been analyzed, you should
review the state of your architecture in terms of the established design purpose.
This means considering if, at this point, you have performed enough design
iterations to satisfy the drivers that are associated with the design round as well
as considering whether the design purpose has been achieved or if additional
design rounds are needed in future project increments. Section 3.8 describes
simple techniques that allow you to keep track of design progress.

3.2.8 Iterate If Necessary

Ideally, you should perform additional iterations and repeat steps 2 to 7 for every
driver that was considered as part of the input. More often than not, such
iterations are not possible because of time or resource constraints that force you
to stop the design activities and move on to the next activities in the
development process—typically implementation.

What are the criteria for evaluating if more design iterations are necessary?
We let risk be our guide. You should at least have addressed the drivers with the
highest priorities. Ideally, you should have assured that critical drivers are
satisfied or, at least, that the design is “good enough” to satisfy them. Finally,
when performing iterative development, you can choose to perform one design
round in every project iteration. The first rounds should focus on addressing the
drivers, while subsequent rounds focus on making design decisions for other
requirements that were not selected as drivers but that need to be addressed
nonetheless.

3.3 Following a Design Roadmap According to System Type

When writing, you might have experienced the much-dreaded “fear of the blank
page”. Similarly, when you start designing an architecture, you may face a
situation in which you ask yourself, “How do I begin designing?” To answer this
question, you need to consider which type of system you are designing.

Design of software systems falls into three broad categories: (1) the design of
a greenfield system for a mature (i.e., well-known) domain; (2) the design of a
greenfield system for a domain that is novel (i.e., a domain that has a less
established infrastructure and knowledge base); and (3) the design for making
changes to an existing system (brownfield). Each one of these categories
involves a different roadmap in terms of the sequence of goals that you should
perform across the design iterations.

3.3.1 Design of Greenfield Systems for Mature Domains



The design of a greenfield system for a mature domain occurs when you are
designing an architecture for a system that is built from “scratch” and when this
type of system is well known and understood—that is, when there is an
established infrastructure of tools and technologies, and an associated knowledge
base. Examples of mature domains include the following:

» Traditional desktop applications
» Interactive applications that run on a mobile device

» Enterprise applications accessed from a web browser, which store
information in a relational database, and which provide support for
partially or fully automating business processes

Since these types of applications are relatively common, some general
architectural concerns associated with their design are well known, well
supported, and well documented. If you are designing a new system that falls
into this category, we recommend the following roadmap (shown in Figure 3.2).
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FIGURE 3.2 Design concept selection roadmap for greenfield systems

The goal of your initial design iteration(s) should be to address the general



architectural concern of establishing an initial overall system structure. Is this to
be a three-tier client-server application, a peer-to-peer application, a mobile app
connecting to a Big Data back-end, and so on? Each of these options will lead
you to different architectural solutions, and these solutions will help you to
achieve your drivers. To achieve this iteration goal, you will select some design
concepts. Specifically, you will typically choose one or more reference
architectures and deployment patterns (see Sections 2.5.1 and 2.5.3). You may
also select some externally developed components, such as frameworks. The
types of frameworks that are typically chosen in early iterations are either “full-
stack” frameworks that are associated with the selected reference architectures,
or more specific frameworks that are associated with elements established by the
reference architecture (see Section 2.5.5). In this first iteration, you should
review all of your drivers to select the design concepts, but you will probably
pay more attention to the constraints and to quality attributes that are not
associated with specific functionalities and that favor particular reference
architectures or require particular deployment configurations. Consider an
example: If you select a reference architecture for Big Data systems, you have
presumably chosen a quality attribute such as low latency with high data
volumes as your most important driver. Of course, you will make many
subsequent decisions to flesh out this early choice, but this driver has already
exerted a great influence on your design such as the selection of a particular
reference architecture.

The goal of your next design iteration(s) should be to identify structures that
support the primary functionality. As noted in Section 2.4.3, allocation of
functionality (i.e., use cases or user stories) to elements is an important part of
architectural design because it has critical downstream implications for
modifiability and allocation of work to teams. Furthermore, once functionality
has been allocated, the elements that support it can be refined in later iterations
to support the quality attributes associated with these functionalities. For
example, a performance scenario may be associated with a particular use case.
Achieving the performance goal may require making design decisions across all
of the elements that participate in the achievement of this use case. To allocate
functionality, you usually refine the elements that are associated with the
reference architecture by decomposing them. A particular use case may require
the identification of multiple elements. For example, if you have selected a web
application reference architecture, supporting a use case will probably require
you to identify modules across the different layers associated with this reference
architecture. Finally, at this point you should also be thinking about allocating




functionality—associated with modules—to (teams of) developers.

The goal of your subsequent design iterations should be to refine the
structures you have previously created to fully address the remaining drivers.
Addressing these drivers, and especially quality attributes, will likely require you
to use the three major categories of design concepts—tactics, patterns, and
externally developed components such as frameworks—as well as commonly
accepted design best practices such as modularity, low coupling, and high
cohesion. For example, to (partially) satisfy a performance requirement for the
search use case in a web application, you might select the “maintain multiple
copies of data” tactic and implement this tactic by configuring a cache in a
framework that is used inside an element responsible for persisting data.

This roadmap is appropriate for the initial project iterations, but it is also
extremely useful for early project estimation activities (see the discussion about
the architecture design process during pre-sales in Section 9.1.1). Why have we
created such a roadmap? First, because the process of starting an architectural
design is always complex. Second, because many of the steps in this roadmap
are frequently overlooked or done in an intuitive and ad hoc way, rather than in a
well-considered, reflective way. Third, because different types of design
concepts exist, and it is not always clear at which point in the design they should
be used. This roadmap encapsulates best practices that we have observed in the
most competent architecture organizations. Simply put, the use of a roadmap
results in better architectures, particularly for less mature architects.

3.3.2 Design of Greenfield Systems for Novel Domains

In the case of novel domains, it is more challenging to establish a precise
roadmap, because reference architectures may not exist and there may be few, if
any, externally developed components that you can use. You are, more than
likely, working from first principles and creating your own home-grown
solutions. Even in this case, however, general-purpose design concepts such as
tactics and patterns can guide you, aided by strategic prototyping. In essence,
your iteration goals will mostly be to continuously refine previously created
structures to fully address the drivers.

Many times, your design goal will focus on the creation of prototypes so that
you can explore possible solutions to the challenge that you are facing. In
particular, you may need to focus on quality attributes and design challenges
oriented toward issues such as performance, scalability, or security. We discuss
the creation of prototypes in Section 3.4.2.

Of course, the notion of “novel” is fluid. Mobile application development was



a novel domain 10 or 15 years ago, but now it is a well-established field.

3.3.3 Design for an Existing System (Brownfield)

Architecture design for an existing system may occur for different purposes. The
most obvious is maintenance—that is, when you need to satisfy new
requirements or correct issues, and doing so requires changes to the architecture
of an existing system. You may also be making architectural changes to an
existing system for the purpose of refactoring. When refactoring, you change the
architecture of an existing system, without altering its functions, to reduce
technical debt, to introduce technology updates, or to fix quality attribute
problems (e.g., the system is too slow, or insecure, or frequently crashes).

To be able to choose elements to decompose as part of the design process
(step 3 of ADD), you need to first identify which elements are present in the
architecture of the existing system. In this sense, before starting the design
iterations, your first goal should be to make sure that you have a clear
understanding of the existing architecture of the system.

Once you understand the elements, properties, and relationships that constitute
the architecture of the system, and the characteristics of the existing code base,
you can perform design similar to what is done for greenfield systems after the
initial design iteration. Your design iteration goals here will be to identify and
refine structures to satisfy architectural drivers, including new functionality and
quality attributes, and to address specific architectural concerns. These design
iterations will typically not involve establishing a new overall system structure
unless you are dealing with a major refactoring.

It might seem that the preceding discussion of the different contexts of design
is rather abstract and perhaps even confusing. In the next three chapters we will
be presenting examples of design of a system in a mature domain (Chapter 4),
design for a system in a relatively novel domain (Chapter 5), and design to
modify an existing system (Chapter 6). These extended examples will make the
previously described concepts clearer and more concrete.

3.4 Identifying and Selecting Design Concepts

Freeman Dyson, the English physicist, once said the following: “A good
scientist is a person with original ideas. A good engineer is a person who makes
a design that works with as few original ideas as possible”. This quotation is
particularly relevant in the context of software architecture design: Most of the
time you don’t need to, and shouldn’t, reinvent the wheel. Rather, your major
design activities are to identifv and select design concepts to address the



challenges and drivers that you encounter across the design iterations. Design is
still an original and creative endeavor, but the creativity resides in the
appropriate identification of these existing solutions and then on combining and
adapting them to the problem at hand.

3.4.1 Identification of Design Concepts

The identification of design concepts can appear to be daunting, because of the
vast number of design concepts that exist. There are likely dozens of design
patterns and externally developed components that you could use to address any
particular issue. To make things worse, these design concepts are scattered
across many different sources: in the popular press, in research literature, in
books, and on the Internet. Moreover, in many cases, there is no canonical
definition of a concept. Different sites, for example, will define the Broker
pattern in different, largely informal, ways. Finally, once you have identified the
alternatives that might potentially help you achieve the design goals of the
iteration, you need to select among them.

To identify which design concepts you need at a particular point, you should
consider what we previously discussed regarding the design roadmap. Different
points in the design process usually require different types of design concepts.
For example, when you are designing a greenfield system in a mature domain,
the types of design concepts that will help you initially structure the system are
reference architectures and deployment patterns. As you progress in the design
process, you will use all of the categories of design concepts: tactics, architecture
and design patterns, and externally developed components. Keep in mind that to
address a specific design problem, you can and often will use and combine
different types of design concepts. For example, when addressing a security
driver, you may employ a security pattern, a security tactic, a security
framework, or some combination of these.

Once you have more clarity regarding the types of design concepts that you
wish to use, you still need to identify alternatives—that is, design candidates.
There are several ways to do so, although you will probably use a combination
of these techniques rather than a single one:

» Leverage existing best practices. You can identify alternatives for your
required design concepts by making use of catalogs that are available in
printed or online form. Some design concepts, such as patterns, are
extensively documented; others, such as externally developed components,
are documented in a less thorough way. The benefits of this approach are



that you can identify many alternatives, and that you can leverage the
considerable knowledge and experience of others. The downsides are that
searching for and studying the information can require a considerable
amount of time, the quality of the documented knowledge is often
unknown, and the assumptions and biases of the authors are unknown.

Leverage your own knowledge and experience. If the system you are
designing is similar to other systems you have designed in the past, you
will probably want to begin with some of the design concepts that you
have used before. The benefit of this approach is that the identification of
alternatives is performed rapidly and confidently. The downside is that you
may end up using the same ideas repeatedly, even if they are not the most
appropriate for all the design problems that you are facing, and if they have
been superseded by newer, better approaches. As the saying goes, “If you
give a small child a hammer, all the world looks like a nail”.

» Leverage the knowledge and experience of others. As an architect, you
have background and knowledge that you have gained through the years.
This foundation varies from person to person, especially if the types of
design problems they have addressed in the past differ. You can leverage
this information by performing the identification and selection of design
concepts with some of your peers through brainstorming.

3.4.2 Selection of Design Concepts

Once you have identified a list of alternative design concepts, you need to select
which one is the most appropriate to solve the design problem at hand. You can
achieve this in a relatively simple way, by creating a table that lists the pros and
cons associated with each alternative and selecting one of the alternatives based
on those criteria and your drivers. The table can also include other criteria, such
as the cost associated with the use of the alternative. Table 3.1 shows an example
of such a table used to support the selection of different reference architectures.



Name of

Alternative Pros Cons Cost
Web Can be accessed froma  Does not support “rich” Low
application variety of platforms using interaction

a standard web browser
Fast page loading
Simple deployment

Rich Internet  Supports “rich” user Longer page loading times  Medium
application interaction Requires a runtime

Simple deployment and environment to be installed

updating on the client browser
Mobile Supports “rich” user Less portability High
application interaction Screen limitations

TABLE 3.1 Example of a Table to Support the Selection of Alternatives

You may also need to perform a more in-depth analysis to select the
alternative. Methods such as CBAM (cost benefit analysis method) or SWOT
(strengths, weaknesses, opportunities, threats) can help you to perform this
analysis (see the sidebar “The Cost Benefit Analysis Method”).

The Cost Benefit Analysis Method

The CBAM is a method that guides the selection of design
alternatives using a quantitative approach. This method considers
that architectural strategies (i.e., combinations of design concepts)
affect quality attribute responses, and that the level of each response
in turn provides system stakeholders with some benefit called
utility. Each architectural strategy provides a different level of
utility, but also has a cost and takes time to implement. The idea
behind the CBAM is that by studying levels of utility and costs of
implementation, particular architectural strategies can be selected
based on their associated return on investment (ROI). The CBAM
was conceived to be performed after an ATAM (architecture
tradeoff analysis method), but it is possible to use the CBAM during
design—that is, prior to the moment where the architectural
evaluation is performed.

The CBAM takes as its input a collection of prioritized traditional
quality attribute scenarios, which are then analyzed and refined with
additional information. The addition is to consider several levels of



response for each scenario:

» The worst-case scenario, which represents the minimum
threshold at which a system must perform (utility = 0)

» The best-case scenario, which represents the level after which
stakeholders foresee no further utility (utility = 100)

» The current scenario, which represents the level at which the
system is already performing (the utility of the current scenario is
estimated by stakeholders)

» The desired scenario, which represents the level of response that
the stakeholders are hoping to achieve (the utility of the desired
scenario is estimated by stakeholders)

Using these data points, we can draw a utility—response curve, as
shown in the figure. After the utility—response curve is mapped for
each of the different scenarios, a number of contemplated design
alternatives may be considered, and their expected response values
can be estimated. For example, if we are concerned about mean
time to failure, we might consider three different architectural
strategies (i.e., redundancy options)—for example, no redundancy,
cold spare, and hot spare. For each of these strategies, we could
estimate their expected responses (i.e., their expected mean times to
failure). In the graph shown here, the “e” represents one such
option, placed on the curve based on its expected response measure.

Using these response estimates, the utility values of each
architectural strategy can now be determined via interpolation,
which provides its expected benefit. The costs of each architectural
strategy are also elicited—one would expect hot spare to be the
most costly, followed by cold spare and no redundancy.

Given all of this information, architectural strategies can now be
selected based on their expected value for cost.
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Although the CBAM may seem relatively complex and time-
consuming at first, you need to consider that some design decisions
can have enormous economic consequences—in terms of their
costs, their benefits, and their effects on project schedule. You must
decide if you are willing to take the chance of making these
decisions solely using a gut-feeling approach versus this more
rational and systematic approach.

In case the previous analysis techniques do not guide you to make an
appropriate selection, you may need to create throwaway prototypes and collect
measurements from them. The creation of early throwaway prototypes is a useful
technique to help in the selection of externally developed components. This type
of prototype is usually created in a “quick and dirty” fashion without too much
consideration for maintainability or reuse. For these reasons, it is important to
keep in mind that throwaway prototypes should not be used as a basis for further
development.

Although the creation of prototypes can be costly compared to analysis (the
ratio of costs is between 10 and 5 to 1, according to our sources), certain
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consider when deciding whether you will create a prototype include the
following:

» Does the project incorporate emerging technologies?
» [s the technology new in the company?

» Are there certain drivers, particularly quality attributes, whose satisfaction
using the selected technology presents risks (i.e., it is not understood if
they can be satisfied)?

» [s there a lack of trusted information, internal or external, that provides
some degree of certainty that the selected technology will be useful to
satisfy the project drivers?

» Are there configuration options associated with the technology that need to
be tested or understood?

» [s it unclear whether the selected technology can be integrated with other
technologies that are used in the project?

If most of your answers to these questions are “yes”, then you should strongly
consider the creation of a throwaway prototype.

When identifying and selecting design concepts, you need to keep in mind the
constraints that are part of the architectural drivers, because some constraints
will restrict you from selecting particular alternatives. For example, a constraint
might require that all libraries and frameworks in the system do not use the GPL
license; thus, even if you have found a framework that could be useful for your
needs, you may need to discard it if it has a GPL license. Also, you need to keep
in mind that the decisions regarding the selection of design concepts that you
have made in previous iterations may restrict the design concepts that you can
select in the future because of incompatibilities. For example, if you selected a
web application reference architecture for use in an initial iteration, you cannot
select a user interface framework intended for local applications in a subsequent
iteration.

Finally, you need to remember that even though ADD provides guidance on
how to perform the design process, it cannot ensure that you will make
appropriate design decisions. Thorough reasoning and considering different
alternatives (not just the first thing that comes to mind) are the best means to
improve the odds of finding a good solution. We discuss doing “analysis in the
design process” in Chapter 8.

3.5 Producing Structures



Design concepts per se won’t help you satisfy your drivers unless you produce
structures; that is, you need to identify and connect elements that are derived
from the selected design concepts. This process is the instantiation of
architectural elements in ADD: creating elements and relationships between
them, and associating responsibilities with these elements. It is important to
remember that the architecture of a software system is composed of a set of
structures, which can be grouped into three major categories:

» Module structures: composed of logical and static elements that exist at
development time, such as files, modules, and classes

» Component and connector (C&C) structures: composed of dynamic
elements that exist at runtime, such as processes and threads

» Allocation structures: composed of both software elements (from a module
or C&C structure) and non-software elements that may exist both at
development time and at runtime, such as file systems, hardware, and
development teams

When you instantiate a design concept, you may actually produce more than
one structure. For example, in a particular iteration you may instantiate the
Layers pattern, which will result in a Module structure. As part of instantiating
this pattern, you will need to choose the number of layers, their relationships,
and the specific responsibilities of each layer. As part of the iteration, you may
also study how a scenario is supported by the elements that you have just
identified. For example, you could create instances of the logical elements in a
C&C structure and model how they exchange messages (see Section 3.6).
Finally, you may want to decide who will be responsible for implementing the
modules inside each of the layers, which is an allocation decision.

3.5.1 Instantiating Elements

The instantiation of architectural elements depends on the type of design concept
that you are working with:

» Reference architectures. In the case of reference architectures,
instantiation typically means that you perform some sort of customization.
As part of this work, you will add or remove elements that are part of the
structure that is defined by the reference architecture. For example, if you
are designing a web application that needs to communicate with an
external application to handle payments, you will probably need an
integration layer in addition to the traditional presentation, business, and
data layers.



» Architectural and design patterns. These patterns provide a generic
structure composed of elements, their relationships and their
responsibilities. As this structure is generic, you will need to adapt it to
your specific problem. Instantiation usually involves transforming the
generic structure defined by the pattern into a specific one that is adapted
to the needs of the problem that you are solving. For example, consider the
Pipe and Filters architectural pattern. It establishes the basic elements of
computation—filters—and their relationships—pipes—but does not
specify how many filters you should use for your problem or what their
relationships should be. You will instantiate this pattern by defining how
many pipes and filters are needed to solve your problem, by establishing
the specific responsibilities of each of the filters, and by defining their
topology.

Deployment patterns. Similar to the case with architectural and design
patterns, the instantiation of deployment patterns generally involves the
identification and specification of physical elements. If, for example, you
are using a Load-Balanced Cluster pattern, instantiation may involve
identifying the number of replicas to be included in the cluster, the load-
balancing algorithm, and the physical location of the replicas.

Tactics. This design concept does not prescribe a particular structure, so
you will need to use other design concepts to instantiate a tactic. For
example, you may select a security tactic of authenticating actors and
instantiate it by creating a custom-coded ad hoc solution, or by using a
security pattern, or by using an externally developed component such as a
security framework.

Externally developed components. The instantiation of these components
may or may not imply the creation of new elements. For example, in the
case of object-oriented frameworks, instantiation may require you to create
specific classes that inherit from the base classes defined in the framework.
This will result in new elements. Other approaches, which do not involve
the creation of new elements, might include choosing a specific technology
from a technology family that was identified in a previous iteration,
associating a particular framework to elements that were identified in a
previous iteration, or specifying configuration options for an element
associated with a particular technology (such as a number of threads in a
thread pool).

3.5.2 Associating Responsibilities and Identifying Properties



When you are creating elements by instantiating design concepts, you need to
consider the responsibilities that are allocated to these elements. For example, if
you instantiate the Layers pattern and decide to use the traditional three-layer
structure, you might decide that one of the layers will be responsible for
managing the interactions with the users (typically known as the presentation
layer). When instantiating elements and allocating responsibilities, you should
keep in mind the high cohesion/low coupling design principle: Elements should
have high cohesion (internally), defined by a narrow set of responsibilities, and
low coupling (externally), defined by a lack of knowledge of the implementation
details of other elements.

One additional aspect that you need to consider when instantiating design
concepts is the properties of the elements. This may involve aspects such as the
configuration options, statefulness, resource management, priority, or even
hardware characteristics (if the elements that you created are physical nodes) of
the chosen technologies. Identifying these properties supports analysis and the
documentation of the design rationale.

3.5.3 Establishing Relationships Between the Elements

The creation of structures also requires making decisions with respect to the
relationships that exist between the elements and their properties. Once again,
consider the Layers pattern. You may decide that two layers are connected, but
these layers will eventually be allocated to components that are, in turn,
allocated to hardware. In such a case, you need to decide how communication
will take place between these layers, as they have been allocated to components:
Is the communication synchronous or asynchronous? Does it involve some type
of network communication? Which type of protocol is used? How much
information is transferred and at what rate? These design decisions can have a
significant impact with respect to achieving certain quality attributes such as
performance.

3.6 Defining Interfaces

Interfaces are the externally visible properties of elements that establish a
contractual specification that allows elements to collaborate and exchange
information. There are two categories of interfaces: external and internal.

3.6.1 External Interfaces

External interfaces include interfaces from other systems that are required by the
system that you are developing and interfaces that are provided by your system



to other systems. Required interfaces are part of the constraints for your system,
as you usually cannot influence their specification. Provided interfaces need to
be formally defined, which can be performed in a similar way to defining
internal interfaces—that is, by considering interactions between the external
systems and your system and seeing them as elements of a bigger structure.

Establishing a system context at the beginning of the design process is useful
to identify external interfaces. This context can be represented using a system
context diagram, as shown in Figure 3.3. Given that external entities and the
system under development interact via interfaces, there should be at least one
external interface per external system (each relationship in the figure).

User’s :
: Time server
workstation FCAPS
T system =
Legend:
O System under development
D External system Database
server
—— Data flow

FIGURE 3.3 A system context diagram

3.6.2 Internal Interfaces

Internal interfaces are interfaces between the elements that result from the
instantiation of design concepts. To identify the relationships and the interface
details, you generally need to understand how the elements exchange
information at runtime. You can achieve this with the help of modeling tools
such as UML sequence diagrams (Figure 3.4), which allow you to model the
information that is exchanged between elements during execution to support use
cases or quality attribute scenarios. This type of analysis is also useful for
identifying relationships between elements: If two elements need to exchange
information directly, then a relationship between these elements must exist. The
information that is exchanged becomes part of the specification of the interface.
Interfaces typically consist of a set of operations (such as methods) with



specified parameters, return values, and possibly, exceptions and pre and post
conditions. Some interfaces, however, may involve other information exchange
mechanisms, such as a component that writes information to a file or database
and another component that then accesses this information. Interfaces may also
establish quality of service agreements. For example, the execution of an
operation specified in the interface may be time-constrained to satisfy a
performance quality attribute scenario.

The following is an initial sequence diagram for Use Case UC-2 (Detect
Fault)! from the FCAPS case study in Chapter 4. This diagram shows the
interactions between an actor and the five components that participate in UC-
2. In creating this diagram, we identify the information that is exchanged, the
methods that are invoked, and the values that are passed and returned.

1. More detail about this example is presented in Chapter 4.
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From this interaction, initial methods for the interfaces of the interacting
elements can be identified:

Name: TimeServerConnector

Method name

Description

boolean addEventlListener(:EventListener)

This method allows

components from the
business logic to register
themselves as listeners to
events that are received
from the TimeServers.

FIGURE 3.4 A sequence diagram used to identify interfaces

The identification of interfaces is usually not performed equally across all
design iterations. When you are starting the design of a greenfield system, for
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with these elements then being refined in later iterations. The interfaces of
abstract elements such as layers are typically underspecified. For example, in an
early iteration you might simply specify that the UI layer sends “commands” to
the business logic layer, with the business logic layer sending “results” back. As
you advance in the design process and particularly when you create structures to
address specific use cases and quality attribute scenarios, you will need to refine
the interfaces of the specific elements that participate in the interaction.

In some special cases, identification of interfaces is greatly simplified. For
example, in the Big Data case study we present in Chapter 5, interfaces are
already defined by the technologies that are selected. The specification of
interfaces then becomes a relatively trivial task, as the chosen technologies are
designed to interoperate and hence have already “baked in” many interface
assumptions and decisions.

Finally, you need to consider that not all of the internal interfaces of the
system element will be identified as part of the design process (see the sidebar

“Identifying Interfaces in Element Interaction Design™).

Identifying Interfaces in Element Interaction Design

Although defining interfaces is an essential part of the architecture
design process, it is important to recognize that not all of the
internal interfaces are identified during architectural design. As part
of the architecture design process, you typically consider the
primary use cases as part of the architectural drivers, and you
identify elements (usually modules) that support this primary
functionality along with the other drivers. This process will,
however, not uncover all of the elements and interfaces for the
system that are required to support the entire set of use cases. This
lack of specificity is intended: Architecture is about abstraction, so
necessarily some information is less important, particularly in the
earliest stages of design.

Identifying the modules that support the nonprimary use cases is
often necessary for estimation or work-assignment purposes.
Identifying their interfaces is also necessary to support the
individual development and integration of the modules and to
perform unit testing. This identification of modules may be done
early in the project life cycle, but it must not be confused with a big
design up front (BDUF) approach. This, at most, is a BDUF that, in



certain contexts such as early estimation or iteration planning, is
hard to avoid.

As an architect, you may identify the set of modules that supports
the complete set of use cases for the system or for a particular
release of the system, but the identification of the interfaces
associated with the modules that support the nonprimary use cases
is typically not your responsibility, as it would require a significant
amount of your time and does not usually have a major architectural
impact. This task, which we call element interaction design (see
Section 2.2.2), is usually performed after architectural design ends
but before the development of (most of) the modules begins.
Although this task should be performed by other members in the
development team, you play a critical role in it, since these
interfaces must adhere to the architectural design that you
established. You, as the architect, must communicate the
architecture to the engineers who are responsible for identifying the
interfaces and ensure that they understand the rationale for the
existing design decisions.

A good way to achieve this communication is to use the active
reviews for intermediate design (ARID) method. In this method, the
architecture design (or part of it) is presented to a group of
reviewers—in this case, the engineers who will make use of this
design. After the design presentation, a set of scenarios is selected
by the participants. The selected scenarios are used for the core of
the exercise, where the reviewers use the elements present in the
architecture to satisfy them. In standard ARID, the reviewers are
asked to write code or pseudo-code for the purpose of identifying
interfaces. Alternatively, the architect can present the architecture,
select a nonprimary functional scenario and ask the participants to
identify the interfaces of the components that support the scenario
using sequence diagrams or a similar method.

Aside from the fact that the architectural design is reviewed in
this exercise, there are additional benefits to this approach.
Specifically, in a single meeting, the architecture design or part of it
is presented to the entire team, and agreements can be reached with
respect to how the interfaces should be defined (e.g., the level of
detail or aspects such as parameter passing, data types, or exception
management).



3.7 Creating Preliminary Documentation During Design

A software architecture is typically documented as a set of views, which
represent the different structures that compose the architecture. The formal
documentation of these views is not part of the design process. Structures,
however, are produced as part of design. Capturing them, even in an informal
manner (i.e., as sketches), along with the design decisions that led you to create
these structures, is a task that should be performed as part of normal design
activities.

3.7.1 Recording Sketches of the Views

When you produce structures by instantiating the design concepts that you have
selected to address a particular design problem, you will typically not produce
these structures in your mind, but rather will create some sketches of them. In the
simplest case, you will produce these sketches on a whiteboard, a flip-chart, or
even a piece of paper. Otherwise, you may use a modeling tool in which you will
draw the structures. The sketches that you produce are the initial documentation
for your architecture that you should capture and may flesh out later, if
necessary. When you create sketches, you don’t need to always use a more
formal language such as UML. If you use some informal notation, you should at
least be careful in maintaining consistency in the use of symbols. Eventually,
you will need to add a legend to your diagrams to provide clarity and avoid
ambiguity.

You should develop discipline in writing down the responsibilities that you
allocate to the elements as you create the structures. The reasons for this are
simple: As you identify an element, you are determining some responsibilities
for that element in your mind. Writing it down at that moment ensures that you
won’t have to remember it later. Also, it is easier to write down the
responsibilities associated with your elements gradually, rather than compiling
all of them at a later time.

Creating this preliminary documentation as you design requires some
discipline. But the benefits are worth the effort—you will be able to produce the
more detailed architecture documentation relatively easily and quickly at a later
point. One simple way that you can document responsibilities if you are using a
whiteboard, a flip-chart, or a PowerPoint slide is to take a photo of the sketch
that you have produced and paste it in a document, along with a table that
summarizes the responsibilities of every element depicted in the diagram (Figure



3.5 provides an example). If you are using a computer-aided software
engineering (CASE) tool, you can select an element to create and use the text
area that usually appears in the properties sheet of the element to document its
responsibilities, and then generate the documentation automatically.

This diagram presents a sketch of a module view depicting the overall system
structure from the case study in Chapter 5.
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The diagram is complemented with a table that describes the element’s
responsibilities:

Element Responsibility

Data This element collects data from all data sources in real time
stream and dispatches it to both the batch layer and the speed layer for
processing.

Batch layer This layer is responsible for storing raw data and precomputing the
batch views to be stored in the serving layer.

FIGURE 3.5 Sample preliminary documentation

Of course, it is not necessary to document everything. The three purposes of
documentation are analysis, construction, and education. At the moment you are
designing, you should choose a documentation purpose and then document to



fulfill that purpose, based on your risk mitigation concerns. For example, if you
have a critical quality attribute scenario that your architecture design needs to
satisfy, and if you will need to prove this requirement is met in an analysis, then
you must take care to document the information that is relevant for the analysis
to be satisfactory. Alternatively, if you anticipate having to train new team
members, then you should make a sketch of a C&C view of the system, showing
how it operates and how the elements interact at runtime, and perhaps construct
a crude module view of the system, showing at least the major layers or
subsystems.

Finally, it is a good idea to remember, as you are documenting, that your
design may eventually be analyzed. Consequently, you need to think about
which information should be documented to support this analysis (see the
sidebar “Scenario-Based Documentation™).

Scenario-Based Documentation

An analysis of an architecture design is based on your most
important use cases and quality attribute scenarios. Simply put, a
scenario is selected and you must explain to reviewers how the
architecture supports the scenario, and justify your decisions. To
start preparing for the analysis while you design, it is useful to
produce and document structures that contain the elements that are
involved in the satisfaction of a scenario. This should come
naturally given that the design process is guided by scenarios, but
keeping this point firmly in mind is always helpful.

During the design process, you should at least try to capture the
following elements in a single document:

» The primary presentation: the diagram that represents the
structure that you produced

» The element responsibilities table: it will help you record the
responsibilities of the elements that are present in the structure

» The relevant design decisions, and their rationales (see Section
3.7.2)

You might also capture two other pieces of information:

» A runtime representation of the element’s interaction—for
example, a sequence diagram

» The initial interface specifications (which can also be captured in



a separate document)

As you can see, all of this information needs to be produced as
part of the design process. One way or another, you need to decide
which elements are present in the system and how they interact. The
only question is whether you bother to write this information down,
or whether its sole representation is in the code.

If you follow the approach that we advocate here, at the end of
the design you will have a set of preliminary views documented, in
which each of the views is associated with a particular scenario, and
you will have this documentation at little cost. This preliminary
documentation can be used “as is” to analyze the design, and
particularly through scenario-based evaluations.

3.7.2 Recording Design Decisions

In each design iteration, you make important design decisions to achieve your
iteration goal. As we saw previously, these design decisions include the
following:

» Selecting a design concept from several alternatives
» Creating structures by instantiating the selected design concept
» Establishing relationships between elements and defining interfaces

» Allocating resources (e.g., people, hardware, computation)
» Others

When you study a diagram that represents an architecture, you see the end
product of a thought process, but it may not be easy to understand the decisions
that were made to achieve this result. Recording design decisions beyond the
representation of the chosen elements, relationships, and properties is
fundamental to help in understanding how you arrived at the result: the design
rationale.

When your iteration goal involves satisfying a specific quality attribute
scenario, some of the decisions that you make will play significant roles in your
ability to achieve the scenario response measure. These are, therefore, the
decisions that you should take the greatest care in recording. You should record
these decisions because they are essential to facilitate analysis of the design you
created; then to facilitate implementation; and, still later, to aid in understanding
of the architecture (e.g., during maintenance). Also every design decision is
“good enough” but seldom optimal, so you need to justify the decisions made,



and possibly revisit the remaining risks later.

You might think that recording design decisions is a tedious task. In reality,
depending on the criticality of the system being developed, you can adjust the
amount of information that is recorded. For example, to record a minimum of
information, you can use a simple table such as the one shown in Table 3.2. If
you decide to record more than this minimum, the following information can
prove useful:

» What evidence was produced to justify decisions?
» Who did what?

» Why were shortcuts taken?

» Why were tradeoffs made?

» What assumptions did you make?

Driver Design Decisions and Location Rationale and Assumptions

QA-1 Introduce concurrency (tactic) = Concurrency should be introduced to
in the TimeserverConnector  be able to receive and process several
and FaultDetectionService  events (traps) simultaneously.

QA-2  Use of a messaging pattern Although the use of a message
through the introduction of queue may seem to go against the
a message queue in the performance imposed by the scenario,
communications layer a message queue was chosen

because some implementations have
high performance and, furthermore,
this will be helpful to support QA-3.

TABLE 3.2 Example of a Table to Document Design Decisions

And, in the same way that we suggest you record responsibilities as you

identify elements, you should record the design decisions as you make them. The

reason for this is simple: If you leave it until later, you may not remember why
you did things.

3.8 Tracking Design Progress

Even though ADD provides clear guidelines to perform design systematically, it

does not provide a mechanism to track design progress. When you are

performing design, however, there are several questions that you want to answer:

» How much design do we need to do?
» How much design has been done so far?



» Are we finished?

Agile practices such as the use of backlogs and Kanban boards can help you
track the design progress and answer these questions. These techniques are not
limited to Agile methods, of course. Any development project using any
methodology should track progress.

3.8.1 Use of an Architectural Backlog

The concept of an architecture (or design) backlog has been proposed by several
authors (see Section 7.1). This is similar to what is found in Agile development
methods such as Scrum. The basic idea is that you need to create a list of the
pending actions that still need to be performed as part of the architecture design
process.

Initially, you should populate the design backlog with your drivers, but other
activities that support the design of the architecture can also be included. For
example:

» Creation of a prototype to test a particular technology or to address a
specific quality attribute risk

» Exploration and understanding of existing assets (possibly requiring
reverse engineering)

» [ssues uncovered in a review of the design
» Review of a partial design that was performed on a previous iteration

For example, when using Scrum, the sprint backlog and the design backlog
are not independent: Some features in the sprint backlog may require
architecture design to be performed, so they will generate items that go into the
architectural design backlog. These two backlogs can be managed separately,
however. The design backlog may even be managed internally, as it contains
several items that are typically not discussed or prioritized by the customer (or
product owner).

Also, additional architectural concerns may arise as decisions are made. For
example, if you choose a reference architecture, you will probably need to add
specific architectural concerns, or quality attribute scenarios derived from them,
to the architectural design backlog. An example of such a concern is the
management of sessions for a web application reference architecture.

3.8.2 Use of a Design Kanban Board
As design is performed in rounds and as a series of iterations within these



rounds, you need to have a way of tracking the design’s degree of advancement.
You must also decide whether you need to continue making more design
decisions (i.e., performing additional iterations). One tool that can be used to
facilitate this task is a Kanban board, such as the one shown in Figure 3.6
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FIGURE 3.6 A Kanban board used to track design progress

At the beginning of a design round, the inputs to the design process become
entries in the backlog. Initially, that activity occurs in step 1 of ADD; the
different entries in your backlog for this design round should be added to the
“Not Yet Addressed” column of the board (except if you have some entries that
were not concluded in previous design rounds that you wish to address here).
When you begin a design iteration, in step 2 of ADD, the backlog entries that
correspond to the drivers that you plan to address as part of the design iteration
goal should be moved to the “Partially Addressed” column. Finally, once you
finish an iteration and the analysis of your design decisions reveals that a
particular driver has been addressed (step 7 of ADD), the entry should be moved
to the “Completely Addressed” column of the board. It is important to establish
clear criteria that will allow a driver to be moved to the “Completely Addressed”
column (think of this as the “Definition of Addressed” criteria, similar to the
“Definition of Done” criteria used in Scrum). A criterion may be, for example,
that the driver has been analyzed or that it has been implemented in a prototype.
Also, drivers that are selected for a particular iteration may not be completely
addressed in that particular iteration, in which case they should remain in the



“Partially Addressed” column and, in preparation for subsequent iterations, you
should consider how they can be allocated to the elements that exist at this point.

It can be useful to select a technique that will allow you to differentiate the
entries in the board according to their priority. For example, you might use
different colors of Post-it notes depending on the priority.

With such a board, it is easy to visually track the advancement of design, as
you can quickly see how many of the (most important) drivers are being or have
been addressed in the design round. This technique also helps you decide
whether you need to perform additional iterations as, ideally, the design round is
terminated when a majority of your drivers (or at least the ones with the highest
priority) are located under the “Completely Addressed” column.

3.9 Summary

In this chapter, we presented a detailed walk-through of the Attribute-Driven
Design method, version 3.0. We also discussed several important aspects that
need to be considered in the various steps of the design process. These aspects
include the use of a backlog, the various possible design roadmaps (for
greenfield, brownfield, and novel contexts), the identification and selection of
design concepts and their use in producing structures, the definition of
interfaces, and the production of preliminary documentation.

Even though the overall architecture development life cycle includes
documenting and analyzing architecture as activities that are separate from
design, we have argued that a clean separation of these activities is artificial and
harmful. We stress that preliminary documentation and analysis activities need
to be regularly performed as integral parts of the design process.

In Chapters 4, 5, and 6, we will instantiate ADD 3.0 in several extended
examples, showing how the method works in the real world, in both greenfield
and brownfield contexts.

3.10 Further Reading

Some of the concepts of ADD 3.0 were first introduced in an IEEE Software
article: H. Cervantes, P. Velasco, and R. Kazman, “A Principled Way of Using
Frameworks in Architectural Design”, IEEE Software, 46-53, March/April
2013. Version 2.0 of ADD was first documented in the SEI Technical Report: R.
Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B. Wood,
“Attribute-Driven Design (ADD), Version 2.0”, SEI/CMU Technical Report
CMUY/SEI-2006-TR-023, 2006. An extended example of using ADD 2.0 was



documented in W. Wood, “A Practical Example of Applying Attribute-Driven
Design (ADD), Version 2.0”, SEI/CMU Technical Report: CMU/SEI-2007-TR-
005.

Several alternative methods exist to support the design of software
architectures. These are discussed in more detail and referenced in Chapter 7.

The concept of an architecture backlog is discussed in C. Hofmeister, P.
Kruchten, R. Nord, H. Obbink, A. Ran, and P. America, “A General Model of
Software Architecture Design Derived from Five Industrial Approaches”,
Journal of Systems and Software, 80:106—-126, 2007.

The ARID method is discussed in P. Clements, R. Kazman, and M. Klein,
Evaluating Software Architectures: Methods and Case Studies, Addison-Wesley,
2002.

The CBAM method is presented in L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice, 3rd ed., Addison-Wesley, 2013.

The ways in which an architecture can be documented are covered extensively
in P. Clements et al. Documenting Software Architectures: Views and Beyond,
2nd ed., Addison-Wesley, 2011. More Agile approaches to documenting are
discussed in books such as S. Brown, Software Architecture for Developers.
Lean Publishing, 2015.

The importance and challenges of capturing design rationale are discussed in
A. Tang, M. Ali Babar, I. Gorton, and J. Han, “A Survey of Architecture Design
Rationale”, Journal of Systems and Software, 79(12):1792-1804, 2007. A
minimalistic technique for capturing rationale is discussed in U. Zdun, R.
Capilla, H. Tran, and O. Zimmermann, “Sustainable Architectural Design
Decisions”, IEEE Software, 30(6):46-53, 2013.



4. Case Study: FCAPS System

We now present a case study of using ADD 3.0 for a greenfield system in a
mature domain. This case study details an initial design round composed of three
iterations and is based on a real-world example. We first present the business
context, and then we summarize the requirements for the system. This is
followed by a step-by-step summary of the activities that are performed during
the ADD iterations.

4.1 Business Case

In 2006, a large telecommunications company wanted to expand its Internet
Protocol (IP) network to support “carrier-class services”, and more specifically
high-quality voice over IP (VOIP) systems. One important aspect to achieve this
goal was synchronization of the VOIP servers and other equipment. Poor
synchronization results in low quality of service (QoS), degraded performance,
and unhappy customers. To achieve the required level of synchronization, the
company wanted to deploy a network of time servers that support the Network
Time Protocol (NTP). Time servers are formed into groups that typically
correspond to geographical regions. Within these regions, time servers are
organized hierarchically in levels or strata, where time servers placed in the
upper level of the hierarchy (stratum 1) are equipped with hardware (e.g.,
Cesium Oscillator, GPS signal) that provides precise time. Time servers that are
lower in the hierarchy use NTP to request time from servers in the upper levels
or from their peers.

Many pieces of equipment depend on the time provided by time servers in the
network, so one priority for the company was to correct any problems that occur
on the time servers. Such problems may require dispatching a technician to
perform physical maintenance on the time servers, such as rebooting. Another
priority for the company was to collect data from the time servers to monitor the
performance of the synchronization framework.

In the initial deployment plans, the company wanted to field 100 time servers
of a particular model. Besides NTP, time servers support the Simple Network
Management Protocol (SNMP), which provides three basic operations:

» Set () operations: change configuration variables (e.g., connected peers)
» get () operations: retrieve configuration variables or performance data

= trap( ) operations: notifications of exceptional events such as the loss or



restoration of the GPS signal or changes in the time reference

To achieve the company’s goals, a management system for the time servers
needed to be developed. This system needed to conform to the FCAPS model,
which is a standard model for network management. The letters in the acronym
stand for:

» Fault management. The goal of fault management is to recognize, isolate,
correct, and log faults that occur in the network. In this case, these faults
correspond to traps generated by time servers or other problems such as
loss of communication between the management system and the time
servers.

» Configuration management. This includes gathering and storing
configurations from network devices, thereby simplifying the
configuration of devices and tracking changes that are made to device
configurations. In this system, besides changing individual configuration
variables, it is necessary to be able to deploy a specific configuration to
several time servers.

» Accounting. The goal here is to gather device information. In this context,
this includes tracking device hardware and firmware versions, hardware
equipment, and other components of the system.

» Performance management. This category focuses on determining the
efficiency of the current network. By collecting and analyzing performance
data, the network health can be monitored. In this case, delay, offset, and
jitter measures are collected from the time servers.

» Security management. This is the process of controlling access to assets in
the network. In this case, there are two important types of users:
technicians and administrators. Technicians can visualize trap information
and configurations but cannot make changes; administrators are
technicians who can visualize the same information but can also make
changes to configurations, including adding and removing time servers
from the network.

Once the initial network was deployed, the company planned to extend it by
adding time servers from newer models that might potentially support
management protocols other than SNMP.

The remainder of this chapter describes a design for this system, created using
ADD 3.0.

4.2 System Requirements



Requirement elicitation activities had been previously performed, and the
following is a summary of the most relevant requirements collected.

4.2.1 Use Case Model

The use case model in Figure 4.1 presents the most relevant use cases that
support the FCAPS model in the system. Other use cases are not shown.

FCAPS System

UC-1: Monitor network status

\\

UC-2: Detect fault

3
®

UC-3: Display event history

UC-4: Manage time servers

UC-5: Configure time server

UC-6: Restore configuration

>0

Technician

u

C-7: Collect performance data

MR DAT

UC-8: Display information

i

U

C-9: Visualize performance data

VLYYV

UC-10: Log in

/

Administrator

Al

UC-11: Manage users

UV

Yy

Time
Server

Key: UML

Fault Mgmt

Config Mgmt

Accounting

Perf. Mgmt

Security

FIGURE 4.1 Use case model for the FCAPS system

Each of these use cases is described in the following table:



Use Case

Description

UC-: Monitor
network status

UC-2: Detect
fault

UC-3: Display
event history

UC-4: Manage
time servers

UC-5: Configure
time server

UC-6: Restore
configuration

UC-7: Collect
performance
data

UC-8: Display
information

UC-9: Visualize
performance
data

UC-10: Login

U-11: Manage
users

A user monitors the time servers in a hierarchical representation
of the whole network. Problematic devices are highlighted,
along with the logical regions where they are grouped. The
user can expand and collapse the network representation. This
representation is updated continuously as faults are detected or
repaired.

Periodically the management system contacts the time servers
to see if they are “alive”. If a time server does not respond, or

if a trap that signals a problem or a return to a normal state

of operation is received, the event is stored and the network
representation observed by the users is updated accordingly.

Stored events associated with a particular time server or group
of time servers are displayed. These can be filtered by various
criteria such as type or severity.

The administrator adds a time server to, or removes a time server
from, the network.

An administrator changes configuration parameters associated
with a particular time server. The parameters are sent to the
device and are also stored locally.

A locally stored configuration is sent to one or more time servers.

Network performance data (delay, offset, and jitter) is collected
periodically from the time servers.

The user displays stored information about the time server—
configuration values and other parameters such as the server
name.

The user displays network performance measures (delay,
offset, jitter) in a graphical way to view and analyze network
performance.

A user logs into the system through a login/password screen.
Upon successful login, the user is presented with different
options according to their role.

The administrator adds or removes a user or modifies user
permissions.

4.2.2 Quality Attribute Scenarios
In addition to these use cases, a number of quality attribute scenarios were



elicited and documented. The six most relevant ones are presented in the
following table. For each scenario, we also identify the use case that it is
associated with.

Quality Associated
ID Attribute Scenatrio Use Case
QA-1 Performance Several time servers send traps to the uc-2

management system at peak load; 100% of
the traps are successfully processed and
stored.

QA-2  Moaodifiability A new time server management protocol UC-5
is introduced to the system as part of an
update. The protocol is added successfully
without any changes to the core
components of the system.

QA-3  Availability A failure occurs in the management system All
during normal operation. The management
system resumes operation in less than 30
seconds.

QA-4  Performance The management system collects ucC-7
performance data from a time server
during peak load. The management system
collects all performance data within 5
minutes, while processing all user requests,
to ensure no loss of data due to CON-5.

QA-5 Performance, A user displays the event history of a uC-3
usability particular time server during normal
operation. The list of events from the last
24 hours is displayed within 1 second.

QA-6  Security A user performs a change in the system All
during normal operation. It is possible to
know who performed the operation and
when it was performed 100% of the time.

4.2.3 Constraints

Finally, a set of constraints on the system and its implementation were collected.
These are presented in the following table.



ID Constraint

CON-1 A minimum of 50 simultaneous users must be supported.

CON-2 The system must be accessed through a web browser (Chrome V3.0+,
Firefox V4+, IE8+) in different platforms: Windows, OSX, and Linux.

CON-3 An existing relational database server must be used. This server cannot be
used for other purposes than hosting the database.

CON-4 The network connection to user workstations can have low bandwidth but
is generally reliable.

CON-5 Performance data needs to be collected in intervals of no more than 5
minutes, as higher intervals result in time servers discarding data.

CON-6 Events from the last 30 days must be stored.

4.2.4 Architectural Concerns

Given that this is greenfield development, only a few general architectural
concerns are identified initially, as shown in the following table.

ID Concern

CRHN-1  Establishing an overall initial system structure.

CRN-2 Leverage the team’s knowledge about Java technologies, including
Spring, JSF, Swing, Hibernate, Java Web Start and JMS frameworks, and
the Java language.

CRHN-3  Allocate work to members of the development team.

Given these sets of inputs, we are now ready to proceed to describe the design
process, as described in Section 3.2. In this chapter, we present only the final
results of the requirements collection process. The job of collecting these
requirements is nontrivial, but is beyond the scope of this chapter.

4.3 The Design Process

We now ready to make the leap from the world of requirements and business
concerns to the world of design. This is perhaps the most important job for an
architect—translating requirements into design decisions. Of course, many other
decisions and duties are important, but this is the core of what it means to be an
architect: making design decisions with far-reaching consequences.

4.3.1 ADD Step 1: Review Inputs
The first step of the ADD method involves reviewing the inputs and identifying
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the design backlog). The inputs are summarized in the following table.

Category

Details

Design purpose

Primary functional
requirements

Quality attribute
scenarios

Constraints

Architectural
concerns

This is a greenfield system from a mature domain. The purpose
is to produce a sufficiently detailed design to support the
construction of the system.

From the use cases presented in Section 4.2.1, the primary
ones were determined to be:

UC-1: Because it directly supports the core business

UC-2: Because it directly supports the core business

UC-7: Because of the technical issues associated with it
(see QA-4)

The scenarios were described in Section 4.2.2. They have now
been prioritized (as discussed in Section 2.4.2) as follows:

Scenario Importance to  Difficulty of Implementation

ID the Customer According to the Architect
QA-1 High High

QA-2 High Medium

QA-3 High High

QA-4 High High

QA-5 Medium Medium

QA-6 Medium Low

From this list, only QA-1, QA-2, QA-3, and QA-4 are selected as
drivers.

All of the constraints discussed in Section 4.2.3 are included as
drivers.

All of the architectural concerns discussed in Section 4.2.4 are
included as drivers.

4.3.2 Iteration 1: Establishing an Overall System Structure

This section presents the results of the activities that are performed in each of the
steps of ADD in the first iteration of the design process.

4.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers

This is the first iteration in the design of a greenfield system, so the iteration goal
is to achieve the architectural concern CNR-1 of establishing an overall system



structure (see Section 3.3.1).

Although this iteration is driven by a general architectural concern, the
architect must keep in mind all of the drivers that may influence the general
structure of the system. In particular, the architect must be mindful of the
following:

» QA-1: Performance
» QA-2: Modifiability
» QA-3: Availability

» QA-4: Performance

» CON-2: System must be accessed through a web browser in different
platforms—Windows, OSX, and Linux

» CON-3: A relational database server must be used

» CON-4: Network connection to users workstations can have low
bandwidth and be unreliable

» CRN-2: Leverage team’s knowledge about Java technologies

4.3.2.2 Step 3: Choose One or More Elements of the System to Refine

This is a greenfield development effort, so in this case the element to refine is
the entire FCAPS system, which is shown in Figure 4.2. In this case, refinement
is performed through decomposition.

User’s :
: Time server

workstation FCAPS

I system I

L I

Legend:
O System under development
D External system Database

server
—— Data flow

FIGURE 4.2 Context diagram for the FCAPS system
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Selected Drivers

In this initial iteration, given the goal of structuring the entire system, design
concepts are selected according to the roadmap presented in Section 3.3.1. The
following table summarizes the selection of design decisions. Note that all of the
design concepts used in this case study are also described in Appendix A.

Design Decisions
and Location

Rationale

Logically structure

the client part of the
system using the Rich
Client Application
reference architecture

The Rich Client Application (RCA) reference architecture
(see Section A.1.2) supports the development of applica-
tions that are installed in the users’ PC. These applications
support rich user interface capabilities that are needed for
displaying the network topology and performance graphs
(UC-1). These capabilities are also helpful in achieving
QA-5, even if this design decision is not a driver. Although
these types of applications do not run in a web browser
(CON-2), they can be installed from a web browser using a
technology such as Java Web Start.

Discarded alternatives:

Alternative Reason for Discarding

Rich Internet  This reference architecture (see Section

applications  A.1.3) is oriented toward the develop-

(RIA) ment of applications with a rich user
interface that runs inside a web browser.

Although this type of application supports
arich user interface and can be up-
graded easily, this option was discarded
because it was believed that plugins for
executing RIA were less broadly available
than the Java Virtual Machine.



Web This reference architecture (see Section

applications  A.1.1) is oriented toward the development
of applications that are accessed from
a web browser. Although this reference
architecture facilitates deployment and
updating, it was discarded because it is
difficult to provide a rich user interface
experience.

Mobile This reference architecture (see

applications  Section A.1.4) is oriented toward the
development of applications that are
deployed in handheld devices. This
alternative was discarded because this
type of device was not considered for
accessing the system.

Logically structure Service applications (see Section A.1.5) do not provide a
the server part of user interface but rather expose services that are consumed
the system using the by other applications.

Service Application No other altematives were considered and discarded, as the

reference architecture architect was familiar with this reference architecture and
considered it fully adequate to meet the requirements.

Physically structure Since the system must be accessed from a web browser
the application (CON-2) and an existing database server must also be
using the three-tier used (CON-3), a three-tier deployment is appropriate (see

deployment pattern Section A.2.2).



At this point, it is clear that some type of replication will be
needed on both the web/app tier and the database tier to
support QA-3, but this will be addressed later (in iteration 3).

Discarded alternatives include other n-tier patterns with
n!= 3. The two-tier alternative is discarded because an
existing legacy database server needs to be incorporated
into the system and this cannot be used for any other
purpose, according to CON-3. All n > 3 altematives are
discarded because at this point no other servers are
necessary for the solution.

Build the user The standard framework for building Java Rich Clients
interface of the client  ensures portability (CON-2) and it is what the developers
application using were already familiar with (CRN-3).

the Swing Java Discarded alternatives: The Eclipse SWT (Standard Widget
framework and other  Toolkit) framework was considered, but the developers were
Java technologies not as familiar with it.

Deploy the application Access to the application is obtained via a web browser,
using the Java Web which launches the installer (CON-2).

Start technology This technology also facilitates updating because client
code is reloaded only when a new version is available.
As updates are not expected to occur frequently, this is
beneficial for low-bandwidth situations (CON-4).

The altemative would be the use of applets, but they need
to be reloaded every time the web page is loaded, which
increases the bandwidth requirements.

4.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces

The instantiation design decisions considered and made are summarized in the
following table:



Design Decision and
Location

Rationale

Remove local data sources
in the rich client application

Create a module dedicated
to accessing the time
servers in the data layer

of the Service Application
reference architecture

It is believed that there is no need to store data locally,
as the network connection is generally reliable.

Also, communication with the server is handled in
the data layer. Internal communication between
components in the client is managed through local
method calls and does not need particular support.

The service agents component from the reference
architecture is adapted to abstract the access to the
time servers. This will further facilitate the achievement
of QA-2 and will play a critical role in the achievement
of UC-2 and UC-7.

The results of these instantiation decisions are recorded in the next step. In
this initial iteration, it is typically too early to precisely define functionality and
interfaces. In the next iteration, which is dedicated to defining functionality in
more detail, interfaces will begin to be defined.

4.3.2.5 Step 6: Sketch Views and Record Design Decisions

The diagram in Figure 4.3 shows the sketch of a module view of the two
reference architectures that were selected for the client and server applications.
These have now been adapted according to the design decisions we have made.
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FIGURE 4.3 Modules obtained from the selected reference architectures
(Key: UML)

This sketch was created using a CASE tool. In the tool, each element is
selected and a short description of its responsibilities is captured. Note that the
descriptions at this point are quite crude, just indicating major functional
responsibilities, with no details. The following table summarizes the information
that is captured:

Element Responsibility

Presentation client  This layer contains modules that control user interaction and
side (CS) use case control flow.

Business logic CS This layer contains modules that perform business logic
operations that can be executed locally on the client side.

Data CS This layer contains modules that are responsible for
communication with the server.

Cross-cutting CS This “layer” includes modules with functionality that goes
across different layers, such as security, logging, and 1/O.
This is helpful in achieving QA-6, even if it is not one of the
drivers.

Ul modules These modules render the user interface and receive user
inputs.

Ul process modules These modules are responsible for control flow of all the
system use cases (including navigation between screens).

Business modules These modules either implement business operations that
CS can be performed locally or expose business functionality
from the server side.

Business entities CS These entities make up the domain model. They may be less
detailed than those on the server side.

Communication These modules consume the services provided by the
modules CS application running on the server side.



Services server side
(SS)

Business Logic SS
Data SS

Cross-cutting SS

Service interfaces
SS

Business modules
SS

Business entities SS
DB access module

Time server access
module

This layer contains modules that expose services that are
consumed by the clients.

This layer contains modules that perform business logic
operations that require processing on the server side.

This layer contains modules that are responsible for data
persistence and for communication with the time servers.

These modules have functionality that goes across different
layers, such as security, logging, and I/O.

These modules expose services that are consumed by the
clients.

These modules implement business operations.

These entities make up the domain model.

This module is responsible for persistence of business
entities (objects) into the relational database. It performs
object-oriented to relational mapping and shields the rest of
the application from persistence detalils.

This module is responsible for communication with the time
servers. It isolates and abstracts operations with the time
servers to support communication with different types of
time servers (see QA-2).

The deployment diagram in Figure 4.4 sketches an allocation view that
illustrates where the components associated with the modules in the previous
diagram will be deployed.
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«Java Web Start»
Client-Side

Application

«eplicated»
database :Database Server

«replicated»

Application Server | ]

«JDBC»

Server-Side Application

«SNMP»

Time Server

FIGURE 4.4 Initial deployment diagram for the FCAPS system (Key: UML)




The responsibilities of the elements are summarized here:

Element Responsibility

User workstation The user’s PC, which hosts the client side logic of the
application

Application server  The server that hosts server side logic of the application and
also serves web pages

Database server The server that hosts the legacy relational database

Time server The set of (extemal) time servers

Also, information about relationships between some elements in the diagram
that is worth recording is summarized in the following table:

Relationship Description

Between web/app server and Communication with the database will be
database server done using the JDBC protocol.

Between web/app server and time The SNMP protocol is used (at least initially).
server

4.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose

The following table summarizes the design progress using the Kanban board
technique discussed in Section 3.8.2.




Mot
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During
the lteration

QA-1

QA-4

ucC-1

uC-2

uc-7

QA-2

QA-3

Selected reference architecture
establishes the modules that will
support this functionality.

Selected reference architecture
establishes the modules that will
support this functionality.

Selected reference architecture
establishes the modules that will
support this functionality.

Mo relevant decisions made, as itis
necessary to identify the elements

that participate in the use case that
is associated with the scenario.

Introduction of a time server access
module in the data layer on the
server application that encapsulates
communication with the time serv-
ers. The details of this component
and its interfaces have not been
defined yet.

Identification of the elements
derived from the deployment pattem
that will need to be replicated.

Mo relevant decisions made, as itis
necessary to identify the elements
that participate in the use case that
is associated with the scenario.



CON-1

CON-4
CON-5
CON-6

CRN-2
CRHN-3

CON-2

CON-3

CRN-1

Structuring the system using 3 tiers
will allow multiple clients to connect
to the application server. Decisions
regarding concurrent access have
not been made yet.

Use of Java Web Start technology
allows access through a web
browser to download the Rich
Client. Since the Rich Client is being
programmed in Java, this supports
execution under Windows, OSX,
and Linux.

Physically structure the application
using the 3-tier deployment
pattern, and isolate the database
by providing database access
components in the data layer of the
application server.

Use of Java Web Start technology
requires the client to be downloaded
only the first time, and then when
upgrades occur. This is helpful

to support limited-bandwidth
connections. More decisions

need to be made regarding the
communication between the
presentation and the business logic
layers.

No relevant decisions made.
No relevant decisions made.

Selection of reference architectures
and deployment pattern.

Technologies that have been
considered up to this point take
into account the knowledge of the
developers. Other technologies
still need to be selected (e.g.,
communication with the time
servers).

Mo relevant decisions made.

4.3.3 Iteration 2: Identifying Structures to Support Primary



Functionality

This section presents the results of the activities that are performed in each of the
steps of ADD in the second iteration of the design process for the FCAPS
system. In this iteration, we move from the generic and coarse-grained
descriptions of functionality used in iteration 1 to more detailed decisions that
will drive implementation and hence the formation of development teams.

This movement from the generic to the specific is intentional, and built into
the ADD method. We cannot design everything up front, so we need to be
disciplined about which decisions we make, and when, to ensure that the design
is done in a systematic way, addressing the biggest risks first and moving from
there to ever finer details. Our goal for the first iteration was to establish an
overall system structure. Now that this goal has been met, our new goal for this
second iteration is to reason about the units of implementation, which affect
team formation, interfaces, and the means by which development tasks may be
distributed, outsourced, and implemented in sprints.

4.3.3.1 Step 2: Establish Iteration Goal by Selecting Drivers

The goal of this iteration is to address the general architectural concern of
identifying structures to support primary functionality. Identifying these
elements is useful not only for understanding how functionality is supported, but
also for addressing CRN-3—that is, the allocation of work to members of the
development team.

In this second iteration, besides CRN-3, the architect considers the system’s
primary use cases:
» UC-1
» UC-2
» UC-7

4.3.3.2 Step 3: Choose One or More Elements of the System to Refine

The elements that will be refined in this iteration are the modules located in the
different layers defined by the two reference architectures from the previous
iteration. In general, the support of functionality in this system requires the
collaboration of components associated with modules that are located in the
different layers.

4.3.3.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers



In this iteration, several design concepts—in this case, architectural design
patterns—are selected from the book Pattern Oriented Software Architecture,
Volume 4. The following table summarizes the design decisions. The words in
bold in the following table refer to architectural patterns from this book, and can
be found in Appendix A.

Design Decisions

and Location Rationale and Assumptions

Create a Domain Before starting a functional decomposition, it is necessary to
Model for the create an initial domain model for the system, identifying the
application major entities in the domain, along with their relationships.

There are no good altematives. A domain model must
eventually be created, or it will emerge in a suboptimal
fashion, leading to an ad hoc architecture that is hard to
understand and maintain.

Identify Domain Each distinct functional element of the application needs
Objects that to be encapsulated in a self-contained building block—a
map to functional domain object.

requirements One possible alternative is to not consider domain objects

and instead directly decompose layers into modules, but this
increases the risk of not considering a requirement.

Decompose Domain Domain objects represent complete sets of functionality,
Objects into general but this functionality is supported by finer-grained elements
and specialized located within the layers. The “components” in this pattern
Components are what we have referred to as modules.

Specialization of modules is associated with the layers where
they are located (e.g., Ul modules).

There are no good altematives to decomposing the layers
into modules to support functionality.

Use Spring Spring is a widely used framework to support enterprise
framework and application development. Hibemate is an object to relational
Hibernate mapping (ORM) framework that integrates well with Spring.

An altemative that was considered for application develop-
ment is JEE. Spring was eventually selected because it was
considered more “lightweight” and the development team
was already familiar with it, resulting in greater and earlier
productivity.

Other ORM frameworks were not considered, as the
development team already was familiar with, and happy with
the performance of, Hibernate.

4.3.3.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,



and Define Interfaces

The instantiation design decisions made in this iteration are summarized in the
following table:

Design Decisions
and Location

Rationale

Create only an initial
domain model

Map the system use
cases to domain
objects

Decompose the
domain objects
across the layers to
identify layer-specific
modules with an
explicit interface

Connect components
associated with
modules using
Spring

Associate
frameworks with a
module in the data
layer

The entities that participate in the primary use cases need to
be identified and modeled but only an initial domain model is
created, to accelerate this phase of design.

An initial identification of domain objects can be made by an-
alyzing the system’s use cases. To address CRN-3, domain
objects are identified for all of the use cases in Section 4.2.1.

This technigue ensures that modules that support all of the
functionalities are identified.

The architect will perform this task just for the primary use
cases. This allows another team member to identify the rest of
the modules, thereby allocating work among team members.
Having established the set of modules, the architect realizes
the need to test these modules, so a new architectural
concem is identified here:

CRN-4: A majority of modules shall be unit tested.

Only “a majority of modules” are covered by this concern
because the modules that implement user interface
functionality are difficult to test independently.

This framework uses an inversion of control approach that
allows different aspects to be supported and the modules to
be unit-tested (CRN-4).

ORM mapping is encapsulated in the modules that are
contained in the data layer. The Hibernate framework
previously selected is associated with these modules.

While the structures and interfaces are identified in this step of the method,

they are captured in the next step.

4.3.3.5 Step 6: Sketch Views and Record Design Decisions
As a result of the decisions made in step 5, several diagrams are created.
» Figure 4.5 shows an initial domain model for the system.
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FIGURE 4.5 Initial domain model (Key: UML)

» Figure 4.6 shows the domain objects that are instantiated for the use case
model in Section 4.2.1.
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FIGURE 4.6 Domain objects associated with the use case model (Key: UML)

» Figure 4.7 shows a sketch of a module view with modules that are derived
from the business objects and associated with the primary use cases. Note
that explicit interfaces are not shown but their existence is assumed.
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FIGURE 4.7 Modules that support the primary use cases (Key: UML)

The responsibilities for the elements identified in Figure 4.7 are summarized

in the table that begins on page 95.

Element

Responsibility

NetworkStatusMonitoringView

NetworkStatusMonitoringController

RequestManager

RequestService

TopologyController

DomainEntities

TimeServerEventsController

DataCollectionController

RegionDataMapper

TimeServerDataMapper

EventDataMapper

TimeServerConnector

Displays the network representation and
updates it when events are received.
This component embodies both Ul com-
ponents and Ul process components
from the reference architecture.

Responsible for providing the necessary
information to the presentation layer for
displaying the network representation.

Responsible for communication with the
server-side logic.

Provides a facade that receives
requests from the clients.

Contains business logic related to the
topological information.

Contains the entities from the domain
model (server side).

Contains business logic related to the
management of events.

Contains logic to perform data
collection and storage.

Responsible for persistence operations
(CRUD) related to the regions.

Responsible for persistence operations
(CRUD) related to the time servers.

Responsible for persistence operations
(CRUD) related to the events.

Responsible for communication with the
time servers. It isolates and abstracts
operations with the time servers to
support communication with different
types of time servers (see QA-2).

The following sequence diagrams for UC-1 and UC-2 were created in the
previous step of the method to define interfaces (as discussed in Section 3.6). A



similar diagram was also created for UC-7 but is not shown here due to space
limitations.

UC-1: Monitor Network Status

Figure 4.8 shows an initial sequence diagram for UC-1 (monitor network status).
It shows how the user representation of the topology is displayed on startup
(after the user has successfully logged into the system). Upon launch, the
topology is requested from the TopologyController on the server. This
element retrieves the root region through the RegionDataMapper and returns
it to the client. The client can then populate the view by traversing the
relationships within the Region class.
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FIGURE 4.8 Sequence diagram for use case UC-1 (Key: UML)

From the interactions identified in the sequence diagram, initial methods for
the interfaces of the interacting elements can be identified:



Method Name Description

Element: NetworkStatusMonitoringContoller

boolean initialize() Opens up the network representation so that
users can interact with it.

Region getRootRegion() Returns a reference to the root region and the
neighbors of this object (excluding traps).

Element: RequestManager

Region requestTopology() Requests the topology. This method retums a ref-
erence to the root region from which it is possible
to navigate through the complete topology.

Element: Requestservice

Response This method receives a request. Only this method

sendRequest (Request req) isexposed inthe service interface. This simplifies
the addition of other functionality in the future with-
out having to modify the existing service interface.

Element: TopologyController

Region requestTopology() Requests the topology. This method retums a ref-
erence to the root region from which it is possible
to navigate through the complete topology.

Element: RegionDataMapper

Region retrieve(int id) Returns a Region from its id.

UC-2: Detect Fault

Figure 4.9 shows an initial sequence diagram for UC-2 (detect fault) shows only
the components on the server side. The interaction starts with a TimeServer
sending a trap, which is received by the TimeServerConnector. The trap is
transformed into an Event and sent to the
TimeServerConfigurationController. The Event is sent
asynchronously to the TopologyController for publication to the clients
and is then persisted.
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FIGURE 4.9 Sequence diagram for use case UC-2 (Key: UML)

From this interaction, initial methods for the interfaces of the interacting
elements can be identified:




Method Name Description

Element: TimeserverConnector

boolean addEventListener This method allows components from the

(EventListener el) business logic to register themselves as
listeners to events that are received from the
time servers.

Element: TimeServerConfigurationController

boolean eventReceived(Event This callback method is invoked when an
avt) event is received.

Element: TopologyController

publish(Event evt) This method notifies the clients that a new
event has occurred.

Element: TimeServerDataMapper

TimeServer retrieve(int id) Retrieves a TimesServer identified by its id.

boolean update(TimeSerwver Persists changes in a Timeserver.
ts)

4.3.3.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose

The decisions made in this iteration provided an initial understanding of how
functionality is supported in the system. The modules associated with the
primary use cases were identified by the architect, and the modules associated
with the rest of the functionality were identified by another team member. From
the complete list of modules, a work assignment table was created (not shown
here) to address CRN-3.

Also, as part of module identification, a new architectural concern was
identified and added to the Kanban board. Drivers that were completely
addressed in the previous iteration are removed from the table.



Not Partially Completely Design Decisions Made During the
Addressed Addressed Addressed Iteration
uc- Modules across the layers and
preliminary interfaces to support this use
case have been identified.
uc-2 Modules across the layers and
preliminary interfaces to support this use
case have been identified.
uc-7 Modules across the layers and

QA-1

QA-2

QA-3
QA-4

CON-1
CON-4

preliminary interfaces to support this use
case have been identified.

The elements that support the
associated use case (UC-2) have been
identified.

The elements that support the
associated use case (UC-5) have been
identified.

No relevant decisions made.

The elements that support the
associated use case (UC-7) have been
identified.

No relevant decisions made.
No relevant decisions made.



CON-5 Modules responsible for collecting data
have been identified.

CON-6 Modules responsible for collecting data
storage been identified.

CRN-2 Additional technologies were identified
and selected considering the team’s
knowledge.

CRHN-3 Modules associated with all of the use
cases have been identified and a work
assignment matrix has been created (not
shown).

CRN-4 The architectural concern of unit-testing
modules, which was introduced in
this new iteration, is partially solved
through the use of an inversion of control
approach to connect the components
associated with the modules.

4.3.4 Iteration 3: Addressing Quality Attribute Scenario Driver
(QA-3)

This section presents the results of the activities that are performed in each of the
steps of ADD in the third iteration of the design process. Building on the
fundamental structural decisions made in iterations 1 and 2, we can now start to
reason about the fulfillment of some of the more important quality attributes.
This iteration focuses on just one of these quality attribute scenarios.

4.3.4.1 Step 2: Establish Iteration Goal by Selecting Drivers

For this iteration, the architect focuses on the QA-3 quality attribute scenario: A
failure occurs in the management system during operation. The management
system resumes operation in less than 30 seconds.

4.3.4.2 Step 3: Choose One or More Elements of the System to Refine

For this availability scenario, the elements that will be refined are the physical
nodes that were identified during the first iteration:

» Application server
» Database server

4.3.4.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers



The design concepts used in this iteration are the following:

Design Decisions and Location

Rationale and Assumptions

Introduce the active redundancy
tactic by replicating the application
server and other critical compo-

By replicating the critical elements, the system
can withstand the failure of one of the replicated
elements without affecting functionality.

nents such as the database

Introduce an element from the
message queue technology

family

Traps received from the time servers are placed
in the message queue and then retrieved by
the application. Use of a queue will guarantee
that traps are processed and delivered in order
(QA-1).

4.3.4.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,

and Define Interfaces

The instantiation design decisions are summarized in the following table:

Design Decisions
and Location

Rationale

Deploy message
queue on a separate
node

Use active
redundancy and
load balancing in the
application server

Implement load
balancing and
redundancy using
technology support

Deploying the message queue on a separate node will
guarantee that no traps are lost in case of application
failure. This node is replicated using the tactic of active
redundancy, but only one copy receives and treats events
coming from the network devices.

Because two replicas of the application server are active
at any time, it makes sense to distribute and balance the
load among the replicas. This tactic can be achieved
through the use of the Load-Balanced Cluster pattern (see
Section A.2.3).

This intfroduces a new architectural concern, CRN-5:
Manage state in replicas.

Many technological options for load balancing and
redundancy can be implemented without having to develop
an ad hoc solution that would be less mature and harder to
support.

The results of these instantiation decisions are recorded in the next step.

4.3.4.5 Step 6: Sketch Views and Record Design Decisions

Figure 4.10 shows a refined deployment diagram that includes the introduction
of redundancy in the system.
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The following table describes responsibilities for elements that have not been

listed previously (in iteration 1):

Responsibility
LoadBalancer Dispatches (and balances the load of) requests coming from
clients to the application servers. The load balancer also

presents a unique IP address to the clients.

TrapReceiver  Receives traps from network devices, converts them into events,
and puts these events into a persistent message queue.

The UML sequence diagram shown in figure 4.11 illustrates how the
TrapReceiver that was introduced in this iteration exchanges messages with

other elements shown in the deployment diagram to support UC-2 (detect fault),
which is associated with both QA-3 (availability) and QA-1 (performance).

Element
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FIGURE 4.11 Sequence diagram illustrating the messages exchanged
between the physical nodes to support UC-2 (Key: UML)

As the purpose of this diagram is to illustrate the communication that occurs
between the physical nodes, the names of the methods are only preliminary; they
will be refined in further iterations.

4.3.4.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose

In this iteration, important design decisions have been made to address QA-3,
which also impacted QA-1. The following table summarizes the status of the
different drivers and the decisions that were made during the iteration. Drivers
that were completely addressed in the previous iteration have been removed
from the table.



Not Partially
Addressed Addressed Addressed

Completely

Design Decisions Made During the
Iteration

QA-1

QA-2
QA-3

QA-4
CON-1

CON-4

CON-5

CON-6

CRN-2

CRN-4
CRN-5

The introduction of a separate replicated
trap receiver node can help ensure
100% of the traps are processed, even
in the case of a failure of the application
server. Furthermore, because trap
reception is performed in a separate
node, this approach reduces application
server processing load, thereby helping
performance.

Because specific technologies have not
been chosen, this driver is marked as
“partially addressed”.

No relevant decisions made.

By making the application server
redundant, we reduce the probability of
failure of the system. Furthermore, if the
load balancer fails, a passive replica is
activated within the required time period.

Because specific technologies have not
been chosen (message queue), this
driver is marked as “partially addressed".

Mo relevant decisions made.

Replication of the application server and
the use of a load balancer will help in
supporting multiple user requests.

No relevant decisions made.
No relevant decisions made.
No relevant decisions made.
No relevant decisions made.
No relevant decisions made.

This new architectural concem is
introduced in this iteration: manage state
in replicas. At this point, no relevant
decisions have been made.

4.4 Summary

In this chapter, we presented an example of using ADD to design a greenfield



system in a mature domain. We illustrated three iterations with different foci:
addressing a general concern, addressing functionality, and addressing one key
quality attribute scenario.

The example followed the roadmap discussed in Section 3.3.1. It is interesting
to observe that in the first iteration, two different reference architectures were
used to structure the system. Also, the selection of externally developed
components—in this case, frameworks—was carried out across the different
iterations. Finally, the example illustrates how new architectural concerns appear
as the design progresses.

This example demonstrates how architectural concerns, primary use cases,
and quality attribute scenarios can be addressed as part of architectural design. In
a real system, more iterations would be necessary to create a complete
architecture design by addressing other scenarios with high priority.

In this example, we assumed that the architect is using a CASE tool during
design, so diagrams were produced using UML. This is certainly not mandatory,
as we will see in the case study presented in Chapter 5. Also, note that it is
relatively simple to generate preliminary view sketches by using the information
that is generated as part of the design process.

4.5 Further Reading

Appendix A provides descriptions and bibliographical references of all the
design concepts used in this case study.



5. Case Study: Big Data System

With Serge Haziyev and Olha Hrytsay

We now present an extended design example of using ADD 3.0 in a greenfield
system for a challenging domain—that of Big Data. As of the time of writing,
this domain was still relatively new and rapidly evolving. As such, the architects
could not solely rely on past experience to guide them. They instead
complemented the design process with periodic analyses and strategic
prototyping, as we will now describe.

5.1 Business Case

This case study involves an Internet company that provides popular content and
online services to millions of web users. Besides providing information
externally, the company collects and analyzes massive logs of data that are
generated from its infrastructure (e.g., application and server logs, system
metrics). Such an approach of dealing with computer-generated log messages is
also called log management

(http://en.wikipedia.org/wiki/l.og_management_and_intelligence).

Because of very fast infrastructure growth, the company’s IT department
realizes that the existing in-house systems can no longer process the required log
data volume and velocity. Moreover, requests for a new system are coming from
other company stakeholders, including product managers and data scientists,
who would like to leverage the various kinds of data that can be collected from
multiple data sources, not just logs.

The marketecture diagram (informal depiction of the system’s structure)
shown in Figure 5.1 represents the desired solution from a functional perspective
for three major groups of users.
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FIGURE 5.1 Marketecture diagram for the Big Data system

5.2 System Requirements

Requirement elicitation activities have been previously performed. The most
important requirements collected are summarized here. They comprise a set of
primary use cases, a set of quality attribute scenarios, a set of constraints, and a

set of architectural concerns.

5.2.1 Use Case Model

The primary use cases for the system are described in the following table.



Use Case

Description

UC-1: Monitor
online services

uc-2:
Troubleshoot
online service
issues

UC-3: Provide
management
reports

UC-4: Support
data analytics

UC-5: Anomaly
detection

UC-6: Provide
security reports

On-duty operations staff can monitor the current state of
services and IT infrastructure (such as web server load,
user activities, and errors) through a real-time operational
dashboard, which enables them to quickly react to issues.

Operations, support engineers, and developers can do
troubleshooting and root-cause analysis on the latest
collected logs by searching log patterns and filtering log
messages.

Corporate users, such as IT and product managers, can see
historical information through predefined (static) reports in

a corporate Bl (business intelligence) tool, such as those
showing system load over time, product usage, service level
agreement (SLA) violations, and quality of releases.

Data scientists and analysts can do ad hoc data analysis
through SQL-like queries to find specific data patterns and
correlations to improve infrastructure capacity planning and
customer satisfaction.

The operations team should be notified 24/7 about any
unusual behavior of the system. To support this notification
plan, the system shall implement real-time anomaly detection
and alerting (future requirement).

Security analysts should be provided with the ability to
investigate potential security and compliance issues by
exploring audit log entries that include destination and source
addresses, a time stamp, and user login information (future
requirement).

5.2.2 Quality Attribute Scenarios

The most relevant quality attribute (raw) scenarios are presented in the following
table. For each scenario, we also identify the use case that it is associated with.



Quality Associated
ID Attribute Scenario Use Case

QA1 Performance The system shall collect up to 15,000 events/ UC-1,2,5
second from approximately 300 web servers.

QA-2 Performance The system shall automatically refresh the UC-1
real-time monitoring dashboard for on-duty
operations staff with < 1 min latency.

QA-3 Performance The system shall provide real-time search uc-2
queries for emergency troubleshooting with
< 10 seconds query execution time, for the
last 2 weeks of data.

QA-4 Performance The system shall provide near-real-time UC-3,6
static reports with per-minute aggregation
for business users with < 15 min latency, < 5
seconds report load.

QA-5 Performance The system shall provide ad hoc (i.e., non- UC-4
predefined) SQL-like human-time queries
for raw and aggregated historical data, with
< 2 minutes query execution time. Results
should be available for query in < 1 hour.

QA-6  Scalability The system shall store raw data for the last2  UC-2
weeks available for emergency troubleshoot-
ing (via full-text search through logs).

QA-7  Scalability The system shall store raw data for the last uc-4
60 days (approximately 1 TB of raw data per
day, approximately 60 TB in total).

QA-8  Scalability The system shall store per-minute UC-3,4,6
aggregated data for 1 year (approximately
40 TB) and per-hour aggregated data for 10
years (approximately 50 TB).

QA-9 Extensibility = The system shall support adding new data Uuc-,2,5
sources by just updating a configuration, with
no interruption of ongoing data collection.

QA-10 Availability The system shall continue operating with All use
no downtime if any single node or cases
component fails.

QA-11  Deployability The system deployment procedure shall be All use
fully automated and support a number of envi- cases
ronments: development, test, and production.




5.2.3 Constraints
The constraints associated with the system are presented in the following table.

ID Constraint

CON-1 The system shall be composed primarily of open source technologies
(for cost reasons). For those components where the value/cost of
using proprietary technology is much higher, proprietary technology
may be used.

CON-2 The system shall use the corporate Bl tool with a SQL interface for
static reports (e.g., MicroStrategy, QlikView, Tableau).

CON-3 The system shall support two specific deployment environments:
private cloud (with VMware vSphere Hypervisor) and public cloud
(Amazon Web Services). Architecture and technology decisions should
be made to keep deployment vendor as agnostic as possible.

5.2.4 Architectural Concerns

The initial architectural concerns that are considered are shown in the following
table.

ID Concern

CRN-1 Establishing an initial overall structure as this is a greenfield system.

CRN-2 Leverage the team’s knowledge of the Apache Big Data ecosystem.
5.3 The Design Process

Now that we have enumerated the requirements, we are ready to begin the first
iteration of ADD. This is a system from a relatively novel domain that is being
created from scratch. Hence we follow the roadmap of design for greenfield
systems in mature domains (as discussed in Section 3.3.1), albeit with some
modifications to address the uncertainties inherent in the Big Data domain, such
as the rapid emergence and evolution of technologies.

5.3.1 ADD Step 1: Review Inputs

The first step of the method involves reviewing the inputs. They are summarized
in the following table.



Category Details

Design This is a greenfield system in a relatively novel domain. The organi-

purpose zation will perform development following an Agile process with short
iterations so that developers can quickly receive real-world feedback
and continue modifying the system. At the same time, an architectur-
al design is needed to make conscious decisions to satisfy architec-
tural drivers and avoid unnecessary rework.

Primary From the use cases presented in Section 5.2.1, the following ones
functional are designated as primary:
requirements UC-1

" UC-2

* UC-3

* UC-4
Quality The following table illustrates the priority of the primary quality
attribute attribute scenarios, as ranked by the customer and architect (as
scenarios discussed in Section 3.3.2). Note that quality attributes scenarios

with lower priorities exist but are not shown here.

Scenario Importance to Difficulty of Implementation
ID Customer According to Architect
QA-1 High High

QA-2 High Medium

QA-3 Medium Medium

QA-4 High High

QA-5 Medium High

QA-6 Medium Medium

QA-7 Medium Medium

QA-8 High Medium

QA-9 High Medium

QA-10 High Medium

QA-11 Medium High

Constraints See Section 5.2.3.

Architectural  All of the architectural concerns presented in Section 5.2.4 are
concerns included as drivers.

5.3.2 Iteration 1: Reference Architecture and Overall System
Structure

Thin camtiAan mmnnandtn tha vanilén Af tlha AAdicridtAan thnt frvA mAarfAarvenad 1 AR~k AF kA



L1115 SECLIVLL PLESELILS LWL 1E5ULLS UL L dUUVILED Uldl diIt peliuliieu 1l edell vl uie

steps of the ADD method in the first iteration of the design process.

5.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers

This is the first iteration in the design of a greenfield system, so the iteration goal
is to establish an initial overall structure for the system (CRN-1). Even though
this first iteration is driven by a general architectural concern, the architect must
keep in mind all of the drivers and, in particular, constraints and quality
attributes:

» CON-1: Leverage open source technologies whenever applicable s CON-2:
Use corporate BI tool with SQL interface for static reports s CON-3: Two
deployment environments: private and public clouds » QA-1, 2, 3, 4, 5:
Performance

» QA-6, 7, 8: Scalability
» QA-9: Extensibility
» QA-10: Availability
» QA-11: Deployability

5.3.2.2 Step 3: Choose One or More Elements of the System to Refine

Again, as this is greenfield development, and we are in the initial iteration, the
element to refine is the entire system.

5.3.2.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers

In this iteration, design concepts are selected from a group of data analytics
reference architectures (a list of such reference architectures can be found in the
design concepts catalog of the Smart Decisions Game; see the Further Reading
section for more information).



Design
Decisions and
Location

Rationale

Build the
application as
an instance of
the Lambda
(reference)
architecture

The Lambda architecture, shown in Figure 5.2, is a reference
architecture that splits the processing of a data stream into two
streams: the “speed layer”, which supports access to real-time
data (UC-1, UC-2, UC-5), and a layer that groups the “batch”
and “serving” layers, which supports access to historical data
(UC-3, UC-4, UC-6). (The creators of the Lambda architecture
refer to these as “layers”, but this is different from prio—and
more standard—usages of this term, which typically refer to

a grouping of modules. Here the layers are groups of runtime
components.) While the batch layer is based on immutable
nonrelational techniques, the speed layer is based on streaming
techniques to support strict real-time processing requirements.

Immutability in this case means that the data is not updated or
deleted when it is collected; that is, it can be only appended.
As all data is collected, no data can be lost and a machine

or human error can be tolerated. For example, if a software
engineer made an occasional mistake in processing or viewing
logic, once that problem is resolved, the collected data can be
used to replay and recompute the views from scratch.

For the reader’s convenience we describe the basic concepts of
the Lambda architecture by walking through five steps:

1. All data received from multiple data sources is dispatched
through the data stream element to both the batch layer and
the speed layer for processing.

2. The batch layer acts as a landing zone that corresponds to
the master dataset element (as an immutable, append-only
set of raw data), and also precomputes information that will
be used by the batch views.



Use fault
tolerance and no
single point of
failure principle
for all elements
in the system

3. The serving layer contains precalculated and aggregated
views optimized for querying with low latency, which is often
required by reporting solutions.

4. The speed layer processes and provides access to recent
data through real-time views that are not available in the
serving layer due to the high latency of batch processing.

5. All data in the system is available for querying, whether it is
historical or recent, representing the key Lambda architec-
ture principle: guery = function (batch data + real-time data).

The parallel streams provide “complexity isolation”, meaning that
design decisions, development, and execution of each stream
can be done independently, which has been shown to increase
fault tolerance, scalability, and modifiability (see Table 5.1).

Figure 5.3 depicts the architectural tradeoffs between these
alternatives, and demonstrates the differences between the
reference architectures in terms of four quality dimensions:
scalability, support for ad hoc analysis, unstructured data
processing capabilities, and real-time analysis capabilities:

As Figure 5.3 shows, the Lambda architecture provides the best
tradeoff between scalability and ad hoc analysis.

Fault tolerance has become a standard for most Big Data
technologies and the Lambda architecture already implies a

number of design decisions to build a robust and fault-tolerant
system, as noted above.

However, we will need to make sure, in all subsequent design
and deployment decisions, that all candidate technologies
will support the QA-10 requirement by providing fault-tolerant
configurations and adhering to the “no single point of failure”
principle.




Alternative

Reason for Discarding

Traditional relational

Extended relational

Pure nonrelational

Data refinery

This reference architecture is based on traditional relational
model principles and SQL-based DBMSs, which are
considered highly efficient for complex ad hoc read queries.

This is, however, the least appropriate altemative because
of scalability and real-time processing limitations.

Although this reference architecture is completely based
on relational model principles and SQL-based DBMSs, it
intensively uses massive parallel processing (MPP) and in-
memory techniques to improve scalability and extensibility.

It is less appropriate because of its high cost and real-time
processing limitations.

This reference architecture does not rely on relational model
principles. It is often built on techniques such as NoSQL and
MapReduce, and is effective for processing semistructured
and unstructured data.

This alternative is closer to the goal in terms of cost
economy and scalability, but ad hoc analysis is limited.

A non-relational component performs an extract—transform-—
load (ETL) process to refine semistructured/unstructured
data and load it, cleansed, into a data warehouse (a
relational database) for further analysis.

It is less appropriate for this solution mostly because of its
high cost and significant deficiencies in terms of real-time
processing capabilities.

TABLE 5.1 Alternatives and Reasons for Discarding
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5.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,

and Define Interfaces

The instantiation design decisions considered and made are summarized in the

following table.



Design Decision and
Location

Rationale

Split the Query and
Reporting element
into two subelements
associated with the
drivers

Split the Precomputing
and Batch Views
elements into
subelements
associated with Ad Hoc
and Static Views

Change semantics and
name of the Master
Dataset to Raw Data
Storage

The Query and Reporting element in the Lambda
architecture is divided into the following two sub-elements.
They are associated with drivers as follows:

* Corporate Bl tool (UC-3, UC-4, QA-4, QA-5, CON-2)

* Dashboard/visualization tool (UC-1, UC-2, QA-2, QA-3)
This division is driven by knowledge of the domain and

the availability of tools. The guiding rationale is to have
flexibility in selecting appropriate technologies—there could
not be one single “universal” tool to satisfy all of these use
cases, constraints, and quality attributes. Thus, we choose
to separate concems, which should give us more design
options. Another difference from the “standard” Lambda
architecture is that we may not need to merge the results of
queries: According to our use cases, they can be executed
independently for batch and real-time views.

These elements are decomposed into two subelements
each:

* Ad Hoc Views Precomputing and Ad Hoc Batch Views
(UC-4, QA-5)

" Static Views Precomputing and Static Batch Views
(UC-3, QA-4, CON-2)

The reason for this subdivision is the same as with the

previous case: It gives us more flexibility to select the

optimal patterns and technologies. If we discover, in

subsequent design iterations, that there is one approach

to address these two concerns simultaneously, it will be

simple to merge these elements.

This is more than just a name change; it is also a change
in semantics. According to QA-7, the system shall store
raw data for least 60 days. Thus older data can be
archived and stored using other storage technologies

(or even deleted). The Master Dataset has more
responsibilities: It includes raw data storage as well as
archived data. To simplify this case, the study of archived
data will not be addressed.

In this initial iteration it is typically too early to precisely define functionality

and interfaces.

5.3.2.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.4 shows the result of the prior instantiation design decisions. The table



that begins on the next page summarizes each element’s responsibilities.
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Element

Responsibility

Data Sources

Data Stream

Batch Layer

Serving Layer

Speed Layer

Raw Data Storage

Ad Hoc Views
Precomputing

Static Views
Precomputing

Ad Hoc Batch
Views

Web servers that generate logs and system metrics (e.g.,
Apache access and error log, Linux sysstat).

This element collects data from all data sources in real-time and
dispatches it to both the Batch Layer and the Speed Layer for
processing.

This layer is responsible for storing raw data and precomputing
the batch views to be stored in the Serving Layer.

This layer exposes the batch views in a data store (with no
random writes, but batch updates and random reads), so that
they can be queried with low latency.

This layer processes and provides access to recent data, which
is not available yet in the serving layer due to the high latency of
batch processing, through a set of real-time views.

This element is a part of the batch layer and is responsible for

storing raw data (immutable, append only) for a specified period
of time (QA-7).

This element is a part of the Batch Layer and is responsible

for precomputing the Ad Hoc Batch Views. The precomputing
represents batch operations over raw data that transformitto a
state suitable for fast human-time querying.

This element is a part of the Batch Layer and is responsible

for precomputing the Static Batch Views. The precomputing
represents batch operations over raw data that transform it to a
state suitable for fast human-time querying.

This element is a part of the Serving Layer and contains
precalculated and aggregated data optimized for ad hoc low-
latency queries (QA-5) executed by data scientists/analysts.



Static Batch This element is a part of the Serving Layer and contains
Views precalculated and aggregated data optimized for predefined
low-latency queries (QA-4) generated by a corporate Bl tool.

Real-Time Views  This element is a part of the Speed Layer and contains indexed
logs optimized for ad hoc, low-latency search queries (QA-3)
executed by operations and engineering staff.

Corporate Bl This business intelligence tool is licensed to be used across

Tool different departments. The tool supports a SQL interface (such
as ODBC or JDBC) and can be connected to multiple data
sources, including this system (UC-3, UC-4, CON-2).

Dashboard/ The operations team uses this real-time operational dashboard
Visualization Tool to monitor online services, search for important messages in
logs, and quickly react to potential issues (UC-1, UC-2).

5.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose

The decisions made in this iteration address important early considerations
affecting the overall system structure. You do not need to start from a “blank
page”, because the selected reference architecture already offers a proven initial
decomposition and data flow that significantly saves design time and effort.
Further design decisions will need to be made to selected candidate technologies
and more details provided on how use cases and quality attributes will be
supported.

The following table summarizes the design progress using the Kanban board
technique discussed in Section 3.8.2.




Not
Addressed

Partially Completely
Addressed Addressed

Design Decisions Made During the
Iteration

UC-1

uc-2

uc-3

ucC-4

UC-5

UC-6

QA-1

Use Lambda architecture to provide
access to real-time data. No detailed
decisions of which dashboard
technology to use have been made.

Use Lambda architecture to provide
access to real-time data. No detailed
decisions of which search technology
to use have been made.

Use Lambda architecture to provide

access to historical data. No detailed
decisions of which storage and query
technologies to use have been made.

Use Lambda architecture to provide

access to historical data. No detailed
decisions of which storage and query
technologies to use have been made.

This use case has been omitted in
this iteration as nonprimary, although
the Lambda architecture supports it
and we will address it in subsequent
iterations.

This use case has been omitted in this
iteration as nonprimary, although from
an architectural standpoint it is similar
to UC-3.

Potential data sources for the Data
Stream element have been identified.
No detailed decisions of which
technologies to use for the data
stream element have been made.



QA-3

QA-5

QA-6

The Real-Time Views element

has been identified. No detailed
decisions of which storage and query
technology to use have been made.

The Static Batch Views element has
been identified and its responsibilities
have been established. No detailed
decisions of which storage technology
to use have been made.

The Ad Hoc Batch Views element has
been identified and its responsibilities
have been established. No detailed
decisions of which storage and query
technology to use have been made.

The Real-Time Views element’s
responsibilities have been
established. No detailed decisions of
which storage and query technology
to use have been made.

The Raw Data Storage element has
been identified and its responsibilities
have been established. No detailed
decisions of which storage technology
to use have been made.

The Ad Hoc and Static Batch Views
elements have been identified and
their responsibilities have been
established. No detailed decisions
of which storage technologies to use
have been made.



QA-10 It has been decided that all
technologies chosen to implement the
system elements support QA-10 by
providing fault-tolerance configuration
and no single point of failure.

CON-2 The Corporate Bl Tool element has
been identified. No detailed decisions
on how this constraint will be met have
been made.

CRN-1 An overall logical structure of the
system has been established but the
physical structure still needs to be
defined.

CRN-2 Mo relevant decisions made

5.3.3 Iteration 2: Selection of Technologies

This section presents the results of the activities that are performed in each of the
steps of ADD in the second iteration of the design process.

Technology choices often influence the system architecture, meaning that we
need to select technologies at the earliest stages of architecture design. Choosing
technologies starts with the identification and selection of technology families
that are further instantiated into specific technologies. Starting with technology
families allows us to make specific technologies interchangeable and thus keep
the right level of technology agnosticism to avoid vendor lock-in (and as a result,
there is less risk and less cost to change a technology to a better one in the
future).

In this iteration we will show a technology tree that helps us choose optimal
building blocks when designing Big Data greenfield systems.

5.3.3.1 Step 2: Establish Iteration Goal by Selecting Drivers

The goal of this iteration is to address CRN-2 (leverage the team’s knowledge of
the Apache Big Data ecosystem) by selecting technologies to support system
requirements defined in Section 5.2, particularly keeping in mind CON-1 (favor
open source technologies).

5.3.3.2 Step 3: Choose One or More Elements of the System to Refine

The reference architecture selected in the previous iteration (the Lambda
architecture) was decomposed into elements that facilitate the selection of
technology families and their associated specific technologies. These elements



include the Data Stream, Raw Data Storaée, Ad Hoc and Static Views
Precomputing, Ad Hoc and Static Batch Views, Real-Time Views, and
Dashboard/Visualization Tool.

5.3.3.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers

The design concepts used in this iteration are externally developed components.
Initially, technology families are selected and associated with the elements to be
refined. A technology family represents a group of technologies with common
functional purposes (see Section 2.5.5). The family names are indicative of their
function, and some specific technologies may belong to several families at the
same time, but having such a classification helps us make rational design
decisions that eventually pay off in less rework and better readiness for changes.
The history of the software industry shows that technology implementations are
emerging, evolving, and disappearing much faster than the patterns and
principles represented by their families.

Figure 5.5 illustrates family groups, technology families (in regular text), and
their associated specific technologies (in italic text) for the Big Data domain.
Further details about a number of these technologies can be found in the design
concepts catalog of the Smart Decisions Game (see the Further Reading section).
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FIGURE 5.5 An example of a Big Data analytics design concepts catalog
(Source: Softserve)

The BI Platform family group and related technologies are not considered
further in this design exercise because the corporate BI tool is external to the

target system.

Design
Decisions and
Location

Rationale and Assumptions

Select the Data
Collector family
for the Data

Stream element

Select the
Distributed File
System family
for the Raw Data
Storage element

Data Collector is a technology family (and an architectural
pattem) that collects, aggregates, and transfers log data for
later use. Usually Data Collector implementations offer out-of-
the-box plug-ins for integrating with popular event sources and

destinations.

The destinations are the Raw Data Storage and Real-Time
Views elements, which will also be addressed in this iteration.

Alternative Reason for Discarding

ETL Engine The main purpose of ETL engines is to perform

Distributed
Message
Broker

batch transformations, rather than per-event
operations. This means that real-time perfor-
mance and scalability criteria (QA-1, QA-2) will
be extremely difficult to meet (if it is possible to
meet them at all).

Although this technology family can be solely
used to implement the Data Stream element,

it provides less support for extensibility (QA-9)
and, therefore, is better suited as a complement
to the data collector. This can be achieved,

for example, using Flavka—a combination of
Apache Flume (Data Collector) and Apache
Kafka (Distributed Message Broker).

According to the Lambda architecture principles, the Raw Data
Storage element must be immutable. Thus new data should not
modify existing data, but just be appended to the dataset. Data
will be read in batch operations for transforming raw data to
Batch Views. For these purposes, we can confidently choose a
Distributed File System.



Select Interactive
Query Engine
family for both
the Static and Ad
Hoc Baich Views
elements

Alternative Reason for Discarding

NoSQL Although NoSQL databases (especially col-

Database  umn-family and document-oriented) can be used
for storing raw data, such as logs, this will cause
unnecessary overhead in resource consumption
(mostly memory consumption because of cach-
ing mechanisms) and maintainability (because of
the need of configuring and evolving a schema).

Analytic All relational databases including analytic capa-

RDBMS bilities are based on the relational model, forming
tables and rows. This works very well for execut-
ing complex queries, but this option is awkward
(and expensive) for storing semistructured logs
in their raw format.

As we stated in the previous iteration, the Batch Views element
is refined into two elements, the Static and Ad Hoc Batch
Views, to support two use cases: the generation of static re-
ports (UC-3, 6) and the support for ad hoc querying (UC-4).
The main design decision is to use the same technology family
for both Static and Ad Hoc Batch Views—namely, the Interac-
tive Query Engine. These engines allow analytic database ca-
pabilities over data stored in a Distributed File System (thus

this technology family is also selected implicitly). If we select a
technology that is fast enough, it can be used for both elements.
The benefit of using a single technology family is that we do not
need to have separate storage technologies for reporting and
querying data.



Alternative Reason for Discarding

NoSQL
Database

Analytic
RDBMS

The Static Batch Views element can be imple-
mented with the Materialized View pattern, by
storing data in a form that is ready for querying
and displaying in a reporting system (a corporate
Bl tool). The NoSQL Database family is often
used for this purpose because it provides good
scalability and, being open source, satisfies
QA-8 (approximately 90 TB of aggregated data)
and CON-1 (open source license).

However, NoSQL databases are not good op-
tions to use as data warehouses for ad hoc que-
ries because they were not designed for analytic
purposes. Although they can be used for this
purpose, this application will result in significant
performance penalties.

This alternative is therefore discarded as it can
be used only for the Static Batch Views, but is
ineffective for Ad Hoc Batch Views

Ad hoc queries can be any queries that are
supported by a SQL-like interface. The query
result must be returned within “human” time
(QA-5). The described scenario is exactly what
a data warehouse is used for. This pattern is
usually implemented with Analytic RDBMS tech-
nologies following the Kimball or Inmon design
approaches. At the same time, it will be quite
coslly to satisfy the scalability requirement of
having approximately 90 TB of aggregated data.
The cost per terabyte in MPP analytic databases
is significantly higher (up to 30 times) than the
same amount of data in a NoSQL database or a
distributed file system (such as Hadoop).

This alternative is rejected because even if it
can be used for both Static and Ad Hoc Batch
Views, the technologies associated with this
family are costly compared to (open source)
Hadoop-based altematives.




Use Data
Processing
Framework
for the Views
Precomputing
elements

Select Distributed
Search Engine
for the Real-Time
Views element

As we have already selected the Distributed File System family
for Raw Data Storage and Batch Views, the next stepis to
choose a solution for data transformation from the Raw Data
Storage to the format used in the Batch Views.

The decision is to select Data Processing Framework as

this technology family allows data processing pipelines to be
created using abstractions that support faster development and
better maintainability.

Alternative Reason for Discarding

Distributed Most Distributed Computing Engine technologies

Computing are designed for batch data processing, but

Engine require substantial knowledge of low-level
primitives (e.g., for writing MapReduce tasks).

Event This is designed for real-time streaming
Stream processing; it is ineffective for batch operations.
Processor

The Real-Time Views element is responsible for full-text search
over recent logs and for feeding an operational dashboard with
real-time monitoring data (UC-1, UC-2). Distributed Search
Engine is a technology family that serves just such purposes.

Alternative Reason for Discarding

NoSQL Some NoSQL databases provide keyword

Database  search or text search, but these are not as
powerful and fast as search engines that also
provide text-processing features such as
stemming and geolocation.



Analytic Some databases provide full-text search

RDBMS capabilities (e.g., MS SQL Server); however,
they are less desirable from extensibility,
maintenance, and cost standpoints.

Distributed This approach works well for batch historical
File System data; however, the latency of storing and

and processing will be too high for real-time data.
Interactive
Query
Engine
Automate Puppet scripts can be used for both Private Cloud (e.g., VMware)

deployment of and Public Cloud (e.g., AWS) deployments. This supports the

the system with satisfaction of CON-3. Puppet allows automating the deployment

Puppet scripts process as well as managing the configuration of a system.
There is a library of predefined scripts written by the Puppet
community to automate the deployment of many popular open
source technologies.

5.3.3.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces

In this iteration, instantiation is performed by associating specific technologies
with the technology families that were previously selected. The instantiation
design decisions considered and made are summarized in the following table:



Design Decision
and Location

Rationale

Use Apache
Flume from the
Data Collector
family for the Data
Stream element

Use HDFS from
the Distributed
File System family
for the Raw Data
Storage element

Use Impala from
the Interactive
Query Engine
family for both
the Static and Ad
Hoc Batch Views
elements

As a primary candidate technology, we will select Apache
Flume. It provides the required configurability to support QA-9
(adding new data sources by just updating a configuration at
run-time).

Alternative Reason for Discarding

Logstashor  Although Logstash and Fluentd are quite

Fluentd popular technologies (perhaps as popular as
Flume) and will satisfy the requirements, we
have to make a choice and select only one.
An extra argument for choosing Flume is its
support by three major Hadoop distribution
vendors.

For this technology, we can confidently choose HDFS, which
was designed to support exactly this type of usage scenario

for large data sets (QA-7, storing approximately 60 TB of raw
data). There are also a number of Hadoop file formats in which
to store data in HDFS, such as text file, SequenceFile, RCFile,
ORCFile, Avro, and Parquet. The selection of a file format will be
addressed in the third iteration.

Alternative Reason for Discarding

CassandraFS This technology is dependent on a NoSQL
Database (Cassandra), whereas we have
chosen Distributed File System alone.

We select Impala as a primary candidate technology, as it offers
competitive performance (although it is still not as fast as the
top Analytic RDBMS platforms) and an ODBC interface for
connectivity with a corporate Bl tool.

Keeping possible performance issues in mind, we plan a proof-
of-concept in the next iterations to make sure this technology
selection satisfies QA-4 (less than 5 seconds report load) and
QA-5 (less than 2 minutes ad hoc query execution time).



Use Elasticsearch
from the Distribu-
ted Search En-
gine family for the
Real-Time Views
elements. Use
Kibana from the
Interactive Dash-
board family for
the Dashboard/
Visualization Tool
element.

Use Hive from the
Data Processing
Framework

for the Views
Precomputing
elements

Alternative Reason for Discarding

Apache Hive  Although Hive improved performance thanks

(Stinger) to the Stinger initiative, the speed of queries is
still slow compared to other alternatives such
as Impala and Spark SQL.

Spark SQL Spark is a very promising technology for Big
Data analytics, but the use case of serving as a
SQL adapter for a Bl tool might not be optimal
for Spark SQL. The downside is the high
memory requirements and long query time of
noncached data. In contrast, Impala has been
designed and optimized for this exact scenario.

As a primary candidate technology, we select Elasticsearch,
since it also provides a visualization tool: an interactive
dashboard called Kibana.

Although Kibana is a relatively simple dashboard without
role-based security (at least, at the moment of designing this
solution), it satisfies use cases UC-1, 2 and QA-2 (auto-refresh
dashboard with a less than 1 minute period).

Elasticsearch also provides a domain-specific language (Query
DSL) that is supported by Kibana to query, filter, and visualize
time series.

Alternative Reason for Discarding

Splunk Splunk also provides indexing and visualization
capabilities (offering more features than
Elasticsearch and Kibana); however, CON-1
drives us to prefer an open source solution.

We select Hive as a primary technology candidate, although

we will need to make sure that QA-4 (less than 15 minutes
latency) is satisfied by creating a proof-of-concept prototype in a
subsequent iteration.

Hive provides a SQL-like language, just like Impala (which
has been already selected in this iteration); thus it allows us to
leverage the skills of data warehouse designers when writing
data transformation scripts.

Alternative Reason for Discarding

Cascadingor We disqualified Cascading and Pig so that we
Apache Pig can minimize development time by leveraging
the SQL skills of an existing development team.




The data exchanged between the elements will be defined more precisely in
subsequent iterations. The format of this data constitutes the “interfaces”
between the elements.

5.3.3.5 Step 6: Sketch Views and Record Design Decisions

Figure 5.6 illustrates the result of the instantiation decisions. The responsibilities
of the elements shown in the diagram were discussed in step 6 of Iteration 1. The
following table summarizes the technology families and candidate specific
technologies selected for these elements:

Element Technology Family Candidate Technology
Data Stream Data Collector Apache Flume
Raw Data Storage Distributed File System HDFS

Ad Hoc Views Data Processing Framework  Apache Hive
Precomputing

Static Views Data Processing Framework ~Apache Hive
Precomputing

Ad Hoc Batch Views Interactive Query Engine Impala

Static Batch Views Interactive Query Engine Impala
Real-Time Views Distributed Search Engine Elasticsearch
Dashboard/ Interactive Dashboard Kibana

Visualization Tool
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FIGURE 5.6 Iteration 2 instantiation design decisions

The next table explains the relationships between elements based on the
selected technologies:

Source Element Destination Element Relationship Description

Data Sources (logs) Data Stream (Flume)  To be defined in the next iteration

Data Stream (Flume) Raw Data Storage Network communication (push)
(HDFS) through Flume HDFS sink

Raw Data Storage Views Precomputing Local and network communication

(HDFS) (Apache Hive) encapsulated through Hive

Views Precomputing  Batch Views (Impala)  Local and network communication

(Apache Hive) encapsulated through Hive

Batch Views (Impala) Corporate Bl Tool Network communication (pull)

through ODBC API

Data Stream (Flume) Real-Time Views Network communication (push)
(Elasticsearch) through Flume Elasticsearch sink

Real-Time Views Dashboard/ Network communication (pull)

(Elasticsearch) Visualization Tool through Elasticsearch API
(Kibana)

5.3.3.6 Step 7: Perform Analysis of Current Design and Review Iteration



Goal and Achievement If Design Purpose

The following Kanban table summarizes the design progress and the decisions
made during the iteration. Note that drivers that were completely addressed in
the previous iteration are not shown.

Not Partially Completely Design Decisions Made During the
Addressed Addressed Addressed Iteration
uUC-1 Use Distributed Search Engine (Elastic-

search) and Interactive Dashboard
(Kibana) to display real-time monitoring
information.

Pending: Model indexes and create Ul
mockup.

uc-2 Use Distributed Search Engine (Elastic-
search) and Interactive Dashboard
(Kibana) for full-text search over recent
log data.
Pending: Model indexes and create a
proof-of-concept.

UC-3 Use Interactive Query Engine (Impala) for
uc-4 the Batch Views elements.

Pending: Model data and typical reports.

uc-6 This use case has been omitted in this
iteration as nonprimary, although itis
similar to UC-3 from an architectural
standpoint.

QA-1 Use Data Collector (Apache Flume) for
the Data Stream element.

Pending: Configuration, proof-of-concept,
and performance tests.

QA-2 Use Distributed Search Engine
QA-3 (Elasticsearch) and Interactive
Dashboard (Kibana).

Pending: Proof-of-concept and
performance tests.



QA-4

QA-5

QA-6

QA-7

QA-8

QA-9

Use Interactive Query Engine (Impala) for
the Static Batch Views element.

Pending: Model data, proof-of-concept,
and performance tests.

Use Interactive Query Engine (Impala) for
the Ad Hoc Batch Views element.

Pending: Model data, proof-of-concept,
and performance tests.

Use Distributed Search Engine
(Elasticsearch) for the Real-Time Views
element.

Pending: Do capacity planning.

Use Distributed File System (HDFS) for
the Raw Data Storage element.
Pending: Select file format and do
capacity planning.

Use Distributed File System (HDFS) as
storage for Batch Views.

Pending: Select file format and do
capacity planning.

Use Data Collector (Apache Flume) for
the Data Stream element.

Pending: Configuration and proof-of-
concept.



QA-10 Use fault tolerance in all system
elements.

Pending: Stress test.
QA-11 Use Puppet scripts to automate the

deployment process for different
environments.

CON-1 All the selected technologies are open
source.

CON-2 Use Interactive Query Engine (Impala)
with ODBC interface.

CON-3 All selected technologies can be

deployed to both private cloud (VMware)
and public cloud (AWS) environments
using Puppet scripts.

CRN-1 No relevant decisions made.

CRN-2 Technologies from the Apache Big Data
ecosystem were selected and associated
with the different elements in the
reference architecture.

5.3.4 Iteration 3: Refinement of the Data Stream Element

This section presents the results of the activities that are performed in each of the
steps of ADD for the third iteration of the design process.

Some design decisions made in this iteration require the creation of a proof-
of-concept prototype, as they cannot be addressed in a purely conceptual
manner. Given that the Big Data field is young and technologies are rapidly
evolving, proofs-of-concepts of key elements are necessary to mitigate
technology risks (e.g., incompatibility, slow performance, unsatisfactory
reliability, limitations of claimed features) and to have the option to switch to an
alternative early in the design and development process, thereby saving overall
time and budget by avoiding later rework.

5.3.4.1 Step 2: Establish the Iteration Goal by Selecting Drivers

The goal of this iteration is to address several concerns associated with the
selection of Apache Flume, as the technology to be used for the Data Collector
element. Apache Flume provides a reference structure—a data-flow model—
depicted in the informal diagram shown in Figure 5.7.

The elements in Flume’s structure include:



» The source: consumes events delivered to it by external data sources such
as web servers » The channel: stores events received by the source

» The sink: removes events from the channel and puts them in an external
repository (i.e., destination)

Flume Agent/Collector

Channel

source

LEQEHd:
Pata Data Flow

Sources (With direction indicated) Pestinations

FIGURE 5.7 Apache Flume data-flow reference structure

The selection of Apache Flume raises several specific architectural concerns
that need to be addressed:

» Selecting a mechanism for getting data from the external sources =
Selecting specific input formats in the Source element = Selecting a file
data format in which to store the events » Selecting a mechanism for the
channeling events in the channel = Establishing a deployment topology for
the Data Source elements Addressing these specific architectural concerns
will contribute to the satisfaction of the following quality attributes:

» QA-1 (Performance)
» QA-7 (Scalability)

» QA-9 (Extensibility)
» QA-10 (Availability)

5.3.4.2 Step 3: Choose One or More Elements of the System to Refine
In this iteration, the focus is on the elements in Flume’s structure.

5.3.4.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers

In this iteration most of the decisions are about instantiation, since they primarily
involve configuring the elements that are already established by Flume. The only
selection design decision involves choosing tactics to satisfy the availability and

nerformance Analitv attrihntec



PLuiiviiatuatce Yutiiity utiiivueeUe

Design Decisions and
Location Rationale and Assumptions

Use Flume in agent/ A Flume instance can run in two modes: as an agent

collector configuration.  (directly co-located in the data sources) or as a collector

Agents are co-located (which combines data streams from multiple agents and

on the web servers, and writes to destinations).

the collector runs inthe  From these two modes, Flume can be used in different

Data Stream element.  configurations. The decision is to use Flume in both agent
and collector configuration: The agents are co-located
with the data sources and the Collector runs in the Data
Stream element.

Alternative Reason for Discarding

Flume agents are on  Generates heavy traffic

each web server and from 300-plus simultaneous

write events directly to connections to sinks (HDFS

sinks (no collectors)  and Elasticsearch). Produces
multiple (per web server) files
in HDFS, which is suboptimal
for this distributed file system
(rather than having larger
files that aggregate data from
multiple web servers).

Flume collectors Does not support failover mode.
receive events directly If a collector node fails, the
from web servers (no connected web servers will lose
agents) and writeto  areceiver.

sinks

Introduce the tactic of Out of the possible topology alternatives, the selected
“maintaining multiples one is a load-balanced and failover tiered topology
copies of computations” based on performance (QA-1, 15,000 events/second)
by using a load- and availability (QA-10, no single point of failure) quality
balanced, failover tiered attribute scenarios.

configuration

Alternative Reason for Discarding
Not replicating the This would decrease
collector performance and availability.

5.3.4.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces

The instantiation design decisions made in this iteration are summarized in the



following table:

Design Decisions and

Location Rationale and Assumptions

Use access and error The system requirements include the collection and

logs from the Apache analysis of logs such as web server load, user activities,
HTTP Server as input and errors. In reality, there could be tens (and sometimes
formats hundreds) of data source types.

For the development of the proof-of-concept, a single type
of data source system is considered: an Apache HTTP
server (“web server”). The data to be collected includes
user activities that will be tracked through an access log
and system errors through an error log.

The web server access log records all requests
processed by the server. A log entry might look like this:

1432.21.52.246 - - [19/Jun/2014:12:15:17
+0000] "GET /test.html HTTE/1.1" 200 341 r-»
"Mozilla/5.0 (X11; Linux x86_64; rv:6.0al)
Gecko/20110421 Firefox/6.0al".

This example consists of the following data fields: client
IP address, client identity, user ID, time stamp, request
method, request URL, request protocol, response code,
response size, referrer, user agent.

The web server error log sends diagnostic information
and records any errors that it encounters when
processing user requests. For example:

[19/Jun/2014:14:23:15 +0000] [error] [client
50.83.180.156] Directory index forbidden by
rule: /home/httpd/

This example consists of the following data fields: time
stamp, severity level, client IP address, message.

Further data modeling and technology configuration will
be based on these two types of logs and the described
fields.



Log files are piped
through an IP port in the
source element of Flume
agent

Identify event
channeling methods
for both the agents and
the collector; make
final decision through

prototyping

Apache Flume is configured to pipe log data through an
IP port, such as by using syslog.

Alternative Reason for Discarding

Read from a log file This option looks the simplest

(e.g., running the but does not guarantee event

UNIX command delivery (events can be lost),

tail -F access_log) whichis statedinthe Flume
user guide.

The ingested events from the Source element are staged
in the Channel element. At the moment Flume offers three
possible options to configure the channel:

1. Memory channel: in-memory queue; faster, but if any
events are left in the memory queue when a Flume
process dies, they cannot be recovered.

2. File channel: durable and backed up by the local file
system.

3. Apache Kafka: an approach in which Kafka serves as
a distributed and highly available channel.

The selection from these options actually is a “classic”
tradeoff of performance versus availability (or what is
sometimes termed durability). Although we do not have
an explicit durability scenario, we understand that with
the future system extension (UC-6, security reports), this
requirement becomes more critical. This is an example
of an architectural concern, in the sense that it does not
appear in any requirements document, but the architect
has to deal with it nonetheless.

Given these options and no publicly available information
about the performance consequences, this is a good
candidate for prototyping and making a decision based
on the results. Another rationale for prototyping and
performance measurement is the need to calculate the
required hardware resources. As a consequence, a new
concern is identified and added to the backlog:

* CRN-3: Data modeling and developing proof-of-concept
prototypes for key system elements



Select Avro as a specific One decision that needs to be made when designing a
file format for storing raw solution based on Hadoop is the selection of an optimal file

data in the HDFS sink

format. Hadoop supports a variety of formats that provide
different functionalities, compression, and performance
results depending on stored data and usage scenarios.

In this case the main scenarios are related to quality
attributes such as performance (QA-1, 15,000 events/
second), scalability (QA-7, approximately 60 TB of raw
data), and extensibility (QA-9, adding new data sources).
When we translate these requirements to file format traits,
they will be impacted by performance (how fast data can
be pushed by the Data Stream), a compression factor
(less space to store), and ease of schema evolution
(when adding new log formats or changing existing ones).

We select Avro, as it supports rich data structures,
provides good compression levels (with the Snappy
compression codec), and is flexible enough to
accommodate schema changes (employing a self-
describing format where data is stored with its schema).



Alternative

Reason for Discarding

Text file (plain
text, CSV,
XML, JSON)

SequenceFile

RCFile

ORCFile

Parquet

The compression ratio is poor com-
pared with binary file formats (e.g.,
Avro). Also, text files do not support
block compression, which is necessary
when storing files larger than the size of
an HDFS block.

Does not support flexible schema
evolution. Consists of binary key/value
pairs and does not store metadata with
the data.

This Hadoop columnar file format does
not support schema evolution, and
writing requires more CPU and memory
compared with non-columnar formats.

Optimized RCFile provides better
compression and faster querying, but
has the same drawbacks as RCFile
in terms of schema evolution, at the
expense of writing performance.

Parquet is a columnar file format that
partially supports schema evolution, but
still is slower for write operations com-
pared with non-columnar file formats.

5.3.4.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.8 illustrates the result of the instantiation decisions.
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Responsibility

Flume collector

Consume log events generated by a web server, split
text log entries to separate fields, and deliver the parsed
event records to a collector.

Collect event records from multiple agents in a load-
balanced and fault-tolerant manner and deliver them
to destinations (HDFS and Elasticsearch) for further
persistency and processing.

5.3.4.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose

The following Kanban table summarizes the design progress and the decisions
made during the iteration. Note that drivers that were completely addressed in
the previous iteration are not shown.



Not Partially Completely Design Decisions Made During the
Addressed Addressed Addressed Iteration

uC-1 Refinement of the Data Stream element.
uc-2 Decisions about other elements that
uc-3 participate in these use cases still need to
UC-4 be made.

QA-1 Flume load-balanced, failover tiered

configuration is selected.

QA-9 Usage of Flume and Avro format for
storing raw data.

QA-10 Flume load-balanced, failover tiered
configuration is selected.

Decisions on other elements that partici-
pate in this scenario still need to be made.

CRN-1 Tiers were identified for the Flume
collector and storage.

CRN-3 This is a new architectural concern that
was introduced in this iteration: data
modeling and developing proof-of-concept
prototypes for key system elements. At
this point, no relevant decisions have
been made.

5.3.5 Iteration 4: Refinement of the Serving Layer

We now present the results of the activities that are performed in each of the
steps of ADD in the fourth iteration of the design process.

We selected the Serving Layer for refinement (not the Batch Layer) because
the risk of not achieving requirements is higher for this layer. This layer is
directly involved in use cases UC-3 and UC-4 and a number of quality attribute
scenarios in which performance and scalability are critical factors.

As in the previous iteration, design activities involve the creation of
prototypes. In this iteration, Ul prototypes are also created. There are at least two
reasons for this: = It will facilitate receiving early feedback from users, which
can help to update requirements.

» Data visualization scenarios often have an influence on data modeling.

5.3.5.1 Step 2: Establish the Iteration Goal by Selecting Drivers
The goal of this iteration is to address the newly identified concern of data



modéling and developing proof-of-concept proiotypes for key system elements
(CRN-3) so as to satisfy the primary use cases and system requirements
associated with the analysis and visualization of historic data. These use cases
include:

» UC-3
» UC4
The quality attribute scenarios associated with these use cases are:
» QA-4 (Performance)
» QA-5 (Performance)
» QA-7 (Scalability)
» QA-8 (Scalability)

5.3.5.2 Step 3: Choose One or More Elements of the System to Refine

In this iteration, the elements that are refined are the ones that support historical
data, which include the Serving Layer elements: the Ad Hoc and Static Batch
Views. Given that both types of elements use the same technology (Impala), the
decisions made in this iteration affect both types of elements.

5.3.5.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers

As in the previous iteration, the design activities here involve the configuration
of the technologies that were associated with the elements. For this reason, no
new design concepts are selected and all of the decisions belong to the
instantiation category.

5.3.5.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces

In this iteration, design concepts are instantiated based on the best practices of
using the chosen technologies.



Design Decisions
and Location

Rationale and Assumptions

Select Parquet as a
file format for Impala
in the Batch Views

Select Parquet as a
file format for Impala
in the Batch Views

The decision-making process for selecting a file format for
Batch Views is similar to that in the previous iteration, where
we selected a format for raw data storage. The data usage
scenario is somewhat different, however. The previous case
was about fast writing, effectively storing data, and extending
data formats. This case is focused on fast querying (QA-4,
less than 5 seconds report load; QA-5, less than 2 minutes
ad hoc query execution time), although scalability (QA-8,
approximately 90 TB of aggregated data) and extensibility
(QA-9, adding new data sources) drivers are still relevant.

QOut of all the available altematives, the Parquet file format
looks like the most promising option to satisfy these
requirements.

In Parquet, a columnar structure represents relational

tables on computer clusters and is designed for fast query
processing, which is important for ad hoc data exploration
and static reports. In addition, Parquet is optimized for Impala,
which we selected as a primary technology for the interactive
query engine during the second iteration. Finally, it provides a
good compression ratio and allows some schema extension,
by adding new columns at the end of the structure.



Alternative

Reason for Discarding

Text file (plain
text, CSV, XML,
JSON)

SequenceFile

RCFile

ORCFile

Avro

Slow for reads, especially when
querying individual columns.
Also does not support block
compression, which is necessary
when storing files larger than the
size of an HDFS block.

Slow for reads, especially when
querying individual columns.

The first columnar file format
adopted in Hadoop. Does not
support schema evolution.

Provides better compression and
faster querying than RCFile, but has
the same drawbacks as RCFile in
terms of schema evolution.

Compared with Parquet, the
compression ratio is better, but
query performance is slower.

Another major limitation is that it is
not supported by Impala.

Although Avro is considered the
best multipurpose storage format
for Hadoop, its query performance
is noticeably slower compared with
columnar formats, such as RCFile,
ORCFile, and Parquet.




Use the star schema In the previous iteration, we selected Impala as a single

as a data model in
the Batch Views

technology for the Batch Views components, which impacts
both static reports (UC-3, 6) and ad hoc querying (UC-4).

The star schema technique was selected for two reasons:

* Impala was designed for analytical queries, so it naturally
provides good support for star schema data modeling.

* Ad hoc querying in combination with Bl tools requires data
to be well modeled to simplify query complexity and, as a
result, allow faster query performance.

In our case, the star schema was designed to have small-
dimension (in terms of number of rows) tables to avoid

joins between big tables, as this typically consumes large
amounts of system resources and affects query execution
performance. Small-dimension tables can fit in memory and
joins can be performed more effectively.

Alternative Reason for Discarding

Flat tables Flat tables are typically represented in
the format of wide denormalized tables
that contain all measures and dimension
attributes.

Flat tables can cause significant
performance issues when gquerying
against large volumes of data.

5.3.5.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.9 depicts the star schema data model implemented using Impala and

Parquet.
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FIGURE 5.9 Star schema implemented in Impala and Parquet

The screenshot in Figure 5.10 presents a sample static report implemented
with Tableau to demonstrate a possible view through a corporate BI tool. The
report was created using test data stored in Parquet and provided by Impala
through the ODBC interface.
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FIGURE 5.10 Sample static report implemented with Tableau

5.3.5.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose

The following Kanban table summarizes the design progress and the decisions
made during the iteration. Note that drivers that were completely addressed in
the previous iteration are not shown.




Not Partially Completely Design Decisions Made During the
Addressed Addressed Addressed Iteration

uC-3 Refinement of the Serving Layer, which is

uC-4 used in the use case. Decisions on other
elements that participate in these use
cases sfill need to be made.

QA-4 Use Parquet and star schema.
QA-5 Performance tests are still required and
QA-8 thus a new concem is introduced:

* CRN-4: Develop performance tests.
CRN-1 No relevant decisions made.

CRN-3 Data modeling and proof-of-concept
prototypes were developed for the
elements in the Serving Layer, but the
same activity remains to be completed for
the elements in the Speed Layer.

5.4 Summary

In this chapter we presented an extended example of using ADD 3.0 in a
relatively novel domain, that of Big Data. As this example shows, architectural
design can require many detailed decisions to be made to ensure that the quality
attributes will be satisfied.

Also, this example shows that a large number of decisions rely on knowledge
of many different patterns and technologies. The more novel the domain, the
more likely that preexisting information (e.g., design concepts catalog, books of
patterns, and reference architectures) will not be available for it. In such a case,
you need to rely on your own judgment and experience, or you need to perform
experiments and build prototypes. One way or another, such decisions must be
made.

This instance of ADD also differed from the example presented in Chapter 4
in that we spent relatively little time and effort on building sequence diagrams as
a means of deriving interface specifications. The example presented here relied
on a relatively simple data-flow architecture with a modest number of
components, so sequence diagrams were not needed to understand the
relationships between the components. The “contracts” between the elements
were determined by the information exchanged, as exemplified in step 5 of
Iteration 3 (Section 5.3.4.4).




5.5 Further Reading

The design of a data warehouse has been extensively studied. Two good
approaches are documented in R. Kimball and M. Ross, The Data Warehouse
Toolkit, 3rd ed., Wiley, 2013; and W. Inmon, Building the Data Warehouse, 4th
ed., Wiley, 2005.

The Lambda architecture was first presented by N. Marz and J. Warren, Big
Data: Principles and Best Practices of Scalable Realtime Data Systems,
Manning, 2015.

A good discussion of how to engineer for scalability can be found in M.
Abbott and M. Fisher, The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise, Addison-Wesley,
2010.

P. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence, Addison-Wesley, 2009.

A discussion of how and when to prototype as part of the architecture design
process can be found in H-M Chen, R. Kazman, and S. Haziyev, “Strategic
Prototyping for Developing Big Data Systems”, IEEE Software, March/April
2016.

A design concepts catalog that includes many of the reference architectures
and technologies used in this case study is part of the Smart Decisions Game,
which can be found at H. Cervantes, S. Haziyev, O. Hrytsay, and R. Kazman,
“Smart Decisions Game”, http://smartdecisionsgame.com.
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6. Case Study: Banking System

Chapters 4 and 5 were both instances of greenfield development. In truth, that
kind of development is relatively rare. Most of the time you, as an architect, will
be working on evolving an existing system rather than creating one from scratch.
In this chapter, we present an example of using ADD 3.0 for a brownfield
system in a mature domain (as discussed in Section 3.3.3). We first present the
business context and then examine the project’s existing architectural
documentation. This is followed by a step-by-step summary of the activities that
are performed during the ADD iterations to evolve the system. While this is a
real system, some of the details have been changed to protect the identities of the
actors.

6.1 Business Case

In 2010, the government of a Latin American country issued a regulation that
required banking institutions to digitally sign bank statements. To comply with
the regulation, “ACME Bank” decided to commission the development of a
software system, which we will call BankStat, whose main purpose was the
generation of digitally signed bank statements.

Figure 6.1 presents a context diagram that illustrates how the BankStat system
works. At its core, the system executes a batch process, which retrieves raw bank
statement information from a data source (an external database) and then
performs a series of validations on this data to generate the bank statements and
prepare them for digital signature by an external provider. The statements are
sent to the provider, which returns the signed bank statements. These statements
are then stored by BankStat for further processing, including sending the
statements to customers. This batch process is triggered automatically once a
month and, during its execution, approximately 2 million bank statements are
processed.
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FIGURE 6.1 Context diagram for the BankStat system

The following quality attributes scenarios are primary for this system:

» Reliability: Under normal operating conditions, the batch process is
executed in its entirety 100% of the time.

» Performance: Under normal operating conditions, when the batch process
starts, 2 million bank statements are read, processed, and sent to the
signing provider in at most one hour.

» Availability: During normal processing, a failure may occur when reading
information from the data source or when sending information for digital
signature. A notification is then sent to the administrator, who manually
restarts the process. When it is restarted, only the information that had not
already been processed is treated.

Due to time constraints imposed by the government, only the core batch
process for the system was developed and put into production. This initial
release, however, did not provide a friendly interface with the system, which is
necessary to monitor the state of the bank statement processing, to request the
reprocessing of incorrect statements. and to generate reports. In the first release,
the process could only be started or stopped manually from a console. For a
second release of the system, the ACME Bank requested an extension of the
BankStat system to better address these shortcomings.

The following subsections present the drivers for this second release of the
system.

6.1.1 Use Case Model



Figure 6.2 presents the use case model for the second release of BankStat.
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FIGURE 6.2 Use cases for the BankStat system (Key: UML)

These use cases are described in more detail here:

Use Case Description

UC-1: Query The user manually requests the reprocessing of a number
and reprocess of statements. The user specifies criteria to query and select
statements the statements that must be reprocessed. The user can, for

example, select a period of interest or status of the statements
that he is interested in (e.g., processed, signed, non-signed).

UC-2: Login The user logs in to the system.

UC-3: Generate  The user generates reports regarding the process.
report

UC-4: Query The administrator queries user logs to display the activities of
users log a particular user or groups of users. Information can be filtered
using criteria such as dates or types of operations.

6.1.2 Quality Attribute Scenarios

The following table presents the new quality attribute scenario that is considered
for this extension of the system.



Quality Associated
ID Attribute Scenario Use Case

QA-1  Security A user performs any operation on the system, UC-4
at any moment, and 100% of the operations
performed by the user are recorded by the
system in the operations log.

6.1.3 Constraints

The following table presents the constraints that are considered for this extension
of the system.

ID Constraint

CON-1 The user’s accounts and permmissions are handled by an existing user
directory server that is used by various applications in the bank.

CON-2 Communication with the data source must be realized using JDBC.

CON-3 Communication with the digital signature provider system is

performed using web services. These web services receive and
return the information in an XML format that adheres to specifications
established by the government.

CON-4 The system must be accessed from a web browser, although the
access is available only from the bank’s intranet.

6.1.4 Architectural Concerns

The following table presents the concerns that are initially considered for this
extension of the system.

ID Concern

CRN-1 The system shall be programmed using Java and Java-related
technologies to leverage the expertise of the development team.

CRN-2 The introduction of new functionality must, as far as possible, avoid
modifications to the existing batch processing core.

6.2 Existing Architectural Documentation

This section presents a simplified version of the system’s views, which provide
relevant information for the changes in the architecture.

6.2.1 Module View
The package diagram shown in Figure 6.3 depicts the system layers and the



modules that they contain.
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FIGURE 6.3 Existing modules and layers in the BankStat system (Key:
UML)

The responsibilities of the elements depicted in the diagram are described in
the following table.



Element Responsibility

Batch Processing This layer contains modules that perform the batch process.

Layer These components are developed using the Spring Batch
framework.

Data Access Layer This layer contains modules that store and refrieve data

from a local database, which is used by the modules in the
Batch Processing Layer.

Communications This layer contains modules that support communication

Layer with the external digital signature provider and the bank
statement data source.

Batch Job This module is responsible for coordinating the execution

Coordinator of the batch process, including launching the process and

invoking the different steps associated with it.

Job Steps This module contains the “steps” that are part of the batch
job. These steps perform activities such as validating the
information retrieved from the data source and generating
the bank statements. Such steps generally read, process,
and write data. Data is read from and written to the local

database.
Local Database This module is responsible for accessing a local database
Connector used by the job steps to exchange information while

performing the batch process. We refer to this database

as "local” to differentiate it from the external data source;
this database is used only locally (i.e., intemally) by the
application, even if it is deployed in a different node (see the
next section).

Notifications Manager This module manages logs and sends notifications in case
of issues such as a communication failure with the external

system.
Data Source This module is responsible for connecting with the extemal
Connector database that provides the raw bank statement information.
Digital Signature This module is responsible for accessing the external
Provider Connector system that performs the digital signing of the bank
statements.

6.2.2 Allocation View

The deployment diagram shown in Figure 6.4 presents an allocation view
consisting of nodes and their relationships.
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FIGURE 6.4 Existing deployment diagram for the BankStat system (Key:
UML)

The responsibilities of the elements depicted in the diagram are described in
the following table.

Element Responsibility

Data Source  This server hosts a database that contains the raw data used to
Server produce the bank statements.

BankStat This server hosts the main batch process that is responsible for
Server retrieving information from the Data Source Server, validating the

information, and sending the information to the Digital Signature
Server for signing.

Database This server hosts a database that is used locally by the batch

Server process in the BankStat Server to hold the state and information
used in the execution of the batch process.

Digital This server, which is provided by an extemnal entity, is responsible

Signature receiving, digitally signing, and returning the bank statements.

Server The server exposes web services that receive and produce XML
information.

6.3 The Design Process

We now describe the design process through the different steps of ADD (as
discussed in Section 3.2). As this is not a huge change to the existing system, the



architect expects that the design activities will require only a single iteration of
ADD.

6.3.1 ADD Step 1: Review Inputs

The first step of the ADD method involves reviewing the inputs. They are
summarized in the following table.

Category Details

Design purpose This is a brownfield system in a mature domain. The
purpose is to design for the next system release.

Primary functional The primary use case for this release is UC-1.

requirements

Quality attribute This extension of the system involves only a few quality

scenarios attribute scenarios, so they are all considered as primary.

Constraints See Section 6.1.3.

Architectural concerns See Section 6.1.4.

Existing architecture Since this is brownfield development, an additional input
design is the existing architecture design, which was described in
the previous section.

6.3.2 Iteration 1: Supporting the New Drivers

This section presents the results of the activities that are performed in each of the
steps of ADD in the single iteration performed in this example.

6.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers

Only a limited number of drivers need to be addressed, so the architect has
decided that a single iteration is sufficient. The goal of this iteration is to modify
the existing design to support all of the new drivers listed in Section 6.1

6.3.2.2 Step 3: Choose One or More Elements of the System to Refine

The elements to refine include the main modules from BankStat and the node
where the system is deployed (BankStat Server). In addition to refining these
modules, the physical node where the application is hosted is a candidate for

refinement.

6.3.2.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers

The following table summarizes the design decisions made with respect to the



selection of design concepts.

Design Decisions and
Location

Rationale

Use the Web Application
Reference architecture

Select the Spring Security
framework to manage
authorization and
authentication

The use cases that are being infroduced in the

system require interaction through a web browser
(CON-4). Since there are no requirements for rich user
interaction, the Web Application architecture is selected
(see Section A.1.1).

Discarded alternatives:

* Rich Internet application (see Section A.1.3), as it
would require additional development effort and there
are no requirements for a rich user interface.

Security is a complex topic, and writing ad hoc code
to support it is difficult and error prone. The needs for
this application include managing authorization and
authentication and an activity log. All of these features
are available in the Spring Security framework, which
can easily be integrated into the existing user directory
server (CON-1) and is Java related (CRN-1).

Discarded altematives:

* Ad hoc code: Challenging, error-prone, takes signifi-
cant time to develop.

* Other frameworks: The first release of the solution
has already been developed using Spring technolo-
gies. Hence it makes sense to continue using other
technologies from the Spring platform, as they can be
easily integrated with the existing frameworks.



Use the Shared Database
Integration pattem

o obtain information
about the state of bank
statements

Deploy using a three-tier
deployment model

The interactive part of the system needs to query the
database that is used locally by the batch process to
display the state of bank statement processing. The
batch and interactive parts of the system can be seen
as two different applications (or subsystems) that

share data that is contained in the same database. The
Shared Database Integration pattern can be used in
this context to support the interaction between these
systems. This approach does not require changes to be
made in the existing parts of the system (CRN-2).

Discarded altematives:

* Obtaining the information through an API, which
would require modifications in the existing modules
and would have a negative impact on performance.

Deploying the web part of the application will be done
in a separate server. Thus, the deployment of this part
of the application can be seen as an instance of the
three-tier deployment model (see Section A.2.2). The
benefit of this approach is that the server that hosts the
batch process will not have to process the interactive
requests, so performance will not be hindered.
Discarded altematives:

* Hosting the application in the same server where
the batch process is hosted. This would save some
server costs, but could limit performance of either the
batch process or the interactive functions.

6.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,

and Define Interfaces

The instantiated design decisions considered and made are summarized in the

following table.

Design Decision and Location Rationale

Host the web application in a separate This choice avoids performance reduc-

server tions on the batch server and increases
security (QA-1).
Configure Spring Security to use an This is to address CON-1.

external user directory server

The results of these instantiation decisions are recorded in the next step.

6.3.2.5 Step 6: Sketch Views and Record Design Decisions
The deployment diagram shown in Figure 6.5 depicts the new server that will



host the application and the external user directory server, along with their
connections to the existing nodes.
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FIGURE 6.5 Refined deployment diagram (Key: UML)

The responsibilities of the newly introduced elements are described in the
following table.

Element Responsibility

Web/App Server Hosts the interactive part of the application.

Auth Server Existing server that manages users and permissions for multiple
applications in the bank (CON-1).

The package diagram shown in Figure 6.6 illustrates how the reference



architecture is instantiated and identifies the modules that are introduced to
support the primary use case (UC-1). It also shows how these newly introduced
elements are integrated with the existing layers and modules from the previous

system release.
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FIGURE 6.6 Modules introduced to support the use case UC-1 (Key: UML)

The responsibilities of the newly introduced elements are described in the

following table.




Element Responsibility

Bank Statement This module displays a view that allows the user to query

Reprocessing View the state of bank statements that have been processed. It
also allows the user to select from these statements the
ones that need to be reprocessed.

Bank Statement This module manages requests from the view, which include

Reprocessing Service requesting bank statement information, marking bank
statements that need to be reprocessed, and triggering the
restart of the batch job.

Security Manager This module, which is implemented using Spring Security,
handles authentication, authorization, and the activity log
(QA-1). It is also integrated with the external user directory
server (CON-1).

The sequence diagram shown in Figure 6.7 illustrates how UC-1 is performed.
The user requests the state of bank statements to be displayed. This information
is retrieved from the local database by the Local Database Connector. Once
displayed, the user selects the statements to reprocess. These bank statements are
marked for reprocessing (by changing a flag) and the information is updated on
the local database. Finally, the batch job is restarted. Note that the interactions
with the system are recorded by Spring Security in the view. In addition, the
invocation of the Batch Job Coordinator is asynchronous, which avoids the
problem of blocking the user interface.
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FIGURE 6.7 Sequence diagram for use case UC-1 (Key: UML)

From the interactions identified in the sequence diagram, initial methods for
the interfaces of the interacting elements can be identified.

BankStatementReprocessingService

Method Name Description

BankStatement [] get BSStatus(criteria) Retrieves a collection of bank
statements according to diverse
criteria, including periods in
time or status.

boolean reprocess(BankStatement []) Requests the reprocessing of a
collection of bank statements.

6.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose

The following Kanban table summarizes the status of the various architectural
drivers and the decisions that were made during the iteration to address them. As
all the drivers were completely addressed, just a single iteration of ADD was
required.



Not Partially Completely Design Decisions Made During the
Addressed Addressed Addressed Iteration

uc-1 Modules that support the use case
and their interfaces were identified and
defined based on the Web Application
Reference architecture.

QA-1 Security logs are handled by Spring
Security.
CON-1 Spring Security connects to the existing

user directory server and uses its
information to support authorization and
authentication.

CON-3 No changes have been made to the
module that connects to the data
source.

CON-3 No changes have been made to the
module that connects to the digital
signature provider.

CON-4 The Web Application Reference
architecture that was used specifically
supports access from web browsers.

CRN-1 The technologies that have been
selected are Java related.

CRN-2 Integration with the existing functionality
was made through the database (using
the Database Integration pattern);
changes to the existing functionality
were not needed.

6.4 Summary

In this chapter, we presented a simple (but real-world) example of the use of
ADD in the context of a brownfield system. As this example illustrates, the steps
of ADD are followed in exactly the same manner as in the context of the design
of greenfield systems. The main difference is that one of the inputs of the design
process is the existing architecture. This highlights the importance of
documenting the architecture: If this information was not present, a great deal of
time would need to be spent in understanding and reverse-engineering the code
to create an appropriate model of the architecture before proceeding with the
design and eventual implementation process.



Design in the context of brownfield systems usually involves more extensive
changes than the ones illustrated by this example. Such changes often require
refactoring and modification of the existing architecture to support the
introduction of new elements and new relationships that result from the design
activity. Modifying an existing architecture is oftentimes the most challenging
aspect of designing in the context of brownfield systems. In brownfield systems,
it is all too common that detailed knowledge of some parts of the system has
been lost. Because this process can be complex and some uncertainty exists
regarding the consequences of changes, we recommend that you perform an
analysis of the proposed design changes before committing them to code.

6.5 Further Reading

The Shared Database Integration pattern is discussed in G. Hohpe and B. Woolf,
Enterprise Integration Patterns: Designing, Building and Deploying Messaging
Solutions, Addison Wesley Professional, 2003.

In-depth discussions of software maintenance and evolution can be found in
the classic book by F. Brooks, The Mythical Man Month, Addison-Wesley,
1995, and also in M. M. Lehman, “On Understanding Laws, Evolution, and
Conservation in the Large-Program Life Cycle”, Journal of Systems and
Software, 1:213-221, 2010.



7. Other Design Methods

Over the past two decades, a number of architecture design methods have been
proposed and documented. In this chapter we briefly present some of the most
well-known methods, which we then relate and compare to ADD. We begin with
a “general model” of architecture design, then briefly present five other design
methods. We conclude the chapter with a discussion of how ADD differs from
these other methods.

7.1 A General Model of Software Architecture Design

In their paper “A General Model of Software Architecture Design Derived from
Five Industrial Approaches”, Hofmeister and her colleagues compared five
industrial software architecture design methods and extracted from their
commonalities a generic software architecture design approach. The five models
they reviewed were ADD 2.0, Siemens 4 views, RUP’s 4+1 Views, Business
Architecture Process and Organization (BAPO), and Architecture Separation of
Concerns (ASC).

The derived general model, shown in Figure 7.1, consists of three main
activities that are present in all five models reviewed:

» Architectural analysis. In this activity, requirements (called concerns) and
the system context are used as inputs to determine a set of architecturally
significant requirements (ASRs).

» Architectural synthesis. This activity is described as being the core of
architecture design. It proposes architecture solutions to a set of ASRs,
moving from the problem to the solution space. The results of this activity
are candidate architectural solutions, which are partial or complete
architecture designs and include information about the rationale.

» Architectural evaluation. This activity ensures that the architectural
decisions are the right ones. Candidate architectural solutions are measured
against ASRs. Several evaluations of different architectural solutions are
expected, but the eventual result is the validated architecture.
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Hofmeister and her colleagues further explain that these activities do not
proceed sequentially, but rather architects proceed in small “leaps” as they move
from one activity to another. Progress is driven by an implicit or explicit backlog
of smaller needs, issues, problems, and ideas that architects need to address

(Figure 7.2).
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This general model presented by Hofmeister et al. is not detailed, by intent,
because it abstracts the specific techniques found in other design processes,
including ADD. Thus the model can represent ADD, but also covers a bigger
scope of architecture development, where architectural requirements gathering




and analysis are performed using methods such as QAW, architectural synthesis
is performed using methods such as the ones presented in the paper, and
architectural evaluation is performed using methods such as ATAM.

7.2 Architecture-Centric Design Method

The Architecture-Centric Design Method (ACDM) is a software architecture
development method that covers the complete life cycle of the architecture. This
iterative method consists of 8 stages, as shown in Figure 7.3.
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Stage 3 is focused on design; it is where an initial architectural design is
created or refined. For new systems, the first iteration of this process promotes
the rapid creation of a “notional” or initial architecture. This iteration proceeds
by first establishing the system context and then performing decomposition in an
iterative manner to produce structures. In ACDM, decomposition is driven by
quality attribute scenarios and constraints, but functional requirements are also
considered. In subsequent iterations, issues uncovered in the architecture review



(Stage 4) also serve as inputs. ACDM suggests using patterns to support
decomposition and using more than one perspective (static, dynamic) during the
process. After decomposition occurs, responsibilities are associated with the
elements and interfaces are defined.

ACDM has a broader scope than ADD, as it encompasses the whole
architecture development life cycle (requirements, design, evaluation, and
documentation) in its 8 stages. Stage 3 of ACDM is the equivalent of ADD.
However, ACDM provides less detailed guidance than ADD on how to perform
this crucial step. ADD and ACDM can be used together, however. To do so, you
can simply use ADD directly in stage 3 of ACDM.

7.3 Architecture Activities in the Rational Unified Process

The Rational Unified Process (RUP) has been a popular software development
process framework for more than a decade. The framework is extensive and the
version we reviewed (7.0.1) provides two flavors: one for large projects (used
here for discussion) and one for small projects. Every project in RUP is
developed iteratively and iterations are performed across four sequential phases:

» Inception. In this phase, the project is conceived and feasibility is
evaluated.

» Elaboration. In this phase, many aspects that are necessary to successfully
perform the project are handled. One of these aspects is the design of the
architecture.

» Construction. In this phase, the system is built iteratively.

» Transition. In this phase, the completed system is transitioned from the
development environment to the end-user environment.

For RUP, architecture is a fundamental aspect of system creation, and
activities are associated with it across the different phases and, in particular, in
the inception and elaboration phases. In the inception phase, RUP defines an
activity called “perform architectural synthesis”, whose goal is to construct and
assess an architectural proof-of-concept to demonstrate the feasibility of the
system. This activity includes tasks such as defining a system context,
performing architectural analysis (which actually refers to defining a candidate
architecture), constructing an architectural proof-of-concept (a prototype), and
evaluating the viability of the proof-of-concept.

The elaboration phase includes two activities associated with software
architecture:

» Define a candidate architecture. In this activity, an initial sketch of the



software architecture is created. This includes defining architecturally
significant elements, identifying a set of analysis mechanisms, defining the
initial layering and organization of the system, and defining use-case
realizations for the current iteration. The key tasks are performing
architectural analysis and use case analysis; other tasks include operation
analysis and identifying security patterns.

Refine the architecture. This activity is focused on completing the
architecture for an iteration. It involves making a transition from analysis
activities to design activities by identifying design elements from analysis
elements and design mechanisms from analysis mechanisms. In addition,
the runtime and deployment architecture is described, along with an
implementation model to facilitate the transition between design and
implementation. To achieve this, the RUP suggests performing tasks such
as identifying design mechanisms, identifying design elements, performing
operation analysis, incorporating existing design elements, structuring the
implementation model and describing the runtime architecture, describing
distribution, and reviewing the architecture.

RUP provides an extensive, detailed process for architectural development. It
also makes clear distinctions between analysis, design, and implementation
aspects. Initially, the architecture is designed in a conceptual fashion in the
analysis tasks, and then it is made concrete in the design and implementation
tasks. For example, initially an analysis mechanism such as persistence can be
identified. This is refined into a design mechanism such as a DBMS, which is
further refined into an implementation mechanism such as a specific Oracle or
MySQL database.

The process in RUP is iterative by nature, as several iterations of the
architectural activities defined in the inception and elaboration phases can be
performed. A nice aspect of the process defined by RUP is that it provides
detailed guidance with respect to architectural concerns such as defining the
system context and establishing an initial structure for the system both in a
logical and a physical way. The architecture process in RUP also has a strong
focus on use cases. Even though quality attributes are mentioned (as
“supplementary requirements”), they do not drive the architecture design process
as much as the use cases. Also, this process explicitly considers the creation of
an executable architectural prototype.

Even though the architecture process in RUP is comprehensive, it does not
give as much detail as ADD in terms of the concrete steps to perform the design.
In this sense, ADD and RUP can be seen as being complementary methods, and



ADD can be integrated into RUP (as can other more detailed architecture-based
methods such as the QAW, ATAM, and CBAM).

7.4 The Process of Software Architecting

In the book The Process of Software Architecting, Peter Eeles and Peter Cripps,
who are architects at IBM, describe how they approach architecture. Their
process covers the entire architecture life cycle and is independent of any
software development methodology, but the book makes several references to its
use with RUP.

The process described by Eeles and Cripps includes three major activities:
“define requirements”, “create logical architecture”, and “create physical
architecture”. The last two are the activities where architectural design is
performed. According to the authors, the logical architecture is “a stepping stone
in getting from the requirements to the solution—a first step that considers the
architecture in a largely technology-independent manner. A physical
architecture, on the other hand, is more specific—and takes technology into
account”. The creation of the logical architecture and the physical architecture
comprises the same tasks (see Figure 7.4), but in the creation of the physical

architecture the focus, not surprisingly, is on its physical aspects.
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FIGURE 7.4 Tasks in the “create logical architecture” and “create physical
architecture” activities

This process acknowledges the existence of different types of architects: lead,
application, infrastructure, and data architects. Also, it makes a distinction
between “outlining” tasks, which are associated with the most important
architectural elements and are the responsibility of the lead architect, and
“detailing” tasks, which are focused on less significant elements and are the
responsibility of the other architects, depending on the task. For example,
whereas outlining tasks deal with subsystems and components, detailing tasks
deal with interfaces and operation signatures.

The method described by Eeles and Cripps also emphasizes two different
models: (1) the functional model, which is composed of components with
responsibilities and relationships and their collaborations to deliver the required
functionality, and (2) the deployment model, which shows the configuration of
nodes, communication links between them, and the components that are
deployed on the nodes. Both functional and quality attribute requirements
influence the functional and deployment models. The authors mention that they
adopt the “systems engineering philosophy” of treating software and hardware as
peers that collaborate to achieve system qualities.

The following list summarizes the purposes of the tasks in the create logical
and physical architecture activities that are related to design. The role that has
primary responsibility for the task appears in parentheses, while other types of
architects may take a secondary role:

» Survey architecture assets (lead architect). Identify reusable architecture
assets that can be applied to the system under development.

» Define architecture overview (lead architect). Identify and describe the
major elements of the system under development from a functional and
deployment perspective.

» Document architecture decisions (lead architect). Capture key decisions
made in shaping the architecture and the rationale behind them. This step
includes assessing options and selecting a preferred option.

» Outline functional elements (application architect). Identify the major
functional elements (subsystems and components) of the system under
development.

» Outline deployment elements (infrastructure architect). Identify the
locations to which the system under development will be deployed and the
nodes within each location.



» Verify architecture (lead architect). Verify that the architecture work
products are consistent and ensure that any concerns that cut across the
architecture work products have been addressed consistently.

» Build architecture proof-of-concept (lead architect). Synthesize at least
one solution (which can be conceptual) that satisfies the architecturally
significant requirements to determine whether such a solution, as
envisaged by the architects, exists.

» Detail functional elements (application architect). Refine the functional
elements to the point that they can be handed off to detailed design. This
includes defining component interfaces in a detailed way (e.g., operation
signatures, pre and post conditions) using sequence diagrams.

» Detail deployment elements (infrastructure architect). Refine the
deployment elements to the point they can be handed off to detailed
design. This includes assigning components to nodes and defining
connections between nodes and locations.

In a spirit that is similar to RUP, the Process of Software Architecting is a
framework, and it needs to be adjusted according to the type of project that is
being tackled. For instance, the amount of logical architecture that needs to be
established can vary; indeed, in some cases, no logical architecture may be
created if the system being designed is similar to existing ones. Also, the
elaboration phase emphasizes the logical architecture, whereas the construction
phase emphasizes the physical architecture. Finally, the logical and physical
architectures need not be created sequentially and the process acknowledges that
some technology choices may be made early.

The Process of Software Architecting is a comprehensive framework, and this
book provides a detailed example of how to execute the different tasks. The
tasks related to creating the logical/physical architecture are similar to the steps
of ADD combined with the roadmap discussed in Section 3.3. The Process of
Software Architecting, however, puts less emphasis on guiding iterations by
specific scenarios and provides less guidance on how to actually make design
decisions.

7.5 A Technique for Architecture and Design

In the book Application Architecture Guide, second edition, Microsoft proposes
a technique for sketching an architecture. This technique consists of five steps
that are performed iteratively (Figure 7.5):

1. Identify architecture objectives. These goals and constraints shape the



design process, provide scope, and help determine when you are finished.
Examples include building a prototype, exploring technologies, and
developing an architecture. Also, at this point, the consumers for the
architecture are identified and the scope, time, and resources that will be
dedicated to design activities are established.

2. Identify key scenarios. Key scenarios represent issues, architecturally
significant use cases, intersections between quality attributes and
functionality, or tradeoffs between quality attributes.

3. Create application overview. This step refers to creating an overview of
what the application will look like when it is complete. At the end of this
step, the process suggests “whiteboarding™ the architecture—that is,
creating an informal representation of the architecture. This step is divided
into the following set of activities:

a. Determining application type: involves the selection of a reference
architecture.

b. Identifying deployment constraints: involves the selection of a
deployment topology.

c. Identifying important architecture design styles.

d. Determining relevant technologies: based on the application type and
constraints.

4. Identify key issues. Key issues are grouped into quality attributes and
crosscutting concerns. Crosscutting concerns are features of the design that
may apply across all layers, components, and tiers, such as the following:

a. Authentication and authorization

b. Caching

c¢. Communication

d. Configuration management (information that must be configurable)
e. Exception management

f. Logging and instrumentation

g. Validation (of input data)

5. Define candidate solutions. Candidate architectures include an application
type, deployment architecture, architectural style, technology choices,
quality attributes, and crosscutting concerns. If a candidate architecture
satisfies the requirements and issues, then it becomes a baseline
architecture and is refined in further iterations.
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Besides these five main steps, the technique discussed by the Microsoft team
suggests performing reviews of the architecture and representing and
communicating the design. This technique is independent of a particular
development process and there is only a suggestion that, when using an Agile
process, iterations should combine architecture and development activities.

The technique presented by the Microsoft team is not very detailed, but the
discussion of this technique is only a small part of Microsoft’s book. The rest of
the book provides pragmatic and detailed information on the considerations that
must be taken into account for different types of applications, including web,
rich client, rich internet, and mobile applications, among others. For example,
the book devotes a chapter to the specific aspects of the design of the business
layer. Although much of the information is technology agnostic, Microsoft has
also done an excellent job of showing how its own technologies can be used in
this process. In addition, the book provides an extensive discussion of the
concerns that must be addressed for a series of reference architectures.

This technique is similar in purpose to ADD but less detailed in terms of how
to perform the actual design steps. ADD can be used as an alternative, but it is a
good idea to keep Microsoft’s book on hand to identify the many specific
architectural concerns that vou will need to address during design and to



leverage all of the practical advice that is provided, particularly if you are
designing one of the types of applications discussed in the book. The ideas
presented in Microsoft’s book inspired us when creating several aspects of this
book.

7.6 Viewpoints and Perspectives Method

The viewpoints and perspectives method is described in the book Software
Systems Architecture: Working with Stakeholders Using Viewpoints and
Perspectives, by Nick Rozanski and Eoin Woods. Two critical concepts,
highlighted in the book title, are viewpoints and perspectives, which the authors
define in the following way:

» A viewpoint is a collection of patterns, templates, and conventions for
constructing one type of view. It defines the stakeholders whose concerns
are reflected in the viewpoint and the guidelines, principles, and template
models for constructing its views. The viewpoints defined include
functional, information, concurrency, development, deployment, and
operational.

» An architectural perspective is a collection of activities, tactics, and
guidelines that are used to ensure a system exhibits a set of quality
properties that must be considered across the system’s architectural views.
The primary perspectives that are covered in Rozanski and Woods’s book
are security, performance and scalability, availability and resilience, and
evolution.

Perspectives are orthogonal to viewpoints because a particular perspective can
be applied across different viewpoints. For example, the security perspective
involves aspects from the functional, information and operational viewpoints.

The architecture is established in the architecture definition process illustrated
in Figure 7.6. The steps in this process are outlined here:

1. Consolidate the inputs. Understand, validate, and refine the initial inputs.

2. Identify the scenarios. Identify a set of scenarios that illustrate the
system’s most important requirements.

3. Identify relevant architectural styles. 1dentify one or more proven
architectural styles that could be used as a basis for the overall
organization of the system.

4. Produce a candidate architecture. Create a first-cut architecture for the
system that reflects its primary concerns (requirements and goals) and that



can act as a basis for further architectural evaluation and refinement.

5. Explore architectural options. Explore various architectural possibilities
for the system and make the key decisions to choose among them.

6. Evaluate the architecture with stakeholders. Work through an evaluation
of the architecture with your key stakeholders, capture any problems or
deficiencies, and gain the stakeholders’ acceptance of the architecture.

7. Two steps are performed in parallel at this point:

A. Rework the architecture. Address any concerns that have emerged
during the evaluation task.

B. Revisit the requirements. Consider any changes to the system’s original
requirements that may have to be made in light of architectural
evaluations.
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FIGURE 7.6 Viewpoints and perspectives method steps

This method suggests the creation of a candidate architecture that is obtained
from—or at least based on—architectural styles. This candidate architecture is
further refined through a series of iterations until it is deemed acceptable after an
evaluation is performed.

In comparison with ADD, this method does not provide step-by-step guidance
on how to perform steps 4 and 5. One benefit of this approach, however, is that
the six viewpoints it defines can be related to general architectural concerns in
our approach. Furthermore, tactics and perspectives are related, and the idea of
applying perspectives across the different viewpoints is valuable and may be a
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security scenario in your drivers list, you may consider only elements that
support this particular scenario. Thinking of a security perspective, however,
may be useful in making design decisions concerning security, which may not be
directly related to the particular scenario but flow across different areas of
concern such as deployment or operation.

7.7 Summary

In this chapter, we reviewed a number of design methods and compared them to
ADD. As you can see, there are several methods to choose from. So why should
you use ADD instead of, or in addition to, these alternatives? Quite simply,
ADD is more concrete and specific in its steps and guidance for accomplishing
the architecture design activity. Having read this far, you should now be
convinced of that.

ADD is focused specifically on design and, as such, provides more detailed
guidance to an (aspiring) architect. This is not a weakness of ADD. Many other
methods can guide you in the other phases of the architecture life cycle, such as
QAW for eliciting and prioritizing architectural requirements, ATAM for
analyzing an architecture, the Views and Beyond technique for documenting an
architecture. In several parts of this book we have discussed how such methods
can be seamlessly integrated into ADD.

In the interest of full disclosure, ADD 3.0 borrows from, benefits from, and
owes a debt of gratitude to all of the approaches described in this chapter.

7.8 Further Reading

The architecture design methods discussed in this chapter can be found in the
following sources:

» P. Eeles, P. Cripps. The Process of Software Architecting. Addison-Wesley
Professional, 2009.

» C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran, P. America. “A
General Model of Software Architecture Design Derived from Five
Industrial Approaches”, Journal of Systems and Software, 80:106—126,
2007.

» A. Lattanze. Architecting Software Intensive Systems: A Practitioner’s
Guide. CRC Press, 2009.

» P. Kruchten. The Rational Unified Process: An Introduction, 3rd ed.,
Addison-Wesley, 2003.



» Microsoft, Application Architecture Guide, 2nd ed. Microsoft Press, 2009.

» N. Rozanski, E. Woods. Software Systems Architecture. Addison Wesley,
2005.



8. Analysis in the Design Process

While this is a book focused on architectural design, we have always believed
that design and analysis are two sides of the same coin. Design is the process of
making decisions; analysis is the process of understanding those decisions, so
that the design may be evaluated. To reflect this intimate relationship, we now
turn our attention to why, when, and how to analyze architectural decisions
during the design process. We look at various techniques for analysis, discuss
when they can be done, and explore their costs and benefits.

8.1 Analysis and Design

Analysis is the process of breaking a complex entity into its constituent parts as a
means of understanding it. The opposite of analysis is synthesis. Analysis and
design are therefore intertwined activities. During the design process, the activity
of analysis can refer to several aspects:

» Studying the inputs to the design process to understand the problem whose
solution you are about to design. This includes giving priority to the
drivers as discussed in Section 3.2.2. This type of analysis is performed in
steps 1 and 2 of ADD.

» Studying the alternative design concepts that you identified to solve a
design problem so as to select the most appropriate one. In this situation,
analysis forces you to provide concrete evidence for your choices. This
activity is performed in step 4 of ADD and was discussed in Section 3.2.4.

» Ensuring the decisions made during the design process (or an iteration)
are appropriate. This is the type of analysis that you perform in step 7 of
ADD.

The decisions that you make when designing the architecture are not only
critical to achieve the quality attribute responses, but frequently the cost
associated with correcting them at a later time can be significant, as these
decisions may affect many parts of the system. For these reasons, it is necessary
to perform analysis during the design process, so that problems can be identified,
possibly quantified, and corrected quickly. Remember, being too confident and
following your gut instincts may not be the best idea (see the sidebar “‘I believe’
Isn’t Good Enough”). Fortunately, if you have followed the recommendations
that we have given up to this point, you should be able to conduct analysis either
by yourself or with the help of peers by using the preliminary sketches and views




that have been produced as you perform the design process.

“I Believe” Isn’t Good Enough

Even if you are following a systematic approach to designing your
architecture and using design concepts from well-established
sources, and even if you have nice-looking diagrams that represent
your structures, nothing really guarantees that the decisions you are
making will actually satisfy a particular quality attribute scenario.
Certain quality attributes are critical to the success of your system;
particularly for these decisions, the rationale of “I believe” is not
good enough. Studies of practicing software architects have shown
that most follow an “adequacy” approach to making design
decisions—that is, they adopt the first decision that appears to meet
their needs. All too often, they have no rationale to substantiate
those decisions other than their gut instincts, their beliefs, based on
their (inevitably limited) experience. Thus important decisions are
frequently made after insufficient reasoning, which can add risk to a
system.

For drivers that are critical to your system, you owe it to yourself
and to your organization to perform a more detailed analysis rather
than just trusting your gut instinct, relying on analogy and history,
or performing a couple of superficial tests to ensure that your
drivers are satisfied. The following options will deepen your
analysis and hence support your rationale for the decisions made:

» Analytic models. These well-established mathematical models
allow you to study quality attributes such as performance or
availability. They include Markov and statistical models for
availability, and queuing and real-time scheduling theory for
performance. Analytic models—particularly those that address
performance—are highly mature but may require considerable
education and training to be used adequately.

» Checklists. Checklists are useful tools that allow you to ensure in
a systematic way that certain decisions that need to be taken into
account are not forgotten. Checklists are available for particular
quality attributes in the public domain—for example, the
OWASP checklist guides you in performing black box security
testing of web applications. Also, your organization may develop
proprietary checklists that are specific to the application domains



that you are developing. Tactics-based questionnaires, which we
will discuss shortly, are a type of checklist for the most important
quality attributes, based on the use of tactics.

Thought experiments, reflective questions, and back-of-the-
envelope analyses. Thought experiments are informal analyses
performed by a small group of designers in which important
scenarios are studied to identify potential problems. For example,
you might use a sequence diagram produced inside step 5 of
ADD and perform a walk-through of the interaction of the objects
that support the scenario modeled in the diagram with a
colleague. Reflective questions (discussed in depth in Section
8.5) are questions that challenge the assumptions included in the
decision-making process. Back-of-the-envelope analyses are
rough calculations that are less precise than analytic models, but
can be performed quickly. These calculations, which are
frequently based on analogies to other similar systems or on prior
experience, are useful to obtain ballpark estimates for desired
quality attribute responses. For example, by summing the
latencies of a number of processes in a pipeline, you can derive a
crude estimate of the end-to-end latency.

Prototypes, simulations, and experiments. Purely conceptual
techniques for analyzing a design are sometimes inadequate to
accurately understand whether certain design decisions are
appropriate, or whether you should favor one particular
technology over another. In such situations, the creation of
prototypes, simulations, or experiments can be an invaluable
option to obtain a better understanding. For example, in the back-
of-the-envelope estimate of latency described previously, you
may not have taken into account that several of the processes are
sharing (and hence competing for) the same resources; thus we
cannot simply sum their individual latencies and expect to get
accurate results. Prototypes and simulations provide a deeper
understanding of system dynamics, but may require a significant
effort that needs to be considered in the project plan.

As always, none of these techniques is inherently better than the

others. Thought experiments and back-of-the-envelope calculations
are inexpensive and can be done early in the design process, but
their validity may be questionable. Prototypes, simulations, and
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far greater cost. The choice of which technique to employ depends
on the context, the risk involved, and the priorities of your quality
attributes.

Even so, applying any of these techniques will be helpful in going
from “I believe” (that my design is appropriate) to an approach that
is backed by documented evidence and argumentation.

8.2 Why Analyze?

Analysis and design are two sides of the same coin. Design is (the process of)
making decisions. Analysis is (the process of) understanding the consequences—
in terms of cost, schedule, and quality—of those decisions. No sensible architect
would make any decision, or at least any nontrivial decision, without first
attempting to understand the implications of that decision: its near-term effects
and possibly its long-term consequences. Architects, of course, make thousands
of decisions in the course of designing a large project, and clearly not all of them
matter. Furthermore, not all of the decisions that matter are carriers of quality
attributes. Some may deal with which vendor to select, or which coding
convention to follow, or which programmer to hire or fire, or which IDE to use
—important decisions, to be sure, but not ones that are directly linked to a
quality attribute outcome.

Of course, some of these decisions will affect the achievement of quality
attributes. When the architect breaks down the development into a system of
layers or modules, or both, this decision will affect how a change ripples through
the code base, who needs to talk to who when adding a feature or fixing a bug,
how easy or difficult it is to distribute or outsource some of the development,
how easy it is to port the software to a different platform, and so forth. When the
architect chooses a distributed resource management system, how it determines
which services are masters and which are slaves, how it detects failures, and how
it detects resource starvation will all affect the availability of the system.

So when and why do we analyze during the design process? First, we analyze
because we can. An architecture specification, whether it is just a whiteboard
sketch or something that has been more formally documented and circulated, is
the first artifact supporting an analysis that sheds insight into quality attributes.
Yes, we can analyze requirements, but we mainly analyze them for consistency
and completeness. Until we translate those requirements into structures resulting
from design decisions, we will have little to say about the actual consequences of



those decisions, their costs and benefits, and the tradeoffs among them.

Second, and more to the point, we analyze because it is a prudent way of
informing decisions and managing risk. No design is completely without risk,
but we want to ensure that the risks that we take on are commensurate with our
stakeholders’ expectations and tolerances. For a banking application or a
military application, our stakeholders will demand low levels of risk, and they
should be willing to pay accordingly for higher levels of assurance. For a startup
company, where time to market is of the essence and budgets are tight, we might
be prepared to accept far higher levels of risk. As with every important decision
in software engineering, the answer is clear: It depends.

Finally, analysis is the key to evaluation. Evaluation is the process of
determining the value of something. Companies are evaluated to determine their
share price. A company’s employees are evaluated annually to determine their
raises. In each case, the evaluation is built upon an analysis of the properties of
the company or employee.

8.3 Analysis Techniques

Different projects will demand different responses to risk. Fortunately we, as
architects, have a wide variety of tools at our disposal to analyze architectures.
With a bit of planning, we can match our risk tolerance with a set of analysis
techniques that both meet our budget and schedule constraints and provide
reasonable levels of assurance. The point here is that analysis does not need to
be costly or complex. Just asking thoughtful questions is a form of analysis, and
that exercise is pretty inexpensive. Building a simple prototype is more
expensive, but in the context of a large project this analysis technique may be
well worth the additional expense owing to how it explores and mitigates risks,
as we saw in Chapter 5.

Examples of (relatively economical, relatively low ceremony) analysis
techniques already in widespread use include design reviews and scenario-based
analyses, code reviews, pair programming, and Scrum retrospective meetings.
Other commonly used, albeit somewhat more costly, analysis techniques include
prototypes (throw-away or evolutionary) and simulations.

At the high end of expense and complexity, we can build formal models of
our systems and analyze them for properties such as latency or security or safety.
When a candidate implementation or a fielded system finally exists, we can
perform experiments, including instrumenting running systems and collecting
data, ideally from executions of the system that reflect realistic usages.



As indicated in Table 8.1, the cost of these techniques typically increases as
you proceed through the software development life cycle. A prototype or
experiment is more expensive than a checklist, which is more expensive than an
experience-based analogy. This expected cost correlates fairly strongly with the
confidence that you can have in the analysis results. Unfortunately, there is no
free lunch!

Life-Cycle Stage = Form of Analysis Cost Confidence
Requirements Experience-based analogy Low Low—high
Requirements Back-of-the-envelope Low Low—medium
analysis
Architecture Thought experiment/ Low Low—medium
reflective questions
Architecture Checklist-based analysis Low Medium
Architecture Tactics-based analysis Low Medium
Architecture Scenario-based analysis Low—medium Medium
Architecture Analytic model Low—medium Medium
Architecture Simulation Medium Medium
Architecture Prototype Medium Medium=high
Implementation Experiment Medium=high Medium=high
Fielded system Instrumentation Medium=high High

TABLE 8.1 Analysis at Different Stages of the Software Life Cycle

8.4 Tactics-Based Analysis

Architectural tactics (discussed in Section 2.5.4) have been presented thus far as
design primitives. However, because these taxonomies are intended to cover the
entire space of architectural design possibilities for managing a quality attribute,
we can use them in an analysis setting as well. Specifically, we can use them as
guides for interviews or questionnaires. These interviews help you, as an analyst,
to gain rapid insight into the architectural approaches taken or not taken.

Consider, for example, the tactics for availability, shown in Figure 8.1.
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FIGURE 8.1 Availability tactics

Each of these tactics is a design option for the architect who wants to design a
highly available system. Used in hindsight, however, they represent a taxonomy
of the entire design space for availability and hence can be a way of gaining
insight into the decisions made, and not made, by the architect. To do this, we
simply turn each tactic into an interview question. For example, consider the
(partial) set of tactics-inspired availability questions in Table 8.2.



Tactics Supported? Rationale and
Group Tactics Question (Y/N) Risk Design Decisions and Location Assumptions
Detect  Does the system use ping/ Y L The server periodically pings the time It is not possible to modify
faults echo to detect a failure of a servers to see if they are “alive”. the time servers take to
component or connection, or implement a heartbeat
network congestion? approach.
Does the system use a com- N N/A This was not implemented in the system. We assume that informa-
ponent to monitor the state We will rely on other techniques to mon-  tion beyond what the OS
of health of other parts of the itor the system. For example, memory provides is not critical.
system? A system monitor can consumption or processor load informa-
detect failure or congestion in tion can be obtained from the OS.
the network or other shared
resources, such as from a
denial-of-service attack.
Does the system use a heart- Y L The server periodically sends a The server does not have
beat—a periodic message heartbeat to the clients. to process incoming ping
exchange between a system requests from the clients.
monitor and a process—to
detect a failure of a compo-
nent or connection, or network
congestion?
Does the system use a time Y M Events sent from the server to the clients We want to ensure that
stamp to detect incorrect have a time stamp, as they have to be clients display an accurate
sequences of events in processed in the order that they were representation of the state
distributed systems? received. of the network, which
involves receiving all of
the notifications from the
server and processing
them in the correct order.
Does the system use vot- N N/A This is not required by the system. N/A
ing to check that replicated
components are producing the
same results? The replicated
components may be identical
replicas, functionally redun-
dant, or analytically redundant.
Does the system use excep- o L Standard Java exception management  The assumption is that
tion detection to detecta is used and all exceptions are senttoa  exceptionsin Java and
sysiem condition that alters the log. using timeouts are all that
normal flow of execution—for Timeouts are implemented on the client  is needed.
example, system exceptions, side, when requests are sent to the
parameter fences, parameter server.
typing, timeouts?
Can the system do a self- N N/A This was not considered in our original ~ The assumption is that

test to test itself for correct
operation?

design.

monitoring and exception
management will provide
enough information to test
for correct operation.



Recov-
er from
faults
(prepa-
ration
and

repair)

Does the system employ ac- Y H
tive redundancy (hot spare)?
In active redundancy, all nodes
in a protection group (a group
of nodes where one or more
nodes are “active”, with the re-
mainder serving as redundant
spares) receive and process
identical inputs in parallel,
allowing redundant spares to
maintain synchronous state
with the active node(s).

Does the system employ N
passive redundancy (warm
spare)? In passive redundancy,
only the active members of the
protection group process input
traffic; one of their duties is fo
provide the redundant spare(s)
with periodic state updates.

N/A

Does the system employ Y M
rollback, so that it can revert to

a previously saved good state

(the “rollback line”) in the event

of a fault?

Active redundancy is usedin the
application server and the message
queue.

Active redundancy was favored.

Transaction management is supported
through the Spring framework.

Active redundancy was
favored over a passive
approach to reduce

the possibility of losing
information that needs

to be collected from the
time servers because of
server failure. This actually
exceeds the requirement
established in QA-3.
Also, we assume there
will be no common-mode
failure.

N/A

Spring provides adequate
support for the type of
transactions required by
this system.

TABLE 8.2 Example Tactics-Based Availability Questions

When the questions in Table 8.2 are used in an interview setting, we can
record whether each tactic is supported by the system’s architecture, according
to the opinions of the architect. For example, in the table, the questions have
been answered with respect to design decisions made for the FCAPS system
presented in Chapter 4. Note that the answers shown in the table are rather
succinct because this is an example; more detailed explanations are encouraged
in real-world applications. If we are analyzing an existing system we can
additionally investigate the following issues:

» Whether there are any obvious risks in the use (or nonuse) of this tactic. If
the tactic has been used, we can record here how it is realized in the system
(e.g., via custom code, frameworks, or other externally produced
components). For example, we might note that the active redundancy tactic
has been employed by replicating the application server and other critical
components such as the database (as in the case study presented in Chapter

4).

» The specific design decisions made to realize the tactic and where in the
code base the implementation (realization) may be found. This information
is useful for auditing and architecture reconstruction purposes. Continuing
the example from the previous bullet, we might probe how many replicas
of the application server have been created and where these replicas are
located (e.g., on the same rack in a data center, on different racks, in

different data centers).



» Any rationale or assumptions made in the realization of this tactic. For
example, we might assume that there will be no common-mode failure, so
it is acceptable that the replicas are identical virtual machines, running on
identical hardware.

While this interview-based approach might sound simplistic, it can actually be
quite powerful and insightful. In your daily activities as an architect, you may
not always take the time to step back and consider the bigger picture. A set of
interview questions such as those shown in Table 8.2 force you to do just that.
This approach is also quite efficient: A typical interview for a single quality
attribute takes between 30 and 90 minutes.

A set of tactics-based questionnaires, covering the seven most important
system quality attributes—availability, interoperability, modifiability,
performance, security, testability, and usability—can be found in Appendix B. In
addition, we have included an eighth questionnaire, on DevOps, as an example
of how you can combine the other (more fundamental) questionnaires to create a
new questionnaire to address a new set of quality concerns.

8.5 Reflective Questions

Similar to the tactics-based interviews, a number of researchers have advocated
the practice of asking (and answering) reflective questions to augment the design
process. The idea behind this process is that we actually think differently when
we are problem-solving and when we are reflecting. For this reason, researchers
have advocated a separate “reflection” activity in design that both challenges the
decisions made and challenges us to examine our biases.

Architects, like all humans, are subject to bias. For example, we are subject to
confirmation bias—the tendency to interpret new information in a way that
confirms our preconceptions—and we are subject to anchoring bias—the
tendency to rely too heavily on the first piece of information that we receive
when investigating a problem, using this information to filter and judge any
subsequent information. Reflective questions help to uncover such biases in a
systematic way, which can lead us to revise our assumptions and hence our
designs.

In their research on reflective questions, Razavian et al. have proposed that
one can and should reflect on context and requirements (Are the contexts and
requirements identified relevant, complete, and accurate?), design problems
(Have they been properly and fully articulated?), design solutions (Are they
appropriate given the requirements?), and design decisions (Are they principled



and justified?). Examples of reflective questions that they propose include the
following:

» Which assumptions are made? Do the assumptions affect the design
problem? Do the assumptions affect the solution option? Is an assumption
acceptable in a decision?

» What are the risks that certain events would happen? How do the risks
cause design problems? How do the risks affect the viability of a solution?
Is the risk of a decision acceptable? What can be done to mitigate the
risks?

» What are the constraints imposed by the contexts? How do the constraints
cause design problems? How do the constraints limit the solution options?
Can any constraints be relaxed when making a decision?

» What are the contexts and the requirements of this system? What does this
context mean? What are the design problems? Which are the important
problems that need to be solved? What does this problem mean? Which
potential solutions exist for this problem? Are there other problems to
follow up in this decision?

» Which contexts can be compromised? Can a problem be framed
differently? What are the solution options? Can a solution option be
compromised? Are the pros and cons of each solution treated fairly? What
is an optimal solution after tradeoff?

Of course, you might not employ all of these questions, and you would not
employ this technique for every decision that you make. Used judiciously,
however, these kinds of questions can help you to reflect mindfully on the
decisions that you are making.

8.6 Scenario-Based Design Reviews

Comprehensive scenario-based design reviews, such as the ATAM, have
typically been conducted outside the design process. The ATAM is an example
of a comprehensive architecture evaluation (see the sidebar “The ATAM”).

An ATAM review, as it was initially conceived, was a “milestone” review.
When an architect or other key stakeholder believed that there was enough of an
architecture or architecture description to analyze, an ATAM meeting could be
convened. This might occur when an architectural design had been done but
before much, if any, implementation had been completed. More commonly, it
occurred when an existing system was in place and some stakeholders wanted an
objective evaluation of the risks of the architecture before committing to it,



evolving it, acquiring it, and so forth.

The ATAM

The ATAM—Architecture Tradeoff Analysis Method (ATAM) is an
established method for analyzing architectures, driven by scenarios.
Its purpose is to assess the consequences of architectural decisions
in light of quality attribute requirements and business goals.

The ATAM brings together three groups in an evaluation:
» A trained evaluation team
» An architecture’s “decision makers”
» Representatives of the architecture’s stakeholders

The ATAM helps stakeholders ask the right questions to discover
potentially problematic architectural decisions—that is, risks. These
discovered risks can then be made the focus of mitigation activities
such as further design, further analysis, prototyping, and
implementation. In addition, design tradeoffs are often identified—
hence the name of the method. The purpose of the ATAM is not to
provide precise analyses: This method typically is applied in two 2-
day meetings and this (relatively) short time frame does not permit a
deep dive into any specific concern. Those kinds of analyses are,
however, appropriate as part of the risk mitigation activities that
could follow and be guided by an ATAM.

The ATAM can be used throughout the software development
life cycle. For example, it can be used in the following
circumstances:

» After an architecture has been specified but there is little or no
code

» To evaluate potential architectural alternatives
» To evaluate the architecture of an existing system
The outputs of the ATAM evaluation are as follows:

» A concise presentation of the architecture. The architecture is
presented in one hour.

» A concise articulation of the business goals for the system under
scrutiny. Frequently, the business goals presented in the ATAM
are being seen by some of the assembled participants for the first
time and these are captured in the outputs.



» A set of prioritized quality attribute requirements, expressed as
scenarios.

» A mapping of architectural decisions to quality requirements. For
each quality attribute scenario examined, the architectural
decisions that help to achieve it are identified and recorded.

» A set of sensitivity and tradeoff points. These architectural
decisions have a marked effect on one or more quality attributes.

» A set of risks and non-risks. A risk is defined as an architectural
decision that may lead to undesirable consequences in light of
quality attribute requirements. A non-risk is an architectural
decision that, upon analysis, is deemed safe. The identified risks
form the basis of an architectural risk mitigation plan.

» A set of risk themes. The evaluation team examines the full set of
discovered risks to identify overarching themes that reveal
systemic weaknesses in the architecture (or perhaps even in the
architecture process and team). If left untreated, these weaknesses
will threaten the project’s ability to meet the business goals.

There are also intangible results of an ATAM-based evaluation: a
sense of community developed among the stakeholders, open
communication channels between the architect and the stakeholders,
a better overall understanding of the architecture and its strengths
and weaknesses. While these results are difficult to measure, they
are no less important than the others and often are the longest-
lasting artifacts.

An ATAM evaluation takes place in four phases. The first phase
(phase 0) and the final phase (phase 3) are managerial: setting up
the evaluation at the start and reporting results and follow-on
activities at the end. The middle phases (phases 1 and 2) are when
the actual analysis takes place. The steps enacted in phases 1 and 2
are as follows:

1. Present the ATAM

2. Present the business drivers

3. Present the architecture

4. Identify the architectural approaches
5. Generate a quality attribute utility tree
6. Analyze the architectural approaches



7. Brainstorm and prioritize scenarios
8. Analyze the architectural approaches
9. Present the results

In phase 1, we enact steps 1-6 with a small, internal group of
stakeholders—typically just the architect, project manager and
perhaps one or two senior developers. In phase 2, we invite a larger
group of stakeholders to attend—all the people who attended phase
1 plus external stakeholders, such as customer representatives, end-
user representatives, quality assurance, operations, and so forth. In
phase 2, we review steps 1-6 and enact steps 7-9.

The actual analysis takes place in step 6, where we analyze
architectural approaches by asking the architect to map the highest-
priority scenarios, one at a time, onto the architectural approaches
that have been described. During this step, the analysts ask probing
questions, motivated by a knowledge of quality attributes, and risks
are discovered and documented.

The idea of having a separate, distinct evaluation activity once the architecture
is “done” fits poorly with the way that most organizations operate today. Today,
most software organizations are practicing some form of Agile or iterative
development. There is no distinct monolithic “architecture phase” in Agile
processes. Rather, architecture and development are co-created in a series of
sprints. For example, as discussed in Chapter 2, many Agile thought leaders are
promoting practices such as “disciplined agility at scale”, the “walking
skeleton”, and the “scaled Agile framework”, all of which embrace the idea that
architectures continuously evolve in relatively small increments, addressing the
most critical risks. This may be aided by developing a small proof-of-concept or
minimum viable product (MVP), or doing strategic prototyping.

To better align with this view of software development, a lightweight
scenario-based peer review method, based on the ATAM, has been promoted. A
lightweight ATAM evaluation can be conducted in a half-day meeting. It can
also be carried out internally, using just project members. Of course, an external
review gives more objectivity and may produce better results, but this exercise
may be too costly or infeasible due to schedule or intellectual property (IP)
constraints. A lightweight ATAM therefore provides a reasonable middle ground
between a costly but more objective and comprehensive ATAM and doing no
analysis whatsoever, or only doing ad hoc analysis.



An example schedule for a lightweight ATAM evaluation conducted by

project members on their own project is given in Table 8.3.

Time

Step Allotted Notes

1. Present 0.25hour  The participants are expected to understand the
business system and its business goals and their priorities.
drivers Fifteen minutes is allocated for a brief review to

ensure that these are fresh in everyone’s mind and
that there are no surprises.

2. Present 0.5 hour All participants are expected to be familiar with the
architecture system, so a brief overview of the architecture is

presented and 1 or 2 scenarios are traced through
the documented architecture views.

3. ldentify 0.25hour  The architecture approaches for specific quality
architectural attribute concerns are identified by the architect.
approaches This may be done as a portion of step 2.

4. Generate 0.5 hour Scenarios might already exist; if so, use them. A
quality utility tree might already exist; if so, the team reviews
attribute it and updates it, if necessary.
utility tree

5. Analyze 2.0hours  This step—mapping the highly ranked scenarios
architectural onto the architecture—consumes the bulk of the
approaches time and can be expanded or contracted as needed.

6. Present 0.5 hour At the end of the evaluation, the team reviews the
results existing and newly discovered risks and tradeoffs

and discusses priorities.

TOTAL 4 hours

TABLE 8.3 A Typical Agenda for a Lightweight ATAM Evaluation

A half-day review such as this is similar, in terms of effort, to other quality

assurance efforts that are typically conducted in a development project, such as
code reviews, inspections, and walk-throughs. For this reason, it is easy to

schedule a lightweight ATAM evaluation in a sprint, particularly in those sprints

where architectural decisions are being made, challenged, or changed.

8.7 Architecture Description Languages

If the application that you are building has stringent quality requirements in the
areas of runtime performance (latency, throughput), reliability/availability,
safety, or security, then you might consider documenting your design decisions,



in the form of architectural structures, in an architecture description language
(ADL). ADLs lend themselves to formal, automated analysis, which is precisely
why we include them here. ADLs typically employ both a graphical and a
(formally defined) textual notation to describe an architecture—primarily the
computational (runtime) components and interactions among them—and its
properties. The Unified Modeling Language (UML) is the most widely used
notation for documenting architectures in industrial practice, though even it is
not universally used. Few industrial projects endeavor to describe all, or even
most, of their architectures in any ADL.

Some ADLs, such as AADL, strive to be formal models that have precise and
decidable semantics. This regimentation means that they can be automatically
checked for properties of interest, typically performance, availability, and safety,
although in principle other quality attributes can be accommodated. While there
is an often a steep learning curve for becoming proficient with the language and
the surrounding tool suite, using a formalized ADL offers several benefits. First,
an ADL forces you to document your architectural decisions, and hence to
explicitly acknowledge when and where your architectural understanding is
incomplete or vague. This benefit accrues with any form of documentation—it
forces you to be explicit—but is especially true of ADLs. This leads to the
second benefit of ADLs: They are typically accompanied by a tool suite that can
analyze the architecture description for various properties at the click of a
button.

So why are ADLs seldom used outside of academia? A number of possible
reasons for this reluctance exist. First, it is not in our common practice. ADLs—
even the UML—are typically not taught in computer science or software
engineering curricula and are not well supported in most popular IDEs. Second,
ADLs are perceived as being challenging to use and not user-friendly, requiring
both a large up-front effort and a large continuing effort to maintain. This point
is, perhaps, the most significant one: Architects and programmers generally do
not want to maintain a second, parallel base of knowledge about their systems.
For some systems, this may be the right choice. For others—typically those with
stringent and uncompromising quality attribute requirements—having a separate
and separately analyzable representation of the design might be the most prudent
course of action. In civil engineering, by way of contrast, no project may be
approved for construction without first being represented in a separate
analyzable document.

8.8 Summary
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INO One would conslaer Tielaing codae mat tney naa not testea—yet arcnitects ana
programmers regularly commit to (implement) architectural decisions that have
not been analyzed. Why the dichotomy? Surely, if testing code is important, then
“testing” the design decisions you have made is an order of magnitude more
important, as these decisions often have long-term, system-wide, and significant
impacts.

The most important message of this chapter is that design and analysis are not
really separate activities. Every important design decision that you make should
be analyzed. A variety of techniques can be applied to do this continuously, in a
relatively disruption-free manner, as part of the process of designing and
evolving a system.

The interesting questions are not whether to analyze, but rather how much to
analyze and when. Analysis is inherent in doing good design, and it should be a
continuous process.

8.9 Further Reading

The sets of architectural tactics used here have been documented in L. Bass, P.
Clements, and R. Kazman, Software Architecture in Practice (3rd ed.), Addison-
Wesley, 2012. The availability tactics were first created in J. Scott and R.
Kazman, “Realizing and Refining Architectural Tactics: Availability”,
CMUY/SEI-2009-TR-006, 2009.

The idea of reflective questions was first introduced in M. Razavian, A. Tang,
R. Capilla, and P. Lago, “In Two Minds: How Reflections Influence Software
Architecture Design Thinking”, VU University Amsterdam, Tech. Rep. 2015-
001, April 2015. The idea that software designers satisfice—that is, they look for
a “good enough”, as opposed to an optimal, solution—has been discussed in A.
Tang and H. van Vliet, “Software Designers Satisfice”, European Conference on
Software Architecture (ECSA 2015), 2015.

The ATAM was comprehensively described in P. Clements, R. Kazman, and
M. Klein, Evaluating Software Architectures: Methods and Case Studies,
Addison-Wesley, 2001. The lightweight ATAM was first presented in L. Bass,
P. Clements, and R. Kazman, Software Architecture in Practice (3rd ed.),
Addison-Wesley, 2012. In addition, ATAM-style peer reviews have been
described in F. Bachmann, “Give the Stakeholders What They Want: Design
Peer Reviews the ATAM Style”, Crosstalk, November/December 2011.

Architecture description languages have a history almost as long as the history
of software architecture itself. The most widely used ADL in practice is AADL
(Architecture Analysis and Design Language), which is described in P. Feiler



and D. Gluch, Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language, Addison-Wesley, 2013. An
overview of, and analysis of industrial requirements for, ADLs can be found in I.
Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What Industry
Needs from Architectural Languages: A Survey”, IEEE Transactions on
Software Engineering, 39(6):869-891, June 2013.



9. The Architecture Design Process in the
Organization

Chapter 1 introduced a set of software architecture life-cycle activities—things
like collecting requirements, designing the architecture, and evaluating and
implementing the architecture. We called these “life-cycle activities” because we
recognize that not all organizations do all of them; those that do them might do
them in different ways, and might embed them into different life-cycle models
and organizational contexts. This chapter takes a closer look at those aspects of
software development and considers how architecture design fits in with them.

9.1 Architecture Design and the Development Life Cycle

Two important phases that occur in most development projects, as illustrated in
Figure 9.1, are pre-sales and development and operations.
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FIGURE 9.1 The two major phases of project development

» During the pre-sales phase, the scope of the project is established and a
business case is established. Although we call this phase “pre-sales™, it
occurs in every organization, whether they engage in “sales” or not. One
frequent and important product of this phase is an estimation of the cost
and duration of the project. This estimation is used by the customers (or
funders) to decide if they want to pursue the project.

» The development and operations phase occurs when the pre-sales proposal
has been accepted by the customer. Development can be performed
following different methodologies including Agile, RUP, or TSP. Once the
system (or part of it) is developed, it is put into operation. Newer
approaches such as DevOps intend to reduce the gap that is usually present
between development and operation.

Architectural design plays an important role in these two major phases, as we



will now discuss.

9.1.1 Architecture Design During Pre-Sales

In many types of development projects, but particularly in the context of custom
software development, organizations typically need to provide an initial estimate
of the time and cost of the project during the pre-sales phase. Frequently the pre-
sales activities must be performed in a short time period, and the information
that is available to inform this process is always limited. For example, typically
only high-level requirements or features (rather than detailed use cases) are
available at this phase.

The problem with limited information is that the estimate that is produced
frequently has a lot of uncertainty, as illustrated by the cone of uncertainty
depicted in Figure 9.2. The cone of uncertainty refers to the uncertainty
surrounding estimates in a project, typically those of cost and schedule, but also
risk. All of these estimates get better as a project progresses, and the cone
narrows. When the project is done, uncertainty is zero. The issue for any
development methodology is how to narrow the cone of uncertainty earlier in the
project’s life cycle.
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FIGURE 9.2 Example cone of uncertainty

Architectural practices can be applied in the pre-sales phase to help reduce the
cone of uncertainty:

» Architectural drivers can be identified in the pre-sales phase. Even if it
may be complicated to describe detailed quality attribute scenarios at this
point, the most important quality attributes with initial measures and
constraints should be identified.

» ADD can be used to produce an initial architecture that is then used as the
basis for early cost and schedule estimates.

» Sketches of this initial architecture are useful for communication with the
customer. They are also useful as a basis to perform lightweight
evaluations of this initial design.

Generating an initial architecture allows estimation to be performed using the
“standard components” technique. Standard components are a type of proxy;
they include web pages, business rules, and reports, among other things. When
estimating with standard components, companies typically build historic



databases that contain, for example, measurements and size data for components
that have been built into previously developed systems. To estimate with
standard components, you need to identify the components that will be required
for the problem that you are trying to solve, and then use historical data (or some
other technique such as Wideband Delphi) to estimate the size of these
components. The total size can then be translated into effort, and these estimates
can be rolled up to produce a project-level time and cost estimate.

Identifying the components that are required to create estimates with this
technique can be achieved in a short time frame through the use of ADD. This
approach is similar to what we just recommended for the design of greenfield
systems:

» The goal of your first design iteration should be to address the concern of
establishing an initial overall structure for the application. The reference
architecture, if you employ one, dictates the types of standard components
that will be used in the estimation. At this point, the most relevant
technologies to use in the project can also be selected, particularly if your
historical data is tied to specific technologies.

» The goal of your second design iteration should be to identify components
to support all of the functionality that needs to be considered for the
estimation. As opposed to what we discussed for the design of greenfield
systems, when designing to produce an estimate, you need to consider
more than just primary functionality. To identify the standard components,
you need to consider all of the important functional requirements that are
part of the scope and map them to the structure that you defined in the first
iteration. Doing so ensures you will have a more accurate estimation.

This technique will help you estimate costs and schedule for meeting the most
important functional requirements. At this point, however, you will likely not
have taken quality attributes into account. As a consequence, you should
perform a few more iterations focusing on where you will make design decisions
to address the driving quality attributes. If the time available to perform the pre-
sales process is limited, you will not be able to design it in much detail, so the
decisions that you should take here are the ones that will have a significant
impact in the estimate. Examples include identifying redundant hardware or
additional standard components to address quality attributes such as
performance, availability, and security.

When this technique is used in the pre-sales process, an initial architecture
design is produced—the pre-sales architecture design (see Figure 9.1). If the



project proposal is accepted by the customer and the project proceeds, this initial
architecture can become one of the bases for a contract. This architecture should
be used as a starting point in the subsequent architecture design activities that are
performed during the Development and Operation phase of the project. In this
case, the roadmap for designing brownfield systems (discussed in Section 3.3.3)
can be used.

The preliminary documentation produced for this initial architecture can also
be included as part of the technical proposal that is provided to the customer.
Finally, this initial architecture design can be evaluated, preferably before
estimation occurs. This can be performed using a technique such as the
lightweight ATAM presented in Section 8.6.

9.1.2 Architecture Design During Development and Operation

The development of a software system can be performed using different
methodologies. Architectural design, however, is performed independently of
the chosen development methodology. For this reason, a design method such as
ADD can be used in conjunction with different development methodologies. We
now discuss the relationship between architectural design and some development
methodologies that are commonly used in industry.

9.1.2.1 Agile Methods

The relationship between software architecture and agility has been the subject
of some debate over the past decade. Although we believe, and much research
has shown, that architectural practices and Agile practices are actually well
aligned, this position has not always been universally accepted.

Agile practices, according to the original Agile Manifesto emphasize,
“Individuals and interactions over processes and tools, working software over
comprehensive documentation, customer collaboration over contract negotiation,
and responding to change over following a plan”. None of these values is
inherently in conflict with architectural practices. So why has the belief arisen—
at least in some circles—that the two sets of practices are somehow
incompatible? The crux of the matter is the one principle on which Agile
practices and architectural practices differ.

The original creators of the Agile Manifesto described 12 principles behind
the manifesto. While 11 of these are fully compatible with architectural
practices, one of them is not: “The best architectures, requirements, and designs
emerge from self-organizing teams”. While this principle may have held true for
small and perhaps even medium-sized projects, we are unaware of any cases



where it has been successful in large projects, particularly those with complex
requirements and distributed development. The heart of the problem is this:
Software architecture design is “up-front” work. You could always just start a
project by coding and doing minimal or no up-front analysis or design. This is
what we call the emergent approach, as shown in Figure 9.3b. In some cases—
small systems, throw-away prototypes, systems where you have little idea of the
customer’s requirements—this may, in fact, be the optimal decision. At the
opposite extreme, you could attempt to collect all the requirements up front, and
from that synthesize the ideal architecture, which you would then implement,
test, and deploy. This so-called Big Design Up Front approach (BDUF; Figure
9.3a) is usually associated with the classic Waterfall model of software
development. The Waterfall model has fallen out of favor over the past decade
due to its complexity and rigidity, which led to many well-documented cases of
cost overruns, schedule overruns, and customer dissatisfaction. With respect to
architectural design, the downside of the BDUF approach is that it can end up
producing an extensively documented but untested design that may not be
appropriate. This occurs because problems in the design are often discovered late
and may require a lot of rework, or the original design may end up being ignored
and the true architecture is not documented.
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FIGURE 9.3 Three approaches to architectural design

Clearly, neither of these extremes makes sense for most real-world projects,
where some (but not all) of the requirements are well understood up front but
there is also a risk of doing too much too soon and hence becoming locked in to
a solution that will inevitably need to be modified, at significant cost. So the
truly interesting question is this: How much up-front work, in terms of
requirements analysis, risk mitigation, and architecture, should a project do?
Boehm and Turner have presented evidence arguing that there is no single right
answer to this question, but that you can find a “sweet spot” for any given
project. The “right” amount of project work depends on several factors, with the
most dominant being project size, but other important factors include
requirements complexity, requirements volatility (related to the precedentedness
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So how do architects achieve the right amount of agility? How do they find
the right balance between up-front work and technical debt leading to rework?
For small, simple projects, no up-front work on architecture is justifiable. It is
easy and relatively inexpensive to turn on a dime and refactor. In projects where
there is some understanding of the requirements, begin by performing a few
ADD iterations. These design iterations can focus on choosing the major
architectural patterns (including a reference architecture, if one is appropriate)
and frameworks. This is the iteration 0 approach depicted in Figure 9.3c. This
will help to structure the project, define work assignments and team formation,
and address the most critical quality attributes. If and when requirements change
—particularly if these are driving quality attribute requirements—adopt a
practice of Agile experimentation, where spikes are used to address new
requirements. A spike is a time-boxed task that is created to answer a technical
question or gather information; it is not intended to lead to a finished product.
Spikes are developed in a separate branch and, if successful, merged into the
main branch of the code. In this way, emerging requirements can be welcomed
and managed without being too disruptive to the overall process of development.

Agile architecture practices, however, help to tame some of the complexity,
narrowing the cone of uncertainty and hence reducing project risk. A reference
architecture defines families of technology components and their relationships. It
guides integration and indicates where abstraction should be built into the
architecture, to help reduce rework when a new technology (from within a
family) replaces an existing one. Agile spikes allow prototypes to be built
quickly and to “fail fast”, thereby guiding the eventual selection of technologies
to be included on the main development branch.

9.1.2.2 Rational Unified Process

The Rational Unified Process (RUP) is a software development process
framework that puts a strong emphasis on architecture. In the RUP (which we
also discussed in Section 7.3), development projects are divided in four major
phases, which are carried out sequentially; within these phases, a number of
iterations are performed. The four phases of the RUP are as follows:

» Inception. In this first phase, the goal is to achieve concurrence among
project stakeholders. During this phase the scope of the project and a
business architecture are defined. Also, a candidate architecture is
established. This phase is the equivalent to the pre-sales phase discussed
previously.



» Elaboration. In the second phase, the goal is to baseline the architecture of
the system and to produce architectural prototypes.

» Construction. In the third phase, the goal is to incrementally develop the
system from the architecture that was defined in the previous phase.

» Transition. In the fourth phase, the goal is to ensure that the system is
ready for delivery. The system is transitioned from the development
environment to its final operation environment.

We could argue that, from the elaboration phase until the end of the project,
RUP intrinsically follows the iteration 0 approach described earlier. RUP also
provides some guidance with respect to architectural design, although this
guidance is far less detailed than that offered by ADD. As a consequence, ADD
can be used as a complement to the RUP. ADD iterations can be performed
during inception to establish the candidate architecture by following the
approach described in Section 9.1.1. Furthermore, during the elaboration phase,
the initial architecture is taken as a starting point for performing additional
design iterations until an architecture that can be baselined is produced. During
construction, additional ADD iterations may be performed as part of the
development iterations.

9.1.2.3 Team Software Process

The Team Software Process (TSP) is a development process that strongly
emphasizes quality and measurement. A TSP software project proceeds through
a series of development cycles, where each cycle begins with a planning process
called a launch and ends with a closing process called a postmortem. Within
each development cycle, activities belonging to different phases can be
performed. These phases include requirements (REQ), high-level design (HLD),
implementation (IMPL), and testing (TEST). The REQ phase of TSP focuses on
producing a complete system requirements specification (SRS) document. The
main goal of the HLD phase is to produce a high-level design that will guide
product implementation. This high-level design must define the components
(i.e., modules) that constitute the system and that have to be designed and
developed independently following the Personal Software Process (PSP) in the
IMPL phase. Finally, the TEST phase focuses on performing integration and
system testing and on preparing the delivery of the system. Note that the life-
cycle model of a particular project (Waterfall, incremental) is defined by the
phases that are performed in each development cycle: An iterative project will
typically include activities from all four phases in a single development cycle.

The TSP does not give full consideration to software architecture



development. For instance, none of the roles defined in the TSP is that of
software architect. There is also no emphasis on quality attributes in the REQ
phase. Furthermore, the process script for the HLD phase (see Table 9.1) does
not provide detailed guidance on how to design the system architecture. These
issues can, however, be addressed by introducing ADD, and other architectural
practices, into TSP.

Step  Activities Summary

1 Structural design  An overall product design concept is produced. It
includes the system architectural components and
the product components, principal functions, and
interfaces.

2 Development A development sfrategy is established. The strategy

strategy includes the sequence of component development and
integration and the reuse and testing strategies.

3 High-level design In this step, a decision is made about whether to design

strategy the system in a single design cycle or in multiple cycles
(focusing, for example, on one layer at a time).

4 First cycle design The requirements are reviewed and the class
definitions, relationships, and transition diagrams are
produced.

5 Subsequent Design issues from previous cycles are assessed

design cycles and the current design is reviewed. Additional class
definitions, relationships, and transition diagrams are
produced.

6 Integration and Strategies for testing are established.

system test
strategies

F System design A design document is produced.

specification
(SDS)

8 Design A walk-through of the high-level design is performed

walkthrough with different stakeholders.

9 Design inspection The materials produced as a result of this phase are
inspected.

10 SDS baseline The design specification is put into a baseline.
11 Postmortem A postmortem of the phase is performed.

TABLE 9.1 Summary of TSP High-Level Design (HLD) Script Steps

ADD can be used in the context of TSP in a straightforward way. In step 1 of



the HLD script, ADD can be used to produce the overall product design concept,
similar to what was discussed for the pre-sales process. Furthermore, in each
development cycle, one or more ADD iterations can be performed (steps 4 and 5
of the HLD script). Also, the HLD phase should consider a separation between
architectural design and element interaction design (discussed in Section 2.2.2).
A TSP development cycle can involve a few ADD iterations followed by the
element interaction design activities that include identification of elements and
their interfaces. These interfaces are later used in the development phase (IMPL)
for performing detailed design and development of the elements.

9.1.2.4 DevOps

DevOps is a natural outgrowth of the Agile mindset. DevOps refers to a set of
practices that help achieve continuous delivery of software. Such practices are
intended to reduce the time between making a change to a system and the change
being placed into normal production, while ensuring high quality. This term
intentionally blurs the distinction between “development” and “operations”.
While DevOps is not inherently tied to architectural practices, if architects do
not consider DevOps as they design, build, and evolve the system, then critical
activities such as continuous build integration, automated test execution, high
availability, and scalable performance will be more challenging and less
efficient. By embracing DevOps, small iterations are supported and encouraged,
creating an environment where Agile spikes are easy to create, deploy, and test,
thereby providing crucial feedback to the architect.

For example, a tightly coupled architecture can become a barrier to continuous
integration because even small changes may require a rebuild of the entire
system, which limits the number of builds possible in a day. To fully automate
testing, the system needs to provide architectural (system-wide) test capabilities
such as interfaces to record, play back, and control system state. To support high
availability, the system must be self-monitoring, requiring architectural
capabilities such as self-test, ping/echo, heartbeat, monitor, hot spares, and so
forth.

In large-scale systems, DevOps can be achieved only with architectural
support. Any ad hoc or manual process would put the growth and success of
such a system at risk. Adopting the DevOps approach requires a small change in
the mindset of an architect. Instead of just designing the system, you now need
to think about the design of the entire deployment pipeline. Is the pipeline easy
to change, and can these changes be deployed at the click of a button? Is the
pipeline easy to scale? Is it easy to test? Fortunately, there are good answers to
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ADD can help design a system to achieve DevOps goals, in exactly the same
ways and employing exactly the same design primitives as in design for any
other driver. The different aspects that need to be considered to allow DevOps to
be performed successfully can be included as part of the system drivers, either as
architectural concerns or as quality attributes. The design concepts that help us
to achieve modifiability or testability or scalability or high availability in a
system can also be applied to the deployment pipeline. To slightly misquote
Gertrude Stein, “Architecture is architecture is architecture”.

9.2 Organizational Aspects

In addition to the choice of a specific development method and the introduction
of a design method such as ADD into this method, other aspects of the design
process can be supported by a software development organization to facilitate
design activities. Here we briefly discuss some of these aspects.

9.2.1 Designing as an Individual or as a Team

In large and complex projects, it seems straightforward that an architecture team
should be responsible for performing the design. Even in smaller projects,
however, you may find that having more than one person participate in the
design process yields important advantages. You can decide if only one person is
the architect and the others are observers (as in the practice of pair
programming) or if the group actively collaborates on design decisions (although
even here we recommend that you have one lead architect).

There are various benefits from this approach:

» Two (or more) heads can be better than one, particularly if the design
problem that you are trying to solve is different from ones that you have
addressed before.

» Different people can have different areas of expertise that are useful in the
design of the architecture. For example, you might have distinct software
and infrastructure architects, or people who specialize in different domains
or different types of design concepts.

» Design decisions are reflected upon and reviewed as they are being made
and, as a consequence, can be corrected immediately.

» Less experienced people can participate in the design process, which can
be an excellent mentoring practice.

You should, however, be aware of certain difficulties with this approach:



» Design by committee can be complicated if agreement is not achieved in a
reasonable time frame. The search for consensus can lead to “analysis
paralysis”.

» The cost of design increases and, in many cases, the time for design also
increases.

» Managing the logistics can be complex, because this approach requires the
regular availability of the group of people.

» You may encounter personality and political conflicts, resulting in
resentment or hurt feelings or in design decisions being heavily influenced
by the person who shouts longest and loudest (“design by bullying”).

9.2.2 Using a Design Concepts Catalog in Your Organization

Design concepts are used in the design process to satisfy drivers (see Section
2.5). In general, drivers can be seen as recurring design problems. Whether it is
the concern of structuring an application, allocating functionality, or satisfying a
particular quality attribute, these drivers have most certainly been addressed in
other systems previously. Furthermore, people have taken the time to document
ways to address these design problems or to develop components that serve this
purpose. As we saw in Section 3.4, the selection of design concepts is one of the
most challenging aspects of the design process. This problem is exacerbated by
the fact that information is scattered in many places: Architects usually need to
consult several pattern and tactics catalogs and do extensive research to find the
design concepts that can be considered and used.

One possible way to resolve this issue is the creation of design concepts
catalogs. These catalogs group collections of design concepts for particular
application domains. Such catalogs are intended to facilitate the identification
and selection of design concepts when performing design. They are also useful
in enhancing consistency in the designs across the organization. For example,
designers may be required to use the technologies in a particular catalog as much
as possible because this facilitates estimation, reduces learning curves, and may
lead to opportunities for reuse. Catalogs can also be useful for training purposes.

An example of a design concepts catalog appears in Appendix A. This catalog
is oriented toward the design of enterprise applications. A similar catalog for the
Big Data domain could be created from the technology families and specific
technologies illustrated in Figure 2.10 (Section 2.5.5).

The creation of these catalogs involves considerable effort and, once created,
they should be maintained as new design concepts, and particularly new
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worthwhile, however, as these catalogs are a valuable organizational asset.

9.3 Summary

In this chapter we discussed how ADD can be used in relation to several
organizational aspects. ADD can be used from the project’s inception, when a
pre-sales proposal is developed, to facilitate estimation using standard
components. As the project evolves, ADD can be used in conjunction with any
modern software development life-cycle method. In general, ADD is a valuable
complement to life-cycle methods that do not provide detailed guidance on how
to perform architectural design.

We also briefly reviewed some related concerns, such as the composition of
the design team and the development of organizational assets, such as a design
concepts catalog, that are useful during the design process.

9.4 Further Reading

Organizational structure and its influences on software architecture are
addressed in the field of enterprise architecture management. Enterprise
architecture frameworks are discussed in F. Ahlemann et al. (Eds.), Strategic
Enterprise Architecture Management: Challenges, Best Practices, and Future
Developments, Springer-Verlag Berlin Heidelberg, 2012.

A nice set of articles looking at the relationship between architecture and
Agile methods can be found in the April 2010 IEEE Software magazine special
issue on this topic.

A number of studies have looked at how architecture and agility methods
complement and support each other, such as S. Bellomo, I. Gorton, and R.
Kazman, “Insights from 15 Years of ATAM Data: Towards Agile Architecture”,
IEEE Software, September/October 2015, and S. Bellomo, R. Nord, and I.
Ozkaya, “A Study of Enabling Factors for Rapid Fielding: Combined Practices
to Balance Speed and Stability”, Proceedings of ICSE 2013, 982-991, 2013.

Barry Boehm and Richard Turner have taken an empirical look at the topic of
the relationship between agility and “discipline” (not just architecture) in their
book Balancing Agility and Discipline: A Guide for the Perplexed (Boston:
Addison-Wesley, 2004).

The practice of creating architectural “spikes” as a means of resolving
uncertainty in Agile sprints is discussed in T. C. N. Graham, R. Kazman, and C.
Walmsley, “Agility and Experimentation: Practical Techniques for Resolving



Architectural Tradeoffs”, Proceedings of the 29th International Conference on
Software Engineering (ICSE 29), (Minneapolis, MN), May 2007. A general
discussion of spikes can be found at

https://www.scrumalliance.org/community/articles/2013/march/spikes-and-the-

effort-to-grief-ratio.

Many practitioners and researchers have thought deeply about how Agile
methods and architectural practices fit together. Some of the best examples of
this thinking can be found in the following sources:

» S. Brown. Software Architecture for the Developers. LeanPub, 2013.

» J. Bloomberg. The Agile Architecture Revolution. Wiley CIO, 2013.

» Dean Leffingwell. “Scaled Agile Framework”.
http://scaledagileframework.com/

» A. Cockburn. “Walking Skeleton”.

http://alistair.cockburn.us/Walking+skeleton

» “Manifesto for Agile Software Development”. http://agilemanifesto.org/

» Scott Ambler and Mark Lines. “Scaling Agile Software Development:
Disciplined Agility at Scale”.
http://disciplinedagileconsortium.org/Resources/Documents/Scaling A gileS:

An extensive treatment of estimation techniques, including estimation using
standard components, is given in S. McConnell, Software Estimation:
Demystifying the Black Art, Microsoft Press, 2006.

An overview of the Team Software Process can be found in W. Humphrey,

The Team Software Process°™ (TSPM), Technical Report CMU/SEI-2000-TR-
023, November 2000. Extensive details about TSP can be found in the different
books written by Humphrey about this process.

The integration of ADD 2.0 (as well as other architecture development
methods) with RUP, is discussed in R. Kazman, P. Kruchten, R. Nord, and J.
Tomayko, “Integrating Software-Architecture-Centric Methods into the Rational
Unified Process”, Technical Report CMU/SEI-2004-TR-011, July 2004.

There are now several excellent books on the topic of DevOps, such as L.
Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective,
Addison-Wesley, 2015. A set of architectural tactics for DevOps was described
in H-M Chen, R. Kazman, S. Haziyev, V. Kropov, and D. Chtchourov,
“Architectural Support for DevOps in a Neo-Metropolis BDaaS Platform”, IEEE
34th Symposium on Reliable Distributed Systems Workshop (SRDSW), Montreal,
Canada, September 2015.
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Considerable attention has been given to the problem of architecture
knowledge representation and management. For a good overview of this area,
see P. Kruchten, P. Lago, and H. Van Vliet, “Building Up and Reasoning About
Architectural Knowledge”, in Quality of Software Architectures, Springer, 2006.
For a perspective on tools for architecture knowledge management, see A. Tang,
P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, “A Comparative Study of
Architecture Knowledge Management Tools”, Journal of Systems and Software,
83(3):352-370, 2010.



10. Final Words

In this chapter we reflect, once again, on the nature of design and why we need
methods for design. This is, after all, the major point of this book! And we leave
you with a few words about where to go with the information and skills that you
have gleaned from reading this book.

10.1 On the Need for Methods

Given that you have prevailed and reached this final chapter, we can assume that
you are committed to being a professional software architect. Being a
professional means that you can perform (at least) adequately and repeatedly in
all sorts of contexts. To achieve this level of performance, you need methods.

We all need methods when we are performing complex tasks that have serious
consequences if we get them wrong. Consider this: Jet pilots and surgeons are
two of the most highly trained groups of professionals in the world, and yet they
use checklists and standardized procedures for every important task that they
perform. Why? Because the consequences of making a mistake are serious. You
probably will not be designing the architectures for systems that have life-and-
death consequences. Even so, the systems that you do design, particularly if they
are large and complex, may very well have consequences for the health and
well-being of your organization. If you are designing a throwaway prototype or a
trivial system, perhaps an explicit architecture design step may be omitted. If
you are designing the nth variant of a system that you have created over and over
in the past, perhaps architecture design is little more than a cut-and-paste from
your prior experiences.

But if the system you are charged with creating or evolving is nontrivial and if
there is risk associated with its creation, then you owe it to yourself, you owe it
to your organization, and you owe it to your profession to do the best job that
you can in this most critical step in the software development life cycle. To
achieve that goal, you need a method. Methods help to ensure uniformity,
consistency, and completeness. Methods help you take the right steps and ask the
right questions.

Of course, no method can substitute for proper training and education. No one
would trust a novice pilot at the controls of a 787 or a first-year medical student
wielding a scalpel in an operating theater, armed only with a method or a
checklist. A method, however, is a key to producing high-quality results
repeatedly. And this is, after all, what we all desire as software engineering



professionals.
Fred Books, writing about the design process, said:

Any systematization of the design process is a great step forward
compared to “Let’s just start coding, or building”. It provides clear
steps for planning a design project. It furnishes clearly definable
milestones for planning a schedule and for judging progress. It
suggests project organization and staffing. It helps communication
within the design team, giving everyone a single vocabulary for the
activities. It wonderfully helps communication between the team and
its manager, and between the manager and other stakeholders. It is
readily teachable to novices. It tells novices facing their first design
assignments where to begin.

Design is just too important to be left to chance. And there needs to be a better
way of getting good at design than “shoot yourself in the foot repeatedly”. As
the Nobel Prize—winning scientist Herbert Simon wrote in 1969, “Design . . . is
the core of all professional training; it is the principal mark that distinguishes the
professions from the sciences. Schools of engineering, as well as schools of
architecture, business, education, law, and medicine, are all centrally concerned
with the process of design”. Simon went on to say that lack of professional
competence is caused by the relative neglect of design in universities’ curricula.
This trend is, we are happy to note, gradually reversing, but nearly 50 years later
it is still a cause for concern.

In this book we have provided you with a road-tested method—ADD 3.0—for
doing architectural design. Methods are useful in that they provide guidance for
the novice and reassurance for the expert. Like any good method, ADD 3.0 has a
set of steps, and these steps have been updated somewhat from prior versions of
ADD. But just as important, we have focused on the broader architecture life
cycle and shown how some changes to the design process can help make your
life as an architect better, and provide you with better outcomes. For example,
we have expanded the set of inputs that you need to think about to include things
like design purpose and architectural concerns. This broader view helps you
create an architecture that not only meets your customer’s requirements, but also
is aligned with the business needs of your team and your organization. In
addition, we have shown that design can and should be guided by a “design
concepts catalog”—a corpus of reusable architectural knowledge consisting of
reference architectures, patterns, tactics, and externally developed components
such as frameworks and technology families. By cataloging these concepts,
design can be made more predictable and repeatable. Finally, we have argued



that design should be documented, perhaps informally in sketches, and should be
accompanied by a consistent practice of analyzing the decisions made.

If we are to conceive of ourselves as software engineers, we need to take the
title of “engineer” seriously. No mechanical or electrical or structural engineer
would commit significant resources to a design that was not based on sound
principles and components, or that was not analyzed and documented. We think
that software engineering in general, and software architecture specifically,
should strive for similar goals. We are not “artistes”, for whom creativity is
paramount; we are engineers, so predictability and repeatability should be our
most cherished goal.

10.2 Next Steps

Where should you go from here? We see four answers to this question. One
answer focuses on what you can do as an individual to hone your skills and
experience as an architect. The second answer revolves around how you might
engage your colleagues to think more consciously about architecture design. The
third answer is where your organization can go with a more explicit commitment
to architecture design. And the fourth answer is about how you can contribute to
your community, and to the larger community of software architects.

Our advice to you, as an individual, about how to proceed is simple: practice.
Like any other complex skill worth having, your skill as an architect will not
come immediately, but your confidence should increase steadily. “Fake it till
you make it” is the best advice that we can give. Having a method that you can
consult, and a ready supply of common design concepts, gives you a solid
foundation on which to “fake it” and learn.

To help you practice your skills and to engage your colleagues, we have
developed an architecture game. This game, which is called “Smart Decisions”,
can be found at http://www.smartdecisionsgame.com. It simulates the
architecture design process using ADD 3.0 and promotes learning about it in a
fun, pressure-free way. The game is currently focused on the Big Data Analytics
application domain, similar to the extended design example in Chapter 5, but it
can be easily adapted to other application domains.

You might also think about next steps to be taken in your organization. You
can be an agent for change. Even if your company does not “believe in”
architecture, you can still practice many of the ideas embodied in this book and
in ADD. Ensure that your requirements are clear by insisting on response goals
for your requirements. Even when facing tight deadlines and schedule pressures,


http://www.smartdecisionsgame.com

try to get agreement on the major architectural design concepts being employed.
Do quick, informal design reviews with colleagues, huddled around a
whiteboard, and ask yourself reflective questions. None of these “next steps”
needs to be daunting or hugely time-consuming. And we believe—and our
industrial experience has shown—that they will be self-reinforcing. Better
designs will lead to better outcomes, which will lead you and your group and
your organization to want to do more of the same.

Finally, you can contribute to your local software engineering community, and
even to the worldwide community of software architects. You could, for
example, play the architecture game in a local software engineering meetup and
then share your experiences. You could contribute case studies about your
successes and failures as an architect with real-world projects. We strongly
believe that example is the best way to teach and while we have provided three
case studies in this book, more is always better. Self-publishing is easy in
today’s web.

Happy architecting!

10.3 Further Reading

The long quotation by Fred Books in this chapter comes from his thought-
provoking book The Design of Design: Essays from a Computer Scientist,
Pearson, 2010.

Many of the ideas in this chapter, in this book, and in the field of software
architecture in general can be traced back to Herbert Simon’s seminal book on
the science of design: The Sciences of the Artificial, MIT Press, 1969.



A. A Design Concepts Catalog

This chapter presents an excerpt from a catalog that groups design concepts that
are associated with the domain of enterprise applications, such as the one
presented in the case study in Chapter 4. As opposed to traditional catalogs that
list just a single type of design concept, such as pattern catalogs, the catalog
presented here groups different varieties of related design concepts. In this case,
the catalog includes a selection of reference architectures, deployment patterns,
design patterns, tactics, and externally developed components (frameworks).
Also, the design concepts that are included in this catalog are gathered from
different sources, reflecting what occurs in real-life design. The design concepts
are presented in a very succinct way, and the reader looking for more detail
should refer to the original sources using the references provided at the end of
the chapter.

A.1 Reference Architectures

Reference architectures provide a blueprint for structuring an application (see
Section 2.5.1). This section is based on the catalog in the Microsoft Application
Architecture Guide.

A.1.1 Web Applications

This web application is typically initiated from a web browser that
communicates with a server using the HTTP protocol. The bulk of the
application resides on the server, and its architecture is typically composed of
three layers: the presentation, business, and data layers. The presentation layer
contains modules that are responsible for managing user interaction. The
business layer contains modules that handle aspects related to the business logic.
The data layer contains modules that manage data that is stored either locally or
remotely. In addition, certain functionality that is common to modules across the
layers is organized as cross-cutting concerns. This cross-cutting functionality
includes aspects related to security, logging, and exception management. Figure
A.1 presents the components associated with the modules in web applications.
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FIGURE A.1 Web Application reference architecture (Key: UML)

The following table summarizes the responsibilities of the components present
in this reference architecture:

Component Name Responsibility

Browser A web browser running on the client machine.

User interface These components are responsible for receiving user
interactions and presenting information to the users. They
contain Ul elements such as buttons and text fields.

Ul process logic These components are responsible for managing the control
flow of the application’s use cases. They are responsible
for other aspects such as data validation, orchestrating
interactions with the business logic, and providing data coming
from the business layer to the user interface components.

Application facade  This component is optional. It provides a simplified interface
(a facade) to the business logic components.

Business workflow These components are responsible for managing (long-
running) business processes, which may involve the execution
of multiple use cases.

Business logic These components are responsible for retrieving and
processing application data and applying business rules on
this data.

Business entities These components represent the entities from the business
domain and their associated business logic.

Data access These components encapsulate persistence mechanisms
and provide common operations used to retrieve and store
information.



Helpers and utilities These components contain functionality common to other
modules in the data layer but not specific to any of them.

Service agents These components abstract communication mechanisms
used to transfer data to extemal services.

Security These components include cross-cutting functionality
that handles security aspects such as authorization and
authentication.

Operation These components include cross-cutting functionality such

management as exception management, logging, and instrumentation and
validation.

Communication These components include cross-cutting functionality that
handles communication mechanisms across layers and
physical tiers.

You should consider using this type of application when:
» You do not require a rich user interface.

» You do not want to deploy the application by installing anything on the
client machine

» You require portability of the user interface.
» Your application needs to be accessible over the Internet.
» You want to use a minimum of client-side resources.

A.1.2 Rich Client Applications

Rich client applications are installed and run on a user’s machine. Because the
application runs on the user’s machine, its user interface can provide a high-
performance, interactive, and rich user experience. A rich client application may
operate in stand-alone, connected, occasionally connected, or disconnected
mode. When connected, it typically communicates with remote services
provided by other applications.

Rich client application modules are structured in three main layers or in a
cross-cutting grouping, similar to a web application (see Section A.1.1). Rich
client applications can be “thin” or “thick.” Thin-client applications consist
primarily of presentation logic, which obtains user data and sends it to a server
for processing. Thick-client applications contain business and data logic and
typically connect to a data storage server only to exchange information that
needs to be persisted remotely. Figure A.2 presents the components associated
with the modules in rich client applications.
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FIGURE A.2 Rich Client Application reference architecture (Key: UML)

You should consider using this type of application when:
» You want to deploy your application on the users’ machines.




» You want your application to support intermittent or no network
connectivity.

» You want your application to be highly interactive and responsible.

» You want to leverage the user’s machine resources (such as a graphics
card).

Since these applications are deployed on the user’s machine, they are less
portable and deployment and updating is more complicated. A range of
technologies to facilitate their installation are available, however.

A.1.3 Rich Internet Applications

Rich Internet applications (RIAs) typically run inside a browser and may be
developed using code that is executed by the browser such as Asynchronous
JavaScript and XML (AJAX). RIAs may also run inside a browser plug-in, such
as Silverlight. These applications are more complex than standard web
applications and support rich user interaction and business logic. They are,
however, typically restricted with respect to accessing local resources because of
security concerns.

Typical RIAs are structured using the same three layers and modules found in
web applications (see Section A.1.1). In RIAs, some business logic may be
executed on the client machine, and some data may be stored locally. Like rich
client applications, RIAs may range from relatively thin to quite thick clients.

The following table summarizes the responsibilities of the components of this
reference architecture (shown in Figure A.3) that are not present in the Web
Application reference architecture:



Component

Name Responsibility

Presentation Responsible for managing user interaction (represents both Ul
components and Ul process logic components).

Rich Ul engine Responsible for rendering user interface elements inside the
plug-in execution container.

Business Responsible for managing business logic on the client side.

processing

Service interfaces Responsible for exposing services that are consumed by the
components that run on the browser.

Message types Responsible for managing the types of messages that are
exchanged between the client part and the server part of the
application.
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FIGURE A.3 Rich Internet Application reference architecture (Key: UML)

You should consider using this type of application when:

» You want your application to have a rich user interface but still run inside
a browser.

» You want to perform some of the processing on the client side.

» You want to deploy and update your application in a simple manner,
without having to perform installations on the user machine.

However, there are some limitations associated with this type of application:

» Access to local resources can be limited, because the application may run
in a sandbox.

» Loading time is non-negligible.

» Plug-in execution environments may not be available in all platforms.

A.1.4 Mobile Applications

A mobile application is typically executed on a handheld device and usually
works in collaboration with a support infrastructure that resides remotely. These
applications are structured using modules and layers similar to those found in a
web application (see Section A.1.1), although many of the components derived
from these modules may be optional depending on whether a thin-client or a
thick-client approach is followed. As shown in Figure A.4, at a minimum, the
components responsible for user interaction are typically present.
Communication with the support infrastructure is frequently unreliable, and
these applications normally include some type of local data store that is
periodically synchronized with data in the support infrastructure.
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FIGURE A.4 Mobile Application reference architecture (Key: UML)

You should consider using this type of application when:
» You want your application to run in a handheld device.

» The network connectivity is unreliable, so the application needs to run in
both offline and occasionally connected modes.

However, there is a substantial limitation associated with this type of
application:

» Resources on the handheld device may be limited.

A.1.5 Service Applications

Service applications are non-interactive applications that expose functionality
through public interfaces (i.e., services). Services may be invoked by service
consumer components remotely or from the same machine in which the service
application is running. Services can be defined using a description language such
as the Web Services Description Language (WSDL); operations are invoked
using XML-based message schemas that are transferred over a transport channel.
As a consequence, services promote interoperability.

Similar to the other types of reference architectures, service applications are
structured using layers (Figure A.5). These applications are not interactive, so
the presentation layer is not needed. It is replaced by a service layer that contains
components responsible for exposing the services and exchanging information,
similar to the server part of RIAs (see Section A.1.3).
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FIGURE A.5 Service Application reference architecture (Key: UML)

You should consider using this type of application when:

» Your application is not used by humans but rather by other systems and, as
a consequence, does not have a user interface.

» Your application and the clients should be loosely coupled.

Except in cases where services are consumed by applications that reside in the
same machine, network connectivity is required for the clients to communicate
with the service application.

A.2 Deployment Patterns

Deployment patterns provide guidance on how to structure the system from a
physical standpoint (see Section 2.5.3). Good decisions with respect to the
deployment of the software system are essential to achieve important quality
attributes such as performance, usability, availability, and security. This section
is a summary from the catalog included in the Microsoft Application
Architecture Guide.

A.2.1 Nondistributed Deployment

In nondistributed deployment, all of the components from the modules in the
different layers reside on a single server except for data storage functionality
(Figure A.6). Because the components communicate locally, this may improve
performance due to the lack of network communication delays. However,
performance may be affected by other aspects of the system, such as resource
contention. Also, this type of application must support the peak usage of the
largest consumers of system resources. Scalability and maintainability may be
negatively affected because the same physical hardware is shared by all of the
components.



Web / App Server

Presentation
Layer
Components

Business
Layer
Components

Data
Layer
Components

Database Server

N
e

Database

. 0000

FIGURE A.6 Nondistributed deployment example (Key: UML)

A.2.2 Distributed Deployment

In a distributed deployment, the components of the application reside on separate
physical tiers (Figure A.7). Typically, the components associated with specific
layers are deployed in different tiers. Tiers can be configured differently to best

meet the requirements of the components that it hosts.
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FIGURE A.7 Distributed deployment example (Key: UML)

Distributed deployment facilitates scalability but the addition of tiers also
brings additional costs, network latency, complexity, and deployment effort.
More tiers may also be added to promote security. Different security policies
may be applied according to the particular tier, and firewalls may be placed



between the tiers. The following subsections describe various alternatives of
distributed deployment that can be used in conjunction with the reference
architectures from Section A.1.

Two-Tier Deployment (Client-Server)

Two-tier deployment is the most basic layout for distributed deployment. The
client and the server are usually deployed on different physical tiers, as shown in

Figure A.8.

Client Tier Server Tier
Web /

Client Application /

Data Server

FIGURE A.8 Two-tier deployment pattern (Key: UML)

Three-Tier Deployment

In three-tier deployment, the application is deployed in a tier that is separate
from the one that hosts the database, as shown in Figure A.9. This is a very
common physical layout for web applications.

Client Tier Web / App Tier Database Tier

. I Web / App
Client I:é Server Database

y

FIGURE A.9 Three-tier deployment pattern (Key: UML)




Four-Tier Deployment

In four-tier deployment, shown in Figure A.10, the web server and the
application server are deployed in different tiers. This separation is usually done
to improve security, as the web server may reside in a publicly accessible
network while the application resides in a protected network. Additionally,
firewalls may be placed between the tiers.

Client Tier Web Tier Business Logic Tier Database Tier

. Web App

FIGURE A.10 Four-tier deployment pattern (Key: UML)

A.2.3 Performance Patterns: Load-Balanced Cluster

In the Load-Balanced Cluster pattern, the application is deployed on multiple
servers that share the workload, as shown in Figure A.11. Client requests are
received by a load balancer, which redirects them to the various servers
according to their current load. The different application servers can process
several requests concurrently, which results in performance improvements.

Client Tier Application Tier Data Tier

Instance 1:
AppServer

Database Server

Client

Instance 2:
s AppServer

Firewall* 1 Balancer —T— Firewall

Instance n: * = optional element
A rver

FIGURE A.11 Load-balanced cluster deployment pattern (Key: UML)




A.3 Architectural Design Patterns

This section includes architectural design patterns (see Section 2.5.2) used in the
case study in Chapter 4. The patterns presented here are based on the book
Pattern-Oriented Software Architecture: A Pattern Language for Distributed
Computing, Volume 4. The numbers in parentheses [e.g., Domain Model (182)]
indicate the page in the book where the pattern is documented.

Note that we are using a home-grown notation for the patterns here, which is
common in the patterns community. We define the symbols in a legend
accompanying the first diagram (Layers) and use these symbols throughout this
section.

A.3.1 Structural Patterns

These patterns are used to structure the system but they provide less detail than
the reference architectures.

Name Layers

Problem and When transforming a Domain Model (182) into a set of modules

context that can be allocated to teams, [...] we need to support several
concerns: the independent development of the modules, the
independent evolution of the modules, the interaction among the
modules.

Solution Define two or more layers for the software under development,
where each layer has a distinct and specific responsibility. To make
the layering more effective, the interactions between the layers
should be highly constrained. The strictest layering, as shown
below, allows only unidirectional dependencies and forbids layer-
bridging.
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Consequences Typically, each self-contained and coherent responsibility within

and related a layer is realized as a separate domain object. Domain objects

patterns are the containers (modules) that can be developed and evolved
independently.

Name Domain Object

Problem and When realizing a Domain Model (182) in terms of Layers (185),

context a key concern is to decouple self-contained and cohesive
application responsibilities.

Solution Encapsulate each distinct, nontrivial piece of application
functionality in a self-contained building block called a domain
object.
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Consequences
and related
patterns

The partitioning of an application’s responsibilities into domain
objects is based on one or more granularity criteria. There can
be different types of domain objects that encapsulate business
features, domain concepts, or infrastructure elements. For exam-
ple, domain objects might be a function such as an income tax
calculation or a currency conversion, or a domain concept such
as a bank account or a user. Domain objects can also aggregate
other domain objects.

When designing domain objects, you need to distinguish an
Explicit Interface (281), which exports some functionality, from its
Encapsulated Implementation (313), which realizes that function-
ality. The separation of interface and implementation is the key

to modularization. It minimizes coupling—each domain object
depends only on explicit interfaces, not on encapsulated imple-
mentations. This makes it possible to create and evolve a domain
object implementation independently from other domain objects.

A.3.2 Interface Partitioning

Name

Explicit Interface

Problem and
context

Solution

When designing Layers (185) and their constituent Domain Ob-
jects (208), an important concern is how to properly create compo-
nent (module) interfaces.

A module is a self-contained unit of functionality (and a self-
contained unit of deployment) with a published interface. Clients
can build upon existing modules as building blocks when providing
their own functionality. Direct access to the module’s implementa-
tion might make clients dependent on the module’s internals, which
ultimately increases coupling and erodes the ability of the applica-
tion to evolve.

Separate the explicit interface of a module from its implementa-
tion. Export the explicit interface to the clients of the module, but
keep its implementation private.
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A call from the client through an explicit interface will be forwarded
to the implementation, but the client code will depend only on the
public interface, not on the implementation.

An explicit interface therefore enforces the separation of the
component’s interface from its implementation. This separation
means that a component’s implementation may be modified and
the clients that use it will be unaffected, so long as the interfaces
are unchanged.

Name

Proxy

Problem and
context

Solution

When specifying an Explicit Interface (281), we often want to avoid
accessing services of a component implementation directly, as
these services may change or even be unknown until execution
time.

Most modern software systems consist of cooperating compo-
nents, some of which you create and others that you do not.
Your components access and use the services provided by other
components. It may be impractical or even impossible to access
the services of a component directly—for example, because the
implementation resides on a remote server.

Encapsulate all the details of interacting with the component within
a surrogate—called the proxy—and let clients communicate via
the proxy rather than directly with the subject component.
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A proxy frees both the client and the subjects from implementing
component-specific housekeeping functionality. It is also transpar-
ent to clients whether they are connected with the real subject com-
ponent or its proxy, because both publish an identical interface. The
drawbacks of a proxy are additional execution time added to each
client interaction (although, unless your application is highly sensi-
tive to latency, this additional overhead is likely inconsequential).

A.3.3 Concurrency

Name

Half-Sync/Half-Async

Problem and
context

Solution

When developing concurrent software, a critical concern is to
ensure that concurrent programming is relatively straightforward
without sacrificing runtime efficiency.

Concurrent software typically performs both asynchronous and
synchronous processing of service requests. Asynchrony is used

to process low-level service requests (such as events) efficiently,
whereas synchronous processing is used to simplify the processing
of application services. To benefit from both programming models, it
is essential to coordinate both kinds of processing.

Decompose the services of concurrent software into two separate
streams or “layers”—synchronous and asynchronous—and add a
queueing “layer” to mediate communication between them.
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Consequences This pattern allows you to process complex service requests, such
and related as domain functionality or database queries, synchronously in
patterns separate threads. Similarly, lower-level system services, such as
protocol handlers that respond to hardware interrupts, are handled
asynchronously. In cases where services in the synchronous layer
need to communicate with services in the asynchronous layer,
they may exchange messages via the queueing layer.
The Half-Sync/Half-Async arrangement employs Layers (185)
to keep the three distinct execution and communication models
encapsulated and hence independent from one another.

A.3.4 Database Access




Name

Data Mapper (Data Access Object [DAO])

Problem and
context

Solution

Structure

When designing a Database Access Layer (538), we need to
insulate applications from the details of how data is represented in
persistent storage, such as the specific SQL queries to use.

Object-oriented applications and relational databases use different
abstractions for representing data. However, many applications
need to transfer data between these two “worlds.” It is desirable to
keep the object-oriented domain model ignorant of the relational
database schema. In this way, changes to one domain model will
be less likely to ripple to the other.

Introduce a data mapper for each type of persistent application
object. The responsibility of this mapper is to transfer data from
the objects to the database, and vice versa.

Data Mapper

Relational
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Application
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Delete




Consequences A data mapper is a mediator that moves data between an

and related object-oriented domain model and a relational database. A client

patterns can use the data mapper to store or retrieve application data
in the database. The data mapper performs any needed data
transformations and maintains consistency between the two
representations.

When a data mapper is used, in-memory objects do not even need
to know that a database is present. Hence, they require no SQL
code and can have complete ignorance of the database schema.
In addition, the relational database schema and the object-
oriented domain model can evolve independently. This provides
an additional benefit that accrues to any abstraction interface: It
simplifies unit testing, by allowing mappers to databases to be
replaced by mock objects that support in-memory testing.

The data mapper makes application objects simpler and reduces
their external dependencies, making them easier to evolve.

There are two potential drawbacks to the Data Mapper pattern,
however: (1) Changes in either the application object model or the
database schema may require changes to a data mapper; and (2)
the additional level of indirection introduces overhead, and hence
latency, to every data access, which might be problematic for
systems with hard real-time deadlines, for example.

A.4 Tactics

Tactics were presented in Section 2.5.4. Here we present a summarized catalog
of tactics for seven commonly encountered quality attributes. This catalog comes
from the book Software Architecture in Practice.

A.4.1 Availability Tactics
Figure A.12 summarizes the tactics to achieve availability.
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» Ping/echo: An asynchronous request/response message pair exchanged
between nodes is used to determine reachability and the round-trip delay
through the associated network path.

» Monitor: A component is used to monitor the state of health of other parts
of the system. A system monitor can detect failure or congestion in the
network or other shared resources, such as from a denial-of-service attack.



» Heartbeat: A periodic message exchange occurs between a system monitor
and a process being monitored.

» Timestamp: Detect incorrect sequences of events, primarily in distributed
message-passing systems.

» Sanity checking: Check the validity or reasonableness of a component’s
operations or outputs; typically based on a knowledge of the internal
design, the state of the system, or the nature of the information under
scrutiny.

» Condition monitoring: Check conditions in a process or device, or
validates assumptions made during the design.

» Voting: Check that replicated components are producing the same results.
Comes in various flavors, such as replication, functional redundancy,
analytic redundancy.

» Exception detection: Detect a system condition that alters the normal flow
of execution, such as a system exception, parameter fence, parameter
typing, or timeout.

» Self-test: Procedure for a component to test itself for correct operation.

Recover from Faults (Preparation and Repair)

» Active redundancy (hot spare): All nodes in a protection group receive and
process identical inputs in parallel, allowing redundant spare(s) to maintain
synchronous state with the active node(s).

» Passive redundancy (warm spare): Only the active members of the
protection group process input traffic; one of their duties is to provide the
redundant spare(s) with periodic state updates.

» Spare (cold spare): Redundant spares of a protection group remain out of
service until a failover occurs, at which point a power-on-reset procedure
is initiated on the redundant spare prior to its being placed in service.

» Exception handling: Deal with the exception by reporting it or handling it,
potentially masking the fault by correcting the cause of the exception and
retrying.

» Rollback: Revert to a previous known good state, referred to as the
“rollback line.”

» Software upgrade: Perform in-service upgrades to executable code images
in a non-service-affecting manner.

» Retry: When a failure is transient, retrying the operation may lead to



success.

» Ignore faulty behavior: Ignore messages sent from a source when it is
determined that those messages are spurious.

» Degradation: Maintain the most critical system functions in the presence
of component failures, dropping less critical functions.

» Reconfiguration: Reassign responsibilities to the resources that continue to
function, while maintaining as much functionality as possible.

Recover from Faults (Reintroduction)

» Shadow: Operate a previously failed or in-service upgraded component in
a “shadow mode” for a predefined time prior to reverting the component
back to an active role.

» State resynchronization: Passive redundancy; state information is sent
from active to standby components, in this partner tactic to active
redundancy.

» Escalating restart: Recover from faults by varying the granularity of the
component(s) restarted and minimizing the level of service affected.

» Non-stop forwarding: Functionality is split into supervisory and data
variants. If a supervisor fails, a router continues forwarding packets along
known routes while protocol information is recovered and validated.

Prevent Faults

» Removal from service: Temporarily place a system component in an out-
of-service state for the purpose of mitigating potential system failures.

» Transactions: Bundle state updates so that asynchronous messages
exchanged between distributed components are atomic, consistent,
isolated, and durable.

» Predictive model: Monitor the state of health of a process to ensure that the
system is operating within nominal parameters; take corrective action
when conditions are detected that are predictive of likely future faults.

» Exception prevention: Prevent system exceptions from occurring by
masking a fault, or prevent them via smart pointers, abstract data types,
and wrappers.

» Increase competence set: Design a component to handle more cases—
faults—as part of its normal operation.

A A D Intaranerahilitv Tactice
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Figure A.13 summarizes the tactics to achieve interoperability.
Interoperability Tactics
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FIGURE A.13 Interoperability tactics

Locate

» Discover service: Locate a service by searching a known directory service.
There may be multiple levels of indirection in this location process—that
is, a known location may point to another location that in turn can be
searched for the service.

Manage Interfaces

» Orchestrate: Use a control mechanism to coordinate, manage, and
sequence the invocation of services. Orchestration is used when systems
must interact in a complex fashion to accomplish a complex task.

» Tailor interface: Add or remove capabilities to an interface such as
translation, buffering, or data smoothing.

A.4.3 Modifiability Tactics
Figure A.14 summarizes the tactics to achieve modifiability.
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FIGURE A.14 Modifiability tactics

Reduce Size of a Module

» Split module: If the module being modified includes a great deal of
capability, the modification costs will likely be high. Refining the module
into several smaller modules should reduce the average cost of future
changes.

Increase Cohesion

» Increase semantic coherence: If the responsibilities A and B in a module
do not serve the same purpose, they should be placed in different modules.
This may involve creating a new module or moving a responsibility to an
existing module.

Reduce Coupling

» Encapsulate: Encapsulation introduces an explicit interface to a module.
This interface includes an API and its associated responsibilities, such as
“perform a syntactic transformation on an input parameter to an internal
representation.”

» Use an intermediary: Given a dependency between responsibility A and



responsibility B (for example, carrying out A first requires carrying out B),
the dependency can be broken by using an intermediary.

» Restrict dependencies: Restrict the modules that a given module interacts
with or depends on.

» Refactor: Refactoring is undertaken when two modules are affected by the
same change because they are (at least partial) duplicates of each other.

» Abstract common services: When two modules provide not quite the same
but similar services, it may be cost-effective to implement the services just
once in a more general (abstract) form.

Defer Binding
» Defer binding: Allow decisions to be bound after development time.

A.4.4 Performance Tactics

Figure A.15 summarizes the tactics to achieve performance.
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FIGURE A.15 Performance tactics



Control Resource Demand

» Manage sampling rate: If it is possible to reduce the sampling frequency at
which a stream of data is captured, then demand can be reduced, albeit
typically with some loss of fidelity.

= Limit event response: Process events only up to a set maximum rate,
thereby ensuring more predictable processing when the events are actually
processed.

» Prioritize events: If not all events are equally important, you can impose a
priority scheme that ranks events according to how important it is to
service them.

» Reduce overhead: The use of intermediaries (important for modifiability)
increases the resources consumed in processing an event stream; removing
them improves latency.

» Bound execution times: Place a limit on how much execution time is used
to respond to an event.

» Increase resource efficiency: Improving the algorithms used in critical
areas will decrease latency.

Manage Resources

» Increase resources: Faster processors, additional processors, additional
memory, and faster networks all have the potential to reduce latency.

» Increase concurrency: If requests can be processed in parallel, the blocked
time can be reduced. Concurrency can be introduced by processing
different streams of events on different threads or by creating additional
threads to process different sets of activities.

» Maintain multiple copies of computations: The purpose of replicas is to
reduce the contention that would occur if all computations took place on a
single server.

» Maintain multiple copies of data: Keep copies of data (with one potentially
being a subset of the other) on storage with different access speeds.

» Bound queue sizes: Control the maximum number of queued arrivals and
consequently the resources used to process the arrivals.

» Schedule resources: When there is contention for a resource, the resource
must be scheduled.

A.4.5 Security Tactics



Figure A.16 summarizes the tactics to achieve security.
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Detect Attacks

» Detect intrusion: Compare network traffic or service request patterns
within a system to a set of signatures or known patterns of malicious
behavior stored in a database.

» Detect service denial: Compare the pattern or signature of network traffic
coming into a system to historic profiles of known denial-of-service
attacks.

» Verify message integrity: Use techniques such as checksums or hash values
to verify the integrity of messages, resource files, deployment files, and
configuration files.

» Detect message delay: By checking the time that it takes to deliver a
message, it is possible to detect suspicious timing behavior.

Resist Attacks
» Identify actors: Identify the source of any external input to the system.



» Authenticate actors: Ensure that an actor (user or a remote computer) is
actually who or what it purports to be.

» Authorize actors: Ensure that an authenticated actor has the rights to access
and modify either data or services.

» Limit access: Control what and who may access which parts of a system,
such as processors, memory, and network connections.

» Limit exposure: Reduce the probability of a successful attack, or restrict
the amount of potential damage—for example, by concealing facts about a
system (“security by obscurity”) or by dividing and distributing critical
resources (“don’t put all your eggs in one basket™).

» Encrypt data: Apply some form of encryption to data and to
communication.

» Validate input: Validate input from a user or an external system before
accepting it in the system.

» Separate entities: Use physical separation on different servers attached to
different networks, virtual machines, or an “air gap.”

» Change default settings: Force the user to change settings assigned by
default.

React to Attacks

» Revoke access: Limit access to sensitive resources, even for normally
legitimate users and uses, if an attack is suspected.

» Lock computer: Limit access to a resource if there are repeated failed
attempts to access it.

» Inform actors: Notify operators, other personnel, or cooperating systems
when an attack is suspected or detected.

Recover from Attacks

In addition to the availability tactics for recovery of failed resources, an audit
may be performed to recover from attacks.

» Maintain Audit Trail: Keep a record of user and system actions and their
effects, to help trace the actions of, and to identify, an attacker.

A.4.6 Testability Tactics
Figure A.17 summarizes the tactics to achieve testability.
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Control and Observe System State

» Specialized interfaces: Control or capture variable values for a component
either through a test harness or through normal execution.

» Record/playback: Capture information crossing an interface and use it as
input for further testing.

» Localize state storage: To start a system, subsystem, or module in an
arbitrary state for a test, it is most convenient if that state is stored in a
single place.

» Abstract data sources: Abstracting the interfaces lets you substitute test
data more easily.

» Sandbox: Isolate the system from the real world to enable experimentation
that is unconstrained by the worry about having to undo the consequences
of the experiment.

» Executable assertions: Assertions are (usually) hand-coded and placed at



desired locations to indicate when and where a program is in a faulty state.

Limit Complexity
» Limit structural complexity: Avoid or resolve cyclic dependencies between

components, isolate and encapsulate dependencies on the external
environment, and reduce dependencies between components in general.

» Limit nondeterminism: Find all the sources of nondeterminism, such as
unconstrained parallelism, and weed them out as far as possible.

A.4.7 Usability Tactics
Figure A.18 summarizes the tactics to achieve usability.
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Support User Initiative

» Cancel: The system must listen for the cancel request; the command being
canceled must be terminated; resources used must be freed; and
collaborating components must be informed.

» Pause/resume: Temporarily free resources so that they may be reallocated
to other tasks.

» Undo: Maintain a sufficient amount of information about system state so
that an earlier state may be restored at the user’s request.

» Aggregate: Aggregate lower-level objects into a group, so that a user
operation may be applied to the group, freeing the user from the drudgery.



Support System Initiative

» Maintain task model: Determine the context so the system can have some
idea of what the user is attempting and provide assistance.

» Maintain user model: Explicitly represent the user’s knowledge of the
system, the user’s behavior in terms of expected response time, and other
characteristics of the system.

» Maintain system model: The system maintains an explicit model of itself.
This tactic is used to determine expected system behavior so that
appropriate feedback can be given to the user.

A.5 Externally Developed Components

Externally developed components, including frameworks, were discussed in
Section 2.5.5. Here we present a small sample of Java frameworks used in the
case study in Chapter 4. Each framework is described very briefly and is
associated with particular technology families, patterns, and tactics. Full details
for the different frameworks can be found by visiting the URL that is provided.

A.5.1 Spring Framework



Framework

Name Spring Framework

Technology Dependency injection and aspect-oriented programming (AOP)

family container

Language Java

URL http://projects.spring.io/spring-framework/

Purpose The application framework allows the objects that form an
application to be connected. It also supports different concerns
through AOP.

Overview The Spring container connects standard Java objects, or POJOs

(Plain Old Java Objects), by using information from an XML file
called “Application Context” or annotations in the Java code. This is
the “Inversion of Control and Dependency Injection” pattern, since
object dependencies are injected by the container.

The framework supports several aspects using AOP which are
introduced as proxies between the Java objects when the container
connects them. Supported aspects include:

= Security

* Transaction management

* Publishing object interfaces so the objects can be accessed re-
motely—for example, via Web Services
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Implemented
design
patterns and
tactics

Benefits

Limitations

This diagram represents how two objects are connected by two
important elements in the framework: the Spring container and the
application context. (Key: UML)

Patterns

* Inversion of Control and Dependency Injection
* Factory
" Proxy

Tactics

* Availability: Transactions
= Testability: Abstract data sources (separate interface and
implementation)

* Excellent tool support

= Simple integration with other frameworks such as web Ul (Spring
MVC, JSF), and persistence (JPA, Hibernate, iBatis) and integra-
tion (JMS)

* Apache License 2.0
* Complex framework

A.5.2 Swing Framework

Framework

Name Swing Framework

Technology Local user interface

family

Language Java

URL http://docs.oracle.com/javase/tutorial/uiswing/index.html

Purpose Framework to support the creation of portable local (non-web) user
interfaces.

Overview The Swing framework provides a library of user interface

components, including JFrame (windows), JMenu, JTree, JButton,
JList, and JTable, among others. These components are built
around the Model View Controller and Observer patterns.

Components such as JTables are views and controllers, and each
has a corresponding model class (e.g., TableModel).
Components allow observers (called “listeners”) to be registered
to manage different events. For example, JButtons allow
ActionListeners to be registered as observers so that when the
button is clicked, a callback method (actionPerformed) is
invoked.



Structure
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This diagram represents a small fraction of the framework’s classes (Key: UML)

Implemented
design
patterns and
tactics

Benefits

Limitations

Patterns:

Model View Controller
Observer

Others such as Composite and Iterator
Portable (can run on any operating system)

Part of Java API
Good tool support

Slower than using native Ul elements
Not the same look and feel as native Ul elements

A.5.3 Hibernate Framework




Framework

Name Hibernate

Technology Object-oriented to relational mapper

family

Language Java

URL http://hibernate.org/

Purpose Simplify persistence of objects in a relational database.

Overview Hibernate allows objects to be easily persisted in a relational data-
base (and it supports different database engines). Object-relational
mapping rules are described declaratively in an XML file called
hibernate.cfg or using annotations in the classes whose objects
need to be persisted.

Hibernate supports transactions and provides a query language
called HQL (Hibernate Query Language) that is used to retrieve
objects from the database. Hibernate utilizes multilevel caching
schemes to improve performance. It also provides mechanisms

to allow lazy acquisition of dependent objects to improve perfor-
mance and reduce resource consumption. These mechanisms are
configured declaratively in the configuration files.

Structure

Hibernate << file>>
Runtime
| _ _“‘_Usi”_ _ I hibernate.cfg
" ™
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<<java table>>

object>>
| SomeEntity

This diagram represents an entity that is persisted to a database
by the Hibernate runtime using the information in the configuration
file (Key: UML)




Implemented
design patterns
and tactics

Benefits

Limitations

Patterns:

= Data Mapper

* Resource Cache

* Lazy Acquisition

Tactics:

* Availability: Transactions

* Performance: Maintain multiple copies of data (cache)

» Greatly simplifies the persistence of objects in relational
database

Complex API
» Slower than JDBC (Java Database Connectivity)
= Difficult to map to legacy database schemas

A.5.4 Java Web Start Framework

Framework

Name Java Web Start Framework

Technology Deployment mechanism

family

Language Java

URL http://docs.oracle.com/javase/tutorial/deployment/webstart/

Purpose Provide a platform-independent, secure, and robust deployment
technology.

Overview By using a web browser, end users can start standard (non-
applet) Java applications, and Java Web Start ensures they are
running the latest version. To launch an application, users click a
link on a page. If this is the first time the application is used, Java
Web Start downloads the application. If the application has been
previously used, Java Web Start verifies that the local copy is the
latest version and launches it or downloads the newest version.

Structure Not available

Implemented Tactics:

design pattems = gecuyrity: Limit access (sandbox)

and tactics * Performance: Maintain multiple copies of data (cache)

Benefits * Applications run in a sandbox but can read and write 10 local files.
* Because the application is cached, once it has been downloaded

startup time is greatly reduced.
Limitations * First launch may take some time




A.b dummary

In this appendix we presented a design concepts catalog for the application
domain of enterprise applications. Catalogs such as this one can become useful
organizational assets, and we can readily imagine catalogs for other application
domains such as Big Data (which we employ in Chapter 5) or mobile
development.

The catalog presented here is not intended to be exhaustive, as it contains only
the design concepts used in the Chapter 4 case study. A real catalog, however,
would contain a larger number of design concepts with more detailed
descriptions and would be a valuable asset in a software development
organization.

A.7 Further Reading

Reference architectures and deployment patterns are taken from Microsoft,
Application Architecture Guide (2nd ed.), October 2009.

The tactics catalog is derived primarily from L. Bass, P. Clements, and R.
Kazman, Software Architecture in Practice (3rd ed.), 2012. Some of these tactics
were earlier described in: F. Bachmann, L. Bass, and R. Nord, “Maodifiability
Tactics”, SEI/CMU Technical Report CMU/SEI-2007-TR-002, 2007, and J.
Scott and R. Kazman, “Realizing and Refining Architectural Tactics:
Availability”, CMU/SEI-2009-TR-006, 2009.

The architectural patterns are taken from R. Buschmann, K. Henney, and D.
Schmidt, Pattern-Oriented Software Architecture, Volume 4, Wiley, 2007.

The Spring framework is discussed in C. Walls, Spring in Action (4th ed.),
Manning Publications, 2014.

The Swing framework is discussed in J. Elliot, R. Eckstein, D. Wood, and B.
Cole, Java Swing (2nd ed.), O’Reilly Media, 2002.

The Hibernate framework is discussed in C. Bauer and G. King, Java
Persistence with Hibernate, Manning Publications, 2015.



B. Tactics-Based Questionnaires

This appendix provides a set of tactics-based questionnaires for the seven most
important quality attributes: availability, interoperability, modifiability,
performance, security, testability, and usability. How do we know that these are
the seven most important ones? This decision was based on an analysis of the
quality attributes that were elicited from stakeholders in more than 15 years of
SEI ATAM data.

In addition to these “top seven”, we include a tactics-based questionnaire for
DevOps, which is a combination of tactics from modifiability, availability,
performance, and testability, to illustrate how simple it is to tailor such
questionnaires for your own use.

B.1 Using the Questionnaires

These questionnaires could be used by an analyst, who poses each question, in
turn, to the architect and records the responses, as a means of conducting a
lightweight architecture review. Alternatively, the questionnaires could be
employed as a set of reflective questions, that you could, on your own, use to
examine your architecture.

In either case, to use these questionnaires, simply follow these four steps:

1. For each tactics question, fill the “Supported” column with Y if the tactic
is supported in the architecture and with N otherwise. The tactic name in
the “Tactics Question” column appears in bold.

2. If the answer in the “Supported” column is Y, then in the “Design
Decisions and Location” column describe the specific design decisions
made to support the tactic and enumerate where these decisions are
manifested (located) in the architecture. For example, indicate which code
modules, frameworks, or packages implement this tactic.

3. In the “Risk” column, indicate the anticipated/experienced difficulty or
risk of implementing the tactic using a (H = high, M = medium, L = low)
scale. For example, a tactic that was of medium difficulty or risk to
implement (or which is anticipated to be of medium difficulty, if it has not
yet been implemented) would be labeled M.

4. In the “Rationale” column, describe the rationale for the design decisions
made (including a decision to not use this tactic). Briefly explain the
implications of this decision. For example, you might explain the rationale



and implications of the decision in terms of the effort on cost, schedule,
evolution, and so forth.

B.2 Availability

Tactics
#  Group

Tactics Question

Supported?

Design

Decisions

and Rationale and
Risk Location Assumptions

1 Detect
faults

Does the system use
ping/echo to detecta
failure of a component or
connection, or network
congestion?

Does the system use a
component to monitor
the state of health of other
parts of the system? A
system monitor can de-
tect failure or congestion
in the network or other
shared resources, such
as from a denial-of-ser-
vice attack.

Does the system use a
heartbeat—a periodic
message exchange be-
tween a system monitor
and a process—to detect
a failure of a component
or connection, or network
congestion?



Does the system use a
time stamp (as in section
A.4.1) to detect incorrect
sequences of events in
distributed systems?

Does the system do
any sanity checking:
checking the validity or
reasonableness of a
component’s operations
or outputs?

Does the system do
condition monitoring,
checking conditions in a
process or device, or vali-
dating assumptions made
during the design?

Does the system use
voting to check that
replicated components
are producing the same
resulis? The replicated
components may be iden-
tical replicas, functionally
redundant, or analytically
redundant.

Do you use exception de-
tection to detect a system
condition that alters the
normal flow of execution
(e.q., system exception,
parameter fence, parame-
ter typing, timeout)?

Can the system do a
self-test to test itself for
correct operation?



10 Recover

1

12

from faults
(prepara-
tion and
repair)

Does the system employ
active redundancy (hot
spare)? In active redun-
dancy, all nodes in a pro-
tection group (a group of
nodes where one or more
nodes are “active”, with
the remainder serving as
redundant spares) receive
and process identical
inputs in parallel, allowing
redundant spares to main-
tain synchronous state
with the active node(s).

Does the system employ
passive redundancy
(warm spare)? In passive
redundancy, only the
active members of the
protection group process
input traffic; one of their
duties is to provide the
redundant spare(s) with
periodic state updates.

Does the system employ
spares (cold spares)?
Here redundant spares

of a protection group
remain out of service until
a failover occurs, at which
point a power-on-reset
procedure is initiated

on the redundant spare
prior to its being placed in
service.



13

14

15

16

17

Does the system employ
exception handling to
deal with faults? Typically
the handling involves
either reporting the fault
or handling it, potentially
masking the fault by cor-
recting the cause of the
exception and retrying.

Does the system employ
rollback, so that it can re-
vert to a previously saved
good state (the “rollback
line”) in the eventof a
fault?

Can the system perform
in-service software
upgrades to execut-
able code imagesina
non-service-affecting
manner?

Does the system system-
atically retry in cases
where the component or
connection failure may be
transient?

Can the system simply
ignore faulty behavior
(e.g., ignore messages
sent from a source when
it is determined that those
messages are spurious)?



18

19

20

21

22

Recover
from faulis
(reintro-
duction)

Does the system have

a policy of degradation
when resources are com-
promised, maintaining
the most critical system
functions in the presence
of component failures,
and dropping less critical
functions?

Does the system have
consistent policies and
mechanisms for recon-
figuration after failures,
reassigning responsi-
bilities to the resources
left functioning, while
maintaining as much
functionality as possible?

Can the system operate
a previously failed or
in-service upgraded
component in a “shadow
mode” for a predefined
time prior to reverting the
component back o an
active role?

If the system uses active
or passive redundancy,
does it also employ state
resynchronization, to
send state information
from active to standby
components?

Does the system employ
escalating restart—
that is, does it recover
from faults by varying
the granularity of the
component(s) restarted
and minimizing the level
of service affected?



23

24 Prevent
faults

25

Can message process-
ing and routing portions
of the system employ
nonstop (as in section
A.4.1) forwarding, where
functionality is split into
supervisory and data
planes? In this case, ifa
supervisor fails, a router
continues forwarding
packets along known
routes while protocol
information is recovered
and validated.

Can the system remove
components from ser-
vice, temporarily placing
a system component in
an out-of-service state,
for the purpose of miti-
gating potential system
failures?

Does the system employ
transactions—bundling
state updates so that
asynchronous messages
exchanged between
distributed components
are atomic, consistent,
isolated, and durable?



26 Does the system use
a predictive model
to monitor the state of
health of a component to
ensure that the system is
operating within nominal
parameters? When condi-
tions are detected that are
predictive of likely future
faults, the model initiates
corrective action.

27 Does the system pre-
vent exceptions from
occurring by, for example,
masking a fault, using
smart pointers, abstract
data types, or wrappers?

28 Has the system been
designed to increase
its competence set, for
example by designing a
component to handle more
cases—faulis—as part of
its normal operation?

B.3 Interoperability



Design

Decisions
Tactics Supported? and Rationale and
# Group Tactics Question (Y/N) Risk Location Assumptions

1 Locate Does the system have
a way to discover ser-
vices (typically through
a directory service)?

2 Manage Does the system have a
interfaces way to orchestrate the

activities of services?
That is, does it have a
control mechanism to
coordinate, manage,
and sequence the invo-
cation of services?

3 Does the system have
a way to tailor inter-
faces? For example,
can it add or remove
capabilities to an inter-
face such as transla-
tion, buffering, or data
smoothing?

B.4 Modifiability



Tactics
Group

Supported?
Tactics Question (Y/N)

Risk

Design
Decisions
and
Location

Rationale and
Assumptions

3

Reduce
size ofa
module

Increase
cohesion

Reduce
coupling

Do you make modules
simpler by splitting the
module? For example,
if you have a large,
complex module, can
you split it into two (or
more) smaller, simpler
modules?

Does the system
consistently support
increasing semantic
coherence? For exam-
ple, if responsibilities in
a module do not serve
the same purpose, they
should be placed in
different modules. This
may involve creating a
new module or moving
a responsibility to an
existing module.

Does the system con-
sistently encapsulate
functionality? This typ-
ically involves isolating
the functionality under
scrutiny and introducing
an explicit interface to it.



Does the system consis-
tently use an interme-
diary to keep modules
from being too tightly
coupled? For example,
if A calls concrete func-
tionality C, you might in-
troduce an abstraction B
that mediates between
AandC.

Do you restrict de-
pendencies between
modules in a systematic
way? Or is any system
module free to interact
with any other module?

When two or more
unrelated modules
change together—that
is, when they are
regularly affected by the
same changes—do you
regularly refactor the
functionality to isolate
the shared functionality
as commoncode ina
distinct module?

Does the system
abstract common
services, in cases
where you are providing
several similar services?
For example, this
technique is often used
when you want your
system to be portable
across operating sys-
tems, hardware, or other
environment variations.



8 Defer Does the system

binding regularly defer binding
of important function-
ality so that it can be
replaced later in the life
cycle, perhaps even
by end users? For
example, do you use
plug-ins, add-ons, or
user scripting to extend
the functionality of the
system?

B.5 Performance



Design

Decisions
Tactics Supported? Risk and Rationale and
Group Tactics Question (Y/N) Location Assumptions
Conirol If your inputs are a
resource  continuous stream of
demand data, does the system

manage the sampling
rate? That is, is it pos-
sible to sample the data
at varying rates (with
concomitant changes in
accuracy/fidelity)?

Does the system mon-
itor and limit its event
response? Does the
system limit the number
of evenis it responds

to in a time period, to
ensure predictable
responses for the
evenis that are actually
serviced?

Given that you may
have more requests for
service than available
resources, does the sys-
tem prioritize events?

Does the system
reduce the overhead
of responding to service
requests by, for exam-
ple, removing interme-
diaries or co-locating
resources?



""l

Manage
resources

Does the system
monitor and bound
execution time?

More generally, do

you bound the amount
of any resource (e.g.,
memory, CPU, storage,
bandwidth, connections,
locks) expended in
response to requests for
services?

Do you increase
resource efficiency?
For example, do you
regularly improve the
efficiency of algorithms
in critical areas, to
decrease latency and
improve throughput?

Can the system
seamlessly increase
resources (e.g., CPU,
memory, network band-
width)?

Can the system intro-
duce concurrency?
For example, does it
support the seamless
addition of parallel pro-
cessing sireams so that
more requests for ser-
vices can be processed
concurrently?

Does the system main-
tain multiple copies of
data (e.g., by replicating
databases or using
caches) io decrease
contention for frequently
accessed data?



10 Does the system main-
tain multiple copies of
computations (e.qg., by
keeping a pool of serv-
ers in a server farm) to
decrease coniention
for frequently ac-
cessed computational
resources?

11 Does the system bound
queue sizes? That is,
do you limit the number
of events placed in
a queue, waiting for
services?

12 Does the system sched-
ule resources, particu-
larly scarce resources,
so that they may be
allocated according to
an explicit scheduling

policy?

B.6 Security



Design

Decisions
Tactics Supported? and Rationale and
Group Tactics Question (Y/N) Risk Location Assumptions
Detecting Does the system sup-
attacks port the detection of

intrusions? An example
is comparing network
traffic or service request
patterns within a system
to a set of signatures or
known patterns of mali-
cious behavior stored in
a database.

Does the system
support the detection
of denial-of-service
attacks? An example is
the comparison of the
pattern or signature of
network traffic coming
into a system to historic
profiles of known deni-
al-of-service attacks.

Does the system
support the verification
of message integrity?
An example is the use
of techniques such as
checksums or hash val-
ues to verify the integrity
of messages, resource
files, deployment files,
and configuration files.



o

Resisting
attacks

Does the system
support the detection
of message delays?
An example is checking
the time that it takes to
deliver a message.

Does the system sup-
port the identification
of actors? An example
is identifying the source
of any external input to
the system.

Does the system sup-
port the authentication
of actors? An example
is ensuring that an actor
(a user or a remote com-
puter) is actually who or
what it purporis to be.

Does the system support
the authorization of
actors? An example

is ensuring that an
authenticated actor has
the rights to access and
modify either data or
services.

Does the system support
limiting access? An ex-
ample is controlling what
and who may access
which parts of a system,
such as processors,
memory, and network
connections.



10

1"

Does the system support
limiting exposure? An
example is reducing the
probability of a success-
ful attack, or restricting
the amount of potential
damage, by concealing
facts about a system
(“security by obscurity”)
or dividing and distrib-
uting critical resources
(“don’t put all your eggs
in one basket”).

Does the system sup-
port data encryption?
An example is to apply
some form of encryption
to data and to commu-
nication.

Does the system
validate inputina
consistent, system-wide
way? An example is the
use of a security frame-
work or validation class
to perform actions such
as filtering, canonical-
ization, and escaping of
external input.
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13

14

15

16

17

Reacting
to attacks

Recover-
ing from
attacks

Does the system design
consider the separation
of entities? An example
is the physical separa-
tion of different servers
attached to different
networks, the use of
virtual machines, or an
“air gap”.

Does the system
support changes in the
default settings? An
example is forcing the
user to change settings
assigned by default.

Does the system sup-
port revoking access?
An example is limiting
access to sensitive
resources, even for nor-
mally legitimate users
and uses, if an attack is
suspected.

Does the system sup-
port locking access?
An example is limiting
access to a resource if
there are repeated failed
attempts to access i.

Does the system sup-
port informing actors?
An example is notifying
operators, other person-
nel, or cooperating sys-
tems when an attack is
suspected or detected.

Does the system
support maintaining an
audit trail? An example
is keeping a record of
user and system actions
and their effects, to help
trace the actions of, and
to identify, an attacker

B.7 Testability



Design

Decisions
Tactics Supported? and Rationale and
Group Tactics Question (Y/N) Risk Location Assumptions
Control Does the system or the
and system components
observe  provide specialized
system interfaces to facilitate
state testing and monitoring?

Does the system
provide mechanisms
that allow information
that crosses an interface
to be recorded so that

it can be used later

for testing purposes
(record/playback)?

Is the state of the
system, subsystem,

or modules stored in a
single place to facilitate
testing (localized state
storage)?

Can you abstract data
sources—for example,
by abstracting inter-
faces? Abstracting

the interfaces lets you
substitute test data more
easily.



5 Can the system be
executed in isolation (a
sandbox) to experiment
or test it without worry-
ing about having to undo
the consequences of the
experiment?

6 Are executable asser-
tions used in the system
code to indicate when
and where a program is
in a faulty state?

i Limnit Is the system designed
complexity in such a way that

structural complexity
is limited? Examples
include avoiding cyclic
dependencies, reducing
dependencies, and us-
ing techniques such as
dependency injection.

8 Does the system include
few or no (i.e., limited)
sources of nondeter-
minism? This helps
to limit the behavioral
complexity that comes
with unconstrained par-
allelism, which in turn
simplifies testing.

B.8 Usability



Design

Decisions

Tactics Supported? and Rationale and
Group Tactics Question (Y/N) Risk Location Assumptions
Support-  Does the system
ing user support operation can-
initiative celing?

Does the system

support operation

undoing?

Does the system

support operations to

be paused and later
resumed? Examples are
pausing the download of
a file in a web browser
and allowing the user to
retry an incomplete (and
failed) download.

Does the system
support operations to
be applied to groups of
objects (aggregation)?
For example, does it
allow you to see the
cumulative size of a
number of files that

are selected in a file
browser window?



5

Support
system
initiative

Does the system
provide assistance to
the user based on the
tasks that he or she is
performing (by main-
taining a task model)?
Examples include:

" Validation of input data
" Drawing user attention
to changes in the Ul

" Maintaining Ul
consistency

" Adding toolbars and
menus to help users
find functionality pro-
vided by the Ul

® Using wizards or other
techniques to guide
users in performing
key user scenarios

Does the system
support adjustments to
the Ul with respect to
the class of users (by
maintaining a user
model)? Examples
include supporting Ul
customization (including
localization) and sup-
porting accessibility.

Does the system
provide appropriate
feedback to the user
based on the system
characteristics (by
maintaining a system
model)? Examples
include:



Avoiding blocking the
user while handling
long-running requests
Providing feedback on
action progress (i.e.,
progress bars)
Displaying user-
friendly errors without
exposing sensitive
data by managing
exceptions

Adjusting the Ul with
respect to screen size
and resolution

B.9 DevOps
Design
Decisions Rationale
Tactics Supported? and and
#  Group Tactics Question (Y/MN) Risk Location Assumptions
1 Testability: Does the system or the
control and system components
observe provide specialized
sysiem interfaces to facilitate
state testing and monitoring?
2 Does the system
provide mechanisms
that allow information
that crosses an interface
to be recorded so that
it can be used later
for testing purposes
(record/playback)?
3 Can the system be
executed in isolation (a
sandbox) to experiment
or test it without worry-
ing about having to undo
the consequences of the
experiment?
4  Perfor- Can the system
mance: seamlessly increase
manage resources (e.g., CPU,
resources memory, network band-

width)?



Can the system intro-
duce concurrency?
For example, does it
support the seamless
addition of parallel pro-
cessing streams so that
more requests for ser-
vices can be processed
concurrently?

Does the system main-
tain multiple copies of
data (e.qg., by replicating
databases or using
caches) to decrease
contention for frequently
accessed data?

Does the system main-
tain multiple copies

of computations (e.qg.,
by keeping a pool of
serversin a server
farm) to decrease
contention for frequently
accessed computational
resources?

Does the system sched-
ule resources, particu-
larly scarce resources,
so that they may be
allocated according to
an explicit scheduling

policy?



9 Perfor-
mance:
control
resource
demand

10

11

12

Does the system
reduce overhead of
responding to service
requests by, for exam-
ple, removing interme-
diaries or co-locating
resources?

If your inputs are a
continuous stream of
data, does the system
manage the sampling
rate?

That is, is it possible for
you to sample the data
at varying rates (with
concomitant changes in
accuracy/fidelity)?

Does the system
monitor and limit its
event response? That
is, does the system limit
the number of events
itrespondstoina

time period, to ensure
predictable responses
for the events that are
actually serviced?

Given that you may
have more requests for
service than available
resources, does the sys-
tem prioritize events?



13 Modifiabil-
ity: reduce
coupling

14

15  Modifiabil-
ity: defer
binding

16  Availability:
detect
faults

Does the system con-
sistently encapsulate
functionality? This typ-
ically involves isolating
the functionality under
scrutiny and introducing
an explicit interface to it.

Does the system
abstract common
services, in cases
where you are providing
several similar services?
For example, this
technigque is often used
when you want your
system o be portable
across operating sys-
tems, hardware, or other
environment variations.

Does the system
regularly defer binding
of important function-
ality so that it can be
replaced later in the life
cycle, perhaps even

by end users? For
example, do you use
plug-ins, add-ons, or
user scripting to extend
the functionality of the
system?

Does the system use a
component to moni-
tor the state of health
of other parts of the
system? A system mon-
itor can detect failure

or congestion in the
network or other shared
resources, such as
from a denial-of-service
attack.
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18

19

Availability:
recover
from faults
(prepara-
tion and
repair)

Do you use exception
detection fo detect a
system condition that
alters the normal flow of
execution (e.g., system
exception, parameter
fence, parameter typing,
timeout)?

Does the system use
voting to check that
replicated components
are producing the same
results? The replicated
componentis may be
identical replicas, func-
tionally redundant, or
analytically redundant.

Does the system employ
rollback, so that it can
revert to a previously
saved good state (the
“rollback line”) in the
event of a fault?



20 Does the system employ
active redundancy
(hot spare)? In active
redundancy, all nodes
in a protection group (a
group of nodes where
one or more nodes
are “active”, with the
remainder serving as re-
dundant spares) receive
and process identical
inputs in parallel, allow-
ing redundant spares to
maintain synchronous
state with the active
node(s).

21 Does the system have
consistent policies
and mechanisms for
reconfiguration after
failures, reassigning
responsibilities to the
resources left function-
ing, while maintaining
as much functionality as
possible?

22 Does the system employ
exception handling
to deal with faults?
Typically, the handling
involves either reporting
the fault or handling it,
potentially masking the
fault by correcting the
cause of the exception
and retrying.

B.10 Further Reading

The tactics catalog from which the questionnaires are derived can be found in L.
Bass, P. Clements, and R. Kazman, Software Architecture in Practice (3rd ed.),
2012.

An analysis of quality attribute data from SEI ATAMs, showing which
qualities are the most common in practice, can be found in I. Ozkaya, L. Bass, R.
Sangwan, and R. Nord, “Making Practical Use of Quality Attribute
Information”, IEEE Software, March/April 2008, and in a later study by S.
Bellomo, I. Gorton, and R. Kazman, “Insights from 15 Years of ATAM Data:
Towards Agile Architecture”, IEEE Software, 32:5, 38-45, September/October



2015.

The set of DevOps tactics was developed and presented in H-M Chen, R.
Kazman, S. Haziyev, V. Kropov, and D. Chtchourov, “Architectural Support for
DevOps in a Neo-Metropolis BDaa$S Platform”, IEEE 34th Symposium on
Reliable Distributed Systems Workshop (SRDSW), Montreal, Canada, September
2015.



Glossary

Active Reviews for Intermediate Design (ARID) method A method in which
the architecture design (or part of it) is presented to a group of reviewers—
typically the engineers who will use the design. After the presentation, a set of
scenarios is selected. The reviewers attempt to use the elements in the
architecture to satisfy the scenarios. The reviewers are asked to write code or
pseudocode or to create sequence diagrams for the purpose of identifying
interfaces. This method can be used in preparation for element interaction
design.

ADD See Attribute Driven Design method.
ADL See Architecture Description L.anguage.

Analysis The process of breaking a complex entity into its constituent parts as a
means of understanding it. Analysis is used at different moments in the design
process; for example, the inputs are analyzed to make design decisions and the
resulting architecture is also analyzed to gauge if it is appropriate to satisfy its
associated drivers.

Application framework A reusable software element, constructed out of
patterns and tactics, that provides generic functionality addressing recurring
domain and quality attribute concerns across a broad range of applications. Also
called a framework.

Architectural concern An additional aspect that needs to be considered as part
of architectural design but that is not expressed as a traditional requirement.
Examples include general concerns, such as creating an overall system structure,
and more specific concerns, such as managing exceptions or generating logs.
Other architectural concerns include internal requirements, which are seldom
expressed by customers, and issues resulting from analysis activities, such as
architectural evaluations.

Architectural design The activity of making decisions to translate ideas from
the world of needs (architectural drivers) to the world of solutions, in terms of
structures.

Architectural drivers The design purpose, architecturally significant
requirements, and architectural concerns that serve as an input to the design
process. These considerations are critical to the success of the system and, as
such, they drive and shape the architecture.



Architectural evaluation A technique to analyze and assess the value of
architectural decisions.

Architectural pattern See Patterns (Architectural and Design).

Architecturally significant requirement (ASR) A system requirement that has
a particular importance with respect to the software architecture. ASRs include
quality attributes, primary functional requirements, and constraints.

Architecture Description Language (ADL) A notation to document an
architecture. ADLs typically employ both a graphical notation and a (formally
defined) textual notation to describe an architecture—primarily the
computational (runtime) components and interactions among them—and its
properties.

Architecture Tradeoff Analysis Method (ATAM) An established method for
analyzing architectures, driven by scenarios. Its purpose is to assess the
consequences of architectural decisions in light of quality attribute requirements
and business goals.

ARID See Active Reviews for Intermediate Design method.

ASR See Architecturally significant requirement.
ATAM See Architecture Tradeoff Analysis Method.

Attribute-Driven Design (ADD) method An iterative architecture design
method that takes drivers as inputs and produces an architecture. In each
iteration, structures are produced by refining elements identified in previous
iterations. These structures are created primarily from design concepts, which
are selected and instantiated to address a subset of the drivers that are selected
for the iteration.

Big Design Up Front (BDUF) The (now largely discredited) practice of
attempting to do all of the architectural design at the beginning of a project. It is
usually associated with a waterfall software development life cycle.

Brownfield development Software development that builds upon an existing
asset. Contrast with greenfield development.

Constraint A decision over which the architect has little or no control. It may be
either technical or organizational.

Cost Benefit Analysis Method (CBAM) A method that associates costs,
benefits, and schedule implications with strategies chosen to make
improvements in an architecture. This method is used to rank the strategies, as a
means of finding an optimal set of strategies to implement in the next iteration.

Design concept The building blocks from which the structures that make up the



architecture are created. Different types of design concepts exist, including
reference architectures, deployment patterns, architectural patterns, tactics,
technology families, and externally developed components (such as
frameworks).

Design concepts catalog A collection of design concepts for a particular
application domain.

Design decision A decision that is made during the design process, including the
selection of a design concept and the instantiation of the selected design concept.

Design iteration A group of design decisions through which a subset of the
drivers is transformed into structures. One or more design iterations are
performed within a design round.

Design pattern See Patterns (Architectural and Design).

Design purpose The reason why the architecture design is performed. For
example, the design may be performed for estimation during pre-sales,
prototyping, or development purposes.

Design round The architecture design activities performed within a
development cycle if an iterative development model is used, or the entire set of
architecture design activities if a waterfall model is used.

Deployment pattern A pattern that provides a model for how to physically
structure the system to deploy it.

Development cycle The development of a project increment (i.e., a project
iteration).

DevOps A portmanteau word, combining “development” and “operations™.
DevOps stands in contrast to earlier forms of running a software project, in
which development teams developed software and then “tossed it over the wall”
to operations. In DevOps, the two teams work closely together and adopt
processes, tools, and architectures to make it easier to rapidly modify, build, test,
release, and monitor software.

Element (in definition of software architecture) One of the parts that compose
the structures of the architecture. Elements may exist at runtime or development
time or they may exist physically. Elements are connected by relations.

Element interaction design The identification of the modules and their
associated interfaces to support the nonprimary use cases. This is typically
performed using sequence diagrams according to the decisions made during
architectural design.

Element internals design The internal design of the elements identified as part



of element interaction design, so as to satisfy the element’s interface.

Externally developed component A design concept that is concrete in nature
and that is not built as part of the system development, but rather is acquired and
reused. Such components include application frameworks, products, and
platforms.

Greenfield development Software development that begins with little or no
legacy code base to build upon.

Instantiation The process of adapting a design concept to the particular problem
being addressed. It involves creating elements and relations, and associating
responsibilities with the elements, from the selected design concept. Instantiation
can also refer to configuration when design concepts are externally developed
components.

Interface The externally visible properties of elements that establish a
contractual specification that allows elements to collaborate and exchange
information, via relations.

Marketecture A single-page, typically informal, representation of a software
system architecture. This representation is aimed primarily at nontechnical
people, and is used to present a system vision.

Minimum viable product (MVP) An evolutionary prototype with only those
core features that allow the product to be deployed. It emphasizes hypothesis
testing by fielding the product with real users and collecting usage data that then
helps to confirm or reject the hypothesis.

Patterns (architectural and design) Conceptual solutions to recurring design
problems that exist in a defined context. When they are used to address an
architectural driver, they are “architectural patterns”; when their use has just a
local influence—for example, when used to perform element internals design—
they are “design patterns”.

Platform A complete infrastructure upon which to build and execute
applications.

Pre-sales A phase in project development in which the scope of the project, a
business case, and an initial plan are established. This phase is used by the
customers (or funders) to decide whether they want to pursue the project.

Primary functional requirements Functionality is the ability of the system to
do the work for which it was intended. Primary functionality is usually defined
as functionality that is critical to achieve the business goals that motivate the
development of the system.



Product A self-contained functional piece of software that can be integrated into
the system that is being designed and that requires only minor configuration or
coding. Also called a software package.

Proof of concept (PoC) A prototype that is used to quickly evaluate a
technology, thereby determining whether it can satisfy critical architecture
scenarios, usually related to quality attributes such as performance and
scalability.

QAW See Quality Attribute Workshop.

Quality attribute A measurable or testable property of a system that is used to
indicate how well the system satisfies the needs of its stakeholders. Quality
attributes are orthogonal to functionality.

Quality attribute scenario See Scenario.

Quality Attribute Workshop (QAW) A facilitated brainstorming session
involving a group of system stakeholders in eliciting, specifying, prioritizing,
and achieving consensus on quality attributes.

Rationale A line of reasoning and justification that led to a design decision.

Refactoring Changing the system’s architecture or code, without affecting its
functionality, to achieve different quality attribute responses.

Reference Architecture Blueprints that provide an overall logical structure for
types of applications, consisting of a reference model that is mapped onto one or
more architectural patterns. It has been proven in business and technical
contexts, and typically comes with a set of supporting artifacts that facilitates its
use.

Relation (in definition of software architecture) One of the parts that compose
the structures of an architecture. Relations may exist at runtime or development
time or they may exist physically. Relations connect elements.

Scenario A technique to specify quality attributes that describes a stimulus
received by the system and a measurable response to this stimulus. Scenarios are
testable, falsifiable hypotheses about the quality attribute behavior of the system
under consideration. Completely developed scenarios are described using six
parts, but less elaborate (“raw”) scenarios can also be described.

Sketch of a view A preliminary type of documentation that is created as part of
the design process. The sketch can be refined to become a full-fledged view,
typically after the design activity has finished.

Software architecture “The set of structures needed to reason about the system,
which comprise software elements, relations among them, and properties of



both”.

Spike A time-boxed task that is created to answer a technical question or gather
information.

Structure A coherent set of software elements, relations, and properties.
Structures are represented in views.

Tactic A proven design strategy that influences the control of a quality attribute
response.

Technical debt The decisions—often called “hacks”—made in a software
project that trade off short-term gains, such as ease of implementation, at the
cost of long-term sustainability of the system. By taking such shortcuts, the
software base “goes into debt”.

Technology family A group of technologies with common functional purposes.

View A representation of an architectural structure. A view usually includes a
graphical representation of the structure and additional information that
complements the information presented in the diagram.
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specific concerns, 26
Architectural drivers, satisfying. See also Structures.
greenfield development for mature domains case study, 82—84, 90, 101

greenfield development for novel domains case study, 112—-115, 121-126,
132-133, 139

overview, 4647
Architectural drivers, selecting

greenfield development for mature domains case study, 81, 90, 101

greenfield development for novel domains case study, 112, 121, 131-132, 139
Architectural elements. See Elements.
Architectural evaluation

definition, 270

in a general model of software architecture design, 163

in software architecture lifecycle, 6




Architectural implementation/conformance checking, 6
Architectural patterns. See Patterns.
Architectural styles, vs. reference architectures, 29
Architectural synthesis, 163
Architecture design process. See Design process.
Architecture-Based Design (ABD). See ADD (Attribute-Driven Design).
Architecture-Centric Design Method (ACDM), 164-165
ARID (Active Reviews for Intermediate Design)
defining interfaces, 64—65
definition, 269
ASRs (architecturally significant requirements), 4, 270
ATAM (Architecture Tradeoff Analysis Method), 187-190, 270
Attribute Description Language (ADL). See ADL (Attribute Description

Language).
Attribute-Driven Design (ADD). See ADD (Attribute-Driven Design).

Availability
scenarios, brownfield development case study, 146
tactics, 230-232
tactics-based questionnaire, 180—185, 248-252

B

Backlogs, architectural, 69—70, 163
Back-of-the-envelope analyses, 177
BDUF (Big Design Up Front)

definition, 270

in the development lifecycle, 197-198

identifying modules, 64

Big Data case study. See Greenfield development for novel domains case study.

Blueprints. See Documentation; Reference architectures; Sketches.
Booch, Grady, on architectural design, 14
Books and publications

“A General Model of Software Architecture Design” (Hofmeister et al.), 161

Just Enough Software Architecture (Fairbanks), 7
Microsoft Application Architecture Guide (Microsoft), 169, 211

Pattern-Oriented Software Architecture: A Pattern Language for Distributed



Computing (Buschmann et al.), 31, 32, 41, 224

The Process of Software Architecting (Eeles and Cripps), 167-169
“A Rational Design Process: How and Why to Fake It” (Parnas and
Clements), 2

Software Systems Architecture: Working with Stakeholders Using Viewpoints
and Perspectives (Rozanski and Woods), 171-173
Brooks, Fred, 208
Brownfield development, definition, 50, 270
Brownfield development case study
allocation view, 150-151
architectural concerns, 148
availability scenarios, 146
business case, 145—-148
constraints, 148
existing documentation, 149-151
module view, 149-150
performance scenarios, 146
quality attribute scenarios, 146, 148
reliability scenarios, 146
use case model, 147
Brownfield development case study, design process
allocating responsibilities, 154
analyzing current design, 156158
defining interfaces, 154
design purpose, reviewing, 156—158
instantiating elements, 154
iteration goals, establishing, 152
iteration goals, reviewing, 156-158
recording design decisions, 154-156
refining elements, 152
reviewing inputs, 152
selecting design concepts, 152153
sketching views, 154—156
supporting new drivers, 152—-15




Business case, case studies
brownfield development, 145-148
greenfield development for mature domains, 7577
greenfield development for novel domains, 107-108
Buy vs. build, design concept, 35-38

C

Candidate decisions, 38—40
Case studies
banking systems. See Brownfield development case study.
Big Data. See Greenfield development for novel domains case study.
development for legacy systems. See Brownfield development.
FCAPS model for network management. See Greenfield development for

mature domains case study.
greenfield development. See Greenfield development for mature domains case
study; Greenfield development for novel domains case study.

Catalogs of design concepts. See Design concepts catalogs.
CBAM (Cost Benefit Analysis Method), 55-57, 270
C&C (component and connector) structures, 59
Checklists, 177
Communication skills, among architects, 7
Compatibility, externally developed components, 38
Concurrency, 31, 32, 228
Cone of uncertainty, 194-195
Confirmation bias, 186
Constraints
on architectural drivers, 27-28
definition, 28, 270
selecting design concepts, 58
Constraints, case studies
brownfield development, 148
greenfield development for mature domains, 79
greenfield development for novel domains, 110
Construction phase of RUP, 165, 199
Cost




of design analysis, 179-180
estimating, 194-196
externally developed components, 36
Cost Benefit Analysis Method (CBAM). See CBAM (Cost Benefit Analysis

Method).
Cripps, Peter, 167

D

Data stream elements, refining, 131138
Database access patterns, design concepts catalog, 229
Deployment patterns
definition, 271
example, 32-33
instantiating elements, 60
Deployment patterns, design concepts catalogs
distributed deployment, 222-223
Load-Balanced Cluster patterns, 223-224
nondistributed deployment, 221
performance patterns, 223-224
Design. See also Architectural design.
definition, 11
element interaction, 14—-15
element internals, 15
high level, 16
overview, 11-12
in software architecture, 13—-14
Design candidates, identifying, 54—55
Design concepts catalog
example, 211
definition, 271
as resources for architectural design decisions, 39
uses for, 203-204
Design concepts catalogs, architectural design patterns concurrency, 228
database access, 229
interface partitioning, 226227




Load-Balanced Cluster patterns, 224

Pattern-Oriented Software Architecture: A Pattern Language for Distributed
Computing (Buschmann et al.), 224

structural patterns, 224-226
Design concepts catalogs, deployment patterns
distributed deployment, 222-223
Load-Balanced Cluster patterns, 223-224
nondistributed deployment, 221
performance patterns, 223-224
Design concepts catalogs, externally developed components
Hibernate framework, 244245
Java Web Start framework, 245
Spring framework, 241-242
Swing framework, 243
Design concepts catalogs, reference architectures
Microsoft Application Architecture Guide, 211
mobile applications, 218
RIAs (rich Internet applications), 215217
rich client applications, 214-215
service applications, 218221
web applications, 212-214
Design concepts catalogs, tactics
availability, 230-232
interoperability, 232—233
modifiability, 233-235
performance, 235-236
security, 236238
testability, 238240
usability, 240-241
Design concepts. See also, Reference architectures, Design patterns, Deployment
patterns, Tactics, and Externally developed components.

buy vs. build, 35-38
definition, 12, 271

design primitives. See Tactics.
design principles, 28




externally developed components, 35-38
identifying design candidates, 54-55
overview, 28
reference architectures, 29, 30
types of, 59-60
Design concepts, selecting
CBAM (Cost Benefit Analysis Method), 55-57
constraints, 58
greenfield development for mature domains, 51
greenfield development for novel domains case study, 112—-115, 121-126,
132-133, 139
overview, 47, 55
prototyping, 57—58
stakeholder benefits, 56
utility, 56
Design decisions, recording. See Recording design decisions.
Design iteration goals, establishing
brownfield development case study, 152
greenfield development for mature domains case study, 90, 101
greenfield development for novel domains case study, 112, 121, 131-132, 139
Design iteration goals, reviewing
brownfield development case study, 156—158

greenfield development for novel domains case study, 118—-120, 129-131,
138, 143
Design iterations
definition, 271
in the design process, 44, 49
purpose of, 50-52
Design patterns. See Patterns.
Design primitives. See Tactics.
Design principles, 28
Design process, alternative methods
ACDM (Architecture-Centric Design Method), 164—-165




a general model of software architecture design, 161-163

Microsoft technique for architecture and design, 169—-17

Process of Software Architecting, 167—169
RUP (Rational Unified Process), 165-166

viewpoints and perspectives method, 171-173

—

Design process, case studies. See Brownfield development case study, design
process; Greenfield development for mature domains case study, design process;

Greenfield development for novel domains case study, design process.

Design process, elements in
allocating responsibilities to, 47—48
instantiating, 4748, 58
refining, 46-47

Design process, need for, 43—44

Design process, organizational aspects
design concepts catalogs, 203—-204
individual effort vs. team effort, 202—203

Design process in the development lifecycle
major phases, 193-194
preliminary documentation, 196

Design process in the development lifecycle, development and operations phase

Agile methods, 197-199
BDUF (Big Design Up Front), 197-198
DevOps, 201-202
emergent approach, 197-198

HLD (high-level design) phase of TSP, 200201
IMPL (implementation) phase of TSP, 200-201

iteration 0 approach, 199

launch phase, 200

postmortem phase, 200

PSP (Personal Software Process), 200

REQ (requirements) phase of TSP, 200-201

RUP (Rational Unified Process), 199-200
spikes, 199

TEST (testing) phase, 200—201

TSP (Team Software Process), 200-201




Waterfall model, 197-198
Design purpose, definition, 271
Design purpose, overview, 18
Design purpose, reviewing
greenfield development for mature domains case study, 88—89

greenfield development for novel domains case study, 118—120, 129-131,
138, 143

Design rounds, 44, 271

Designing
for existing systems. See Brownfield development.
for legacy systems. See Brownfield development.

for mature domains. See Greenfield development for mature domains.
for novel domains. See Greenfield development for novel domains.

from scratch. See Greenfield development for mature domains.
Detailed design, 15-16
Development cycle, definition, 271
DevOps
definition, 271
in the development lifecycle, 201-202
tactics-based questionnaire, 263—266
Distributed deployment patterns, design concepts catalog, 222—223
Documentation. See also Recording design decisions.
architectural design decisions, 39—40
for legacy systems, 149-151
purposes of, 67
scenario based, 67-68
in software architecture lifecycle, 5
Documentation, preliminary. See also Sketches; Views.
in the development lifecycle, 196
recording design decisions, 68—69
sketching views, 65—68
Drivers. See Architectural drivers.
Dyson, Freeman, on good engineers, 53

E



Eeles, Peter, 167
Einstein, Albert, on teaching by example, 2
Elaboration phase of RUP, 165-166, 199
Element interaction design
defining interfaces, 64—65
definition, 271
overview, 14-15
Element internals design, 15, 271
Elements (in software architecture)
definition, 271
instantiating. See Instantiating elements.
properties, 60
relationships, 61
responsibilities, 60
Elements (in software architecture), in the design process
allocating responsibilities to, 47-48
instantiating, 4748, 58
refining, 46-47
Elements (in software architecture), refining
greenfield development for mature domains case study, 82, 90, 101
greenfield development for novel domains case study, 112, 121, 132, 139
Emergent approach in the development lifecycle, 197-198
Estimation in the development lifecycle
cone of uncertainty, 194-195
cost, 194-196
identifying components of, 196
pre-sales phase, 194—196
risk, 194-195
schedules, 194-196
standard components technique, 195-196
Evaluating architecture. See Architectural evaluation.
Experiments, 177
External interfaces, defining, 61
Externally developed components
application frameworks, 36




compatibility, 38

cost, 36

definition, 35, 272

integration, 38

learning curve, 38

licensing, 36

maturity, 38

overview, 35-38

platforms, 36

popularity, 38

problem addressed by, 36

products, 36

selecting, 36-38

size, 38

in structures, 60

support for, 38

technology families, 35-36,

types of, 35-36
Externally developed components, design concepts catalog

Hibernate framework, 244245

Java Web Start framework, 245

Spring framework, 241242

Swing framework, 243

37

F

Falsifiability of scenarios, 21

FCAPS
accounting management, 76
configuration management, 76
fault management, 76
performance management, 76
security management, case study, 76

FCAPS model for network management. See Greenfield development for mature
domains case study.

Frameworks, choosing for greenfield development for mature domains, 50




G
“A General Model of Software Architecture Design” (Hofmeister et al.), 161
General model of software architecture design, 161-163
architectural analysis, 163
architectural evaluation, 163
architectural synthesis, 163
flowchart of activities, 162
overview, 161
Greenfield development, definition, 272
Greenfield development for mature domains
definition, 50
design concepts, selecting, 51
design iterations, purpose of, 50-52
designing, 50-52
frameworks, choosing, 50
identifying structures to support primary functionality, 51-52
mature domains, examples, 50
refining structures, 52
roadmap for, 50-52
Greenfield development for mature domains case study
accounting management, 76
architectural concerns, 80
business case, 75-77
configuration management, 76
constraints, 79
fault management, 76
FCAPS model for network management, 7577
performance management, 76
quality attribute scenarios, 7879
security management, 76
system requirements, 77—-80
use case model, 77-80
Greenfield development for mature domains case study, design process




architectural drivers, selecting, 81, 90, 101
defining interfaces, 84, 101-102

design purpose, reviewing, 88—89
identifying structures to support primary functionality, 89-99
inputs, reviewing, 80—-81

iteration goals, establishing, 90, 101

iteration goals, reviewing, 88—-89

iterations, reviewing, 99-100, 104

overall system structure, establishing, 81-89
quality attribute scenarios, 101-104

refining elements, 82, 90, 101

satisfying architectural drivers, 82—-84, 90, 101

Greenfield development for novel domains
definition, 50
novel domains, definition, 52
roadmap for, 52
Greenfield development for novel domains case study
business case, 107—108
reviewing inputs, 111-112
Greenfield development for novel domains case study, design process
allocating responsibilities, 116, 126-128, 134-136, 139—-141
analyzing current design, 118-120, 129-131, 138, 143
data stream elements, refining, 131-138
defining interfaces, 116, 126—-128, 134-136, 139141
design concepts, selecting, 112—-115, 121-126, 132—-133, 139
design purpose, reviewing, 118—-120, 129-131, 138, 143
drivers, satisfying, 112—-115, 121-126, 132-133, 139
drivers, selecting, 112, 121, 131-132, 139
elements, refining, 112, 121, 132, 139
instantiating architectural elements, 116, 126-128, 134-136, 139-141




iteration goals, establishing, 112, 121, 131-132, 139
iteration goals, reviewing, 118-120, 129-131, 138, 143
recording design decisions, 116-118, 128-129, 136137, 141-142
reference architecture, 112—-120
server layer, refining, 138—143
sketching views, 116-118, 128-129, 136-137, 141142
structure of overall system, 112—-120
technologies, selecting, 120—131

Greenfield development for novel domains case study, system requirements
architectural concerns, 110
constraints, 110
quality attribute scenarios, 109-110
use case model, 108-109

H

Hacks. See Technical debt.

Half Sync/Half Async, pattern example, 32, 228

Help
registering Designing Software Architecture, xiii
skills practice, 209-210

Hibernate framework, design concepts catalog, 244-245

High-level design, 16

HLD (high-level design) phase, 200-201

I
IMPL (implementation) phase of TSP, 200-201
Inception phase of RUP, 165, 199
Instantiating elements
in ADD (Attribute-Driven Design), 47-48
overview, 59-60
producing structures, 58
Instantiating elements, case studies
greenfield development for novel domains, 116, 126-128, 134136, 139-141
Instantiation, definition, 272




Integration, externally developed components, 38
Interface partitioning, design concepts catalog, 226227
Interfaces, defining
ARID (Active Reviews for Intermediate Design), 64—65
communicating with engineers, 64-65
in element interaction design, 64—65
external, 61
greenfield development for mature domains case study, 84, 101-102

greenfield development for novel domains case study, 116, 126-128,
134-136, 139-141

internal, 61-64
Interfaces, definition, 61, 272
Internal interfaces, defining, 61-64
Interoperability, tactics-based questionnaire, 252
Interoperability tactics, design concepts catalog, 232—-233
Interviews. See Tactics-based questionnaires.
Iteration. See Design iteration.
Iteration O approach, 199

J

Java Web Start framework, design concepts catalog, 245
Just Enough Software Architecture (Fairbanks), 7

K
Kanban boards, 70-71

L

Lambda (reference) architecure, 113
Launch phase of the TSP (Team Software Process), 200
Layers, pattern example, 30-31, 225
Leadership skills, among architects, 7
Learning curve, externally developed components, 38
Licensing, externally developed components, 36
Load-Balanced Cluster patterns

design concepts catalog, 223-224




example, 32-33
Low-level design, 16

M

Marketecture, definition, 272
Mature domains, examples, 50
Maturity, externally developed components, 38
Methods, 207-209
Microsoft Application Architecture Guide (Microsoft), 211
Microsoft technique for architecture and design
application overview, creating, 169—170
architectural objectives, identifying, 169
candidate solutions, defining, 170
key issues, identifying, 170
key scenarios, identifying, 169
overview, 169-171
Mission Thread Workshop, 19
Mobile applications, design concepts catalog, 218
Modifiability
tactics, design concepts catalog, 233—235
tactics-based questionnaire, 253—254
Module structures, 59
Module view, brownfield development case study, 149—150
MVP (minimum viable product), 189, 272

N

Negotiation skills, among architects, 7

Nondistributed deployment patterns, design concepts catalog, 221
Non-risks, definition, 188

Novel domains, definition, 52

o

Optimal solutions vs. satisficing, 14

P



Pattern-Oriented Software Architecture: A Pattern Language for Distributed
Computing (Buschmann et al.), 224

Patterns
architectural design decisions, 38—39, 59
concurrency, 228
database access, 229
definition, 29, 272
interface partitioning, 226227
overview, 29-32
structural, design concepts catalog, 224-226
vs. tactics, 34
Patterns, examples
concurrency, 31, 32
deployment, 32—-33
Half Sync/Half Async, 32
Layers, 30-31
Load Balanced Cluster, 32—-33
Patterns for architectural design, design concepts catalogs
concurrency, 228
database access, 229
interface partitioning, 226227
Load-Balanced Cluster patterns, 224
Pattern-Oriented Software Architecture: A Pattern Language for Distributed
Computing (Buschmann et al.), 224
structural patterns, 224-226
Patterns for deployment
definition, 271
example, 32-33
instantiating elements, 60
Load-Balanced Cluster patterns, 224
Patterns for deployment, design concepts catalogs
distributed deployment, 222-223
Load-Balanced Cluster patterns, 223—224
nondistributed deployment, 221
performance patterns, 223-224




Pertormance
patterns, design concepts catalog, 223-224
scenarios, brownfield development case study, 146
tactics, design concepts catalog, 235-236
tactics example, 34-35
tactics-based questionnaire, 185, 255-256
Personal Software Process (PSP), 200
Perspectives, definition, 171-172
Platform, definition, 272
Platforms, externally developed components, 36
POC (proof-of-concept). See Proof-of-concept.
Popularity, externally developed components, 38
Postmortem phase of the TSP (Team Software Process), 200
Preliminary documentation. See also Sketches; Views.
in the development lifecycle, 196
recording design decisions, 68—69
sketching views, 65—68
Pre-sales process
definition, 16, 272
in the development lifecycle, 194-196
Primary functional requirements, definition, 272
Primary functionality
architectural drivers, 25-26
definition, 25
identifying supporting structures, 51-52
importance of, 25-26
Prioritizing quality attributes, 19, 21, 81, 152, 188-190. See also Utility Tree.
Process of Software Architecting
building a proof-of-concept, 168
defining architecture overview, 168
defining requirements, 167
deployment elements, outlining, 168
deployment models, 168
documenting architecture decisions, 168
function models, 168




functional elements, outlining, 168

functional elements, refining, 169

identifying reusable architecture, 168

logical architecture, creating, 167

overview, 167-169

physical architecture, creating, 167

surveying architecture assets, 168

tasks, outlining vs. detailing, 168

tasks, purposes of, 168—169

verifying architecture, 168
The Process of Software Architecting (Eeles and Cripps), 167-169
Product, definition, 272
Products, externally developed components, 36
Progress, tracking. See Tracking design progress.
Project proposals. See Pre-sales process.
Project skills, among architects, 7
Proof-of-concept

in ATAM analysis, 189

definition, 273

Process of Software Architecting, 168

RUP, 165
Prototyping

analyzing the design process, 177

in ATAM analysis, 189

selecting design concepts, 57-58
PSP (Personal Software Process), 200

Q
QAW (Quality Attribute Workshop)
definition, 19, 273
output of, 23
purpose of, 21
steps in, 21-22
vs. Utility Tree, 24
Quality attribute scenarios. See also Scenarios.




components of, 20
definition, 273
overview, 20-21
Quality attribute scenarios, case studies
brownfield development case study, 146, 148
greenfield development for mature domains, 78-79, 101-104
greenfield development for novel domains, 109-110
Quality attributes
in architectural drivers, 19-21
changing, 26
definition, 19, 273
externally developed components for, 38
prioritizing, 19, 21, 81, 152, 188-190. See also Utility Tree.
refactoring, 26
Questionnaires. See Tactics-based questionnaires.

R

“A Rational Design Process: How and Why to Fake It” (Parnas and Clements), 2
Rational Unified Process (RUP). See RUP (Rational Unified Process).
Rationale, definition, 273
Recording design decisions
creating preliminary documentation, 68—69
overview, 48
Recording design decisions, case studies
brownfield development case study, 154—156

greenfield development for novel domains, 116-118, 128-129, 136-137,
141-142
Refactoring
brownfield development, 53
definition, 273
quality attributes, 26
Reference architectures
vs. architectural styles, 29
brownfield development case study, 153




definition, 29, 273
designing structures, 59
greenfield development for novel domains case study, 112—-120
Lambda (reference) architecture, 113
overview, 29
Reference architectures, design concepts catalog
Microsoft Application Architecture Guide (Microsoft), 211
mobile applications, 218
RIAs (rich Internet applications), 215-217
rich client applications, 214-215
service applications, 218-221
web applications, 212-214
Refining elements, case studies
brownfield development case study, 152
greenfield development for mature domains, 82, 90, 101
greenfield development for novel domains, 112, 121, 132, 139
Refining elements, overview, 46-47
Refining structures for greenfield development for mature domains, 52
Reflective questions, 177, 186-187
Relation (in software architecture), definition, 273
Reliability scenarios, brownfield development case study, 146
REQ (requirements) phase of TSP, 200201
Requirements. See also ASRs (architecturally significant requirements).
derived, for architectural drivers, 27
internal, for architectural drivers, 27
primary functional requirements, 272
Responsibilities, allocating
brownfield development case study, 154
to elements, 47-48

greenfield development for novel domains case study, 116, 126-128,
134-136, 139-141

Reusing architecture or code. See Refactoring.
Reviewing design inputs, case studies
brownfield development case study, 152




greenfield development for mature domains, 80-81
greenfield development for novel domains, 111-112
Reviewing design inputs, overview, 44—46
Reviewing iterations,
brownfield development case study, 156—158
greenfield development for mature domains case study, 99-100, 104
greenfield development for novel domains, 118-120, 129131, 138, 143
RIAs (Rich Internet Applications), design concepts catalog, 215-217
Rich client applications, design concepts catalog, 214-215
Risk, definition, 188
Risk management
analyzing, 178
ATAM analysis, 188
estimating, 194-195
non-risks, definition, 188
Rounds, development, 44, 271
Rozanski, Nick, 171
RUP (Rational Unified Process)
construction phase, 165, 199
defining candidate architecture, 165-166
in the development lifecycle, 199-200
elaboration phase, 165-166, 199
inception phase, 165, 199
overview, 165-166
proof-of-concept, 165
refining candidate architecture, 166
transition phase, 165, 199

S

Satisficing vs. optimal solutions, 14

Satisfying architectural drivers. See Architectural drivers, satisfying.
Scenario-based design reviews, 187, 189. See also ATAM (Architecture
Tradeoff Analysis Method).

Scenario-based documentation, 67-68
Scenarios. See also Quality attribute scenarios.




definition, 19, 273
falsifiability, 21
prioritizing. See Utility Tree.
testability, 21
Scenarios, quality attribute, 101-104
Schedules, estimating, 194—196
Security, tactics-based questionnaire, 257-259
Security tactics, design concepts catalog, 236-238
Service applications, design concepts catalog, 218-221
Simon, Herbert, 208
Simulation, 177
Sketches, definition, 273. See also Preliminary documentation.
Sketching an architecture, 169-171
Sketching views
creating preliminary documentation, 65-68
overview, 48
Sketching views, case studies
brownfield development case study, 154—156

greenfield development for novel domains, 116-118, 128-129, 136137,
141-142
Skills practice, 209-210
Smart Decisions game, 112, 121, 209
Software architecture
common issues, 4-6
definition, 3, 273
importance of, 3-4
Software architecture, lifecycle activities. See also specific activities.
architectural design, 4
architectural documentation, 5
architectural evaluation, 6
architectural implementation/conformance checking, 6
ASRs (architecturally significant requirements), 4
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and Perspectives (Rozanski and Woods), 171-173
Spikes, 199, 273
Spring framework, design concepts catalog, 241-242
Stakeholder benefits, selecting design concepts, 56
Standard components technique for estimation, 195-196
Structural patterns, design concepts catalog, 224-226
Structure of overall system, establishing
greenfield development for mature domains case study, 81-89

greenfield development for novel domains case study, 112—-120
Structures
allocation, 59
architectural and design patterns, 59
categories of, 58-59
C&C (component and connector), 59
definition, 273
deployment patterns, 60
design concept types, 59—60
element properties, 60
element relationships, 61
element responsibilities, 60
externally developed components, 60
greenfield development for mature domains case study, 89—99
identifying to support primary functionality, 51-52
instantiating elements, 59—60
module, 59
reference architectures, 59
refining for greenfield development for mature domains, 52
tactics, 60
Surveys. See Tactics-based questionnaires.
Swing framework, design concepts catalog, 243
System requirements, case study, 77-80

T
Tactic, definition, 273
Tactics




definition, 33-34
designing structures, 60
overview, 33-34
vs. patterns, 34
for performance, example, 34-35
Tactics, design concepts catalog
availability, 230-232
interoperability, 232-233
modifiability, 233-235
performance, 235-236
security, 236238
testability, 238240
usability, 240-241
Tactics-based analysis, 180—185
Tactics-based questionnaires
availability, 248-252
availability, example, 180—185
DevOps, 263—-266
interoperability, 252
modifiability, 253-254
overview, 247-248
performance, 255-256
security, 257-259
testability, 260—261
usability, 261-262
Team Software Process (TSP), 200201
Teams, vs. individual efforts, 202—203
Technical debt, 16, 274
Technical skills, among architects, 7, 209-210

Technologies, selecting in a greenfield development for novel domains case
study, 120131

Technology families, 35-36, 37, 274
TEST (testing) phase of TSP, 200-201
Testability

of scenarios, 21




tactics, design concepts catalog, 238-240
tactics-based questionnaire, 260—261
Thought experiments, 177
Tracking design progress
architectural backlogs, 69-70
Kanban boards, 70-71
overview, 69
Transition phase of RUP, 165, 199

TSP (Team Software Process), 200-201

U
UML (Unified Modeling Language), 191
Usability
tactics, design concepts catalog, 240-241
tactics-based questionnaire, 261-262
Use case model, case studies
brownfield development, 147
greenfield development for mature domains, 77-80
greenfield development for novel domains, 108—109
Utility, selecting design concepts, 56
Utility Tree
definition, 19
prioritizing quality attributes, 23-24
vs. QAW, 24

\%
Viewpoints, definition, 171
Viewpoints and perspectives method
flowchart of steps, 173
overview, 171-173
perspectives, definition, 171-172
steps involved, 172-173
viewpoints, definition, 171
Views, definition, 65, 274
Views, sketching




creating preliminary documentation, 6568
brownfield development case study, 154—156

greenfield development for mature domains case study, 84-87, 92-99,
102-103

greenfield development for mature domains case study, 84-87, 92-99,
102-103

overview, 48

\%

Waterfall model, 197-198

Web applications, design concepts catalog, 212-214

Web pages, as resources for architectural design decisions, 39
Woods, Eoin, 171
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