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Chapter 1
Embedded Systems Design: Hardware
and Software Interaction

Abstract This chapter introduces the definitions of the basic concepts used in
the book. The chapter details the software and hardware organization for the het-
erogeneous MPSoC architectures and summarizes the main steps in programming
MPSoC. The software design represents an incremental process performed at four
MPSoC abstraction levels (system architecture, virtual architecture, transaction-
accurate architecture, and virtual prototype). At each design step, different software
components are generated and verified using hardware simulation models. The
overall design flow is given in this chapter. Examples of target architectures and
applications, which will be used in the remaining part of this book, are described.

1.1 Introduction

Modern system-on-chip (SoC) design shows a clear trend toward integration
of multiple processor cores. Current embedded applications are migrating from
single processor-based systems to intensive data communication requiring multi-
processing systems. The performance demanded by these applications requires the
use of multi-processor architectures in a single chip (MPSoCs), endowed with
complex communication infrastructures, such as hierarchical buses or networks on
chips (NoCs). Additionally, heterogeneous cores are exploited to meet the tight
performance and design cost constraints. This trend of building heterogeneous
multi-processor SoC will be even accelerated due to current embedded application
requirements. As illustrated in Fig. 1.1, the survey conducted by Embedded Systems
Design Journal already proves that more than 50% of multi-processor architectures
are heterogeneous, integrating different types of processors [159].

In fact, the literature relates mainly two kinds of organizations for multi-
processor architectures. These are called shared memory and message passing
[42]. This classification fixes both hardware and software organizations for each
class. The shared memory organization generally assumes a multi-tasking appli-
cation organized as a single software stack, and a hardware architecture made
of several identical processors (CPUs), also called homogeneous symmetrical

1K. Popovici et al., Embedded Software Design and Programming of Multiprocessor
System-on-Chip, Embedded Systems, DOI 10.1007/978-1-4419-5567-8_1,
C© Springer Science+Business Media, LLC 2010
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Fig. 1.1 Types of processors in SoC

multi-processing (SMP) architecture. The communication between the different
CPUs is made through global shared memory. The message-passing organization
assumes in most cases multiple software stacks which may run either on an SMP
architecture or on non-identical processing subsystems, which may include different
CPUs and/or different I/O systems, in addition to specific local memory archi-
tecture. The communication between the different subsystems is generally made
through message passing. Heterogeneous MPSoCs generally combine both models,
and integrate a massive number of processors on a single chip [122]. Future het-
erogeneous MPSoC will be made of few heterogeneous subsystems, where each
subsystem includes a massive number of the same processor to run a specific
software stack [87].

Nowadays multimedia and telecom applications such as MPEG 2/4, H.263/4,
CDMA 2000, WCDMA, and MP3 contain heterogeneous functions that require dif-
ferent kinds of processing units (digital signal processor, shortly DSP, for complex
computation, microcontroller for control functions, etc.) and different communica-
tion schemes (fast links, non-standard memory organization, and access). To achieve
the required computation and communication performances, heterogeneous MPSoC
architecture with specific communication components seems to be a promising solu-
tion [101]. Heterogeneous MPSoC includes different kinds of processors (DSP,
microcontroller, ASIP, etc.) and different communication schemes. This type of
heterogeneous architecture provides highly concurrent computation and flexible
programmability.

Typical heterogeneous platforms already used in industry are TI OMAP [156]
and ST Nomadik [114] for cellular phones, Philips Viper Nexperia [113] for con-
sumer products, or the Atmel Diopsis D940 architecture [44]. They incorporate a
DSP processor and a microcontroller, communicating via efficient, but sophisticated
infrastructure.
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The evolution of cell phones is a good illustration of the evolution and het-
erogeneity of MPSoCs. Modern cell phones may have four to eight processors,
including one or more RISC processors for user interfaces, protocol stack pro-
cessing, and other control functions; a DSP for video encoding and decoding and
radio interface; an audio processor for music playback; a picture processor for cam-
era options; and even a video processor for new video-on-phone capabilities. In
addition, there may be other deeply embedded processors substituting for other
functions traditionally designed as hardware blocks [96]. Extensible processors
are proving to be flexible substitutes for hardware blocks, achieving acceptable
performance and power consumption. Thus, these devices are a good example of
heterogeneous MPSoC, and their demanding requirements for low cost, reasonable
performance, and minimal energy consumption illustrate the advantages of using
highly application-specific processors for various functions.

Heterogeneous MPSoC architectures may be represented as a set of software
and hardware processing subsystems which interact via a communication network
(Fig. 1.2) [42].

Fig. 1.2 MPSoC hardware–software architecture

A software subsystem is a programmable subsystem, namely, a processor sub-
system. This integrates different hardware components including a processing unit
for computation (CPU), specific local components such as local memory, data and
control registers, hardware accelerators, interrupt controller, DMA engine, synchro-
nization components such as mailbox or semaphores, and specific I/O components
or other peripherals.

Each processor subsystem executes a specific software stack organized in two
main layers: the application and the hardware-dependent software (HdS) layers. The
application layer is associated with the high-level behavior of the heterogeneous
functions composing the target application. The HdS layer is associated with the
hardware-dependent low-level software behavior, such as interrupt service routines,
context switch, specific I/O control, and tasks scheduling. In fact, the HdS layer
includes three components: operating system (OS), specific I/O communication
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(Comm), and the hardware abstraction layer (HAL). These different components
are based on well-defined primitives or application programming interfaces (APIs)
in order to pass from one software layer to another.

A hardware subsystem represents specific hardware component that implements
specific functionalities of the application or a global memory subsystem accessible
by the processing units.

The shift from the single processor to an increasingly processor- and multi-
processor-centric design style poses many challenges for system architects, software
and hardware designers, verification specialists, and system integrators. The main
design challenges for MPSoC are as follows: programming models that are required
to map application software into effective implementations, the synchronization
and control of multiple concurrent tasks on multiple processor cores, debugging
across multiple models of computation of MPSoC and the interaction between the
system, applications, and the software views, and the processor configuration and
extension [96].

Current ASIC design approaches are hard to scale to a highly parallel multi-
processor SoC [88]. Designing these new systems by means of classical methods
gives unacceptable realization costs and delays. This is mainly because different
teams contributing to SoC design used to work separately. Traditional ASIC design-
ers have a hardware-centric view of the system design problem. Similarly, software
designers have a software-centric view. System-on-chip designs require the creation
and use of radical new design methodologies because some of the key problems in
SoC design lie at the boundary between hardware and software. Current SoC design
process uses in most cases two separate teams working in a serial methodology to
achieve hardware and software designs, while some SoC designers already adopted
a process involving mixed hardware–software teams, and others try to move slowly
in this direction.

The use of heterogeneous ASIPs makes heterogeneous MPSoC architectures fun-
damentally different from classic general-purpose multi-processor architectures. For
the design of classic computers, the parallel programming concept (e.g., MPI) is
used as an application programming interface (API) to abstract hardware/software
interfaces during high-level specification of software applications. The application
software can be simulated using an execution platform of the API (e.g., MPICH) or
executed on existing multi-processor architectures that include a low-level software
layer to implement the programming model. In this case, the overall performances
obtained after hardware/software integration cannot be guaranteed and will depend
on the match between the application and the platform.

Unlike classic computers, the design of MPSoC requires a better matching
between hardware and software in order to meet performance requirements. In this
case, the hardware/software interfaces implementation is not standard; it needs to be
customized for a specific application in order to get the required performances. This
includes customizing the CPUs and all the peripherals required to accelerate com-
munication and computation. In most cases, even the lower software layers need to
be customized to reach the required cost and performance constraints. Applying
the classical design schemes for those architectures leads to inefficient designs.



1.1 Introduction 5

Additionally, classic SoC design flows imply a long design cycle. Most of these
flows rely on a sequential approach where complete hardware architecture should
first be developed before software could be designed on top of it. This long design
cycle is not acceptable because of time to market constraints. There is an increasing
use of early system-level modeling, even if it would not contain the entire hardware
architecture, but only a subset of components which are sufficient to allow some
level of software verification on the hardware before the full hardware is available,
thus reducing the sequential nature of the design methodology. The use of high-
level programming model to abstract hardware/software interfaces is the key enabler
for concurrent hardware and software designs. This abstraction allows to separate
low-level implementation issues from high-level application programming. It also
smoothes the design flow and eases the interaction between hardware and software
designers. It acts as a contract between hardware and software teams that may work
concurrently. Additionally, this scheme eases the integration phase since both hard-
ware and software have been developed to comply with a well-defined interface.
The use of a parallel programming model allows reducing the overall system design
time and cost in addition to a better handling of complexity.

The use of programming models for the design of heterogeneous MPSoC
requires the definition of new design automation methods to enable concurrent
design of hardware and software. This will also require new models to deal with
non-standard application-specific hardware/software interfaces at several abstrac-
tion levels.

In order to allow for concurrent hardware/software design, as shown in Fig. 1.3,
we need abstract models of both software and hardware components. In general-
purpose computer design, system designers must also consider both hardware and
software, but the two are generally more loosely coupled than in SoC design. As
a result, general-purpose computer systems generally model the hardware/software
interfaces twice. Hardware designers use a hardware/software interface model to
test their hardware design and software designers use a hardware/software interface
model to validate the functionality of their software. Using two separate models
induces a discontinuity between hardware and software. The result is not only a
waste of design time but also a less efficient and lower quality hardware and soft-
ware. This overhead in cost and loss in efficiency are not acceptable for SoC design.
A single hardware/software interface needs to be shared between both hardware and
software designers.

Functional
Specification 

(Simulink)
Partitioning

Software design

Hardware design

Integration
ISA/RTL

(SystemC)

Correction cycle

Virtual PrototypeSystem Level

Early HW/SW integration

Fig. 1.3 System-level design flow
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Figure 1.3 shows a simplified flow of mixed hardware/software design, where
both software and hardware are designed concurrently. This flow starts with a
system-level specification made of application functions using a system-level par-
allel programming model. This may be a Simulink functional model that can be
simulated using the corresponding environment. Then, the application functions are
partitioned in either hardware or software target implementations, followed by con-
current hardware and software designs. The hardware design produces RTL (register
transfer level) or gate model of the hardware components often represented using
SystemC language or a hardware description language like VHDL and Verilog. The
software design can be performed at higher level of abstraction and it produces the
binary code of the software components. The final integration step consists of ver-
ification of the whole system by co-simulating the RTL hardware model with the
binary software code.

Programming the application-specific heterogeneous multi-processor architec-
tures becomes one of the key issues for MPSoC, because of two contradictory
requirements: (1) reducing software development cost and overall design time
requires a higher level programming model. This reduces the amount of architec-
ture details that need to be handled by application software designers and then
speed up the design process. The use of higher level programming model will
also allow concurrent software/hardware design and thus reduces the overall design
time. (2) Improving the performance of the overall system requires finding the
best matches between hardware and software. This is generally obtained through
low-level programming.

Therefore, for this kind of architectures, classic programming environments do
not fit: (i) high-level programming does not handle efficiently specific I/O and com-
munication schemes, while (ii) low-level programming explicitly managing specific
I/O and communication is a time-consuming and error-prone activity. In practice,
programming these heterogeneous architectures is done by developing separate low-
level codes for the different processors, with late global validation of the overall
application with the hardware platform. The validation can be performed only when
all the binary software is produced and can be executed on the hardware platform.

Next-generation programming environments need to combine the high-level pro-
gramming models with the low-level details. The different types of processors
execute different software stacks. Thus, an additional difficulty is to debug and vali-
date the lower software layers required to fully map the high-level application code
on the target heterogeneous architecture [125].

This book gives an overview of concepts, tools, and design steps to system-
atic embedded software design for the MPSoC architectures. The book combines
Simulink for high-level programming and SystemC for the low-level software
development. The software design and validation is performed gradually through
four different software abstraction levels (system architecture, virtual architecture,
transaction-accurate architecture, and virtual prototype). Specific software exe-
cution models or abstract architecture models are used to allow debugging the
different software components with explicit hardware–software interaction at each
abstraction level.
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The book is organized as follows: Chapter 1 introduces the context of MPSoC
design, the difficulties of programming these complex architectures, the design and
validation flow of the multiple software stacks running on the different processor
subsystems, the adopted MPSoC abstraction levels, and the definition of some con-
cepts later used in this book. Chapter 2 defines first the hardware components of
the MPSoC architecture, i.e., processor, memory, and interconnect and then, the
components of the embedded software running on top of these architectures, i.e.,
operating system, communication, and middleware and hardware abstraction lay-
ers. Chapters 3, 4, 5, and 6 detail the embedded software design and validation for
MPSoC at four abstraction levels, namely, the system architecture, virtual archi-
tecture, transaction-accurate architecture, respectively, the virtual prototype design.
Chapter 7 draws conclusions and indicates several future research perspectives for
embedded software design.

1.2 From Simple Compiler to Software Design for MPSoC

The software compilation is a common concept of both electronic and informatic
domains. Usually the applications are implemented in high-level programming lan-
guages, such as C/C++. The software compilation represents the translation of a
sequence of instructions written in a higher symbolic language into a machine lan-
guage before the instructions can be executed. Typical situation is the translation of
an application from a high-level language like C to the assembly language accepted
by processor which will execute that application.

The compilation contains the following steps [2]:

– Lexical analysis, which divides the source code text into small pieces, called
tokens. Each token is a single atomic unit of the language, for instance, a keyword,
identifier, or symbolic name. The token syntax is often a regular expression. This
phase is also called lexing or scanning, and the software doing the lexical analysis
is called lexical analyzer or scanner.

– Syntax analysis, which parses the token sequence and builds an intermediate rep-
resentation, for instance, in the form of a tree. The tree is built according to the
rules of the formal grammar which defines the language syntax. The nodes of the
parse tree represent elementary operations and operators, while the arcs symbolize
the dependencies between the nodes.

– Semantic analysis, which adds semantic information to the parse tree and builds
the symbol table. The symbol table is a data structure, where each identifier in a
program’s source code is associated with information relating to its declaration
and appearance in the source, such as type, scope, and sometimes its location.
This phase also performs semantic checks, such as type checking (checking for
type errors) or object binding (associating variable and function references with
their definition).
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– Optimization, which transforms the intermediate parse tree into functionally
equivalent, but faster or smaller forms. Examples of optimizations are inline
expansions, dead code elimination, constant propagation, register allocation, or
automatic parallelization.

– Code generation, which traverses the intermediate tree and generates the code in
the targeted language corresponding to each node of the tree. This also involves
resource and storage decisions, such as deciding which variables to fit into the
registers and memory, and the selection and scheduling of appropriate machine
instructions along with their associated addressing modes.

Figure 1.4 illustrates these steps in case of a C code compilation to the host
processor-specific assembly language. The first phases of the compilation depend
only on the input language and they are called front end of the compilation. The
optimization and generation of the code depends only on the targeted language and
it is also known as back end of the compilation. Usually, the compilation to the
assembly language of the host processor includes also a linking phase. The linker
associates an address to each object symbol of the assembly code, in order to be
loaded in the memory of the processor for execution.

Lexical Analysis

Syntax Analysis

Semantic Analysis

Code Generation

Tokens

Parse tree

Optimized Parse Tree

Assembly Code

C Code

Optimization

Symbol Table

Fig. 1.4 Software
compilation steps

The software design for MPSoC is more complex than a simple software compi-
lation. The software design represents the process of producing executable software
in the form of a binary code, for a specific architecture, from a high-level applica-
tion representation (e.g., UML [161], C, or C++). The software design refines the
application representation and adapts it to the target architecture in order to produce
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a compatible and efficient executable code, e.g., parallelization of the application,
communication specification. The compilation is the final phase of the software
design.

An ideal software design flow allows the software developer to implement the
application in a high-level language, without considering the low-level architec-
ture details. In an ideal design flow, the software generation targeting a specific
architecture consists of a set of automatic steps, such as application partitioning
and mapping on the processing units provided by the targeted architecture, final
application software code generation, and hardware-dependent software (HdS) code
generation (Fig. 1.5a).

Application
Specification

Partitioning + Mapping
SW Code Generation
- Appl code generation
- HdS code generation

Final Application
Software code

HdS

MPSoC

Compile, link
+ execution

Application
Specification

Partitioning + Mapping
SW Manual Implementation

Compiler

Linker

Executable Code
execution

Mem Map, User,
System Lib.

MPSoC
Architecture

Programming
Model (API)

a) b)

Fig. 1.5 Software design flows: (a) ideal software design flow and (b) classic software design flow

The HdS is made of lower software layers that may incorporate an operating sys-
tem (OS), communication management, and a hardware abstraction layer to allow
the OS functions to access the hardware resources of the platform. Ideally, the soft-
ware design should support any type of application description, independently of the
programming style, and it should target any type of SoC architecture. Unfortunately,
we are still missing such an ideal generic flow, able to map efficiently high-level
programs on heterogeneous MPSoC architectures. Additionally, the validation and
debugging of HdS remains the main bottleneck in MPSoC design [171] because
each processor subsystem requires specific HdS implementation to be efficient.

The classical approaches for the software design use programming models to
abstract the hardware architecture (Fig. 1.5b). These generally induce disconti-
nuities in the software design, i.e., the software compiler ignores the processor
architecture (e.g., interrupts or specific I/Os). To produce efficient code, the software
needs to be adapted to the target architecture by using specific libraries, such as sys-
tem library for the different hardware components or specific memory mapping for
the different CPU and memory architectures.
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The software adaptation for a specific MPSoC architecture, in order to obtain an
efficient executable code, requires the following information:

– Hardware architecture details: type of processors, type of memories, type of
peripherals, etc.

– Memory mapping, more precisely the different memory addresses reserved to var-
ious hardware and software components, e.g., memory-mapped address of an I/O
device.

– Diverse constraints imposed by the execution environment, such as timing con-
straints (e.g., execution deadline, data debit), surface constraints (e.g., limited
memory resources), power consumption constraints, or other constraints specific
to the architecture.

This kind of information can be specified during the software design in several
ways: in the form of architecture parameters manually annotated in the application
specification, automatically deduced from the specification structure, or they might
be given in a natural language.

The software design is not only a very complex process due to the hardware
architecture variety and complexity but also the different types of knowledge
required by a successful design.

The variety of MPSoC architectures is mainly determined by the heterogeneity
of the processors and the combination of the various communication schemes. The
semiconductor industry provides many types of processors, which do not share the
instruction set architecture (ISA). Employing processor-specific compiler for the
assembly code generation does not seem to reduce totally the difficulties induced by
the processors diversity in the software design. Examples of processor characteris-
tics which make difficult the software to be adapted by the compiler for the target
architecture are as follows:

– Data type: each processor usually provides preferable data types that can be effi-
ciently utilized. They depend on the size of its local registers, bit size of the
data path, and memory access routes. For performance reasons, it is strongly rec-
ommended to use these data types for most of the application variables. Since
different kinds of processors do exist, the preferable data type can be integer (int)
of 8 bits, 16 bits, or 32 bits, or even more sophisticated data types depending on the
internal architecture of the processor. The C language uses a generic integer (int)
type, and then the compiler decides the number of bits allocated for the variable,
depending on the target processor (8 bits, 16 bits, 32 bits, etc.). If the data need to
be exchanged between multiple processors, the data types have to be identical at
both producer and consumer sides. This increases the software design complexity,
if the producer and consumer processors have different preferable data types. But
a robust API can help dealing with data type conversion between heterogeneous
processors.

– Data representation: the data are stored in the memories in the form of packets of
bits. But there are many ways of interpreting these bits (e.g., two’s complement,
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exponential representation). An important aspect of the processor’s architecture
is the endianness. The endianness is the way of ordering the bytes in the mem-
ory to represent a data. Mainly, the architectures are divided into two categories:
big endian (most significant byte first, stored at the lowest memory address)
and little endian (increasing byte numeric significance with increasing mem-
ory addresses). Additionally, the same data type, e.g., 32 bits, can be represented
in both types of endianness. Byte order is an important consideration in multi-
processor architectures, since two processors with different byte orders may be
communicating.

– Instruction set: each type of processor is characterized by a specific instruction set.
The compiler is responsible to translate the high-level application into the instruc-
tion set interpretable by the processor. Generally, the high-level description does
not take into consideration the hardware characteristics to attain performances.
But, sometimes it is desirable to optimize the application algorithm for a particular
processor or to use processor-specific instructions in the high-level representation,
e.g., instructions to control the power consumption.

– Interrupts: most of the processors provide interrupt mechanism to control the
events occurred during the computation. Even if the interrupt mechanisms are very
specific to each type of processor and they can be very complex, the compilers do
not take them into consideration during the assembly code generation.

All these different features among the processors cannot be handled only by the
compilers.

Besides the processor characteristics, the architecture heterogeneity is amplified
also by the variety of communication schemes between the processors. Current
multi-processor systems on chip (MPSoC) architectures integrate a massive num-
ber of processors which range from 2 to 20+ and scaling up to 100 processors
in a multi-tile-based architecture. The processors can exchange application and
synchronization data in different ways [171]. The communication architecture is
characterized by a large set of parameters and adopted design choices, such as

– programming model: shared memory (e.g., OpenMP [33]), message passing (e.g.,
MPI [MPI])

– blocking versus non-blocking semantic
– synchronous versus asynchronous communication
– buffered versus unbuffered data transfer
– synchronization mechanism, such as interrupt or polling
– type of connection: point-to-point dedicated link or global interconnection com-

ponent, such as system bus or network on chip (NoC)
– communication buffer mapping: stored in the sender subsystem, stored in the

receiver subsystem, or using a dedicated storage resource such as global memory
or hardware FIFO

– direct memory access (DMA)
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All these different characteristics can be combined in multiple ways, thus making
the software design more difficult. Initially, the software uses high-level primi-
tives in order to abstract all these architecture details. During the design, several
implementations are provided to these primitives in order to map the high-level
software onto the hardware architecture. Since the hardware architecture allows
numerous configuration schemes which can be explored (e.g., diverse communica-
tion schemes), the software design includes several iteration steps until the required
performances are achieved. Moreover, the software design requires copious com-
petences in large domains, such as processors knowledge, communication proto-
col knowledge, application knowledge, architecture knowledge, hardware/software
interface knowledge.

The processors knowledge includes the following types of required informa-
tion:

– Number and size of the local registers, size of the data bus, size of the address bus,
etc., in order to better suite the data types

– Data transfer mode of the processor: does it use a common data/program memory
(Von Neuman) or distinct (Harvard), what type of protocol is used by the processor
to read/write data, or what type of interrupt mechanism is used

– Assembly language of the processor used to implement the algorithm code opti-
mizations, the processor-specific interrupt service routines, and the context switch
in the HdS code

– Processor performances: the CPU speed or the number of clock cycles required to
load/store data in the memory. This type of information helps to better choose the
parallelization way of the application algorithm

– Type of processor architecture (pipeline, RISC, CISC, etc.) to better implement
the application algorithm.

– Type of data transfer, with or without initiating a DMA transfer request. With
DMA, the CPU would initiate the transfer, do other operations while the transfer
is in progress, and receive an interrupt from the DMA controller once the opera-
tion has been done. This is especially useful in real-time computing applications
where not stalling behind concurrent operations is critical. Another and related
application area is various forms of stream processing where it is essential to have
data processing and transfer in parallel, in order to achieve sufficient throughput.

The communication protocol knowledge include knowledge about the communi-
cation protocol or the communication implementation, e.g., whether it is managed
by the operating system or whether it is managed by the hardware, with or without
DMA engine.

The knowledge about the application include the description language (e.g.,
C, C++, UML, Simulink), the application algorithm to know how to optimize its
implementation, and the application parameters, such as number of variables to be
exchanged, number of possible tasks executed in parallel.

The knowledge about the hardware/software interface is important to better adapt
the software to the hardware, more precisely to better select the operating system
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responsible with the scheduling of the parallel executed tasks, the implementation
of the communication in the software for the tasks running on the same CPU, etc.

1.3 MPSoC Programming Steps

Programming an MPSoC means to generate software running on the MPSoC effi-
ciently by using the available resources of the architecture for communication and
synchronization. This concerns two aspects: software stack generation and vali-
dation for the MPSoC, and communication mapping on the available hardware
communication resources and validation for MPSoC.

Efficient programming requires the use of the characteristics of the architecture.
For instance, a data exchange between two tasks mapped on different processors
may use different schemes through either the shared memory or the local memory
of one of these processors. Additionally, different synchronization schemes (polling
and interrupts) may be used to coordinate this exchange. Furthermore, the data
transfer between the processors can be performed by a DMA engine, thus permit-
ting the CPU to execute other computation, or by the CPU itself. Each of these
communication schemes has advantages and disadvantages in terms of performance
(latency, throughput), resource sharing (multi-tasking, parallel I/O), and communi-
cation overhead (memory size, execution time). The ideal scheme would be able to
produce an efficient software code starting from high-level program using generic
communication primitives.

As shown in Fig. 1.6, the software design flow starts with an application and an
abstract architecture specification. The application is made of a set of functions. The
architecture specification represents the global view of the architecture, composed
of several hardware and software subsystems.

The main steps in programming the MPSoC architecture are as follows:

– Partitioning and mapping the application onto the target architecture subsystems
– Mapping application communication on the available hardware communication

resources of the architecture
– Software adaptation to specific hardware communication protocol implementation
– Software adaptation to detailed architecture implementation (specific processors

and memory architecture)

The result of each of these four phases represents a step in the software and com-
munication refinement process. The refinement is an incremental process. At each
stage, additional software component and communication architecture details are
integrated with the previously generated and verified components. This conducts
to a gradual transformation of a high-level representation with abstract compo-
nents into a concrete low-level executable software code. The transformation has
to be validated at each design step. The validation is performed by formal analysis,
simulation, or combining simulation with formal analysis [82].
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The formal verification is defined by the Wiktionary as being “the act of prov-
ing or disproving the correctness of intended algorithms underlying a system with
respect to a certain formal specification or property, using formal methods of math-
ematics.” Generally, the formal verification is performed using the model checking
technique, which consists of a systematically exhaustive exploration of the math-
ematical model that corresponds to the hardware and software architecture. The
exploration of the mathematical model consists of exploring all states and transi-
tions in the model. Usually, the model checking is applied to verify the structure of
a hardware design. In case of the software architecture, the model checking is used
to prove or disprove a given property characterizing the software. There are several
academic and commercial tools developed for model checking. The Incisive Formal
Verifier from Cadence is an example of tool for verification, which provides a for-
mal means of verifying RTL functional correctness with assertions [29]. The formal
analysis does not require a set of test vectors for the verification and supports the
verification of the RTL description in several design languages, including Verilog,
SystemVerilog, or VHDL. Another example of model checking tool is the Kronos
from Verimag [165], which supports the verification of complex real-time systems,
whose components are modeled as timed automata and the correctness requirements
are expressed in real-time temporal logic TCTL. The timed automata is an automata
extended with a finite set of real-valued clocks, used to express timing constraints.
Clocks can be set to zero and their values increase uniformly with time. In this kind
of automata, a transition is enabled only if the timing constraint associated with it
is satisfied by the current values of the clocks. Many MPSoC design projects use
no formal validation at all, except perhaps equivalence checking from RTL to gates
and between physical design steps such as insertion of scan.

In the following, we will consider simulation-based validation to ensure that the
system behavior respects the initial specification. The simulation-based validation
requires the software execution using an executable model.

During the partitioning and mapping of the application on the target architec-
ture, the relationship between application and architecture is defined. This refers
to the number of application tasks that can be executed in parallel, the granularity
of these tasks (coarse grain or fine grain), and the association between tasks and
the processors that will execute them. The result of this step is the decomposition
of the application into tasks and the correspondence tasks–processors [154]. This
step is also called system architecture design and the resulting model is the system
architecture model.

The system architecture model represents a functional description of the appli-
cation specification, combined with the partitioning and mapping information.
Aspects related to the architecture model (e.g., processing units available in the
target hardware platform) are combined into the application model (i.e., multi-
ple tasks executed on the processing units). Thus, the system architecture model
expresses parallelism in the target application through capturing the mapping of
the functions into tasks and the tasks into subsystems. It also makes explicit the
communication units to abstract the intra-subsystem communication protocols (the
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communication between the tasks inside a subsystem) and the inter-subsystem
communication protocols (the communication between different subsystems).

The second step implements the mapping of communication onto the hardware
platform resources. At this phase, the different links used for the communication
between the different tasks are mapped on the hardware resources available in the
architecture to implement the specified protocol. For example, a FIFO communi-
cation unit can be mapped to a hardware queue, a shared memory, or some kind
of bus-based device. The task code is adapted to the communication mechanism
through the use of adequate HdS communication primitives. This step is also enti-
tled virtual architecture design and the resulting model is named virtual architecture
model.

The next step of the proposed flow consists of software adaptation to specific
communication protocol implementation. During this stage, aspects related to the
communication protocol are detailed, for example, the synchronization mechanism
between the different processors running in parallel becomes explicit. The software
code has to be adapted to the synchronization method, such as events or semaphores.
This can be done by using the services of OS and communication components
of the software stack. In general, where an OS is referred in the MPSoC context,
it might be assumed to be a heavyweight OS such as Linux. However, often the
operating systems, e.g., in portable devices, are much lighter weight aggregates
of the communication primitives and perhaps simple scheduling mechanisms, and
they are specific for a single application device or for a small family, but not a
commercial OS or RTOS. The phase of integrating the OS and communication is
also named transaction-accurate architecture design and the resulting model is the
transaction-accurate architecture model.

The last step corresponds to the specific adaptation of the software to the target
processors and the specific memory mapping. This includes the integration of the
processor-dependent software code into the software stack (HAL) to allow low-level
access to the hardware resources and the final memory mapping. This step is also
known as virtual prototype design and the resulting model is called virtual prototype
model.

These different steps of the global flow correspond to different software compo-
nents generation and validation at different abstraction levels, as it will be described
in the following paragraphs.

1.4 Hardware/Software Abstraction Levels

The structured model of the software stack representation allows generation and
validation of the different software components separately [87]. The different com-
ponents and layers of the software stack correspond to different abstraction levels.
The debug of this software stack made of several components is one of the MPSoC
current design challenges [96].

In order to verify the software, an execution model is required at each abstraction
level to allow debugging the specific software component. The execution model rep-
resents an abstract architecture model [133] which allows simulating and validating
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the software component at each abstraction level. The execution model makes use
of a software development platform, which is the result of abstracting different com-
ponents of the target hardware architecture. This abstract architecture model hides
details of the underlying implementation of the hardware platform, but ensures
a sufficient level of control that the software code can be validated in terms of
performance, efficiency, and reliable functionality.

As illustrated in Fig. 1.7, the software development platform is an abstract
model of the architecture in form of a run-time library or simulator aimed to exe-
cute the software (e.g., instruction set simulator) [43, 95]. The combination of this
platform with the software code produces an executable model that emulates the
execution of the final system including hardware and software architecture. This
executable model allows the simulation of the software with detailed hardware–
software interaction, software debug, and eventually performance measurement.
Generic software development platforms have been designed to fully abstract the
hardware–software interfaces, i.e., MPITCH is a run-time execution environment
designed to execute parallel software code written using MPI (message-passing
interface) [22]. MPICH provides an implementation of the MPI standard library
for message passing that combines portability with high performance. Examples
of MPI primitives are MPI_send(. . .), MPI_Bsend(. . .), MPI_Buffer_attach(. . .),
MPI_Recv(. . .), MPI_Bcast(. . .). In fact, the platform and the software may be
combined using different schemes.

 High level software code
(e.g. MPI / C++)

Development Platform
(e.g. MPICH)

Debug &
Performance

Validation

Executable
Model

Generation

Executable Model
(SW code + Platform)

Hardware
Platform

HW
Abstraction

Fig. 1.7 Software development platform

Traditional software development strategies make use of generic software devel-
opment platforms. But the generic platforms do not allow simulating the software
execution with detailed hardware–software interaction and, therefore, they do
not allow accurate performance measurement. Additionally, since the hardware–
software interfaces are fully abstracted, the generic platforms cannot be used to
debug the lower layers of the software stack, e.g., the RTOS (real-time operat-
ing system) and the implementation of the high-level communication primitives.
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Thus, several architecture and application-specific software development platforms
are required for the validation of the various software components at different
abstraction levels.

The software validation and debug is performed by execution of the software
code on a corresponding execution model. The debug is an iterative process because
the different software components need different detail levels in order to be val-
idated. For example, the debug of the application tasks does not need explicit
implementation of the synchronization protocol between the processors using mail-
boxes in the development platform, while the debug of the integration of the tasks
code with the OS requires this kind of detail. The detailed hardware–software inter-
action allows debugging this low-level architecture-specific software code. All these
requirements are considered during the abstraction of the architecture at each design
step to build the executable model. Thus, depending on the software component to
be validated (application tasks code, tasks code execution upon an OS, HAL inte-
gration in the software stack) the platform may model only a subset of hardware
components, more precisely those components that are required for the software
validation. The rest of the hardware components, which are not relevant for the
software validation, are abstracted.

The debug of the software is performed by simulation at the different abstraction
levels. Thus, the system architecture model simulation is used to debug the applica-
tion algorithm. The virtual architecture model simulation serves to debug the final
application tasks code. The transaction-accurate architecture model simulation is
used to debug the glue between the application tasks code and the OS and the com-
munication libraries. The virtual prototype model uses instruction set simulators to
execute and debug the full software stack, including final binary and memory map-
ping. In practice, the various levels of debugging are not used by all design teams,
although many use one or two, i.e., the system architecture model is useful for algo-
rithm developers, who implement new algorithms or optimize existing ones; but it
can also serve as a functional specification of the design requirements. The virtual
architecture and the transaction-accurate architecture models are useful for system
architects, who mostly determine the hardware–software partitioning but they do
not require accurate results for the performance estimation or for embedded soft-
ware developers who integrate the applications with the OS. The virtual prototype
level is useful not only for device drivers development, architecture exploration, but
also for hardware designers to verify their VHDL design through stimuli and test
vectors by means of co-simulation with the platform.

At all these abstraction levels, the debug process uses standard debugging tools
and environments, such as GNU debuggers [61] or trace waveforms during the
simulation, such as SystemC waveforms [SystemC].

1.4.1 The Concept of Hardware/Software Interface

The hardware/software interface links the software part with the hardware part
of the system. As illustrated in Fig. 1.8, the hardware/software interface needs to
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Fig. 1.8 Hardware/software interface

handle two different interfaces: one on the software side using APIs and one on the
hardware side using wires [24]. This heterogeneity makes the hardware/software
interface design very difficult and time-consuming because the design requires both
hardware and software knowledge and their interaction [86].

The hardware/software interface has different views depending on the designer.
Thus, for an application software designer, the hardware/software interface repre-
sents a set of system calls used to hide the underlying execution platform, also called
programming model. For a hardware designer, the hardware/software interface rep-
resents a set of registers, control signals, and more sophisticated adaptors to link the
processor to the hardware subsystems. This can be in the form of a register descrip-
tion language (RDL), which allows to specify and implement software-accessible
hardware registers and memories, or an XML description, like the standard
IP-XACT proposed by the Spirit consortium [146] to ensure interoperability
between hardware components provided by different vendors, which was already
adopted in the Socrates chip integration platform [45]. For a system software
designer, the hardware/software interface is defined as the low-level software imple-
mentation of the programming model for a given hardware architecture. In this
case, the processor is the ultimate hardware–software interface. This scheme is a
sequential scheme assuming that the hardware architecture is ready to start the low-
level software design. Finally, for a SoC designer the hardware/software interface
abstracts both hardware and software in addition to the processor.

The design of the hardware/software interface is a complex and time-consuming
task. The authors in [137] propose a unified model to represent the hard-
ware/software interfaces, called service dependency graph, shortly SDG. This
model is based on the concept of services. Thus, the interface is specified by a
set of requiring and providing services. This kind of interface modeling has the fol-
lowing goals: it allows handling heterogeneous components at several abstraction
levels, being independent of specific modeling standards, it hides implementation
details and allows delaying the implementation decisions through the use of abstract
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architecture models, it allows different and sophisticated adaptation schemes, and
it makes possible the automation of the design for application-specific interfaces
and/or target architectures. Thus, the approach proposed in [137] supports automatic
generation of the hardware/software interfaces based on the service and resource
requirements described using an SDG.

Whether the hardware/software interface is designed automatically or manually,
the designer needs to fix all the implementation parameters, such as address map,
interrupt priorities, software stack size. Before obtaining the final code, the designer
may need to find and fix several bugs that may occur during the implementation.
Generally, the bugs in the hardware/software interface design are due to incor-
rect configuration and access to the platform resources or misunderstanding by the
designer of the hardware architecture. An example of such kind of situation is the
wrong configuration of the memory map for the registers of the interrupt controller.
During the MPSoC design conducted by the authors in [175] for the MPEG4 video
encoder application, 78% of the total bugs were found in the hardware/software
interfaces. Examples of such kind of bugs are as follows:

– Processor booting bugs, when the booting is not synchronized among the various
processors

– Bugs in the kernel of the real-time operating system, more precisely, bugs due
to wrong interrupt priority-level assignments, missed interrupts, or improper
functionality of the context switch service to resume the new task

– Bugs found in the high-level programming model, such as incorrect FIFO
configuration which produces communication deadlock between the tasks

– Bugs found in the hardware management, such as wrong memory map assign-
ment.

Thus, a gradual validation of the hardware/software interface to guarantee correct
functionality becomes trivial. The hardware/software interface requires handling
many software and hardware architecture parameters. To allow the gradual vali-
dation of the software stack, the hardware–software interface needs to be described
at the different abstraction levels.

1.4.2 Software Execution Models with Abstract
Hardware/Software Interfaces

Figure 1.9 illustrates the software execution models at different abstraction lev-
els for a simplified application made of three tasks (T1, T2, and T3) that need to
be mapped on an architecture made of two processing units and several memory
hardware subsystems.

For each level, Fig. 1.9 shows the software organization, the hardware–software
interface and the execution model that will be used to verify the software component
at the corresponding abstraction level. The key differentiation between these levels
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is the way of specifying the hardware–software interfaces and the communication
mechanism implementation.

The highest level is the system architecture level (Fig. 1.9a). In this case, the
software is made of a set of functions grouped into tasks. The function is an abstract
view of the behavior of an aspect of the application. Several tasks may be mapped
on the same software subsystem. The communication between functions, tasks, and
subsystems makes use of abstract communication links, e.g., standard Simulink
links or explicit communication units that correspond to specific communication
paths of the target platform. The links and units are annotated with communication
mapping information. The corresponding execution model consists of the set of the
abstract subsystems. The simulation at this level allows validation of the applica-
tion’s functionality. This model captures both the application and the architecture in
addition to the computation and communication mapping.

Figure 1.9a shows the system architecture model with the following symbols:
circles for the functions, rounded rectangular to represent the task, rectangular for
the subsystem, crossed rectangular for the communication units between the tasks,
filled circles for the ports of the functions, diamonds for the logic ports of the tasks,
and filled rectangular for group of hardware ports. The dataflow is illustrated by
unidirectional arrows.

In this case, the system is made of two abstract software subsystems (SW-
SS1 and SW-SS2) and two inter-subsystem communication units (COMM1 and
COMM2). The SW-SS1 software subsystem encapsulates task T1, while the
subsystem SW-SS2 groups together tasks T2 and T3. The intra-subsystem com-
munication between the tasks T2 and T3 inside SW-SS1 is performed through the
communication unit COMM3.

The next abstract level is called virtual architecture level (Fig. 1.9b). The
hardware–software interfaces are abstracted using HdS API that hides the OS
and the communication layers. The application code is refined into tasks that
interact with the environment using explicit primitives of the HdS API. Each
task represents a sequential C code using a static scheduling of the initial
application functions. This code is the final application code that will consti-
tute the top layer of the software stacks. The communication primitives of the
HdS API access explicit communication components. Each data transfer speci-
fies an end-to-end communication path. For example, the functional primitives
send_mem(ch,src,size)/recv_mem(ch,dst,size) may be used to transfer data between
the two processors using a global memory connected to the system bus, where
ch represents the communication channel used for the data transfer, src/dst the
source/destination buffer, and size the number of words to be exchanged. The
communication buffers are mapped on explicit hardware resources.

At the virtual architecture level, the software is executed using an abstract
model of the hardware architecture that provides an emulation of the HdS API.
The software execution model is comprised of these abstract subsystems, explicit
interconnection component, and storage resources. During the simulation at the
virtual architecture level, the software tasks are scheduled by the hardware plat-
form since the final OS is not yet defined. The simulation at this level allows
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validation of the final code of tasks and may give useful statistics about the com-
munication requirements. The virtual architecture is message accurate in terms of
data exchange between the different tasks. Thanks to the HdS APIs, the tasks code
remains unchanged for the following levels. In this book, the virtual architecture
platform is considered as a SystemC model where the software tasks are executed
as SystemC threads.

In the example illustrated in Fig. 1.9b, the system is made of two abstract
processor subsystems (CPU1-SS and CPU2-SS) and a global memory (MEM) inter-
connected through an abstract communication network. The communication units
comm1 and comm2 are mapped on the global memory and the communication unit
comm3 becomes a software fifo (swfifo).

The next level is called the transaction-accurate architecture level (Fig. 1.9c).
At this level, the hardware–software interfaces are abstracted using a HAL API that
hides the processor’s architecture. The code of the software task is linked with an
explicit OS and specific I/O software implementation to access the communication
units. The resulting software makes use of hardware abstraction layer primitives
(HAL_API) to access the hardware resources. This will constitute the final code of
the two top layers of the resulting software stack. The data transfers use explicit
addresses, e.g., read_mem(addr, dst, size)/ write_mem(addr, src, size), where addr
represents the source, respectively, the destination address, src/dst represents the
local address, and size the size of the data.

The software is executed using a more detailed development platform to emu-
late the network component, the explicit peripherals used by the HAL API, and an
abstract computation model of the processor. During the simulation at this level, the
software tasks are scheduled by the final OS, while the communication between
tasks mapped on the same processor is also implemented by the OS. The sim-
ulation at this level allows validating the integration of the application with the
OS and the communication layer. It may also provide precise information about
the communication performances. The accuracy of the performance estimation is
transaction-accurate level. In this book, the transaction-accurate architecture is gen-
erated as a SystemC model where the software stacks are executed as external
processes communicating with the SystemC simulator through the IPC layer of the
Linux OS running on the host machine.

In the example illustrated in Fig. 1.9c, the system is made of the two processor
subsystems (CPU1-SS and CPU2-SS) and the global memory subsystem (MEM-
SS) interconnected through an explicit communication network (bus or NoC). Each
processor subsystem includes an abstract execution model of the processor core
(CPU1, respectively, CPU2), local memory, interface, and other peripherals. Each
processor subsystem executes a software stack made of the application tasks code,
communication, and OS layers.

Finally, the HAL API and processor are implemented through the use of a HAL
software layer and the corresponding processor part for each software subsystem.
This represents the virtual prototype level (Fig. 1.9d). At the virtual prototype
level the communication consists of physical I/Os, e.g., load/store. The platform
includes all the hardware components such as cache memories or scratch pads. The
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scheduling of the communication and computation activities for the processors
becomes explicit. The simulation at this level allows cycle-accurate performance
validation and it corresponds to classical hardware/software co-simulation mod-
els with instruction set simulators [110, 134, 140] for the processors and RTL
components or cycle-accurate TLM components for the hardware resources.

In the example illustrated in Fig. 1.9d, the two processor subsystems (CPU1-SS
and CPU2-SS) include ISS for the execution of the software stack corresponding
to CPU1, respectively, CPU2. Each processor subsystem executes a software stack
made of the application tasks code, communication, OS, and HAL layers.

In order to verify the software during the different design steps, different execu-
tion models are used adapted to each software abstraction level. In the rest of the
book, we use Simulink for the initial simulation at system architecture level, while
for all others we use SystemC design language.

1.5 The Concept of Mixed Architecture/Application Model

The following paragraphs give the definition of the mixed architecture/application
model and describe the execution scheme that allows simulating this model in
Simulink, respectively, in SystemC.

1.5.1 Definition of the Mixed Architecture/Application Model

The architecture and application specifications can be combined in a mixed
hardware/software model where the software tasks are mapped on the proces-
sor subsystems. This mixed hardware/software representation can be modeled by
abstracting the processor subsystems and communication topology. The processor
subsystems are substituted by abstract subsystem models, while the communica-
tion is described using an abstract communication platform. The result is a mixed
architecture/application model, named also mixed hardware/software model. The
mixed architecture/application concept allows modeling heterogeneous MPSoC
at different abstraction levels, independent from the description language used
by the designer. The mixed hardware/software model is also called combined
algorithm/architecture model [21].

The combined algorithm/architecture model comprises a set of significant
advantages:

– It captures the behavior of the architecture and the algorithm and the interconnec-
tion between them. This allows to build a correct system, which ensures the good
functionality of the application and the architecture running together.

– It avoids inconsistency and errors and it helps to ensure completeness of the spec-
ifications. The execution of the combined architecture/application model consists
of the realization of a model that behaves in the same way as the global system.
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– It allows validating, simulating, and debugging the system functionality, even
before the implementation of the final hardware architecture.

– It helps to build early performance models of the global hardware/software
architecture and to validate the overall performances.

– It allows the use of several test bench data at input for the global system in order
to verify the functionality. Thus, different functionality scenarios can be tested,
even before the actual implementation of the MPSoC.

– It avoids inconsistency and errors and helps to ensure completeness of the
specifications. The execution of the combined architecture/application model rep-
resents the realization of the model that behaves in the same way as the system.
The following section will give details on the execution model for the mixed
architecture/application description in Simulink and SystemC.

1.5.2 Execution Model for Mixed Architecture/Application Model

The execution of the mixed hardware/software model is performed through a sim-
ulation which allows validation and debug of the system functionality at different
stages of the design process. The execution model allows capturing the behavior
of the application together with the architecture and a detailed hardware–software
interaction. The execution model helps to create early performance models of the
MPSoC and validate the system performances. By using different test benches, the
execution model allows to test different functionality scenarios, even before the final
implementation.

The execution model can be described using different simulation environments,
such as Simulink or SystemC. In the following sections, the execution models
described in Simulink, respectively, SystemC will be presented.

1.5.2.1 Execution Model Described in Simulink

Simulink is an environment for multi-domain simulation and model-based design
for dynamic and embedded systems [94]. It provides an interactive graphical envi-
ronment and a customizable set of block libraries that allows designing, simulating,
implementing, and testing a variety of time-varying systems, including communica-
tions, controls, signal processing, video processing, and image processing, from a
large set of application domains, e.g., automotive, aerospace and defense, commu-
nications and electronics. The supported models of computation include but it is not
limited to discrete events, continuous time domains, discrete time domains, or finite
state machines [89].

Additionally, Simulink provides the capability to model and simulate the mixed
architecture/application representation like a synchronous dataflow model. The
hardware is described in Simulink using the concept of subsystems, ports, and
signals provided by the standard Simulink library (Fig. 1.10).
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The software is described as a set of functions using the standard Simulink blocks
or user-defined functions (Fig. 1.10). The functions are encapsulated into the sub-
systems and may access external signals through the ports of the subsystems. In this
model, the hardware–software interaction is modeled using the concepts of signals
connecting different ports.

The execution model in Simulink supports various simulation options, such as the
simulation’s start and stop time and the type of solver used to solve the model at each
simulation time step. Specifying simulation options is called configuring the model.
Simulink enables to create multiple model configurations, called configuration sets,
modify existing configuration sets, or switch configuration sets.

Once the configuration model that meets the application requirements is defined
or selected, the mixed architecture/application model can be executed. Simulink
runs the simulation from the specified start time to the specified stop time. While
the simulation is running, the system designer can interact with the simulation
in various ways, stop or pause the simulation, and launch simulations of other
models. If an error occurs during the simulation, Simulink halts the simulation
and pops up a diagnostic viewer that helps the user to determine the cause of
error.

Figure 1.11 shows the main steps of the simulation engine in Simulink. The first
step is the initialization. This includes the compilation and link phases. First, the
Simulink engine invokes the model compiler. The model compiler converts the
model to an executable form. In particular, the compiler evaluates the values of
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the all block parameters. Then, it determines the signal attributes for the links not
explicitly specified, e.g., name, data type, numeric type, and dimensionality of the
signal.

The model compiler checks that each block can accept the signals connected to
its inputs. Simulink uses a process called attribute propagation to determine unspec-
ified attributes. This process entails propagating the attributes of a source signal to
the inputs of the blocks that it drives. Then, the model compiler performs block
reduction optimizations and flattens the model hierarchy by replacing the hierarchi-
cal subsystems with the blocks that they contain. It also determines the sorted order
of the blocks, which represent the invocation order of the blocks during the sim-
ulation. Finally, the model compiler determines by propagation the sample times
of all blocks in the model whose sample times are not explicitly specified by the
designer. After the compilation, the Simulink engine allocates memory needed for
signals, states, and run-time parameters. It also allocates and initializes memory for
data structures that store the run-time information for each block. This corresponds
to the link phase. After the memory space allocation, initial values are assigned to
the states and outputs of the model to be simulated. The initialization phase occurs
once at the start of the simulation loop.

After the initialization, during the simulation loop, the Simulink engine succes-
sively stores the inputs, computes, and generates the outputs and states of the system
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at intervals from the simulation start time to the finish time. The successive time
points at which the states and outputs are computed are called time steps. The length
of time between steps is called step size. The step size depends on the type of the
solver. The next simulation step is the sum of the current simulation time and the
step size. When the simulation stop time is reached, the simulation stops.

A solver is a Simulink software component that determines the next time step
that a simulation needs to take to meet target accuracy requirements specified by the
user. Simulink provides an extensive set of solvers, each adept at choosing the next
time step for specific types of applications. There are two types of solvers: fixed step
and variable step. With a fixed-step solver, the step size remains constant through-
out the simulation. By contrast, with a variable-step solver, the step size can vary
from step to step, depending on the model’s dynamics. In particular, a variable-step
solver reduces the step size when a model’s states are changing rapidly to maintain
accuracy and increases the step size when the system’s states are changing slowly
in order to avoid taking unnecessary steps.

In Simulink, the simulation of the application model starts by default at 0.0 s
and ends at 10.0 s. The solver configuration panel allows specifying other start and
stop times for the currently selected simulation configuration. The simulation time
and the actual clock time are not the same. For example, running a simulation for
duration defined in the solver configuration pane of 10 s usually does not take 10 s.
The amount of time it takes to run a simulation depends on many factors, including
the model’s complexity, the solver’s step sizes, and the host computer’s speed.

1.5.2.2 Execution Model Described in SystemC

SystemC is a standard system-level design language based on a C++ class library
used mostly for embedded and SoC applications [118]. Any discrete time system
can be modeled in SystemC. This includes some well-known models of computation
like multi-rate dataflow (static and dynamic), Kahn process networks [72], discrete
events used for hardware RTL (register transfer level) modeling, network modeling
and transaction-based SoC modeling, or communicating sequential processes [89].
Furthermore, the AMS extension of SystemC permits modeling of analog devices.

SystemC is convenient for mixed hardware/software modeling. It provides the
abstraction and constructs needed for high-level hardware modeling and verifi-
cation. Such abstraction, primarily at the transaction level, allows much faster
simulations and analysis and enables design issues to be detected early in the
process. At the same time, the software can be described as C or C++ modules.

The hardware is described in SystemC using the concept of modules, ports, and
channels or signals provided by a C++ extension library, as depicted in Fig. 1.12.

The software is described using the concept of concurrent threads. The threads
are encapsulated into the modules and may access external channels through the
ports of the modules. In this model, the hardware–software interaction is modeled
using the classical concepts of channels or signals.

The execution model in SystemC allows the execution of the threads indepen-
dently using their own execution stacks [118]. These threads or processes can be
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sensitive to events on input or output ports. The sensitivity list of a process may be
defined statically or can change dynamically during the simulation. There are three
types of SystemC processes: SC_THREAD, SC_CTHREAD, and SC_METHOD.
The threads (SC_THREAD) can suspend and resume execution only when they call
the wait() function. The clocked threads (SC_CTHREAD) are special threads which
are sensitive only to clock signals. The methods (SC_METHOD) behave like a non-
preemptable standard procedure written in a high-level programming language. An
SC_METHOD may suspend and resume execution when it gives the control to the
SystemC simulation kernel.

The simulation in SystemC involves execution of the SystemC scheduler which
may execute processes of the application. The SystemC simulation kernel does not
preempt the execution of a thread. The SystemC processes are executed until com-
pletion or until they yield control to the simulation engine. Hence, the SystemC
scheduler is cooperative multi-tasking, as the processes run without interruption up
to the point where it either returns or calls the function wait(). The thread code
between two wait() calls is executed in one simulation clock cycle. Simulation time
can advance only when a wait() statement has been called.

The SystemC processes scheduler is event-driven, meaning that the processes are
executed to the occurrence of events. Events occur or are notified at precise points
in the simulation time. The scheduler can execute a process (a SystemC method or
a SystemC thread) in the following cases:

– In response to the process instance having been made runnable during the
initialization phase of the simulation

– In response to a call function sc_spawn to create processes dynamically during
the simulation

– In response to the occurrence of an event to which the process instance is sensi-
tive. Each process can have static or dynamic sensitivity list. The static sensitivity
list represents the list of events that may cause the process to be resumed or trig-
gered that are fixed before the simulation. The dynamic sensitivity list may change
during the simulation

– In response to a time-out having occurred. A time-out occurs when a given time
interval has elapsed
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The simulation can start only after instantiation and proper connection of all
modules and signals. The simulation starts with calling sc_start() from the top level
that contains sc_main(). The sc_start() accepts as argument the total number of
default time units of the simulation period. If the argument is a negative number, the
system is simulated infinitely.

Similar to VHDL or Verilog, SystemC threads scheduler supports delta cycles.
A delta cycle is comprised of evaluate and update phases, and multiple delta cycles
may occur at a particular simulated time. As illustrated in Fig. 1.13, the SystemC
simulation has the following steps: initialization, evaluation, and update.
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In the initialization step, the SystemC scheduler establishes the initial value for
all signals and makes all the processes active. During the evaluation step, the sched-
uler executes all the processes ready to run in an unspecified order. The order of the
thread execution is non-deterministic within a certain simulation phase. This may
cause events notification to occur which make other processes ready. The active
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processes are executed until a synchronization point, i.e., wait() statement. If new
processes become active, the evaluation will continue until the list of processes
ready for execution becomes empty. The last phase is to update the values of the
output signals and to advance the simulation time to the earliest pending time notifi-
cation. If the simulation time attains the end of simulation time, the simulation will
stop, otherwise it will continue with the evaluation phase.

1.6 Examples of Heterogeneous MPSoC Architectures

In the following paragraphs, examples of heterogeneous MPSoC architectures are
given. These examples will be used as case studies in the next chapters.

The target hardware architecture considered is represented by a heterogeneous
MPSoC architecture. The heterogeneous architecture contains different processor
subsystems and memory or hardware subsystems. The different subsystems are
interconnected via a global communication network such as bus or network on chip
(NoC). A processor subsystem, which executes several tasks, includes one or more
processors, local memories, peripherals, and local buses connecting them. The hard-
ware subsystem has the similar structure with the processor subsystem. It includes
one or more hardware IPs, local memories, local buses, and communication I/Os
such as bus bridge or network interface. A memory subsystem includes a set of
memories such as embedded SDRAMs, flash memories, and external memories and
it is connected to a communication network via communication I/Os.

In this book, the programming environment and the different software generation
and validation steps are illustrated for three examples of heterogeneous MPSoC
architectures, namely, the 1AX, the Diopsis RDT architecture with AMBA bus,
and the Diopsis R2DT architecture with NoC. The main differentiation between
these architectures, as it will be described in the following paragraphs, consists of
the type and number of processors incorporated in the architecture, the type of the
adopted network component (bus or NoC in different topologies), and the different
communication and synchronization schemes provided by the architecture.

1.6.1 1AX with AMBA Bus

The first example of heterogeneous MPSoC represents the 1AX architecture. This
architecture is illustrated in Fig. 1.14.

The 1AX architecture is comprised of two processor subsystems (ARM-SS
and XTENSA-SS) and one global memory subsystem (MEM-SS). The ARM-SS
includes an ARM7 processor [6] used to execute the control functions of the appli-
cation, while the XTENSA-SS contains a configurable Xtensa processor [152]
for processing data-intensive algorithms. The Xtensa processor can be customized
to the target application functions with an automatic instruction set generator



32 1 Embedded Systems Design

Fig. 1.14 1AX MPSoC architecture

called XPRES (Xtensa processor extension synthesis). The different subsystems are
interconnected using an AMBA bus [6].

Each processor subsystem integrates the processor core (ARM7, respectively,
XTENSA), the local memory (Mem), the programmable interrupt controller (PIC),
mailbox for the processors synchronization, local bus, and the bridge to interface
with the AMBA bus.

The interrupt controller handles external interrupts according to priority to cope
with external events (from mailbox) or data arriving from the other components
(hardware FIFO).

The local memories store program code and data. They also serve to store the
buffer used for the communication between the tasks running on the same processor.
The MEM-SS includes a global memory accessible by both processing units and
the bridge for the connection with the AMBA bus. The 1AX architecture contains
also a hardware FIFO (HWFIFO) directly connected to the local buses of the two
processor subsystems. The HWFIFO contains synchronization.

Each processor and hardware subsystem have a memory address space of 4 MB
(megabytes), while the memory subsystem has a memory address space equal to
its memory size. The 1AX architecture contains a global memory of 256 MB.
The processor subsystems have the first 4 MB address space reserved for the
local bus transactions (0×00000000–0×003FFFFF). The memory address space
of a processor subsystem is divided into two parts: 3 MB for local memory
and 1 MB for peripheral memories. Bus transactions with addresses lower than
4 MB (0×00400000) are treated as accesses to local components, while those with
addresses higher than 4 MB are forwarded to the global AMBA bus via the bridge
component of the processor subsystem. The bus bridge receives the forwarded trans-
actions within the address space assigned to its subsystem. The memory address
space for the 1AX architecture is illustrated in Fig. 1.15.

This architecture allows two types of communication schemes between the
processors: using the global memory and using the hardware FIFO.

In the first communication scheme, one processor can deliver data to other
processor through global shared memory and send a synchronization event via a
mailbox between different processors. For example, a data transfer from the ARM
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processor to the XTENSA processor using the global memory has the following
steps: first, the ARM processor checks a bit in its mailbox. If the bit is set to 1,
which means that a space is available in the global memory, the ARM processor
clears the bit to 0, writes data to the global memory, and sets a bit of the mailbox
in the Xtensa processor subsystem to 1, which means that data are available in the
global memory. After checking the bit in the mailbox, the Xtensa processor clears
the bit of its mailbox to 0, reads the data from the global memory, and sets the bit of
the mailbox in the ARM processor subsystem to notify the completion of the read
operation. For this type of communication, the bandwidth of the global interconnect
could become bottleneck of the inter-processor communication. It may also cause
long latency to access the data because of the limitation of the shared bus.

The second possible communication scheme between the two processors is based
on the hardware FIFO. The HWFIFO is a point-to-point communication between
two processor subsystems. Besides the data transfer, the HWFIFO also implements
the synchronization mechanism of the processors. For instance, a data transfer ini-
tiated by the ARM processor using the HWFIFO has the following steps: the ARM
processor copies data from its local memory to the hardware FIFO directly. When
the data number in the FIFO reaches a certain threshold, the Xtensa processor checks
it through interrupt or polling methods. Then, the Xtensa processor copies the data
from the hardware FIFO to its local memory. When the hardware FIFO reaches
empty, the ARM processor checks it through interrupt or polling methods and copies
the data again. The HWFIFO provides a new path to transfer data instead of using
the shared memory and global network. Thus, it can decrease the required band-
width of the global memory and network and speed up the communication. But
compared to the global memory, the HWFIFO increases hardware area because it
needs extra shared memory. It also relies on the processor to transfer data.

1.6.2 Diopsis RDT with AMBA Bus

The second target architecture example is the Shapes MPSoC architecture [121,
141], which is a multi-tile architecture based on a Diopsis tile. Figure 1.16 illustrates
an elementary tile, namely, the RDT (RISC + DSP Tile).

The Diopsis tile is a triple core system integrating an ATMEL mAgicV VLIW
DSP [9], an ARM 9 RISC microcontroller [6], and a distributed network processor
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Fig. 1.16 Diopsis RDT heterogeneous architecture

(DNP), all interconnected through an AMBA bus. The DNP uses 3D next-neighbor
connections for off-chip interconnects and interfaces a NoC to integrate multiple
tiles on a single chip. An appropriate balancing of instruction level parallelism
(ILP), memory size, and frequency provides a sound control of potential wire delay
problems within the individual tiles. The elementary Diopsis tile is also called
D940. The system combines the flexibility of the ARM9 controller with the high
performance of the DSP and the on-chip and off-chip networking capability of
the DNP.

The ARM9 processor represents the ARM926EJ-S type of the ARM9 family of
32 bits general-purpose processors, which offers very low power consumption. The
CPU runs at 200 MHz frequency. This processor is equipped with 16 kB data cache
and 16 kB instruction cache memories. It provides DSP instruction extensions and
it operates 264 mega instructions per second (MIPS) [6]. The processor is outfitted
with a memory management unit.

The DSP processor runs at 100 MHz and delivers 1.2 giga floating-point oper-
ations per second (GFLOPS) and 1.8 giga operations per second (GOPS). It is
equipped with 256 data registers, 64 address registers, 10 independent arithmetic
operating units, 2 independent address generation units, and a DMA engine. To
sustain the internal parallelism, the data bandwidth among the register file, the
operators, and the data memory system amounts to 80 bytes/cycle. The data mem-
ory system is designer to transfer 28 bytes/cycle. For instance, activating all the
computing units, the DSP is able to compute one FFT butterfly per cycle [9].
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The architecture is based on the AMBA bus, more precisely the multi-layer AHB
matrix and the APB [6]. The AHB matrix consists of seven masters and five slaves.

The local memories of the DSP and RISC can be accessed by both processing
units. Additionally, a distributed external memory (DXM) can be used to share data
between all the processors. The data transfer between these processors can follow
different schemes based on an AMBA bus, e.g., the DSP can read/write data to the
local memory of the ARM by using or not a DMA transfer.

This book considers as example of MPSoC architecture a simplified version of
the initial Diopsis tile. The selection of the components from the original archi-
tecture still captures all the possible communication schemes and specific I/O
components. The subset is shown in Fig. 1.17.
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Fig. 1.17 Target Diopsis-based architecture

The reduced Diopsis tile contains two software subsystems: the ARM and the
DSP software subsystems. The ARM subsystem includes the processor core and
local memories: SRAM for data and ROM for program code. The DSP subsystem
includes the DSP core, data memory (DMEM), program memory (PMEM), con-
trol and data registers (REG), direct memory access engine (DMA), programmable
interrupt controller (PIC), and the mailbox as synchronization component for the
communication between the two processors. The interrupt controller handles the
external interrupts according to their priorities. The timer has the highest priority
of all the interrupt sources for both processors. All the communication devices are
assumed to generate an interrupt when new data become available.

Apart from the software subsystems, the architecture contains two hardware
subsystems as well. The hardware nodes consist of distributed external memory
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subsystem (DXM) and peripherals on tile (POT) subsystem. The distributed exter-
nal memory subsystem includes a global memory shared by the processors. The
POT includes not only the system peripherals of the RISC processor, e.g., timer,
advanced interrupt controller (AIC), but also the I/O components of the tile such as
the serial peripheral interface (SPI).

The interconnection between these software and hardware subsystems is made
via the AMBA bus. Hence, all the subsystems contain a bridge component to inter-
face with the AMBA bus and a local bus for the local components interconnection.
The AMBA bus supports burst mode transmissions in order to allow continuously
data transfer through the bus after its initialization.

For performance reasons, the ARM processor can access directly the data mem-
ory and control/status registers of the DSP processor via the AMBA slave interface
of the DSP subsystem. In the same way, the DSP core can read/write directly on
the local memory of the RISC processor by initiating a DMA transfer. Moreover,
the processors can store and load data to/from DXM connected to the AMBA
bus. Therefore, this architecture allows different kinds of communication mapping
schemes between the processors characterized by different performances.

1.6.3 Diopsis R2DT with NoC

The third target architecture considered in this book represents the Diopsis R2DT
(RISC + 2 DSP) tile. This heterogeneous architecture is an extension of the
previously presented RDT tile. Figure 1.18 shows the Diopsis R2DT tile.

Hermes NoC

ARM9 SS

SRAM

POT SS
NI

AIC SPI

Timer mailbox

ARM9
NI 

MEM SS

NI

DXM

ROM

REG1 DMEM1

DSP1 SS
NI DMA

MailboxPIC

DSP1

PMEM

REG2 DMEM2

DSP2 SS
NI DMA

MailboxPIC

DSP2

PMEM

Fig. 1.18 Diopsis R2DT with Hermes NoC

It contains three software subsystems: one ARM9 RISC processor subsystem
and two ATMEL magicV VLIW DSP processing subsystems. Similarly with the
RDT tile, the hardware nodes represent the global external memory (DXM) and
POT (peripherals on tile) subsystem. The POT subsystem contains the peripherals
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of the ARM9 processor and the I/O peripherals of the tile. All the three processors
may access the local memories of the other processors and the distributed external
memory (DXM).

In this architecture, the different subsystems are interconnected using the Hermes
network on chip (NoC) [107]. The bridges required for the data transfer through
the AMBA bus of the RDT architecture are replaced with network interface (NI)
components. In the same manner, the DMA engines of the DSP subsystems provide
interfaces to the NoC instead of the AMBA AHB interface.

The NoC represents an on-chip packet-switched micro-network of interconnects.
It is constructed from multiple point-to-point data links interconnected by switches
(routers), such that data messages can be relayed from any source module to any des-
tination module over several links, by making routing decisions at the switches. As
the NoC can operate simultaneously on different data packets, it allows several data
transfers in parallel through the network. Therefore, it overcomes the limitations
offered by a bus in terms of bandwidth and scalability [16].

The basic components of a NoC are the switches, network interfaces, and the
links between them [17]. The data delivered through the NoC from the source mod-
ule to the destination module are divided into packets. A packet represents the basic
unit for routing and sequencing. Packets are often composed by a header, a payload,
and a tailor.

To ensure correct functionality during the message transfers, a NoC must avoid
deadlock, livelock, and starvation. The deadlock means the situation when a packet
does not reach its destination because it is blocked at some intermediate router.
Usually, deadlock happens in case of a cyclic dependency among the routers requir-
ing access to a set of resources so that no forward progress can be made, no matter
what sequence of events happens. Livelock means the situation when a packet does
not reach the destination because it enters in a cyclic graph. This situation can be
avoided with adaptive routing strategies. Starvation means when a packet does not
reach its destination because some resource does not grant access, while it grants
access to other resources. An example of this kind of situation is when a packet
in a buffer requests the output channel, but it remains blocked because the output
channel is always allocated to another packet.

Depending on the switching strategy, the packets may be divided into flits. A flit
(flow control digit) is the basic unit of bandwidth and storage allocation. Flits do
not have any routing or sequence information and have to follow the router for the
whole packet.

There are several factors that may influence the performances of a NoC [128],
such as the following:

– Topology. The topology represents the static arrangement of the routers and the
channels between them. A good topology allows fulfilling the requirements of
the traffic at reasonable cost. According to the topology, NoCs can be classi-
fied into static and dynamic networks. In static networks, each router has fixed
point-to-point connections to other routers. Examples of static topologies are
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the ring, butterfly, tree, torus, and mesh topologies. Dynamic networks employ
communication channels that can be configured at application runtime.

– Routing techniques. The routing algorithm performs the selection of a path
through the network. For instance, the XY routing algorithm supposes to route
the flit first on the horizontal direction (X) and then, when it reaches the column
where the destination module is located, it is routed in a vertical direction (Y).
The XY routing algorithm is minimal path routing algorithm and is free of dead-
lock [8]. The YX routing algorithm is similar to the XY, but reverses the order of
vertical and horizontal routing. Another type of routing technique is the west-first
algorithm.

– Communication mechanism. The communication mechanism specifies how mes-
sages pass through the network. Two methods of transferring messages are circuit
switching and packet switching. In circuit switching, a path named connection is
established before the packets can be sent by the allocation of sequence of chan-
nels between the source and its destination. In packet switching, the packets are
transmitted without any need for connection establishment procedures.

– Switching strategy. The switching strategy characterizes the packet switching
communication mechanism [132]. It specifies how the packets are forwarded by
the routers during the transmission. The most well-known switching strategies
are store and forward, virtual cut-through, and wormhole [17]. In the store-and-
forward switching strategy, a switch cannot forward a packet until it has been
completely received. In virtual cut-through mode, a switch can forward the packet
as soon as the next switch gives the guarantee that a packet will be accepted com-
pletely [131]. The wormhole switching mode is a variant of the virtual cut-through
mode. A packet is transmitted between the switches in units called flits. In the
wormhole transmission scheme, the router can start forwarding the first flit of
a packet without waiting for the tail [106]. Another type of switching strategy
represents the small frame switching.

– Flow control. The flow control means how are the network resources allocated, if
packets traverse the network.

– Router architecture. This defines the properties of the switches and the buffers of
the switches, such as buffer size, buffer dimension, number of buffers.

– Traffic pattern. The traffic pattern defines the dataflows between every pair of
modules connected to NoC.

The Hermes NoC supports two types of topologies: mesh and torus. In the mesh
topology, the NoC employs a 2D arrangement with nine routers (3×3). The routers
may have from three to five ports, depending on the router position relative to the
limits of the mesh. The mesh NoC uses a pure XY routing algorithm shared by all
the ports, a round-robin scheduler to arbitrate the simultaneous packet transmission
requests, and wormhole packet switching strategy.

In the torus NoC model, every router has five bidirectional ports to implement
a 3×3 2D torus topology with wraparound links at the edges of the network.
The routing algorithm is a deadlock free version of the well-known non-minimal
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west-first algorithm proposed in [60]. The arbitration and switching strategies are
those that characterize the mesh topology as well.

Figure 1.19 illustrates the Hermes NoC in both topologies, torus and mesh.

Fig. 1.19 Hermes NoC

1.7 Examples of Multimedia Applications

In the following paragraphs, three examples of applications are given. These exam-
ples represent the target applications that will run on the architecture examples
previously described, considered as case studies in the remaining part of this book.

The target application domain represents the multimedia applications domain.
This kind of application can be found in many areas, such as entertainment, engi-
neering, advertisements, medicine, scientific research, spatial–temporal applications
(visual thinking, visual/spatial learning). Multimedia applications are based on
information processing and compression, e.g., text, audio, graphics, animation,
video, interactivity. Multimedia compression methods are lossy, meaning that the
decompressed signal is different from the original signal. Compression algorithms
make use of perceptual coding techniques that try to throw away data that are
less perceptible to the human eye and ear. These algorithms also combine lossless
compression with perceptual coding to efficiently code the signal.

Examples of multimedia applications are video compression standards. Mainly,
there are two series of standards: the MPEG (e.g., MPEG2 and MPEG4) and H.26×
(e.g., H.263) series. The MPEG was developed primarily for broadcast applications,
while the H.26× for symmetric applications, where both sides must encode and
decode, such as videoconferencing. The two groups were recently completed a stan-
dard which covers both types of applications, namely, the H.264 or advanced video
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codec, shortly AVC. The H.264 will be presented in detail later in this book. Other
examples of multimedia applications are the JPEG 2000 and motion JPEG for image
compression and decompression, or the MPEG 1 audio (layer 3) for audio encoding
and decoding, also known as MP3.

As they will be described in the next sections, this book considers the following
target applications:

– The token ring application, a simpler example used to illustrate the concepts and
methodology and targeted to be executed on the 1AX MPSoC architecture

– The motion JPEG decoder for image processing that will be mapped and executed
on the Diopsis RDT architecture

– The H.264 encoder application for video processing, which will be running on the
Diopsis R2DT architecture with different NoC topologies

The following paragraphs describe these three application examples (token ring,
motion JPEG, and H.264).

1.7.1 Token Ring Functional Specification

The first target application is the token ring application. The application is com-
prised of three nodes that exchange a token. The nodes are connected in the form
of a ring. When a node receives the token, it checks if the node is the destination of
the token by comparing the node’s identifier with the token’s value. In this case, the
node performs some computations. Otherwise, it forward the token to the next node.
The functional specification of the token ring application is illustrated in Fig. 1.20.

If the token is designed to the first node, the node increments the token value with
two units. The second node increments the token value with one unit. Finally, the
third token multiplexes the value of the token and computes a DFT (discrete Fourier

If token  Є N1 Token+ = 2z Token+ = 1

Mux TokenDFTSumIf sum<
1.000.000

STOP

If token Є N2 If token Є N3
yes yes

yes

yes

no no no

no

Fig. 1.20 Token ring functional specification
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transform) function. The multiplexed value of the token represents the input for the
DFT computation.

The DFT, occasionally called the finite Fourier transform, is a transform for
Fourier analysis of finite-domain discrete time signals. It expresses an input func-
tion in terms of a sum of sinusoidal components by determining the amplitude and
phase of each component.

However, the DFT is distinguished by the fact that its input function is discrete
and finite: the input to the DFT is a finite sequence of real numbers, which makes the
DFT ideal for processing information stored in computers. In particular, the DFT is
widely employed in signal processing and related fields to analyze the frequencies
contained in a sampled signal, to solve partial differential equations, and to perform
other operations such as convolutions. The DFT can be computed efficiently in prac-
tice using a fast Fourier transform (FFT) algorithm [39]. The formula of the DFT
computation is given below:

Xk =
N−1∑

n=0

xne−((2π i)/N)kn, k = 0, . . . ,N − 1

where x0, . . ., xN–1 is transformed into the sequence of N complex numbers X0,
. . ., XN–1 during the DFT computation; e is the base of natural logarithm; i is the
imaginary unit (i2 = –1); and π is pi.

After the DFT computation, the generated coefficients are summed and assigned
as new value to the token. The iteration process will stop when the resulted sum is
bigger than 1,000,000. Otherwise, the new value of the token is transmitted to the
first node forming a loop.

1.7.2 Motion JPEG Decoder Functional Specification

The motion JPEG decoder application represents an image processing multimedia
application. In this book, the baseline motion JPEG decoder is used as target appli-
cation example, which represents the basic JPEG decoding process supported by all
the JPEG decoders [169]. JPEG is named from its designer, the Joint Photographic
Expert Group.

The JPEG compression algorithm splits the input image on blocks of 8×8 pixels,
as shown in Fig. 1.21.

The two major techniques used by JPEG encoder are the discrete cosine trans-
form (DCT) plus quantization, which performs perceptual coding, plus Huffman
coding, also called variable length coding as a form of entropy coding for lossless
encoding.

The DCT is a frequency transform, whose coefficients describe the spatial fre-
quency content of an image. The DCT operates on 2D set of pixels, in contrast with
the Fourier transform which operates on a 1D signal. The JPEG algorithm performs
the DCT on 8×8 blocks of pixels. The DCT coefficients can be arranged in an 8×8
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8 x 8 pixel block

Fig. 1.21 Splitting images in
8×8 pixel blocks

matrix. The top left is known as DC coefficient, since it describes the lowest res-
olution component of the image. The other elements of the matrix are named as
AC coefficients. The DCT coefficients are quantized to change the high-order AC
coefficients to zero, thus allowing efficient compression. Then, the quantified DCT
matrix is traversed in a zigzag pattern, as shown in Fig. 1.22, to create long strings
of zero values that can be efficiently Huffman encoded.

Fig. 1.22 Zigzag scan

The JPEG decoder performs the exact opposite process of the encoder. A sim-
plified view of the JPEG decoder is illustrated in Fig. 1.23. The JPEG decoder
performs the decompression of an encoded JPEG bitstream (01011. . .) and renders
the decoded images on a screen.

The main functions of the motion JPEG decoder algorithm are described as
follows:

Variable
Length 
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Fig. 1.23 Motion JPEG decoder
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– VLD (variable length decoder). The VLD represents the Huffman entropy
decoder. The input binary sequence of the compressed image is converted to a
symbol sequence using Huffman tables. This represents the opposite step of the
VLC (variable length coder) step of the JPEG encoder, when variable length codes
are assigned to the symbols created from the DCT coefficients. The decoder can
store only two sets of Huffman tables: one AC table and one DC table per set.

– DPCD (differential pulse code demodulation). The DPCD represents the oppo-
site process of the DPCM (differential pulse code modulation) part of the JPEG
encoder, which is applied on the DC coefficient. The DC coefficient represents
the coefficient with zero frequencies in both dimensions of the DCT coefficients
matrix, located at the left-top corner [0, 0]. The DPCD is in charge with the
reconstruction of the DC coefficient.

– RLD (run length decoding). The RLD is the opposite step of the RLC (run length
coding) of the compression algorithm, which is applied on the AC coefficients
(the 63 DCT coefficients which are different from the DC coefficient). The AC
coefficients are treated separately from the DC coefficient. The RLD supposes
to reconstruct the sequence of the AC coefficients from the sequence of sym-
bols by inserting the zero-valued AC coefficients before the non-zero-valued AC
coefficients in the coefficients sequence.

– Zigzag Scan. This step puts back the 64 DCT coefficients in the form of a matrix
with 8×8 dimensions. The input of this step is an array of 64 elements in zigzag
order and its output is an 8×8 matrix in original order.

– IQ (inverse quantization). The IQ is applied upon the 64 DCT coefficients using
quantification tables. This step consists of the multiplication of each of the 64
coefficients by its corresponding quanta step size. The quanta steps are stored in
the quantification tables.

– IDCT (inverse discrete cosine transform). This step transforms the 64 DCT coeffi-
cients (the 8×8 block) from frequency domain to spatial domain and reconstructs
the 64-point output image signal by summing the basis signals.

1.7.3 H.264 Encoder Functional Specification

The H.264 encoder application represents the third application example used as
case study. This application is a video-processing multimedia application. It rep-
resents a standard for video compression also known as MPEG-4 part 10 or AVC
(advanced video coding). The H.264 supports coding and decoding of 4:2:0 YUV
video formats.

The input image frame (Fn) of a video sequence is processed in units of a mac-
roblock, each consisting of 16 pixels. A pixel consists of three color components:
R (red), G (green), and B (blue). Usually, pixel data are converted from RGB to YUV
color space, where Y represents the luma, and U and V the chroma samples. The
widely used RGB–YUV conversion equations are the following [130]:
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⎧
⎨

⎩

Y = 0.299 × R + 0.587 × G + 0.114 × B
U = 0.564 × (B − Y)
V = 0.713 × (R − Y)

⎧
⎨

⎩

R = Y + 1.402 × V
G = Y − 0.344 × U − 0.714 × V
B = Y + 1.772 × U

A macroblock contains 16×16=256 Y luma samples and 8×8=64 U and
8×8=64 V chroma components (Fig. 1.24). Each of these components is processed
separately. There are three types of macroblocks: I, P, and B. The macroblocks are
numbered in raster scan order within a frame. A set of macroblocks is called slice. A
video picture is coded as one or more slices. The I slice contains only I macroblocks.
The P slice contains P macroblocks and/or I macroblocks. The B slice contains B
macroblocks and/or I macroblocks [130].
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Fig. 1.24 Macroblock
(4:2:0)

To encode a macroblock, there are three main steps: prediction, transformation
with quantization, and entropy encoding. These main functions of the standard
H.264/AVC (advanced video coding) are illustrated in Fig. 1.25 [130].

The H.264 encoder and decoder maintain two lists of reference pictures (list 0
and list 1), which represent sets of numbers corresponding to the reference pictures
and containing the frames that are previously encoded and decoded.
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Fig. 1.25 H.264 encoder algorithm main profile
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The prediction step tries to find a reference macroblock which is similar to
the current macroblock to be encoded. Depending on where the reference mac-
roblock comes from, there are two types of prediction: intra- and inter-mode. The
I macroblocks are predicted using intra-prediction from the decoded samples in
the current slice. A prediction is formed either for the complete macroblock or for
each 4×4 block luma and associated chroma samples. The P macroblocks are pre-
dicted using inter-prediction from the reference frames. Each P macroblock can be
predicted from one frame in list 0. The B macroblocks are predicted using inter-
prediction from one or two reference frames, one from list 0 and/or one frame from
list 1.

The first frame from the movie is always encoded using intra-mode (because
there are no previous frames to be considered as reference frames) [22]. Then, dur-
ing the movie, several other slices/frames can be encoded in intra-mode. The interval
between two consecutive frames encoded in intra-mode is called key frame. In
intra-mode or I-mode, the macroblocks are predicted using the previously encoded,
reconstructed, and unfiltered macroblocks. In this case, the reference macroblock is
usually calculated with mathematical functions of neighboring pixels of the current
macroblock.

In the inter (P or B)-mode the macroblocks are predicted from a reference picture
(F′n–1) by motion estimation (ME) and motion compensation (MC). This involves
finding a 16×16 sample region in the reference frame that closely matches the cur-
rent macroblock. The reference picture maybe chosen from a selection of past or
future (display order) pictures that have been already encoded, reconstructed, and
filtered. The ME involves finding a 16×16 sample region in the reference frame that
closely matches the current macroblock. A popular matching criterion is to measure
the sum of absolute difference (SAD) between the current block and the candidate
block and to find its minimal value [37]. The formula for the SAD computation is
shown below, where C is the current macroblock that is searched in the reference
frame and P is the macroblock in the reference frame that is compared with the
current one:

SAD =
x<16,y<16∑

x=0,y=0

|C[i,j] − P[i,j]|

During the motion estimation, the SAD values are computed for multiple coordi-
nate positions (Fig. 1.26). The bigger is the SAD value, the bigger is the difference
between the current macroblock and the compared macroblock from the previ-
ous frame. The macroblock from the reference picture which implies the smallest
SAD value is considered as the best matching macroblock. The motion estimation
computes the motion vectors for the current macroblock compared with the best
matching region from the reference picture. Thus, during the motion compensation,
the predicted macroblock is constructed.

After the prediction, the resulted macroblock is subtracted from the initial block
to produce a residual (difference) block. Then, the residual block is transformed
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Current Frame Previous Frame

Search AreaCurrent Macroblock

Fig. 1.26 Motion estimation

(T) and quantized (Q) to give a set of quantized transform coefficients, which are
reordered (reorder) and finally entropy encoded (CABAC in Fig. 1.25).

The H.264 uses two types of transforms (T): Hadamard and DCT transforms,
depending on the residual data that are to be encoded. The DCT operates on X, a
block of N×N samples, typically the residual values after prediction. The equation
for the DCT computation is the following:

Y = AXAT

where X is the matrix of samples, Y is the matrix of resulting coefficients, and A is
an N×N transform matrix. The elements of the matrix A are

Aij = Ci cos
(2j + 1)iπ

2 N
,

where

Ci =
√

1

N
(i = 0), Ci =

√
2

N
(i > 0)

The H.264 supports DCT on 4×4 block thus the value of N is 4. After, the trans-
formation, a quantizer step is used for the division of the DCT coefficients. The
quantizer step size can be different for the luma and chroma components and it is
indexed by a quantizer parameter with values in range 0–51. After the quantization,
the next step is the reordering, when each 4×4 block of quantized transform coef-
ficients is mapped to a 16-element array in a zigzag order. Afterward, this element
array is entropy encoded.

There are two types of entropy encoder: CAVLC (context adaptive variable
length coder) and CABAC (context adaptive binary arithmetic coding). CAVLC is
the method used to encode residual, zigzag-ordered 4×4 and 2×2 blocks of the
transform coefficients. It takes advantage of the sparse nature of the blocks after
the prediction, transformation, and quantization, containing mostly zero values.
CAVLC uses run-level coding to compactly represent strings of zeros. CABAC is
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the second method for entropy encoding, which achieves good performance through
(i) selecting probability models for each syntax element according to the element’s
context, (ii) adapting probability estimates based on local statistics, and (iii) using
arithmetic coding.

The entropy-encoded coefficients together with the information required to
decode each macroblock (prediction modes, quantizer parameters, motion vector
information, etc.) form the compressed bitstream. This compressed bitstream is
passed to a network abstraction layer (NAL) for transmission or storage of the
encoded image.

During the encoding process, the H.264 algorithm decodes (reconstructs) the
macroblock to provide a reference for further predictions. The quantized transform
coefficients are scaled (Q–1) and inverse transformed (T–1) to produce a difference
block. The equation of the IDCT (inverse discrete cosine transform) is the following:

X = ATYA

where A is the same transform matrix used in DCT computation and Y is the matrix
of the DCT coefficients.

After this step, the obtained difference block is added to the predicted mac-
roblock to create the reconstructed block. Then, a filter is applied to reduce the
effects of blocking distortion. The filter smoothes block edges, improving the
appearance of the decoded frame. The filtered macroblocks are used for motion-
compensated prediction of further frames in the encoder, resulting in a smaller
residual after prediction. After that, the reconstructed reference picture is created
from a series of blocks.

The H.264 standard supports seven sets of capabilities, which are referred as
profiles, targeting specific class of applications. The most used profiles for MPSoC
implementation are the baseline, main profile, and extended profile. Potential appli-
cations of the baseline profile include video-telephony, videoconferencing, and
wireless communications. Potential applications of the main profile include tele-
vision broadcasting and video storage. The extended profile may be particularly
useful for streaming media applications.

In this book, the main profile will be used as application case study. The main
profile includes support for interlaced video, which means that not the entire image
is compressed, but only every second line, i.e., the odd lines of the first image and the
even lines of the second image. The main profile supports both methods of entropy
coding: CAVLC and CABAC. It also permits inter-prediction with the use of two
reference picture lists, characteristic to the B type of slices.

1.8 Conclusions

Recently, the SoC architectures have been moved from single processing core
based architectures to multiple-processor embedded systems. Moreover, processors’
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heterogeneity became adopted in the multimedia processing domain, where differ-
ent application functions have different execution requirements.

This chapter defined the main steps and concepts used in programming this kind
of application-specific heterogeneous MPSoC architectures. Some of the fundamen-
tal concepts defined were MPSoC, hardware–software interface representation at
different abstraction levels, the concept of combined application/architecture model,
the execution model of the mixed hardware/software representation using different
design languages, etc.

Programming MPSoC represents a gradual software design process performed
in several steps corresponding to different abstraction levels (system architecture,
virtual architecture, transaction-accurate architecture, and virtual prototype). An
efficient software code requires taking into consideration the characteristics of
the architecture to achieve performance. These steps are application partitioning
and mapping on the target architecture, corresponding to the system architecture
design, communication mapping on the hardware resources, equivalent to the vir-
tual architecture design, software code adaptation to specific implementation of the
communication protocol, also called transaction-accurate architecture design, and
final binary generation and memory map decision, corresponding to the virtual pro-
totype design. The software validation is performed by simulation using an abstract
architecture model. The execution model is expressed in Simulink and SystemC
design languages.

The chapter also gave the specification of three applications from the multimedia
domain, namely, the token ring, the motion JPEG decoder, and the H.264 encoder
that will be used as case studies in the remaining part of the book. The applications
are aimed to run on three different heterogeneous and complex MPSoC architec-
tures. These architectures are the following: the 1AX architecture, made of two
processors (ARM7 and Xtensa), the Diopsis RDT tile made of one DSP and one
ARM9 microcontroller, and the Diopsis R2DT SoC, made of two DSPs and one
ARM9 interconnect by a NoC.

The following chapters will define the basic components of the MPSoC hard-
ware and software architecture. Then, each chapter of the book will detail the
software design and validation at each of the adopted MPSoC abstraction lev-
els (system architecture, virtual architecture, transaction-accurate architecture, and
virtual prototype).



Chapter 2
Basics

Abstract This chapter presents the basic components of the MPSoC hardware and
software architecture. The MPSoC hardware architecture is made of several inter-
connected hardware and software subsystems. Each software subsystem executes
a specific software stack. The software stack has a layered organization composed
of application tasks, operating system, communication, and hardware abstraction
layer. This chapter gives the definition of these different hardware and software
components of MPSoC.

2.1 The MPSoC Architecture

System–on–Chip (SoC) represents the integration of different computing elements
and/or other electronic subsystems into a single integrated circuit (chip). It may
contain digital, analog, mixed-signal, and often radio-frequency functions – all on
one chip.

Multi-processor System–on–Chip (MPSoC) are SoC that may contain one or
more types of computing subsystems, memories, input/output devices (I/O), and
other peripherals. These systems range from portable devices such as MP3 players,
videogame consoles, digital cameras, or mobile phones to large stationary instal-
lations like traffic lights, factory controllers, engine controllers for automobiles, or
digital set-top boxes.

The MPSoC architecture is made of three types of components: software sub-
systems, hardware subsystems, and inter-subsystem communication, as illustrated
in Fig. 2.1.

The hardware subsystems (HW-SS) represent custom hardware subsystems that
implement specific functionality of an application or global memory subsystems.
The HW-SS contain two types of components: intra-subsystem communication
and specific hardware components. The hardware components implement specific
functions of the target application or represent global memories accessible by the
computing subsystems. The intra-subsystem communication represents the com-
munication inside the HW-SS between the different hardware components. This can

49K. Popovici et al., Embedded Software Design and Programming of Multiprocessor
System-on-Chip, Embedded Systems, DOI 10.1007/978-1-4419-5567-8_2,
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Fig. 2.1 MPSoC architecture

be in form of a small bus (collection of parallel wires for transmitting address, data,
and control signals) or point-to-point communication links.

The software subsystems (SW-SS) represent programmable subsystems, also
called processor nodes of the architecture. The SW-SS include computing resources,
intra-subsystem communication, and other hardware components, such as local
memories, I/O components, or hardware accelerators. The computing resources
represent the processing units or CPUs. The CPU (central processing unit) also
known as processor core, processing element, or shortly processor executes pro-
grams stored in the memory by fetching their instructions, examining them, and then
executing them one after another [150]. There are two types of SW-SS: single core
and multi-core. The single-core SW-SS includes a single processor, while the multi-
core SW-SS can integrate several processor cores in the same subsystem, usually
of same type. The intra-subsystem communication represents the communication
inside the SW-SS, e.g., local bus, hardware FIFO, point-to-point communication
links, or other local interconnection network used to interconnect the different
hardware components inside the SW-SS.

The inter-subsystem communication represents the communication architecture
between the different software and hardware subsystems. This can be a hardware
FIFO connecting multiple subsystems or a scalable global interconnection network,
such as bus or network on chip (NoC). Despite most of the buses, the NoC allows
simultaneous data transfers, being composed of several links and switches that pro-
vide means to route the information from the source node to the destination node
[42].

Homogeneous MPSoC architectures are made of identical software subsystems
incorporating the same type of processors. In the heterogeneous MPSoC architec-
tures, different types of processors are integrated on the same chip, resulting in
different types of software subsystems. These can be GPP (general-purpose pro-
cessor) subsystems for control operations of the application; DSP (digital signal
processor) subsystems specially tailored for data-intensive applications such as
signal processing applications; or ASIP (application-specific instruction set proces-
sor) subsystems with a configurable instruction set to fit specific functions of the
application.

The different subsystems working in parallel on different parts of the same appli-
cation must communicate each other to exchange information. There are two distinct
MPSoC designs that have been proposed and implemented for the communication
models between the subsystems: shared memory and message passing [42].
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The shared memory communication model characterizes the homogeneous
MPSoC architecture. The key property of this class is that communication occurs
implicitly. The communication between the different CPUs is made through a global
shared memory. Any CPU can read or write a word of memory by just execut-
ing LOAD and STORE instructions. Besides the common memory, each processor
code may have some local memory which can be used for program code and those
items that need not be shared. In this case, the MPSoC architecture executes a
multithreaded application organized as a single software stack.

The message-passing organization assumes multiple software stacks running on
identical or non-identical software subsystems. The communication between dif-
ferent subsystems is generally made through message passing. The key property
of this class is that the communication between the different processors is explicit
through I/O operations. The CPUs communicate by sending each other message
by using primitives such as send and receive. There are three types of message
passing: synchronous (if the sender executes a send operation and the receiver has
not yet executed a receive, the sender is blocked until the receiver executes the
receive), buffered or asynchronous blocking (when a message is sent before the
receiver is ready, the message is buffered somewhere, for example, in a mailbox,
until the receiver takes it out; thus the sender can continue after a send opera-
tion, if the receiver is busy with something else), and asynchronous non-blocking
(the sender may continue immediately after making the communication call)
[150].

Heterogeneous MPSoC generally combines both models to integrate a massive
number of processors on a single chip [122]. Future heterogeneous MPSoC will be
made of few heterogeneous subsystems where each may include a massive number
of the same processor to run a specific software stack [87].

This book considers heterogeneous MPSoC architectures organized as it was
illustrated previously in Fig. 2.1 with the support of message-passing communi-
cation model.

Besides the hardware architecture previously presented, the MPSoC means also
software running on hardware. The major challenge for technical success of MPSoC
is to make sure that the software executes efficiently on the hardware [18].

2.2 Programming Models for MPSoC

Several tools exist for automatic mapping of sequential programs on homogeneous
multiprocessor architectures. Unfortunately, these are not efficient for heteroge-
neous MPSoC architectures. In order to allow the design of distributed applications,
programming models have been introduced and extensively studied by the software
communities to allow high-level programming of heterogeneous multiprocessor
architectures.

The programming model specifies how parts of the application running in parallel
communicate information to one another and what synchronization operations are
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available to coordinate their activities. Applications are written in a programming
model. The programming model specifies what data can be named by the different
parallel processes, what type of operations can be executed on the named data, and
what ordering exists between the different operations [42].

Examples of parallel programming models are as follows:

– Shared address space, when the communication is performed by posting data into
shared memory locations, accessible by all the communicating processing ele-
ments. This programming model also involves special atomic operations for the
synchronization and data protection.

– Data-parallel programming, when several processing units perform the same oper-
ations simultaneously, but on separate parts of the same data set. The data set has
a regular structure, i.e., array or matrix. At the end of the operations, the processes
exchange synchronization information globally, before continuing the operations
with a new data set.

– Message passing, when the communication is performed between a specific
sender and a specific receiver. This involves a well-defined event when the data
is sent or received, and these events are the basis for orchestrating the individ-
ual activities. Anyhow, there are no shared locations accessible to all processing
elements. The most common communication primitives used in message-passing
programming model are variants of send and receive. In its simplest form, send
specifies a local data buffer that is to be transmitted and a receiving process (typi-
cally a remote processor). The receive operation specifies a sending process and a
local data buffer into which the transmitted data will be placed. The message pass-
ing can be further divided into two communication-centric programming models:
client–server and streaming.

In the basic client–server model, the communicating processes are divided into
two (possibly overlapping) groups. A server is a process implementing a specific
service, for example, a file system service. A client is a process that requests a ser-
vice from a server by sending it a request and subsequently waiting for the server’s
reply. This client–server interaction, also known as request–reply behavior is shown
in Fig. 2.2. When a client requests a service, it simply packages a message for the
server, identifying the service it wants, along with the necessary input data. The
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message is then sent to the server. The latter, in turn, will always wait for an incom-
ing request, subsequently process it, and package the results in a reply message that
is then sent to the client.

Common object request broker architecture (CORBA) is a well-known spec-
ification for distributed systems which adopts an object-based approach for the
communication, based on client–server model [116]. All communication takes place
by invoking an object. An object provides services, and it combines functional inter-
face as well as data. An object request broker (ORB) connects a client to an object
that provides a service. Each object instance has a unique object reference. The
client and the object do not need to reside on the same processor; a request to a
remote processor can invoke multiple ORBs. The object logically appears to be a
single entity, but the server may keep a thread pool running to implement object
calls for a variety of clients. Because the client and the object use the same protocol,
the object can provide a consistent service independent of the processing element
on which it is implemented.

Streaming is a form of communication in which timing plays a crucial role [10].
The support for the exchange of time-dependent information is often formulated as a
support for continuous media or stream, e.g., support for reproducing a sound wave
by playing out an audio stream at a well specified rate, or displaying a certain num-
ber of images per second for a movie. Streams can be simple or complex. A simple
stream consists of only a single sequence of data, whereas a complex stream consists
of several related simple streams, called substreams. For example, stereo audio can
be transmitted by means of a complex stream consisting of two substreams, each
used for a single audio channel. It is important, however, that those two substreams
are continuously synchronized. Another example of a complex stream is one for
transmitting a movie. Such a stream could consist of a single video stream, along
with two streams for transmitting the sound of the movie in stereo. The transmission
of these data streams can be effectuated in the following:

– Asynchronous mode, when the data items in a stream are transmitted one after the
other, but there are no further timing constraints when transmission of these items
should take place.

– Synchronous mode, when there is a maximum end-to-end delay defined for each
data unit of the stream. In this case, the time required for the data transmission
has to be guaranteed to be lower than the maximum permitted delay.

– Isochronous mode, when there is a maximum and minimum end-to-end delay
for each data unit of the stream. The end-to-end delays are usually expressed as
quality of service (QoS) requirements.

The QoS ensures that the temporal relationship between the streams is preserved.
There are several ways to enforce QoS for streaming applications, e.g., by data drop-
ping if the communication network gets congested, or by applying error correction
techniques, e.g., encoding the outgoing data units in such a way that any k out of n
received data units is enough to reconstruct k correct data units.
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StreamIt is an example of programming model for streaming systems [153]. The
StreamIt language has mainly two goals: to provide high-level stream abstractions
that improve programmer productivity and program robustness within the streaming
domain and, second, to serve as a common machine language for grid-based pro-
cessors. At the same time, the StreamIt compiler aims to perform stream-specific
optimizations to achieve high performance.

2.2.1 Programming Models Used in Software

The programming model is usually embodied in a parallel language or a program-
ming environment [42].

As long as only the software is concerned, Skillicorn [145] identifies five key
concepts that may be hidden by the programming model, namely, concurrency or
parallelism of the software, decomposition of the software into parallel threads,
mapping of threads to processors, communication among threads, and synchroniza-
tion among threads. These concepts define six different abstraction levels for the
programming models.

Table 2.1 summarizes the different levels with typical corresponding program-
ming languages for each of them. All these programming models take into account
only the software side. They assume the existence of lower levels of software and a
hardware platform able to execute the corresponding model.

The programming models are presented in decreasing order of abstraction in the
following six categories:

– Programming models that abstract the parallelism completely. Such programming
models describe only the purpose of an application and not how it is to achieve
this purpose. Software designers do not need to know even if the application will
execute in parallel. Such programming levels are abstract and relatively simple,
since the applications need to be no more complex than sequential ones.

Table 2.1 The six programming levels defined by Skillicorn

Abstraction level Typical languages Explicit concepts

Implicit concurrency PPP, crystal None
Parallel level Concurrent prolog Concurrency
Thread level SDL Concurrency, decomposition
Agent models Emerald, CORBA Concurrency, decomposition,

mapping
Process network Kahn process

networks
Concurrency, decomposition,

mapping, communication
Message passing MPI, OCCAM Concurrency, decomposition,

mapping, communication,
synchronization



2.2 Programming Models for MPSoC 55

– Programming models in which parallelism is made explicit. But the decompo-
sition of the application into threads is still implicit, hence so is the mapping,
communication, and synchronization concepts. In such programming models,
the software designers are aware that parallelism will be used and must have
expressed the potential for it in the application. But they do not know how much
parallelism will actually be applied at runtime. Such programming models often
require the applications to express the maximal parallelism provided by the algo-
rithm, and then reduce that degree of parallelism to fit the target architecture, while
at the same time working out the implications for mapping, communication, and
synchronization.

– Programming models in which parallelism and decomposition must both be made
explicit, but mapping, communication, and synchronization are implicit. Such
programming models require decisions about the breaking up of the applica-
tion into parallel executed threads, but they relieve the software designer of the
implications of such decisions.

– Programming models in which parallelism, decomposition, and mapping are
explicit, but communication and synchronization are implicit. In this case, the
software developer must not only decompose the application into parallel threads
but also consider how best to map the parallel threads on the target processor.
Since mapping will often have a marked effect on the communication perfor-
mance, this almost inevitably requires an awareness of the target processor’s
interconnection network. It becomes very hard to make such software portable
across different architectures.

– Programming models in which parallelism, decomposition, mapping, and com-
munication are explicit, but synchronization is implicit. In this case, the soft-
ware designer is making almost all of the implementation decisions, except
that fine-scale timing decisions are avoided by having the system deal with
synchronization.

– Programming models in which all the five concepts are explicit. In this case,
the software designers must specify the whole implementation. Thereby, it is
extremely difficult to build software using such programming models, because
both correctness and performance can only be achieved by attention to vast
numbers of details.

2.2.2 Programming Models for SoC Design

In order to allow concurrent hardware/software design, we need to abstract the
hardware/software interfaces, including both software and hardware components.
Similar to the programming models for software, the hardware/software interfaces
may be described at different abstraction levels. The four key concepts that we con-
sider are explicit hardware resources, management and control strategies for the
hardware resources, the CPU architecture, and the CPU implementation. These con-
cepts define four abstraction levels described in the previous chapter, namely system
architecture level, virtual architecture level, transaction-accurate architecture level,
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Table 2.2 Additional models for SoC design

Abstraction level
Typical programming
languages Explicit concepts

System architecture MPI, Simulink [15] All functional
Virtual architecture Untimed SystemC [16] +Abstract communication

resources
Transaction-accurate

architecture
TLM SystemC [16] +Resources sharing and control

strategies
Virtual prototype Co-simulation with ISS + ISA and detailed I/O

interrupts

and virtual prototype level, as summarized in Table 2.2. The different abstraction
levels may be expressed by a single and unique programming model that uses the
same or different primitives for each level.

At the system architecture level, all the hardware is implicit similar to the
message-passing model used for software. The hardware/software partitioning and
the resources allocation are made explicit. This level fixes also the allocation of the
tasks to the various subsystems. Thus, the model combines both the specification
of the application and the architecture and it is also called combined architecture
algorithm model (CAAM). At the virtual architecture level, the communication
resources, such as global interconnection components and buffer storage compo-
nents, become explicit. The transaction-accurate architecture level implements the
resource management and control strategies. This level fixes the RTOS on the soft-
ware side. On the hardware side, a functional model of the bus is defined. The
software interface is specified to the HAL level while the hardware communication
is defined at the bus transaction level. Finally, the virtual prototype level corresponds
to the classical co-simulation with instruction set simulators (ISS). At this level the
architecture of the CPU is fixed, but not yet its implementation that remains hidden
by an ISS.

Several languages can cover multiple abstraction levels for SoC design, such
as C, C++. In fact, most real embedded software at both higher abstraction levels
(system architecture) and lower levels uses C/C++ as a stretch. While SystemC, a
C++ class, is useful to model behavior and architecture blocks, the behavior is likely
to be written in C especially at low level.

2.2.3 Defining a Programming Model for SoC

The use of programming models for the software design of heterogeneous MPSoC
requires the definition of new design automation methods to enable concurrent
design of hardware and software. This also requires new models to deal with
non-standard application-specific hardware/software interfaces at several abstrac-
tion levels. The software design makes use of a programming model.
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The programming model abstracts the hardware for the software design. It is
made of a set of functions (implicit and/or explicit primitives) that can be used by the
software to interact with the hardware. Additionally, the programming model needs
to cover the four abstraction levels required for the software refinement previously
presented (system architecture, virtual architecture, transaction-accurate architec-
ture, and virtual prototype). In order to cover different abstraction levels of both
software and hardware, the programming model needs to include three kinds of
primitives:

– Communication primitives: these are aimed to exchange data between the hard-
ware and the software.

– Task and resource control primitives: these are aimed to handle task creation,
management, and sequencing. At the system architecture level, these primitives
are generally implicit and built in the constructions of the language. The typical
scheme is the module hierarchy in block structure languages, where each module
declares implicit execution threads.

– Hardware access primitives: these are required when the architecture includes spe-
cific hardware. The primitives include specific primitives to implement specific
protocol or I/O schemes, for example, a specific memory controller allowing mul-
tiple accesses. These will always be considered at lower abstraction layers and
cannot be abstracted using the standard communication primitives.

The programming models at the different abstraction levels previously described
are summarized in Table 2.3. The different abstraction levels may be expressed by
a single and unique programming model that uses the same primitives applicable at
different abstraction levels or it uses different primitives for each level.

Table 2.3 Programming model API at different abstraction levels

Abstraction level
Communication
primitives Task and resource control

HW access
primitives

System
architecture

Implicit, e.g., Simulink
links

Implicit, e.g., Simulink
blocks

Implicit, e.g.,
Simulink links

Virtual
architecture

Data exchange, e.g.,
send/receive (data)

Implicit tasks control, e.g.,
threads in SystemC

Specific I/O
protocols
related to
architecture

Transaction-
accurate
architecture

Data access with
specific addresses,
e.g., read/write (data,
adr)

Explicit tasks control, e.g.,
create/resume task
HW management of
resources, e.g., test/set

Physical access
to HW
resources

Virtual prototype Load/store HW arbitration and address
translation, e.g., memory
map

Physical I/Os
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2.2.4 Existing Programming Models

A number of MPSoC-specific programming models, based on shared memory or
message passing, have been defined recently. Examples of programming models
can be considered: OpenMP [33] for shared memory architectures and MPI [108],
TTL [160], or YAPI [78] for message passing architectures. This section will detail
some of them.

2.2.4.1 Message-Passing Interface (MPI)

The message-passing interface (MPI) is a message-passing library interface specifi-
cation. The last version 2.2 was recently adopted as standard [108]. It includes the
specification of a set of primitives for point-to-point communication with message
passing, collective communications, process creation and management, one-sided
communications, and external interfaces.

The following APIs represent examples of blocking communication primitives
within MPI:

– MPI_Send (void ∗buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

– MPI_Recv (void ∗buf, int count, MPI_Datatype datatype,
int src, int tag, MPI_Comm comm, MPI_Status ∗status)

where

– buf is the source/destination buffer to be sent/received
– count is the number of elements to be sent/received
– datatype is the data type of the data to be sent/received (e.g., MPI_CHAR,

MPI_INT, MPI_DOUBLE)
– dest/src represents the rank or identifier of the destination, respectively, source
– tag represents the message tag used to distinguish among the messages in case

that two communicating partners exchange more than one message
– comm identifies the group of the communicator
– status indicates the result of the receive operation, whether or not an error

occurred during the data transmission

The send call previously presented blocks until the message is copied to the
destination buffer. But message buffering can decouple the send and receive oper-
ations. This means that the send operation can complete as soon as the message
was buffered, even if no matching receive operation was executed by the receiver.
Essentially, there are three types of communication modes:

– Buffered mode, when the send operation can start even if no matching receive
operation was initiated and it may complete before the corresponding receive
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starts. If there is no space in the buffer for the outgoing message, then an error
will occur.

– Synchronous mode, when the send operation can start even if no matching
receive operation was initiated, but the send will complete successfully only if
the matching receive started to receive the message sent by the synchronous send.

– Ready mode, when the send operation can start only if the corresponding receive
is already posted.

The primitives associated with these three modes are MPI_BSend,
MPI_SSend, and MPI_RSend/MPI_RRecv.

MPI defines also non-blocking communication primitives: MPI_ISend and
MPI_IRecv (immediate send and immediate receive). The non-blocking APIs sup-
port also the three communication modes: buffered, synchronous, and ready mode
and they use the same naming conventions as the blocking type: B for buffered
mode, S for synchronous, and R for ready, i.e., MPI_IBSend, MPI_ISSend,
MPI_IRSend/MPI_IRRecv.

Besides communication, MPI defines also standard APIs for the process man-
agement. These are MPI_Comm_Spawn and MPI_Comm_Multiple, used to start
new processes by a running MPI application and establish communication with
them.

All these standard primitives are implemented in various libraries. An example
of implementation is the MPICH library [109]. This supports three types of devices
for the communication: sockets for communication between processing units; mixed
socket for communication between processors and shared memory within a multi-
core processor; and shared memory within an SMP architecture.

2.2.4.2 Multi-core Communications API (MCAPI)

Other research works focus on the standardization of the communication APIs,
such as the Multi-core Association working group, which developed the MCAPI
(multi-core communications APIs) [98]. The MCAPI defines a set of com-
munication APIs for multi-core communications, to support lightweight, high-
performance implementations typically required in embedded applications. MCAPI
captures the basic elements of inter-core communications that are required for
embedded “closely distributed” systems and scales to support hundreds of pro-
cessor cores. The potential applications for such an API are extremely varied,
but its principal use is the embedded multi-core systems with tight mem-
ory constraints and task execution times, requiring reliable on-chip intercon-
nect and high system throughput. Besides the details of the API, the MCAPI
specification includes example usage models for multimedia, networking, and
automotive applications. MCAPI provides three communication modes: connec-
tionless messages, connected channels for packets, and connected channels for
scalars. It also provides functions for endpoint and non-blocking operations
management.
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2.2.4.3 Y-Chart Application Programmer’s Interface (YAPI)

The Y-chart application programmer’s interface (YAPI) is an application pro-
grammer’s interface to write signal and stream processing applications as process
networks, developed by Philips Research [78]. The communication between pro-
cesses is based on Kahn process networks with blocking reads on theoretically
unbounded FIFOs.

The Kahn process network is a computational model which consists of a set
of concurrent processes [72]. Each of the processes performs sequential compu-
tation on its private state space. The processes communicate with each other via
uni-directional FIFO channels. A FIFO channel has one input end and one output
end, i.e., there is exactly one process that writes to the channel and there is also
exactly one process that reads values from the FIFO. The process has input ports
which transfer data from the FIFO to the process by reading values and output ports
which copy data from the process to the FIFO by writing values.

YAPI is a C++ library with a set of rules which can be used to model and execute
an application as a Kahn process network. The syntax for reading values is read
(p, x). This statement reads a value from input port p and stores this value in
variable x. The syntax for writing values is write (q, y). This statement writes
the value of variable y to output port q. YAPI supports also to read and write vectors,
not only scalars. The corresponding APIs are read (p, x, m), which reads m
values from port p into array x, respectively, write (q, y, n), which writes n
values of array y to the port q.

2.2.4.4 Task Transaction Level (TTL)

The task transaction level interface (TTL) proposed in [160] is derived from YAPI
and focuses on stream processing applications in which concurrency and communi-
cation are explicit. The interaction between tasks is performed through communica-
tion primitives with different semantics, allowing blocking or non-blocking calls, in
order or out of order data access, and direct access to channel data. The TTL APIs
define three abstraction levels. The vector_read and vector_write functions
are typical system level functions, which combines synchronization with data trans-
fers. The reAcquireRoom and releaseData functions (re stands for relative)
grant/release atomic accesses to vectors of data that can be loaded or stored out of
order, but relative to the last access, i.e., with no explicit address. This corresponds
to virtual architecture level APIs. Finally, the AcquireRoom and releaseData
lock and unlock access to scalars, which requires the definition of explicit addressing
schemes. This corresponds to the transaction-accurate architecture level APIs.

2.2.4.5 Distributed System Object Component (DSOC)

The Multiflex approach proposed in [122] targets multimedia and networking appli-
cations, with the objective of having good performance even for small granularity
tasks. Multiflex supports both symmetric multi-processing (SMP) approach used
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on shared memory multiprocessors and remote procedure call based programming
approach, called DSOC (distributed system object component). The SMP func-
tionality is close to the one provided by POSIX, i.e., thread creation, mutexes,
condition variables, etc. [28]. The DSOC uses a broker to spawn the remote
methods. These abstractions make no separation between virtual architecture and
transaction-accurate architecture levels, since they rely on fixed synchronization
mechanisms. The hardware support to locks and the run queues management is
provided by a concurrency engine. The processors have several hardware contexts
to allow context switches in one cycle. DSOC uses a CORBA-like approach but
implements hardware accelerators to optimize the performances.

2.2.4.6 Compute Unified Device Architecture (CUDA)

Another example of programming model used in industry is the CUDA architec-
ture provided by Nvidia [115]. CUDA (compute unified device architecture) is a
software platform for massively parallel high-performance computing on powerful
Nvidia GPUs (graphics processing units). CUDA requires programmers to write
special code for parallel processing, but it does not require them to explicitly man-
age threads in the conventional sense, which greatly simplifies the programming
model. CUDA development tools work alongside a conventional C/C++ compiler,
so programmers can mix GPU code with general-purpose code for the host CPU.
The architecture of GPUs is hidden beneath APIs. This hardware abstraction has
two benefits: first, it simplifies the high-level programming model, insulating pro-
grammers from the complex details of the GPU hardware. Second, the hardware
abstraction allows flexibility in the GPU architecture. Currently, CUDA aims at
data-intensive applications that need single-precision floating-point math, but future
perspective envisions a new double precision floating-point GPU.

CUDA’s programming model differs significantly from single-threaded CPU
code and even the parallel code that some programmers began writing for GPUs
before CUDA. In a single-threaded model, the CPU fetches a single instruction
stream that operates serially on the data. A superscalar CPU may route the instruc-
tion stream through multiple pipelines, but there is still only one instruction stream,
and the degree of instruction parallelism is severely limited by data and resource
dependencies. Even the best four-way, five-way, or six-way superscalar CPUs
struggle to average 1.5 instructions per cycle, which is why superscalar designs
rarely venture beyond four-way pipelining. Single-instruction multiple-data (SIMD)
extensions permit many CPUs to extract some data parallelism from the code, but
the practical limit is usually three or four operations per cycle [115].

Another programming model is general-purpose GPU (GPGPU) processing.
This model is relatively new and has gained much attention in recent years.
Essentially, developers hungry for high performance began using GPUs as general-
purpose processors, although “general purpose” in this context usually means
data-intensive applications in scientific and engineering fields. Programmers use the
GPU’s pixel shaders as general-purpose single-precision FPUs. GPGPU process-
ing is highly parallel, but it relies heavily on off-chip “video” memory to operate
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on large data sets. (Video memory, normally used for texture maps and so forth in
graphics applications, may store any kind of data in GPGPU applications.) Different
threads must interact with each other through off-chip memory. These frequent
memory accesses tend to limit performance [115].

CUDA takes a third approach. Like the GPGPU model, it is highly parallel. But it
divides the data set into smaller chunks stored in on-chip memory, and then allows
multiple thread processors to share each chunk. Storing the data locally reduces
the need to access off-chip memory, thereby improving performance. Occasionally,
of course, a thread does need to access off-chip memory, such as when loading
the off-chip data it needs into local memory. In the CUDA model, off-chip mem-
ory accesses usually do not stall a thread processor. Instead, the stalled thread
enters an inactive queue and is replaced by another thread that is ready to exe-
cute. When the stalled thread’s data becomes available, the thread enters another
queue that signals it is ready to go. Groups of threads take turn executing in round-
robin fashion, ensuring that each thread gets execution time without delaying other
threads [115].

2.2.4.7 Open Computing Language (OpenCL)

Open computing language (OpenCL) is an open standard for writing applications
that execute across heterogeneous platforms consisting of CPUs, GPUs, and other
processors, introduced by Khronos working group [81]. OpenCL provides parallel
computing using task-based and data-based parallelism.

OpenCL includes a C-based language for writing kernels (functions that execute
on OpenCL devices), called also run-time APIs, plus APIs that are used to define
and then control the platforms, also known as platform layer APIs. The run-time
APIs serve to execute computational or compute kernels and manage scheduling of
computational and memory resources. The platform layer APIs represent a hardware
abstraction layer over diverse computational resources and are used to query, select,
and initialize compute devices in the systems and to create compute contexts and
work queues. A compute device is a collection of one or more computational units
or cores, which can be a CPU or GPU.

The execution model in OpenCL resides on two concepts: compute kernel and
compute program. The compute kernel is the basic unit of executable code, similar
to a C function, and it can be data parallel or task parallel. The compute program is
a collection of compute kernels and internal functions, similar to a dynamic library.
The applications queue the compute kernel execution instances in order. Then, the
compute kernel execution instances can be executed in order or out of order. The
data-parallel execution is achieved by defining work items that execute in parallel.
The work items can be grouped together to form a work group. The work items
within a group can communicate with each other and can synchronize their execu-
tion to coordinate the memory access. Also, multiple work groups can be executed
in parallel. Some compute devices such as CPUs can also execute task-parallel com-
pute kernels as a single work item. The following examples illustrate the usage of
OpenCL APIs to create compute programs for the FFT application:



2.2 Programming Models for MPSoC 63

// create compute context with GPU device
context = clCreateContextFromType (CL_DEVICE_TYPE_GPU);

// create a work-queue
queue = clCreateWorkQueue (context, NULL, NULL, 0);

// allocate memory buffer objects
memobjs[0] = clCreateBuffer (context,

CL_MEM_READ_WRITE,
sizeof (float)∗2, NULL);

// create the compute program for FFT application
program = clCreateProgramFromSource (context, 1,
&fft1D_kernel_src, NULL);

// build the compute program executable
clBuildProgramExecutable (program, false, NULL,

NULL);
// create the compute kernel
kernel = clCreateKernel (program, “fft1D”);

The memory model used in OpenCL is shared memory model but with multiple
distinct address spaces that can be collapsed.

2.2.4.8 Open Multi-processing (OpenMP)

The open multi-processing (OpenMP) is an application programming interface
(API) that supports multi-platform shared memory multiprocessing programming
in C, C++, and Fortran on many architectures [117].

The OpenMP assumes a shared memory model, with all the threads having access
to the same, globally shared memory. The data needs to be labeled as shared or
private. The shared data is accessible by all threads and there is a single instance of
the data. Private data can be accessed only by the thread which owns it. The data
transfer is transparent to the programmer and the synchronization is mostly implicit.

OpenMP consists of a set of compiler directives to define a parallel region,
work sharing, data sharing attributes like shared or private, tasking, etc.; library
routines and environment variables (e.g., number of threads, stack size, scheduling
type, dynamic thread adjustment, nested parallelism, active levels, thread limit) that
influence the run-time behavior. An example of parallel region which declares two
parallel loops is illustrated below:

#pragma omp parallel if (n>limit) default (none)
shared (n,a,b,c,x,y,z) private (f,i,scale)

{
f = 1.0;

// parallel loop, work is distributed
#pragma omp for nowait
for (i=0; i<n; i++)
z[i]=x[i]+y[i];

//parallel loop, work is distributed
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#pragma omp for nowait
for (i=0; i<n; i++)
a[i]=b[i]+c[i];

. . .

// sychronization
#pragma omp barrier

scale = sum (a,0,n) + sum (z,0,n) + f;
. . .

} // end of parallel region

2.2.4.9 Transaction-Level Modeling (TLM)

Another standardization work is related to SystemC transaction-level modeling
(TLM) [118]. The open SystemC initiative (OSCI) proposes TLM-2 draft 1 and
TLM-2 draft 2, which offers a set of standard APIs and a library that implements
a foundation layer upon which interoperable transaction-level models can be built.
The standard proposal is designed to facilitate intellectual property (IP) sharing and
re-use, faster EDA tool development, and make it a lot easier for electronic OEMs
to use TLM. The TLM-2 draft 1 version defines two transaction modeling styles
– the untimed programmer’s view (PV) model and the PV+T (programmer’s view
with timing information) model. The new draft adopted recently, TLM-2 draft 2,
retires one previously proposed modeling style, the programmer’s view plus anno-
tated timing (PV+T), and introduces two new transaction-level modeling styles –
loosely timed (LT) and approximately timed (AT). The newly introduced loosely
timed (LT) modeling style is suitable for software application development, software
performance analysis, and hardware architectural analysis. It employs the flexible
non-blocking transport in a lightweight manner and close to untimed performance.
The newly proposed approximately timed (AT) modeling style is closer to timed
behavior, i.e., in terms of modeling contention and arbitration. Thus, it is suitable
for hardware architectural analysis and performance verification. The AT shares the
same non-blocking transport used by LT but defines finer-grained timing control.
Using a generic payload, it monitors four or more communication events – depend-
ing on the protocol – for example, beginning and end of request and beginning and
end of response.

2.2.4.10 Other Examples of Programming Models

The authors in [24] introduce the concept of service dependency graph to represent
HW/SW interface at different abstraction levels and to handle application-specific
API. This model represents the hardware/software interface as a set of interdepen-
dent components providing and requiring services.

Cheong et al. [35] propose a programming model called TinyGALS, which
combines the locally synchronous with the globally asynchronous approach for
programming event-driven embedded systems.
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In [176] the authors describe PTIDES (programming temporally integrated
distributed embedded systems) programming model. This defines an execution strat-
egy based on discrete-event semantics and then specializes this strategy to give
distributed policies for execution scheduling and control.

LLVM stands for low-level virtual machine and it represents a compilation strat-
egy designed to enable software code optimization at compile time, link time, and
runtime [92]. It has a virtual instruction set to represent the low-level object code.

In the previous section (Table 2.3), we showed that a suitable programming
model for MPSoC needs to be defined at several abstraction levels corresponding
to different design steps. This hierarchical view of the programming model ensures
a seamless implementation of high-level APIs onto the low-level ones. In order to
ensure a better match between the programming model and the underlying hard-
ware architecture, the APIs also have to be extensible at each abstraction level, to
cope with the broad range of possible hardware components. The existing MPSoC
programming models seem to focus either on one aspect or on the other. We think
that it is important to consider both aspects, i.e., hierarchy and extensibility when
designing an MPSoC-oriented programming model.

2.3 Software Stack for MPSoC

The software running on the MPSoC architecture is called embedded software. The
software costs are often a large part of the total cost of an embedded system and are
characterized by different performance requirements [69].

Often, the performance requirement in an embedded application is a real-time
requirement. A real-time performance requirement is one where a segment of the
application has an absolute maximum execution time that is allowed. For example,
in a digital set-top box the time to process each video frame is limited, since the
processor must accept and process the next frame shortly. In some applications, a
more sophisticated requirement exists: the average time for a particular task is con-
strained as well as the numbers of instances when some maximum time is exceeded.
Such approaches (sometimes called soft real time) arise when it is possible to occa-
sionally miss the time constraints on an event, as long as not too many are missed.
Real-time performances tend to be highly application dependent.

Two other key characteristics exist in many embedded applications: the need to
minimize the memory and the need to minimize the power. Sometimes the appli-
cation is expected to fit completely in the memory of the processor on chip; other
times the application needs to fit totally in a small off-chip memory. In any event, the
importance of memory size translates to an emphasis on code size, since data size is
dictated by the application’s algorithm. Large memories also mean more power [69].

2.3.1 Definition of the Software Stack

In this book, the software running on the software subsystems is called software
stack. In heterogeneous MPSoC architectures, each software subsystem executes
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a software stack. The software stack is made of two components: the application
tasks code and the hardware-dependent software (HdS). The HdS layer is made
of three components: the operating system (OS), specific I/O communication soft-
ware, and the hardware abstraction layer (HAL). The HdS is responsible to provide
application- and architecture-specific services, i.e., scheduling the application tasks,
communication between the different tasks, external communication with other sub-
systems, hardware resource management and control. The following paragraphs
detail the software stack organization, including all these different components.

2.3.2 Software Stack Organization

The software stack is structured in different software layers that provide specific
services. Figure 2.3 illustrates the software stack organization in two layers: appli-
cation layer and HdS (hardware-dependent software) layer. In the first section, the
application layer will be presented and then the HdS will be defined.

Fig. 2.3 Software stack
organization

2.3.2.1 Application Layer

The application layer may be a multi-tasking description or a single task function
of the application targeted to be executed on the software (processor) subsystem. A
task or thread is a lightweight process that runs sequentially and has its own pro-
gram counter, register set, and stack to keep track of where it is. In this book, the
terms task and thread are used as interchangeable terms. Multiple tasks can be exe-
cuted in parallel by a single CPU (single-core) or by multiple CPUs of the same
type grouped in the software subsystem (multi-core). The tasks may share the same
resources of the architecture, such as processors, I/O components, and memories.
On a single processor core node, the multithreading generally occurs by time slic-
ing, wherein a single processor switches between different threads. In this case, the
processing is not literally simultaneous, as the single processor is doing only one
thing at a time. On a multi-core processor subsystem, threading can be achieved
via multiprocessing, wherein different threads can run literally simultaneously on
different processors inside the software node [148].
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The application layer consists of a set of tasks that makes use of programming
model or application programming interface (API) to abstract the underlying HdS
software layer. These APIs corresponds to the HdS APIs.

2.3.2.2 HdS Layer

The HdS layer represents the software layer which is directly in contact with, or sig-
nificantly affected by, the hardware that it executes on, or can directly influence the
behavior of that hardware [127]. The HdS integrates all the software that is directly
depending on the underlying hardware, such as hardware drivers or boot strategy.
It also provides services for resource management and sharing, such as scheduling
the application tasks on top of the available processing elements, inter-task commu-
nication, external communication, and all other kinds of resource management and
control. The federative HdS term underlines the fact that, in an embedded context,
we are concerned with application-specific implementations of these functionalities
that strongly depend on the target hardware architecture [87].

Current research studies proved that the HdS debug represents 78% of the global
system total debugging time of an MPSoC software design cycle [175]. This may
due to incorrect configuration or access to the hardware architecture, e.g., a wrong
configuration of the memory mapping for the interrupt control registers. In order to
reduce its complexity, the HdS is structured into three software components: oper-
ating system (OS), communication management (Comm), and hardware abstraction
layer (HAL).

Operating System

The operating system (OS) is the software component that manages the sharing of
the resources of the architecture. It is responsible for the initialization and man-
agement of the application tasks and communication between them. It provides
services such as tasks scheduling, context switch, synchronization, and interrupt
management. In the following, more details about these OS services will be given.

The tasks scheduling service of the OS usually follows a specific scheduling
algorithm. Finding the optimal algorithm for the tasks scheduling represents an NP-
complete problem [162]. There are different categories of scheduling algorithms.
The classic criteria are hard real time versus soft real time or non-real time; preemp-
tive versus cooperative; dynamic versus static; and centralized versus distributed
[148].

Contrary to non-real time, the real-time scheduler must guarantee the execution
of a task in a certain period of time. Hard real time must guarantee that all deadlines
are met.

Preemptive scheduling allows a task to be suspended temporally by the OS, for
example, when a higher priority task arrives, resuming later when no higher priority
tasks are available to run. This is associated with time sharing between the tasks.
Examples of preemptive scheduling algorithms are round-robin, shortest remaining
time, or rate monotonic schedulers. The cooperative or non-preemptive scheduling
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algorithm runs each task to its completion. In this case, the OS waits for a task to
surrender control. This is usually associated with event-driven operating systems.
Examples of non-preemptive algorithm are the shortest job next or highest response
ratio next.

With static algorithms, the scheduling decisions (preemptive or non-preemptive)
are made before run-time. Contrary to static algorithms, the dynamic schedulers
make their scheduling decisions during the execution.

The implementation of the scheduler may be centralized or distributed. In case of
a centralized scheduler implementation, the scheduler controls all the task execution
ordering and communication transactions. In case of a distributed scheduler imple-
mentation, the scheduler distributes the control decision to the local task schedulers
corresponding to each processor [38].

When a task is ready for execution and it is selected by the scheduler of OS
according to the scheduler algorithm, the OS is also responsible to perform the
context switch between the currently running task and the new task. The context
switch represents the process of storing and loading the state of the CPU in order
to share the available hardware resources between different tasks. The state of the
current task, including registers, is saved, so that in case the scheduler gets back for
execution of the first task, it can restore its state and continue normally.

In order to ensure a correct runtime and communication order between the differ-
ent tasks running on parallel, synchronization is required. The tasks can synchronize
by using semaphores to control access to shared resource or by sending/receiving
synchronization signals (events) to each other. The mutex is a binary semaphore
which ensures mutual exclusion on a shared resource, such as a buffer shared by
two threads, by locking and unlocking it whenever the resource is accessed by a
task [149, 150].

The interrupt handler is another OS service used for interrupts management.
There are two types of processor interrupts: hardware and software. A hardware
interrupt causes the processor to save its state of execution via a context switch and
begins the execution of an interrupt handler. Software interrupts are usually imple-
mented as instructions in the instruction set of the processor, which cause a context
switch to an interrupt handler similar to a hardware interrupt. The interrupts repre-
sent a way to avoid wasting the processor’s execution time in polling loops waiting
for external events. Polling means when the processor waits and monitors a device
until the device is ready for an I/O operation.

Examples of commercial OS are the eCos [46], FreeRTOS [51], LynxOS [93],
VxWorks [170], WindowsCE [104], or µITRON [158].

Communication Software Component

The second software component of the HdS layer constitutes the communication
component, which is responsible to manage the I/O operations and more generally
the interaction with the hardware components and the other subsystems. The com-
munication component implements the different communication primitives used
inside a task to exchange data between the tasks running on the same proces-
sor or between the tasks running on different processors. It may include different
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communication protocols, such as FIFO (first in–first out) implemented in software,
or communication using dedicated hardware components. If the communication
requires access to the hardware resources, the communication component invokes
primitives that implement this kind of low-level access. These function calls are
done in form of HAL APIs.

The HAL APIs allow for the OS and communication components to access the
third component of the software stack, that is, the HAL layer.

Hardware Abstraction Layer

Low-level details about how to access the resources are specified in the hardware
abstraction layer (HAL) [174]. The HAL is a thin software layer which not only
totally depends on the type of processor that will execute the software stack but
also depends on the hardware resources interacting with the processor. The HAL
includes the device drivers to implement the interface for the communication with
the device. This includes the implementation of drivers for the I/O operations or
for other peripherals. The HAL is responsible also for processor-specific implemen-
tations, such as loading the main function executed by an OS, more precisely the
boot code, or the implementation of the load and restore of CPU registers during
a context switch between two tasks, but also code for the configuration and access
to the hardware resources, e.g., MMU (memory management unit), timer, interrupt
enabling/disabling, etc.

The structured representation of the software stack in several layers (application
tasks, OS, communication, and HAL), as previously described, has two main advan-
tages: flexibility in terms of software components re-use by changing the OS or the
communication software components, and portability to other processor subsystems
by changing the HAL software layer.

2.4 Hardware Components

2.4.1 Computing Unit

The microprocessor, also known as a CPU, central processing unit, computing unit,
or just processor, is a complete computation engine that is fabricated on a single
chip. A chip is also called an integrated circuit. Generally it is a small, thin piece of
silicon onto which the transistors making up the microprocessor have been etched.
A chip might be as large as an inch on a side and can contain tens of millions of
transistors. Simpler processors might consist of a few thousand transistors etched
onto a chip just a few millimeters square.

Generally, the microprocessors provide the following characteristics:

– The date is the year that the processor was first introduced. Many processors are
re-introduced at higher clock speeds for many years after the original release date.

– Transistors is the number of transistors on the chip. The number of transistors on
a single chip has risen steadily over the years.
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– Microns is the width, in microns, of the smallest wire on the chip. As the feature
size on the chip goes down, the number of transistors rises.

– Clock speed is the maximum rate that the chip can be clocked at.
– Data width is the width of the ALU (arithmetic and logic unit), which is the main

component of the processor. An 8-bit ALU can add/subtract/multiply/etc., two
8-bit numbers, while a 32-bit ALU can manipulate 32-bit numbers. An 8-bit ALU
would have to execute four instructions to add two 32-bit numbers, while a 32-bit
ALU can do it in one instruction. In many cases, the external data bus is the same
width as the ALU, but not always. For instance, the 8088 Intel processor had a
16-bit ALU and an 8-bit bus, while the modern Pentium processors fetch data 64
bits at a time for their 32-bit ALUs [85].

– MIPS stands for “millions of instructions per second” and is a rough measure of
the performance of a CPU.

The microarchitecture of the CPU is comprised of five basic components: mem-
ory, registers, buses, the ALU, and the control unit. Each of these components is
pictured in Fig. 2.4.
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Fig. 2.4 CPU microarchitecture

– Memory: this component is created from combining latches with a decoder. The
latches create circuitry that can store information, while the decoder creates a way
for individual memory locations to be selected.

– Registers: these components are special memory locations that can be accessed
very fast. Three registers are shown in the figure: the instruction register (IR), the
program counter (PC), and the accumulator.

– Buses: these components are the information highway for the CPU. Buses are bun-
dles of tiny wires that carry data between components. The three most important
buses are the address, the data, and the control buses.
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– ALU: this component is the number cruncher of the CPU. The arithmetic/logic
unit performs all the mathematical calculations of the CPU, including add,
subtract, multiply, divide, and other operations on binary numbers.

– Control Unit: this component is responsible for directing the flow of instructions
and data within the CPU. The control unit is actually built of many other selection
circuits such as decoders and multiplexors. In the diagram, the decoder and the
multiplexor compose the control unit.

A microprocessor executes a collection of machine instructions that tell the pro-
cessor what to do. Based on the instructions, a microprocessor does three basic
activities:

– Using its ALU (arithmetic/logic unit), a microprocessor can perform mathemat-
ical operations like addition, subtraction, multiplication, and division. Modern
microprocessors contain complete floating-point processors that can perform
extremely sophisticated operations on large floating-point numbers.

– A microprocessor can move data from one memory location to another.
– A microprocessor can make decisions and jump to a new set of instructions based

on those decisions.

To support these basic activities, the processor architecture includes the
following:

– An address bus (that may be 8, 16, or 32 bits wide) that sends an address to
memory

– A data bus (that may be 8, 16, or 32 bits wide) that can send data to memory or
receive data from memory

– An RD (read) and WR (write) line to tell the memory whether it wants to set or
get the addressed location

– A clock line that lets a clock pulse sequence the processor
– A reset line that resets the program counter to zero (or whatever) and restarts

execution

The processor can perform a large set of instructions. The collection of instruc-
tions is implemented as bit patterns, each one of which has a different meaning when
loaded into the instruction register. A set of short words are defined to represent the
different bit patterns. This collection of words is called the assembly language of the
processor. An assembler can translate the words into their bit patterns very easily,
and then the output of the assembler is placed in memory for the microprocessor to
execute.

Examples of assembly language instructions for the Intel x86 processors are as
follows [85]: ADC (add operation with carry), ADD (add operation), AND (log-
ical AND operation), CLI (clear interrupt flag), CMP (compare operands), DEC
(decrement by 1), DIV (unsigned divide operation), IN (input from data port), INC
(increment by 1), INT (call interrupt), JMP (jump), LEA (load effective address
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operation), MOV (move), MUL (unsigned multiplication operation), NOT (logical
NOT operation), OR (logical OR operation), PUSH (push data into stack), RET
(return from procedure), SHL (shift left operation), SUB (subtraction operation), or
XOR (exclusive OR logical operation). The list of instructions that can be executed
by a processor is called instruction set architecture, shortly ISA.

Based on the instruction set style, the processors can be classified in CISC (com-
plex instruction set computer) and RISC (reduced instruction set computer). The
primary goal of CISC architecture is to complete a task in as few lines of assem-
bly as possible. This is achieved by building processor hardware that is capable of
understanding and executing a series of operations. One of the primary advantages
of this system is that the compiler has to do very little work to translate a high-
level language statement into assembly. Because the length of the code is relatively
short, very small memory capacity is required to store instructions. The complex
instructions are built directly into the hardware.

RISC processors only use simple instructions that can be executed within one
clock cycle. Because there are more lines of code, more memory is needed to
store the assembly-level instructions. The compiler must also perform more work
to convert a high-level language statement into code of this form. These RISC
“reduced instructions” require less transistors of hardware space than the complex
instructions, leaving more room for general-purpose registers. Because all of the
instructions execute in a uniform amount of time (i.e., one clock), pipelining is also
possible.

Another type of classification of the processors takes into account the amount of
data being processed and the number of instructions being executed. The Flynn’s
taxonomy divides the processors into four categories [50]:

– Single instruction, single data (SISD), also known nowadays as a RISC proces-
sor. In this case, a single stream of instructions operates on a single set of data.
Instructions are executed sequentially, but may be overlapped by pipelining. Most
of the SISD systems are now pipelined.

– Single instruction, multiple data (SIMD). These machines include several inter-
connected processing elements, each with its own data, but under the supervision
of a single control unit. All the processing elements perform the same operations
on their data in lockstep. Thus, the execution of the instructions is synchronous. A
single program counter can be used to describe the execution of all the processing
elements.

– Multiple instruction, multiple data (MIMD). In this case, several processing ele-
ments have their own data and their own program counters. The tasks executed
by different processors can start or finish at different times. The programs do not
have to run in lockstep.

– Multiple instruction, single data (MISD). These machines have many processing
elements, all of which execute independent stream of instructions, but on the same
data stream.
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2.4.1.1 General-Purpose Processor

The general-purpose processors can be found in laptop, desktop, or server comput-
ers. These processors have very high performance and designed to work well in a
variety of contexts. They support most of the popular Windows, Linux, and real-time
operating systems. They run a wide range of application systems and are relatively
inexpensive for high-end applications [59].

An example of well-known general-purpose processor with both desktop and
embedded system markets is x86 from Intel [85].

2.4.1.2 Application-Specific Instruction Set Processor

An application-specific instruction set processor (ASIP) is a stored memory CPU
whose architecture is tailored for a particular set of applications. This special-
ization of the processor core provides a trade-off between the flexibility of a
general-purpose CPU and the performance of a DSP. The ASIP exploits special
characteristics of the application to meet the desired performance, cost, and power
requirements. The programmability of the ASIP allows changes to the implementa-
tion, use in several different chips, and high data path utilization. The application-
specific architecture provides smaller silicon area and higher computation speed
[171].

Compared to general-purpose processors, usually the ASIPs are enhanced with
the following features:

– Special-purpose registers and buses to provide the required computations without
unnecessary generality.

– Special-purpose function units to perform long operations in fewer clock cycles.
– Special-purpose control for instructions to execute common combinations in

fewer clock cycles.

Some ASIPs have a configurable instruction set. Usually, these cores are divided
into two parts: static logic, which defines a minimum ISA, and configurable logic
which can be used to design new instructions. The configurable logic can be
programmed either in the field in a similar fashion to an FPGA, dynamically
reconfigured during execution, or during the chip synthesis.

Generally, the ASIP design relies on automatic tools. Usually these tools start
from a set of characteristics of the target application domain and the required exe-
cution profiling (e.g., number of execution clock cycles for a specific application
function). Then, the automatic tools generate both micro-architecture for the ASIP
core and an optimized compiler targeted to the synthesized ASIP. Finally, the appli-
cation is implemented using the generated ASIP core and ASIP compiler. Thus, the
ASIP design consists of two main steps: processor synthesis and compiler design.
The processor synthesis consists of choosing an instruction set, optimizing the data
path, and extracting the instruction set from the register transfer design. The com-
piler design consists of driving the compilation from a parametric description of the
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data path, binding values to registers, selecting instructions for the code matched to
the parameterized architecture, and scheduling the processor instructions.

Example of ASIP processors is the Xtensa processor from Tensilica [152]. The
Xtensa processors are synthesizable processors that are configurable and extensible.
The processor can be configured to fit the application by selecting and configuring
predefined elements of the architecture, such as the following:

– Instruction set: ALU extensions, co-processors, wide instructions, DSP style,
function unit implementation

– Memory: instruction cache configuration, data cache configuration, memory pro-
tection/translation, address space size, mapping of special purpose memories,
DMA access

– Interface: bus width, bus access protocol, system registers access, JTAG, queue
interfaces to other processors

– Peripherals: timers, interrupts, exceptions, and remote debug procedures

Additionally, the designers can optimize the processor by inventing completely
new instructions and hardware execution units that can deliver high performance.
The new instruction sets can be defined using the TIE language, which offers support
to new state declarations, new instruction encodings and formats, and new operation
descriptions. The TIE instructions can be manually written or automatically gener-
ated by using the XPRESS compiler, a tool which identifies which functions of a
C/C++ application need to be accelerated in hardware.

Once the designer determines the optimal configuration and extensions, the
Xtensa processor generator automatically generates a synthesizable hardware
description as well as a complete optimized software development environment
[152].

An example of commercial ASIP design tool is the Coware Processor Designer,
which represents an integrated design environment for unified application-specific
processor, programmable accelerator design, and software development tool gener-
ation [41].

The key to processor design’s automation is its Language for Instruction Set
Architectures, shortly LISA. In contrast to SystemC, which has been developed for
efficient specification of systems, LISA is a processor description language that
incorporates processor-specific components, such as register files, pipelines, pins,
memory and caches, and instructions. The LISA language enables the efficient cre-
ation of a single “golden” processor specification as the source for the automatic
generation of the instruction set simulator (ISS) and the complete suite of software
development tools, like assembler, linker, and C-compiler, and synthesizable RTL
code. An example of LISA code is illustrated in Fig. 2.5.

The development tools, together with the extensive profiling capabilities of the
debugger, enable rapid analysis and exploration of the application-specific proces-
sor’s instruction set architecture to determine the optimal instruction set for the
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Fig. 2.5 Sample LISA modeling code

target application domain. Processor designer enables also the designer to opti-
mize instruction set design, processor micro-architecture and memory subsystems,
including caches [41].

Another example of commercial ASIP design tool is provided by Target
Compiler Technologies IP designer tool suite [151]. The design starts from descrip-
tions of the processor architecture and the instruction set, using a high-level
definition language, called nML. Then, based on the ASIP description and the
targeted application, the Chess tool automatically maps the C application into opti-
mized machine code of the target ASIP. The Checkers tool generates automatically
the instruction set simulator and the graphical software debugger. The Go tool of
the tool suite produces the synthesizable RTL architecture model of the ASIP from
the nML processor description. Darts is used as assembler and disassembler of the
ASIP that translates the machine code into binary format and vice versa.

2.4.1.3 Digital Signal Processor

The digital signal processor (DSP) is a specialized microprocessor designed specif-
ically for digital signal processing [5].

Digital signal processing algorithms typically require a large number of mathe-
matical operations to be performed quickly on a set of data. Signals are converted
from analog to digital, manipulated digitally, and then converted again to analog
form. Many DSP applications have constraints on latency; that is, for the system
to work, the DSP operation must be completed within some time constraint. Most
general-purpose microprocessors and operating systems can execute DSP algo-
rithms successfully. But these microprocessors are not suitable for application of
mobile telephone and pocket PDA systems, etc., because of power supply and space
limit. A specialized digital signal processor, however, will tend to provide a lower
cost solution, with better performance and lower latency.
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The architecture of a digital signal processor is optimized specifically for digital
signal processing applications. They usually provide parallel multiply and add oper-
ations, multiple memory accesses to fetch two operands and store the result, lots of
registers to hold data temporarily, efficient address generation for array handling,
and special features such as delays or circular addressing.

Examples of commercial DSPs are provided by Freescale [52], Texas Instru-
ments [156], or Atmel [9].

A key player at the high-end signal processor manufacturer is Freescale. The
company provides the fully programmable MSC8144 multi-core DSP architec-
ture, which is based on next-generation StarCoreTM technology (Fig. 2.6) [52].
Freescale’s MSC8144 is helping to make IP-based connections faster, easier, and
more reliable by taking advantage of one programmable DSP platform that supports
VoIP/data, video, and wireless standards using multiple software implementations.
The MSC8144 DSP combines four programmable SC3400 StarCoreTM DSP cores.
Each SC3400 StarCoreTM DSP core runs at 1 GHz. The quad-core DSP delivers the
equivalent performance of a 4 GHz single-core DSP [52].

Fig. 2.6 The Freescale MSC8144 SoC architecture with quad-core DSP

Other examples of DSP are the C6000 DSP series from Texas Instruments. These
series are fix point DSPs, which may operate at the clock frequency up to 1.2 GHz.
They implement separate instruction and data caches with 2 MB second-level cache
(L2). The access to the I/O is fast thanks to its 64 DMA (direct access memory)
channels. The top models are capable of even 8,000 MIPS (million instructions per
second), use VLIW (very long instruction word) encoding, perform eight operations
per clock cycle, and are compatible with a broad range of external peripherals and
various buses (PCI/serial/etc.) [156].

2.4.1.4 Microcontroller

The microcontroller (MCU) is a special processor used for control functions.
Microcontrollers are embedded inside consumer products, so that they can control
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the features or actions of the product. Another name for a microcontroller, therefore,
is embedded controller. The microcontrollers are dedicated for the execution of one
application task. Usually they are small and low power devices.

A microcontroller may have many low power modes, depending on the appli-
cation. There are numerous methods that the microcontroller can use to lower the
static power consumed by the devices in standby or low power mode (also called
standby or leakage power). These include low-leakage transistors and turning off
the power to various parts of the MCU. Usually, the deeper asleep the device is, the
longer it takes to wake up. Wakeup time becomes an important consideration when
determining how low power modes are implemented.

Some microcontrollers provide digital signal processing functionality. Processor
cores for control are different from those that perform very complex mathematical
functions. Cores that perform both functions are blurring that line.

In some cases, DSP-like mathematical functions are being added to a regular
core’s instruction set, with the hardware to support it. And the opposite is occurring
too, as DSP cores add control-like instructions.

An alternative is to embed both a controller and a DSP core in the same device,
creating a hybrid. Whether these devices are considered microcontrollers with DSP
functionality or DSPs with microcontroller functionality is up to the vendor to
decide.

Examples of microcontrollers are the 16-bit MSP430 from Texas Instruments
[156], AVR from Atmel [9], the PIC microcontroller families from Microchip [103],
or the 32-bit ARM Cortex-M3 or the 8-bit 8051 [6] or those provided by Freescale
for automotive applications [52].

2.4.2 Memory

The memory is a hardware component used to store data. The basic unit of storage is
called memory cell [171]. Cells are arranged in a 2D array to form the memory cir-
cuit. Within the memory core, the cells are connected to row and bit (column) lines
that provide a 2D addressing structure. The row line selects a one dimensional row
of cells, which then can be accessed (written or read), via their bit lines. The mem-
ory may have multiple ports to accept multiple addresses and data for simultaneous
read and write operations.

The memories can be classified into two main types: RAM (random access mem-
ory) and ROM (read-only memory). Traditional RAM memories store data that can
be read and written in a random order. They are usually volatile memories, meaning
that their content is lost after turning off the power. The ROM memories store data
that cannot be modified (at least not quickly or easily). They are mainly used to store
firmware, software very closely tied to the hardware.

The RAM family includes two important memory devices: static RAM (SRAM)
and dynamic RAM (DRAM). The primary difference between them is the lifetime of
the data they store. SRAM retains its contents as long as electrical power is applied
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to the chip. If the power is turned off or lost temporarily, its contents will be lost
forever. DRAM, on the other hand, has an extremely short data lifetime – typically
about few milliseconds, even when power is applied constantly [14]. The DRAM
can behave like SRAM if a piece of hardware called a DRAM controller is used.
The job of the DRAM controller is to periodically refresh the data stored in the
DRAM. By refreshing the data before it expires, the contents of memory can be
kept alive for as long as they are needed.

SRAM devices offer extremely fast access times (approximately four times faster
than DRAM) but are much more expensive to produce. Generally, SRAM is used
only where access speed is extremely important. A lower cost per byte makes
DRAM attractive whenever large amounts of RAM are required. Many embedded
systems include both types: a small block of SRAM (a few kilobytes) along a criti-
cal data path and a much larger block of DRAM (perhaps even megabytes) for other
types of data.

The NVRAM (non-volatile RAM) is an SRAM memory with a battery backup.
When the power is turned on, the NVRAM operates like an SRAM. When the power
is turned off, the NVRAM uses the battery to retain its data. NVRAM is common in
embedded systems. However, it is more expensive than SRAM, because of the bat-
tery. So the applications are typically limited to the storage of a few hundred bytes
of system-critical information that cannot be stored in any other type of memory.

Memories in the ROM family are distinguished by the methods used to write
new data to them (usually called programming) and the number of times they can be
rewritten. This classification reflects the evolution of ROM devices from hardwired
to programmable to erasable and programmable. A common feature of all these
devices is their ability to retain data and programs forever, even during a power
failure.

The very first ROMs were hardwired devices that contained a preprogrammed
set of data or instructions. The contents of the ROM had to be specified before
chip production, so the actual data could be used to arrange the transistors inside
the chip. Hardwired memories are still used, though they are now called “masked
ROMs” to distinguish them from other types of ROM. The primary advantage of a
masked ROM is its low production cost. Unfortunately, the cost is low only when
large quantities of the same ROM are required.

Another type of ROM is the PROM (programmable ROM), which is purchased
in an unprogrammed state (the data are made up entirely of bits with value equal
to 1). The process of writing your data to the PROM involves a special piece of
equipment, called device programmer. The device programmer writes data to the
device one word at a time by applying an electrical charge to the input pins of
the chip. Once a PROM has been programmed in this way, its contents can never be
changed. If the code or data stored in the PROM must be changed, the current device
must be discarded. As a result, PROMs are also known as one-time programmable
(OTP) devices.

An EPROM (erasable-and-programmable ROM) is programmed in exactly the
same manner as a PROM. However, EPROMs can be erased and reprogrammed
repeatedly. To erase an EPROM, the device is exposed to a strong source of
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ultraviolet light. Thus, the entire chip is reset to its initial and unprogrammed
state. The EPROMs are more expensive than PROMs, but they are essential for
the software development and testing process.

EEPROM (electrically erasable-and-programmable ROM) is similar to EPROM,
but the erase operation is accomplished electrically, rather than by exposure to
ultraviolet light. Any byte within an EEPROM may be erased and rewritten. Once
written, the new data will remain in the device forever or until it is electrically
erased. The primary trade-off for this improved functionality is higher cost, though
write cycles are also significantly longer than writes to a RAM.

Flash memory combines the best features of the memory devices described thus
far. Flash memory devices are high density, low cost, non-volatile, fast (to read,
but not to write), and electrically reprogrammable. The use of flash memory has
increased dramatically in embedded systems. From a software point of view, flash
and EEPROM technologies are very similar. The major difference is that flash
devices can only be erased one sector at a time, not byte by byte. Typical sector
sizes are in the range of 256 bytes to 16 kB. Despite this disadvantage, flash is much
more popular than EEPROM.

Another frequently used type of memory is the cache. The cache plays a key
role in reducing the average memory access time of a processor. It also decreases
the bandwidth requirement each processor places on the shared interconnect and
memory hierarchy. The cache is located near the processor, thus it offers a very
fast access time (Fig. 2.7). It replicates parts of the data stored in the main mem-
ory, i.e., the most often used or the latest used memory blocks, depending on the
cache policy. In cache-based SoC, every time a processor requires data from the
main memory, first it checks whether the data are already in the cache. In this case,
called cache hit, the data are directly retrieved from the cache, thus avoiding the
transfer through the global interconnect component. If the data are not stored in the
cache, situation called cache miss, the data are retrieved from the main memory and
eventually stored in the local cache for a latter access.

CPU

Memory controller

Memory

Cache Scratch pad

cache
miss

scratch pad
miss 

Fig. 2.7 Cache and scratch
pad memory
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But the use of cache memories raises another important issue: the cache coher-
ence. The cache coherence problem appears in architectures made of multiple
processors with their own cache memories. The problem arises when a memory
block is present in the caches of one processor or more processors, and another
processor modifies that memory block. Unless special action is taken, the other pro-
cessors continue to access the old copy of the block that it is in their caches [42].
The algorithms used to maintain the cache coherency are implemented in hardware.
The hardware decides when values are added or removed from the cache [171].

As an alternative to the hardwired algorithms to manage close-in memory,
software-oriented approaches have been proposed. The scratch pad memories repre-
sent another type of memory, similar to cache memories, but which require software
algorithms for their management (Fig. 2.7). The scratch pad memory is a high-speed
memory, located near the processor. It does not include hardware to manage its con-
tents. The CPU can access the scratch pad to read and write directly, because the
scratch pad is part of the address space of the main memory. Therefore, its access
time is predictable, unlike cache accesses. The software is responsible to manage
which data are in the scratch pad or which data need to be removed. Usually the
software manages the scratch pad by combining compile-time information with
run-time decision making.

Memory is a key bottleneck in embedded systems. Many embedded computing
applications spend a lot of their time accessing memory. The memory hierarchy
is a prime determinant of not only performance but also energy consumption. So
optimizing the memory system becomes crucial. There are several techniques of
memory optimization which target either data or instructions, e.g., loop transfor-
mations to express data parallelism, dataflow transformations to improve memory
utilization, minimal buffer size usage, or optimal scratch pad memory allocation
algorithms. The access time of the main memory can be reduced by using burst
modes to access a sequence of memory locations, or by integrating paged memo-
ries to take advantage of the properties of memory components to reduce the access
times, or banked memories, which are systems of memory components that allow
parallel accesses.

2.4.3 Interconnect

The interconnect component is a shared resource between various hardware com-
ponents. Its role is to transmit data from a source hardware resource to a destination
hardware resource, thus implementing the communication network.

The network component can be profiled using two types of measurements:
latency and bandwidth. The latency represents the total time required to transfer
n-bytes of information from the source to the destination component. The band-
width represents the amount of data (number of bytes) that can be delivered by the
communication network per second. It is desirable for the interconnection network
to provide high bandwidth, because higher bandwidth decreases the occupancy of
the shared interconnect component. Thus, it can reduce the likelihood of network
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contention. High bandwidth also allows for the software to exchange large volume
of data without waiting for individual data units to be transmitted along the way.

The performance constraints for MPSoC architectures place a requirement on
the data bandwidth the network must deliver, if the processors are to sustain a given
computational rate. However, this load varies considerably between the applications.
The flow of information may be physically localized or dispersed. The data may be
transmitted in burst mode or fairly uniformly in time. In addition, the waiting time
of the processor is strongly affected by the latency of the network. The time spent
waiting affects the bandwidth requirement.

The design of the interconnect component is a complex process for system-on-
chip. Any communication failure, whether due to noise or an error in timing or
protocol, is likely to require a design iteration that will be expensive in both mask
charges and time to market [53].

Early SoCs used an interconnect paradigm inspired by the rack-based micro-
processor systems of earlier days. In those rack systems, a backplane of parallel
connections formed a “bus” into which all manner of cards could be plugged. A
system designer could select cards from a catalogue and simply plug them into the
rack to yield a customized system with the processor, memory, and interfaces.

In a similar way, a designer of an early SoC could select hardware IP blocks,
place them onto the silicon, and connect them together with a standard on-chip
bus (OCB) (Fig. 2.8). The backplane might not be apparent as a set of parallel
wires on the chip, but logically the solution is the same. The on-chip bus connects
a central processor and standard components like memory, peripherals, interrupt
units plus some application-specific components. Among the advantages of this
approach we have power savings, higher integration density, lower systems costs,
easier procurement, etc.
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Fig. 2.8 SoC architecture
based on system bus

Among the different approaches to the interconnect concept, Virtual Socket
Initiative Alliance (VSIA) [168] merits special remark for the effect in standardizing
criteria for concepts, methods, and allowed interoperability.

The most popular SoC approach has been the ARM processor strategy [6]. ARM
disposes of a complete family of RICS processors, with the AMBA OCB. AMBA
(Advanced Microcontroller Bus Architecture) is currently one of the most widely
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used systems bus architectures for SoC applications (even for processors other than
ARM).

However, buses do not scale well. With the rapid increase in the number of hard-
ware components to be connected and the increase in performance demands, today’s
SoCs cannot be built around a single bus. Instead, complex hierarchies of buses are
used (as illustrated in Fig. 2.9), with sophisticated protocols and multiple bridges
between them. The communication between remote hardware IPs can go via several
buses. Thus, a SoC can implement more than one bus.
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Fig. 2.9 SoC architecture
based on hierarchical bus

A typical SoC architecture is comprised of one high-performance bus for
memory access and high-speed peripherals and one low-speed bus for low-speed
peripherals like UARTs. Examples of buses that can be linked through bridges
are those defined within the AMBA specification: advanced high-performance bus
(AHB), advanced system bus (ASB), and advanced peripheral bus (APB) [6].

AHB bus is devoted to high-performance communication, for system modules
requiring high clock frequencies. This bus acts as the backbone bus. It is intended
for connection of processors and coprocessors, DSP units, on-chip memories, and
off-chip external memory interfaces. The ASB is mainly deprecated and it has been
substituted by AHB. The APB bus is devoted to low-speed peripherals and it is
optimized to minimize power consumption and to reduce interface complexity. APB
is designed to be used in conjunction with a system bus (AHB/ASB).
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The hierarchical bus-based systems have no limitations about the number of
buses and its hierarchy. These systems are more flexible and powerful than single
bus systems, as they allow any number of CPUs.

Where bus-based solutions reach their limit, packet-switched networks are poised
to take over (Fig. 2.10) [53]. A packet-switched network offers flexibility in topol-
ogy and trade-offs in the allocation of resources to clients. A network on chip (NoC)
is constructed from multiple point-to-point data links interconnected by switches
(also called routers). The data messages can be relayed from any source module
to any destination module over several links, by making routing decisions at the
switches [17]. A NoC is similar to a modern telecommunications network, using
digital bit-packet switching over multiplexed links. Although packet-switching is
sometimes claimed as necessity for a NoC, there are several NoC proposals utilizing
circuit-switching techniques.
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Fig. 2.10 SoC architecture
based on packet-switched
network on chip

In NoC-based architectures, the IP blocks communicate over the NoC using
a five-layered communication scheme, similar to the OSI transmission protocol,
as illustrated in Fig. 2.11: application, transport, network, data link, and physical
layers.

The application layer corresponds to the communication primitives used by the
application for the data exchange. The units of communication consist of data
messages.

The transport layer establishes and maintains end-to-end connections. It performs
packet segmentation and reassembling and ensures message ordering. The units of
communication are packets. The transport layer defines rules that apply as packets
are routed through the switch fabric. The packets can include byte enables, parity
information, or user information depending on the actual application requirements.

The network layer defines how data are transmitted over the network from a
sender to a receiver, such as routing algorithm. The units of communication are
flits.
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Fig. 2.11 Network-on-chip
communication layers

The data link layer defines a protocol to transmit the information between the
entities. It may include flow control and error correction. The units of communica-
tion in this layer are expressed in bits or words.

The physical layer defines how packets are physically transmitted over an inter-
face. It also determines the number and length of wires connecting the IP blocks and
switches. The units of communication at this level are electronic signals.

Examples of NoC interconnect components are Spidergon [40] or the Hermes
NoC [107].

2.5 Software Layers

Programmable hardware components are important in a re-usable architectural plat-
form, since it is very cost-effective to tailor a platform to different applications
by simply adapting the low-level software and maybe only configuring certain
hardware parameters, such as memory sizes and peripherals.

As illustrated in Fig. 2.3, the software view of an embedded system shows three
different layers:

– The bottom layer, named hardware abstraction layer or shortly HAL, is comprised
of services directly provided by hardware components (processor and peripher-
als) such as instruction sets, memory and peripheral accesses, and timers. It also
includes instance of device drivers, boot code, parts of a real-time operating sys-
tem (RTOS), such as context-switching code and configuration code to access the
MMU (memory management unit), and even some domain-oriented algorithms
that directly interact with the hardware.

– The top layer is the multitasking application software, which should remain
completely independent from the underlying hardware platform.

– The middle layer is comprised of three different components:
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(a) Hardware-independent software, typically high-level RTOS services, such as
task scheduling or interrupt service routines;

(b) Communication layer, which implements the high-level communication
primitives and offers support for specific I/Os;

(c) The API (application programming interface), which defines a system
platform that either isolates the application software from the hardware-
dependent software (HdS) (HdS API) or separate the middle layer from all
basic low software layer (HAL APIs), enabling their concurrent design.

The standardization of these APIs, which can be seen as a collection of services
usually offered by an operating system, is essential for software re-use above and
below it. At the application software level, libraries of re-usable software IP compo-
nents can implement a large number of functions that are necessary for developing
systems for given application domains. If, however, one tries to develop a system
by integrating application software components that do not directly match a given
API, software retargeting to the new platform will be necessary [166]. This can be a
very tedious and error-prone manual process, which is a candidate for an automatic
software synthesis technique.

Nevertheless, re-use can also be obtained below the API. Software components
implementing the hardware-independent parts of the RTOS can be more easily
re-used, especially if the interface between this layer and the HAL layer is standard-
ized. Although the development of re-usable HAL may be harder to accomplish,
because of the diversity of hardware platforms, it can be at least obtained for
platforms aimed at specific application domains.

There are many academic and industrial alternatives providing RTOS ser-
vices. The problem with most approaches, however, is that they do not consider
specific requirements for SoC, such as minimizing memory usage and power con-
sumption. Recent research efforts propose the development of application-specific
RTOS containing only the minimal set of functions needed for a given applica-
tion [55] or including dynamic power management techniques. Embedded software
design methodologies should thus consider the generation of application-specific
RTOS that are compliant to a standard API and optimized for given system
requirements.

The hardware-dependent software part of the software stack is usually comprised
of three components called (from lower layer to upper layer) hardware abstraction
layer, middleware (or communication layer), and operating system (Fig. 2.3). These
three components manage the execution of tasks running on processors and the
use of shared resources, including hardware resources. The lowest layer, the hard-
ware abstraction component, is separated from the operating system to facilitate
the porting of the OS from one processor to another, which facilitates the porting
of an application from one processor to another. Usually, few parts of the HAL
are written in assembly, as they are closely linked with the underlying processor.
The middleware component includes communication primitives used by the appli-
cation tasks through the OS, and based on device drivers provided by the HAL
component.
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This structure by layers (or components) maintains the separation of skills for the
development of the software stack. The HAL is usually provided with the hardware
or developed by someone who knows deeply the hardware. The OS is developed
depending on the main characteristics awaited (scheduling algorithm, real time,
symmetric multi-processor, etc.). The communication component makes the link
between OS and HAL. The application is developed by the system engineer.

2.5.1 Hardware Abstraction Layer

In the following section, several examples of existing commercial HAL are given.
These examples of HAL are used in both academic and semiconductor industry
areas.

Even if the HAL represents an abstraction of the hardware architecture, since it
has been mostly used by OS vendors and each OS vendor defines its own HAL, most
of the existing HAL is OS dependent. In case of an OS-dependent HAL, the HAL
is often called board support package (BSP). In fact, the BSP implements specific
support code for a given hardware platform or board, corresponding to a given OS.
The BSP includes also a boot loader, which contains a minimal device support to
load the OS and device drivers for all the devices on the hardware board.

The embedded version of the Windows OS, namely, Windows CE, provides
BSP for many standard development platforms that support several microprocessors
family (ARM, x86, MIPS) [104]. The BSP contains an OEM (original equipment
manufacturer) adaptation layer (OAL), which includes a boot loader for initializing
and customizing the hardware platform, device drivers, and a corresponding set of
configuration files.

The VxWorks OS offers BSP for a wide range of MPSoC architectures, which
may incorporate ARM, DSP, MIPS, PowerPC, SPARC, Xscale, and other processors
family [170].

In eCos, a set of well-defined HAL APIs are presented [46]. However, there is no
clear difference between HAL and device driver. Examples of HAL APIs used by
eCos are as follows:

– Thread context initialization: HAL_THREAD_INIT_CONTEXT()
– Thread context switching: HAL_THREAD_SWITCH_CONTEXT()
– Breakpoint support: HAL_BREAKPOINT()
– GDB support: HAL_SET_GDB_REGISTERS(), HAL_GET_GDB_

REGISTERS()
– Interrupt state control: HAL_RESTORE_INTERRUPTS(), HAL_ENABLE_

INTERRUPTS(), HAL_DISABLE_INTERRUPTS()
– Interrupt controller management: HAL_INTERRUPT_MASK()
– Clock control: HAL_CLOCK_INITIALIZE(), HAL_CLOCK_RESET(), HAL_

CLOCK_READ()
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– Register read/write: HAL_READ_XXX(), HAL_READ_VECTOR_XXX(),
HAL_WRITE_XXX(), and HAL_WRITE_ VECTOR_XXX()

– Control the dimensions of the instruction and data caches: HAL_
XCACHE_SIZE(), HAL_XCACHE_LINE_SIZE()

In the software development environment for the Nios II processor provided
by Altera [3], the HAL serves as a device driver package, providing a consis-
tent interface to the system peripherals, such as timers, Ethernet MAC, and I/O
peripherals.

In Real-Time Linux a HAL, called real-time HAL (RTHAL), is defined to give
an abstraction of the interrupt mechanism to the Linux kernel [135]. It consists of
three APIs for disabling and enabling interrupts and return from the interrupt.

An example of HAL that does not depend on the targeted OS is the a386 library
[1]. The a386 represents a C library which offers an abstraction of the Intel 386
processor architecture. The functions of the library correspond to privileged pro-
cessor instructions and access to the hardware. The library serves as a minimal
hardware abstraction layer for the OS. Later, the library is ported on ARM and
SPARC processors.

2.5.2 Operating System

The complexity of the application and the increasing capabilities of hardware
architectures have moved embedded software from simple sequential program
to concurrent complex system with specific software architecture. This is why
embedded systems require some kind of OS to manage the processor (or several
processors) and hardware resources efficiently. The OS can be seen as an abstraction
of the hardware (processor and resources) used by the software tasks. This abstrac-
tion consists in sharing these hardware resources available between tasks and goes
to complete virtualization of the hardware architecture for which the number of
resources is infinite.

A multiprocessor architecture can run one OS (usually called centralized OS)
in only one processor (the others are seen as co-processor) in heterogeneous or
asymmetric architecture or in any of the free processors in a symmetric architecture.
If one OS is running on each processor (distributed OS), it could be the same copy
(homogeneous architecture) or a different copy (heterogeneous architecture). This
leads to different performances and different capabilities the software designer has
to deal with.

A lot of commercial OSs (see section 2.3.2.2) exist, but an OS can be developed
for a particular class of applications or with specific features. In both cases, the
software designer has to configure the OS in case of embedded systems to reduce
the memory footprint including communication and synchronization services (such
as messages, semaphores, clocks) and tasks scheduling policy.
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The ASOG (application-specific operating system generator) tool of the ROSES
flow [32] allows generation of an application-specific OS, also known as software
interfaces or software wrappers, for each processor. The following paragraphs give
more details about this OS generator tool.

As shown in Fig. 2.12, the software wrappers provide the implementation of
the high-level communication primitives (available through the APIs) used in the
system specification and the drivers to control the hardware. If required, the wrapper
will also provide sophisticated OS services, such as tasks scheduling and interrupt
management, minimally tailored for a particular application.
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Fig. 2.12 Software wrapper

The synthesis of wrappers is based on libraries of basic modules from which
dedicated OSs are assembled. These libraries may be easily extended with modules
that are needed to build software wrappers for any type of processors, memories,
and other components that follow various bus and core standards.

The software wrapper generator [55] produces a custom OS for each processor
on the target platform. The software wrapper generator produces operating systems
streamlined and pre-configured for the software module(s) that run(s) on each target
processor. It uses a library organized in three parts: APIs, communication/system
services, and device drivers. Each part contains elements that will be used in a given
software layer in the generated OS. The generated OS provides services: communi-
cation services (e.g., FIFO communication), I/O services (e.g., AMBA bus drivers),
memory services (e.g., cache or virtual memory usage), etc. Services have depen-
dency between them, for instance, communication services are dependent on I/O
services. Elements of the OS library also have dependency information. This mech-
anism is used to keep the size of the generated OS at a minimum; the elements that
provide unnecessary services are not included.

There are two types of service codes: re-usable (or existing) code and expand-
able code. As an example of existing code, AMBA bus-master service code can
exist in the OS library in the form of C language. As an example of expand-
able code, OS kernel functions can exist in the OS library in form of macrocode
(m4 like). There are several preemptive schedulers available in the OS library such
as round-robin scheduler, or priority-based scheduler. In the case of round-robin
scheduler, time slicing (i.e., assigning different CPU load to tasks) is supported. To
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make the OS kernel very small and flexible (1) the task scheduler can be selected
from the requirements of the application code and (2) a minimal amount (less than
10% of kernel code size) of processor-specific assembly code is used (for context
switching and interrupt service routines).

The software component interfaces must be composed using basic elements of
the software wrapper generators library. Table 2.4 lists some API functions available
for different kinds of software task interfaces. The application tasks must communi-
cate through API functions provided by the software wrapper generator library. For
instance, the shared memory API (SHM) provides read/write functions for inter-
task communication. The guarded shared memory API (GSHM) adds semaphore
services to the SHM API by providing lock/unlock functions.

Table 2.4 Software communication APIs

Basic component interfaces API functions

Register Put/get
Signal Sleep/wakeup
FIFO Put/get
SHM Read/write
GSHM Lock/unlock/read/wrrite

A recurrent problem in library-based approaches is library size explosion. In the
ROSES flow, this problem is minimized by the use of layered library structures
where a service is factorized so that its implementation uses elements of differ-
ent layers. This scheme increases re-use of library elements since the elements of
the upper layers must use the services provided by the elements in the immediate
lower layer [32]. The designers are able to extend the ROSES libraries since they
are implemented in an open format. This is an important feature since it enables
the support of different standards while re-using most of the basic elements in the
libraries.

The OS generation consists of assembling the required OS services. The services
reside in a library made of a set of macrocodes files corresponding to each OS ser-
vice. The macrocode files are written using a macrolanguage and serve to generate
the customized files for the application-specific OS.

The services of the OS are assembled based on a service dependency graph, used
to determine, select, and configure the services for the OS generation. The service
dependency graph is described using a structural description language, called LiDeL
(library description language) [55]. LiDeL is composed of a set of data structures
manipulated by several APIs. The structural description language contains three
types of items:

– Elements, which represent an OS part. The elements are basic components of an
OS. They represent a non-specialized component, which is not yet dedicated for a
particular architecture case.
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– Services, which represent system functionality. It is an abstract term, which allows
dividing and structuring the behavior of an OS. The services are provided by
elements, but an element may also require a service from another element.

– Implementations, which represent a particular behavior description. An element
can have multiple implementations. Each implementation corresponds to a part of
the generic code of an OS.

The ASOG tool uses as input the system description, more precisely the par-
titioning and mapping information, the tasks code, the LiDeL library, and the
services library written as macrocode. The Colif description contains the services
needed by the application, along with the parameters needed for these services
(Fig. 2.13) [32].

Fig. 2.13 Representation of the flow used by ASOG tool for OS generation

When application tasks require a service (i.e., services for the data exchange in
the form of MPI communication), the ASOG tool starts crossing the service depen-
dency graph from the required service down to the low-level services. Based on the
crossed services, the ASOG will macrogenerate the files for the implementations
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of the elements associated with these services. The generated files are C or assem-
bly code files. The ASOG also generates the required compilation Makefile scripts,
along with some log files useful for debugging the OS generation process.

Table 2.5 shows some of the existing software components in the current ROSES
IP library and gives the type of the communication they use in their interfaces.

Table 2.5 Sample software IP library

IP Description Interfaces

SW host-if Host PC interface Register/signal
Rand Random number generator Signal/FIFO
mult-tx Multipoint FIFO data

transmission
FIFO

reg-config Register configuration Register/FIFO/SHM
shm-sync Shared memory

synchronization
SHM/signal

Stream FIFO data
streaming

GSHM/FIFO/signal

Figure 2.14 shows the “stream” software IP and part of its code to demonstrate
the utilization of the communication APIs. Its interface is comprised of four ports:
two for the FIFO API (P3 and P4), one for the signal API (P2), and one for the
GSHM API (P1). In line 7 of Fig. 2.14, the stream IP uses P1 to lock the access to
the shared memory that contains the data that will be streamed. P2 is used to suspend

stream

1  void stream::stream_beh()
2  {
3   long int *P;
4   ...
5   for(;;)
6    {...
7     P=(long int*)P1.Lock();
8     P2.Sleep();
9     for (int i=0; i<8; i++)
10     {
11      long int val = P3.Get();
12      P4.Put(*(P+i+8));
13  ...};...
14    P1.Unlock();
15   }
16 ...
17 }

P3

P4

P1P2

(GSHM)

(FIFO)

(signal)

(FIFO)

Fig. 2.14 The stream software IP
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the task that fills up the shared memory (line 8). Then, some header information is
got from the input FIFO using P3 (line 11) and streamed to the output FIFO using P4
(line 12). When streaming is finished, P1 is used to unlock the access to the shared
memory (line 14).

2.5.3 Communication and Middleware

The middleware points to the software component that links the application code
and the data transfer done by the network. The use of this component or layer
helps software designer in porting an application from one architecture to another.
In embedded systems, middleware should provide API primitives for several com-
munication schemes (send and receive, blocking or non-blocking, etc.). This API
isolates the communication services requested by the application from the network.

The middleware as well as the OS should be configured and tuned specifically
for the application/architecture.

2.5.4 Legacy Software and Programming Models

The legacy software and the legacy programming models at both high and low lev-
els can be integrated in the software stack easily. The clear separation between
the different software components through well-defined APIs allows using legacy
codes. The integration consists of adding new interfaces between the supported
components and relying the legacy software on the virtualization technology.

2.6 Conclusions

This chapter detailed the MPSoC hardware and software organization. The defini-
tions of the main hardware components (CPU, memory, interconnect) and software
components (applications tasks code, OS, HAL, communication) were given.

The layered organization of the software stack allows a gradual design performed
in several steps which correspond to different abstraction levels (system architec-
ture, virtual architecture, transaction accurate architecture, and virtual prototype).
The software validation is performed by simulation using an abstract architecture
model.

The next chapters will detail the software design and validation of each of these
different abstraction levels.



Chapter 3
System Architecture Design

Abstract This chapter presents the system architecture design. The system archi-
tecture design consists of partitioning and mapping the application onto the target
architecture and mapping the communication onto the available hardware resources.
The key contribution in this chapter represents the definition, organization, and
design of the system architecture using Simulink, for the Token Ring application
running on the 1AX architecture, the Motion JPEG application targeting the Diopsis
RDT architecture, and the H.264 encoder running on the Diopsis R2DT architecture.
The functional simulation of the system architecture models allows validation of the
applications’ algorithm.

3.1 Introduction

As shown in Fig. 3.1, the system architecture design consists of partitioning the
application into several parallel tasks and mapping the application tasks onto the
target architecture. The result of the system architecture design represents the sys-
tem architecture model. In this chapter, the mapping process will be defined and
then the system architecture model will be presented.

The objectives of the system architecture design are as follows:

– Functional validation of the target application algorithm
– Specification of the application partitioning and mapping onto the hardware

architecture.

3.1.1 Mapping Application on Architecture

3.1.1.1 The Mapping

MPSoC design flow starts with two separate models: architecture and application
[90] similar to the Y-chart [75], as illustrated in Fig. 3.2. Usually, the description
of the application functionality and hardware topology is independent of one other.
The architecture is specified as a set of processor and hardware subsystems that
interact via communication network.

93K. Popovici et al., Embedded Software Design and Programming of Multiprocessor
System-on-Chip, Embedded Systems, DOI 10.1007/978-1-4419-5567-8_3,
C© Springer Science+Business Media, LLC 2010
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The application is generally specified as a functional model made of a set of mul-
tiple functions. Then, the functions are grouped into tasks in order to identify the
parts of the application which can be done in parallel. This corresponds to the parti-
tioning step. A parallel software is comprised of multiple cooperating tasks, each of
which performs a subset of functions of the application. In the case that the initial
model of the application is sequential, e.g., sequential C code, a parallelization step
is required.
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The parallelization process determines how the computation, data access or
input/output operations, and data can be distributed among different processing ele-
ments [42]. It also determines which parts of the application will be implemented in
software and which parts in hardware. The parallelization of the application consists
in dividing the computation in several pieces that can be executed in parallel. These
different pieces group several functions of the application and are named tasks or
processes. The parallelization mechanism is called partitioning. A parallel applica-
tion decreases the total execution time of the application compared to its sequential
execution [122]. The partitioning step is quite difficult to be optimized in a general
case [163] and it will not be considered in this book.

The partitioned model of the application will be mapped on the target architec-
ture. The different tasks running in parallel may be executed by different processors.
The number of tasks does not have to be the same with the number of processors
available in the architecture. If the number of processors available on the target
architecture is less than the number of tasks, more than one task may be executed on
the same processor. The assignment of tasks to a target processor that will execute
them is called mapping.

The mapping represents the association between the tasks and the processing
elements on which they are executing, and the association between the buffers
used for the communication between the tasks and the hardware communication
resources of the architecture [49]. The mapping should ensure a balanced distribu-
tion of the computation over the processors in order to meet the design constraints,
e.g., the permitted overhead of the communication, synchronization, and parallelism
management [42].

The output of the mapping represents the assignment of the application functions
to the architectural units [102]. This corresponds to the system architecture model.

Example 1. Mapping token ring application on 1AX This paragraph illustrates the
partitioning, mapping, and binding processes for the token ring application onto
the 1AX architecture. Figure 3.3 shows the correlation between the application
functions and the architecture elements.

In this example, the functions of the application are grouped into three tasks.
Each task corresponds to a token node. The first two tasks (T1 and T2) are mapped
on the ARM7 processor, while the third task T3 is mapped onto the XTENSA
processor.

Figure 3.3 shows also the allocation of the communication buffers onto the hard-
ware communication resources. Thus, the communication buffer used for the data
exchange between the two tasks mapped on the ARM7 processors T1 and T2 is
mapped onto the local memory SRAM of the ARM subsystem. The communica-
tion buffers used between the tasks T1 and T3, respectively, tasks T2 and T3, which
correspond to the communication between the two processors, are mapped on the
global memory.

The result of the mapping process is the system architecture model of the token
ring application mapped on the 1AX architecture.
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Fig. 3.3 Mapping token ring on the 1AX architecture

3.1.1.2 The Design Space Exploration

Generally, there are many ways to map an application onto a given hardware
architecture. The design space exploration represents the different combinations of
mapping parallel software to parallel hardware. In order to be affordable in terms
of design cost, the mapping should not require any change of the application code
but only of the hardware-dependent code. It also represents the different ways of
interaction between the hardware, software, and their configuration and extension.

Usually, the mapping of an application to an MPSoC platform starts from a com-
plex system specification and goes through a vast design space exploration. The
application software needs to be adapted to the parallel capabilities of the mul-
tiprocessor architectures. Furthermore, to enable fast and flexible exploration of
the possible application-to-architecture mappings, it is necessary to automate the
hardware–software partitioning of the application [15].

There are two ways for design space exploration: spatial and temporal. The
spatial exploration refers to binding application to architecture. It defines the possi-
bilities of mapping tasks on processors, and the communication channels between
the tasks to the communication paths available in the MPSoC architecture. The tem-
poral exploration refers to computation and communication ordering. It defines the
scheduling policy on each resource and its corresponding parameters, e.g., time divi-
sion multiple access scheme and the associated slot length, fixed priority scheduling
and the associated priorities, or static scheduling and the associated ordering [154].
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The goal of design space exploration is to find a best matching between appli-
cation and architecture based on well-defined criteria or objectives, including the
design constraints. The design space exploration is generally represented as an
iterative loop with two main phases: performance evaluation and performance
optimization in terms of cost and performances (Fig. 3.4).

Application

Partitioning
Mapping

Architecture

STOP
Exploration

Performance 
Evaluation

Does it 
satisfy the

requirements?

yes

no

Design 
Constraints

Fig. 3.4 Design space
exploration

The evaluation of the performances for MPSoC may be done using simu-
lation or analysis-based methods [34]. The optimization is necessary when the
design constraints and performance requirements are not satisfied. Usually, the opti-
mization consists of application’s algorithm, architecture, or partitioning/mapping
optimization.

3.1.2 Definition of the System Architecture

The output of the mapping process represents a model at the highest abstraction
level, called system architecture (SA) model (Fig. 3.5). The definition of the sys-
tem architecture given by the Carnegie Mellon University’s Software Engineering
Institute in its glossary is “representation of a system in which there is a mapping
of functionality onto hardware and software components, a mapping of the soft-
ware architecture onto the hardware architecture, and human interaction with these
components” [30].
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Fig. 3.5 Global view of the system architecture

The system architecture represents a high-level application model combined with
partitioning and mapping information. Aspects related to the architecture model
(e.g., processing units available in the target hardware platform) are combined into
the application model (i.e., multiple tasks executed on the processing units), result-
ing in a combined architecture/application model. Thus, the system architecture
model expresses parallelism in the target application through capturing the mapping
of the application functions into tasks and the tasks into subsystems. It makes also
explicit the communication units between the tasks to abstract the implementation
of the communication protocol used for the data exchange between them.

At the system architecture level, the software is made of a set of functions
grouped into tasks. The function is an abstract view of the behavior of an aspect
of the application. Several tasks may be mapped on the same software subsys-
tem. The communication between functions, tasks, and subsystems makes use of
abstract communication links, e.g., standard Simulink signals or explicit communi-
cation units that correspond to specific communication paths of the target platform.
The corresponding hardware platform consists of the set of the abstract subsystems.

3.1.3 Global Organization of the System Architecture

The system architecture model is a hierarchical model composed of several compo-
nent layers. This approach provides insight into how a model is organized and how
its parts interact.
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The system architecture model may be represented using the hierarchy of con-
cepts depicted in Fig. 3.5. Thus, Fig. 3.5 shows a conceptual representation of the
system architecture defining the following concepts: subsystems, tasks, functions,
inter-subsystem communication, and intra-subsystem communication.

A subsystem represents a set of tasks that are aimed to be mapped on the same
subsystem. Examples of subsystems are SW-SS1 and SW-SS2 in Fig. 3.5. This
corresponds to the mapping process of the application tasks on the different com-
putation resources of the target architecture. A task groups a set of application
functions. Examples of tasks are T1, T2, and T3. This corresponds to the result
of the partitioning process of the application functions into tasks.

The basic element of the system architecture model represents the function. This
can be an elementary application function either predefined or user-defined function.
Examples of predefined functions are the functions representing mathematical oper-
ations (+, –, /, ∗), constants, conditional structures (if–else), or repetitive structures
(do–while). The user-defined functions represent specific functions implemented in
diverse programming languages (e.g., C, C++, Matlab). The user-defined functions
are also part of the system architecture model.

In order to specify the communication protocol used for the data exchange
between the different tasks, communication units are inserted between them in the
system architecture model. Later in the software design flow, during the next design
steps, the communication units will be replaced by behaviorally equivalent channel
implementations with the annotated protocol and device drivers from a real-time
operating system targeting to run on the processor.

There are two types of communication units: inter-subsystem and intra-
subsystem. The inter-subsystem communication shows the communication between
different subsystems, e.g., the communication units COMM2 and COMM3 between
the subsystems SW-SS1 and SW-SS2. The intra-subsystem communication speci-
fies the communication between the tasks mapped on the same subsystem, e.g.,
COMM1 communication unit between tasks T1 and T2 mapped on SW-SS1. The
number of the communication units depends on the application partitioning and
mapping on the target hardware architecture. The communication between the func-
tions inside the same task is implicit in the system architecture model and it will
be translated to communication via local variables inside the task during the next
design step.

The system architecture model is annotated with software and hardware archi-
tecture parameters to allow the generation and validation of the software stack and
of the hardware simulation platforms, and design space exploration.

The system architecture model may be represented using different environments
such as Simulink or SystemC. In the following paragraphs, the system architecture
will be detailed using as case study the Simulink environment.

Example 2. System architecture model of the token ring application mapped on
the 1AX architecture in Simulink Figure 3.6 illustrates a screenshot of the sys-
tem architecture modeled in Simulink for the token ring application mapped on the
1AX architecture. The top layer of the model’s hierarchy represents the two software
subsystems available in the 1AX architecture (ARM7-SS and XTENSA-SS) and the
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Fig. 3.6 System architecture model of token ring

two inter-subsystem communication units between them (COMM1 and COMM2).
The two inter-subsystem communication units allow the data exchange between the
two processor subsystems.

The application functions of the token ring application are grouped into three
tasks (T1, T2, and T3). Figure 3.6 illustrates that for the token ring application two
tasks (T1 and T2) are mapped on the ARM7 processor and the third task (T3) is
mapped on the XTENSA processors.

The third task (T3) running on the XTENSA processor computes the DFT func-
tion. The DFT function is implemented in an application library developed in
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C programming language, representing an example of user-defined function for the
token ring application.

The data exchange between the tasks T1 and T2 mapped on the ARM7 processor
requires the communication unit COMM.

3.2 Basic Components of the System Architecture Model

The basic components of the system architecture model are the computation and
communication components. The computation components consist of the appli-
cation functions, while the communication makes use of generic I/Os, such as
Simulink I/Os or SystemC signals. The detailed description of these components
will be illustrated in the following paragraphs using the Simulink environment as
representation medium of the system architecture design.

3.2.1 Functions

The application functions can be modeled in Simulink by using Simulink blocks.
There are two types of blocks: standard Simulink blocks and user-defined blocks.
Blocks are the elements from which Simulink models are built. Every Simulink
block has a set of attributes, called parameters, which govern its appearance and
its behavior during the simulation. Some types of parameters are common to all
blocks (e.g., block name), while other attributes are specific to a particular type of
block. Simulink allows users to specify values for many of a block’s parameters, thus
enabling to customize the behavior to fit the requirements of a particular applica-
tion. For the standard blocks, Simulink provides predefined continuous and discrete
function blocks and a graphical user interface (GUI) to relieve the application model
building.

For the user-defined blocks, Simulink provides the capability to integrate in
the model user-defined blocks developed in other programming languages such as
C, C++, or MATLAB, by using S-functions. To integrate S-functions in Simulink,
there are two methods. The first one is to write the S-function block manually. But
this method requires also a manual development of a wrapper function, which calls
the actual function code. Additionally, the S-function has to be manually compiled
using the mex utility, in order to generate the MEX file accepted by the Simulink
simulation engine.

The second method to use an S-function consists of an automatic generation and
compilation of the S-function by using the S-function Builder tool integrated in the
Simulink environment. The resulted S-function has a fixed type signature. But the
designer has only to set up the configuration panel by specifying the source files of
the hand-written function code, the format of the function call, and the input/output
arguments passed to the subroutine. The input arguments represent the constant
parameters required for the subroutine execution. The output arguments represent
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the returned value of the subroutine or the non-constant parameters whose values
can be changed by the function. Then, based on the configuration, the S-function
Builder will automatically create and compile the corresponding S-function.

3.2.2 Communication

The communication between the different application functions is made using
Simulink signals. These links or signals connect the different Simulink blocks. They
may carry data from one block to one or more other blocks. The data transmission
from the source block and its arrival at the destination block happens simultaneously
in a rendezvous fashion. The signals may carry different types of data, such as inte-
ger, floating point, or boolean. The dimension of the data may vary also from scalar
to vector or matrices, but it has to be constant during the execution of the model.

3.3 Modeling System Architecture in Simulink

The system architecture may be described in Simulink or SystemC. This chapter
will present the modeling style in the case of using the Simulink environment.

3.3.1 Writing Style, Design Rules, and Constraints in Simulink

The system architecture design in Simulink imposes some limitations and con-
straints. These design rules include the following:

– Constraints on the selection and configuration of the blocks used for the applica-
tion modeling

– Constraints on the integration of the application functions implemented in other
programming languages such as C/C++

– Constraints regarding the construction of the system architecture model

3.3.1.1 Constraints on the Simulink Standard Blocks

The system architecture model may use only discrete Simulink blocks in order to
allow a discrete event simulation.

In case of algebraic loops or feedback path, unit delay blocks have to be inserted
in the Simulink loop. These unit delay blocks have to be configured by a sample
rate equal to 1 in order to delay their input signals inside the loop. The sample rate
represents the number of samples per second. The other blocks are characterized by
an inherited sample rate. In case of inherited sample rate blocks, Simulink assigns
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an inherited sample rate to a block based on the sample rates of the blocks connected
to its inputs.

The supported predefined blocks are restricted to a subset of the standard
Simulink library. This subset includes the following:

– Mathematical operations, such as sum, multiplication, division, modulo, absolute
value

– Logic operations: AND, OR, XOR, unary minus, arithmetic shift
– Discrete blocks: delay, mux, demux, merge, selector, etc.
– Conditional structures: if–then–else and switch-case
– Repetitive structures: for-loop and while-condition-loop
– Sources: constants, extern files, input ports
– Sinks: display block, scope block, extern files, and output ports

3.3.1.2 Constraints on the S-Functions

The system architecture model may include user-defined functions written only in
C programming language. The S-functions used to integrate the customized code
need to be built by using the S-function Builder tool, which is the fastest and easiest
way for the S-function generation compared with the manual implementation.

The arguments of the user-defined function have to respect a well-defined order.
Basically, the function call accepts as parameters the input arguments followed by
the output arguments, as illustrated in Fig. 3.7. The order of the parameter definition
has to be identical with the order of the input/output ports declaration in the config-
uration panel of the S-function Builder tool. Moreover, the user-defined C function
has to return a void value.

void Function (DataType1 Input1, …, DataTypeN InputN, 
DataTypeN+1 Output1, …, DataTypeN+M OutputM)

{
// user defined C code

}

Input arguments

Output arguments

Return Value

Fig. 3.7 User-defined C-function

Example 3. S-function for the FFT computation in token ring For example, the
user-defined C function used for the DFT computation in the token ring application
is declared and implemented as shown in Fig. 3.8, where dir, x1, and y1 represent
the input arguments and x2 and y2 represent the output arguments.

The different S-functions are not allowed to share global variables between them,
their access being limited to the local data variables. The entire data passing between
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Fig. 3.8 DFT function of the token ring

the different S-functions has to be modeled explicitly, with a dedicated Simulink
signal used for the connection between the different S-functions.

3.3.1.3 Constraints on the Communication

To transfer data in Simulink, the different blocks are connected by signals. The
signal between the blocks may carry data from one source block to multiple desti-
nation blocks. This specific feature determines to use communication units which
correspond to point–point communication schemes and restricts the global shared
memory accesses in the target architecture.

3.3.2 Software at System Architecture Level

The software at the system architecture level consists of a set of application func-
tions grouped into tasks. Figure 3.9 shows three examples of application functions
grouped into tasks.

Example 4. Software in the token ring system architecture model The software in
the token ring system architecture model is represented by the application functions,
e.g., DFT, +, –, /, ∗, if, else, or mathematical constants.
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Fig. 3.9 Application functions grouped into tasks

3.3.3 Hardware at System Architecture Level

The hardware at the system architecture level consists of a set of abstract
hardware and software subsystems that encapsulate the tasks aimed to be executed
on those subsystems, and the different communication units introduced between the
subsystems to specify the communication protocol.

Example 5. Hardware in the token ring system architecture model The hardware
in the token ring system architecture model is represented by the processor subsys-
tems XTENSA-SS and ARM7-SS, and the inter-subsystem communication units
COMM1 and COMM2 that connect the two processor subsystems, as it is illustrated
in Fig. 3.10.

XTENSA-SS

Subsystems

Comm. 
Inter-SS

ARM-SS

COMM1

COMM2

Fig. 3.10 Software subsystems for the token ring application
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3.3.4 Hardware–Software Interface at System Architecture Level

The hardware–software interface at the system architecture level consists of a set
of links which connect the input/output ports of the different subsystems with the
input/output ports of the tasks that are mapped on those subsystems.

Example 6. Hardware–software interface in the token ring system architecture
model An example of hardware–software interface in the token ring system archi-
tecture model represents the Simulink link that connects the output port of task T3
(out) with the output port of the XTENSA subsystem (out) in Fig. 3.10.

3.4 Execution Model of the System Architecture

The Simulink model is used as a reference model for debugging the application’s
algorithm. The following sections will describe the adopted configuration in the
Simulink simulation engine to validate the system architecture model.

The simulation of the system architecture model uses a variable step discrete
solver. This allows validation of the functionality of the application. For the inter-
subsystem and intra-subsystem communication units, Simulink uses an abstract
simulation model for each of these units based on generic Simulink I/Os.

The system architecture model is used to validate the application’s algo-
rithm through functional simulation. It is similar to native code execution on the
host machine. The performance estimation at this level uses a simulation-based
approach. As the system architecture model represents a high-level application
model, the hardware architecture is completely abstracted, including processor sub-
systems or communication infrastructure. The memory usage is also abstracted;
the application uses variables and pointers without taking into consideration details
related to aspects such as shared memory or virtual memory. As presented in [12], a
relevant metric at this high abstraction level is the simulation time of the application.

The simulation time may give useful information on the efficiency of the appli-
cation’s algorithm in terms of behavioral features. The application’s algorithm does
not depend on the final operating system that will be running on the target processors
but influences the performance after the application’s parallelization.

Example 7. Simulation of the token ring system architecture model The simulation
of the system architecture model in Simulink allows to verify the functionality of
the application, including the DFT computation. The simulation requires 3 s and it
stopped when the resulted value after the different computations had become bigger
than 1,000,000, conform the initial specification of the application.

3.5 Design Space Exploration of System Architecture

3.5.1 Goal of Performance Evaluation

The MPSoC design process relies on several decisions and constraints related to
hardware and software architecture, which can influence the overall performance of
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the system. Examples of hardware architecture decisions are as follows: number and
type of processors, memory size, type of memories (local, global), type of commu-
nication network (point to point, bus, network on chip), communication latency, etc.
Examples of software architecture decisions are: type of scheduling algorithm used
by the operating system for the tasks activation/deactivation, type of communication
primitives (blocking or non-blocking semantic), real-time execution requirements,
binary code size, synchronization mechanisms between the tasks running on the
same processor, etc.

These different decisions influence the overall execution time of the system, cost,
and power consumption. Therefore, good decisions are required to be able to control
the MPSoC design process.

The goal of performance evaluation at the system architecture level is to allow in
an early phase of the design process profiling the communication and computation.
This can be accomplished by providing information independently from the system
behavior in time.

3.5.2 Architecture/Application Parameters

The system architecture model is annotated with application and architecture param-
eters that can influence the global performance of the final system. These parameters
can be classified into two main categories: specific to subsystems and specific to
communication units.

(a) Architecture/Application Parameters specific to Subsystems: The parame-
ters specific to subsystems characterize the different subsystems (hardware and
software) from both hardware and software points of view.

Examples of hardware architecture parameters that annotate the subsystems are
as follows:

– ResourceType which specifies the type of the hardware resource. There are three
types of hardware resources: computation resource (processors), storage resource
(memory), and I/O resources (I/O peripherals). In the case of a subsystem that
represents a processor subsystem, the ResourceType specifies the type of the
processor cores.

– NetworkType. This parameter specifies the type of the network component used
to interconnect the different subsystems in the target architecture. Examples of
interconnect components are bus and network on chip (NoC).

– NoCTopology. This parameter is used when the NetworkType is NoC and it spec-
ifies the topology of the NoC. Examples of NoC topologies are mesh, torus, tree,
or butterfly.

– NoCRoutingAlgorithm. This parameter is used when the different subsystems are
interconnected by a NoC. The parameter specifies the routing algorithm used by
the routers to transmit the received data packet. Example of a routing algorithm is
XY or YX.
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– NoCArbitrationAlgorithm. This parameter is used to specify the type of the arbi-
tration algorithm used inside a NoC router (e.g., round robin, priority based), in
order to select the routing request to be treated, when the router receives more
than one request simultaneously for packets transmission.

– ResourceName which identifies the hardware resource.

Each subsystem which represents a processor subsystem is annotated with soft-
ware architecture parameters. Examples of software architecture parameters are the
following:

– OSType, which specifies the name of the operating system running on the target
processor. Examples of operating systems are Linux, Mutek, DwarfOS, and eCos.

– SchedulerType to identify the type of the OS scheduler (preemptive, cooperative),
when the target OS supports different schedulers.

– SchedulerAlgorithm to define the algorithm used for the tasks management by the
operating system (round robin, priority based), etc.

Example 8. Parameters specific to the subsystems in the token ring system archi-
tecture model Examples of architecture/application parameters annotating the
subsystems of the token ring system architecture model are ResourceType with
values “ARM7” for the ARM7 subsystem and “XTENSA” for the XTENSA sub-
system, NetworkType with the value “AMBA” because in the 1AX architecture
different subsystems are interconnected through an AMBA bus, OSType with value
“DwarfOS” to specify that the target operating system running on each software
system is the DwarfOS for both processors.

(b) Architecture/ Application Parameters Specific to Communication Units: The
parameters specific to the communication units can be architecture or application
parameters.

Examples of hardware architecture parameters that annotate the communication
units are as follows:

– ResourceType which specifies the type of the communication protocol or storage
resource. In the case of an inter-subsystem communication unit, the ResourceType
specifies the storage resource on which the communication buffer will be mapped.
The communication buffer can be mapped in the sender subsystem, receiver sub-
system, or in a stand-alone storage resource, such as global memory or hardware
FIFO. In the case of an intra-subsystem communication unit, the ResourceType
specifies the communication protocol implemented in software, such as software
FIFO protocol or shared memory.

– AccessType. This parameter identifies whether the access to the memory that
stores the communication buffer is performed directly by the processor or by using
a DMA mechanism, in case that the target hardware architecture provides such
kind of mechanism for the memory access.
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– ResourceName which identifies the storage resource in case that the target hard-
ware architecture provides several storage resources of the same type, e.g., several
hardware FIFOs or several global memories.

The communication unit can also be annotated with software architecture param-
eters, e.g., CommType, which identifies the type of the communication library used
during the HdS integration. This parameter specifies the communication APIs used
in the tasks code after their generation for the data exchange, e.g., send(. . .)/recv(. . .)
APIs when the CommType is “MPI”; or DOL_read(. . .)/DOL_write(. . .) commu-
nication APIs when the CommType parameter has the value equal to “DOL.”
The different communication units can be accessed using different communication
primitives in the tasks code.

Example 9. Parameters specific to the communication units in the token ring system
architecture model Examples of architecture/application parameters annotating the
communication units of the token ring system architecture model are ResourceType
with value equal with “GMEM” for the communication units COMM1 and COMM2
in order to specify that the corresponding communication buffers used for the data
exchange between the two processors of the 1AX architecture are mapped onto
the global memory. The parameter ResourceType has the value “SWFIFO” for the
communication unit COMM in order to specify that the communication between
the tasks T1 and T2 mapped on the same ARM7 processor follows a software FIFO
protocol.

Another parameter annotating the communication units COMM1 and COMM2
represents ResourceName with values “MEM0” in order to specify that the commu-
nication buffers corresponding to these communication units are mapped on the
global memory identified through id MEM0. The CommType parameter has the
value “MPI” for all the communication units, in order to specify that all the tasks
use the communication primitives “send(. . .)/recv(. . .)” for all the data exchanges.

Figure 3.11 illustrates a capture of the communication units’ annotation with
the architecture parameters for the COMM1 communication unit of the token ring
system architecture. The annotation is performed in Simulink by adding parameters
in the description field of the block properties of the Simulink block representing
the communication unit.

3.5.3 Performance Measurements

At the system architecture level, the performance measurement consists of profil-
ing the communication and computation for each task and/or each processor. As the
system architecture has no time notion, the result of profiling is a time-independent
data. Examples of metrics that can be measured at this level are as follows: appli-
cation data size, buffer size required for the intra-subsystem and inter-subsystem
communication, the total quantity of exchanged data between the tasks during the
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Fig. 3.11 Architecture parameters specific to the communication units

execution, the number of iterations of a function execution, the amount of data
transferred between the different processors, etc.

Example 10. Performance measurements in the token ring system architecture
model For example, the DFT function of the token ring application was required to
be called and computed totally 14 times during the execution of the whole applica-
tion. The application data exchanged between the ARM and XTENSA processors
was 112 bytes during the entire execution. The size of the application data sent by
the first task mapped on the ARM processor to the second task running on the ARM
processor was 64 bytes.

3.5.4 Design Space Exploration

At the system architecture level, the designer can experiment different partition-
ing and mapping schemes. The designer can regroup the functions into the tasks in
several ways and map these tasks on different subsystems. This exploration influ-
ences the total amount of data exchanged between the tasks during the execution, the
application data size, or the number of iterations of a specific function. By chang-
ing the partitioning and mapping of the application on the target architecture, the
number and type (intra-subsystem, inter-subsystem) of communication units may
also vary. The designer may adopt different communication protocols and may
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map the communication buffers onto different storage resources by annotating the
communication units with the proper architecture parameters.

Example 11. Design space exploration for the token ring application In the case of
the token ring application, the designer may map the buffers required for the inter-
subsystem communication onto different communication architecture resources,
such as the local memories of both ARM and XTENSA processors or the shared
global memory. The designer may also opt for the dedicated hardware FIFO compo-
nent directly connected to the local buses of both processor subsystems. Regarding
the partitioning and mapping, the token ring functions can be grouped forming tasks
in different ways, resulting in tasks with different levels of granularity. These tasks
may be mapped on the processors in several ways. For example, the DFT compu-
tation may be mapped on the ARM processor instead of the XTENSA processor,
letting the XTENSA processor to be responsible for the control part of the token
ring application. In this case, the number of the intra-subsystem communication
units becomes 1 for the XTENSA processor, while the ARM7 subsystem has no
intra-subsystem communication unit.

3.6 Application Examples at the System Architecture Level

In the following paragraphs, two examples will be presented at the system architec-
ture level: the Motion JPEG application mapped on the Diopsis RDT architecture
and the H.264 encoder application mapped on the Diopsis R2DT architecture.

3.6.1 Motion JPEG Application on Diopsis RDT

This section presents the system architecture design in case of the Motion JPEG
(MJPEG) decoder application running on the Diopsis RDT architecture with AMBA
bus. This consists of mapping the Motion JPEG decoder application onto the Diopsis
RDT platform, and modeling the resulted system architecture.

The first step of the system architecture design represents the functional modeling
of the application in Simulink. The development of the MJPEG decoder application
in Simulink requires seven S-functions in order to integrate the C code of the main
parts of the decoding algorithm.

After the functional modeling, the main functions of the application are isolated
into separate tasks. Figure 3.12 shows the application partitioning into tasks. The
variable length decoding (VLD) constitutes the first task. The differential pulse code
demodulation on the DC component (DPCD), run length decoding on the AC com-
ponent (RLD), zigzag scan, and inverse quantization (IQ) are grouped into a second
task. The inverse discrete cosine transformation (IDCT) makes up the third task and,
finally, the display function of the decoded image composes the fourth task.

After the partitioning of the application functions into tasks, the next step repre-
sents the mapping of these tasks onto the computation and I/O subsystems provided
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Fig. 3.12 Mapping motion JPEG on Diopsis RDT

by the target architecture. Therefore, the four different tasks are mapped onto the
Diopsis RDT architecture (Fig. 3.12). Thus, the first two tasks (T1 and T2) are
mapped on the ARM9 processor. The third task (T3), performing the IDCT com-
putation, takes 68% of the total execution time of the decoding process, being the
most computation-intensive task. Therefore, it was mapped on the DSP processor.
The resulting decoded image of the task T4 is displayed on an LCD panel con-
nected through the SPI peripheral of the POT. Hence, T4 was mapped on the POT
subsystem.

After the mapping process, in order to specify the communication protocol,
several communication units are inserted between the tasks mapped on the same
processor and between the different subsystems. The communication buffers used
for the communication between the tasks can be mapped on the local memories of
both processor subsystems or on the global memory. Besides the buffer mapping on
the storage resources, the mapping has to specify the end-to-end communication
path between the two processors. The result of the mapping represents the sys-
tem architecture model for the Motion JPEG application mapped on the Diopsis
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Fig. 3.13 System architecture example: MJPEG mapped on Diopsis

RDT architecture. A screenshot of the system architecture modeled in Simulink is
illustrated in Fig. 3.13.

This model includes three subsystems: two software subsystems (the ARM and
the DSP subsystem) and a hardware subsystem (the POT). The Simulink hierarchy
is able to capture the mapping of the application onto the architecture at a high
abstraction level through the decomposition of the system into tasks and subsystems.
The Simulink model includes also explicit communication units to capture different
communication protocols and resources provided by the architecture.

In this case, the intra-subsystem communication for the tasks mapped on the
same subsystem follows a software FIFO protocol (SWFIFO). The inter-subsystem
communication between the different subsystems uses data buffers mapped on dif-
ferent storage resources, such as DSP data memory (DMEM), DSP registers (REG),
ARM local memory (SRAM), or the distributed external memory (DXM). Later
in the design flow, each of the communication units can be mapped on a specific
communication path and protocol of the final architecture. The number of commu-
nication units depends on the application partitioning and mapping decisions on the
target architecture.

The system architecture in Simulink is annotated with architecture information
used for the further software refinement and generation of the hardware simulation
platform. The hardware architecture parameters used in this example are as follows:

(a) Parameters specific to subsystems:

– ResourceType with possible values “ARM9,” “DSP,” and “POT” for a subsystem.
– NetworkType parameter, which has the value equal with “AMBA” for the Diopsis

architecture with AMBA bus.
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– ResourceName parameter. This parameter identifies the hardware resource of the
target architecture, e.g., the DSP.

On the software side, each processor will execute a tiny operating system,
namely, Dwarfos. Thus the OSType parameter for each software subsystem of the
system architecture model has the value “Dwarfos.” As the Dwarfos operating sys-
tem supports only round-robin preemptive scheduling, the software architecture
parameters SchedulerType and SchedulerAlgorithm are not required in this example.

(b) Parameters specific to communication units:

– ResourceType with possible values or “DXM,” “SRAM,” “DMEM,” “REG” for
the inter-subsystem communication and “SWFIFO” in case of an intra-subsystem
communication unit.

– AccessType parameter, required to specify for an inter-subsystem communication
unit whether the DSP will access the local memory of the ARM or the external
global memory directly or by initiating a DMA transfer.

– ResourceName parameter. This parameter identifies the hardware resource of the
target architecture in case of an inter-subsystem communication unit, e.g., the
external memory DXM.

The tasks executed by the processors will use the send(. . .)/recv(. . .) primitives
as communication APIs. Therefore, the CommType has the value “MPI” to represent
the message passing send(. . .)/recv(. . .) semantics for each communication unit.

To validate the MJPEG algorithm, the system architecture model can be sim-
ulated using the Simulink discrete-time simulation engine. The input test image
represents a 10-frame bitstream encoded using QVGA YUV 444 format. The
simulation time is 15 s on a PC running at 1.73 GHz with 1 GB RAM.

The simulation allowed measuring some performance indicators. Hence, the total
number of iterations necessary to decode the 10-frame input image was 36,000.
The communication between the ARM and DSP through the communication unit
COMM1 requires a buffer of 1 word (4 bytes), the communication unit COMM2
requires 64 words (256 bytes) buffer size, and, finally, the communication unit
COMM3 requires 4 words (64 bytes). The total number of words exchanged
between the different subsystems during the decoding process of the 10 frames was
2,484 Kwords.

3.6.2 H.264 Application on Diopsis R2DT

The H.264 encoder is a computation-intensive video application and more complex
than the token ring or Motion JPEG applications. Hence, the Diopsis R2DT with
NoC is used to execute the H.264 encoder.
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This section presents the system architecture design in the case of the H.264 main
profile encoder application running on the Diopsis platform with two DSP and one
ARM9 processors interconnected through a NoC.

The first step represents the functional modeling of the H.264 application in
Simulink. The H.264 encoder algorithm is comprised of several functions and two
dataflows: a forward path and a reconstruction path. The input frame of a video
image sequence (Fn) is processed in units of a macroblock. The reference code used
for the H.264 encoder development is the x264 open-source code [172]. The sequen-
tial C code is converted to a dataflow model as explained in [71]. The development
of the H.264 encoder application in Simulink requires four S-functions in order to
integrate the C code of the main parts of the encoding algorithm.

After the functional modeling, the different functions are grouped into tasks.
Figure 3.14 illustrates the partitioning of the H.264 functions into tasks. The applica-
tion functions are grouped into three tasks as follows: the CABAC entropy encoder
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constitutes the task T2; the NAL construction and bitrate controller are grouped into
task T3; and the other computation and control functions are grouped into task T1.

After the partitioning, the tasks are mapped on the available resources of the
Diopsis R2DT architecture. Therefore, each task is mapped on a different CPU.
As tasks T1 and T2 require a big amount of computation, they are mapped on
the DSP processors: task T1 on DSP1, respectively, task T2 on DSP2. The task
T3 including the control part for the bitrate is mapped on the ARM9 processor.
The communication between these tasks mapped on the three different processors
represents inter-subsystem communication and it implies a total of three commu-
nication units, one between each pair of processors (DSP1->DSP2, DSP2->ARM9,
and ARM9->DSP1).

The resulted system architecture model is illustrated in Fig. 3.15.

System Architecture for H.264 Task T3 mapped on ARM9

Task T3 Specification

Parameters Annotation

Fig. 3.15 H.264 encoder system architecture model in Simulink

Similar to the system architecture model of the MJPEG application, in order to
allow the generation of the next levels, the high-level application model of the H.264
contains the following architecture information annotated as parameters:

(a) Parameters specific to subsystems:

– ResourceType for the subsystem in order to differentiate between the “ARM9” and
“DSP” subsystems.
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– NetworkType parameter, which has the value equal with “NoC,” as the tar-
get architecture will contain a NoC in the Diopsis architecture. This NoC
implementation is based on the Hermes NoC [107].

– NoCTopology, with possible values “MESH” and “TORUS,” as the target archi-
tecture support both types of NoC topologies.

– NoCRoutingAlgorithm with possible value “XY” for the mesh topology or
“NMWF” (non-minimal west-first) algorithm for the torus topology [60].

– NoCArbitrationAlgorithm with value “ROUND_ROBIN” to arbitrate the simulta-
neous packet transmission requests on the router.

– ResourceName parameter to identify the hardware resource, e.g., the DSP1 or
DSP2 processor as the architecture contains more than one same type of DSP
(Atmel magicV VLIW processors).

As in this case the processors will execute single tasks, the software archi-
tecture parameter is represented only by the OSType parameter with the value
“DWARFOS” to specify the OS that will be responsible for the application boot,
interrupt management, and the access to the hardware.

(b) Parameters specific to communication units

– ResourceType to specify the communication protocol of the inter-subsystem
communication unit (“DXM,” “SRAM,” “DMEM,” “REG”).

– AccessType parameter, required to specify whether the DSP processors will access
the local memory of the ARM or the external global memory directly or by
initiating a DMA transfer.

– ResourceName parameter to identify the hardware resource, e.g., the memory.

As software architecture parameter, the communication units are annotated with
the CommType parameter with value “MPI” for the communication primitives.

To validate the H.264 encoder algorithm, the system architecture model can be
simulated using the Simulink discrete-time simulation engine. The input test video
represents a 10-frame video sequence QCIF YUV 420 format. The simulation time
is 30 s on a PC running at 1.73 GHz with 1 GB RAM.

The simulation allowed measuring some performance indicators. Thus, the total
number of iterations necessary to decode the 10-frame video sequence was equal to
the number of frames. This is due to the fact that all the S-functions implemented in
Simulink operate at frame level. The communication between the DSP1 and DSP2
processors uses a communication unit that requires a buffer of 288,585 words to
transmit the encoded frame from the DSP1 processor to the DSP2 in order to be
compressed. The DSP2 processor and the ARM9 processor communicate through
a communication unit that requires a buffer of 19,998 words. The last communica-
tion unit between the ARM9 and DSP1 processors requires one word buffer size in
order to store the quanta value required for the encoder. The total number of words
exchanged between the different subsystems during the encoding process of the 10-
frame video sequence using main profile configuration of the encoder algorithm was
approximately 3,085 Kwords.
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3.7 State of the Art and Research Perspectives

3.7.1 State of the Art

Current literature includes several academic and industrial design environments that
involve specification of the application mapping on the target architecture at the
system architecture level.

The automatic parallelization of a sequential program code is an open research
topic. Several research works have already focused on automatic partitioning and
tasks mapping, such as [173] and [99]. In [48], the authors propose an automatic
partitioning of the application and automatic allocation of the computation resources
using genetic algorithms. Reference [123] proposes a programming paradigm that
facilitates the translation of sequentially code software algorithms of the multimedia
applications into their parallel implementations.

Other research category focuses on finding the best mapping of an application
onto the architecture by using different kinds of optimization algorithms and met-
rics. Examples of these kinds of research works and tools are PISA [20] which
defines the mapping process as a multi-objective search problem, Compaan com-
piler [99] which automatically generates the mapping specification of an application
modeled as Kahn process networks onto the Intel IXP network processor, Mat [97]
which describes the APOTRES framework for mapping DSP applications on single
program multiple data (SPMD) architectures, Bus [27] which presents a framework
that automatically partitions a C application code into hardware and software, or
Xue [173] which treats the memory and processor allocation problem applying a
run-time resource partitioner for multiple applications running on a shared memory
MPSoC architecture. The Sesame environment described in [47, 155] defines the
optimal mapping problem taking into account three objectives: maximum process-
ing time in the system, total power consumption, and the cost of the architecture. The
Sesame environment uses analytical methods to identify a small set of promising
mapping candidates, and then uses simulation for performance evaluation. The DOL
(distributed operation layer) framework allows multi-objective algorithm mapping
onto MPSoC architectures with system-level performance analysis [154].

Besides the partitioning and mapping, other research works are related to the
specification, modeling, and simulation of the system architecture. In the DOL
environment, the application is specified as Kahn process network [154]. The appli-
cation, platform, and mapping information are stored into three separate XML files.
Many research efforts focus on the standardization of the XML format to facili-
tate various IPs exchange among different tools and IP providers. The IP XACT
proposed by the Spirit consortium is an example of standardization proposal in the
form of an XML schema and APIs for representing and manipulating hardware IPs
[146].

An example of modeling environment is the well-known Ptolemy [26] for high-
level system specification that supports description and simulation of multiple
models of computation, e.g., synchronous dataflow (SDF) , which is a special case of
dataflow which detects deadlock and boundedness, boolean dataflow (BDF) which
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is a generalization of SDF that sometimes yields to deadlock or boundedness analy-
sis, dynamic dataflow (DDF) , which uses only run-time analysis to detect deadlock
and boundedness, finite state machine (FSM) , which is comprised of a finite num-
ber of states, transitions between those states and actions. The Ptolemy environment
allows simulation at algorithmic level.

PeaCE [64] is a Ptolemy-based co-design environment that supports hardware
and software generation from a mixed dataflow and extended FSM specification.
PeaCE also attempts to generate SoC architecture from an algorithm-level model.
An extended version, the HOPES framework, is a new model-based program-
ming [13, 58, 105] environment of embedded software, which supports several
environments for the initial specification (PeaCE, UML, KPN) [65].

Several other research groups investigate the specification and simulation of
multimedia applications using Simulink and PeaCE [83]. In [129] a design flow
for data-dominated embedded systems is proposed, which uses Simulink environ-
ment for functional specification, and analysis of timing and power dissipation. This
approach mainly focuses on an IP-based design with single processor.

Recently, UML is investigated as a system-level language [36]. Reference [73]
proposes a UML-based MPSoC design flow that provides an automated path from
UML design entry to FPGA prototyping, including the functional verification and
the automated architecture exploration.

3.7.2 Research Perspectives

Despite the existing of a huge literature on system architecture design, this is still
an open issue for heterogeneous MPSoC. There are three key problems concerning
the system architecture design:

– Automatic partitioning of the application functions into tasks
– Automatic mapping of the tasks onto the target architecture
– Automatic mapping of the communication onto the target architecture. This

includes communication buffer mapping on the storage resources and specifica-
tion of the communication path

Programming the complex MPSoC architectures and providing suitable software
support (compiler and operating system) seems to be a key issue. This is due to the
fact that either system designers or compilers will have to make the application code
explicitly parallel to run on these architectures.

A first difficulty found in MPSoC design is how the applications running on
these multi-processor architectures are decomposed into several processes/tasks and
how these parallel tasks can share the same resources provided by the architec-
tures. In particular, allocation of the computation resources (processing units) and
storage resources (memories) is critical, as it dictates both performance and power
consumption.
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Automatic generation of the system architecture model represents one research
perspective. Starting from the specification of the application, specification of the
architecture and design constraints, the automatic partitioning, and mapping could
find the best configuration. The specification of the application can be considered as
being the functional model in Simulink, composed of several functions, similar to
dataflow models.

The architecture specification has to include information related to the hard-
ware resources of the target architecture, such as number and types of the available
processors, size of the local and external memories, and possible communication
paths/protocols between the different processors. The communication paths can be
captured using the notion of graph, where the nodes are the hardware resources of
the architectures that may be crossed during a data exchange between the proces-
sors. Examples of nodes are the CPUs, co-processors, DMA engines, memories,
local buses, or the global interconnect components (AMBA, NoC). The edges of the
graph represent the connections between them. In this way, the specification of the
communication path in the system architecture model (e.g., AccessType) is reduced
to solve the shortest path problem between two nodes of a graph. The architecture
specification can be stored using an XML format [154].

The design constraints may specify limitations for the relation between the appli-
cation specification in Simulink and the resource components. They include the
following:

– The constraints between the functions of the application and the processors of
the hardware architecture. For example, certain functions have to be grouped on
the same task or several tasks must run on certain processors or certain proces-
sors types. One may also specify that certain tasks must be executed on the same
processor.

– Application constraints. This concerns real-time execution requirements, e.g.,
deadline meeting constraints, execution time, or communication latency.

Another method for the system architecture automatic generation may be based
on profiling tools. The application specification can be profiled using specific code
profiling tools. The profiling tools record summary information of the execution
(e.g., number of function calls) and help to expose the performance bottleneck and
hotspots. Based on the profiling data and constraints information, analytical methods
can propose an efficient application and communication mapping.

3.8 Conclusions

This chapter presented the system architecture design with case studies in Simulink
for the token ring application mapped on the 1AX architecture, the Motion JPEG
decoder application mapped on the Diopsis RDT MPSoC architecture, and the
H.264 encoder application mapped on the Diopsis R2DT architecture.
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The hierarchical organization of the system architecture model allowed combin-
ing the application model with the specification of the partitioning and mapping of
the computation and communication onto the hardware architecture resources.

The simulation at the system architecture level allowed to validate the func-
tionality of the application and to profile the communication requirements of the
applications (number of bytes that need to be exchanged during the execution).



Chapter 4
Virtual Architecture Design

Abstract This chapter details the virtual architecture design. The virtual archi-
tecture design consists of transforming the application functions into the final
application tasks C code and mapping the communication onto the hardware
resources available in the target architecture. The key contribution in this
chapter represents the virtual architecture definition, organization, and design, using
SystemC, for the token ring application running on the 1AX architecture, the Motion
JPEG application targeting the Diopsis RDT architecture, and the H.264 encoder
running on the Diopsis R2DT architecture. The simulation of the virtual architec-
ture models allows validating the partitioning and the final application tasks code.
Different communication mapping schemes are explored in order to analyze their
impact on the global performances.

4.1 Introduction

The virtual architecture design consists of mapping the communication onto the
hardware platform resources and generating the final C code for each task. At this
phase, the different links used for the communication between the different tasks
of the system architecture model are mapped onto the hardware communication
resources available in the architecture to implement the specified protocol. The
system architecture tasks made of application functions are transformed into the
final application tasks code. These tasks codes designed in C are adapted to the
communication mechanism through the use of adequate HdS communication prim-
itives. The result of the virtual architecture design represents the virtual architecture
model.

4.1.1 Definition of the Virtual Architecture

The second hardware–software abstraction level is called virtual architecture level
(VA). The virtual architecture captures the global organization of the system into

123K. Popovici et al., Embedded Software Design and Programming of Multiprocessor
System-on-Chip, Embedded Systems, DOI 10.1007/978-1-4419-5567-8_4,
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abstract software and hardware modules or subsystems and abstract hardware/
software interfaces. The virtual architecture model may be manually coded or
automatically generated by system architecture parser and analysis tools.

The objectives of the virtual architecture design are as follows:

– Validation of the application partitioning and the tasks mapping on the processing
subsystems available in the target architecture

– Verification of the final tasks code of the software stack
– Early estimation of the communication requirements

The virtual architecture is comprised of abstract subsystems that are intercon-
nected using abstract communication channels or abstract network components. The
abstract hardware or software processing subsystem represents a component which
implements the software tasks, respectively, the hardware functions. The abstract
communication network represents high-level communication channels, such as
message-passing channels, abstract buses, or NoC.

Figure 4.1 illustrates the global view of the virtual architecture, composed of two
abstract software subsystems, a memory component and a communication network.
The left part of the figure corresponds to the hardware architecture, while the right
part represents the software code at the virtual architecture level.

Abstract Communication Network

COMM1

COMM2

MEM

COMM1

COMM2

MEM
T1 T2

SWFIFO

Abstract ARM-SS Abstract XTENSA-SS
T3

Tasks code running on ARM

T1 T2

HdS API HdS API 

Fig. 4.1 Global view of the virtual architecture

4.1.2 Global Organization of the Virtual Architecture

The virtual architecture model is a hierarchical model. The virtual architecture is
composed of abstract subsystems that are interconnected using an abstract commu-
nication network, such as abstract bus, abstract NoC, or abstract point-to-point
communication channels.

The abstract subsystems may represent a processor subsystem, a hardware sub-
system, or a memory subsystem. The software processing subsystem represents a
component or module which includes a set of task modules that are aimed to be exe-
cuted on that processing subsystem, and a set of abstract communication channels
for the communication between the task modules inside the same subsystem. The



4.2 Basic Components of the Virtual Architecture Model 125

hardware processing subsystem contains a single task module which implements
the hardware functions.

The task modules abstract the hardware/software interface. Each task module
can be characterized by two elements: container and ports. The container represents
the task code. The task code is represented by a sequential C code which imple-
ments the application functions that were grouped together to form the task. The
task code also contains communication primitives (HdS API) which allows access-
ing the ports of the task modules. The ports of the task module represent logic ports
of the task, which serve to allow the software code to access the communication
channels used for the data exchange with another tasks. The logic ports of the task
modules are connected to the ports of the subsystem that encapsulates them, or to
the intra-subsystem communication channels.

At the virtual architecture level, the intra-subsystem communication units
become abstract communication channels inside the processor subsystem. The inter-
subsystem communication units become abstract communication architecture. They
also determine the memory modules that serve as storage resources for the commu-
nication buffer mapping and the type of global interconnect component. The type
of the communication protocol and the topology of the network infrastructure are
implemented according to the annotation of the system architecture model.

Example 12. Virtual architecture of the token ring application Figure 4.1 shows a
conceptual representation of the virtual architecture for the token ring application
mapped on the 1AX architecture.

The virtual architecture contains two abstract subsystems (ARM-SS and
XTENSA-SS), corresponding to the ARM, respectively, XTENSA processors and
the global memory module (MEM). All the subsystems are interconnected by an
abstract AMBA bus. The different software subsystems encapsulate the applica-
tion tasks and the communication channels for the data exchange between the tasks
mapped on the same processor. For instance, the ARM-SS subsystem includes
the two task modules (T1 and T2) that were mapped on this processor, and a
SWFIFO communication channel used for the communication between T1 and T2.
SWFIFO represents an abstract communication channel which implements a FIFO
communication protocol. The XTENSA-SS subsystem includes the T3 task module.

The inter-subsystem communication units COMM1 and COMM2 are mapped on
the global memory (MEM).

The virtual architecture model may be represented using different design
languages, such as SystemC [62] or SpecC [54]. In the following paragraphs, the
virtual architecture will be detailed using the SystemC design language.

4.2 Basic Components of the Virtual Architecture Model

The basic components of the virtual architecture model are the software and the
hardware components. The software components allow for the description of the



126 4 Virtual Architecture Design

pure software elements, while the hardware components represent the components
of the execution model [164]. The software components consist of the tasks code and
HdS APIs, while the hardware components represent the abstract subsystems and
the abstract communication network. The detailed description of these components
will be illustrated in the following paragraphs.

4.2.1 Software Components

The application software is refined to tasks C code that contains the final applica-
tion code and makes use of HdS API (Fig. 4.2). The tasks code represents sequential
code, which implements a set of application functions. The communication primi-
tives of the HdS API access explicit communication components. Each data transfer
specifies an end-to-end communication path. For example, the functional prim-
itives send_mem(ch,src,size)/recv_mem(ch,dst,size) may be used to transfer data
between two processors using a global memory connected to the system bus, where
ch represents the communication channel used for the data transfer, src/dst the
source/destination buffer, and size the number of words to be exchanged. Thanks
to the HdS APIs, the tasks code remains unchanged at the following abstraction
levels (transaction-accurate architecture and virtual prototype).

T1

HdS API 

T2

HdS API 

Tn

HdS API 

…

Fig. 4.2 Software
components of the virtual
architecture

Example 13. Software components for the token ring application at the virtual archi-
tecture level For the token ring application, the software is represented by the
sequential C code corresponding to tasks T1, T2, and T3. This code implements
the equivalent behavior of the different Simulink functions in C and contains the
communication primitives send(ch, src,size)/recv(ch,dst,size) for the data exchange
between the diverse tasks.

4.2.2 Hardware Components

The software tasks are executed using an abstract model of the hardware archi-
tecture that provides an emulation of the HdS API. The hardware platform is
comprised of those components that provide the implementation of these HdS APIs.
Thus, it includes the abstract subsystems, the abstract communication architecture
(interconnection component), and the storage resources.
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Fig. 4.3 Hardware components of the virtual architecture

Example 14. Hardware components for the token ring application at the virtual
architecture level For the token ring application, the hardware is represented by
the software subsystems (ARM-SS and XTENSA-SS), the global memory MEM,
and the abstract communication network (an abstract AMBA bus). Figure 4.3 shows
these hardware components.

4.3 Modeling Virtual Architecture in SystemC

The virtual architecture model is described using the SystemC language and is gen-
erated according to the parameters specified in the initial Simulink model. SystemC
allows modeling a system at different abstraction levels from functional to pin-
accurate register transfer level. The virtual architecture is modeled using transaction
level modeling (TLM) techniques that allow analyzing SoC architectures in an
earlier phase of the design, software development, and timing estimation [62].

4.3.1 Software at Virtual Architecture Level

At the virtual architecture level, the Simulink functions of the application are trans-
formed into C program code for each task. This step is very similar to the code
generation performed by Real Time Workshop (RTW) [94].

The software at the virtual architecture level represents a multitasking C code
description of the initial Simulink application model.

Each data link of the Simulink model requires a memory space called buffer
memory to deliver data from the input block to the output blocks. To reduce
the required memory size, the task code generation has to apply buffer memory
optimization techniques, such as copy removal or buffer sharing [66].

The task C code is made of two parts: computation and communication (Fig. 4.4).
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Task

HdS API 

int B[10], C[20], D[10];
void task_code( )  {

while(1) {    
recv(CH1, B, 10);       // Communication
F1(B,C);               // Computation
F2(C,D);
…
send(CH2, D, 10);     // Communication

}
}

Fig. 4.4 Software at the virtual architecture level

The computation part describes the behavior of the various Simulink functions
that are grouped in the task, including local memory declarations. The Simulink
blocks within a task are scheduled statically according to their data dependency and
generated into a task C code. The communication between functions inside a task is
translated into local memory elements. To implement the external communication
between the tasks, during the task code generation the function calls of the commu-
nication primitives are instantiated from an HdS API template library, preserving the
invocation order of the blocks. Then, the allocated memory spaces are mapped onto
the arguments of these functions. Before inserting the communication primitives,
the data dependency between the tasks is checked during the task code generation
in order to perform deadlock prevention.

Example 15. Software task code for the token ring application Figure 4.5 illustrates
the C code of the task T2 of the token ring application at the virtual architecture
level.

The task code contains the declaration of the local variables (in, out, var, and
var2), the send_data/recv_data communication primitives, and the computation
code. The tasks code starts with a receive operation to read the input token, then
it performs some computation, and finally it sends the new value of the token to the
next node.

The semantic of the communication primitives is the following: the first para-
meter represents the logic port which is connected to a communication channel, the
second parameter is the local memory from where the data are transferred in case of
a send operation or the local address where the data are stored in case of a receive
operation, and the last parameter defines the size in words of the data to be sent or
received.

In the computation code, the C code represents the equivalent behavior of the
Simulink functions. Thus, the input data stored in the local variable var represents
the input token. The destination of the token is calculated by a modulo 3 operation
of the input tokens. If the result of this operation is 0, the destination of the token is
task T2. In this case the task increments the token with one unit. Otherwise, task T2
is not the destination of the token and it increments the token with value 2, conform
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#include <Task2.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#ifdef VIRTARCH
void Task2::behavior (void) {
#else
void Task2(void) {
#endif

int in,out; //local variables
int var, var2;

for (;;) {
recv_data(&In1_Task2, &in, 1);    //Communication API
var = in % 3; // Computation 
var = abs(var);
if (var == 0)

var2 = in + 1;
else

var2 = in + 2;
out = var2;
send_data (&Out1_Task2, &out, 1); //Communication API

#ifdef VIRTARCH
wait();

#endif
}

}

Fig. 4.5 Task T2 code

the application specification. Then, the task forwards the token to the next node of
the ring.

The multitasking C code generation from the system architecture model needs
to handle a large subset of predefined Simulink blocks, such as mathematical oper-
ations (sum, multiplication, division, modulo, etc.), logical operations (AND, OR,
XOR), discrete blocks (delay, mux, demux, merge), conditional structures (if–then–
else), and repetitive structures (for-loop, while-condition-loop). The generation has
to support also user-defined C code integrated in the Simulink model as S-functions.
For the S-functions, the task code represents a function call of the user-written
C function. The semantics of the argument passing are identical to those of the
definition in the configuration panel of the S-function Builder tool in Simulink.

The resulted tasks code at the virtual architecture level is independent of the tar-
get processor, communication protocol, and abstraction level. This can be achieved
by using HdS APIs that hide many details of the underlying implementation of the
architecture and represent the abstraction of the hardware [167].
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4.3.2 Hardware at Virtual Architecture Level

The hardware at the virtual architecture level consists of a set of hardware and
software subsystems that encapsulate the tasks aimed to be executed on those sub-
systems, and the abstract communication network introduced to implement the
communication protocol.

The hardware is refined to a set of abstract SystemC modules (SC_MODULE)
for each subsystem. The SC_MODULE of the processor includes the tasks mod-
ules that are mapped on the processor and the communication channels for the
intra-subsystem communication between the tasks inside the same processor. The
communication channels between the tasks mapped on the same processor are
implemented using standard SystemC channels. The tasks modules are implemented
as SystemC modules (SC_MODULE).

For the inter-subsystem communication, the hardware architecture integrates
also the resources addressed explicitly by the HdS APIs. Typical examples are
memories that serve to store the communication buffers. The interconnection
between the different components uses an abstract model of the communica-
tion network that allows the data transfer from the source to the destination
module.

Example 16. Hardware code for the token ring application at the virtual architec-
ture level Figure 4.6 details the top module for the token ring application running
on the 1AX architecture. The top module is an SC_MODULE which includes
the declaration and instantiation of the ARM-SS (vARM7 in Fig. 4.6), XTENSA-
SS (vXTENSA), abstract bus (bus), global memories (gmem), and a global clock
(clk). It also interconnects these different components and fixes the addresses of
the communication buffers used for the data exchange between the processors
(the inter-subsystem communication units).

Thus, the communication buffer used between tasks T3 running on XTENSA and
T2 running on ARM7 processors is mapped in the global memory at address 0×0.
The communication buffer required for a data transfer between task T1 mapped on
the ARM7 processor and T3 executed on the XTENSA is mapped on the global
memory at address 0×1000.

Figure 4.7 shows the SystemC code for the ARM-SS component. The ARM-SS
is an SC_MODULE which encapsulates the instances of the two tasks T1 (vTask1
in Fig. 4.7) and T2 (vTask2 in Fig. 4.7) and the software FIFO channel for the
communication between them (ch1 in Fig. 4.7).

This ARM-SS has three ports: an input port, namely, In1_ARM7; an output port,
namely, Out1_ARM7; and a clock port (clk). The output port of the ARM-SS is
connected to the output port of task T2, as task T2 sends the data to a task mapped
on the other processor. The input port of the ARM-SS is connected to the input port
of task T1, because task T1 needs external data from a task running on the other
processor.

At the virtual architecture level, the tasks code uses HdS APIs, whose implemen-
tation depends on the hardware platform. The hardware platform includes all the
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Fig. 4.6 SystemC code for the top module

components accessed by the HdS APIs and the resources to implement the required
communication paths.

Example 17. Communication primitives implementation for the token ring applica-
tion at the virtual architecture level Figure 4.8 shows an example of implemen-
tation of the send_data(. . .)/recv_data(. . .) communication primitives that allow to
write or read to/from a software FIFO communication channel.
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#ifndef _ARM7_H
#define _ARM7_H

#include "Task1.h"
#include "Task2.h"

SC_MODULE(ARM7) { // ARM-SS MODULE

Task1 *vTask1; // TASK T1 MODULE
Task2 *vTask2; // TASK T2 MODULE
SWFIFO_Channel ch1; // SOFTWARE FIFO CHANNEL
AMBA_Port Out1_ARM7; // PORTS 
AMBA_Port In1_ARM7;
sc_in<bool> clk;

SC_CTOR(ARM7) {
vTask1 = new Task1("Task1");  //INSTANTIATION
vTask2 = new Task2("Task2");

vTask1->Out1_Task1(ch1); //CONNECTION 
vTask2->In1_Task2(ch1);
vTask2->Out1_Task2(Out1_ARM7);
vTask1->In1_Task1(In1_ARM7);
vTask1->clk(clk);
vTask2->clk(clk);
}

};

#endif

T1 T2

SWFIFO

ARM7

Fig. 4.7 SystemC code for the ARM-SS module

The FIFO channel is derived from a SystemC channel (sc_prim_channel) and
has a blocking implementation. Therefore, if the sender wants to put data into the
FIFO, but the FIFO is full, the sender will be blocked until there is enough avail-
able space in the buffer. This blocking implementation is employed by calling the
wait () statement in the implementation of the send_data primitive if there is not
enough space available. The wait() call suspends the execution of the task. In the
same manner, if a task calls a recv_data primitive, but there is not enough data
stored in the FIFO buffer, the receiver will be blocked until the FIFO contains the
requested number of elements. The FIFO buffer can be characterized by size and
depth. The size represents the number of elements stored in the buffer. The depth
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class SWFIFO_Channel: public sc_prim_channel, //SOFTWARE FIFO CHANNEL
public swfifo_if
{
int buffer[30000];
unsigned int sizemax;
int buffer_size;

public:
SWFIFO_Channel() { 

sizemax=SIZEMAX_swfifo; 
buffer_size =0; 
}

virtual void recv_data(const SWFIFO_Port& port, void* dst, int size);
virtual void send_data(const SWFIFO_Port& port, void* src, int size);
virtual void init(const SWFIFO_Port& port, int size);

};

void SWFIFO_Channel::send_data(const SWFIFO_Port& port,       // SEND_DATA
void* src, int size)
{
while((sizemax - buffer_size) < (unsigned)size)

wait();

for (int i=0; i<size; i++)
buffer[buffer_size+i]=(((int*)src)[i]);

buffer_size = buffer_size + size;
}  

Fig. 4.8 Example of implementation of communication channels

represents the number of bits necessary to store one element. Each element occupies
the same number of bits. In this example (Fig. 4.8), the FIFO buffer has a size equal
to 30,000 and depth equal to 1 word (32 bits).

At the virtual architecture level, all the modules are connected to the same clock
signal. Typically the clock is created in the main function of the top level and passed
down through the module hierarchy to the rest of the system. This allows a subset of
components or the entire system to be synchronized by the same clock. The clock
signal has a set of attributes, such as default time unit, period, duty cycle, first edge,
and first value. The default time unit is assumed to be 1 ns. The period represents
the number of default time units required by the clock signal to make a complete
transition from true (high) to false (low) and back from false (low) to true (high).
The duty cycle is the ratio of the high time to the entire clock period. Example,
if the period of a clock signal is equal to 20 default units and the duty cycle is
0.25, this means that the clock would stay in true state for 5 time units and false
for 15 time units. The first edge represents the offset time from 0 of the first edge
expressed in time units. The first value represents the starting value of the clock (true
or false).

Example 18. sc_main for the token ring application at the virtual architecture
level Figure 4.9 presents the main function (sc_main) for the token ring application
at the virtual architecture level. This includes the initialization of the top module, the
declaration of the global clock signal, the connection of the clock signal to the clock
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int sc_main(int argc, char ** argv)
{

TOP top_module("TOP"); //TOP MODULE INSTANTIATION

sc_clock s_clk("s_clk",20,0.5,0);  // CLOCK SIGNAL
top_module.clk(s_clk);

 NOITALUMIS TRATS//;)1-(trats_cs
return 0;

}  

Fig. 4.9 SystemC main function

port of the top module, and the launch of the simulation. The clock has a period of
20 ns and duty cycle 0.5.

4.3.3 Hardware–Software Interface at Virtual Architecture Level

The hardware–software interface defines the software–hardware interaction and
how the software can access the hardware. At the virtual architecture level, the
hardware/software interface consists of a set of task modules. The task module is
a SC_MODULE which encapsulates the software code within a SystemC clocked
thread (SC_CTHREAD). The software code can access the hardware through the
ports of the task module.

Example 19. Task module for the token ring application at the virtual architecture
level Figure 4.10 illustrates an example of task module for the task T2. The task
module contains the declaration of the logic ports. The type of the ports depends on
the type of the communication channel which is accessed. For instance, the input
port of task T2 In1_Task2 is connected to the software FIFO channel, thus the port
has the type SWFIFO_Port. Task T2 writes to task T3 running on the XTENSA
processor via the AMBA bus. Therefore, the type of the output port Out1_Task2 is
AMBA_Port.

Task T2 executes a clocked SystemC thread, namely, the behavior function. The
behavior function is defined in the task software code, as illustrated in Fig. 4.5. A
clocked SystemC thread represents a thread of execution which is sensitive only to
the positive or negative edge of a clock signal.

4.4 Execution Model of the Virtual Architecture

The virtual architecture level allows debugging the task code. The following sections
will describe the simulation model in SystemC and the adopted configuration to
validate the virtual architecture model.

The executable model is obtained by compiling the task code and the hard-
ware platform together. The resulted executable model uses the SystemC scheduler
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#ifndef _Task2_H
#define _Task2_H

#include <systemc.h>
#include "swfifo.h"
#include "amba.h"

ELUDOM 2T KSAT//{ )2ksaT( ELUDOM_CS

sc _in<bool> clk;

SWFIFO_Port In1_Task2;
AMBA_Port Out1_Task2;

void behaviour();

SC_CTOR(Task2) {

SC_CTHREAD(behavior,clk);   // THREAD

}
};

#endif

Fig. 4.10 Example of hardware/software interface

to activate and deactivate the execution of the different tasks. The processor and
memories are SystemC modules. The abstract network component (bus, NoC, or
point-to-point communication channels) and the software FIFO channels are derived
from the SystemC channels. The software tasks are SystemC clocked threads. A
clocked thread has its own thread of execution which may accept only positive
or negative edge clock event in its sensitivity list. When the simulation starts, the
clocked threads are automatically activated.

The simulation at the virtual architecture level allows validating the tasks C
code of the refined software and the hardware–software partitioning. It represents a
native execution of the software onto the simulation host machine. High simulation
speed is usually attained, but abstracting the hardware architecture it lacks some
accuracy.

The simulation at the virtual architecture level allows avoiding communication
deadlock due to improper scheduling of the communication operations between the
different tasks. The debug of the software code may be done using standard C debug-
gers such as gdb or by tracing waveforms. SystemC provides functions to create a
VCD (value change dump) or ASCII WIF (waveform intermediate format) file that
contains the values of the variables and the signals as they change during the simu-
lation. The waveforms can be viewed using standard waveform viewers that support
the VCD and WIF formats, such as gtkwave.
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4.5 Design Space Exploration of Virtual Architecture

4.5.1 Goal of Performance Evaluation

The goal of the performance evaluation at the virtual architecture level is to allow
profiling the communication and computation requirements to improve the overall
performances of the system. The objective is to provide through simulation statisti-
cal information, such as utilization of the architecture model components (busy/idle
times), the degree of the contention in a system, profiling information (the time
spent in different executions), critical path analysis, or average bandwidth between
the architecture components.

Based on the application requirements and the communication traffic resulted
after the virtual architecture simulation, the designer can fix some hardware and
software architecture decisions. Examples of hardware architecture decisions are
the topology of the interconnect component that will be included in the hardware
platform at the next abstraction level (NoC topology) or the communication scheme
between the different subsystems fixing the mapping of the communication buffers
onto the storage resources. Examples of software architecture decisions are appli-
cation partitioning into tasks and mapping onto the processing subsystems and the
semantic of the communication primitives used in the final application tasks code.

These different decisions influence the overall execution time of the system, cost,
and power consumption. Therefore, good decisions are required to be able to control
the MPSoC design process.

Example 20. Goal of performance evaluation for the token ring application at the
virtual architecture level For example, in case of the token ring application, the
designer fixes at the virtual architecture level the partitioning of the application into
three tasks and the mapping of the FFT computation onto the XTENSA processor.
Also, the communication between the processors is decided to be performed via the
global memory.

4.5.2 Architecture/Application Parameters

The virtual architecture model has to fix some parameters that can influence the
global performance of the final system. The parameters represent a subset of those
specified at the system architecture level. The virtual architecture validate some
decisions taken at the system architecture level, such as partitioning and mapping,
while other parameters are preserved in order to be validated at the next levels. The
preserved parameters can be specific to subsystems or communication units, as it
will be detailed in the following paragraphs.

(a) Architecture/Application Parameters Specific to Subsystems: The parameters
specific to subsystems characterize the different subsystems from hardware and
software points of view. The hardware architecture parameters that characterize the
subsystems at this level will be validated at the following abstraction levels:
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– NetworkType to specify the type of the network component used to interconnect
the different subsystems, such as AMBA bus or network on chip (NoC).

– NoCTopology to specify the bus or NoC topology (mesh or torus).
– NoCRoutingAlgorithm to specify the routing algorithm used by the routers to

transmit the received data packet in case of a NoC network component.
– NoCArbitrationAlgorithm to specify the type of the arbitration algorithm inside a

NoC router (e.g., round robin, priority based).

The software architecture parameters that characterize each processor subsystem
are as follows:

– OSType, which specifies the name of the operating system running on the target
processor (e.g., Linux, Mutek, DwarfOS, eCos).

– SchedulerType to identify the type of the scheduler (preemptive, cooperative).
– SchedulerAlgorithm to define the algorithm used for the tasks management by the

operating system (round robin, priority based), etc.

(b) Architecture/Application Parameters Specific to Communication Units. The
communication primitives used for the data exchange in the tasks code are fixed at
the virtual architecture level. Therefore, the parameters that characterize the
communication units and will be validated at the next abstraction levels rely on the
hardware architecture. Example of this kind of parameters is the AccessType which
identifies the type of the access to the memory (directly or through DMA) making
the communication path end to end.

4.5.3 Performance Measurements

At the virtual architecture level, the performance measurement consists of
profiling the communication and computation requirements for each task or for each
processor.

The virtual architecture has the notion of time due to the clock signals. Therefore,
by simple annotation of the virtual architecture model with adequate execution
delays, if such delay information is available, the simulation at this level can
estimate the total clock cycles spent on communication or computation by the task
or processor. But, the accuracy of the estimation is not yet cycle accurate at this
level, since not all the hardware components or hardware features (e.g., final bus
arbitration scheme, interconnect topology, peripherals) are explicit in the model.
The execution time represents these estimated clock cycles required to run an appli-
cation on the MPSoC architecture. The simulation time represents the time needed
to simulate the behavior of the application running on the architecture with their
interaction.
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Examples of metrics that can be measured at the virtual architecture level are
the tasks code and data size, the buffer size required for the intra-subsystem and
inter-subsystem communication, the total quantity of exchanged data between the
tasks during the execution, the number of iterations of a function execution, the
amount of data transferred between the different processors, the amount of data
passing through the global interconnect component, the buffer size requirements in
the worst-case scenario for the storage resources in order to support the communica-
tion mappings specified at the system architecture level, or the amount of read/write
operations performed at the storage modules.

By tracing the waveforms of the signals or variables during the simulation, other
metrics can be measured, e.g., the cycles spent by a task on computation and com-
munication, or the current task executed during the simulation at a certain moment
of time.

Example 21. Performance measurements for the token ring application at the virtual
architecture level For example, the total simulation time of the token ring applica-
tion was 3 s to execute 68 clock cycles of period 20 ns, required to run the entire
application. But in this example, the model is not annotated with accurate infor-
mation regarding the operating system and the communication overhead. Thus, the
estimation is only message-level accurate.

In the case of the token ring application, the total code size and data size of the
tasks code running on both processors is 32,223 bytes, respectively, 12 bytes. The
total number of bytes passed through the bus during the simulation is 3,136 bytes.

Figure 4.11 shows the waveforms captured during the simulation of the token
ring application, e.g., at time 13,100 ps, the current task running on the ARM
processor was T1, while task T2 was blocked on communication.

Fig. 4.11 Waveforms traced during the token ring simulation
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4.5.4 Design Space Exploration

At the virtual architecture level, the design space exploration covers architecture
exploration, more precisely communication architecture exploration. The designer
can experiment different communication mapping schemes and different communi-
cation primitives. The designer may adopt different communication protocols and
may map the communication buffers onto different storage resources. The different
communication and synchronization schemes have advantages and disadvantages in
terms of performance (latency, throughput), resource sharing (multitasking, parallel
I/O), and communication overhead (memory size, execution time). Also, the tasks
code can be generated using different tools, such as Real Time Workshop.

Example 22. Design space exploration for the token ring application at the
virtual architecture level In the case of token ring application, the designer may
map the buffers required for the inter-subsystem communication onto different
architecture resources, such as the local memories of both ARM and XTENSA
processors, or the shared global memory, or on the hardware FIFO.

4.6 Application Examples at the Virtual Architecture Level

The following sections detail the virtual architecture model for the two case stud-
ies considered in this book: the motion JPEG decoder application running on the
Diopsis RDT architecture with AMBA bus and the H.264 encoder application
running on the Diopsis R2DT architecture with Hermes NoC.

4.6.1 Motion JPEG Application on Diopsis RDT

This section presents the virtual architecture design in case of the Motion JPEG
(MJPEG) decoder application running on the Diopsis RDT platform. The virtual
architecture design consists of two steps: software design and hardware design.

First, the C code for each task was generated from the Simulink system archi-
tecture model based on the annotation with the software architecture parameters. In
the system architecture model, the value attributed to parameter CommType is equal
with “MPI.” Therefore, the generated task code uses send_data(. . .)/recv_data(. . .)
for the communication primitives. Moreover, the C code was optimized by applying
buffer sharing and copy removal memory optimization techniques.

In order to evaluate the efficiency of the software task code, a comparison with
the single task code generation from Simulink using Real Time Workshop (RTW)
is given. Table 4.1 resumes the code and data size of the generated application code.
The code library contains the user-defined C-functions commonly used by all the
code generator tools and independent of the software design method. The appli-
cation task code obtained by applying memory optimization techniques is more
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Table 4.1 Task code generation for motion JPEG

Library RTW Multitask code

Size (bytes) Code Data Code Data Code Data

MJPEG 6818 32 8225 72 8032 494

efficient in terms of code size than the code generated using RTW. But the mul-
titasking representation requires communication buffers. Therefore, the data size is
bigger than in the case of RTW.

The second step of the virtual architecture design represents the hardware design.
The hardware design consists of building the software development platform
in SystemC considering the hardware architecture parameters that annotate the
system architecture model. Figure 4.12 illustrates a conceptual view of the virtual
architecture of the Diopsis RDT architecture with AMBA bus.

Abstract AMBA

comm1

comm2

DXM T1

HdS API HdS API 

T1 T2

comm4

Abstract ARM9-SS

Abstract DSP-SS

T3

Tasks code on ARM9

Abstract POT-SS

T4

comm8

……

comm3

SRAM

DMEM REG

T3

Task code on DSP

HdS API HdS API 

T2

HdS API HdS API 

Fig. 4.12 Global view of Diopsis RDT running MJPEG

The virtual architecture platform contains all the components that are acces-
sible by the software through the send_data(. . .)/recv_data(. . .) HdS APIs. The
inter-subsystem communication units are partially mapped on the memory mod-
ules (DXM, REG, SRAM, DMEM), attached as slave components to the AMBA
bus. The impartiality comes from the abstraction of the hardware architecture and
making implicit several hardware characteristics (e.g., local bus, DMA, bus
bridges). The address space of the components are automatically assigned and
computed by using a template that contains a predefined address size for each com-
ponent. The communication buffers between the different subsystems are mapped
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on the corresponding memory modules based on the protocol specified at the system
architecture level.

As showed in Fig. 4.12, the virtual architecture contains the following com-
ponents: abstract ARM9-SS, abstract DSP-SS, abstract POT-SS, and the storage
resources: DXM, local memory SRAM of the ARM9 processor, data memory
DMEM of the DSP processor, and data register REG of the DSP. All the compo-
nents are interconnected using an abstract AMBA bus. The ARM9-SS contains the
two task modules that are running on it (T1 and T2) and the five intra-subsystem
communication channels (comm4, comm5, comm6, comm7, and comm8). According
to the system architecture annotation, all these communication channels are imple-
mented as FIFO channels. The DSP-SS includes the task module T3. The POT-SS
includes the task module T4 responsible with the display of the decoded image.
The three communication units between the subsystems, more precisely comm1,
comm2, and comm3, may be mapped on different storage resources. In a first case,
the ResourceType of each communication unit has the value “DXM.” Hence, the
system architecture model is specified to use the external memory as buffer storage
for the communication between the different subsystems. Therefore, all three were
mapped on the external memory DXM.

The abstract AMBA bus is implemented as a simple bus which transfers data
initiated by a master. It allows connection of several master and slave subsystems,
but only one data transfer request can be accomplished in time. The arbitration of
the simultaneous requests for a data transfer through the bus is performed in a queue
manner. As shown in Fig. 4.13, the bus is made of two components: virtual arbiter
and address decoder.

Virtual Arbiter

Master Master Master

Slave

Decoder

Master

Slave Slave SlaveSlave

Master Master

 

Fig. 4.13 Abstract AMBA
bus at virtual architecture
level

The arbiter, also called scheduler, controls the data traffic. If data are to be
transferred, the requesting master subsystem sends a message to the scheduler. The
scheduler checks if the slave subsystem is ready for the data transfer. If it is ready,
the scheduler puts the request into a FIFO queue. Otherwise, it waits until the avail-
ability of the slave component and checks its status by polling. This mechanism
allows avoiding blocking the bus for a data transfer to a destination or source which
is not yet ready to receive or send data. The request message contains an iden-
tification code of the target subsystem, which represents the address of the slave
component. The decoder is responsible to identify the slave subsystem. As soon
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as the bus is available, the access to the bus is granted to the requesting subsystem,
which can perform the data transfer to the destination address. Having completed the
data transfer, the bus becomes free for the next request in the scheduler’s queue. The
AMBA bus allows transfers in burst mode, which means that the master may trans-
fer the whole data message within one access grant to the bus [6]. Through polling
the status of the destination subsystem, the virtual architecture bus provides syn-
chronization mechanism between the different subsystems similar to semaphores.
At this level, the bus does not yet implement the arbitration strategy of the target
AMBA bus protocol.

The functionality of the software code was verified by execution using the hard-
ware platform. The software code was compiled with the architecture platform.
During the execution, the tasks are scheduled by the SystemC simulation engine.

Besides the tasks code verification, the simulation model also allowed to gather
important early performance measurements, e.g., total number of messages trans-
ferred through the AMBA bus. The data transfer between the ARM9 and DSP
processor subsystems is performed in messages of 64 words for the IDCT coeffi-
cients and in 1 word for the decoding pattern; the data transfer between the DSP-SS
and POT-SS is performed in messages of 16 words.

Table 4.2 shows the results for the different communication schemes. Using as
communication units only the DXM, the bus was accessed to transfer 216,000
messages during the decoding process of the 10 frames. If the communication units
are mapped on different resources, for example, comm1 is mapped on DXM, comm2
on REG, and comm3 uses DMEM memory to store the communication buffer, the
global bus was accessed to transfer 144,000 messages during the simulation. In
the third scheme, comm1 and comm2 are mapped on SRAM, while comm3 remains
mapped on DMEM. Thus, all the communication units make use only of local mem-
ories SRAM and DMEM. In this case, the execution required 108,000 messages to
be transferred via the AMBA bus. In all the communication schemes, the communi-
cation units between the two tasks running on the ARM9 processor comm4, comm5,
comm6, comm7, comm8, and comm9 implements the software FIFO protocol.

Table 4.2 Messages through the AMBA bus

Comm. unit Comm1 Comm2 Comm3
Comm4-
Comm8

Total
messages
AMBA

Execution
time (ns)

DXM DXM DXM SWFIFO 216,000 4,464,060
MJPEG DXM REG DMEM SWFIFO 144,000 3,720,060

SRAM SRAM DMEM SWFIFO 108,000 2,232,020

This simulation model was accurate enough to verify the functionality of the
tasks code and ensure that there is no communication deadlock in the scheduling of
the data transfer between the tasks. The simulation time required to decode the 10
image frames encoded using QVGA YUV 444 format was approximately 14 s on a
PC running Linux OS at 1.73 GHz in all the cases of the communication schemes.
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The total execution time required by the whole decoding process is illus-
trated in Table 4.2. These numbers were estimated without annotation of the code
with execution delays. Therefore, the accuracy of the estimation relies on mes-
sage level. As the DXM communication scheme supposes all the data exchange
through the AMBA bus, it requires the highest number of execution cycles, in a
total time of approximately 4,464,060 ns, due to the conflicts that appear on the
shared bus when simultaneous bus requests occur. In the mixed communication
scheme with DXM, REG, and DMEM, the total execution time is estimated to be
3,720,060 ns, while the last communication scheme guarantees the fastest execu-
tion with 2,232,020 ns. The numbers for the required execution time are obtained
by calling sc_simulation_time() at the end of the execution in the top module of the
SystemC platform. All the subsystems are interconnected to the same clock signal
with a period of 20 ns and duty cycle 0.5.

Figure 4.14 presents a screenshot during the SystemC simulation of the MJPEG
decoder application at the virtual architecture level.

Fig. 4.14 Virtual architecture simulation for motion JPEG

4.6.2 H.264 Application on Diopsis R2DT

This section presents the virtual architecture design in case of the H.264 encoder
application running on the Diopsis R2DT platform. The virtual architecture design
is accomplished in two steps: software design and hardware design.
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The software design consists of generating the C code for each task from
the system architecture model using the software architecture parameters. The
CommType parameter annotating each subsystem determines the communication
primitives supported by the operating system. Similar to the Motion JPEG exam-
ple, the CommType is equal with “MPI.” Therefore, the generated task code
uses send_data(. . .)/recv_data(. . .) for the communication primitives. The code is
optimized in terms of data memory requirements.

Table 4.3 shows the task code and data size of the software at the virtual archi-
tecture level. The first column represents the code and data size of the functions that
are independent of the design method. The second column shows the code and data
size for the generation using Real Time Workshop. Real Time Workshop generates
single-tasking code, while the software at the virtual architecture level represents
multi-tasking code. The last column represents the results for the software design
method with memory optimization techniques.

Table 4.3 Task code generation for H.264 encoder

Library RTW Multitask code

Size (bytes) Code Data Code Data Code Data

H.264 270,994 132 296,305 148 366,060 148

The second step of the virtual architecture design represents the hardware
architecture design. The hardware design consists of building the software deve-
lopment platform in SystemC considering the hardware architecture parameters that
annotate the system architecture model. Figure 4.15 illustrates a conceptual view of
the virtual architecture for the Diopsis R2DT architecture with Hermes NoC.
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Fig. 4.15 Global view of Diopsis R2DT running H.264
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The virtual architecture platform contains all the components that are acces-
sible by the software through the send_data(. . .)/recv_data(. . .) HdS APIs. Thus,
the platform contains the following modules: four abstract subsystems, namely the
ARM9-SS, DSP1-SS, DSP2-SS, and POT-SS, and the local and global memory
modules: DXM shared by all the subsystems, SRAM local memory of the
ARM9-SS, DMEM1 and REG1 memories of the DSP1-SS, respectively, DMEM2
and REG2 memories of the DSP2-SS. All these components are interconnected
using an abstract NoC model. The DSP1-SS contains the task module of T1. The
DSP2-SS includes the task module of T2. Finally, the ARM9-SS encapsulates the
task module of the third task T3. The three communication units between the dif-
ferent processors, more precisely the comm1, comm2, and comm3, may be mapped
on different storage resources, according to the system architecture specification.
Figure 4.15 shows an example of mapping of the communication units onto the
DXM global memory.

At this level, each local memory has allocated an address space of 4 MB. The
global memory has an address space of 256 MB.

The NoC at the virtual architecture level represents an abstract NoC where infor-
mation like topology, routing algorithm, arbitration, or buffer size information are
omitted. Communication architecture is modeled like a crossbar, where any set of
communication events may occur simultaneously.

Figure 4.16 details the model of the Hermes NoC at the virtual architecture
level.
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Fig. 4.16 Abstract Hermes NoC at virtual architecture level

The NoC is comprised of three basic elements, which are the network interface
(NI), the mapping table (MT), and the router. The network interface is responsible
for providing send/receive operations for the communicating subsystems, encapsu-
lating these requests in packets, capturing and interpreting packets arriving from
the NoC, and delivering them to the subsystems. The mapping table is respon-
sible for storing and informing the correspondence between the IP cores range
address and the NoC physical address, i.e., IP core address between 0×00400000
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and 0×007FFFFF corresponds to the NoC physical address 0×0. The router is in
charge of transporting packets from the source network interface to the destination
network interface.

The Hermes NoC for the Diopsis R2DT architecture involves five routers at the
virtual architecture level. Each router is connected to the corresponding network
interface and the other four routers. The network interfaces connect the following
IP cores to the NoC: ARM9-SS, POT-SS, DXM, DSP1-SS, and DSP2-SS. One net-
work interface is associated with each subsystem. Therefore, SRAM and ARM9
share the same network interface with address 1×0. The local memories REG1 and
DMEM1 share the network interface with address 1×1 with the DSP1 processor
core. The network interface with address 1×2 connects the REG2, DMEM2, and
DSP2 components to the NoC. The network interface corresponding to the DXM
has address 0×0. Finally, the network interface connecting the POT-SS has address
0×1.

The functionality of the software code was verified by execution using the hard-
ware platform. The software code was compiled with the architecture platform.
During the execution, the tasks are scheduled by the SystemC simulation engine.
The simulation model is accurate enough to verify the functionality of the tasks
code and ensure that there is no communication deadlock in the scheduling of the
data transfer between the tasks.

Besides the tasks code verification, the simulation model allowed also to gather
important early performance measurements, e.g., the number of words exchanged
between the tasks through the network component. The virtual architecture simu-
lation allows capturing information regarding the communication values through
the NoC. Such values are the amount of data exchanged between the different sub-
systems, the storage elements worst-case size requirement for the communication
buffer, the number of operations (send/receive) originated from each access point
of the NoC, the amount of read/write operations performed at the storage elements,
and the NoC area based on the number of routers.

Figure 4.17 shows these numbers in case of different communication mapping
schemes. Hence, when all the communication buffers are mapped on the DXM
memory, as shown in Fig. 4.15, the NoC was accessed to transfer 6,171,680 words
during the encoding process of the 10 frames. In another case, comm1 is mapped
on DXM, comm2 on REG2, and comm3 on DMEM1. This case required 5,971,690
words to be transferred through the NoC. A third case maps comm1 on DMEM1,
comm2 on DMEM2, and comm3 on SRAM and it generates 3,085,840 words to be
operated by the NoC.

Table 4.4 shows some results captured during the simulation of the H.264
encoder application in the case of the first communication scheme with all the
buffers mapped on the DXM memory. The first and the second columns repre-
sent the correspondence between the different cores connected to the NoC and the
NoC addresses. The third column represents the total number of reads and writes
requested over the NoC. Based on these values the designer may define a better
mapping of the hardware or the size of the packets. The fourth and the fifth columns
(packets and mega bytes sent) allow evaluating the real amount of the communica-
tion injected in the NoC through each network interface. The DXM was the core that
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Fig. 4.17 Words transferred through the Hermes NoC

Table 4.4 Results captured in Hermes NoC using DXM as communication scheme

H.264 NoC address Read/write requests Total packets sent Mega bytes sent

DXM 0×0 0 83,352 17,324
ARM9-SS 1×0 2,426 4,853 68
DSP1-SS 1×1 39,260 78,522 16,167
DSP2-SS 1×2 41,663 83,327 2,090

inserted the biggest amount of data in the NoC. The DXM packets are originated
from read requests and confirmation packets.

In the third communication scheme, the simulation time required to encode the
10 image frames using QCIF YUV 420 format was approximately 32 s on a PC
running Linux OS at 1.73 GHz. The execution time of the encoding process without
accurate execution delay annotation implies 2,546,540 ns or 127,327 clock cycles
with a common clock used by all the modules with the following settings: a period
of 20 time units, a duty cycle of 50%, the first edge will occur at 0 time units, and the
first value is true. All the modules are synchronized by the same clock. The default
time unit is assumed to be 1 ns.

4.7 State of the Art and Research Perspectives

4.7.1 State of the Art

The concept of the virtual architecture is used in several academic and indus-
trial MPSoC design environments. There are several modeling and simulation
environments of the virtual architecture.
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For example, in the ROSES hardware/software co-design tool, the virtual archi-
tecture is defined as a system made of an abstract netlist of virtual components.
A virtual component consists of an internal component (or module) and its wrapper
for adaptation to different communication protocols, abstraction levels, or specifi-
cation languages. The virtual components are interconnected by virtual channels
through virtual ports [32].

A similar definition of the virtual architecture is given in [143]. They define
the virtual architecture as a system in which processing elements communicate via
abstract channels.

Reference [79] defines the virtual architecture as an intermediate phase of the
SoC design flow, where the functionality of the system is mapped to the architec-
ture in an abstract manner to enable architecture optimization across heterogeneous
computational components. The virtual architecture is annotated with timing
characteristics of the target architecture, thus it allows fast exploration of differ-
ent design alternatives. In this approach, the timing-related aspects are captured by
the communication channels.

Reference [57] identifies the abstraction levels based on the communication
refinement from abstract message passing down to cycle-accurate bus functional
implementation. In their work, the communication design starts from a virtual
architecture model. The virtual architecture is defined as a system comprised of pro-
cessing elements that communicate via abstract channels with untimed synchronous
or asynchronous message-passing semantics. The virtual architecture presented in
this book is similar to the one defined in [57], but it contains also explicit map-
ping of the communication buffer onto the storage components and explicit abstract
interconnect component.

Other research works focus on automatic generation of the virtual architecture.
Thus, [111] introduces the ESPAM tool, which automatically generates C/C++ soft-
ware code for each processor from an application specification in form of KPN. The
code contains the main behavior of a process, together with the blocking read/write
synchronization primitives, and the memory map of the system. The resulted code
is similar to the tasks code at the virtual architecture presented in this book.

Another example of code generation is the MCS (MATLAB-to-C synthesis)
product of Catalytic Inc., which provides automatic functionally equivalent C code
generation from MATLAB models for the algorithm developers [31]. The gener-
ated C code mimics the MATLAB code file structure and the function hierarchy.
A graphical user interface provides viewing and cross-probing between MATLAB
and C code. The tool offers support for all the common data types, all the opera-
tors, and a large number of built-in functions. But it does not include the testbench,
visualization, or plotting capabilities of MATLAB.

4.7.2 Research Perspectives

Future research perspectives of the virtual architecture concern the following
aspects:
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– Automatic generation of the hardware architecture and the software code
– Automatic annotation of the software and hardware code with timing information

for accurate performance estimation
– Formalization of fleeting from system architecture to virtual architecture

One of the main challenges in the SoC development flow is the consistency
between different levels of abstraction of the system to be implemented [19]. The
quality of the design can be preserved by automatic generation of the abstraction
levels, including the virtual architecture generation. The automatic generation of the
virtual architecture implies generation of the software code and the hardware plat-
form. The generation is achievable due to the annotation with architecture attributes
of the initial specification in the form of the system architecture.

The software and hardware architectures are natively executed on a simulation
host, without using a software simulator such as instruction set simulator (ISS).
Therefore, to obtain an accurate estimation of the execution time for an application,
such as number of cycles spent by the processor on computation or waiting for the
communication, the virtual architecture code has to be orchestrated with additional
timing information, like the number of cycles required by the processor to compute
a function. The automatic annotation of the generated code (software and hardware)
with timing information can be accomplished by inserting wait(delay) statements in
the SystemC code of the architecture.

The passing from the system architecture level to the virtual architecture level
needs to be done in a rigorous way which ensures the right preservation of the ini-
tial specification in terms of design constraints. This may be achieved through a
formalization of the system architecture, virtual architecture, and the formalization
of the conversion from the high level to the more detailed lower level. The consid-
ered aspects could be the model of computation and the model of execution that
characterize each abstraction level, and the definition of the rules that guarantee a
correct translation from one model to another.

4.8 Conclusions

This chapter defined the virtual architecture design. It presented the software repre-
sentation as final application tasks code and the hardware organization in abstract
subsystems interconnected through an abstract network component.

The virtual architecture design was performed using SystemC for three case
studies: token ring mapped on the 1AX architecture, Motion JPEG running on
the Diopsis RDT architecture, and H.264 encoder running on the Diopsis R2DT
architecture.

The simulation of the virtual architecture model allowed to verify the final code
of the application tasks and the partitioning of the application. It also gave important
statistics regarding the communication requirements. These include the total number
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of bytes exchanged between the subsystems during the execution of the application,
the amount of data passing through the interconnect component (bus, NoC), and the
buffer size requirements in the worst-case scenario for the storage resources in order
to support the communication mapping.



Chapter 5
Transaction-Accurate Architecture Design

Abstract This chapter details the transaction-accurate architecture design. The
transaction-accurate architecture design consists of integrating the OS and the com-
munication software component with the application tasks code and adapting the
software to specific communication synchronization protocol. The key contribution
in this chapter represents the transaction-accurate architecture definition, organiza-
tion, and design, using SystemC, for the token ring application running on the 1AX
architecture, the Motion JPEG application targeting the Diopsis RDT architecture
and the H.264 encoder running on the Diopsis R2DT architecture. The simulation
of the transaction-accurate architecture model allows validating the execution of
the application tasks code upon an OS and early performance validation of the
communication mapping scheme. Different interconnect components, communica-
tion mapping schemes, and IP cores positioning over the interconnect component
are explored in order to analyze the performances of the various communication
paths.

5.1 Introduction

The transaction-accurate architecture design consists of software adaptation to
specific communication protocol implementation. At this phase, aspects related
to the communication protocol are detailed, for example, the synchronization
mechanism between the different processors running in parallel becomes explicit.
The software code is adapted to the synchronization method, such as events or
semaphores. The adaptation is performed through an integration of the tasks codes
with the OS and the communication components of the software stack. The result
of the transaction-accurate architecture design represents the transaction-accurate
architecture model.

151K. Popovici et al., Embedded Software Design and Programming of Multiprocessor
System-on-Chip, Embedded Systems, DOI 10.1007/978-1-4419-5567-8_5,
C© Springer Science+Business Media, LLC 2010
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5.1.1 Definition of the Transaction-Accurate Architecture

The third abstraction level of the hardware–software architecture is called
transaction-accurate architecture level (TA). The transaction-accurate architecture
details the local architecture of each subsystem and makes explicit the communica-
tion protocol. On the software side, the tasks code is integrated with an operating
system and communication library to form the software stack. Each processor sub-
system executes a software stack. The transaction-accurate architecture model may
be manually coded or automatically generated by different tools.

The objectives of the transaction-accurate architecture are as follows:

– Early verification of the tasks code execution upon an operating system
– Early performance validation of the communication mapping scheme

The transaction-accurate architecture is composed of processor and hardware
subsystems that are interconnected using an explicit interconnection component,
such as bus or NoC. The processor subsystems include the local components of
the subsystem, such as local memories, peripherals, and network interfaces, and an
abstract model of the processor cores.

Figure 5.1 illustrates a global view of the transaction-accurate architecture,
composed of two abstract processor subsystems, one memory hardware subsys-
tem, and the network component. The left part of the figure corresponds to the
hardware architecture, while the right part represents the software stack at the
transaction-accurate architecture level running on one of the processor subsystems.
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Fig. 5.1 Global view of the transaction-accurate architecture

5.1.2 Global Organization of the Transaction-Accurate
Architecture

The transaction-accurate architecture model is a hierarchical model. The
transaction-accurate architecture is composed of software and hardware subsystems
that are interconnected using an explicit network component, e.g., bus, NoC, or
dedicated hardware components like the hardware FIFO.
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The software subsystem represents the processor subsystem. The hardware sub-
system represents a memory subsystem or a dedicated hardware subsystem that
accelerates the computation of specific application functions.

Each subsystem integrates local components that are interconnected using a local
and simple bus. Usually the processor subsystems are made of one or more abstract
computation models of the processor cores, local memories such as program code
memory, data memory, or dedicated registers, network interfaces for the connection
with the external world, and other processor-specific peripherals. The selection of
these components relies on the target architecture and the software requirements at
this level.

Each abstract processor model executes a specific software stack made of the
tasks code, operating system, and communication library. The software stack uses
hardware abstraction layer primitives (HAL APIs) for the interaction with the hard-
ware part of the system. In fact, the abstract processor with the implementation of
the HAL APIs represents the hardware–software interface.

At the transaction-accurate architecture level, the intra-subsystem communica-
tion units become communication channels implemented by the communication and
operating system components of the software stack. Therefore, the communication
between the tasks running on the same processor is managed totally by the OS and
the communication software libraries.

The inter-subsystem communication units are mapped on full end-to-end com-
munication paths through the architecture. Hence, the communication protocol and
the synchronization between the processors become explicit. The different com-
munication paths are characterized by different performance indicators, such as
throughput of the buses, delay of the communication path, or overhead of the HdS
layer (device drivers, resource sharing mechanism).

The adopted communication path and the topology of the network infrastructure
are implemented according to the annotation of the system architecture model and
the performance estimation through the simulation of the virtual architecture model.

Example 23. Transaction-accurate architecture for the token ring appli-
cation Figure 5.1 shows a conceptual representation of the transaction-accurate
architecture for the token ring application mapped on the 1AX architecture.

Figure 5.1 illustrates that for the token ring application running on the 1AX
architecture, the transaction-accurate architecture contains two processor sub-
systems, corresponding to the ARM, respectively, XTENSA processors and the
global memory subsystem. All these subsystems are interconnected by an explicit
AMBA bus.

The ARM-SS processor subsystem includes an abstract ARM module, local
memory, programmable interrupt controller (PIC), mailbox for the communication
synchronization, and bridge for the interface to the AMBA bus, all interconnected
through a local bus.

The local architecture of the XTENSA-SS subsystem is similar to the ARM-SS
subsystem, but only it includes an abstract model for the XTENSA processor instead



154 5 Transaction-Accurate Architecture Design

of the ARM7 processor. The global memory subsystem includes the global memory
and the bridge for the connection with the global bus.

The communication through a FIFO between the tasks T1 and T2 mapped on the
ARM-SS is implemented by the software components of the ARM software stack.

At the transaction-accurate architecture level, the inter-subsystem communi-
cation units COMM1 and COMM2 are mapped on full communication path.
Therefore, a data sent by the ARM and received by the XTENSA processor using
as storage buffer the global memory follows the data path illustrated below:

ARM -> BUS_ARMSS -> BRIDGE_ARMSS -> AMBA -> BRIDGE_
MEMSS -> BUS_MEMSS -> MEM -> BUS_MEMSS -> BRIGDE_MEMSS ->
AMBA -> BRIDGE_XTENSASS -> BUS_XTENSASS -> XTENSA
where

– BUS_ARMSS represents the local bus of the ARM-SS
– BRIDGE_ARMSS is the bridge of the ARM-SS
– BUS_MEMSS is the local bus of the MEM-SS
– BRIDGE_MEMSS is the interface of the global memory to the AMBA bus
– BUS_XTENSASS specifies the local bus of the XTENSA-SS
– BRIDGE_XTENSASS represents the bridge inside the XTENSA-SS.

This kind of data transfer requires synchronization mechanism between the two
processors using the mailbox components. Thus, when the data to transmit is stored
in the global memory, the ARM sends an event to the mailbox of the XTENSA to
notify that there is available data. After checking the appropriate register status of
the mailbox, the XTENSA processor may transfer the data from the global memory.

Other path of communication between the processors offered by the architecture
involves the following route:

ARM -> BUS_ARMSS -> HWFIFO -> BUS_XTENSASS -> XTENSA
The communication through the hardware FIFO does not require explicit syn-

chronization because the hardware resource manages also the synchronization
between the processors.

The transaction-accurate architecture model may be represented using different
design languages, such as SystemC [62] or SpecC [54]. The following para-
graphs will present the transaction-accurate architecture using SystemC as design
language.

5.2 Basic Components of the Transaction-Accurate Architecture
Model

The basic components of the transaction-accurate architecture model are the soft-
ware and hardware components. The software components consist of the tasks
code, operating system, communication library, and HAL APIs, while the hard-
ware components represent the detailed subsystems and explicit communication
network.
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5.2.1 Software Components

At the transaction-accurate architecture level, a software stack is build for each
processor subsystem. This software stack is comprised of the previously gener-
ated tasks code enriched with an OS and communication library (Fig. 5.2). The
HdS software represents the assembly of the OS, communication library, and HAL
APIs. The HdS refines the communication APIs (HdS APIs) to custom hardware-
specific low-level APIs (HAL APIs) and is responsible for the tasks and hardware
resources management. The HAL APIs abstract the underlying hardware architec-
ture. Their implementation is not yet defined for the target processor, allowing to
keep the software code still processor independent. Based on the OS and communi-
cation libraries, the proposed approach sets aside flexible building and configuration
of the software stack. Therefore, it allows easy customization for specific architec-
tures and/or applications. At this level, the data transfers use explicit addresses, e.g.,
read_mem(addr, dst, size)/ write_mem(addr, src, size).
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Example 24. Software components for the token ring application at the transaction-
accurate architecture level For the token ring application, a software stack is
executed by each processor (ARM7 and XTENSA). The software stack running
on the ARM7 is made of two application tasks code (T1 and T2), OS, and
communication library. The software stack running on the XTENSA is made
of the task code of T3, OS for the interrupt management, and communication
software component. For both processors, the software stack has the same OS
running, namely DwarfOS, the same communication library that implements the
primitives send_data(. . .)/ recv_data(. . .), and are based on the same HAL APIs
(read_mem(. . .)/ write_mem(. . .),ctx_swich(. . .)).

5.2.2 Hardware Components

The hardware architecture at the transaction-accurate level represents a more
detailed platform than the virtual architecture level. It includes the components
explicitly used by the HAL APIs. The different subsystems of the architecture are
detailed with explicit peripherals and abstract computation model for the processor
cores. Design decisions such as subsystems positioning over the global intercon-
nect component, NoC size definition, NoC topology, NoC routing algorithm, and
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communication buffer size are implemented at the transaction-accurate architecture
level.

Example 25. Hardware components for the token ring application at the
transaction-accurate architecture level For the token ring application, the hard-
ware platform has a detailed local architecture for each subsystem (Fig. 5.3). Thus,
the ARM-SS and XTENSA-SS contain an abstract ARM, respectively, XTENSA
processor, a local memory, an interrupt controller, a local bus, and a bridge for
the interface with the AMBA. The global memory subsystem contains the global
memory and the bridge for the connection to the AMBA. The hardware FIFO is
connected directly to the local bus of each processor subsystem.
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Fig. 5.3 Hardware components of the transaction-accurate architecture

5.3 Modeling Transaction-Accurate Architecture in SystemC

The transaction-accurate architecture model is described using SystemC TLM lan-
guage and is designed according to the annotated architecture parameters of the
initial system architecture model and the results of the virtual architecture model
simulation.

5.3.1 Software at Transaction-Accurate Architecture Level

The software design at the transaction-accurate architecture level consists of inte-
gration of the tasks code with an OS and a communication implementation for each
processor subsystem. In the following examples, the considered operating system is
called DwarfOS, a tiny operating system which supports a set of basic services, such
as interrupts management, FIFO software communication protocol, a cooperative
scheduling policy based on static priority, and application tasks initialization [63,
126]. The communication primitives are based on blocking message-passing inter-
face semantic. The synchronization is made using events. At this level, the generated
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tasks are dynamically scheduled by the OS scheduler according to the availability
of data for read operations or the availability of space for write operations.

The tasks C code remains unchanged from the virtual architecture level and
it uses HdS APIs such as send_data(. . .)/recv_data(. . .). Compared with the vir-
tual architecture, the implementation of these APIs is not anymore handled by the
SystemC architecture. The implementation relies on the OS and communication
libraries. Hence, the tasks are blocked on communication and scheduled by the OS
scheduler and not by the SystemC scheduler as at virtual architecture level.

The OS and communication components make use of HAL APIs. At this level,
the implementation of the HAL APIs is not yet defined for the target processors.
Therefore, the software code is still processor independent at the transaction-
accurate architecture level, but it is adapted to specific hardware communication
implementation such as synchronization. Figure 5.4 shows a part of the software
code at the transaction-accurate architecture level.
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void __schedule(void) {
int old_tid = cur_tid;
cur_tid = new_tid;
__cxt_switch( old_tid.cxt, cur_tid.cxt ); //HAL API
…

}

main Communication SW

void recv(ch, dst, size) {   // HdS API
switch (ch.protocol){
case FIFO:

if  (ch.state==EMPTY)          
__schedule(); 

…
break;

} …

extern void task_T1 ();
extern void task_T2 ();

void __start (void) {…
create_task (task_T1);
create_task (task_T2);
…

}

C code of Task_T2 OS

void task_T2( ) {
while (1) {

recv (CH1, B, 10);
…
send (CH2, C, 20); 

}
}

Fig. 5.4 Software at the transaction-accurate architecture level

The HAL APIs, i.e., __ctx_switch(. . .) gives to the operating system, commu-
nication, and application software an abstraction of the underlying architecture.
Furthermore, the HAL APIs ease OS porting on a new hardware architecture.

There are different categories of HAL APIs [174]:

– Kernel HAL APIs, such as task context management APIs (e.g., context creation,
deletion or context switch APIs, task initialization), stack pointer and program
counter management APIs (get/set_IP(), get/set_SP()), or processor mode change
APIs (enable_kernel/ user_mode())
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– Interrupt management APIs, e.g., APIs which enable/disable interrupt request
from an interrupt source (vector_enable/disable(vector_id)), configure inter-
rupt vector (vector_configure(vector_id, level, up)), mask/unmask interrupt for
a processor (interrupt_enable/disable()), implement the interrupt service rou-
tines (interrupt_attach/ detach(vector_id, isr)) or HAL APIs that acknowl-
edge to the interrupt source that the interrupt request has been processed
(clear_interrupt(vector_id))

– I/O HAL APIs, which configure the I/O devices and allow their access. For
example, to configure an MMU device, the following I/O HAL APIs may
be required: APIs for page management (enable/disable_paging()), address
translation (virtual_to_physical()), TLB (translation lookaside buffer) man-
agement, such as set a TLB entry (TLB_add()) or get TLB entry vir-
tual/physical page frame (get_TLB_entry()). Other I/O HAL API examples
can be considered the APIs for the cache memory management, such as
Instruction/Data_Cache_Enable/Disable()

– Resource management APIs, such as APIs for power management Power man-
agement (check battery status, set CPU clock frequency) or APIs to configure the
timer (set/reset_timer(), wait_cpu_cyle())

– Design time HAL APIs, which facilitate the software design process, more pre-
cisely the simulation. Example of such kind of API is the consume_cpu_cyle() to
simulate the advance of the software execution time.

Example 26. Software code for the token ring application at the transaction-
accurate architecture level Figure 5.5 illustrates an example of software code for
the token ring at the transaction-accurate architecture level.

Figure 5.5 shows the main file. The main file contains the function “thread_main”
which represents the first function executed on the processor after boot. The main
file is responsible to initialize the application tasks and the software communication
channels. It includes the OS-dependent header files, it declares the software FIFO
communication channels, it attaches the interrupt service routines to the interrupt
numbers, and it initializes the tasks in the list of tasks ready for execution for the
operating system. As illustrated in Fig. 5.5, for the token ring application, the ini-
tialization file of the ARM7 processor declares the two tasks running on the ARM7
and the software FIFO used for the communication between them. It also attaches
the interrupt service routine of the mailbox to the interrupt number 0.

Figure 5.6 shows a fragment of code implementing the communication primitive
recv_data(. . .). If the protocol of the communication channel is based on a FIFO
mechanism, the implementation checks the status of the FIFO. If the FIFO is empty,
the scheduler of the OS is called (__schedule(. . .)).

The communication primitives access the logic ports of the tasks that are declared
in the header files of each task. Figure 5.7 shows the header file of task T2 running
on the ARM7 processor in case of the token ring application.

Task T2 has two logic ports:
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selifredaehtnednepedSO//>h.gifnoc<edulcni#
#include <support/os_types.h>
#include <comm/os_comm.h>
#include <comm/event.h>
#include <stdio.h>

extern void Task1( );
extern void Task2( );

unsigned char SWFIFO_buf1[4]; // software channels
unsigned char SWFIFO_stat_send1 = OS_EVENT;
unsigned char SWFIFO_stat_recv1 = OS_NO_EVENT;

void thread_main( ) {
int id;

vector_attach(UNIX_IRQ, 0, _mailbox_isr, NULL);
vector_enable(UNIX_IRQ);

id=thread_create(Task1,0); // tasks initialization
id=thread_create(Task2,0); // for scheduling
return;

}

Fig. 5.5 Initialization of the tasks running on ARM7

void recv_data (ch,dst,size){      //implementation of recv_data HdS API
…

switch (ch.protocol){
case FIFO:

if  (ch.state == EMPTY)
__schedule();  // OS scheduler

…

Fig. 5.6 Implementation of recv_data(. . .) API

– One input port (In1_Task2) bonded to the software FIFO channel that connects
task T1 and T2 and it was declared in the main file of the ARM7 processor as
pointed up in Fig. 5.5.

– One output port (Out1_Task2) for the external communication with the task T3
running on the XTENSA processor.

The logic ports have type port_t, as illustrated in Fig. 5.8. The port_t represents
the data structure which implements the logic port in case of the DwarfOS. It com-
bines the following fields: communication protocol associated with the port, status
of the local synchronization register, status of the remote synchronization register,
destination buffer used to store the data to be exchanged, list of tasks that are wait-
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#ifndef _Task2_H
#define _Task2_H

#include <support/os_types.h>
#include <comm/os_comm.h>
#include <comm/event.h>
#include <stdio.h>

extern unsigned char SWFIFO_buf1[4];          //software fifo channel
extern unsigned char SWFIFO_stat_send1; //status of sender
extern unsigned char SWFIFO_stat_recv1;       // status of receiver

extern port_t Out1_Task1;

port_t In1_Task2 = {OS_SWFIFO_PROTOCOL, // SOFTWARE FIFO protocol
&SWFIFO_stat_recv1, // local synchronization 
&Out1_Task1, // remote port 
SWFIFO_buf1,              // buffer address
NULL,
OS_DEFAULT};

port_t Out1_Task2 = {OS_GFIFO_PROTOCOL,       // GLOBAL FIFO protocol
(void*)0x300808,          // mailbox local register
(void*)0x700808,          // mailbox remote register
(void*)0x40500000,        // buffer address
NULL,
OS_DEFAULT}; 

Fig. 5.7 Example of task header file

typedef struct {
protocol_t protocol;
void *l_status;
void *r_port;
void *d_buffer;

thread_t *requesting_thread;
unsigned char specific;

} port_t;

Fig. 5.8 Data structure of
tasks’ ports

ing for the port to acquire a synchronization event, and a specific field which stores
special protocol characteristics.

The input port of task T2 is characterized by a software FIFO protocol and has
the synchronization and buffer associated with the software FIFO channel. The out-
put port of task T2 notes a global FIFO protocol with the communication buffer
mapped onto the external memory at the address 0×40500000 and the synchroniza-
tion making use of the registers of the local and remote mailbox corresponding to the
communication channel. The local mailbox represents the mailbox corresponding to
the ARM processor accessed at address 0×300808. The remote mailbox stands for
the mailbox of the XTENSA-SS with address 0×700808.
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void __schedule (void){
int old_tid = cur_tid;
cur_tid = get_new_tid(); //get new task ready for execution

__ctx_switch (old_tid,cur_tid);  //context switch HAL API
…

Fig. 5.9 Implementation of the __schedule() service of OS

Figure 5.9 shows a portion of the OS scheduler implementation. The scheduler
searches for a new task in status ready for execution. If there is a new ready task,
the scheduler performs a context switch, by calling the HAL API __cxt_switch(. . .).
During the context switch, the OS saves the status and registers (program counter,
stack pointer, etc.) of the processor running the current task and loads those of the
new task.

5.3.2 Hardware at Transaction-Accurate Architecture Level

The hardware at the transaction-accurate architecture level consists of a set of
hardware and software subsystems interconnected using an explicit communica-
tion network. The hardware architecture implements the communication protocol,
including buffer mapping, synchronization mechanism used by the processors, and
the entire communication path for inter-subsystem communication.

The different subsystems represent SystemC modules (SC_MODULE) which
include the local components. A top module includes the declaration, instantiation,
interconnection, and address space allocation of these subsystems. Each subsystem
incorporates the local hardware modules. The local components are also SystemC
modules.

The transaction-accurate architecture makes use of a library of transaction-
accurate components. This library implements parametric hardware components
such as mailbox, bridge, network interface, interrupt controller, interrupt signals,
buses, and abstract execution model for distinct types of processor.

Example 27. Hardware code for the token ring application at the transaction-
accurate architecture level Figure 5.10 details the top module for the token ring
application running on the 1AX architecture.

The top module is an SC_MODULE which includes the declaration and the
instantiation of the ARM-SS (varm7-ss in Fig. 5.10), XTENSA-SS (vxtensa_ss),
AMBA bus (vAMBA), global memory subsystem MEM-SS (vgmem_ss), and hard-
ware fifo (vhwfifo). It also interconnects these different subsystems by linking the
bridges of each subsystem to the AMBA bus. A 4 MB address space is allocated to
each processor subsystem. Thus, the ARM-SS has the address space 0×800000–
0×BFFFFF and the XTENSA-SS has the address space 0×400000–0×7FFFFF.
The global memory is identified between addresses 0×40000000–0×40FFFFFF.



162 5 Transaction-Accurate Architecture Design
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#include "XTENSA_SS.h"
#include "ARM7_SS.h"
#include "AMBA.h"
#include “MEM_SS.h“
#include “HWFIFO.h”

SC_MODULE (TOP)
{
public: 
AMBA *vAMBA;
MEM_SS *vgmem_ss;
XTENSA_SS *vxtensa_ss;
ARM7_SS *varm7_ss;
HWFIFO *vhwfifo;

SC_CTOR(TOP)
{ //AMBA BUS

vAMBA = new AMBA("AMBA");

//MEMORY SUBSYSTEM
vgmem_ss = new MEM_SS(“MEM",0x1000000);

vgmem_ss->bridge->port(*vAMBA);
vgmem_ss->bridge->port.set_map(0x40000000,0x40FFFFFF);

//XTENSA SUBSYSTEM
vxtensa_ss = new XTENSA_SS("XTENSA_SS","../sw/XTENSA/XTENSA.bin"); 
vxtensa_ss->bridge->port(*vAMBA);
vxtensa_ss->bridge->port.set_map(0x400000,0x7FFFFF);

//ARM7 SUBSYSTEM
varm7_ss = new ARM7_SS("ARM7_SS","../sw/ARM7/ARM7.bin");
varm7_ss->bridge->port(*vAMBA);
varm7_ss->bridge->port.set_map(0x800000,0xBFFFFF);

vhwfifo = new HWFIFO(“HWFIFO”, 0x200, 1, 1); //HWFIFO
vhwfifo->inport(1, varm7_ss->bus->lport);
vhwfifo->outport(1, vxtensa_ss->bus->lport);

}
};

Fig. 5.10 SystemC code for the top module

Figure 5.11 shows the SystemC module of the ARM7 subsystem of the 1AX
architecture.

The ARM7 subsystem includes a local bus (sys_bus), an abstract execution
model of the processor core (ArmUnixCore), a local memory (mem), a bridge
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#include "ARM7_SS.h"
extern int debug_flag;

ARM7_SS::ARM7_SS(sc_module_name name, char *bin)          // ARM7-SS 
:sc_module(name) 
{

sub lacol //;)"sub_sys"(suBmlT wen =sub_sys

core = new ArmUnixCore("ARM7Core",bin,debug_flag);    // abstract ARM7 core
core->rw_port(*sys_bus);

yromem lacol //;)000003x0,"0mem"(marS wen =mem
mem->port(*sys_bus);
mem->port.set_map(0x0,0x2FFFFF);

egdirb //;)"egdirb"(fIbhA wen = egdirb
bridge->master(*sys_bus);
bridge->slave(*sys_bus);
bridge->slave.set_map(0x400000,0x7fffffff);

CIP //;)02x0,"cip"(>1<ciP wen =cip
pic->port(*sys_bus);
pic->port.set_map(0x300000,0x30001f);

xobliam //;)004x0,"cnys"(cnyS wen = cnys
sync->port(*sys_bus);
sync->port.set_map(0x300800,0x300bff);

TlmIntrSig *sig_sync = new TlmIntrSig("sig_sync");   //interrupt signals
sync->intr(*sig_sync);
pic->in_irq[0](*sig_sync);
s1 = new TlmIntrSig("sig_intr1");
s2 = new TlmIntrSig("sig_intr2");
pic->out_fiq(*s1);
pic->out_irq(*s2);
core->nIrqPort(*s2);

}

Fig. 5.11 SystemC code for the ARM7-SS module

(bridge) for the connection to the AMBA bus, a programmable interrupt controller
(PIC) (pic), the mailbox synchronization component (sync), and some interrupt
signals (sign_sync, s1, and s2) . The local peripherals have associated address space.
Thus, the local memory is addressable between addresses 0×0–0×2FFFFF, the
PIC between addresses 0×300000–0×30001F, and the mailbox between addresses
0×300800–0×300BFF. Each processor subsystem has the local address space
between 0×0 and 0×400000. The accesses to addresses higher than 0×400000
will be forwarded by the local bus to the bridge for external access through the
AMBA bus.

As illustrated in Fig. 5.12, the transaction-accurate architecture of the 1AX archi-
tecture contains a global clock used by all the processors. This clock has a period of
time 1 unit, where a time unit represents1 ns.

sc_clock SystemClock("SystemClock", 1, SC_NS);    //SYSTEM SYSTEMC CLOCK

Fig. 5.12 SystemC clock
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5.3.3 Hardware–Software Interface at Transaction-Accurate
Architecture Level

The hardware–software interface at the transaction-accurate architecture level is
represented by the abstract model of each processor core and the implementation of
the HAL APIs. This is responsible to guarantee the software access to the hardware
and implements the interaction between hardware and software.

The abstract model of the processor defines an execution environment of the
software stack [138]. This is implemented as a SystemC module which interacts
with the software. The abstract processor is modeled as a bus functional model,
which allows operations onto the local bus, such as read and write operations [142].

The implementation of the HAL APIs allows a simulation model of the OS and
inter-processor communication on the host machine [11]. For example, the imple-
mentation of the HAL API ctx_switch (old_tid, cur_tid) to perform a context switch
between two tasks relies on the APIs provided by the operating system running on
the host machine (Windows, Linux, UNIX, etc.). Figure 5.13 exemplifies the imple-
mentation of the context switch on the host machine running Linux OS that uses
sigsetjmp and siglongjmp APIs to save and switch the context of a task.

void __ctx_switch(int old_tid, int new_tid)
{

sigjmp_buf old_buf, new_buf;

old_buf = task[old_tid].buf;
new_buf = task[new_tid].buf;

sIPA XUNIL//))1 ,fub_dlo(pmjtesgis!(fi
siglongjmp(new_buf, 1);

}

Fig. 5.13 Implementation of the __ctx_switch HAL API

5.4 Execution Model of the Transaction-Accurate Architecture

The full hardware–software executable model is based on co-simulation between
SystemC for the hardware components including the abstract processors and the
native execution of the software stacks [110]. The main advantage of the native
simulation is the simulation speed.

A native software simulation usually runs as a separate process on the host
machine. In order to control and access the OS/HAL simulation model, the IPC
(inter-process communication) is used. The SystemC simulation environment is
used as co-simulation backplane for the software and hardware simulators. Thus,
each software stack is a SystemC thread which creates a Linux process for the soft-
ware execution. At the beginning of the simulation, the SystemC platform launches
a GNU standard debugger (gdb) Linux process for each software stack in order to
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start its execution. The software stack interacts with the corresponding SystemC
abstract processor module through the Linux IPC layer. The hardware–software
interface uses Linux shared memory (IPC Linux shm) for the interaction, data, and
synchronization exchange between the software and the hardware.

The abstract processor module represents a bus functional model, shortly BFM.
The BFM has two sides: one is facing the native HAL simulation model (i.e., a
Linux process) and the other is a pin-level interface of the processor. Figure 5.14
shows an example of BFM for a native OS/HAL simulation model. In this example,
the native HAL simulation model uses the shared memory, signals, and semaphores
as IPC mechanisms for the external access.

HAL simulation model

_shm

Hardware

ataDlrtC

Signals

Ctrl  & Data Processing

Processor Signals Processing

Addr

BFM

Semaphore

IT DataOut DataIn Status

Fig. 5.14
Hardware–software
co-simulation

The BFM is used to transform a functional memory access (e.g., read a data item
from a specific physical address) to a sequence of memory accesses. Thus, the BFM
transfers external access from the HAL simulation model to the hardware simulation
engine (e.g., SystemC hardware simulation). This transfer is performed by polling
the IPC interface of the HAL simulation model for read/write access. If there is
a requested read/write data operation, the BFM transforms the access request into
signal transitions on the processor’s pin interface. Besides the data transfer, the BFM
also transmits a processor interrupt to the HAL simulation model. When an interrupt
arrives at the processor’s interrupt pins, the BFM sends a signal (e.g., Linux signal)
to the HAL simulation model, more precisely to the Linux process.

The simulation at the transaction-accurate architecture level allows validating
the integration of the tasks code with the OS and the communication protocol and
debug of the HdS access to the hardware resources (e.g., access to the AMBA bus,
interrupt lines assignment, OS scheduling). On the software side, it makes possible
the debug of the access of the OS functions to the hardware resources through the
HAL APIs, e.g., read(. . .)/ write(. . .) from/to the memory, explicit synchronization
using mailboxes, or the interrupt service routines. On the hardware side, it gives
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more precise statistics on the communication and computation performances, such
as the number of exchanged data bytes during the application execution, network
congestion, or estimation of the processors’ cycles spent on communication.

Example 28. Execution model for the token ring application at the transaction-
accurate architecture level Figure 5.15 shows the execution model of the software
stacks running on the ARM7 and XTENSA processors in the case of the 1AX archi-
tecture. This represents a co-simulation between the gdb Linux processes of each
software stack gdb1 and gdb2 (one gdb for each software stack) and one SystemC
Linux process for the whole hardware platform simulation. The interface between
the three Linux processes is performed using the Linux IPC shared memory.

Fig. 5.15 Execution model of the software stacks running on the ARM7 and XTENSA processors

5.5 Design Space Exploration of Transaction-Accurate
Architecture

5.5.1 Goal of Performance Evaluation

The goal of the performance evaluation at the transaction-accurate architecture level
is to allow profiling the communication requirements and improve the overall per-
formances of the system. The objective is to provide through simulation statistical
information, such as utilization of the global interconnect component or the degree
of contention in the network component, and validate the communication protocol
and the execution of the tasks under the control of a dedicated operating system.
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Based on the communication traffic resulted after the transaction-accurate
architecture simulation, the designer can fix hardware and software architecture
decisions. Examples of hardware architecture decisions are the entire end-to-end
communication path used for the data exchange between the processors, the size
of the NoC in number of routers, the positioning of the IP cores over the NoC,
the final topology of the interconnect component, the routing algorithm used in a
NoC, the buffer size inside the NoC routers or the communication protocol between
the different subsystems fixing the mapping of the communication buffers onto the
storage resources, and the synchronization mechanism. Examples of software archi-
tecture decisions are operating system used for the scheduling of the tasks running
on the same processing units, implementation of the communication primitives, and
synchronization mechanism managed by software.

These different decisions influence the overall execution time of the system, cost,
and power consumption. Therefore, good decisions are required to be able to control
the MPSoC design process.

5.5.2 Architecture/Application Parameters

The transaction-accurate architecture validates some hardware and software archi-
tecture characteristics specified at the system architecture level, such as the
following:

– Integration of the tasks code with the OS and communication libraries
– Implementation of the communication protocol: buffers mapping, synchronization

mechanism, and end-to-end data path between the processors
– Adaptation of the software to specific hardware communication implementation
– Type of the scheduling algorithm for the tasks
– Type of global interconnection algorithm with its configuration parameters such

as topology, buffer size, routing algorithm, arbitration algorithm

The transaction-accurate architecture still keeps the implementation of the com-
munication protocol independent of the type of processor cores. Therefore, the
CPUCoreType represents an architecture parameter that will be considered only at
the next abstraction level, the virtual prototype level. This will determine the adap-
tation of the software to a particular CPU through the explicit implementation of the
low-level processor-specific HAL software layer.

5.5.3 Performance Measurements

At the transaction-accurate architecture level, the performance measurement con-
sists of profiling the interconnect component and the communication and computa-
tion requirements for each processor.
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Using annotation of the transaction-accurate architecture model with adequate
execution delays, the simulation at this level can estimate the total clock cycles spent
on communication or computation by each processor. The achieved precision can be
cycle accurate only for the inter-subsystem communication, since all the hardware
components of the communication path are explicit. The accuracy of the software
execution is transaction level.

On the hardware side, the transaction-accurate architecture may give more pre-
cise statistics on the communication architecture such as the number of conflicts
on the shared global bus due to the simultaneous access requests in the case of
a bus-based architecture topology. For a NoC-based architecture topology, useful
information deduced during the simulation are related to the amount of NoC con-
gestion, number of routing requests, number of transmitted packets, the average
amount of transmitted bytes per packet, or the number of times some routers failed
to transmit the packet due to conflicts. For both topologies (bus and NoC), the
transaction-accurate architecture simulation allows extracting the total amount of
transmitted bytes through the global interconnect component and the amount of
data transferred between the different processors.

Example 29. Performance measurements for the token ring application at the
transaction-accurate architecture level For example, the total simulation time of
the token ring application was 12s to run the whole application and the bus was
required 108 times to transfer data. But in this example, the model is not anno-
tated with accurate information required for an accurate estimation due to operating
system and communication overhead.

5.5.4 Design Space Exploration

At the transaction-accurate architecture level, the design space exploration con-
sists of communication mapping exploration. The designer can experiment different
communication mapping schemes, different communication protocols, and diverse
global interconnect components in distinct configurations. For example, the designer
may adopt a bus such as STBus or AMBA bus or a NoC such as Hermes or STNoC.
Moreover, the NoC may support different topologies (mesh, torus, hypercube, ring,
tree), the routers may be positioned in different dimensions (2D, 3D), the number
of routers is configurable, and the IP cores may be located through different access
points to the NoC. Thus, the NoC offers flexibility and scalability in terms of number
of routers, number of network interfaces, and interconnected IP cores.

Example 30. Design space exploration for the token ring application at the
transaction-accurate architecture level At this level, the designer can still map
the communication buffers onto different storage resources provided by the archi-
tecture, such as the local memories of both ARM and XTENSA processors, or the
shared global memory, or on the hardware FIFO in case of the 1AX architecture run-
ning the token ring application. These different communication mapping schemes
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involve different communication paths and synchronization mechanisms between
the processors.

5.6 Application Examples at the Transaction-Accurate
Architecture Level

The following paragraph presents the transaction-accurate architecture model for
the two case studies: the Motion JPEG decoder application running on the Diopsis
RDT architecture with AMBA bus and the H.264 encoder application running on
the Diopsis R2DT architecture with Hermes NoC in torus and mesh topologies.

5.6.1 Motion JPEG Application on Diopsis RDT

The transaction-accurate architecture design consists of two steps: software and
hardware design. The software design consists of linking the tasks code with an
operating system and communication library. For the Motion JPEG application,
in order to produce an executable software code, the tasks code is compiled with
the DwarfOS operating system and the communication library that implements
the send_data(. . .)/recv_data(. . .) communication primitives. The tasks are sched-
uled by the OS. The communication between the tasks of the same processor is
implemented by the OS and communication library.

The hardware architecture of the Diopsis RDT tile contains the components that
can be accessed by the HAL APIs (Fig. 5.16).
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Fig. 5.16 Transaction-accurate architecture model of the Diopsis RDT architecture running
motion JPEG decoder application
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The ARM subsystem includes the abstract processor core, local data memory
(SRAM), local bus, and bridge for the connection with the AMBA bus. The DSP
subsystem includes the DSP core, data memory (DMEM), registers (REG), DMA,
interrupt controller (PIC), mailbox, local bus, and the bridge for external connec-
tion. The POT includes the system peripherals of the RISC processor, e.g., timer,
interrupts controller (AIC), synchronization component (mailbox), but also the I/O
components like the serial peripheral interface (SPI).

The AMBA bus implementation is based on the implementation at the vir-
tual architecture level. The main components of the AMBA bus are illustrated in
Fig. 5.17.
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Fig. 5.17 AMBA bus at transaction-accurate architecture level

The synchronization between the different subsystems connected to the global
bus is handled explicitly through the operating system and dedicated hardware com-
ponents. The AMBA supports burst mode transfer at this level and fully models the
arbitration strategy.

The assignment of addresses and mapping of the communication buffers into
the memories with the corresponding interrupt mechanism used for synchronization
is performed during the hardware platform design. The address space of the com-
ponents is different from the virtual architecture platform, because the generated
platform at the transaction-accurate level is more detailed and fully implements the
communication protocol.

The full hardware–software executable model is based on co-simulation between
SystemC for the hardware components including the abstract processors and native
execution of the software stacks. Each software stack is a UNIX process cre-
ated and launched at the beginning of the simulation by the SystemC platform, in
order to start their execution. The software stack interacts with the corresponding
SystemC abstract processor module through the Unix IPC layer. Besides the soft-
ware debug, the execution model at this level also provides more precise idea on
performances that allows some architecture experimentation, as detailed in the next
section. The simulation of the 10 QVGA frames at the transaction-accurate level
takes 5 min 10s.
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Fig. 5.18 MJPEG simulation screenshot

Figure 5.18 shows a screenshot taken during the simulation, which captures
the execution of the two software stacks running on the ARM, respectively, DSP,
and the SystemC simulation of the platform with the POT displaying the decoded
image.

Using transaction-accurate simulation, in this book, three experiments are con-
ducted with different communication schemes between the DSP and RISC. The
results are summarized in Table 5.1. In the first scheme, the data exchange is
made only via DXM. This generated 5,256,000 transactions to the DXM. The sec-
ond communication scheme makes use of DXM and REG communication units
between the processors and DMEM between the DSP and the POT. This gener-
ated 4,608,000 transactions to the DXM, 72,000 to the register, and 576,000 to the
DMEM. The third case uses the SRAM as communication unit between the pro-
cessors and DMEM between the DSP and POT and needs 4,680,000 transactions to

Table 5.1 Memory accesses

Transactions (kB)

Communication
scheme

DXM SRAM REG DMEM Total
cycles

–

DXM+DXM+DXM 5,256 k 0 0 0 8,856 k 100%
DXM+REG+DMEM 4,608 k 0 72 k 576 k 7,884 k 89%
SRAM+SRAM+DMEM 0 4,680 k 0 576 k 3,960 k 45%
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the SRAM and 576,000 to the DMEM. One transaction to the memory means one
read/write operation of one word (4 bytes) to the memory.

Starting from quantitative estimators provided by ATMEL Inc., the number of
clock cycles, needed by the ARM and DSP to access data buffers of length N words
located in different memories, can be estimated. The DMA engine of the DSP needs
14+(N–1) cycles for DXM read, 10+(N–1) for DXM write, 5+(N–1) for SRAM read,
and 8+(N–1) for SRAM write. A data movement between REG and SRAM driven
by the DSP core costs N/4 cycles plus a movement to/from the SRAM driven by the
DMA engine. The ARM processor is not natively equipped with a DMA engine.
The cost of an ARM isolated access is 11×N for DXM read and 8×N for DXM
write. Forcing the compiler to use the assembler instruction which moves blocks of
8 registers, the cost of burst can be reduced to 11× (N/8)+N for DXM read and 2×N
for DXM write. On the Diopsis tile, the ARM processor runs at a clock frequency
which is double of the AMBA bus used as a unit of measure. This factor 2 can be
taken into account in the estimate of time of the ARM access to the SRAM. The
DSP data memory can be accessed by the ARM in 6×(N/8)+N cycles for write and
8×N cycles for read.

The performance estimation results are summarized in Table 5.1. The over-
all number of cycles required for the communication using AMBA burst mode is
approximately 8,856 k when all the data transfer is made via DXM; 7,884 k in the
second case using REG, DXM, and DMEM storage resources; and 3,960 k in the
third case using the SRAM and DMEM local memories. Thus, if the software code
makes use of the existing hardware resources, an improvement in communication
performance can be obtained. This improvement corresponds to 11% in the second
communication mapping case and 55% in the third case. The communication pro-
tocol is specified in the initial Simulink model by annotating the communication
units.

5.6.2 H.264 Application on Diopsis R2DT

The transaction-accurate architecture of the Diopsis R2DT tile with Hermes NoC is
illustrated in Fig. 5.19.

The tasks code is combined with the DwarfOS operating system and the imple-
mentation of the send_data(. . .)/recv_data(. . .) communication primitives to build
each software stack running on the processors. The processors execute a single task
on top of the operating system. The OS is required for the interrupt service routines
and the application boot.

The hardware platform is comprised of the detailed three processor subsystems
(ARM9-SS, DSP1-SS, and DSP2-SS), one global memory subsystem (MEM-
SS), and the peripherals on tile subsystem (POT-SS). The different subsystems
are interconnected through an explicit Hermes NoC available in torus and mesh
topologies.
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Fig. 5.19 Global view of the transaction-accurate architecture for Diopsis R2DT with Hermes
NoC running H.264 encoder application

Figure 5.19 presents the transaction-accurate architecture of the Diopsis R2DT
tile with NoC running the H.264 encoder application. The local architectures of
each subsystem are detailed, including network interfaces, local bus, data memo-
ries and registers, abstract processor models, synchronization components, interrupt
controller, or DMA engines.

The Hermes NoC at the transaction-accurate architecture adds more architectural
details such as topology, routing algorithm, and router buffer size. The Hermes NoC
model is comprised of the same basic elements as at the virtual architecture level:
network interface, mapping table, and routers but with a more detailed implemen-
tation. Topology (e.g., mesh, torus), routing algorithm (e.g., pure XY, west first),
arbiter algorithm (e.g., round robin, priority based), and buffer size (e.g., number of
flits) can be varied. The packet structure in this model is comprised of destination
address, size, and body fields, similar to the one assumed in the synthesizable NoC
description. The Hermes NoC allows at the transaction-accurate architecture level
extracting information from the system communication architecture like (i) number
of routing requests; (ii) number of packets inserted into the NoC; (iii) amount of
bytes exchanged; (iv) the average of bytes per packet; (v) the number of packets
transmitted; and (vi) number of routing request failed due to NoC congestion.

At the transaction-accurate architecture level, the DMA components belonging to
the DSP subsystems become explicit and have direct link to the interconnect com-
ponent. Thus, the Hermes NoC for the Diopsis R2DT architecture requires seven
access points: five for the different subsystems, as previously presented in the virtual
architecture model, and two additional for the DMA components.
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The different subsystems can be mapped over the NoC in different ways. The
following paragraphs describe with details an example of IP cores mapping scheme.
Thus, in a first scheme, the network interfaces connect the following IP cores to the
NoC:

– The ARM9-SS is connected to the network interface with address 1×0.
– The network interface with address 2×1 connects the DSP1-SS.
– The network interface with address 1×1 connects the DMA of the DSP1-SS.
– The network interface with address 1×2 connects the DMA of the DSP2-SS.
– The network interface with address 2×2 connects the DSP2-SS to the NoC.
– The network interface corresponding to the MEM-SS has address 0×0.
– The network interface connecting the POT-SS has address 0×1.

The NoC was adopted in two topologies: mesh and torus. In both cases, the
NoC has nine routers (3×3). Each router is connected to the corresponding network
interface and the neighbor routers.

Figure 5.20 shows the NoC employing a 2D mesh topology, a pure XY rout-
ing algorithm, and a round-robin arbiter algorithm at each router and wormhole as
packet-switching strategy.

Fig. 5.20 Hermes NoC in mesh topology at transaction-accurate level

Table 5.2 shows the results captured during the transaction-accurate architec-
ture mesh model simulation in case of the H.264 encoder application. The first and
the second columns represent the correspondence between the different subsystems
and the NoC access points. A routing request is performed at least once per packet
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Table 5.2 Mesh NoC routing requests

IP core NoC @ Total (%) Local (%) North (%) South (%) East (%) West (%)

MEM-SS 0×0 20.00 6.39 6.18 0.00 7.43 0.00
POT-SS 0×1 20.63 7.22 3.19 7.22 2.99 0.00

0×2 3.19 0.00 0.00 0.00 3.19 0.00
ARM9-SS 1×0 21.04 7.43 7.22 0.00 0.00 6.39
DSP1-SS (DMA) 1×1 10.21 0.00 0.00 0.00 2.99 7.22
DSP2-SS (DMA) 1×2 3.19 0.00 0.00 0.00 3.19 0.00

2×0 6.18 0.00 0.00 0.00 0.00 6.18
DSP1-SS (NI) 2×1 9.17 2.99 0.00 6.18 0.00 0.00
DSP2-SS (NI) 2×2 6.39 3.19 0.00 3.19 0.00 0.00

per router that it will cross. Depending on the application, the NoC structure, rout-
ing algorithm, NoC congestion state, the routing request can occur as many times
as needed inside a router. For the H.264 encoder simulation with 10-frame QCIF
YUV 420 format, 96,618,508 routing requests were issued. The third column of
Table 5.2 presents the percentage of the routing requests at each router, while the
other columns detail this information related to the router port (local to the corre-
sponding network interface, north, south, east, or west). These results were captured
in the case of mapping all the communication buffers onto the external memory.

Figure 5.21 shows the amount of data that traverses each router in the mesh NoC
for the H.264 encoder application by using external memory for the communication
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Fig. 5.21 Total kilobytes transmitted through the mesh
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between the processors. The local port of each router inserts packets to the NoC,
while the remaining ports transfer them inside the NoC. The value assigned to the
local port of the router 0×0 (MEM SS) corresponds to response packets due to read
requests or confirmation packets due to write requests. Block transfer operations
(amount of operation that will be transferred in one packet) permit to optimize the
amount of data exchanged inside the NoC by minimizing the amount of control data.

In the second topology, the adopted NoC was a 2D torus topology using a dead-
lock free version of the non-minimal west-first routing algorithm proposed by Glass
and Ni [60]. Figure 5.22 presents the Hermes 3×3 torus NoC.

Fig. 5.22 Hermes NoC in torus topology at transaction-accurate level

The H.264 encoder simulation with 10-frame QCIF YUV 420 format using torus
NoC topology involved approximately 78,217,542 routing requests, representing
19% of reduction when compared to the mesh NoC. This was possible because the
2D torus topology has the longest minimum paths that are only half of those in
2D meshes. Also, torus networks have better path diversity than meshes, which, if
exploitable by the routing algorithm, leads to diminished network congestion, thus
reducing routing requests.

Table 5.3 presents these results. The first columns represent the correspondence
between the IP cores and the network interfaces, while the others show the distri-
bution of the routing requests along the local, north, south, east, and west ports of
each router. The results were captured in the case of mapping all the communication
buffers onto the external memory.

Table 5.4 sums up the amount of data transferred through the torus NoC during
the H.264 encoder simulation. The third column of the table represents the amount
of data and control information exchanged (e.g., operation request, confirmation
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Table 5.3 Torus NoC routing requests

IP core NoC @ Total (%) Local (%) North (%) South (%) East (%) West (%)

MEM-SS 0×0 25.67 8.90 4.28 4.34 8.14 0.00
POT-SS 0×1 20.00 7.86 0.00 7.86 0.00 4.28

0×2 4.33 0.00 0.00 0.00 0.00 4.33
ARM9-SS 1×0 16.28 8.14 7.86 0.00 0.00 0.28
DSP1-SS (DMA) 1×1 7.86 0.00 0.00 0.00 0.00 7.86
DSP2-SS (DMA) 1×2 0.00 0.00 0.00 0.00 0.00 0.00

2×0 8.62 0.00 0.00 0.00 8.62 0.00
DSP1-SS (NI) 2×1 8.57 4.28 0.00 4.28 0.00 0.00
DSP2-SS (NI) 2×2 8.68 4.34 4.34 0.00 0.00 0.00

Table 5.4 Torus NoC amount of transmitted data (bytes)

NoC @ Local North South East West

MEM-SS 0×0 110,724,784 80,393,092 68,768,172 127,341,684 0
POT-SS 0×1 122,941,472 264 122,941,856 0 80,393,360

0×2 0 0 0 0 68,768,436
ARM9-SS 1×0 127,342,228 1,229,941,340 132 0 4,399,692
DSP1-SS

(DMA)
1×1 0 0 0 132 122,941,208

DSP2-SS
(DMA)

1×2 0 0 0 132 0

2×0 0 0 0 106,325,092 528
DSP1-SS

(NI)
2×1 80,393,908 396 40,196,920 264 0

DSP2-SS
(NI)

2×2 68,768,964 66,128,700 528 0 0

response). The other columns of the table show the amount of data transmitted per
router port.

Figure 5.23 shows a screenshot captured during the simulation of the H.264
encoder running on the Diopsis R2DT architecture with torus NoC.

In order to analyze the communication performances, the AMBA bus is also
experimented as global interconnect instead of the Hermes NoC. The average
throughput of the interconnect component in order to execute the H.264 in real time
(25 frames/s) was 235 MB/s for the NoC and 115 MB/s for the AMBA.

The NoC allows various mapping schemes of the IPs over the NoC with differ-
ent impact on performances. In this book, two different mappings of the IP cores
over the mesh and torus NoC are experimented: scheme A, detailed in the previous
paragraphs and scheme B with the MEM-SS connected at network interface with
address 1×1 (both x- and y-coordinates are 1). Figure 5.24 summarizes the corre-
spondence between the network interface and the IP core in case of these two IP
mapping schemes.
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Fig. 5.23 Simulation screenshot of H.264 encoder application running on Diopsis R2DT with
torus NoC
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Fig. 5.24 IP core mapping schemes A and B over the NoC

Table 5.5 presents the results of the transaction-accurate simulation: estimated
execution cycles of the H.264 encoder, the simulation time using the different
interconnect components on a PC running at 1.73 GHz with 1 GB RAM, and
the total routing requests for the NoC. These results were evaluated for the two
considered IP mapping schemes shown in Fig. 5.24 (A and B) and for three commu-
nication buffer mapping schemes: DXM+DXM+DXM, DMEM1+DMEM2+SRAM,
and DMEM1+SRAM+DXM. The AMBA had the best performance, as it implied
the fewest clock cycles during the execution for all the communication mapping
schemes. The mesh NoC attained the worse performance in case of mapping all the
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communication buffers onto the DXM and similar performance with the torus in
case of using local memories.

This is explained by the small numbers of subsystems interconnected through
the NoC. In fact, NoCs are very efficient in architectures with more than 10 IP
cores interconnected, while they can have a comparable performance results with
the AMBA bus in less complex architectures. Between the NoCs, the torus has better
path diversity than mesh. Thus, torus reduces network congestion and decreases the
routing requests. Also, scheme A of IP cores mapping provided better results than
scheme B for the DMEM1+DMEM2+SRAM buffer mapping. For the other buffer
mappings the performance of scheme A was superior to scheme B. In fact, the ideal
IP cores mapping scheme would have the communicating IPs separated by only one
hope (number of intermediate routers) over the network to reduce latency.

Comparing with the virtual architecture, the transaction-accurate interconnects
fully implement the bus, respectively, the NoC protocol. Thus it provides accurate
characteristics. Therefore, the simulation of the transaction-accurate interconnects
requires higher simulation time compared with the virtual architecture. But, during
both design steps, the NoC needs more time for the application simulation than
buses due to its high complexity.

5.7 State of the Art and Research Perspectives

5.7.1 State of the Art

Current literature offers large set of references dealing with transaction-accurate
architecture design and software native execution using an abstract hardware
platform.

ChronoSym [11] presents a fast and accurate SoC co-simulation that allows
verification of the integration of the tasks code with the operating system. It is
based on an OS simulation model and annotation of the software with execu-
tion delays. The abstract execution model of the processors in the transaction-
accurate architecture presented in this book is similar to the timed bus functional
model used in the ChronoSym approach, but it is not annotated for accurate
estimation.

Reference [25] presents an abstract simulation model of the processor subsystem.
In this work, the processor subsystem is not defined as a set of hardware compo-
nents, but it is viewed from a software point of view. Thus, the processor subsystem
is made of execution, access, and data unit elements to allow early validation of the
MPSoC architecture and native time-accurate simulation of the software.

Reference [56], based on the work described in [23], resumes a hardware–
software interface modeling approach in SystemC at the transaction-accurate
architecture level. This work uses the concept of required and provided services in
the modeling of the hardware–software interfaces. The hardware–software interface
is assembled using software, hardware, and hybrid elements.
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Reference [74] illustrates a configurable event-driven virtual processing unit
(VPU) to capture timing behavior of multiprocessor multithreaded platforms
through flexible timing annotation. The VPU enables investigation of the map-
ping of the application tasks with respect to time and space and early design space
exploration.

Reference [138] deals with abstract modeling of the embedded processors using
TLM. This work develops a high-level abstract processor model that allows fast
simulation, acceptable accuracy in simulated timing, and exposing the structure of
the software architecture (e.g., drivers and interrupts). This approach is similar to
the abstract execution model of the processor belonging to the transaction-accurate
architecture.

Reference [19] details the Synopsys System Studio design tool that allows a SoC
design flow from system level to implementation by passing through several abstrac-
tion levels. One of the intermediate refinement steps corresponds to the development
at the platform level, which represents a TLM platform of the hardware that allows
starting the development of the software. The software development itself uses
a specific development and simulation kernel such as RTLinux, together with an
interface layer to the virtual processors on the platform.

References [67, 68] present a simulation model of µTRON-based RTOS kernels
in SystemC. They developed a library of APIs that supports preemption, task priority
assignment, or scheduling RTOS services by native execution and a SystemC wrap-
per to encapsulate the OS simulation model into the bus functional model (BFM) of
the hardware platform. Their approach is similar to the presented approach, but they
do not give details on the hardware side.

Reference [143] presents a communication design flow based on automatic TLM
model generation. They allow generation and refinement of bus-based communica-
tion architectures, including bus bridges and transducers. But they do not address
software code adaptation to specific communication protocol implementation, in
order to optimize the overall communication performance.

Reference [77] proposes a hardware procedure call (HPC) protocol to abstract
the platform-dependent details of the TLM communication between the different
subsystems, by providing an additional layer for the software modeling on top of
transaction-level models.

5.7.2 Research Perspectives

The most important research perspective regarding the transaction-accurate archi-
tecture design consists of annotating the software code with execution delays for
accurate software performance estimation and annotating the hardware code for
accurate communication architecture performance estimation. This could be man-
aged by applying a similar approach with the timed bus functional model used in
ChronoSym [11].
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Other research perspective represents the automatic generation of the transaction-
accurate architecture. The generation could be made possible by applying a
service-based modeling of the hardware–software interface as described in [56]. The
composition of the services easies the automatic generation tools to reduce design
time. The generation can be performed from the system architecture or virtual archi-
tecture. Generation from the system architecture enables generation of different
detail levels from the same specification (virtual architecture, transaction-accurate
architecture, and virtual prototype). The generation from the virtual architecture
enables gradual refinement of the hardware/software architecture based on the
performance estimation performed at this level.

On another proposed research perspective refers to the design at the transaction-
accurate architecture level of more complex multi-tile architectures such as Tile64
[157] or AM2000 [4] running massive parallel applications.

5.8 Conclusions

This chapter defined the transaction-accurate architecture design. It presented the
software organization as final application tasks code running upon a real-time OS
and the hardware organization in detailed subsystems interconnected through an
explicit network component.

The transaction-accurate architecture design was performed using SystemC for
three case studies: token ring mapped on the 1AX architecture, Motion JPEG run-
ning on the Diopsis RDT architecture, and H.264 encoder running on the Diopsis
R2DT architecture.

The simulation of the transaction-accurate architecture model allowed to verify
the integration of the final application tasks code with an OS and communication
software adapted to the synchronization protocol. It also gave more precise infor-
mation on the interconnect model. This includes the number of conflicts in the global
bus, the amount of NoC congestion, the number of transmitted bytes through the bus
or NoC, the number of routing requests, the number of times some routers failed to
transmit the packet due to conflicts inside the NoC, or the average bytes per packet.

The transaction-accurate architecture design also allows exploration of differ-
ent IP cores mapping over the NoC in order to analyze their impact on the overall
performances.



Chapter 6
Virtual Prototype Design

Abstract This chapter details the virtual prototype design. The virtual prototype
design consists of integrating the HAL implementation into the software stack and
establishing the final memory mapping. The verification of the software is per-
formed by using classical co-simulation with instruction set simulators (ISS). The
key contribution in this chapter represents the virtual prototype definition, organiza-
tion, and design using SystemC for the token ring application running on the 1AX
architecture, Motion JPEG running on the Diopsis RDT architecture, and H.264
encoder running on the Diopsis R2DT architecture. The Motion JPEG application
is executed using ISS on different types of single processor (ARM7, ARM9, and
DSP) and the H.264 encoder is simulated using ISS running on both multi-processor
architecture with three ARM7 processors and single processor (ARM7 and ARM9).
The simulation of the virtual prototype model allows to verify the software binary
and the memory mapping.

6.1 Introduction

The virtual prototype design consists of software adaptation to specific target
processors and memory mapping. This includes the integration of the processor-
dependent software code into the software stack, more precisely the HAL integra-
tion with the tasks code, OS, and communication software components. The result
of the virtual prototype design represents the virtual prototype model.

6.1.1 Definition of the Virtual Prototype

The lowest MPSoC abstraction level is called virtual prototype (VP) . The software
stack is fully explicit, including the HAL layer to access the hardware resources
and it is detailed to ISA (instruction set architecture) level to be adapted for a spe-
cific processor. The hardware architecture incorporates an ISS for each processor to

183K. Popovici et al., Embedded Software Design and Programming of Multiprocessor
System-on-Chip, Embedded Systems, DOI 10.1007/978-1-4419-5567-8_6,
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execute the final binary code. At the virtual prototype level the communication
consists of physical I/Os, e.g., load/store.

According to [70], the virtual prototype has the following objectives:

– Measure system performance and analyze its bottlenecks
– Find out optimization points from the bottleneck analysis by using traces and

profile data
– Allow full software stack and memory mapping validation before the real

hardware is available
– Evaluate architectural decisions of both hardware and software sides

The virtual prototype is characterized by three issues: timing accuracy, simula-
tion speed, and development time. The virtual platform has to be accurate enough to
analyze system performance including hardware–software interaction, fast enough
to execute the software and it has to be available earlier than the real-chip develop-
ment. Unfortunately, these criteria are difficult to be accomplished simultaneously:
accurate platforms usually require detailed information, thus they impose slow
simulation speed and substantial time to develop.

The simulation at the virtual prototype level allows performance validation and
it corresponds to classical hardware/software co-simulation models with instruction
set simulators [134, 140] for the processors. The simulation performed at this level
is cycle accurate. It allows validating the memory mapping of the target architecture
and the final software code. It also provides precise performance information such as
software execution time, computation load for the processors, the number of clock
cycles spent on communication. The hardware platform includes all the hardware
components such as cache memories or scratch pads.

Figure 6.1 illustrates a global view of the virtual prototype, composed of ISS
for the processors and the other hardware components, such as local resources of
the processor subsystems, memory subsystem, and the network component. The
left part of the figure corresponds to the hardware architecture, while the right part
represents the software stack at the virtual prototype level running on one of these
processor subsystems.
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Fig. 6.1 Global view of the virtual prototype
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6.1.2 Global Organization of the Virtual Prototype

The virtual prototype model is a hierarchical model. The virtual prototype is com-
prised of detailed software and hardware subsystems interconnected through a
global interconnect component. The software subsystems incorporate an instruc-
tion set simulator (ISS) for each processor to execute the final binary code and
cycle-accurate components for the rest of the architecture. The ISS is a software
environment which can read microprocessor instructions and simulate their execu-
tion. Most of these tools can provide simulation results like values in memory and
registers, as well as timing information (e.g., clock cycle statistics).

Example 31. Virtual prototype for the token ring application mapped on the 1AX
architecture Figure 6.1 shows a conceptual representation of the virtual prototype
for the token ring application mapped on the 1AX architecture. Figure 6.1 illus-
trates that for the token ring application running on the 1AX architecture, the virtual
platform contains two processor subsystems, corresponding to the ARM, respec-
tively, XTENSA processors and the global memory subsystem. All the subsystems
are interconnected by an explicit AMBA bus. The processor subsystems encapsulate
the ISS for the ARM7 processor, respectively, XTENSA processor ISS.

The software stack represents the final software code adapted to specific proces-
sor implementation. The communication consists of physical I/Os, e.g., load/store.

6.2 Basic Components of the Virtual Prototype Model

The basic components of the transaction-accurate architecture model are software
and hardware components. The software components consist of the tasks code, oper-
ating system, communication library, and HAL, while the hardware components
represent detailed subsystems with ISS for the processor.

6.2.1 Software Components

At the virtual prototype level, the software stack running on each processor is com-
pletely detailed and represents the final binary of the software. The binary image
will run on the hardware simulation platform or on the physical architecture board
if this is available.

As shown in Fig. 6.2, the software stack is comprised of all the software com-
ponents: application tasks code, communication implementation, operating system,
HAL, and the APIs to pass from one component to another. Thus, the software stack
is fully explicit, including the HAL layer to access the hardware resources and it is
detailed to ISA (instruction set architecture) level for a specific processor. The HAL
represents a thin low software layer, totally dependent on the target processor core.
The HAL allows the software to access and configure the hardware peripherals.
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Fig. 6.2 Software
components of the virtual
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Example 32. Software components for the token ring application at the virtual pro-
totype level For the token ring application, both software stacks running on the
ARM7, respectively, XTENSA processor are made of the application tasks code
(T1 and T2 for the ARM7 processor and T3 for the XTENSA), the DwarfOS as
operating system, communication library and the HAL-specific implementation for
the ARM7, respectively, XTENSA processors. For both software stacks, the data
and program code are mapped explicitly on the memory, conforming to the final
memory mapping.

6.2.2 Hardware Components

The components of the hardware platform are those at the previous abstraction levels
but detailed with cache memories, scratch pads, memory management units, and
special registers. The hardware architecture contains all the resources required to
verify the final software stack. Therefore, it contains the local components of each
processor and hardware subsystem. In order to execute the software stack, the virtual
platform contains an instruction set simulator (ISS) corresponding to each processor
core.
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Example 33. Hardware components for the token ring application at the virtual pro-
totype level For example, in the case of the token ring application running on the
1AX architecture, the hardware platform contains ISS encapsulated in the proces-
sor subsystems, specific to the ARM7, respectively, XTENSA processors, as it is
illustrated in Fig. 6.3

6.3 Modeling Virtual Prototype in SystemC

The virtual prototype is modeled according to the annotated architecture parameters
of the initial system architecture model and the results of the virtual architecture and
transaction-accurate architecture models simulation.

6.3.1 Software at Virtual Prototype Level

The software design at the virtual prototype level consists of developing the final
software binary that will run on each processor of the hardware platform. The binary
image is obtained from the final software stack. This software stack contains all the
software components: those verified at the transaction-accurate architecture level,
namely, the application tasks code, operating system, and communication library,
and an additional low-level component, more precisely the HAL. Figure 6.4 shows
the software organization at this level and the fragment of the HAL code which
performs a context switch for the ARM7 processor.

void __schedule(void) {
int old_tid = cur_tid;
cur_tid = new_tid;
__cxt_switch( old_tid.cxt, cur_tid.cxt ); // HAL API 

…}

OS

__ctx_switch ; r0 old stack pointer, r1 new stack pointer
STMIA r0!,{r0-r14}      ; save the registers of current task
LDMIA r1!,{r0-r14}      ; restore the registers of new task
SUB pc,lr,#0 ; return
END

HAL code for ARM7 CPU

T2

HdS API 

HAL API

T1

HAL

Comm OS

Fig. 6.4 Software at the virtual prototype level
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Reference [174] defines the HAL as all the software that is directly dependent
on the underlying hardware. The HAL can be implemented in assembly language
interpretable by the processor or specific C code. In fact, the HAL includes two
types of software code:

– Processor-specific software code, such as context switch, boot code, or code for
enabling and disabling the interrupt vectors

– Device drivers, which represent the software code for the configuration and
access to the hardware resources, such as MMU (memory management unit), sys-
tem timer, on-chip bus, bus bridge, I/O devices, resource management, such as
tracking system resource usage (check battery status) or power management (set
processor speed)

Generally, the HAL provides the following kinds of services:

– Context switch, boot code, or code for enabling and disabling the interrupt vectors
– Integration with an ANSI C standard library to provide the familiar C standard

library functions, such as printf(), fopen(), fwrite(). An example of such a kind
of library is the newlib library, which is an open-source implementation of the C
standard library .newlib for use on embedded systems [112]

– Device drivers to provide access to each device of the hardware platform
– The HAL API to provide a consistent interface to HAL services, such as device

access, interrupt handling, and debug facilities
– System initialization to perform the initialization of the tasks for the processor

before the execution of the main() function of the application
– Device initialization to instantiate and initialize each device in the hardware

platform before the execution of the main() function of the application

The device drivers, that are part of the HAL, can provide access for the following
classes of hardware devices:

– Character-mode devices, which represent hardware peripherals that send
and/or receive characters serially, such as a UART (universal asynchronous
receiver/transmitter) device

– Timer devices, which are hardware peripherals that count clock ticks and can
generate periodic interrupt requests

– File subsystems, which provide a mechanism for accessing files stored within
physical devices. Depending on the internal implementation, the file subsystem
driver may access the underlying devices either directly or by using a sepa-
rate device driver. For example, a flash file subsystem driver may access a flash
memory by using dedicated HAL APIs for the flash memory devices

– Ethernet devices to provide access to an Ethernet connection for a networking
stack such as the NicheStack TCP/IP Stack [84]
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– DMA devices that are peripherals that perform bulk data transactions from a data
source to destination. Sources and destinations can be memory or another device,
such as an Ethernet connection

– Flash memory devices, which are non-volatile memory devices that use a special
programming protocol to store data

To create the complete binary software image, the designer has to develop the
configuration and build files (e.g., makefile) which select and configure the library
components (OS, communication, HAL) and control the compilation and linking of
the different software components. Using a cross-compiler, the final target binary is
created for each processor that can be executed on the target processor of the virtual
platform.

Example 34. Software code for the token ring application at the virtual proto-
type level Figure 6.5 presents an example of HAL code performing a context
switch between two tasks running on the ARM7 processor in the case of the token
ring application. Instead of using a simulation model of the HAL APIs as it was
employed at the transaction-accurate architecture level, the virtual prototype gives
the final implementation of the HAL API __ctx_switch(. . .) by using an explicit
HAL software code. The context switch needs two basic operations to be performed:
store the registers of the current task and load the registers of the new task.

__ctx_switch ; r0 old stack pointer, r1 new stack pointer
STMIA r0!,{r0-r14} ; save the registers of current task
LDMIA r1!,{r0-r14} ; restore the registers of new task
SUB pc,lr,#0 ; return
END

Fig. 6.5 HAL implementation for context switch on ARM7 processor

Figure 6.6 illustrates the low-level implementation of the HAL API that sets
the context for a task and initializes the stack required for the execution. The
implementation is given for both ARM7 and XTENSA processors.

Figure 6.7 illustrates another example of low-level code implementation of the
HAL APIs that enable and disable the IRQ interrupts for the ARM processor. The
interrupts are enabled and disabled by reading the CPSR (Current Program Status
Registers) flags and updating bit 7 corresponding to bit I.

Figure 6.8 shows the implementation of the interrupt vector enabling and
disabling for the Xtensa processor.

In order to select properly the libraries of all these software components (OS,
communication, HAL) for the compilation of the software stack, a makefile is
required. Figure 6.9 details a makefile used for cross-compilation of the software
stack running on the ARM7 processor of the 1AX architecture. The makefile con-
tains the path to the application tasks code, target OS (los-kernel), communication
library (los-comm), and the HAL library corresponding to the ARM7 processor
(lib/arm7). It also identifies the compiler to be used, which in this case represents
the arm-elf-gcc cross-compiler provided by GNU [61].
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Fig. 6.6 HAL implementation for Set_Context on ARM7 and XTENSA processors

Fig. 6.7 Enabling and disabling ARM interrupts

It also includes the path to the linker script ldscript used to coordinate the link-
ing process of the different object files obtained after the compilation. The ldscript
guides also the loading process of the software image into the memory, by specify-
ing explicitly the addresses where to load the program and data code of the software
stack.

More details about the memory mapping will be given in the next paragraphs.
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Fig. 6.8 Enabling and disabling XTENSA interrupts

Fig. 6.9 Example of compilation makefile for ARM7 processor

6.3.1.1 Loading Software Image in Memory

An important aspect of the virtual prototype design consists of loading the binary
image of the software into the memories of the chip. Usually, MPSoC architec-
tures provide complex memory hierarchies composed of different memories, such
as ROM, SRAM, DRAM, FLASH. The binary image obtained after the compilation
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and linking is divided into two sections: read-only (RO) which contains the code and
data only for read operations, and read–write (RW) section which contains the data
that can be both read and written. Usually the RO part is loaded into a ROM mem-
ory. The RW part is stored in the ROM before the execution, and then it is initialized
from the ROM into a RAM memory.

The structure of a binary image is defined by the number of regions and output
sections, the positions in the memory of these regions and sections when the image
is loaded, and the positions in the memory of these regions and sections when the
image is executed. Each output section contains one or more input sections. Input
sections are the code and data information from the object files obtained after the
compilation.

The image regions are placed in the system memory map at load time. Then,
before execution of the image, some regions are moved to their execution addresses
and some parts of memory are set to zero creating the ZI (zero initialize) sections.
Thus, there are two different views of the memory map: load view and execution
view. The load view defines the memory in terms of addresses where the sections
are located at the load time, before execution of the image. The execution view
describes the address of the sections while the image is executing. Figure 6.10 shows
the load and execution view of the memories.

RO Section

RW SectionROM

RAM

RO Section

RW Section

ZI Section

Memory initialized
to zero

Memory at Load Memory at Execution

Copy/Decompress

0x00000000

0x00009000

0x00200000

0x00400000

Fig. 6.10 Load and execution memory view

The image memory map is specified during the linking phase. The linking can
be done using command line options for software images with few loading and
execution sections or by using scatter-loading description file for more complex
cases. The scatter-loading description file represents a text file that specifies the
grouping information of sections into regions and the placement addresses of the
regions to be located in the memory maps. The scatter-loading description file also
allows to place the data at a precise address in the memory map to access memory-
mapped I/Os and peripherals. Moreover, stack and heap addresses are defined using
the same description file.

Figure 6.11 shows an example of scatter-loading description file for an ARM
processor according to the memory mapping described in Fig. 6.10 [6].
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Fig. 6.11 Example of scatter-loading description file for the ARM processor

This scatter-loading descriptor example defines one load region (ROM_LOAD)
and two execution regions (ROM_EXEC and RAM). The entire program, including
code and data, is placed in ROM at ROM_LOAD. The RO code will execute from
ROM_EXEC. Its execution address (0×0) is the same as its load address (0×0), so
it does not need to be moved being a root region. The RW data will get relocated
from ROM_LOAD to RAM at address 0×00200000. The ZI data will get created in
RAM, above the RW data.

Before the execution of the binary image, the processor runs an initialization
sequence code to set up and configure the system. Figure 6.12 presents an example
of initialization code using HAL for the ARM processor [6].

__main
• copy code and data
• zero uninitialized data

__rt_entry
• set up application stack
and heap
• initialize library functions
• call top-level
constructors (C++)

• Exit from application

main()
• causes the linker to pull
in library initialization
code

User codeC LibraryImage Entry
 Point

Fig. 6.12 Example of initialization sequence for the ARM processor

The initialization sequence has two principal functions: __main and __rt_entry.
The __main function is responsible for setting the run-time image memory map. It
also performs the copy of code and data and initializes the ZI section with zero. The
__rt_entry (run-time entry) function is responsible to set up the application stack
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and heap memories, to initialize the library functions and static data, and it calls the
constructors of global objects declared in C. Then, the __rt_entry function continues
with the main user function, which represents the entry point of the software stack.
For instance, the main function can be the initialization function of the OS that
declares and initializes the tasks running on the processor.

6.3.2 Hardware at Virtual Prototype Level

The hardware platform is fully detailed with cycle-accurate TLM or RTL com-
ponents for the hardware resources. The hardware at the virtual prototype level
is comprised of the same components as at the transaction-accurate architecture
level. In order to reach accurate performance estimation, the hardware modules are
modeled at this level with cycle accuracy. Cycle accuracy can be achieved in two
modeling methods:

– TLM modeling of the virtual prototype and use of execution delay annotation for
cycle accuracy

– RTL (register transfer level) modeling of the virtual prototype

Both methods can make use of SystemC design language. The TLM mod-
eling method has the advantage to ensure a fast simulation environment, while
the RTL modeling may allow synthesizing the hardware architecture within a
hardware–software MPSoC co-design flow.

The virtual prototype contains ISS for the processors in the processor subsystem
to execute the software stack.

Example 35. Hardware code for the token ring application at the virtual prototype
level The virtual prototype in the case of token ring application running on the
1AX architectures is modeled using cycle-accurate TLM.

Figure 6.13 shows an example of processor subsystem for the ARM7-SS of
the 1AX architecture running the token ring application. The ARM7-SS includes
the processor core ArmCore SystemC module, which encapsulates an ISS of
the software. The rest of the components of the ARM7-SS are those from the
transaction-accurate architecture level (local bus, local memory bridge, interrupt
controller, and mailbox).

6.3.3 Hardware–Software Interface at Virtual Prototype Level

At the virtual prototype level the communication consists of physical I/Os, e.g.,
load/store. The hardware–software interface is represented by the ISS for the pro-
cessors. An instruction set simulator (ISS) is a simulation model, usually coded in a
high-level language such as C language, which mimics the behavior of a micropro-
cessor by “reading” instructions and maintaining internal variables which represent
the processor’s registers.
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Fig. 6.13 SystemC CODE of the ARM7-SS module

6.4 Execution Model of the Virtual Prototype

The integration of instruction set simulators for the software execution on specific
processors with hardware simulators of the architecture behavior is largely used in
MPSoC domain. By using ISS, this approach allows simulating a detailed hardware–
software interaction. The timing information can be measured instead of estimated
as at the previous abstraction levels and design steps.

The execution model of the virtual prototype resides on a co-simulation between
the software stack simulator and the hardware simulator [110]. Two types of sim-
ulators are combined: one for simulating the programmable components running
the software and one for the dedicated hardware part [47]. The software stack is
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executed using processor-specific ISS. Instruction-level or cycle-accurate ISS sim-
ulators are commonly used. The hardware simulation is performed using hardware
RTL descriptions realized in VHDL, Verilog or SystemC, or cycle-accurate TLM
description realized in SystemC. In the following examples, we use SystemC for
the hardware simulation.

The hardware–software simulation is driven by SystemC. The SystemC ini-
tializes the processor SystemC modules that encapsulate the ISS. During the
simulation, the ISS features a simulation loop which fetches, decodes, and executes
instructions one after another. The ISS is developed as sequential software running
on a single processor. The simulation performed at this level is cycle accurate. The
simulation of the virtual prototype allows validating the memory mapping of the
target architecture and the software binary.

Example 36. Execution model for the token ring application at the virtual prototype
level Figure 6.14 shows the execution model of the 1AX architecture running the
token ring application. The model contains two ISS to execute the binary codes,
corresponding to the ARM7, respectively, XTENSA processors. The rest of the
architecture components are cycle-accurate SystemC components modeled at TLM
with execution timing information.
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Comm OS

HAL API
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Fig. 6.14 Execution model of the virtual prototype

6.5 Design Space Exploration of Virtual Prototype

6.5.1 Goal of Performance Evaluation

The goal of the performance evaluation at the virtual prototype level is to validate
the final software stack and the overall performance of the system. The performance
evaluation is related to both computation and communication aspects.
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Based on the results obtained by executing the final software on the virtual
prototype model, the designer may need to improve some parts of the design or
revise design options due to unsatisfied design constraints, for example, if real-time
requirements are not met, such as number of frames processed per second in mul-
timedia applications, usually defined as 25 frames/s. Software optimization aims
to decrease program and data size, usually achieved through application algorithm
optimization or communication overhead reduction.

6.5.2 Architecture/Application Parameters

The virtual prototype validates the adaptation of the final software code to a specific
processor.

The designer may choose different types of processor cores from the same pro-
cessor family or different processor families. The different kinds of processor cores
of the same family have a common architecture, but are differentiated by some spe-
cific features, such as size of data and instruction cache memories, bus interfaces, the
availability of tightly coupled memory, power consumption, area, clock frequency
(MHz), or DSP extensions. Table 6.1 shows a subset of different characteristics of
processors belonging to the ARM7 family compared to the ARM926EJ-S processor
of ARM9 family [6]:

Table 6.1 ARM7 and ARM9 processors family

Cache size
(Inst/data)

Tightly
coupled
mem

Mem
Mgmt

Bus
interface Thumb DSP Jazelle

ARM720T 8 k unified – MMU AHB Yes No No
ARM7EJ-S – – – Yes Yes Yes Yes
ARM7TDMI – – – Yes Yes No No
ARM7TDMI-S – – – Yes Yes No No
ARM926EJ-S 16 k/16 k Yes MMU AHB Yes Yes Yes

The designer may change these parameters and may set up different configu-
ration schemes, including target compilation optimizations, to increase the overall
performance.

6.5.3 Performance Measurements

The simulation of the virtual prototype provides precise performance information
such as software execution time, computation load for the processors, the number
of cycles spent on communication, the number of cycles spent by processors in idle
state.
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Other important metrics that can be measured at this level are program and data
memory size requirements of the final software stack, number of cycles spent by
the processor on certain application functions, or number of instructions executed
per clock cycle. This kind of data can be gathered thanks to the precise profiling
capabilities of most of the instruction set simulators. Usually, the virtual prototype
is a cycle-accurate model, thus it implies long simulation time. Therefore, the sim-
ulation time represents another key feature to be measured at the virtual prototype
level.

Example 37. Performance measurements for the token ring application at the virtual
prototype level In the case of the token ring application, the execution of the three
tasks on a single ARM7TDMI processor without operating system requires 484,775
clock cycles running at 60 MHz. The application compiled for a single ARM7 pro-
cessor produces a code size of 1,112 bytes and 108 data bytes. The computation of
the FFT on the ARM7 processor involves 33,329 clock cycles.

6.5.4 Design Space Exploration

At the virtual prototype level, the design space exploration consists of processor
core configuration and exploration. The different types of processor cores or differ-
ently configured processors have different performances in terms of speed, power
consumption, and cost.

Example 38. Design space exploration for the token ring application at the virtual
prototype level For instance, the XTENSA processor is a configurable proces-
sor provided by Tensilica [152]. The SoC designers may customize functional
blocks to exactly match the required application. Because these processors are fully
programmable, changes can be made in firmware even after the silicon production.

Generally, the configurable processors have two essential features:

– Configurability, which allows the designers to pick and configure the features they
need.

– Extensibility, which allows designers to add multi-cycle execution units, regis-
ters, or register files. For instance, the Tensilica Instruction Extension (TIE) of
the XTENSA processors is a methodology that allows designers to specify and
verify the functional behavior of the new data path and the RTL is automatically
generated [152].

Another space that can be explored at the virtual prototype level represents the
memory mapping. Thus, the different data structures can be mapped on different
memories at different addresses accessible through load/store instructions.
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6.6 Application Examples at the Virtual Prototype Level

The following paragraph presents the virtual prototype model for the two case stud-
ies: the Motion JPEG decoder application running on the Diopsis RDT architecture
with AMBA bus and the H.264 encoder application running on the Diopsis R2DT
architecture with Hermes NoC.

6.6.1 Motion JPEG Application on Diopsis RDT

At the virtual prototype level, the software stacks of the Motion JPEG decoder
application running on the two processors contain all the components. A processor-
specific HAL layer is linked with the application tasks, operating system, and
communication libraries. Usually, the HAL layer is provided by the processor
vendors. Thus, a specific ARM7 HAL is implemented in the final software running
on the ARM7. Similarly, the HAL of the DSP is integrated in the software stack. The
two software stacks produce two different binary images that will be interpreted and
executed by the ISS corresponding to each of these processors.

The hardware platform contains cycle-accurate detailed components using TLM
modeling with timing annotation or RTL modeling. Figure 6.15 illustrates a global
view of the virtual prototype platform with the use of ISS as processor execution
model.
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Fig. 6.15 Global view of the virtual prototype for Diopsis RDT with AMBA bus running motion
JPEG decoder application

Figure 6.16 illustrates a piece of HAL code for DSP processor, implementing
the _set_context(), vector_enable(), and vector_disable() HAL APIs. The first HAL
code sets the context of the application task running on the DSP, while the others
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void_set_context(thread_context_tbuf, fcall_tfunction, void *stack)
{

_DBIOS_Init(function,buf,stack); 
}

voidvector_enable(intirq_type){
AT91F_DSP_INTERRUPT_Enable(irq_type);

}

void vector_disable(intirq_type){
AT91F_DSP_INTERRUPT_Disable (irq_type);

}

Fig. 6.16 Global view of the virtual prototype for Diopsis RDT with AMBA bus running motion
JPEG decoder application

implement the interrupt vector enabling and disabling services. The implementation
of these HAL APIs relies on the other APIs that are provided by the DSP vendor,
Atmel.

Figure 6.17 summarizes the total execution cycles measured when executing the
whole Motion JPEG application on a single-processor single-task configuration. The
experimentation was done using three types of processor cores. The first processor
core represents the ARM7TDMI-S processor of the ARM7 family. This processor
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Fig. 6.17 Execution clock cycles of motion JPEG decoder QVGA
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works at 60 MHz frequency and has no data cache or instruction cache memo-
ries. The second core belongs to the ARM9 processor family and represents the
ARM926EJ-S type of core. This runs at 200 MHz frequency and is equipped with
16 kB data cache and 16 kB instruction cache memories. The third processor repre-
sents the magicV VLIW DSP processor, running at 100 MHz. In all the cases, the
real-time execution requirement defines an image rate equal to 25 images/s to be
decoded.

As shown in Fig. 6.17, the number of execution cycles required to decode an
image is approximately 7 mega cycles on the ARM9 processor, 16 mega cycles on
the DSP processor, and 23 mega cycles on the ARM7 processor.

The performance difference between the two ARM processors is explained by
the availability of the additional cache memories and improvement in the number
of cycles required for load/store operations characterizing the ARM9 core family
compared with the ARM7 core. The real-time requirement implies 8 mega cycles
on a CPU running at 200 MHz, 4 mega cycles on a CPU running at 100 MHz, and
2.4 mega cycles on a CPU running at 60 MHz. Thus, the MJPEG decoder can be
executed in real time by using the ARM9 processor, while the execution on a single
ARM7 processor requires application code optimization. The execution on the DSP
can be improved by using DSP-specific optimization features.

After the compilation of the MJPEG decoder application, the memory require-
ments are as follows: 7,592 bytes of code size for the program memory and 1,402
bytes data memory. These values were obtained in case of targeting both ARM7 and
ARM9 processor cores using the CodeWarrior development tool [100]. In case of
the DSP processor, the MJPEG decoder requires 614 bytes data memory and 2,806
bytes program memory.

In order to compare the virtual prototype simulation with the actual physical
implementation, the Motion JPEG application can be executed on an FPGA-based
platform. The application binary is loaded and executed on the ARM 9 proces-
sor of the FPGA emulation platform of the Diopsis RDT architecture. Thus, in
order to validate the correctness and efficiency of the multi-level software design
flow, the generated software stack of the MJPEG application maybe executed on
a Diopsis emulation platform with Xilinx Virtex-II XC2V8000 FPGA provided by
Atmel Inc. In this example, all the four tasks of the Motion JPEG application are
mapped onto the ARM9 processor. Then, the software stack is designed and veri-
fied incrementally. For the tasks management, a tiny OS can be used to implement
basic OS services, such as tasks scheduling and software FIFO channels for the
communication between the tasks. This OS must be enriched to support specific
context switch for the ARM9 processor. A multi-ice GDB debugger server can be
used in order to load the final software binary image on the local SDRAM memory.
The FPGA platform-based emulation ensures the reliability of the software code’s
functionality.

Compared with virtual prototype simulation, the FPGA execution is faster than
simulation. Often, the application can run at full speed. Also, unlike simulation, the
FPGA does not necessarily slow down as more hardware components are integrated
in the design. So, it becomes possible to test the entire design rather than individual
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components and to run tests with large real-life data sets instead of surgically crafted
test cases.

Because of the speed and the fact that the FPGA has the actual I/O cells that
the design requires, someone can also test the design in-system: either in an FPGA
development board that the tester has lashed into the target system or in the target
PCB (printed-circuit board) if it is ready to go. Such testing eliminates the lingering
uncertainty about whether the test cases really reflect the operating environment of
the design. Also, testing the application in its actual board can uncover I/O-related
issues – electrical problems, signal-integrity issues, or incompatibilities in high-
speed serial protocols, for example – that would be virtually undetectable in any
other way.

But the main disadvantage of the FPGA-based execution is the signals visibility.
In the simulation environment, all the signals can be observed and accessed easily.
This is not the case for execution on a FPGA.

6.6.2 H.264 Application on Diopsis R2DT

The H.264 encoder running on the Diopsis R2DT architecture at the virtual proto-
type level is illustrated in Fig. 6.18. In the same way as in the case of the Motion
JPEG decoder, there are three final software stacks running on the architecture, one
per each processor. The HAL libraries were included in the software stack for each
particular CPU.
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Fig. 6.18 Global view of the virtual prototype for Diopsis R2DT with Hermes NoC running H.264
encoder application
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Fig. 6.19 Execution clock cycles of H.264 encoder, main profile, QCIF video format

The hardware platform includes ISS to execute the final software. The ISS
allows determining the execution cycles spent on each task. The virtual proto-
type of the Diopsis R2DT running the H.264 encoder application is illustrated
in Fig. 6.18.

Figure 6.19 captures the results of executing the H.264 encoder application, main
profile, QCIF video resolution on the ARMTDMI-S and ARM926EJ-S processors.
In this single task fashion, the H.264 encoder requires around 30 mega cycles to
encode a P frame and 16 mega cycle for encoding an I video frame on the ARM9
CPU running at 200 MHz. If the target processor is the ARM7 core, the encoder
requires approximately 50 mega cycles for a frame type I and 90 mega cycles for a
frame type P.

As shown in Fig. 6.19 both results do not respect the real-time encoding require-
ment established at 25 frames encoded per second. Running on a single processor,
the achieved frame rate is 9 frames/s for a P frame and 12 frames/s for the I video
frame. The H.264 results represented in Fig. 6.19 consider a key frame of five
frames, which mean that between two I frames there are five video frames that will
be encoded as P frame.

Figure 6.20 shows the program and code size of the H.264 application compiled
with the CodeWarrior tool targeting the ARM7 and ARM9 processors. The data size
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Fig. 6.20 Program and memory size

has the same value for both types of processor cores, being equal to 2,799 kB, while
the program size is 474 kB compiled for the ARM7 processor and 277 kB for the
ARM9 core.

6.7 State of the Art and Research Perspectives

6.7.1 State of the Art

Currently, virtual prototype environments for modeling and simulation based on
SystemC, such as Maxsim [7], Coware ConvergenSC [41], and Synopsys System
Studio [147], provide a rich set of components such as processors, memories, and
peripherals that can be extended by user-defined modules.

The concept of virtual platform appears in [70] with the purpose to allow
software development and code optimization before the real board is available.
Reference [119] uses virtual prototype simulation to perform software profiling,
such as total execution cycles and software performance analysis.

Execution of software using an ISS still suffers from low simulation speed
compared to real hardware. Therefore, many researchers focus on developing
new techniques to attain high simulation speed. In this context [136] mixes the
interpreted ISS simulation with the compiled ISS simulation in order to allow a
multi-processing simulation approach to increase simulation speed. Reference [144]
describes an ultra-fast ARM and multi-core DSP instruction set simulation environ-
ment based on just-in-time (JIT) translation technology, which refers to the dynamic
translation of the target instructions (ARM, DSP) to the host instructions (×86)
during the execution.

Reference [80] presents a fast and hybrid simulation framework which allows
switching between native code execution and ISS-based simulation. In this



6.7 State of the Art and Research Perspectives 205

approach, the platform-independent parts of the software stack are executed directly
on the host machine, while the platform-dependent code executes upon an ISS.
Thus, the framework allows debugging a complex application through executing
it natively until the point where the bug is expected, and then executing on the ISS
to examine the detailed software behavior.

Other research groups focus on integrating ISS within existing design flows. For
instance, [91] presents a framework of ISS integration within the Ptolemy design
environment that leverages the approach of time-approximate co-simulation based
on source code estimation of execution time and refines its precision by using
an ISS.

Reference [120] presents the automatic generation of virtual execution platforms
for the hardware architecture to analyze the run-time behavior of the application
running on a real-time operating system and to estimate accurately performance
data.

Reference [76] allows generation of synthesizable communication from high-
level TLM communication models. The scope of this work is to reduce the gap
between TLM and RTL designs for automating MPSoC synthesis.

Reference [139] proposes automatic software synthesis from TLM platforms.
They support automatic generation of HdS, including code generation, communi-
cation software synthesis, multi-task synthesis, and generation of the configuration
and makefiles to control the cross-compilation and linking of the generated code for
a particular processor.

6.7.2 Research Perspectives

The virtual platform has to be available earlier than the real hardware in order to
allow concurrent software and hardware designs. Therefore, one research perspec-
tive regarding the virtual prototype design relies on the automation of the generation
process by using the architecture parameters annotating the system architecture
model and the simulation results of the higher abstraction levels. The automatic
generation of the virtual prototype model shortens the design time and permits to
reduce human coding errors.

Virtual prototype uses instruction set simulators for the software execution. This
implies high-accuracy and low-simulation speed. Moreover, the simulation time
increases exponentially with the number of processor cores integrated on the same
chip. Thus, finding new methodologies that speed up simulation but still main-
tain accurate performance evaluation represents another important issue for future
research perspectives.

Another important research perspective, related to the considered case studies,
represents the simulation of the MJPEG and H.264 applications running on the
multi-processor architecture. As the target architectures include commercial off-the-
shelf DSP processors and their compiler and instruction set simulator were provided
as stand-alone applications, the integration of the DSP instruction set simulators
into a hardware simulation environment, such as the one previously described in
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SystemC, represents an essential future perspective. Generally, the integration of
ISS into an existing platform imposes development of a software simulation wrap-
per that interacts with the hardware model and solves the synchronization problem
for the hardware and software interaction.

6.8 Conclusions

This chapter detailed the virtual prototype design. The virtual prototype design con-
sisted of integrating the HAL component into the software stack, cross-compiling it
for the target processor, and fixing the final memory mapping.

The verification of the software binary was performed by using instruction set
simulators (ISS). Thus, the token ring application was executed on the 1AX archi-
tecture, Motion JPEG on the Diopsis RDT architecture, and H.264 encoder on the
Diopsis R2DT architecture.

The Motion JPEG application was also executed using ISS on a single processor
(ARM7, ARM9, and DSP) and the H.264 encoder was simulated using ISS running
on both multi-processor architecture with three ARM7 processors and single pro-
cessor (ARM7 and ARM9). The simulation of the virtual prototype model allows to
verify the final software binary and the memory mapping.



Chapter 7
Conclusions and Future Perspectives

7.1 Conclusions

The current design practice for system-on-chip is RTL (register transfer level)
design with a late integration of hardware and software. Its shortcomings are inef-
ficient design, long design cycles, over-design of the hardware, etc. Most recently
designers have started to adopt virtual prototypes in practice. These help with earlier
integration leading to a better software and earlier availability and improved design.
However, this phase adds many man months of effort to a typical project and has the
following disadvantages: still requires long simulation time; the architecture details
are not necessary for the design of all types of software components; it is difficult to
identify the different sources of the software bugs.

To overcome these challenges, we propose and show in our examples how the
transaction-accurate architecture design can help with these challenges. The addi-
tional effort of only few man months to create these models is more than offset
by the following value it provides: more than 1,000 times faster simulation speed,
early performance estimation with transaction level accuracy, early verification of
the tasks scheduling by the OS. Concrete examples from the case studies presented
in the book help to better understand this design step and to create new models in
a relative short time. Still, at this phase designers are facing the following short-
comings: it is difficult to map application functions onto processors running an OS
without a prior validation of the tasks code; the scheduling of the communication
primitives, that serve to exchange data between the tasks, needs to be verified before
the execution upon an OS, in order to find possible deadlocks (a condition that
occurs when two tasks are each waiting for the other to complete before proceed-
ing; the result is that both processes hang) or livelocks (a condition that occurs when
two or more tasks continually change their state in response to changes in the other
tasks; the result is that none of the processes will complete).

These shortcomings can be addressed in a phase called virtual architecture
design, which adds the value of allowing validation of the application partition-
ing and mapping on the processing units. But the virtual architecture design does
not address the application algorithm design, optimization, and verification, which
in exchange can be addressed by a system architecture design phase.

207K. Popovici et al., Embedded Software Design and Programming of Multiprocessor
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Thus, this book presented a software design and verification flow able to effi-
ciently use the resources of the architecture and allowing easy experimentation of
several mappings of the application onto the platform resources. The book presented
two case studies: Simulink environment to capture both application and architecture
initial representations and SystemC for the low-level software design. The soft-
ware generation and verification was performed gradually from this initial model
corresponding to different software abstraction levels. Specific software develop-
ment platforms (abstract models of the architecture) in SystemC were used to
allow debugging the different software components with explicit hardware–software
interaction.

The presented software design flow decreases the complexity of the design pro-
cess by structuring it into several layers. The different components of the software
stack were generated and validated incrementally: the simulation at system archi-
tecture level validated the application’s functionality; the virtual architecture level
simulation allowed debugging the final application tasks code; the execution at the
transaction accurate architecture level validated the integration of the tasks code
with the OS and communication library, while the virtual prototype enables the
validation of the binary image.

Besides the software debug, the platforms also allow to accurately estimate
the use of the hardware resources by counting the total number of transactions
exchanged during the simulation. The software design flow also made it possible
to optimize the communication performance by using the architecture capabilities.
The communication optimization relied on easy experimentation of different map-
pings of the communication onto the platform resources, using simple annotations
of the initial Simulink model and generating the corresponding platforms.

The flow is able to facilitate programming existing hardware platforms that con-
tain heterogeneous multiprocessor architectures with specific I/O components. The
design flow allows mapping sophisticated software organized into several stacks
made of different layers on these platforms. The new software design flow mas-
ters the complexity of the software design process. This is achieved thanks to the
incremental software layers generation and corresponding software development
platforms generation. These platforms are able to abstract multimedia architectures
at different abstraction levels and enable separate debug of the software components.

Apart from the case studies presented in this book, the programming environ-
ment case studies have been applied successfully for the following multimedia
applications running on the corresponding MPSoC architectures [124]:

√
Token ring application targeting the 2A1X (two ARM processors and one

XTENSA processor interconnected through the AMBA bus) and Diopsis
RDT architectures√
MP3 audio decoder running on the Diopsis RDT architecture with

AMBA bus√
Vocoder audio encoder executed on the Diopsis RDT architecture with

AMBA bus
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√
Motion JPEG image decoder running on the following architectures: 1AX,

2A1X, Diopsis RDT with NoC interconnect, Diopsis RDT with AMBA bus
in normal mode without burst data transfers√
H.264 video encoder, main profile, running on the following architectures:

Diopsis RDT with NoC, Diopsis RDT with AMBA bus with and without
burst transfer and Diopsis R2DT with AMBA bus√
H.264 video decoder application, base profile, running on 1AX and 2A1X

architectures

7.2 Future Perspectives

Future research perspectives tackle the following described items:

(i) Automation of the software design and validation flow

The automation of the software design flow concerns two aspects:

– automatic tools for the software stack construction
– automatic tools for the software simulation models generation

The automatic generation of the different MPSoC abstraction levels could be
made possible by applying a service-based modeling of the hardware–software
interface as described in [56]. The composition of the services allows the auto-
matic generation tools to build easily the different software and hardware simulation
models.

The automatic generation of the hardware and software architectures at the differ-
ent abstraction levels shortens the design time and permits to reduce human coding
errors.

(ii) Automatic generation of the RTL hardware architectures: The automatic gener-
ation of RTL to allow synthesis of the target hardware architectures represents
future work. This would make possible hardware design in parallel with the
software design for a specific application, allowing hardware implementation
of some functions for a target application.

(iii) Formalization of the hardware–software partitioning process: The presented
software design and validation flow uses system architecture model, which
represents the partitioned model of the application onto the target archi-
tecture. Thus, formalizing the partitioning process represents another future
perspective to allow early design space exploration. Design space explo-
ration represents an essential issue to analyze the impact on performances
by using different application partitioning, mapping, and communication
schemes. Design space exploration allows finding the best combination of
the application/architecture configurations to achieve the required communica-
tion and computation constraints. Future works focus on better parallelization
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of the applications and exploration of the different partitioning and mapping
combinations.

Automatic tools for application partitioning, mapping, and evaluation metrics
such as performance, power, and cost are necessary to fully explore the design
space and help designer’s choices. Therefore, future work should address estima-
tion tools such as power estimation to meet the tight power constraints on MPSoCs.
For instance, power estimation can be implemented by embedding cycle-accurate
power model into each hardware component of the development platform.

Another aspect of future perspective for design space exploration constitutes the
annotation of the intermediate abstraction platforms with execution delays to pro-
vide more accurate performance estimation at the design steps earlier than the virtual
prototype design.

(iv) Support of multiple applications: The support of the multiple applications run-
ning on the same MPSoC architecture, i.e., an audio encoder combined with a
video encoder application is also envisioned for the future. During the paral-
lel execution of the multiple applications, the main difficulties that need to be
overcome are related to the global scheduling and hardware resource sharing
of the different applications.

(v) Hardware–software co-design flow: A completely automated hardware–
software co-design flow represents another future research perspective. The
flow involves a seamless refinement at the four abstraction levels (system
architecture, virtual architecture, transaction-accurate architecture, virtual pro-
totype). It requires automatic code generators for the software design, platform-
based generators for the hardware design, and automatic hardware–software
interfaces refinement.
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A

AHB advanced high-performance bus. AHB is an AMBA high speed bus.

ALU arithmetic/logic unit. The arithmetic/logic unit is a fundamental build-
ing block of the CPU’s internal architecture. It performs logical and arithmetic
operations.

AMBA The AMBA bus is a an open bus standard promulgated by ARM.

APB advanced peripheral bus. APB is an AMBA bus. The APB bus is devoted to
low-speed peripherals and it is optimized to minimize power consumption and to
reduce interface complexity.

API application programming interface. An application programming interface is
a set of declarations of the functions that an operating system, library, or service
provides to support requests made by computer programs.

ASB advanced system bus. ASB is an AMBA bus which is mainly deprecated and
it has been substituted by AHB.

ASIC application-specific integrated circuit. An application-specific integrated cir-
cuit is an integrated circuit customized for a particular use, rather than intended for
general-purpose use.

ASIP application-specific instruction set processor. An application-specific
instruction set processor is a stored-memory CPU whose architecture is tailored
for a particular set of applications.

AVC advanced video codec. Advanced video codec (AVC) is a standard for video
compression. It is also known as H.264.

B

BDF Boolean dataflow. BDF is a model of computation based on dataflow. It
is a generalization of SDF that sometimes yields to deadlock or boundedness
analysis.
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BFM bus functional model. A bus functional model is used to simulate operat-
ing systems on the host machine. It transforms the functional memory access into
hardware memory access.

BSB board support package. A board support package includes a set of minimal
services necessary to load an operating system in an embedded system and the
device drivers for all the devices on the board.

C

CABAC context adaptive binary arithmetic coding. CABAC is an entropy encoding
algorithm, part of the H.264 video compression standard.

CAVLC context adaptive variable length coder. CAVLC is an entropy encoding
algorithm, part of the H.264 video compression standard.

CORBA common object request broker architecture. The common object request
broker architecture allows to execute different application objects that reside either
in the same shared address space or remote address space. The application objects
are described using interface definition languages (IDL).

Cycle accurate. cycle-accurate level is the most detailed abstraction level in our
multiple abstraction levels design space exploration flow.

CPU central processing unit. A central processing unit is a description of a class of
logic machines that can execute computer programs.

D

DCT discrete cosine transform. The DCT is a frequency transform used in video
and image processing, whose coefficients describe the spatial frequency content of
an image or video frame. The DCT operates on 2D set of pixels, in contrast to the
Fourier transform which operates on a 1D signal.

DDF dynamic dataflow. DDF is a model of computation based on dataflow, which
uses only runtime analysis to detect deadlock and boundedness.

DFT discrete Fourier transform. The DFT, occasionally called the finite Fourier
transform, is a transform for Fourier analysis of finite-domain discrete-time sig-
nals. It expresses an input function in terms of a sum of sinusoidal components by
determining the amplitude and phase of each component.

DMA direct memory access. The DMA is a component of the hardware architec-
ture which allows accessing the memory independently of the processor. Usually it
is used to initiate a data transfer between a local and global memory.

DSP digital signal processor. A digital signal processor is a specialized micro-
processor designed specifically for digital signal processing, generally in real-time
computing.
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F

FIFO first in–first out. First in–first out is an abstraction in ways of organizing and
manipulation of data relative to time and prioritization.

FPGA field programmable gate array. An FPGA is an integrated circuit which con-
tains programmable logic components, which can be configured to perform complex
combinational functions or logic operations. It can contain also memory elements.

FSM finite state machine. The FSM is a model of computation comprised of a finite
number of states, transitions between those states and actions.

G

GPP general-purpose processor. A general-purpose processor is a processor that is
not tied to, or integrated with, a particular language or piece of software.

H

HAL hardware abstraction layer. A hardware abstraction layer is an abstraction
layer, implemented in software, between the physical hardware of a computer and
the software that runs on that computer. Its role is to hide differences in hardware
from most of the operating system kernel, so that most of the kernel-mode code
does not need to be changed to run on systems with different hardware.

HdS hardware-dependent software. Hardware-dependent software is the part of
an operating system which varies across microprocessor boards and is comprised
notably of device drivers and boot code which performs hardware initialization.

I

IDCT inverse discrete cosine transform. A inverse discrete cosine transform
expresses the opposite process of transforming a sequence of finitely many data
points in terms of a sum of cosine functions oscillating at different frequencies.

ILP instruction-level parallelism. Instruction-level parallelism is a measure of how
many of the operations in a computer program can be performed simultaneously.

IQ inverse quantization. The IQ is used in multimedia decoding applications and
represents the opposite of the quantization process. It consists of the multiplication
of each of the 64 DCT coefficients by its corresponding quanta step size. The quanta
steps are stored in the quantification tables.

ISR interrupt service routine. An interrupt service routine is a callback subroutine
in an operating system or device driver whose execution is triggered by the reception
of an interrupt.

ISS instruction set simulator. An instruction set simulator is a simulation model
which mimics the behavior of a mainframe or microprocessor by “reading” instruc-
tions and maintaining internal variables which represent the processor’s registers.
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ITRS international technology roadmap for semiconductors. The international
technology roadmap for semiconductors, known throughout the world as the ITRS,
is the 15-year assessment of the semiconductor industry’s future technology require-
ments. The future needs drive present-day strategies for world-wide research and
development among manufacturers’ research facilities, universities, and national
labs.

J

JPEG Joint Photographic Experts Group. JPEG is a commonly used method
and standard of compression for photographic images and is created by the joint
photographic experts group.

M

MCU microcontroller. The microcontroller is a type of CPU specialized mostly on
control functions and combined with support functions such as timers, watchdog,
serial and analog I/Os.

MIMD multiple instructions multiple data. Multiple instructions multiple data are
a technique employed to achieve thread-level parallelism.

MIPS millions of instructions per second. MIPS stands for “millions of instructions
per second” and is a rough measure of the performance of a CPU.

MJPEG motion JPEG. In multimedia, motion JPEG is an informal name for multi-
media formats where each video frame or interlaced field of a digital video sequence
is separately compressed as a JPEG image.

MPEG Moving Picture Experts Group. MPEG is a family of standards for video
encoding and decoding.

MPI message-passing interface. MPI is a standard library for message passing that
combines portability with high performance.

MPSoC multi-processor system-on-chip. The multi-processor system-on-chip is
a system-on-chip which uses multiple processors, usually targeted for embedded
applications.

N

NI network interface. The network interface is a component of a network-on-chip.
It is responsible for providing send/receive operations for communicating subsys-
tems, encapsulating these requests in packets, capturing and interpreting packets
arriving from the NoC, and delivering them to the subsystems.

NoC network-on-chip. The network-on-chip is an interconnection component often
used in MPSoC architectures to replace buses. It has many advantages compared to
buses, which include high bandwidth, scalability, and power efficiency.
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O

OS operating system. An operating system is the software component of a com-
puter system that is responsible for the management and coordination of activities
and sharing of the resources of the computer.

P

PIC programmable interrupt controller. The interrupt controller is a hardware
component which handles external interrupts by according priorities to cope with
external events. Its registers can be programmed by the designer to assign different
priorities to different interrupt sources.

R

RAM random access memory. RAM represents a type of memory which can be
accessed for read and write operations in any order.

RDL register description languages. The register description language allows
specifying and implementing software-accessible hardware registers and memories.

RISC reduced instruction set computer. Reduced instruction set computer repre-
sents a CPU design strategy emphasizing the insight that simplified instructions
which can be executed very quickly to provide higher performance.

ROM read-only memory. ROM represents a type of memory which can be only
accessed for read operations. The data store in a ROM memory cannot be modified.

RTL register transfer level. In an integrated circuit design, register transfer level
description is a way of describing the operation of a synchronous digital circuit. In
RTL design, a circuit’s behavior is defined in terms of the flow of signals (or transfer
of data) between hardware registers and the logical operations performed on those
signals.

Q

QoS quality of service. Quality of service is a measure of reliability used for data
transmission over a shared network.

S

SA system architecture. The system architecture level is the highest abstraction
level used in the software design for an MPSoC architecture. It captures both
application and mapping specification.

SAD sum of absolute difference. The sum of absolute difference is a widely used,
extremely simple video quality metric used for macroblock matching in motion
estimation for video compression. It works by taking the absolute value of the dif-
ference between each pixel in the original macroblock and the corresponding pixel
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in the macroblock of the reference frame, which is used for comparison. These
differences are summed to create a simple metric of macroblock similarity.

SDF synchronous dataflow. SDF is a model of computation based on dataflow,
which detects deadlock and boundedness.

SDG service dependency graph. The service dependency graph represents a unified
model to capture the hardware/software interfaces for MPSoC architectures.

SIMD single instruction multiple data. The single instruction multiple data is a
technique employed to achieve data-level parallelism, as in a vector processor.

SMP symmetric multi-processing. Symmetric multi-processing involves a multi-
processor computer architecture where two or more identical processors can connect
to a single shared main memory.

SoC system-on-chip. System-on-chip refers to integrating all components of a
computer or other electronic system into a single integrated circuit (chip).

T

TA transaction accurate. The transaction-accurate level is an abstraction level used
to simulate an application running on an operating system.

TLM transaction-level modeling. The transaction-level modeling is a high-level
approach of modeling digital systems, where details of the communication among
the components are separated from the details of the implementation of functional
units or of the communication architecture.

TLP thread-level parallelism. The thread-level parallelism is a form of paral-
lelization of computer code across multiple processors in parallel computing
environments. It focuses on distributing the execution processes (threads) across
different parallel computing nodes.

V

VA virtual architecture. The virtual architecture level is a more detailed abstraction
level compared with the system architecture level. It serves to execute and debug a
multi-threaded application.

VCI virtual component interface. Virtual component interface is a standard defined
by the Virtual Socket Interface Alliance (VSIA). The overall objective is to obtain
a general interface, such that intellectual property (IP), in the shape of virtual com-
ponents (VCs) of any origin, can be connected to systems on chips of any chip
integrator.

VLIW very long instruction word. VLIW is a style of computer architecture
that issues multiple instructions or operations per clock cycle, but relies on static
scheduling to determine the set of operations that can be performed concurrently.
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VP virtual prototype. The virtual prototype level is a cycle-accurate abstraction
level used to model hardware platforms. It serves to execute and debug the binary
image of a multi-threaded application.
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