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This book provides a detailed accounting of how downside risk can enter a
portfolio, and what can be done to identify and prepare for the downside. We
take the view that downside risk can be incorporated into current methods of
stock valuation and portfolio management.Therefore we introduce commonly
used theories in order to show how the status quo often misses the downside,
and where to include it.

The importance of downside risk is evident to any investor in the market.
No one complains about unexpected gains, while unexpected losses are
painful.Traditional theories of risk measurements treat volatility on either side
equally. To include downside risk, we divide the discussion into three parts.
Part 1 covers the current theories of risk measurement and management, and
includes Chapters 1, 2, and 3. Part 2 presents the violations of this theory and
the need to include the downside, covered in Chapters 4, 5, 6, and 7. Part 3
covers the quantitative and programming techniques to make risk measure-
ment more precise in Chapters 8 and 9. The discussions in these two chapters
are not for the casual reader but for those who perform the calculations and
are curious about the pitfalls to avoid. Chapter 10 concludes with a summa-
rized treatment of downside risk.

Our aim in this book will have succeeded if the reader takes a second look
when investing and asks, “Have I considered the downside?”

Preface

xix





C H A P T E R 1

Quantitative Measures of the 
Stock Market

1

1.1 PRICING FUTURE CASH FLOWS

Our first project in order to understand stock market risk, particularly down-
side risk, is to identify exactly what the stock market is and determine the
motivation of its participants. Stock markets at their best provide a mecha-
nism through which investors can be matched with firms that have a produc-
tive outlet for the investors’ funds. It is a mechanism for allocating available
financial funds into appropriate physical outlets. At the individual level the
stock market can bring together buyers and sellers of investment instruments.
At their worst, stock markets provide a platform for gamblers to bet for or
against companies, or worse yet, manipulate company information for a profit.
Each investor in the stock market has different aims, risk tolerance, and finan-
cial resources. Each firm has differing time horizons, scale of operations, along
with many more unique characteristics including its location and employees.

So when it comes down to it, there need not be a physical entity that is the
stock market. Of course, there are physical stock exchanges for a set of listed
stocks such as the New York Stock Exchange. But any stock market is the com-
bination of individuals. A trading floor is not a stock market without the indi-
vidual investors, firms, brokers, specialists, and traders who all come together
with their individual aims in mind to find another with complementary goals.
For any routine stock trade, there is one individual whose goal it is to invest
in the particular company’s stock on the buy side. On the sell side, there is an
individual who already owns the stock and wishes to liquidate all or part of
the investment. With so much heterogeneity in the amalgam that is the stock
market, our task of finding a common framework for all players seems

Preparing for the Worst: Incorporating Downside Risk in Stock Market Investments,
by Hrishikesh D. Vinod and Derrick P. Reagle
ISBN 0-471-23442-7 Copyright © 2005 John Wiley & Sons, Inc.



intractable. However, we can find a number of features and commonalities
which can be studied in a systematic manner.

1. The first among these commanalities is the time horizon. For any
investor, whether saver or gambler, money is being invested in stock for some
time horizon. For a young worker just beginning to save for his retirement
through a mutual fund, this time horizon could be 30 years. For a day trader
getting in and out of a stock position quickly, this time horizon could be hours,
or even minutes. Whatever the time horizon, each investor parts with liquid
assets for stock, intending to hold that stock for sale at a future date T. When
we refer to prices, we will use the notation, PT, where the subscript represents
the time period for which the price applies. For example, if the time T is mea-
sured in years, P0 denotes the current price (price today) and P5 denotes the
price five years from now.

2. The next commonality is that all investors expect a return on their invest-
ment. Since investors are parting with their money for a time, and giving up
liquidity, they must be compensated. We will use rT to represent the return
earned on an investment of T years. Therefore r1 would be the return earned
on an investment after one year, r5 on an investment after five years, and so
on. Using our first two rules, we can derive a preliminary formula to price an
asset with a future payment of PT which returns exactly rT percent per year
for T years. We use capital T for the maturity date in this chapter. Lowercase
t will be used as a variable denoting the current time period.

We start with the initial price, P0, paid at the purchase date. After the first
year, the investor would have the initial investment plus the return:

(1.1.1)

For the second year, the return is compounded on the value at the end of the
first year:

(1.1.2)

Thus the price that the investor must be paid in year T to give the required
return is

(1.1.3)

This is the formula to calculate a future value with compound interest each
period. For example, interest compounded quarterly for two years would use
the quarterly interest rate (annual rate divided by 4) and T = 8 periods.

Now let us find the fair price for this asset today, P0, that will yield a return
of exactly rT every year for T years. Clearly, we would just need to divide
through by (1 + rT)T to obtain

P r r r P r PT T T T
T

T0 01 1 1 1+( ) +( ) +( ) = +( ) =. . . .

P r r P rT T T0 0
2

1 1 1+( ) +( ) +( )or .

P rT0 1+( ).
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(1.1.4)

This tells us that given a return rT of periodic future payoffs, we can find
the present price in order to yield the correct future price PT at the end of the
time horizon of length T. This formula is called the discounting, or present
value, formula. The discounting formula is the basis of any pricing formula of
a financial asset. Stocks and bonds, as well as financial derivatives such as
options and futures, and hybrids between various financial instruments all start
with the discounting formula to derive a price, since they all involve a time
interval before the final payment is made.

Lest we get too comfortable with our solution of the price so quickly and
easily, this misconception will be shattered with our last common feature of
all investments.

3. All investments carry risk. In our discounting formula, there are only two
parameters to plug in to find a price, namely the price at the end of time
horizon or PT and the return rT. Unfortunately, for any stock the future
payment PT is not known with certainty. The price at which a stock is sold at
time T depends on many events that happen in the holding duration of the
stock. Company earnings, managerial actions, taxes, government regulations,
or any of a large number of other random variables will affect the price PT at
which someone will be able to sell the stock.

With this step we have introduced uncertainty. What price P0 should you
pay for the stock today under such uncertainty? We know it is the discounted
value of PT, but without a crystal ball that can see into the future, P0 is uncer-
tain. There are a good many investors who feel this is where we should stop,
and that stock prices have no fundamental value based on PT. Many investors
believe that the past trends and patterns in price data completely character-
ize most of the uncertainty of prices and try to predict PT from data on past
prices alone.These investors are called technical analysts, because they believe
investor behavior is revealed by a time series of past prices. Some of these pat-
terns will be incorporated in time series models in Section 4.1.

Another large group seeks to go deeper into the finances and prospects of
the corporations to determine the fair value for the stock price represented
by PT. This group is called fundamental value investors, because they attempt
to study intrinsic value of the firm. To deal with the fact that future prices are
not known, fundamental value investors must base their value on risk, not
uncertainty. By characterizing “what is not known” as risk, we are assuming
that while we do not know exactly what will happen in the future, we do know
what is possible, and the relative likelihoods of those possibilities. Instead of
being lost in a random world, a study of risk lets us categorize occurrences and
allows the randomness to be measured.

Present value = vP
P

r

T

T
T

=
+( )1

.
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Using risk, we can derive a fundamental value of a firm’s stock. As a stock-
holder, one has a claim of a firm’s dividends, the paid out portion of net earn-
ings. These dividends are random, and denoted as Ds for dividends in state s.
This state is a member of a long list of possible occurrences. Each state rep-
resents a possibly distinct level of dividends, including extraordinarily high,
average, zero, and bankruptcy. The probability of each state is denoted by p s

for s = 1, 2, . . . , S, where S denotes the number of states considered. The more
likely a state is, the higher is its probability. An investor can calculate the
expected value of dividends that will be paid by summing each possible level
of dividends multiplied by the corresponding probability:

(1.1.5)

where E is the expectations operator and S is the summation operator. Out-
comes that are more likely are weighted by a higher probability and affect the
expected value more.The expected value can also be thought of as the average
value of dividends over several periods of investing, since those values with
higher probabilities will occur more frequently than lower probability events.
The sum of the probabilities must equal one to ensure that there is an exhaus-
tive accounting of all possibilities.

Using the framework of risk and expected value, we can define the price of
a stock as the discounted value of expected dividends at future dates, namely
the cash flow received from the investment:

(1.1.6)

where each period’s expected dividends are discounted the appropriate
number of time periods T by the compound interest formula stated in (1.1.6).

Formula (1.1.6) for the stock price is more useful, since it is based on the
financials of a company instead of less predictable stock prices. One must fore-
cast dividends, and thus have a prediction of earnings of a company. This
approach is more practical since the other formula (1.1.4) was based on an
unknown future price. One may ask the question: How can we have two 
formulas for the same price?

However, both formulas (1.1.4) and (1.1.6) are identical if we assume that
investors are investing for the future cash flow from holding the stock. Our
price based on discounted present value of future dividends looks odd,
since it appears that we would have to hold the stock indefinitely to receive
the entire value. What if we sell the stock after two years for a stock paying
quarterly dividends (8 quarters)?

The value of our cash flow after including the end point price would be
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(1.1.7)

where rt is the quarterly return for the quarter t with t = 1, . . . , 8. But realiz-
ing that the buyer in quarter 8 is purchasing the subsequent cash flows until
they sell the stock one year later we have

(1.1.8)

And so on it goes. So that recursively substituting the future prices yields P0

equal to all future discounted dividends. This means that even for a stock not
currently paying any dividend, we can use the same discounting formula. The
stock must eventually pay some return to warrant a positive price.

Using the value of dividends to price a security may be unreliable, how-
ever. The motivation for a company issuing dividends is more complex than
simply paying out the profits to the owners (see Allen and Michaely, 1995, for
a survey of dividend policy). First, growth companies with little excess cash
flows may not pay any dividend in early years. The more distant these divi-
dends are, the harder they are to forecast. Dividends also create a tax burden
for the investor because they are taxed as current income, whereas capital
gains from holding the stock are not taxed until the stock is sold. This double
taxation of dividends at the corporate and individual levels leads many to
question the use of dividends at all, and has led many firms to buy back shares
with excess cash rather than issue dividends. Also dividends are a choice made
by the firm’s management. Bhattacharya (1979) shows how dividends can
signal financial health of a company, so firms are seen paying out cash through
dividends and then almost immediately issuing more shares of stock to raise
capital.

Alternatively, since dividend amounts are chosen by the management of the
firm and may be difficult to forecast, price can be modeled as the present value
of future earnings, ignoring the timing of exactly when they are paid out in the
form of dividends. This model assumes that earnings not paid out as dividends
are reinvested in the company for T years. So that if they are not paid in the
current period, they will earn a return so that each dollar of “retained earn-
ings” pays 1 + rT next period. This makes the present value of expected earn-
ings identical to the present value of dividends. Hence a lesson for the
management is that they better focus on net earnings rather than window
dressing of quarterly earnings by changing the dividend payouts and the timing
of cash flows. The only relevant figure for determining the stock price is the
bottom line of net earnings, not how it is distributed.
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1.2 THE EXPECTED RETURN

Once the expected cash flows have been identified, one needs to discount the
cash flows by the appropriate return, rT. This is another value in the formula
that looks deceptively simple. In this section we discuss several areas of
concern when deciding the appropriate discount rate, namely its term, taxes,
inflation, and risk, as well as some historical trends in each area.

The first building block for a complete model of returns is the risk-free rate,
rT

f .This is the return that would be required on an investment maturing in time
T with no risk whatsoever. This is the rate that is required solely to compen-
sate the investor for the lapse of time between the investment and the payoff.
The value of the risk-free rate can be seen as the equilibrium interest rate in
the market for loanable funds or government (FDIC) insured return:

The Borrower
A borrower will borrow funds only if the interest rate paid is less than or

equal to the return on the project being financed. The higher the inter-
est rate, the fewer the projects that will yield a high enough return to pay
the necessary return.

The Lender
A lender will invest funds only if the interest rate paid is enough to com-

pensate the lender for the time duration. Therefore, as the interest rate
increases, more investors will be willing to forgo current consumption for
the higher consumption in the future.

The Market
The equilibrium interest rate is the rate at which the demand for funds by

borrowers in equal to the supply of funds from lenders; it is the market
clearing interest rate in the market for funds. As can be seen from the
source of the demand and supply of funds, this will be the return of the
marginal project being funded (the project just able to cover the return),
and at the same time this will be the time discount rate of the marginal
investor.

A common observation about the interest rate is that the equilibrium return
tends to rise as the length of maturity increases. Plotting return against length
of maturity is known as the yield curve. Because an investor will need more
enticement to lend for longer maturities due to the reduced liquidity, the yield
curve normally has a positive slope. A negative slope of the yield curve is seen
as a sign that investors are expecting a recession (reducing projected future
returns) or that they are expecting high short-term inflation.

To see how inflation affects the required return for an investor, we can
augment our return to get the nominal interest rate:

(1.2.1)r rT T T
n f e= + p ,
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where pT
e is the expected rate of inflation between time 0 and time T. For an

investor to be willing to supply funds, the nominal return must not only com-
pensate for the time the money is invested, it must also compensate for the
lower value of money in the future.

For example, if $100 is invested at 5% interest with an expected inflation
rate of 3% in January 2002, payable in January 2003, the payoff of the invest-
ment after one year is $105. But this amount cannot buy what $105 will buy
in 2002. An item that was worth $105 in 2002 will cost $105(1.03) = $108.15 in
2003. To adjust for this increase in prices, to the nominal interest rate is added
the cost of inflation to the return.

One may wonder about the extra 15 cents that the formula above does not
include. According to the formula for nominal rate, an investor would get 5%
+ 3% = 8%, or $108 at the payoff date. That is because the usual formula for
nominal rate is an approximation: it only adjusts for inflation of the principal
but not the interest of the loan. The precise formula will be

(1.2.2)

As the additional term is the interest rate times the expected inflation rate,
two numbers are usually less than one. Unless either the inflation rate or the
interest rate is unusually high, the product of the two is small and the approx-
imate formula is sufficient.

Our next adjustment comes from taxes. Not all of the nominal return is kept
by the investor. When discounting expected cash flows then, the investor must
ensure that the after-tax return is sufficient to cover the time discount:

(1.2.3)

where rT
at is the after-tax return and t is the tax rate for an additional dollar

of investment income.
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It is important to note that taxes are applied to the nominal return, not the
real return (return with constant earning power). This makes an investor’s
forecast of inflation crucial to financial security.

Consider the following two scenarios of an investment of $100 with a
nominal return of 12.31% at a tax rate of 35% of investment income. The
investor requires a risk-free real rate of interest of 5% and expects inflation
to be 3%. The investment is to be repaid in one year.

Scenario 1—Correct Inflation Prediction
If inflation over the course of the investment is, indeed, 3%, then every-

thing works correctly. The investor is paid $112.31 after one year,
$12.31(0.35) = $4.31 is due in taxes, so the after-tax amount is $108.00.
This covers the 5% return plus 3% to cover inflation.

Scenario 2—Underestimation of Inflation
If actual inflation over the course of the investment turns out to be 10%,

the government does not consider this an expense when it comes to 
figuring taxable income. The investor receives $112.31, which nominally
seems to cover inflation, but then the investor must pay the same $4.31
in taxes. The $108.00 remaining is actually worth less than the original
$100 investment since the investor would have had to receive at least
$110 to keep the same purchasing power as the original $100.

Scenario 2 shows how unexpectedly high inflation is a transfer from the
investor, who is receiving a lower return than desired to the borrower, who
pays back the investment in dollars with lower true value.

The final element in the investor’s return is the risk premium, q, so that the
total return is

(1.2.4)

The risk premium is compensation for investing in a stock where returns are
not known with certainty. The value of the risk premium is the most nebulous
of the parameters in our return formula, and the task of calculating the correct
risk premium and methods to lower the risk of an investment will be the
subject of much of the balance of this book. At this point we will list some of
the important questions in defining risk, leaving the detail for the indicated
chapter.

1. How do investors feel about risk? Are they fearful of risk such that they
would take a lower return to avoid risk? Or do they appreciate a bit 
of risk to liven up their life? Perceptions of investors to risk will be 
examined in Chapter 6.
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2. Is risk unavoidable, or are there investment strategies that will lower
risk? Certainly investors should not be compensated for taking on risk
that could have been avoided. The market rarely rewards the unsophis-
ticated investor (Chapters 2 and 3).

3. Is the unexpected return positive or negative? Most common measure-
ments of risk (e.g., standard deviation) consider unexpected gains and
losses as equally risky. An investor does not have to be enticed with a
higher return to accept the “risk” of an unexpected gain. This is evi-
denced by the fact that individuals pay for lottery tickets, pay high prices
for IPOs of unproven companies, and listen intently to rumors of the
next new fad that will take the market by storm. We explain how to 
separate upside and downside risk in Chapter 5, and evidence of the
importance of the distinction in Chapters 7, 8, and 9.

1.3 VOLATILITY

In order to develop a measure of the risk premium, we must first measure 
the volatility of stock returns. The term “volatility” suggests movement and
change; therefore any measurement of volatility should be quantifying the
extent to which stock returns deviate from the expected return, as discussed
in Section 1.2. Quantifying change, however, is not a simple task. One must
condense all the movements of a stock throughout the day, month, year, or
even decade, into one measure. The search for a number that measures the
volatility of an investment has taken numerous forms, and will be the subject
of several subsequent chapters since this volatility, or movement, of stock
prices, is behind our notion of risk. Without volatility, all investments are safe.
With volatility, stocks yield gains and losses that deviate from the expected
return.

As an example, we will use the annual return for the S&P 500 index from
1990 through 2000 shown in Table 1.3.1. The average annual return for this
time period is 13.74%. Compare this return to the return of U.S. three-month
Treasury bills for the same time period (Table 1.3.2) that is on average 4.94%.

volatility 9

Table 1.3.1 S&P 500 Index Annual Return

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

-6.56% 26.31% 4.46% 7.06% -1.54% 34.11% 20.26% 31.01% 26.67% 19.53% -10.14%

Table 1.3.2 US Three-Month Treasury Bills Return

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

7.50% 5.38% 3.43% 3.00% 4.25% 5.49% 5.01% 5.06% 4.78% 4.64% 5.82%



The average return of the stock index is almost three times the average
return on T-bills.There must be a reason, or there should be no investor buying
T-bills. Both are in dollars, so inflation is the same. Both are under the same
tax system, although T-bill interest is taxed as income, and stock returns as
capital gains, but that should give a higher return to T-bills. Capital gains taxes
are usually lower than income taxes, and they can be delayed so they are even
lower in present discounted value.

Common sense tells us the reason for the difference in returns is the volatil-
ity. While the T-bill return is consistently around 4% or 5%, the stock return
has wide swings in the positive and negative range. In a free market economy,
if investment in risky assets creates economic growth, new jobs, and new con-
veniences, these risky activities have to be rewarded. Otherwise, there will be
no one taking the risks. This means the market forces must reward a higher
return for investors in certain wisely chosen risky activities. Such higher return
is called risk premium. Volatility is therefore very important in determining
the amount of risk premium applied to a financial instrument.

To measure volatility, the simplest measure would be the range of returns,
when the range is defined as the highest return less the lowest return.The S&P
500 has a range of [34.11 - (-10.14)] = 44.25. For T-bills, the range is [7.5 - 3]
= 4.5. The range of returns is much larger for the S&P 500, showing the higher
volatility.

The range has the benefit of ease of calculation, but the simplest measure
is not always the best. The problem with the range is that it only uses two data
points, and these are the two most extreme data points. This is problematic
because the entire measure might be sensitive to outliers, namely to those
extreme years that are atypical. For instance, a security will have the same
average return and range as the S&P 500 if returns for nine years were 13.74%,
the next year has a money-losing return of -8.39% and the next year has a
spectacular return of 35.86%. But the volatility of this security is clearly not
identical to the S&P 500, though the range is the same. This security is very
consistent because only two years have extreme returns.

In order to take all years into account, one simply takes the deviations from
the mean of each year’s returns

(1.3.1)

where m is the average return for the respective security for each time period
t. To condense these deviations into one measure, there are two common
approaches. Both approaches try to put a single value on changes of the
returns. Since values above or below the mean are both changes, the measure
needs to treat both positive and negative values of deviations as an increase
in volatility.

The mean absolute deviation (MAD) does this by taking the absolute value
of the deviations, and then a simple average of the absolute values,

rt - m,
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(1.3.2)

where St denotes sum from t = 1 to t = T and where T is again the total number
of years.

For the S&P 500, the mean absolute deviation is 13.72%. For the T-bill
series, the mean absolute deviation is 0.84%. This shows the dramatic differ-
ence in volatility between the two securities.

The other way to transform the deviations to positive numbers is to square
them. This is done with the variance, s2:

(1.3.3)

Note: This variance formula is often adjusted for small samples by replacing
the denominator by (T - 1). A discussion of sampling is in Chapter 9.

The variance formula implicitly gives larger deviations a larger impact on
volatility. Therefore 10 years of a 2% deviation (0.022 ¥ 10 = 0.004) does not
increase variance as much as one year of a 20% deviation (0.22 = 0.04).

The variance for the S&P 500 is 0.0224, for T-bills, 0.0001. It is common to
present the standard deviation, which is the square root of the variance so that
the measure of volatility has the same units as the average. For the S&P 500,
the standard deviation is 0.1496, for T-bills, 0.0115.

The advantage in using the standard deviation is that all available data 
can be utilized. Also some works have shown that alternate definitions of a
deviation can be used. Rather than strictly as deviations from the mean, risk
can be defined as deviations from the risk-free rate (CAPM, ch. 2). Tracking
error (Vardharaj, Jones, and Fabozzi, 2002) can be calculated as differences
from the target return for the portfolio. When an outside benchmark is used
as the target, the tracking error is more robust to prolonged downturns, which
otherwise would cause the mean to be low in standard deviation units.
Although consistent loss will show a low standard deviation, which is the worst
form of risk for a portfolio, it will show up correctly if we use tracking error
to measure volatility.

Other methods have evolved for refining the risk calculation. The intraday
volatility method involves calculating several standard deviations throughout
the day, and averaging them. Some researchers are developing methods of
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Table 1.3.3 S&P 500 Index Deviations from Mean

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

-20.30% 12.57% -9.28% -6.68% -15.28% 20.37% 6.52% 17.27% 12.93% 5.79% -23.88%



using the intraday range of prices in the calculation of standard deviations over
several days. By taking the high and low price instead of the opening and
closing prices, one does not run the risk of artificially smoothing the data and
ignoring the rest of the day. The high and low can come at any time during the
day.

Once the expected return and volatility of returns are calculated, our next
step is to understand the distribution of returns. A probability distribution
assigns a likelihood, or probability, to small adjacent ranges of returns. Prob-
ability distributions on continuous numbers are represented by a probability
density function (PDF), which is a function of the random variable f(x). The
area under the PDF is the probability of the respective small adjacent range
of the variable x. One commonly used distribution is the normal distribution
having mean m and variance s2, N(m, s2), written

(1.3.4)

where m is the mean of the random variable x and s is the standard deviation.
Once we know these two parameters, we know the entire probability distribu-
tion function (pdf) of N(m, s2).

It can be seen from the normal distribution formula (1.3.4) why the stan-
dard deviation s is such a common measure of dispersion. If one assumes that
returns follow the normal distribution, with the knowledge of only the average
of returns (m) and the standard deviation (s), all possible probabilities can be
determined from widely available tables and software sources. Therefore an
infinite number of possibilities can be calculated from only two statistics. This
is a powerful concept. (We will discuss the validity of using the normal distri-
bution for stock returns in Chapter 4.)

The normal distribution is a common distribution because it seems to
possess several characteristics that occur in nature. The normal distribution
has most of the probability around the average. It is symmetrical, meaning the

f x e x( ) = -( )( )1
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probability density function above and below the average are mirror images.
The probability of getting outcomes an extreme distance above or below the
average are progressively unlikely, although the density function never goes
to zero, so all outcomes are possible. Children’s growth charts, IQ tests, and
bell curves are examples of scales that follow the normal distribution.

Since one need only know the average and standard deviation to draw a
specific normal distribution, it is a useful tool for understanding the intuition
of expected value and volatility. Probability statements can be made in terms
of a certain number of standard deviations from the mean. There is a 68.3%
probability of x falling within one standard deviation of the mean, 95.5% prob-
ability two standard deviations of the mean, 99.74% probability three stan-
dard deviation from the mean, and so on.

The normal probability can change dramatically with changes of the para-
meters. Increases in the average will shift the location of the normal distribu-
tion. Increases in the standard deviation will widen the normal distribution.
Decreases in the standard deviation will narrow the distribution.

Because the normal distribution changes with a change in the average or
standard deviation, a useful tool is standardization. This way the random vari-
able can be measured in units of the number of standard deviations measured
from the mean:

(1.3.5)

If x is normally distributed with mean m and standard deviation s, then the
standardized value z will be standard normally distributed with mean of zero,
and standard deviation equal to one. In statistical literature this relation is
often stated by using the compact notation: x ~ N(m, s2) and z ~ N(0, 1). It can
be verified by some simple rules on the expectations (averages) of random
numbers stated below. Given a and b as some constant real numbers, we have:

z
x

=
- m
s

.
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1. If the average of x = m, then the average of a(x) = a(m).
2. If the average of x = m, then the average of (x + b) = m + b. Therefore the

average of x - m = m - m = 0.
3. If the standard deviation of x = s, then the standard deviation of 

a(x) = a(s). (Note: The variance of a(x) = a2s2.)
4. If the standard deviation of x = s, then the standard deviation of (x + b)

= s. Therefore the standard deviation of (x - m)/s = (1/s)s = 1.

Through standardization, tables of the area under the standard normal dis-
tribution can be used for normal distributions with any average and standard
deviation. To use the tables, one converts the x value under the normal distri-
bution to the standardized z statistic under the standard normal and looks up
the z value in the table. The probability relates back to the original x value,
which is then the number of standard deviations from the mean.With the wide
availability of Excel software workbooks, nowadays it is possible to avoid the
normal distribution tables and get the results directly for x ~ N(m, s2) or for 
z ~ N(0, 1).

Therefore, for the normal distribution, mean and standard deviation are the
end of the story. Since symmetry is assumed, the distinction of downside risk
is moot. However, for this reason the normal distribution is not always a 
practical assumption, but it provides a valuable baseline against which to
measure downside adjustments. The next section provides a dynamic frame-
work of modeling stock returns following the normal distribution.

1.4 MODELING OF STOCK PRICE DIFFUSION

A probability distribution gives the likelihood of ranges of returns. If one
assumes the normal distribution, then the distribution is completely defined
by its average and standard deviation. Knowing this, one can model the dis-
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crete movement of a stock price over time through the diffusion equation,
which combines the average return m and the volatility measured by the stan-
dard deviation s.

(1.4.1)

where D is the difference operator (DS = DSt = St - St-Dt), S is the stock price,
Dt is the time duration, and z is N(0, 1) variable. Note that DS/S is the relative
change in the stock price, and the relative changes times 100 is the percentage
change. Equation (1.4.1) seeks to explain how relative changes are diffused as
the time passes around their average, subject to random variation.

The diffusion equation (1.4.1) has two parts: the first part of the percent-
age change is the average return m per time period (or drift), multiplied by the
number of time periods that have elapsed; the second part is the random 
component that measures the extent to which the return can deviate from the
average. Also we see that the standard deviation is increased by the square
root of the time change. The root term arises because it can be shown that
(1.4.1) follows what is known as a random walk (also known as Brownian
motion, or Weiner process). If St follows a random walk, it can be written as
St = St-1 + d + e, where the value of the stock price at any point in time is the
previous price, plus the drift (= d), plus some random shock (= e). The diffu-
sion process is obviously more general than a simple random walk with drift.
The more time periods out you go, the more random shocks are incorporated
into the price. Since each one of these shocks has its own variance, the total
variance for a length of time of Dt will be s2Dt. Thus the standard deviation
will be the square root of the variance.

The cumulative effect of these shocks from (1.4.1) can be seen by per-
forming a simple simulation starting at a stock price of 100 for a stock with 
an average return of 12% per year and a standard deviation of 5% and the
following random values for z. For a complete discussion of simulations, see
Chapter 9.

At any time t, the price the next day (Dt = 1/365 = 0.0027) will be

(1.4.2)

Simulating random numbers for 30 days yields the stock prices in Table 1.4.1.
Looking at the stock prices in a graph, we can see that simulation using a

random walk with drift gives a plausible series of stock prices. A few other
insights can be gained from the graph. We can see that a random walk, as the
name implies, is a movement from each successive stock price, not reverting
back to an average stock price (this is the basis for another term associated
with random walk: nonstationary). Also, as the stock price gets higher, the
movements get larger since the price is the percentage of a larger base.
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This general diffusion model of stock prices has gone through many alter-
ations for specific stock pricing situations. The descriptions that follow cover
only a few of these adaptations.

1.4.1 Continuous Time

For empirical use, or for producing simulations, we can only work with dis-
crete time changes, but theoretically a continuous time approach (as Dt Æ 0)
can model the path of stock prices at each moment in time. This often simpli-
fies calculations and yields more elegant results.The continuous time diffusion
equation is

16 quantitative measures of the stock market

Table 1.4.1 Simulated Stock Price Path

t zt DSt St

0 100.00
1 1.24 0.35 100.35
2 0.23 0.09 100.45
3 -1.08 -0.25 100.20
4 0.36 0.13 100.33
5 -0.21 -0.02 100.30
6 0.07 0.05 100.35
7 -0.37 -0.06 100.29
8 -0.30 -0.05 100.25
9 0.37 0.13 100.38

10 -0.03 0.02 100.40
11 -0.16 -0.01 100.39
12 0.61 0.19 100.58
13 0.03 0.04 100.62
14 -0.44 -0.08 100.54
15 0.02 0.04 100.58
16 -0.67 -0.14 100.44
17 0.19 0.08 100.52
18 1.04 0.30 100.82
19 1.42 0.40 101.23
20 1.49 0.42 101.65
21 0.48 0.16 101.81
22 -0.52 -0.10 101.71
23 0.53 0.17 101.88
24 1.41 0.41 102.29
25 2.05 0.58 102.86
26 0.45 0.15 103.02
27 -0.79 -0.18 102.84
28 0.78 0.24 103.08
29 2.05 0.58 103.67
30 -0.58 -0.12 103.54



(1.4.3)

where d denotes an instantaneous change. The dz in (1.4.3) represents a stan-
dard Wiener process or Brownian motion (Campbell et al., 1997, p. 344) that
is a continuous time analogue of the random walk mentioned above.

1.4.2 Jump Diffusion

The jump diffusion process recognizes the fact that not all stock movements
follow a continuous smooth process. Natural disasters, revelation of new 
information, and other shock can cause a massive, instantaneous revaluation
of stock prices. To account for these large shocks, the normal diffusion is aug-
mented with a third term representing these jumps:

(1.4.4)

where l is the average number of jumps per unit of time, k is the average pro-
portionate change of the jump (the variance of the jump is d2 to be used later),
and dq is a Poisson process. The adjustment to the drift term ensures that the
total average return is still m: (m - lk) from the usual random walk drift, plus
lk from the jump process leading to a cancellation of lk.

In the Poisson process, the probability of j number of jumps in T time
periods is determined by the Poisson discrete probability function

(1.4.5)P j
e T

j

T j

( ) =
( )-l l
!

.

dS
S

k dt dz dq= -( ) + +m l s ,

dS
S

dt dz= +m s ,
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A graph of the same stock diffusion in Table 1.4.1 with a jump of $5 occurring
on the 15th day is given in Figure 1.4.2. As can be seen from the graph, a jump
will increase the volatility of the stock returns dramatically, depending on the
volatility of the jump and the average number of jumps that occur. The total
variance of the process is then s2 + ld2 per unit of time. This can also be used
as a method to model unexpected downside shocks through a negative jump.

1.4.3 Mean Reversion in the Diffusion Context

For stock prices that should be gaining a return each period, a random walk
with drift seems a reasonable model for stock prices. For some investments,
however, it does not seem reasonable that their price should constantly be
wandering upward. Interest rates or the real price for commodities, such as oil
or gold, are two such examples in finance of values that are not based on future
returns, and thus have an intrinsic value which should not vary over time.
Prices that revert back to a long-term average are known as mean reverting
(or stationary).

Mean reversion can be modeled directly in the diffusion model

(1.4.6)

where is the average value of the financial asset and 0 < h < 1 is the speed
at which the asset reverts to its mean value. Since a mean reverting process is
centered around and always has the same order of magnitude, the diffusion
need not be specified in terms of percentage changes. Graphing the diffusion
using the random numbers as above and an average price of $100 gives the
path for two different speeds h = 0.8 and h = 0.2 of mean reversion.

From Figure 1.4.3 both processes stay near 100. The solid line path with the
higher reversion speed (h = 0.8) snaps back to 100 quicker, even after large
shocks to the average price level. For the stock with the lower reversion speed,

S

S

dS S S dt dz= -( ) +h s ,
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large increases or decreases linger because the stock takes smaller steps back
to its average price similar to the dashed line. We discuss mean reversion in a
general context in Section 4.1.2.

1.4.4 Higher Order Lag Correlations

In the mean reverting process, the change in a stock price St is affected by how
far the previous period is from the mean (St-1 - m). But with the high frequency
at which stock data is available (e.g., hourly), it is realistic that correlations
could last longer than one period. Would one expect that a boost in sales at
the end of February would immediately be gone in the beginning of March?
Would a news report at 10:00 am on Tuesday morning be completely reflected
in the stock price by 10:01 am? No.

A method to account for these holdovers from past periods (St-2, St-3, . . .)
is the ARIMA model. The AR stands for autoregressive, or the previous
period returns that are directly affecting the current price. The MA stands for
moving average, or the previous period shocks that are directly affecting the
current price. The “I” in the middle of ARIMA stands for integrated, which is
the number of times the data must be transformed by taking first differences
(St - St-1) over time. If L denotes the lag operator LSt = St-1, (St - St-1) becomes
(1 - L)St = DSt. If (1 - L) = 0 is a polynomial in the lag operator, its root is
obviously L = 1, which is called the unit root. Most stocks have unit root and
are said to be integrated of order 1, I(1), meaning that one time difference is
necessary to have a stationary process. Since taking returns accomplishes this,
returns would be stationary or integrated of order zero, I(0). So we can work
with returns directly.

When the stock price increases, DSt is positive. Let us ignore the divid-
ends temporarily, and let rt = DSt/St denote the stock return for time t. The
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autoregressive model of order p, AR(p), with p representing the maximum lag
length of correlation, would be

(1.4.7)

whereas the MA process of order q includes lags of only the random 
component

(1.4.8)

where m is the average return.
The AR process never completely dies since it is an iterative process. Con-

sider an AR(p) process with p = 1. Now let the first period be defined at t = 0,
and substitute in (1.4.7) to give

(1.4.9)

During the next period we have the term (r1 r0), as this value gets factored
into the return by a proportion r1. As a result

(1.4.10)

Because z0 influences r1, it also gets passed through to the next period as

(1.4.11)

so that a shock t periods ago will be reflected by a factor of (r1)t. In order for
the process to be stationary, and eventually return to the average return, we
need |Ssrs| < 1, meaning only a fraction of the past returns are reflected in the
current return. The flexible nature of this specification has made the ARIMA
model important for forecasting. The estimation of the parameters and use of
the ARIMA model for simulations will be discussed further in Section 4.1.2.

1.4.5 Time-Varying Variance

All of the diffusion methods used to define the change of returns can also be
applied to the variance of stock prices. Stocks often go through phases of bull
markets where there are rapid mostly upward price changes and high volatil-
ity, and bear markets where prices are moving mostly downward or relatively
stagnant. As seen in Figure 1.4.4, the standard deviation of returns for S&P
500 has gone through several peaks and troughs over time. In the basic diffu-
sion model (1.4.1), however, the standard deviation s is assumed to be con-
stant over time.

r r z z z z2 1 1 1 2 1 1 0 1 21= -( ) + + = + +( ) +m r r s m r r s s s

r r z z z1 1 1 0 1 1 0 11= -( ) + + = + +m r r s m r s s.

r z0 0= +m s.

r z z z zt q t q t= + + + + +-m f s f s f s s1 1 2 2 . . . ,

AR p r r r

r z
t p t t

p t p t

( ) = - - - -( ) + +
+ + +

- -

-

: . . .

. . . ,

m r r r r r
r s

1 1 2 1 1 2 2
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A more general notation for the diffusion model would be to reflect that
both the drift and the volatility are both potentially a function of the stock
price and time:

(1.4.12)

A comprehensive parametric specification allowing changes in both drift and
volatility is (see Chan et al., 1992):

(1.4.13)

This model is flexible and encompasses several common diffusion models. For
example, in the drift term, if we have a = h and b = -h, there is mean rever-
sion of (1.4.6). If a = 0, b = 1, and g = 1, it is a continuous version of the random
walk with drift given in (1.4.1). When g > 1, volatility is highly sensitive to the
level of S.

Depending on the restrictions imposed on the parameters a, b, and g in
equation (1.4.13) one obtains several nested models. Table 1.4.2 shows the
eight models (including the unrestricted) considered here and explicitly indi-
cates parameter restrictions for each model.

The first three models impose no restrictions on either a or b. Models 4 and
5 set both a and b equal to zero, while models 6, 7, and 8 set either a or b
equal to zero. Model 1, used by Brennan and Schwartz (1980), implies that 
the conditional volatility of changes in S is proportional to its level. Model 2
is the well-known square root model of Cox, Ingersoll, and Ross (CIR) (1985),
which implies that the conditional volatility of changes in S is proportional 
to the square root of the level. Model 3 is the Ornstein-Uhlenbeck diffusion
process first used by Vasicek (1977). The implication of this specification is 
that the conditional volatility of changes in S is constant. Model 4 was used by
CIR (1980) and by Constantinides and Ingersoll (1984) indicates that the 

S
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conditional volatility of changes in S is highly sensitive to the level of S. Model
5 was used by Dothan (1978), and model 6 is the constant elasticity of vari-
ance (CEV) process proposed by Cox (1975) and Cox and Ross (1976). Model
7 is the famous geometric Brownian motion (GBM) process first used by Black
and Scholes (1973). Finally, model 8 is used by Merton (1973) to represent
Brownian motion with drift.

This flexible parametric specification is useful since the parameters may be
estimated (see Chapter 9) to determine the model that best fits a particular
security. Vinod and Samanta (1997) estimate all these models to study the
nature of exchange rate dynamics using daily, weekly, and monthly rates for
the British pound sterling and the Deutsche mark for the 1975 to 1991 period
and compare the out-of-sample forecasting performance of the models in
Table 1.4.2. The models Brnnan-Schwartz, CIR-SR, and Vasicek performed
poorly, whereas CIR-VR and GBM were generally the best.

Now that we have examined some of the possible ways that stock prices
can move, the next section explores the way that a stock price should move in
an efficient market.

1.5 EFFICIENT MARKET HYPOTHESIS

We have concentrated thus far on the similarities of investors and investments.
There are many commonalities that market participants share. The mantra of
Wall Street is “buy low and sell high,” and all investors would prefer to do so.
Looking at the big picture, this makes stock investing a tricky proposition.Any
stock trade involves a buyer and a seller. They cannot both be right.

For speculators, the mantra may be valid, since they try to profit on short-
term price movements. But for the average investors who are interested 
in receiving a fair return on their investment, a stock trade need not be a 
zero-sum game. While stock prices are certainly risky, it is not the same as a
card game where one player’s gain is another player’s loss. Stock trades can
be mutually beneficial, since each investor has different needs and endow-
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Table 1.4.2 Parameter Restrictions on the Diffusion Model dS = (a + bS)dt + sSgdz

Model Name a b g s Diffusion Model

1. Brennan-Schwartz 1 dS = (a + bS)dt + sSdz
2. CIR SR 0.5 dS = (a + bS)dt + sS0.5dz
3. Vasicek 0 dS = (a + bS)dt + sdz
4. CIR V 0 0 1.5 dS = sS1.5dz
5. Dothan 0 0 1 dS = sSdz
6. CEV 0 dS = bSdt + sSgdz
7. GBM 0 1 dS = bSdt + sSdz
8. Merton 0 0 dS = adt + sdz



ments at different times in the life span. Consider a trade involving an investor
who is just entering retirement and needs to liquidate some of his portfolio
for living expenses selling to a new father who needs an investment for his
new child’s college fund. Note that both are better off if they were not able to
complete the trade.Without the trade, the retiree may have to do without basic
necessities if he does not have ready cash; without the college fund, the child
would be worse off.

In order for investors to be confident that the stock market is better than
a gamble, stocks must be priced fairly. Any major stock market in the world
insists that investors have all available information about a company before
purchasing shares. This ensures that the purchase is an informed decision. If a
stock is trading at a price lower than its fair value, then sellers will be missing
out on value due to them. Stocks that are overvalued go against the buyers.
The idea that stocks are continually priced at their fair value is known as the
efficient market hypothesis (EMH).

The EMH is an attractive idea for stock investors, since even investors who
are not stock analysts, and do not have time to perform in depth research 
for every company in their portfolios, are assured of trading at a fair price by
simply buying or selling at the current market price. Of course, this argument
taken to its extreme has all investors relying on the market to price fairly, and
no one doing the homework to figure out what this fair price should be. We
can see, then, that the EMH creates a market of “smart money” investors who
are well informed, as opposed to investors trading at whatever the prevailing
price happens to be. It is a waste of resources to have all investors well
informed if prices are fair already, but there must be some smart money to
ensure the prices get to this fair value.

The EMH comes in three strengths depending on how informed we assume
the market price is: weak, semi-strong, and strong.

1.5.1 Weak Form Efficiency

This form of the efficient market hypothesis assumes that all historical infor-
mation is factored into the market price of a stock. Evidence of weak form
efficiency can be seen by the demand for high-speed information, and the high
price charged for real time financial news. Leinweber (2001) documents the
speed at which earnings announcements are reflected in stock prices. He 
shows that in the 1980s earnings surprises could take up to two weeks to be
incorporated into the stock price. In the 1990s, only a decade later, stock prices
jumped within minutes of earnings announcements.

What happened to cause this change? In the 1980s, investment news was
still very much a print industry. Earnings announcements were on record in
the Wall Street Journal, which has an inevitable lag because of printing time
and delivery. In the 1990s technology took over, and electronic news services
such as Reuters and Bloomberg, and Internet news services were the source
for late-breaking news, with the newspapers providing analysis and often 
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ex post credibility. The speed at which transactions could take place also
increased with computerized trading and discount brokers.The increased tech-
nology makes it hard to argue against weak form efficiency in a market where
old news has little value.

1.5.2 Semi-strong Form Efficiency

This second level of the efficient market hypothesis encompasses weak form
efficiency, and adds the additional requirement that all expectations about a
firm are incorporated into the stock price. There is no reason why an investor
who thought an interest rate hike was an inevitability would wait until the
formal announcement to trade on the information. In previous sections we
have implicitly used semi-strong form efficiency in our pricing formulas by
pricing expected earnings or expected dividends.

Semi-strong form efficiency can also explain some of the counterintuitive
movements in the stock market, such as the market going up after bad news,
or declining on seemingly good news. If the bad news was not as bad as
expected, the price can actually rebound when the uncertainty is resolved.
Consider the following example: A firm has a fundamental value of $100 per
share at the current level of interest rates of 6%. Inflation starts to pick up,
and the Federal Reserve Bank (the Fed) considers an interest rate hike. An
interest rate hike increases the cost of funds for the company and therefore
reduces its value. The firm’s analysts have come up with the possible scenar-
ios listed in Table 1.5.1.

Operating under weak form efficiency, the stock price of this firm would
not necessarily move, since no announcement has been made. However, we
see that all of the scenarios in Table 1.5.1 involve a rate hike and a share 
price decrease. Hence it stands to reason that in the last column of the table
investors pay less than the original price of $100 per share.

Under semi-strong form efficiency, the investor prices the stock based on
expected price:

(1.5.1)

Since the price already reflects the consensus rate hike of a little over 1–2%,
the only price movement on the day of the Fed announcement will be the

E P( ) = ( ) + ( ) + ( ) =0 2 95 0 5 89 0 3 80 87 50. . . $ . per share.
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Table 1.5.1 Hypothetical Probabilities of Interest Rate Hike from the Current 6%

Probability Interest Rate Share Price

0.2 6.25 95
0.5 6.5 89
0.3 6.75 80



unexpected component. So, if the Fed increases the rate by 1–4%, the stock price
will increase from $87.50 to $95.00 even though it was still a rate hike.

1.5.3 Strong Form Efficiency

This is the extreme version of the EMH. Strong form efficiency states that all
information, whether historical, expected, or insider information, is already
reflected in the stock price. This means that an investor will not be able to
make additional profits, even with insider information. In markets with strict
insider-trading regulation, it is probably an overstatement to assume that
investors are always correct. In essence, there would have to be a powerful
contingent of “smart money” constantly driving the price to its true level. In
emerging markets, however, and in markets without restrictions on insider
trading, it is not so far-fetched that this “smart money” exists. However, it may
be just as far-fetched that this “smart money” is able to drive such volatile
markets.

In any of the formulations of the EMH, the underlying result is that profit
cannot be made from old news. At any point in time, news is reflected in the
stock price, and the price change to the next period will be a function of two
things: the required return and the new information or expectations that hit
the market. Therefore it should be no surprise that advocates of the EMH 
find it convenient to model stock price movements as a random walk, as in
Section 1.4, with the volatility portion representing unexpected changes in
information.

Empirical evidence for or against the EMH is a tricky concept, since it is a
hypothesis that states that old information has no effect on stock prices.
Usually in empirical tests, researchers look for significant effects, not for the
lack thereof. Therefore, disproving the EMH is much easier than proving it.
In Chapter 4 we examine a number of anomalies that attempt to disprove the
EMH by finding predictable patterns based on old news. These tests usually
take the form of

(1.5.2)

where r is the actual stock return, a is the average return, d represents the
excess return for the anomaly in question, and e is the random error term. If
d is statistically significant, then there is evidence of market inefficiency,
since on those anomaly days the market gets a predictable excess return. For
a summary of regression analysis, see the Appendix.

Another factor to be taken into account is transactions costs. If a stock price
is 2 cents off of its fundamental value, but the brokerage fee is 5 cents per
share to take advantage of the discrepancy, it is futile to undertake the trans-
action and suffer a loss of three cents. The EMH still holds in this case where
no transaction takes place, since there are no net profits to be made after the
transactions cost is considered.

r = + ( ) +a d eAnomaly ,
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One method that has been employed to test for evidence of efficiency 
rather than inefficiency has been an application of the two-sided hypothesis
test (Lehmann, 1986) to the EMH by Reagle and Vinod (2003). As we stated
above, an excess return less than transactions costs is not necessarily ineffi-
cient, since investors have no incentive to trade on the information. Reagle
and Vinod (2003) use this feature of the EMH by setting a region around zero
where |d| is less than transactions costs, and then test that d falls in this region
at a reasonable confidence level. This is akin to a test that the anomaly is not
present, and therefore it would be evidence in favor of the EMH. As with 
the time it takes for information to be incorporated into a stock price, many
other anomalies that were common in stock prices a decade ago have gone
away as transactions costs have decreased and the volume of information has
increased.

If one accepts the EMH, risk becomes the central focus of the investor. All
movements other than the average return are unknown. Research and data
collection do not aid in predicting these movements along a random walk. So
if these risks cannot be avoided, the next step is to measure and quantify the
risk involved for an investment. This will be the topic of the next chapter.

APPENDIX: SIMPLE REGRESSION ANALYSIS

When there is a relationship of the form

(1.A.1)

where y is a dependent variable that is influenced by x, the independent vari-
able, and the random error is e, then regression analysis can be employed to
estimate the parameters a and b.

The most common method of estimation for regression analysis is ordinary
least squares (OLS), which can be used given that the following assumptions
hold:

1. The regression model is specified correctly; that is, in the above case y is
a linear function of x.

2. e has a zero mean, a constant variance for all observations, and is uncor-
related between observations.

3. x is given, not correlated with the error term, and in the case where there
is more than one independent variable, the independent variables are
not highly correlated with each other.

4. There are more observations than the number of parameters being 
estimated.

These assumptions basically state that the parameters can be estimated
from data, and that all the available information is used. These assumptions

y x= + +a b e,
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may be tested, and in most cases the regression model may be modified if one
or more assumptions fail. In this appendix we cover OLS estimation and inter-
pretation. For a complete reference on extensions to OLS see Greene (2000)
or Mittlehammer, Judge, and Miller (2000).

OLS involves finding the estimates for the parameters that give the small-
est squared prediction errors. Since e is zero mean, our prediction of the depen-
dent variable is

(1.A.2)

where a and b are the estimates of a and b, respectively.
Prediction error is then the difference between the actual value of the

dependent variable y, and the predicted value :

(1.A.3)

The OLS solution, then, is the value of a and b that solve the optimization
problem:

(1.A.4)

where the minimization is with respect to the parameters a and b and where
n is the number of observed data points and Sn denotes summation from 
i = 1 to i = n.

The values of a and b that solve the OLS minimization are

(1.A.5)

where and denote the average of y and x, respectively. The numerator of
b is also known as the covariance between x and y (multiplied by n), and the
denominator is identical to the variance of x (multiplied by n). The presence
of the covariance is intuitive since b estimates the amount of change in y for
a change in x. Dividing by the variance of x discounts this movement of x
by its volatility, since high volatility independent variables may move a large
distance for small changes in y.

These are the estimated values of the OLS parameters that give the lowest
sum of squared prediction errors. They do not give a precise value, however.
One can think of the estimates as being in a range around the true value. Given
a large enough sample size (over 30 observations) this range can be deter-
mined by the normal distribution.

Given that the OLS assumptions hold, the estimates a and b in (1.A.5) are
unbiased, meaning that on average they fall around the true parameter value,
and they are the “best” estimates in that they have the lowest variance around
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the true parameter of any other unbiased estimator of a linear relationship.
These properties are referred to as BLUE, or best linear unbiased estimator.

Since the estimators will have some error compared to the true parameters,
this error can be quantified by the standard deviation of the normal distribu-
tion around the true parameter, also known as the estimate’s standard error:

(1.A.6)

From the properties of the normal distribution, 95% of the probability falls
within 1.96 standard deviations of the mean. This allows us to construct a 95%
confidence interval for the true parameter based on the estimated value

(1.A.7)

Roughly speaking, the true unknown parameter b will only fall outside of this
range 5% of the time. The 5% error is known as the significance level.

A further method of statistical inference using the OLS estimate is hypo-
thesis testing. Hypothesis testing sets up two competing hypothesis about the
parameter, and then uses the estimates from the data to choose between them.
Usually the accepted theory is used as the null hypothesis H0, and the null is
assumed to be valid unless rejected by the data, in which case the default
hypothesis is the alternative hypothesis HA.

To test the significance of b, the usual null hypothesis is H0 :b = 0. If we
assume the null is true, the observed b should fall within 1.96 standard devia-
tions 95% of the time. Therefore [b - 1.96sb, b + 1.96sb] is our acceptance
region where the null hypothesis is reasonable (alternatively, b could be
divided by the standard error to obtain a z value—or t value in small samples—
and compared to -1.96 < z < 1.96). If the estimated statistic falls outside this
region, the null is not reasonable since this would be a rare event if the true
parameter were, zero. Then the null hypothesis would be rejected, and the
alternative HA : b π 0 would be accepted (strictly speaking, not rejected). In
the case of rejection of the null, we say that b is statistically significant, or sta-
tistically significantly different from zero.

The regression model is often extended to allow for several independent
variables in a multiple regression.The interpretation of regression coefficients,
their estimators, standard errors, confidence intervals, are analogous to the
simple regression above, although a compact solution requires matrix algebra,
as we will see in later chapters.

b b± 1 96. .s

sb
in

in

e

n z x x
=

-( ) -( )
Â
Â

2

2

28 quantitative measures of the stock market



C H A P T E R 2

A Short Review of the Theory of
Risk Measurement

29

2.1 QUANTILES AND VALUE AT RISK

We know intuitively that high-risk ventures should yield a risk premium and
thus higher returns. In Chapter 1 we even quantified risk in terms of a stan-
dard deviation s of a probability distribution of returns. What we want to do
in this chapter is to go one step further to answer the question “How much
more should I get for taking additional risk?” We will answer this question
according to traditional methods, and point to places that these methods 
can be improved or, in some cases, where these methods have already been
improved but the improvement has not been widely implemented.

Standard deviation is a valuable concept for modeling volatility of stock
returns, but the estimated standard deviations often seem foreign to an
investor and not easily transferred to the bottom line: the price. Since business
managers and bankers think of risk in terms of dollars of loss, standard devi-
ation does not fit very well into the language of business. It is not necessarily
true that the higher the risk as measured by s, the higher are the losses. The
senior management needs a number that gives the worst-case scenario of
dollar loss, in a prescribed holding period.

Enter value at risk (VaR). VaR puts a dollar amount on the highest
expected loss on an investment. VaR has become popular since the US 
financial giant J.P. Morgan published RiskMetricsTM methods in 1995. We will
provide an overview of VaR in this chapter and many extensions that have
been developed. For further details see surveys of VaR by Duffe and Pan
(1997) and Jorion (1997). Some issues involving the time horizon for VaR need

Preparing for the Worst: Incorporating Downside Risk in Stock Market Investments,
by Hrishikesh D. Vinod and Derrick P. Reagle
ISBN 0-471-23442-7 Copyright © 2005 John Wiley & Sons, Inc.



methods developed for forecasting volatility in Chapter 4 and their discussion
is postponed until Chapter 5.

The first section discusses various approaches to VaR computation. Recent
VaR computations can involve variances, covariances, Monte Carlo simula-
tions, and other types of historical simulations. In a typical VaR the aim is use
the data to construct a “loss distribution” for a given time horizon and amount
of investment. Then we ask: What upper bound can we put on losses such that
higher losses would be highly unlikely, say, a 1 in 100 (or 1 in 20) chance? The
first step in constructing this loss distribution is to identify quantiles.

A quantile of a return distribution is the return that is above a certain pro-
portion of all possible returns. Special cases are percentiles, which are above
a certain percentage of returns, and deciles, which split returns into tenths (i.e.,
the first decile is about 10% of returns). Similarly quartiles split returns into
quarters. Quantiles are easiest to calculate if we specify normal distribution,
since then all quantiles can be calculated based on only the average and stan-
dard deviation. This is the original approach taken by RiskMetricsTM.

To find the percentiles of a normal distribution one starts with the PDF for
a standard normal distribution (mean of zero and standard deviation of one),
seen in Figure 1.3.1. The cumulative distribution function (CDF) is the area of
the PDF below a specific z value. Given a proportion a¢ Œ [0, 1], the associ-
ated quantile Za¢ is defined by the following probability statement Pr(z £ Za¢)
= a¢. For our examples if a¢ = 0.05 (the 5th percentile), we have Za¢ = -1.645.
If a¢ = 0.025, we have Za¢ = -1.96, and if a¢ = 0.01, we have Za¢ = -2.326. These
numbers can be obtained from the traditional print tables for the standard
normal distribution, or from computer software as detailed in Chapter 9. Com-
puter software is often preferred as it allows more decimal places and can be
conveniently added to existing spreadsheets.

Another way to think of normal distribution quantiles is as the inverse func-
tion of its CDF. The CDF of the unit normal N(0, 1) is written as an integral
of the PDF:

(2.1.1)

Thus a¢ = F(Za¢), and then applying the inverse operator F-1 to both sides
yields F-1(a¢) = Za¢. This notation is very convenient when obtaining per-
centiles from spreadsheet programs such as Microsoft Excel.

We have discussed percentiles of the standard normal, but the normal dis-
tribution can easily be generalized since any linear transformation of a normal
variable is still normally distributed. So, if we assume that interest rates R are
normally distributed with mean m and standard deviation s (variance s2), it
can be written as
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which is related to the standard normal z by the linear relation

where we are using capital R for the random variable of returns as opposed
to lowercase r for the realizations. Such a distinction is not always convenient
to sustain.

Hence the quantiles for R are obtained by a linear transformation of the
quantiles of z, the standard normal.

(2.1.2)

where Za¢ itself is negative when it is in the left tail of N(0, 1) for lower quan-
tiles. See Figure 1.3.1. We will directly use the lower quantile from (2.1.2) in
our formula for VaR.

Downside risk is represented by the lower quantiles of R (upper quantiles
when dealing with the distribution of losses instead of returns). Thus our
formula for value at risk includes dollar units by multiplying the lowest prob-
able return by the capital invested:

(2.1.3)

where K denotes the capital invested, and the quantile of R is from (2.1.2) in
decimals. So the dollar value of VaR(a¢) represents an extreme scenario where
one would only see higher losses a¢ proportion of the time. Common propor-
tions to choose for a¢ are 0.01 (1%), 0.05 (5%), and 0.1 (10%).

We expect Ra¢ itself to be negative in most practical cases, so the VaR is pos-
itive. If, however, in rather unusual cases, Ra¢ is positive, we will have a nega-
tive estimate of VaR. This simply means that the worst-case scenario loss is
actually a (small) profit. We emphasize that the quantile Ra¢ has been calcu-
lated here using the normal distribution. In general, this quantile can be esti-
mated by any number of parametric or nonparametric methods, and can come
from any probability distribution function (PDF) of returns f(R). Alternate
distributions to the normal will be discussed in Chapter 4.

First, let us illustrate an application of the formula (2.1.3) to the artificial
data from a diffusion model we have already encountered in Section 1.4. Let
us assume that the time horizon t equals one day. Let rt in the first column of
Table 1.4.1 be the percent daily returns, originally obtained from the standard
normal distribution. A sorting of 30-day data reveals that the smallest value is
-1.08 and the largest value is 2.08. If we assume that this range is valid, and if
one invests K = $100 on a given day in that stock, one can lose $1.08 at worst
or gain $2.08 at best. Various percentiles of the data given in Table 2.1.1 go
beyond mere sorting. The first row gives the percentage, the second row the
quantile associated with it from raw data, and the third row gives the quantile

VaR a a¢( ) = - ¢R K* ,

R Za am s¢ ¢= + ,

R
z

=
- m
s

,
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under the normality assumption. For example, the five percentile of -0.736 for
raw data means the following probability statement for the random variable
denoted by upper case R: Pr[R < -0.736] = 0.05.

Since this is simulated data, this is one case where the appropriateness of
the normal distribution need not be debated. From Table 2.1.1, with the one
percentile of -1.5865 suggests that a $100 investment in this stock can be $1.59
or lower with a 1 in 100 chance. The value at risk (VaR) then is $1.59 on a
given day if the probability distribution of returns follows the available 30-day
data and time horizon is one day. We see from the last two rows of Table 2.1.1
that the empirical percentiles from the raw data do not match the normal dis-
tribution quantiles exactly. If these were actual returns, there could be some
debate that the normal distribution makes the losses look much larger than
they should be. The theoretical distribution has the advantage of being con-
tinuous. With empirical data, no observation is below the lowest value even
though much lower returns than the lowest in the sample of 30 cannot be ruled
out.

If we recognize that the normal distribution is not appropriate for the data
at hand there are literally hundreds of possible distributions developed by 
statisticians over the last century to consider. However, such consideration 
will lead us far astray into theoretical statistics. Instead, we take a “systems
approach” and consider one important family of distributions, the Pearson
family, which represent a generalization of the normal. Many of the probabil-
ity distributions discussed in elementary statistics courses including normal,
binomial, Poisson, negative binomial, gamma, chi-square, beta, hypergeomet-
ric, Pareto, Student’s t, and others are all members of this family.

2.1.1 Pearson Family as a Generalization of the Normal Distribution

The Pearson family of distributions has been known since the 1890s and has
been used in engineering and natural sciences, but has remained a theoretical
curiosity in social sciences (see the Appendix at the end of this chapter for
details). However, thanks to modern computers and software tools, Pearson
family has now become practical for applications in Finance. For example,
Rose and Wood (2002, ch. 5) discuss computer tools for estimating any
member of Pearson type I to VII from data on excess returns in a fairly
mechanical fashion.Therefore it is now possible to apply a “systems approach”
and estimate any suitable member of the Pearson family by following one
general method for all members. In particular, there is a straightforward way
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Table 2.1.1 Percentiles of 30-Day Returns from Table 1.4.1 for $100 Investment

Percent 1 5 25 50 75 95 99
Raw data -0.9959 -0.736 -0.2775 0.21 0.7375 1.798 2.05
Normality -1.5865 -1.0273 -0.2311 0.3223 0.8758 1.6720 2.2312



to make the VaR more general by using a member from the Pearson system
of probability distributions.

Since the Pearson system allows the distribution to be more general than
just normal, it adds more parameters than just the mean and standard devia-
tion to describe the probability density. Before we explain the Pearson system,
we need to define Pearson’s measures of skewness and kurtosis. Skewness rep-
resents the magnitude to which a PDF has higher probability in the positive
or negative direction. Positive skewness means that extreme outcomes above
the mean are more likely than extreme outcomes below the mean. A nega-
tively skewed distribution will have relatively higher probability for extreme
outcomes below the mean. For the normal distribution, skewness is zero.
Kurtosis measures the degree to which extreme outcomes in the “tails” of a
distribution are likely.The normal distribution has a kurtosis of 3 (mesokurtic).
Distributions with fatter tails are leptokurtic, and distributions with smaller
tails are platykurtic.

Definitions of Pearson skewness and kurtosis measures are

(2.1.4)

where population central moments of order j are denoted by mj (m2 = s2).
Pearson considered the limiting distribution of the hypergeometric distribu-
tion, which encompasses several related distributions, and found that it can be
viewed in terms of a differential equation:

(2.1.5)

where a is the mode (the value of x when the frequency is the largest) of the
distribution and the coefficients of the quadratic in the denominator of (2.1.5)
can be expressed in terms of the moments of the distribution. If the origin is
shifted to the mode, the differential equation can be written as

(2.1.6)

where y = x - a. The explicit density is obtained by integrating the right-hand
side of this equation. As with any quadratic equation, there are a few possi-
bilities for the solution. The quadratic in the denominator of (2.1.6) can have
real roots of the same sign, real roots of the opposite sign or imaginary roots.
Define K¢ = (B1)2/[4B0B2], and note that if K¢ ≥ 1, we have real roots of the
same sign. If K¢ £ 0, we have real roots with opposite sign, and if 0 < K¢ < 1,
we have imaginary roots of the quadratic. These three possibilities give rise to
the three main types of the Pearson family of distributions. Instead of check-
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ing whether K¢ < 0 on K¢ Œ (0, 1), or K¢ > 1, it is convenient to estimate k,
which can be expressed in terms of Pearson’s skewness and kurtosis coeffi-
cients in (2.1.4) above as

(2.1.7)

The normal distribution has B1 = 0, B2 = 0, and B0 is such that b1 = 0, b2 = 3.
By changing the coefficients in the quadratic and skewness and kurtosis para-
meters, it is possible to consider various members of the Pearson family from
type I to type IX.

When the quadratic has real roots of the opposite sign, it leads to the “beta
distribution of the first kind,” dubbed as Pearson type I, which can be U-
shaped or J-shaped. Its symmetrical form is called Pearson type II, with zero
skewness (b1 = 0). Type III is the gamma (and chi-square) distribution. If 
the roots of the quadratic are imaginary numbers (complex conjugate), it is
Pearson type IV. Common statistical distributions do not belong to type IV,
and its evaluations often need numerical quadratures. If the quadratic is a
perfect square [B0 + B1y + B2y2] = (y - l)2, it leads to types V, VIII, and IX. If
the two real roots are of the same sign, it leads to the “beta distribution of the
second kind,” dubbed as Pearson type VI and an important example of this
type is Student’s t distribution. Student’s t distribution is of interest in finance,
since it has fat tails (higher probability of extreme outcomes), which are often
present in financial data on returns. The Weibull distribution is close to type
VI. It is also known as Pareto distribution of the first kind. Type VII arises
from a mixture of the normal and gamma and is also of interest in finance,
since mixtures can yield a wide range of realistic parametric flexible forms for
the pdf of excess returns, f(x).

Which distribution from the Pearson family is the right one for a given
data? To answer this question, it is useful to consider some known guidelines
developed over 100 years ago by Karl Pearson based on his measures defined
in (2.1.4). The guidelines involve a graph with b1 on the horizontal axis and b2

on the vertical. One simply finds the point where the estimates of skewness
and kurtosis fall in this graph and the plot tells which member of the Pearson
system, type I to type VI, should be used. For example, in Figure 2.1.1 the
normal distribution is at a single point N in the graph, the type I has three
regions shown by I, I(U), and I(J) to indicate where the curve will be similar
to a usual density, when it is U-shaped and when it is J-shaped.

Figure 2.1.1 depicts our estimates b̂1 = 0.282958 and b̂2 = 2.49385 from the
simulated data as coordinate values of the bold black dot appearing in the
region marked by type I curve of the Pearson system of curves. Accordingly
we find that the following fitted member of the Pearson system defined below
in (2.1.8) best represents the underlying PDF:
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defined for R Œ [-0.961295, 2.89435]. These coefficients are related to the 
coefficients of the underlying differential equation used by Pearson. The
Appendix to this chapter gives the formulas for getting such coefficients from
estimates of central moments m2, m3, and m4 obtained from the data.

Now we consider a real world example. Let Tb3 denote the risk-free return
from the three-month US Treasury bills. Now our r denotes the excess return
(defined as return minus Tb3) from a mutual fund in Morningstar (2000). Our
excess return data are for a mutual fund named Alliance All-Asia Investment
Advisors Fund with the ticker symbol AAAYX. We consider a period of 132
months from January 1987 to December 1997. The estimated central moments
m2, m3, and m4 are 14.1743, -85.6006, and 2172.38, respectively. Karl Pearson’s
betas defined (2.1.4) and other descriptive statistics for our data are given in
Table 2.1.2. Skewness (column 8) bears the sign of m3.

First, we compute the VaR for the mutual fund by ignoring the skewness
and simply assuming that the underlying PDF is normal with mean 0.7387 and
variance 14.174 (standard deviation = s = 3.76484). Let a¢ = 0.01, and recall
that the theoretical 1 percentile of the standard normal distribution is 
-2.326348. For the mean and variance of the data the relevant quantile for
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Table 2.1.2 Descriptive Statistics for AAAYX Mutual Fund Data

Standard Kurtosis Skewness
Max Min Median Mean Variance Deviation 2

10.724 -21.147 1.088 0.7387 14.174 3.765 10.81264 -1.60407

b̂1b̂



VaR is Ra¢ = -8.019621. The negative value of this quantile times K times 0.01
(to be in decimals) then becomes the VaR. If the investment is K = 100 million,
the value at risk over a fixed time period t is $8,019,621. Thus VaR exceeds
eight million.

2.1.2 Pearson Type IV Distribution for Our Mutual Fund Data

We can see from the estimates in Table 2.1.2 that the normal distribution is
not appropriate. Kurtosis is high, and the returns are negatively skewed. If we
plot the observed point in a diagram with Pearson’s skewness b1 on the hori-
zontal and b2 on the vertical axis, as in Figure 2.1.1, we note that AAAYX
mutual fund falls in the region of Pearson’s type IV curve. This is not good
news. Type IV is the hardest to work with since it involves imaginary roots of
the quadratic in (2.1.6), so we expect difficulties in computing the quantiles
for our VaR calculation. However, we can obtain an analytical expression
(2.1.9) (the calculation is given in the Appendix at the end of this chapter and
in Chapter 9) for its observed density using four moments (which are para-
meters of the underlying distribution):

(2.1.9)

The long left tails in Figure 2.1.1 for empirical probability distribution func-
tion (PDF) and for the fitted Pearson curve (2.1.9) together confirm negative
skewness. Figure 2.1.2 also reveals the good fit from the closeness of the two
curves to each other.

Integrating the Pearson PDF (2.1.9) to get the VaR at the 1% level can be
done only by numerical approximation. We set the lower limit of the range to
-50 and evaluate various upper limits, where each integral takes about three
minutes. Hence the inverse CDF is difficult to compute. However, sequential
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computations with different upper limits [-11.55, -11.54] yields the integral of
[0.00998124, 0.00100078]. Thus the VaR = $11,540,000 is a good approxima-
tion. This is higher than $8,019,621 based on the normal distribution. Using
the more flexible Pearson system reveals extra risk in the left tail ignored by
the normal distribution. Whereas, if the normal distribution were appropriate,
it would be the one selected by Pearson’s system.

2.1.3 Nonparametric Value at Risk (VaR) Calculation from 
Low Percentiles

Normal distribution N(m, s2) is parametric because it depends on estimating
m and s2. The data driven distributions represented by the solid lines in Figure
2.1.2 are called nonparametric (or empirical) because they do not use
moments or any other shape parameters. Suppose that a portfolio manager
invests K = $100 million in AAAYX mutual fund for t = 1 month based on
the data for 132 months. The one percentile of -8.708737 from the raw data
means that she may lose VaR(a¢ = 0.01) = $8,708,737 with a chance of 1 in 100.
All we have done is computed the 1 percentile (1%LE), changed its sign and
multiplied by one million (= 0.01*K). The 1%LE is based on the nonpar-
ametric or empirical PDF from the observed data. The comparable VaR from
Pearson type IV is more conservative, suggesting a larger potential loss of
$11,540,000.

2.1.4 Value at Risk for Portfolios with Several Assets

In the example above, we considered only one portfolio (AAAYX) in isola-
tion. If a set of funds and stock market index funds is considered, it becomes
necessary to incorporate the correlations among the various portfolios. Table
2.1.3 reports annualized returns on three components of a portfolio. Assume
that the investor invests 20%, 30%, and 50% of available funds in Fidelity
Magellan Fund, Vanguard 500 index fund, and three-month Treasury bills,
respectively.

Table 2.1.4 gives the 3 ¥ 3 matrix of variances (along the diagonal) and
covariances (off-diagonal) among the three investments. (For an explanation
of matrix and variance-covariance notation, see Chapter 8.) The variance-
covariance matrix V, and the variance s2 of the portfolio, respectively, are

(2.1.10)
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We report corresponding correlations in parentheses in Table 2.1.4. It is
interesting to note that stock market funds and Treasury bill returns are
inversely correlated during the time period. The portfolio consists of p1 = 0.20,
p2 = 0.30, and p3 = 0.50 proportions of the total investment. Let the column
vector of these proportions be denoted by pv. The average returns for each
investment are reported at the base of Table 2.1.3.
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Table 2.1.3 Returns on Three Correlated Investments

Fidelity Vanguard Three-Month
Magellan 500 T-Bill

Jan–97 4.389 6.232 0.429
Feb–97 -1.342 0.789 0.426
Mar–97 -3.443 -4.136 0.439
Apr–97 4.464 5.956 0.442
May–97 7.134 6.088 0.436
Jun–97 4.14 4.454 0.423
Jul–97 8.391 7.966 0.431
Aug–97 -4.448 -5.609 0.437
Sep–97 5.886 5.469 0.423
Oct–97 -3.405 -3.35 0.423
Nov–97 1.949 4.598 0.439
Dec–97 1.138 1.725 0.442
Jan–98 1.081 1.11 0.432
Feb–98 7.58 7.192 0.435
Mar–98 5.039 5.104 0.429
Apr–98 1.149 1.008 0.424
May–98 -1.976 -1.743 0.428
Jun–98 4.261 4.072 0.425
Jul–98 -0.748 -1.054 0.422
Aug–98 -15.486 -14.474 0.418
Sep–98 6.046 6.411 0.396
Oct–98 7.701 8.164 0.34
Nov–98 7.76 6.072 0.378
Dec–98 9.619 5.805 0.376
Jan–99 5.248 4.204 0.369
Feb–99 -3.193 -3.124 0.379
Mar–99 5.402 3.997 0.38
Apr–99 2.389 3.852 0.362
May–99 -2.875 -2.389 0.384
Jun–99 6.517 5.556 0.394
Jul–99 -3.368 -3.13 0.388
Aug–99 -1.236 -0.496 0.407
Sep–99 -1.478 -2.739 0.403
Average 1.94803 1.926667 0.410879
Standard deviation 5.220064 4.960944 0.027211



Let the column vector of averages be denoted as v. Now the overall
expected return for the portfolio is = (pv¢ v) = 1.173046, where the prime
denotes the transpose, which is simply the weighted sum of column averages
with weights 0.2, 0.3, and 0.5, respectively. The variance of the combined port-
folio with weights pv is the matrix multiplication s2 = pv¢Vpv, where V is the 
3 ¥ 3 variance covariance matrix from Table 2.1.4. This is analogous to our
result in Chapter 1 where var(ax) = a2var(x). Note that this multiplication gives
a number (scalar) equal to 6.121181 with the square root s = 2.474102 (the
standard deviation of the portfolio). The 1 percentile for this portfolio con-
sisting of correlated securities is obtained by substituting the m and s (s) in 
Ra¢ = m + Za¢s to yield -4.582576. Hence VaR = $4,582,576 for K = $100 million.

In conclusion we have discussed the idea of quantiles from first principles
and given formulas for computing the value at risk from the lower quantiles
of the distribution of returns. We have considered both parametric and non-
parametric methods and considered multiple investments, some with negative
correlations among themselves. We will extend these methods in later chap-
ters as we account for downside risk (Chapter 5), and expand our repertoire
of simulation techniques (Chapter 9).

2.2 CAPM BETA, SHARPE, AND TREYNOR 
PERFORMANCE MEASURES

Value at risk is an important concept in risk management, since it can put a
dollar amount on the downside risk. One drawback of VaR, however, is that
it often is used to analyze an investment portfolio independent of alternative
investments, and independent of the market it is in. The performance mea-
sures discussed in this section again are used to put a number on risk but do
so in the context of the broader market. In these measures also the decision
process of the investor can be incorporated, giving valuable insight for adjust-
ing the models for downside risk.

Once a collection of securities is put into a market for sale, the ball is in the
court of the investor. An investor can reduce risk exposure through diversifi-
cation among the collection of securities. Consider for simplicity only two dif-

zx
z
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Table 2.1.4 Covariances and Correlations among Three Investments

Three-Month
Fidelity Magellan Vanguard 500 T-Bill

Fidelity Magellan 26.42334
Vanguard 500 24.40821 (0.971986) 23.86518
Three-month T-bill -0.02557 (-0.18563) -0.01697 (-0.12964) 0.000718

Note: Correlations are in parentheses.



ferent securities x1 and x2 with average returns m1, m2 and variances s1
2 and s2

2,
respectively. Now we show that combining these securities into a portfolio can
yield an investment with lower risk than either security. For example, if we put
proportion w of the portfolio into security 1, and thus the proportion (1 - w)
is invested in security 2, the portfolio has wx1 + (1 - w)x2. The mean return for
this portfolio is wm1 + (1 - w)m2, and the variance of the portfolio is

(2.2.1)

where cov1,2 = E(x1 - m1)(x2 - m2) is the covariance between the two securities
defined in terms of an expectation operator (i.e., averaging over time). The
covariance equals

(2.2.2)

which measures co-movement of the excess return on two securities, x1t and
x2t, over time. As seen in the formula, if security 1 and 2 are both above their
respective means, the term in the summation at time t is positive and hence
time t makes a positive contribution to the covariance. If the two securities are
both below their means, (x1t - m1) is negative and (x2t - m2) term is also nega-
tive. Since their products remain positive, the cov1,2 term makes a positive con-
tribution at time t and the covariance is increased. Only if one security moves
above its mean, and one security moves below its mean at the same time, the
product is negative and covariance cov1,2 is decreased.

This covariance (2.2.2) is the key to diversification. If the securities move
in opposite directions, then volatility of the portfolio is lowered as the lows of
one security are offset by highs of the other. However, we emphasize that the
two assets don’t have to be negatively correlated with each other for diversi-
fication to take place from a portfolio combining the two. Consider the fol-
lowing hypothetical portfolio equally weighted between two assets:

(2.2.3)

with w = 0.5, s1
2 = s2

2 = 1. Portfolio variance using (2.2.1) is 0.5 + 0.5*cov1,2,
which is generally fractional.This means that unless x1 and x2 are perfectly cor-
related (i.e., unless cov1,2 = 1 in this case), the variance of the combined port-
folio (2.2.3) will be less than var(x1) = s1

2 = 1 and var(x2) = s2
2 = 1, the variance

of each of the individual securities. Here cov1,2 only needs to be fractional (not
negative) to achieve the diversification benefits.

So far we have seen that combining two securities into a portfolio can
reduce risk by diversification. But how many securities do we need in a port-
folio to adequately diversify? A good rule of thumb is that after 30 stocks,
there are limited benefits to any further diversification. It is an interesting coin-
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cidence that the Dow Jones Industrial average chosen over hundred years ago
has 30 industrial corporations.

From Figure 2.2.1, the first stocks that are added to a portfolio lower the
standard deviation of returns dramatically. The next few stock achieve some
diversification and lower the standard deviation somewhat. But after 30 or so
stocks, the standard deviation is still positive and does not fall below 0.04. This
is because risk in stocks can never be completely eliminated by increasing the
size of one’s portfolio. There are going to be some events that affect all stocks
to some extent, simply because they are all on the same planet, running some
business and trading on some market. This risk, which cannot be eliminated,
is called market risk, or systematic risk. Some examples of risk that cannot 
be diversified are currency crises, worldwide recessions, wars, and extreme
weather conditions, and these are often exactly what is feared in downside risk.

Consider the following analysis of variance:

(2.2.4)

Assuming that the risk is represented by variance, (2.2.4) implies that

(2.2.5)

Recall that the difference between diversifiable and nondiversifiable risk is an
important step in asset pricing and risk management. We noted in Chapter 1
that investors require a higher return for a riskier investment, namely a risk
premium. But there is no reason to award a risk premium for diversifiable risk,
since it can be avoided simply by holding a portfolio of several stocks. The
stock market rewards risk, not stupidity. If an investor can easily get rid of the
risk, the market forces will not compensate for it. The capital asset pricing

Total risk = Diversifiable risk+ Systematic undiversifiable risk.

Total variance = Asset-specific variance
+ Undiversifiable market variance.
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Figure 2.2.1 Increasing the number of firms in a portfolio lowers the standard deviation of the
aggregate portfolio



model (CAPM) uses this insight to price stocks by measuring only the sys-
tematic risk in order to put a value on what the risk premium should be. We
show the derivation of the CAPM result in the Appendix and directly proceed
to the pricing results of CAPM.

To find out how much market risk a particular security or portfolio has,
CAPM compares the returns of the security to the overall returns of a market
portfolio. These returns are generally calculated in excess of a risk-free rate,
rf, where the subscript f refers to its risk-free character. The risk-free rate, as
in Chapter 1, is the rate that can be earned on a safe investment, so a risky
investment would earn an “excess” return to compensate for risk.

The CAPM formula sets up excess returns ri of the ith stock or security as
a linear function of excess return rm of the market. The CAPM regression is

(2.2.6)

where ei is a random shock uniquely affecting the ith security and represent-
ing the nonsystematic or diversifiable risk. The equation above lends itself to
regression analysis (explained in the Appendix to Chapter 1). The coefficient
b (beta) is most often referred to in the context of CAPM, since it measures
how much movements in the market return are transmitted to movements in
the security return, meaning how much market risk is present in this security.

There is a separate regression for each security or each asset portfolio and
hence a separate beta for each. Since this is a time series regression of (ri - rf)
at time t on (rm - rf) at time t, the estimate of bi may also be calculated from
(1.A.5). It is the ratio of the covariance of the returns of the ith asset port-
folio with the market portfolio, to the variance of the market portfolio returns
over the available time series:

(2.2.7)

If portfolio i coincides with the efficient portfolio for the entire market, the
corresponding bm is unity, since cov[rm, rm] = var[rm] in (2.2.7). The beta for ith
asset bi is interpreted as the intrinsic nondiversifiable risk for the ith asset.
Securities riskier than the market portfolio will have a beta greater than one,
and thus have a higher return than the market portfolio. Securities less risky
than the market will have a beta less than one. Since the market portfolio is
made up individual securities in the same market, it is rare to have a beta less
than zero. It should be cautioned, however, that poorly collected or atypical
data can give a spurious estimate of beta, so the beta should not be taken at
face value.

Since the random, nonsystematic risk is assumed to have a zero mean, the
CAPM derivation suggests that the constant a in (2.2.6) should be zero
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(testing its significance is one test of market efficiency and portfolio selection).
If a = 0, for any security for which we know the beta, we can calculate the
expected return, which will compensate the investor for market risk by sub-
stituting it in the following formula:

(2.2.8)

2.2.1 Using CAPM for Pricing of Securities

It is possible to use CAPM to determine the price of the security, Copeland
and Weston (1992). Recall from Chapter 1 that that spot price of a security can
be found by discounting the expected future value as Pt = E[PT]/(1 + ri)T-t. The
difficulty in Chapter 1 was pinning down ri = rf + q, the risk-adjusted return.
CAPM lets us put a number on the risk premium by using beta, so our pricing
formula becomes

(2.2.9)

The price of the ith security at time t depends on the expected future value at
the end of time horizon, E[PT], the length of the time horizon (T - t), as well
as the variables in the CAPM at (2.2.6): the estimated beta, the risk-free rate
(e.g., the return on three-month T-bills) and the excess return of the market
(historically around 8%).

2.2.2 Using CAPM for Capital Investment Decisions

Since CAPM beta is widely reported and commonly known by investors in the
stock market, the management of a corporation knows the value of their firm’s
own beta. It also determines the (equity) cost of capital to the firm. Hence it
is recommended that the management decisions regarding the choice among
investment projects should check whether the project yields a rate of return
that exceeds the cost of capital. If the cost of debt financing is assumed to be
equal to that of equity financing, a simple way to think about this is to compute
the beta for each project and reject those projects with betas exceeding the
firm’s own beta based on its time series data.

As seen by the formula, the higher the market risk, the higher is the
required return in excess of the risk-free rate. Risk is no longer an ethereal
number subject to the whim of each investor. In CAPM all rational investors
require the same risk premium for identical securities regardless of the level
of risk aversion. In fact a version of CAPM calls for each investor to hold the
exact same portfolio of stocks regardless of the level of risk aversion, and for
that portfolio to be the market portfolio. But this appears to go a little too far.

We know that most mutual funds and financial advisors tailor portfolios 
to the investor, and change allocation depending on his or her risk aversion
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profile in terms of years to retirement, age, social values, and so on. So this
leaves two possibilities:

1. Financial advisors made up these profile calculations to make themselves
look busy.

2. There is something fundamentally wrong with CAPM.

We will now look at the assumptions of CAPM to test possibility 2 before we
deem to accuse the financial advisors of malfeasance.

2.2.3 Assumptions of CAPM

1. All investors are price takers.Their expectations are homogeneous based
on identical information about future returns, where the returns satisfy
a multivariate normal distribution.

2. All investors are risk averse. They maximize the expected utility associ-
ated with aggregate return at the end of the time horizon t, which is
common for all investors.

3. Investors can borrow or lend any amount. Within their budget, but 
otherwise without any penalty they do this at the risk-free rate of rf.

4. Total supply of financial assets is fixed and all assets are marketable and
perfectly divisible.

5. Markets are “perfect”. There are no taxes nor brokerage commissions
(transaction costs), and investors can do unlimited short-selling.

6. All investors know the components of the market portfolio, and that
returns are normally distributed with a known means, variances, and
covariances.

2.3 WHEN YOU ASSUME . . .

The CAPM model has led to numerous publications and there is a controversy
regarding whether it can ever be properly tested by data. For example, Roll
(1977) discusses in detail why various tests of CAPM themselves are flawed.

Let us consider some of the issues. Most issues arise from a possible lack
of empirical validity of the assumptions of CAPM listed above. However,
merely providing evidence that the assumptions do not hold true is not a com-
plete rejection of the model, unless its insights can be shown to also be invalid.

2.3.1 CAPM Testing Issues

Expected Returns. The CAPM theory refers to “expected” returns, whereas
observed data are invariably only actual historical returns. There is no way to
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know the mental expectations in the minds of market agents scattered all over
the world. Since averaging over a set of stocks can be used to solve the first
problem of discrepancy between observed and expected returns, Fama and
MacBeth (1973) divided the New York Stock Exchange stocks into 20 port-
folios and found the “market line” for each. The CAPM is said to be valid if
the actual returns fall close to one of these 20 market lines.

The variability of unknown true expected returns is put in the proper
context by thinking about beta as a measure of risk or volatility in relation to
other investments in the same asset class. For example, suppose that the beta
for Yahoo is 3.8. In relation to the beta of 1.2 for General Electric, Yahoo
appears to be a lot riskier than GE. However, GE and Yahoo do not belong
to the same peer group. So CAPM is valid to the extent that investors can use
the beta to compare their investments, only if care is taken to consider the
proper peer group for comparison.

Market Portfolio. The data on the entire market (minimum variance effi-
cient) portfolio are generally unavailable. In CAPM testing the measurement
of market return is one of the issues. Unless true data on market portfolio
return is available, instead of some proxy similar to a market index such as
S&P 500 index, one does not get a true test of the CAPM per se. For example,
the average firm in the S&P 500 index has a larger capitalization than the
average firm in the market. The S&P 500 is based on US firms, so it is certainly
not a global market portfolio. If our choice of a market portfolio is not correct,
then we are not finding a true beta. Gibbons and Ferson (1985) and Campbell
(1987) suggest dealing with this problem by explicitly creating another proxy
for the unobservable market return in terms of various observable variables
and an error term.

Normality of the Distribution of Returns. The asymptotic validity of the tests
of CAPM type models depends crucially on the iid-normal assumption (iden-
tically and independently distributed). The empirically observed distribution
of returns, however, is generally not iid-normal in practice. In particular, one
observes skewness, excess kurtosis, conditional heteroskedasticity (changing
variance), as well as, serial dependence over time (this will be discussed in
Chapter 4). The nonnormality by itself does not reject the CAPM. The issue
is whether the results of statistical tests of CAPM-type models are reversed
when the iid-normality assumption is abandoned and corrections are made.
We now turn to the available evidence suggesting that conclusions of CAPM
tests may well be reversed if the iid-normality assumption is invalid.

Monte Carlo simulation evidence presented by Affleck-Graves and
McDonald (1989) shows absence of normality. For the US data, sophisticated
econometric tools including the generalized method of moments (GMM) 
estimator, the so-called J test, and the bootstrap are used by MacKinley and
Richardson (1991) and Chou and Zhou (1997) for robust tests of CAPM in
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the absence of normality. They show standard CAPM test statistics have only
a small bias. Tests for other country data also yield similar results, illustrated
by Faff and Lau (1997). Gronewold and Fraser (2001) conclude that the iid-
normal assumption does matter for the data of some countries. However, the
overall literature suggests that only some CAPM implications are sensitive to
the normality assumption, while many are not.

Risk-Free Rate. In order to estimate beta, returns need to be calculated in
excess of the risk-free rate of interest. Usually the return on the three-month
US T-bill is used as the risk-free rate since there is no default risk associated
with it. But default risk is not the only type of risk. As seen in Chapter 1, taxes,
inflation, and market factors can change the value of the T-bill. All of these
factors will affect the return.A true risk-free security should have a real return
of rf, period. The riskiness associated with our empirical “risk-free” security
violates the theoretical existence of a market portfolio. Without a true rf and
rm our estimate of beta may be meaningless.

Other Risks. Beta only estimates the risk premium due to market risk, and
only stock market risk at that. Any other type of risk is assumed to be either
nonsystematic, or encompassed by market risk.These other types of risk could
come from interest rates changing, natural disasters, fraud by employees, or
political change (see Section 7.4). These sources of risk are so large that they
cannot be diversified, and short-term historical measures will not forecast
these risks well.

For example, betas are usually calculated with historical data from the pre-
vious one to three years (sometimes up to five years). This range will contain
many ups and downs in the market with which to identify market risk using
regression analysis. But how many political changes will it contain? For the
United States, at most one and rarely two. For some economies there will be
no changes. For volatile economies that have many coups or regime changes
in a short time period, political risk and uncertainty will be much higher.

2.4 EXTENSIONS OF THE CAPM

There is considerable and growing literature devoted to extending and
improving the CAPM model by relaxing some of the assumptions. For brevity,
we will not attempt to discuss all of these extensions in detail.

Black (1972) shows that if a risk-free asset does not exist, all investors are
not confined to the market portfolio and instead diversify within risky assets
as follows. He shows that some risky assets, which have a zero correlation with
the theoretically determined most efficient “tangency” portfolio will have zero
beta. Hence one can use the return on the zero beta choice as the risk-free
return. This point is mostly of theoretical interest (see Section 8.2), since most
practitioners have no difficulty accepting the presence of a risk-free asset.
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Some authors have extended CAPM regression (2.2.6) by relaxing the
implicit normality assumption about errors. Fama used the lognormal or stable
Paretian distribution in 1965, and several extensions have since been made.
Myers (1972) extended CAPM by allowing for nonmarketable assets. Lintner
(1969) showed that even if investors are allowed to have heterogeneous expec-
tations, CAPM could survive. Merton (1973) and others have allowed for 
continuous time. In macroeconomics Consumption-CAPM is an extension of
CAPM model where the portfolio that mimics the aggregate consumption (per
capita) is shown to be mean-variance efficient. Intertemporal-CAPM model
studies whether the changes induced by hedging over time are mean-variance
efficient. Bollerslev, Engle, and Wooldridge (1988) developed conditional
CAPM where the covariances are time varying. They used generalized auto-
regressive conditional heteroscedasticity (GARCH) to model these changes
(Chapter 4).

There is only one beta in the CAPM model, and the idea of extensions by
Fama and French (1996) is to introduce several sources of risk associated with
directly measurable variables called factors such as firm size, price–earnings
ratio (P/E), book-to-market equity ratio (BE/ME), and cash flow–price ratio
(C/P). Since directly measurable factors are easier to understand and do not
need the multivariate statistical technique called “factor analysis,” we discuss
them first, although they were developed much later than Ross’s (1976) arbi-
trage pricing theory (APT) based on factor analysis.

2.4.1 Observable Factors Model

A version of the arbitrage pricing model with k observable factors for ith asset
when i Œ [1, n] is given by

(2.4.1)

In (2.4.1), a and bij represent the regression coefficients similar to the CAPM
regression (2.2.6), except that here there are more sources of systematic risk
than just the market return. This equation can be written in a more compact
matrix notation by combining the k time series of factors into one T ¥ k matrix
denoted by F1:k and combining the beta coefficients into one k ¥ 1 vector bi,
where the subscript suggests that coefficients are distinct for each asset. The
CAPM extension with observable factors in matrix notation is

(2.4.2)

How do we find the observable factors? Basu (1983) found that low
price–earnings ratio (P/E) stocks meant higher returns, suggesting that P/E 
can be a factor. Banz (1981) found that small-cap stocks had higher returns.
Lakonishok, Shleifer, and Vishny (1994) found higher returns associated with
average return and book-to-market equity ratio, and cash flow–price ratio.

x Fi k i i= + +a b e1: .
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Fama and French (1996) gave a more comprehensive study of the factors men-
tioned by the authors cited above. They found that by observing the returns
of corporations that stocks with higher betas did, indeed, yield a higher return
on average but that beta only explained a small fraction of the differences in
returns between stocks. There were, however, other factors noted above that
aided the CAPM in explaining excess returns. Fama and French thus theorized
that these items must be additional risk factors based on their empirical evi-
dence that (2.4.2) provided a good fit to the data.

Size Factor. Fama-French factors try to pick up sources of risk not repre-
sented by the market portfolio. The size factor, for instance, could proxy for
the ability of a firm to rebound in a down market. It has long been known that
small firms give a higher stock return on average than large firms with the
same beta. The Fama-French model uses this to imply that perhaps access to
credit, reserves of resources, and the like, make being a small firm inherently
more risky. While large firms may be able to weather a storm, small firms are
more easily blown away.

The same intuition applies to the book-to-market equity value of a firm or
BE/ME ratio. As we saw in Chapter 1, the stock value of a healthy firm is the
present value of all future earnings. This number should be in excess of the
price paid for the assets of a company if the company is productive. Seeing a
firm with a book value close to the market value is a sure sign that investors
are seeing the company more as a garage sale than an investment. Thus book-
to-market value signals likelihood of default.

It stands to reason that the probability of default cannot be reflected in the
CAPM beta, since as soon as a firm files for bankruptcy, it is no longer in the
market and no longer used in calculating market returns (known as survivor-
ship bias). Therefore the Fama-French factors try to fill in the gaps that the
single factor beta leave out in CAPM. The construction of factors Fj in (2.4.1)
can be done in sophisticated ways. One can first classify stocks into deciles or
similar categories (high, medium, and low) values for the factors and then
focus on one factor, while trying to hold others fixed (see D’Souza, 2002,
for international Fama-French estimations). This method gives a multifactor
CAPM that starts with market risk and adds additional factors as needed
within each category.

2.4.2 Arbitrage Pricing Theory (APT) and Construction of Factors

One of the strongest statements made by CAPM is that the only risk that
should be compensated is systematic risk as shown by a representative stock
market portfolio. Arbitrage pricing theory (APT) broadens CAPM by not
putting all of its eggs in the market portfolio basket. Fama-French type APT
is stated above in (2.4.1) and includes additional directly observable risk factors
that contain nondiversifiable risk that may not be completely reflected in 
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the market portfolio. The APT proposed by Ross (1976) considers indirectly
observable factors constructed by using “factor analysis,” a multivariate sta-
tistical techniques.

Factor analysis has long been popular in psychometrics to assess personal-
ity from psychological test scores, and this achieves (1) dimension reduction
without losing common variance of original data and (2) closeness to the nor-
mality assumption by reducing error variance. Factor analysis uses the results
of a multivariate technique called principal component analysis (PCA) and
“rotates” them to obtain fundamental representations. Section 8.3 uses a con-
structed finance example to explain PCA and the related matrix algebra. The
aim is to construct a low-dimensional summary of the data on n assets in the
market, and construct the minimum number of factors needed for the APT
regression.

Recall that in (2.4.1) we have one regression for each of the n assets (or
portfolios) indexed by i Œ [1, n] over T time periods indexed by t Œ [1, T].
When we do not assume observable time series for the factors, we have to con-
struct them by somehow summarizing the information in the original data.The
“market return” in CAPM usually refers to hundreds of stocks in the market
(e.g., S&P 500), but these stocks may be redundant, washing out important
information through aggregation. Summarizing the information in their co-
movements over time into a handful of factors as index numbers requires some
algebraic tools discussed in Chapter 8, Section 8.3. The tools include the sin-
gular value decomposition (SVD), principal components analysis (PCA) and
factor analysis.

Let X denote an n ¥ T matrix of “excess returns” with elements {xit} for the
ith asset at time t (see Chapter 8 for more on this notation). The technique of
decomposing the return matrix into eigenvectors distills the characteristic
vectors that can replicate the entire matrix. Therefore no information is lost,
but there is also no redundancy. Using a matrix V of eigenvectors of X¢X asso-
ciated with the largest k eigenvalues l1 ≥ l2 ≥ . . . ≥ lk the corresponding
columns of V are (v1, v2, . . . , vk). Using this subset (k < n), we construct prin-
cipal components that are then used to construct the k factors F1:k appearing
in (2.4.2). Note that the principal components pj for j = 1, . . . , k involve
“dimension reduction” and summaries of the entire data on market returns
for n assets. After dimension reduction we retain only the coordinates of the
data along the most important k “principal axes.” The first principal axis cap-
tures the most variable (highest variance, highest eigenvalues) dimension in
the n-dimensional space for n assets over T time periods. The second princi-
pal axis is orthogonal (perpendicular) to the first and maximizes the variance.
This is done sequentially until all dimensions are exhausted.

Now write the singular value decomposition X = USV, where the matrix U
contains the n columns with coordinates along the principal axes and S is a
diagonal matrix of square roots of eigenvalues of X¢X known as singular values
in decreasing order of magnitude, and V contains the corresponding eigen-
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vectors. The SVD makes it is intuitively clear how replacing the trailing 
singular values by zeros reduces the dimension from n to k.The principal com-
ponents are equivalently obtained simply by the matrix multiplication
(derived in Chapter 8):

(2.4.3)

where both X and the eigenvectors vj of X¢X are observable, although the
latter are sensitive to units of measurement. Thus we have constructed the 
T ¥ k matrix of principal components as factors ready for substitution in
(2.4.2). It is possible to use a mixture of these and some macroeconomic vari-
ables including interest rates, exchange rates, industrial production, in an
extended definition of F1:k. Since the columns of X in our example are asset
returns in comparable units for all columns and mean something in dollars
and cents, it is possible to work with X¢X defined in original units. If we include
interest rates, indexes of industrial production, or other macro variables, their
units are not necessarily comparable to return on assets. If this leads to strange
results, one can always include these data as additional columns of X and then
standardize the X data by making X¢X a correlation matrix, as in Vinod and
Ullah (1981). Since standardization is a linear operation involving means and
standard deviations, it is a simple matter to un-standardize the data. The main
point is that APT extends the CAPM by incorporating additional regressors
from selected few principal components of returns on most (if not all) market
assets, as well as, macroeconomic variables.

If the length of time series T is short compared to the number of assets n,
then one can reduce the number of principal components by taking the smaller
of n and T. It may then be better to write the data matrix X after transposing
it as n ¥ T whenever n > T, and then compute the principal components to
limit the number calculations. In short, the idea behind factor analysis is to
focus on a matrix of covariances or correlations among possible variables
describing the expected returns instead of a single beta. It is not surprising
that the statistical fit of the CAPM equation can be improved by adding more
right-hand variables and in the process some unrealistic assumptions of CAPM
can be avoided (Chen et al., 1986).

2.4.3 Jensen, Sharpe, and Treynor Performance Measures

Among the practical implications of asset pricing models we recognize the
tools offered by Jensen, Sharpe, and Treynor to compare the performances of
different portfolios. We consider these tools practical, because ordinary
investors can use them in choosing among mutual funds and portfolio man-
agers can use them in comparing a wide variety of possible financial instru-
ments. We start with Jensen’s alpha defined as

(2.4.5)Jensen’s alpha = f m fE r r E r ri i( ) - - ( ) -[ ]b .
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Jensen’s alpha measures abnormal performance by the intercept of the
CAPM equation (2.2.8). It is easy to compute Jensen’s measure from the time
series regression of excess returns on excess returns of market benchmark
assets.Also the sampling properties and confidence intervals for Jensen’s alpha
are well known from regression theory.

A generalized Jensen’s measure is defined in terms of a similar regression
except that CAPM regression is replaced by one where, instead of risk-free
rate, one uses portfolio of benchmark assets with the property that they have
zero beta (zero slope) of the regression equation. The generalized Jensen
measure relaxes the assumption that market portfolio is mean-variance effi-
cient. It answers the question whether the investor can improve the efficiency
of the portfolio by incorporating a new asset in the portfolio.

Sharpe (1966) and Treynor (1965) portfolio performance measures are
widely cited and used in the literature and pedagogy of finance. Consider the
following scenario in which the relative performance of n portfolios is to be
evaluated. In this scenario, ri,t represents the excess return from the i-th 
portfolio in period t, where i = 1, 2, . . . , n.A random sample of T excess returns
on the n portfolios is then illustrated by r ¢t = [r1t, r2t, . . . , rnt], where t = 1, 2,
. . . , T and where rt is assumed to be a multivariate normal random variable.
The unbiased estimators of the mean vector and the covariance matrix are

(2.4.6)

where the notation is close to Jobson and Korkie (1981). These two estima-
tors are then used to form the estimators of the traditional Sharpe and Treynor
performance measures.

The population value of the Sharpe performance measure, usually called
Sharpe ratio for portfolio i, is defined as

(2.4.7)

The corresponding sample estimate uses the mean excess return over the stan-
dard deviation of the excess returns for the portfolio. Consider a basic graph
of the risk-return trade-off, where we plot the return mi on the vertical axis and
risk measured by the standard deviation si on the horizontal axis. This simple
graph represents the notion that higher returns are generally associated with
higher risk. The Sharpe ratio in such a graph is the slope of the straight line
from the bottom left to the top right. The Sharpe ratio Shi is the tangent of
the angle of that straight line with the vertical axis.The higher line has a higher
slope and represents a higher average return for the same risk. Hence it is
clear that a “more efficient” or more desirable portfolio should have, in
general, a higher Sharpe ratio.
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If one wishes to find out what will happen to the maximum attainable
Sharpe ratio described below, Jensen’s alpha is related to Sharpe’s measure in
interesting new ways. DeRosen and Nijman (2001) use Jensen’s alphas
together with the regression error covariance matrix to estimate the potential
improvements to maximum Sharpe ratio.

The population value of the Treynor (1965) performance measure gives
return per unit of market risk:

(2.4.8)

for i = 1, 2, . . . , n, where m is the market proxy portfolio often denoted by the
S&P 500 index and bi is the beta from the CAPM. For new tools including
bootstrap for statistical inference on Sharpe and Treynor performance mea-
sures, see Vinod and Morey (2000).

This chapter has concentrated on measuring the risk that cannot be elimi-
nated from a stock portfolio. This risk factor can be characterized by market
risk, but more commonly it is seen as coming from several inherent factors in
the economy. In the next chapter we will detail how even this risk can be com-
pletely eliminated (for a price, of course) through buying and selling deriva-
tives contracts such as call and put options.

APPENDIX: ESTIMATING THE DISTRIBUTION FROM THE
PEARSON FAMILY OF DISTRIBUTIONS

The Pearson system was referenced in equations (2.1.4) to (2.1.6). It is the
family of solutions f(y) to the differential equation

(2.A.1)

A solution of this equation f(y) is always a well-defined density function. The
shape of f(y) depends on the Pearson shape parameters (a, c0, c1, c2) given
below. These parameters can be expressed in terms of the first four raw
moments of the distribution. However, these expressions are tedious. In terms
of the central moments we have the following simpler expressions:
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(2.A.4)

Hence we use empirical estimates of central moments to plug on the right
sides of (2.A.2) to (2.A.4) and then solve the differential equation to get the
underlying density. This was done in (2.1.9) for the artificial data of Chapter
1 in Section 1.4. Computer-aided calculations are discussed in Chapter 9.
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C H A P T E R 3

Hedging to Avoid Market Risk

55

3.1 DERIVATIVE SECURITIES: FUTURES, OPTIONS

We learn from Chapter 2 that all risk cannot be diversified away from a port-
folio, no matter how many stocks are included. Idiosyncratic risk of individual
companies can be diversified away, but systematic risk is common to all com-
panies to some degree. This systematic risk, or market risk, arises because all
companies are on the same planet, employing human beings, and trying to
make a profit. There are events, such as weather, recession, war, and technical
innovation, that are not isolated to specific companies but can affect almost
every one of them. Unexpected upswings in stock price can also cause a loss
if one is planning to buy a stock, but the upswing raises the price before the
order goes through.

Simple investment in the stock market by buying and selling stock, then,
cannot give peace of mind against a sudden downturn in a stock price that can
devastate a portfolio. This chapter is concerned with strategies involving
“derivative” securities for reducing the risk. Consider the following two
investors with their fortunes tied to the outcome of the stock market on March
31: Jack, an unemployed college student who on March 1 already owns 100
shares of Company X and needs to sell $1200 worth of shares to pay his rent
on March 31, and Jill, a businessperson who intends to invest $1200 from her
next paycheck on March 31 to buy shares in Company X for her retirement
account. Company X’s shares are expected to sell for $12 per share on March
31, so Jack’s 100 shares would provide him the $1200 and Jill’s $1200 will let
her acquire 100 shares for her retirement account.

If the price on March 31 is higher (e.g., $20) than the expected $12 per share,
Jack gets a windfall by being able to pay his rent by selling only 60 shares,
while Jill will be hurt, since her $1200 will purchase only 60 shares. By con-
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trast, if the price on March 31 is lower than expected, Jack gets evicted, and
Jill lives well upon retirement. Both Jack and Jill have specific goals for invest-
ing, and they are both subject to risk from their investments but in opposite
directions.

Since both Jack and Jill are expecting the price of Company X stock on
March 31 to be $12, and would prefer to avoid market risk, the solution to
their problem is a forward contract between the two. A forward contract is an
agreement between two parties to trade an asset at a future time (maturity
date) for a pre-specified price. If Jack and Jill enter into a forward contract to
exchange 100 shares of Company X stock for $12 on March 31, then the risk
of the stock price differing from the expected value is completely hedged.They
are both certain the trade will go through at the agreed-upon $12.

Since there is no actual trade of an asset at the point the forward contract
is agreed upon, forward contracts are called derivatives.The value of a forward
contract does not come from its own intrinsic worth; instead, it derives from
its ability to transform (postpone) the trade of Company X’s shares (from Jack
to Jill) into a future trade with a certain price. Company X stock would then
be the underlying asset from which the forward contract derives its value.

In our simple example we have a forward contract with two fortunate indi-
viduals who coincidentally found an investor with the exact opposite needs. In
the market for forward contracts, however, there may be a preponderance of
investors on one side or another, which would push the forward price away
from its expected value. A market consisting of sellers (like Jack) would be
delighted to receive the full price of $12, but some sellers may also be willing
to receive a little less (sell at a discount) in order to eliminate risk. How much
less they would be willing to receive will depend on how fearful they are of
risk of receiving much less than $12 on the maturity date. It is all a matter of
how risk averse they are. (For a discussion of risk aversion, see Chapter 6.)
There will be very few investors willing to take a substantial discount, but as
the discount is reduced, more investors will be willing to trade. See the right-
hand side panel of Figure 3.1.1.

On the other hand, a market consisting of buyers (like Jill), while happy
with $12 per share, may be willing to pay a little more (premium) with the
forward contract for making sure that the future price will not exceed $12.
Since the $12 amount enters the calculation asymmetrically, the supply and
demand curves for a forward contract are oddly shaped with a kink at $12.
The left side of Figure 3.1.1 illustrates the demand curve and right side the
supply curve.

Depending on the relative number of sellers and buyers for a forward con-
tract, the price may be either above the expected value, called contango, when
there are more buyers, or below the expected value, called backwardation,
when there are more sellers. Forward contracts are actually more common in
currency and commodity trades, where the same large buyers and sellers rou-
tinely trade with each other. For small investors in the stock market, forward
contracts are a difficult proposition since to enter a forward contract one has
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to first find an investor with an equal and opposite hedging need (a Jack for
a Jill), and each contract is between two individuals. Such bilateral forward
contracts are difficult for two reasons:

1. A bilateral forward contract in the stock market introduces default risk
because one of the parties to the contract is certain to be a loser when the
outcome is compared to the spot market price at the maturity date. On March
31, if the stock price in the spot market is above $12, Jack will be getting less
money with his forward contract with Jill than what he would have gotten on
the spot market. On the other hand, if the spot price is below $12, Jill would
be the loser, since she has agreed to buy at $12 from Jack when she could have
bought the same stock cheaper on the spot market. On the maturity date, the
spot price is known, and the situation is not the same as it was when the
forward contract was initiated: the risk is gone. Therefore with a forward con-
tract this regret creates an incentive for one party to default. Since it is not
common to buy the same stock again and again at regular intervals from the
same seller, there is a smaller chance for repeat business between two parties.
Forward contracts are thus feasible only if both the buyer and the seller have
a clean reputation and an incentive not to default.

2. Individualized bilateral forward contracts are illiquid before the matu-
rity date. If Jack enters into the forward contract, and then decides to sell the
stock early, perhaps due to a family emergency, the forward contract still exists.
He either needs to find another investor to take over the contract, or com-
pensate Jill enough to void the contract. Of course, suing the defaulting party
in a court of law is always feasible but costly and time-consuming. Either way,
there are substantial transactions costs for enforcing or getting out of a
forward contract that lead to the illiquidity of such bilateral contracts.

3.1.1 A Market for Trading in Futures

Since hedging is supposed to reduce risk, and for the average investor bilat-
eral forward contracts just add new types of risks, the futures exchange was
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introduced.A futures contract is a specific type of forward contract that is sold
in standardized units in a centralized exchange, eliminating the bilateral aspect
completely.These features also reduce the illiquidity because the standardized
contracts give them a wider market, and the centralized exchange reduces
search costs, and provides enforcement of the contract to eliminate default
risk. In order to trade on a futures exchange, one must have a clean reputa-
tion, and provide enough collateral so that he or she will follow through even
on losing contracts.

The standardization also creates an interesting new market where some of
the underlying assets on which futures contracts are bought and sold do not
exist, and actual delivery of the physical asset is not expected. For example,
futures on the S&P 500 stock index are bought and sold on the Chicago 
Mercantile Exchange (CME). If one sells the S&P 500 future for a March con-
tract, it is not expected that come March you actually buy shares of each of
the 500 companies in the index in the correct proportion to exchange for the
sales price. Purchasing that volume of shares would involve a huge transac-
tions cost and considerable time and effort. Also many of the assets in stan-
dardized futures contracts do not even exist, since the contracts specify all the
details of the product in order to have a homogeneous asset. For example, 30-
year US Treasury bond futures traded at the Chicago Board of Trade are bonds
with a 6% coupon payment. Good luck trying to find a 6% return on a cur-
rently issued Treasury bond in the current low-interest environment. Yet stan-
dardization keeps the underlying asset consistent throughout time, whereas
returns on actual bonds will fluctuate with the market.

Rather than deliver the physical commodity or asset, which can be prohib-
itively costly, if at all feasible, the buyer or seller receives the price difference
between the contracted price of the futures contract and the market price at
maturity if the contracted price difference is in his or her favor. If the price
difference is in the opposite direction, the buyer or seller pays the difference.
For instance, in February Jill hedges the level of the stock market by buying
a March S&P 500 futures contract for 900 on the CME. S&P 500 contracts
have a value of $250 times the index value, so she is agreeing to pay $225,000
for the contract. If Jill holds the contract to maturity, the price on the settle-
ment day (at maturity, the third Friday of the month for this contract) will
determine what she owes. If the S&P 500 is at 950 on the settlement day, Jill
has a contract to buy at 900, which is 50 points lower than the market. There-
fore Jill will receive 50($250) = $12,500 to make up the difference between her
contracted price and the market price. If the index in March is only at 850, Jill
would owe $12,500 since the S&P 500 stocks would be cheaper at the market
price than the contracted price. This money would then go to the individual in
the opposite position of the contract who sold the March S&P 500 futures.
Even more common is that an investor will carry out an offsetting transaction
(buying futures to cover a sell, or selling to cover a buy) at some point before
the settlement date so that the gain or loss is locked in.
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The absence of physical assets in futures contracts make them somewhat
mysterious, and it is tempting to liken the futures markets with gambling
casinos. Accounting and tax treatment of some of futures contracts is not
straightforward, requiring expertise and adds to their mystery. For example, a
futures contract can enable an unscrupulous firm to treat future revenue 
as current with a view to defraud and mislead the stock market analysts, a
strategy that the Enron Corporation used to an extreme measure before its
bankruptcy in 2001.

Margin Accounts. There must therefore be a mechanism to ensure that Jill
will pay the extra $12,500 for the stocks when they are cheaper ex post in the
open market (without the futures contract). The margin account is the mech-
anism that keeps the losers from walking away. For a S&P 500 futures con-
tract, an investor must deposit an initial margin of $19,688 with the exchange.
Each day this margin account is “marked to market,” which means that if the
contract loses value, the loss is deducted from the margin account, and if the
contract gains value, the gain is added to the margin account. If the margin
account has enough losses so that it dips below the maintenance margin
($15,750 for the S&P 500), then the investor must deposit additional funds to
bring the account back to the initial margin. The difference between the initial
and maintenance margin keeps investors from getting margin calls for minor
losses, but the maintenance margin ensures that at least $15,750 is already
deposited with the futures exchange.

Unless the contract drops more than $15,750, there is no default risk
because there is enough collateral to cover a loss. The margin amounts are
generally set so that it is extremely unlikely that a contract will have a loss
exceeding the maintenance margin (using VaR). Furthermore, if an investor
fails to meet the margin call for additional funds, the exchange simply puts
through an offsetting contract (for a seller, they will put in a buy; for a buyer,
a sell) so that the investor is contracted for a buy and sell price and can have
no further losses. It is also common that in more volatile markets, the initial
margin and the maintenance margin are equal to each other to further guard
against a potential default.

Marking to Market. The system of marking to market is a valuable service
that the exchange provides to guard against default risk, but a pesky side effect
of buying on margin is an increase in overall speculation. The predominant
investor in the futures market is not the hedger wanting to secure a purchase
or sales price but the speculator or arbitrager, the former betting on price
movements and the latter exploiting minute price discrepancies. The futures
market is ideal for these practices since the margin account is the only invest-
ment needed at the time of the purchase, but the speculator gains (or loses)
the whole amount represented by the change in the price of the underlying
asset. In our example above, the S&P 500 contract worth $225,000 could be

derivative securities: futures, options 59



purchased by supplying the $19,688 initial margin.This is an investment of only
8.75% of the underlying asset value.

In the scenario where the index gains 50 points and Jill receives $12,500,
which is a 63.5% return on the up-front money when S&P 500 only increased
5.56%. Buying on margin in effect magnifies the return. Of course, futures con-
tracts can magnify returns downward also. In this contract, there is a potential
for up to a $225,000 loss from the $19,688 initial investment, or a huge 1142.8%
loss.

3.1.2 How Smart Money Can Lose Big

Private investment partnership designed to trade in securities and financial
derivatives are called hedge funds. Despite the name, these can be more risky
than other investments.

Unlike regular mutual funds, hedge funds are not subject to many Securi-
ties and Exchange Commission (SEC) regulations. They are not permitted to
advertise, and their managers need not be registered as investment advisers.
Considerable information about hedge funds is available on the Internet.They
are available to a limited number of qualified or accredited investors, mostly
those whose net worth is in millions. The General Partner of the fund often
receives 20% of the profits and a 1% management fee. The Van U.S. Hedge
Fund Index underperformed the Standard & Poor’s 500 between 1995 and
1997 and outperformed it between 1999 and 2001. Among arbitrage strategies
used by fund managers are (i) Some attempt to exploit anomalies in the prices
of corporate convertible bonds, warrants and convertible preferred stock. (ii)
Some managers look for price anomalies associated with specific events, such
as bankruptcies, buybacks, mergers and acquisitions. (iii) Some managers
exploit anomalies in pricing of bonds and shares of distressed securities for
companies that are in or near bankruptcy. (iv) Some managers neutralize the
exposure to market risk by identifying overvalued and undervalued stocks in
conjunction with long and short positions.

The experience of Long-Term Capital Management (LTCM), the 
Greenwich, Connecticut, hedge fund illustrates the potential dangers of buying
on margin in the derivatives markets. The objective of LTCM was to model
the financial condition of countries around the world and to exploit differ-
ences between market prices and the predicted prices from their models. And
who wouldn’t trust their models? Behind the models were two Nobel Prize
winners in economics, and several stars from Wall Street. Initially, LTCM made
30% to 40% returns, but the opportunities became scarce, so margins were
increased to augment the return.

LTCM owned $125 billion in financial assets with only $4.8 billion in capital.
This means that a 1% loss on their portfolio will be a $1.25 billion drop in
capital, or over a quarter of their entire investment.Then the unthinkable hap-
pened. Several variables outside their models started to turn sour. Asian
markets all fell; Russia devalued its currency, instantly making investments
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worthless. To cover these losses, LTCM invested more heavily in derivatives
to hedge, but at one point their positions totaled an unwieldy $1.25 trillion.
Eventually the New York Federal Reserve Bank put a stop to the dangerous
spiral of LTCM and organized a private bailout and increased oversight in
1999. LTCM experience gives a cautionary tale that even unlikely events
happen sometimes. Also, when variables change that are not in your model,
the predictions of the model should not be taken at face value.

3.1.3 Options Contracts

Options contracts are a form of financial derivative where the investor has the
right to buy or sell the underlying asset, not the obligation as with futures con-
tracts. Options eliminate the downside risk evident in futures contracts by
making the trade optional at the choice of the investor holding the option
(called the long position). If making the trade will result in a loss to the
investor, then the investor simply chooses not to exercise the option and avoids
any further loss.

There are two basic types of options: a call option, which is the option to
buy the underlying asset, and a put option, which is the option to sell the under-
lying asset. Investors can also either buy the option (long position) or write
the option, meaning they can sell another investor the option (short position).

For example, consider a call option on Company X stock for $12 per share
(strike price) with a settlement date in one month. If the price of Company X
in one month is less than $12, then it will be foolish to purchase the stock using
the option since the stock can be directly purchased for less in the market.
When the option is not exercised it is out of the money. If the price of Company
X’s stock in one month is more than $12, say $13, then the call option saves
$1 for every share purchased. Therefore the option will be exercised, and the
option is called in the money. It is also evident that for every higher dollar that
Company X stock is priced above $12, there is an additional dollar of savings
to the investor holding the call option. Figure 3.1.2 provides a graph of the
value of an option of a long position in a call and put.

Since the investor in the long position has the choice of whether or not to
exercise the option, there can be no further loss on the stock trade. The writer
of the option, on the other hand, has a short position. He must comply by yield-
ing the possession of the asset if the purchaser exercises the option, and the
writer knows the option will only be exercised if it is not in the writer’s favor.
So the payouts to an investor writing an option are shown in Figure 3.1.3.

Why, then, would anyone write an option? The answer is that a buyer of an
option must pay a premium for the benefit of always being on the wining side.
The net payoffs are shown in Figure 3.1.4.

Now, if the price increases and the option is exercised, the writer gains the
premium to offset some of the loss, and if the option is not exercised, the writer
keeps the premium without any loss. With the premium, each position has the
possibility of gain or loss, but the risk is different. For the long position, loss
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is limited to the premium, but gains are virtually unlimited. For the short posi-
tion, the most they will gain is the premium, but losses are limited only to all
(100%) of the initial investment.

This separation between gains and losses foreshadows an important role
options play when predicting downside risk. More than being a method to
reduce risk by locking in a minimum or maximum price, the observable market
value of these options can give valuable insight into market perception of
downside risk of a company. This will be revisited in Chapter 5. For the
moment, the rest of this chapter deals with the fundamentals of analyzing and
pricing derivatives to understand this valuable tool better.

We have covered the basic structure of derivatives contracts. In practice,
derivatives are combined according to the desired level of risk. But if one
understands the pricing behind the simple derivative contract, pricing of more
complicated derivatives just involves separating and combining various 
component parts.
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3.2 VALUING DERIVATIVE SECURITIES

We will begin this section by talking specifically about option valuation,
although the pricing techniques for options discussed here can be used for any
derivative security. The basis of any derivative valuation is that the risk of the
derivative can be completely hedged by holding a portfolio of the derivative
and the underlying asset in such amounts that it guarantees the risk-free
return.

When dealing with stocks, risk can never be completely diversified because
of the presence of systematic market risk that affects all stocks. But with deriv-
atives, there is an underlying asset that is subject to the exact same shocks,
since the value of the derivative is based on the value of the stock. We will see
that both can be played off each other to eliminate all risk, idiosyncratic risk
and systematic market risk.

Let’s begin by looking at a simpler world, and we will build upon the
insights we find there. Assume there is a security that is currently priced at 
$50 per share in a market where the return on a safe, risk-free investment is
5%. The future of this stock is risky, though. There is a 25% chance that the
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company’s new process will work by the year’s end, and the stock will appre-
ciate in value to $96 per share. But there is a 75% chance that the new process
will not work, and the misallocated resources will cause the company’s stock
to decline to $40 per share. Note that we are making a very unrealistic assump-
tion here that the stock price cannot be anything outside the set {$40, $50, $96}.

If we just look at the stock investment itself, the expected price of this stock
in one year is 96(0.25) + 40(0.75) = $54. This yields an expected return of 8%,
where the extra 3% compensates the investor for the additional risk associ-
ated with holding this stock instead of a risk-free security (bank deposit).

An investor who may not wish to live with the possibility that the stock will
only be worth $40 may wish to purchase a put option (right to sell) for a one-
year maturity with a strike price of $50. But how much should this put option
cost? We know the price must be above zero because the holder of this option
will not exercise the option for a loss.

The method used to price an option is known as arbitrage pricing. Securi-
ties with the same risk and same payoffs should have the same return. Other-
wise, arbitragers would exploit the difference and drive the returns back to
equality. We know that the risk-free security has a return of 5%, so if we can
construct a risk-free portfolio of the stock and option, the return should still
be 5% to discourage arbitrage.

Now let us collect in Table 3.1.1 what we know. First, look at a combination
of one share of the stock and a put option contract for 5.6 shares. Why 5.6
shares? The following arithmetic needs this for creating a perfect hedge. In the
prosperous scenario of the company where the company’s stock is $96, the
option contracts are not exercised and the pay is $0. In the unsuccessful sce-
nario, the one stock is worth $40, and the put options contracts are exercised
for an additional $10 on each of the 5.6 shares, or $56. So the total revenue in
the unsuccessful scenario is $40 + $56 = $96, which is exactly the same as in
the prosperous scenario! This portfolio is clearly risk free, since the value in
one year is always $96.Therefore the initial price of this portfolio at the begin-
ning of the year must yield a return of only 5% for the portfolio, similar to a
risk-free bank deposit. Thus the price of the hedge portfolio is $96/1.05 =
$91.43.

If the total portfolio costs $91.43, $50 of that price goes to buy one share
of the stock, the remaining $41.43 goes to buy the put options for 5.6 shares.
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Value of the
Stock Value Option Value Risk-Free Asset

Now 50 ? 100
In One Year
25% Probability 96 0 105
75% Probability 40 10 105



If the put options for 5.6 shares are bought for $41.43, each put option must
cost $41.43/5.6 = $7.40. Thus we have magic. We are able to assign a price to
the put option by using the perfect hedge, without having to know anything
about the market prospect for the underlying stock.

While it is satisfying to have a solution, it is easy to see that we have used
drastic simplifications. So far our option formula only works in a world with
one time period for a stock that only has two possibilities. But we have two
important insights:

1. The probability of a prosperous outcome has no effect on the value of
the option. Since the timing is the same for both the option and the stock, the
number of shares required to perfectly hedge does not depend on the proba-
bility of the stock increasing in value.

2. If the possible outcomes are more spread out (higher variance) it will
take fewer puts to even out the payments and construct the perfect hedge.
Therefore increased variance increases the value of the option.

3.2.1 Binomial Option Pricing Model

The binomial pricing model takes the simple scenario and expands it to mul-
tiple periods. In the binomial model we still assume that the stock is going to
go up $k, with probability p, or down $h, with probability (1 - p). But we
extend the analysis repeatedly over t periods. If we draw out the possible time
paths, we see from Figure 3.2.1 that the number of permutations of upward
and downward movements increases as the number of time periods increase.
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Even with so many possibilities, risk can be perfectly hedged just as with
the simpler case to construct a risk-free portfolio, and the insights are similar:
probability of success does not change the value of the option, while higher
volatility increases the value of an option.

Both models clarify that for options prices volatility is not a bad thing. This
insight takes some getting used to. After building up risk premiums for stocks
for numerous factors, it turns out that in the world of options, risk in the form
of volatility can be a profit opportunity.

The explanation for the positive effect of volatility on option prices
emanates from the choice given to the buyer of an option: they do not have
to exercise the option. Therefore for high-risk underlying assets, if there is a
large swing upward, the buyer of a call option can exercise the option and
redeem the increase, and if there is a similar large downswing in the price of
the underlying asset, the buyer of a call option can walk away and not pur-
chase the stock at all. Therefore call options act as insurance to eliminate
downside risk. Of course, like any insurance policy, it requires the payment of
an insurance premium. This suggest the following additional insight. We can
use observable option premiums quoted in the market as one tangible mea-
surement of downside risk.

3.2.2 Option Pricing from Diffusion Equations

In this subsection we consider a more technical method of options pricing that
uses the diffusion equations from Section 1.4 to price options in continuous
time (rather than discrete jumps in time) and for continuous changes in stock
prices. This method is commonly referred to as the Black-Scholes pricing
formula, named after the developers of the method.

While obviously more complicated, the Black-Scholes method uses the
same technique of finding a portfolio that perfectly balances all risk, so that it
may be priced at the risk-free rate of interest. Recall that in the example of
Table 3.1.1 the certain year-end yield of $96 was priced using the risk-free 5%
interest rate.

Consider a stock following the diffusion equation from (1.4.3):

(3.2.1)

Also consider a call option written on that stock. Let C denote the price of
the call option and insert the primes on parameters of (3.2.1). The call option
diffusion equation is

(3.2.2)

Although we consider a call option here, the method works the same for a put
or any derivative contract. The option follows the same general diffusion
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S
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process, but with its own drift m¢ (expected return) and standard deviation s¢
denoted by primes. Since it is written on the stock, the shocks dz will be the
same force affecting both securities. This means that if an investor shorts 
[-s¢/(s - s¢)] shares of the stock and buys Z = s/(s - s¢) shares of the option,
the combined portfolio will follow the diffusion:

(3.2.3)

If we substitute this in (3.2.1) and (3.2.2) there is cancellation:

The portfolio has no risk, only an expected return, and the expected return of
a portfolio with no risk must be the risk-free rate:

(3.2.4)

or

(3.2.5)

This formula explains how the risk premium of the option is related to the
underlying asset.

Ito’s lemma, a mathematical identity that relates the drift of the option to
the movements of the stock (this is derived in Chapter 8), lets us substitute
for m¢ and s¢ and condense the price of the option into a partial-differential
equation where we denote the partials by subscripts for brevity:

(3.2.6)

where the change in the option value is identified with the change in the stock.
CS is the first partial derivative of the call option price with respect to the stock
price, CSS is the second partial derivative, and Ct is partial derivative of the
Call option price with respect to time.

Equation (3.2.6) identifies the price of an option since given the type of
option (put or call), or even more complicated contracts such as swaps, only
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one pricing formula will satisfy the equation. We give the solution below. For
those with knowledge or interest in differential equations, we have traced
through the solution in Chapter 8.

(3.2.7)

where d = ln(S/X) + (r + 0.5s2)(T - t) -1 and where u = ln(S/X) -
(r + 0.5s2)(T - t) -1.

This is known as the Black-Scholes formula. While the Black-Scholes
formula is mathematically more complex than the binomial, and perhaps more
realistic, it offers most of the same insights as the simpler formulas.

Now we list some factors and indicate how they affect the premium for a
call option with arrows:

1. ≠Stock price, ≠Premium. The higher the current stock price, the more
likely a call option will be in the money.

2. ≠Strike price, ØPremium. The higher the strike price of a call option, the
more that must be paid if it is exercised, and the lower the likelihood the
option will be exercised.

3. ≠Volatility (Standard deviation), ≠Premium. As with the binomial
method, upswings are profits kept and downturns are losses ignored by
simply not exercising the call option.

4. ≠Time to maturity, ≠Premium. The longer the time to maturity, the more
that can happen. Remember that with a nonstationary process the longer
the time period, the higher is the volatility.

5. ≠Risk-free interest rate, ≠Premium. This factor is a little more obscure.
One way to think of this is that options act as a loan. You pay a small
premium, and can receive the stock gains without purchasing the shares
until later. Therefore, if the interest rate increases, this loan is more
expensive.

One important thing that is missing from this list of factors is the expected
return of the stock. Intuitively, it would seem that higher returning stock would
be more likely to be in the money. But in a competitive world this return is
simply a risk premium, and since the option is based on this stock, it must be
discounted at a higher rate too. So any changes in the expected return are a
wash, not affecting the premium for the option.This property of option pricing
will come in handy in the next section when we attempt to value more com-
plicated options for which the Black-Scholes formula does not apply.

3.3 OPTION PRICING UNDER JUMP DIFFUSION

The Black-Scholes formula for option pricing has been invaluable in pinning
down the valuation of derivatives. There are several nice features about the

s T t-( ){ }
s T t-( ){ }
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Black-Scholes formula that makes it a beautiful mathematical construct. For
starters, there is no need to calculate risk premia since we are relying on a
perfect hedge. Since the calculation of a risk premium implies that we have to
know something about the investor preferences, it is a relief to eliminate it
from the equation. The other feature that makes it a rare academic feat is that
it is a closed-form solution. Once you know the parameters s, T, S, and x, you
just plug them in the formula (3.1.8) and you have a price for the call option.
A similar formula is available for the put options. There is no need to solve
additional equations, nor to integrate anything; the formula gives one number
as the price.

The beauty of the mathematical solution of the Black-Scholes formula,
however, is conditioned by some fine print that applies to any theoretical
result: It only applies if the assumptions of the model are correct. If any of the
assumptions do not represent a close approximation to reality, the formula
cannot be applied to such a world, and the model needs to be either refor-
mulated with a more realistic assumption or abandoned. So let’s review a few
of the assumptions of the Black-Scholes model:

1. Stock prices follow a random walk with a drift, and we have normally
distributed random shocks. This makes stock returns lognormally dis-
tributed. The assumption of normality brings with it the assumption of
symmetry of returns, and the assumption that extreme movements are
unlikely.

2. The underlying stock is a traded asset and a hedge can be set up to be
balanced at any moment with trades made instantaneously.

3. The volatility of the underlying asset can be measured accurately to
predict the volatility over the life of the option.

We saw in Chapter 1 that there are diffusion processes other than the strict
random walk that are used for stock prices. For example, one diffusion process
that allows for downside risk to differ from upside risk is the jump diffusion
process of equation (1.4.4) repeated here:

(3.1.1)

where l is the average number of jumps per unit of time, k is the average
percent a stock price changes at a jump, and dq is a Poisson process, and where
the total average return is m after allowing for +lk from the jump process.

If the jump has a negative average return, then this can capture the likeli-
hood of a market crash in a stock price. Merton (1976) worked with pricing
an option on a stock that follows a jump diffusion process, but even this small
addition to normality causes problems in finding a closed-form solution.

First, since the process combines two distributions, normal for dz and
Poisson for dq, it cannot be fully hedged against risk. If one hedges using the
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same weights as with the Black-Scholes, the random walk portion is diversi-
fied, but the jump portion is not constant:

(3.3.2)

Without a perfect hedge, the risk-free rate cannot be used and a closed-
form answer cannot be found. Merton did identify some special cases where
a solution can be found. The usual assumption in order to find a pricing solu-
tion is the assumption that the jump is entirely nonsystematic. Once that
assumption is made, there is no need to price the jump portion of the distrib-
ution since it does not contain market risk.

In reality, however, downside jumps are often marketwide phenomena. Just
observe the Asian crisis of the late 1990s, the technology fiasco of the early
2000s, or the accounting scandals of 2002, and notice the patterns of downside
drops spreading throughout the domestic and worldwide economy.This makes
the assumption of no market risk (zero beta) for the jump impractical for 
modeling downside risk in the stock market; the zero beta assumption is more
useful for special cases when the jumps are uncorrelated random occurrences.

This is the difficulty of the Black-Scholes formula. If any of the assumptions
are broken, the solution is no longer as elegant, and either a numerical calcu-
lation or a simulation needs to be run to approximate the option price, if it
can be calculated at all. Numerical solutions and simulations of options prices
will be covered in Chapter 9.

3.4 IMPLIED VOLATILITY AND THE GREEKS

The Black Scholes option pricing formula in its basic form gives an important
tool for determining how the market quantifies the risk of a security. The
formula itself is based on the current underlying asset price, time to maturity,
the risk-free rate, the strike price, and the volatility of the underlying asset. Of
these items the most difficult one to pin down is the volatility. The others
(assuming the US T-bill is a good fit for the risk-free rate) can all be looked
up in the market reports or are simply a part of the specification of the option
contract. Volatility, however, is not quoted for stocks. It is behind the diffusion
process but not directly observable. The closest thing we can get is a histori-
cal volatility, such as an estimated standard deviation in the past time series
data.

To determine risk, one would prefer a forward-looking measure of volatil-
ity. Since option prices factor in volatility, investors can use the market quotes
of option prices to back out volatility. It is the value implicitly used by options
traders in their calculations based on the Black-Scholes formula.This is known
as implied volatility.
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The Chicago Board of Options Exchange (CBOE) lists a Volatility Index
that is based on a weighted average of the implied volatility put and call
options on the S&P 100 index (VIX) and the Nasdaq-100 index (VXN). The
implied volatility gives an overall estimate of the volatility options traders are
factoring into their prices.

3.4.1 The Role of D of an Option for Downside Risk

Besides implied volatility, other forward-looking measures of risk can be
gleaned from options prices. The delta of an option, D, is defined as the change
in the price of the option for a one dollar change in the price of the underly-
ing asset. Call options have positive deltas since they increase in value as the
underlying asset goes up in price, and conversely put options have negative
deltas. For a call option D = 0.25 means a quarter-point rise in premium for
every dollar that the stock goes up. For a put option D = -0.25 means a quarter-
point rise in premium for every dollar that the stock goes down. Also options
prices cannot increase by more than the price of the underlying asset because
even if the option were guaranteed to be in the money, it would give only a
dollar more gain for the option. Thus, for call options, 0 £ D £ 1, and for put
options, -1 £ D £ 0.

Delta becomes useful for measuring downside risk because it can be
thought of as the probability that the option will end up in the money. Options
that are deep in the money and almost assured of paying off will have a delta
close to 1, and options that are not likely to pay off will have a delta close to
zero. Therefore the delta measures the likelihood that for calls the price will
exceed the strike price, and for puts it measures the likelihood that the down-
side will go lower that the strike price.

3.4.2 The Gamma (G) of an Option

Of course, as the price of the underlying asset changes, and the option moves
closer or farther from the strike price, the delta changes also. An option’s
gamma (G) measures how quickly the delta changes with a change in the price
of the underlying asset. Options that are at the money will have the largest
gamma, and options deep in or out of the money will have low gammas.

3.4.3 The Omega, Theta, Vega, and Rho of an Option

A delta of an option expressed in terms of percentages (or an elasticity of the
options price with respect to the underlying asset) is known as an omega (W).
Since these sensitivity measures for options prices are all denoted by greek
letters, they are known collectively as “the Greeks.” The Greeks above use 
the price of the underlying to try to tease out downside risk, but additional
common sensitivity numbers denoted by greek letters are theta (Q), the
absolute change in the option value for a reduction in time to expiration by
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one unit (usually the unit is one week) vega (W), the change in option price
with respect to a 10% change in volatility, and rho (r) the reaction of the
option price to changes in the risk-free rate. For example, if a r = 0.5 the
option’s theoretical value will increase by 0.05 if the interest rate is decreased
by 1%. The information about the Greeks, usually accompanied by the 
definitions of terms, is increasingly being made available by brokerage houses
for the convenience of options market investors.

In this chapter we have examined derivative contracts as first a method of
hedging risk, and then as a source of collecting information about the per-
ceived volatility of the market. In later chapters these measures will be used
as a means of improving our historical estimates of downside risk with
forward-looking measures from the options market.

An example at http://www.cboe.com/LearnCenter/ProtectivePutsAsHedge.
asp explains in practical terms how to use put options to insure against down-
side risk. Long-term Equity Anticipation Products (LEAPS) are put options
with expirations longer than nine months. For example, on July 13, 2004 a put
option LEAP (ticker WJJMD) provides complete protection against the price
of JetBlue (ticker JBLU) falling below $20 by January 2006 (the farthest date
available). For 100 shares this protection costs about $390, which is equivalent
to paying an insurance premium.

A simple alternative to derivatives is to buy bonds to reduce the downside
risk. The downside risks associated with corporate or local government
revenue bonds include: (i) The entity which issues the bond (or the one that
insures the bond) can go bankrupt. (ii) In times of rising interest rates or any
other reason affecting the prospects for the issuer of bonds, the bonds can lose
value. Bond price variations during the holding period become irrelevant if
the bond is held till maturity. (iii) Inflation can cause the real purchasing power
to decrease.

Some bonds linked to stocks are of particular interest for reducing the
downside risk. The American Stock Exchange reports information about
linked bonds under the structured-products tab at www.amex.com. These
structured products are offered by various brokerage firms and have strange
names given by the brokerage houses. Morgan Stanley calls them “SPARQS,”
or Stock Participation Accreting Redemption Securities. Merrill Lynch calls
them “STRIDES,” or Stock Return Income Debt Securities.

Instead of the LEAPS mentioned above for JetBlue Airlines, one can buy
Merrill’s 9% STRIDES (ticker CSJB). They are not endorsed by JetBlue 
Airlines. During the second quarter or 2004, historical range for JetBlue stock
price was $12 to $24.222. The CSJB STRIDE was issued on May 25, 2004 at
the par value of $25 and maturity date May 22, 2006 with a two year maturity.
At maturity, STRIDE holders must exchange them for a predetermined
number of shares of JetBlue common. The CSJB are “callable” at any date
after May 23, 2005 at Merrill’s discretion for cash value specified in prospec-
tus for CSJB. If called, this works like a short term (one to two year) bond.
The prospectus describes many hypothetical price scenarios: (1) If on the
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maturity date May 22, 2006, the JetBlue stock declines to $5.18, much below
the lower limit $12 of the historical range, then the annualized net loss to
STRIDE holder would be annualized 43.85%, which is substantial, except that
the owners of JetBlue would suffer an even larger comparable annualized loss
of 55.23%. This shows that the downside loss is somewhat reduced but not
eliminated. (2) If the maturity price is $36.27, owners of the JetBlue common
stock would earn 18.29% annualized return, whereas CSJB owners will earn
only 17%. Thus the upward potential can never exceed 17% per year to the
owner of the STRIDE. The prospectus lists such scenarios for hypothetical
prices and all risk factors.

STRIDES are useful for small investors for two reasons: (i) They allow a
bullish investor to earn a high yield without incurring further costs (insurance
premium, commissions, etc.) needed to use the options market, and (ii)
STRIDES can have longer maturity dates than typical options and LEAPS.

APPENDIX: DRIFT AND DIFFUSION

In this appendix we attempt to introduce the reader to the mathematical
details related to the diffusion model discussed in Section 1.4 of Chapter 1 in
continuous time:

where m(t, S) is the predictable drift part and s(t, S) is the random diffusion
part. Both are functions of the two arguments, S price of stock and t for time.

We may rewrite the equation above as

(3.A.1)

If the S represents a risk-free asset paying a return of m per unit time dt,
S0 as its value at t = t0, the random component is zero causing the second 
part of (3.A.1) to disappear. Then we have a simpler differential equation:
dS/S = mdt. The solution of the simpler ordinary differential equation is 
S = S0exp[m(t - t0)]. To verify this solution, differentiate both sides of the solu-
tion with respect to t to yield dS/dt = S0exp[m(t - t0)] times m. Now we replace
{S0exp[m(t - t0)]} by S on the right hand side, to yield dS/dt = Sm, which can be
rearranged as the original “simpler” differential equation. This is a direct 
verification of the solution.

If the initial price is S, the subsequent price is S + dS after one time step of
dt. Now let dt = 1 for one year and m = 0.05 or 5% per year. Now the ratio of
S + dS to S equals 1 + (dS/S) = 1 + m, or the initial price 100 becomes 1.05 times
the initial price 100, or 105, suggesting that the mathematics makes intuitive
sense.

dS
S

dt dz= +m s .
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Next let us bring in the random part or the diffusion part sdz = su ,
where u is the unit normal random variable N(0, 1) with mean zero, and vari-
ance unity. If E denotes the mathematical expectation, Eu = 0 and Eu2 = 1.
Although u Œ (-•, •) is the original range of u, the range [-3.39, 3.39] as tab-
ulated in the typical standard normal tables is all that is needed for all prac-
tical purposes. The scale factor is needed because without it, there will be
technical difficulties later when we let dt Æ 0. Now the initial price of a risky
asset (stock) S becomes S + dS, with dS having both the drift and diffusion
parts. The range of S + dS will not be [-3.39, 3.39] but require a modification
depending on the parameters s and m and dt. As a first approximation, typical
price of risky assets can be assumed to follow the transformed normal (log-
normal) distribution.The lognormal distribution ranges over 0 to • rather than
-• to •, which is obviously the appropriate range for prices, since prices of
assets cannot be negative, by assumption.

The increment dS = mSdt + sSdz, where dz = u , where u is known to be
unit normal u ~ N(0, 1). Hence E(dS) = mSdt, which depends exclusively on
the drift parameter m. The variance of the increment var(dS) = s2S2E(dz)2 =
s2S2dt by using E(u2) = 1. Thus the variance depends exclusively on the diffu-
sion parameter s.

What happens when dt Æ 0? Since dz = u , we note that dz Æ O( ),
where the notation “A is of order B” (written A Æ O(B)) means that the ratio
(A/B) is even smaller than some constant. In our case, as dt Æ 0 the value of
dz is of smaller order of magnitude than . We will use this to cancel the
term dt in Chapter 8. It seems all right to assume that the drift part goes
to zero, but letting the variance become zero amounts to saying that we have
a constant, or that the randomness goes away. Since complete disappearance
of randomness is intuitively unacceptable, mathematicians have developed a
toolkit involving stochastic integrals. For our purposes it is convenient to
simply use the final result of that theory, that when dt Æ 0, we have (dz)2 Æ
dt with probability 1, which does not have an intuitive proof.

This appendix has given a mostly intuitive short description of the role of
drift and diffusion aspects in determining the dynamics of option prices.
Chapter 8 gives further details on Ito’s lemma, a fundamental result in sto-
chastic calculus on par with Taylor series.We also consider what happens when
two random walks move together or are correlated with each other based on
a mixture function attributed to Merton (1976). We use it derive the Black-
Scholes partial differential equation.

dt
dt

dtdt

dt

dt

dt
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C H A P T E R 4

Monkey Wrench in the Works:
When the Theory Fails

75

4.1 BUBBLES, REVERSION, AND PATTERNS

In the previous chapters we examined the way markets are supposed to work.
We explained common modeling techniques and showed where the inclusion
of downside risk may be relevant for the rational investor, and we will explore
those additions in later chapters. But first, we should look at some elements
of downside risk that have very little to do with a rational investor.

One of our main tools in creating a financial theory has been to assume that
investors are paying a fair market price for a stock based on all information
available. If all investors are doing this, then the market price for a stock should
be fair also. Efficient markets hypothesis (EMH) says that the market price
should be fair in the sense that it should not retain profit opportunities in being
predictable from observable information. If one looks at the enormous
amount of activity spent on stock market analysis, where is the room for profit
opportunities? With all of the investors, brokerages, investment banks,
research departments, stock analysts, all constantly crunching numbers and
looking at the same reports, how can one expect to have any new information
that is not already reflected in the stock price?

The EMH is supported by a very plausible and rational argument. It does
not say that information has no effect on stock prices; it says only unexpected
information will affect the price. Old news is not valuable. Some stocks will
get higher returns than others, but that is rational if the stock with higher
returns is also riskier. It just boils down to a risk premium, not that investors
buying the low return stock are deficient of reasoning. This section discusses
the apparent factual empirical problems with EMH.The data reveal seemingly

Preparing for the Worst: Incorporating Downside Risk in Stock Market Investments,
by Hrishikesh D. Vinod and Derrick P. Reagle
ISBN 0-471-23442-7 Copyright © 2005 John Wiley & Sons, Inc.



irrational patterns in the stock market that make prices appear to be 
predictable.

This is logically dangerous ground, and we should tread with care. If we lose
our rational investor, then all bets are off. If the stock market is not efficient,
then there is no rhyme nor reason behind the valuation of securities, and 
we lose all of our hard work of building a theory to price downside risk.
We hear stories of market psychology, herd behavior, and illogical price 
movements, but if this becomes the rule rather than the exception, then stock
investing becomes a form of gambling or astrology. So when taking a look at
these anomalies, we should keep an open mind but be critical of brokers and
sales people who make it seem that profits on Wall Street can be made too
easily.

4.1.1 Calendar Effects

One of the early patterns discovered on Wall Street have to do with the timing
of investments to achieve predictable extra returns, namely market timing
based on the day of the week, the month of the year, the time of the day, and
so on. Stories behind these effects are filled with market psychology and co-
incidence, but usually these explanations come after the discovery. The most
famous example of a calendar effect is the Monday effect. From observations
of historical returns it was noted that Mondays tended to yield lower stock
returns than other days of the week. Besides, who cannot relate to this? The
mind conjures up images of scowling, liveless stock traders dragging them-
selves to work Monday morning back from the suburbs. They just aren’t up to
buying anything, and prices wane until the brokers are back into their routine
by Tuesday. The same can be said for rainy days, Mondays before a Tuesday
holiday, Tuesdays after a Monday holiday, and so on.

It is harder to accept that stock traders don’t like money on Mondays. If
one can consistently predict that prices will be lower on Monday, there is a
profit opportunity. That is enough to make any stock trader love Mondays and
be bounding to work after the weekend. Because the psychological explana-
tion is not rational, researchers have come up with some more rational-
sounding explanations.

For example, low returns on Mondays have been explained by the corpo-
rate practice of releasing bad news on Friday evening after markets have
closed so that there will not be an instant reaction in the market. If the Monday
effect is in response to new information, it does not violate the efficient market
hypothesis. Although it is still a mystery why traders do not anticipate bad
news.

The January effect (high returns in January) is attributed to tax laws, which
state that stock sales by individuals in December qualify for favorable tax
treatment of capital gains and losses. Also on the corporate side postponing
sales to January will put off the tax bill by a whole year. This explanation is
somewhat justified by historical data, and as various firms have moved their
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fiscal years for tax purposes to other months of the year, the January effect
has lessened over time.

Calendar effects have also been a source of interest in international stock
markets. In India, the Bombay Stock Exchange and the National Stock
Exchange had delivery days for their shares of Monday and Wednesday,
respectively, until 2002. This caused a calendar effect where prices were cycli-
cal throughout the trading week: high when delivery was close, and lower when
delivery was several days away. The pattern was deceptive. It would seem that
one could make excess returns simply by buying when it is known that the
price is low and selling at the end of the cycle when the price is higher. That
would be true if this were an irrational cycle, but in India this cycle had a ratio-
nal cause: when the delivery date was farther away, a higher risk level was
associated with the purchase. Therefore the lower prices at the beginning of
the weekly cycle were just compensation for waiting longer for delivery. In an
effort to develop a more efficient stock market, India moved to a rolling deliv-
ery date (three days from purchase), and now the cyclical pattern is no longer
evident.

4.1.2 Mean Reversion

The random walk hypothesis of stock prices in a simple form states that stock
markets are efficient and therefore stock prices are not predictable from past
prices. This was challenged by Fama and French (1988) who stated that
“25–45% of the variation of 3–5 year stock returns is predictable from past
returns.” Poterba and Summers (1988) also found that that price movements
for stock portfolios tend to offset over long horizons. If a stock price veers off
too much from its long-term mean (or trend), one can safely predict that in
the next few quarters it will revert to the trend value. Reverting to the trend
is also described as reverting to the mean (e.g., average growth rate) or simply
mean reversion.

There are two main types of mean reversion characterized by the persis-
tence of their effect on returns: autoregression and moving average

Autoregression. If the past value of returns affects the current value, then the
returns show autoregression.

(4.1.1)

where |r| < 1. As the equation shows, the first-order autoregression is denoted
by AR(1) where current period returns are being influenced by the previous
period’s returns.The intercept a depends on the average return and r.As time
passes, the effect of past time period just gets transmitted on to the next period.
If a = 0, and r = 2, it means that the return at time t is double the return of
the previous time (t - 1). After just five time periods the return will be 25 = 32
times the return at time (t - 1). Such a series will soon explode or grow too

AR 1( ) = + +-: ,r rt ta r e1 1
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large to be realistic. For the data on returns, there is some evidence that the
slope regression coefficient r in (4.1.1) is positive and fractional. When r is
fractional, its higher powers become successively smaller. These effects are
declining, since they are transmitted at a fraction r of their original value.
Therefore after four periods there will only be r4 of the effect remaining in
the AR(1) case, bringing returns back to their long-run average.

In the AR(1) model, the regression coefficient also equals the autocorrela-
tion coefficient of order 1 when we assume that we have n observations rt with
average return of . However, in general, the autocorrelation coefficient of
order p denoted by rp is not a similar regression coefficient. It is defined by

(4.1.2)

where autocovariance of order k is the numerator of autocorrelation. More
formally, some authors define mean reversion as negative serial correlation at
all values of p, that is, for all leads and lags. Negative correlation means that
if the value goes above the mean, it goes back toward the mean in the next
few time periods.

Equation (4.1.1) is AR(1) or first-order autoregression, In general, pth
order autoregression follows the following regression equation:

(4.1.3)

where Srp < 1. Since the past return is in the next period’s value, autoregres-
sive effects never completely disappear. Realism requires that the series
should not explode, or grow indefinitely.

The conditions for realism are formally called stationarity conditions in time
series literature. Briefly, they require that the mean, variance, and autocovari-
ance of the series all be finite and not changing over time. As time increases,
any one of these quantities should not grow indefinitely (blow up). For the
AR(1) stationarity condition is given by |r| < 1. When p is larger than 1, these
conditions for realism of the model become complicated. For example, when
p = 2, we have AR(2) model with the following two (stationarity) conditions
for realism:

(4.1.4)

In evaluating conditions (4.1.4), note that if (b1)2 < 4b2 and b2 < 0, the square
root of (b1)2 + 4b2 will involve imaginary numbers. However, the imaginary
numbers simply mean that the time series of returns is subject to ups and
downs similar to a sine or cosine curve. Since cyclical behavior of returns is
quite realistic, we cannot rule imaginary numbers out. However, we do want
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the sine and cosine curves not to keep getting wider and wider. They should
be damped, if they are to be realistic. The realism conditions (4.1.4) do guar-
antee damped behavior. Ultimately the damping is strong enough and the
series is mean reverting. In general, conditions are available for the series to
be realistic return series for any AR(p) model.

Moving Average. Many technical trading rules are based on comparing short-
and long-term moving averages. A moving average process is a transitory
holdover from a previous period. A first-order moving average, MA(1),
process is written

(4.1.5)

Only the random, unexpected portion of returns from the last period (et-1) is
carried over in the moving average process, not the entire value. In the next
period, when we replace t by t + 1, et-1 will have no affect on et+1.

Expanding to the qth-order moving average process, we get

(4.1.6)

Combining the processes (4.1.3) and (4.1.6), we get an ARMA(p, q) model:

(4.1.7)

which is a mixture of autoregressive (AR) of order p and moving average
(MA) of order q. A great deal is known about this class of models and their
extensions as seen from a survey in Hamilton (1994). There are standard soft-
ware tools available for estimation, testing and criticism, and further modifi-
cation and testing of ARMA models.

Since mean reversion allows prediction of current returns based on past
returns and errors, it does not fit with any for of the efficient market hypoth-
esis. Richardson and Stock (1989), Kim et al. (1991), and Richardson (1993)
found that the mean reversion is not statistically significant, but there are
armies of day traders and technical analysts who firmly believe otherwise.

4.1.3 Bubbles

Stock market bubbles are the most troubling empirical phenomenon to justify
with financial theory since they are, by definition, a sustained overvaluation of
the stock market, until it bursts. Some famous examples of stock markets
bubbles include the tulip bulb craze of the 1600s in Holland and the South Sea
Company bubble of the 1700. More recently the 1990s are being termed the
technology or “dot com” bubble.When a market bubble is present, the market
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has unrealistic expectations about the growth prospects until the bubble
bursts. Great riches can be earned by anyone who knows when a bubble con-
dition exists and has the foresight to sell assets before the bubble bursts.

The trouble with finding bubbles, however, is that they don’t seem like
bubbles before they burst. The dot com experience now seems ludicrous, but
before the bubble burst the technology stocks could have worked. There were
several key variables, such as Internet security, consumer’s willingness to buy
online, and the speed of the Internet, that—had they turned out more benefi-
cial—Internet companies could be bringing in barrels of cash right now. Ex
post, these variables did not turn out favorable for dot coms, but this was more
from bad luck than irrationality. Furthermore the macroeconomic theory has
a vast literature (see Blanchard and Watson, 1982) on bubbles as a rational
outcome.

4.2 MODELING VOLATILITY OR VARIANCE EXPLICITLY

The volatility or variance of market prices has a special importance in finance.
Even a cursory look at financial time series reveals that some periods are more
risky than others. Engle (1982) proposed the autoregressive conditional 
heteroscedasticity (ARCH) model, which lets the volatility be different in dif-
ferent ranges of the data.There are great many extensions of the ARCH model
in econometric literature, with a virtual alphabet soup of names. Among them,
generalized ARCH, or GARCH, and integrated ARCH, or IGARCH, stand
out and will be considered later. We first focus on forecasting volatility.

Consider the standard multiple linear regression models for time series
data. Let yt denote the value of the dependent variable at time t, and let xt

denote a vector of k values of k regressors (including a column of ones for the
intercept) at time t. Let the unknown population regression parameters be
denoted by a vector b, and let the true unknown error in the regression equa-
tion at time t be denoted by et. The regression model then is

(4.2.1)

where it is customary to assume that the errors satisfy

(4.2.2)

where the mean of errors is constant (= 0) for all time periods and so is the
variance s2. The latter is called the homoscedasticity assumption. In cross-
sectional data, heteroscedasticity arises commonly when the error means are
constant for all individuals in the cross section (e.g., 50 states in the United
States), but the error variances are related to some (e.g., size) variable. In our
time series data, if the variance changes over time in some prescribed way, we
have time-dependent heteroscedasticity.

E t te e s[ ] = [ ] =0 2, var ,

y xt t t= ¢ +b e ,
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If heteroscedasticity is ignored, it can lead to a false sense of security
regarding estimated least squares coefficients as the test statistics are biased
toward finding significance. Instead, the ARCH-GARCH models discussed
here try to treat this as a modeling challenge and hope to correct the defi-
ciency of least squares and provide forecasts of variances (volatility). One of
the simplest ways of modeling time-dependence is to propose a simple first-
order autoregression AR(1) among error variances, usually estimated by the
squared residuals of the regression.

The autoregressive conditional heteroscedasticity (ARCH) models of
Engle (1982), and many others inspired by it, continue to assume zero mean
of errors but relax the assumption of constant variance. Since the mean is zero,
the usual (unconditional) variance is given by mathematical expectation of
squared errors, E[e t

2] = s2ht, can have a part that is fixed over time, s2, and a
part ht that changes over time. In the special case of stationarity of these vari-
ances, the unconditional variance does not blow up as time passes but remains
finite.

The part of the variance that changes over time may be viewed as the vari-
ance conditional on the known past errors. For example, the set of the most
recent p past errors known at time t is {et-1, et-2, . . . , et-p}. Note that at time t,
the past errors are known, and the unknown current error et may be related
to past errors. Hence the “conditional” variance of the current error given past
errors, E[e t

2| past errors] can possess a well-defined time series model. For
example, ARCH(p) model is defined by the following auxiliary regression
similar to AR(p) of (4.1.3), except that now it is defined in squared errors, not
returns. The expectation of the current time period variance given the values
of previous error terms can be written as the auxiliary regression

(4.2.3)

Since the mean of errors is zero, the conditional variance is given by using
the law of iterated expectations as

(4.2.4)

Assuming stationarity mentioned above, the unconditional variance for all
time subscripts equals a common constant s2; that is, E[e 2

t-1] = s2, E[e2
t-p] = s2.

Then we can rewrite the equation above, after collecting all expectation terms
on the left side, as

(4.2.5)

As with any autoregressive model of (4.1.3),AR(p), determining the largest
number p of lag terms is subject to further testing, analysis, and debate.
Researchers in finance have found that many lags are needed to track high
frequency (hourly, daily) data. See Bollerslev and Ghysel (1974) study of daily
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returns for mark–sterling exchange rate data that introduced generalized
ARCH or GARCH models. It is found that instead of including a large
number of terms, it is parametrically more parsimonious to introduce a few 
(= q) terms involving the lagged errors of the auxiliary regression (4.2.3).

The GARCH(p, q) models are simply ARMA(p, q) models applied to
squared regression residuals. Denoting the conditional variance by a subscript
on s2 we have the GARCH(1, 1) model defined by

(4.2.6)

where the e 2
t-1 term on the right side is the lagged dependent variable and is

the AR(1) part and the s 2
t-1 term is the MA(1) part. It is clear that this model

forecasts volatility one period ahead, that is, e t
2 from the past forecast and the

past residual, as follows:

Start with the initial value of s 0
2 for t = 0. Then s 1

2 = a0 + a1e 0
2 + g1s 0

2 yields
the one-step ahead forecast.

Now let the error in this forecast be defined as (e1)2.The second period fore-
cast is given by

Now use the error in this forecast to define e2.
Substituting this, obtain the third period forecast of volatility as

It is a simple matter to write an iteration to obtain a GARCH updating
forecast for several periods in the future. The long-run forecast is called
“unconditional volatility,” and it is a constant, provided the regression coeffi-
cients satisfy the inequality: a1 + g1 < 1. Then conditionally heteroscedastic
GARCH models are said to be a mean reverting with a constant unconditional
variance.

Given data on financial returns it is customary to use the maximum likeli-
hood (ML) method to estimate the GARCH(1, 1) model. For a discussion of
the ML method, see Sections 4.4.4 and 6.5.1. Several computer programs are
available for this purpose. McCullough and Renfro (1999) offer a benchmark
computer program for testing if a computer program is correct. McCullough
and Vinod (1999, 2003a, b) discuss the importance of numerical accuracy in
these calculations, since the results are sensitive to starting values and various
settings in the program.The authors note that different software packages give
different results and emphasize a need for benchmarks. We will explore these
numerical issues in greater depth in Chapter 9.

The “Ljung-Box test” with 15 time lags (k¢ = 15) is popularly used for testing
the adequacy of the model. Ljung and Box (1978) show that under the null
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hypothesis that the estimated model is adequate, the following QL-B statistic
gives a good approximation to the true critical region:

(4.2.7)

where rj are sample estimates of autocorrelations as in (4.1.2), among 
residuals of the auxiliary regression (4.2.6), of the GARCH model. For a
GARCH(p, q) model, the user would reject the null hypothesis if this statis-
tic exceeds the standard chi-square distribution tabled value for (k¢ - p - q)
degrees of freedom, for a given level of significance.

4.3 TESTING FOR NORMALITY

Since so many of the formulas in finance use the normal distribution, it is
imperative that we determine if stock returns are, indeed, normally distrib-
uted. There are many reasons why the normal distribution is used in theory.
It has several nice properties to it.

1. It is additive, meaning that if two normally distributed variables are
summed, then the result is also normally distributed.

2. The normal distribution is symmetrical, meaning that the probability
above and below the mean is identical.This makes the question of down-
side risk moot, since upside and downside risk is the same if returns
follow a normal distribution.

3. The mathematical formula for the probability density function of the
normal distribution, N(m, s2),

(4.3.1)

includes an exponential. Taking a natural logarithm of returns is often
done to calculate a percentage change or log-likelihood function (see
Chapter 9). Taking logs cancels the exponential, making the math for
maximum likelihood easier.

4.3.1 The Logistic Distribution Compared with the Normal

The logistic distribution is also common since it is symmetrical, and there exists
is a closed-form solution for the cumulative distribution function. The pdf of
the logistic density is f(x) = e-x[1 + e-x]-2. Figure 4.3.1 plots the logistic side by
side with the standard normal N(0, 1) to show that it is also symmetric and
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bell-shaped, but has a wider range. With most distributions, including the
normal distribution, the probability of being below a specific value can only
be calculated by taking the integral of the pdf. The cumulative distribution
function (CDF) of the logistic distribution can be calculated without calculus
by the probability statement

(4.3.2)

Among further properties of the logistic, its variance is p2/3 ª 3.2899, kur-
tosis is 4.2, compared to the unit variance and kurtosis of 3 for the N(0, 1). It
is often claimed that returns data exhibit excess kurtosis and fat tails com-
pared to the normal. Both these properties are satisfied by the logistic. Hence
the logistic may be preferable to N(0, 1) if one wants to fit a symmetric density
to the returns data.

By changing the origin and scale of N(0, 1), one obtains a more general 
N(m, s2) density where the mean m and variance s2 are its two parameters. One
fits the normal distribution to any given data by simply equating the sample
mean and variance to the parameter values. A parametric form of logistic cdf
with parameters for mean m and variance b2p2/3 is simpler than the pdf. The
cdf of two-parameter logistic is

(4.3.2)

This density too is estimated by simply equating the sample mean and vari-
ance to the appropriate parameter values.

Of course, with the availability of computers and statistical software, these
calculation concerns are no longer the priority that they used to be. Even as
recently as 1998, we were still teaching statistical programming on a main-
frame computer. Storage space was at a premium, and programs would take
considerable time to run. In that environment researchers had to do all they
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could to make sure programs were as streamlined as possible. Current per-
sonal computers have thousands of times more storage and are several orders
of magnitude faster than those mainframes. Therefore there is no need to 
sacrifice accuracy for simpler math.

4.3.2 Empirical cdf and Quantile–Quantile (Q–Q) Plots

Rather than disregard the normal distribution in all applications, we will give
it the benefit of the doubt and let the numbers tell us if an approximation is
good. A test of the goodness of fit is usually made for discrete pdf’s like the
binomial and Poisson by preparing a table of observed (Obs) and fitted (Fit)
values with say j = 1, 2, . . . , k rows. The Pearson goodness of fit statistic is
simply

(4.3.3)

where we have inserted an additional subscript j for the jth row. We reject the
null hypothesis of a good fit if the observable statistic Gof exceeds the chi-
square value from standard tables for k - 1 degrees of freedom for a given
level of significance (type I error). A similar test can be performed for con-
tinuous distributions also by dividing the range of data into suitable intervals.
Kendall and Stuart (1979) devote an entire chapter to the issue of tests of fit.
A graphical feel for goodness of fit is discussed next.

Q–Q plotting is a graphical method of comparing the quantiles of the
observed data with those of a theoretical parametric distribution. These are
most used for plotting the residuals of a regression and checking if they are
approximately normal. Consider our AAAYX mutual fund data from Chapter
2. First, we reorder the T data points from the smallest to the largest. The
ordered data are denoted as x(1:T), x(2:T), . . . , x(T:T) and called order statistics
x(t:T). Note that the probability mass between (-•, x(1:T)] is (1/T), the probabil-
ity between [x(1:T), x(2:T)] is also (1/T) and similarly for each consecutive inter-
val. Figure 4.3.2 shows an empirical CDF for a small dataset.

The cumulative probability pj is simply accumulation of probability masses.
The cumulative probability starts at zero and monotonically increases in steps
of (1/T) until it is unity: pj Œ [0, 1]. The distribution of pj is called the empiri-
cal CDF (ecdf) and defined by pj = Fecdf(x), based on the ordered data. It is
also possible to interpolate among pj values and inverse ecdf is well defined
for any cumulative probability p as F -1

ecdf( p) = x. Note that if p = 0.5, this rela-
tion gives the median, or the 0.5 quantile of the observed data.

To test normality, we want to compare the data with the unit normal density
N(0, 1) and cumulative distribution function F(x). For the theoretical N(0, 1)
density we first subdivide the entire area (= 1) into T + 1 intervals, each con-
taining the probability mass (1/T). Given the usual normal CDF tables or a
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computer program for inverse CDF of the standard normal, F-1(pj), it is pos-
sible to compute the quantiles at pj = j/(T + 1) for j = 1, 2, . . . , T.

The Q–Q plot has normal quantiles on the horizontal axis and observed
data quantiles that are simply the order statistics x( j:T) on the vertical axis. Prob-
ability theory texts, Spanos (1999, p. 243), explain that the theoretical basis for
Q–Q plots is the “probability integral transformation” from math texts. The
Q–Q plots can also be used to compare the data against other densities besides
the normal. All one needs is a way to compute the inverse CDF of that dis-
tribution at points pj. For formal statistical tests regarding the closeness of an
ecdf to a theoretical density Shapiro-Wilk, Kolmogorov-Smirnov, and other
tests, are discussed in statistical texts and monographs, including Kendall and
Stuart (1979, ch. 30). We will discuss programming for selected normality tests
in Chapter 9.

For our mutual fund AAAYX, note that the Q–Q plot shown in Figure 4.3.3
is dramatically far away from the 45 degree line there. If the data are close to
normal, the Q–Q plot lies close to the 45 degree line, at least in the middle
range. Hence it shows that the commonly assumed normal density will not be
suitable for these data, and that is the monkey wrench. Thus the theme of this
chapter is well illustrated by Figure 4.3.3, and it also confirms the Pearson esti-
mates from Chapter 2.

4.3.3 Kernel Density Estimation

The empirical cdf with pj increasing in steps of (1/T) from 0 to 1 is too jagged
in appearance to directly compare to theoretical, smooth distribution. Statis-
ticians have tried to remove the jump discontinuities among them by smooth-
ing and averaging the nearby values, Silverman (1986). If we choose
parametric densities such as N(m, s2) or the logistic (4.3.2), we place observed
data into a straightjacket of a particular form of the chosen density. The finan-
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cial observed data (e.g., returns) may not fit into any parametric form and a
parametric density may be a poor approximation.

Sometimes this problem is solved by choosing a parametric family of dis-
tributions (e.g., Pearson family), rather than only one member (e.g., normal)
of the family. The appropriate family member is chosen by considering
Pearson’s plot of skewness versus kurtosis (see Figure 2.1.1). The problem of
a parametric straightjacket may still persist and a flexible nonparametric
density may be worth considering. Kernel density estimation is a popular
method for this purpose.

The Kernel estimation begins with choosing a kernel weighting function to
smooth the empirical cdf of the data. This weighting should yield a higher
probability density for ranges where there are relatively more data points, and
lower probability density where observations are sparse.

Let K denote a kernel function whose integral equals unity to represent
weights. Often this is a density function since it will have a total area of 100%.
The biweight kernel is defined for y Œ [-1, 1] by Kbiw(y) = (15/16)(1 - y2)2. For
the same range, Epanechnikov kernel is Kepa = (3/4)(1 - y2). The Gaussian
kernel is defined over the range of the entire real line y Œ (-•, •) and equals
the density of N(0, 1) or Kgau = (1/ )exp(-y2/2). These kernels provide the
weight with which to multiply each observation to achieve smoothing of the
data. Clearly, the weight suitable for a point x, whether observed or interpo-
lated, should depend on the distance between x and each observed data point
xt for t = 1, 2, . . . , n. The density at x, f(x) then is given by

2p( )
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(4.3.4)

where the kernel function can be any suitable function similar to Gaussian or
biweight and where c is a smoothing bandwidth parameter. Since all distances
of x from observable data points xt are measured in units of this smoothing
bandwidth parameter c, it appears in the denominator used in the definition
of the argument yt of the kernel function. See Silverman (1986) for further
details on Kernel estimation. Sheather and Jones (1991) propose an automatic
method for bandwidth selection.

Consider our AAAYX mutual fund data from Chapter 2. Now Rose and
Smith’s (2002) software called “mathStatica” can be used for nonparametric
kernel density estimation in two steps. First, we specify the kernel as the
Gaussian kernel, and our second step is to choose the bandwidth denoted here
by c = 1.104 based on the Sheather-Jones method (see Chapter 9). The non-
parametric density for this dataset given in Figure 4.3.4 clearly indicates that
the density is nonnormal with long left tail, suggesting skewness or the fact
that downside risks are different from upside potential for growth.

4.4 ALTERNATIVE DISTRIBUTIONS

This section discusses some probability distributions that are potentially useful
for studying financial data, specifically those that can account for downside
risk and skewness. We provide graphics for these distributions so that the
reader can assess their applicability in any particular situation. Recent finance
literature is using many of these nonnormal distributions and their general-
izations. For example, Rachev et al. (2001) recommend VaR calculations based
on a stable Pareto variable, because these can be readily decomposed into the
mean or centering part, skewness part, and dependence (autocorrelation)
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structure. Research papers in finance often assume that the reader is familiar
with many nonnormal distributions. Hence we provide some of the basic prop-
erties of the distributions listed above, with an emphasis on properties for
which analytical expressions are available.

4.4.1 Pareto (Pareto-Levy, Stable Pareto) Distribution

Economists are familiar with the Pareto distribution as the one suitable for
representing income distribution. In this section we discuss the simple Pareto
density and postpone the discussion of its extensions, known as Pareto-Levy
and stable Pareto, until Section 4.4.6. Longin and Solnik (2001) extend the
stable Pareto to generalized Pareto and show with examples that cross-country
equity market correlations increase in volatile times and become particularly
important in bear markets.

1. The pdf is given by f(x) = qaqx-(q+1). It has two parameters a and q.
2. The cumulative distribution function, cdf, denoted by F(x) has a conve-

nient form for Pareto density: F(x) = 1 - (a/x)q, where x ≥ a and q > 0.
3. The mean of Pareto distribution, assuming q > 1, is (qa)/(q - 1).
4. The variance, assuming q > 2, is (qa2)/[(q - 1)2(q - 2)].
5. The first absolute moment defined by E|X - m| is called the mean devi-

ation, and it measures the spread of the distribution. For the Pareto
density, the mean deviation is given by [2a(q - 1)q-2]/[qq-1].

6. The mode is defined as that value of the random variable that is observed
with the maximum frequency. For the form of the Pareto distribution
given above, the mode is simply a.

7. Given a number q in the interval [0, 1], the qth quantile xq of a random
variable X is defined as the solution of the equation P(X £ xq) = q. If 
q = 0.5, we have the median. The median of the Pareto distribution is
[a2(1/q)].

8. The ratio of standard deviation to the mean is called the coefficient of
variation and is a measure of variability of a random variable, which is
not sensitive to the units of measurement. Note that the variance or the
standard deviation is very sensitive to the units.Assuming q > 2, the coef-
ficient of variation for the Pareto distribution is 

9. The rth raw moment about the origin, m¢r is defined as E(Xr). Assuming
that q > r, for the Pareto distribution, m¢r = qar/(q - r).

In Figure 4.4.1 for the Pareto distribution, we fix q = 2 and change a to yield
three lines: a = 2 (dark line), a = 3 (lighter line), and a = 4 (dashed line). It is
clear from the figure and the properties discussed above that Pareto density
is not suitable to represent a density of returns themselves. However, after
appropriate adjustment for the direction, the Pareto density is useful in a study

q q- --( )[ ]1 12 .
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of extreme (left) tails of the density of returns for the purpose of computing
value at risk.

4.4.2 Inverse Gaussian

The inverse Gaussian is derived from the normal density. The density is given
as follows:

1. The pdf is f(x) = ( )exp[-l(x - m)2/2m2x]; x > 0, l > 0, m > 0.
2. The mean of the inverse Gaussian distribution is m.
3. The variance is m3/l.
4. Assuming j = (l/m), the mode is 
5. The coefficient of variation for the inverse Gaussian distribution is

.
6. If mr denotes the rth central moment, E[X - E(X)]r, then we let the coef-

ficient of skewness be defined as g1 = m3/(m2)(3/2). Since skewness is zero
for the normal distribution, it can be negative if m3 is negative. Thus, for
the inverse Gaussian distribution, g1 = 3 .

7. Let the coefficient of excess kurtosis be defined as g2 = [m4/(m2)2 - 3].
Clearly, it is zero for the normal distribution. For the inverse Gaussian
it is 15 .

In Figure 4.4.2 for the Inverse Gaussian distribution, we fix l = 2 and change
m to yield three lines: m = 1 (dark line), m = 2 (lighter line), and m = 9 (dashed
line). It is clear from the figure and the properties discussed above, that the
inverse Gaussian density is not suitable to represent a density of excess returns
unless it can be safely assumed that these are never negative or can be trans-
formed to a new variable that is always positive. The inverse Gaussian does
offer considerable flexibility of shapes.
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4.4.3 Laplace (Double-Exponential) Distribution

1. f(x) = (1/2s) exp[-|x - m|/s]; x and m Œ (-•, •) and s > 0
2. Mean: m
3. Variance: 2s2

4. Mean Deviation: s
5. Median: m
6. Mode: m
7. Coefficient of variation: (s/m)
8. Coefficient of skewness: g1 = 0
9. Coefficient of excess: g2 = 3

10. Odd moments: m2r-1 = 0 for r = 1, 2, . . . ; even moments: m2r = (2r)!sr for
r = 1, 2, . . .

In Figure 4.4.3 for the Laplace (double-exponential) distribution, we fix 
s = 2 and change m to yield three lines: m = 1 (dark line), m = 2 (lighter line),
and m = 3 (dashed line). It is clear from the figure and the properties discussed
above, that the Laplace density is suitable to represent a density of excess
returns, except that the sharp peak in the middle and strict symmetry abound.
So it may not be realistic, especially if the downside and upside are different
from each other. Laplace does offer an interesting alternative to symmetric
densities like the normal or student t.

4.4.4 Azzalini’s Skew-Normal (SN) Distribution

Azzalini’s simple SN density can give interesting new insights. The SN density
is defined as

(4.4.1)S ErfN x x x
x x

, exp ,l f l p
l( ) = ( ) ( ) = ( )[ ] -Ê

ËÁ
ˆ
¯̃ + Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

2 1 2
2

1
2

2

F

2

alternative distributions 91

1 2 3 4 5 6
x

0.2

0.4

0.6

0.8

f

Figure 4.4.2 Inverse Gaussian density



where f(x) ~ N(0, 1), the unit normal, F(lx) = Úlx
-•f(t)dt. Note that F(lx) is 

the cumulative distribution function (CDF) of N(0,1),and l is any real number.
Note that Erf, the Gaussian error function, and Erfc, its complement, are 
evaluated in many software programs. For x ≥ 0, F(x) = 0.5[1 + Erf(x/ )],
and for x < 0, F(x) = 0.5[Erfc(-x/ )]. Figure 4.4.4 shows how this density
behaves for various values of l including l = 0 for N(0, 1) and l = 1, 2, -3, -2,
and -1. Clearly, the SN density is positively (negatively) skewed for positive
(negative) l, and hence the parametric SN can cover a range of skew 
distributions.

The mean of SN can be shown to be l( )[p + pl2]-0.5, which is positive
(negative) only when l is positive (negative).The variance of SN can be shown
to be 1 - 2l2[p + pl2]-1. Since l appears only as l2 in this expression, the vari-
ance is always smaller than unity, except that when l = 0, we have special case
of the unit variance of N(0, 1). If we rescale x and replace x by hx, where h is
a real number, the variance expression becomes {h2 - 2h2l2[p + pl2]-1}.

2

2
2
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Figure 4.4.4 Azzalini skew-normal density. Left panel: SN density for l = 0 (dark line, unit
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line), and l = -1 (dashed line)



Pearson’s measures of skewness and kurtosis based on the third and fourth
moments, respectively, have complicated expressions, that depend on l.

Figure 4.4.5 plots the variance of the SN density, indicating that as l
increases, the variance stabilizes to a value near (p - 2)/p or 0.36338. The
behavior is similar for negative l in the negative direction. An important
lesson from this analysis is that reasonable values of the variance for skew-
normal density will be in the range [1, 0.36338]. It can be shown that when 
l Æ •; the density converges to the so-called half-normal density or folded
normal distribution.

The variance in financial data can be much larger than unity. Thus, if we
wish to use the SN density in finance, we need to transform the centering and
scaling as follows. For the example of AAAYX mutual fund of Chapter 2,
the observed variance 14.1743 is much larger than unity, the basic SN is not
suitable. We begin by introducing the scale term w to f appearing in (4.4.1) 
by writing it as f¢ = [1/w ] exp(-(x2/2w2). The corresponding cdf 
F becomes F¢ = 0.5[1 + Erf(xl/w )], and the revised two-parameter density
SN¢[x, l] = 2f¢ F¢. Now we re-center by introducing a location parameter x
into the model and transforming x to y = x + x. Then h(y), the adjusted SN
density (AdjSN), is

(4.4.2)

It can be verified that (4.4.2) integrates to unity, and that x = 0 and w = 1
yield the special case of (4.4.2) given in (4.4.1). Thus we have a version of SN
suitable for estimation from financial data. MathStatica reports the log likeli-
hood (LL) function for AdjSN and the score functions, which are the deriva-
tives of LL with respect to the parameters. We maximize the likelihood by
equivalently maximizing the LL, that is, by satisfying the first- and second-
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order conditions for its maximum. The numerical solution is obtained by
setting the score equations to zero and solving for the parameters l, x, and w.
These are called ML estimators.

For our data the maximized LL value using mathStatica is -361.792, where
our first ML solutions are xm = 0.782569, lm = -0.0144832, and wm = 3.75042.
By the first-order conditions we know from calculus that the gradients of the
observed LL evaluated at the ML solution should be zero.Actually the respec-
tive gradients are -0.0049738, -0.019452, and 0.00794965. The second-order
conditions for maximization from calculus in our context mean that the matrix
of second-order partial derivatives of LL with respect to the three parameters
(the Hessian matrix) should be negative definite, that is, all eigenvalues of the
Hessian should be strictly negative. Otherwise, we end up with a minimum of
the likelihood function rather than the maximum we seek. The actual eigen-
values of the Hessian matrix H are -92.8108, -18.7781, and 0.06612. Clearly,
the eigenvalue 0.06612, although almost zero, raises questions about the valid-
ity of this ML solution.

In light of these problems with the first ML solution, we use mathStatica
tools to search further by using the Newton search method.We simply provide
new starting values near the first ML solution for this further search of the
likelihood surface for a better solution. The further search yields a superior
solution, since the new maximized LL = -354.229 exceeds a similar LL =
-361.792 at the first ML solution. This means we are going higher on the like-
lihood surface. At the new ML solution the maximized LL value is -354.229,
where our second ML solutions (denoted by the additional subscript 2) are
xm2 = 4.54772, lm2 = -2.30187, and wm2 = 5.34561. The new gradient vector is 
(-1.98*(10)-6, -3.16*(10)-6, 2.19*(10)-7), where all elements are very close to
zero. The eigenvalues of the Hessian (-16.0411, -12.9347, and -1.70855) are
all negative, implying that H is negative definite, and the observed log likeli-
hood is indeed concave near the solution. McCullough and Vinod (1999, 2003)
recommend such searches near all ML solutions.

How good is the adjusted Azzalini skew normal AdjSN(y, l, w) fit? This
may be seen in Figure 4.4.6 where the transformed variable y is on the hori-
zontal axis and the solid line is the observed pdf. It has a flat top as in Figure
2.1.2.We compare the pdf to the dashed line representing AdjSN density fitted
for these data. Since the fit is visually close we conclude that Azzalini density
may be a valuable tool in finance.

Note that the negative skewness (long left tail) of the density is quantified
by the negative estimate of the l parameter. For statistical inference the
asymptotic covariance matrix is given by (-H-1) evaluated at the estimates of
the parameters. Thus the standard errors for x, l, and w are from . We
invert the Hessian matrix, evaluate it at the solution values, change the sign,
and then compute the square root to get standard errors. The ratio of the esti-
mated parameter value to the corresponding standard errors are asymptotic
Student’s t statistics: t-stat(x) = 9.78377, t-stat(l) = -4.27738, and t-stat(w) =
11.4388. Since all are much larger than 2, the coefficients of AdjSN density are
statistically significant. They confirm that the mean and skewness is nonzero.

-( )-H 1
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If there were two funds with identical means and variances but two distinct
skewnesses, the investor would be better off choosing the one with a larger
(more positive) skewness.

The value at risk defined in Section 2.1 estimated from the location-scale
SN density is $9,222.00, rounded to the nearest dollar. If we had used the
normal density, the VaR would be $8,033.00. The advantage of SN density is
revealed by the fact that the VaR is properly larger for the negatively skewed
SN density for AAAYX fund.

4.4.5 Lognormal Distribution

The lognormal distribution is one of the most important distributions in
finance. If returns are rt, gross returns are (1 + rt). Let us consider log of gross
returns, log(1 + rt). Note that the Taylor series for log(1 + x) = x - x2/2 + x3/3.
. . . If we retain only the first term, we have log(1 + x) ª x. Hence in our case
log (1 + rt) = (rt). The lognormal model says that log of gross returns is nor-
mally distributed. It has the advantage that it does not violate limited liability
(Campbell et al. 1997). The expressions for the mean and variance of the log-
nornal will be useful in Black-Scholes option pricing formula in the next
chapter.

1. f(x) = (1/sx )exp[-(log x - m)2/(2s2)]; x > 0, m Œ (-•, •) and s > 0
2. Mean: exp[m + 0.5 s2]
3. Variance: w(w - 1)exp(2m), with w = exp(s2)
4. Median: exp(m)
5. Mode: exp(m - s2)
6. Coefficient of variation:
7. Coefficient of skewness: (w + 2) with w = exp(s2)
8. Coefficient of excess: w4 + 2w3 + 3w2 - 6
9. Raw moments from zero: m¢r = exp[rm + 0.5r2s2]

w -( )1
exp s2 1( ) -( )

2p( )
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Figure 4.4.6 Plot of empirical pdf (solid line) and fitted adjusted skew-normal density



4.4.6 Stable Pareto and Pareto-Levy Densities

The stability property of distributions often refers to a shape parameter, which
stays the same regardless of the scale. Rachev and Mittnik (2000) is a huge
book devoted to a discussion of the properties of distributions include the esti-
mation of stable distributions in finance. We discussed the simple Pareto
density in Section 4.4.1. Here we consider its extensions, which are of interest
in finance because they have various desirable properties of fat tails, excess
kurtosis, and skewness, for example.The derivation of the stable Pareto density
is done by starting with the so-called characteristic function of the Pareto, that
its density is quite intricate. Since we are assuming that the reader is not famil-
iar with mathematical statistics, we begin this subsection by explaining the
moment-generating function, characteristic function, and related statistical
concepts. Readers familiar with these concepts can skip to the characteristic
function of stable Pareto in (4.4.6) and (4.4.7).

A function that is used to generate the moments of a random variable X is
called the moment-generating function (mgf). It is defined as the expected
value

(4.4.3)

provided that the expectation is a real number. If the mgf exists, the raw
moments (measured from zero) are obtained by

(4.4.4)

For example, the mgf for the normal density is given by exp[tm + 0.5t2s2].
The (d/dt) of this is D1 = [m + ts2] exp[tm + 0.5t2s2], evaluated at t = 0, this equals
m. Now the (d/dt) of D1 is mD1+ ts2D1 + s2 exp[tm + 0.5t2s2]. Evaluated at 
t = 0, this second derivative becomes m2 + s2.The well-known relations between

¢ = Ê
Ë

ˆ
¯ ( ) =m r

d
dt

M t tgf evaluated at 0.

M t E txgf ( ) = ( )exp
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raw and central moments then give the second central moment as s2. The
moment-generating function for the Pareto density does not exist, since the
expectation of exp(tx) contains the imaginary number i = . By contrast,
characteristic functions (CFs) always exist, since they are defined to already
include the imaginary number. One can obtain moments from the CF by eval-
uating its derivatives at t = 0:

(4.4.5)

The central limit theorem, which is of central importance in statistics, states
that the sum of a large number (e.g., >30) of independent and identically dis-
tributed (iid) random variables, each having a finite variance, converges to a
normal distribution. More generally, if the variance is allowed to be infinite,
the limiting distribution is, in general, a stable density (not necessarily the
normal density).

In finance there is reason to believe that some iid components (one of thou-
sands of trades) may have very large (>30) variance. Hence stable density is
an attractive model in finance. For the symmetric case Fama and Roll (1971)
study the stable density. However, Hsu et al. (1974) show that the symmetric
stable density does not offer much more than the normal density, and that
instead of infinite variance, nonstationary volatility is better. We are attracted
by the potential of stable density for asymmetric distributions, which are
important for the theme of this book. Unfortunately, practical estimation tools
are difficult to implement (Rachev and Mittnik, 2000).

The stable Pareto (or simply stable) density Stab(m, v, a, b) has four para-
meters: m is for mean and v is for the variance. Also a Œ (0, 2], a half-open
interval, is a kurtosis parameter and b is a skewness parameter b Œ [-1, 1].
Unfortunately, stable density does not have a closed form except in special
cases (e.g., the normal density is a special case). However, its characteristic
function does have a closed form. Since the data can be always standardized,
there is no loss of generality in assuming that the mean is zero and variance
is unity. Then there are only two parameters and the Cf expressions simplify
but still have two parts depending on whether a equals unity or not. This is
indicated by the additional subscripts 1 and 2:

(4.4.6)

(4.4.7)

The underlying density fstable(x) is obtained by inverting the characteristic
function. The fstable(x) has x Œ (-•, •), which is the entire real line �, only if
we rule out the following two choices of parameters: (1) a < 1 and b = -1, or
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(2) a < 1 and b = 1. In case 1, fstable(x) covers only the positive part of the real
line �+. In case 2, fstable(x) covers only the negative part of the real line �-. It
is convenient to assume the |b| π 1 and focus on Cf,1(t) in the sequel.

If b = 0, we have symmetric stable density and the characteristic function
becomes Cf = exp{-|t|a}, whose special case a = 2 leads to the N(0, 1) density.
It is well known that the CF of the N(0, 1) is exp(-t2). Another well-known
special case is when a = 1 with the CF exp(-|t|), which is the standard Cauchy
density. A third special case a = 0.5 and b = -1, called the Levy density, is less
well known with the density fLevy(x) = (2p)-0.5 x-3/2 exp(-1/2x) illustrated by
Figure 4.4.8.

Note that a = 2 is the largest value of a possible and that as a Æ 0, the
amount of probability mass in the tails (peakedness) of the stable density
increases. Long left (right) tail or negative (positive) skewness is associated
with negative (positive) values of b. Let us fix a = 1.2, and let b = -0.2 or 
0.2 to illustrate the behavior in Figure 4.4.9. Some additional shapes of the
stable density are given in Figure 4.4.10.
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Since a stable distribution arises from any model that permits very large
variance, it is of interest in theoretical finance. The older mean-variance opti-
mization under normality assumption has been extended to stable distribu-
tions. Since there are a very wide variety of shapes feasible for the stable
Pareto density, it remains of interest for empirical finance, except for the dif-
ficulties in estimating the parameters. Rachev and Mittnik (2000) suggest fast
Fourier transform (FFT) methods for estimation, but these too remain diffi-
cult to implement. They also discuss generalizations of Makowitz mean-
variance model using the stable density.
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5.1 VAR AND DOWNSIDE RISK

This chapter extends the discussion of Chapter 2 regarding value at risk (VaR)
where we had implicitly assumed that the distribution of returns has the same
time horizon as the banker or investor. For example, the artificial data example
assumed that the time horizon t was only one day. Extending the time horizon
to the case where t > 1 requires a forecast of its volatility. Now that we have
discussed GARCH volatility forecasts in Chapter 4 we are ready to relax the
assumption of t = 1.

Recall that Wall Street investors and bankers often want a dollar figure on
the potential loss in a worst-case scenario. Value at risk (VaR) is designed to
assist these decision makers without burdening them with formal statistical
theory. In some legal forums VaR dollar figures are used to assess if an entity
is fulfilling its fiduciary obligations. For example, portfolio rebalancing rules
are formulated to ensure that the banks satisfy their fiduciary obligations to
the depositors. Although the computation of VaR is often a “black box” to
some of these decision makers, VaR is computed quite simply from a low
(mostly 1% or 5%) quantile of a parametric or nonparametric probability dis-
tribution f(X) of excess returns.

Let DPt(t) = P(t + t) - P(t) be the change in the value of a portfolio at time
t for horizon t and let a (<0.5) denote a probability. The VaR is defined by the
probability statement

(5.1.1)

where the negative sign before the VaR is designed to measure losses in pos-
itive dollars. Intuitively, VaR measures a worst-case scenario loss associated

Pr VaRDP t a( ) < -[ ] = - ¢1 ,
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with “long” positions (buying side) of $K. This definition is another way of
stating the definition in (2.1.3), which defined VAR(a¢) = -Ra¢*K, where Ra¢ is
the quantile of the distribution of returns.

For example, consider an investor with a time horizon t of one year buys
K = $100,000 worth of mutual fund shares, then P(t) = 100,000 is the initial
value of the portfolio. Now assume that the fund could lose 25% or more of
its value in a year with probability a¢ = 0.01. Then Pr[DP(t) < 25,000] = 0.99,
implying that VaR(0.01) = $25,000 is an upper bound on the loss.

One can compute the VaR(a¢) for any density f(x) of excess returns, as well
as for the empirical distribution of returns. Section 4.4 of Chapter 4 has a dis-
cussion of alternative probability distributions (Gaussian, Pareto, etc.), and a
discussion of the empirical and theoretical cumulative distribution functions
(CDF). For example, the CDF of the logistic density is given in (4.3.2). Recall
that inverse CDF of the normal density and also of the empirical CDF were
needed in the testing for normality by using the Q-Q plots described in Section
4.3.1. If the CDF is denoted by F(x), its inverse evaluated at a given proba-
bility a¢ is denoted by F -1(a¢).The inverse CDF of the standard normal density
N(0, 1) is readily known from normal tables to be -2.33 for a¢ = 0.01 and 1.645
for a¢ = 0.05. Assuming that the initial capital investment is K (e.g., K =
$100,000), the mean of excess returns is , and the standard deviations is s, we
have

(5.1.2)

Because it relies on asymptotic normality, (5.1.2) is often used to compute
VaR(a¢). Statisticians have worked out similar F -1(a¢) values for a variety of
densities analytically or numerically. It is clear from formula (5.1.2) that we
need to change the location of the density to zero by using the observed mean
and to change the scale by using the observed standard deviation.

In general, for parametric probability distributions f(x, q) the density
depends on parameters q. For example, the normal density depends only on
the parameter vector q = {m, s2} containing its mean and variance. Denote by
F -1(a¢, q) the inverse CDF of a distribution with a vector of parameters
denoted by q. Then a general formula for VaR is

(5.1.3)

This formula can be used only if the inverse CDF and all parameters are
known. It is known only numerically (from tables) for the N(0, 1) density, that
is when the mean m = 0 and variance s2 = 1. The negative sign in (5.1.3) may
be confusing at first sight if F -1(a¢, q) happens to be positive. It simply repre-
sents profits, not losses at the low quantiles. Thus, whenever VaR is negative,
the worst-case scenario is not a loss but a positive profit, which is, of course, a
desirable outcome.

VaR a a q¢( ) = - ¢( )-KF 1 , .

VaR 0.01 VaR 0.05( ) = - -[ ] ( ) = - -[ ]K x s K x s2 33 1 645. * , . * .

x
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Note that a familiar nonstandardized transformation of location and scale
is used to accommodate the case where the mean is nonzero and variance 
is different from unity. We state a general formula for VaR involving the de-
standardization as

(5.1.4)

where f(x, m, s2) is the underlying density for excess returns over a time period
t, and F -1(.) represents the inverse CDF. Usual observable densities are over
only one time period. Hence, if such data are used, there is an implicit assump-
tion that the time horizon of the investor is also t = 1 period. We will relax this
assumption later in Section 5.1.3.

5.1.1 VaR from General Parametric Densities

Recall the discussion of the Pearson family of densities from Chapter 2 and
Appendix 1 of that chapter. These are readily used as a generalization of the
normal density. The Pearson family remained a theoretical curiosity for the
last century from the viewpoint of finance. However, thanks to modern com-
puters and software tools, the Pearson members have become practical for
applications in finance. Rose and Wood (2002, ch. 5) discuss computer tools
for estimating in a fairly mechanical fashion any member of Pearson types I
to VII from data on excess returns. The software first estimates the moments
of the density and plots a graph of skewness parameter versus kurtosis para-
meter on the two axes. The software also indicates from that plot which
Pearson type the data belongs to. The user specifies the type, and software fits
it to the data. Chapter 2 gave an example of an estimator based on Pearson
family for computation of VaR(a¢).

Rose and Wood (2002) also provide software tools for fitting the Johnson
family of distributions, indicated as SL for lognormal, SU as unbounded, and
SB as bounded densities. All parametric densities f(x, q) are distinguished by
the presence of the vector of parameters q, which is first estimated from data,
usually from estimated moments of different orders. For example, the sample
mean and variance are used to define the normal density.

Rachev et al. (2001) also recommend VaR calculations based on stable
Pareto variable because these can be readily decomposed into the mean or
centering part, skewness part, and dependence (autocorrelation) structure.
Longin and Solnik (2001) extend the stable Pareto to generalized Pareto and
show with examples that cross-country equity market correlations increase in
volatile times and become particularly important in bear markets. Since these
correlations are neither constant over time nor symmetric with respect to the
bull and bear markets, these authors reject multivariate normal as well as 
multivariate GARCH with time-varying volatility.

The estimation of VaR is related to estimating the worst-case scenario in
terms of the probability of very large losses in excess of a threshold q. The so-

VaR a m s a¢( ) = - - ¢( )[ ]-K F 1 0 1, , ,
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called positive q-exceedances correspond to all observed losses that exceed q
(e.g., 10%). Longin and Solnik (2001) estimate generalized Pareto distribution
parameters using 38 years of monthly data. As q increases, the correlation
across markets of large losses does not converge to zero but increases. This is
ominous for an investor who seeks to diversify across corrupt developing
countries. It means that losses in one country will not cancel with gains in
another country. We conclude that realistic VaR calculations show that similar
countries might suffer extreme losses all at the same time.

5.1.2 VaR from Nonparametric Empirical Densities

Nonparametric densities use no parameters at all. We illustrate the nonpara-
metric density by the example of the empirical CDF (ecdf) as follows. It is
easier to visualize the ecdf which changes from 0 to 1, rather than the density
f(x). The observed data xt with T observations can be first arranged in increas-
ing order of magnitude to define the so-called order statistics, x(t). Note that
min(xt) = x(1) and max(xt) = x(T). Next, one assumes that the empirical data
dictate the underlying density for the random variable X without any flexibil-
ity beyond the observed values themselves. Then the probability Pr(X < x(1))
= 0 = Pr(X = x(T)). The construction of the empirical CDF does not permit any
intermediate values either.Thus the ecdf = 0 if (X < x(1)). It jumps to the height
of (1/T) at (X = x(1)) and remains flat until (X = x(2)), at which time it jumps to
the height 2/T and remains flat until (X = x(3)), and so on.At (X = x(T)) it attains
its full height = T/T or 1, and remains there for all (X > x(T)). The value at risk
for a nonparametric density is obtained by inverting the ecdf as

(5.1.5)

where the inverse of ecdf is denoted by [ecdf]-1, and we evaluate it numeri-
cally by linear interpolation at a¢ (e.g., a¢ = 0.01) to represent the lower quan-
tile as before.

As a practical example, consider a mutual fund named Alliance All-Asia
Investment Advisors Fund, with the ticker symbol AAAYX, for the period of
T = 132 months from January 1987 to December 1997 from Morningstar
(2000). Now we construct the eCDF for these data and evaluate its lower quan-
tiles. For a K = $100,000 capital, the potential loss VaR0.01 = $9,629 is obtained
by applying (5.1.5). Its interpretation is simply that we expect that the proba-
bility that the actual loss to be less than $9,629 is 0.99.

There are semiparametric densities, which are in-between fully parametric
ones from the Pearson or Johnson family, and fully nonparametric based on
the ecdf. If a bandwidth parameter for smoothing of nearby observations is
chosen, it is possible to devise a nonparametric VaR based on the kernel
density from Chapter 4.

Vinod (2004) argues that in finance the ecdf has severe limitations. The
assumption that Pr(X < x(1)) = 0 = Pr(X > x(T)) means one can never obtain

VaR ecdfa a¢( ) = - [ ] ¢( )-
K

1
,
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returns beyond the observed range is almost ludicrous. Also intermediate
values within factions of the observed returns may well be realistic. One solu-
tion was the kernel density from Chapter 4. Alternatively, Vinod (2003b, 2004)
uses the principle of minimum (prior) information or maximum entropy (ME)
to propose an ME density and ME cumulative density. Along the left-hand
tail of the distribution, the ME principle leads to the exponential density with
one parameter based on the average of the x(1) and x(2). This is an example of
a semiparametric density, since both tails involve one parameter. Clearly, one
can apply (5.1.5) upon replacing eCDF by ME-CDF.

Vinod and Morey (2002) note that financial economists usually ignore the
estimation risk. This is also true of the commonly calculated VaR, which
focuses only on market investment risk, not VaR estimation risk. Hence there
is a need to develop inference methods for VaR based on the sampling vari-
ability in an ensemble of time series W from which comes the observed xt.
Using the maximum entropy density, Vinod (2004) has proposed a maximum
entropy algorithm (ME-alg) for this purpose and it creates a large number J
of plausible but distinct time series similar to xt.The J time series are then used
to create J estimates of VaR, which can then be ordered from the smallest to
the largest and denoted by VaR(j) with j = 1, 2, . . . , 999, viewed as order sta-
tistics. An obvious possibility is to choose the ordered ensemble estimate
VaR(10) as the estimate of VaR. For the example of the mutual fund AAAYX
discussed above, we have implemented this ME-alg and find that the VaR
increases from $9,629 to $15,388, which incorporates both estimation risk and
market investment risk.

To illustrate the effect of downside risk, we will go through the VaR steps
for the S&P 500 with 10 years of monthly data from 1994 to 2003. Assuming
normality, the S&P has an average monthly return of 0.8108% and a variance
of 0.0021. (These numbers are rounded off. Calculations are done with eight
decimal places.) The typical VaR for the first percentile would be nearly a 10%
loss on the principal (-0.09843).

Incorporating downside risk, we can look at the nonparametric kernel
density plot of the S&P depicted in Figure 5.1.1 seems to be skewed to the
left, and should warn us that downside risk may be higher than when assum-
ing normality.

We next estimate the Pearson family and plot in Figure 5.1.2 the S&P. As
the figure shows, it falls squarely in the type I Pearson family.

The one percentile of returns for the Pearson estimated distribution of the
S&P is -11.55% of principal. This exceeds the VaR with the normal distribu-
tion by 1.71% of principal, or 17% higher. This is an especially large discrep-
ancy when considering that these are monthly returns (1/12 of the year), and
that S&P index contains larger than average corporations on major exchanges.
Therefore ignoring the downside risk could leave an investor with larger losses
than VaR more than 1% of the time.

Moving to a more risky arena, we have the Russell 2000 index of small-cap
firms, which has the Pearson plot and density shown in Figure 5.1.3. In looking
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for the next new thing, investors often turn to smaller, growth companies. One
must be careful, however, not to be burned by a hot new investment. Smaller
companies are often newer, less tested, and they generally have less capital
than the larger companies measured by the S&P 500. This means that their
stocks are more volatile than stocks of larger, more capitalized companies.
Note that during this period the Russell 2000 in Figure 5.1.3 has an average
monthly return of 0.8046%, comparable to the S&P 500, and a variance of
0.0032, 50% higher than the relatively larger S&P companies. Also, compared
with the Pearson plot, the Russell 2000 index is skewed negatively.

Calculating the one percentile VaR based on the normal distribution would
lead us to believe a 12.4% loss was the largest we should expect. The Russell
2000 data indicates that it is in the type IV Pearson family, and not normally
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distributed. Factoring in downside risk reduces this number to a 14.7% loss,
over a 2% discrepancy, and more than the difference shown by the S&P 500.

5.1.3 VaR for Longer Time Horizon (t > 1) and the IGARCH Assumption

So far we have assumed that the time horizon t for which the density f(x) is
available is also the time horizon for which the investor or Bank is interested
in investing. Generally, one observes the excess returns xt for a reference time
period (one-day, one-month, one-quarter, etc.) in annualized percentage
terms. This time period need not coincide with the investment period of the
investors and it is unrealistic to develop f(x) for each conceivable time horizon
used by the investors.

Consider an artificial example where xt = {5, 4, 3, 5} data are annualized per-
centage returns for t = 1, 2, . . . , t = 4 periods. Accordingly the initial $100
investment becomes 105 at the end of the first year. If the initial investment
is $1, it becomes (1 + y1), where yt = [xt/100]. Since we do not liquidate the
investment at the end of the first year, we need to use compound interest type
calculation. At the end of two years $1 becomes (1 + y1)(1 + y2). In general,
for initial investment of $1 we have

(5.1.6)

where yt = [xt/100]. Since the Taylor series for log(1 + y) is y - y2/2! + . . . , a
linear approximation of log(1 + y) is simply y. Now taking the log of both sides
and using the linear Taylor approximation, we have

(5.1.7)R y y yt t= + +1 2 . . . .

1 1 12+( ) = ( ) +( ) +( )R y y yt ttInvestment position after  years = 1+ 1 . . . ,
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That is the overall return after t periods may be approximated as the sum of
each period returns. In Section 4.4.5 we noted that the lognormal model says
that the logs of gross returns, log(1 + yt) ª yt, may be assumed to be normally
distributed. Assume that each realization yt ~ N(m¢, s¢2), is the observable
density for t = 1 time horizon. Since the mean of the sum of normals is sum
of means, E(y1 + y2 . . . + yt) = tm¢. If we further assume that these realizations
are serially independent, the variance of the sum is the sum of variances. That
is, var(y1 + y2 . . . + yt) = ts¢2. Recall that 100yt = xt is a scale change, so we can
let m = 100m¢ and s¢ = 100s, obtaining xt ~ N(m, s2). Thus, upon allowing a time
horizon of t periods, we have the value at risk,

(5.1.8)

RiskMetricsTM methodology for VaR computation assumes that m = 0 and
proposes a simple relation between the VaR discussed so far and time horizon
t given by

(5.1.9)

This is called the square root of time rule by RiskMetrics. We have shown the
sense in which this is theoretically justified if the underlying density has zero
mean (m = 0).

The derivation of (5.1.8) and (5.1.9) used the relation var(x1 + x2 . . . + xt) =
ts2, which will not be true if the volatility of prices is allowed to change over
time and if they are serially dependent. Our next task is to study this assump-
tion in light of the GARCH(1, 1) model for variance of returns given in (4.2.6)
with a special choice of parameters a0 = 0 and a1 = 1 - g1. This choice suggests
that there is a unit root (driftless random walk) in the autoregressive AR side
of the equation and a1 + g1 = 1. It is often called integrated GARCH or
IGARCH(1,1) volatility process:

(5.1.10)

Now repeated substitution yields the result that after t time periods, the
volatility s2 becomes ts2. This is necessary to say that standard deviation for
horizon t is ( ) times the original standard deviation and justifies (5.1.9). Of
course, our point in explaining the derivation is that (5.1.9) is based on possi-
bly unrealistic and strong assumptions to achieve simplicity. We suggest using
modern computers to directly obtain more realistic estimates of future returns
over t time periods with actual compounding of gross returns to estimate what
the value of K will be at the end of the period in a worst-case proportion 
a¢ (1%) scenario and then estimate the potential loss as the value at risk
VaR(a¢, t).

t

E t t t t te e s g e g s2
1

2
1 1

2
1 1

21- - -[ ] = = -( ) + .

VaR , VaRa t t a¢( ) = ( ) ¢( ).

VaR ,a t tm t s a¢( ) = - - ( ) ¢( )[ ]-K F 1 0 1, , .
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5.1.4 VaR in International Setting

We looked at diversification in Chapter 2 by plotting standard deviation of a
US stock portfolio as more stocks are added to the portfolio. Figure 5.1.4 does
the same exercise for emerging markets. In the figure we chose a stock index
from Argentina,Brazil,Greece, India,Korea,Mexico,Thailand,and Zimbabwe,
the countries for which there is a long span of stock market data. We started
with Argentina and progressively added countries to our portfolio.

Note in the figure that while there is some diversification, standard devia-
tion does not fall much, and it is still double that of the standard deviation for
US stocks. Diversification alone is not enough for investing globally. We will
continue examining the framework of downside risk to have all of our tools
at hand, and come back to the solutions in Chapter 10.

As additional evidence, there is a vast and growing literature on VaR for
global investing. In this section we first mention some recent work on VaR
computation using generalized stable Pareto distributions for modeling
market and credit risks and using international data (Omran, 2001). Later we
will mention other recent work that discusses how common use of VaR by
international investors and banks tends to discourage foreign direct invest-
ments (FDI) in poor countries that also suffer from corruption (Vinod, 2003a).

Stable Pareto random variables are commonly described by their charac-
teristic functions and by four parameters: tail index a, skewness b, location m,
and scale s. Modeling with such parameters can depict fat tails and skewness
of realistic return distributions. Omran’s (2001) estimates of a for Japan,
Singapore, and Hong Kong markets are around 1.50, indicating high proba-
bility of large returns.

Vinod (2003a) considers an international investor whose portfolio consists
of many assets. The VaR for any portfolio is computed by decomposing it into
“building blocks” that depend on some risk factors. For example, currency 
fluctuation and corruption are risk factors with open economy international
investments. Risk professionals first use risk categories for detailed separate
analyses. They need complicated algorithms to obtain total portfolio risk by
aggregating risk factors and their correlations.
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Consider an example of an international investor who wishes to include
some developing countries. A well-known barrier to foreign direct investment
is that exchange rates (currency values) fluctuate over time, and this can mean
a loss when the return is converted into the investor’s home currency.The indi-
vidual investor must always allow for potentially unfavorable timing of cur-
rency conversion. However, financial markets have derivative instruments
including forward and future exchange rate markets to hedge against such
risks. Hence derivative securities linked to exchange rates at a future date can
mitigate, if not eliminate, the exchange rate risk, at least for large investors.
Arbitrage activities by traders can be expected to price the foreign investments
appropriately different from domestic investments to take account of
exchange rate risk.

Of course, these hedging activities need free and open markets in target
currencies. For developing countries like Nigeria and India, which have
exchange control, there are black markets with a fluctuating premium over the
official exchange rate. This means that in such countries corruption becomes
a risk factor that enhances the exchange rate risk and risk associated with
related costs.

Vinod (2003a) argues that corruption is an additional risk factor.
Corruption can suddenly lead to a cancellation of a contract or sudden and
unexpected increases in the cost of doing business. Depending on the magni-
tude of corrupt practices, the cost can vary considerably. When we consider
almost the entire world, enforcing property rights, especially in developing
countries, can be expensive and time-consuming. Furthermore both corrup-
tion and lack of transparency increase the cost of investing in corrupt coun-
tries, even if the investor does not bribe anyone. We claim that corruption
increases the cost of enforcement of all property rights and becomes an 
additional burden.

The VaR calculations by major investment houses and banks are often
extended to joint portfolios of mutually dependent but varied classes of assets.
The traditional parametric VaR based on asymptotic theory does have some
difficulty in handling joint dependencies and complicated return computations
involving taxes and state-contingent estimates of future gains and expenses.
Hence these computations often use simulations and computational power
instead of purely parametric statistical tools. We will examine these tools in
more depth in Chapter 9.

5.2 LOWER PARTIAL MOMENTS (STANDARD DEVIATION,
BETA, SHARPE, AND TREYNOR)

Lower partial moments are a relatively old concept, whereby the moments are
defined over a lower portion of the support of the distribution f(x) of port-
folio returns. In finance one is often interested in the portfolio risk of loss
which obviously refers to the lower portion of the support of f(x). Bawa (1975)
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cites references and proves that “mean-lower partial variance” selection rule
is optimal for some nonnormal f(x). This section defines the lower partial
moments including the variance.

In statistics, partial moments of x are moments defined over a subset of the
original range [x*, x*]. Lower partial moments are defined over the lower part
of the range, [x*, 0], or the downside. If the actual returns are less than the
benchmark return, there is a “loss” (x < 0) that is the risk.

The square root of the lower partial variance may be called the downside
standard deviation (DSD). Note that DSD can be explicitly stated for the 
standard normal. If f(x) is unit normal or N(0, 1) with x Œ (-•, •), the down-
side standard deviation (DSD) is the square root of lower partial variance.
Thus

(5.2.1)

where f(x) is the PDF and F(x) is the CDF of N(0, 1). Hence theoretical 
DSD can be found for any x Œ (-•, •) from N(0, 1) tables. In particular, if we
consider x* = 0, DSD = (0.5)0.5. In general, there is a somewhat complicated
monotonic nonlinear relation between s and DSD if x is distributed exactly
as N(0, s2).

In the context of portfolio analysis we can define the downside as when-
ever there is a loss to the investor. The loss can be defined to occur when the
return for the asset i at time t is less than the risk-free return xi,t < xf,t, that is,
when the excess return is negative. Alternative definitions could be if the
return is below the market returns, or below some risk-adjusted target return
as in CAPM and tracking error. It is convenient to suppress the subscript i and
denote the excess return by xt.

Under exact normality of excess return distribution, it can be shown that
the ranking of the portfolio risks by the usual standard deviation s and DSD
is exactly the same. This is true because DSD is a monotonic nonlinear func-
tion of the usual s. In practice, the excess return distribution is rarely, if ever,
precisely normal. Hence it is not surprising that the ranking of risk by DSD
does not coincide with the usual ranking of risk by s. Xie (2002) shows how
portfolio choices change when one considers downside risk.

It is convenient to consider T observations for a given portfolio with known
excess returns xt, which are not classified into any intervals. Let T ¢ denote the
number of observations in the downside range of values of xt where a “loss”
occurs. Now DSD can be computed by giving a zero weight to all x > 0. We
modify the usual definition of the variance to focus only on the downside by
inserting a weight as

(5.2.2)s
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where wt = 0 if x > 0, and where the subscript “dn” refers to the downside.
Next we define the weighted versions of higher central moments as mjw for

j ≥ 3:

(5.2.3)

In particular, the weighted third central moment, which can be negative, is

(5.2.4)

The estimated m3w (skewness) has a sampling distribution with high variance
due to the third power of deviations from the mean needed in (5.2.4). Now
the (possibly negative) skewness measure is defined by scaling with standard
deviation as

(5.2.5)

It is a common impression that Sk = 0 implies symmetry. However, Ord
(1968) gives some asymmetric distributions with as many zero odd-order
moments as one desires. One example, cited by Kendall and Stuart (1977,
p. 96, ex. 3.26), has an asymmetric distribution with all odd-order moments
zero. Although these results mean that Sk = 0 does not guarantee symmetry,
Sk π 0 does mean asymmetry.

For example, consider a set of three portfolios with deterministic (fixed)
returns xt = m(1), m(2), and m(3) for all t, with means m(1), m(2), and m(3). Hence
their standard deviations are all zero s = s(i) = 0 for i = 1, 2, 3. Assume that 
m(1) > 0, m(2) = 0, m(3) < 0. In common parlance, the third portfolio with a 
negative mean will lose money and is more risky compared to the others. The
portfolio with positive m, m(1) has a profit potential. However, since s is exactly
same for the three, the summary measure average return already correctly
ranks them as m(1) > m(2) > m(3).The summary measure of risk we seek to define
for stochastic returns should be distinct from the mean and focus on losses
arising from volatility, or changes in returns beyond differences in average
returns.

We argue that a summary measure of financial risk (RSK) should rank the
return variabilities in the reverse order of preference. In portfolio analysis a
low RSK means high utility. The standard deviation is always nonnegative, but
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the skewness Sk can be negative and is defined on the entire real line (-•, •).
We propose a new measure of risk defined as

(5.2.6)

where c > 0 is a constant parameter for each individual, depending on his or
her attitude toward risk. Note that RSK(c) combines the standard deviation s
and Sk into a single summary measure. The negative sign before c recognizes
that negative skewness implies greater preponderance of losses, Pr(xt < 0) >
Pr(xt > 0). The constant c in (5.2.6) is set at c = 1 to define a benchmark RSK
= (s - Sk). It is close to the intuitive idea of risk that incorporates standard
deviation and skewness. Formally, a meaningful RSK measure should satisfy
the following properties:

R1. If two portfolios have common mean, m(1) = m(2), unknown s and
RSK(c)(1) < RSK(c)(2), then RSK(c)(2) should have a higher probability
of a loss, P(xt < 0).

R2. If two portfolios have a common mean, common s, and distinct signed
skewness measures Sk

(1) < Sk
(2), then RSK(c)(1) should be higher. A more

negative skewness should lead to a higher evaluation of risk (RSK).
R3. It should be possible to map the RSK ranking on the real line (-•, •)

with a higher RSK suggesting a portfolio with a higher potential loss.

Note that we cannot rule out the possibility that a meaningful RSK measure
is negative. If two portfolios have common ( , s) and distinct Sk

(1) and Sk
(2), the

benchmark RSK = s - Sk can be negative since Sk > s cannot be ruled out. For
example, if Sk

(1) > s(1) > 0, we have RSK(c)(1) < 0, though s(1) is nonnegative. The
interpretation is simply that the variability of the returns of the first portfolio
has a greater profit potential than loss potential. The negativity does not
change the fact that the first portfolio dominates the second. Since we are
familiar with positive volatility measured by s, the negative RSK may seem
unfamiliar or puzzling to financial analysts. Fortunately, a simple shifting of
the origin can readily remove the puzzling negativity.

5.2.1 Sharpe and Treynor Measures

The population value of Sharpe’s (1966) performance measure for portfolio i
is defined as

(5.2.7)

It is simply the mean excess return over the standard deviation of the excess
returns for the portfolio.

Sh i
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The population value of Treynor’s (1965) performance measure is

(5.2.8)

where the subscript “m” is used to indicate the market proxy portfolio often
denoted by the S&P 500 index and bi = sim/s 2

m is a regression coefficient 
(the familiar beta) from the capital asset pricing model (CAPM). It is based
on the covariance of ith portfolio with the market portfolio and the variance
of the market portfolio.

Now we turn to further modifications of Sharpe and Treynor measures
based on downside standard deviation (DSD) of (5.2.2) to incorporate pref-
erence for positive skewness. The Sharpe ratio similar to (5.2.7) becomes

(5.2.9)

A Sharpe Ratio Problem. An old unsolved problem with the Sharpe ratio has
been that when its numerator is negative, it gives incorrect ranking of 
portfolios. For example, consider two portfolios with a common mean of (-1)
and distinct standard deviations 1 and 10. Now the Sh(1) = /s = -1 and Sh(2)

= -1/10 = -0.1 implying that Sh(1) < Sh(2). However, it is obvious that the Sh(2)

with negative return and high standard deviation is doubly undesirable. We
claim that considering the absolute values in the numerator cannot solve this
problem. Consider two portfolios with (1) = -1, (2) = -3, s(1) = s(2) = 1. Here the
absolute values will obviously give the wrong ranking: Sh(1) = 1 < Sh(2) = 3.

Add Factor for the Sharpe Ratio. The Sharpe ratio is not defined for zero
variance portfolios, since the denominator cannot be zero. The sign of Sharpe
ratio depends only on the sign of the numerator, since the standard deviation
in the denominator must be positive. Adding a common positive constant to
all values in the numerator does not change the ranking of Sharpe ratios.
Hence we propose a simple “add factor” to that will solve the problem of
misleading rankings by the traditional Sharpe ratio in the presence of nega-
tive returns. Of course, the add factor has to be large enough to make all
numerators positive: If the add factor > max(| |), the ranking becomes correct,
despite the presence of negative values. Since these add factors are quite
arbitrary, they should be used only if needed in the presence of negative means
and only for ranking purposes.

Similar to (5.2.8) a new downside version of the Treynor measure is

(5.2.10)

where the CAPM regression is replaced by a weighted regression, which uses
nonzero weights only on the downside.
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5.3 IMPLIED VOLATILITY AND OTHER MEASURES OF
DOWNSIDE RISK

The up and down variability of prices is often referred as volatility on the Wall
Street. Formally, it may be defined as the relative rate at which an asset’s price
Pt at time t moves up and down. The standard deviation s is the most common
estimate of volatility, which is also the most common measure of scale in sta-
tistics. On Wall Street the volatility s is usually found by calculating the annu-
alized standard deviation of daily change in price, not the price itself.

If the price of an asset fluctuates up and down rapidly over a wide range of
values during a short time period, it has high volatility. If the price almost never
changes, it has low volatility. For example, the price of a speculative stock of
a small company often has high volatility, whereas the yield on a passbook
savings account has low volatility.

The implied volatility requires a backward use of the famous and highly
mathematical Black-Scholes (BS) option pricing formula. As explained else-
where in this book (Chapter 3, Section 3.2), the BS formula has volatility s is
an input and (put or call) option price as the output. Implied volatility uses
the inverse formula in the sense that option price quoted by traders in the
option exchange market is the input and s is the output.

Hence implied volatility is a theoretical value of volatility of the asset
(usually a stock or similar security) price based on an underlying rule (e.g., BS
formula) for determining the price of the option. We now list some factors
which influence the implied volatility: (1) the price at which the option can be
exercised, (2) the riskless rate of return, (3) the maturity date, and (4) the price
of the option.

For S the stock price (adjusted for dividends), let m = instantaneous
expected return of the proportional change in the stock price per unit of time
and s2 = instantaneous variance of the proportional change in the stock 
price. Assume that a geometric Brownian motion (GBM) process gives the
dynamics of the stock price:

(5.3.1)

where m is the drift parameter and s is the volatility. The option is called a
derivative security since its price is derived from S. The drift parameter m
causes the price of the derivative to depend on the risk-free interest rate.

Let X denote the strike price of a European call option, r the risk-free rate,
CBS the Black-Scholes price of the call option, and F(.) the cumulative density
function of the standard normal variable. Then the Black and Scholes (1973)
pricing equation for the call and put option is given by

(5.3.2)
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where

d = ln(S/X) + (r + 0.5 s2)(T - t){s }-1,
u = ln(S/X) - (r + 0.5 s2)(T - t){s }-1.

See Chapter 8 for a detailed derivation of relevant formulas starting with
the diffusion equation and derivation of the underlying BS differential equa-
tion for the price of a derivative security f(S, t). The trick is to eliminate ran-
domness and then use Ito’s lemma. The formula above is a solution to the
partial differential equation and bears a similarity to a solution to the heat
equation in theoretical physics.

In the GBM model entire variability is reflected by a surprise, which is a
realization of the standard normal, dz = N(0, 1). There is a one-to-one relation
between any option’s price C and s from (5.3.1). In the context of data analy-
sis, note that data on C, S, X, risk-free rate, and T, t are readily available and
that the value of s can be uniquely inferred from the formula (5.3.2). The
inferred value of s is called implied volatility, Campbell et al. (1997, p. 377).
Options Clearing Corporation (OCC) owned by the exchanges that trade
listed equity options, (www.888options.com) defines implied volatility as the
volatility percentage that produces the “best fit” for all underlying option
prices on that underlying stock. Data are available for implied volatility based
on both call and put options denoted here as “callv” and “putv” respectively.
Clearly, putv represents a forward-looking nonsymmetric option market
measure of downside risk.

To illustrate a nonnormal model, consider jump diffusions. This model
inserts an additional source of variability in (3.6). Merton (1976) discussed the
jump diffusion process with a closed form solution for the call option prices
CJD given below. It is a combination of GBM and a Poisson-distributed jump
process PO(l), where l is both the mean and the variance of the number of
Poisson jumps.Aït-Sahalia et al. (2001) reject the null hypothesis that S&P 500
options are efficiently priced and use a jump component to partly reconcile
the difference.

Let W= ( )dz,

(5.3.3)

where dv = Si=0
i=xsi and where the lowercase si ~ N(q, d) represents the size of

the shock. If the number of jumps were fixed, the term dv will be a sum of a
fixed number of normals. The complication in (5.3.3) arises because the
number of jumps follows PO(l). For (5.3.3) the moments of the distribution
of total return ln(ST/S0) are denoted here with a subscript JD for jump diffu-
sion. The average size of the shock viewed as a jump is q and the variance d
is yielding:

dS
S

k dt dW dv= -( ) + +m l s ,

dt

T t-( )
T t-( )
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MeanJD = (m - 0.5s2)T
(Standard deviation)JD = sJD = [s2 + l(q2 + d2)]0.5

SkewnessJD = (l/ )[q(q2 + 3d2)/sJD]1.5

(Excess kurtosis)JD = (l/T)[(3d4 + 6d2q2 + q4)/sJD]2

If the Poisson parameter l is zero, jump diffusion reduces to the simple dif-
fusion with zero skewness and zero excess kurtosis. If the size of the jump
shock is negative on an average (q < 0) the distribution of stock returns is
skewed to the left. The call option price of the jump diffusion is a cumulative
sum of PO(l) times the Black-Scholes price or

(5.3.3)

Chidambaran et al. (2000, p. 587) discuss (5.3.3) and some useful extensions.
It is obvious that jump diffusions permit nonzero skewness and that one can
use jump diffusions to indirectly incorporate the asymmetry. However, the fact
remains that the pricing formulas (5.3.1) and (5.3.3) contain s2 as measures 
of volatility that are not directly observed. Merton (1976) discusses this as 
a source of “pricing error” and “misspecification.” He also mentions non-
stationarity of variance and studies the pattern and magnitude of errors in
option pricing by using a simulation. We note that one source of misspecifica-
tion is that s2 values symmetrically treat upside potential and downside risk,
and that the pricing formula assumes the jumps are entirely nonsystematic.
The second source is that underlying distributions, investors’ loss functions,
and psychological attitudes to the two sides are, in general, not symmetric.

Reagle and Vinod (2000) claim that the implied volatility of the put option
(putv) places all the focus on the downside and therefore putv and callv have
an asymmetric reaction to downside risk. Thus we have tools to incorporate
more realistic asymmetry. Reagle and Vinod (2000) use implied putv for about
100 stocks and other balance sheet variables for the same companies.

For downside risk to play an important role in portfolio selection, there are
three important factors that must be true:

1. The distribution of returns is nonsymmetrical.
2. Portfolio choice based on downside risk gives different rankings than

portfolio choice based on symmetrical risk.
3. Investors need a higher risk premium for downside risk than for upside

risk.

We will explore each of these issues in Chapter 7. First, we need to consider
utility theory, which provides a basis for an investor reaction to downside risk.
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C H A P T E R 6

Portfolio Valuation and 
Utility Theory

119

6.1 UTILITY THEORY

In earlier chapters we discussed financial theory in terms of risk measurement,
hedging, diversification, and the like, and how the theory might fail. We
avoided mention of the utility associated with high returns. Of course, it is
implicit that for a given risk level, more is always better, but we have not con-
sidered “how much better,” and at what cost. We have ignored the attitude of
the investor toward risk; that is, some investors may get more upset with a
$100 loss than they are happy with a $100 gain. This is called loss aversion, and
it belongs to an extension of expected utility theory (EUT), called non-EUT.
In short, in earlier chapters we emphasized only those financial theories that
apply to everyone. The main appeal of the option-pricing model proposed 
by Black and Scholes (1973) is that it can apply to everyone because it is 
preference-free. Similarly various probability distributions f(x) associated 
with excess returns are treated as if they apply to everyone.

This chapter brings in the utility function U(x). Section 6.1 lays the ground-
work with some insights on EUT, and non-EUT is discussed in Section 6.2.
Although we have abandoned the aim of making the theory applicable to
everyone, we still want to keep the theory applicable to hundreds of thousands
of investors, if not millions. Accordingly, Section 6.2 introduces a parameter 
a Œ [0, 1] that measures the extent of departure from EUT precepts, with 
a = 1 suggesting no departure (perfect compliance) and a Æ 0 suggesting 
large departure. We customize the theory for given levels of a, since everyone
cannot be assumed to have a = 1, permitting greater realism.

Preparing for the Worst: Incorporating Downside Risk in Stock Market Investments,
by Hrishikesh D. Vinod and Derrick P. Reagle
ISBN 0-471-23442-7 Copyright © 2005 John Wiley & Sons, Inc.



Often the bottom line in finance is to be able to compare portfolios, to be
able to rank them and eventually choose the best. We assume that the com-
parison between portfolios can be formulated in terms of a comparison among
probability distribution functions (PDFs) of excess returns, f(x), relevant for
each portfolio. Section 6.2 develops non-EUT weights to incorporate attitudes
to risk (loss aversion) parameterized by a. Section 6.3 explains the powerful
and elegant concept of “stochastic dominance.” It is useful because given some
relevant properties of the investor’s U(x), whenever a portfolio A “dominates”
another portfolio B, the investor obtains more utility in choosing the portfolio
A over B.

Stochastic dominance involves the utility function U(x), which is generally
unique for each individual. Nevertheless, the theory attempts to satisfy hun-
dreds of thousands of individual investors in admitting only the signs of the
first four derivatives of U(x). We will explain the interpretation of the signs of
the first four derivative orders of U(x) that lead to the four orders of stochastic
dominance.

Section 6.4 discusses what is known about incorporating utility theory into
lower partial moments (mean variance and other moments focusing on the
downside) and into option pricing. Finally, Section 6.5 discusses forecasting 
of the all-important future returns. The forecasts will presumably require 
additional data on a set of relevant regressors, including macroeconomic,
international, product-specific, and any other relevant variables to obtain
better forecasts of future returns. We discuss nonlinear forecasting equations,
mainly neural networks (NN) designed to use all such information. The NN
models have been used in finance literature, Abhyankar et al. (1997). For
example, in the consumer products, tourism, and entertainment industries,
future profits (returns) can be affected by consumer tastes, opinion surveys,
fashion ratings, or quality ratings. The success in investing money in these
sectors may be directly linked to the success in forecasting future quality
ratings. The quality ratings usually involve defining value in terms of cate-
gories. For example, four ratings might be “poor, fair, good, and excellent.” or
they may be in terms of one to five stars as with hotels and restaurants. Section
6.5 also describes some generalized linear models (GLM) for profit forecasts
involving dependent variables limited by its number of possible values due 
to their categorical nature. The NN models are also applicable to categorical
variables.

6.1.1 Expected Utility Theory (EUT)

Anyone who has gone to a financial planner knows the first question they ask
is about preferences. Each investor has preferences about risk, timing of pay-
ments, and even the social responsibility of a company. Financial theories, such
as CAPM, develop from a preference-free basis that is the same for all
investors, regardless of their attitudes toward risk. Such an approach, while
mathematically elegant, must allow many assumptions about the world that
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by far simplify reality. However, CAPM has been around for over four
decades, and not everyone has the same stock portfolio as a result.

Preference-free theories have given invaluable analytical tools for the
market in general, but to make those fine-tuning choices for the individual,
preferences must be respected and addressed. To help us put a number on our
preferences in order to be able to rank our investment choices, we turn to
utility theory. Utility theory uses a utility function to evaluate the importance
of different levels of consumption of each good (commodity) and different
combinations of such goods. In finance, we are fortunate that we generally deal
(directly or indirectly) in only one commodity, money. Therefore we can just
write utility as a function of returns, U(r) or excess returns U(x). There are
some general statements that usually apply to all utility functions:

1. Monotonically increasing. Everyone likes money, so as r increases, all
people should have a higher utility level U(r).

2. Diminishing marginal utility (MU). Those first dollars are very impor-
tant, they pay rent, food, and clothing. But as people earn more, utility
of each additional dollar increases by a smaller and smaller amount. We
will initially make this assumption, but we will also point out cases where
it is debatable.

Choosing the most appropriate functional form of the utility function has
occupied researchers for over a century. Philosophers have long discussed
hedonism and utilitarianism. In 1854 Gossen wrote the first mathematical
utility function U(xi, i = 1, 2, . . . , n) as a sum of quadratic polynomials of 
the quantity of goods ai + bixi - cixi

2 with bi > 0 and ci > 0 for all i. Gossen’s
quadratic utility function satisfies the property of diminishing marginal 
utility (MU), since the derivative of U with respect to xi denoted by U¢ = MU
= bi - cixi decreases as xi increases.

In 1881 Edgeworth argued that U(x) should be a joint function of all argu-
ments and not separable. About the same time Pareto questioned the very
existence of cardinal utility defined as a numerical quantity representing the
utility of anything. He and others argued that interpersonal comparisons of
utility are impossible and that at best one can only hope to rank-order the util-
ities, but not attach numerical values (e.g., utils) suggested by cardinal utility
theorists. Moreover, when several goods are involved, there is the proverbial
problem of comparing apples and oranges.

If there is no uncertainty in a deterministic world, and the choice is among
exactly three outcomes, such as gaining $10, gaining nothing, or losing $5, it is
a matter of common sense that an economic agent will rank-order the utility
from gains to losses as U($10) > U($0) > U(-$5), where > denotes higher utility.
When a decision involves uncertainty, we find that individuals do not simply
look at the expected dollar gain. Orderings of expected utility can differ vastly
from the expected value of returns. If it is once-in-a-lifetime type decision (to
choose a spouse, to have a heart bypass operation, or to send a retaliatory
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nuclear missile on the enemy), it is not clear that probabilistic choice concepts
have relevance. However, in matters of finance, probabilistic concepts can
provide practical and useful insights for rank-ordering among choices involv-
ing uncertain outcomes, called stochastic choice.

Let xi denote money gained with probability pi. A random variable X rep-
resenting money gained has realizations denoted by xi. We imagine a proba-
bility model called a probability distribution f(x) that assigns a probability 
pi for each realized value xi of the random variable. Expected value or math-
ematical expectation of X is defined as E(X) = . In statistics the
expected value is also called the first raw moment or the mean (or average)
of the random variable. If X is a continuous random variable, statisticians
replace the summation by an integral, with no essential change in the concept.

The expected utility theory (EUT) states that the expected utility of money
gained, E[U(X)], may be simply measured by the mathematical expectation.
Economists use EUT as a good first approximation for suggesting the appro-
priate choice under uncertainty. To see this, suppose that an investor has a
choice between (a) a 5% return with certainty (think about a Treasury secu-
rity or an insured CD where the final payoff is known and guaranteed by the
government) and (b) a 50% chance of a return of 15% coupled with a 50%
chance of a loss of 5% (think about a stock where the payoff could be large
or small).

An individual simply looking at the expected outcome will see that both
(a) and (b) are the same. Choice (a) provides an expected return of 5% 
with no uncertainty. Choice (b) provides the expected return of 5%
[15%*0.5–5%*0.5] involving two uncertain outcomes. Since the mathematical
expectations for both choices are the same (E(a) = E(b) = 0.05), it is custom-
ary to define the choice (b) as a fair gamble.

But most individuals will lean one way or the other between the two
choices.This means that something is missing in using the mathematical expec-
tation. It ignores the matter of downside risk, and neglects the fact that the
investor choosing (b) will not know the outcome until the end. We saw before,
when looking at interest rates in Chapter 1, that the sleepless nights from risky
investments must be rewarded for most individuals, and that the downside of
a lower return hurts more than the possibility of a higher return benefits.

Samuelson (1983, p. 511) showed, by specifying a nonlinear utility function
subject to two axioms, that a perceived risk aversion can be consistent with
EUT. Samuelson’s (1983, app. C, §5–8) enlarged doctoral dissertation includes
an extensive discussion useful to financial economists on the mean-variance
model and its limitations, probabilistic choice, and portfolio analysis.

Axiom 1 (Concavity). U[E(X)] functionals are concave; that is, individuals
are risk averse.

The geometry of concave and convex utility functions is presented in Figure
6.1.1 by graphing an individual’s utility as a function of his or her wealth. If
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the utility function is concave (bowed out) U(X), we see that as wealth
increases, utility increases more gradually. This is again the idea of decreasing
marginal utility, but it will have another interpretation in the presence of
uncertainty. Looking at our fair gamble, we can see that the 5% return with
certainty will always have a higher expected utility than the risky choice. The
15% return does not increase utility as much as the 5% loss decreases utility,
so the average utility will be lower than U(wealth +5%). This defines a risk
averse individual satisfying the inequality U[E(X)] > E[U(X)], where the
effect of randomness is less severe on the left side where utility is computed
after the expectation is evaluated.

Any concave curve has the definitional property (due to bowing out) that
the points in the middle lie higher than a points along the the straight line
joining the extreme points. Common examples of risk averse utility functions
are quadratic utility functions with decreasing marginal utility, and log utility
functions.

While risk aversion explains why the typical investor would require a risk
premium, subsets of investors may not be as susceptible to risk. We define risk
neutral individuals as those who are indifferent between a fair gamble and the
equivalent certain payoff, that is, satisfying U[E(X)] = E[U(X)]. They do not
expect any premium for certainty, and their utility function is along the 45
degree line in Figure 6.1.1. Many theoretical assertions in economics and
choice theory assume risk neutrality. Institutional investors and corporations
who are investing over a long time period can afford to be risk neutral, since
over time, the highs and lows will average out and also investing for others
can allow greater objectivity. Maximization of expected value is justified under
the risk neutrality assumption.

We define risk loving individuals as those who prefer a fair gamble rather
than the equivalent certain payoff, that is, satisfying U[E(X)] < E[U(X)]. They
are willing to pay a premium for privilege of gambling, rather than settle for
certainty along the 45 degree line. Geometrically their utility function is
convex which has lower utility value for middle points. Bernoulli suggested
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that convex utility cannot occur, but in the stock market certain situations of
limited liability can cause investors to act risk loving and take extreme gambles
since they are not responsible for the downside.

(6.1.1)

Axiom 2 (Independence). If the utility of X is no worse than that of Y, U(X)
≥ U(Y), there is a fraction 1 > q > 0, and an additional choice Z, then U[qX +
(1 - q)Z] ≥ U[qY + (1 - q)Z]. If X is equivalent to Y in utility, U(X) = U(Y),
then U(X) = U[qX + (1 - q)Y].

Axiom 2 ensures that the combinations of risky investments do not affect
the expected utility of each. Otherwise, an investor would have to continually
revalue the same stock depending on what other stocks are held in the 
portfolio.

For example, the utility function U(X) = lnX matches Samuelson’s axioms.
The marginal utility MU = ∂U(X)/∂X = (1/X) is diminishing, since as X
increases, MU diminishes. Therefore the function is concave, and evaluating
the utility regardless of other choices assumes independence. We will start at
a wealth of $1M. Taking natural logarithms, the starting utility is ln(1) = 0.
Now let us move to our choice. The safe investment (a) would give a final
wealth of $1.05M, or a utility of ln(1.05) = 0.0488. The risky investment (b)
has a 50% chance of a utility of ln(1.15) = 0.1398 and a 50% chance of a utility
ln(.95) = -0.0513. Choice (b) gives an expected utility of E(U) = 0.5(0.1398) +
0.5(-0.0513) = 0.0443. Since 0.0488 > 0.0443, the commonsense choice in favor
of the choice (a) can be justified simply by choosing a (nonlinear concave) 
logarithmic functional form of the utility function.

Von Neumann and Morgenstern (1953) use a clever way to elicit the entire
utility curve from knowing the rank order of three or more choices, con-
veniently denoted by C(15) > C(5) > C(-5). Here the numbers after C do not
necessarily measure the value of the choice, but are chosen to mimic the
example given above. The Von Neumann-Morgenstern idea is to use EUT 
to determine the probability necessary to make the individual indifferent
between the choice C(5), on the one hand, and the uncertain outcomes similar
to 50% chance of both C(15) and C(-5) with the expected return of 5, on the
other. Remember, we only know the rank order not the numerical utility. By
offering agents sets of gambles, one can elicit how much more they prefer C(15)
over C(5), and so on. In finance we already have money values to compare, and
we do not need such somewhat impractical but intellectually elegant theoret-
ical arguments to convert ordinal measurements into cardinal numbers.

Friedman and Savage (1948) showed that human behavior includes both
risk aversion and risk seeking at the same time. Markowitz wrote two impor-
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tant papers in 1952, one of which (1952b) deals with portfolio selection 
and laid the foundations of modern finance. Markowitz (1952a) clarified that
Friedman and Savage framework should not be applied in terms of absolute
levels of wealth, but should refer to the status quo level fo wealth and the risky
decisions should be viewed in terms of changes to the status quo level. More
recent prospect theory discussed later in this chapter is an extension of these
theories and does evaluate the choices with reference to the status quo, as
urged by Markowitz.

6.1.2 A Digression: Derivation of Arrrow-Pratt Coefficient of 
Absolute Risk Aversion (CARA)

This subsection considers a derivation of a coefficient of absolute risk aver-
sion (CARA). If we know the functional form of the utility function U(X), we
can compute this measure. Most investors are risk averse in some sense. Is
there a formal measure of risk aversion related to the utility function? Some
readers may consider an answer to this question to be a digression and skip
this subsection. However, we remind the reader that CARA will be relevant
in Section 6.3.5, which lays the groundwork for fourth-order stochastic domi-
nance (4SD).

Consider a random variable Z ~ N(0, 1) similar to a unit normal, such that
E(Z) = 0 and variance is unity. Thus Z represents a zero expectation gamble,
which yields on an average no gain or loss and X represents current wealth.
Note that Z can be negative and we are offering the choice between a certain
payoff of X similar to choice (a) above and an uncertain payoff of X + Z, a
fair gamble similar to choice (b) above.

The Risk Premium is the amount of side-payment p necessary to make the
risk averse individual treat the fair gamble as equivalent to the certain
outcome. Thus p(X, Z) depends on the current wealth and the zero expecta-
tion random variable Z. It satisfies the following equality: E[U(X + Z)] + p =
U(X). That is, the risk premium p is positive, if the following inequality is sat-
isfied: U(X) - E[U(X + Z)] > 0. Since individuals are assumed to prefer larger
income, U(X) is an increasing function of X, and we have U¢(X) > 0, denot-
ing derivatives by primes. Note that any inequality remains valid if we multi-
ply both sides by a positive quantity. Hence we can divide both sides of the
inequality by the positive quantity U¢(X) to yield the condition for positive
risk premium to be

(6.1.2)

Now we want to write the right side of (6.1.2) in such a way that the random
part Z in U(X + Z) is separated from the nonrandom part X. Accordingly, a
Taylor series expansion of U(X + Z) yields

U X
U X

E U X Z
U X

( )
¢( ) >

+( )[ ]
¢( ) .
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(6.1.3)

Dividing both sides of (6.1.3) by U¢(X), we have

Then we take expectations of both sides and assume that Z is “small,” |Z| < 1,
so that higher order terms involving Z3 can be ignored. Recall that X is not 
a random variable only Z is random. So the expectation will affect only 
the terms involving Z. Since E(Z) = 0, Z will disappear, and since E(Z2) = 1
(variance of Z is 1) is known, Z2 is replaced by unity. Thus we have

(6.1.4)

Substituting this into (6.1.2), the condition for positive risk premium
becomes U(X)/U¢(X) > U(X)/U¢(X) + 0.5 U≤(X)/U¢(X). Note that the first
term on the right side of this inequality is the same as the left side of the
inequality. Hence the condition becomes 0 > 0.5 U≤(X)/U¢(X); that is,
0 > U≤(X) since U¢(X) > 0. So far we have assumed for simplicity that Z is
N(0, 1). More generally, we can permit the variance of Z to be any suitable
positive number, and still the inequality will be essentially unchanged. Hence
the sufficient condition that a person with the utility function U(X) will
demand a positive risk premium (bribe) before he is willing to choose a risky
alternative (portfolio) is

(6.1.5)

Condition (6.1.5) holds true for any Z random variable with zero mean.
Thus we have provided a simple derivation of Arrow-Pratt coefficient of
(absolute) risk aversion as CARA = [-U≤(X)/U¢(X)], which should be posi-
tive for risk averse individuals. The adjective “absolute” is used to distinguish
it from CRRA = [-XU≤/U¢], which inserts X in the numerator and denotes a
coefficient of relative risk aversion. It is relative to the level of wealth X.

6.1.3 Size of the Risk Premium Needed to Encourage Risky 
Equity Investments

Expected utility theory gives some important insights about how individuals
will react to uncertainty, but there are some situations in finance where the
theory does not transfer readily into practice. If one studies long-term data on
net returns from equity investments in United States and compares it to net
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returns from fixed-income securities, it is clear that equity investors enjoy
excess returns. Our earlier discussion of risk premium suggests that society
must pay some risk premium for investing in risky assets (equities) that ulti-
mately lead to growth and prosperity. However, one can question the size and
long-term persistence of risk premia. This is the “equity premium puzzle” by
Mehra and Prescott (1985).The size and persistence of equity premium cannot
be explained, even if one follows the dictates of EUT and adjusts for risk.
Explanations of the puzzle rely more on loss aversion and myopia than a ratio-
nal choice by a risk-averse investor.

If the intersection point of the three curves in Figure 6.1.1 is placed at the
status quo point, loss aversion means that the curve will be convex to the left
of the status quo point. This means that the curve itself moves as an individ-
ual moves to different wealth levels. Starmer (2000) cites much experimental
evidence that rejects EUT classified under three categories of inconsistent
human behavior:

1. Violation of monotonicity is a catchall phrase to say that agents can
make stupid choices if they are not aware of their stupidity. Starmer explains
with the help of an example that 100% of the agents are right when faced 
with a simplified choice. However, if the same option is stated in a less 
obvious, complicated manner, they fail to choose the correct option 58% of
times.

2. Splitting of good attributes into multiple subattributes can sometimes
encourage humans to prefer the good choice a bit more strongly. For example,
exposure to ultraviolet radiation (UVR) causes a generic skin cancer. The
same risk appears worse to humans in lab experiments if the generic cancer
is split into many different skin cancers, even if each bears a lower probabil-
ity, and even if the aggregate probability is the same.

3. Transitivity of choices means that if a preference for choice A over B is
stated as A > B and if we know that B > C, then transitivity requires that the
individual must choose A > C. Violations of transitivity are indeed observed
in experiments, such as when agents “regret” that they did not choose some-
thing. The behavior of agents in financial markets is also subject to similar 
violations. For example, agents may regret that they did not buy a stock in 
the past, and despite changed circumstances end up buying that stock even if
it is obviously inferior to some other stock in the new situation. We conclude
that non-EUT models cannot be ignored in finance.

6.1.4 Taylor Series Links EUT, Moments of f(x), and Derivatives of U(x)

The phrase expected utility in the name EUT erroneously suggests that it
might be concerned only with the expected value or the mean of the under-
lying probability distribution f(x). The aim of this subsection is to show that
EUT encompasses variance, skewness, and kurtosis (higher order moments)
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also.This section also establishes a link between first four moments of f(x) and
the first four derivatives of the utility function. This link is relevant for 
stochastic dominance discussed in Section 6.3.

Let our utility function be viewed in terms of realizations of the random
variable X = x be written as U(x), and let its derivatives be denoted by primes,
as before. Let the probability distribution f(x) be summarized not only by its
expected value or mean , but also by variance s2, and further kth sample
moments around the mean denoted by mk.

Now let us expand U(x) around by Taylor series and evaluate the expec-
tation of both sides as

(6.1.6)

By definition, the second, and third moments of f(x) involve s2 = E(x - )2 for
the variance and m3 = E(x - )3, which in turn yields the skewness. Substitut-
ing these definitions in (6.1.6) yields the following elegant result from EUT:

(6.1.7)

where the partials are evaluated at the sample mean. The key assumption for
validity of Taylor series is |x - | < 1, which is rarely mentioned. Under ordinal
utility theory only the ordering, not magnitudes of x are relevant. Then the
units of measurement of x can be chosen to satisfy the condition |x - | < 1
for convergence of Taylor series. However, in portfolio theory, the magnitudes
of x are very relevant and the assumption is not generally satisfied.

Vinod (2001) discusses the following remarks. Equation (6.1.6) with U¢ > 0
states that the expected utility never becomes small when becomes large.
When we assume that U≤ < 0, the contribution of the variance s2 to E(U(x))
is negative, which makes intuitive sense, since high variance similar to risk is
undesirable. If U≤¢ > 0 in (6.1.6), then the contribution of m3 to the expected
utility has the same sign as m3. Note that negatively skewed f(x) have bigger
left tail (losses) compared to the right tail (profits). In other words, U≤¢ > 0
leads to a preference for positive skewness. Similarly U≤≤ < 0 leads to a pref-
erence for less probability mass in the tails (reject fat tails or prefer high
peaked density or high kurtosis).We remind the reader that high powers cause
poor sampling properties of higher moment estimates and that (6.1.6) is
subject to |x - | < 1, which need not be true for our definition of x as excess
return over changing risk-free rate, since the absolute deviation may well
exceed unity in the observed data.
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6.2 NONEXPECTED UTILITY THEORY

In this section we are concerned with allowance for psychological human reac-
tion to the downside risk in asset markets.We mentioned in Section 6.1.2 some
failures of the expected utility theory (EUT) and that a realistic approach to
reaction of human agents to market conditions should not ignore non-EUT
behavior. Since the literature on non-EUT behavior is vast, this section will
focus on those aspects of non-EUT, which can be readily handled. We will
explain later that we can handle four desirable properties (4DP), including
reflectivity, asymmetric reaction, loss aversion, and diminishing sensitivity. Of
course, different individuals will exhibit different levels of departure from
EUT. Hence any model for incorporating such behavior should be flexible
enough to recognize such individual differences. In this section we develop a
parameter a to measure the departure from EUT. The development of this
apparatus is a tall order.

An investor uses past data on past excess returns to construct an ex ante
distribution of excess returns f(x). Chapter 4 considers a variety of paramet-
ric and nonparametric distributions f(x), including N(m, s2) and empirical
CDF. The past data cannot truly represent the unknown future shape of f(x),
where the left side represents the potential losses.The psychology of loss aver-
sion of agents means that their attitude to losses is different from their atti-
tude to potential gains. Then, in terms of utility theory the utility of x, U(x) on
the gain side or the right-hand side of f(x) is not matched by the disutility on
the loss side. In our context, relevance of non-EUT is primarily due to loss
aversion. Since the range x Œ (-•, •) for f(x) is inconvenient, we will work
with the empirical cumulative distribution function (eCDF), whereby the
cumulative probability p is in the [0, 1] range. We will later place the eCDF of
a market agent perfectly satisfying EUT on the horizontal axis with the EUT
compliance parameter a = 1. Section 6.2.2 will discuss construction of a weight
function for incorporating the lessons of non-EUT. In our application in
finance a mapping from an observed eCDF defined over the [0, 1] range to a
similar range is almost natural. However, the EUT researchers learned this
mapping from Lorenz curves dealing with income distributions. It is perhaps
instructive for historical reasons to consider Lorenz curve, although some
readers may consider the details regarding the Lorenz curve as a distraction
and may wish to skip the following subsection.

6.2.1 A Digression: Lorenz Curve Scaling over the Unit Square

Lorenz curves and Gini coefficients were initially developed to measure the
degree of income inequality in a society. The proportion of the total popula-
tion satisfying a certain characteristic is a well-known concept. In statistics
these are called cumulative probabilities, which can be compared across
income distributions for different societies and over time. In particular, one
can compute the following five percentiles of any distribution at percent values
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of 20, 40, 60, 80, and 100, called quintiles. The important insight of Lorenz was
to construct similar quintiles on both the population and income sides. Lorenz 
considered the proportion of “total income” enjoyed by the poorest 20%, 40%.
60%, 80%, and the richest 20% individuals and plotted the income quintiles
on the vertical axis and the corresponding population quintiles on the 
horizontal axis.

Lorenz argued that if everyone enjoyed exactly the same income, all quin-
tiles would fall along the 45 degree line in Figure 6.2.1. Assume that the
poorest 20% enjoys only 7% of the income, and represent it by the point A.
Similarly B to D represent 18, 32, and 52 percent values. The curve passing
through the origin and points A to E for the five quintiles is called the Lorenz
curve.

The Gini coefficient is defined as twice the area between the 45 degree line
and the Lorenz curve in Figure 6.2.1. Clearly, the higher the Gini coefficient,
the greater is income inequality. We will now try to represent the departure
from EUT in terms of deviation from a similar 45 degree line. For greater gen-
erality, we will work with arbitrary quantiles rather than just five quintiles.

We begin with a formal definition of a quantile. Given a number p Œ [0, 1]
a “quantile of x of order p,” or (100p)-th percentile of the distribution is
defined as

(6.2.1)x p x F x p( ) = ( ) ≥{ }inf .
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As we explained in Chapter 2, a quantile is simply the inverse of the CDF (or
inverse of empirical CDF). If p = 0.10, then quantile x(p) is such that the CDF
evaluated at x is 0.10. In (6.2.1), the same is stated in the equivalent infimum
notation that the corresponding quantile is the smallest value of the variable
x so that CDF evaluated at x exceeds p = 0.10 and satisfies two probability
relations: Pr(x £ x(p)) ≥ p and Pr(x ≥ x(p)) £ 1 - p.

Figure 6.2.1 reveals that the Lorenz curve is the graph of one cumulative
probability against another or one percentile against another. It ranges in the
[0, 1] or [0, 100] interval along both axes. The Lorenz curve plot is preferred
to quantile–quantile plot of Section 4.3.1, since the latter does not have such
a fixed range. To draw the Lorenz curve in Figure 6.2.1, we fix the horizontal
coordinate at five {20, 40, 60, 80, 100} percent values for a country’s popula-
tion. We let X be the income variable, and we simply compute the vertical
coordinates of the Lorenz curve from cumulative probabilities of the distrib-
ution of incomes.

If income follows the Pareto distribution (see Section 4.4.1) defined by 
f(x) = q aqx-(q+1), with parameters a and q, its expected value or average income
is E(X) = aq/(q - 1).The cumulative distribution function (CDF) of the Pareto
is Fpto(x) = 1 - (a/x)q. Given an income x, and the values of the two parame-
ters, Fpto(x) = p gives the proportion p of persons earning less than or equal to
x. If we are given p = 0.20, say, the same relation can be used to get the income
as x0.20 = F -1

pto(p = 0.20) by way of the inverse of the CDF.We want to find L(p),
the proportion of “total income” enjoyed by the poorest 20%. It can be shown
that L(p) is the integral of f(x) for values of x from 0 to x0.20. For the Pareto
density, the vertical coordinate of the Lorenz curve L(p) is analytically known
by using integral calculus and algebra for any proportion p: L(p) = 1 -
(1 - p)[1-(1/q)]. Note that L(p) depends only on the q parameter and the para-
meter a is absent in the L(p) expression. The Gini coefficient, is twice the area
between the 45 degree line. The Pareto density has a simple analytic expres-
sion for Gini coefficient given by 1/(2q - 1). The most useful idea from the
Lorenz curve for our purposes is the advantage of working with two CDFs on
the two axes.

6.2.2 Mapping from EUT to Non–EUT within the Unit Square

In this subsection we apply the mapping of one empirical cumulative distrib-
ution function (eCDF) on another, defined on a unit square, first used for the
Lorenz curve.This subsection develops decision weights as a useful tool devel-
oped by researchers in non-EUT to make non-EUT results both practical and
measurable. As we stated earlier, we place on the horizontal axis the cumula-
tive probabilities p when the agent perfectly follows the EUT norm (a = 1).
We place on the vertical axis the decision weights function denoted by W(p,
a), which yields modified values of cumulative probabilities p, given the value
of a parameter a that measures the extent of departure from the EUT norms.
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We let a = 0 denote a perfectly noncompliant agent, which is one who does
not behave according to EUT in any sense.

Recall from Chapters 2 and 5 that certain indexes are useful for ranking
portfolios, called CAPM beta, Sharpe, and Treynor performance measures.
Once we develop decision weights, they can be used for developing these
indexes for agents who do not behave according to the norms of the EUT. For
example, if a for an agent is close to zero, she is extremely loss averse. The
portfolio choice for her can then depend on the weighted estimates of CAPM
beta, Sharpe, and Treynor performance measures.

Although we follow Lorenz in restricting the mapping to the range [0, 1]
on both axes, the shape of W(p, a) function is not at all like that of the Lorenz
curve. Once we restrict the range, it turns out that a great deal of the non-EUT
literature is conveniently summarized by requiring that the mapping from p
to W(p, a) should satisfy four desirable properties as explained later.

Let T denote the number of observations on xt for t = 1, 2, . . . , T, the excess
return from investing in a risky asset. If we rank-order xt values from the small-
est to the largest, we have the order statistics x(t).The probability of each order
statistic is (1/T) and the empirical cumulative probability goes from (1/T) to
1 in increments of (1/T).Thus we have the cumulative probabilities as pt = 1/T,
2/T, . . . , 1 on the horizontal axis. Note that these are in the range [0, 1]. See
Figure 4.3.2 for a plot of eCDF.

Although these pt are not the proportions 0.20, 0.40, etc., used by Lorenz,
his insight of using the same proportions for the vertical axis can be used in
our application to evaluate some realistic modifications designed to general-
ize the EUT. Having placed the observable empirical CDF pt on the horizon-
tal axis, we now place the perceived utility weight W(p) associated with that
pt on the vertical axis, as in Figure 6.2.2. Now we introduce a single parame-
ter a to measure the extent of departure from EUT. As with Lorenz curve, we
will use the 45 degree line to represent zero departure from perfect compli-
ance with the EUT. That is, we assign points along the 45 degree line to a = 1
for perfectly rational individuals, who are not fooled by departures from EUT.

Assume that we can ignore the joint distribution of portfolios being com-
pared and focus on only one portfolio at a time. Prelec (1998) defines the fol-
lowing simple, powerful, and flexible function. Its slope is a at its inflexion
point. When a = 1 for the perfect EUT-compliant case, the slope is unity at
the point of inflexion. Of course, this is the slope of any 45 degree line:

(6.2.2)

If a Æ 0, we have a step function that is flat (zero slope) everywhere except
at the end points, implying maximum departure from EUT. If a Æ 1, we have
W(p, a) = p, or perfect compliance with EUT. The smaller the a, the greater
is the departure from the expected utility theory. Hence we can indeed refer
to a as EUT-compliance parameter. Starmer (2000) notes that the use of
cumulative p is useful in avoiding violations of monotonicity and transitivity

W p p, exp ln , .a aa( ) = - -( )( ) < <where 0 1
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axioms. Thus W(p, a), or W(p) for short, represents the perceived utility
importance of that p.

Prelec (1998) provides a summary of the current knowledge about W(p) in
a graph of W(p), against p on the horizontal axis, similar to Figure 6.2.2. A
realistic utility function (as indicated by experimental results on risk attitudes)
leads to the following four desirable properties (4DPs) satisfied by (6.2.2):
Regressive, asymmetry, inverted S-shaped, and reflective utility.

1. Regressive property means that W(p) should intersect the 45 degree line
from above. Then the weight W(p) is high when p is small. For example,
eagerness to buy fire insurance against a low probability event (house
burning) would result in p’s gathering to the left of the 45 degree line.
Here risk aversion for small p losses means W(p) is much larger than p
itself.

2. Asymmetry property means that a fixed point p = W(p) should occur at
p = 1/3, and not at p = 0.5, the midpoint of the [0, 1] range. This means
agents prefer positive skewness of f(x) and start downweighting beyond
p = 1/3. In Figure 6.2.2 each W(p, a) intersects the 45 degree line at 
p = (1/e) = 0.37 (which is assumed to be close enough to 1/3).

3. Inverted S-shaped property means that W(p) is concave near the origin
and then becomes convex. It is concave in gains and steeply convex in
losses as shown by Starmer (2000). Kahneman and Tversky (1992) inter-
pret this shape restriction to mean two characteristics: (a) “diminishing
sensitivity” u≤(x) £ 0 for x ≥ 0, and u≤(x) ≥ 0 for x £ 0, and (b) “loss aver-
sion” implying u¢(x) < u¢(-x) for x ≥ 0.

4. Reflective utility property means that low probability events (gains or
losses) are treated similarly.
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First, we arrange the dynamic excess return data xt for t = 1, 2, . . . , T in an
increasing order of magnitude and denote the order statistics by x(1) to x(T).
Next, we transform W(p, a) into decision weights wt(a, pt) applied to a par-
ticular observation as shown below. Since we seek weights on order statistics
x(t), we “first-difference” the weights in (6.2.2). For any given a, the appropri-
ate weights for the ordered value x(t) are

(6.2.3)

where lower case wt is used and where wt for the first observation t = 1, is dif-
ferent from the wt for all others. We need to use (6.2.3) only once for each
choice of T to get the weights wt. What is the interpretation of these weights?
Note that when T = 5, all five weights for an EUT-compliant person having 
a = 1 equal 0.2 (= 1/5). However, if a = 0.1, the weights are (0.350, 0.0207,
0.0215, 0.0303, 0.577); if a = 0.5, the weights become (0.281, 0.103, 0.105, 0.134,
0.376); and if a = 0.9, the weights are (0.216, 0.181, 0.182, 0.193, 0.228). The
smallest value (= x(1), possibly a loss) of xt is weighted more than the middle
values. Also the largest value (= x(T), possibly a big gain) is weighted by a
number larger than 1/T.

Given a Œ (0, 1), the weights wt are readily computed and then used in
various summary measures discussed in the next section. Conversely, given 
sufficient data from the past behavior of an individual, we can estimate the
implicit a appropriate for that individual.An individual with a small a adheres
less closely to the norms of the expected utility theory, and is less EUT com-
pliant. Vinod (2001) shows with a simple example that the rankings of port-
folios are not too sensitive to the choice of a. We will use an example from
Vinod (2004) to compare 1281 international mutual funds and show how we
can help an investor focus on the best five funds and how the choice is affected
by the choice of a = 0.1, 0.5, 1.

Lattimore, Baker, and Witte (1992) suggest a weight function with two 
parameters

(6.2.4)

The EUT is a special case where a = b = 1. When b < 1, the curve (6.2.4) is
shaped as inverted S, and when a < 1, the weights do not add up to unity and
are called prospect pessimism. We claim that the weights in (6.2.3) or (6.2.4)
are important tools in solving the portfolio selection problem in a more flex-
ible and realistic setting of non-EUT compliant agents. It is appealing to be
able to measure EUT compliance by a in (6.2.3).

For a discussion of the non-EUT literature and prospect theory, see 
Kahneman and Tversky (1979), and Prelec (1998), among others, surveyed 
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in Starmer (2000). Vinod (2001) proposed weighted estimates of Sharpe and
Treynor type performance measures used in portfolio selection. This is useful
for the customization of a portfolio selection to suit the attitudes toward 
risk of a particular client of a brokerage firm depending on his a, such that if
a is close to unity, the agent is close to perfect compliance with the norms of
EUT.

6.3 INCORPORATING UTILITY THEORY INTO RISK
MEASUREMENT AND STOCHASTIC DOMINANCE

Thus far utility theory has only been able to make choices by inserting possi-
ble outcomes into the investor’s utility function and ordering the expected
utility. This gives us some insight on how individual investors react to risk, but
it is of limited value for those of us who have not sat down and teased out 
all the parameters of our own personal utility function. The purpose of 
this section is to review the insights from stochastic dominance literature,
which can give some straightforward rules for portfolio choice that apply 
to general classes of investors. We explain how to conclude that a particular
portfolio A is superior to another portfolio B (A dominates B) by knowing
some general characteristics of the utility functions U(x) of the agents (buyers)
of these portfolios. The beauty of this theory is that we do not need to know
the form of the actual parametric utility functions of agents. We simply need
to know the signs of certain derivatives of utility functions, such as U¢ > 0,
U≤ < 0, U≤¢ > 0, and U≤≤ < 0, where the number of primes measures the order
of derivatives.

6.3.1 Class D1 of Utility Functions and Investors

The utility functions in this class require that the marginal utility for investors
be positive, that is, U¢ > 0. This means that the investor always gets a higher
utility by having extra x (more money). As long as the investor is insatiable
with respect to wealth, he fits into this category.

6.3.2 Class D2 of Utility Functions and Investors

The class D2 is more restrictive than class D1. Here the U(x) satisfies two
inequalities on the first two derivatives of U(x). This class requires that the
marginal utility (MU) evaluated at higher levels of its argument (wealth)
should be smaller than when evaluated at lower levels; that is, MU for the rich
is lower. The requirement is that the marginal utility U¢ be not only positive
but also decrease as x increases: (d/dx) U¢ < 0 simply means that U≤ < 0. The
class D2 satisfies the “law of diminishing MU” in economics texts.

Investors in this class get less of an increase in utility as wealth gets higher,
leading to aversion to variance, or risk aversion. Those first few dollars give a
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big boost in utility. But after that, further extra money, while still wanted, adds
less to the enjoyment. Therefore in a risky venture a large increase will defi-
nitely increase the enjoyment only if it comes without an increase in volatil-
ity or variance. Agents whose U(x) Œ D2 are usually called risk averse.

6.3.3 Explicit Utility Functions and Arrow-Pratt Measures of 
Risk Aversion

In this section we consider examples of U(x) that are popular among economic
theorists. Logarithmic utility says that U(x) = logx, therefore the satisfaction
or utility of $x does not grow linearly but more slowly as the log of x grows.
Since x > 0 is a reasonable assumption and since the derivatives of log x are
well known, we know the signs of the first four derivatives of the logarithmic
utility function as U¢ = (1/x) > 0, U≤ = (-1/x2) < 0, U≤¢ = 2x-3 > 0, and U≤≤ =
-6x-4 < 0. The signs of all these derivatives are correct and consistent with eco-
nomic theory.

Another popular utility function is called the power utility, U(x) = x1-g/(1 -
g), where the power is fractional or negative since g > 0. Again, the derivatives
are well known, and we have U¢ = x-g > 0, U≤ = -gx-g-1 < 0, U≤¢ = g(g + 1)x-g-2 >
0, and U≤≤ = -g(g + 1)(g + 2)x-g-3 < 0. Again, all signs are as desired.

Recall from (6.1.5) that the sufficient condition that a person with the utility
function U(X) will demand a positive risk premium (bribe) before he is willing
to choose a risky alternative (portfolio) is that the Arrow-Pratt coefficient of
absolute risk aversion CARA = -U≤/U¢ is positive. For the logarithmic utility,
CARA = (1/x2)/(1/x) = 1/x is obviously positive, since x > 0, and decreases as
x increases. In economics white bread is considered an inferior good in the
sense that as the income of the individual increases, she prefers a better bread
or cake. Arrow (1971) showed that risky assets are not inferior goods and
investors continue to buy them even if their income increases. He further
showed that U(x) must satisfy the condition of nonincreasing absolute risk
aversion (NIARA) in order to prevent a good like x from becoming inferior.
Thus the logarithmic utility function satisfies NIARA.

The coefficient of relative risk aversion (CRRA) is simply x times CARA.
It is unity for the logarithmic utility function. For the power utility function,
CARA = (gx-g-1)/(x-g) = g/x, which likewise is both positive and decreases as x
increases. Thus power utility satisfies NIARA property. Now, by definition,
CRRA = x*CARA = g. Thus CRRA is constant for both the logarithmic and
power utility functions.

If we do not know the functional form of U(x) as logarithmic or power, how
can we ensure that the NIARA property holds true? We want the CARA to
decrease as x increases without knowing the form of U(x). That is, we want
(d/dx) CARA < 0, where CARA = -U≤/U¢. A necessary condition for NIARA
then is that U≤¢ > (U≤)2/U¢.

136 portfolio valuation and utility theory



6.3.4 Class D3 of Utility Functions and Investors

The class D3 is more restrictive than both classes D1 and D2. Here the U(x)
satisfies three inequalities involving the first three derivatives of U(x). The 
D3 class requires not only that the MU evaluated at higher levels of its argu-
ment (wealth) should decline, but also that the decline should become more
pronounced. We saw in the previous subsection that the desirable NIARA
property is satisfied if U≤¢ > (U≤)2/U¢ holds true. If U(x) belongs to class 
D2, we know that U¢ > 0 and U≤ < 0, that is, (U≤)2/U¢ > 0. After substituting
this on the right-hand side of the inequality for NIARA, note that the third
inequality involving the third derivative is simply U≤¢ > 0. Thus the necessary
requirement for a U(x) to belong to class D3 is that all three inequalities:
U¢ > 0, U≤ < 0, and U≤¢ > 0 are satisfied.

6.3.5 Class D4 of Utility Functions and Investors

The class D4 of utility functions is more restrictive than the class D3 of utility
functions. Here the U(x) satisfies four inequalities involving the first four
derivatives of U(x). Where does the fourth derivative come from? What is its
interpretation?

Kimball (1990) notes that Arrow-Pratt risk aversion measures need to be
extended before they can realistically represent the typical investor’s choice
problem. He introduces a new measure called “prudence” = (-U≤¢)/U≤, which
measures the “propensity to prepare or forearm oneself in the face of uncer-
tainty.” As x increases, this propensity is expected to decrease. The prudence
for the power utility function equals (g + 1)/x, which does decrease as x
increases. This is obviously an advantage of the power utility function, which
may be balanced against constancy of relative risk aversion (CRRA), and this
result will be seen later to be a disadvantage. In conclusion, it is realistic to
assume diminishing MU as well as diminishing prudence as x (wealth)
increases. Vinod (2001) argues that any realistic U(x) should exhibit Kimball’s
nonincreasing prudence (KNIP) and proves the following:

Lemma 6.3.1. The requirement U≤≤ < 0 is necessary for nonincreasing 
prudence.

Proof. Nonincreasing prudence requires (d/dx){(-U≤¢)/U≤} < 0, that is,
{(-U≤≤)U≤ - (-U≤¢)(U≤¢)/(U≤)2 < 0. Therefore prudence requires that 
U≤≤U≤ > (U≤¢)2 > 0. Since U≤ < 0, the necessary condition for the left side 
U≤≤U≤ > 0, is U≤≤ < 0, as claimed by the lemma. �

In macroeconomics, the consumption function is a relation between aggre-
gate consumption in an economy and aggregate income. For example, C = a +
bW, is a linear consumption function relating the consumption C to invest-
ment income or wealth W. The marginal propensity to consume (MPC) is
defined as the derivative of consumption with respect to income, that is,
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dC/dW. The microeconomic MPC can also be defined at the level of the indi-
vidual consumer. Carroll and Kimball (1996) note that if the only form of
uncertainty is in labor income, CRRA utility implies the linear consumption
function: C = a + bW, which has constant MPC = b, even if wealth W increases.
As Carroll and Kimball argue any realistic MPC should change as investor’s
wealth changes. This could be a direct result of Markowitz’s (1952a) assertion
that the utility to the consumer from additional consumption depends on the
status quo level of wealth before the change.

Recall that the logarithmic and power utility functions have constant
CRRA of unity and g, respectively. Since the implication of constancy of
CRRA that the MPC is constant is unrealistic, the power utility or logarith-
mic utility specifications need to be replaced by a more general utility func-
tion specification. The hyperbolic absolute risk aversion (HARA) utility
function is defined by the constancy of a new parameter k = U≤¢U¢/(U≤)2. A
HARA utility function satisfies the desirable nonincreasing absolute risk aver-
sion (NIARA) property only if k > 1. We conclude that HARA utility func-
tions with k > 1 offer adequate generalization of the power or logarithmic
utility functions for our purposes.

Huang and Litzenberger (1988) have further references and a review of the
literature on utility functions and risk aversion. Vinod (1997) discusses esti-
mation of HARA utility functions in the context of “consumption” capital
asset pricing model (C-CAPM). See Campbell et al. (1997) for related macro
econometrics involving Euler equations. Kraus and Litzenberger (1976) 
proposed a modification of the CAPM to incorporate the “market gamma” or
systematic skewness.

In light of Kimball’s results noted above, it would be useful for the 
investor’s utility function to satisfy both the NIARA (U≤¢U¢/(U≤)2 > 1), as well
as diminishing prudence (-U≤¢)/U≤ properties. Unfortunately, the known con-
ditions for achieving these properties are necessary but not sufficient. Hence
we cannot guarantee that NIARA and diminishing prudence will always be
achieved.

In summary, a class of utility functions satisfying U¢ > 0, U≤ < 0, U≤¢ > 0, and
U≤≤ < 0, is called D4. The last condition, U≤≤ < 0, is necessary (not sufficient)
for Kimball’s nonincreasing prudence (KNIP). The classes D1 to D4 are
sequentially more restrictive, which means that the smallest percentage of the
population of investors can be reasonably expected to satisfy all requirements
of D4. A larger percentage will belong to the D3 class, even larger will belong
to the D2 class, and the largest will belong to the D1 class. The next four sub-
sections deal with four orders of stochastic dominance that apply to investors
in classes D1 to D4, respectively. They are potentially useful in rejecting 
dominated portfolios outright. Since choosing among assets is a time-
consuming and expensive task, investors can save some of these costs if they
can limit the focus of their attention on a few dominant portfolios. Since data
reported by asset managers can be misleading, as revealed by recent Enron,
Worldcom, and other scandals, there is a need for in-depth look before com-
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mitting large funds to risky portfolios, even if stochastic dominance reveals
them to be dominant.

6.3.6 First-Order Stochastic Dominance (1SD)

If the probability distribution of returns for one portfolio first-order stochas-
tically dominates another portfolio, then all D1 investors will prefer it. We
evaluate 1SD by first restricting x Œ [x*, x*], a closed interval. Assume that we
have two uncertain prospects A and B defined by their PDFs fa(x) and fb(x)
with corresponding CDFs Fa(x) and Fb(x). For example, fa(x) and fb(x) can be
the distributions of two competing portfolios A and B. An important question
in financial economics is to compare the portfolios despite the uncertainty
associated with both. Denote the difference as Fab(x) = Fa(x) - Fb(x). Portfolio
A dominates B if we have

(6.3.1)

Since the CDF for choice A is always less than that for choice B, the proba-
bility of being below any specified return is always lower for choice A. Any
investor who prefers a higher return will therefore prefer choice A.

The geometric representation in terms of PDFs is more intuitive, it says 
that fa(x) for the superior prospect will be to the right-hand side of fb(x).
For illustration, Figure 6.3.1 uses the well-known beta density, which was 
mentioned as Pearson’s type I density in Chapter 2. The PDF is fbeta(x, r, s) =
x(r-1)(1 - x)(s-1)/Beta(s, r), where r > 0 and s > 0 are the two shape parameters,
Beta(r, s) denotes the beta function, and x Œ [0, 1]. The mean of the beta
density is known to be r(r + s)-1. The dashed line in Figure 6.3.1 is fbeta(x, 3, 6)
with the mean 3/9 = 0.33. The dashed line stochastically dominates the solid
line based on fbeta(x, 2, 5) with the mean 2/7 = 0.286. As can be seen in the
figure, first-order stochastic dominance also implies that choice A with a
dashed line has a higher average return (= 0.33) than the average for the choice
B(= 0.286) represented by a solid line.

When evaluated at a fixed x, the CDF for the distribution on the right will
be lower and will reach its highest value of unity at a higher value of x. In
Figure 6.3.1 note that the CDF for the dashed line is lower at all levels of x.
The first-order stochastic dominance is written A ≥1 B. In sum, A ≥1 B means
that the expected utility of A is no smaller than the expected utility of B for
every nondecreasing U(x) Œ D1.

Due to random variation, fa(x) may exceed fb(x) in most of the relevant
range but may fail for some points of the range. Do we then still prefer A to
B? This becomes a question of statistical testing discussed later in Chapter 9.
The definition of class D1 involves only one restriction on the sign: U¢ ≥ 0,
which means positive MU. However, economic theory requires diminishing,
not just positive MU, implying the second restriction on the sign: U≤ £ 0. Hence

F x F x F x x x xab a b( ) £ ( ) £ ( ) Œ[ ]0, *, * .or for all 
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the preference ordering under 1SD may not be economically meaningful, so
it leads us to consider second-order dominance next.

Stochastic dominance result can also be easily applied to data. Given two
securities with T observed returns, since each return comprises 1/T percent of
the data, 1/T can be used as an empirical probability. This probability may be
used to draw an empirical CDF, or the returns can be ordered from smallest
to largest. Letting ri(1) indicate the smallest return, and ri(T) the largest return
for firm i, the following inequality may be used:

First-Order Stochastic Dominance. If r1( j) > r2( j) for all j = 1, . . . , T, then
security 1 first-order stochastically dominates security 2. Therefore all
investors will prefer security 1 regardless of risk preference.

6.3.7 Second-Order Stochastic Dominance (2SD)

The prospect A dominates prospect B in 2SD; that is, A £2 B for the class D2

utility functions if we have

(6.3.2)

Figure 6.3.2 presents graphs similar to Figure 6.3.1 for 2SD. Again the dashed
line represents fa(x) = fbeta(x, 3, 6), and dominates the solid line representing
fb(x) = fbeta(x, 2, 4). Here the shape parameters s and r of the beta are chosen
so that the means 3/(3 + 6) and 2/(2 + 4) are each equal to 1/3. The variance
of the beta density is analytically known to be rs(r + s + 1)-1(r + s)-2. Here the
shape parameters are chosen in such a way that the variance of the dashed
line (= 0.022) is less than the variance of the solid line (= 0.031). It is intuitively
obvious in Figure 6.3.2 that the dashed line with a narrower spread (lower
risk) dominates the solid line with a wider spread. The CDFs for the domi-

F y dy x x xab
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Figure 6.3.1 First-order stochastic dominance of dashed density over solid density



nated line do not clearly indicate the dominance. In Figure 6.3.1 the dashed
CDF curve in the right-hand panel is obviously to the right of the solid curve,
but the CDF’s in the second-order case cross each other in Figure 6.3.2. Since
the mean returns are fixed to be equal to 1/3 for the two cases and only the
variances differ, we should not expect a visually clear-cut dominance here.
Researchers have proved that we need to find the area under the CDF curves
themselves to assess dominance in this second-order dominance case. Since
the graphs do not show the dominance visually, we use numerical calculations
at eleven values in the [0, 1] range in increments of 0.1 (deciles). For fbeta(x, 3,
6), the cumulative sum is 7.16712, which slightly exceed a comparable cumu-
lative sum for fbeta(x, 2, 4); that is, when s = 2 and r = 4, it is 7.1665.

Equation (6.3.2) involves an integral of the difference between two CDFs
(Fab), which are already integrals of PDFs. Anderson’s (1996) numerical 
algorithm discussed in Section 6.3.1 converts the integrations of (6.3.1) and
(6.3.2) into simple matrix premultiplications. Recall that the third condition
U≤¢ > 0 on the third derivative is necessary for nonincreasing absolute risk
aversion (NIARA) and leads us to consider the third-order next.

In the context of return data, we have 2SD if for all 
j = 1, . . . , T, then security 1 second-order stochastically dominates security 2.
Therefore all risk averse investors will prefer security 1 over security 2.

6.3.8 Third-Order Stochastic Dominance (3SD)

The prospect A dominates prospect B in 3SD; that is, A ≥3 B for the class D3

utility functions if in addition to (6.3.2) we have 
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The inequality in (6.3.2) involves an integral of the difference between two
CDFs (Fab). The inequality in (6.3.3) involves a further integral of the integral
of Fab. Anderson’s (1996) numerical algorithm based on modified trapezoidal
rule converts the integration in (6.3.3) into a further matrix multiplication. For
convincing graphs of 3SD we need analytical densities with common mean and
variance, and showing that density with a larger skewness dominates. Instead
of burdening with such graphs of four parameter density functions, we ask the
reader to intuitively extrapolate from the earlier figures. However, numerical
returns satisfying these properties are illustrated in Vinod (2001).

6.3.9 Fourth-Order Stochastic Dominance (4SD)

The fund A dominates fund B in 4SD; that is, A £4 B for the class D4 utility
functions if in addition to (6.3.3) we have 

(6.3.4)

As with other stochastic dominance checks, the fourth order has an empirical
counterpart involving cumulative sums of cumulative sums. It is possible to
consider fifth and higher orders of stochastic dominance with conditions on
derivatives of U. However, these conditions cannot be justified on economic
grounds. Similarly conditions on fifth and higher moments of f(x) cannot be
justified. Using moment-generating functions, Thistle (1993) develops infinite
degree stochastic dominance (•SD) for the special case when the support of
f(x), the PDF of x, is for x > 0. Since zero or negative returns are a common
unpleasant fact in finance, we find that (•SD) is not a viable candidate to
replace or extend 4SD.

6.3.10 Empirical Checking of Stochastic Dominance Using Matrix
Multiplications and Incorporation of 4DPs of Non-EUT

Recall the 4DPs satisfied by the transformation (6.2.2). That distribution helps
us find the weights that map the cumulative probability p Œ [0, 1] for perfectly
EUT-compliant investor on the weighted p for less compliant individuals also
in the same closed interval [0, 1]. In this subsection we discuss a numerical
algorithm for checking stochastic dominance of orders 1 through 4. The CDF
represents the area under the PDF. A trapezoidal algorithm was suggested in
Vinod (1985) for computing areas. Here we use a similar algorithm from
Anderson (1996) which involves simple matrix multiplications.

Although k will be large in practice, we illustrate a useful matrix for k = 3
used by Anderson (1996):

F w dwdzdy x x xab
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Thus If denote a k ¥ k matrix of ones along and below the main diagonal
and zeros above the main diagonal. Let pA denote the k ¥ 1 vector of 
individual probabilities for fa. Anderson (1996) showed that the matrix 
multiplication If pA computes the cumulative probabilities and provides an
approximation to Fa, the empirical CDF. Anderson (1996) provides nonpara-
metric statistical tests for the three orders of stochastic dominance in the
context of a comparison of income distributions. In this subsection we extend
his algorithm to incorporate the four desirable properties of U(x) from the
prospect theory in the context of the portfolio selection problem. We also
discuss a nonparametric test using Fisher’s permutation distribution recently
revived in the bootstrap literature.

If two portfolio distributions are being compared over the same variable x,
it is necessary to create a common partitioning of the range space of fa and fb

into j = 1, 2, . . . , k mutually exclusive and exhaustive class intervals with pos-
sibly variable widths dj. Denote by xj the cumulated widths dj. Since widths
should be positive, we choose a suitable starting value xj when j = 0. It should
be smaller than the smallest value of x in the data, x0 < min(x). Next we
compute the areas with reference to xj as the variable of integration. The rel-
ative frequencies of the two sets are then computed and cumulated to yield
the CDFs Fa and Fb.

At this point we incorporate the lessons of prospect theory and its 4DPs.
We transform the cumulative relative frequencies by (6.2.2) using a, the 
EUT-compliance parameter, for the individual investor. For example, W(Fa) =
exp(-(-ln Fa)a). More generally we can use two parameters a and b in (6.2.4).
Now we “first-difference” these revised cumulative relative frequencies as in
(6.2.3) to yield paj, pbj by which we explicitly identify the underlying distribu-
tions A or B. Let pA denote the k ¥ 1 vector of paj and pB denote the k ¥ 1
vector of pbj. For brevity, let us suppress the subscripts a and b and write 
pj = paj, pbj. Now, by definition of cumulative probability, suppressing the sub-
scripts a and b of F, we have F(xj) = . Our next task is to integrate this
CDF by the modified trapezoidal rule to accommodate unequal interval
widths. Denote

(6.3.5)

Recall that we have illustrated the k ¥ k matrix denoted by If for k = 3
above. Similarly we now illustrate another matrix
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Note that this IF matrix has the uppercase F as the subscript, and it is intended
to be a useful matrix for implementation of the numerical integration needed
for stochastic dominance of orders 2, 3, and 4. See Anderson (1996), who shows
that matrix multiplication IFIf(pA - pB) computes (6.3.5) for assessing 2SD.

We need to further integrate this C(xj) if we want 3SD as

(6.3.6)

Again, a similar matrix multiplication IF IF If(pA - pB) yields an approxima-
tion to the integral in (6.3.6). All we have done to go from 2SD to 3SD is to
premultiply by the IF matrix one more time.

The null hypothesis for 1SD in matrix notation is H0 : If(pA - pB) = 0 and
the alternate hypothesis is Ha : If(pA - pB) £ 0. If the last inequality is indeter-
minate, the conclusion of the test is also indeterminate. The statistical problem
is simply whether the computed If(pA - pB) is statistically significantly nega-
tive to conclude that A ≥1 B. Then the investor can safely choose the portfo-
lio A. This is a symmetric one-tail test procedure in the sense that if the
observed If(pA - pB) is statistically significantly positive, we conclude the oppo-
site result that B ≥1 A implying that the portfolio B is better than A.

The null hypothesis for 2SD in matrix notation is H0 : IFIf(pA - pB) = 0 and
the alternate hypothesis is Ha : IFIf(pA - pB) £ 0. If the last inequality is inde-
terminate, the conclusion of the test is also indeterminate.

The null hypothesis for 3SD in matrix notation is H0 : IFIFIf(pA - pB) = 0 and
the alternate hypothesis is Ha : IFIFIf(pA - pB) £ 0. This is similar to 2SD except
for the premultiplication by IF. The null for 4SD has a premultiplication by IF

to the 3SD null. If the last inequality is indeterminate, the conclusion of the
test is also indeterminate.

Anderson (1996) shows that these direct nonparametric tests avoid the use
of generalized Lorenz curves and belong to the family of Pearson goodness-
of-fit tests. His nonparametric tests start with the multinomial allocation of
units to k class intervals. He assumes independence and that the cell sizes
satisfy Tpi > 5. The test statistic is a quadratic form in normal variables leading
to a c2 with k - 1 degrees of freedom. Since our application to portfolio return
data does not satisfy his (independence) assumptions, we seek an extension of
his tests. We do not recommend his c2 goodness-of-fit test.

Deshpande and Singh (1985) and Schmid and Trede (1998) take a different
approach based on Kolmogorov-type test statistics. They use the one-sample
problem whereby it is assumed that one of two CDFs is completely known.
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Schmid and Trede (1996) propose a nonparametric test with a more realistic
two-sample formulation where the observed data are from two independent
fa and fb. Again, the independence of fa and fb is unrealistic, since there will be
correlation between two portfolios over time.

The CDFs describing the past performance data for two portfolios A and
B are somewhat similar to survival curves for two drug therapies.There is con-
siderable interest in biometrics in solving this old problem of “matched pairs.”
Fisher’s permutation principle suggested in 1935 was conceived as a theoreti-
cal argument supporting t-test. For details, the reader should refer to Efron
and Tibshirani’s (1993, ch. 15) application of permutation tests to the matched
pairs problem.We do not use Schmid and Trede’s (1998) algorithm, which uses
2T possible pairs.

Under Fisher’s permutation approach, the null hypothesis H0 is that there
is no stochastic dominance between fa and fb or Fa = Fb. If the H0 is true, any
of the returns fa or fb can equally well come from either of the distributions.
Fisher’s approach permits different number of observations Ta and Tb from Fa

and Fb. Then, if we select the first sample of Ta for fa without replacement from
the combined data on Ta + Tb returns, the remaining Tb returns will form the
sample from fb. There are J = (Ta + Tb)!/(Ta!)(Tb!) ways of selecting such
samples.

The distribution that puts probability mass J-1 on each of these samples is
called the permutation distribution of a statistic. The sampling distribution
under the null is completely determined if we can evaluate all possible selec-
tions (= J) of the two samples. Then we can construct the exact sampling dis-
tribution by a computer intensive method. If Ta = 9 = Tb, then J = 48,620. One
can reduce the computational burden without much sacrifice in accuracy by
using Monte Carlo methods to select some J¢ = 999, say, from J. On a home
PC with 500Mhz machine a Gauss computer package needs only about 20
minutes for J = 48,620 computations, and J¢ = 999 computations are done
almost instantly. We claim that the sampling distribution under the H0 can be
reasonably approximated.

In our context, we first transform Fa and Fb to satisfy the 4DPs and then
evaluate the following statistics for the four orders of stochastic dominance,
respectively:

(6.3.7)

As in a bootstrap, this evaluation is done a large number (J¢ = 999) of times.
Special care is needed to implement (6.3.7) since the number of elements
selected from the two samples can be different under random selections. If 
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J¢ = 999, we simply order the q̂ values from the smallest to the largest, and Cr

the critical values for a 5% type I error one-sided test is the 950th value. We
reject H0 if the observed q̂ ≥ Cr.

The stochastic dominance literature appeals to the mathematical econo-
mists, because it can address intricate propositions. If A dominates B in 4SD,
then the superiority of A over B does not depend on the functional form of
the utility function, as long as U(x) Œ D4. This is a powerful statement, since
we cannot generally estimate the exact form of U(x). U≤≤ < 0 is obviously a
useful condition, so we see no reason to settle for 2SD or 3SD. The four desir-
able properties (4DPs) satisfied by (6.2.2) and listed in Section 6.2. We have
shown how to incorporate these properties and still evaluate the conditions
for 4SD, avoiding parametric distributional assumptions. Moreover we can use
4SD methods to suggest heuristic tools and summary measures for selecting
an admissible set of portfolios satisfying the NIARA and Kimball’s nonin-
creasing prudence (KNIP) properties from EUT and also insert 4DPs related
to non-EUT.

We illustrate this section with a Table 6.3.1 reproduced from Vinod (2004).
It shows that our theory is quite practical to implement. To illustrate our
model, we use data from the January 2001 Morningstar Principia CD ROM
Data Disk, which covers January 1991 to December 2000 period. We study all
1281 funds included in Morningstar’s International Fund Category. We show
that our analysis can help investor focus on a few (e.g., 5) attractive funds from
among the maze of 1281 funds.

Stochastic dominance concepts check if fund A dominates fund B. We des-
ignate S&P 500 (ticker symbol SPX) as our fund B. One by one each of the
1281 funds becomes our fund A.We use data on monthly returns from January
1991 to December 2000. For SPX (from Yahoo) and these j = 1, 2, . . . , 1281
funds we find their respective excess returns by subtracting the three-month
treasury bill rate (Tb3) and mix them. We measure dj as distances from the
minimum of the mixed set. While matrix If is simple, matrix IF and vectors pA

and pB require considerable work. We use these dj in the definition of the
matrix IF. similar to the one exhibited after (6.3.5). Next we use matrix multi-
plications 1281 times for each i and j to get SiSDj for i = 1 to 4. The cumula-
tive sum is used as the overall indicator of dominance. The fund with the most
negative value of the cumulative sum dominates the reference fund the most.

We also compute the statistical significance of the difference among the top
five funds. Only when a = 0.1 for individuals not complying very much with
the precepts of EUT is there a statistically significant difference among the
mutual funds as indicated in Table 6.3.1. The S1SDj for the fund ranked 1 is
significantly different from the similar sum for funds ranked 3, 4, and 5. The
S2SDj for ranks 3, 4, and 5 is significantly different from rank 2. The S3SDj
for funds ranked 1 and 2 is significantly different from fund 4 and also signif-
icantly different from fund 5. The S4SDj for funds ranked 1 and 2 is signifi-
cantly different from that for fund ranked 4. Vinod (2004) also reports 95%
so-called bootstrap-t confidence intervals for SiSDj when i = 1, . . . , 4 and many
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more columns. The main point is that this methodology is a practical tool for
finance.

6.4 INCORPORATING UTILITY THEORY INTO 
OPTION VALUATION

As mentioned at the beginning of this chapter, a great appeal of the option
pricing model proposed by Black and Scholes (1973) was that it was free of
preference. Unfortunately, their assumptions of complete markets with con-
tinuous trading is not realistic, and this forces us to consider what happens
when these assumptions are relaxed. Rubenstein (1976) assumes that the
underlying stock price as well as the aggregate utility function are bivariate
lognormally distributed, and permits discrete instead of continuous time to
prove that Black-Scholes price formulas can still be obtained. This result
requires a restrictive assumption of constant proportional risk aversion
(CPRA) utility, satisfied, for example, by the logarithmic utility functions. In
general, riskless arbitrage is impossible when the trading opportunities are dis-
crete, and therefore Black-Scholes prices do not equal equilibrium values.

Ritchken and Chen (1987) show that once we enter the realm of discrete
trading, it is not possible to use arbitrage-based option pricing, so one must
use utility functions. In continuous time modeling one needs to determine the
only value of the stock option relative to the price of the stock by appealing
to arbitrage opportunities. Once discrete trading is accepted, one needs to

incorporating utility theory into option valuation 147

Table 6.3.1 Best Five Funds Sorted by S4SDj for a = 0.1, 0.5, 1

a Fund Number Rank S1SDj S2SDj S3SDj S4SDj

0.1 734 1 -0.609 -9.695 -84.8 -536.9
0.1 735 2 -0.609 -9.692 -84.76 -536.7
0.1 547 3 -0.596 -9.485 -83.57 -533.5
0.1 1046 4 -0.593 -9.407 -83.36 -532.6
0.1 1268 5 -0.591 -9.392 -82.91 -531.6

0.5 722 1 -0.272 -4.255 -33.97 -195.4
0.5 931 2 -0.27 -4.346 -34.25 -195.1
0.5 161 3 -0.287 -4.296 -33.39 -188.9
0.5 1241 4 -0.304 -4.629 -34.5 -188.5
0.5 929 5 -0.262 -4.254 -33.27 -188.1

1 931 1 0.06 -0.688 -5.608 -27.04
1 161 2 0.052 -0.553 -5.028 -25.87
1 722 3 0.056 -0.504 -4.834 -25.11
1 929 4 0.07 -0.636 -5.192 -24.6
1 439 5 0.049 -0.567 -4.886 -24.37



determine the absolute price of the option and equilibrium price of the under-
lying stock.After we expand the opportunities available to investors to include
the buying and selling of options, it becomes impossible to assume that the
distribution of returns based on the expanded opportunity set is normal,
student’s t, or stable. How do we determine the equilibrium in the stock
market? This requires some assumptions about the preferences or utility func-
tions of agents. Also, since stocks are capital assets, we need a flexible capital
asset pricing model (see CAPM discussed in Chapter 2) that permits flexible
utility functions and flexible probability distributions of stock returns.

Ritchken and Chen (1987) propose a novel way to introduce the needed
flexibility. They argue that instead of mean-variance framework, we should
consider mean lower partial moment (MLPM) framework. Hogan and Warren
(1974) call the lower partial variance the semivariance. It is defined as vari-
ance below some value of the random variable and is a superior measure of
risk than the usual variance, which was recognized by Markowitz (1959). It is
interesting that Markowitz considered decreasing marginal utility up to the
threshold value and maintaining constant MU after that point, which is where
the MLPM framework is appropriate.

Ritchken and Chen derive impressive list of option price formulas for flex-
ible distribution of returns and flexible utility functions by exploiting the
MLPM framework. The relevant variables are current price, strike price, time
to expiration, interest rate, and volatility, as in Black-Scholes (BS). One dis-
tinction of MLPM is that the volatility depends on market expectations. Note
that non-EUT modifications to this literature remain an open problem for
researchers. The relative value of options decreases as market expectations
increase. It is interesting that the highest discrepancy between BS and MLPM
prices occurs when market expectations are very high. For example, if the
market is in a bubble situation, the discrepancy will be large. They admit,
however, that additional effort in implementing the complicated formulas may
not be worthwhile in practice. In any case MLPM prices are close to Black-
Scholes (BS) prices, which in turn are not biased in any direction, provided
that dividends are not ignored.

6.5 FORECASTING RETURNS USING NONLINEAR STRUCTURES
AND NEURAL NETWORKS

The pdf of excess returns f(x) based on past data was used above to choose
among a set of portfolios. Since conditions change, new technologies get devel-
oped, populations move, international crises including wars occur, government
policies change, and the observed f(x) and individual values of excess returns
at different points in time also change. What we really need are forecasts of
future returns xt and forecasts of related summary statistics, ranks, and so on.
Chapter 4 dealt with autoregressive moving average (ARMA) and general-
ized autoregressive conditional heteroscedasticity (GARCH) and related
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models for forecasting of returns and volatilities. In Section 6.5.1, we describe
standard linear and nonlinear statistical forecasting tools. These may be useful
for forecasting profits or returns in a business sector using past data on related
macroeconomic or other variables. In Section 6.5.2, we consider forecasts of
quality ratings of a product or business using categorical or limited dependent
variables. In Section 6.5.3, we describe the neural network models designed to
incorporate changing structures over time in forecasting models.We retain the
notation from related statistical literature where the dependent variable is
denoted by y and explanatory variables are denoted by x. In other words, we
do not denote the dependent variable as x, even if we are forecasting excess
returns.

6.5.1 Forecasting with Multiple Regression Models

Regression methods for forecasting are well known. We describe them here
for completeness using standard notation where y is the dependent variable.
The forecast will yield values of y given values of regressors x. This meaning
of x should not be confused with x used to represent excess returns in earlier
sections. Consider the standard linear regression model with y as output or
dependent variable, x1 to xp as inputs or regressor variables, u as the error term,
and b0, b1, to bp as the regression coefficients:

(6.5.1)

Assuming that there are T observations, X is the T ¥ (p + 1) matrix of data
on all regressor variables including the first column of ones to represent the
intercept b0, y is the T ¥ 1 vector of data on the dependent variable, b is the
(p + 1) ¥ 1 vector of regression coefficients, and e is the T ¥ 1 vector of
unknown true errors. It is customary to incorporate the intercept into the
column vector of coefficients and treat b as a p ¥ 1 vector without loss of gen-
erality. Also any nonlinear model that is linear in parameters can be accom-
modated in (6.5.1) by having the nonlinear functions (e.g., logs, powers) as
regressors in the X matrix. We assume the following probabilistic structure for
y and errors:

(6.5.2)

where W is a T ¥ T matrix of variances and covariances among errors.The vari-
ances are along the diagonal and parameterize the heteroscedasticity, and the
covariances are off diagonal and often measure the autocorrelation structure.
From (6.5.2) verity that E(y) = Xb.

If we further assume that y (and e) are multivariate normal, y ~ N(m, s2W),
we can write down the log likelihood (LL) function relatively simply. The like-
lihood function is obtained by simply multiplying the densities for each obser-
vation and interpreting the product as a function of the unknown parameters.

y X E E= + ( ) = ¢ =b e e ee s, , ,0 2W

y x x Xp p= + + + + = +b b b e b e0 1 1 . . . .
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The score vector is defined as the derivative of LL with respect to the 
parameters. The first-order condition for a maximum of LL is that the score
should be zero. The second-order condition for a maximum from calculus is
that the matrix of second-order partial derivatives should be negative definite.
The maximum likelihood (ML) estimator of the b vector satisfies both 
conditions.

The generalized least squares (GLS) estimator is obtained by solving the
following score functions or “normal equations” for b. If the existence of like-
lihood function is not assumed, it is called a “quasi-” score function (QSF):

(6.5.3)

The GLS estimator

(6.5.4)

is also the maximum likelihood (ML) or quasi-ML estimator. The regression
model is workhorse for structural estimation, forecasting, classification, and
learning models and has been generalized in various ways.

6.5.2 Qualitative Dependent Variable Forecasting Models

A well-known generalization of standard regression models in (6.5.1) is to
allow for dummy variables as dependent variables used in forecasting demand
for durable goods. For example, when a person buys a car, the dependent vari-
able is unity, and when she fails to buy, it is zero. The probability of purchas-
ing a car can depend on income, sentiment, cost of gasoline, and myriad other
variables. Since the automobile industry has a great deal of impact on busi-
ness returns in related sectors, we should not ignore the statistical tools relat-
ing dummy dependent variable y to a nonlinear function f(x, b) of regressors
x on the right side. Some forecast applications have the y variable restricted
to three or more qualitative categories where y takes only a limited set of
usually discrete values.

For example, y may be a dummy variable taking values 0 or 1, or represent
three categories: “good, better, and best,” or number of stars 1 to 5, as with
Morningstar’s classification of mutual funds reported in popular magazines for
investors. The so-called probit, Tobit, and logit models are popular in econo-
metrics texts (see Greene, 2000, for dealing with categorical data). Since neural
networks belong to biostatistics, let us use a slightly different generalization
of (6.5.1) for categorical data.

A popular biostatistics tool is the generalized linear model (GLM) method.
The GLM method is flexible and distinct from the logits or fixed/random
effects approach popularized by Balestra, Nerlove, and others, and covered in
econometrics texts (Greene 2000). GLM is mostly nonlinear, but linear in
parameters. McCullagh and Nelder (1989) describe GLM in three steps:

bGLS X X X y= ¢[ ] ¢- - -W W1 1 1

g y X X X X y, , .b b( ) = ¢ - ¢ =- -W W1 1 0
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1. Instead of y ~ N(m, s2W), we admit any distribution from the exponen-
tial family of distributions with a flexible choice of relations between
mean and variance functions. Nonnormality permits the expectation
E(y) = m to take on values only in a meaningful restricted range (e.g.,
nonnegative integer counts or [0, 1] for binary outcomes).

2. Define the systematic component h = Xb = , h Œ (-•, •), as a
linear predictor.

3. A monotonic differentiable link function h = h(m) relates E(y) to the sys-
tematic component Xb. The tth observation satisfies ht = h(mt):

(6.5.5)

For the GLS estimator of (6.5.4), the link function h is identity, or h = m,
since GLS assumes no restriction on the range of the dependent variable:
y Œ (-•, •). When y data are counts of something, we obviously cannot allow
negative counts. Then we need a link function that makes sure that even if 
m = Xb Œ (-•, •), h(m) > 0. The link function has the job of mapping an infi-
nite interval on [0, •). Similarly, for y as binary (dummy variable) outcomes, y
Œ [0, 1], we need a link function h(m) that maps the interval (-•, •) interval
for Xb on [0, 1] for the binary dependent variable y. A typical link function
h(m) is chosen to be the smoothly increasing function, such as any CDF. The
most common software packages use the logistic h(m) = exp(m)/[1 + exp(m)].

Which CDF is chosen as a link function between the categorical variable y
and Xb? It is convenient to choose it from the exponential family of distrib-
utions, which includes Poisson, binomial, gamma, inverse-Gaussian, and so on.
It is well known that “sufficient statistics” are available for the exponential
family. In our context X¢y, which is a p ¥ 1 vector similar to b, is a sufficient
statistic. A “canonical” link function is one for which a sufficient statistic of p
¥ 1 dimension exists. Some well-known canonical link functions for distribu-
tions in the exponential family are h(m) = m for the normal, h(m) = log m for
the Poisson, and h(m) = log[m /(1 - m)] for the binomial; h(m) = -1/m is nega-
tive for the gamma distribution. The GLM theorists ask us to choose the link
function depending on the relationship between the mean and variance. For
example, if the mean and variance are identical to each other, the Poisson link
is appropriate.

For GLS computations Newton-Raphson method is commonly used to
solve (6.5.3) even if g(y, X, b) is highly nonlinear. This method can yield, often
as a by-product of computations, the actual Hessian matrix based on second-
order partial derivative vectors of quasi-score functions (or outer products or
gradients of scores). The Hessians yield standard errors of estimated coeffi-
cients from square roots of diagonal terms. Iterative algorithms based on
Fisher scoring are developed for finding the standard errors GLM coefficients.
Fisher scoring uses the “expected value” of the Hessian matrix.

E y h xi i
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ˆ
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6.5.3 Neural Network Models

In the 1940s when little was known about how human brain processes infor-
mation, McCulloch and Pitts proposed a simple neural network (NN) model.
It allows for massive parallel processing of neural input in the brain at multi-
ple layers and feedbacks leading to nonlinear output. Mathematically, NN
involves weighted sums of inputs in layers with several nodes linked to an inter-
mediate hidden layer and then output to fewer nodes. Biologists have since
learned that human neurons are far more complex. However, the mathemati-
cal model has been applied with modifications to nonparametric estimation,
medical diagnoses, and different kinds of learning. Financial economists and
those in related fields may simply think of feed-forward NN as a method for
generalizing linear regression functions (Kuan and White, 1994).

In early versions of neural network models the link functions similar to h
in (6.5.5) described earlier were heaviside or unit step function: h(m) = 1 if 
m ≥ 0 and h(m) = 0 if m < 0. The neuron is turned on when h(m) = 1, say,
and remains off otherwise. More generally it is a threshold function: h(m) = 1
if m ≥ m0 and h(m) = 0 if m < m0, where m0 is the threshold value. For further
generality the link function h(m) is chosen to be smoothly increasing CDF as
in (6.5.5).

Neural networks, inputs are signals xi, i = 1, . . . , p, assembled in a column
vector x. When such an x vector is augmented by inserting the number 1 at
the start, we denote it by x̂ with p + 1 elements. The signal goes to output units
yj, j = 1, . . . , r. xigji reaches the jth output. If xi = 1 for the intercept, the output
is g0j. We assemble p + 1 coefficients gj0 to gjp in a (p + 1) ¥ 1 column vector
denoted by gj. Since both gj and x̂ are (p + 1) ¥ 1 vectors, (x̂¢gj) is a scalar, where
the prime denotes a transpose. There are r such scalars comprising r equations
of so-called seemingly unrelated regressions (SUR) model. Econometrics texts
describe the SUR model as one of the generalizations of single equation
regression model.

Now let us introduce one hidden layer of activations with k = 1, . . . , q addi-
tional sets of parameters assembled in bkj, a q ¥ r matrix. This matrix links the
q hidden layers to r outputs.

In Figure 6.5.1 we illustrate a [4, 2, 3] neural network with four input nodes,
two hidden nodes, and three output nodes. Figure 6.5.2 shows direct links from
inputs to outputs that are permitted in the general setup. To include the direct
links, let a denote a p ¥ 1 vector of parameters for directly linking the p inputs
to r outputs without using the hidden layer. The a in this section is obviously
different from the a used to denote departure from expected utility theory in
most of this chapter. Since x is a p ¥ 1 vector of inputs, x¢a is a scalar. Let y
denote the function that operates on the scalar (x̂¢gj) for each j, and let Sj

denote the summation from j = 1 to j = r for the r outputs. Now define the NN
model in terms of the link function h as

(6.5.6)E y h x x
j j j( ) = ¢ + + ¢( )[ ]Âa b y g b0 ˆ .

152 portfolio valuation and utility theory



Ultimately the best-fitting coefficients in (6.5.6) must be found by computer
programs, already available in many software packages including S-Plus,
GAUSS, and others. There are difficulties and some unresolved issues about
statistical testing of the fitted coefficients. A particular case of (6.5.6) when 
a = 0 and h is the identity function is known as projection pursuit (PP) regres-
sion pioneered by Friedman and Stuetzle (1981).

This generalization of the regression model was applied in Vinod (1998) for
cointegration estimation, where Vinod shows how PP regression does not
suffer from the curse of dimensionality, suffered by other nonparametric
regression methods. Tsey (2002) provides an example of [2, 3, 1] feed-forward
neural network to forecast the price of IBM stock.

It is clear from the large number of coefficients needed for NN models that
they are less suitable for structural estimation and more useful for forecast-
ing. In financial practice, NN models can help in choosing portfolios based on
market forecasts. However, there is a danger of overfitting the in-sample data
leading to poor out-of-sample forecasts.

Qi (1999) gives a good discussion of NN models for one-step-ahead fore-
casting and whose data are available on the website of the journal (JBES).
The author fits the following version of NN:

(6.5.7)x h xt t= ( )-1, , , ,a b g
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where the output xt is excess returns at time t, the inputs are financial and eco-
nomic variables at time t - 1 collected in xt-1. Several references useful for rel-
evant theory and for using the NN in financial forecasting problems are
available in Kuan and White (1994), Abhyankar et al. (1997), and Qi (1999).
The recursive formulation of evolution over time permits implicit incorpora-
tion of structural changes into the model. They conclude that profit opportu-
nities do exist out of sample with these models. Does this mean markets are
not efficient? Maasoumi and Racine (2002) discuss entropy measures to study
the profit opportunity issue with NN models. The entropy NN models suggest
small nonlinear unconditional autocorrelations but do not provide profit
opportunities when they compare relative merits of churning of portfolio
versus buy-and-hold strategy.

This section shows how NN methods generalize the simple regression to
allow for nonlinearities (1) by allowing for limited dependent variables
through link functions and (2) by considering several sets of equations as in
seemingly unrelated regression (SUR) equations framework. We conclude
that neural network methods can be a powerful tool for stock market fore-
casting, provided that care is taken to avoid overfitting. Since interpretation
of fitted NN coefficients and their standard errors are not readily available,
neural network technique has serious limitations if used for structural 
estimation.

Abhyankar et al. (1997) review various research results regarding nonlin-
ear structure in four major stock market indexes including S&P 500, DAX,
Nikkei 225, and FTSE 100 indexes in major countries plus two indexes based
on S&P 500 futures and FTSE 100 futures. They confirm the presence of non-
linearities using Brock-Dechert-Scheinkman (BDS) test, Lee-White-Granger
test based on neural networks, generalized autoregressive (moving average)
conditional heteroscedasticity (GARCH), and nearest neighbor tests (see also
Racine (2001) on nonlinear predictability of stock returns). Are stock markets
returns best represented by a stochastic process or by a nonlinear determin-
istic process plus a noise term? Abhyankar et al. find by estimating Lyapunov
exponent that market indexes do not follow “deterministic chaos.”Those inter-
ested in chaos theory may refer to Brock et al. (1991) and surrounding vast
literature.This section focuses on the potential applications of neural networks
in finance.
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C H A P T E R 7

Incorporating Downside Risk

155

7.1 INVESTOR REACTIONS 

The preceding chapter gives a rational method for dealing with risky events.
This chapter begins by giving us a foothold for understanding human behav-
ior and indicates how it is asymmetric with reference to upside and downside.
Hence there is a need to measure the downside risk by focusing on the down
side directly. Accordingly we suggest measuring the downside risk by con-
temporaneous VaR, down standard deviation, down beta, and “put implied
volatility,” where put refers to the option to sell. Since one should be inter-
ested not just in the historical downside risk but the risk in the future, we con-
sider the matter of forecasting downside risk and argue that “put implied
volatility” is the only measure that is forward looking in Section 7.2. When we
consider the boom and bust cycles, the same seeds of an impending bust are
included in the data for boom periods. In Section 7.3 we briefly mention
growth rate of cash flows as one potentially useful indicator consistent with
economic theory, because it can be used to determine allocation of assets to
equity. For choosing individual stocks, one must rely on expert analysts, but
we show evidence that as a group they exhibit herd behavior and can be
overoptimistic. In Section 7.3 we consider in much greater detail the downside
risk in international investing, including currency devaluation risk and other
risks when investing in third world developing countries. Note that interna-
tional investments including some in third world countries are often strongly
recommended by financial advisers to counter aging and slowing opportuni-
ties in the developed world. In Section 7.4 we discuss fraud, corruption, and
other risk factors often ignored in most finance books.

Preparing for the Worst: Incorporating Downside Risk in Stock Market Investments,
by Hrishikesh D. Vinod and Derrick P. Reagle
ISBN 0-471-23442-7 Copyright © 2005 John Wiley & Sons, Inc.



7.1.1 Irrational Investor Reactions

The theory of risk aversion primarily provides a rationale for investors per-
ceiving downside and upside risk differently. But this is certainly not the final
word on investor behavior. There are many market phenomena that are per-
sistent, but rational behavior simply cannot explain them.

Lamont and Thaler (2003) discuss several peculiar examples where the
financial markets failed to follow even the very basic law of one price, which
says that identical goods should have identical price. Their main examples are
as follows:

1. Closed-end country fund for Germany had a premium of 100% in
January 1990.

2. American depository receipts (ADRs) for a stock for a company called
Infosys from India had a premium of 136% over the Bombay price.

3. Pricing of Royal Dutch compared to Shell should have a ratio of 1.5, but
was 30% too low in 1981 and 15% too high in 1996.

4. Two classes of shares based on voting rights should not have wildly dif-
ferent market prices.

5. The ratio of Palm and 3Com shares should not differ from 1.5, and yet
it did. Investors wanted to pay some 2.5 billion to buy expensive shares
of Palm. The problem that arbitragers faced was that they could not sell
Palm short.

7.1.2 Prospect Theory

One area of study that provides a rationale for seemingly irrational behavior
is prospect theory developed by Kahneman and Tversky in the late 1970s, and
this theory later won Kahneman the Nobel Prize in 2002. Prospect theory
exploits the “emotional” part of human behavior by using psychology to
examine individual’s actions. There are many actions in the market that seem
to reflect human emotion. Market analysts speak of herd behavior, irrational
exuberance, and capital flight that are not easy to reconcile with our picture
of an investor at a desk crunching numbers to obtain the optimal portfolio.

Prospect theory has been used to identify several anomalies of human
behavior that call into question our rationality. For example, Kahneman and
Tuersky pose a hypothetical situation where 600 people are infected with a
virus for which the standard inoculation will save 200 people. The subject then
has the choice between staying with the traditional inoculation, or trying an
experimental treatment that has a one-third probability of saving everyone,
and a two-thirds probability of not saving anyone. This scenario, or a similar
scenario, has been presented to many different groups of people: students,
businesspeople, doctors, and by and large most people choose to take the risk
with the possibility of saving all.
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This is understandable. We all want to be a hero. In this case there 
is a chance for the daring doctor to go out on a limb and perhaps cure 
everyone. If the treatment doesn’t work, there will be no witnesses to the
failure. Something similar happens in the stock market, where initial public
offerings (IPOs) receive a substantial premium on their first day of trading
(Ibbotson and Ritter, 1995). One explanation is that all investors want to 
be in on the next big thing and be that person who discovered Apple 
Computers, or Nike, before they were big. It is even rational since the expected
value of people saved is the same whether you use the experimental treatment
or not.

The anomaly surfaces when the same types of people are given the choice
between using the standard inoculation that will kill 400 people, or the 
experimental treatment that has a one-third probability of killing no one 
and a two-thirds probability of killing everyone. Very few people will take the
risk of killing the entire population. But if we compare the choices to the pre-
vious scenario, they are identical. The only difference is that the wording has
changed from being in terms of saving lives to in terms of killing. Changes in
wording should not affect the rational investor, but people are affected by
emotion. This is how marketing can exist. No matter how much we wish it
wasn’t true, people are influenced by the color of the box, by the quality of
paper of the company newsletter, or by who is dating the CEO.

Tenorio and Cason (2002) find similar deviations from rationality by record-
ing choices made on the television game show “The Price Is Right.” When it
comes to spinning the big wheel, which determines who gets to go to the show-
case showdown and compete for the big prizes, three contestants spin the
wheel and the one closest to $1.00 without going over wins. They spin once,
and then they can choose whether or not to spin again. There is an optimal
strategy to this game, but Tenorio and Cason show that contestants spin more
than the mathematically optimal number of times.

Pollsters need to constantly keep in mind the following when taking opinion
polls. It is not just the questions that are asked, but the order in which they
are asked, that will influence the results. Consider the question poll that asks:
“Are you confident in our local treasurer?” It is different from the two-
question poll that asks: “Are you aware that our local treasurer was indicted
for tax evasion?” “Are you confident in our local treasurer?”

The last question in each poll is identical, but the answers one will receive
will be drastically different. Past experience, new information, and even the
gender of the pollster will change the results of the poll. We therefore cannot
expect the same people to be rational automatons when they become stock
market investors.

To compensate for the errors humans can make, a branch of literature on
bounded rationality and learning models has emerged. These researchers try
to model the individual who is not able to do complex mathematical calcula-
tions instantaneously when making decisions but is able to either approximate
the solution, or learn the solution over time. Some papers that have tried to
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model an imperfect learning behavior are Mookherjee and Sopher (1994),
Cheung and Friedman (1997), and Camerer and Ho (1999).

7.1.3 Investor Reaction to Shocks

One sign of “learning while investing” in the stock market is the flow of capital
in and out of the market following large price changes. Figure 7.1.1 above
shows the reaction of “short sales” on stocks in the NYSE by year. Short sales
are one indication of pessimism in the market, since the seller makes money
in a down market. A rational investor in an efficient market with a diversified
portfolio would not be changing her amount of short sales based on market
fluctuations. But, as can be seen in Figure 7.1.1, short sales seem to mirror 
stock movements, with up years having fewer and down years having greater
number of short sales. This indicates that either investors are initiating short
sales before the downturns, and predicting the movements, or reacting to down
movements with increased pessimism. Neither of these actions are consistent
with our ideal of an efficient market.

When investing according to portfolio selection rules, one takes into
account risks and acknowledges that the market can drop. The rational
investor then diversifies her portfolio to balance out these drops. But consider
the movement of assets out of mutual funds in down years (Kovaleski, 2002).
The extreme action following a downturn implies that investors are surprised
by the drop, learn from this new information, and change their investments
accordingly. This reaction is not encompassed in any of the models we have
studied. Rational investors should not be shocked or panicked when the
market goes down, since they should have studied all they could beforehand.

We can also get an idea of investor reactions by exploring the risk premium
required for the downside risk as compared to the upside risk. Figure 7.1.2
compares the relation between the CAPM beta and stock returns and our
“down beta” and stock returns for the S&P 100 stocks in 1999. Both measures
are correlated with the risk premium received by investors. There is a differ-
ence between the two graphs:
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1. The risk premium goes up much more quickly with down beta (0.0018
compared with 0.0013, or 38.4% higher), indicating that down beta is
rewarded by a higher risk premium than the general beta that ignores
the difference between upside and downside risk.

2. The R2 measure of the goodness of fit of the regression of down beta is
much higher than for beta, indicating that down beta fits risk premiums
better.

By looking at downside risk, we have refined our measure of risk. Some of
the noise and inaccuracy of the original CAPM beta is made up simply by
compensating only for downside movements and focusing on the down beta.
After all, upside movements are profits and do not need any compensation at
all.

Another way to rationalize compensating downside movements more than
upside movements is by revisiting the idea that only unexpected and non-
diversifiable changes should receive a risk premium. In finance, however, good
news is rarely unexpected. Companies simply do not hide positive news. In
fact, as seen in Section 4.1.1, the Monday effect seen in the stock market,
whereby Mondays receive lower returns than other days, has been attributed
to companies timing their bad news releases after the weekend begins.

When companies have good news, breakthroughs, or potential increased
earnings, they broadcast it as soon as possible. Company projections have been
found to be eternally optimistic (Easterwood and Nutt, 1999; Espahbodi,
Dugar, and Tehranian, 2001). Humans seem to have an innate need to sweep
bad news under the carpet, however. Enron, Worldcom, Arthur Andersen,
among others, highlight how companies can take initially small indiscretions
and hold on to them until they compound to an astounding degree. This tells
us that if we are looking for unexpected changes, downside movements are
going to be a more useful and important source.

Brooks, Patel, and Su (2003) study the effect of unanticipated announce-
ments on stock prices; they searched news resources for large announcements.
It should be no surprise that all the news stories they focus on are bad news.
Some of the keywords they use are “unexpected,” “unanticipated,” “sur-
prised,” and “shocked.” They find that price reactions for unanticipated bad
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news take over 20 minutes, much longer than for partially anticipated finan-
cial announcements. Another finding is that in the longer term, prices tend to
reverse, indicating an initial overreaction.

The asymmetric reaction of investors can also be seen in the headlines fol-
lowing market trends. During the downturn of 2001 headlines pointed to the
technology “bubble” and the market “revaluation.” This terminology implies
that the downturn is moving to a true value, and that everyone knew that the
soaring market of the late 1990s was too good to be true.

During the recovery of 2003, however, the headlines were more cautionary,
warning that the upswing could be a new bubble. While investors all want to
be the first in on the next new thing, they tend not to trust high-flying stock
prices when they happen. In terms of the main theme of this chapter, we show
in this section more explicitly how to incorporate the downside in our risk
assessments by recognizing the asymmetry of investor reactions. For example,
we suggest using down beta instead of the usual CAPM beta and the striking
behavior of data on short sales, which can contain potentially useful informa-
tion about future downturns.

7.2 PATTERNS OF DOWNSIDE RISK

In the preceding section, we argued that downside risk should receive a higher
risk premium than upside risk. In this section we will look at the source and
magnitude of this difference. The first thing to observe is how close the tradi-
tional measures of downside risk are to the standard deviation proxy among
our recommended measures of downside risk. There will, of course, be some
correlation because traditional measures of risk include the downside as well
as the upside. The degree of asymmetry, and general quirkiness of the return
distribution, will determine how well traditional (general) measures of risk will
follow downside measures.

It also may not always be the case that downside risk is higher than upside
risk. For large stable corporations, there may be enough reserves and low-risk
projects to weather any storm. Consider the case of IBM and Cisco Systems.
Both firms are in the technology industry, but IBM is the elder and less volatile
of the two. Taking monthly returns from 1993 to 2003 for both firms, their
monthly returns are comparable: 2.26% for IBM and 3.04% for Cisco. Vari-
ance for Cisco, however, is much higher: 0.018 compared to 0.010.Value at risk
for Cisco is also higher: -28.2% compared to -21.0%, assuming normality.
Plotting the Pearson family for the two, however, adds to the picture.

As can be seen in Figure 7.2.1, the IBM is somewhat symmetrical, if not
skewed positively, while Cisco is obviously skewed negatively. Both securities
are Pearson’s type IV distributions, and using Pearson’s CDF gives a one per-
centile VaR of -18.8% for IBM and -32.3% for Cisco. So what we see is that
not only does the assumption of normality understate VaR for Cisco by over
4%, but it actually overstates downside risk for IBM by over 2%. It is not
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always bad news to look into the presence of downside risk, just as going to
the doctor does not make you sick. For the case of Cisco, ignoring downside
risk could be like hiding potential losses. For IBM ignoring downside risk
would overstate risk, causing the investor to be unnecessarily conservative.

For our measures of downside risk, we will use contemporaneous VaR,
down standard deviation, down beta, and put implied volatility. More impor-
tant, however, we will look at how well these measures predict the next
period’s downside risk. Only one of those measures, put-implied volatility, is
forward looking. Therefore we need to assess the ability of any measure to
predict downside risk during the holding period of our stock.

Table 7.2.1 reports the correlation between various risk measures and the
next-period down standard deviation. As can be seen, all of the downside 
measures predict the next-period down standard deviation better than the 
traditional general measures. For example the correlation between standard
deviation and next period’s down standard deviation is only 0.374641 
compared to 0.663704 between consecutive down standard deviations. This
indicates that asymmetry in volatility is persistent.

Since separating out downside risk requires additional work on our part, if
traditional general measures of risk do just as well then we can save some
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Table 7.2.1 Correlations between Volatility Measures
and Downside Risk

Next-Period Down
Standard Deviation

Down beta 0.52736
Put-implied volatility 0.566961
Down standard deviation 0.663702
Beta 0.356883
Standard deviation 0.374641



efforts. As can be seen in Table 7.2.2, the correlation is reasonably high, but
we have considered only some of the larger and more stable companies out
there. Smaller companies that are still evolving may have larger asymmetries
between upside and downside risk.

Predicting one-period ahead is yet another step removed for the traditional
general measures of risk. For those of us that remember music on cassette
tapes, this is the duplication problem. If copies are made from copies with mag-
netic media, the new copies tend to sound less like the original, and more static
and distortion makes it into the mix. The same is true of estimation. In the first
place, historical downside risk is used to predict future downside risk. Then
the traditional general risk measures are used to predict the historical down-
side risk measures. Since we must use historical data anyway, it is better to use
downside risk measures than traditional measures.

In the previous section we saw psychological reasons for why investors care
about downside risk, and in previous chapters we saw statistical methods for
measuring downside risk. However, is there a rational reason why an investor
should care about downside risk? The only rational reason why downside risk
should earn a higher risk premium would be that it is less diversifiable than
upside risk. Pedersen (1998) finds that (for small companies in the United
Kingdom) CAPM fails to explain portfolio selection, whereas downside mea-
sures provide a better selection criterion to fit the actions of investors.

To get an indication of how well we can diversify downside risk, we will
replicate our exercise from Chapter 2 and graph down standard deviation as
we add more stocks to our portfolio, as seen in Figure 7.2.2.

Note that the downside risk measure does not go away as quickly or as
much as the traditional general risk measure. The standard deviation is
reduced to a quarter of its initial level, while the down standard deviation only
loses half of its original magnitude. This means that a systematic risk may be
understated by looking only at traditional general risk measures.

When we look at CAPM and beta, we are getting an indication of how our
stock moves with the market as a whole. Down beta denoted by bw is
computed from a weighted CAPM regression giving nonzero weights only 
on the downside. It was used in (5.2.10) in the definition of the downside
Treynor measure in order to give us a finer measure of how our stock moves
with downturns in the market. Therefore the trend of the market can give us
an indication of how large a role downside risk should play in our portfolio
selection.
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Table 7.2.2 Correlation between Risk Measures and Their Downside Counterparts

Risk measure Counterpart Correlation

Standard deviation Down standard deviation 0.865589
Beta Down beta 0.715209



7.3 DOWNSIDE RISK IN STOCK VALUATIONS AND 
WORLDWIDE INVESTING

This section first considers the stock market price valuations by comparing
them with macroeconomic time series to look for signs of potential downturns.
Since stock markets are known to cycle through boom and bust, it is plausi-
ble that seeds of a bust are included in the data during a market boom. We
discuss a few such signs, without attempting to be exhaustive. The population
in the developed world is aging and annual growth rates are stagnating com-
pared to much younger population and high growth rates in some developing
countries. Many investment advisers are recommending diversification of indi-
vidual portfolios by investing abroad, including in developing countries. Hence
in this section we discuss downside risk in foreign direct investments in much
greater detail, and especially the notion of “home bias” and corruption.

7.3.1 Detecting Potential Downturns from Growth Rates of Cash Flows

Although everyone knows that sooner or later, hot markets must cool off and
cool markets must heat up, no one knows when the pendulum will swing in
the opposite direction.The S&P 500 stock index went up 37.4%, 22.9%, 33.4%,
28.6%, and 21% during 1995 to 1999 bull market. During this time the pen-
dulum of the market kept going up. Since long-term gains from stocks were
around 10%, such extraordinary or above-average gains were unsustainable
in the year 2000. Then the market pendulum swung down and there began the
bear market. The S&P 500 index went down 9.1%, 11.9%, and 22.1% during
the three-year time period of 2000 to 2002. The market started the upswing of
the pendulum in 2003. Thus market evaluations of some corporations are 
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sensitive to the timing of a boom or bust. The hard task is to identify seeds of
bust in the data from the boom period.

Robert Hall’s (2001) paper on struggling to understand the stock market
provides an excellent review of the state of knowledge regarding market cycles
in the context of macroeconomic indicators, such as GDP, productivity, capital
stock, and intangible assets owned by corporations. He considers a long time
horizon from 1947 to 2000 and compares the following ratio of market valu-
ation to GDP:

(7.3.1)

Hall’s graph shows that M2G ratio of market evaluation to GDP cycles over
the boom and bust cycles of the market. It starts at 0.4 in 1947, goes to about
0.8 in late 1960s and falls back to around 0.4 in 1980; then it goes up over a
long period through 1990s, and reaches over 1.4 at the start of the burst bubble
in 2000. The true valuation of underlying real assets in relation to the GDP
cannot possibly fluctuate between 0.4 to 1.4. This suggests that the stock
market is not tied to production closely, and may thus be irrational.

Going deeper into the data, Hall (2001) derives further ratios, after includ-
ing the effect of corporate debt, variations in hard asset values, intangibles,
cash flows, and security values and discount rates. He argues that the collapse
of stock market value by 50% in 1973 to 1974 can be attributed to a sudden
reversal in cash flow growth. Similarly the enormous appreciation in 1990s was
due to consistently high growth rates for cash flows of corporations. Accord-
ing to Hall, even the 2000 burst in the bubble is traced to sudden shortfall in
the growth rate of cash flow.

7.3.2 Overoptimistic Consensus Forecasts by Analysts

Any company’s data on past performance involve many factual series includ-
ing gross earnings, EBITDA (earnings before interest, taxes, depreciation, and
amortization), net profits, and its price-to-earnings ratio (P/E ratio). Stock
market research services, such as Value Line, publish reports on individual
companies available at most public libraries. Yahoo finance and other places
also provide such information on line. The S&P 500 stock index is often
regarded as a leading indicator of market behavior. The long-term average of
the P/E ratio is about 15. When the P/E ratio for any stock exceeds this long-
term average, there is a risk that the stock is overpriced. In bull markets a
higher than average P/E ratio is often considered acceptable—not so in a bear
market.

Price Earnings (P/E) ratios are a fundamental tool for assessing an overall
evaluation of a stock. For example, in February 2004 the (P/E) ratio for the
S&P 500 stocks was 18.2. Then the reciprocal of (P/E), known as market’s
earning yield, was 0.0549, which translates to about 5.5%. Stock market invest-

M2G =
Equity claims on nonfarm nonfinancial corporations

GDP
.
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ment is thought to be for the long term and hence this yield is compared to
10-year US Treasury notes. In February, the treasuries were yielding only
4.09%. Using Federal Reserve bank’s Monetary Policy Report to Congress
dated July 1997 Edward Yardani developed so-called Fed model, suggesting
that the market was over-valued when the reciprocal of the (P/E) ratio exceeds
the yield on 10-year treasury notes. Both earnings of corporations and trea-
sury yields are in nominal dollars affected by inflation. Since treasury yields
are highly correlated with inflation, the Fed model suggests that stock yields
are also highly correlated with inflation. Although the Fed model has been a
good descriptive model for the past 20 years, it also suggests that stock market
participants are somewhat irrational (subject to inflation illusion) and pay too
much attention to nominal rather than inflation-adjusted real interest rates.
Modigliani and other economists argue that stock yields should be adjusted
for inflation illusion, but do not agree on how to do the adjustment.The growth
rate of real earnings of corporations is clearly related to growth in productiv-
ity. Fed chairman Alan Greenspan refers to the productivity growth due to the
Internet and PC revolution in many sectors. A comprehensive model is not
yet available. A related issue is whether stock market investing is a hedge
against inflation. In times of relatively low inflation, it is believed to be a hedge,
but it is also known that very large inflation rates hurt the stock prices.

We now list some common strategies for dealing with market risk without
any particular attention to the downside risk:

1. A stop loss strategy says that the investor obeys some discipline to sell
a stock on a declining trend when the loss is, say, 30% of the original price. A
strategic percent like the 30% must be chosen before the outcome of the
market prices is known. Otherwise, it is tempting to assess whether an indi-
vidual stock has reached a bottom and is about to rebound. The stop loss
strategies are designed for bear markets.

2. Realize gain strategy is the opposite of the stop loss. It asks the investor
to sell a rising stock and realize the paper capital gain after a predetermined
percentage (e.g., 200%) upside move. Once the gain is realized, the investor is
asked to do the needed research so it is appropriate to buy at the new price.
This strategy is designed for bull market.

3. Buy and hold strategy is often advisable for diversified portfolios similar
to mutual funds or index funds. The underlying notions is to let the market go
through its bull and bear cycle. The gains come because, even if some indi-
vidual stocks never recover, the market as a whole usually does recover.

4. Dollar cost averaging strategy is to invest a fixed amount in a particular
stock or mutual fund irrespective of market price fluctuations. That is not to
try to time the market and invest more before the boom since these times are
essentially unknowable. The fixed money buys more shares when the market
is down, and less shares when the market is up, evening out their investment
cost basis.
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These are mostly passive strategies used by busy people with little or no
interest in the stock market and by those with small holdings including
orphans and widows. These strategies have proved to be quite effective for the
long-term investors who happen to pick the right security. It appears that the
first strategy called ‘stop loss strategy’ is specific for the downside risk.

7.3.3 Further Evidence Regarding Overoptimism of Analysts

The median rate of growth of earnings over a 48-year (1951–1988) period of
publicly traded companies was about 6% per year. Chan et al. (2003) check
the database looking for companies that exceeded the 6% mark consistently
over any five-year period. They found that very few companies exceeded this
modest benchmark and the ones that did were rarely the ones that research
analysts had predicted. This means that very high P/E ratios are very rarely
justified. If we look at consensus forecasts of research analysts in 2004, more
than 100 companies are expected to grow at an annual rate of over 40% over
the next five years. This has simply never happened in the past data and shows
that relying completely on consensus forecasts can lead to disappointing losses.
Hence any measure of downside risk should allow for the existence of herd
behavior leading to excessive optimism implicit in professional analysts’ con-
sensus estimates. We recommend a healthy grain of salt before believing all
that the research analysts have to say in their so-called consensus estimates of
future earnings.

A lesson from Hall’s (2001) paper involving the aggregate macroeconomic
data for the market as a whole is that we should look at the growth rates of
cash flows to assess future stock market downturns. The aggregate macroeco-
nomic results do not apply to individual stocks, but consensus forecasts by 
analysts do. The macroeconomic measure is not systematically biased and 
as an indicator of downside risk it has considerable economic theory behind
it. We recommend using the macroeconomic measure to adjust overall 
exposure to equity markets and use analysts’ recommendations for choosing
among different equities. It is not clear if the growth rate of cash flow for 
individual stocks is a reliable indicator of its future price. There are additional
purely statistical measures using long time series based on a study of past
“turning points” in stock prices. These time series are obviously nonstation-
ary, drifting upward, and there are not a large enough number of turning points
in the available data to make valid statistical forecasting inference of nonsta-
tionary series.

7.3.4 Downside Risk in International Investing

If the stock market is efficient, then all movements in stock prices represent
some new information, previously unknown and unexpected. While there is
enough uncertainty in domestic capital markets, investing in international
markets leads to new areas of uncertainty. Differences in legal systems,
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accounting standards, and market oversight can lead to disasters that may not
even be on the radar if one thinks according to domestic trading rules.

7.3.5 Legal Loophole in Russia

The Financial Times of July 25, 2000, reports a legal loophole in the Russian
capital market that can leave stockholders with nothing if the company has a
cash flow problem. In the United States, if a company is not able to make debt
payments, the company can first try to work out the payments privately. If that
does not work, then the company enters bankruptcy proceedings, where the
legal system decides the allocation of the companies remaining assets. The US
legal system, with its large army of expensive lawyers, is often not seen as the
most efficient method of resolving conflict, but one can see some benefits when
compared to the risky Russian system, which fails to protect investors (who
can afford lawyers).

The Russian system reported on in the Financial Times article, “Russian
Oligarchs Take the Bankruptcy Route to Expansion,” is a simpler bankruptcy
proceeding. When a Russian company cannot make debt payments, the debt-
holders take the company to court and receive ownership of the company.
Even in viable, profitable companies, if the cash flow is not there to make the
debt payments, stockholders can end up with nothing.

7.3.6 Currency Devaluation Risk

One major concern when investing internationally is the value of the foreign
currency when the stock is sold. No matter how well your stock has done in
the past year, if the currency it is valued in suffers a depreciation of 50%, your
position is suddenly worth half of its previous value overnight. Furthermore,
if the currency is worth less, it does not matter which company you own, or
how diversified your portfolio is, all stocks will lose value.

The Chinese stock market initially solved the currency issue by having a
special class of stock for foreign investors denominated in dollars.The Chinese
stock market was plagued by other problems, though, such as the small number
of dollar-denominated shares available and the large portion of major corpo-
rations owned by the government. Currently the two-class system of shares 
is breaking down. Chinese citizens are now allowed to buy the dollar-
denominated shares, and foreign investors are beginning to be allowed to trade
in the domestic shares. The uncertainty of what accounting standards mean in
a foreign country still make foreign investment merely trickle, compared to its
potential in offering diversification against local market risk.

Some countries such as India use derivatives markets to smooth out foreign
investor’s risk. Futures and options markets can be used to hedge currency
and downside risk. However, if expanded derivatives markets are not com-
plemented by increased market oversight, the speculation or many other
potential abuses can bring down the market, leading to obvious downside risk.
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The downside dangers of currency devaluation had led to a wide literature
trying to deal with it and predict future currency crises. Since currency values
are determined at the macroeconomic level, one must trace the supply and
demand for a country’s currency to look for warning indicators that the 
currency is becoming overvalued. In international trade there are two accounts
to consider: (1) the current account, which accounts for imports and exports
of goods and services, and (2) the capital account, which includes financial
transactions accounting for investments flowing into and out of the country.
Once both accounts are considered, by definition, the two sides of the 
combined accounts must match. However, the underlying supply and demand
for a country’s exports are always changing over time and so is the demand
for currencies. If the economic forces behind supply and demand and transfer
of financial investments are out of balance, the value of a currency’s currency
will change to restore the equilibrium. If currency values are artificially 
manipulated by central banks, currency markets can be pushed out of 
equilibrium.

7.3.7 Forecast of Currency Devaluations

Some of the common indicators that are used to predict a currency crisis (see
Salvatore, 1999; Salvatore and Reagle, 2000) come from these macroeconomic
indicators:

1. A country’s savings rate to determine if domestic capital is sufficient for
investment.

2. Current account deficit to determine the pressure on currency.
3. Foreign debt (particularly short-term foreign debt) to predict future cur-

rency pressure when interest and capital payments are made.
4. Budget deficit as an indicator of government borrowing, either crowd-

ing out domestic borrowing or leading to foreign debt.
5. International reserves indicate how long a government can defend a

temporary imbalance in the exchange rate.
6. Foreign direct investment versus portfolio investment.This gives an indi-

cation of how quickly capital can leave a market. Foreign direct invest-
ment is a relatively permanent source of investment that entails a foreign
investor purchasing a substantial portion of a company directly and
taking on an (equity) ownership role. Portfolio investment is simply a
foreign investor purchasing securities though the public market. Portfo-
lio investment in debt, rather than equity, is much quicker to purchase
but can flee a country just as quickly if there is trouble, creating further
selling pressure on the currency. These trigger contagions.

7. Currency contagion in recent history. Kaminsky et al. (2003) have an
excellent table for explaining various such episodes. They identify the
common characteristics across several countries and the name of the
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common creditor country lending the affected countries. Their term is
“unholy trinity” for the capital inflows, surprises, and common creditors
responsible for currency crises.

These indicators are just a few of the many offered to predict currency
crises. Kaminsky, Lizondo, and Reinhart (1998) compile an exhaustive list of
indicators to predict currency and banking crises in emerging economies.
These indicators are not surprising, since they arise from common macro-
economic data. Yet currency crises continue to come as a surprise. Take, for
instance, the Asian “flu” of the late 1990s. Southeast Asia was the hottest
market going in the early 1990s. Their manufacturing industry was booming
and creating exports; the capital account demand for their bonds was high.
These strengths deteriorated as labor costs went up, and their currency pegged
to the dollar became overvalued as the dollar gained strength. Eventually
these pressures led to a currency devaluation that left the financial market
shattered. Why didn’t anyone see it coming?

7.3.8 Time Lags and Data Revisions

One difficulty in using macroeconomic indicators is the time lag in the collec-
tion of the data. Even in the United States, we don’t know that a recession has
happened until almost six months later. Macroeconomic data for developing
countries reported by the World Bank or the IMF usually come after a
minimum two-year lag. These lags mean that if one is going to predict a crisis
with these data, the crisis must be correctly predicted two years out-of-sample
to be really useful. The underlying data are frequently revised so that values
of the macroeconomic indicators, which looked dangerous one year, may turn
out to be quite benign just as a result of official revisions. Similarly new infor-
mation arrives from time to time, which can change the prospects for a country
very significantly (Santangelo 2004).

Consider Figure 7.3.1, which graphs the number of indicators (out of six)
in Southeast Asia that were in the danger zone according to Salvatore and
Reagle (2000). The upper line is calculated with data from the World Bank’s
World Development Indicators for 2001. It clearly shows an increase in
warning indicators prior to the crisis.The lower line, however, is the exact same
data source, the same indicators, the same methodology, except that it was col-
lected from the 2003 edition of the World Development Indicators. After the
data were revised, there is no longer the same run-up in warning indicators to
predict the crisis.

Even with perfect data most macroeconomic indicators are collected 
annually or quarterly at best. Most monthly data have been found to not aid
in prediction. Therefore crisis prediction can never be fine-tuned. At best,
these indicators show country locations that may be susceptible for crisis but
cannot pinpoint the timing, depth, or other specifics of a particular currency
crisis.
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7.3.9 Government Interventions Make Forecasting Currency 
Markets Difficult

As with any forecasting, the historical data used to predict future currency
movements can be problematic. These predictions are particularly difficult in
currency markets, since the timing of currency market devaluation is closely
controlled by central banks and is subject to local political considerations.
Some dollar-zone countries simply use the US dollar as their currency, and do
not permit much control by the local central banks. Many countries have target
zones, and when currency fluctuates outside these zones, central banks inter-
vene and devaluate or revaluate. Historical data are good for estimating an
average level or average movement in currency values, but currency crises are
an atypical occurrence. Predicting when a government will decide not to
defend the currency any longer is a task that has little history to go by. Usually
currency crises come one at a time (Mexico, 1994, and Brazil, 1998) or spread
out in time under different regimes (five countries in Asia, 1997, pegged to the
dollar). The minimum for any type of good statistical estimation is availabil-
ity of 30 observations. This means that one has to go back decades to find
records of past 30 currency crises in order to forecast future crises.

Even if we had such extensive data, each currency crisis is different. Mexico
had a large budget deficit and a low savings rate. Asia, on the other hand, had
a high savings rate but a large current account deficit and high foreign debt.
Some countries can tolerate budget deficits better than others. A longstand-
ing deficit that is compensated for in another area is more sustainable than a
deficit that increases dramatically in a short period of time. To further com-
plicate matters, contagion of the crisis can cause a previous healthy country to
go into crisis simply because it is linked economically or geographically to
another country with more serious problems.

This leads to a good news and bad news dichotomy regarding any method
of predicting currency crises. The good news is that the indicators of a crisis
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are easily identified. The bad news is that the measurement of the indicators
is not fine enough to make a precise prediction. The best that can be done is
to use extreme values and changes in these indicators as a sign that downside
risk is higher in that country’s financial markets. In any case we have indicated
some tools and strategies available in the literature and outlined almost all
risks in international investing, except for what is discussed in the next section.

7.4 DOWNSIDE RISK ARISING FROM FRAUD, CORRUPTION,
AND INTERNATIONAL CONTAGION

This chapter has considered the downside risk from various angles including
some additional risks associated with worldwide investing. In Section 7.3 we
analyzed how international financial crises are caused by extreme movements
in macroeconomic variables to unsustainable levels. No one was blamed; it just
looked as if the economy got out of equilibrium and needed an adjustment to
get back. In this section we assign some blame. When one considers incorpo-
rating downside risk, it is important to recognize that fraud and criminal
behavior are a fact of life in any country and hence vigilance is needed every-
where. If a country takes no action to correct problems when they are dis-
covered, the leadership must be blamed for incompetence or worse. Once the
recent abuses by Enron, WorldCom, Tyco, and others, were recognized, the
Securities and Exchange Commission (SEC), and other regulators and law-
makers, attempted to protect the individual investor from such abuses. For
example, the Sarbanes-Oxley Act of 2002 is an excellent example of new rules
on corporate governance. It is always difficult to strike a right balance between
regulation and freedom to entrepreneurs to create wealth. In our opinion,
there are provisions in Sarbanes-Oxley Act that deserve worldwide emulation.
Clearly, the downside risk is lower in countries that follow proper international
accounting standards and have mechanisms in place to prevent abuses by 
managers.

Now consider the role of fraud and corruption in the currency market con-
tagions. For example, the Asian currency crisis started with the collapse of 
the Thai Baht in 1997. As we saw, for three decades before 1997, East Asian
economies grew remarkably fast due to (1) low inflation and high investment
in human capital, (2) high savings rate and protection for individual savers, (3)
few price distortions and imbalances between agricultural and industrial
sectors, and (4) adoption of foreign technology.

There were certainly some structural problems behind the financial crisis of
1997, including (1) tendency to finance long-term debt with short-term paper
due to a lack of well-developed derivatives market, (2) inadequate attention
to social safety net for the unemployed and the poor during boom times, (3)
excess exploitation of natural resources as forests, fisheries, and so on, and 
(4) poor regulation of domestic capital markets that did not check global 
push toward a financial bubble. The global capital flows grew too fast (30%
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annually), and foreign investors’ ignorance of local conditions and greed for
high returns were important. The investors expected to be bailed out (moral
hazard) if things went wrong. The Asian contagion was fueled by slowing of
export growth followed by competitive devaluations, and by strong trade and
financial links among the East Asian countries. In addition, crony and corrupt
capitalism played a critical role in worsening all the structural problems listed
above.

Financial crises are characterized by (1) falling growth rates of real GDP,
(2) large fluctuations of inflation rate, credit expansion rate, and capital inflow
rate, (3) sharp declines in exchange rates, (4) adverse shock in international
trade, and (5) sharp rise in real interest rate (Hardy and Pazarbasioglu, 1999).
Vinod (1999) indicates evidence showing that corruption reduces economic
growth and discourages savings. This creates a fundamental link between cor-
ruption and financial crises, since savings was one of our key indicators for
crisis. Clearly, a reduced saving rate can lead to higher price in the form of
higher interest rates. Governmental waste caused by corruption and inefficient
policies for fighting inflation can lead to large swings in inflation rate and
exchange rate. If bribe demands lead to interruption or cancellation of major
international trade transactions, they can create trade shocks. Thus corruption
contributes to each of the factors behind the Asian crises and behind financial
crises in general.Vinod (2003) in the Journal of Asian Economics explains how
the financial burden of corruption exists in an open economy beyond the
effects of reduced savings and reduced capital formation on the domestic
front.

7.4.1 Role of Periodic Portfolio Rebalancing

Once a currency crisis begins in one country, portfolio rebalancing by investors
in response to a loss can cause ripples that can bring down otherwise healthy
economies. We discuss some portfolio theory regarding risk and hedging in
Section 7.4.2. If two countries in the same geographical region are correlated,
and an adverse shock causes us to lower our investment in one, it makes sense
that investment in the correlated country will also decrease. Schinasi and
Smith (2000) note that such behavior is particularly strong if the investor 
is leveraged (uses borrowed funds) and that several traditional portfolio-
rebalancing rules, including VaR rules, can induce such behavior. Of course,
rebalancing is not a bad move if one updates his perception of downside 
risk, but the effects are multiplied by each investor that does so. Chang and
Velasco (1998) attribute the contagion to international banking illiquidity and
self-fulfilling pessimism, both of which are made worse by corruption.

7.4.2 Role of International Financial Institutions in Fighting Contagions

The IMF, the World Bank, and major multinational banks try to fight financial
contagion before it occurs. They have begun to focus on removing the distress
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factors, including corruption. To promote worldwide prosperity, the IMF iden-
tified “promoting good governance in all its aspects, including ensuring the
rule of law, improving the efficiency and accountability of the public sector,
and tackling corruption” (September, 1996). The World Bank also has indi-
cated similar initiatives against corruption. More recently the IMF is working
to eliminate the opportunity for bribery, corruption, and fraudulent activity 
in the management of public resources. The IMF directives seek to limit the
scope for ad hoc decision making, for rent seeking, and for undesirable 
preferential treatment of individuals or organizations. However, the IMF
needs to be more proactive against misuse of official foreign exchange
reserves, abuse of power by bank supervisors, and similar areas where infor-
mation should be available at the IMF. However, unless consensus is devel-
oped on the two fronts mentioned above, strong action by IMF or World Bank
employees against corrupt practices cannot be expected. After all, these can
be sensitive issues of local laws and personal safety of World Bank/IMF staff
and their families.

7.4.3 Corruption and Slow Growth of Derivative Markets

Very large amounts of money (over a trillion US dollars) transfer between
various countries on a daily basis. These short-term funds are called “hot
money” transfers. Since these transfers create new kinds of risks, financial insti-
tutions need new tools (e.g., interest swaps) for managing them. Since these
tools are not widely available throughout the developing world, currency
market contagions become more widespread than they need to be. Below we
show that corruption slows the growth of these tools and thereby hurts devel-
oping countries.

Consider a common situation where the hot money lenders want to lend
only for a short term, say, 1 year, while the borrowers want to borrow for, say,
10 years. The market needs a way to resolve the mismatch between demand
and supply, which is traditionally done by overnight loans and commercial
paper. In developed countries where the newer market for interest rate deriv-
atives is available, the solution to the mismatch mentioned above is simply to
float 10-year paper with fixed rate and swap it into a floating interest rate. The
market for swaps rewards the participants for assuming the risk associated
with the difference between fixed and floating rate. Since this eliminates inter-
est rate risk for those who wish to eliminate it (for a price), the global market
for swaps is near five trillion dollars. Moreover, since the interest swaps have
a market value reflecting the interest rate risk, both assets and liabilities move
up and down correctly. While derivatives may contribute to greater volatility
of markets, they do create new avenues for people interested in different forms
of risk taking (gambling?). For sophisticated players they provide an oppor-
tunity to keep the cost of borrowing low.

Thinness of the market, lack of scale economies, lack of trust in local 
financial institutions and corruption are among the reasons for inadequate
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derivative markets in developing countries. If Mr. Harshad Mehta in India can
bribe bank officials to defraud thousands of Indian investors in the standard
stock market in 2001, the potential for fraudulent manipulation looms even
larger in thin derivative markets. Thus corruption risk is difficult to manage
because corruption itself prevents access to the modern tools of managing this
risk by preventing growth of derivative markets. Accordingly foreign direct
investment (FDI) is reduced in corrupt developing countries due to the uncer-
tainty of receiving the returns and keeping ownership of capital.

The derivative markets have focused on three different types of risk. (1)
Credit risk refers to the ability of the borrower to generate revenue to pay
back the debt. (2) Default risk is with reference to collecting when default
occurs. (3) Transaction risk arises from possible problems with international
electronic transfer of funds and enforcement of foreign exchange contracts.
Although corruption risk is currently considered as a part each of these three,
it may be helpful to have a separate category for corruption. La Porta et al.
(1998) find that common-law countries (United States, United Kingdom, and
India) provide superior legal protection to investors compared to French civil
law countries. However, the corruption perception index (CPI) data from
Transparency International suggests that common-law countries providing
good legal protection of investors do not enjoy generally less corruption.
France and her former colonies do not, in general, have any greater corrup-
tion than the United Kingdom and her former colonies.

The downside risk associated with international hot money transfers can 
be incorporated or managed to some extent by using derivatives markets.
However, recent currency contagions have shown that corruption imposes a
somewhat unique type of risk burden with a distinct probability distribution
than for the risk associated with currency fluctuations, taxes, and investments.
Along with sophisticated derivatives, we also need greater accountability,
better surveillance to avoid abuses of these tools, and reduced corruption to
avoid future currency market contagions.

7.4.4 Corruption and Private Credit Rating Agencies

Private rating agencies, which need to maintain their reputation by making
right calls, can be a positive force against corruption.Their term “country risk”
refers to creditworthiness of sovereign governments who have a larger leeway
in structuring debts and payment schedules than private businesses. However,
global money traders (hot money transfer agents) gather background infor-
mation from rating agencies (S&P and Moody’s) regarding actual deficits in
different countries. Since rating agencies can potentially negate domestic fiscal
policies of sovereign countries, policy makers often resent the power of money
traders and such rating agencies. On the other hand, this creates a balance of
power and forces some fiscal discipline on various countries without involv-
ing the IMF. For example, Thailand took on debt to build super highways and
was punished for it by declining Thai Baht. In short, the positive contribution
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of rating agencies and hot money is that they create a countervailing power
and they discourage corruption.

We must also mention the negative role of hot money transfers when the
investors rely on private rating agencies. A trillion dollars going in and out 
of different countries daily can obviously increase the volatility of markets.
Changes in credit ratings lead to herd behavior by investors, even if the ratings
themselves are in response to valid new information. The herd behavior
creates intrinsically self-fulfilling short-run instabilities.When ratings go down,
cost of borrowing for that country increases, precisely at the time when a
country in trouble can least afford it. Sometimes investors lose money even
before the country ratings are lowered. If so, they try to sell investments 
in other similar countries (same geographic region or similarly situated).
Investors need only a limited amount of information about impending trouble,
not detailed information. This can create a rush to beat the rating agencies. In
any case, pessimism is self-fulfilling and can lead to further declines in balance
of payments.

On balance and in the long run, rating agencies play a mildly positive role
by inviting market discipline and thereby reducing corruption. Since markets
treat everyone equally, market discipline is politically more bearable than
edicts from IMF bureaucrats, who can sometimes make wrong policy recom-
mendations. Since the IMF has little expertise in tax deficits, corruption, and
weaknesses of local banks in all countries, the IMF did make some wrong calls
in response to the Asian contagion.

7.4.5 Corruption and the Home Bias

When the presence of international trade is introduced in a traditional study
of the trade-off between risk and return, we note that the trade-off does not
smoothly extend to investments abroad. There appears to be a market failure,
since investors in developed countries overwhelmingly exhibit a so-called
home bias. More important, the impact of home bias is asymmetric with
respect to rich and poor countries. The underlying incentives encourages flight
of capital out of poor and corrupt countries. Hence policy makers in poor
countries often impose capital controls to prevent flight of capital, which in
turn encourages inefficient domestic monopolies and corruption.

French and Poterba (1991) were the first to discuss home bias and estimate
its size. They assumed that a representative agent in each country has one of
the simplest exponential decay constant relative risk aversion (CRRA) utility
functions. We discussed it in Section 6.1. Here it is defined with respect to
wealth W as the argument (instead of consumption or returns)

(7.4.1)

where W0 is initial wealth. The wealth increases by investing in portfolios con-
sisting of possibly risky international assets. Each portfoilio is defined by a
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vector w of weights. If the probability distribution of asset returns is normal,
only the mean and variance matter. Denote the mean vector by m and covari-
ance matrix by V. Now the expected utility is

(7.4.2)

By expected utility theory (EUT), maximization of (7.4.2) yields a first-order
condition involving a simple analytic formula. If w* denotes optimal portfolio
weights, we have the necessary condition:

(7.4.3)

French and Poterba bypass the need for historical data on international
equity returns m and compute estimates of V for the United States, Japan, the
United Kingdom, France, Germany, and Canada. They ask what set of
“optimal” expected equity returns m* will justify the observed pattern of inter-
national holdings. They find, for example, that UK investors need about 500
basis points higher return in domestic market to justify not investing in US
stocks. In general, investors in developed countries hold too high a proportion
of their portfolio in domestic securities (94% for the United States and in
excess of 85% for the United Kingdom and Japan). French and Poterba (1991)
argue that within the set of six rich countries, there are few institutional bar-
riers against international investments. Yet the “puzzle” lies in the empirically
observed lack of adequate international diversification. Baxter and Jermann
(1997) argue that the puzzle is “worse than you think.” If we consider that all
of our own human capital is concentrated in the home country, hedging will
require us to invest even a larger proportion of our wealth abroad.

Theoretical Explanations for Home Bias. How do we solve the puzzle or
explain the home bias? Let us first consider theoretical explanations and then
institutional ones. The CRRA utility function (7.4.1) used by French and
Poterba is unrealistic. In the consumption context, Carroll and Kimball (1996)
and Vinod (1998), among others, argue that CRRA utility should be rejected
because it does not lead to a concave consumption function, as it should.These
authors propose using a hyperbolic or diminishing absolute risk aversion
(HyDARA) utility function. Another way of stating this issue is that CRRA
is unrealistic because it gives inadequate importance to uncertainty.

A second theoretical explanation of home bias is that EUT assumed above
is unrealistic. A need for non-EUT models is explained in the survey by
Starmer (2000). Vinod (2001) considers risk aversion, stochastic dominance,
and non-EUT in the context of portfolio theory. These modifications lead to
a revision of (7.4.3) involving a nonlinear transformation of weights for greater
realism. A third theoretical explanation is that the model lumps all risk in the
variance term based on the distribution of returns. Since the currency deval-
uation risk applies only for foreign investments, it can be large enough to

m l= ¢w V* .

E w w VwU( ) = - - - ¢{ }( )exp . .l m l0 5
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cancel the hedging term. A fourth theoretical explanation of home bias is that
it is derived by assuming that return distribution is normal. Nonnormal dis-
tributions require skewness, kurtosis, and higher moments that, when included,
can reduce the home bias.

Institutional Explanations for Home Bias. Now we note some institutional
explanations for home bias in investments. First, investing in home country
avoids the risk associated with enforcement of property rights in a foreign
country. Even if no language barrier exists and the property laws are essen-
tially similar, such as between the United States and the United Kingdom,
enforcement costs can be large and thus a source of downside risk. The
observed difference of 500 basis points noted by French and Poterba (1991)
may be reflecting such costs including attorney fees. Second, corruption levels
can be different in different countries at different times for different indus-
trial sectors. This can mean uncertainty regarding size of bribes and financial
and time costs of getting things done abroad can be larger.

Serrat (2001) develops a two-country exchange economy dynamic equilib-
rium model to attribute the home bias to the role of nontraded goods. He
shows that risk-adjusted expected growth rates of home and foreign endow-
ments of tradable and nontradable goods are relevant. Since the mean and
variance of home and foreign endowments of tradables need not be constant,
hedging demands causing home bias become less important in their dynamic
setting with intertemporal substitution. In corrupt countries the hedging
motive is likely to retain the home bias if the variance of home endowments
is larger.

Corruption cannot fully explain both home bias and its asymmetry. Insti-
tutional explanations of the home bias do not apply symmetrically for
investors in rich and poor countries. With lower corruption and better legal
and insurance protections for small investors in rich countries, the investors in
poor countries are not as reluctant to invest abroad; namely they are less
subject to home bias. It is better to think of the home bias puzzle not as some-
thing to be solved but as a pedagogical device to learn economic behavior. A
similar use of six consumption puzzles is advocated in Vinod’s (1996) appen-
dix. The useful insight from the home bias puzzle is summarized as follows:
Other things remaining the same, all investors in different countries will be
generally better off in terms of diversification and hedging if they invest a large
proportion of their wealth in foreign assets. In practice, investors exhibit home
bias. Various theoretical generalizations of the model and institutional barri-
ers partially explain the home bias. However, the bias against investment in
poor and corrupt countries is justifiably stronger than the bias against invest-
ing in rich and less corrupt countries due to the downside potential of 
corruption.

Another institutional explanation for home bias comes from policy deci-
sions by central banks of developing countries. From the viewpoint of the
developing country, it is desirable to let as much of the domestic savings fund
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domestic investments.Accordingly developing countries often impose controls
on the outflow of capital to prevent flight of scarce capital resources to foreign
countries, thereby helping domestic capital accumulation. Clearly, the govern-
ment can readily identify the domestic resident investor and punish any export
of capital by outlawing capital account transfers.

Ironically, various exchange controls imposed by central banks themselves
can encourage corruption and reduce “economic freedom” of entrepreneurs
to create wealth around the world. Often, the first immediate effect of con-
trols on out-going capital is to discourage in-coming investment in the form
of FDI. The policy makers in developing countries have to consider quantita-
tive information on the extent of the following related issues: (1) Can the
domestic saver illegally invest abroad anyway? (2) Do these exchange con-
trols influence the foreign nonresident owner of capital? (3) Are the invest-
ments in the form of equity or debt? (4) Do the controls encourage corruption
and encourage inefficient allocation of resources? (5) If domestic industries
rely solely on domestic capital, do they strive to become competitive in global
marketplace? (6) Are the foreign investors likely to be too fickle with a very
short-term focus? (7) Does the international flow of funds (hot money) desta-
bilize the exchange rate?

7.4.6 Value at Risk (VaR) Calculations Worsen Effect of Corruption

As we learned in Chapter 2, value at risk has become a popular tool for prac-
tical portfolio choices. Here we consider the role of VaR methods in discour-
aging FDI in corrupt countries. Recall that VaR computations require
estimation of low quantiles in the portfolio return distributions. Recall from
Chapter 6 that expected utility theory (EUT) leads to equal weight on all
returns in computation of risks, but the weights are high on extreme observa-
tions when an investor behaves according to the non-EUT. This means that
worst-case scenarios are more important to a non-EUT investor leading to
greater risk assigned to perceived costs of fraud and corruption.

In our context many authors have used VaR calculations of market risk and
credit risk under the assumption of stable Pareto distribution. Since stable
Pareto or related distributions do not have closed-form expressions for the
density and distribution functions, they are described by their characteristic
functions and by four parameters: tail index t, skewness b, location m, and scale
s. Modeling with such parameters helps depict fat tails and skewness of 
the distributions. Omran (2001) estimates that the tail index t for Japan,
Singapore, and Hong Kong markets are around 1.50, indicating that these
markets have high probability of large returns.

A linear combination of independent stable (or jointly stable) random vari-
ables with tail index t is again a stable random variable with the same t. Hence
any stable random variable can be decomposed into the “symmetry” and
“skewness” parts. If s is the volatility, X* = (z1-a¢ s) is the limiting return at a
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given confidence level a¢, and if Y0 denotes the initial value of the portfolio,
then value at risk is VaR = -Y0X*.Thus modeling value at risk (VaR) by stable
Pareto distributions permits convenient decomposition of the distribution into
three parts: the mean or centering part, skewness part, and dependence (auto-
correlation) structure (Rachev et al., 2001).

Longin and Solnik (2001) extend stable Pareto to generalized Pareto and
show, with examples, that cross-country equity market correlations increase in
volatile times and become particularly important in bear markets. These cor-
relations are neither constant over time nor symmetric with respect to the bull
and bear markets. This means that one must reject multivariate normal as well
as a multivariate econometric tool called GARCH with time-varying volatil-
ity. The estimation of VaR is related to estimating the worst-case scenario in
terms of the probability of very large losses in excess of a threshold q. The so-
called positive q-exceedances correspond to all observed losses that exceed q
(e.g., 10%). Login and Solnik show that the generalized Pareto distribution is
a suitable probability distribution, and estimate its parameters using 38 years
of monthly data. As q increases, the correlation across markets of large losses
does not converge to zero but increases. This is ominous for an investor who
seeks to diversify across various countries, including corrupt developing coun-
tries. It means that losses in one country will not cancel with gains in another
country. Rather, the data show that all similar countries might suffer extreme
losses at the same time. This ominous observation is important to remember
in incorporating the downside risk in investment decisions, especially for small
investors.

Now consider a large international investor whose portfolio consists of
many assets.The computation of VaR for any portfolio is computed by decom-
posing it into “building blocks” that depend on some risk factors. For example,
currency fluctuation and corruption are risk factors with open economy inter-
national investments. Risk professionals first use risk categories for detailed
separate analysis. They need complicated algorithms to obtain total portfolio
risk by aggregating risk factors and their correlations.

The main risk in foreign investment is that exchange rates (currency values)
fluctuate over time and can mean a loss when the return is converted into the
investor’s home currency. The individual investor would need to allow for
potentially unfavorable timing of currency conversion. However, financial
markets have derivative instruments including forward and future exchange
rate markets to hedge against such risks. Hence derivative securities linked to
exchange rates at a future date can mitigate, if not eliminate, the exchange rate
risk.Arbitrage activities by traders can be expected to price the foreign invest-
ments appropriately different from domestic investments to take account of
exchange rate risk. However, these hedging activities need free and open
markets in target currencies. For developing countries like India, which have
exchange control, there are black markets with a fluctuating premium over the
official exchange rate. This increases the exchange rate risk and related costs
even higher due to corruption.
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Fraud and corruption are additional risk factors in both domestic and inter-
national investing, although our discussion focused much more on the latter.
Corruption can suddenly lead to a cancellation of a contract or sudden and
unexpected increases in the cost of doing business. Depending on the magni-
tude of corrupt practices, the cost can vary considerably. Enforcing property
rights, especially in developing countries, can be expensive and time-
consuming. Furthermore the presence of corruption and lack of transparency
among public institutions add to the cost of investing abroad, even if the
foreign investor is not directly affected by corruption. Since corruption
increases the cost of enforcement of all property rights, it is obviously an 
additional burden.

We conclude this chapter by noting that fraud, corruption, and international
contagion in currency markets increase the downside risk. Whether we are
considering a large or small investor, empirical data and VaR calculations cor-
rectly warn us against large simultaneous losses in different countries that
need not cancel each other. Since downside risks are high in corrupt countries,
this implies a need for a higher compensation (risk premium). When interest
rates are low in Western European countries, the United States, and Japan, it
is tempting to diversify and invest in some fast-growing developing countries.
The expected return from these foreign investments needs to be much higher
to compensate for the probability of downside risk arising from unpredictable
corruption.
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8.1 MATRIX ALGEBRA

This chapter discusses six mathematical tools of special importance in finance,
starting with matrix algebra, and moving to its application to finance.The latter
sections highlight specialized mathematical techniques for solving some of the
formulas discussed.

8.1.1 Sum, Product, and Transpose of Matrices

Matrix algebra is a mathematical technique that organizes the information 
of several equations so that a solution can be obtained for complex systems
that cannot efficiently be solved otherwise. In this section we go over the rules
of matrix algebra, which at times are different, or at least more strict, than
general algebraic techniques. We then apply these techniques to the portfolio
problem where the sheer numbers of securities make it necessary use matrix
algebra.

If aij with i = 1, 2, . . . , m, and j = 1, 2, . . . , n, are a set of real numbers
arranged in m rows and n columns, we have an m by n matrix A = (aij). For
example, when m = 2 and n = 3, we have a 2 ¥ 3 matrix A defined as

(8.1.1)

If in the same example we have three rows instead of two, the matrix will be
a square matrix. A square matrix has as many rows as columns, or m = n.
Vectors are matrices with only one column. Ordinary numbers can also be
thought to be matrices of dimension 1 ¥ 1, and are called scalars. Similar to
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most authors we use only column vectors, unless stated otherwise. Both vectors
and matrices follow some simple rules of algebra.

1. Sum. If A = (aij) and B = (bij), then C = (cij) is defined by cij = aij + bij. This
is defined only when both A and B are of exactly the same dimension, and
obtained by simply adding the corresponding terms. For example, A + B is a
matrix of all zeros when A is given by (8.1.1) and

(8.1.2)

2. Product. If A = (aij) is m ¥ n and B = (bij) has i = 1, 2, . . . , n, and j = 1, 2,
. . . , p, then the product matrix C = (cij) is of dimension m ¥ p, and is obtained
by “row-column” multiplication as follows: , where i = 1, 2, . . . , m,
and j = 1, 2, . . . , p. Note that ait represent the elements of ith row and btj rep-
resent elements of jth column. Therefore the product above can be defined
only when the range of t is the same for both matrices A and B, meaning A
should have as many columns as B has rows. An easy way to remember this
is that for our “row-column” multiplication, “column-rows” must match. For
example, the product AB does not exist or is not defined for A and B defined
by (8.1.1) and (8.1.2). Since A has 3 columns B must have exactly 3 rows and
any number of columns for the product AB to exist.

In general, we do not expect AB = BA. In fact BA may not even exist even
when AB is well defined. In the rare case when AB = BA, we say that matri-
ces A and B commute.

3. Multiplication of a matrix by a scalar element. If h is an element and A
is a matrix as above, hA = Ah = C defined by C = (cij), where cij = haij. So,
to obtain the matrix C = 2A, simply double the value in each element of 
matrix A.

4. Multiplication of a matrix by a vector. If A is m ¥ n as above, x = (x1, x2,
. . . , xn) is a 1 ¥ n row vector. Now we simply treat multiplication of a matrix
by a vector as a product of two matrices above. For example Ax = c is an 
m ¥ 1 column vector.

5. Rules for sum and product of more than two matrices:
a. Associativity: A + B + C = A + (B + C) = (A + B) + C, or ABC = A(BC)

= (AB)C.
b. Distributivity: A(B + C) = AB + AC, and (B + C)A = BA + CA.
c. Identity: If Om,n is an m ¥ n matrix of all zeroes, then A + Om,n = A. If

In is an n ¥ n matrix (dij), where dij = 1 when i = j and dij = 0 otherwise, it is
called the identity matrix, AIn = A. Note that cancellation and simplification
of matrices in complicated matrix expressions is usually obtained by making
some expressions equal to the identity matrix.

6. Transpose of a matrix. The transpose is usually denoted by a prime, and
is obtained by interchanging rows and columns, A¢ = (aji). The transpose of a
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transpose gives the original matrix. If a matrix equals its transpose, it is called
a symmetric matrix. For example, the transpose of A in (8.1.1) is

(8.1.3)

The product A¢B where B is from (8.1.2) is now well defined. The transpose
A¢ has 2 columns matching the 2 rows of B, giving the column-row match men-
tioned above.

A useful rule for the transpose of a product of two matrices AB (not nec-
essarily square matrices) is (AB)¢ = B¢A¢, where the order of multiplication
reverses.

8.1.2 Determinant of a Square Matrix and Singularity

Let the matrix A be a square matrix A = (aij) with i and j = 1, 2, . . . , n, in this
section. The determinant is a scalar number. When n = 2, we have a simple cal-
culation of the determinant as follows:

(8.1.4)

When n = 3, we need to expand it in terms of three 2 ¥ 2 determinants and
the first row as follows:

(8.1.5)A
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where the uppercase A with subscripts is the new notation. Aij denotes a sub-
matrix formed by erasing ith row and jth column from the original A. For
example,

(8.1.6)

This is also called a minor. |Aij| in (8.1.5) denotes the determinant of the 2 ¥ 2
matrix. The expansion of |A| of (8.1.5), upon substituting for determinants of
minors, will be

(8.1.7)

Signed determinants of minors Aij are called cofactors. Denote

(8.1.7)

In general, for any n, one can expand the determinant of A, denoted by |A| or
det(A), in terms of cofactors as

An alternative definition of a determinant is

(8.1.8)

where s runs over all permutations of integers 1, 2, . . . , n and the function
sgn(s) is sometimes called signature function. Here it is 1 or -1, depending on
whether a permutation is odd or even. For example, if n = 2, the even permu-
tation of {1, 2} is {1, 2}, whereby s(1) = 1 and s(2) = 2. Now the odd permu-
tation of {1, 2} is {2, 1} having s(1) = 2 and s(2) = 1.

The following properties of determinants are useful:

1. det(A) = det(A¢), where A¢ is the transpose of A.
2. det(AB) = det(A)det(B) for the determinant of a product of two matri-

ces. Unfortunately, for the determinant of a sum of two matrices there
is no simple equality or inequality, det(A + B) π det(A) + det(B).

3. If B is obtained from A by interchanging a pair of rows (or columns),
then det(B) = -det(A).
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4. If B is obtained from A by multiplying the elements of a row (or
column), by constant k, then det(B) = kdet(A).

5. If B is obtained from A by multiplying the elements of ith row (or
column), of A by constant k, and adding the result of jth row of A then
det(B) = det(A).

6. Determinant of a diagonal matrix is simply the product of diagonal
entries.

7. Determinant is a product of eigenvalues, det(A) = .The eigen-
values are defined in Section 8.4 below.

8. Zero determinant and singularity. When is the det(A) = 0? (a) If two
rows of A are identical, (b) if two columns of A are identical, (c) if a row
or column has all zeros, and (d) one eigenvalue is zero. Matrix A is called
nonsingular if det(A) π 0.

8.1.3 The Rank and Trace of a Matrix

A T ¥ p matrix X is said to be of rank p if the dimension of the largest non-
singular square submatrix is p. (Recall that nonsingular means nonzero deter-
minant, and X is often the matrix of regressors with T observations.) The idea
of the rank is related to linear independence as follows: We have

(8.1.9)

where the row rank is the largest number of linearly independent rows, and
where the column rank is the largest number of linearly independent columns.
In the example

(8.1.10)

note that a12 = 2a11 and a22 = 2a21. Hence the first two columns are linearly
dependent, and there are only two linearly independent columns. The 
column rank is only 2. Recall that a set of vectors a1, a2, . . . , an, is linearly
dependent if a set of scalars ci exists and the scalars are not all zero and satisfy 

. In (8.1.10) we can let and and choose c1 = 2 and 

c2 = -1 to verify that the summation is indeed zero.
The following properties of rank are useful:

1. rank(X) £ min(T, p). This says that the rank of a matrix is no greater
than the smaller of the two dimensions of rows (T) and columns (p). In
statistics and econometrics texts one often encounters the expression
that “the matrix X of regressors is assumed to be of full (column) rank.”

a2
30

50
= È

ÎÍ
˘
˚̇

a1
15

25
= È

ÎÍ
˘
˚̇

S i
n

i ic a= =1 0

A
a a a

a a a
= È

ÎÍ
˘
˚̇

=
-

È
ÎÍ

˘
˚̇

11 12 13

21 22 23

15 30 53

25 50 2

rank Row rank  Column rankA A A( ) = ( ) ( )[ ]min , ,

P i
n

i A= ( )1l

matrix algebra 185



Since the number of observations in a regression problem should exceed
the number of variables, T > p should hold, which means that min(T, p)
= p. If rank(X) = p, the rank is the largest it can be, and hence we say
that X is of full rank.

2. rank(A) = rank(A¢).
3. rank(A + B) £ rank(A) + rank(B).
4. Sylvester’s law. If A is m ¥ n and B is n ¥ q, rank(A) + rank(B) -

n £ rank(AB) £ min[rank(A), rank(B)].
5. If B is nonsingular rank(AB) = rank(BA) = rank(A).
6. If A is a matrix of real numbers, rank(A) = rank(A¢A) = rank(AA¢).

Assuming that the matrix products AB, BC, and ABC are well defined,
we have rank(AB) + rank(BC) £ rank(B) + rank(ABC).

7. The rank equals the number of nonzero eigenvalues (defined below) of
a matrix. With the advent of computer programs for eigenvalue compu-
tation, it is sometimes easier to determine the rank by merely counting
the number of nonzero eigenvalues.

Trace is simply the summation of the diagonal elements. It is also the sum
of eigenvalues.

Also note that Tr(A + B) = Tr(A) + Tr(B), and Tr(AB) = Tr(BA). We use the
latter to simplify matrix expressions below.

8.1.4 Matrix Inverse, Partitioned Matrices, and Their Inverse

The inverse matrix is an important tool in matrix algebra since any matrix mul-
tiplied by its inverse gives the identity matrix. Let Aij denote an (n - 1) ¥
(n - 1) submatrix (called a minor) obtained by deleting ith row and jth column
of an n ¥ n matrix A = (aij). The cofactor of A is defined in equation (8.1.7)
above as C = (cij), where i, j the element is cij = (-1)i+jdet(Aij). The adjoint of
A is defined as Adj(A) = C¢ = (cji), which involves interchanging the rows and
columns of the matrix of cofactors-indicated by the subscript ji instead of the
usual ij. The operation of interchange is the transpose (above).

The inverse matrix is defined for only square matrices and denoted by
superscript -1. If A = (aij) with i, j = 1, 2, . . . , n, then its inverse

(8.1.11)

where the i, j element of A-1 is denoted by aij, and where Aji is the submatrix
of A obtained by eliminating jth row and ith column. Since the denominator

A a
A
A

A
A

ij i j ji- += ( ) =
( )
( ) = -( ) ( )

( )
1 1

Adj
det

det
det

,

Tr A a Aii i
i

n

i

n

( ) = = ( )
==
ÂÂ l

11

.

186 mathematical techniques



of the inverse has its determinant, the inverse of a matrix is not defined unless
the matrix is nonsingular, meaning it has nonzero determinant. Otherwise, one
has the problem of dividing by a zero.

Inverse of a Product of Two Matrices. (AB)-1 = B-1A-1, where the order is
reversed. This is similar to the transpose of a product of two or more matri-
ces. However, we do not apply a similar rule to the inverse of a sum. In general,
(A + B)-1 π A-1 + B-1. In fact, even if A-1 and B-1 exist, their sum may not have
an inverse. For example, if B = -A, the sum A + B is the null matrix, which
does not have an inverse because one cannot divide by a zero.

Solution of a Set of Linear Equations. Sb = y. Let S be a 2 ¥ 2 matrix 

, and let , and be two column vectors. Multiplying 

out the matrix form Sb = y yields the algebraic form of the two equations:

(8.1.12)

This system of equations can be solved by hand, but let us look at the matrix
solution:

Sb = y.
S-1Sb = S-1y Multiplying each side by S-1.
Ib = S-1y Since S-1S = I.
b = S-1y. Since any matrix times the identity is itself.

This solution works for any number of equations in the system, and therefore
will be of value when the equations get too numerous to solve by hand. In the
example above,

So b1 = 2 and b2 = 3 is the solution.

8.1.5 Characteristic Polynomial, Eigenvalues, and Eigenvectors

There are many concepts in econometrics, such as multicollinearity, that are
better understood with the help of characteristic polynomials, eigenvalues, and
eigenvectors. Given a matrix A, it is interesting to note that one can define a
characteristic polynomial in l as
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(8.1.13)

where A - lI is sometimes called the characteristic matrix of A. How does a
determinant become a polynomial? The best way to see this is with an example
of a symmetric 2 ¥ 2 matrix:

Now the determinant det(A - lI) = (1 - l)2 - 0.49, which is seen to be a
quadratic (polynomial) in l. Note that the highest power of l is 2, which is
also the dimension of A. For n-dimensional matrix A we would have an nth
degree polynomial in l.

The eigenvalues are also called characteristic roots, proper values, latent
roots, and so on. These have fundamental importance in understanding the
properties of a matrix. For arbitrary square matrices, eigenvalues are complex
roots of the characteristic polynomial. After all, not all polynomials have real
roots. For example, the polynomial l2 + 1 = 0 has roots l1 = i and l2 = -i where
i denotes . The eigenvalues are denoted by li where i = 1, 2, . . . , n, are in
nonincreasing order of absolute values. For complex numbers, the absolute
value is defined as the square root of the product of the number and 
its complex conjugate. The complex conjugate of i is -i, their product is 1,
with square root also 1. Thus |i| = 1 and |-i| = 1, and the polynomial l2 + 1 =
(l - l1)(l - l2) holds true. As in the example above, the roots of a polynomial
need not be distinct.

By the fundamental theorem of algebra, an nth degree polynomial defined
over the field of complex numbers has n roots. Hence we have to count each
eigenvalue with its proper multiplicity when we write |l1(A)| ≥ |l2(A)| ≥, . . . ,
≥ |ln-1(A)| ≥ |ln(A)|. If eigenvalues are all real, we distinguish between posi-
tive and negative eigenvalues when ordering them by

(8.1.13)

For the cases of interest in statistical applications we usually consider 
eigenvalues of only those matrices that can be proved to have only real 
eigenvalues.

Eigenvectors. eigenvector z of an n ¥ n matrix A is of dimension n ¥ 1. These
are defined by the relationship. Az = lz, which can be written as Az = lIz.
Now moving Iz to the left-hand side, we have (A - lI)z = 0. In the example
above where n = 2 this relation is a system of two equations when the matri-
ces are explicitly written out. For the 2 ¥ 2 symmetric matrix above the two
equations are
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(8.1.14)

Note that a so-called trivial solution is to choose z = 0; that is, both elements
of z are zero. We ignore this valid solution because it is not interesting or
useful. This system of n equations is called degenerate, and it has no solution
unless additional restrictions are imposed.

If the vector z has two elements z1 and z2 to be solved from two equations,
then why is it degenerate? The problem is that both equations yield the same
solution. The two equations are not linearly independent. We can impose the
additional restriction that the z vector must lie on the unit circle, that is, z1

2 +
z2

2 = 1. Now show that there are two ways of solving the system of two equa-
tions. The choice l1 = 1 + 0.7 and l2 = 1 - 0.7 yields the two solutions. Associ-
ated with each of the two solutions there are two eigenvectors that satisfy the
defining equations Az = l1Iz and Az = l2Iz.

The characteristic equation for the example above (n = 2) is

A remarkable result known as Cayley-Hamilton theorem states that the
matrix A satisfies its own characteristic equation in the sense that if we replace
l by A, we still have

8.1.6 Orthogonal Vectors and Matrices

Geometrically, orthogonal means perpendicular. Two nonnull vectors a and b
are perpendicular to each other if the angle q between them is 90 degrees 
or p/2 radians. Geometrically, the vector a is represented as a line from the 
origin to the point A (say) whose coordinates are a1 to an in an n-dimensional
Euclidian space. Similarly the vector b is represented by a line from the origin
to a point B with coordinates b1 to bn. From analytic geometry, the line joining
the points A and B is represented by |a - b|, and we know the following fact
about the angle q:

where |a| is the Euclidian length of the vector a, that is, |a| = , and 
similarly for b. The length of the line joining the points A and B is
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The vectors are perpendicular or orthogonal if q = p /2, and cosq = 0. Thus
the left side of the equation above for cosq is zero if the numerator is zero,
since the denominator is definitely nonzero. Thus we require that |a|2 + |b|2 =
|a - b|2, which amounts to requiring the cross-product term to be zero, or

, that is, , with the prime used to denote the
transpose of the column vector a. The reader should note the replacement of
summation by the simpler a¢b. In particular, if b¢a, one has the squared
Euclidian length |a|2 = a¢a as the sum of squares of the elements of the vector
a. If the Euclidian length of both a and b is unity, and a¢b = 0, meaning the
vectors are orthogonal to each other, they are called orthonormal vectors.
To see this, let the two vectors defining the usual two-dimensional axes be 
e1 = (1, 0) and e2 = (0, 1) respectively. Now e1¢e2 = (0 + 0) = 0; that is, e1 and
e2 are orthogonal. Since |e1|2 = e1¢e1 = 1 and similarly |e2| = 1, they are 
orthonormal also.

A remarkable result called Gram-Schmidt orthogonalization is a process
that assures that any given m linearly independent vectors can be transformed
into a set of m orthonormal vectors by a set of linear equations.

Orthogonal Matrices. The distinction between orthogonal and orthonormal
is usually not made for matrices. A matrix A is said to be orthogonal if its
transpose equals its inverse. A¢ = A-1, which also means that A¢A = I.

The determinant of orthogonal matrix is either +1 or -1, and its eigenval-
ues are also +1 or -1. To make these results plausible, recall that det(AB) =
det(A)det(B). Hence applying this to the relation A¢A = I for orthogonal A
we have det(A)det(A¢) = det(I). Now det(I) = 1 is obvious.

8.1.7 Idempotent Matrices

In ordinary algebra the familiar numbers whose square is itself are 1 or 0. Any
integer power of 1 is 1. In matrix algebra, the identity matrix I plays the role
of the number 1, and I certainly has the property I n = I.There are other nonnull
matrices that are not identity and yet have this property, namely A2 = A. Hence
a new name “idempotent” is needed to describe them. For example, the hat
matrix is defined as Ĥ = X(X¢X)-1X¢.

Writing Ĥ2 = Ĥ Ĥ = X(X¢X)-1X¢ X(X¢X)-1X¢ = X(X¢X)-1X¢ = Ĥ means that
Ĥ matrix is idempotent. Also Ĥn = Ĥ for any integer power n. If eigenvalues
are li(Ĥ), the relation ln = Ĥ means that li(Ĥn) = li(Ĥ) = [li(Ĥ)]n. Since the
only numbers whose nth power is itself are unity and zero, it is plausible that
the eigenvalues of an idempotent matrix are 1 or 0.

Recall that the rank of a matrix equals the number of nonzero eigenvalues
and that the trace of matrix is the sum of eigenvalues. Using these two results
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it is clear that for idempotent matrices G whose eigenvalues are 0 or 1 we have
the interesting relation trace(G) = rank(G).

If the matrix elements are functions of parameters, the derivative of the
matrix may be taken as follows:

A¢ = [a1 a2 a3]

(8.1.15)

The first derivative of x¢B with respect to x is simply B. For the first deriv-
ative of a quadratic form, let Q = x¢Bx, where x is n ¥ 1, and B is n ¥ n. Then
the 1 ¥ n derivative is:

(8.1.16)

The second derivative of a quadratic form is:

(8.1.17)

8.1.8 Quadratic and Bilinear Forms

If x is an n ¥ 1 vector and A is an n ¥ n matrix the expression x¢Ax is of dimen-
sion 1 ¥ 1 or a scalar. A scalar does not mean that it is just one term in an
expression, only that when it is evaluated it is a number. For example, when 
n = 2, and A = (aij), note that

is a quadratic expression. Hence x¢Ax is called a quadratic form, which is a
scalar and has an expression having four terms. Note that the largest power of
any element of x is 2, even for the case where A is a 3 ¥ 3 matrix. When the
aij and xi are replaced by numbers, it is clear that the quadratic form is just a
number, which is called a scalar to be distinguished from a matrix. A scalar
cannot be a matrix, but a matrix can be a scalar.

Definite Quadratic Forms. Just as a number can be negative, zero, or posi-
tive, a quadratic form also can be negative, zero, or positive. Since the sign of
zero can be negative or positive, it is customary in matrix algebra to say that
a quadratic form is negative or positive definite, meaning that x¢Ax < 0 and
x¢Ax > 0, respectively. The expression “definite” reminds us that it is not zero.
If x¢Ax ≥ 0, it is called nonnegative definite (nnd), and if x¢Ax £ 0, it is called
nonpositive definite (npd). Remember that the matrix A must be a square
matrix for it to be the matrix of a quadratic form, but it need not be a sym-
metric matrix (i.e., A¢ = A is not necessary).
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If one has a symmetric matrix, the cross-product terms can be merged. For
example, the symmetry of A means that a12 = a21 in the 2 ¥ 2 illustration above:

If one has an asymmetric matrix A and still wishes to simplify the quadratic
form this way, she can redefine the matrix of the quadratic form as B =
(1/2)(A + A¢) and use x¢Bx as the quadratic form, which can be proved to be
equal to x¢Ax.

A simple practical method of determining whether a given quadratic form
A is positive definite in the modern era of computers is to find its eigenvalues,
and concentrate on the smallest eigenvalue. If the smallest eigenvalue 
lmin(A) > 0, is strictly positive, the quadratic form x¢Ax is said to be positive
definite. Similarly, if the smallest eigenvalue lmin(A) ≥ 0, which can be zero,
the quadratic form x¢Ax is said to be nonnegative definite. In terms of deter-
minants, there is a sequence of determinants that should be checked to be pos-
itive definite for the quadratic form to be positive definite. We check.

where we have indicated the principal determinants from 1, 2, 3. To see the
intuitive reason for these relations, consider n = 2 and the quadratic form

Complete the square by adding and subtracting (a12/a11)2x2
2. Now write

Observe that Q > 0 requires that a11 > 0 from the first term, and a11a22 - a2
12 >

0 from the second term. The second term is positive if and only if the 2 ¥ 2
determinant above is positive.

8.1.9 Further Study of Eigenvalues and Eigenvectors

There are two fundamental results in the analysis of real symmetric matrices.

1. The eigenvalues of a real symmetric matrix are real. This is proved by
using the fact that if the eigenvalues were complex numbers, they must come
in conjugate pairs. Ax = lx and A = , where the bar indicates the conju-
gate complex number. Premultiply Ax = lx by the ¢ vector to yield ¢Ax =
l ¢x (is a scalar). Now premultiply A = by x¢ to yield x¢A = x¢ . Nowxlxxlxx
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the quadratic forms on the left sides of these relations must be equal to each
other by the symmetry of A (i.e., ¢Ax = x¢Ax). Hence we have (l - )x¢ =
0, which can only be true if l = , a contradiction. The complex conjugate
cannot be equal to the original.

2. Eigenvectors associated with distinct eigenvalues are orthogonal to each
other. The proof involves an argument similar to the one above, except that
instead of , we use a distinct root m and instead of , we use the vector y. The
relation (l - m)x¢y = 0 now implies that x¢y = 0, since the roots l and
m are assumed to be distinct. Hence the two eigenvectors x and y must be
orthogonal.

Reduction of a Real Symmetric Matrix to the Diagonal Form. Let A be a
real symmetric matrix of order n ¥ n having distinct eigenvalues l1 ≥ l2 ≥ . . .
≥ ln ordered in a sequence from the largest l1 = maxi{li, i = 1, 2, . . . , n} to the
smallest ln = mini{li, i = 1, 2, . . . , n}. Denote by G the n ¥ n orthogonal matrix
of corresponding eigenvectors G = [x.1, x.2, . . . , x.n], where the dot notation is
used to remind us that the first subscript is suppressed and each x.i is an n ¥ 1
column vector. Orthogonality of G is verified by the property G¢G = GG¢.
Recall the fundamental relation defining the ith eigenvalue and eigenvector
Ax.i = lix.i, in terms of the dot notation. Denote by L = diag(l1, l2, . . . , ln),
a diagonal matrix containing the eigenvalues in the nonincreasing order.
Combining all eigenvalues, and eigenvectors, we write AG = GL. The relation
G¢AG = G¢GL = L is called eigenvalue-eigenvector decomposition of the real
symmetric matrix A. For example, let

where

It is easy to verify that G¢G = I = GG¢, and G¢AG = L by direct 

multiplication. In the dot notation, note that , that , and that 

G = [x.1, x.2]. We will verify A = GLG¢:
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since w2 = (1/2) by the definition of w. This completes the verification of the
eigenvalue eigenvector decomposition in the simple 2 ¥ 2 case.

8.2 MATRIX-BASED DERIVATION OF THE 
EFFICIENT PORTFOLIO

Since matrix algebra can be used to solve a system of several equations as
easily as a system of two or three equations, the portfolio selection problem
is an obvious application. Portfolio selection requires the investor to find the
weights on each individual stock that give the lowest variance for a required
return. The millions of possible combinations would be intractable by hand,
but with the use of computers and the organization of the system that comes
with matrix algebra, the solution becomes streamlined. A refined derivation
of the tangency solution is based on quadratic programming methods used by
Markowitz. The objective function is formulated as a quadratic function
involving the minimization of variance subject to receiving a specified
expected return. The portfolio selection problem is a generalization of mean-
variance optimizing where the agent wishes to maximize the expected utility
of some function of wealth E(u(W)) where the expected utility is a function
of two arguments f(w¢m, w¢Sw) with f being a nonlinear function increasing in
the first argument and decreasing in the second argument. The vector w
denotes the portfolio weights. We assume that there are n assets from which
the investor chooses her portfolio. The constraint on the weights is that they
must add up to unity: w¢i = 1, where i denotes an n ¥ 1 vector of ones. This is
called the adding-up constraint. The problem can be stated as a maximization
of a Lagrangian function of (8.2.1) below, involving three terms: a positive term
for the mean return, a negative term for the variance or risk, and the last term
for the budget constraint.

A compact and intuitive expression for the Lagrangian objective function
and its solutions needs the following matrix expressions. Following Ingersoll
(1987 p. 84), consider three observable quadratic forms A, B, and C defined as

(8.2.1)

where S is the n ¥ n covariance matrix among returns for the n assets, i is a 
n ¥ 1 vector of ones, and mR denotes an n ¥ 1 vector of average returns.

Our basic objective function is to maximize the return subject to conditions
on the variance of returns and the adding-up constraint. Hence, combining with
the conditions, our Lagrangian objective function in matrix algebra terms is

(8.2.2)

The Lagrangian coefficient g attached to the variance term in (8.2.2) is called
the coefficient of risk aversion, and the Lagrangian coefficient h for the
adding-up constraint does not have a particular name.

max . .w RL w w w w= ¢ - ¢ - ¢ -( )Âm g h i0 5 1
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Using matrix algebra calculus (8.1.16), we can write the solution to the port-
folio problem w* as

(8.2.3)

There is an interesting uniqueness result here. As soon as either g or h are
determined, the solution is known uniquely, since the Lagrangian coefficients
g and h must satisfy the relation: g = B - Ah. There is a singularity when 
h = B/A, which must be assumed away.

Consider the mean standard deviation space with the mean on the vertical
axis. For a given efficient portfolio w*, consider the tangent line to the mean-
variance frontier at the solution w*, and note the intercept point at which this
line meets the vertical axis. In the CAPM framework the zero-beta portfolio
of w* is where the risk is zero, namely where the standard deviation is zero
along the vertical axis. The expected return on such a zero-beta intercept port-
folio can be interpreted as the Langrangian coefficient h.

Over time the mean-variance frontier is expected to change. In such a
dynamic setting one is interested in the following questions: What is the effect
of introducing an additional asset on the mean-variance frontier? How does
the benchmark asset change with the presence of new assets? How does the
frontier of the benchmark asset change? Huberman and Kandel (1987) intro-
duced the concepts of spanning and intersection to deal with the answers to
these questions.

In practice, if some agents believe that they have superior hunch or better
information, they will choose asset proportions different from those in the effi-
cient tangency portfolio. However, Markowitz’s theory suggests that compet-
itive markets should converge toward a consensus portfolio held by everyone.
When faced with the reality of vast differences between individual portfolios,
one may regard mean-variance theory as too constricting. Many authors have
modified the preceding theory to make it more realistic. We have already
noted that in 1960s Markowitz’s mean-variance model was extended by
Sharpe,Treynor, and Lintner into the CAPM. Both models rely on the assump-
tion of independently and identically distributed (iid) normal distribution of
asset returns. Otherwise, higher moments have to be considered.

8.3 PRINCIPAL COMPONENTS ANALYSIS, FACTOR ANALYSIS,
AND SINGLULAR VALUE DECOMPOSITION

This section gives a brief introduction to certain matrix algebra techniques
commonly employed in multivariate statistical analysis with the help of a
simple example. Table 8.3.1 gives artificial data regarding excess returns on 
i = 1 to i = n = 4 assets at t = 1 to t = T = 5 time periods. We place the data in
a T ¥ n matrix denoted by X. There is no loss of generality even if the real
world X can have data on thousands of assets and hundreds of time periods.

w R* .= -( )- -Âg m h1 1
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Singular value decomposition (SVD) is a matrix algebra tool used in 
multivariate statistics for extracting the information content from any such
data set. In SVD one writes

(8.3.1)

as a product of three matrices U, S, and transpose of V. We use GAUSS soft-
ware routine called svd2 in our implementation reported here. In the sequel
we explain the important point that U, S, and V, the three component matri-
ces, reveal the fundamental aspects of all information present in the X data.
For our 5 ¥ 4 example, the X matrix is full column rank, that is p = n = 4 and
the numerical values of the three matrices are given here. The matrix U is of
the same dimension as X and contains “principal coordinates” of X standard-
ized in the sense that U¢U = I, the identity matrix. Note that columns of U
are denoted as u1 to up and that U is not orthonormal, because UU¢ π I. The
original coordinates are rotated to new coordinate system defined on the unit
circle by this standardization. See Vinod and Ullah (1981, pp. 18–23). Table
8.3.2 contains our U matrix for this simple example.

The matrix S is a p ¥ p diagonal matrix, where p is the rank of X. If n < T,
p £ n, and T < n, we have p £ T; that is, the rank cannot exceed the smaller of
the two dimensions of X. The diagonal matrix S contains ordered “singular
values” of X from the largest to the smallest {s1 ≥ s2 ≥ . . . ≥ sp}. For our data,
S is given in Table 8.3.3. The squares of singular values are called “eigenval-
ues” {l1 ≥ l2 ≥ . . . ≥ lp}, and for our data they are {59.77705, 1.145765, 0.513569,
0.013815}. The ratio of the largest singular value to the smallest singular value

X USV= ¢
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Table 8.3.1 Artificial Data for Four Assets and Five Time Periods in a Matrix

Asset i = 1 Asset i = 2 Asset i = 3 Asset i = 4 = n

t = 1 1 1.2 0.99 1.3
t = 2 1.3 2.1 1 1.2
t = 3 2 3 0.99 2
t = 4 1.5 2 1.1 2.2
t = 5 = T 1.6 3 2 1.4

Table 8.3.2 Matrix U of Singular Value Decomposition

U matrix
u1 u2 u3 u4

-0.28657 0.198906 -0.53663 -0.75692
-0.37696 -0.14144 0.207701 -0.19341
-0.54379 0.230496 0.686777 -0.15148
-0.4449 0.588292 -0.36106 0.559251
-0.53116 -0.73567 -0.25857 0.232283



is called the “condition number,” and large number suggests an ill-conditioned
matrix in the sense that its inverse is numerically difficult to compute.

The third matrix V of SVD is also p ¥ p and contains the eigenvectors (also
called characteristic vectors) {v1, v2, . . . , vp} given in the columns of V. For our
data they are given in Table 8.3.4. They are directly linked with the corre-
sponding eigenvalues. Geometrically vi vectors contain direction cosines that
tell us how to orient the ith principal vector with respect to the original co-
ordinate system. The matrix V is said to be orthonormal in the sense that its
inverse equals its transpose, that is, V¢V = I = VV¢.

Another way to express SVD is as follows:

(8.3.2)

In this decomposition note u1v1¢ is a T ¥ p matrix being multiplied by the scalar
s1 = 7.731562. This scalar is much larger than the last scalar multiplier sp =
0.117539 of upvp¢, which shrinks all elements of that matrix. We report the first
term (8.3.2) in Table 8.3.5, where each element is seen to be relatively large in
numerical magnitude.

X s u v s u v s u vp p p= ¢( ) + ¢( ) + + ¢( )1 1 1 2 2 2 . . . .
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Table 8.3.3 Diagonal Matrix of Singular Values

S matrix

7.731562 0 0 0
0 1.070404 0 0
0 0 0.716638 0
0 0 0 0.117539

Table 8.3.4 Orthogonal Matrix of Eigenvectors

v1 v2 v3 v4

-0.43735 0.169461 0.211587 -0.85746
-0.67906 -0.37115 0.494969 0.395144
-0.35578 -0.505 -0.77858 -0.11046
-0.47014 0.760597 -0.32256 0.310519

Table 8.3.5 First Component from SVD with Weights from the Largest Singular
Value

0.969004 1.504527 0.78827 1.041642
1.274669 1.979119 1.036924 1.37022
1.838786 2.854998 1.495825 1.976624
1.504401 2.335813 1.223808 1.617172
1.796063 2.788664 1.461071 1.930698



We report the last term in (8.3.2) in Table 8.3.6, where each element is seen
to be small in numerical magnitude. Hence this artificial example clarifies that
one can ignore trailing eigenvalues and eigenvectors, without much loss of
information.

So far we have not omitted any columns from the SVD, implying that we
have not achieved any dimension reduction. The dimension reduction can be
visualized when we delete trailing singular values, that is, when we replace the
trailing diagonal terms of S by zeros. For example, if we want to keep two
columns (k = 2) to approximate the information in X matrix, we simply replace
the remaining trailing si by zeros and denote the revised S matrix by S1:k. It is
easy to verify that for our example the matrix multiplication US1:2 has the first
two columns with nonzero elements and the last two columns have all zeros.
Ignoring the last two columns of all zeros, we have reduced the column dimen-
sion from 4 to 2. The T ¥ k matrix P1:k of selected k principal components is
given by the SVD from the relation: US1:k = P1:k. Exactly the same principal
components can be obtained from the eigenvalues-eigenvector decom-
position, although the latter fails to reveal the direct link with principal 
coordinates.

If we postmultiply both sides of X = USV¢ by V, the matrix of eigenvectors,
we have XV = US, since V¢V = I. Hence the product US can also be computed
as

(8.3.3)

which defines the factors pi as weighted sums of the original data at each t by
weights given by the matrix V of eigenvectors. These weighted sums, akin to
index numbers, are called the “principal components.” Clearly, the dimension
reduction is obtained by using first few pj, where j = 1, . . . , k.

The factors in factor analysis are obtained upon premultiplying P1:k by an
appropriately chosen matrix L of factor loadings. Factor analysis theory pro-
vides many alternative rotations leading to choices of L to enhance the inter-
pretation. The eigenvalues represent the geometrical “spread” or variance in
the original X data along each principal dimension. The principal components
represent uncorrelated linear combinations of the variables in the columns of
X. The amount of variability in the original data captured by the ith eigen-
vector is related to the corresponding eigenvalues. The total variability is 

XV X v v v v p p p p P k= ( ) = ( ) =1 2 3 4 1 2 3 4 1, , , , , , ,:
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Table 8.3.6 Last Component from SVD with Weights from the Smallest Singular
Value

0.076286 -0.03516 0.009827 -0.02763
0.019492 -0.00898 0.002511 -0.00706
0.015267 -0.00704 0.001967 -0.00553

-0.05636 0.025974 -0.00726 0.020412
-0.02341 0.010788 -0.00302 0.008478



captured by the sum of eigenvalues, which must equal the trace of the matrix,
Slj = Trace(X¢X), where the trace is also the sum of diagonals. In our example,
l1/Slj is 0.80235 and (l1 + l2)/Slj is 0.91343. Thus more than 91% of variance
is captured by the first two components. For large data sets the number of com-
ponents needed is generally much smaller than the rank of X.

The somewhat more familiar eigenvalues-eigenvector decomposition from
Section 8.1.9 can be directly obtained from SVD as follows: Define a diago-
nal p ¥ p matrix L containing the eigenvalues li = (si)2. Since X = USV¢, its
transpose is X¢ = VS¢U¢ = VSU¢, since S is symmetric. Assume that T ≥ n and
the rank of X is n. Now the matrix multiplication X¢X gives

(8.3.4)

where we have used the fact that U¢U = I, and that S being diagonal, SS = S2

= L. This then is the eigenvalues-eigenvector decomposition of X¢X, which is
always a real and symmetric matrix. For each i = 1, 2, . . . , p (= n) we have
X¢Xvi = livi. This equation is solved by considering the determinantal equa-
tion upon inserting the identity matrix:

Since we started with SVD, we have already solved this equation, in the
sense that we know the eigenvalues and eigenvectors. A number of computer
algorithms are available for SVD, PCA, and other computations. From the
viewpoint of numerical accuracy, SVD is generally believed to be most accu-
rate, McCullough and Vinod (1999, 2003). Direct interpretation of eigenvec-
tors as meaningful multivariate (regression-type) coefficients is problematic.

For a rigorous discussion of multivariate “factor analysis” and statistical
inference, see Mardia et al. (1979) and similar texts. For references to recent
research with financial applications, see Connor and Korajczyk (1986, 1988,
1993), Tsay (2002), and their references. Since SVD and PCA are sensitive to
scaling of the data, if the columns of X are not in comparable units, it is better
to standardize the X data so that X¢X is a correlation matrix, as in Vinod and
Ullah (1981). Correlation matrices have ones along the diagonal; hence the
sum of diagonals is simply n, and the proportion of variation included in the
first k principal components is For statistical inference when some
regressors are principal components, the traditional methods involving nor-
mality assumption are no longer necessary if one is willing to use computer
resources for the bootstrap.

8.4 ITO’S LEMMA

Ito’s lemma is a fundamental result in stochastic calculus on par with Taylor
series. If f(S) is a continuous and differential function, its Taylor series expan-
sion is

S j
k

j n=1l / .

X X I vi j¢ - =l 0.

X X VSU USV VS V V V¢ = ¢ ¢( ) = ¢ = ¢2 L ,
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(8.4.1)

where

and

(8.4.2)

Now we let dt Æ 0 and eliminate all terms smaller than dt (in orders of
magnitude); that is, we eliminate terms containing (dt)a when the power a > 1,
but keeping terms involving a = 1. First we consider the limit of dS = mSdt +
sSdz, where the dz in the last term tends to be of order or (dt)0.5 where
the power is no larger than unity. Hence the limit for dS remains mSdt + sSdz.
When we evaluate the three terms in the expansion of (dS)2, there is cancel-
lation. The first term cancels since it involves (dt)2 where the power exceeds
unity.The last term has dtdz of which dz is of order 0.5, implying that this term
is of order (dt)1.5. Since the power of dt exceeds 1, this last term cancels. The
limit as dt Æ 0 involves only the middle term s2S2(dz)2, where (dz)2 Æ dt,
which we do retain. Thus, we conclude that (dS)2 Æ s2S2dt. Now we are ready
to substitute these limits in the Taylor series expansion and adjust Ito’s lemma
of (8.4.1) to become

(8.4.3)

Note that this lemma relates a small change in a function f(S) of the spot price
S of an asset to a small change in the random shock dz = u .

In general, if we consider f(S, t) where the function is time dependent, the
Taylor series will be

Upon evaluating this limit, we have a more general version of Ito’s lemma as

(8.4.4)

As a first application of the lemma above consider f(S) = lnS, the natural log
of S, so that ∂f/∂S = 1/S, ∂f/∂t = 0, and ∂2f/∂S2 = -1/S2. Let f0 denote the initial
value of f(S) when the initial price is S = S0 and df is the change from the initial
value f - f0. Now Ito’s lemma (8.4.4) yields

df
f
S

Sdz
f
S

S
f
t

f
S

S dt= + + +È
ÎÍ

˘
˚̇

+
∂
∂

s
∂
∂

m
∂
∂

∂
∂

s
1
2

2

2
2 2 . . . .

df S t
f
S

dS
f
t

dt
f

S
dS, . . . .( ) = + + +

∂
∂

∂
∂

∂
∂

1
2

2

2
2

dt

df
f
S

Sdt Sdz
f

S
S dt= +[ ]+ +

∂
∂

m s
∂
∂

s
1
2

2

2
2 2 . . . .

dt

dS Sdt Sdz S dt S dz Sdt Sdz( ) = +( ) = ( ) + ( ) +2 2 2 2 2 2 2 2
2m s m s m s .

dS Sdt Sdz= +m s

df
f
S

dS
f

S
dS= + ( ) +

∂
∂

∂
∂

1
2

2

2

2
. . . ,

200 mathematical techniques



This is a stochastic differential equation whose coefficients involve para-
meters m and s2, which are assumed to be constant.

The df = f - f0 when f = lnS - lnS0 = ln(S/S0) is the relative change in the
price S computed from the initial price S0 over the time interval (t0 to t). The
time interval itself will generally be partitioned into infinitesimal (much
smaller) intervals and the ultimate price S consists of a sum of several small
changes in pirce over those smaller intervals. That is, S is a sum of price jumps
or a stochastic integral. The basic model states df is normally distributed with
mean t[m - 0.5s2], which is the drift part, where we replace dt by t due to accu-
mulation of jumps (integration). The variance of df is proportional to the time
interval s2t.

8.5 CREATION OF RISK-FREE NONRANDOM g(S, t) AS 
A HEDGE PORTFOLIO

We have so far considered two random walks df(S, t) and dS, both containing
dz as the random term. This means that the two random walks move together
or are correlated with each other. Hence it is plausible that there is some
mixture function that links the two. If we could choose the mixture function
g(S, t) that will eliminate this randomness, we will have achieved a zero-risk
portfolio. The idea of creating such a mixture function is attributed to Merton
(1976). Let us choose g = f - bS as the linear function with the coefficient b
(to be determined) and apply Ito’s lemma to the function g to evaluate its
dynamics from dg = df - bdS. All we have to do is substitute the expressions
for dS and df from the previous section. The diffusion part of df is ∂f/∂S sSdz,
which is the one with the random part dz. We have to subtract b times the dif-
fusion part sSdz of dS from this. We then have [(∂f/∂S) - b]sSdz. Thus elimi-
nation of diffusion is possible if we choose [(∂f/∂S) - b] = 0.

The drift part of df is

(8.5.1)

Note that we subtract b times the drift part of dS or bmSdt to yield [(∂f/∂S) -
b] times mSdt and some additional terms. Clearly, if we make [(∂f/∂S) - b] = 0
to remove the diffusion part altogether from g(S, t), we have the additional
bonus of deleting one term from the drift part. Thus we have

(8.5.2)

if we choose b = ∂f/∂S.
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An option is called a derivative because the price of an option depends 
on the price S of the asset and time to expiry. Hence the price of an option is
f(S, t), which is subject to Ito’s lemma with its own drift and diffusion parts.
The change in the price of the underlying asset dS is also subject to its own
drift and diffusion. Clearly, df and dS are correlated over time. A linear com-
bination g(S, t) = f - bS is simply the cost of owning a portfolio consisting of
buying one option at the price f(S, t) and selling (due to the negative sign) b
units of the underlying stock. Constructing portfolios (usually involving simul-
taneous buying and selling of options and assets) to reduce or eliminate risk
is called hedging. Hence let us interpret g(S, t) as the hedge portfolio. As time
passes, the price of the hedge portfolio changes by dg = df - bdS. The diffu-
sion parts of df and dS alone have the randomness dz in them. We have just
seen how to eliminate risk arising from randomness by choosing b = ∂f/∂S. We
conclude that the hedge portfolio will totally eliminate risk if it consists of one
unit of the option bought at price f and simultaneously selling ∂f/∂S units of
the underlying stock.

The hedge portfolio should not be confused with a “risk-neutral” portfolio,
even though it neutralizes or eliminates risk from the diffusion part. The
expression risk neutral actually refers to what we do with the drift part. Recall
that dS = mSdt + sSdz has a drift part that depends on the drift parameter m,
which represents the growth rate of the asset price.The Black-Scholes formula
does not have any reference to this m parameter at all. Even if different
investors disagree about the growth prospects of the underlying asset, they can
agree on the same price of the option f(S, t). Now consider a fictional world
where the growth rate m of the asset price S is exactly same as the Bank return
r. If we are comparing discounted present values of different portfolios, the
discount rate r will neutralize the drift growth rate m. Such a fictional world is
called “risk-neutral” world. The derivation of B-S equation without any risk-
neutrality assumption is provided in the next section.

8.6 DERIVATION OF BLACK-SCHOLES PARTIAL 
DIFFERENTIAL EQUATION

The previous section derived the risk-free or risk-neutral portfolio consisting
of both options and stocks. It eliminates the random component altogether
under the following assumptions:

1. The price of option is consistent with dynamic behavior of f(S, t), start-
ing at f and growing in increments of the size df.

2. The underlying stock price starts at S and grows in increments of dS.
3. There are zero transaction costs (brokerage commissions for buying 

or selling) and the functions are differentiable so that all needed 
derivatives exist.
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4. The portfolio consists of one unit of option f(S, t) and (-D) units of the
stock (remember the notation change from b to D to conform with the
Wall Street Greek), where exactly D = ∂f/∂S units of stock are needed to
eliminate the risk.

5. The investor has the option to invest in a government-guaranteed (risk-
free) instrument (e.g., an FDIC insured bank) that pays a return 100* r
percent over the period t0 to t. For example, if r = 0.05 and $100 dollars
are invested, the investor will get $105 = 100(1 + r) dollars over the time
period dt from t0 to t. If only one dollar is invested, the investor will earn
(1 + r)dt, where we insert the dt in the expression instead of assuming 
dt = 1 to retain generality in the choice of the time interval t0 to t.

6. There are no limits on borrowing, buying, and selling from the bank or
from the market for options and stocks.

7. There are no trading curbs when the price moves too much in a short
time period.

8. An investor can take a long (buy) or short (sell) position in any market
without limit.

Although, these assumptions may seem unrealistic, they do not prevent
practical use of the solution equation. Now think of as many dollars as it takes
to buy one unit of the mixed portfolio as g(S, t) = f(S, t) - DS. Let us compare
the $g invested in the mixed portfolio with the investment of $g in the risk-
free government-backed asset, say, a bank. Since a bank yields r dollars for
each dollar, $g in the bank will earn rg dollars. This investment of $g in the
mixed portfolio grows in increments of dg per period from t0 to t. Thanks to
some cancellations, the expression for the return of $dg derived in the previ-
ous section is

(8.6.1)

The earning of $dg is risk free by construction of (8.6.1) and should be com-
parable to the $(rgdt) in the bank. If $dg exceeds $(rg(S, t)dt), a potential arbi-
trager (a savvy investor who profits by selling in one market and buying in
another) will invest in the mixed portfolio of options and stocks (go long on
the mixed portfolio) and borrow money in the bank (go short on the bank) to
come out ahead, without bearing any risk of loss. Conversely, if (rgdt) exceeds
dg, a savvy investor can profit by going short on the mixed portfolio and trans-
ferring the funds to the bank. Clearly, if the market sets the price of options
f(S, t) correctly, there should be no such opportunity for profiting by simply
transferring assets from the bank to the mixed portfolio, and vice versa. In
other words, an efficient market will be characterized by equating the two risk-
free returns, $(rgdt) = $dg.
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The real unknown here is the price of the option f(S, t). The solution to the
option pricing problem is obtained by equating the return in the bank of $rg
with the return in the mixed portfolio g(S, t) of one option f(S, t) and -D units
(= -∂f/∂S) of the stock. Thus the expression for dg noted above should equal
rg(S, t)dt, which can be written as [rf(S, t)dt - rS(∂f/∂S)dt] by its very defini-
tion. Thus the efficient price of option f(S, t) should satisfy

(8.6.2)

where r is the return per dollar from the bank deposit in the time period dt.
Since dt is present in all terms, it cancels and we do some minor rearranging
to yield the celebrated Black-Scholes partial differential equation (PDE) for
efficient pricing of options or any derivative security f(S, t), which depends on
the price of the underlying asset S and the time period t for which the asset is
held:

(8.6.3)

Formula (8.6.3) won Professors Black and Merton the 1997 Nobel memo-
rial Prize in Economics and has proved to be enormously valuable. Since the
highest order of the partial derivative with respect to S is 2, it is a second-order
PDE. Note that it also involves a first-order partial with respect to time.
The “solution” of the PDE will be the formula for the price of the “deriva-
tive” security f(S, t) (5.3.2). Even if finding the solution requires considerable
mathematical skill, verifying whether the two sides of PDE agree merely
involves ability to differentiate f(S, t) twice with respect to S and once with
respect to t.

Once a PDE is defined, one can use the great mathematical machinery
developed over the past two centuries for solving it explicitly and analytically.
With the advent of computers this field has seen much progress in techniques
for numerical solutions. Physicists have been interested in a similar PDE for
estimating the diffusion of heat on a linear rod away from the heat source over
time as heat flows from hot to cold areas. Under certain standard conditions,
the solution of the heat equation involves the Gaussian or normal density. The
solution to the Black-Scholes (B-S) equation also involves the normal density
and cumulative normal.

The Black-Scholes pricing formula (5.3.2) is particularly appealing because
it does not involve any need to forecast the price of the stock, attitude of
market participants to the stock’s future prospects, utility and risk aversions
of the market participants, and so on. There can be much controversy if the
price depends on utility and risk attitudes on which general agreement is
impossible to achieve. The PDE is completely clean and depends on the
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assumptions listed above. Considerable effort has gone in relaxing the assump-
tions in the recent past.

In general, the PDE can be written as afSS + bfSt + cftt + pfS + qSt + u(S, t) =
0, where the subscripts indicate the partials and the coefficients a, b, c, p, q,
and u are all unspecified functions of both S and t to achieve flexibility. For
example, subscript St means partial with respect to S and then with respect to
t, or (= ∂S∂t). The coefficients a, b, and c are of a quadratic with two roots. If
b2 - 4ac > 0, the roots are real and the PDE is called hyperbolic, as is often
used for the study of ocean waves in physics (wave equations). If b2 - 4ac = 0,
the solutions represent an exact square. Such PDE is called parabolic and 
B-S equation is of that type. Finally, if b2 - 4ac < 0, PDE are called elliptic.

8.7 RISK-NEUTRAL CASE

Under the risk-neutrality assumption the drift parameter m equals the risk-
free bank return r. Then the risk-neutral diffusion equation becomes dS = rSdt
+ sSdz, where z is the Wiener process or Brownian motion. Now consider 
f(S, t) = lnS, where ln is the natural log. Recall Ito’s lemma (8.4.4) with m
replaced by r:

(8.6.4)

Applying this to f = lnS, we need ∂f/∂S = (1/S) and ∂2f/∂S2 = -1/S2. Now we
have

(8.6.5)

Thus starting at time t0 until time t, the probability distribution function of
future prices S is given by the lognormal distribution with mean ln[S0 + (r -
0.5s2)t] and standard deviation st.

We illustrate some lognormal densities graphically in Chapter 4. See Section
4.4.5 for a discussion of the basic properties of lognormal. The lognormal
graphs reveal that as the mean increases, the density shifts to the right and the
spread is sensitive to the variance.Thus the diffusion by the lognormal assump-
tion leads to a particular shape. Of course, there are several possible choices
of the probability distributions. Section 4.4 discusses various possible distrib-
utions. The solution to the Black-Scholes partial differential equation is stated
in (5.3.2).
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C H A P T E R 9

Computational Issues
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9.1 SAMPLING, COMPOUNDING, AND OTHER DATA 
ISSUES IN FINANCE

The intrinsic uncertainty in finance arises because we do not know the future
prices and quantities of goods, services, and financial instruments. We have to
make educated guesses about future time paths of these items and invest with
limited resources, using the past data in making these educated guesses.

The data in financial economics is usually a cross section of portfolios at 
a fixed point in time, or a time series of returns over a certain period of time.
A mixture combining of both kinds of data, that is, a cross section repeated
over a time period, is known as panel (longitudinal) data. Statistical analysis
of any data set assumes that there is an underlying population and observed
data are assumed to be a sample from that population. Thus financial eco-
nomics is also subject to uncertainty arising from statistical estimation of para-
meters from observable samples.

In time series analysis, the entire time series represents only one realiza-
tion {xt} of a stochastic process. In 1930s Wiener, Kolmogorov, and Khintchine
(WKK) developed a highly mathematical tool based on the assumption of sta-
tionary time series to conceptualize an ensemble W of a very large number of
time series xt for t = 1, 2, . . . , T, to represent the underlying population. That
theory is not applicable unless we transform the available time series to a
covariance stationary series. The definition of covariance stationary requires
that (1) both the mean and variance are finite and do not depend on time and
(2) covariance at various time lags depends only on the lag itself, not on time.
The word stationary is often used synonymous with “covariance stationary,”
and represents a steady state behavior, whereby the time series reverts to its
own normal steady state fluctuations in the long run. In other words, if a sta-
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tionary time series departs from its steady state in a temporary big swing, it
reverts back to its own pattern.

Financial time series usually possess permanent upward or downward
shocks. Hence their means and variances change over time, making them non-
stationary. WKK theory was developed in the 1930s, under the assumption of 
stationarity. For example, limiting distributions for time series statistics are
available since that time. One can also convert nonstationary series into sta-
tionary series by spectral decomposition and differencing of various orders.
The tools of the WKK theory have since been extended and developed for
certain nonstationary series. Suffice it to say that under sufficiently strong
assumptions inference tools for time series are quite similar to the tools for
cross-sectional data.

Now let us discuss the inference methods for cross-sectional data. Let the
data consist of prices, net returns, or some quantity of interest to the financial
community. A cross section of n portfolios or companies, xi (i = 1, 2, . . . , n)
may be thought of as a sequence of independent and identically distributed
(iid) random variables with a common expectation m and variance s2 Œ (0, •).
Then the central limit theorem (CLT) refers to the behavior of the sum 

as the sample size increases without bound, or as n Æ •. It says that
when the sum is standardized by subtracting its mean and dividing by its stan-
dard deviation as [Sn - nm]/[s ] it converges to N(0, 1), the unit normal
random variable. Most elementary statistics textbooks suggest that n > 30 is a
reasonable number of observations for the CLT to kick in.

As the name suggests, CLT is of central importance, since it permits statis-
tical inference about the population parameter values such as m and s from
the corresponding sample statistics and s2. Confidence intervals and
student’s t statistics are familiar tools for inference. Assume that the observed
statistic is computed from a random sample defined with reference to a well-
defined population. Section 9.3.1 discusses random number generation used
for random sampling. The probability distribution of such a statistic is called
the sampling distribution, which represents its behavior over all possible
samples of xt from the population. Since all possible samples can involve bil-
lions of possibilities, sampling distribution is hard to visualize and rarely avail-
able directly. However, any inference about parameters needs knowledge of
the sampling distribution. Fortunately it is possible to approximate limiting
density of the statistic. The CLT justifies the use of the normal density (or its
transformations) as the limiting density provided the statistic is a transforma-
tion of the sum of n > 30 values of xt. A rigorous discussion of statistical infer-
ence about the population parameters is available in various statistics and
econometrics texts, including Spanos (1999). Usually the estimation uncer-
tainty is expressed by constructing 95% confidence intervals for unknown
parameters.
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9.1.1 Random Sampling Implicit in the Available Data

Clearly, the 95% confidence intervals and other statistical inference proce-
dures based on the probability theory are valid only if sampling of observa-
tions on returns R from the underlying population is random, not subjective
or judgment based. One kind of random sampling is similar to a lottery
whereby each element in the population has an equal chance of being included
in the sample. In selecting a random sample in finance, care is needed to make
sure that the researcher fully understands the sampling mechanism to avoid
selection bias, even if it does not strictly follow the selection rules of a lottery.

9.1.2 Sampling Distribution of the Sample Mean

Assume that (1) We have n > 30 observations and (2) the returns data is a
random sample. Now, when xi are financial returns from a dollar of investment
in a portfolio for a certain fixed time period, the CLT assures us that the
average return = [Sn/n] is distributed normally with mean m and variance
(s2/n), that is,

(9.1.1)

which is the sampling distribution of the sample mean. The estimation uncer-
tainty associated with sample means can be readily known by constructing,
say, 95% confidence intervals [ - 1.96(s2/n), + 1.96(s2/n)], where the multi-
plier 1.96 is obtained from the normal distribution tables.

9.1.3 Compounding of Returns and the Lognormal Distribution

In the preceding text, we have often considered returns R as “net” percent
return over time period t, without compounding in our definition in (2.1.3) of
Chapter 2. The absence of compounding is no problem if t = 1, such as it was
one day as in our artificial example of Chapter 2. If t > 1 is extended over
several unit time intervals, it is not appropriate to compute the simple sum of
returns over the set of individual time intervals. When we considered the pdf
for R as f(R), we have aggregated all R values in one pile without regard to
the time when it occurred and computed its pdf. When we assume the net
returns are standard normal, we are considering an independent and identi-
cally distributed (iid) random variable R ~ N(0, 1).

Now let us consider compounding with unit investment of one dollar. This
means all percent return numbers have to be divided by 100 to get the return
for one dollar. In other words, 1.2% return means that $1 becomes $1.012 at
the end of one period. It is useful to define “gross” return per unit as the gross
receipt at the end of the time interval as (1 + R1) if R1 is the unit (not per-
centage) return in the first interval. Note that it is generally safe to assume
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that gross return will not be negative and log(1 + R1) is a well-defined 
quantity. If R2 is the second period return, upon compounding over two
periods, the gross return per dollar at the end of two time periods becomes 
(1 + R1)(1 + R2). Then log[(1 + R1)(1 + R2)] = log(1 + R1) + log(1 + R2). Let us
denote multiplication by Pt and the natural log of gross return by the lower
case gt. So we have

(9.1.2)

The compound gross returns over a time interval of t periods per dollar of
investment is simply the sum of individual gt values over that interval. In other
words, despite compounding we can use the log transformation to define gt

and still work with summations of gt instead of multiplications. The log trans-
formation greatly simplifies the mathematics of evaluating the resulting port-
folio returns despite often mandatory compounding of returns in financial
time series. If, however, we assume that net returns themselves are iid random
normal, Rt ~ N(0, 1) variables, we cannot assume at the same time that log 
of gross return [log(1 + Rt)] = gt ~ N(0, 1). Fortunately there is a ready-
made density for the purpose at hand called lognormal. The density of the 
lognormal is

(9.1.3)

If log of gross returns gt is a lognormal random variable, its mean equals 
E(g) = exp[m + (s2/2)] and the variance equals V(g) = exp[2m + s2] (exp[s2]
- 1]). See also a derivation by Hull (1997) involving lognormals and Section
4.4.5.

In general, from any distribution similar to the lognormal f(g) of (9.1.3)
financial economists may wish to compute the value at risk. For VaR we need
the formula for the appropriate quantile (1 percentile) and the loss associated
with the outcome represented by that quantile. If one has price data instead
of return data, it is necessary to first convert it to return data before comput-
ing the VaR estimates. Similarly care is needed in computing the net returns
into log gross returns if compounding is present.

The mutual fund with the ticker symbol AAAYX studied in Chapter 2 has
some characteristics of the Pearson type IV density from (2.1.9). The VaR for
this density will need computation of its quantiles (e.g., one percentile), which
is difficult analytically. Recall that one percentile is simply the value of the
random variable such that 1% of the data lie below it and 99% of the data lie
above it. Hence, if we have a numerical evaluation of the cumulative distrib-
ution function (CDF), we can readily compute the needed percentiles. Since
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CDF is the area under the density curve, it needs numerical integration soft-
ware, such as Gaussian numerical quadrature methods for integration. Vinod
and Shenton (1996) and Shenton and Vinod (1995) illustrate the use of such
quadratures. From a practical viewpoint these represent computer programs
(in Gauss) for evaluation of CDFs. Hence value at risk (VaR) defined as a low
percentile of (2.1.9) has also become feasible, with great potential in applied
finance.

9.1.4 Relevance of Geometric Mean of Returns in Compounding

The Wall Street Journal recently reported that the arithmetic mean (AM) of
returns can be 25% a year, when in fact the true return correctly given by the
geometric mean (GM) is zero. It is a mathematical fact that AM ≥ GM. For
example, (a + b)/2 ≥ , unless a = b, when the two sides are equal. We will
see that there are situations where AM is a good approximation to the GM.
Suffice it to say that it is important for every investor to know the difference
between arithmetic mean and geometric mean of investment returns. Before
we discuss that example, and indicate why it holds, let us develop the relevant
compounding concepts in a slightly different notation than above.

For clarity, let us start with a simple example where the investment in a
local bank lasts n = 3 years and the bank yields 5%, 4%, and 6% interest per
year with annual compounding.The per dollar returns are Ri = {0.05, 0.04, 0.06}
for i = 1, 2, 3. Now a deposit holding of $1 becomes H1 = $1.05 at the 
end of one year, H2 = $(1.05)(1.04) at the end of two years, and H3 =
(1.05)(1.04)(1.06) at the end of three years. Thus one dollar of investment
becomes a holding of $ at the end of n years. Note that we
may want to replace the simple average of returns Ri by a product of n gross
returns to allow for the compounding of returns over n time
periods to inject greater realism.

What is the average annual return? A simple average (arithmetic mean) of
5%, 4%, and 6% yields = 0.05. In general, the arithmetic mean is an over-
estimate. The correct estimate of the average return is the geometric mean of
gross returns minus unity, given by (Hn)(1/n) - 1 = 0.04999. Since this result
0.04999 is very close to 0.05 and since finding the nth root generally requires
a calculator, financial advisors have been traditionally using the arithmetic
average of net returns.

One way to ease the computational burden is to use the log transforma-
tion to convert the product into a sum (log of the product is the sum 
of logs) and then taking the anti-log or raising the answer to the power 
of e. The log transform permits us to write the geometric mean as 

. The final expression for the average net 
yield based on the value of one dollar at the end of n periods is obtained after
subtracting the initial investment of one dollar, or average compound return
(ACR), over n periods:

H n Rn
n

i
n

i( ) = ( ) +( )[ ]( )
=

1
11 1exp logS

R

H Rn i
n

i= +( )=P 1 1

H Rn i
n

i= +( )=P 1 1

ab

sampling, compounding, and other data issues in finance 211



(9.1.4)

Recall that log(1 + Rt) was denoted by gt in (9.1.2).
Finally, the Wall Street Journal’s (October 8, 2003, p. D2) dramatic example

used to motivate this section is as follows: A two-year investment has two
returns of 100% in the first year and (-50%) in the second year. If the investor
invested $100 in this portfolio, it would be worth $200 at the end of the first
year and back to $100 at the end of the second year, which was the original
amount invested. Hence the correct return after two years is zero. The arith-
metic average of two returns is vastly overestimated as (100 - 50)/2 or 25%
annual return. Here R1 = 1 and R2 = -0.5, n = 2, (Hn)(1/n) is simple square root.
Note that the geometric mean of gross returns (i.e., after adding 1 to unit
investment returns) is , and after the initial investment
of $1 is subtracted, the return is indeed zero. It is useful to check that the 
log formula also works. Now (1/n) is the simple average 
of log(2) = 0.6931 and log(0.5) = -0.6931, which is zero. Hence (Hn)(1/n) =
exp[(1/n) ] = exp(0) = 1. Thus the formula in (9.1.4) correctly
yields average compound return of zero.

It is important to recognize that the choice of the arithmetic mean over geo-
metric mean is both simpler and self-serving to the investment professionals.
Since AM ≥ GM always holds, security salespeople cannot go wrong by choos-
ing the AM. Securities professionals often allege that if an investor placed her
money in S&P 500 index stocks or Dow Jones Industrials from 1927, the return
will be phenomenal, with the suggestion that everyone should invest in the
stock market.There are three factors that tend to overstate the case for invest-
ing in the stock market. (1) Income taxes on earnings are not included in the
calculations. (2) When a corporation goes bankrupt or loses its business prof-
itability and ceases to be a major player, they are de-listed from the stock
exchange and replaced by more successful corporations in the stock indexes.
This practice causes an upward bias in returns. (3) The averaging is done with
the arithmetic mean and not geometric mean of gross returns minus unity.

Similar to investment professionals, statisticians also prefer to work with
arithmetic means because the sampling distribution of ~ N(m, s2/n), given
above in (9.1.1), is so convenient, having only two moments to consider. Hence
it appears to be a conspiracy between statisticians and investment profession-
als to rely on the arithmetic mean even though it can be so wrong. There are
assumptions under which the arithmetic can be a good approximation to the
geometric mean. They are discussed next.

9.1.5 Sampling Distribution of Average Compound Return

We now explain how the CLT can still apply after compounding, provided that
the data satisfy some assumptions and allow the log transform to be used to
approximate the geometric mean by the arithmetic mean. Let us further
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assume that per dollar returns are small numbers, |Ri| < 1. This rules out the
100% return or the per dollar return of Ri = 1, as in the Wall Street Journal
example above. Consider the Taylor series expansion of log(1 + Ri) = Ri -
(Ri)2/2 + (Ri)3/3 - (Ri)4/4 + . . . . Since |Ri| < 1, we can ignore terms with higher
powers of Ri and approximate it by the linear term Ri. Now is
approximately Sn = Ri. Substituting in (9.1.2), we have ACR = exp( ) - 1,
as the average compound return based on n periods. Now recall from (9.1.1)
that the sampling distribution of the mean can be written as ~ N(m, s2/n).
The CLT permits us to say that this same sampling distribution remains a good
approximation even if the underlying variable R is not normally distributed,
as long as the arithmetic average is calculated from n > 30 observations.
Recall that (9.1.3) gives the functional form of the lognormal. This functional
form is often derived by using the following well-known transformation: If 

~ N(m, s2/n), exp( ) is lognormally distributed. Note that it is tempting to 
use log as the transformation instead of the correct exp( ). Thus we write
exp( ) ~ LN(m, s2/n). The functional form of the lognormal in (9.1.3) is only
slightly more complicated than that of the normal. The lognormal is well
described by the first two moments. Thus CLT lets us approximate the func-
tional form of the sampling distribution of average compound return (ACR).
In short, statistical inference about population parameters is possible even if
we are working with geometric means needed for compound returns.

9.2 NUMERICAL PROCEDURES

This section focuses on the numerical methods, including important numeri-
cal accuracy issues, that are not widely known. Computer intensive methods
are attractive in empirical research due to exponentially declining costs of
computing. There is a natural tendency to simply assume that if an answer 
is found by using a computer, it must be correct. This myth needs to be
debunked, since numerical errors can mean losses in millions of dollars. Our
discussion here follows McCullough and Vinod (1999, p. 638), who write:
“Computers are very precise and can make mistakes with exquisite precision.”
In general, if large sums of money are involved, our advice is to check every-
thing carefully and use two or more computing environments as a check on
one another.

9.2.1 Faulty Rounding Story

A story in the Wall Street Journal (November 8, 1983, p. 37) about the 
Vancouver Stock Exchange index (similar to the Dow-Jones Index) is a case
in point. The index began with a nominal value of 1000.000, recalculated after
rounding transactions to four decimal places, the last being truncated so that
three decimal places were reported. Intuitively, truncation to the fourth
decimal of numbers measured to 103 is innocuous.Yet within a few months the
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index had fallen to 520, without any recession but due to faulty rounding. The
correct value should have been 1098.892 according to Toronto Star (Novem-
ber 29, 1983). Consider a number 12.005, if we always round up to 12.01, it
creates an obvious bias. An old solution is to round to the nearest even
number, whereby 12.005 becomes 12.00 (zero is an even number) but 12.015
becomes 12.02. It is not easy to program this sophisticated rounding, and in
the absence of demand for more accurate arithmetic by the common users,
most software programs simply ignore the rounding problem. Ideally, math co-
processors inside a computer’s box should directly round correctly without any
need for human intervention through software. Use of alternative computing
environments can reduce if not eliminate this and other problems discussed
here.

9.2.2 Numerical Errors in Excel Software

Consider the familiar Microsoft Excel 2000 (v. 9.0.2720) package. Place
numbers 1, 2, and 3 in the first column, and use STDDEV function to compute
the standard deviation of these numbers. The correct answer is 1. Now add
99,999,999 to each number. Clearly, the standard deviation should not change
by addition of any number. However, Excel gives the answer of zero! It
appears that as long as the numbers are smaller than 100 million, Excel works
all right. This is a serious problem with such popular software, which was
pointed out to Microsoft years ago and still has not been fixed. One explana-
tion is the monopoly that Microsoft enjoys, and perhaps a more potent expla-
nation is that the commercial users of the software do not care enough about
numerical accuracy.

9.2.3 Binary Arithmetic

While we humans calculate using decimal base 10 arithmetic, computers map
all numbers to base 2 (binary) arithmetic (denoted by subscript (2)) where
only 0 and 1 are valid numbers. For example 111(2) = 1+ 2 + 4 = 7 = 23 - 1,
1111(2) = 7 + 8 = 24 - 1 = 15, 10000000000(2) = 210 = 1024. An eight bit binary
number 11111111(2) = 28 - 1 = 255, a sixteen bit binary is 216 - 1 = 65535. The
number of bits stored in computer memory limit the largest binary number
possible inside a computer. The largest integer number correctly represented
without rounding inside a sixteen bit computer is only 65535. The numerical
inaccuracies arise because base 2 must be combined, as a practical matter, with
finite storage and hence finite precision.

Consider a computer “word” with 32 bits, where a floating point binary
number is often partitioned as s ¥ M ¥ BE, where s is the sign, M is the 
Mantissa, B is the base (= 2), and E is the exponent. One bit is for the sign s,
eight bits are for E, the signed exponent, which permit 27 - 1 or 127 or -126
as the exponent.A positive integer Mantissa is a string of ones and zeros, which
can be 24 bits long.
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It can be shown that real numbers between (1.2 ¥ 10-38, 3.4 ¥ 1038) alone
can be represented in a computer (McCullough and Vinod, 1999, p. 640).
Numbers outside this range often lead to underflow or overflow errors. It is
tempting to avoid the underflow by simply replacing the small number by a
zero. The newer computers usually do this by saving it into computer registers
as zero, while keeping in “mind” the correct number. The trick (not recom-
mended by experts) is to use zero “as is” quickly, and in place, without “saving”
it in computer memory registers. In general, the trick fails because, after it is
saved as a zero, we can neither prevent that zero from becoming a denomi-
nator somewhere later nor rule out other unpredictable errors.

Another similar problem called log-of-zero problem arises when logarithms
of a variable that can become zero are computed. In maximum likelihood esti-
mation, hiding the log-of-zero problem by simply replacing numbers close to
zero by a very small number is also not recommended. McCullough and Vinod
(2003) note that this introduces a kink in the likelihood (objective) function
where derivatives do not exist, vitiating the standard calculus methods of
finding the maxima of a function by setting its derivatives equal to zero.

9.2.4 Round-off and Cancellation Errors in Floating Point Arithmetic

The best representation of the floating decimal number 0.1 in binary format
is 0.09999999403953, which does round to 0.1, but the reader is warned that it
is only an approximation. By contrast, the decimal 0.5 = 2-1 needs no approx-
imation, since the binary method readily deals with powers of 2. The comput-
ers are hard wired such that when two floating point numbers are added, the
number that is smaller in magnitude is first adjusted by shifting the decimal
point until it matches the decimal points of the larger number and then added
to efficiently use all available bits. Unfortunately, this right-shifting of the
decimal introduces so-called round-off errors. A particularly pernicious “can-
cellation error” is introduced when nearly equal numbers are subtracted (the
answer should be close to zero) and the error can be of the same magnitude
as the answer. Yet another error called “truncation error” arises because soft-
ware uses finite-term approximations.

Consider a long summation of (1/n)2 over a range of n = 1 to 10,000 by com-
puter software. The result does not necessarily equal the same sum added
backward from n = 10,000 to 1. The experts know that the latter is more accu-
rate, since it starts adding small numbers, where the truncation error is known
to be less severe.

9.2.5 Algorithms Matter

Ling (1974) compared algorithms for calculating the variance for a large data
set. Letting S denote the sum from i = 1 to i = n, the numerically worst is the
“calculator’’ formula:
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(9.2.1)

The standard formula

(9.2.2)

is more precise because V1 squares the observations themselves rather than
their deviations from mean and, in doing so, loses more of the smaller bits 
than V2.

Ling shows, however, that following a less familiar formula is more accu-
rate. The formula allows one to explicitly calculate [S(xi - )], the sum of devi-
ations from the mean, which can be nonzero only due to cancellation,
rounding, or truncation errors. The idea is to use the error in this calculation
to fix the error in the variance as follows:

(9.2.3)

Many students find it hard to believe that three algebraically equivalent for-
mulas under paper and pencil algebra methods can be numerically so differ-
ent, and some even laugh at the idea of adding [S(xi - )], which should be
zero.

9.2.6 Benchmarks and Self-testing of Software Accuracy

In light of all these problems with computer arithmetic it is useful to have 
a way to compare algorithms. For this we need explicit standards called 
benchmarks with which to compare algorithms. Longley (1967) showed 
that software reliability cannot be taken for granted. With the advent of the
Internet, the Statistical and Engineering Division of the National Institute 
for Standards and Technology (NIST) has released useful benchmarks for 
statistical software called Statistical Reference Datasets (StRD) at:
http://www.nist.gov/itl/div898/strd (see Rogers et al., 1998). To circumvent
rounding error problems, NIST used multiple precision calculations, carrying
500 digits for linear procedures and using quadruple precision for nonlinear
procedures to come up with a set of “certified” solutions.

Certain software products are known not to meet NIST benchmarks and
such findings are published in software evaluation sections of the Journal of
Applied Econometrics, American Statistician, and elsewhere. Unless the soft-
ware vendors have solved the problems in later versions, one should avoid any
software that does not meet the NIST standards. Any software user can easily
test whether a particular software computes the results that are close enough
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to the NIST certified values. McCullough and Renfro (1999) provides bench-
marks for GARCH estimation that may be of interest to financial economists.
For much of software commonly used in finance, it would be useful to have
more such benchmarks with certified correct values.

9.2.7 Value at Risk Implications

Let z be the standard normal variable, N(0, 1), and let the return R be nor-
mally distributed with mean m and standard deviation s, R ~ N(m, s2). Let 
a¢ = 0.025 Œ [0, 1], where the associated quantile Za¢ is defined by the follow-
ing probability statement Pr(z £ Za¢) = a¢. Equation (2.1.3) in Chapter 2
defined value at risk as VaR(a¢) = -Ra¢ *K, where Ra¢ = (m + Za¢s) and K
denotes the capital invested. Note that a¢ is a low percent quantiles of a prob-
ability distribution. The quantiles Za¢ involve looking up the normal tables
backward. With the wide availability of the Microsoft Excel program, the
inverse CDF is simply one of the available functions, so the table lookup is no
longer needed. Table 9.2.1 reports the quantiles from the inverse of the CDF
of unit normal (NORMINV) in the column entitled quantiles. The last row of
the table suggests an Excel command. For example, a¢ = 0.01 level estimate in
Table 9.2.1 based on Excel is Za¢ = -2.326347 compared to the more accurate
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Table 9.2.1 Normal Quantiles from Excel and Their Interpretation

Proportion Percent or Quantile pdf of
Numerator Denominator or (a¢) (a¢)*100 Za¢ = F-1(a¢) N(0, 1)

1 1000 0.001 0.1 -3.090253 0.003367
1 500 0.002 0.2 -2.878172 0.003367
1 100 0.01 1 -2.326347 0.00634
1 75 0.013333 1.333333 -2.216361 0.026652
1 50 0.02 2 -2.053748 0.034216
1 25 0.04 4 -1.750686 0.048418
1 20 0.05 5 -1.644853 0.086174
1 10 0.1 10 -1.281552 0.103136
1 5 0.2 20 -0.841621 0.175498
1 2 0.5 50 0 0.279962
1 1.25 0.8 80 0.841621 0.398942
1 1.111111 0.9 90 1.281552 0.279962
1 1.052632 0.95 95 1.644853 0.175498
1 1.041667 0.96 96 1.750686 0.103136
1 1.016949 0.983333 98.333333 2.128044 0.086174
1 1.010101 0.99 99 2.326347 0.041452
1 1.001001 0.999 99.9 3.090253 0.026652
1 1.002004 0.998 99.8 2.878172 0.003367
1 1 1 100 Infinity 0

= (Ai/Bi) = Ci*100 NORMINV NORMDIST



Za¢ = -2.326348 by the S-Plus software. The Excel result is wrong only in the
last digit, but this can mean thousands of dollars.

In fact the Excel function NORMINV accepts arbitrary values of mean and
variance to directly yield Ra¢. Although we have not inserted the subscript t
on the mean and standard deviation, it is understood that they are true for
some specific time horizon t. Note that it makes sense to multiply the K by
0.01, as in formula (2.1.4), because our data refer to the percentage returned
for the time period of one day. Thus, for our artificial daily data, VaR(t = one
day, a¢ = 0.01) = [2.326348(0.820537) - 0.322333]*(K*0.01) = 1.586522 if 
K = 100. We estimate that VaR = $1.59 to the nearest penny.

RiskMetrics Inc. is a popular source of VaR wisdom to finance practi-
tioners. However, it is important to note that the quantile for a¢ = 0.025, from
N(0, 1) in RiskMetrics publications is 1.65, which is incorrect compared to the
correct number 1.644853. Again, the accuracy of these quantiles matters in
financial applications, since the trailing digits can mean error of thousands of
dollars in the estimate of VaR.

Any estimate of VaR obtained from historical (sample) data is subject to
sampling variation, and it is not difficult to construct a confidence interval
using the estimated VaR. Finance practitioners can achieve greater precision
if they learn to use such intervals around several similar sample quantities such
as the Sharpe ratio from Section 5.2.1. This will be discussed later in this
chapter in the context of bootstrap resampling techniques for finding the limits
of these intervals.

9.3 SIMULATIONS AND BOOTSTRAPPING

We assume that the reader is aware of randomization and computer simula-
tions. For example, one encounters charitable events having a raffle lottery
where donors buy a two-stub ticket bearing a common number. One of the
stubs is placed in a barrel, which is rolled in front of the audience and usually
a cute child picks up the winning number(s) from the barrel. This is a form of
random selection whereby each ticket gets an equal chance of being a winner.
Formally, this amounts to selecting a number from the uniform density.

9.3.1 Random Number Generation

More generally, random numbers can be designed to give not one but a set of
items an equal chance for being selected. In those situations where repeat
selection is allowed, a simple way to keep the selection chance the same is to
return the item back to the barrel before each selection. This is called selec-
tion with replacement and will play an important role in the context of the
bootstrap.

In our computer age the barrel is readily replaced by computer programs.
Transcendental numbers like e and p are limits of something and can be

218 computational issues



written out by computers to any number of digits of accuracy. The sequence
of digits can be in the thousands, appears to be random, and can perhaps be
used to write software for random number generation. Although there are
better methods to use in practice, we use it to help explain some of the prin-
ciples involved in computer-generated random numbers. For example, con-
sider p expanded up to 50 digits as

(9.3.1.1)

where the number of repeats of different digits from 0 to 9 are (1, 5, 5, 8, 4, 5,
4, 4, 5, 8), respectively. If we focus on digits 1, 2, 5, and 8 only, they repeat
exactly five times, implying a uniform distribution for these digits. Recall from
Section 9.2 that any integer can be considered as a member of the binary
system. By analogy, it can be a member of a base 4 system (modulo 4). Now
we can ignore all numbers other than 1, 2, 5, and 8 from the expansion of p,
change them to 0, 1, 2, and 3, and develop a computer program to generate
uniform random integers.

Four Properties of Pseudorandom Numbers. Although such a scheme based
on p is quite inconvenient to use in practice, we use it here to illustrate four
key points about computer-generated random numbers: (1) After obtaining
any set of alleged uniform random numbers, one must check whether they
satisfy all properties of the underlying (uniform) distribution. The checking
itself can be a complicated task. (2) The random numbers may be selected to
start after ignoring a user-specified number (e.g., 6) of initial digits on the right
side of the decimal in (9.3.1.1). We call the number of digits ignored the seed
for the subsequent random numbers. (3) Note that once the seed is decided
the “random” numbers in the sequence (9.3.1.1) are completely deterministic
and known in advance. So we have what are accurately described as pseudo-
random numbers. (4) Although the numbers from the simple sequence in
(9.3.1.1) do not seem to cycle or repeat themselves, absence of cyclical behav-
ior cannot be guaranteed when one needs billions of random numbers from
different software tools. In fact it is found that most algorithms yield pseudo-
random numbers that do cycle eventually. A preferred algorithm should have
a cycling period equal to a very large number (>231).

In 1960s IBM’s developed RANU, a FORTRAN computer language gen-
erator of pseudorandom numbers from the uniform density. RNDU was later
criticized, and new generations of random numbers are still being developed
that improve on earlier attempts. All computer-generated random numbers
are necessarily sensitive to the chosen seed. A decent generator should start
with a user-specified seed so that replication is possible. Some older packages
keep the seed implicit (rather than user-specified) and get it from the system
clock. If one is attempting serious replicable research, it is imperative that the
unknown seed from the system clock not be used.The new computer programs

p = 3 1415926535897932384626433832795028841971693993751. ,
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usually have the option to choose the seed, but they involve a few extra pro-
gramming steps.

DIEHARD Tests. Under a grant from the National Science Foundation, G.
Marsaglia of the Florida State University developed a battery of tests for
checking whether the alleged uniform random numbers are truly uniform.
Marsaglia (1996) posts 18 tests called DIEHARD on the Internet to reveal
hidden defects among the pseudouniform random numbers produced by a
software package. Details regarding such tests are too technical for our pur-
poses and best omitted for brevity. It is possible to test whether any given soft-
ware satisfies the DIEHARD tests. For example, Vinod (2000a) found that an
older (then current) version of the Gauss software passed eight tests called
(1) Sparse occupancy overlapping pairs, (2) Sparse occupancy overlapping
quadruples, (3) DNA, (4) Count the stream of bytes of ones, (5) Squeeze,
(6) Overlapping sums, (7) Runs, and (8) Craps. However, Gauss software 
failed the following 10 tests, called (1) Birthday spacings, (2) Overlapping 5-
permutation, (3 to 5) Binary rank for 31 ¥ 31, 32 ¥ 32, and 6 ¥ 8 matrices,
respectively, (6) Bitstream, (7) Count the individual one bytes, (8) Parking lot,
(9) 3-D spheres, and (10) Minimum distance.

Random Numbers from Arbitrary Densities. The next natural question is:
How to generate random numbers from any well-defined probability distrib-
ution besides the uniform? The answer is surprisingly not difficult. Assuming
that the inverse cumulative probability distribution function (ICDF) is well
defined, one can simply start with uniform random numbers and use the ICDF
to find the quantiles as random numbers from the relevant distribution. This
works because the CDF covers a finite range from a probability of zero to one.
Areas of the distribution with higher density will cover a wider range of the
CDF, and thus be mapped with a higher likelihood using the ICDF.

There are other methods that do not use the ICDF applicable for certain
densities such as the normal or Cauchy. Although this brief introduction
cannot explain the complete details, it is intended to give the reader a flavor
of what is involved. Since finance applications can involve large sums of
money, it is important that the reader knows about publicly available tests to
protect oneself from bad random number generators.

9.3.2 An Elementary Description of Simulations

A Monte Carlo simulation is a technique designed to generate a large number
of trials of any random phenomenon. The trials are individual realizations in
a simulation study. The random phenomenon from the real world often
involves complex systems and randomness arising at different stages in com-
plicated ways having complicated interactions.A large collection of simulation
trials is used to separately create the random situations and eventually com-
bined them using complicated interactions to create a (mathematical) model
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of the random phenomenon.These models can have many mathematical equa-
tions and require realistic statistical assumptions regarding the underlying
random probabilities. The aim of any simulation is to find an approximate
probabilistic representation of the entire range of possible outcomes from a
random phenomenon. In many complex situations this is the only way to
understand the phenomenon and the only way to make statistical inference
about error probabilities.

Simulation Pitfalls. One danger in using simulation methods is that un-
scrupulous persons can use complex simulation models to sell a particular
viewpoint or product. Besides numerical problems with random number gen-
erators, a simulation study is very sensitive to the accuracy of the assumed
model, assumed random patterns, and accuracy of random number generators.
Professor John Tukey of Princeton once said “Only good simulation is a dead
simulation.” Other critics have called it “Garbage in, garbage out.” Hence we
warn the reader to take a careful look at the assumptions and empirical factual
basis of the simulations before accepting the conclusions of a simulation 
study.

Simulating VaR. In Chapter 2 we discussed the value at risk calculation
needed by finance practitioners. A Monte Carlo simulation can be used to
know the low quantile of the key formula (2.1.4) for VaR for any complicated
density as follows: We have noted elsewhere that Pearson type I density and
similar complicated densities are more realistic compared to the normal
density in finance applications. Often the ICDF for these densities is only avail-
able in the form of a computer algorithm (subroutine), since analytical for-
mulas do not exist. The simulation method here first generates uniform
random numbers.Then use the ICDF algorithm for the desired density to gen-
erate a large random sample from the type I or some other complicated
density. Finally it is not difficult to compute the percentiles of interest from
the simulation. Although early developers of VaR relied on the normality
assumption, it can be readily relaxed by using the simulation steps outlined
above.

Out-of-Sample Checking of Simulations. In finance we can use Monte Carlo
simulations for more ambitious applications than creating the percentiles of
complicated nonnormal densities. We can use simulations to represent the
reality of the complex and interacting financial world. For example, one can
simulate asset prices and trading volumes based on historical data and/or
assumptions. Large multinational corporations have several subsidiaries that
deal with worldwide clients including other partly or fully owned subsidiaries.
They may be selling something in one market and buying a similar product in
another market. They can also use myriad sophisticated derivative securities
for hedging.
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All of these things are subject to market conditions, which are random.
Hence no simple mathematical model can describe such multinational opera-
tions. Often the only feasible way to understand and incorporate the com-
plexities is to create a large brute force input–output type simulation model.
One needs to spell out each buying, selling, input, and output component in
great detail. At the minimum any simulation model should be able to recre-
ate the known past sample data fairly accurately within random error bands
and also remain accurate for few out-of-sample time periods. A careful simu-
lation study should only use a subset of available time periods and reserve a
few known data points for out-of-sample calibration and checks of the model.

VaR can be computed by a careful listing of what can happen to (1) prices,
(2) quantities bought and sold, (3) financial instruments bought and sold, (4)
the firm itself through deaths of key personnel, mergers and acquisitions,
natural disasters, terrorism, litigation, corruption and other unforeseen events.
We recommend that these lists should be quantitative and be accompanied 
by corresponding probabilities, mostly based on past data. Of course, in the
absence of data, expert opinions and guesses can be used. If the probabilities
are conditional probabilities (given the values of related items), it is nowadays
possible to create the unconditional (also known as marginal) density by using
Gibbs sampling computer algorithms. Casella and George (1992) give an ex-
cellent introduction to the idea behind Gibbs sampler. It is often best to use
marginal densities and let the simulation model represent the interactions.

Depending on the complexity of a portfolio, it is clearly possible to create
a computer software tool (e.g., an Excel workbook) listing hundreds of possi-
ble outcomes and work through the scenarios to determine potential losses
with the associated probabilities. The next step is to rank-order the exhaustive
list of scenario loss numbers from the worst case to the best case.VaR is simply
the low percentile of these loss numbers. Clearly, VaR computations are a
useful management tool. Large entities (multinationals) need to first create a
simulation model to assemble various implications of major investment deci-
sions. They then need to create the underlying relevant probability density
associated with the investment decision in conjunction with the simulation
model. The next step is to focus on the loss side by computing the losses net
of all gains and simulate a range of “worst-case loss scenarios,” each with a
corresponding probability. Finally focus on the potential loss associated with
probability a¢ (= 0.01) given by the quantile is the VaR for investment deci-
sions by large and complex entities (multinationals).

Instead of using random numbers to generate prices or quantities, in some
cases it is more realistic to make the “changes” in prices or quantities random.
Time series forecasting methods are often useful here. Modern software tools
already create realistic simulations of airplane flights with randomness pro-
vided by several things including the weather. We claim that detailed simula-
tions of all subcomponents can indeed handle complex business conditions.
However, we warn against unnecessary or ill-understood complexity. The sim-
ulation design should provide an option to obtain results for special cases
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when some nonlinear relations become linear and some nonnormal densities
become normal. It is best to simplify as much as possible and avoid intercor-
relations among prospects. For handling unavoidable covariances methods
based on extensions to (2.1.10) can be used.

9.3.3 Simple iid Bootstrap in Finance

Here we review Efron’s (1979) method, called the bootstrap. The bootstrap
literature has made tremendous progress in solving an old statistical problem:
making reliable confidence statements in complicated small sample, multiple-
step, dependent, nonnormal cases.The appeal of bootstrap is that it substitutes
raw computing power for intricate statistical or econometric theory, without
sacrificing the quality of inference.

Some of the early applications of the bootstrap in finance are worth men-
tioning. Stock market data often need estimators of stable law parameters,
whose sampling distribution can be studied with the help of the bootstrap, as
in Akgiray and Lamoureux (1989). Schwartz and Torous (1989) estimate stan-
dard errors of maximum likelihood estimates in a study of prepayment and
valuation of mortgage-backed securities. Affleck-Graves and McDonald
(1990) report an application to multivariate testing of the capital asset-pricing
model (CAPM). Their tests include maximum entropy methods, designed to
deal with the singularity when the number of assets included in the CAPM
exceeds the number of time series data points. Bartow and Sun (1987) report
confidence intervals for relative risk models. Next we explain these older and
many new applications of the bootstrap in finance in the context of a simple
regression application.

9.3.4 A Description of the iid Bootstrap for Regression

Here we describe the bootstrap for the multiple regression model. We refer
the reader to Appendix A of this chapter for a full description of the model
in matrix notation. Let us consider the usual regression model:

(9.3.1)

where y is a T ¥ 1 vector of the dependent variable, X is a T ¥ p matrix of p
regressors where the first column consists of all ones if an intercept is present
in the model. The matrix X has rank p if the regressors are not collinear. If the
rank of X is deficient, the regression coefficients b1, b2, . . . , bp, which are the
individual elements of the p ¥ 1 vector b, cannot be estimated. The vector u is
a T ¥ 1 vector of independent and identically distributed (iid) true unknown
errors with elements ut and unknown possibly nonnormal true distribution
function F satisfies E(u) = 0, E(uu¢) = s2I; that is, they have mean zero and
variance s2.

y X E u E uu I= + ( ) = ¢( ) =b m s, , ,0 2
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The ordinary least squares (OLS) estimator of b minimizes the error sum
of squares u¢u and the solution is b = (X¢X)-1X¢y. If we plug in these values in
the model (9.3.1), we can obtain the fitted values of the dependent variable
denoted by = Xb. Hence the vector of estimated values of true unknown
errors u, denoted by e is simply y - , that is, e = y - Xb. The statistical prop-
erties of the OLS estimator b depend crucially on the covarience matrix of u
given by E(uu¢), which determines the covariance matrix of b:

(9.3.2)

An empirical cumulative distribution function ECDF of OLS residuals puts
probability mass 1/T at each et. Let the ECDF of observable residuals be
denoted here by Fe. Now a basic bootstrap idea is to use Fe which has mean
zero and variance s e

2 as a feasible, approximate, nonparametric estimate of the
unobservable CDF of the true unknown errors denoted by Fu.

Shuffling of Observed Residuals. Let J be a suitably large number (e.g.,
= 999). We draw J sets of bootstrap samples of size T, with elements denoted
by ejt* ( j = 1, 2, . . . , J and t = 1, . . . , T) from Fe using random sampling with
replacement. To understand this sampling, imagine T tickets marked with e1

to eT, the observed OLS residuals. Next, imagine drawing a random sample 
j = 1 of size T from a box containing the T tickets having elements ejt* ( j = 1,
t = 1, 2, . . . , T). We imagine shaking the box vigorously and replacing the
selected residual back to the box to make sure that each residual et has exactly
the same chance of being the next element, that is,

(9.3.3)

The shuffling is with replacement because we replace the selected residuals
back into the box. It makes sure that (9.3.3) holds true, even though it may
intuitively seem peculiar. Although each sample has T elements, any given
resample could have some of the original et represented more than once and
some not at all.

Now select a second random sample again of size T from the same box, to
yield new elements ejt* ( j = 2, t = 1, 2, . . . , T). Continuing the sampling with
replacement J times generates J sets of T ¥ 1 vectors denoted by ej* having
elements ejt* ( j = 1, 2, . . . , J and t = 1, 2, . . . , T). In practice, there is no box
but a computer program that shuffles the observed residuals et with replace-
ment to create J sets of T ¥ 1 vectors.

It is important to recognize that the time series properties of residuals
arising from time sequence associated with the numbers are completely lost
in the iid bootstrap shuffle. Formally this means that the autocorrelation func-
tion (ACF) and partial autocorrelations (PACF) of the original time series (of

P e e
Tjt t

* .=( ) =
1
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e e

T p
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¢
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residuals) are not retained in bootstrap shuffle. In other words, all information
contained in the time subscript is lost, and the shuffling treats them as inde-
pendent and identically distributed without verifying that they are so. Moving
blocks bootstrap (MBB) attempts to solve this problem with time series 
bootstrap by keeping blocks of time series together in the shuffle. It assumes
that as long as the time subscript is more than m lags apart, it can be shuffled
around.

There is vast theoretical statistical literature on MBB, although the practi-
cal experience with MBB has not been very encouraging. Davison and Hinkley
(1997, ch. 8) provide detailed explanations of MBB and related ideas in a
chapter dealing with complex dependence in time series. Despite being rather
difficult to implement, MBB assumes that history repeats itself by joining the
time series into a continuous circle of outcomes and that the range of out-
comes is restricted to the observed range. In finance it is unrealistic to assume
that the future behavior of markets will be restricted to the observed range of
outcomes. Appendix C provides a new bootstrap that extends the range of
data beyond the observed range and remains applicable to dependent time
series. Vinod (2004) has proposed a novel method using maximum entropy
density to deal with this problem and shown an application in the Journal of
Empirical Finance. We briefly describe the ME bootstrap in Appendix C at
the end of this chapter.

Creation of J Regression Problems from Shuffled Residuals. Recall that the
shuffling has created vectors ej* ( j = 1, 2, . . . , J). It is convenient to use the
notation * to refer to a bootstrap shuffled value in this section. Now we create
J regression problems by creating J sets of data for the dependent variable,
called pseudo y data denoted by yj* by simple addition of the shuffled residu-
als to the fixed vector of OLS fitted values = Xb. We write

(9.3.4)

yielding a large number J of regression problems. Note that there is no * for
= Xb in (9.3.4), since these values remain fixed for all shuffles. This implic-

itly assumes validity of the linear regression model leading to the fitted values
. Each new regression problem has a new vector of resampled residuals. Each

such regression problem yields a new estimate b* of the vector of regression
coefficients b.

Now shuffling and re-estimation has given us a large set bj*, j = 1, 2, . . . , J,
for such estimates.The individual elements (b1, b2, . . . , bp) of the bj* vector can
be ordered from the smallest to the largest to give an approximate, brute force
computer-intensive, sampling distribution of the statistic b. This is what is used
for the bootstrap inference described below.

By definition, the variance of any random variable z is computed as var(z)
= S[z - E(z)]2P(z). If its mean is zero, we have var(z) = S(z)2P(z). The regres-
sion residuals have mean zero, E(et) = 0, and variance s2, var(et) = s2, by the

ŷ

ŷ

y Xb e j Jj j
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ŷ
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properties of least squares estimation. Hence, if we consider an expectation of
a sample of T observations over the bootstrap shuffles, E(ejt

*) = 0 also holds
because from (9.3.3) the probability P(ejt* = et) is 1/T. So the expectation over
the bootstrap shuffles of the variance of shuffled residuals is proportional to
the variance s2 of the original regression residuals:

(9.3.5)

where the factor of proportionality is (T - p)/T. Sometimes the residuals are
rescaled by the square root of T/(T - p), that is, (ejt

*) Æ (ejt*). Now
we see from (9.3.5) that the variance of the rescaled ejt

* becomes s2. Since T is
usually large and the number of regressors p is usually small, (T - p)/T ª 1,
the rescaling is usually unnecessary. Some simulation studies in the literature
have shown that rescaling can be omitted in practice.

In Efron’s (1979) construction, apart from the eye-catching name, keeping
the mean zero and variance s2 was the critical selling point of the bootstrap.
The bootstrap is sometimes also called resampling (with replacement) because
it uses the same sample data over and over again. Note that once we have a
brute force representation of thousands of reincarnations of the observed sta-
tistic from the resamples, we need not assume or use complicated asymptotic
theory for statistical inference about the range of possible values of b due to
random sampling. The usual asymptotic theory exploits the following prop-
erty: when z ~ N(0, 1) is standard normal, the 95% confidence interval for the
population mean m is [-1.96, 1.96]. Once we have the bootstrap, we do not have
to have the shape of the sampling distribution of the statistic b to be normal
to write convenient confidence intervals. In fact the sampling distribution of
the statistic need not even be from any well-known family at all. We can
directly try to empirically approximate the entire sampling distribution of 
b by investigating the variation of b over a large number J of bootstrap 
reincarnations.

The initial idea behind bootstrapping was that a relative frequency distrib-
ution of b calculated from the resamples can be a good approximation to the
sampling distribution of b. This idea has since been extended to conditional
models and one-step conditional moments. Recall that b* denotes resampled
regression coefficients, b the original coefficients, and b the unknown para-
meters. The extended bootstrap approximates the unknown sampling distrib-
ution and other properties of (b - b) from the J reincarnations of the
observable (b* - b). See Davison and Hinkley (1997) for recent references
and Vinod (1993) for older references, including some applications in finance.

Downside Risk and Estimation Risk. An important point made in this
section is to show that besides risk associated with the ups and downs of the
market, there is also some risk associated with the fact that the characteristics

T T p-( )[ ]

s
e jt t

t

T

t
t

T

E e
T

e
T

e
s T p

T*
* var ,2

2

1

2
2

1

1 1
= ( ) = Ê

Ë
ˆ
¯ ( ) = Ê

Ë
ˆ
¯ ( ) =

-( )
= =
Â Â

226 computational issues



of the probability distribution of market returns is not known exactly but esti-
mated from random data. We suggest a new way of incorporating estimation
risk with an additional denominator to the estimated Sharpe ratio.

We start with some notation from financial economics. Let ri,t represent the
excess return from the ith portfolio in period t, where i = 1, 2, . . . , n.A random
sample of T excess returns on the n portfolios is then illustrated by r¢t = [r1t,
r2t, . . . , rnt], where t = 1, 2, . . . , T, and where rt is assumed to be multivariate
normal random variable, with mean m = {mi}, i = 1, 2, . . . , n, and a covariance
matrix S = {sij}, where i, j = 1, 2, . . . , n. It is well known that the unbiased 
estimators of the (n ¥ 1) mean vector and the (n ¥ n) covariance matrix are,
respectively,

(9.3.6)

These two estimators are then used to form the estimators of the traditional
Sharpe performance measure.

The population value of the Sharpe (1966) performance measure for port-
folio i is defined as Shi = mi/si, i = 1, 2, . . . , n. It is simply the mean excess return
over the standard deviation of the excess returns for the portfolio. The con-
ventional sample-based point estimates of the Sharpe performance measure
are

(9.3.7)

The (sample) Sharpe ratio is defined in equation (9.3.7) as the ratio of the
mean excess return to their standard deviation.Vinod and Morey (2001) define
a “double” Sharpe ratio to incorporate the estimation risk as

(9.3.8)

where the denominator si
sh is the standard deviation in the sample of the

Sharpe ratio estimate, or the estimation risk. As is clear in (9.3.8), the double
Sharpe penalizes a portfolio for higher estimation risk by placing it in the
denominator.

Because of the presence of the random denominator si in the definition 
of (9.3.7), the original Sharpe ratio does not permit an easy method for 
evaluating the estimation risk in the point estimate itself. This is because the
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finite-sample distribution of the Sharpe measure is nonnormal, and hence the
usual method based on the ratio of the statistic to its standard errors is biased
and unreliable. The same problem continues in (9.3.8) for formal statistical
inference based on the double Sharpe ratio.

Vinod and Morey (2000) report a bootstrap resampling for the Sharpe ratio
discussed earlier in Section 5.2.1 based on resampling of original excess returns
themselves for j = 1, 2, . . . , J (J = 999), times. This means we have J distinct
Sharpe ratios from the single original excess return series. The choice of the
odd number 999 is convenient, since the rank-ordered 25th and 975th values
of estimated Sharpe ratios arranged from the smallest to the largest readily
yield a so-called naïve 95% confidence interval. There is considerable litera-
ture on improving these naïve intervals reviewed in Davison and Hinkley
(1997), and others. Unfortunately, a typical 95% confidence interval may not
cover the true parameter with the coverage probability of 0.95.

Before we consider a Sharpe ratio application, we need to explain the idea
of “first-order correct” confidence intervals in the general context. Consider a
standard statistic similar to the sample mean or a regression coefficient b that
estimates b with the standard error S. Now the quantity q = (b - b)/S is pivotal,
in the sense that its distribution does not depend on the unknown parameter
b. Under normality of regression errors, q has the well-known t distribution
leading to the usual confidence intervals. We wish to relax the normality
assumption, the simple bootstrap confidence intervals that are “first-order
correct,” meaning correct to order (1/ ) when T is the sample size. For
further improvements, we need further adjustments to make sure that it covers
the unknown parameter with the correct coverage probability of 0.95.

Since the Sharpe ratio of (9.3.7) and Treynor index have random deno-
minators, Vinod and Morey (2000) argue that their sampling distribution is
nonstandard and recommend studentized bootstrap and double bootstrap
methods. The following two subsections briefly describe the key ideas behind
them.

Studentized Bootstrap (boot-t). Studentized bootstrap (boot-t) is imple-
mented as follows: The first step is to convert the J = 999 bootstrap resampled
values into a studentized scale by subtracting the mean and dividing by the
standard deviation of the J resampled values. Next we select the 25th and 975th
ordered values from the studentized transformed scale. Then we undo the 
studentization by multiplying 25th and 975th values by the standard deviation
and adding the mean. Davison and Hinkley (1997) offer an elegant proof that
the boot-t is second-order correct, in the sense that the error in coverage by
the estimated confidence interval of the true parameter is of order (1/T). This
second-order accuracy result depends on availability of a reliable estimate of
the standard deviation used as the denominator of the studentization trans-
formation. The method described below is more computer intensive and 
used sparingly when the estimated standard deviation is unreliable and the
sampling distribution is highly nonnormal.

T
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Double Bootstrap (d-boot). Beran (1987) invented the idea of bootstrapping
the bootstrap or double bootstrap. The first econometric application (to
shrinkage estimators) is found in Vinod (1995). The d-boot involves K further
replications of each j = 1, 2, . . . , J. If J = 999, the optimal choice is K = 174, as
described in McCullough and Vinod (1998) who give a step-by-step descrip-
tion of the d-boot. Clearly, the d-boot is computationally intensive, since it will
require 174 times 999 computations of the underlying statistic.

Roughly speaking, the method used in the d-boot is the following: If the
original estimate is q̂ and the single bootstrap estimate is denoted by qj, we
resample each qj as many as K times and denote the resampled estimates as
qjk. The software keeps track of the proportion of times qjk is less than or equal
to q̂. The theory of d-boot proves that under ideal conditions, the probability
distribution of the proportions in which qjk is less than or equal to q̂ must be
a uniform random variable.The appeal of the double-bootstrap method is that
when conditions are not ideal, the resulting nonuniform distribution remains
easy to handle. All that happens is that the probabilities 0.025 and 0.975 occur
at some nearby numbers (e.g., 0.028 and 0.977). For adjusting the single boot-
strap (s-boot) confidence interval the d-boot involves choosing the nearby
(e.g., 28th and 977th) order statistics instead of the 25th and 975th values indi-
cated by s-boot. The point in using the d-boot is that one does not need to try
to know the form of the nonnormal sampling distribution of the statistic. In
fact the distribution need not have any known form. Vinod and Morey (2000)
report an application of d-boot to confidence intervals on the Sharpe and
Treynor performance measures for several well-known mutual funds.

We have taken specific examples to show that simulation and bootstrap 
are important tools for studying the uncertainties in the markets as well as
studying the uncertainties in our estimates of market indicators and our
favorite tools for future changes in the market. Bootstrap is a particular kind
of simulation designed for statistical inference without assuming functional
forms of probability distributions involved. Bootstrap lets the data help decide
the appropriate probability distribution, which is rarely normal as the classical
theory would have us believe.

We conclude the section on simulation and bootstrap with following 
observations. In the olden days the only way to deal with market uncertainty
was to simply accept it and call it good or bad luck. It was as if we are playing
dice with nature. With the advent of computers and probability theory, we 
can pretend to play that game of dice with nature hundreds of times without
actually risking any money. The main advantage, of course, is that the gains
and losses in the make-believe simulation games played with the help of 
computers are not real, and yet the risk taker can learn a lot about potential
losses and gains.
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APPENDIX A: REGRESSION SPECIFICATION, ESTIMATION, AND
SOFTWARE ISSUES

In the Appendix to Chapter 1 we discussed the estimation issues related to
the simple regression model y = a + bx + e without using the matrix notation,
since there was only one regressor variable x. A great many software products
are available for regression, and there are very important numerical accuracy
issues with many of them.

To run this regression in an Excel workbook, with the understanding that
its numerical reliability is questionable, we use the following steps:

Microsoft Excel Steps for Computing Regressions

Step 1. Enter the y and x data in workbook columns. Note if column labels
are present.

Step 2. Preliminary step. This step might not be needed. In Excel “Tools”
menu see if you see “data analysis” as an option, if not, click on “Add-
ins . . .” of the “Tools” menu. If you click into the box on the left side
of “Analysis ToolPak,” it places a check mark there. Similarly, click
along the box on the left side of “Analysis ToolPak—VBA.” Finally,
click on the OK button to get out of the menu.

Step 3. Click on “Tools” menu, then on “Data Analysis. . . .” Next, highlight
“Regression” and click OK.

Step 4. Fill in the cell range for “Input-Y range:” Next, fill in the cell range
for the regressor in “Input-X range:” area. Check the box for “Labels”
if data labels are present. Choose starting cell location where the
output should appear, making sure that there is enough blank space
to the right. Excel output gives most of the needed estimates:
regression coefficients, their standard errors and confidence intervals,
adjusted R2 for assessing the overall regression fit, and so on.

Consider a multiple regression model y = a + b1x1 + b2x2 + e where there
are two regressors x1 and x2. This is a simple extension of the simple regres-
sion model. Its Excel implementation is also simple. In step 1 above, it is nec-
essary to line up all regressor columns next to each other and in step 4 the
range for the entire set of regressor columns needs to be indicated. As before,
the coefficient estimates and most relevant estimates are readily printed out
by Excel software. Note that Excel can handle several regressors without 
difficulty.

Rescaling of Variables for Numerical Accuracy

One important step for avoiding serious numerical problems is to make sure
that the units of measurement are similar for y and for all regressors. This may
mean rescaling some regressors by multiplying them by a constant such as 0.01,
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0.1, 10, 100, and 1000. It can be shown that numerical problems are less severe
if all variables are standardized so that they are measured from their means
in units of their standard deviations. This scaling is achieved by subtracting the
mean and dividing by the standard deviation.

Collinearity and Near-collinearity of Regressors. If one regressor is nearly
proportional to another, the estimated regression coefficients will not be reli-
able at all. More generally, if one regressor is a weighed sum of two or more
regressors, then also the regression coefficients are unreliable. Many numeri-
cal problems can arise in these situations. Good software programs warn the
user about the presence of collinearity.

When the investment of large sums is being considered with the help of a
regression equation, getting numerically most accurate software and checking
the results on more than one software platforms becomes important. Free soft-
ware called R and its commercial cousin S-Plus appears to have good numer-
ical reliability, as does TSP. Excel has important limitations and is generally
not recommended for serious work. However, Excel can provide good initial
estimates of regression coefficients (subject to care in avoiding bad scaling of
variables and collinearity issues) to a researcher in finance who may not be
familiar with professional statistical software. Since the Microsoft Excel is
almost universally available, it offers great convenience for our pedagogical
descriptive purposes here. Our use of Excel here should not be interpreted 
as our endorsement of it in serious research due to known numerical 
inaccuracies.

Column of Ones Instead of the Intercept. For some theoretical and 
pedagogical purposes it is convenient to change the notation slightly and re-
write the two regressor model y = a + b1x1 + b2x2 + e without explicit reference
to the intercept a by merging it into just another regression coefficient. We
completely change the notation and write it as y = b1x1 + b2x2 + b3x3 + e, where
the old a is now b1, a new artificial column of regressor data where all ele-
ments are unity is now called x1. The old x1 now becomes x2 and the old x2

becomes x3. Verify within Excel that this change gives the same results 
provided one clicks on a box left of “Constant is zero” in the regression 
menu. This is next to the Labels box of the regression menu of the “Data 
analysis . . .” option.

The column of T data points (say) on the dependent variable y is denoted
by the y vector. Note that the software already works with several columns of
regressor data as a whole and treats the entire collection of numbers regarded
as regressors in a prespecified columnwise format. The set of numbers for
regressors (without the column headings) is called the X matrix. Matrix
algebra deals with the rules for operating on (adding, multiplying, dividing)
matrices and vectors. The rules depend on the number of rows and number of
columns of each matrix or vector object.
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Multiple Regression in Matrix Notation

Regression model remains the main work horse in many branches of finance.
We have used the matrix notation in (9.3.1) for multiple regression models.
For the convenience of some readers who may not be comfortable with it,
this section of the Appendix gives further details of multiple regression in
matrix notation. First, it is useful to consider y = b1x1 + b2x2 + . . . + bpxp + e,
stated above, in the vector notation. We let each regressor variable xi for
i = 1, 2, . . . , p, with T observations be a T ¥ 1 vector. Similarly we let y
and error term e also be T ¥ 1 vectors, and note that the regression coefficients
b1 to bp are constants, known as 1 ¥ 1 scalars. The expression y = b1x1 + b2x2 +
. . . + bpxp + e can be written in matrix notation as follows, with matrix 
dimensions indicated as subscripts:

(9.A.1)

The matrix expression X(T¥p)b(p¥1) represents b1x1 + b2x2 + . . . + bpxp due to
the so-called row-column multiplication. Note that after multiplication the
resultant matrix is of dimension T ¥ 1. This is critical, since when one adds
matrices on the right hand side of (9.A.1), each part of the addition has to
have exactly the same dimension T ¥ 1.

For statistical inference, it is customary to assume that regression errors
have mean zero, Ee = 0. Let e¢ denote the 1 ¥ T matrix representing the 
transpose of e so that ee¢ is a T ¥ T matrix from the outer product of errors.
Upon taking expectation, we have W, representing the T ¥ T variance co-
variance matrix of errors, that is, Eee¢ = s2W. If the errors are heteroscedastic,
the diagonal elements of W are distinct from each other, and if there is 
autocorrelation among the errors, W has nonzero off-diagonal elements.

CAPM from Data. When one tries to represent theoretical finance with the
help of available data, there are always some practical problems, many of
which have been already mentioned in the text above. For example, the rep-
resentation of the market portfolio by a market index (S&P 500 or Vanguard
500 index fund) for the capital asset pricing model (CAPM) remains contro-
versial. Some of the objections are as follows:

1. The index composition changes over time because removing failed cor-
porations implies a bias in favor of successful companies.

2. There are many small corporations excluded, so the index is not truly
comprehensive.

3. It ignores many classes of asset markets, among these bonds and real
estate.

y XT T p p T¥( ) ¥( ) ¥( ) ¥( )= +1 1 1b e .
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Illustration of CAPM Estimation of Wall Street Beta from Data

The data from Table 2.1.4 can be used to estimate the CAPM model and to
compute the beta for Fidelity’s Magellan fund provided that we make fol-
lowing assumptions. We assume that a good proxy for “market” return is the
Vanguard 500 index fund (Van 500) containing 500 stocks in the S&P 500 index
with proportions of stock quantities close to the proportions in S&P 500. We
also assume that interest rates on three-month treasury bills (TB3) are a good
proxy for risk-free yield. The simplest method of finding the beta for the risky
portfolio represented by Fidelity’s Magellan fund is to regress (Magellan fund
minus TB3) on a column of ones for the intercept and (Van 500 minus TB3).
This expands the right-hand side of (2.2.9) by a regressor for the intercept.
Now the beta for the risky asset, Magellan fund is simply the regression coef-
ficient of the second regressor (Van 500 minus TB3). This regression equation
can be estimated in an Excel workbook itself.

The theoretical formula does not include any intercept (constant term) in
the regression equation. Its estimation is accomplished by checking the box
“Constant is zero” in the “Data analysis” part of Excel’s “Tools” menu. One
may need to use “Add-ins” to make sure that the “Data analysis” option is
present in the “Tools” menu. Forcing the intercept to be zero is also described
as forcing the regression line through the origin in some statistics textbooks.
It is well known that zero intercept regressions are subject to numerical 
accuracy problems. For example, R2, the measure of overall fit called squared
multiple correlation, can sometimes become negative and be unreliable. Hence
it is advisable to run two regressions, one with and one without the intercept.
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Next, we suggest comparing the two estimates of beta the regression coeffi-
cient of (Van 500 minus TB3) and the two estimates of the R2. If these two
estimates differ too much, we can assume the presence of serious numerical
accuracy problems needing further investigation by software tools not readily
available in Excel.

For our data, if the extra nonzero intercept is included, R2 = 0.948, and the
estimate of b denoted by b̂ = 1.0145, with the Student’s t statistic 23.04. The
estimate of the intercept is 4.7734 with the t statistic of 1.4392, which is statis-
tically insignificant. Since one of the claims of CAPM is that the intercept will
be zero, if the data yield an insignificant intercept, this supports CAPM.

If the intercept (constant term) is forced to be zero, R2 = 0.945 and b̂= 1.0243
with the student’s t statistic 23.15. We conclude that the regression fit is excel-
lent; the high t values mean that the beta is statistically highly significant, so
we reject the null hypothesis b = 0. Since the two estimates of b and R2 do not
differ much, we can reliably accept the estimate b̂ = 1.0243.

In light of the discussion of equation (2.2.9) we note that in this application
we are more interested in testing whether the null hypothesis H0: b = 1. That
is, we want to know whether the risk of the Magellan fund is as much as the
risk of the market portfolio. Since hypothesis testing is more reliable for the
model with the intercept, we use the Student’s t statistic revised as [b̂ - 1]/SE
= 0.3295, where the standard error (SE) is 0.0440. This is statistically in-
significant, suggesting that the beta for Magellan is close enough to unity and
the observed small difference could have arisen from random variation. The
simple average of the returns in Table 2.1.4 given along the bottom row suggest
that the risk premium of the Magellan over TB3 (= 1.948 - 0.411 = 1.537)
is not small. However, the Van 500 average return 1.927 is close to 1.948 
for the Magellan. The usual risk measured by the standard deviation for the
Magellan fund (sm = 5.2201) exceeds the risk of Van 500 (sv = 4.9609).

However, are the two standard deviations statistically significantly differ-
ent? Could the sm arise from a population with standard deviation s0 = 4.9609
(based on the Van 500) estimate? The test statistic Tm = (n - 1)(sm)2/(s0)2, where
n = 33, the number of observations in the data. Now Tm = 35.43014 follows a
c2 distribution with (n - 1) degrees of freedom with a tabulated value of
46.19426 for a 5% tail. We conclude that the Magellan fund’s standard devia-
tion is not significantly different from 4.9609. Similarly we can define Tv =
(n - 1)(sv)2/(s0)2 = 28.90195 < 46.19426 the tabulated value. We conclude that
the two variances are not statistically significantly different. The point to
remember is that the risk measured by beta is distinct from the risk measured
by the standard deviation of the distribution of returns.

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION ISSUES

Sir R.A. Fisher invented the following idea. When the same joint density is
viewed as a function of parameters for given data, it is called the likelihood
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function. Fisher also invented the maximum likelihood (ML) estimator of the
parameter vector by maximizing the likelihood function.We begin with a short
review of the likelihood function itself. Let Y represent height in inches. Let
y1 = 63, be a single observation from y ~ N(q, v), where v equals the usual s2.
Now the likelihood function is L(q, v|y) = (2pv)-1/2 exp(-[yi - q]2/2v) for i = 1.
The natural log of the above likelihood function is LL = -(1/2)log(2p) -
(1/2)logv - [yi - q]2/2v.

This example shows that the likelihood function is simply the original
normal density function written as a function of the unknown parameters
given the data. If there are y1, y2, and y3 as three observations from the same
density, and the observations are independent of each other, the joint density
is simply a product of individual densities. Then

(9.B.1)

Clearly, we can generalize it to any positive integer T. The aim of maximum
likelihood estimation is to maximize this function with respect to the para-
meters. Since a logarithm is a monotonic transformation, it can be shown that
maximizing L and LL give exactly the same answer. For certain densities from
the exponential family, maximizing LL is more convenient.

Since exp(a)*exp(b)*exp(c) is exp(a + b + c), the log likelihood with T (= 3)
observations is

The partial derivative function is called “the score” function and is given by

(9.B.2)

(9.B.3)

The first-order condition (FOC) for maximizing the likelihood function is
that the score functions are both zero.That is we obtain ML estimates (denoted
by the subscript ML) by solving two equations:

for q and v. We need to simplify them to find the ML estimates. First consider
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Clearly, the solution is qML = ST
i=1yi/T, which is the sample mean.

Next, consider Score(v), where 2v cancels from the denominator, leaving -T
+ ST

i=1[yi - q]2/v = 0. Substituting qML solution of the first score equation, we
have the ML estimate of v given by vML = (1/T) ST

i=1[yi - qML]2. Thus the ML
estimators of q and v = s2 are

(9.B.4)

The second-order condition is needed to ensure that we have obtained a
maximum rather than a minimum of LL. The second-order partial derivatives
are conveniently placed in a 2 ¥ 2 matrix with elements h11 and h12 along the
first row, and h21 and h22 along the second row. By Young’s theorem from ele-
mentary calculus, h12 = h21. Verify that

Consider the mathematical expectation of these terms. E(h11) = h11, since
h11 already contains population value s2 and no sample estimates. since y ~
N(q, s2), we have E(y) = q, or E(y - q) = 0. Hence E(h12) = 0 = E(h21). Note
that the term h22 does contain sample y values, and from the properties of a
chi-square random variable it is well known that EST

i=1[yi - q]2 = (T - 1)v. Hence

(9.B.5)

The matrix of expectations E({hij}) is called the Hessian matrix. In our
simple case of the normal distribution it is diagonal with {1/v, 1/2v2} as ele-
ments, and can be written as

(9.B.6)

For this diagonal matrix the eigenvalues are the same as the diagonal terms.
Since both are positive, the Hessian is positive definite. A clear understanding
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of the theory above for a set of T observations from a normal density is useful,
because essentially the same concepts and names like Hessian and score carry
over to more interesting regression problems needed in finance.

Normal Regression Model

Consider the model (9.3.1), y = Xb + u, with multivariate normal errors u ~
N(0, s2 I). Now the LL is written in matrix notation as

(9.B.7)

Hence its partials yield

(9.B.8)

A solution of Score(b) = X¢(y - Xb) = 0 is simply bML = (X¢X)-1X¢y. Hence
the ordinary least squares (OLS) estimator can be viewed as a solution of the
ML estimation problem. Note that “multicollinearity” means the inverse of
(X¢X) matrix cannot be found and “near multicollinearity” means that stan-
dard errors of regression coefficients are large, the inverse of (X¢X) matrix
cannot be reliably found, and the numerical inverse given by the computer
cannot be trusted. Hence statistical inference based on usual t values cannot
be trusted.

Nonlinear Regression

Now we consider estimation methods more general than multiple regression.
Nonlinear regression simply means that y is related to the regressors by a non-
linear relationship: y = g(x, q) + e, where x contains xi for i = 1, 2, . . . , p, regres-
sors and q represents the nonlinear regression parameters, which need not
equal p in number. Assume that there are t = 1, 2, . . . , T, observations for y
and each regressor xi. If the vector of errors e follows the multivariate normal
density, only the mean and variance matter. Let the density function of errors
be denoted by f(e) = f [y - g(x, q)]. Clearly, the density function is a function
of the data on y and x and of the parameter vector q:

(9.B.9)

Even if we are not sure that the functional form of the density f(e) is indeed
normal, the likelihood function of the normal density can still be viewed as
the quasi-likelihood function. Maximizing the log likelihood function can be
a demanding numerical problem when the likelihood function is complicated
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nonlinear function of several variables. Then the solution needs to be found
by the user supplying some starting values and the software searching the
parameter space of q (usually having a large number of dimensions) iteratively
by some form of extensions to the Newtonian iterative scheme.

It is useful to begin with the intuition from elementary calculus to under-
stand the intricacies of nonlinear optimization algorithms (software). The
slope of a function f(q) is also known as the tangent gradient or the partial
derivative ∂f/∂q. Its sign is positive, ∂f/∂q > 0 for increasing functions. We begin
exploring the function with some initial starting values and a choice of step
size. Clearly, one is on an upward trajectory of f(q) if the gradient is positive
for each chosen direction at the starting value. A local maximum of f(q) is
reached when the gradient stops increasing, becomes zero at the maximum,
and decreases if any steps are taken beyond the maximum. Since the sign of
∂f/∂q is changing from positive to zero to negative, it must be a decreasing
function, that is, the second derivative must be negative, ∂2f/∂q2 < 0, when eval-
uated at the maximum. Thus the first-order condition (FOC) for a maximum
is that the gradient or the first derivative is zero, which makes intuitive sense.
Similarly the second-order condition that the second derivative is negative at
the maximum also makes intuitive sense.

Maximum likelihood estimation for nonlinear regression problems is essen-
tially an extended highly nonlinear multiple parameter version of the simple
calculus problem of finding the maximum (see McCullough and Renfro, 1999,
2000; McCullough, 2004). In fact any nonlinear solver software must be con-
sistent with the basic calculus principles and intuition given above.

Tools for Verification of the Solution by a Nonlinear Solver

It is important to actively verify the solution found by the software to make
sure that the solution is valid. This involves performing the following checks
known in numerical analysis (Gill et al., 1981; McCullough and Vinod, 2004):

1. The gradient vector containing the first derivatives with respect to each
parameter should be zero ( a suitably defined very small number, say, 10-16, at
the solution.

2. Numerical analysts, Gill et al. (1981), recommend looking at the path
taken by the algorithm in reaching the solution. The path should show appro-
priate (quadratic) rate of convergence. If not, the likelihood surface may be
ill-behaved or flat near the solution. McCullough and Vinod (2003) use an
example to show how to do this by considering not only the value of the LL
at consecutive evaluations but successive differences.The latter should decline
fast for quadratic convergence.

3. The matrix of second-order partials, known as the Hessian matrix, should
be negative definite. It is useful to conduct an eigensystem analysis of the
Hessian to find the condition number K# defined as the ratio of the largest
eigenvalue lmax and the smallest eigenvalue lmin of the Hessian. Some authors
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define K# in terms of a ratio of square roots of eigenvalues, also known as sin-
gular values. Let us define

(9.B.10)

If the Hessian is ill-conditioned similar to a multicollinear data matrix, lmin

is close to zero and the ratio K# is very large. Recall from (9.B.8) that the
Hessian for the normal regression model is (-X¢X), which is directly related
to the multicollinearity issue. For a deeper analysis it is useful to look at the
eigenvectors associated with the largest and smallest eigenvalues of (X¢X)
denoted by lmax and lmin as needed. One needs to identify the name of the cor-
responding regressor variable from the set {xi} as follows: As a first step, look
for the largest absolute magnitudes in these particular eigenvectors. In the
second step, check the name of the particular offending regressor attached to
that absolute magnitude. This regressor variable is most likely the cause of the
numerical problems such as multicollinearity or unstable nonlinear optimiza-
tion. In the third step, change the model specification with respect to the
offending regressor. For example, mere change of scale for the offending vari-
able can remove the numerical problems. Sometimes the offending variable
needs to be omitted and another selected. In general, it is possible to have a
set of variables as the offending set. In any case, it is useful to avoid models
that have Hessians with large K# values.

4. Profiling the likelihood is a method developed by Box and Tiao (1973),
Bates and Watts (1988), among others. Let qML be the ML estimate of the 
parameter q with estimated standard error s, which corresponds to a value
LLML. Now fix q = q0 and re-estimate the model with one less free parameter,
obtaining a value LL0. Next allow q0 to vary about qML, and plot these values
of q0 against the associated values of logL0. This plot over a typical range 
(q0 - 4s, q0 + 4s) constitutes the likelihood profile for the parameter q. Ideally,
the line plotted should have a mountain-like symmetric shape with a peak 
near q0.

This fourth check was recommended by McCullough and Vinod (2003), who
give an economics example. Calculus methods are used to find the maximum
of a function such as the likelihood function if the function locally approxi-
mately goes up and comes down, or is quadratic. More important, the 
quadratic approximation is crucial to compute the standard errors (SE) of
coefficients and confidence intervals around parameters using Wald-type sta-
tistics (e.g., Student’s t statistic). Wald-type statistics are ratios of coefficient
estimates to their standard errors. Computationally more demanding methods
involve evaluation of the likelihood at the null and alternative hypotheses
leading to likelihood ratio statistics. If the quadratic approximation is not valid,
it will be revealed by profiling the likelihood. If the likelihood profile sug-
gests that a quadratic approximation is not valid, any division by SE is not

K # max
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l
l
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appropriate. Alternative inference methods using bootstraps including d-boot
discussed in Section 9.3 and Appendix C of this chapter are relevant here.

Verification Tools Based on Stopping Rules, Step Sizes, and Problems Too
Demanding for a PC

Some additional checks are needed in the context of maximum likelihood
(ML) estimation arising from the choice of starting values and step sizes. We
want a large variety of starting values and step sizes, so that we have a good
chance of reaching the global maximum and not let the algorithm be stuck
near some local maximum or in some flat region of the parameter space.

1. We want a good stopping algorithm when the optimum is reached.
Clearly, one should stop taking further steps in the parameter space when the
value of the log likelihood (LL) itself does not increase any further.

2. If consecutive LL values are changing only in the sixteenth significant
digit, we know we have reached the limits of PC computing and the problem
at hand is too large or too demanding for a PC with 32 bit words (i.e., 16 digits).

3. Another stopping rule is to stop when the consecutive evaluations of the
function do not make any difference to the estimated gradient or the estimated
parameters. The stopping rules can have a profound impact on the nonlinear
solver.

4. The search for the solution is not restricted to a small region of the para-
meter space so that the local solution obtained by calculus type methods does
not miss the global solution. This is sometimes accomplished by using a large
variety of starting values.

5. The scaling of the data can have a profound effect on the numerical accu-
racy of the solution. One possibility is to standardize all data by subtracting
the mean and dividing by its standard deviation. This transformation creates
some statistical inference problems since division by the random standard
deviation changes the sampling distribution. However, from a numerical view-
point it will reveal if the chosen scaling is giving a badly conditioned Hessian
matrix.

Since financial economists may be dealing with millions of dollars, it is impor-
tant to have numerically as accurate and reliable answers as possible. In tra-
ditional economics the consequences of making small errors need not be so
large.

APPENDIX C: MAXIMUM ENTROPY (ME) BOOTSTRAP FOR
STATE-DEPENDENT TIME SERIES OF RETURNS

The traditional bootstrap based on independent and identically distributed
(iid) randomness is discussed in Section 9.3.3. There we discuss how regres-
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sion residuals are resampled to create a large number J of regression prob-
lems and how confidence intervals are created by rank-ordering the J esti-
mates of regression coefficients. The aim of this appendix is to explain some
recent solutions to some of the problems associated with the traditional boot-
strap for applications in finance.

The iid bootstrap suffers from the following three properties, which are
especially unsuitable when xt represents financial returns in excess of a bench-
mark (S&P 500). Vinod’s (2004) new ME bootstrap is designed to avoid all
three properties simultaneously.

P1. The traditional bootstrap sample repeats some xt values while deleting
as many others. There is no reason to believe that excess returns a few 
basis points away from observed xt are impossible and do not belong in the
resample.

P2. The traditional bootstrap sample lies in the closed interval [min(xt),
max(xt)]. The vast finance literature dealing with value at risk (VaR) proves
that investors do worry about potentially large losses from returns lower than
min(xt) in the data.

P3. The traditional bootstrap sample shuffles xt such that any dependence
information in the sequence xt+1 follows xt, which in turn follows xt-1, and so
forth, is lost. This was discussed in Section 9.3.3. If we try to restore the orig-
inal order to a shuffled resample, we end up with essentially the original set
{xt}, except that some dropped xt values are replaced by the repeats of adja-
cent values. Hence it is impossible to generate a large number (J = 999) of sen-
sibly distinct resamples, if we wish to restore the time series properties to the
traditional bootstrap.

The method discussed here is designed to avoid the properties P1 to P3
listed above without introducing unnecessary arbitrariness. We rely exten-
sively on the maximum entropy density. For example, to work around the
property P2, we use the method described in the appendix of Vinod (1985) to
extend the range of income data. The entropy has been widely used in both
social and natural sciences as a measure of “ignorance,” or more accurately,
noninformativeness in a system.

The observed time series is viewed as the random variable xt taking T pos-
sible values and let f(x) denote its density. The bootstrap will create a large
ensemble consisting of J time series with elements xjt, where j = 1, . . . , J, and
t = 1, . . . , T.

The entropy is defined by the mathematical expectation of Shannon 
information:

(9.C.1)H E f x= - ( )( ) =log Entropy
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We impose mass and mean-preserving constraint and select the particular
density f(x), which maximizes H. Such an f(x) is called the ME distribution
and consists of a combination of T pieces joined together.

First, we sort the data in an increasing order of magnitude, denote the order
statistics by x(t), and compute new “intermediate points” defined as the average
of successive order statistics:

(9.C.2)

The intermediate points help define our intervals defined by pairs of succes-
sive z’s. For t = 2 to t = T - 1 we have I2 = (z1, z2), . . . , IT-1 = (zT-2, zT-1). The
key novelty is to also include open-ended intervals I1 (-•, z1) and IT (zT-1, •)
at the two end points for t = 1 and t = T. Thus we have exactly T intervals,
each of which contains exactly one x(t).

The mass-preserving constraint (on moments of order zero) says that a frac-
tion 1/T of the mass of the probability distribution must lie in each interval.
This is achieved by the ME bootstrap by giving an equal chance to each inter-
val I1 (-•, z1), I2(z1, z2), . . . , IT (zT-1, •) of being included in the resample. The
traditional bootstrap selects uniform pseudo random numbers between [0, 1],
rounds them into a sequence of random integers in [1, T] to define the shuf-
fled selection from the set {xt}. It gives each observation an equal chance (1/T)
of being included in the resample. An advantage of the ME bootstrap is that
it uses the true pseudorandom numbers, and not rounded integers.

The mean-preserving constraint (on order 1 moments of f(x)) is Sxt = S x(t)

= Smt, where mt denote the mean of f(x) within intervals It. This property 
is satisfied by the traditional bootstraps. Recall from (9.3.3) that the traditional
bootstrap selects the observations xt with replacement, such that the 
probability of selection remains (1/T). Formally, the f(x) of the traditional iid
bootstrap at each xt is a so-called delta function with the entire mass (1/T)
at xt in It.

The mean-preserving requirement is too complicated for the ME bootstrap.
It requires that the mean mt in the interval It be equal to a weighted sum of
the order statistic x(t) with weights from the set {0.75, 0.50, 0.25} as explained
below.

Only if the f(x) maximizes our “ignorance” defined by the entropy (9.C.1),
we can call it the ME distribution. The problem of finding such f(x) was solved
long ago in the statistical literature dealing with so-called characterization
problems (Kagan et al., 1973). A reference for economists in a different
context is Theil and Laitinen (1980). The solution states that the form of the
density is exponential in the two open-ended intervals and uniform in all inter-
mediate intervals with a fixed range with parameters given as follows:

1. f(x) = (1/q)exp([x - z1]/q), with q = m1 == 0.75x(1) + 0.25x(2) in I1.
2. f(x) = (1/q)exp([zT-1 - x]/q) with q = mT = 0.25x(T-1) + 0.75x(T) in IT.

z x x t Tt t t= +( ) = -( ) +( )0 5 1 11. , , . . . , .
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3. f(x) = 1/(zk - zk-1) is a uniform density where the mean of the uniform
(zk-1 + zk)/2 equals mk = 0.25x(k-1) + 0.50x(k) + 0.25x(k+1) in the intervals Ik

(zk-1, zk) for k = 2, . . . , T - 1.

The weights {0.75, 0.50, 0.25} help satisfy the mean-preserving constraint 
Sxt = Smt. Thus the ME distribution avoids arbitrary choices and is completely
known from the data.

For further clarity let us consider a simple example of T = 5 data points
where x(t) = {4, 8, 12, 20, 36}. From consecutive averages we have z(t) = {6, 10,
16, 28}, which determine the five intervals upon inclusion of the open-ended
infinite intervals at the two extremes. At the left extreme, the open-ended
interval is I1 (-•, 6) and the ME distribution in open-ended intervals has been
established by statisticians to be exponential given by (1/q)exp([x - 6]/q)]. We
have the option to choose q, the mean of the exponential density. We choose
q to satisfy the mean-preserving constraint as q = m1 = 0.75 * 4 + 0.25 * 8 = 5.
The second interval I2 is (6, 10) is not open ended but has fixed limits at 6 and
10. Theoretical statisticians have established that the ME distribution in it is
uniform. Again, we have the option to choose q, the mean of the uniform
density. We choose q to satisfy the mean-preserving constraint as m2 = 0.25 *
4 + 0.5 * 8 + 0.25 * 12 = 8. Similarly for the intervals (10, 16) and (16, 28) the
means of the uniform are chosen to be m3 = 13 and m4 = 22, respectively. The
last open-ended interval is IT (28, •), wherein the ME density is exponential:
(1/q)exp([28 - x]/q). With our choice, q = mT = m5 = 0.25 * 20 + 0.75 * 36 = 32.

Now the mean-preserving constraint Sxt = 80 = Smk = 5 + 8 + 13 + 22 + 32,
based on the weights 0.75, 0.50, and 0.25, is indeed satisfied.Thus the ME boot-
strap distribution consists of T attached parts over the entire real line (-•, •).
If we select a bootstrap resample from the ME density, we clearly avoid the
property P2 of the traditional bootstrap.

It is fortunate that the ME density involves the exponential, since its CDF
is [exp(-qx) - 1] and inverse CDF at any probability pr is [q ln(1 - pr)]. Thus
pseudorandom numbers from the ME density are easy to obtain on a com-
puter. Note that the inverse CDF here is obviously a positive number when 
q > 0, since the logarithm of a fraction is always negative. However, the mean
q in the tails need not be always positive. Hence we use the absolute value |q|
in the inverse CDF.The pseudorandom numbers from the ME density are easy
to obtain on a computer, despite the presence of the exponential. Since the
extrapolation in the left and right tails needs some care, we explain it in a sep-
arate section below.

Tail Extrapolations

First consider the right tail of the ME density similar to the one plotted in
Figure 9.C.1, which begins at zT-1 and goes to infinity. The tail extrapolation
involves mapping the interval [0, •) of the usual (standard) exponential with
mean q = mT = 0.25x(T-1) + 0.75x(T) on the interval [zT-1, •) needed here and
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assigned the probability mass (1/T) not 1. That is, we shift the starting point
of the exponential to zT-1. Consider T uniform pseudorandom draws denoted
by ps lying in the [0, 1] interval. They yield jth ensemble elements xjt for t = 1,
. . . , T, as quantiles xjt of the ME density. If the random draw exceeds 
(T - 1)/T, the quantile xjt will belong to the right tail and is given by

(9.C.3)

The left tail extrapolation is similar to that for the right tail, except that the
exponential is in the reverse direction so that (1 - pr) in (9.C.3) will become
(pr). The left tail begins at -• and goes to z1. Let us first compute the quan-
tile as if it were in the right direction and then adjust for the direction. The
quantile of the ME density will belong to the left tail only if the random draw
(pr) is less than 1/T. Since the mean of the exponential in the left tail is q = m1

= 0.75x(1) + 0.25x(2), which may well be negative, we use |q|. The desired 
quantile similar to (9.C.3) is

(9.C.4)

List of Steps in the Seven-Step Algorithm

The entire set of steps needed to create a random realization of xt is as follows:

1. Define a T ¥ 2 sorting matrix called S1, and place the observed time series
xt in the first column and the set of integers a = {1, 2, . . . , T} in the second
column of S1.

2. Sort the matrix S1 with respect to the numbers in its first column. This
sort yields the order statistics x(t) in the first column and a vector as of sorted

z pr1 - ( )q ln .

z pT r- - -( )1 1q ln .
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Figure 9.C.1 Plot of the maximum entropy density when x(t) = {4, 8, 12, 20, 36}



a in the second column will be needed later. From x(t) construct the intervals
It defined from zt, from (9.C.2), and mt with certain weights on the order sta-
tistics x(t) defined above.

3. Choose a seed, create T uniform pseudorandom numbers ps in the [0, 1]
interval, and identify the range Rt = (t /T, (t + 1)/T] for t = 0 to T - 1, wherein
each ps falls.

4. Match each Rt with It . If the pseudorandom number lies in the left tail,
ps Œ R0 use equation (9.C.4) and if it falls in the right tail, ps Œ RT-1, use (9.C.3).
Otherwise, use linear interpolation and obtain a set of T values {xjt} as the jth
resample. Make sure that each mean of the uniform equals the correct mean
mt. If |(1/T)St xjt - | > Tol, where Tol is a tolerance number (defined by the
user), the entire set {xjt} is an outlier. Some users may reject outlier sets based
on Q1 - 1.5 * IQR or Q3 + 1.5 * IQR, where Q1 is the first quartile, Q3 is third
quartile, and IQR = Q3 - Q1. If {xjt} is judged to be an outlier, go back to step
3 and select a new {xjt}.

5. Define another T ¥ 2 sorting matrix S2. Reorder the T members of the
set {xjt} for the jth resample obtained in step 4 in an increasing order of mag-
nitude, and place them in column 1. Also place the sorted set as of step 2 in
column 2 of S2.

6. Sort the S2 matrix with respect to the second column to restore the order
{1, 2, . . . , T} there. Denote the jointly sorted column 1 of the elements by {xsjt}.
These represent the ME resample where the additional subscript s reminds us
of the sorting step, which has restored the time dimension to correspond with
the original data.

7. Repeat steps 1 to 6 a large number of times for j = 1, 2, . . . , J (e.g.,
J = 999).

We conclude that we have removed all three undesirable properties of the
traditional bootstrap. The bootstrap literature is vast, and there are piecemeal
attempts to remove one of P1 to P3. For example, the so-called moving blocks
bootstrap deals with P3 by assuming m-dependent time series. Since no other
bootstrap removes P1, P2, and P3 simultaneously, any comparison with them
will not be fair to the ME bootstrap.

Vinod (2003b, 2004) illustrated this method with examples from finance. He
considers the top ranked mutual fund (No. 734 from 1281 funds) studied over
the boom period of January 1991 to December 2000. The seven steps above
yield J = 999 resamples and hence J values of various statistics discussed in the
text. The 25th- and 975th-order statistics for any statistic yield the so-called
naïve 95% confidence interval. He concludes that the fund 734 will dominate
the S&P index fund with approximately 95% chance. The maximum entropy
bootstrap methods described in this appendix are applicable elsewhere for
time series inference.

x
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C H A P T E R 10

What Does It All Mean?

247

The bottom line is that the stock market is risky, but it is not a gamble.
The obvious difference is that gambling, even with fair odds, is a zero-sum
game. Someone wins and someone loses. The stock market, on the other hand,
is the exchange of investment vehicles. The buyer and seller can both accom-
plish their goals at once. The less obvious difference is that stock market risk
is not symmetrical. When flipping a coin, the odds of heads or tails are equal.
If you call head, your likelihood of winning and losing are the same. As we
have seen in the stock market, however, upside and downside risk are two very
different concepts. Investment analysis that ignores this difference can be too
conservative if downside risk is low, or understate the risk if downside risk is
high.

In the course of this book, we have started with the basics of financial asset
valuation and risk measurement to determine where and how downside risk
will play a role. Financial valuation relies on being able to discount future earn-
ings with the appropriate risk premium. If this risk premium is affected by
downside risk differently than upside risk, its importance is secured. Further-
more, if downside risk is not included in value at risk calculations, the true
worst-case scenario is not being shown.To that end we covered four main areas
that must be recognized before we incorporate downside risk into portfolio
selection.

1. Distribution of returns. No matter how afraid of downside risk an
investor is, if returns are symmetrically distributed around the mean, it doesn’t
matter as far as measurement is concerned. For a symmetric distribution,
upside and downside risks are equal. Stock returns are known, however, not
to be symmetric. While the normal distribution is theoretically elegant, and it
is commonplace enough that most software packages and even hand calcula-
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tors will compute it, it is not appropriate for most investment portfolios. The
mere fact that returns are truncated at -100% indicates that symmetry is not
likely for stocks.

One adjustment may be to choose another distribution that matches the
data better. We have suggested a number of distributions that allow more flex-
ibility than the normal distribution, including skewness and excess kurtosis.
Once a candidate distribution is chosen, a goodness-of-fit test can be done to
double-check that it is an appropriate choice. From the new distribution, sim-
ulations, value at risk, and other measures can be calculated.

If the correct distribution is not clear, or you don’t want to be pinned down
to the rigor of a particular distribution, there are still alternatives. Historical
data can be used as an empirical cdf. This does not require complicated esti-
mations, but it will be sensitive to extreme values in the data that can be
smoothed out with a distribution. A nonparametric density function can be
used, such as a kernel density. Finally, and the choice that we would recom-
mend, the data can be classified into a Pearson family of distributions.
Pearson’s estimation gives the distribution as many moment parameters as the
data indicate. This estimation is flexible, while yielding a density function and
equation that allow for calculations and simulations that cannot be done with
an empirical CDF. Even if the data do fit a common distribution, the worst
that will happen with Pearson’s estimation is that it will return that distribu-
tion. Performing the one extra step of verifying the distribution through the
Pearson estimation is cheap insurance when there are potentially millions of
dollars of hidden downside risk.

2. Diversification of downside risk. CAPM has gotten kicked around a 
lot as a theory of asset pricing. It makes many grandiose assumptions and 
does not fit the data perfectly. However, as a theory CAPM gives one of the
fundamental insights of finance: you only get compensated for systematic 
risk. You don’t get rewarded for taking stupid risks, although investors must
be compensated in order to get them to buy a security with risk they cannot
avoid.

Extreme downside movements are hard to avoid. Downside movements are
often unexpected, coming from natural disasters, R&D foul-ups, and so on.
Let’s face it, companies don’t plan to have losses, and don’t publicize that
things may go badly. We illustrated in Chapter 7 that only half as much down-
side risk can be avoided compared to general risk.

Further complicating matters, downside risk is contagious.Accounting scan-
dals, trading scandals, international currency crises, and corruption are not iso-
lated to a single company. How do you diversify a risk that is endemic to the
foundation of the entire economy? This means that even after a portfolio is
compiled there are some extra questions to ask:
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Are my investments too close geographically?
Do my investments rely on the same technology?
Are there political, legal structures that could adversely affect my 

investment?

Is there underlying fraud or corruption in the investment process?

If the answer to any of these questions is yes, downside risk is going to be
larger than the financial reports of the company indicate.

3. Investors’ attitude toward downside risk. Stock market movements are
shown on the television, but they are not entertainment. Investors have to take
the consequences of what happens to their portfolio, good or bad. In Chapter
6 we explained the theory behind risk aversion, and methods to model human
behavior. More important is how you feel about risk, personally. The stock
market assigns a risk premium, but that does not constrain your preferences;
it is only the average risk premium that clears the market. If you are consid-
ering an investment and the value at risk is too high for your tastes, walking
away may be the better option than laying awake at night reminding yourself
that market prices should be efficient.

4. Accurate measure of downside risk. Computer output such as financial
statements and portfolio simulations tend to look believable to humans.
Maybe it has to do with observing routine calculations that computers can do
many times faster, or maybe it comes from the movies where robots never
make mistakes, and computer operating systems never crash. In the real world,
computers need as much help as anyone to come up with reliable results.There
are some common sources of errors that should be examined before any
output is believed, much less before your money is put at stake.

The first source of error is always the data. The numbers put into the cal-
culations must be current and appropriate to your holding period. Even
today’s numbers may not be appropriate for calculations if a company is about
to go through some type of restructuring. The data must be accurate. Corrup-
tion, data revision, or just plain mistakes can cause inaccuracy in calculations
that make them unreliable. Some data sources will be more prone to inaccu-
racy than others. Typically the more times data are moved, the more errors are
possible. Data straight from the NYSE is more accurate than that recorded
from slips of paper. Also consider the incentives one has to misrepresent
information, and the penalties for falsification.

David Bianco of UBS analyzed S&P 500 companies for the quality of earn-
ings. He found that the index as a whole returned only 3.3% annually during
the period 1988 to 2003, but the 50 companies with the best quality earnings
generated a return of 12.3% including dividends, whereas shares of bottom
fifty companies in terms of quality earnings returned zero percent. Bianco’s
measure of quality takes account of
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A. One-time or special charges: In Bianco’s view, companies who take such
charges tend to do so year after year. Also, these charges may actually include
recurring operational costs that should be deducted from revenue.

B. Choosing not to subtract the costs of stock options: Employee stock
ownership plans (ESOPs) especially stock options is a way to compensate the
employees when the price of stock goes higher than a set limit, but they dilute
earnings per share. Stock options as a percent of outstanding shares have not
declined between year 2000 and 2002, even after the abuses at Enron and other
companies created uproar and some accounting reforms were in the news. For
examples the percentages between 2000 and 2002 are: (Cisco, 14, 19), (Hewlett
Packard, 8, 15), (IBM, 9, 13), (Intel, 9, 13).

C. Rosy pension assumptions: inflating pension earnings or masking
pension costs that improve corporate earnings.

D. Off the book loans to key employees (CEOs and CFOs): These loans
can be forgiven at the discretion of the board of directors.

E. Contingent convertible bonds (CoCo’s): CoCo’s are a financial instru-
ment somewhat more complex than ESOPs. Under current accounting rules
their impact on cash flow need not be shown on the company books until 
the price reaches the contingency price of the stock. However, the impact can
be substantial. For example, at Interpublic Group Companies, the additional
CoCo shares would cut earnings by 6.7% (N.Y. Times, Feb 15, 2004)

These items are not reflected in pro-forma earnings. When the stock prices
rise, the employees with stock options exercise them placing a drain on the
cash flow of companies. If stock options as a percent of shares is increasing,
the pro-forma earnings are that much more unreliable. Similarly, if CoCo
bonds are converted into shares, the drain on cash flow is not reflected in pro-
forma reports. Ideally the Financial Accounting Standards Board (FASB)
and/or the London-based International Accounting Standards Board’s
(IASB) should ask public companies to report these quality adjusted earnings
in addition to pro-forma earnings. The clever accountants come up with ever
newer tools to make it appear that the earnings are higher than they really
are whereas FASB is not keeping up with these schemes. In September 2003
FASB agreed to look into stock options.

The perks granted to CEO’s and other key employees of large US corpo-
rations are sometimes revealed in company filings, and sometimes become
public because of divorce or other litigation involving these individuals. The
divorce of Citigroup’s Mr. Weill shocked many by the excessive perks mostly
hidden from the shareholders. Dennis Kozlowski, former chief executive of
Tyco International bought $29 million worth land and property in Florida and
$16.8 million apartment on Fifth Avenue in Manhattan. He also spent $14
million for renovating and furnishing the apartment. Jet airplanes for personal
use have been granted to Michael Eisner, CEO of Disney and Richard M.
Scrushy, former CEO of HealthSouth. Martha Stewart, the founder of Martha
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Stewart Living Omnimedia billed her company $17,000 per year for a weekend
driver and other costs (New York Times, Feb 22, 2004).

Another source of inaccuracy is in the computer calculation.The same ques-
tion, asked two different ways to a computer can get two different answers.
Chapter 9 gave a glimpse into the logic used by computers. We provided some
tricks to getting more precise output, and verifying the results. If numbers look
too good to be true, get a second opinion. Use a different software, rescale the
data, or do a back-of-the-envelope double check. At the end of the day, the
computer is not going to refund your money for its calculation errors.

Once these four areas are confirmed, it is vital to incorporate downside risk
into investment decisions. Since we devoted a chapter to mathematical tools,
it may be useful to add an example discussed by J.A. Paulos in a book called
A Mathematician Plays the Stock Market. Consider a simple weekly strategy
to buy stock on Monday and sell it on Friday under the assumption that half
the time stock (e.g., initial public offering, IPO) gains 80% and half the time
it loses 60%. That is, one dollar can become $1.80 or $0.40. Consider a two-
week time horizon with four possible outcomes: (1) gains of 80% both weeks
(1.8)2 = 3.24, (2) losses of 60% both weeks (0.4)2 = 0.16, or (3) a gain in one
week followed by a loss in the next week (1.8)(0.4) = 0.72, or (4) a loss in the
first week followed by a gain the next week (0.4)(1.8) = 0.72. If $10,000 is
invested, the four outcomes are $32,400, $1,600, $7,200, or $7,200 respectively.
Thus the average amount after two weeks is a huge return of $12,100. It is
tempting to look back at the end of just two weeks and assume that a similar
average performance will repeat. That is, it is tempting to assume that this
average rate of return experienced in first two weeks will hold for the whole
year (over 26 two-week periods). This is called law of small numbers, that is,
the human temptation to generalize from a small sample. The investor will
expect to end up with (1.21)26 = 142.0429, that is, $10,000 will become over
$1.42 million in just one year. Unfortunately, working with the average return
is invalid. It is more appropriate to assume that the investment will rise for 26
weeks and fall for 26 weeks in any order. Then the investor ends up with
(1.8)26(0.4)26 = 0.0001952742 or only $1.95.

In this book we have shown that there is much more to investing than just
compound interest mathematics. It is important to use the past data, statistics,
market psychology, forecasts of government monetary and fiscal policy, fore-
casts of international financial trends, and many related tools in combination
to come up with a strategy suitable for one’s own risk tolerance.We have noted
that implied volatility in the put options is a forward-looking measure for fore-
casting downside risk. We have also discussed the use of (put and call) option
markets to buy insurance (hedge) against downside risk at a price.

Investors must also be careful not to ignore markets other than the stock
market. Investors generally do have nonfinancial assets, such as real estate.
Falling financial wealth due to the recent fall in stock prices and the 2001 reces-
sion was coupled with rise in personal debt. Recent history shows that there
has been a property market decline with all recent recessions since the 1960s.
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However, the 2001 recession actually caused a shift toward property markets,
and this along with the record low interests could have contributed to a bubble
in property prices instead of a recession. Karakitos (2002) has developed a
model that links the stock market with the property markets in the United
States. It is well known that the property market crash in Tokyo started the
long-term decline in the Japanese stock market. Realistically, corporate bond
markets, real estate markets, government securities markets, and currency
markets dwarf the stock market. Those markets are just not as sexy to write
about since most of their valuation techniques are relatively straightforward.

Real Estate Investment Trust (REIT) is a useful vehicle for investing in real
estate. REIT pools the capital of many investors to purchase and manage
properties. There are REIT’s devoted to income streams or mortgage loans
and are traded on major exchanges just like stocks, although they are often
granted special tax treatments. Unlike owning actual real estate, these are
liquid investments since the owner can readily buy or sell them. An individ-
ual owner is rarely able to own large malls or commercial properties, but the
REIT can do so. REITs need not be correlated with the broader market. For
example, Morgan Stanley real estate investment trust REIT index often goes
up when S&P500 went down. In 2003, it continued to go up even when S&P
went up. This means REITs offer a possible vehicle for diversification. The
rating of REITs is a specialized task involving assessment of the company with
respect to (i) Market position, (ii) Asset quality, (iii) Diversification and sta-
bility of operations, and (iv) Management Operations including cash flow,
management structure and so forth.

Whatever market is chosen to invest in, if the risk is identified, proper steps
can be taken, such as increased capital reserves, shifting more assets toward
safer investments, and hedging. Given two portfolios with the same average
return and same standard deviation, we cannot consider them identical until
we examine their downside risk.We can expect the unexpected insofar as while
we don’t know exactly what will happen, we know that extreme downside
movements do happen. Putting downside risk into our calculations beforehand
means that when losses do occur, we are prepared.
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Glossary of Greek Symbols
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Spoken Symbol Short Description Presentation

Alpha a Average return Section 1.5
Alpha a Intercept Appendix (chapter 1)
Alpha a a Œ [0, 1] measures Chapter 6

extent of departure 
from EUT precepts;
a = 1 is perfect
compliance

Alpha dash a¢ Fraction in [0, 1] closed Section 2.1
interval

Beta b Beta of the CAPM Section 2.2
Beta sub 1 b1 Pearson skewness Equation (2.1.4)
Beta sub 2 b2 Pearson kurtosis Equation (2.1.4)
Beta sub w bw Weighted beta or Equation (5.2.10)

downside beta
Delta squared d2 Variance of the jump Section 1.4
Delta d Excess return for Equation (1.5.2)

anomaly
Delta D Difference operator Section 1.4

DSt = St - St-1

Delta D Change in price of an Section 3.4.1
option

Delta t Dt Time duration Section 1.4
Delta Pt for tau DPt (t) Change in value of Section 5.1

portfolio P(t + t) -
P(t) for horizon t

Epsilon e Error term Chapter 1
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Spoken Symbol Short Description Presentation

Epsilon for set Œ In the set Section 2.4
theory (or In)

Eta h Speed at which asset Section 1.4
returns to the mean

Gamma G Absolute change in D Section 3.4.2
of anoption

Kappa k Roots of quadratic Equation (2.1.7)
indicates Pearson
types

Lambda l Average number of Equation (1.4.4)
jumps per unit time

Mu m Average return Section 1.3, 7.4
Mu sub j mj Central moments of Section 2.1

( j = 1, . . . , 4) order j (e.g., variance
is j = 2)

Omega W Ensemble of time series Section 9.1
Omega W D of option in Section 3.4.3

percentages
Pi p Risk premium Section 6.1
PO(lambda) PO(l) Poisson density with Equation (5.3.3)

parameter l
PHI F Cumulative Section 2.1

distribution function
for normal

Pi sub T sup e pT
e Expected inflation Section 1.2

rate over time 0 to T
Pi sup s ps Probability in state s Section 1.1

(s = 1, . . . , S)
Rho r Absolute change in Section 3.4.3

option value for 1% 
change in the interest
rate

Rho r Slope parameter in Equations (4.1.1), (4.1.3)
AR(1) model

Rho sub p rp Autocorrelation of Equation (4.1.2)
lag order p

S s Sample standard Section 5.1
deviation of excesss
returns; sample
counterpart of s

S squared s2 Sample variance of Equation (2.1.10)
portfolios; sample
counterpart of s2

Sigma s Standard deviation Section 1.2
Sigma squared s2 Variance Equation (1.3.3)
Sigma sub i si Standard deviation, Equation (5.2.7)

Portfolio i
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Spoken Symbol Short Description Presentation

Tau t Tax rate Section 1.2
Tau t Time horizon Section 2.1
Tau t Tail index for stable Section 7.4

Pareto density
Theta q Risk premium Section 1.2
Theta q Threshold for losses, Section 7.4

“q exceedances” of a
generalized stable
Pareto density

Theta Q Absolute change in the Section 3.4.3
option value for a
reduction in time to
expiration

Vega V Option price change Section 3.4.3
with a 1% change in
volatility
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Spoken Notation Short Description Presentation

A a Intercept Equation (1.A.5)
B b Slope Equation (1.A.5)
Cap-em CAPM Capital asset pricing Section 2.2

model
C sub BS CBS Black-Scholes option Equation (5.3.2)

pricing formula, call
option

C sub JD CJD Jump diffusion option Equation (5.3.3)
pricing formula, call
option

Dq dq Poisson process PO(l) Section 1.4
Dz dz Wiener process Section 1.4
D sub j ( j = 1, . . . , 4) Dj ( j = 1, . . . , 4) Class Dj of utility Section 6.3

functions
DSh sub i DShi Downside Sharpe Equation (9.3.8)

ratio
D sup s Ds Dividends in state s Section 1.1
DSh sub i DShi Downside Sharpe Equation (5.2.9)

ratio for portfolio i
DTr sub i DTri Downside Treynor’s Equation (5.2.10)

performance
measure, portfolio i

E sub 1 to e sub T e1 to eT Regression residuals Section 9.3
E* sub jt ejt* ( j = 1, 2, . . . , J Shuffled residuals for Section 9.3

and t = 1, 2, . . . , jth replications and 
T) tth observation
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Spoken Notation Short Description Presentation

F of R f(R) pdf of returns or Section 2.1
vexcess returns

F of x f(x) pdf of excess returns Section 2.1
cumulative F(x) CDF for f(x) Section 5.1

distribution of x
F of x for parameters f(x, q) pdf of excess returns Section 5.1

q f(x) having a 
parameter vector q

F inverse at a¢ for F-1(a¢, q) Inverse CDF evaluated Section 5.1
parameters q at a¢ when the pdf

depends on q vector
of parameters

G sub t gt = log(1 + Rt) Natural log of gross Section 9.1
return gt

Greater than or ≥j for j = 1, . . . , 4 If A≥j B means that Section 6.3
equal to sub j for A dominates B in jth
j = 1 to 4 order

G sub of Gof Goodness-of-fit Equation (4.3.3)
statistic

H sub n Product of n gross Section 9.1
returns

H sub t ht Changing variance Section 4.2
in ARCH models

I(j), j = 0, 1, 2 I( j) Integrated of order j Section 1.4
Infimum inf Smallest value in a set Equation (6.2.1)
I sub lowercase f If Matrix having all ones Section 6.3.10

on and below the
diagonal

I sub uppercase f IF Matrix having 6.3.10, below
nonzero terms on Equation
and below the (6.3.5)
diagonal to
approximate
integration

K dash K¢ Radical of a quadratic Section 2.1
K sup # K# Condition number Section 9.A2
M sub j for mj Sample moments Section 2.1

j = 1, . . . , 4
M sub jw for mjw Sample weighted Equation (5.2.4)

j = 1, . . . , 4 moments
P sub i pi Proportions in a Section 2.1

portfolio
P sub j pj Principal component Equation (2.4.3)
P sub t (t = 1, . . . , T) Pt P0 = initial price, Pt Section 1.1

price at future date
P sub v Pv Present value Section 1.1

H Rn i
n

i= +( )=P 1 1
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Spoken Notation Short Description Presentation

P sup A pA k ¥ 1 vector of Section 6.3.10
individual
probabilities for
prospect A

PE ratio (P/E) Price-to-earnings Section 7.3
ratio (P/E ratio)

Q sub LB QL-B Ljung and Box test Section 4.2.1
R bar Average return Section 4.1
R sub t (t = 1, . . . , T) rt Return after t years Section 1.1
R sub t (t = 1, . . . , T) rt (Percent) daily returns Section 2.1
R sub f rf Risk-free return Section 2.2
R sub i paren j ri( j) Returns for firm i Section 6.3.6

ordered from the 
smallest to the largest
over j = 1, . . . , T

R sub m rm Market return Section 2.2
R sub T sup f rT

f Risk-free rate Section 1.2
R sub T sup n rT

n Nominal interest rate Section 1.2
R sub T supat rT

at Return after tax Section 1.2
S bar Average price of Section 1.4

financial asset
S sub n Sn Section 9.1
Sh sub i Shi Sharpe ratio for i Equation (5.2.7),

portfolio Section 9.3
S sub k Sk Sample skewness Equation (5.2.5)

with weights wt

Sum 4SD over all j S4SDj Sum 4th order Section 6.3
data points stochastic dominance

terms over all j data
points

Tr sub i Tri Treynor’s performance Equation (5.2.8)
measure, portfolio i

T sub a or b Ta or Tb Number of returns Section 6.3.10
from prospect A or B

T uppercase T Future date Section 1.1
U(xi, i = 1, 2, . . . , n) U(xi, i = 1, 2, . . . , n) Utility of (xi) when Section 6.1

i = 1, 2, . . . , n
U prime U¢ Marginal utility Section 6.1
U two dashes U≤ Second derivative of U Section 6.1
U three dashes U¢≤ Third derivative of U Section 6.1
U four dashes U¢≤ Fourth derivative of U Section 6.1
V sub j vj Eigenvectors Section 2.4
V sub 1 (or 2 or 3) V1 or V2 or V3 Alternative Section 9.2

(numerically distinct)
formulas for variance

S xn i
n

i= =S 1

S

r
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Spoken Notation Short Description Presentation

VaR at alpha dash VaR(a¢) Value at risk evaluated Sections 2.1, 5.1
at a small proportion 
a¢ (e.g., 0.01 or 0.05)

W zero W0 Initial wealth Section 7.4
W(p, alpha) W(p, a) Decision weight Section 6.2.2

function of
proportion p and a,
the EUT compliance
parameter

X x Regressor Appendix 
(Chapter 1)

Xbar Sample mean of excess Section 5.1
returns

X sub it (i = 1, 2), xit Excess return on asset Section 2.2
(t = 1, . . . , T) i at time t

X sub t colon T x(t:T) Ordered values of xt Section 4.3
when t = 1, . . . , T

Y y Dependent variable Appendix
(Chapter 1)

Y hat Fitted y Appendix
(Chapter 1)

Z z Standard normal Section 1.4
N(0, 1) variable

Z bar sub v v Vector of average Section 2.1
returns from
Table 2.1.4

Z sub alpha dash Za¢ Quantile of N(0, 1) Section 2.1

Z

y

x
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Symbol Short Description Presentation

1SD First-order stochastic dominance Section 6.3.6
2SD Second-order stochastic dominance Section 6.3.7
3SD Third-order stochastic dominance Section 6.3.8
4DP Four desirable properties of utility functions Section 6.2

to be consistent with non-EUT insights
(reflectivity, asymmetric reaction, loss
aversion, and diminishing sensitivity).

4SD Fourth-order stochastic dominance Section 6.3.9
AAAYX AAAYX stock market ticker symbol mutual Section 4.3

fund
ACR Average compound return over n periods Section 9.1
ACF Autocorrelation function Section 9.3
APT Arbitrage pricing theory Section 2.4.2
Add factor Number added to Sharpe ratio for correct Section 5.2

ranking
AdjSN Adjusted Azzalini skew-normal density Section 4.4
AR(p) Autoregression of order p Section 1.4.1,

Equation (4.1.1)
ARCH Autoregressive conditional heteroscedasticity Section 4.2
ARMA(p, q) AR and MA mixed model of orders p and q Equation (4.1.7)
ARIMA(p, d, q) AR and MA mixed model of orders p and Section 1.4.1

q applied after data are differenced d times
BS Black-Scholes option pricing formula, call Equation (5.3.2)

option
CARA Coefficient of absolute risk aversion, -U≤/U¢ Equation (6.1.5)
CBOE Chicago board of options exchange Section 3.4



Symbol Short Description Presentation

CDF or cdf Cumulative distribution function Sections 2.1, 4.3.1
CEV Constant elasticity of variance Section 1.4
CIR SR Cox, Ingersoll, and Ross square root Section 1.4
CIR V Cox, Ingersoll, and Ross highly volatile Section 1.4
CLT Central limit theorem Section 9.1
Cov1, 2 Covariance of portfolio for diversification Equation (2.2.2)
CPI Corruption perception index Section 7.4
CPRM Constant proportional risk aversion utility Section 6.4
CRRA Coefficient of relative risk aversion -xU≤/U¢ Section 6.1.1, 7.4
D-boot Double bootstrap Section 9.3
DSD Downside standard deviation Equation (5.2.1)
EBITDA Earnings before interest, taxes, depreciation, Section 7.3

and amortization
eCDF or ECDF Empirical CDF Section 4.3.2,

Figure 4.3.2
EMH Efficient markets hypothesis Sections 1.5, 4.1
E(P) Expected price Section 1.5
EUT Expected utility theory Section 6.1
E(X) Expected value of X Section 6.1
Fed Federal Reserve Bank (controls US Section 1.5

monetarypolicy)
FDI Foreign direct investment
GARCH Generalized autoregressive conditional Section 4.2

heteroscedasticity
GBM Geometric Brownian motion Section 1.4
H Entropy or expectation of Shannon Equation (9.C.1)

information
HyDARA Hyperbolic or diminishing absolute risk Section 7.4

aversion utility
ICDF Inverse cumulative probability distribution Section 9.2

function
IQR Inter-quartile range = Q3 - Q1. Appendix C

(Chapter 9)
iid Independent and identically distributed Section 9.1
JD Jump diffusion Section 5.3
K Total investment Section 2.1
KNIP Kimball’s nonincreasing prudence Section 6.3.10
LL Log likelihood Section 4.4
L(p) Lorenz curve for proportion p on unit square Section 6.2.1
MAD Mean absolute deviation Equation (1.3.2)
MA(q) Moving average of order q Equations (4.1.6),

(4.1.6)
MBB Moving blocks bootstrap Section 9.3
ME Maximum entropy Appendix C

(Chapter 9)
ML Maximum likelihood Section 4.4
MLPM Mean lower partial moment Section 6.4
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Symbol Short Description Presentation

MPC Marginal propensity to consume Section 6.3.5
MU Marginal utility
NIARA Nonincreasing absolute risk aversion Section 6.3.4
non-EUT Nonexpected utility theory Section 6.1
PACF Partial autocorrelation function Section 9.3
pdf or PDF Probability distribution functions Section 1.2
Prudence Kimball’s prudence -U≤≤/U≤ Section 6.3.5
Q–Q Quantile to quantile Section 4.3.2
R Interest rate, net percentage return over Section 1.19.1
r time period t returns or excess returns Section 2.1
rf Risk-free rate Section 2.2
rm Excess return of the market portfolio in Section 2.2

CAPM model
RSK(c) Measure of risk (s - cSk), s = standard Equation (5.2.6)

deviation, Sk is skewness, c is a constant
s State Section 1.1
S Stock price Section 1.4
SEC Securities and Exchange Commission Section 7.4
SN Azzalini skew-normal density Section 4.4
SPX Wall Street ticker symbol for S&P 500 Section 6.3.10
t Time subscript Section 1.1
TB3 Interest rates on 3-month treasury bills Appendix A 

(Chapter 9)
V Variance-covariance matrix Equation (2.1.10),

Section 7.4
Van 500 Vanguard 500 index fund Appendix A

(Chapter 9)
VaR Value at risk Section 2.1
W Wealth Section 7.4
w Vector of weights Section 7.4
WKK Wiener, Kolmogorov, and Khintchine Section 9.1
x Excess returns Section 2.1
X n ¥ T matrix of excess returns Section 2.4
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Longin 89, 103, 104, 179
Lorenz 129, 130, 132
Longley 216
Lyapunov 154

Maasoumi 154
MacBeth 45
MacKinley 45
Mardia 199
Markowitz 124, 125, 138, 148, 194,

195
Marsaglia 220
Martha Stewart Omnimedia 251
McCullagh 150
McCulloch 152
McCullough 82, 199, 213, 215, 217, 229,

238, 239
McDonald 45, 223
Mehra 127
Mehta 174
Merton 22, 47, 69, 70, 73, 116, 117, 204
Michaely 7
Microsoft 214
Microsoft Excel 2000 214,217,218,230,231
Miller 27
Mittelhammer 27
Mittnik 96, 97, 99
Modigliani 165
Morey 52, 105, 227, 228, 229
Morgan Stanley 252
Morgenstern 124
Morningstar 146, 150
Moody’s 174
Mookherjee 158
Myers 47

National Institute for Standards and
Technology (NIST) 216, 217

National Science Foundation 220
Nelder 150
Nerlove 150
Newton 151
New York Times 250, 251
Nijman 52
Nike 157
Nutt 159

Omran 109, 178
Options Clearing Corporation 116
Ord 112
Ornstein 21

Pan 29
Pareto 121
Patel 159
Paulos 251
Pazarbasioglu 172
Pearson 34
Pedersen 162
Pitts 152
Poterba 77, 175, 176, 177
Prelec 132, 133, 134
Prescott 127
Princeton University 221

Qi 153, 154

Racine 154
Rachev 88, 96, 97, 99, 103, 179
Raphson 151
Reagle 26, 117, 168, 169
Real Estate Investment Trust (REIT)

252
Renfro 82, 238
Reinhart 169
Reuters 23
Richardson 45
Richardson 79
Ritchken 147, 148
Ritter 157
Rogers 216
Roll 44, 97
Rose 32, 88, 103
Ross 21, 47, 49
Rubenstein 147

Salvatore 168, 169
Samanta 22
Samuelson 122
Savage 124, 125
Schinasi 172
Schmid 144, 145
Scholes 22, 115, 119, 147
Schwartz 21, 223
Scrushy 250
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Securities and Exchange Commission
(SEC) 171

Serrat 177
Sharpe 50, 113, 195, 227
Sheather 88
Shenton 211
Shleifer 47
Silverman 86, 88
Singh 144
Smith 88, 172
Solnik 89, 103, 104, 179
Sopher 158
Spanos 86, 208
Standard & Poor’s 174
Starmer 127, 132, 135, 176
Statistical Reference Datasets (StRD) 216
Stewart 250
Stock 79
Stuart 85, 112
Stuetzle 153
Su 159
Summers 77
Sun 223

Tehranian 159
Tenorio 157
Thai Baht 171, 174
Thaler 156
The Financial Times 167
Theil 242
Thistle 142
Tibshirani 145
Tiao 239
Toronto Star 214
Torous 223
Transparency International 174
Trede 144, 145
Treynor 50, 114, 195
Tsay 199
Tsey 153
Tukey 220

Tversky 133, 134, 156
Tyco international 171, 250

UBS 249
Uhlenbeck 21
Ullah 50, 196, 199

Value Line 164
Vanguard 500 Index Fund 37, 232, 233,

234
Vardharaj 18
Vasicek 21
Velasco 172
Vinod 22, 26, 50, 52, 82, 104, 105, 109,

110, 117, 127, 134, 135, 137, 138,
142, 146, 153, 172, 176, 177, 196,
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Vishny 47
Von Neumann 124

Wall street journal 23, 211–213
Warren 148
Watson 80
Watts 239
Weill 250
Weston 43
White 152, 154
Wiener 207
Witte 134
Wood 32, 103
Wooldridge 47
World Bank 169, 172, 173
Worldcom 138, 159, 171

Xie 111

Yahoo 164

Zhou 45



Backwardation 56
BDS Test 154
Bear Markets 20, 179
Benchmarks 216
Beta 233–234
Best Unbiased Estimator (BLUE) 28
Bianco’s Analysis of Earnings 249
Bilateral Forward Contract 57
Bilinear Form 191
Black-Scholes Formula 68, 95, 115, 117,

147, 148, 202, 204, 205
Bonds Linked to Stocks 72
Bootsrtap 218, 223, 224, 226, 228,

240–242, 245
Boot-t Studentized Bootstrap 228
Brock-Dechert-Scheinkman (BDS) Test

154
Brokers 1
Brownian Motion 15, 115, 205
Bubbles 75–77
Bull Markets 20, 179
Buy Side 2
Buy and Hold 154, 165

Call Option 61, 116
Capital Asset Pricing Model (CAPM)

18, 42, 111, 114, 120, 121, 132, 138,
148, 158, 159, 160, 162, 195, 223, 232,
233, 234, 248

CARA 125, 126, 136, 137
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4DP (Four Desirable Properties) 133
4SD (Fourth Order Stochastic

Dominance) 137–138, 142
Alpha, Jensen’s 50
AMEX American Stock Exchange 72
Analysts

Technical 5
Fundamental Value 5

ACF (Autocorrelation Function) 224
ADR (American depository receipts)

156
Arbitrage Pricing 64
Arbitrage Pricing Theory (APT) 47, 48,

64
Arbitrager 203
ARCH 80
ARIMA Model 19
Arithmetic Mean 211, 212
Arrow-Pratt Coefficient of Risk

Aversion
(CARA) 125, 126, 136, 137

Asset Class 45
Autocorrelation Function 224

Partial 224
Autoregression (AR) 77
Autoregressive Moving Average

(ARMA) 148
Average Compound Return (ACR) 211,

213
Azzalini’s Skew-Normal Distribution 91

Preparing for the Worst: Incorporating Downside Risk in Stock Market Investments,
by Hrishikesh D. Vinod and Derrick P. Reagle
ISBN 0-471-23442-7 Copyright © 2005 John Wiley & Sons, Inc.
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Consumption CAPM 138
Cauchy Density 98, 220
Cayley-Hamilton Theorem 189
Central Limit Theorem (CLT) 97, 207,

208, 209, 212, 213
CEV 22
Chaos, Deterministic 154
Characteristic Function 97
CIR 21–22
CoCo (Contingent Convertible) Bonds

250
Cofactor 186
Collinearity 187, 231, 237, 239
Concave utility 122
Conditional Heteroskedasticity 45
Constant Elasticity of Variance 35
Constant Proportional Risk Aversion

(CPRA) 147
Constant Relative Risk Aversion

(CRRA) 175, 176
Consumption CAPM 138
Contago 56
Correlated investments 38–39
Corruption 110, 155, 163, 171–173, 177,

178, 222, 248, 249
Corruption Perception Index (CPI) 174
Covariance stationary 207
Cumulative Distribution Function

(CDF) 139, 142, 143, 145, 151, 152,
210, 217

Empirical (ECDF) 85–86, 143, 224, 248
Inverse 220, 221, 243

Currency Devaluation 167

Data Revision 169
DAX 154
DIEHARD Tests 220
Deciles 30
Default Risk 46, 174
Derivatives 55, 202

Call Option 61, 116
Forward Contract 56
Futures 58
LEAP 73
Matrix 191
Put Option 61, 116

Determinant 182
Of a Square Matrix 182
Of a Diagonal Matrix 183

Diffusion Equation 14–22, 66–69, 116,
117, 201–205

Diversification and Correlation 40
Dollar Cost Averaging 165
Double Bootstrap (d-boot) 228
Double Exponential Distribution 91
Dow Jones Industrials 212, 213
Downside Risk 1, 31, 160–161, 226,

247–249, 251–252
Downside Standard Deviation (DSD)

111, 114
Downside Sharpe and Treynor Measures

114

Earnings
Retained 8
Net 8

Economic Freedom 178
Efficient Market Hypothesis (EMH) 23,

75
Weak Form 23
Semi Strong Form 24
Strong Form 25

Eigenvalues 94, 186–188, 190–193, 196,
199

Eigenvectors 49, 187–189, 192, 193, 199
Elliptic PDE 205
Empirical CDF (ECDF) 85–86, 129, 143,

224, 248
Employee Stock Ownership Plan

(ESOP) 250
EMH 75
Epanechnikov Kernel 87
Equity Premium Puzzle 127
ESOP (Employee Stock Ownership

Program) 250
Euclidian 189–190

Space 189
Length 189–190

Excel (Microsoft) Numerical Errors
214

Excel (Microsoft) Regression Steps 230
Expected Value 4, 12, 56, 96, 121, 122,

127, 128, 131, 151, 157
Expected Utility Theory (EUT) 119,

122, 134, 176, 178

Federal Deposit Insurance Corporation
(FDIC) 6, 72
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Feed Forward 153
Financial Accounting Standards Board

(FASB) 250
Financial Derivatives 4
First Order Condition (FOC) 194, 235
First Order Correctness 228
Fisher’s Permutation Distribution

143–145
Fisher Scoring 151
Fixed Point 133
Foreign Direct Investment (FDI) 109,

174, 178
Forward Contract 56
FTSE 100–154
Fundamental Value 5
Futures Contract 58
Futures Exchange 57
Future Value 3

Gaussian (Normal) Distribution 204
GBM 22, 116
Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) 47,
81–83, 101, 103, 148, 154, 179, 217

Generalized Least Squares 150–151
Generalized Linear Models (GLM) 120,

151
Generalized Method of Moments

(GMM) 45
Geometric Mean 211–213
Gibbs Sampler 222
Gini Coefficient 129–131
Gram-Schmidt Orthogonalization 190
Greeks (Wall Street Jargon) 70–73, 202

Heaviside Function 152
Hedging 202, 251
Hessian 94, 151, 236, 238, 239
Heteroscedasticity 80
Homoscedasticity 80
Hot money transfers 173
Hyperbolic Absolute Risk Aversion

(HARA) 138
Hyperbolic Diminishing Absolute Risk

Aversion Function (HyDARA)
176

Idempotent Matrix 190–191
Identity Matrix 182

IGARCH 108
Implied Volatility 70, 115
In the Money Option 61
Independently and Identically

Distributed (iid) 209, 223
Integrated of Order 1, I(1) 19
Interest Rate

Risk Free 9
Equilibrium 9
Nominal 11

International Accounting Standards
Board (IASB) 250

International Monetary Fund (IMF) 175
Intrinsic value 5
Inverse CDF 220, 221, 243
Inverse Matrix 186, 187
Investment 2

Return on 2
Initial 3

IPO 14, 157, 251
Ito’s Lemma 67, 73, 116, 199, 200–202,

205
Inverse Gaussian Density 90

JBLU Ticker for Jet Blue Airlines 73
Johnson Family of Distributions 103–104
Jump Diffusion Process 17, 115–117

Kernel Density Estimation 86, 104, 248
KNIP (Kimball’s Non-Increasing

Prudence) 137
Kolmogorov-Smirnov Test 86
Kurtosis 33, 45, 84, 93, 127, 247

Mesokurtic 33
Platykurtic 33
Leptokurtic 33

Lagrangian Function 194–195
Laplace Distribution 91
Law of Iterated Expectations 81
Law of Small Numbers 251
LEAP 73
Lee-White-Granger Test 154
Leptokurtic 33
Levy Density 98
Link Function 151
Ljung-Box Test 82
Log Likelihood Function (LL) 93, 149,

235, 237, 239–240
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Logistic Distribution 84, 151
Logit 150
Lognormal Distribution 95, 205, 209–210
Long position 61
Long-term Equity Anticipation Products

(LEAPS) 73
Lorenz Curve 129–132, 144
LTCM 60
Lyapunov Exponent 154

Mantissa 214
Margin Accounts 59
Marginal Propensity to Consume (MPC)

137
Marginal Utility 121
Marked to Market 59
Markowitz Mean Variance Model 99
Matrix

Cofactor of 186
Derivative 191
Hessian 94, 151, 236, 238, 239
Idempotent 190, 191
Identity Matrix 182
Inverse of 186, 187
Minor of 186
Orthogonal 189–190, 193
Partitioned 186
Rank of 183, 190
Symmetric 192–193, 199
Trace of 185, 186
Transpose of 182

Matrix Algebra 181, 231
Associativity 182
Distribitivity 182

Maturity 3, 4, 6, 56–58, 64, 68, 70, 115
Maximum Entropy (ME) 105, 240,

242–245
Maximum Entropy Bootstrap 240–242,

245
Maximum Likelihood Method (ML) 82,

150, 235, 239–240
Mean Absolute Deviation (MAD)

10–11
Mean Lower Partial Moment (MLPM)

148
Mean Preserving Constraint 242
Mean Reversion 18, 77
Measures of Dispersion and Volatility

Range 10

Mean Absolute Deviation (MAD)
10–11

Variance (See Variance)
Tracking Error 18
Intraday Range 12

Mesokurtic 33
MGF 96
Minimum Variance Portfolio 45
Minor (of a Matrix) 186
Monte Carlo Simulations 30, 45, 145,

220–221
Moving Average (MA) 77
Moving Blocks Bootstraps (MBB) 225,

245
Moment Generating Function 96
Multicollinearity 187, 231, 237, 239
Mutual Fund 2, 37–39, 50, 86–88, 104,

146, 147, 150, 158, 165, 210, 229,
245

Neural Networks (NN) 120
Neural Network Model (NN) 152, 153
Newtonian Iterative Scheme 238
New York Stock Exchange (NYSE) 1,

249
Newton Search Method 94
Nikkei 154, 225
N(0,1) 12
NIARA (Non-Increasing Absolute Risk

Aversion) 136–137, 141, 146
NIST 216
Non-Expected Utility Theory 

(non-EUT) 119, 129
Nonlinear Regression 237
Nonparametric Densities 104, 248
Normal Distribution 11–14, 28, 30–37,

44, 83–85, 90, 97, 106, 195, 204, 209,
236, 247

Options See Derivatives
Ordinary Least Squares (OLS) 224,

237
Orthogonal 189, 190

Matrices 189–190, 193
Vectors 189

Out of the Money 61

Parabolic PDE 205
Pareto Distribution 89, 131, 178, 179
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Pareto-Levy Distribution 89
Partial Autocorrelation Function

(PACF) 224
Partial Differential Equations (PDE)

205
Partitioned Matrix 186
Pearson Family of Distributions 32, 87,

105, 139, 160, 210, 248
Type I-IX 34

Pearson Skewness and Kurtosis 34
Percentiles 30, 31
Pivotal 228
Platykurtic 33
Poisson Process 17, 116, 117
Portfolio Churning 154
Present Value 3
Principal Component Analysis (PCA)

49, 199
Probability Density Function (PDF) 19,

31, 120, 139, 142, 148
Projection Pursuit (PP) Regression 153
Prospect Pessimism 134
Prospect Theory 156
Put Options 61, 72, 116

Implied Volatility (putv) 117

Quadratic Form 191
Quantiles 30 (See Value at Risk)

Percentiles 30, 31
Deciles 30
Quartiles 30

Random Walk 15, 201
Range 10, 12
Rank (of a Matrix) 183, 190
Reflective Property of Utility 133
Regression Model 26–28, 149–150, 223,

232
Regressive Property of Utility 133
REIT (Real Estate Investment Trust)

252
Retained Earnings 8
Risk 1, 14, 41, 46, 162, 174, 252

Aversion 122
Credit 174
Default 46, 174
Diversifiable 41
Downside 1, 31 160–161, 226, 247–249,

251–252

Estimation of 226–227
Management of 41
Measurement of 247
Neutral 202
Systematic 41, 42, 162
Stock Market 247
Transaction 174
Undiversifiable 41
Upside 14, 247

Risk Premium 13, 126, 247, 249
RiskMetrics 108
Russell 2000 Index 105

Sarbanes-Oxley Act 171
Sampling Distribution 112, 145, 208, 209,

212–229, 240
S&P 500 Index 15, 114, 116, 146, 154,

163–164, 212, 232, 241, 249, 252
S&P 100 Index 158
Score Function 235
Second Order Correctness 228
Seemingly Unrelated Regression (SUR)

152, 154
Sell Side 2
Shannon Information 241
Shapiro-Wilk Test 86
Sharpe Ratio 51, 114, 132, 135, 218,

227–229
Sample 227
Population 227
Double 227

Short position 61
Simulations 218–222
Single Bootstrap (s-boot) 228
Singularity 182–183
Singular Value Decomposition (SVD)

49, 196–199
Skewness 33, 45, 90, 93, 127, 128, 141,

179, 247
Positive 133

Skew-Normal Distribution 91
Specialists 1
SPARQ Stock Participation Accreting

Redemption Securities 73
Standard Error 28
Standard Normal Distribution, N(0,1)

23
Stop Loss 165
Student’s t Distribution 34
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Strike Price 61
Stationary Variance 81
Stochastic Dominance 120, 146

First Order 139, 140
Second order 140
Third order 141
Fourth order 142

Stochastic Process 207
STRIDES (Stock Return Income Debt

Securities) 73
Studentized Bootstrap 228
Sufficient Statistic 151
Sylvester’s Law 186
Symmetric Matrix 192–193, 199
Systematic Risk 41, 42, 162

Tail Index 178
Target Zone 170
Taylor Series 73, 95, 107, 125, 127, 199,

200, 213
Technical Analysts 5
Threshold Function 152
Time Horizon 1, 251
Tobit 150
Tracking Error 18

Trace (of a Matrix) 185, 186
Trading Floor 1
Transpose (of a Matrix) 182
Treynor Measure 52, 114, 132, 135, 162,

229
Type I Error 146

Unit square 129

Value at Risk (VaR) 29, 31, 101, 155,
160, 161, 172, 178–179, 180, 210,
217–218, 221–222, 241, 247

Vancouver Stock Exchange 213
Variance 11–13, 15, 17, 18, 20, 22, 26,

28, 30, 35, 37, 39, 41, 42, 44, 45,
49, 51, 65, 73, 78, 80, 84, 105, 108,
112, 115, 126, 128, 135, 149, 160,
176, 194, 198, 201, 205, 209, 216,
226

Vectors 181, 189

Weiner Process 15, 205

Yield Curve 10
Young’s Theorem 236
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ANDEĚL · Mathematics of Chance
ANDERSON · An Introduction to Multivariate Statistical Analysis, Third Edition
ANDERSON · The Statistical Analysis of Time Series
ANDERSON, AUQUIER, HAUCK, OAKES, VANDAELE, and WEISBERG ·

Statistical Methods for Comparative Studies
ANDERSON and LOYNES · The Teaching of Practical Statistics
ARMITAGE and DAVID (editors) · Advances in Biometry
ARNOLD, BALAKRISHNAN, and NAGARAJA · Records
ARTHANARI and DODGE · Mathematical Programming in Statistics
BAILEY · The Elements of Stochastic Processes with Applications to the Natural

Sciences
BALAKRISHNAN and KOUTRAS · Runs and Scans with Applications
BARNETT · Comparative Statistical Inference, Third Edition
BARNETT and LEWIS · Outliers in Statistical Data, Third Edition
BARTOSZYNSKI and NIEWIADOMSKA-BUGAJ · Probability and Statistical

Inference
BASILEVSKY · Statistical Factor Analysis and Related Methods: Theory and

Applications
BASU and RIGDON · Statistical Methods for the Reliability of Repairable Systems
BATES and WATTS · Nonlinear Regression Analysis and Its Applications
BECHHOFER, SANTNER, and GOLDSMAN · Design and Analysis of Experiments for

Statistical Selection, Screening, and Multiple Comparisons
BELSLEY · Conditioning Diagnostics: Collinearity and Weak Data in Regression

*Now available in a lower priced paperback edition in the Wiley Classics Library.

*

*
*



BELSLEY, KUH, and WELSCH · Regression Diagnostics: Identifying Influential Data
and Sources of Collinearity

BENDAT and PIERSOL · Random Data: Analysis and Measurement Procedures,
Third Edition

BERRY, CHALONER, and GEWEKE · Bayesian Analysis in Statistics and
Econometrics: Essays in Honor of Arnold Zellner

BERNARDO and SMITH · Bayesian Theory
BHAT and MILLER · Elements of Applied Stochastic Processes, Third Edition
BHATTACHARYA and WAYMIRE · Stochastic Processes with Applications
BILLINGSLEY · Convergence of Probability Measures, Second Edition
BILLINGSLEY · Probability and Measure, Third Edition
BIRKES and DODGE · Alternative Methods of Regression
BLISCHKE AND MURTHY (editors) · Case Studies in Reliability and Maintenance
BLISCHKE AND MURTHY · Reliability: Modeling, Prediction, and Optimization
BLOOMFIELD · Fourier Analysis of Time Series: An Introduction, Second Edition
BOLLEN · Structural Equations with Latent Variables
BOROVKOV · Ergodicity and Stability of Stochastic Processes
BOULEAU · Numerical Methods for Stochastic Processes
BOX · Bayesian Inference in Statistical Analysis
BOX · R. A. Fisher, the Life of a Scientist
BOX and DRAPER · Empirical Model-Building and Response Surfaces
BOX and DRAPER · Evolutionary Operation: A Statistical Method for Process

Improvement
BOX, HUNTER, and HUNTER · Statistics for Experimenters: An Introduction to

Design, Data Analysis, and Model Building
BOX and LUCEÑO · Statistical Control by Monitoring and Feedback Adjustment
BRANDIMARTE · Numerical Methods in Finance: A MATLAB-Based Introduction
BROWN and HOLLANDER · Statistics: A Biomedical Introduction
BRUNNER, DOMHOF, and LANGER · Nonparametric Analysis of Longitudinal Data

in Factorial Experiments
BUCKLEW · Large Deviation Techniques in Decision, Simulation, and Estimation
CAIROLI and DALANG · Sequential Stochastic Optimization
CASTILLO, HADI, BALAKRISHNAN, and SARABIA · Extreme Value and Related

Models with Applications in Engineering and Science
CHAN · Time Series: Applications to Finance
CHATTERJEE and HADI · Sensitivity Analysis in Linear Regression
CHATTERJEE and PRICE · Regression Analysis by Example, Third Edition
CHERNICK · Bootstrap Methods: A Practitioner’s Guide
CHERNICK and FRIIS · Introductory Biostatistics for the Health Sciences
CHILÈS and DELFINER · Geostatistics: Modeling Spatial Uncertainty
CHOW and LIU · Design and Analysis of Clinical Trials: Concepts and Methodologies,

Second Edition
CLARKE and DISNEY · Probability and Random Processes: A First Course with

Applications, Second Edition
COCHRAN and COX · Experimental Designs, Second Edition
CONGDON · Applied Bayesian Modelling
CONGDON · Bayesian Statistical Modelling
CONOVER · Practical Nonparametric Statistics, Third Edition
COOK · Regression Graphics
COOK and WEISBERG · Applied Regression Including Computing and Graphics
COOK and WEISBERG · An Introduction to Regression Graphics
CORNELL · Experiments with Mixtures, Designs, Models, and the Analysis of Mixture

Data, Third Edition

*Now available in a lower priced paperback edition in the Wiley Classics Library.

*

*

*



COVER and THOMAS · Elements of Information Theory
COX · A Handbook of Introductory Statistical Methods
COX · Planning of Experiments
CRESSIE · Statistics for Spatial Data, Revised Edition
CSÖRGO≤ and HORVÁTH · Limit Theorems in Change Point Analysis
DANIEL · Applications of Statistics to Industrial Experimentation
DANIEL · Biostatistics: A Foundation for Analysis in the Health Sciences, Eighth Edition
DANIEL · Fitting Equations to Data: Computer Analysis of Multifactor Data,

Second Edition
DASU and JOHNSON · Exploratory Data Mining and Data Cleaning
DAVID and NAGARAJA · Order Statistics, Third Edition
DEGROOT, FIENBERG, and KADANE · Statistics and the Law
DEL CASTILLO · Statistical Process Adjustment for Quality Control
DEMARIS · Regression with Social Data: Modeling Continuous and Limited Response

Variables
DEMIDENKO · Mixed Models: Theory and Applications
DENISON, HOLMES, MALLICK and SMITH · Bayesian Methods for Nonlinear

Classification and Regression
DETTE and STUDDEN · The Theory of Canonical Moments with Applications in

Statistics, Probability, and Analysis
DEY and MUKERJEE · Fractional Factorial Plans
DILLON and GOLDSTEIN · Multivariate Analysis: Methods and Applications
DODGE · Alternative Methods of Regression
DODGE and ROMIG · Sampling Inspection Tables, Second Edition
DOOB · Stochastic Processes
DOWDY, WEARDEN, and CHILKO · Statistics for Research, Third Edition
DRAPER and SMITH · Applied Regression Analysis, Third Edition
DRYDEN and MARDIA · Statistical Shape Analysis
DUDEWICZ and MISHRA · Modern Mathematical Statistics
DUNN and CLARK · Basic Statistics: A Primer for the Biomedical Sciences,

Third Edition
DUPUIS and ELLIS · A Weak Convergence Approach to the Theory of Large

Deviations
ELANDT-JOHNSON and JOHNSON · Survival Models and Data Analysis
ENDERS · Applied Econometric Time Series
ETHIER and KURTZ · Markov Processes: Characterization and Convergence
EVANS, HASTINGS, and PEACOCK · Statistical Distributions, Third Edition
FELLER · An Introduction to Probability Theory and Its Applications, Volume I,

Third Edition, Revised; Volume II, Second Edition
FISHER and VAN BELLE · Biostatistics: A Methodology for the Health Sciences
FITZMAURICE, LAIRD, and WARE · Applied Longitudinal Analysis
FLEISS · The Design and Analysis of Clinical Experiments
FLEISS · Statistical Methods for Rates and Proportions, Third Edition
FLEMING and HARRINGTON · Counting Processes and Survival Analysis
FULLER · Introduction to Statistical Time Series, Second Edition
FULLER · Measurement Error Models
GALLANT · Nonlinear Statistical Models
GHOSH, MUKHOPADHYAY, and SEN · Sequential Estimation
GIESBRECHT and GUMPERTZ · Planning, Construction, and Statistical Analysis of

Comparative Experiments
GIFI · Nonlinear Multivariate Analysis
GLASSERMAN and YAO · Monotone Structure in Discrete-Event Systems
GNANADESIKAN · Methods for Statistical Data Analysis of Multivariate Observations,

Second Edition

*Now available in a lower priced paperback edition in the Wiley Classics Library.

*

*

*

*
*

*

*



GOLDSTEIN and LEWIS · Assessment: Problems, Development, and Statistical Issues
GREENWOOD and NIKULIN · A Guide to Chi-Squared Testing
GROSS and HARRIS · Fundamentals of Queueing Theory, Third Edition
HAHN and SHAPIRO · Statistical Models in Engineering
HAHN and MEEKER · Statistical Intervals: A Guide for Practitioners
HALD · A History of Probability and Statistics and their Applications Before 1750
HALD · A History of Mathematical Statistics from 1750 to 1930
HAMPEL · Robust Statistics: The Approach Based on Influence Functions
HANNAN and DEISTLER · The Statistical Theory of Linear Systems
HEIBERGER · Computation for the Analysis of Designed Experiments
HEDAYAT and SINHA · Design and Inference in Finite Population Sampling
HELLER · MACSYMA for Statisticians
HINKELMAN and KEMPTHORNE: · Design and Analysis of Experiments, Volume 1:

Introduction to Experimental Design
HOAGLIN, MOSTELLER, and TUKEY · Exploratory Approach to Analysis 

of Variance
HOAGLIN, MOSTELLER, and TUKEY · Exploring Data Tables, Trends and Shapes
HOAGLIN, MOSTELLER, and TUKEY · Understanding Robust and Exploratory Data

Analysis
HOCHBERG and TAMHANE · Multiple Comparison Procedures
HOCKING · Methods and Applications of Linear Models: Regression and the Analysis

of Variance, Second Edition
HOEL · Introduction to Mathematical Statistics, Fifth Edition
HOGG and KLUGMAN · Loss Distributions
HOLLANDER and WOLFE · Nonparametric Statistical Methods, Second Edition
HOSMER and LEMESHOW · Applied Logistic Regression, Second Edition
HOSMER and LEMESHOW · Applied Survival Analysis: Regression Modeling of Time

to Event Data
HUBER · Robust Statistics
HUBERTY · Applied Discriminant Analysis
HUNT and KENNEDY · Financial Derivatives in Theory and Practice
HUSKOVA, BERAN, and DUPAC · Collected Works of Jaroslav Hajek—with

Commentary
HUZURBAZAR · Flowgraph Models for Multistate Time-to-Event Data
IMAN and CONOVER · A Modern Approach to Statistics
JACKSON · A User’s Guide to Principle Components
JOHN · Statistical Methods in Engineering and Quality Assurance
JOHNSON · Multivariate Statistical Simulation
JOHNSON and BALAKRISHNAN · Advances in the Theory and Practice of Statistics:

A Volume in Honor of Samuel Kotz
JOHNSON and BHATTACHARYYA · Statistics: Principles and Methods, Fifth Edition
JOHNSON and KOTZ · Distributions in Statistics
JOHNSON and KOTZ (editors) · Leading Personalities in Statistical Sciences: From the

Seventeenth Century to the Present
JOHNSON, KOTZ, and BALAKRISHNAN · Continuous Univariate Distributions,

Volume 1, Second Edition
JOHNSON, KOTZ, and BALAKRISHNAN · Continuous Univariate Distributions,

Volume 2, Second Edition
JOHNSON, KOTZ, and BALAKRISHNAN · Discrete Multivariate Distributions
JOHNSON, KOTZ, and KEMP · Univariate Discrete Distributions, Second Edition
JUDGE, GRIFFITHS, HILL, LÜTKEPOHL, and LEE · The Theory and Practice of

Econometrics, Second Edition
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