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Preface 

Some people believe Artificial Intelligence is the most 
exciting scientific and commercial enterprise of the century. 
Others raise distress flags, fearing eventual misuse. Still 
others scoff, arguing that the technology will come to 
nothing. One thing is clear, however: Artificial Intelligence 
generates passion, and passion stimulates hyperbole-riddled 
rhetoric, and that rhetoric dangerously obfuscates. It is hard 
to tell if the field's promoters are pied pipers leading us to 
the disappointment of excessive expectations or missionaries 
beckoning us to almost inconceivable opportunity. 

Wishing to clear the air, Howard Austin, the field's Wall 
Street ambassador, proposed an unusual colloquium. His 
idea was that MIT's Industrial Liaison Program would work 
with F. Eberstadt & Company, a prominent investment 
banking firm, to bring together four groups of people: one 
group to supply the academic perspective, another group to 
represent the hard core, financially oriented people, a third 
to represent the industrial research and development people 
who can look at the questions from both sides, and a fourth 
to represent solutions-oriented people, who use Artificial 
Intelligence, sometimes without admitting it, because there 
is a job to be done. 

Everyone agreed that the proposed mix of views made 
sense. Dr. Austin, J. Peter Bartl and Constance A. Marino 
of MIT's Industrial Liaison Program, Loretta Kulak and 
Philip K. Meyer of F. Eberstadt & Company, and Karen 
A. Prendergast of MIT's Artificial Intelligence Laboratory 
proceeded to make the Colloquium happen. 

The result was a spectacular success. The colloquium 
attracted twice as many attendees as the previous record­
holding colloquium hosted by the Industrial Liaison Program 
(on genetic engineering). More important, however, the 
colloquium exposed exciting views, together with heated 
differences of opinion. Frank P. Satlow of the MIT Press 
realized that both the views and the opinions should be 



recorded and made widely available. This book, consisting 
of edited transcripts of the colloquium talks, is the result. 

The illustrations were done by Elizabeth B. Heepe. 
Daniel C. Brotsky, Priscilla M. Cobb, Boris Katz, Dikran 
Karagueuzian, Helen I. Osborne, and Carol A. Roberts also 
helped enormously in the development of the book. 

P.H. W. 
K.A.P. 
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1 
Perspective 

Patrick H. Winston 
Professor of Computer Science 
Director, Artificial Intelligence Laboratory 
Massachusetts Institute of Technology 

Professor Winston is involved in the study of learning by 
analogy, commonsense problem solving, expert systems, and 
robotics. He received the B.S., M.S., and Ph.D. from the 
Massachusetts Institute of Technology. 

The primary goal of Artificial Intelligence is to make 
machines smarter. The secondary goals of Artificial Intelli­
gence are to understand what intelligence is (the Nobel 
laureate purpose) and to make machines more useful (the 
entrepreneurial purpose). Defining intelligence usually takes 
a semester-long struggle, and even after that I am not sure 
we ever get a defi~ition really nailed down. But operationally 
speaking, we want to make machines smart. 

The typical big-league, artificial-intelligence laboratory, 
and there are many of them now, will be involved in work like 
that shown in figure 1. We at the MIT Artificial Intelligence 
Laboratory work in robotics, a field spanning manipulation, 
reasoning, and sensing. We do research in learning, language, 
and what some people call expert systems, something that 
I often prefer to call design and analysis systems, by virtue 
of th~ common misuse of the term expert systems. We are 
also involved in issues basic to Computer Science, such as 
programming and computer architecture. 
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The history of Artificial Intelligence can be divided into 
a variety of ages, as shown in figure 2. First is the 
prehistoric time, starting in 1842 when Charles Babbage 
first tinkered with his machines. Lady Lovelace, for whom 
the ADA programming language is named, was Babbage's 
main sponsor. She was besieged by the press, wondering if 
Babbage's machines would ever be as smart as people. At 
that time, she intelligently denied it would ever be possible. 
After all, if you have to wait for a hundred years or so for 
it to happen, it is best not to get involved. 

The prehistoric times extended to about 1960 because the 
people who wanted to work on the computational approach 
to understanding intelligence had no computers. Still, people 
like Claude Shannon and John von Neumann made many 
speculations. 
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Figure 2. Ages of Artificial Intelligence. 

Perspective 

Around 1960 we start to speak of the Dawn Age, a 
period in which some said, "In ten years, they will be 
as smart as we are." That turned out to be a hopelessly 
romantic prediction. It was romantic for interesting reasons, 
however. If we look carefully at the early predictions about 
Artificial Intelligence, we discover that the people making 
the predictions were not lunatics but conscientious scientists 
talking about real possibilities. They were simply trying to 
fulfill their public duty to prepare people for something that 
seemed quite plausible at the time. 



Patrick H. Winston 4 

The Dawn Age was sparked by certain successes. A 
program for solving geometric analogy problems like those 
that appear on intelligence tests was developed. Another 
was a program that did symbolic integration, spawning 
today's MACSYMA and other mathematics manipulation 
systems. These two examples, integration and analogy, are 
particularly worth noting because they introduced ideas 
that have become extraordinarily popular in the creation 
of expert systems. Retrospectively, the analogy program 
was based on the paradigm of describe-and-match, and the 
integration program was based on the paradigm of if-then 
rules. 

I call the next period the Dark Age because little happened. 
There was a dry spell because the tremendous enthusiasm 
generated by the Dawn Age made everyone think that the 
enterprise of creating intelligent computers would be too 
simple. Everyone searched for a kind of philosopher's stone, 
a mechanism that when placed in a computer would require 
only data to become truly intelligent. The Dark Age was 
largely fueled by overexpectation. 

Then we had a Renaissance. During this Renaissance 
Artificial Intelligence began to make systems that caught 
people's eyes. Elsewhere in this book Randall Davis describes 
MYCIN and other systems developed during this period. 
Such systems are the harbingers of today's excitement. 

The Renaissance was followed by the Age of Partnerships, 
a period when researchers in Artificial Intelligence began 
to admit that there were other researchers, particularly 
linguists and psychologists, with whom people working in 
Artificial Intelligence can form important liaisons. 

I like to call our present age the Age of the Entrepreneur. 

If there were substantial ideas about how to do impressive 
things as early as 1960, why have we waited until 1983 to 
have a conference about how Artificial Intelligence might be 
commercialized? 
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The Successes 

Let us agree that something has to be well known and 
in daily use to be successful. By this definition, there 
are only a handful of successful systems clearly containing 
artificial-intelligence technology. 

One of the most conspicuous successes is the XCON 
system (also known as Rl) developed by Digital Equipment 
Corporation and Carnegie-Mellon University for doing 
computer configuration. Others are DENDRAL and PUFF, 
products of Stanford University, developed for analyzing 
mass spectrograms and for dealing with certain lung 
problems. Still others include General Motors's CONSIGHT 
system and Automatix's AUTOVISIONR II, both of which 
endow increasingly intelligent robots with a limited but 
important ability to see. 

Other successes are less domain specific. One, a product 
of Artificial Intelligence Corporation, is INTELLECT, a 
natural language interface system. Another is MACSYMA, 
a giant system for symbolic mathematics developed at the 
Massachusetts Institute of Technology and marketed by 
Symbolics, Incorporated. 

As I recently went over this list of successes with some 
friends, one pointed out that I had left out some of the 
most dramatic developments of Artificial Intelligence. One 
is the LISP programming language, a serious by-product of 
Artificial Intelligence. It is not surprising that the first major 
spinoffs of the MIT Artificial Intelligence Laboratory have 
been two LISP Machine companies, Symbolics, Incorporated 
and LISP Machine, Incorporated. If we go even further back, 
there are those who would argue that time-sharing was a 
major development that came out of Artificial Intelligence. 
Time-sharing is not Artificial Intelligence, but Artificial 
Intelligence demanded it. 
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Part 1: Expert Systems 

Human experts specialize in relatively narrow problem­
solving tasks. Typically, but not always, human experts have 
characteristics such as the following: Human experts solve 
simple problems easily. They· explain what they do. They 
judge the reliability of their own conclusions. They know 
when they are stumped. They communicate smoothly with 
other experts. They learn from experience. They change their 
points of view to suit a problem. They transfer knowledge 
from one domain to another. They reason on many levels, 
using tools such as rules of thumb, mathematical models, 
and detailed simulations. 

An expert system is a computer program that behaves 
like a human expert in some useful ways. Today's state of 
the art is such that expert systems solve simple problems 
easily, occasionally explain their work, and say something 
about reliability. 

Some expert systems do synthesis. XCON configures 
computers, for example. Other rule-based expert systems 
do analysis. MYCIN diagnoses infectious diseases, and the 
DIPMETER ADVISOR interprets oil well logs. 

Currently, there are a dozen or two serious expert systems 
whose authors have commercial aspirations. By droppingthe 
qualifier serious, the number grows to a few thousand. The 
reason is that creating a simple, illustrative expert system is 
now a classroom exercise in advanced artificial-intelligence 
subjects. Soon expert systems will be created in elementary 
courses in computing at the early undergraduate level. 

All of this activity has attracted top-management interest, 
aroused the entrepreneurial spirit, and stimulated investor 
curiosity. Are the interest, the spirit, and the curiosity 
misadvised? It is too soon to be sure since few projects have 
had time to succeed and none has had time to fail. 
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Nevertheless there are some questions that can be 
answered, or at least debated. The contributors to this 
book address this list: 

• Can today's technology revolutionize whole industries, or 
can it just deal with isolated, albeit important, targets of 
opportunity? 

• Where are the most susceptible problems: engineering 
design, equipment maintenance, medicine, oil, finance? 

• What are the obstacles to introducing expert systems: 
finding the right people, working with the existing human 
experts, getting snared by technically exciting but off­
the-mark ideas? 

• How hard will it be to build systems that exhibit more of 
the talents of real human experts? 

Part II: Work and Play 

A work station is a computer system that can be an 
exciting, productive partner in work or play. To be a good 
work station, a computer system must offer many features. 
First, we must be able to talk to the computer system in 
our own language. For some systems the language must 
be English or another natural language; for other systems 
the language must be that of transistors and gates, or 
procedures and algorithms, or notes and scales. Second, we 
must be able to work with the computer system the way 
we want to, not necessarily the way dogma dictates. In 
engineering design, for example, some people work bottom 
up; others prefer to work top down; still others work middle 
out or back and forth. All should be accommodated. Third, 
the computer system must constitute a total environment. 
Everything we need should be smoothly accessible through 
the system, including all the necessary computational tools, 
historical records, and system documentation. And fourth, 
the computer-systems hardware must be muscular and the 
graphics excellent. 
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Some existing work station products, like Daisy Sys­
tems Corporation's LOGICIAN and GATE MASTER, 
are extraordinarily important in the design of extremely 
complicated integrated circuits, often containing tens of 
thousands of transistors. Another work-station-oriented 
product, Artificial Intelligence Corporation's INTELLECT, 
is not so domain oriented. INTELLECT is designed to be 
a powerful interface between decision makers and whatever 
data bases they need to work with. While~ INTELLECT 
began as a ·natural language interface, it is becoming the 
hub of a multitool, multifile information system, with much 
of the power residing in the parts having no direct concern 
with English input and output. 

Daisy Systems Corporation and Artificial Intelligence 
Corporation may be merely among the first flow of a 
potential cornucopia. People are developing work stations for 
such diverse activities as tax planning, chemical synthesis., 
robot assembly, musical composition, expository writing, 
and entertainment. 

Where are the likely early successes? The contributors 
to this book, all experienced in creating sophisticated work 
stations or work station components, share their views with 
us in addressing questions like the following: 

• How important is natural language interaction? What 
does it take to get natural language interaction? 

• What constitutes a minimally muscular computer and 
minimally excellent graphics? 

• How important is it for work station modules to be able 
to explain what they do? How important is it for users 
to be able to intervene whenever they want? 

• Who can design and build work stations with human-like 
intelligence? A dozen people? Any computer engineer 
willing to learn? 
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Part Ill: Robotics 

An intelligent robot is a system that flexibly connects 
perception to action. Humans are examples of intelligent 
robots for the following reasons. First, we can see and feel 
forces. Consequently we can cope with uncertain positions 
and changing environments. Second, we have graceful arms 
capable of fast, accurate motion, together with fantastic 
hands capable of grasping all sorts of objects. Third, we 
think about what we do. We note and avoid unexpected 
obstacles. We select tools, design jigs, and place sensors. 
We plan how to fit things together, succeeding even when 
the geometries are awkward and the fits tight. We recover 
from errors and accidents. 

In contrast, most of today's industrial robots are clumsy 
and stupid. For the most part they cannot see, feel, move 
gracefully or grasp flexibly, and they cannot think at all. 
Most of today's industrial robots move repetitively through 
boring sequences, gripping, welding, or spraying paint at 
predetermined times, almost completely uninformed by what 
is going on in the factory. Of course practical robots need 
not necessarily resemble people. After all, they are built of 
different, often superior materials, and they need not perform 
such a wide range of tasks. Nevertheless many industrialists 
believe there are many tasks that defy automation with 
anything short of sensing, reasoning, dextrous, closed­
loop robots, with human-like abilities if not human-like 
appearance. 

Consequently an increasing number of major corporations 
are making bold moves. For a while the general pace was slow 
in the robot-using industries, and outside of Japan there was 
little rush to accept and exploit the technology produced 
by Artificial Intelligence. Now the picture is changing. 
Small companies like Automatix are growing rapidly by 
supplying industry with turnkey products in which vision is 
a productivity-multiplying component. Large companies like 
IBM are established suppliers with intensive development 
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1960 1980 

Figure 3. Stiction model of the future. 

efforts underway. Where will this new wave of automation 
go? How far? How fast? While there is little agreement 
among the contributors to this book, questions like these 
are addressed: 

• Why is it relatively easy to build humanless parts­
fabrication factories and relatively hard to build humanless 
device-assembly factories? 

• What are the industrial tasks that require human-like 
sensing, reasoning, and dexterity? Is it better to eliminate 
those tasks by redesigning factories from scratch? 

• What can be done by exploiting special lighting arrange­
ments? How far have we gone with the simple vision 
systems that count each visual point as totally black or 
totally white, with no shades of gray? 

• Is the robot itself important? Can we improve productivity 
with robots alone, or must we think instead about 
improving whole manufacturing systems? 



11 Perspective 

Part IV: Today and Tomorrow 

Finally there is the question of money. Are the venture 
capitalists ready for Artificial Intelligence? If so, how long 
will their readiness last? Is current interest just a passing 
fad? 

Will the commercialization of Artificial Intelligence be 
driven by need-pull or technology-push? Is Artificial Intelli­
gence becoming commercialized because there are problems 
that desperately need new solutions, or is it because there 
is neglected technology lying around waiting for eager 
entrepreneurs to make use of it? What sort of progress will 
there be? 

One theory of progress is a kind of mechanical-engineering 
model, a stiction model, as shown in figure 3. During 
the stiction period, the gap between the work in the 
university research laboratories and the first signs of life in 
the marketplace constantly grows. Once you get through 
this stiction period, you move into the period of friction, 
where the time delay grows smaller, and commercialization 
marches together with basic research at a steady rate. There 
are other models of progress. The balloon theory, shown 
in figure 4, is one I sometimes believe in when I read the 
advertising of some of the artificial-intelligence companies. I 
have a fear that this field has been hyped beyond all belief, 
and there is a serious danger that it might be oversold. 

Figure 5 shows the staircase model of progress. ·In this 
model the relationship between the amount of accumulated 
knowledge and the application of that knowledge is not 
a linear phenomenon. Knowledge has to accumulate for a 
long time before there is a sudden burst of entrepreneurial 
activity that exploits all of the accumulated knowledge. 
This model says that accumulated knowledge can go only 
so far and that more knowledge has to accumulate over a 
period of years before there is another leap forward on the 
applications curve. 
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Figure 4. Balloon model. 

Application 

Figure 5. Staircase model. 
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We must ask, Which is the correct model for how Artificial 
Intelligence will develop? At this point, are we merely 
skimming off the easy problems? Are we repeating in the 
commercial world what happened in the early days of 
Artificial Intelligence? If this is a correct model, then we 
must worry about a Dark Age for the applications of Artificial 
Intelligence, just as we had one in the basic research area. 
I do not think there will be a new Dark Age. Too much is 
happening, as the contributors to this book demonstrate. I 
believe that the correct attitude about Artificial Intelligence 
is one of restrained exuberance. In the chapters that follow 
it is clear that there are hard-core dissenters on both sides 
of my position. 

For More Information 

Feigenbaum, Edward A., and Pamela McCorduck, The Fifth 
Generation, Addison-Wesley, Reading, MA, 1983. 

Winston, Patrick Henry, Artificial Intelligence, Second 
Edition, Addison-Wesley, Reading, MA, 1984. 
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2 
Amplifying Expertise 
with Expert Systems 

Randall Davis 
Associate Professor of Computer Science 
Artificial Intelligence Laboratory 
Massachusetts Institute of Technology 

While he was at Stanford University, Professor Davis was 
an early contributor to the MYCIN project and developed 
TEIRESIAS, a tool for knowledge acquisition. His current 
research focuses on systems that work from descriptions of 
structure and function and that are capable of reasoning 
from first principles to support a wider range of robust 
problem-solving performance. Professor Davis serves on the 
editorial board of Artificial Intelligence and is the coauthor 
of Knowledge-Based Systems in Artificial Intelligence. He 
is a consultant to several major organizations in the area 
of Artificial Intelligence and expert systems, and he is 
a founding consultant of Teknowledge and Applied Expert 
Systems. He received the BA from Dartmouth College and 
the PhD in Artificial1ntelligence from Stanford University. 

Work on expert systems has received extensive attention 
recently, prompting growing interest in a range of environ­
ments. Much has been made of the basic concept and of the 
rule-based system approach typically used to construct the 
programs. My purpose is to review what we know, assess 
the current prospects, and suggest directions appropriate 
for basic research. 
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To build expert systems is to attempt to capture rare or 
important expertise and embody it in computer programs. 
It is done by talking to the people who have that expertise. 
In one sense building expert systems is a form of intellectual 
cloning. Expert-system builders, the knowledge engineers, 
find out from experts what they know and how they use 
their knowledge to solve problems. Once this debriefing is 
done, the expert-system builders incorporate the knowledge 
and expertise in computer programs, making the knowledge 
and expertise easily replicated, readily distributed, and 
essentially immortal. 

The potential of expert systems is exciting and significant. 
But building expert systems is an art, and the artists are few 
and far between. To be sure, some kinds of expert systems 
are turned out as classroom exercises, but like all other 
classroom exercises, there is a long distance between an 
exercise and a commercial product. Turning out commercial 
products is currently a significant undertaking. 

Evolution of Expert Systems 

Our perception of expert systems today is analogous to our 
perception of computers fifteen years ago. Back then the 
data-processing prima donnas in the back room were the only 
people who claimed to understand the new beast with all 
the blinking lights. Not many other people used computers. 
Now personal computers are as common as typewriters and 
soon will be no more mysterious than telephones. 

Expert systems will follow the same evolutionary path. 
There will be a new set of prima donnas in the back room­
the knowledge engineers. The technology will be remote, 
inaccessible, and awkward to work with at first. Eventually 
the tools will improve, the technology will become accessible, 
and personal expert systems are likely to be commonplace 
in the corporate environment and in society at large. 
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Searching for the Philosopher's Stone 

Expert systems is an area of Artificial Intelligence· charac­
terized by an intense focus on knowledge. The stores of 
knowledge in expert systems must be large because ex­
perience shows that a lot of knowledge is needed to solve 
interesting problems. The knowledge inust be task specific 
because experience also shows that we need to know specific 
things about particular problems in order to solve them. 
There seems to be no philosopher's stone, no single clever 
trick that will solve problems for us across all problem 
domains. 

In the early 1960s workers in the field thought if they 
could find one or two powerful ideas, they would be able to 
solve the problem of Artificial Intelligence. Since generality 
seemed to be a key aspect of human intelligence, research 
on generality followed. We tried to find one or two very 
powerful methods that would provide human-like generality. 

The approach, unfortunately, did not produce the progress 
we expected. Although a person can do something with 
almost every problem, he will do terribly on almost every 
problem, except the ones he truly understands. A person 
who is not familiar with a problem can get somewhere but 
not very far. In fact people solve problems well only when 
they know a great deal about the problem domain. 

Expertise is knowing what to do. That means that our 
programs will have to know what they are doing. (This 
sounds obvious today, but it was an insight that took a 
substantial effort to establish firmly.) Expertise includes a 
constellation of behaviors (figure 1). Problem solving is the 
most obvious and though necessary, it is insufficient. Would 
we be willing to call someone an expert if he could solve 
a problem but was unable to explain the result, unable 
to learn anything new about the domain, and unable to 
determine whether his ·expertise was relevant? I think not. 
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o Solve the l)roblem 

o Explain the result 

o Learn 

o Restructure knowledge 

o Break rules 

o Determine relevance 

o Degrade gracefully 

Figure 1. Nature of expertise. 

Work in expert systems to date has explored only the 
first three of these behaviors in any depth. First-generation 
systems like DENDRAL and MACSYMA focused solely on 
performance. Second-generation systems began to explore 
explanation {MYCIN and DIGITALIS ADVISOR) and 
knowledge acquisition {TEIRESIAS). Of these behaviors 
performance is still the best understood. Our efforts at 
explanation and knowledge acquisition have only scratched 
the surface. 

By and large, other topics have been almost totally 
unexplored. What would it mean, for example, to restruc­
ture knowledge? One example comes out of the so-called 
procedural versus declarative controversy. We as experts 
on knowledge representation went to work structuring and 
restructuring knowledge so that procedural became decla­
rative, got turned back into procedural again, and so forth. 
I think it became clear after we went around that loop 
a couple of times that the problem is at least in part in 
the eye of the interpreter, but nevertheless, there we were, 
restructuring and reorganizing knowledge. 

What about breaking rules? One of the most frustrating 
things for an apprentice to learn is that there are almost 
as many exceptions as there are rules. Experts clearly 
understand the spirit as well as the letter of the rule. 
Experts also know when a problem is outside their spheres 
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of expertise and when to suggest asking someone else for an 
answer. Clearly none of the present expert systems can do 
this yet. Experts also degrade gracefully; that is, as they 
get close to the boundaries of their knowledge, they become 
less proficient at solving problems. Their skill decreases 
smoothly rather than precipitously as do most of today's 
programs. 

Development of a Field 

The first stage of development of any field is traditionally 
case studies. Ideally we test one single dimension of a 
design-one idea on knowledge representation, or control, 
or system architecture. Each of these is, in effect, an isolated 
point in the design space. 

As the set of such experiments grows, a collection of 
architectural principles may emerge. By examining many 
case studies, we may begin to understand the shape and 
character of the design space. This allows us to make 
empirical observations about which parts of the space make 
sense for which kinds of problems. Note that these are 
simply empirical observations-we do not really understand 
why they hold; we can only say that, with our experience, 
this design looks like the right one to use. 

Eventually we get to something worthy of being labeled 
a science. For our purposes that stage is characterized 
by an understanding that goes beyond a set of empirical 
observations. There is instead an understanding of why a 
particular design is appropriate for a particular task and 
perhaps a much better understanding of the character and 
shape of the design space. 

Work on expert systems is currently somewhere between 
the stage of case studies and the stage of architectural 
principles. As is traditional for fields at that stage of 
development and as is particularly appropriate for expert 
systems, the existing knowledge is well captured as a 
collection of informal rules of thumb. 
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Observations about Building Expert Systems 

We can make several general observations about the art of 
building expert systems: 

• In the knowledge lies the power. 
• The knowledge is often inexact and incomplete. 
• The knowledge is often ill specified. 
• Amateurs become experts incrementally. 
• Expert systems need to be flexible. 
• Expert systems need to be transparent. 

The most fundamental observation-that in the knowledge 
lies the power-suggests that problem-solving performance 
often arises from extensive stores of knowledge about the 
task, not from a large collection of domain-independent 
methods. 

The knowledge is inexact and incomplete because the 
kinds of problems attacked in Artificial Intelligence rarely 
have complete laws or theories. Artificial Intelligence often 
deals with inexact and informal knowledge. The knowledge 
is often ill specified because experts cannot always express 
exactly what it is they know about their domains. As a 
result knowledge explication becomes an important task. 
Builders of expert systems need to help the experts make 
precise what it is they know and how they apply it to the 
problem at hand. 

People and programs become experts incrementally. One 
direct consequence is the importance of flexibility and 
transparency. Our systems will spend most of their lives 
being changed, updated, and improved. If it is too difficult 
to change them, the whole process will come to a halt. 

Transparency is similarly motivated. To improve the 
system, we have to know what it did in order to determine 
what it is we ought to change. Programs must be able to 
explain why they do what they do. If the system is a black 
box, it becomes impossible to make -that determination, and 
system evolution will cease. 
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o Separate the inference engine 
and knowledge base 

o Use as uniform a representation 
as possible 

o Keep the inference engine simple 

o Exploit redundancy 

Figure 2. Some architectural principles. 

Architectural Principles 

Some architectural principles have also begun to emerge 
(figure 2). One suggestion is to separate knowledge of how 
to use rules from the rules themselves, dividing the expert 
system into an inference engine and a knowledge base. In 
this way, the knowledge in the knowledge base becomes 
more easily identified, more explicit, and more accessible. If 
the two are intermixed, domain knowledge will get spread 
out through the inference engine, and it becomes less clear 
what we ought to change to improve the system. The result 
is a less flexible system. 

A second architectural principle .is uniformity of repre­
sentation. This cuts down the number of mechanisms re­
quired, keeping system design simpler and more transparent. 
Each time a new representation is added to the system, 
something else in the system has to be able to handle it, has 
to know its synt~ or semantics to be able to use it. Hence 
fewer representations mean a simpler, more transparent 
system. 

Keeping the inference engine simple helps in several 
ways. Since explanations are generated by replaying the 
actions of the system, keeping those actions simple means 
that little work is necessary to produce comprehensible 
explanations. Knowledge acquisition is similarly easier. 
When the inference engine is less complicated, less work 
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o Narrow domain of expertise 

o Fragile behavior at the boundaries 

o Limited knowledge representation language 

o Limited input/output 

o Limited explanation 

o One expert as knowledge base •czar• 

Figure 3. State of the art of expert systems. 

is needed to determine exactly what knowledge to add to 
improve system performance. 

A fourth principle-exploiting redundancy-is illustrated 
by work on HEARSAY that showed how redundancy can 
be a remedy for incomplete and inexact knowledge. The 
trick is to find multiple overlapping sources of knowledge 
with different areas of strength and different shortcomings. 
Properly used, the entire collection of knowledge sources 
can be a good deal more robust than any one of them taken 
alone. 

State of the Art 

Figure 3 characterizes the current state of the art. Because 
expert systems deal with very narrow domains of expertise, 
we have to constrain sharply what it is we hope to achieve 
with them. As we get closer to the boundaries, their behavior 
becomes fragile and, rather than degrading gracefully, tends 
to fall apart precipitously. · 

Since the effort in building these systems lies in accumulat­
ing large knowledge bases, the knowledge representation 
typically used is one of the simpler ones, like attribute­
object-value triples, production rules, and,. so forth. And 
since the natural language problem has yet to be solved, 
we are stuck with limited interaction languages, usually 
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keyword-based parsing of input and template-generated 
production of text on the output. 

Our model of explanation is useful but limited at 
the moment to recapitulation of the system's actions. In 
many cases, however, explaining the system's behavior is 
sufficiently informative. 

Finally, we do not yet know very much about dealing 
with multiple experts. How do you reconcile differing and 
perhaps conflicting views among acknowledged experts? At 
the moment we do not know, so we appoint one expert 
knowledge-base czar and attempt to build the system in 
that person's image. 

Calibrating the Technology 

Now that Artificial Intelligence has become a focus of 
strong attention, there is concern about the growing 
collaboration between industry and people doing basic 
artificial-intelligence research. There are issues of manpower 
spread thin over a wide range of sites and concern about 
manpower available to train the next generation. Equally 
important are the expectations industry has about what 
Artificial Intelligence and expert systems can accomplish 
and how quickly the promise can be fulfilled. It is important 
to calibrate the distance between research results and 
commercial products. Figure 4 shows the time required 
to create various expert systems, as of 1981. 

The systems shown in figure 4 vary enormously with 
respect to the scale of the problems they attempt to solve. For 
example, MACSYMA is probably two orders of magnitude 
larger than PUFF. Others differ greatly in the amount of 
knowledge they need and in the amount of effort required 
to build the knowledge base. The systems also vary with 
respect to the level of performance achieved. Some of these 
systems solve real-world problems routinely, and others are 
research vehicles that never made it past the laboratory 
stage. 
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Figure 4. Time required to create various expert systems. 

1980 

One clear point emerges: developing a substantial expert 
system with real performance takes at least five man-years 
of effort, assuming the team already has some background in 
artificial-intelligence problem-solving techniques. If the team 
is starting from scratch with this technology, then developing 
a high-performance expert system can take considerably 
longer. 

The graph also shows a decrease in the time required 
to build a system. One reason for the decrease is history: 
the older programs started first. All other things being 
equal, the younger programs would have accumulated fewer 
man-years. But this would predict only a linear reduction. 
A second, more interesting reason is the accumulation of 
ideas, code, and experience over the past fifteen years. The 
genealogy is as follows: DENDRAL begat MYCIN, which 
begat PUFF; HEARSAY provided an important foundation 
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for HARPY and then profited by its experience. As a result 
we get a form of the iceberg phenomenon: a great deal of 
work goes into the first of these in each line of succession, 
and then the next can be built on that foundation. 

The matching of tools to tasks is a third phenomenon that 
helps to account for the decrease in time required to build a 
system. The early attempts to solve problems in Chemistry 
with DENDRAL and in Mathematics with MACSYMA led 
to the development of new technologies for building expert 
systems. As the technology matured, a feeling developed for 
appropriate applications. In a sense the positions reversed: 
now the tools are helping us to choose appropriate tasks. 
The two become more closely matched-hence the shorter 
development time for more recent systems. The creation of 
knowledge base development tools has also accelerated the 
process of system construction. 

Another way to gauge the state of the art is to look at the 
range of systems that have been developed. On a scale from 
a gleam in somebody's eye to wide commercial use, five 
systems have reached the stage of commercial use, as shown 
in figure 5. But a larger number of programs are somewhere 
between the stage of debugged program and experimental 
use. 

Of the systems built to date, Rl has by far the most 
clearly defined development process, evolving through a 
sequence of stages similar to those listed here (figure 6). 
In its first formal evaluation the system was tested on 
approximately twenty cases. The results suggested that Rl 
would soon solve problems correctly 90 percent of the time. 
This was very encouraging and indicated that the program 
was ready to be distributed to its user community for more 
extended testing. But when it was placed in that setting, 
users criticized system performance 40 percent of the time. 

Performance suddenly plummeted to the 60 percent level. 
What happened? Some of those problems were mistakes 
on the part of the users resulting from incorrect data or a 
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Figure 5. State of some well-known expert systems. 
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misunderstanding of program operation. But there was a 
more basic lesson: research environments, no matter how 
carefully tailored, are not identical to user environments. 
They differ with respect to the problem mix, how familiar 
users are with the program, and a range of other factors. As 
a result evaluations in the research environment can be at 
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o System design 

o System development 

o Formal evaluation of performance 

o Formal evaluation of acceptance 

o Extended use in prototype environment 

o Development of maintenance plans 

o System release 

Figure 6. Stages of development of an expert system. 

best only rough approximations of the results expected when 
the program is placed in the user community. And many 
expert systems developed in the laboratories never reach 
the stage of formal evaluation in the research environment. 

John McDermott, one of the developers of Rl, has said 
that Rl 's knowledge base grew at least as much during the 
final stage of its development as it did in any of the previous 
stag~s of its development. It is important to understand that 
expert systems like this one are not built, polished, and then 
distributed. The process of developing an expert system is 
one of constant, incremental growth and improvement that 
will continue during the entire useful life of the system. It 
is a substantial investment of time and manpower. 

MYCIN: A Case Study 

MYCIN is an expert system developed at Stanford University 
in the early 1 970s to do infectious disease diagnosis and 
therapy selection. Expert systems like MYCIN work because 
of what they know about the domain. The mechanism that 
uses knowledge can be trivial. 

One of the problems of doing medical diagnosis is that 
there is not always enough information available about 
symptoms. Test results are not always available when the 
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physician needs to make diagnostic decisions. Since some 
infectious diseases are life threatening, the physician must 
make a decision quickly. Another problem is that there are 
few hard and fast laws in Medicine. Much medical diagnosis 
is of a form of simple associations between symptoms 
and diseases. Being. able to capture judgmental, inexact 
knowledge is an important part of how experts do their 
jobs. 

The domain of medical diagnosis was chosen for three im­
portant reasons. First, the overuse and misuse of antibiotics 
are serious problems. Antibiotics are extremely powerful 
medicines with toxic side effects. Physicians must be careful 
when prescribing them individually and must be especially 
careful when prescribing them in combination. Two drugs 
together can have a much more toxic effect than either one 
has individually. 

Second, there is the problem of the maldistribution of 
expertise. If you are in New York, or Chicago, or Los Angeles 
when you develop a rare disease, there are experts who can 
help because they have seen that disease before. But if you 
happen to be in a remote village, you may be out of luck. 
It is unlikely that someone in the remote village will have 
had the disease, and it is unlikely that the local physician 
will have seen a case similar to it. Experts in almost any 
field tend to congregate with the other experts, which often 
means they migrate toward urban areas. 

Third, MYCIN works in a relatively small domain. The 
program does not have to know all of medicine to diagnose 
infectious disease. Such self-containment goes hand in hand 
with tractability. Proper problem solving is a key to building 
successful expert systems. 

MYCIN in Action 

Here is an example of MYCIN in operation. The program 
interviews the physician, asking questions about the patient 
and collecting information: 
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----------PATIENT-248----------
1) Patient's name: (first-last) 
** Dick H. 
2) Sex: 
** MALE 
3) Age: 
** 52 
4) Have you been able to obtain positive microbiological 

information about a possible infection of Dick H.? 
** YES 
-----------INFECTION-1---------
5) What is the infection? 
** ENDARTERITIS 

This style of interaction is similar to what goes on in 
hospitals. There are specialists on hospital staffs available 
for consultation whenever a less-specialized physician wants 
expert advice. MYCIN's authors designed the program 
to fit into the existing pattern of seeking and providing 
consultative help. 

The interview continues: 

The first significant organism from this blood culture 
(CULTURE-1) will be referred to as: 

----------ORGANISM-1----------

9) Enter the identity of ORGANISM-!: 
** Unknown 
10) Is ORGANISM-! a rod or coccus (etc.): 
** ROD 
11) The gram stain of ORGANISM-1: 
** GRAMNEG 
12) Have there been POSITIVE cultures yielding organisms 

about which you will NOT be seeking advice? 
** YES 

Note that the physician can answer that he does not know 
or that the information is not available yet. The program 
will then do the best it can with the available information. 
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After between thirty and as many as eighty or ninety 
questions in a consultation, the physician sees a diagnosis 
similar to this: 

INFECTION-1 is ENDARTERITIS with BACTEREMIA 
<Item 1> E. COLI [ORGANISM-1] 
<Item 2> SALMO~ELLA (species unknown) 

[ORGANISM -1] 
<Item 3> KLEBSIELLA-PNEUMONIAE [ORGANISM-1] 
<Item 4> PSEUDOMONAS-AERUGINOSA [ORGANISM-1] 
<Item 6> ENTEROBACTER [ORGANISM-1] 
<Item 6> PROTEUS-NON-MIRABILIS [ORGANISM-1] 

This case is ambiguous. Even with the best medical expertise 
available and all of the known facts, it is difficult to tell 
which of the six listed possibilities the patient has. 

One approach to helping the patient is to give medicine 
for each problem: one pill for E. coli~ another for salmonella, 
and so on. But if a physician gives a patient six different 
antibiotics, there is a good chance the patient will diJ. 
Consequently an important second phase of MYCIN does 
therapy selection, selecting one or two drugs to take care of 
all the problems. 

MYCIN prints out these comments: 

[Rec 1] My preferred therapy recommendation is as follows: 
In order to cover for Items <1 3 4 6 6>: 

Give: GENTAMICIN 
Dose: 128 mg (1.7 mg/kg) q8h IV (or IM) 

for 10 days 
Comments: Modify dose in_renal failure 

In order to cover for Item <2> 
Give: CHLORAMPHENICOL 
Dose: 663 mg (7.6 mg/kg) q6h for 14 days 
Comments: Monitor patient's white count 

Do you wish to see the next choice therapy? 
** NO 

In this case MYCIN recommended two medicines to treat 
all the possibilities. 
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Figure 7. Structure of MYCIN. 

MYCIN asks the physician if the conclusion is good 
enough. Clearly the machine has not taken over. It provides 
advice, but the physician remains responsible for making 
decisions about treatment. The physician can ask MYCIN 
to provide another recommendation. 

One Inference Engine, 500 Rules 

MYCIN's architecture is simple (figure 7). The knowledge 
base contains everything we know about infectious disease 
diagnosis and therapy. The inference engine does the 
computation, taking knowledge from the knowledge base 
and putting it to work. 

It is important to think about the knowledge base and 
the inference engine separately. One of the things that 
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distinguishes building expert systems from doing traditional 
programming is that this separation is maintained because 
we plan to keep the same inference engine even when a new 
domain requires a new knowledge base. By unplugging one 
collection of knowledge and plugging in another, we have a 
new consultation system for yet another problem, leveraging 
all of the work that goes into building the inference engine. 

MYCIN's knowledge base contains between 400 and 500 
rules, each of which looks like this: 

Rule 27 

If 1) the gram stain of the organism is gram_negative. 
and 

2) the morphology of the organism is rod, and 
3) the aerobicity of the organism is anaerobic. 

Then There is suggestive evidence (.7) that the 
identity of the organism is Bacteroides. 

This is a simple if-then inferential rule. If we know that 
certain conditions have been met, then we can make a 
certain conclusion. Note also that the rules are inexact. 
This particular rule says that if three things are known, 
there is suggestive evidence, measuring 0. 7 on a scale of 0 
to 1 that the organism is a Bacteroides. 

The rule is a comprehensible chunk of knowledge. To 
understand why this is good, think of extracting four lines 
of code from a random piece of software. There is little 
chance the four-line chunk would make sense by itself. 
But this one five-hundredth of the MYCIN knowledge is 
self-contained and understandable. In evaluating a potential 
application for MYCIN-like technology, it makes sense to 
ask if this kind of dicing is possible. Successful applications 
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require a domain that can be chopped into a few hundred 
or a few thousand rule-sized chunks, which are separate, 
distinct, and comprehensible by themselves. 

Let us turn to the inference engine. We begin by asking for 
the name of the organism bothering the patient. MYCIN's 
inference engine reaches into the knowledge base to pull out 
all the rules that make conclusions about identity. In fact, 
there are many such rules, one of which is rule 27. 

Rule 27 is relevant in this case only if each of its 
preconditions has been met: if the gram stain of the organism 
is gram negative, the shape is rod, and it is anaerobic. How 
is it possible to find out if the gram stain is negative? By 
starting all over again, retrieving all of the rules that have 
anything to say about negative gram stain and trying each 
in turn. This is known as backward chaining. The inference 
engine starts with the thing it is trying to accomplish and 
moves backward through the set of knowledge-base rules. 
When it finally runs out of rules, it asks the physician a 
question. 

Answering How and Why Questions 

Another featur~ of MYCIN-type expert systems is that 
their behavior is transparent. A physician can ask why the 
question the program asks is relevant. The response will be 
something like this: 

14) Is the patient's illness with ORGANISM-1 a 
hospital-acquired infection? 

** Why 

[Why is it important to determine whether the infection 
with ORGANISM-! was acquired while the patient was 
hospitalized?] 
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[2.0] This will aid in determining the identity of 
ORGANISM-1. 
It has already been established that 

[2.1] the morphology of ORGANISM-! is rod 
[2.2] the gram stain of ORGANISM-! is gramneg 
[2.3] the aerobicity of ORGANISM-1 is facul 

Therefore, if 
[2.4] the infection with ORGANISM-1 was 
acquired while the patient was hospitalized 

then 
there is weakly suggestive evidence (.2) 
that the identity of ORGANISM-1 is 
pseudomonas [RULE050] 
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MYCIN was using rule 50 and already had certain informa­
tion about the patient. If the physician adds this fact, then 
MYCIN will know whether this· rule will fire. If it does fire, 
MYCIN will have more information about the topic that it 
is dealing with. 

In addition to interrupting a consultation, the physician 
can wait until the end and ask MYCIN how it reached its 
conclusion: 

**HOW DID YOU DECIDE THAT ORGANISM-1 WAS AN E.COLI? 
I used rule 084 to conclude that the identity of 

ORGANISM-! is e.coli. This gave a cumulative 
c.f. of (.51). 

I used rule 003 to conclude that the identity of 
ORGANISM-1 is e.coli. This gave a cumulative 
c. f. of (. 43). 

The explanation technology produces an audit trail, review­
ing its own logic. By keeping track of the rules that were 
used, MYCIN can describe how it reached its conclusion. 

MYCIN's power lies in its knowledge. In simple tests 
MYCIN compared favorably with some of the experts in the 
field, yet the inference engine is trivial. MYCIN achieves 
its credible record because of the 500 rules stored in the 
knowledge base. These rules were not found in a manual 



37 Amplifying Expertise with Expert Systems 

of infectious disease diagnosis. They were extracted slowly 
from the experts. One reason it took five or six years to 
develop the MYCIN system was that the knowledge had 
never been expressed that way before. Part of the difficulty, 
part of the excitement, and part of the fun in expert-system 
building is to make sense out of jumbled concepts. 

Economic Impact 

It is not difficult to find real problems where an expert 
performs slightly better than the average person doing the 
same job and where the disparity is extremely costly. At 
times the benefit of simply narrowing this gap can range 
into the tens of millions of dollars per year. Clearly the 
economic consequences of the technology are substantial. 

Picking the Right Problem 

Here are some characteristics of good problems: 

• There are recognized experts. 
• The experts are provably better than amateurs. 
• The task takes an expert a few minutes to a few hours. 
• The task is primarily cognitive. 
• The skill is routinely taught to neophytes. 
• The task domain has high payoff.-
• The task requires no common sense. 

The first two tend to rule out astrology; one might argue 
that they rule out choosing stock portfolios as well. 

The task should take somewhere between a few minutes 
and a few hours. If it is something an expert takes only a 
few seconds to do, then there is little to be gained. If it 
takes an expert more than a few hours, it is probably too 
big given the current state of expert-systems technology. 

The task should be primarily cognitive. Medicine and 
physics qualify; tennis, juggling, and bicycle riding do not. 
It is good if the skill is routinely taught to people who do 
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not know it because it means the experts are accustomed 
to explaining themselves. 

The task domain must have a high payoff because the 
investment to get useful performance will be great. In 
the academic environment, we talk about the intellectual 
payoff-that is, we attack problems because we think they 
will teach us something interesting. In the commercial 
environment, it is the economic payoff that matters. Make 
sure the payoff is likely to be substantial because the effort 
certainly will be. 

A good problem involves no common sense. Paradoxically 
we understand some of the intellectual processes of profes­
sional chemists better than we understand any of the in­
tellectual processes of children~ .A five-year-old child can 
reason about what happens when he turns over a glass of 
water, but we do not yet know how to build programs that 
can do that simple kind of commonsense reasoning. Expert 
systems based on an established, taught body of knowledge 
rather than on common sense are more likely to be built 
successfully. 

Getting Started Requires Skilled Artists 

Many companies want to move expert-systems technology 
out of university research laboratories into real-world ap­
plications. The potential benefits are exciting intellectually 
and significant economically. 

At first everything looks easy since there are now several 
vendors of expert-system shells. The difficulty lies in fleshing 
out those shell systems, building the required knowledge 
bases. Of approximately 2,500 people actively working on 
Artificial Intelligence in the United States, fewer than 250 
are experienced and actively working in the area of expert 
systems. Although the number is growing, there will be a 
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critical shortage for some time. To build a knowledge base, 
it is necessary to lure capable people with a state-of-the-art 
computing environment, the right location, and competitive 
financial compensation. 

Summary 

Expert systems are an attempt to identify, formalize, encode, 
and use the knowledge of human experts as the basis for 
a high-performance program. These systems often have 
significant economic impact because they can replicate and 
distribute expertise. 

In surveying the state of the art of expert systems, two 
important calibration points are provided by the magnitude 
of investment necessary to build a robust system and 
the stage of development reached to date by most expert 
systems. Data from existing efforts, though meager, seem to 
suggest that even in the best of cases, at least five man-years 
of effort are necessary before an expert system begins to 
perform reliably. It is also revealing to note that most expert 
systems to date have been developed only through the stage 
of construction of the basic knowledge base. Relatively few 
so far have progressed to the stage of extended testing, 
further development, and documentation. 

Expert-systems technology is still relatively new, and 
the accomplished practitioners are few. But as some recent 
systems have made clear, the promise and the value of 
the technology is substantial. We look to the future with 
considerable excitement. 
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Our primary objective in starting expert-systems work at 
Digital Equipment Corporation (DEC) was to increase our 
own internal asset utilization. We needed tools to solve 
complex problems in complex environments. XCON (short 
for expert configurer) is one of the tools we developed to 
help us configure VAX computer systems.1 

VAX system orders sent to Digital reflect the company's 
broad ala carte product offering. This breadth and depth of 
products causes complexity when configuring VAX system 
orders since each customer's order is usually unique. 

1XCON, is also known as RL John McDermott from Carnegie-Mellon 
University, who developed the original program, named the system 
Rl, reportedly saying, "Three years ago I wanted to be a knowledge 
engineer, and today I are one." 
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The manual process for technically editing orders did not 
bring to bear all the available expertise needed to configure 
an order optimally and was showing signs of stress relative 
to coping with the increasing order volume and product 
complexity. 

Digital developed XCON to help configure VAX computer 
systems more efficiently and to have the task performed in 
an optimal manner. 

XCON's job is to locate components in sensible physical 
locations and to connect everything together properly. For 
example, one of XCON's tasks is to decide if an order 
specifies something that makes sense. XCON asks itself if 
the specified VAX system can be built and if it is supportable. 
If not, XCON tells us what is wrong, documents how to 
correct the problem, and then produces detailed output for 
use by manufacturing and field service personnel. 

A Star Performer 

We have used XCON daily in our plants since 1980. So 
far XCON has analyzed nearly 20,000 unique orders and is 
running now with 95 to 98 percent accuracy. It has become 
an indispensable and effective business tool. 

How much money has XCON saved? Exact numbers are 
confidential, but it is well known that the saving has been 
substantial enough to make people at Digital believers in a 
bright future for expert systems in particular and Artificial 
Intelligence in general. 

XCON began in 1978 as a joint development· effort 
between Digital Equipment Corporation and Carnegie­
Mellon University. Digital took the prototype out of the 
university environment and into the real world of day-to­
day manufacturing. All development work and day-to-day 
operation are on VAX 11/780 computers. XCON was first 
installed in a systems manufacturing plant in Salem, New 
Hampshire. 
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XCON has over 2,000 rules. Here Is a a sample rule 
(translated into English): 

Rule R88 

If The current subtask is assigning devices 
to unibus modules 

and there is an unassigned dual port disk drive 
and the type of controller it requires is known 
and there are two such controllers, 

neither of which has any devices assigned to it 
and the number of devices which 

these controllers can support is known 
Then Assign the disk drive to each controller 

and note that each controller supports one device 

While complicated looking, the rule's content is simple: To 
put a disk on a particular bus, match up all the components 
to be sure that they are the right ones, and if they are, 
assign the bus, the controller, and the disk simultaneously. 

In developing XCON, it was important to measure benefits 
along the way. As with anything radically new, there were 
skeptics who worried how Digital would get a return on the 
substantial resources invested. Consequently we were careful 
to measure certain characteristics of the technicians who 
did configuration manually, concentrating on how well they 
performed, where they were located, and what the costs 
were, particularly in allowance losses. In Digital vernacular, 
an allowance is something we have to give away. We also 
tracked the installation time required since the detailed 
output of XCON is used by field service staff as well. 

Since XCON ensures a complete and workable system, not 
only could it be verified, built, and installed better and more 
quickly, but it helps to avoid scenarios like the following. 
If a $500,000 VAX system arrived at the customer's site 
without a $10 cable, we would give the customer that cable 
for free more often than not. Although allowance losses like 
this add up over time, there is a more significant cost in 
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terms of lost time and goodwill when the customer must 
wait for something as minor as a missing cable. XCON 
performs the tasks of consistently ensuring correctness and 
completeness much better than human technicians. 

Another experimentally proved benefit is that there are 
fewer changes in orders configured by XCON than in orders 
configured manually. XCON gets it right the first time, so 
the cycles are dampened out. Today, when the field service 
person gets the box marked, "Open me first," he finds a 
reliable road map for putting together everything in the 
system - the same road map used by the factory technicians. 

Inside XCON 

Prior to our joint XCON effort done in collaboration 
with Carnegie-Mellon University ( CMU), two major efforts 
were not completely successful, both using conventional 
technology rooted in FORTRAN or BASIC. These learning 
experiments helped us because they assured that the XCON 
project was labeled research, not development. Consequently 
careers did not depend on quick results. It is important 
that first efforts in expert systems be arranged so that a 
critical business function is not dependent on immediate 
and complete success. Allowances must be made for the 
learning curves of the expert system's authors, the experts, 
and the users of these systems. 

The two prior efforts taught us a great deal more about 
the nature of the configuration problem. Each effort helped 
to accumulate, in one place, more concrete data about our 
systems. The most tangible and immediate benefit was the 
creatio~ of a series of manual configuration sheets and guides 
for use by salespeople and customers. These configuration 
guides were practical and immediately useful. Some of the 
methods of graphically portraying information about our 
hardware are still in use today in the current sales literature. 

CMU and Digital developed the first prototype and put 
it into initial use in Digital in December 1979 despite some 
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people who worried that it would never work and others 
who worried that it would work and threaten their jobs. 
In 1980 we began to use it to configure all VAX orders. In 
1981 Digital became self-sufficient, and we weaned ourselves 
from Carnegie-Mellon help by hiring and training our own 
people to support the continuing work and languages. 

Much of the work developing XCON had to be done in 
the factory because we had to capture the knowledge we 
needed from practicing experts. It is necessary to find an 
expert who can· help chart the problem space and describe 
what really happens as problems are solved. 

Missionary Work 

As Digital worked on and used XCON, XSEL was in the 
back of our minds. Just as XCON is for getting machines 
built and installed, XSEL is for assisting customers in 
properly configuring their systems. The goal of XSEL is to 
be able to help a salesperson, using a portable terminal in 
the customer's office, prepare quotes for Digital computer 
systems. Compared to XCON, XSEL has to be much more 
interactive. XSEL will have all the knowledge of XCON 
and more. XSEL is now in the field-test stage and works 
with VAXes and with PDP11/23s. Shortly we will ramp 
the field test up to daily use by the U.S. sales force. Our 
goal is to keep up with all future hardware and software 
announcements for use by both XCON and XSEL. 

Naturally, salespeople could be very threatened by this 
type of expert system. Imagine the plight of a computer­
systems salesperson with ten or twelve years experience, 
who could go to a customer or prospect and using his or her 
wealth of accumulated knowledge prepare the framework 
of a quotation with only minimal reference to technical 
documentation. Now, all of a sudden, a portable terminal 
and a remote computer are part of the salesperson's tool 
kit. The salesperson is now, potentially, portrayed as having 
to rely on the computer and expert system, thus appearing 
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less self-sufficient. We have spent a lot of time with sales 
users, dealing with the psychological aspects of these work 
pattern changes as they affect each user, as well as with the 
changes themselves. · 

XSITE exists because we need to know where customers 
are going to put our computer systems. Everyone has heard 
stories about computers that could not be made operable 
because the power or air-conditioning was insufficient or 
because the equipment would not fit through the door or 
into the elevator. XSITE tries to deal with some of those 
problems by taking into account the environment in which 
the delivered system will be placed. XSITE hands that 
information over to XCON, which then checks things like 
cable-length restrictions. XCON, for example, will not let 
disks be 300 meters from the processor if that is not the 
proper configuration. 

XSITE can be thought of as a module of XSEL. When 
everything is done, the customer knows things like how 
many Btu's of cooling are needed, together with power 
requirements in terms of voltage, frequency, and phasing, 
right down to the part number for the receptacle the 
electrician has to install. 

Digital Equipment Corporation has immersed itself in 
expert systems technology for many reasons. First, rule­
based expert systems are good when a large amount of 
human expertise is required to solve the problem. Second, 
there is a large amount of knowledge, and that knowledge 
may appear to be unstructured. Third, the knowledge is 
represented as rules or heuristics. Fourth, this is a problem 
that people do well. Fifth, the problem is not algorithmic (or 
you think there is an algorithm and do not know it). Sixth, it 
may not be possible to write a full, formal specification. Last, 
they help us to manage change within Digital Equipment 
Corporation's fast-moving world. 

A rule-based system is not subject to the same degree of 
collapse as a conventional system when there is a need to 
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change the original function. We need systems that we can 
prototype quickly and then make the decision to proceed or 
stop based on that prototype's demonstrated characteristics. 
We have already changed course rapidly on several projects. 

Whenever possible, we try to make our expert systems 
work together. XCON, XSEL, and XSITE relate as a team 
to business problems. After we got XCON working, we 
branched off into related areas, leveraging from our previous 
experience. Our success with XCON, XSEL, and XSITE 
has led us to explore artificial-intelligence technology in 
a number of areas, mostly in manufacturing, corporate 
business order distribution, and diagnosis. 

There are, of course, some perceived shortcomings to 
becoming involved in expert systems. For example, expert 
systems tend to be memory intensive. However, hardware 
is relatively inexpensive. It is the expert-systems experts 
who are expensive- put the hardware against the problem. 
By this, we mean that you must take maximum advantage 
of your knowledge engineer and your domain expert, and 
enhance the development of the expert systems by supplying 
enough capital equipment of the proper kind. Another 
potential problem is that the end users and programmers 
may resist accepting and using expert systems. Our solution 

. is to deal with the psychological aspects of the change to 
new technology and to train them meticulously. 

What are the maintenance and support requirements? 
Maintenance requires knowledgeable experts in the problem 
domain, as well as rule writers. Expert systems are never 
correct all the time, just as humans never are. At first, we 
were not sure how many people would be needed to support 
XCON. As the system matured we saw that a relatively 
stable set of metrics evolved around things like how much 
effort is required to add a new type of disk to XCON. 

How do you test an expert system? Testing is done by 
constantly trying out many tough orders that an expert feels 
are tricky and convoluted. The programmers test each new 
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rule as they write it. Expert systems are not going to solve 
all the world's problems, but they can be used in conjunction 
with conventional information systems to attack new classes 
of problems that may have seemed intractable. 

We know the systems that we build are not going to 
have 100 percent success records. Consequently, we aim to 
provide some level of result explanation. In Professor Davis's 
examples, the systems provided interactive explanation. 
XCON's explanations are at the end, explaining why a 
component was used or changed. The important thing is 
that the explanation is somewhere. 

-A lot of missionary work is still needed. Since Artificial 
Intelligence is not yet part of management culture, there is 
a lot of selling to management to be done. 

Sitting at the Masters' Feet 

It is important to have a mature expert, capable of describing 
how he does the job. A large amount of human expertise 
must be captured in a typical effort. When Digital developed 
XCON, the knowledge engineers listened for hours to an 
expert telling us about his knowledge, until we thought we 
knew everything. Then, at the point of exhaustion, perhaps 
over lunch or a midnight break, someone would say, "What 
about ... ?" One short question would start a four-hour 
lecture about a new avenue of thought that the expert had 
not remembered to tell us about before. Consequently it is 
important to have a methodology that captures information 
when you get it, where you get it, and how you get it. 

Development must be user driven. If the users think that 
this system will help them to alleviate a problem or provide 
a better solution or be more cost-effective than the current 
methodology, they will use it .. If they think it is being foisted 
off on them, they will not use it. Expert systems cannot 
be forced into place; they must be carefully woven into the 
fabric of an organization. 
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Proliferation 

Some of the other systems we are developing are IMACS 
and ILOG, in the manufacturing area. Digital does a lot 
of manufacturing all over the world. IMACS is a system of 
several cooperative expert systems within a manufacturing 
plant. Its goal is to manage the flow of work better within 
that plant in cooperation with conventional systems. ILOG 
is exploring the problem of coordinating the shipment of 
material from many plants to the customer's site. 

Many problems that have resisted conventional software 
solutions lend themselves to the emerging technology of 
expert systems. We expect knowledge engineering to become 
an important tool in Digital's software repertoire. 
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DIPMETER ADVISOR: 
An Expert Log Analysis System 
at Schlumberger1 

James D. Baker 
Austin Engineering Center 
Schlumberger 

Dr. Baker has worked in operations research, pattern 
recognition, image processing, mathematical and statistical 
modeling, mathematical representation of systems, and 
methodologies for developing complex systems. He has 
directed the development of artificial-intelligence techniques 
and their application to industrial problems at Schlumberger 
Doll Research. These efforts include the DIPMETER AD­
VISOR, an expert system for oil field log interpretation. He 
is currently manager of the Schlumberger A us tin Engineering 
Center. Prior to working for Schlumberger, Dr. Baker worked 
at Honeywell, Texas Instruments, and the Johns Hopkins 
University Applied Physics Laboratory. He holds the BA, the 
MA, and the PhD in Mathematics. 

The people who interpret data expertly are a small but 
critical group in Schlumberger. One person who has worked 
himself well up into the company comes to mind. He became 
famous by leading an oil company across the panhandle of 
Texas, helping it decide where to drill wells. He started 
by looking at the data from the well under consideration. 
Going through an analysis, he might have reasoned as 
follows: "At the time of deposition, which was several 

1The results discussed here represent the efforts of several individuals 
in the artificial-intelligence groups at Schlumberger-Doll Research 
Center and at Fairchild Artificial Intelligence Laboratory. 
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million years ago, this area represented a channel, now 
10,000 feet underground. I can determine the direction from 
the well to the center of the channel, and I can determine 
the direction of the flow. By bringing in my knowledge of 
geology, I can know how sands were deposited, and I can 
determine where I should go to maximize my likelihood of 
having a successful well on the next effort." 

It is difficult to do decide where to drill wells. Our business 
problem is that we do not have enough of these valuable 
people. Schumberger's solution is to embody the skill of its 
valuable people in computer-based expert systems. 

To Drill or Not to Drill 

The principal business of Schlumberger is gathering and 
interpreting data. Sensors are lowered into the bore hole, 
and, measurements are made as the sensors are raised. Some 
measurements are taken every tenth of an inch and some are 
taken only every six inches. There are as many as twenty 
different kinds of sensors, but two or three can be used at 
once. The fact that there are many kinds of sensors adds to 
the complexity of the problem. 

The key question is, Is there hydrocarbon under the 
ground? If so, what kind is it? Oil? Gas? How much is 
there? Can it be removed? Depth is also important because 
in completing a well, making it a producer, we need to know 
the exact location of the hydrocarbon. Finally, we need to 
know where to move the rig to drill the next hole. In oil 
field explanations, we have a large variety of problems with 
many possible answers. 

DIPMETER ADVISOR 

Data from the sensors dropped into bore holes are plotted 
on logs, which are sheets of paper six to ten feet long, 
folded up like an accordion (figure 1). These data indicate 
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Figure 1. Data from bore-hole sensors are plotted on logs. 
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w E 

Figure 2. Dipmeter is dropped down the bore hole to measure the 
tilt of underground formations. 

how different kinds of energy (sonic, electrical, and nuclear) 
interact with the formation. Understanding these data is 
the intellectual challenge. The DIPMETER ADVISOR, 
Schlumberger's first expert system, attempts to emulate 
a special type of expert in this interpretation, starting 
with measurements from the dipmeter tool. The dipmeter 
measures the tilt of the underground formations (figure 2). 
In one place the layers are basically flat. In another the 
layers start to incline at a substantial degree. 
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2 3 4 

Figure 3. Plot of data obtained from dipmeter. 

A sensor on each of the dipmeter tool's four arms measures 
the conductivity of the formation as the tool is pulled out of 
the hole. This results in four curves that look approximately 
the same. As the sensor comes out of a hole bored into 
a tilted formation, not all of the arms will measure the 
movement into the new formation at the same time (figure 
3). By observing the differences in the measurements, we 
can determine the magnitude of the inclination, as well as 
the direction. 

This data may be represented in another way, as shown in 
figure 4. The vertical lines represent degrees of inclination, 
starting with 0° and going to 90°. The horizontal dot 
placement indicates the magnitude of the tilt. The tail on 
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Figure 4. Another representation of data obtained from the dipmeter. 

the end of each dot, sometimes called a tadpole, indicates 
the direction of the tilt. 

It is possible to -associate certain types of patterns 
with these data (figure 5). One of the patterns indicates 
roughly constant magnitude with increasing depth. Another 
pattern indicates increasing magnitude with increasing 
depth. Still another pattern indicates decreasing magnitude 
with increasing depth. These patterns can be detected 
by part of the DIPMETER ADVISOR system. From 
relationships among these patterns, combined with other 
data, we can deduce the geology. 

This information appears on the screen of a work station, 
in this case a Xerox 1100 Dolphin. The screen is divided 
into several areas, one area displaying the basic dip data, 
another displaying a summary of the whole log, and another 



57 DIPMETER ADVISOR: An Expert Log Analysis System 

Figure 5. The relationships among the patterns associated with data 
from the dipmeter logs, combined with other data, describes the 
geology of the area. 

displaying log data from other sensors that are combined 
with dip information to help in the analysis. Areas of special 
interest can be marked for re-examination. 

A rule in the.DIPMETER ADVISOR for interpreting this 
dipmeter data might be: 

Rule NFR9 

If there exists a normal fault, and 
there exists a red pattern 

with bottom above the top of the fault. 
with length greater than 200ft .• 
with azimuth perpendicular to the strike 

of the fault 
Then the fault is a growth fault 

with direction to downthrown block 
opposite to the azimuth of the red pattern 

This type of rule deals with a large number of ideas: a 
normal fault, a red pattern, and some of the geometry. The 
goal of this kind of rule is to identify, to the greatest degree 
possible, what type of fault is involved. 
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Currently, there are 90 such rules in the DIPMETER 
ADVISOR system. We started out two years ago with 30 
rules and increased to 150. After redesigning part of the 
system, we dropped back to 90 rules with basically the.same 
functionality as the larger system. As many as 5 or 6 of 
these rules work together to reach a particular conclusion. 

The DIPMETER ADVISOR goes through many steps 
before reaching conclusions, as shown in figure 6. 

First, the system verifies that the data are correct. The 
validity check is needed because several things can go wrong. 
For example, if the bore hole collapses, the sensors will be 
unable to measure anything. Another possible problem is 
that a correlation cannot be made between the four sensors, 
producing a void in the data. 

After the DIPMETER ADVISOR verifies that the data 
are correct, it begins the structural dip analysis. Structural 
dip refers to large tilts in the formation that have occurred 
after deposition. These tilts are important for two reasons: 
they are likely indicators that there is a fault in the area, 
and the tilts must be removed (that is, the structure must be 
retilted by the system in order for the analysis to continue). 

In the third step the DIPMETER ADVISOR tries to 
identify the geometry and the characteristics of the faults 
that are present. 

The last step is a stratigraphy analysis. We want to 
know what is there, how was it deposited, and what other 
geological structures were involved. 

Figure 7 is a summary of one of the wells that we 
analyzed. The DIPMETER ADVISOR determined that 
there are three areas of structural dip. One is 25°, which 
is substantial. In the structural analysis two faults have 
been identified: a growth fault and a late fault. There are 
two unconformities-fault-like events that we cannot further 
classify. 

The big discovery in the stratigraphy analysis was a 
distributary front. On top of the distributary front are two 
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Validity check 

Washout zones 
Blank zones 
Mirror image zones 

Structural dip analysis 

Green pattern detection 
Structural dip zone determination 
Structural dip removal 

Structural feature analysis 

Structural interruption detection 
Structural pattern detection 
Structural feature description 

Stratigraphic feature analysis 

Lithology determination 
Depositional environment analysis 
Stratigraphic pattern detection 
Stratigraphic feature description 

Figure 6. DIPMETER ADVISOR System: Interpretation steps. 

channels flowing in substantially different directions. There 
are three distributary fans. Sometimes we can even tell the 
shape of these particular fans. 

Both experts and nonexperts use the system. The system 
interprets well, especially in the area of structural dip and 
structural analysis. We do not have as much experience with 
stratigraphy, which is harder to deal with and more difficult 
to verify. 

Interestingly we have not accurately modeled what the 
experts do. Instead we have found that experts glance 
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Structural DIP zones Structural analysis Stratigraphy analysis 

Normal fault Distributary channel 

3.63° Magnitude 13753 Ft. Top depth 15106 Ft. Top depth 
13141 Ft. Top depth 148° Strike 79° Olr-to-axis 
331° Azimuth 238° Dir-to-down 180° Flow 
13809 Ft. Bottom depth Growth Class 15112 Ft. Bottom depth 

13753 Ft. Bottom depth 

Unconformity Distributary channel 

6.69° Magnitude 13681 Ft. Top depth 15114 Ft. Top depth 
13809 Ft. Top depth 13809 Ft. Bottom depth 175° Oir-to-axis 
214° Azimuth 70° Flow 
14435 Ft. Bottom depth 15124 Ft. Bottom depth 

Normal fault Distributary front 

25.47° Magnitude 14375 Ft. Top depth 15114 Ft. Top depth 
14435 Ft. Top depth 28° Strike 70° Flow 
243° Azimuth 118° Dir-to-down 15168 Ft. Bottom depth 
15500 Ft. Bottom depth Late Class 

14435 Ft. Bottom depth 

Unconformity Distributary fan 

14351 Ft. Top depth 15124 Ft. Top depth 
14335 Ft. Bottom depth 180° Flow 

Fan or Shape 
·crescent 
15134 Ft. Bottom depth 

Distributary fan 

15138 Ft. Top depth 
70° Flow 
Elongated Shape 
15168 Ft. Bottom depth 

Distributary fan 

15178 Ft. Top depth 
218° Flow 

~r.r.g~nt Shape 

15186 Ft. Bottom depth 

Figure 7. DIPMETER ADVISOR: Interpretation results. 
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at the data and very quickly reach a conclusion. They 
make conjectures, and the rest of the interpretation process 
is either the verification or the alteration. of the initial 
conjectures. While this idea has been around some time, it 
would have been much more difficult to substantiate without 
the experience of having experts work with this prototype 
system. 

Painless Software 

Automatic programming is a label that means different 
things to different people. What I mean is the automatic 
generation of software. If we can build an expert system 
that will interpret logs and do many other kinds of analysis 
we should be able to build an expert system that can 
write software because writing software is another activity 
involving human expertise. 

The problem is to relate rock models to log data through 
equations. The interpretation problem is to compute the 
relative constituents of the parts. For example, if we 
decompose porosity, we can determine how much water 
is present and how much hydrocarbon is present. 

The input to our system, which we call <I>NIX, is the 
following: a rock model, specified by the user;. log data; 
equations; and a specification of the variables we want to 
compute, plus any necessary parameters. The output is a 
program, written in FORTRAN, that computes the desired 
variables. 

We have a mechanism for equation manipulation, a 
program-synthesis function that maps the design into the 
target language. The user interface is powerful enough to 
communicate in the language of interpretation. 

We would like to embed <I>NIX in a large system of 
interpretation, one in which log data can be analyzed through 
interactive graphics, models of geology are suggested, 
programs (using <I> NIX) written for the desired output, and 
a computation system can perform the required calculations. 
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Signal Correlation 

Until now we have been concerned primarily with. analysis 
of single wells. How do we do interpretation in a field 
made up of many wells? The problem is to put together 
all of the data repr.esenting different wells to come up with 
an interpretation of very large geological structures. The 
amount of data can be vast because there may be many 
wells, there may be many logs associated with each well, 
and the depth of the wells can be 15,000 feet or more. 

One of the biggest problems is to correlate the signals from 
different wells. The goal is to be able to integrate signal 
processing, visual perception, and geological knowledge 
for the multiwell correlation problem. One of the reasons 
exploiting geological knowledge is so difficult is that we 
have even fewer experts in this domain than for dipmeter 
analysis, and these experts do not always agree on how 
they do their work. In the beginning, our colleagues at the 
Fairchild artificial-intelligence center emphasized the signal 
processing and visual processing part of this problem. 

First, let us discuss the matching of logs. The- logs in 
figure 8 represent two different wells. The hypothesis is that 
we can mark an interval, AB, on both of the logs and then 
correlate all of the points in the intervals. The people at 
Fairchild have developed an algorithm based on dynamic 
programming that will match these interior points, shown 
in figure 8). 

At the top and the bottom of the correlation in figure 9 
are the original logs. Between is a smoothed version. In the 
middle are the lines indicating what the program has said 
is the optimal matching. The interesting point is that the 
program has suggested that there is a missing section-that 
is, there is an interval on this log that is mapped into a 
point on the other. Part of the geology in one well does not 
exist in the other. This is a common feature and one that 
makes interpretation even more difficult. 
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A B 

Figure 8. Matching two logs. 

Leveraging Experience 

A question we have been asked a number of times is why 
Schlumberger is using Artificial Intelligence. We believe we 
can do a better job at log interpretation using Artificial 
Intelligence than we could if we did not. We think artificial­
intelligence problem-solving techniques are useful and expert­
systems technology is improving rapidly. Moreover we think 
that the tools of Artificial Intelligence are important. 
Building software environments for rapid prototyping is 
a way to test new systems. Environments for developing 
software and the LISP computer systems themselves are 
important contributions from Artificial Intelligence. 

Artificial-intelligence systems in the 1980s will be em­
bedded in larger systems. An important ingredient of these 
larger systems will be the user interface, which will be 
graphical and highly interactive. Artificial Intelligence will 
be only one part of many problem-solving components, 
among them numeric computation, pattern recognition, and 
signal processing. 
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(DEPTHS 6888. - 7888.) 

(LOG! 6888. - 7888. LOG2 6988 . - 7888.) 

(DEPTHS 6888. - 7888.) 

x am i n e 

Figure 9. Logs from two different wells, as shown on the screen of a 
Symbolics LISP Machi.ne. 

One of the most important future contributions Artificial 
Intelligence will make will be in the area of software 
development. Much of our work at Schlumberger has been 
done using the INTERLISP-D environment. If we look at 
the resources generally required to build our software, our 
improvement was about an order of magnitude better than 
we expected. In software development a 20 to 30 percent 
improvement is often considered a reasonable goal. In our 
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research on software at our research laboratory in Ridgefield, 
Connecticut, we have desired productivity improvement 
factors of three or four. In the future, I believe we can 
expect productivity gains of as much as a factor of ten or 
more. 
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CADUCEUS: An Experimental 
Expert System 
for Medical Diagnosis 

Harry E. Pople, Jr. 
Professor 
Graduate School of Business 
University of Pittsburgh 

Professor Pople develops methods of hypothesis formation, 
problem solving, and decision making in medical diagnosis. 
In collaboration with Jack D. Myers, MD, he developed a suc­
cessio'n of systems, collectively referred to as CADUCEUS, 
generally regarded as the most comprehensive, most suc­
cessful artificial-intelligence-based decision support system 
in Medicine. He recently began to apply medical decision­
making techniques to the problems of decision making in 
business and to the design of intelligent management systems. 
Professor Pople received the BS in Electrical Engineering 
from MIT and the doctorate in interdisciplinary systems and 
communications from Carnegie-Mellon University. 

Dr. Jack Myers, my principal collaborator, and I have 
worked on a system for expert consultation in internal 
medicine for about twelve years. Dr. Myers, a professor of 
Medicine at the University of Pittsburgh, learned Medicine 
in the 1930s, at a time when a specialist in internal medicine 
could learn all there was to know. He has been able to keep 
up ever since by being a top-notch person and by holding 
an academic position. 

When Dr. Myers decided that he wanted to do research, 
he came to me and asked whether we could develop 
a computer system that could do what he does. He 
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expressed considerable concern about fragmentation in 
medical teaching. Everyone is a specialist in something; 
we do not produce generalists any more. Not only have 
the generalists become specialists, but the specialists have 
become subspecialists and subsubspecialists. Dr. Myers is 
concerned about that because it is common knowledge that 
a patient who goes to a lung specialist undoubtedly will 
come away with a lung diagnosis, no matter what is really 
wrong. 

Critical Partnership 

How can we use computers to make up for this deficiency 
in medical training? Can we build a generalist? From the 
beginning of our work, Dr. Myers set the standards high 
because he feels that there is no point building a general 
practitioner. They do not see the more interesting diseases 
often enough to recognize them when they come along. Our 
generalist was to operate at a high level, that of an expert 
consultant. We wanted to build a program to which someone 
might come with difficult problems. 

We spent two or three afternoons a week for six months 
going over case studies. He taught me Medicine, to the extent 
that he could, illustrating what he thought he wanted our 
program to deal with. We tried to understand what skilled 
physicians do as they go through the process of coming to 
grips with a challenging medical problem. 

Deciding What to Decide 

It was obvious from the beginning that the physician, and 
hence our program, deals with multiple diagnoses, ruling out 
traditional approaches to decision analysis. There are a lot 
of programs around, based primarily on Bayesian statistical 
schemes or pattern-recognition schemes, that could find one 
diagnosis, coming up with a probability spectrum across 
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a decision set. But in internal medicine the one-diagnosis 
assumption is inappropriate. 

It also was clear that physicians piece together solutions 
to complicated problems step by step. Diagnosis is not a 
matter of fetching the whole picture from memory, with 
multiple pieces. Instead it is like solving a crossword puzzle. 

Physicians have to be able to proceed no matter in what 
order the data are provided. In general it is not reasonable 
to fill out a whole vector of data values before commencing 
treatment. One reason is that a patient may come into a 
hospital comatose, eliminating the possibility of getting a 
history. Another reason is that time pressure may prevent 
the physician from running to the laboratory. Finally there 
is cost. Some clinics do not make interpretations until 
hundreds of tests are run. Dr. Myers objects to that practice 
because of the tremendous expense. We decided our program 
must be prepared to proceed on the basis of whatever data 
it might have. 

From our discussions, it also became clear that a physician 
thinks first in very general terms, becoming more and more 
specific. There is a refinement with respect to an initial 
hypothesis. 

Finally, it is very important that the physician be able to 
disregard irrelevant data. The first system we built worked 
beautifully as long as we dealt only with textbook cases. But 
as soon as we brought in real patient data, everything fell 
apart. The data from real patients are full of noise. There 
are red herrings and errors. Even worse, some patients will 
misrepresent things, lie, or forget, and laboratories make 
mistakes. And even the good data can be irrelevant because 
there are a lot of things we do not know about Medicine, 
leaving many parts of the record forever unexplained. 

Perhaps the most mysterious part of what a physician does 
is to decide what the decision problem is. He has to choose 
from among thousands and thousands of possible diagnoses 
where to focus his attention. The physician does not proceed 
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by systematically considering all possibilities in turn, but 
moves very quickly into a focused set of possibilities known 
as a differential diagnosis. 

After a year I understood enough of what I needed to do 
as a computer scientist to make progress. 

A Paradox 

Once a physician has a differential diagnosis in mind, the 
enterprise of going through the set of possible explanations 
systematically is straightforward. But formulating that 
differential diagnosis in the first place is difficult since the 
physician cannot make the assumption that only one thing 
is wrong with the patient. Many different decision problems 
must be formulated and solved. 

Let me stress one thing .that we understand now that 
we did not know in the beginning. There are a number 
of pragmatic, commonsense rules that the physician uses. 
One important rule is that physicians try to account for all 
the significant data that they see. Given that a physician 
observes an abnormal finding ordinarily associated with a 
significant pathology, he must find out what causes that 
finding. The rule applies across all findings, and the physician 
is unhappy if there is anything that cannot be accounted 
for. 

Another important rule is that physicians try to explain 
everything under one umbrella. They do not like to give 
the patient two diseases if one will do. A corollary is that 
physicians try to find a total diagnosis that can account for 
the preponderance of the data with the fewest diseases. 

Once a decision problem is correctly formulated, powerful 
strategies for solving that problem can be invoked. One 
such strategy is that physicians try to solve problems using 
elimination. Having ruled out several possibilities, perhaps 
the only thing left is, say, a pneumoccocal pneumonia. I 
have seen physicians make judgments using elimination that 
otherwise would seem to go against some of the evidence. 
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They will say a particular disease is the only one possible 
because all else has been ruled out. 

Note the paradox. I am suggesting that the process 
of formulating a differential diagnosis is itself heuristic. 
I am also suggesting that decisions are often made by 
elimination, a technique that is valid only if there is a 
complete set of plausible hypotheses in the first place. This 
is the commonsense explanation for what goes wrong in the 
diagnostic process on those occasions when something does 
go wrong. 

INTERNIST I 

We defined a medical knowledge base for the system we 
call Internist I. That knowledge base contains knowledge 
about diseases and a set of things we call manifestations. 
In addition there are intermediate diagnosable conditions 
that are not really diseases. All are tied together in a causal 
network. For example, it is known that hepatitis can cause 
a problem in the blood called hyperbilirubinemia, and that 
in turn is manifested by jaundice. Physicians know a lot 
about such causal chains. 

Figure 1 shows the data base for pallor and jaundice. 
On the right side is pallor associated with anemia, one 
cause of pallor. But pallor is also associated with fibrotic 
hepatocellular involvement, which can cause bleeding, which 
in turn can cause pallor. 

Here we have jaundice associated with a type of anemia 
called hemolytic anemia. Under hepatobiliary involvement, 
we have a number of kinds of liver disease, with jaundice 
associated with most of them, including hepatic vein 
obstruction, biliary tract involvement, and hepatocellular 
involvement. 
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Figure 1. Example of the INTERNIST I data base. 
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The basic algorithm in INTERNIST I exploits this data 
base as follows. Suppose we observe pallor and jaundice. 
INTERNIST I asks what set of diseases can account for those 
findings. To pick the most likely, it could simply do a tally, 
counting one point for every finding explained by the disease. 
The actual scoring is somewhat more complex (Pople 1982), 
but the principle is the same. Then INTERNIST I sorts that 
list and comes up with a leading contender. It constructs 
a differential diagnosis consisting of the disease that is 
the most highly ranked and its competitors. Given that 
differential diagnosis, we invoke a problem-solving strategy 
and repeat. Let me illustrate how with a case run several 
years ago. 
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A Very Sick Woman 

Here we have positive initial findings: 

*SEX FEMALE 
*AGE GTR THAN 55 
*URINE SEDIMENT RBC 
*JAUNDICE 
*PROTHROMBIN TIME INCREASED 
*SKIN ECCHYMOSES 
*OBESITY 
*EDEMA SUBCUTANEOUS 
*FECES GUAIAC TEST POSITIVE 
*HEMATOCRIT BLOOD LESS THAN 35 
*UREA NITROGEN BLOOD LESS THAN 35 
*SGOT 40 TO 120 

CADUCEUS 

*ALKALINE PHOSPHATASE INCREASED NOT OVER 2 TIMES NORMAL 
*ELECTROPHORESIS SERUM ALBUMIN DECREASED 
*BILIRUBIN CONJUGATED BLOOD INCREASED 
*BILIRUBIN INDIRECT TO DIRECT RATIO BLOOD INCREASED 
*ABDOMEN XRAY FLUID PERITONEAL CAVITY 
*ASCITIC FLUID OBTAINED BY PARACENTESIS 
*ASCITIC FLUID SPECIFIC GRAVITY LESS THAN 1:013 
*ASCITIC FLUID PROTEIN LESS THAN 3 GRAM (S) PERCENT 
*LIVER SMALL 
*VOMITING COFFEE GROUND 
*STUPOR 
*REFLEX (ES) DEEP TENDON INCREASED GENERALIZED 
*RBC RETICULOCYTE (S) GTR THAN 5 PERCENT 
*PLATELET (S) LESS THAN 50. 000 
*POTASSIUM BLOOD INCREASED 
*CHLORIDE BLOOD INCREASED 
*UREA NITROGEN BLOOD GTR THAN 60 
*CREATININE BLOOD INCREASED 
*CSF XANTHOCHROMIA 
*CSF GLUTAMINE INCREASED 
*RBC TARGET (S) 
*RBC SCHIZOCYTE (S) 
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*IRON BINDING CAPACITY TOTAL LESS THAN 240 
*HAPTOGLOBIN DECREASED 
*SODIUM URINE LESS THAN 20 MEQ PER DAY 
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The patient is a woman older than fifty-five, with many 
medical problems. She has jaundice, so she may be anemic 
or have a liver problem. INTERNIST I finds many things. 
There is subcutaneous edema and retained fluid. The woman 
not only has anemia and jaundice but other problems having 
to do with liver enzymes. Consequently INTERNIST I is 
going to look at the liver. 

"Ascitic fluid obtained" means she has fluid in the 
abdomen. The liver, by percussion test, is seen to be 
small, and that is a bad sign, probably meaning it is nearly 
wiped out. Vomiting coffee grounds indicates digested blood, 
meaning that she is bleeding. We also have some initial 
negative findings: 

-JAUNDICE FAMILY HX 
-JAUNDICE PERSISTENT HX 
-JAUNDICE REMOTE HX 
-JAUNDICE INTERMITTENT HX 
-HEPATITIS ACUTE HX 
-ALCOHOLISM HX 
-FEVER 
-URINE DARK HX 
-FECES LIGHT COLORED 
-WBC 14, 000 TO 30, 000 
-WBC 4,000 TO 14,000 PERCENT NEUTROPHIL (S) INCREASED 
-WBC LESS THAN 4,000 
-GLUCOSE BLOOD INCREASED 
-GLUCOSE BLOOD LESS THAN 50 
-ANTIBODY HEPATITIS B 
-HEPATITIS B SURFACE ANTIGEN 
-ANA POSITIVE 
-ANTIBODY MITOCHONDRIAL 
-ANTIBODY SMOOTH MUSCLE 
-ALPHA FETOGLOBULIN INCREASED 
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-COPPER BLOOD DECREASED 
-CERULOPLASMIN BLOOD DECREASED 
-SODIUM BLOOD DECREASED 
-BICARBONATE BLOOD LESS THAN 20 

-IRON SERUM LESS THAN 45 

The value of negative data is that they can downgrade a 
hypothesis. The scoring mechanism lowers a disease's score 
if certain findings are expected but not found. 

A transcript of part of an actual dialog between the 
physician and INTERNIST I follows: 
*GO 
DISREGARDING: EDEMA SUBCUTANEOUS, LIVER SMALL, OBESITY, 
STUPOR, VOMITING COFFEE GROUND, ABDOMEN XRAY FLUID 
PERITONEAL CAVITY, ALKALINE PHOSPHATASE INCREASED 
NOT OVER 2 TIMES NORMAL, ASCITIC FLUID SPECIFIC GRAVITY 
LESS THAN 1: 013, BILIRUBIN INDIRECT TO DIRECT RATIO 
BLOOD INCREASED, CHLORIDE BLOOD INCREASED, POTASSIUM 
BLOOD INCREASED. RBS SCHIZOCYTE (S) • RBC TARGET (S) , 
SGOT 40 TO 120, ASCITIC FLUID OBTAINED BY PARACENTESIS, 
ASCITIC FLUID PROTEIN LESS THAN 3 GRAM (S) PERCENT, 
CSF GLUTAMINE INCREASED. HAPTOGLOBIN DECREASED, IRON 
BINDING CAPACITY TOTAL LESS THAN 240. PARTIAL 
THROMBOPLASTIN TIME INCREASED, PROTHROMBIN TIME 
INCREASED, SODIUM URINE LESS THAN 20 MEQ PER DAY 

DISCRIMINATE: ACUTE MONOCYTIC OR MYELOMONOCYTIC LEUKEMIA, 
ACUTE MYELOBLASTIC LEUKEMIA 

At this point the set of findings that are being ignored 
is printed. Dozens and dozens of facts· are set aside in 
the beginning. Internist I has focused on a subset of the 
data and has formulated its first differential diagnosis, with 
a view toward discriminating between acute monocytic 
or myelomonocytic leukemia versus acute myeloblastic 
leukemia. 

Now the program asks the right questions, weighing those 
two possibilities, accumulating evidence for or against each. 

*GO 
WBC MYELOMONOCYTE (S) GTR THAN 20 PERCENT? 
NO 
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WBC MONOBLAST (S) AND PROMONOCYTE (S) GTR THAN 20 PERCENT? 
NO 
PLEASE ENTER FINDINGS OF URINALYSIS ROUTINE AND MICROSCOPIC 
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It asks for findings about blood count. It asks about the mor­
phology of some of the white blood cells: myelomonocytes, 
monoblasts, promonocytes, and the rest. In this example it 
gets negative evidence from all. 
*GO 
URINE HEMATURIA GROSS WITH MICROSCOPIC CONFIRMATION? 
NO 
WBC MYELOBLAST (S) AND PROMYELOCYTE (S) GTR THAN 
20 PERCENT? 
NO 

DISREGARDING: FECES GUAIAC TEST POSITIVE. OBESITY. SKIN 
ECCHYMOSES, STUPOR. VOMITING COFFEE GROUND. ABDOMEN XRAY 
FLUID PERITONEAL CAVITY. ASCITIC FLUID INCREASED, 
CHLORIDE BLOOD INCREASED. CREATININE BLOOD INCREASED, 
POTASSIUM BLOOD INCREASED. RBC SCHIZOCYTE (S). UREA 
NITROGEN BLOOD 30 TO 60. UREA NITROGEN BLOOD BTR THAN 
60. URINE SEDIMENT RBS. ASCITIC FLUID OBTAINED BY 
PARACENTESIS. ASCITIC FLUID PROTEIN LESS THAN 3 GRAM (S) 
PERCENT. CSF GLUTAMINE INCREASED. HAPTOGLOBIN DECREASED. 
IRON BINDING CAPACITY TOTAL LESS THAN 240. PARTIAL 
THROMBOPLASTIN TIME INCREASED. PLATELET (S) LESS THAN 
50.000. SODIUM URINE LESS THAN 20 MEQ PER DAY 

PURSUING: MICRONODAL CIRRHOSIS (LAENNECS) 

For a while it continues to look for evidence to support one 
or the other of those leukemias, but eventually it reconsiders, 
coming to a totally different view of the problem. Instead 
of trying to discriminate between two kinds of leukemia, 
it pursues micronodal cirrhosis, which turns out to be the 
correct diagnosis. It shifted gears, reformulating its decision 
problem. 
*GO 
LIVER FINE NODULE (S)? 
N/A 
CONCLUDE: MICRONODAL CIRRHOSIS (LANNECS) 

DISRGARDING: FECES GUAIAC TEST POSITIVE. OBESITY. SKIN 
ECCHYMOSES, STUPOR, VOMITING COFFEE GROUND. BILIRUGIN 
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INDIRECT TO DIRECT RATIO BLOOD INCREASED, CHLORIDE BLOOD 
INCREASED, CREATININE BLOOD INCREASED, POTASSIUM BLOOD 
INCREASED, RBC SCHIZOCYTE (S), UREA NITROGEN BLOOD 30 
TO 60, UREA NITROGEN BLOOD GTR THAN 60, URINE SEDIMENT 
RBC, CSF GLUTAMINE INCREASED, HAPTOGLOBIN DECREASED, 
IRON BINDING CAPACITY TOTAL LESS THAN 240, PARTIAL 
THROMBOPLASTIN TIME INCREASED •. PLATELET (S) LESS THAN 
50,000, SODIUM URINE LESS THAN 20 MEQ PER DAY 

CONCLUDE: TRANSUDATIVE ASCITES 

DISREGARDING: FECES GUAIAC TEST POSITIVE, OBESITY, SKIN 
ECCHYMOSES, STUPOR, VOMITING COFFEE GROUND, BILIRUBIN 
INDIRECT TO DIRECT RATIO BLOOD INCREASED, CHLORIDE BLOOD 
INCREASED, RBC SCHIZOCYTE (S), URINE SEDIMENT RBC, CSF 
GLUTAMINE INCREASED, HAPTOGLOBIN DECREASED, IRON BINDING 
CAPACITY TOTAL LESS THAN 240, PARTIAL THROMBOPLASTIN TIME 
INCREASED, PLATELET (S) LESS THAN 50,000 

PURSUING: RENAL FAILURE SECONDARY TO LIVER DISEASE 
(HEPATORENAL SYNDROME) 
CONCLUDE: RENAL FAILURE SECONDARY TO LIVER DISEASE 
(HEPATORENAL SYNDROME) 

DISREGARDING: FECES GUAIAC TEST POSITIVE, OBESITY, SKIN 
ECCHYMOSES, VOMITING COFFEE GROUND, BILIRUBIN INDIRECT 
TO DIRECT RATIO BLOOD INCREASED, CHLORIDE BLOOD INCREASED, 
RBC SCHIZOCYTE (S), URINE SEDIMENT RBC, HAPTOGLOBIN 
DECREASED, IRON BINDING CAPACITY TOTAL LESS THAN 240, 
PARTIAL THROMBOPLASTIN TIME INCREASED, PLATELET (S) LESS 
THAN 50,000 

PURSUING: HEPATIC ENCEPHALOPATHY 

*GO 
ASTERIXIS? 
NO 

DISREGARDING: OBESITY, SKIN ECCHYMOSES, STUPOR, VOMITING 
COFFEE GROUND, BILIRUBIN INDIRECT TO DIRECT RATIO BLOOD 
INCREASED, CHLORIDE BLOOD INCREASED, RBC SCHIZOCYTE (S), 
URINE SEDIMENT RBC, CSF CLUTAMINE INCREASED, HAPTOGLOBIN 
DECREASED, IRON BINDING CAPACITY TOTAL LESS THAN 240, 
PARTIAL THROMBOPLASTIN TIME INCREASED, PLATELET (S) LESS 
THAN 50,000 

PURSUING: SINUSOIDAL OR POSTSINUSOIDAL PORTAL HYPERTENSION 

PLEASE ENTER FINDINGS OF AUSCULTATION ABDOMEN 
*GO 
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ABDOMEN BRUIT CONTINUOUS PERIUMBILICAL? 
NO 
PLEASE ENTER FINDINGS OF INSPECTION ABDOMEN 
*GO 
ABDOMEN VENOUS PATTERN CENTRIFUGAL FLOW? 
N/A 
CAPUT MEDUSAE? 
NO 
DISREGARDING: OBESITY. SKIN ECCHYMOSES. STUPOR. VOMITING 
COFFEE GROUND. BILIRUGIN INDIRECT TO DIRECT RATIO BLOOD 
INCREASED. CHLORIDE BLOOD INCREASED. RBC SCHIZOCYTE (S). 
URINE SEDIMENT RBC. CSF GLUTAMINE INCREASED, HAPTOGLOBIN 
DECREASED. IRON BINDING CAPACITY TOTAL LESS THAN 240, 
PARTIAL THROMBOPLASTIN TIME INCREASED. PLATELET (S) LESS 
THAN 50,000 

DISCRIMINATE: SINUSOIDAL OR POSTSINUSOIDAL PORTAL 
HYPERTENSION, PLASMA CELL MYELOMA 
HEMATEMESIS? 
NO 
SPLENOMEGALY MODERATE? 
YES 
PLEASE ENTER FINDINGS OF XRAY LUNG FIELD (S) 
*GO 
CHEST XRAY PLEURAL EFFUSION (S)? 
NO 
PLEASE ENTER FINDINGS OF NEUROLOGIC EXAM MUSCULOSKELETAL 
*GO 
PARAPLEGIA? 
NO 
RBC ROULEAUX INCREASED? 
NO 
DISREGARDING: OBESITY. SKIN ECCHYMOSES. STUPOR, VOMITING 
COFFEE GROUND. BILIRUBIN INDIRECT TO DIRECT RATIO BLOOD 
INCREASED. CHLORIDE BLOOD INCREASED, RBC SCHIZOCYTE (S), 
URINE SEDIMENT RBC. CSF GLUTAMINE INCREASED. HAPTOGLOBIN 
DECREASED. IRON BINDING CAPACITY TOTAL LESS THAN 240. 
PARTIAL THROMBOPLASTIN TIME INCREASED PLATELET (S) LESS 
THAN 50,000 

PURSUING: SINUSOIDAL OR POSTSINUSOIDAL PORTAL 
HYPERTENSION 
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Here it asks a few more questions about fine nodules 
in the liver. These nodules cannot be felt in a patient 
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with. a lot of fluid, so it is told the information is not 
available. Nevertheless it concludes the micro nodal cirrhosis. 
Then it decides that the acites is transcudative without 
asking any more questions. It concludes immediately that 
the renal failure constitutes the so-called hepatal-renal 
syndrome because of causal links tying cirrhosis to real­
hepatal syndrome. At this point it really should have been 
able to deal with the encephalopathy-the neurological 
problem is clearly hepatic. But it asks a key question and 
gets a negative response, so it asks about photohypertension. 
Eventually, however, it solves the encephalopathy and the 
other problems in the case. 

Iterating toward Answers 

As a result of building this system, we have discovered a great 
deal about medical reasoning. But despite the successes of 
this system, there are some glaring deficiencies. We never 
would have learned about those deficiencies had we not 
experimented seriously with a system. By building a system 
that is close to what we wanted, we were in a position to 
learn how to go to the next level. If there is any message 
that runs through all of the systems work that I know about, 
it is just this: the business of building expert systems in a 
tough area, where there are problems people care about, is 
a process of progressive deepening. You build a theory, you 
build a program to test that theory, and as you go through 
the process, your understanding about what is going on 
progressively grows. 
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The Low Road 
the Middle Road 
and the High Road 

John Seely Brown 
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Cognitive and Instructional Sciences 
Xerox Corporation 

At Xerox Dr. Brown started a basic research group in 
Cognitive Sciences primarily concerned with understanding 
how people understand and construct mental models of 
complex systems. His group was responsible for creating 
INTERLISP-D and the associated Xerox 1100 line of LISP 
machines. More recently he investigated how process models 
gain explanatory power and developed methodologies aimed at 
constructing more principled process models of cognition. His 
research continues to be interdisciplinary, involving Artificial 
Intelligence and psychological and educational issues. Prior 
to joining Xerox Dr. Brown headed the Intelligent Computer 
Assisted Instruction Group at Bolt Beranek and Newman. 
From 1969 to 1973 Dr. Brown held joint faculty appointments 
in the Department of Information and Computer Science and 
the Department of Psychology at the University of California 
at Irvine. Dr. Brown received the BA and MS in Mathematics 
and the PhD in Computer and Communication Sciences from 
the University of Michigan. 

One can hardly pick up a magazine these days without 
reading a new story about Artificial Intelligence and the 
wonders of expert systems. Given all this hype, one cannot 
help but wonder what the great intellectual breakthroughs 
in Artificial Intelligence must have been to warrant all this 
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attention. The answer is simple: basically there have been 
no major intellectual breakthroughs in the last few years. 
Progress, yes; revolutionary breakthroughs, no. One of the 
great fathers of knowledge engineering is pleased to tell his 
audiences that his systems use techniques that have been 
around for at least ten years. What, then, can explain why 
Artificial Intelligence has suddenly taken off? 

The answer rests not in the intellectual arena but in the 
recent dramatic advances in hardware, particularly hardware 
that can effectively execute LISP-the lingua franca of 
Artificial Intelligence. Artificial-intelligence systems that 
required dedicated, million-dollar mainframes five years 
ago now can run on machines that cost only $25,000. 
For the first time we have cost-effective delivery engines 
for expert systems, a major change. This fact alone is 
possibly enough to explain why Artificial Intelligence is 
now catching on. But there is another reason, more subtle, 
that is worth understanding because the real payoff in 
Artificial Intelligence during the next few years may not be 
in expert systems but rather in commercially exploiting the 
artificial-intelligence mentality (a mentality for coping with 
ill-defined, constantly changing problems) and the intelligent 
programming environments that have emerged to enable 
artificial-intelligence researcher to cope with immensely 
complex programs. In order to understand this nonstandard 
position, let us consider some of the properties of Artificial 
Intelligence. 

Ignoring Yesterday's Constraints 

Artificial Intelligence is possibly the only discipline that has 
consistently ignored the realities of yesterday's computer 
environments, relieving itself of the then dominant concern 
with conserving CPU cycles and memory and focusing 
on what was possible rather than what was realistic. By 
ignoring yesterday's realities, the way was paved to a new 
culture, a new paradigm, and a new point of view, one that 
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is now ideally situated to take advantage of nearly limitless 
computrons that are now becoming available. 

In order to pursue the barely possible, the Artificial 
Intelligentsia have been forced to develop a powerful arsenal 
of programming tools that help manage the complexity 
of writing and experimenting with gigantic programs, 
programs constantly undergoing radical change as the 
programmer zeros in on a crisper understanding of the 
problem he or she is trying to solve. Gradually these tools 
became integrated, creating programming environments 
that facilitate exploratory programming-a programming 
methodology or style crucial to Artificial Intelligence. Why? 
Because intelligence is a moving target. One of the founders 
of Artificial Intelligence once defined intelligence as being 
that attribute of human behavior that we admire but do 
not understand. In some ways Artificial Intelligence can be 
characterized as the study of inherently ill-defined problems 
where research efforts try to transform complex, ill-defined 
problems into defined ones. 

Power Tools for Programmers 

One result of the ill-defined nature of artificial-intelligence 
problems is that we cannot write logical specifications of what 
we want. This means only a few people, not a programming 
hoard, can work together on writing a system. Thus an 
artificial-intelligence team consists of a couple of people at 
most. It is not at all surprising that Artificial Intelligence 
has developed power tools for the wizard programmer. One 
or two wizards work on an ill-defined problem, write a 
gigantic system, explore the issues, and move on. 

Power tools fall into two categories. One type helps us 
engage in rapid cost-effective experimentation and debug­
ging. These tools, for example, facilitate both local and 
global program change. By local program change I mean 
that we can stop computation when a bug occurs, save the 
entire program state, use very fancy window systems and 
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browsers to find where things went wrong, make a change, 
start the computation up again from where it left off, and 
see if the change fixed the problem. If it did not, fold back 
the computation to where the change was made and make 
another patch. Tools like that are very powerful. 

Global change comes from what might be called the 
pancake philosophy: always throw the first one away. This 
philosophy applied to programming holds that we throw 
away the first program we write, even if it is a hundred 
thousand lines long. Of course we do not throw away 
everything. After we figure out why the program loses, we 
use power tools to browse over it and radically transform 
it. The tools must help keep track of what happens when 
changes are made, they must understand the ramifications 
of the changes, they must know where everything is in the 
files, and they must update the data bases concerning who 
calls whom in the program when the change is made. Such 
tools border on being intelligent in their own right. 

The other class of power tools is aimed at making 
a program arbitrarily efficient once its definition has 
settled down. For example, these tools provide methods 
to instrument programs in order to probe where time is 
being spent and then to provide means to craft highly 
efficient data structures and accessing methods in order to 
improve the efficiency of the final system. 

One of the greatest myths is that LISP is good only for 
exploratory programming and that once one settles on the 
final prototype, everything must be rewritten in a traditional 
system programming language. I believe that with the tools 
that now exist, we can move from the ill defined to the 
defined and then continuously turn down the screws until 
we have code that is as efficient as it would have been if 
it had been written in a traditional systems programming 
language. Indeed in our own LISP machines, the entire 
operating system, including the real-time tasks of handling 
Ethernet traffic, is written in LISP. 
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Exploratory programming may be crucial to Artificial 
Intelligence, but so what? The thesis being put forth here 
is that in the short run, it is precisely the exploratory 
programming tools (and methodologies) that have emerged 
from artificial-intelligence research that can be applied to 
a whole host of traditional problems, problems that barely 
require Artificial Intelligence but nonetheless do involve 
uncertainty and change. Indeed it is amazing to realize how 
many of the problem arenas tackled in classical computer 
science defy explicit problem specifications at the outset, 
such as user interfaces. 

For example, it is nearly impossible to specify ahead of 
time exactly how an electronic, personal calendar system 
should appear. No matter how carefully we think through 
all the options that it should have and how the interface 
should be shaped, within the first five minutes of using 
it we will discover that it is not what we meant or 
wanted. Woe if the system is cast in concrete and has 
taken months to implement. Instead we need to be able to 
construct a prototype rapidly of our best guess and from 
there experiment and evolve until we converge on what we 
really need and can use. This is where artificial-intelligence 
technology, in the short run, can make a major difference. 
It can provide the tools and programming environment to 
make this kind of exploration cost effective. 

Three Roads to Success 

People learning Artificial Intelligence are often confused 
because at one place they hear that heuristic rules are 
everything. When they go to another place, they hear 
that knowledge representation is where the action is. Then 
they go somewhere else and find that the secret lies in 
causal models. And here you hear that it is not Artificial 
Intelligence where the short-term leverage lies, but rather 
it is in the powerful programming tools that have emerged 
over the last ten years. How can we make sense of all these 
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different viewpoints? The answer lies in thinking about what 
I call low-, medium-, and high-road approaches to Artificial 
Intelligence. 

The low-road approach has to do with putting the 
intelligence into the programming environment itself-that 
is, to provide the programmer tools that understand the 
structure of the language he or she is programming in and 
the systems he or she is crafting (for example, structural 
editors, data base query systems for answering questions 
about the programs). 

The medium-road approach covers two kinds of systems. 
The first are the traditional know ledge engineering systems 
that use if-then rules to encode their knowledge. The use of 
if-then rules, however, is not the important characteristic 
of these systems; rather it is the kind of knowledge they 
encode. These systems encode experiential knowledge, or 
empirical associations, that an expert has accumulated after 
seeing many similar situations-for example, seeing time 
and again that some given symptom could be successfully 
treated by invoking a given therapy. In brief this kind of 
know ledge can be best thought of as being the shallow 
or the surface know ledge of a domain of expertise. This 
kind of know ledge under lies the handling of typical cases or 
standard problems. It is woefully inadequate, however, in 
handling the novel situation. For such cases the high road 
is needed. 

The other kind of middle-road approach is one that 
combines intelligent interfaces with a powerful, but opaque, 
domain-specific (mathematical) tool. In such a scheme 
the intelligent interface knows about the tool and how 
best to use it. The tool itself encodes a great deal of 
domain expertise but where the expertise is implicitly 
rather than explicitly encoded. For example, DENDRAL 
gets much of its power from this kind of scheme. At its 
core is a brilliant mathematical algorithm for generating 
non-isomorphic subgraphs. Another example is the SOPHIE 
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system that obtained its leverage from its use of SPICE, 
an electronic circuit simulator. SOPHIE was, among other 
things, a smart electronic troubleshooter. The basic idea was 
to build a system that could determine the consequences of 
hypothetical changes to a circuit. For example, what would 
happen if the value of a resistor were changed or a transistor 
shorted? 

Our first approach was to axiomatize all of the required 
knowledge in order to put it into a theorem prover. 
What a dumb idea! Instead a winning idea was to use 
an extraordinarily powerful circuit simulator surrounded 
with some intelligent sugar coating. The sugar coating 
consisted of a collection of intelligent agents that knew all 
about the idiosyncrasies of the simulator, knew how to 
communicate with it, knew how to set up, run, and analyze 
experiments with it, and then how to abstract an answer 
from the simulation data. These agents also had to know 
how to propose (using heuristics) experiments or boundary 
conditions, experiments whose answers would help answer 
the current question or problem. 

We can argue about how much action is in the sugar 
c-oating and how much is in the deep mathematical algorithms 
comprising the core knowledge. My position is that there is 
action in both; it pays to get leverage out of opaque tools 
by covering them with semi-intelligent agents. The catch is 
to establish a synergy between current artificial-intelligence 
techniques and powerful engineering tools that already exist 
and that already contain true expertise. 

The high-road approach goes beneath the surface models 
of the experiential knowledge to codify the deep concep­
tual models. An example of a deep conceptual model 
would be having a good understanding of the physiological 
mechanisms of the body for working in the domain of 
Medicine. It is sometimes necessary to fall back on an un­
derstanding of physiological mechanisms when the unusual 
presents itself. Currently we have few systems that can 
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reason from first principles or causal models in order to infer 
how to handle the unanticipated or novel situation. Such 
approaches will become commercially important when the 
demand for robustness increases. 

Real Experts Use More Than Rules 

Real experts handle the unanticipated; in fact their ability 
to handle the unexpected is often what causes them to be 
judged an expert. To handle the unusual or novel problem, 
they cannot use just experiential knowledge. Instead they 
must use deeper causal models of the domain. They draw on 
causal models to make sense out of conflicting· data and to 
decide what to throw away, what to keep, what to modify, 
what to believe in, and what to reject. 

It is often possible to judge if someone is pursuing primarily 
the middle-road versus the high-road approach by noting 
if the primary emphasis is on encoding large collections of 
~ules coupled with relatively simple inference mechanisms 
or on constructing powerful inference schemes, schemes that 
operate on a few well-crafted conceptual models. · 

Once a visitor to our laboratory looked at a system we 
have for constructing causal explanations of how circuits 
work. We offered to analyze a circuit of our visitor's choice, 
and our system satisfactorily explained his circuit. Then he 
asked, "How many rules do you have in this system?" We 
said, "Maybe seventy-five." "Seventy-five rules," he said, 
"that is ridiculous, trivial. I just came from a place that had 
one thousand rules in its system." His remark stunned us. 
We were proud that we had only seventy-five rules because 
we were trying to show how to get maximum' distance from 
the minimum number of rules. One thing that characterizes 
the high-road approach is the aim to improve the inferential 
machinery so that more work is done with fewer rules. By 
having fewer rules, we can more easily characterize what 
the system can and cannot do, a requisite task for good 
engineering. 
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The low-road systems are inherently brittle. They cannot 
handle anything that was not explicitly put into them. 
Although the middle-road systems have some ability to 
handle situations they have not been explicitly told about, 
they are still confined to the situations. their designers had in 
mind. To get real robustness, we must go to deep, underlying 
causal models. Without those causal models, systems are 
likely to collapse when they encounter something slightly 
beyond their narrow expertise. 

Conceptual models provide a backdrop that helps us probe 
experts. It is difficult to penetrate the rationalizations that 
experts often have about how they solve a problem. We must 
set up questions that push experts beyond surface-structure 
knowledge down to deep-structure knowledge. But without 
explicit models of a domain's conceptual underpinnings, it 
is hard to know what types of questions will push them and 
~ow to make sense o~t. 9f what they say because at this 
deeper level, people are hopelessly inarticulate. 

Proceed with Caution But Be Catholic 

I do not advocate using just one of these three approaches. 
I suggest we adopt a research strategy that travels the low, 
medium, and high roads simultaneously. 

Some of our most far-out high-road research has come 
back, with s-urprising speed, to affect the low road directly. 
We want to understand more about the notions of intro­
spection so that we can learn how to create systems that 
know about themselves. In order to make headway on that 
problem, one of the researchers in our laboratory built a 
purely reflective language, a language that at any moment 
can stop, go up one level, and look at itself. It can even look 
at how it is looking at itself, generating an infinite hierarchy 
of reflections. That work has not only helped us make 
sense out of introspection and reflection in human thinking, 
but it is having a major impact on the next generation of 
debugging tools-tools that can suspend a computation and 
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step back and look at its current state without stepping all 
over itself. The majority of current debugging tools use all 
kinds of techniques to protect the state of computation so 
that the debugging programs themselves do not seriously 
alter that state when they themselves are run. A theory of 
this procedural reflection is providing an elegant, practical 
mechanism for solving this problem. 

Artificial Intelligence is beginning to grow up. Basic 
research in Artificial Intelligence is no longer just the mere 
spinning of hypotheses. Nor.does it involve just the building 
of complex systems, systems that are often as opaque as the 
phenomena they are purporting to explain. 
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7 
Expert Systems: 
A Discussion 

Winston 
Before we rush home to build expert systems of our own, we 
should consider the difficulties of starting such an effort. I 
would like to ask Dr. Baker about his experiences recruiting 
people at Schlumberger. My guess is that Schlumberger 
had some misconceptions about how to recruit people in 
Artificial Intelligence and what it takes to set up a group. 
Now that it has had several years of experience, I would like 
to ask Dr. Baker if he has advice about setting up a group 
and what he would do differently if he were starting all over 
again. 

Baker 
The acquisition of good people is one of our largest problems. 
Not building up our artificial-intelligence staff beyond what 
we considered a critical level has been our largest mistake. 
We tended to have too few people and too many problems. 
To recruit good people in Artificial Intelligence has been 
one of our most difficult problems simply because there are 
not enough good people to go around. 

I am not sure how we would do things differently. A 
good problem and a good computing environment are the 
best tools for recruiting people. For a while we lagged in 
our computing environment. Now we think that things are 
a little better. At least we do not hear nearly as many 
complaints from our employees now, and sometimes the 
people even have nice things to say about us. 

The two major variables, again, are the good computing 
environment and the good problem to work on. Success 
in some area will also attract people who are not will­
ing to make that initial step into your organization. 
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Winston 

Dr. Baker, could you quantify that a little bit? In particular 
could you say something about what you consider to be an 
adequate computing environment in terms of what kind$ of 
machines per person? Could you also say something about 
what you consider to be a minimal group to reach critical 
mass? 

Baker 

First, let me tell you a bit about the history of our computing 
environment. Five or six people formed the original project. 
All of these people shared a DEC 2020 at the time, which 
certainly was not adequate. We considered going to either a 
larger DEC 20 system or a VAX system, but we could not 
get the kind of environment we wanted for LISP. We ended 
up going the route of personal work stations. 

It is difficult to give the numbers of the people that 
we have in our artificial-intelligence group today. There 
are about forty-five people. in the department, of whom 
about twenty-five are researchers. At least half have some 
inclination toward Artificial Intelligence. Many have PhDs 
in Artificial Intelligence; some have master's degrees in 
Artificial Intelligence; others are trained in other back­
grounds and work on· artificial-intelligence problems. 

We now use personal work stations. We set a goal 
about eighteen months ago that all senior scientists in the 
group would have personal work stations, which would be 
networked into a larger computer system. We are about 
two-thirds there at the present time. A number of our work 
stations are in a public area. Although all of the work 
stations are constantly in use, we are not suffering from lack 
of computing power. 

In terms of how many people are needed for a critical mass 
in Artificial Intelligence, I think it is in the neighborhood 
of ten professionals. These people would be augmented by 
support from programmers and technicians. 
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Winston 
I would like to ask Mr. Kraft a related question. I know that 
Schlumberger's approach, at least in the beginning, was to 
hire people with degrees in Artificial Intelligence or those 
who were established in the field. Perhaps as a consequence, 
Schlumberger's acceleration into the field was somewhat 
slower than it might have been. Digital's approach seems 
to be different. Is it the case that you have taken a lot 
of current employees and put them into your Artificial 
Intelligence effort at Digital? 

Kraft 
We have used two approaches. We went to the universities 
for help with prototypes. We also hired some PhD-level 
people from the outside. The majority of the people working 
on artificial-intelligence projects at Digital were other kinds 
of programmers we already employed, whom we retrained. 
Not all are capable of starting completely new projects or 
using all the techniques, but we realized we could not get 
the staff we needed to grow as fast as we wanted. Internal 
training courses we have developed for these people have 
been very successful. 

Davis 
I was interested in the atmosphere of your talk in the 
sense that it sounds like an enthusiastic endorsement of the 
field. When I present that kind of enthusiasm to industrial 
audiences, I get the reaction that this is nigh unto heresy. 
Leaving aside your own personal conversion for the moment, 
how has that attitude been received? Did Digital change its 
mind all of a sudden? What happened? 

Kraft 
It was a slow progression. As people began to see that this 
might work and they got positive feedback from people in 
the factories, they started to feel that XCON was a useful 
tool. Then the salespeople got wind of it and wanted to 
use it but complained that it was just too unfriendly. They 
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demanded something better, so we launched off into XSEL. 
Once again Digital was willing to put up seed money for a 
research-level effort. 

Winston 
I believe almost all of the projects you are working on 
at Digital now are intended for internal use. Can you 
say anything about Digital's plans, if any, to become a 
knowledge-engineering company, as opposed to a consumer 
of knowledge engineering? 

Davis 
To what extent is Digital's image of itself changing? Has it 
begun to stop thinking of itself as a hardware vendor? Has 
it augmented that image? 

Kraft 
We have thought about the continuum of everything 
from delivering artificial-intelligence languages in a VMS 
environment all the way out to turnkey custom systems. 
We are trying to understand what it takes to deliver those 
things. There is no commitment to do that yet, but there is 
a commitment to understand what the problem is and what 
it takes to solve the problem. 

Internally we are developing that expertise. Whether we 
will bring it to the marketplace is an open question. Are 
we getting more into software and applications? While 
our revenues come mostly from hardware, we are paying 
increasing attention to software. 

Winston 
Perhaps for symmetry we should ask Dr. Baker similar 
questions with respect to Schlumberger's interest in Artificial 
Intelligence. Schlumberger branched out from the oil­
exploration business to a serious commitment to electronics. 
There must be some interest at Schlumberger in creating 
expert systems for these other areas as well. Can you say 
something about that? 



95 Expert Systems 

Davis 
Let me read you a quote: "Coal and oil have made 
the industrial revolution because they brought abundant 
and · cheap physical power. Microprocessors and memory 
will make another revolution because they bring abundant 
and cheap intellectual power. A simple, almost obvious 
statement, and yet difficult to fully grasp in its finality. 
The scientists call it the new era of Artificial Intelligence." 
Jean Riboud, the president of Schlumberger, said it in 1980. 
He went on to say, "This technical revolution, Artificial 
Intelligence, is as important for our future as the surge in 
oil exploration." 

There is a certain irony there. The surge in oil exploration 
has fizzled. One would hope the commitment to Artificial 
Intelligence has not quite. Are you planning any bold moves? 

Baker 
In the wireline or oil-field services part of Schlumberger, 
we are basically a service company. When we talk about a 
commercial system, we mean one that we would use to give 
answers to our clients. It would be commercial in the sense 
that all of our software tends to remain with us when we 
give the answer to our clients. 

In the beginning there was some skepticism about Artificial 
Intelligence at Schlumberger. Our demonstrations of the 
DIPMETER ADVISOR and of what we could do with 
some of the artificial-intelligence computer systems tended 
to overcome that skepticism. I do not know about plans 
for building things that will be sold outside. I think there 
are some activities at Fairchild that are basic research in 
nature. There are also some things being developed to help 
other parts of the company very much the way the work at 
Digital is going now. 

Winston 
On one side, Professor Pople, you have a fellow whose 
company has saved substantial amounts of money because 
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of Artificial Intelligence, and on the other side you have a 
fellow from a company that will ~ake unthinkable amounts 
of money from Artificial Intelligence. Yet you have been 
rather reticent about when you think medical diagnosis 
systems will be practical. ·when do you intend to form your 
company, and where can I buy stock? 

Pople 
We often have people come through looking for opportunities 
to invest in this new technology. It is very hard to steel 
oneself and to say, No we don't want yout money. We are 
a long way from the point that we can begin to think of 
deploying the kind of systems that we have. 

We probably have a fifty man-year investment in the 
project. I do not know how many dollars have been invested, 
but if we count direct investment and indirect investment, 
such as free computer· services, it is probably something 
of the order of magnitude that Mr. Kraft saves yearly. I 
estimate we have about seven million dollars invested now in 
the INTERNIST/CADUCEUS activity. The payoff is qrtit~ 
a way down the road. 

I have tried to figure out what distinguishes our situation 
from the ones described by my copanelists here. Part of 
the difference is in the nature of the expertise. Jack Myers 
happens to be a super-pro in the medical reasoning process. 
He set his sights at the beginning on a very tough problem. 
While we have made tremendous inroads in that problem, 
we certainly have not solved it. I would like to put this in the 
_context of my interpretation of what Artificial Intelligence 
is all about. 

A paradigm from the beginning of artificial-intelligence 
investigations that has proved to be very helpful has been 
this. People intere-sted in understanding reasoning and 
modeling reasoning should tackle tough problems- not with 
the goal of making money by solving those problems but 
because by working with tough problems we may develop 
·insights that will have some kind of fundamental import. 



97 Expert Systems 

There will be new ideas. I think that is why chess has been 
so helpful. Toy problems have led to insights that we could 
not have had any other way. The value of those insights 
has been considerable, although hard to quantify precisely, 
since the contribution is indirect. I think that the kind of 
work we are doing falls into that general paradigm. I think 
that we are doing basic research in Artificial Intelligence. 

Winston 
I think parachute packers still have to jump once in a while. 
To draw an analogy, would you be more comfortable being 
diagnosed by CADUCEUS than by a dart throw at the 
medical listings in the telephone book? 

Pople 
I would be much happier_with Jack Myers running CADU­
CEUS. CADUCEUS is a beautiful tool in Jack Myers's 
hands. I don't trust it with anybody else at this point. 

Davis 
That brings up a question I am sure you must have heard 
hundreds of times. A mistake made when configuring a 
VAX is going to cost only a few thousand dollars. If you 
misinterpret an oil-well log, it might cost you a million or 
so, but nobody dies. What are your thoughts about the 
social, ethical, and legal issues involved with using medical 
tools based on Artificial Intelligence? 

Pople 
There will probably be a period where those of us who 
build these systems are at considerable risk. Should we 
be covered by some sort of comprehensive insurance like 
workmen's compensation? No individual program should 
bear the whole risk of the major lawsuits as we learn about 
this. At some point, clearly, . the tide will turn. Physicians 
will be at risk if they fail to consult these programs. 
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Davis 
Medical malpractice, is defined as doing as well as an 
established colleague. Essentially it is defined by peer review. 
A physician who does not look in a textbook now is guilty 
of negligence. The day may come when a physician who 
does use the new technology and makes a mistake will be 
in trouble; a physician who does not use it and makes a 
mistake will be negligent. 

Pople 
In terms of the questions of social issues and acceptance by 
the medical community, I am not concerned that physicians 
are as conservative as some people think. They are quick 
adopters of new technologies that can be demonstrated to 
be of value to them. Our experience is that there are a lot 
of good physicians waiting in the wings for us to bail out, 
to use Professor Winston's analogy. We have very positive 
reactions from people who have seen the system at work. 

Davis 
One of the things that all of our panelists share is geographic 
location. Have you found that your recruiting has been more 
difficult because of your East Coast location? 

Baker 
People do like the West Coast, and once they are situated 
there, they tend to like to stay there. The larger problem 
for Schlumberger has been that we are not in a major 
metropolitan area. 

Kraft 
Digital has had some success recruiting people because 
it is a growing, nurturing environment. But there are 
not a lot of people out there, and there is a lot of com­
petition for scarce top-level resources. That is why we 
have turned more to training our own people as well as 
trying to recruit from the outside. It is difficult to com­
pete with someone who likes the West Coast life-style. 
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Winston 
Many of us who have visited electronics firms in the Palo 
Alto area have been astonished at the turbulence of the 
personnel. Do you perceive similar turbulence with artificial­
intelligence workers as more companies enter the field? If 
so, do you have any thoughts about whether the scarcity of 
artificial-intelligence workers will require you to do anything 
special with respect to trying to keep them? To be more 
precise, do you have any fears that all of the people who 
are getting good at this are going to go off and form their 
own companies? 

Kraft 
That is always a possibility. The only thing you can do is give 
them all the tools they need and the management support 
and flexibility to do the things they want. For instance, 
being a vendor, we have enough hardware for everyone to 
work with. It is important to have computer power, the right 
terminals, and a management structure that appreciates the 
fact that they are walking on the leading edge of technology, 
not a gangplank. 

Winston 
I would like to talk a little bit about university and industry 
interaction. From my perspective, I would like Digital and 
Schlumberger to give us space, people, and money, in roughly 
that order. I wonder what you feel you would like to see the 
universities do. In particular, would you like us to do things 
in ways different from what we are doing now? 

Kraft 
I like to see university people who want to work with 
industry on problems that may have practical application. 
I would like to see more university people visit industry and 
more industry people visit the universities. 

Pople 
I have been extraordinarily lucky to have someone with the 
expertise of Jack Myers willing to work with me all this 
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time. That is one of the things that industry can provide for 
people who are interested from the academic side. Industry 
can also provide interesting, tough problems. Joint research 
at this level has the potential to be extremely rewarding. 

Baker 
The relationship between industry and the university in 
Artificial Intelligence is vital. Our core research group does 
most of our artificial-intelligence work. But we also use 
people in the universities, we send money, and we have 
outside contracts with consulting organizations.· To do our 
job requires a combination of these resources. As long as 
resources are short, this type of interaction is going to have 
to continue. 

Winston 
There is an alternative view, having to do with the issue 
of whether we as a country are eating our seed corn in this 
area. It is an issue we must all face soon if the universities 
are to continue to provide industries with new ideas. 
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8 
Inventing the Future 

Alan Kay 
Chief Scientist and Vice-President 
Atari Corporation 

Dr. Kay is responsible for advanced research activities at 
Atari. Prior to ioining Atari, Dr. Kay was a cofounder 
of the Xerox Palo Alto Research Center and head of its 
Learning Research Group. Dr. Kay desigrJed SMALLTALK, 
a programming language for the nonprogrammer, conceived 
the Dynabook personal computer idea, and codesigned several 
Xerox PARC personal computers. Dr. Kay received the BS in 
Mathematics and Molecular Biology from the University of 
Colorado at Boulder and both the MS in Computer Science 
and Physiology and the PhD in Computer Science from the 
University of Utah. 

Businesspeople always ask what is going to happen in the 
future. At Xerox Palo Alto Research Center executives 
constantly badgered us. Finally I said that the best way 
to predict the future is to invent it. The future is not laid 
out on a track. It is something that we can decide, and to 
the extent that we do not violate any known laws of the 
universe, we can probably make it work the way that we 
want to. 

Natural Problems, Natural Enemies 

Scientists and businesspeople should be allies, but they often 
are natural enemies much of the time, probably because of 
their contrasting or conflicting styles. Both believe that they 
might be able to make money on technology, but they often 
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do not understand the combination of risk and. recognition 
that is required. 

I told an executive at Xerox about the great system we 
were building and I topped off the discussion by saying that 
the project was risky and had only a 20 percent chance 
of success, "We're taking risks, just like you wanted." The 
executive looked at me and said, "Boy, that's great; just 
make sure it works." 

This is why the gambling houses make a lot of money. 
Most people are willing to accept the idea of 20 percent 
something or other, but they want to be in that 20 percent, 
100 percent of the time. They do not ever want to be in the 
other 80 percent. But if something is really risky, it means 
you will lose four out of five times. 

Recognition of the new and valuable goes with risk. The 
tragedy of the Xerox situation from my standpoint was that 
Xerox did take the risk. They funded us for ten years blank 
check, and we produced things that were ten years ahead of 
their time, but Xerox did not have the faintest idea what it 
was when we turned it out. 

Unwillingness in the academic community to take risks 
has led to what I call NSFitis, the problem with funding done 
on congressional cycles. The NSF funding process almost 
requires researchers to write up the results of research done 
the year before as their proposals for new research, thus 
guaranteeing that they will have those results at the end 
of the actual funding year. This process leads at best to 
creative mendacity. The golden age of DARPA funding in 
the 1960s got better results with a different strategy: fund 
people rather than projects; no meddling for some years, 
then swift justice. 

Here is something another group of Xerox executives 
wondered about. (The poor Xerox executive is of course a 
place holder for all such folk.) Some executives visited the 
Palo Alto Research Center once so we could explain to them 
why we wanted to spend more money for VLSI development 



105 Inventing the Future 

tools than the cost of a VLSI fabrication center that they 
wanted to build. They could understand the fabrication 
center. It would cost considerable millions of dollars, and it 
occupied lots of square feet. There were wonderful machines 
that cost hundreds of thousands of dollars each, clean rooms, 
people, strange-looking lights, air compressors, and filters. 
They could make lists and rate things by cubic feet and how 
long the shipping would be. 

We explained to them that if they did not spend three 
times as much on software development tools for doing 
VLSI design, then they would have a fabrication center that 
would rarely build anything. Chips are getting larger and 
larger. Communications problems between different parts of 
the chips now dominate logic design. These executives were 
uncomfortable because software is insubstantial. It takes 
three times as long to do a software system as it does to do 
a comparable hardware system. They thought that the way 
you got software is that the software fairy sprinkled system 
dust on the hardware. 

At the time I could not understand how we both could be 
living in the same century. Since then I have realized that 
although executives dealing with technology are not stupid, 
they are not in the same world as the technical person. It is 
the difference of point of view that leads to problems: point 
of view is worth 80 IQ points. 

Not of This World 

What does it mean to represent something from our world 
in a world that is not of our world? What does it mean to 
do things in that world that are not like the things in this 
world? How can we translate back into our world in such a 
fashion to get a message that actually means something to 
us? I think that is mysterious to everyone. Most people in 
Artificial Intelligence who have had a glass of wine will tell 
you they do not actually understand it much either. The 
reason for the mystery is that the correspondences between 
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what we think is going on in the world and the kinds of 
symbols that we use in communication are very fragile. The 
nature of much of the fragility is not understood. Every 
time we make a model of some kind, we leave out lots of 
things, and we base what we do on guesses about causal 
relationships rather than on firm understanding. 

Intelligence is a difficult concept. School teaches us that 
we are not intelligent. The main problem we have with 
educating children is that by the time they are ten, they have 
been convinced that they are stupid. Our major difficulty 
with the kids at the Atari computer camps is not to teach 
them programming, which everybody can learn, but to 
break them loose from the notion that they cannot solve 
problems. In fact kids are natural-born problem solvers. 
They just do not apply things that they have learned for 
ten years to things that schools have convinced them they 
cannot do . 

. The Personal Computer: A Ten-Year Gestation 

It takes at least ten years for an idea to go from first 
appearance in the laboratory through translation into the 
commercial and, especially, the consumer world. Around 
1962 some students at MIT made up a game called Spacewar 
on a PDP1 computer. That game was played throughout 
the research community for a decade. Nolan Bushnell, the 
founder of Atari, brought Spacewar out as a commercial 
video game in 1972. To take another example, the_ first 
personal computer was developed around 1965. The LINC 
was a little, stand-alone computer with its own virtual 
memory and a display screen. But it cost only $18,000 in the 
days before cheap computers were known. Several thousand 
were built as biomedical research computers. It took ten 
years before a machine of roughly the same configuration 
came to be sold for the home. 

At Xerox this ten-year-lag phenomenon is particularly 
poignant because it was about ten years ago that the Alto, 
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the first powerful personal computer, started working. I will 
give you a little of the history behind the Alto because it 
illuminates the way scientists and businesspeople interact. 

Research often starts off with a noble failure. The Flex 
Machine of 1967-1969 was mine. It was probably the second 
personal computer ever done and the first to run a higher­
level language directly, but it was a flop. The problem with 
the machine was that we had aimed it at noncomputer 
professionals, such as doctors and lawyers who could not 
understand the somewhat arcane programming language I 
had devised. This was a great shock to me, because as a 
graduate student, I thought all things were possible. For 
the first time I realized that nobody is going to use a 
tool, no matter how powerful, unless there is a meaningful 
communications interface. 

Ten years ago we built the Alto at Xerox PARC. It had a 
high-resolution display with twice as many dots as the Apple 
Lisa. The Alto had an early version of the mouse to move 
a pointer on the screen. The display was a bit-map display 
not because we liked bit maps but because we thought the 
eventual 1980s notebook-sized Dynabook computer would 
have a liquid crystal display, which would be only on or off, 
and we wanted to see what that was like. We did not want to 
constrain the graphics in any particular way so we allowed the 
users to customize their own character fonts. Interestingly 
the Alto was partially designed by concentrating on features 
that are the very opposite of those in the FLEX machine, 
which I had designed earlier. The principle is that if some 
set of features does not work, maybe the opposite of those 
features will! Hardware is just crystallized software. The 
Alto first came alive as a piece of hardware in 1973 and was 
well understood by 1974 and 1975. In 1976 Xerox, for three 
months, had planned to bring it out as a product. That 
probably would have changed the face of computing in the 
United States if that had happened, but the management 
of the company could not tell the difference between it and 
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the 850 word processor that had been done in Dallas and it 
decided to bring out the word processor instead. 

Disappearance of Computers 

Computers as boxes are not long for this world. Computers 
are too important to put on people's desks. We do not have 
our desks everywhere. We often go to the beach and on 
planes. The first time I ever saw a fiat screen display, in 
1968, I realized that computer mobility was only a matter 
of time. Thank goodness, I had no idea how much time. I 
thought it would take five years to build computers whose 
physical dimensions are the size of the display we want to 
see. 

We call that idea the Dynabook. When I went to X:erox, 
that is what we worked on. It was a ten-year-long project 
that gave rise to many of the work station ideas that we have 
today. The idea was that Dynabook would be so portable 
that we could carry other things too. In other words, if 
we were going to carry anything, we would probably carry 
the Dynabook. We now have a more sophisticated notion of 
portability and just what that should mean. Computers are 
going to disappear as physical objects. They will disappear 
into the wiring of our houses and into the clothes that we 
wear. 

The Dynabook project is not an example of management 
by objectives. Management by objectives does not work 
in research. Management by objectives is a strategy that 
ensures that all the good research people will leave. The 
people who are willing to stay are what you deserved in the 
first place. 

Consider the analogy of the computer industry with 
pu~lishing. After the industrial revolution the profit margins 
on paper went down to almost zero. Up until that time 
the economics of selling books mostly centered on selling 
the paper rather than the biblical messages that were often 
written on it. The novel was then an isolated art form. But 
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after the industrial revolution the novel became extremely 
popular because it was the discardable piece of content that 
the publishers needed. The publishing industry settled into 
a situation in which there was no profit margin on the 
hardware and the software could not be controlled by a 
single publisher. The publishing business became a business 
of distributing information in the most efficient way possible. 

That is happening in the computer industry now. Profit 
margins on chips are abysmally low. Captive software has 
not been a reality for several years. Even companies like 

. IBM and AT&T say they will make open systems and will 
not risk developing software for their products anymore. 

String Pullers 

Perhaps the most difficult thing for people to grasp is that 
it takes almost fifteen years to accept a new programming 
language. This is unbelievable. A generation in Computer 
Science is about three years; that is the length of time 
it takes to write an operating system. So we are talking 
about five generations for the acceptance of a programming 
language. 

Most programming languages bring the following image 
to my mind: there is a demented but incredibly powerful 
Greek god pulling the strings on all of the puppets in the 
universe. There are an awful lot of strings that have to be 
pulled. String-pulling languages, such as PASCAL, BASIC, 
ALGOL, and ADA, comprise about 90 to 95 percent of all 
the languages. Imagine a bearded programmer who whispers 
in the Greek god's ear what the god should do next. 

Negotiating Diplomats 

A second model that came out of the 1960s led to the work 
on SMALLTALK that I did and the work on Actors that 
Carl E. Hewitt of the MIT Artificial Intelligence Laboratory 
did. Instead of a Greek god there are a lot of ambassadors 
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. who have to negotiate with each other to get anything done. 
They cannot tell each other what to do since that would 
start a war. But what one ambassador can say is, "Will 
you do this?" And the other says, "Yeah, I'll probably do 
this, if I get around to it." He gets around to it eventually, 
and things work out. This ambassador model works better 
because each ambassador has a great deal of autonomy 
and protection. Whatever the ambassador can do can be 
done at any time, without worrying about what the other 
ambassadors are able to do because the ambassadors are 
protected from each other by protocols. 

Hardy Frontiersmen 

There is a third model, the hardy frontiersman model, 
that is just starting to gain support. Instead of wheedling 
and negotiating, the hardy frontiersman model calls up the 
image of a frontier barn raising where people are naturally 
attracted to the parts of the job that they are best at. 

The problem attracts the problem solver rather than 
there being a problem solver that tries to solve the problem. 
This shows a great deal of promise. It fits in very neatly 
with Professor Winston's analogy and metaphor ideas, since 
analogy and metaphor are among the strongest ways of 
discovering whether the experts can find the right parts of 
a problem to work on. 

Market Analysis 

The computer industry is moving from a box-selling industry 
to a service industry. If the leaders in the industry have 
any sense, the computer industry will become a way-of-life 
industry. The computer should be noticeable only when it 
is not around, like the telephone. 

Do not use market analysis to predict the future. Market 
analysis has failed to predict all of the interesting and high­
impact technological innovations of the twentieth century 
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because it tends to look at trends. But there is no trend that 
led from the railroad to the airplane. There is no trend that 
led from the horse and buggy to the car; no trend that led 
from the desk calculator to the pocket calculator; no trend 
that led from the ditto machine to the Xerox machine; no 
trend that led from the mainframe computer to the personal 
computer. 

Amplifying Communication and Fantasy 

I suggested to our Xerox executives that there are certain 
themes deep inside humanity, without which we cannot be 
human. 

Two of those themes are communication and fantasy. I 
consider the airplane a communications device. I consider 
the photocopier a communications device. The railroads 
thought they were in the railroading business, and IBM 
thought they were in the computer business, but both were 
really in the communications business. History shows clearly 
that anytime anybody makes a communications amplifier, 
even if it costs more than what it is displacing, it is still 
going to do well if it is an improvement. 

I characterize fantasy as that collection of worlds where 
things are simpler and more controllable. It is not just 
displacing ourselves from the real world when we go to 
the theater, or the movies, or watch television. It is also 
things like mathematics and science. They are all simpler 
and more controllable than real life. Fantasy becomes much 
more powerful when we can control it. Video games are 
the triumph of control over detail. It is actually a way of 
enfranchising a disenfranchised society as far as oeing able 
to control things. 

These things are so important because building complex 
things is hard. The control of complexity is the problem. 
Most things that people discover are fairly simple. The 
problem is that there are so many wrong ways of doing 
things, and there are so few signposts marking the wrong 
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directions that it is a tremendous intellectual feat to do 
significant work at all. 

The signposts in Artificial Intelligence hardly exist, so 
usually when we find something, it is greeted with curious 
reactions: "Well, why didn't I think of that before?" Or, 
"Gee, anybody could do that." That is true; anybody could 
if they happen on the right way. But getting to that right 
way requires a strong combination of powerful tools and a 
kind of intuition only a few people possess. The amount of 
leverage that a person has depends greatly on the kinds of 
systems that he uses. 

In 1970, I was the co-head of the Robot Group in the 
Stanford University Artificial Intelligence Project. In those 
days the key problem was to look at a table with a TV 
camera and to have a robot arm stack blocks. We could never 
get the TV camera and the computer to locate the blocks 
so the arm could do its part of the job. We finally came up 
with a great solution-intelligent blocks. The blocks would 
see where the arm was and waddle over to it. 
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The Engineer's Apprentice 

Aryeh Finegold 
President 
Daisy Systems Corporation 

In 1980 Mr. Finegold cofounded Daisy Systems Corporation 
in order to design the LOGICIAN, a computer work station 
for VLSI design. Prior to 1980 Mr. Finegold worked at 
Intel, where he was responsible for input-output architecture 
within the product line architecture department. In addition 
he directed logic design and prototyping of the 8089 input­
output processor and developed an application system for the 
8089. Mr. Finegold received the BS in Electrical Engineering 
from Technion-Israel Institute of Technology and has done 
graduate work in Computer Science. 

It would be nice to assert that Daisy Systems is an artificial­
intelligence company. Unfortunately, I cannot. I have never 
found two artificial-intelligence scholars who agree on what 
Artificial Intelligence is, so I have to be content with 
explaining what we do. At Daisy we create intelligent work 
stations that increase the productivity of electronic design 
engineers. 

A Babel of Tools 

How do electronic engineers design products today? What 
are the problems they face? One problem is similar to 
the problem that programmers face: programmers want to 
speak English to their machines. While hardware design 
engineers do not necessary want to speak English to their 
machines, they do want to do their design work using 
high-level descriptions. 
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Consider this analogy. If architects were to design houses 
the way electronic design engineers design microprocessors, 
they would not begin by describing a house with three 
bedrooms, one kitchen, and two bathrooms. Instead they 
would start by describing the individual tiles on the floors 
and the individual bricks in the walls. This is not to say 
that design-automation tools are not available to electronic 
design engineers. There are plenty of tools. The problem is 
getting them to tal~ to each other. 

When I designed microprocessors at Intel Corporation, a 
microprocessor was only 15,000 transistors, and it typically 
took a PhD graduate five months to do a logic simulation. 
It took that long because he had to start by explaining 
the schematic in a language that the logic simulation 
package could understand. Today people are introducing 
microprocessors with 150,000 transistors and working on 
the next generation, with still another zero involved. 

Reinventing the Wheel 

Another problem is reinventing the wheel. People are con­
verting design today from printed circuit board technology 
to gate-array technology. To do that conversion, sophisti­
cated design engineers scan the schematics of the printed 
circuit board. Every time they find a counter, they have to 
design a combination of gates that a gate array can use to 
do the same function. 

Why is it necessary to do that over and over? Why 
not simply write a program that automatically translates 
counters into t~e appropriate translation for the gate array? 
If we asked a design engineer that question, he would say it 
is impossible because the translation is content dependent. 
He would have to look at where the counter is used in order 
to decide how to translate it into a particular technology. 

If we consider programs that do things like printed circuit 
board routing or gate-array layout, one of the big problems 
is the tendency to dominate the human, even though the 
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tool is basically good. Consequently a design engineer who 
has spent many years doing integrated circuit layout is 
forced to make an unfortunate choice: let the machine do all 
the work or do all the work himself. If he lets the machine 
do it, the machine will tell him to keep out of things, that 
it is doing the whole job. But when the machine ends up 
with five wires undone, the engineer is supposed to fix it. 
He does not know why the program placed what it did or 
why the remainder could not be handled. He must rethink 
the entire problem from the beginning. 

Another problem is that tools that are available today 
tend to dictate policy rather than supply mechanisms. A 
good example is that most layout systems are for bottom-up 
design. The designer who prefers to do a top-down design 
is out of luck. 

Engineers' Natural Language 

Because of these problems Daisy designed a wqr~ station 
that basically lets the design engineer sit in front of a 
high-performance graphics terminal that speaks in his own 
engineering language, with nands, nors, and other symbols. 

Everything that the engineer enters on the keyboard or 
the tablet goes into a common database, from which it is 
automatically translated into a form suited to any available 
design automation program. The engineer, sitting at the 
terminal, can do a simulation that enables him to see how 
the new computer or new controller will behave. Similarly 
he can go down to a level where he can do logic simulation 
and actually probe nodes in the future machine. He can 
even go down to the physics and do circuit simulation at the 
transistor level. Moveover, he can analyze the testability of 
his product, generating interfaces to test equipment. With 
our latest product, the GATE MASTER, he can work back 
and forth between the logic design and the layout design. 

This type of design environment has solved the traditional 
design problems. 
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The design engineer speaks his natural language with our 
LOGICIAN or GATE MASTER. This natural language is 
not English but a language tailored to the profession. While 
I was at Intel, responsible for putting together an IC family, 
my group consisted of a Japanese design team, an Israeli 
design team, and a marketing group from California. It was 
impossible to communicate with each other; we almost gave 
up trying. Then I started drawing on a whiteboard, using 
nand and nor gates and waveforms. Suddenly everyone's 
eyes opened up. In five minutes we had everything done. The 
Japanese and the Israelis went home and built the right chips 
because they spoke the same language as do electronic design 
engineers everywhere. This natural language of nand and 
nor gates is the convenient language to describe engineering 
thinking to programs. 

Our work station enables design engineers to sit in front 
of terminals and enter information in their kind of language. 

Inventing the Wheel Once 

At Daisy we have an integrated knowledge base system 
that carries the engineer's thought all the way from a 
concept down to the point where a design is ready to 
go to manufacturing. Our system understands what nand 
gates are and what nor gates are. Rather than just pushing 
polygons around, our system knows as things are drawn 
that doing certain things with nands does not make sense. 
Often the system knows that the intention must have been 
to do something else, perhaps with a nor. Our system 
recognizes logic symbols for what they are rather than as a 
semantic-free combination of pixels on a screen. 

Daisy uses a modeling language that translates automati­
cally from the graphics to the design automation tools. Once 
the design engineer shows the system how to do something, 
the system will do the right thing forever. If the design 
engineer invents a new kind of logic, all he has to do is 
describe that new logic to the LOGICIAN work station 
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or to the GATE MASTER work station. Similarly he can 
describe how to translate a counter from printed circuit 
board technology to gate-array technology, and the system 
will know how to do it from then on. 

Working Hand in Hand 

Daisy's approach from the start has been to supply mechan­
isms rather than to enforce policy. I believe strongly 
in working hierarchically, in breaking big problems into 
smaller problems. Nevertheless our machines also support 
the bottom-up approach because there are people who prefer 
to think that way. If that is the way they like it, that is the 
way they will get it from us. We will not force our way of 
thinking on their ways of working. 

I have mentioned the issue of the machine dominating 
the man. The better mode, obviously, is to work hand-in­
hand through an interactive process. One good example 
is in the GATE MASTER product. The LOGICIAN, our 
original product, addressed the electronic design phase, 
generating input to a physical layout system. Our newer 
GATE MASTER product integrated both systems. The 
design engineer using the GATE MASTER can design a 
semi-custom IC by designing the logic, jumping into the 
layout, looking at how much area his logic is going to take. 
If he likes what he sees, he can carry on with the logic, and 
if he does not like what he sees, he can go back to the logic 
he has done and change things around. 

Previous systems for automatic placement and routing 
were such that you submitted runs and prayed that when 
you came back in the morning there would be only five 
lines to route. The cost? Two days in an industry where 
two days is a long time. With our system you can start 
manually, drop into an interactive placement and routing, 
and watch the machine work in front of you. You see things 
happen on the screen so you can stop the system at any 
time to go back to a manual mode for a while. After making 



Aryeh Finegold 118 

your suggestions, you can let the machine continue. You 
have control. You understand what the machine has done 
because yo~ interacted with it all the time. 

Virtual Probes into Virtual Machines 

Another example of interactiveness is our logic simulation. 
The traditional logic simulation tools are batch process 
tools. You submit your simulation request to the machine 
to be run in the evening when the computer is not busy, and 
you return in the morning, greeted ·by an enormous stack 
of printout. You scan it, looking for what has gone wrong. 
Most of the time you are looking for a snow ball in a blizzard. 
With our logic simulation tool, you sit in front of an image 
of the machine to be simulated. You connect virtual probes 
to that machine, one that does not exist yet, as if you were 
in your laboratory using a regular oscilloscope. The probes 
then produce waveforms that the machine would produce if 
it were running in real time in front of you. You can insert 
signals, disconnect things, and connect things, all at the 
terminal interactively, in almost real time. Bug fixing takes 
minutes, not days. 

Solutions and Dreams 

Are we an artificial-intelligence company? I think Daisy is 
a solution company. We provide solutions to the problem of 
increasing the productivity of electronic design engineers. 
In order to do that we have transferred technology. One 
of the sources of that technology is the field of Artificial 
Intelligence. For that transferred technology, we thank the 
universities, including MIT. 

Daisy is one place in which investors have not regretted 
their support. But rather than telling you how successful 
Daisy is myself, let me tell you what President Ronald 
Reagan said in his March 4, 1983, policy speech on the 
world economy, delivered to the Commonweal Club in San 
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Francisco. His speech ended this way: "I began today by 
saying that if we believe in our ability to work together, we 
can make America the mightiest trading nation on earth. 
Here in this room, and not far from this building, are people 
in companies with a burning commitment that we need to 
make our country great. One of those companies, the Daisy 
Systems Corporation, is a computer firm in Sunnyvale, 
California. It was formed in August, 1980, and it made 
$7 million in sales in its first shipping year. This year it 
expects to see $25 million and by 1986, $300 million. Daisy 
Corporation is already selling its products in the markets of 
France, Norway, Belgium, Great Britain, Germany, Israel, 
and Japan. Its work force has nearly quadrupled in the last 
year." 

My dream for America is to take that kind of success and 
multiply it by a million. 
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Charles Rich 
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Dr. Rich codirects the Programmer's Apprentice project. 
The project's goals are to create an artificial-intelligence 
theory of the design and construction of large software 
systems and to apply this theory to automated tools that 
increase programmer productivity and reliability. Dr. Rich 
has worked most recently on new techniques for representing 
the knowledge of expert programmers. He is tutorial chairman 
for the American Association for Artzficial Intelligence and 
a member of the ACM {SIGART, SIGPLAN and SIGSOFT} 
and the IEEE Computer Society. He received the BS in 
Engineering Science from the University of Toronto and the 
MS and PhD in Artificial Intelligence from MIT. 

A dark cloud is hanging over much of the computer industry. 
Its properties are well known to all of us: software is 
chronically late and notoriously unreliable. A way to disperse 
this cloud is to introduce programming apprentices. To see 
why, let us begin by looking at the history of software 
technology (figure 1). 

Figure 1 is an example of what Professor Winston calls 
the Staircase Theory. The first major jump in programming 
technology was the invention of high-level languages, such as 
FORTRAN. These languages led to an order of magnitude 
improvement in productivity and reliability over using 
assembly languages. Following that there was a period of 
little innovation. Then there was a smaller jump, which can 
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Figure 1. History of software technology. 
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be credited to the introduction of structured programming 
and other related methodologies. 

We are now in another flat period of small improvements 
and diminishing returns. Unfortunately the appetite for 
new software is growing so fast that it threatens to overtake 
our ability to satisfy that appetite with available software 
producing tools. Where are the ideas going to come from for 
the next major order-of-magnitude improvement in software 
productivity? 

Suppose you have a programming shop with ten pro­
grammers who share one VAX computer. You can improve 
productivity by giving each programmer a personal VAX. 
Now suppose you want to give each programmer the equiv-
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alent of ten VAX computers, a reasonable capital investment 
relative to the programmer's salary, given that hardware 
costs are going down and salaries are going up. What will 
you do with the rest of that computing power? How are you 
going to bring it to bear on the productivity problem? 

Everyone a Chief Programmer 

Artificial Intelligence has an answer: you can give each 
programmer the equivalent of a personal helper. In the early 
1970s Harlan Mills of IBM popularized the idea of the chief 
programmer team. His idea was to surround each expert 
programmer with a support team of assistant programmers, 
documentation writers, and program librarians. The effect 
is to increase the expert programmer's productivity because 
the expert programmer spends less time trapped in mundane 
details and trivial bugs. Instead he concentrates on the parts 
of the software development process that can be done alone, 
those parts that have the greatest effect on the profitability 
and reliability of the software in the long term. 

We propose to provide every programmer with a support 
team consisting of intelligent computer programs. The 
distinction between this view and the traditional software 
development paradigm is that we take seriously the idea of 
adding another agent to the programming picture (figure 
2). We call this agent the Programmer's Apprentice. 

Our goal is to make it possible for the programmer to 
interact with the apprentice in much the same way that 
he interacts with another, though less talented, human 
programmer. This metaphor has several important features. 
The first is that it provides a familiar framework for the 
delivery to the programmer of artificial-intelligence-based 
facilities, such as automatic documentation, automatic error 
detection, and ultimately automatic programming. 
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Figure 2. Adding a new agent to the programming picture. 

The goal of totally automatic programming over a wide 
spectrum of applications is far in the future. But that need 
not deter us from present success through the apprentice 
metaphor. 

An Incremental Approach 

The importance of the apprentice metaphor is that it 
allows us to take an incremental approach to the problem 
of automating a programming task. We start with the 
programmer's delegating to the apprentice the simplest and 
most routine parts of the programming task because that 
is all we know how to do right now. As techniques improve, 
we will transfer more of the programming load from the 
programmer to the apprentice. 
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The apprentice paradigm has several other important 
features. We start with a state-of-the-art programming 
environment, which is important for two reasons. First, we 
do not want to reinvent everything already developed in 
state-of-the-art programming environments. Second, it is 
important not to take away from the programmer anything 
he can already do. For the audience that we are targeting, 
expert professional programmers, it is important to avoid 
the mistake of trying to help programmers by preventing 
them from doing things. Programmers must always have full 
access to the existing tools in the programming environment. 

To provide the kinds of assistant services we have in 
mind, the apprentice itself also has to have access to the 
existing programming environment. For example, it needs 
to be able to find a file the programmer wants to edit, to 
run a compilation, and to look for compilation errors. 

Knowledge-Based Editing 

Let us look at a limited demonstration of an apprentice­
like system that we currently run on LISP Machines at 
the MIT Artificial Intelligence Laboratory. The scenario in 
the demonstration illustrates the differences between what 
the programmer can do with the help of the apprentice 
compared to what he would do without an apprentice. 
The scenario involves what we call knowledge-based editing. 
In the scenario the programmer makes low-level design 
decisions but he delegates the coding work to the apprentice. 
This delegation depends on the apprentice's understanding 
the vocabulary of programming design. 

To begin the scenario, the programmer asks the apprentice 
to implement a program as a search, a standard programming 
concept. 
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<KBE>Define a program DELETE with a parameter SYMBOL. 
<KBE>Implement it as a search. 

DELETE: PROCEDURE(SYMBOL) RETURNS ( ... ); 
DCL SYMBOL ... , 

AGGREGATE ... , 
BOOL ...• 
ITEM .... ; 

AGGREGATE= *arg*: 
LP: *enumerator*(AGGREGATE. BOOL, ITEM); 

If BOOL THEN RETURN (NULL()); 
If *test*(ITEM) THEN RETURN (*action*()); 
GOTO LP; 

END DELETE; 
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It is our job as apprentice developers to make sure that the 
apprentice has an adequate model of search in its knowledge 
base. Based on that model the apprentice can write the 
code as shown. Without the apprentice the programmer 
would have had to type in all the code manually, with the 
associated risk of errors. 

Easy Intervention 

In the following interaction, the programmer has in­
voked another standard programming design cliche, Trailing 
Pointer List Enumeration. This additional choice does not 
correspond to any filling in of blanks. Instead what is 
happening is that the apprentice, in order to preserve the 
quality of the code, has reorganized and recoded it. This is 
crucial. It is important for the programmer to be a9e to 
intervene in the partially automated process at any point. 
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Just as in VLSI routing the programmer has to be able to 
deal with the few things that the automated system cannot 
do. He must be able to understand what the automated 
system has done. The code must be readable at all points. 
Taking a fill-in-the-blanks methodology literally leads to 
incomprehensible code, just like the output of an old-style 
automatic router. 

<KBE>Implement the enumerator as a trailing pointer 
list enumeration of "HASH(SYMBOL)". 

DELETE: PROCEDURE(SYMBOL) RETURNS( ... ); 
DCL SYMBOL ... , 

CURRENT POINTER, 
PREV POINTER. 
HASH EXTERNAL ENTRY( ... ) RETURNS ( ... ), 
NODEPTR POINTER. 
1 NODE BASED (NODEPTR). 

2 VALUE ... , 
2 NEXT POINTER; 

PREV = HASH(SYMBOL); 
CURRENT = PREV->NEXT; 

LP: IF CURRENT=NULL() THEN RETURN (NULL()); 
IF *test*(CURRENT) THEN RETURN 

(*action* 0) ; 
PREV = CURRENT; 
CURRENT • CURRENT->NEXT; 
GOTO LP; 

END DELETE: 

Next we see that the programmer can choose the level at 
which he wants to instruct the apprentice-in this case by 
typing in a piece of PL /1 code. 
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Note, however, that the programmer describes the place 
where the code is supposed to go in terms of its role in the 
overall design rather than specifying exactly which line it 
goes in: 

<KBE>Implement the test as "CURRENT->VALUE=SYMBOL" 

DELETE: PROCEDURE(SYMBOL) RETURNS( ... ); 
DCL SYMBOL ...• 

CURRENT POINTER. 
PREV POINTER. 
HASH EXTERNAL ENTRY( ... ) RETURNS ( ... ), 
NODEPTR POINTER. 
1 NODE BASED (NODEPTR). 

2 VALUE ...• 
2 NEXT POINTER; 

PREV = HASH(SYMBOL); 
CURRENT = PREV->NEXT; 

LP: IF CURRENT=NULL() THEN RETURN (NULL()); 
IF CURRENT->VALUE=SYMBOL 

THEN RETURN (*action*()): 
PREV = CURRENT; 
CURRENT = CURRENT->NEXT; 
GOTO LP; 

END DELETE: 

The apprentice can also remember what remains to be done, 
keeping track of which design decisions have not yet been 
made: 
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<KBE>What needs to be done? 
Implement the action of the program. 
Use the previous value of the enumerator. 

<KBE>Implement the action as a splice-out of "PREV" 

DELETE: PROCEDURE(SYMBOL); 
DCL SYMBOL ...• 

CURRENT POINTER, 
PREV POINTER, 
HASH EXTERNAL ENTRY( ... )RETURNS( ... ), 
NODEPTR POINTER. 
1 NODE BASED (NODEPTR). 

2 VALUE ...• 
2 NEXT POINTER; 

PREV = HASH(SYMBOL); 
CURRENT = PREV->NEXT; 

LP: IF CURRENT=NULL() THEN RETURN; 
IF CURRENT->VALUE=SYMBOL 

THEN DO; PREV->NEXT = PREV->NEXT->NEXT; 
RETURN; END: 

PREV = CURRENT; 
CURRENT = CURRENT-~NEXT; 
GOTO LP; 

END DELETE: 

The next interaction illustrates some rudimentary automatic 
documentation. The apprentice answers a specific query 
from the programmer interactively. The answer the query 
requires is not obvious from the code and demands a certain 
amount of prograll! analysis, automatically invoked by the 
apprentice: 
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<KBE>Describe the ports of DELETE. 
The SYMBOL parameter. 
The TBL free variable input. 
The TBLSIZE free variable input. 
The TBL side-effect output. 

<KBE>Display the source of the TBL output. 

DELETE: PROCEDURE(SYMBOL); 
DCL 'SYMBOL ... , 

CURRENT POINTER 
PREV POINTER, 
HASH EXTERNAL ENTRY( ... ) RETURNS( ... ). 
NODEPTR POINTER 
1 NODE BASED (NODEPTR). 

2 VALUE ... , 
2 NEXT POINTER; 

PREV = HASH(SYMBOL); 
CURRENT = PREV->NEXT; 

LP: IF CURRENT NULL() THEN RETURN; 
IF CURRENT->VALUE=SYMBOL 

THEN DO PREV->NEXT = PREV->NEXT->NEXT; 
RETURN; END; 

PREV = CURRENT; 
CURRENT = CURRENT->NEXT; 
GOTO LP; 

END DELETE: 
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We recently extended this part of our demonstration in 
the direction of generating permanent documentation as 
distinguished from answering interactive queries. 

When Can I Have One? 

Figure 3 dramatizes the various stages and corresponding 
orders of effort required to move an idea like knowledge-based 
editing from the laboratory out into the real world. The areas 
of these rectangles are scaled by orders of magnitude from 
the smallest to the middle to the largest. The tiny innermost 
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Figure 3. From the laboratory to the cold world: Orders of effort. 

rectangle is the first stage, the feasibility demonstration. 
This usually takes place in the laboratory and produces a 
rickety, wired-together system. The poor engineering quality 
of these demonstration systems is the result of concentrating 
all resources on those aspects of the system that inquire into 
the theoretically important issues. Efficiency, robustness, 
and user friendliness are sacrificed. 

Once feasibility has been demonstrated, the next step is to 
produce a prototype. The fundamental goal of the prototype 
is to get feedback from a group of users different from the 
group of people who wrote it. To develop a usable prototype, 
it is necessary to pay attention to all those things that were 
ignored in the feasibility stage, such as efficiency, modularity, 
and the user interface. In our experience if the feasibility 
demonstration is of nontrivial size, then the prototype is 
a major software project. Much of that prototype work 
is not as important theoretically as the initial feasibility 
demonstration. 
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We have no experience bringing things to the level of a 
commercial product. That step is probably also an order 
of magnitude jump in effort, just like the step from the 
feasibility demonstration to the prototype. 

There are two key points to emphasize. The first is 
the notion of incremental automation. Programming is an 
example of a task that it will not be possible to automate 
totally for a long time. In all such tasks there are significant 
gains to be had by incremental, partial automation. The key 
to carrying out the incremental automation successfully is a 
careful analysis of the task in order to identify an important 
division of labor between the person and the intelligent 
assistant program. The Programmer's Apprentice is one 
example of this division of labor. The second point to 
emphasize is the length of time required to move from 
feasibility demonstration through prototype to commercial 
product. In our project we have learned the hard way about 
the amount of effort and time required to move between 
these stages. 

Significant improvements in programmer productivity and 
software reliability have been frustratingly hard to achieve. 
Of the many different software production technologies 
currently in the laboratory stage, programming apprentices 
based on artificial-intelligence techniques promise to yield 
the most dramatic improvements. 
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I am trying to be two things at once. I persist in being 
a professor despite the fact people who are involved in 
financing my business think that giving it up would be a 
good idea, and I persist in being president of a company 
despite the fact that the president of my university thinks 
that giving that up would be a good idea. Perhaps that is 
why I have a schizophrenic view of what it is I am trying to 
do. I want to build practical artificial-intelligence systems, 
but my major preoccupation in life is exploring how people 
work. I believe these two goals are related. 

I began my work in the field of Artificial Intelligence by 
looking at language. Once you get into the problem of how 
people understand language, you get into the problem of 
what kinds of knowledge people need to use language. What 
do they ta1k about? What do they care about? How do they 
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think? People have the annoying habit of saying the same 
thing in different ways. Consider these sentences: 

Mary socked John. 
Mary gave John a punch. 
Mary hit John with her fist. 

While they do not look alike, they mean the same thing. 
One way or another we have to consider the content behind 
language. The difficult part of language understanding is to 
extract the content from the language. Language is like a 
code. The first intellectual challenge is to figure out what 
the content is by decoding. 

The second intellectual challenge is to deal with what is 
called the inference problem. When people say one thing, 
they mean to imply other things. If we are told that John 
ate dinner, we might assume that he is not hungry anymore 
and that he had previously been hungry. If we are told 
that John had dinner at a restaurant, we know that a 
waiter or waitress probably served him. Such assumptions, 
fundamental to human communication, are not logically 
infallible, but they are reasonable nevertheless. Consider 
the word give in the following uses: 

John gave Mary a book. 
John gave Mary a hard time. 
John gave Mary a night on the town. 
John gave up. 
John gave no reasons for his actions. 
John gave a party. 

Now consider the word hand: 

John has a hand. 
John had· a hand in the cookie i ar. 
John had a hand in a robbery. 
John is an old hand. 
John gave Mary a hand. 
John asked Mary for her hand. 
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What we discover through such sentences is that the language 
problem is not just a problem of dictionary entry. Give, in 
some sense, means almost nothing. The meaning of hand 
varies enormously. 

How is it that language has so many words that do not 
have any precise meaning? That is the problem I have 
always been interested in, and I have a long history of 
trying to solve it. In 1969 I directed efforts at the Stanford 
University Artificial Intelligence Project aimed at building 
natural language understanding systems. The first one that 
we built, MARGIE, worked with sentences like, "John paid 
$2.00 to the bartender for some wine." (See Schank et al. 
1975.) In the course of our efforts to build algorithms that 
could do the analysis of such sentences, we discovered a fact 
that most artificial-intelligence researchers at some point 
run into, whatever their domain: the major problem is 
getting the representation right. 

Paraphrases, Inferences, and Answers 

If you cannot figure out how to represent knowledge, you 
cannot go anywhere. I devised a representation scheme 
called Conceptual Dependency, which is not English or any 
other natural language (See Schank 1972.) Instead it is 
an internal language designed to represent the content of 
natural language utterances unambiguously. Once we had 
translated sentences into that representation, we found that 
it was easy to write a program that would generate English 
text expressing the meaning captured by the representation. 
This enabled us to build a paraphrase machine that would 
translate from our sample English sentence into our internal 
representation and back again into a sentence using paid, or 
sell, or buy, or traded, all of which can be used to express 
the same meaning as the sample sentences. 

At the same time we began to do inferencing. (See Rieger 
1975.) As we typed in a sentence, a program would say 
what else might be true as a consequence of the sentence. 
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If John told Mary that Bill wants a book, then it might be 
true that John believes that Bill wants a book, or it might 
be true that Bill wants to read the book, or it might be true 
that Bill will try to get the book. Then the program tended 
to get carried away, producing more and more inferences. 
It reasoned that John and Mary may have wanted to give 
Bill a book and that John and Mary may have recently 
been together, inferring more and more things from its own 
inferences. 

Up to this point our programs could work with language 
only sentence by sentence. Read a sentence; do something 
with it; read another sentence; do something with that. The 
next step was to wonder about how sentences combine. Note 
what happens when one sentence is placed with another: 

John went into a restaurant. An hour later he walked out. 

Compare that to: 

John went into a building. An hour later he waved from 
a window. 

In the first pair we have a sense of what happened. In the 
second we do not. In the first pair we have an ability to 
guess, to read between the lines, to understand what else 
might have been going on. Now consider these: 

Mary went to a restaurant. She asked what the special of 
the day was. 

Mary went to a store. She asked what the latest news 
from Iran was. 

These pairs are very different in terms of the amount of 
implicit information they convey despite the fact that they 
are syntactically quite similar. 

John went to a restaurant. He had some fish. He left a 
small tip. 

What do we conclude? That he told the person in the 
restaurant which horse to bet on in the fifth race at Belmont? 
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Certainly not. We do not think about that meaning, and we 
do not note the ambiguity. In the early days of language­
understanding work, researchers wrote programs that would 
note such ambiguities, and for a time there were unspoken 
competitions to see whose program could note the most. 
Some terrific examples were devised. 

I wanted to write programs that see only the meaning 
that suits the context. Such programs must have the ability 
to use the different meanings of the word tip but to see only 
the right one. To do that, we had to build in a sensitivity 
to context. Language considered in context is much less 
ambiguous than sentences considered out of context. 

After relating that story about John and the fish, I could 
ask a variety of questions: What did John eat? Who served 
him? What was the meal? What was the tip for? Although 
none of the answers was explicitly given in the sentence, we 
could still answer such questions. Once again the context 
is the key. Because we understand that the entire episode 
took place inside a restaurant, we can use our knowledge 
about restaurants to help us to infer the answers. 

Summarizing News 

How did we get a computer to do as well? We worked 
out another representation, called a script, a sequence 
of conceptual-dependency representations that describe 
everything that normally happens in a given context. Thus 
our program was given a script for restaurant dining, which 
it could use to understand a story like the example. SAM, 
the program that was built on scripts, was completed in 
about 1975. ( Cullingford 1978.) This story is taken from 
the New Haven Register: 

Friday evening a car swerved off Route 69. The 
vehicle struck a tree. The passenger, a New Jersey 
man, was killed. David Hall, 27, was pronounced 
dead at the scene by Dr. Dana Blauchard, medical 



Roger Schank 

examiner. Frank Miller, 32, of 593 Foxon Rd., 
the driver, was taken to Milford Hospital by 
Flanagan Ambulance. He was treated and released. 
No charges were made. Patrolman Robert Onofrio 
investigated the accident. 
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The program can read this story and make English-language 
summaries by generating from its representation of the 
meaning of the story. This is an example of the English­
language summary: 

An automobile hit a tree near Highway 69 four days 
ago. David Hall, age 27, residence in New Jersey, 
the passenger, died. Frank Miller, age 32, residence 
at 593 Foxon Road in New Haven, Connecticut, the 
driver, was slightly injured. The Police Department 
did not file charges. 

To show its power, we have used the program to generate 
summaries in Spanish, Chinese, Russian, and other lan­
guages. 

The program can also answer questions about things that 
are not stated explicitly. For example, if we ask, "Was 
anyone ~urt?" The program says, "Yes, Frank Miller was 
slightly injured." How does it know that? The story says 
that Frank Miller was taken to the hospital and was treated 
and released. The program infers that he was not badly 
hurt, just as a person would. 

The problem in language-understanding work is doing 
that kind of reasoning. If we cannot do that, we cannot do 
anything more than play with words. We must forget about 
the words. What we have to do is to get at the ideas; the 
words themselves are to be gotten around. · 

The program that read car accident stories from the 
New Haven Register did a very good job but took sixteen 
minutes of computer time to read that story. There may 
have been a use for such programs, but they would have to be 
faster than sixteen minutes per story. Partly because of this 
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problem, we began a project called FRUMP (Fast Reading 
and Understanding Memory Program). (See DeJong 1979.) 
We convinced UPI to give us the UPI wire for free so we 
could have news stories in machin-readable form. 

Most artificial-intelligence programs work only on par­
ticular examples, and few programs handle examples that 
their authors had not explicitly anticipated. Our goal was 
to write a program that could read news stories we had 
not seen befo!e, limited only to a prescribed knowledge 
area. We gave our program knowledge about earthquakes, 
diplomatic crises, invasions, oH spills, and airplane crashes. 
Here is an example, having to do with diplomatic relations, 
that FRUMP was able to handle. 

The State Department announced today the suspen­
sion of diplomatic relations with Equatorial Guinea. 
The announcement came five days after the Depart­
ment received a message from the foreign minister 
of the West African country saying that his govern­
ment had declared two United States diplomats 
persona non grata. 

The two are Ambassador Herbert J. Spiro and 
Consul William C. Mithoefer, Jr., both stationed 
in neighboring Cameroon but also accredited to 
Equatorial Guinea. 

Robert L. Funseth, State Department spokesman, 
said Mr. Spiro and Mr. Mithoefer spent five days 
in Equatorial Guinea earlier this month and were 
given a "warm reception." 

But at the conclusion of their visit, Mr. Funseth 
said, Equatorial Guinea's acting Chief of Protocol 
handed them a five-page letter that cast "unwarrant­
ed and insulting slurs" on both diplomats. 

FRUMP did not read every word because we decided to 
increase its speed by having it skim for content, looking for 
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certain things. It is a key-concept analyzer, not a key-word 
analyzer. 

Once it understood what was going on, FRUMP looked 
for concepts that filled in its picture. The computer time was 
reduced to two seconds, a large improvement. Thus FRUMP 
involved two separate processes: the first determined the 
kind of story, and the second filled in the holes associated 
with that kind of story. Once FRUMP knew it was dealing 
with a story about broken diplomatic relations, it knew 
someone must have broken relations with somebody else;. 
there must have been a reason; there must have been a 
time; and there must have been a place. The program, 
since it produces language-independent internal meaning 
representations, could translate the summaries it made into 
any language, given that we had a graduate student who 
spoke that language. Here are FRUMP's summaries for the 
story: 

Selected Sketchy Script 

CPU time for understanding: 2515 milliseconds 

English summary: The United States State Depart­
ment and Guinea have broken diplomatic relations. 

French summary: Le Department d'Etat des 
Etats-Unis et la Guinee ont coupe leurs relations 
diplomatiques. 

Chinese summary: Meeigwo gwowuhyuann gen 
jiinahyah duannjyuele wayjiau guanshih. 

Market Research 

We now had a program that could read stories 'straight off 
the UPI wire and produce representations of their content. 
This intrigued me because it presented the possibility of 
constructing a system I was interested in having. At the 
time I had been following two news stories in the papers: the 
Patty Hearst kidnapping and the New York Giants' search 
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for a new head coach. Almost every day there were stories 
in the papers about these situations, but usually the stories 
merely summarized the events up to the present time and 
added nothing new of interest. What I would have liked 
would be to read only about new developments, but I had 
to slog through entire articles of old news to see if any new 
facts were revealed. 

I realized that using the · FRUMP program we mtght 
be able to build a system that would monitor the UPI 
wire and inform people when events they were interested 
in were reported in stories coming over the wire. We 
built a prototype system that would mail people FRUMP's 
summaries of stories about things they were interested in 
when it found them. 

But when I thought that alerting system might be a 
product, I was naive. I thought that the world was such that 
if you made something, someone would want it. Luckily I did 
not lose any money discovering that I was wrong. I talked to 
people who knew money and knew products. I asked them, 
"Would you finance a company to make one of these? Would 
you want one?" They would not, and they did not. This 
was 1977, and the necessary computing horsepower cost 
one million dollars. I would have had to become a service 
bureau, but it was not clear there was a real market for 
doing alerting in the service bureau mode. 

Then I discovered market research. For the next three or 
four years, without investing anyone's money or much of 
my time, I talked to people about what they wanted. This 
made me more frustrated because all my life I had built 
programs on the assumption that someday people would 
want to talk to them in English. I realized that people do 
not really want to talk to computer programs in English. 

Danger of Being Popular 

I became obsessed with making a product, which is one reason 
I have a company today. Another reason is that Artificial 
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Intelligence has received increasing publicity. We in the field 
began to worry about the dangers of rising expectations 
for our research. At that time we had not produced much 
of practical importance. Furthermore artificial-intelligence 
researchers were-and remain-flaky people, as a group, 
not necessarily dedicated to producing practical products. 
On top of that there are not very many of us. 

When I started my company, everyone seemed to want 
to start an industrial artificial-intelligence laboratory. But 
where were the people going to come from? If the news is 
that Artificial Intelligence is great and is going to produce 
wonderful things, and if five years later there are no wonderful 
things, the reporters who wrote the science fiction turn into 
reporters ready to write exposes. 

If this were to happen, at least I would prefer to have 
it happen because of my own failures rather than someone 
else's. I decided that I would do what I could to bring 
about the production of useful products employing artificial­
intelligence technology. 

Minuses of Front-End Systems 

Around this time, a company asked us to build an English­
language front end to their program. Their program was 
powerful, but had a complicated query language in front of 
it that no one could use. I said, "Fine, I will put a company 
together, get some people, and start building." After a few 
months our interface solved their problem. 

We began to talk to people about the English-language 
front-end business. There is such a business, though I am 
not convinced I want to be in it. But let us briefly discuss 
what an English-language front end is. 

One example is a toy front end we built for the Compustat 
data base, which contains information about stocks. The 
reason it is a toy is that we can put in information about 
only ten stocks. For example, we can ask: 
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What was the PE for IBM last year? 

and since we work with context, we can also ask: 
How about the last five years? 

and since our program still knows we are talking about 
IBM, it produces the desired answer. We can also ask more 
complicated questions: 
Which of Exxon's liabilities, as of 1981, 
come due in a year? 

Show me the current total assets divided by the PE ratio. 

That is not the only way we can ask for what we want. 
There is no one way to say anything. We supply our users 
with manuals that are one-page long. The main thing the 
manuals say, in big print, is, "Type period at the end 
of sentence, then press return." Now look at a few more 
samples: 
How are widget 1 and widget 2 doing? 

Show each market for those products. 
Do it in dollars. 
Try thousands of dollars. 

Show me your report in hundreds of dollars 
for the large widget. Give averages for 
the last month. 

Note that there is no irritating need to type everything over 
and over again. We can do things that are a little more 
fuzzy: 

List each growing product this month. 

Show me a report over the last six months on 
medium widgets from New York. giving averages 
in thousands of dollars. Use trend data. Show 
only growing products. 

In these examples, though the word growing is ambiguous, 
the meaning in context is not. 

Although there is a business for such front-end interfaces, 
I do not find that business interesting. First, you have to 
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build up new knowledge-for example, information about 
oil, or about stocks, or about sales-a difficult and time­
consuming task. Worse yet data bases tend to be on the 
wrong machines. A powerful artificial-intelligence program 
with knowledge and content would be difficult to implement 
in the environment provided by most corporate ·computer 
centers. I do not recommend trying. 

Plusses of Advisory Systems 

My company has planned for the little machine market. We 
now can run on $15,000 or $20,000 machines. But now that 
such machines exist, the question is, "What do we want to 
do with them?" I do not think current data bases are very 
good, and I would hate to add 1980s technology to 1960s 
technology to get a product. 

The right thing to do with these new machines is to 
create what I call advisory systems. I do not call them 
expert systems because I am not sure I believe in expert 
systems. I certainly do not believe in current expert-systems 
technology. Moreover the systems I am talking about are 
not that expert. An adviser is someone who has a certain 
amount of expertise, but it is not that grand-a travel agent, 
for example. A travel agent knows things, but he does not 
know things the way the best geologist in the world knows 
things or the way a very sophisticated doctor knows things. 

I am suggesting that an English-language conversation 
with a program that is an adviser, but not necessarily a true 
expert can be valuable. In my company we are making deals 
with insurance companies, banks, and brokerage houses to 
provide the information they provide in a better way than 
they provide it. Rather than having a stock broker out in 
Iowa, who may not be that good, giving advice, we will 
arrange for each company's hotshot in New York to give 
the advice. Before that hotshot could not be cloned. Now 
he can be. 
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We set about cloning by doing extensive videotaping and 
interviewing. We find out what the expert has to say. Then 
we build a program that can answer questions as if they 
were giving that expert's advice. We build these systems 
with partners. It makes no sense to build one alone; you 
have to have a bank to build a bank assistant. We listen 
to what the bankers say about the skill they are interested 
in, and then we build what they need. Eventually we will 
be able to walk into a branch office in Iowa, ask questions 
about what we should do about IRAs, and get answers from 
a computer. 

Building a Financial Consultant 

What I envision is something like this. Some of the programs 
required to effect this scenario exist, but most do not. 

Tell me your income. 

50.000/year. 

How much do you have in the bank? 

25,000 in savings; 5,000 in checking. 

What types of savings account is it? 

1.500 in a one-year CD. the rest in a passbook. 

Do you own a house? 

Yes, a four-bedroom house, worth 100.000, with 
30,000 left to pay on the mortgage. 

You can do this now with menu systems. But menu systems 
constrain too much. They cannot permit the user the 
following sort of luxury: 

Do you have any other investments? 

No. mainly because I do not know what to invest in. 
Can you give me any advice? 
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Another product we have a demonstration version of is 
something that I call The Ideal Business System, (TIBS). 
When finished, it will make business computers worthwhile. 
Many small businesses would spend $20,000 on a computer if 
they could work with it. But people are afraid of computers. 
One of the advantages of English is that it makes people 
less afraid. We are looking toward something like this: 

Do we have ten dozen King Classic Tennis rackets 
we can distribute to the XMART Department Stores? 

No. we only have two dozen on hand. 

How many are due to arrive in the future? 

Another six dozen is due in a week. 

Is there any other model we can substitute? 

The businessperson wants something that knows about 
inventory, knows about accounts receivable, knows about 
bookkeeping, and can give general advice about particular 
business problems. That is the kind of system TIBS will be. 

So what do we do in my company, Cognitive Systems? 
We are looking for joint venturers rather than customers. 
We are in the product design stage. It is very hard to build a 
product. Why do I think I can do it and other people cannot? 
Because ultimately the hard part of Artificial Intelligence is 
having qualified people to work for you. There are not very 
many. Fortunately I know a few; 

Company X Should Forget It 

When company· X says it ought to have an artificial­
intelligence group, I say, "Forget it. You cannot find any 
more people. You can raid the same places only so many 
times. There are not enough people out there." In the 
most optimistic view of the world, there are ten universities 
that grant PhDs in Artificial Intelligence. With the most 
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optimistic counting, those universities produce two or three 
PhDs a year. 

Yale gets a representatively good sample of new graduate 
students, the kind that had all A's from Ivy League schools; 
50 percent of those students fail, never getting PhDs, because 
the work is too hard. It requires a mind they do not have, 
a certain level of imprecision, and an ability to retain a 
tremendous amount of know lege. Students work on massive 
projects that take two or three years to complete. Adding 
resources does not help. If you put ten people on the same 
project, it does not go ten times faster. It may go ten times 
slower. 

I think Cognitive Systems will succeed because our people 
were all trained by me. They have been working with me 
for years. They are a well-oiled team. We know how to 
build these things. Can we grow wildly and expand? I do 
not know. I just started hiring second-generation people, 
people trained by my students who are now professors. Our 
expertise is not in building a marketing organization, so I 
do not intend to build one. It is the roles of our partners to 
market the product. 

For More Information 
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Natural Language 
Front Ends 

Larry R. Harris 
President 
Artificial Intelligence Corporation 

Dr. Harris is an internationally recognized authority on 
natural language analysis and data base systems. His work 1;n 
natural language began with doctoral research on parsing 
techniques and continued while he was a professor of 
Computer Science at Dartmouth College. He founded the 
Artificial Intelligence Corporation in order to develop a 
commercial product, INTELLECT, based on his research. Dr. 
Harris's early contributions to the company were primarily 
technical. As the company and the product evolved, Dr. 
Harris began to address financial and marketing issues, and 
in 1981 he became president. Dr. Harris has been a consultant 
for a number of companies and a visiting professor at MIT. 
Dr. Harris received the PhD from Cornell University. 

The natural language interface business is exciting and 
explosive. Thousands of people want to access data stored 
in their computers and are frustrated by the existing level 
of technology for getting at those data. Consequently we 
at Artificial Intelligence Corporation have a mission: to 
deliver a specific technology based on artificial-intelligence 
natural language-processing techniques to enable nontech­
nical people to access the information in their computers. 
My goal is to give you a feeling for our INTELLECT 
product-what it does, how we got to where we are, and 
how this particular technology will affect data processing. 
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Figure 1. Market for natural language. 
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Figure 1 positions the product with respect to other 
existing tools. The inverted triangle is intended to give 
a feeling for the number of people in each category. At 
the bottom are highly trained technical users who know 
assembly language, for example. At the top there are broader 
and broader categories of people. In the middle are people 
who can use higher-level languages like PL/1 or APL, or 
the fourth generation of computer languages, like FOCUS 
and RAMUS. 

Proliferating Technology 

The layer that Artificial Intelligence Corporation addresses 
is the technically unsophisticated-this layer contains people 
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who do not know and do not want to know formal computer 
languages but still want to be able to get information out 
of their machines. Our goal is to deliver that capability to 
them by exploiting their knowledge of English. 

Here is an example of what would typically be referred 
to as an easy-to-use, English-like, user-friendly computer 
language: 

PRINT LNAME, 82 -JUL-ACT-SALES, 82-JUL-EST-SALES, 
82-JUL-ACT-SALES - 82-JUL-EST-SALES, 
(82-JUL-ACT-SALES - 82-JUL-EST-SALES) 

I 82-JUL-ACT-SALES, 
IF REGION='NEW ENGLAND' AND 

82-YTD-ACT-SALES < 82-QUOTA 

The same question, asked through INTELLECT, together 
with the response, is: 

I WONDER HOW ACTUAL SALES FOR LAST MONTH COMPARE TO 
THE FORECAST FOR PEOPLE UNDER QUOTA IN NEW ENGLAND. 

PRINT A COMPARISON OF LAST NAME, 82-JUL-ACT-SALES AND 
82-JUL-EST-SALES OF ALL SALES PEOPLE WITH REGION = 
NORTHEAST & 82-YTD-ACT-% QUOTA <100.00. 

THE NUMBER OF RECORDS TO BE SEARCHED IS 40 

1982 
1982 JULY 

LAST JULY ESTIMATED 
NAME SALES SALES CHANGE % CHANGE 

SMITH 54,474 52,868 1,606 2.95 
ALEXANDER 54,833 52,936 1,897 3.46 
ADKINS 76,072 75,631 441 0.58 
ASIN 42,144 38,214 3,930 9.33 

The system derives the answer to that question and reports. 
The contrast between non-English and English attracts 
people to using a natural language system; 

There is a limit to the expectations that we should 
have in the near term. Still, we are more advanced than 
most people think. Artificial Intelligence Corporation is the 
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foremost supplier of natural language technology. So far 
we have installed over one hundred systems, at an average 
retail price just under $70,000. 

The Fortune 500 companies we deal with use INTELLECT 
in applications ranging from personnel to commercial loans. 
Some of those companies use INTELLECT with temporary 
data bases for areas like budgeting, for which the data-base 
lifetime may be only two months. 

In addition to direct sales through end users, we have also 
successfully established a number of OEM relationships with 
some of the leading vendors in particular market segments­
for example, Cullinane Data Base Systems, now known as 
Cullinet, sells the product as on-line English, interfaced 
to their data-base system, IDMS. We have a relationship 
with Information Sciences Corporation, the leading vendor 
of human resources packages; it calls this system GRS 
Executive. Management Decision Systems, the company 
that sells the Rolls Royce of financial modeling systems, 
known as Express, calls our system English Language 
Interface. 

Our goal is to proliferate this technology throughout the 
existing framework of distribution channels. Rather than 
await a new era of hardware and software, we embed the 
technology in today's data-processing world. 

Package versus Custom 

We strive to have a package that can be sold over and 
over again without varying the code. Obviously there has 
to be some customization in order for INTELLECT to be 
useful for a specific data base, but that customization need 
not involve writing new code. Instead customizations need 
involve only dictionary definitions. That was a driving force 
behind the design of the product because we felt it would 
not be commercially feasible otherwise. Customization has 
to be such that ordinary technicians can do the job and do 
it quickly. 
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Figure 2. History of Artificial Intelligence Corporation. 

Getting There 

How did we get where we are? As figure 2 shows, we started 
in 1975, forming a company based on a research prototype 
that I produced while I was a professor at Dartmouth 
College. At that time I felt that the technology had reached 
the point where we could join it to the powerful data base 
management system technology maturing at that time. 

We went through a three to five-year development process, 
or productization process, of putting together the basic 
research ideas and getting them to work in the commercial 
area. By 1979 we had three beta sites that produced the 
user feedback we needed. In some cases it took us as long as 
a year to get the capabilities and the fluency of the product 
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up to a level where it was accepted and put into daily use. At 
that point we sought the venture capital money necessary 
to proceed. 

In those days our product was not as powerful as it is 
today. We had put in the capability to deal with questions 
like, "Give me a breakdown of salaries by department." 
The word breakdown set up an expectation that a category 
definition would occur later in the sentence that would help 
determine how to do the processing. It turned out there was 
a bug in the system: if that expectation was not met, the 
system went off on a tangent. We got a call from a user who 
had typed break down to the machine. He asked the classic 
question, "Is it a bug or is it a feature?" Thinking fast, I 
said, "Well, actually, that is the breakdown command; we 
just haven't gotten around to documenting that yet." What 
other business could you be in where a user could actually 
not be sure whether a total abort was intended? 

INTELLECT in Action 

Our goal is not to deliver the ultimate in artificial-intelligence 
capability but to deliver the ultimate in user capability 
within the context of the existing commercial marketplace. 
Consider this interaction: 
GIVE ME THE NAMES OF THE WOMEN IN THE WESTERN REGION 
WHO ARE OVER QUOTA. 

PRINT THE LAST NAME AND 82-YTD-ACT-% QUOTA 
OF ALL SALES PEOPLE WITH SEX = FEMALE & REGION = WEST & 
82-YTD-ACT-% QUOTA> 100.00. 

THE NUMBER OF RECORDS TO BE SEARCHED IS 24 
1982 

LAST YTD 
NAME % OF QUOTA 

ACORD 158.20 
ARBOGAST 146.37 
CENT OR 145.55 
CHAMPION 147.26 
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The system's echo is a formalized restatement of what was 
intended. This provides a feedback mechanism so the user 
knows what INTELLECT thinks the user means. If it is not 
correct, the user can take appropriate action. There was 
a problem understanding this question but INTELLECT 
answers it anyway. The whole point to a natural language 
system, as opposed to a formal query language system, is 
that no matter how the user asks the question, he is right. 

Here is another example of how the same information can 
be extracted with different wordings: 

WESTERN WOMEN OVER QUOTA. 

PRINT THE LAST NAME AND 82-YTD-ACT-% QUOTA OF ALL 
SALES PEOPLE WITH REGION = WEST & SEX = FEMALE & 
82-YTD-ACT-% QUOTA > 100.00. 

THE NUMBER OF RECORDS TO BE SEARCHED IS 24 
1982 

LAST 
NAME 

ACORD 
ARBOGAST 

YTD 
% OF QUOTA 

158.20 
146.37 

CENTOR 145.55 
CHAMPION 147.26 

Many people think natural language requires people to be 
verbose. We find the opposite is true. Consider the difference 
between the user's English and the echo, which is closer to 
what you would have to type in a formal query language. 
In this case, the user's English is considerably shorter. 

The next question illustrates how ambiguity is handled: 

LIST THE SALESMEN IN NEW YORK WHO ARE UNDER QUOTA. 

YOUR REQUEST IS AMBIGUOUS TO ME. DO YOU WANT: 
(1): CITY= NEW YORK. 
(2): STATE =NEW YORK. 

PLEASE ENTER THE NUMBER OF THE INTERPRETATION YOU INTENDED. 

2 
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PRINT THE LAST NAME AND 82-YTD-ACT-% QUOTA OF ALL 
SALES PEOPLE WITH STATE = NEW YORK & 82-YTD-ACT-% 
QUOTA < 100.00. 

THE NUMBER OF RECORDS TO BE SEARCHED IS 60 
1982 

LAST YTD 
NAME Y. OF QUOTA 

BAHN 96.24 
DYKES 96.10 
ELEY 96.60 
GRAYSON 97.42 
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INTELLECT, by definitions in its lexicon, knows that New 
York can refer to both the city and the state. The system 
cannot resolve the ambiguity. Therefore it asks the user 
if New York City or New York State is meant. Given the 
inherent ambiguity of natural'language, it is essential that 
a system be able to ask the user for clarification. 

The next example shows the level of inference the system 
will do to avoid asking for clarification: 

WHICH OF THE NEW YORK EMPLOYEES LIVE IN BUFFALO? 

PRINT THE LAST NAME OF ALL SALES PEOPLE WITH 
STATE = NEW YORK & CITY = BUFFALO. 

THE NUMBER OF RECORDS TO RETRIEVE IS 15 
LAST 
NAME 

BERGER 
ALEXANDER 
ALFONTE 
BAHN 

It is important that INTELLECT not ask for clarification 
every time New York is used in a sentence. When we look 
at this sentence, how do we know that New York has to be 
New York State? Clearly we resolve the ambiguity by way 
of something that we know about Buffalo. 
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This illustrates the use of the inverted indexes in the data 
base. Buffalo is not a word in INTELLECT's own lexicon, 
yet we are able to determine that it is a city. Combining 
that knowledge with the two interpretations for New York 
enables INTELLECT to rule out the city interpretation for 
New York in favor of the one shown. Thus INTELLECT is 
able to make an inference and proceed much as a person 
would. 

Next we get to a level beyond just raw retrieval of 
information in the data base: 

SHOW PERCENTAGES FOR TOTAL SALES BY STATE. 

PRINT A PERCENTAGE OF THE TOTAL 82-ACT-YTD SALES 
IN EACH STATE OF ALL SALES PEOPLE. 

THE NUMBER OF RECORDS TO RETRIEVE IS 300 
1982 

YTD 
STATE SALES PERCENT 

ARIZONA 3,960,221 2.78 
CALIFORNIA 28,073,666 19.74 
COLORADO 4,155,372 2.92 
FLORIDA 5,444,594 3.83 

On one level problems can be solved simply by retrieving 
and displaying the data. On another level problems require 
information that can be derived from the data. It is 
important to be able to perform the necessary analysis 
on demand by the natural language interaction. 

In other systems, to arrange for the _percentages column 
is a two-pass process. The programs first compute the grand 
total and then compute the percentages. The user is forced 
to be aware of the actual procedural approach involved in 
solving the problem. 

Suppose we ask, "Who are the top seven salesmen in terms 
of quota achievement?" An enormous amount of processing is 
required by this question. First, quota achievement has to be 
computed from what is out in the data base. Next, the system 
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has to sort the salesmen and select the top seven so that 
further questions can be answered without recomputation. 
The INTELLECT natural language interface covers up all 
the underlying detail of the computation. 

Natural Language Interface as Ringmaster. 

In building and delivering natural language capability, we 
have found that the artificial-intelligence component is not 
the only component of the problem. Creating the natural 
language capability is but one part of a total solution to the 
problem of getting nontechnical people to use computers. 

The other three parts have to do with problems caused by 
the user's conceptual viewpoint. First, we have to convert 
the user's way of thinking about the data to correspond to 
how the data ·are actually stored. Second, we have to be 
able to answer the question at the level at which the user 
asks it. For example, if he wants information that is not 
really in the data base, we have to be able to compute it. 

Third, there is a navigational problem because realistic 
data bases are stored in multiple files. This means we must 
develop ways to put information together on a file-by-file 
basis to derive answers. Formal languages force users to 
specify exactly how they want things to be done. That is 
something most users do not know how to do because they 
do not know the underlying structure of the data base. 

This third point bears emphasis. There soon will be a need 
to interface to multiple software systems. The capabilities 
the user wants are not necessarily satisfied by a single data 
base management system, nor are they necessarily satisfied 
by a graphics system, nor are they are necessarily satisfied 
by a financial modeling tool. At various times the user may 
need all or many systems to work together. 

To buy the best data base system, the best graphics 
system, and the best modeling system means to buy a 
system designed and supported by different vendors. The 
user interfaces will have nothing in common. Similarly 
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the representation of data in the various systems will be 
different. It would be impossible for a nontechnical user to 
use the systems because he would have to learn three or 
four formal languages and write programs to pass data from 
one system to another. Writing programs is something we 
assume nontechnical users cannot do. 

In the future natural language systems will do more than 
just interface to data base systems. They will also play 
important new roles within the information center itself, 
interfacing to a variety o~ software tools. In a sense the 
natural language system will become the supervisor of the 
information center. 

Figure 3 shows INTELLECT at the very center of 
things, interfacing to a data base management system, to 
graphics systems, like IBM's presentation graphics feature, 
to modeling systems, such as Express, and perhaps linked 
with human-resource applications systems like the package 
offered by InSci. The user's only direct point of contact with 
the system is the natural language component. 

The user types in a request. The natural language system 
analyzes it, partitions the work among the various software 
tools, and dispatches each of them to carry out their 
particular expertise to help solve the problem. Then the 
natural language system ties the overall solution together 
in a way that gets the problem solved. The goal is to avoid 
forcing the user to learn programming languages. Instead 
the system passes information back and forth. 

For example, we might ask INTELLECT to produce a 
bar chart of actual and estimated year-to-date sales in 
each region. INTELLECT parses the question, retrieves 
data from the data base, and summarizes the data to 
the level necessary to do a bar graph. Then INTELLECT 
passes the data to the graphics package, in this case 
IBM's presentation graphics feature-causing the display to 
appear. This example illustrates the benefit that can come 
from tying together two very powerful software tools in such 
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Figure 3. INTELLECT in the center of the information center. 

a way that the user need know nothing about the underlying 
details of either one. 

The Mighty Micro 

Another direction where I see the tremendous growth is 
tl!e microcomputer area. I will not try to argue that 
the only mechanism by which people should interact with 
microcomputers is by natural language. But in certain 
specific areas, other kinds of communication break down, 
and natural language can play a very important role. 
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When using data base systems that use mice or cursors, 
answering questions can take twenty or thirty interactions. 
The approach of telling the machine what to do step-by-step 
breaks down because of the number of steps that have to 
be made in just the right sequence. Typing in four or five 
English words is an attractive alternative. 

From Prototype to Successful Package 

A long lead time is required to make a research prototype 
into a commercial product.' That is true in developing 
ordinary data-processing products; it is even more true 
when there is a heavy artificial-intelligence component. The 
effort to make a package product, rather than a custom 
product, is great. Today's expert systems are all custom 
expert systems. Good business sense dictates developing and 
selling a package product that enables buyers to develop 
their own applications without doing artificial-intelligence 
research. 

For More Information 

Harris, Larry R., "A High _Performance Natural Language 
Processor for Data Base Query," A CM SIGART News­
letter, vol. 61, 1977. 



 

13 
Work and Play: 
A Discussion 

Rich 

Mr. Finegold, you say your company has been influenced 
by Artificial Intelligence, but you avoid saying that Daisy 
Systems is an artificial-intelligence company. Could you 
point to particular people or work in Artificial Intelligence 
that were fundamental to your jump on the rest of the 
market? Could you comment on how you were influenced? 
Do you read the journals? Do you visit the laboratories? 
Do you send your people to tutorials? How do you maintain 
this flow of ideas that are important to your company? 

Finegold 

The company was founded by two engineering managers 
of Intel Corporation, a leader in technology in the VLSI 
industry. We had a problem. It used to be that the technology 
cycle was two years and the engineering cycle was two years. 
When the technology started to run faster, the marketing 
people began to get tired and frustrated. 

When we formed the company, we were well aware of 
the problem. We looked for a solution in the technology. 
We approached Dr. Benin, consultant for Xerox PARC. 
The first thing that he showed us was that the technology 
we needed was the notion of the apprentice. We use the 
notion of apprentice internally. In the hardware the role 
of apprentice was very well defined. Some of the hardest 
people to find are development technicians, people who are 
almost engineers but hopefully will never make it. 

We did not develop the technology. We visited Stanford 
University and looked at work done at the Massachusetts 
Institute of Technology. Daisy put it all together and made it 
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into a product. We harvested what people in the universities 
worked on. · 

We are not ashamed about it. We give you all our respect. 
We do not claim we created the market; we just productized 
it. We spent time looking at what other people were doing. 
We keep in touch continuing to look at what university 
researchers are doing, and we try to influence researchers in 
universities. 

Winston 
It strikes me that it is good you did not come to this 
seminar three years ago because Professor Schank might 
have convinced you that forming such a company was 
impossible, with his remark that there are no people out 
there who would have the artificial-intelligence skills that 
you would need. Evidently you built your company, which 
is influenced by Artificial Intelligence, around people who 
came from outside the field. Is that correct? 

Finegold 

Now we are going back to the definition of Artificial 
Intelligence. Inside the company, using the term Artificial 
Intelligence was taboo. Whenever we bring in someone with 
an artificial-intelligence background to work on a project, 
I tell them, "You are working on advanced software. Don't 
say Artificial Intelligence. Say Advanced Software." Too 
many people use Artificial Intelligence as a reason for not 
delivering. 

But at the same time, let's be realistic and look at what 
is there. It is unfair to the artificial-intelligence community. 
The job of people doing research at universities is to be 
at the forefront of things that you study, whether they are 
physical or not. Your business is not to make products. 
You are constantly losing because the definition of Artificial 
Intelligence is constantly changing. When I was at Intel, we 
hired people with artificial-intelligence backgrounds because 
placement and routing was Artificial Intelligence then. It is 
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no longer because companies sell products that do placement 
and routing. 

Rich 
When it works it is not Artificial Intelligence. 

Finegold 

If you go with that definition, then we have nothing to do 
with Artificial Intelligence. But if you look at the people we 
brought in, you. see people who were experts in placement 
and routing. So you say it is no longer Artificial Intelligence. 
We will continue to hire people who are no longer Artificial 
Intelligence. 

Rich 
Dr. Kay, where is SMALLTALK now? What happened to 
it? Why don't we hear more about it? 

Kay 
My former group at Xerox finished a book about SMALL­
TALK. They beta-tested all of the implementation informa­
tion in the book at a number of companies. Basically Xerox 
is releasing SMALLTALK to the world as a system that 
anybody who buys the book can implement. You can also 
get the system for a licensing fee. I talked to someone from 
Xerox who told me that a number of applications systems 
are now being written in SMALLTALK by companies like 
the New York Times. 

Programming languages have a long gestation period. 
The first couple of versions of a programming language are 
not cost-effective in any reasonable way and take about 
three years to turn around. SMALLTALK beats the heck 
out of professional programming languages like BASIC and 
PASCAL. 

But from the standpoint of what the user actually needs 
in the context of the things we are talking about, I do not 
think SMALLTALK is a solution to the problem of the 
universal personal computer at all. 
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Winston 
Professor Schank, in some of the advertising that your 
company, Cognitive Systems, does, you use words to the 
effect that your products will enable users to interact with 
machines in unrestricted natural language. This has irritated 
everyone I know who does natural language research. I 
wonder if you feel that your use of terms like that is 
legitimate and, if not, why the company's advertising uses 
them? 

Schank 
It is legitimate. 

Winston 
Then should we conclude that natural language research 
should stop because the problems are solved? 

Schank 
That depends on just what is meant by natural language 
research. I think, for example, that research on syntax 
should have stopped fifteen years ago. 

In some sense, Yale University's laboratory does not 
spend much time on natural language anymore. My natural 
language project is in reality almost entirely a memory-and­
learning project. This is because the hard part of natural 
language is not the language, but the knowledge behind the 
language and the learning techniques. Those are the key 
and hard problems. They do not have to do with language 
specifically. They have to do with things like understanding 
intentionality. The language problem is not a problem that 
is separable in and of itself. But to the extent that you 
can nail down the semantics of the domain under discussion 
- that is, to the extent that the knowledge base is an oil 
company data base and you can write all there is to know 
about that data base - we can build a program that can 
answer your questions about it. 

Of course, if you ask it about George Washington, it will 
not know who George Washington is, and it will not be able 
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to answer. If you ask it about something in the data base, 
though, it will answer. It does not matter how you ask it. 
Ungrammaticality is fine with us. 

I think that you are getting the same reaction I have always 
gotten. As soon as I say to people whose life work is· syntax 
that syntax is not worth working on, they understandably 
get upset. 

Rich 
I have a practical question for both Dr. Harris and Professor 
Schank, which I think might help focus this technology. 
Suppose just for the purpose of discussion that I would like 
to hook up a natural language front end or interface to my 
Programmer's Apprentice. Could you estimate the amount 
of effort, in terms of man-years or minimum elapsed time 
or level of expertise or dollar cost, that it would require to 
create a natural language interface for something like the 
Programmer's Apprentice? 

Schank 
I do not know enough about the Programmer's Apprentice to 
tell you. I would need to know the whole range of questions 
you might want to ask. On the one hand, in many domains 
a natural language project would be impossible.· It can be 
impossible if the knowledge is not sufficiently codifiable. My 
guess is that your domain is in this category. 

On the other hand, some domains are. relatively easy, 
because you may have something which has a range of one 
hundred or two hundred or five hundred kinds of things 
you want to say - not sentences, but kinds of things. If 
that is the case and. if the knowledge is understandable, 
then it frequently takes no more than six months to build 
a customized system like that. 

Harris 
To get any kind of estimate, you have to look at the 
details underlying what is going on. In particular you must 
understand the semantics of the environment. Our whole 
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approach has not been to build custom systems and improve 
the ability with which we customize language analysis at 
a level of building the code but to deal within a restricted 
semantic domain in our case, primarily the data base 
and data-manipulation domain. Within the sort of meta 
semantics that that defines, we put together a system where 
you could define specific domains very quickly and very 
easily, depending on what was in the data base. We are not 
at all geared up to take INTELLECT as it stands and apply 
it to something totally different, in context, in intent, and 
in use, than what we see going on in the data-base query­
information center environment. It is probably something 
we would not be interested in doing because of marketing 
issues. From a technical viewpoint that is not the dimension 
we try to put effort into. 

Rich 

Professor Schank, what is it about my application that 
might make it unsuitable for your kind of natural language 
interface? What kinds of questions would you ask me? What 
kind of answer would I have to give that would signal to you 
that what I was doing was beyond what your techniques 
currently approach? 

Schank 

Ultimately the problem comes down to how well you 
understand the domain. Our system is a knowledge-based, 
content-based system. That is, we have to understand the 
domain to understand questions in it. The reason we can 
handle unrestricted English is that in the middle of a sentence 
we are able to do something you are doing right now, which 
is to guess what is coming next. Our parsing techniques are 
based on understanding what has been said so far and being 
able to figure out what else might be going on. That means 
we need to have a good sense of what is going on in the 
domain. If everything inside the Programmer's Apprentice 
is content driven, then we are in business. But if much of the 
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knowledge is procedurally encoded, or implicit, as is the case 
in most complex artificial-intelligence programs we would 
be forced to try to write our system without access to all 
the knowledge in the domain, and we would be in trouble. 
In fact we are exactly on the other end of the spectrum from 
Dr. Harris's product; where his thing is specialized toward 
not knowing the content, ours is specialized toward knowing 
the content. Thus, although it may look as if we have similar 
products, they are radically different. The reason is that 
we have to understand the world we are talking about in 
order to provide the power of unrestricted language. If the 
programmer wants to design something and I do not know 
what that thing is, I can get into trouble when he tells me 
what it is he wants to design. 

I think automatic programming in general is very hard 
and one of the last places you will ever see natural language 
processing. It also may be a place where you never want to 
see natural language processing because it is not necessarily 
the best way to talk to a machine. English is a good way 
to talk to a machine for people who do not know how to 
program. Programmers know how to program. 

Harris 

I want to respond to one comment Professor Schank made 
about the level of semantics needed. I think it is highly 
inaccurate to describe our approach as having no semantic 
information. Our goal is to work on the problem from both 
ends, working with the natural language analysis techniques 
to reduce the amount of specific semantic information needed 
as much as possible - to lower the requirement from the 
top down and to approach the problem from the bottom 
up. The goal is to get the critical semantic information that 
every body needs dynamically from the data base systems 
rather than have the semantic definitions entered in by 
hand. 
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Winston 
Before we leave our natural-language-oriented panelists 
alone, I would like to ask both of them a question that 
came about because of some of the remarks by Dr. Kay. 
How up to date is the technology that you are trying to 
commercialize at this moment? Is it brand new? Or has it 
been developing over a period of years? 

Schank 
The first parser we built was completed in 1973. It was 
based on meaning-driven techniques, a well-known part of 
the MARGIE system. We modified it later, in principle, 
to work inside a couple of systems, most notably the 
POLITICS system, where it is driven by the expectations 
of the system based on the goals and plans of the speaker. 
It was rearranged in the BORIS system to be capable 
of understanding very large and complex paragraphs. The 
BORIS system was ~tarted in 1979 and was completed in 
1982. The parser we use is derived from that one. It is a 
program whose concept has been evolving for ten years, but 
the technology really just got into place. So, the answer is, 
"Almost brand new." 

Harris 
I think we rely much more heavily on syntax than Professor 
Schank does. Research in syntax came to a head in 1972 
when a number of very powerful techniques were established. 
The real key is not the syntactic analysis; it is how you 
merge or develop that information with the semantics. That 
is something that continues to evolve over a period of time. 
I think we had the basic essence of the approach down in 
1975 or 1976. 

Winston 
Mr. Finegold and Dr. Kay talked about particularizations 
of a wonderful dream where people work a total design 
environment. Dr. Rich talked about the same sort of thing 
in still another domain. Do you see an explosive growth in 
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this business of creating total design environments, a growth 
that would reach out and extend to the automobile industry 
or the more traditional industries? Or is there something 
fundamentally easier about your industries that have made 
them the first target of this total design environment kind 
of idea? 

Finegold 
The problem of the design cycle made the electronic industry 
a target for a total design environment. It used to be that 
an innovative company with an edge in technology could 
manipulate it and be very, very successful. After it came up 
with the first microprocessor, Intel had three years before 
competition threatened. Today that technology edge is very 
narrow, generally one year at most. That edge also pushes 
the expectation of price versus performance. New products 
become archaic quickly. The market needs a solution for 
shortening the design cycle, and it needs a solution for cost 
versus performance, which means how to design LSI. 

Winston 
Are there any technical reasons, such as the fact that the 

. problems are inherently two-dimensional, which would make 
this an easier world to deal with? 

Rich 
It is important to emphasize the kinds of domains you can 
approach with Artificial Intelligence in general and with the 
assistant metaphor in particular. Whenever a field is well 
established, with existing textbooks and courses, people 
have already done the initial groundwork. You are in much 
better shape to begin an artificial-intelligence automation 
effort. For example, you can lay Electrical Engineering, 
programming, and VLSI along a kind of spectrum in terms 
of the maturity of the field. Electrical Engineering is an 
extremely mature field. There are good text books, and 
the concepts are well defined. The role of a technician is 
well worked out. Electrical Engineering is in much better 
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shape than VLSI, which is still somewhat of a black art. 
Programming is somewhere in the middle. It is not as 
mature as Electrical Engineering, but there are a lot more 
expert programmers than there are expert VLSI designers. 

Kay 
The role of the programming language designers is to do 
exactly the opposite. The stuff that happened at Xerox 
happened from motivations exactly opposite from what we 
talked about so far. It goes back to this noble failure of 
the Flex Machine I mentioned earlier. Suppose you had to 
design a system for people at the Institute for Advanced 
Study at Princeton as I did in 1966 when I started working 
on the Flex Machine. I realized that if I was going to design a 
good system for them, I would not be able to anticipate very 
many of their needs at all. What I really wanted was a kind 
of kit that they could use to tailor their own information 
resources and tools. In fact that is one way of thinking 
about what a programming language is. 

There are two kinds of programming languages: ones that 
are basically accretions of features like PL/1 and ADA, 
that are never finished being defined, and ones that are 
basically crystallizations of styles, like SMALLTALK. Pick 
a good style for doing something, and make that into a 
language. People will tend to do things in the style that 
the language encourages. A programming language of that 
kind is very close to a kit. But the problem with a kit is 
that in order to make certain things easy, you prevent other 
things from being done at all. VISICALC, practically the 
only good piece of software that has ever been put on a 
micro, is an example of a kit. You see immediately what it 
is. You can do worthwhile things immediately, but there is 
much that you cannot do within VISICALC's framework. 
A good programming language is an example of something 
that can be evaluated not by how it does when its features 
are working but how it does when it has no features for you. 

That is the true dilemma of personal computing: the user 
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is unknown and has many needs, most of which cannot be 
anticipated in any specific way. I am much more on the 
side of the natural languages here, although I agree with 
Professor Schank that natural language is not the interesting 
part. It is really the knowledge base that you have to get to 
one way or another that really counts. So the Xerox PARC 
stuff naturally developed into a terrific environment simply 
because it was designed to be able to handle unanticipated 
needs by naive users. If you have something like that, it is 
going to be able to handle anticipated needs by expert users 
easily. 

Remember there is no robot harder to do than the robot 
in the home. You can weld up a car with no trouble at all, 
but try making one that will sort laundry or do the dishes 
and you've got a robot problem. Computing in the home 
will take many more cycles per second than computing in 
the office or in industry, which is why it is taking so long to 
arrive in a strong fashion. 

Winston 

Dr. Kay, two languages have been conspicuously absent 
from both your good-guy lists and your bad-guy lists. Could 
you say a word or two about where you see the roles of 
LISP and PROLOG in the future development of the field? 

Kay 

LISP is one of my favorite languages. I believe it is one of the 
two great language designs of the 1960s, the other one being 
SIMULA. LISP is hard to define, as the DARPA people find 
out periodically when they try to get the LISP programmers 
to define a standard LISP. They always discover there is no 
such thing because LISP is a kind of building material that 
is a tribute to its inventor. It is the longest-standing good 
programming language precisely because it can be molded 
into so many different things. The one thing it has going 
against it is that it is not a crystallization of style. The 
people who use it must have a great deal of personal style 
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themselves. But I think if you can have one language on 
your system, of the ones that have been around for a while, 
it should be LISP. 

I have exactly opposite opinions about PROLOG. To be 
sure, it is an example of a crystallization of a style, but I 
believe it is the perfect example of how not to do it for the 
following reason. PROLOG, during the first half an hour 
or couple of hours that you are a novice, does absolutely 
magic things. It does just what you want it to do most of 
the time. But it is doing these things without your having 
had to understand anything about what is going on inside 
PROLOG. Then, suddenly, in order to do something real, 
you have to understand everything about PROLOG. In fact 
the transition from where you were to where you have to 
be in order to make things happen is a shock even for 
professional programmers. It is the worst kind of thing. We 
called SMALLTALK SMALLTALK so that nobody would 
expect anything from it. 

If you name a system after a Greek god, you expect it to 
do something. Or you can name it after Pascal. Pascal was 
the guy who said, "Please forgive the length of this letter. 
I didn't have the time to make it shorter." That is a very 
classy statement. There is no element of that class in the 
language PASCAL. 

Ada was the first programmer. She said the analytical 
engine weaves algebraic patterns just as the jacquard loom 
weaves flowers and leaves. That is a very classy statement. 
You find none of that class in ADA. 

We called it SMALL TALK so in case we ever did anything 
good, people would be remarkably surprised. The same is 
true of user interfaces. We have a user interface that has a 
very strong feature and a lot of weak ones. It is much worse 
than having one that is much more mediocre all the way 
through or only occasionally does something nice for you. 
User expectations are very important for designing any kind 
of user interface. That is where their unhappiness comes 
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from. It has nothing to do with whether the system is doing 
anything good for them. If it is doing what they expect, 
and occasionally a little better, they are happy. 
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Robotics concerns systems that interact with the real world 
with little or no human assistance. In robotics we work with 
mechanical equipment, and we work with signal processing. 
The robotics part of Artificial Intelligence is distinctive 
because of its need to interact with the real world. Moreover 
robotics involves a great deal of Mathematics, as well as 
Electrical Engineering and Mechanical Engineering. That 
makes it different from much of the work in expert systems, 
which is largely Computer Science done by people largely 
within Computer Science. 

What Is Robotics? 

Several definitions have been proposed for robotics. The fol­
lowing is typical: A robot is a reprogrammable, multifunc­
tional, manipulator designed to move material, parts, tools, 
or other specialized devices through various programmed 
motions for the performance of a variety of tasks. 

The force of such a definition is to exclude certain machines 
that are not robots, such as dishwashers and parts-transfer 
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machinery~ But the definition never mentions sensing, ruling 
out inspection, parts location, and identification. It·also rules 
out machines that move autonomously, such as tracked or 
legged vehicles. Robotics, like Artificial Intelligence and 
Physics, is an evolving discipline. A definition summarizes 
only what somebody believes is important in what has 
evolved to date. 

The best definition of a robot that I ever heard is one 
that David Grossman of IBM gave: A robot is a surprisingly 
animate machine. 

Past and Future Generations 

Instead of definitions some people like to talk about 
generations of robots, much like the generations assigned 
to computers, robot generations make as little sense as 
do computer generations. Commercial robots are typically 
grouped into three generations. 

A first-generation robot is programmed by setting ~xed 
stops. First-generation robots are used for pick-and-place 
applications, typically in heavy engineering industries. The 
Unimation 2000 is a good example of a first-generation 
robot. The main drawback of such robots is that they are 
limited to a small number of moves. First-generation robots 
predominate in U.S. industry. 

A second-generation robot is programmed using a button 
box. A sequence of robot configurations is taught (there is 
an unfortunate tendency to use anthropomorphic names, 
suggesting power, flexibility, breadth of application, and 
intelligence) by recording them on magnetic tape. The tape 
is then played back, continually cycling the robot through the 
stored configurations. Second-generation robots have made 
their marks in spot welding and spray painting, largely in the 
automobile industry. These applications currently account 
for the overwhelming majority of second-generation robots. 
A second-generation robot is not programmable in the 
ordinary sense of the word. There is no conditional execution, 
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for example. Typical examples of second-generation robots 
are Cincinnati Milacron's T3 (The Tomorrow Tool), the 
Asea IRB60, paint-spraying robots developed by Trallfa, the 
German KUKA robots, and the Japanese Hitachi robots. 

Third-generation robots are programmable robots, robots 
attached to computers. They have been commercially 
available for about three years, although university artificial­
intelligence laboratories had developed prototypes five to 
eight years earlier. Unimation was first in the field with 
the PUMA robot, programmed using VAL. Recently IBM 
marketed the 7535 and 7565 robots, programmed using 
AML. Robots from Automatix are programmed in RAIL. 

One of the main drawbacks of third-generation robots is 
their limited ability to sense the world. Another is that the 
robot is programmed in the robot's view of the world, with 
impenetrable coordinate systems, rather than in terms of 
objects such as brackets and fasteners. 

Future-generation robots will combine end effectors, such 
as arms, legs, jigs, and feeders; sensors, to discover when 
the robot contacts something, to find out exactly where 
something is, and to cope with uncertainty in the world; 
computers, to do conditional execution based on sensory 
data, to control adaptively various kinds of effectors, to 
interact with data bases for managing information systems 
and for computer-aided design, and to plan their own actions 
based on high-level goals~ Prototype systems like the one 
shown in figure 1 are now the object of intensive research. 

These future-generation robots will be introduced more 
slowly than they should be for two reasons. The first 
reason is that people in the industry are too sparing with 
computation. For years vision research and development 
languished because it was considered to require too much 
computation. Hardware costs have tumbled and powerful 
32-bit microprocessors are available, but vision systems 
are not in place to take advantage. The second reason 
is that people in the industry continue to underestimate 
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Figure 1. Dr. Philippe Brou working on prototype vision system at 
the MIT Artificial Intelligence Laboratory. 

the. expertise available. Robot-programming languages were 
pushed by only a small number of companies because 
conventional wisdom scoffed at the idea that assembly line 
workers could program computers. That was before home 
computers showed that programming was not mysterious 
and before user-friendly interfaces unleashed a large pool of 
programming talent. 

What Roboticists Do 

Some artificial-intelligence roboticists are concerned primari­
ly with mechanical issues. They worry about robot struc­
tures, end effectors, and whether a robot should be perfectly 
still like a tree or whether it-should wander around its en­
vironment. Other artificial-intelligence roboticists work on 
controllers. Robots, likeothercomplexequipment, need to be 
controlled to overcome disturbances that cause discrepancies 
between desired and actual states. Most artificial-intelligence 
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Figure 2. Parts of robotics research. 

roboticists work on the incorporation of software, the in­
corporation of sensors, and the incorporation of compliant, 
sensor-based trajectories into robot motion. 

In discussing each of the areas shown in the figure 2, I will 
describe the current industrial practice, the contribution to 
the area that I believe Artificial Intelligence should make, 
and the work going on in the various research laboratories. 

Mechanical Structures 

The first area of robotics concerns mechanical structures­
for example, the geometry, construction, and actuation of 
different types of linkage. Some robot joints are rotary; some 
slide. What are the advantages of each? How many degrees 
of freedom should a robot have? The number of degrees of 
freedom of robots doing important work in industry varies 
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widely, from two degrees of freedom, which is basically a 
turntable with a little lever that goes in and out, to six 
degrees of freedom, three degrees to specify points in space 
and three to specify orientation in space. Pick-and-place 
robots often have few degrees of freedom, robots specialized 
for spray painting and spot welding have at least five, and 
assembly robots usually have at least six. 

What are the issues in choosing between electrical and 
hydraulic actuators? Hydraulics have greater power, speed, 
and acceleration, but they are typically less stiff and 
more difficult to control. Electric motors are typically less 
powerful, implying smaller payloads, in the region of 5 
kilograms. With appropriate transmission, such as gear 
trains, belts, or ball screws, electric robots can be very stiff 
but have large backlash. This prevents them being torque 
controlled. 

Then there is kinematics, the transformation from the 
variables that the robot would like to think in, the position, 
velocity, and (occasionally) acceleration of its joints, into 
the real-space variables that a programl!ler or applications 
engineer would like to believe in. These are, for example, 
Cartesian x, y, and z, and three angles determining attitude, 
such as roll, pitch, and yaw. In general the transformation 
from joint angles to real space coordinates is straightforward, 
but the inverse transformation is complex. 

The inverse problem may not have a closed form solution 
if the arm is poorly designed. The IBM 7565 is an example 
of a good design that finesses the whole issue by having 
sliding joints that move the arm in the x, y, and z directions. 
Another idea is to design the manipulator so that the last 
three axes intersect at a single point, similar to the human 
hand and wrist. Such spherical wrists render the inverse 
kinematics easily solvable. 

What is going on in the universities right now? One of 
the most interesting things is the design of innovative types 
of actuators. One experimental idea is to attach the rotor 
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Figure 3. Asada's latest direct-drive arm. 

of a very powerful electric motor directly to a manipulator 
link without gears, as shown in figure 3. This gives low 
friction and low backlash. Professor Haruhiko Asada, now of 
MIT, built a prototype direct-drive arm at Carnegie-Mellon 
University and is building a second version here at MIT. The 
arm appears to be capable of carrying up to 10 kilograms, 
at 10 meters per second, accelerating at 5 G. These are 
remarkable specifications compared to current industrial 
robots. Most industrial arms typically move on the order 
of 1 meter per second. The full commercial exploitation of 
direct-drive arms is probably five years away. 

Edinburgh, Ohio State, Toulouse, and MIT have devel­
oped fast algorithms for computing robot kinematics and 
inverse kinematics. These are ripe for technology transfer. 

One of the reasons that current industrial arms move 
slowly is that they do not contain an adequate model of the 
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inverse plant of the robot. Fast robots need better dynamic 
models giving better inputs to feedback controllers. Recently 
several university laboratories, including Purdue, Ohio 
State, and MIT, developed fast algorithms for iteratively 
computing robot dynamics. The algorithms are well suited 
for implementation in VLSI and for pipelined computation. 
A side effect of doing this would be to simplify the wiring 
inside a robot since every joint is currently controlled from a 
central computer. This should improve reliability. Probably 
the five-year frame for transfer is realistic. 

Universities are also trying to make workspace design less 
ad hoc, not just in terms of how the manipulator is designed 
but by taking the definition of the task to be performed, 
perhaps with computer-aided design models, and laying 
out the required fixtures and jigs in a way that optimizes 
performance. One approach is to work in that part of the 
robot's work space where errors do not propagate badly. 
This research is in its infancy, but early spinoffs are ripe 
for transfer already. Japanese research has already led to 
trajectory planning using these techniques. 

Universities, taking a cue from nature, have investigated 
the use and implementation of tendons. Two tendons, called 
the agonist and antagonist, act in opposition to make muscles 
act like tunable springs that can be highly compliant or 
very stiff. 

Consider the human hand. The power plant is in the 
lower arm, above the wrist. This maximizes the work 
space of the hand, since large, heavy muscles do not get 
in the way of useful work. Similarly powerful motors are 
heavy; moving them away from the end effector reduces 
inertial loading, making the end effector more nimble and 
responsive. This research is in its early stages. Because the 
dynamics and kinematic problems and opportunities are 
poorly understood, technology transfer in ten years may be 
optimistic. 
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End Effectors 

Structures exist to transport end effectors. This raises several 
issues: how to design end effectors, how to determine a set 
of grasp algorithms for using that end effector, and how to 
incorporate sensors directly into end effectors. 

Industry mostly offers single-degree-of-freedom end effec­
tors with at most simple binary sensors such as contact 
switches or LEDs. Forging applications, for example, typi­
cally use parallel jaw grippers. To pick up fabrics, sticky 
fingers or vacuum cups are used. To carry liquid, a ladle 
is used. In spot welding, the end effector is the welding 
tong. They are all single-degree-of-freedom effectors, and 
they are restricted in the tasks that they perform. Several 
applications require end effectors that can perform a variety 
of functions. Surface finishing is a good example, as is 
automatic assembly. In surface finishing there are two main 
approaches: the robot can have interchangeable end effectors, 
each specialized to one aspect of the task and mounted as 
the arm visits stations in turn; alternatively a single end 
effector with multiple capabilities can be used. Often the 
latter approach is preferred because multiple capabilities in 
an end effector are useful in assembly. 

The more functions a hand has, the more complex the 
grasping algorithms need to be and the more sensory 
information is required. The IBM 7565 has several strain 
gauges built into the gripper shown in figure 4. This enables 
force-sensing strategies to be programmed. The algorithms 
used for grasping generally are adapted from work done in 
the universities over a decade ago. 

The universities have developed ways of interchanging 
special-purpose end effectors quickly and reliably; this 
work is ripe for transfer. At the MIT Artificial Intelligence 
Laboratory, we investigate designs for multifingered hands 
capable of the same range of prehension as a human 
hand. We are studying two prototypes, a three-fingered 
hand, developed in collaboration with Stanford University, 
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Figure 4. IBM 7565 gripper. 

shown in figure 5, and a four-fingered hand, developed in 
collaboration with the University of Utah, shown in figure 
6. I do not expect to see such dextrous hands on industrial 
robots for many years, but that is only one aspect of the 
work. 

As a necessary side effect of working on multifingere~ 
hands, we are developing theories of grasping, of how a 
gripper of a particular design is useful in a particular 
cluttered environment on a particular range of surface 
shapes. That is what we are really after, and that is what 
is of potential nearer-term application in industry. 
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Figure 5. Salisbury 's multifingered hand. 

Control 

Most of the control work that is being done did not 
come from Artificial Intelligence or robotics. Since about 
1960 control theory has been concerned primarily with 
controlling multiple degrees of freedom in devices such as 
rockets, airplanes , and steam plants. These multiple degrees 
of freedom often interact in strange ways. Key problems 
concern friction , vibration, and inexact models. Robots pose 
new control problems largely because of their kinematic 
structure. 

Many industrial robots are operated open-loop. The most 
common control regime is linear, independent joint control, 
in which a linear control law is closed around each joint 
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Figure 6. One finger of Wood's and Jacobsen's multifingered hand. 

independently of all other joints. There are major problems 
with this technique. The dynamics of a typical industrial 
robot arm can be represented as six (or however many 
degrees of freedom the robot has) coupled second-order 
differential equations. The equation for the torque at the 
elbow, for example, includes a reaction torque from the 
wrist. Reaction torques are ignored in the independent joint 
formulation and treated as disturbances. 

Current university work in control ranges from straightfor­
ward development to innovative research. The Germans and 
the Japanese have put an enormous amount of effort into 
nonlinear control. Another approach is model-reference con­
trol developed by Professor Steven Dubowsky of MIT in 
collaboration with Cincinnati Milacron. Cheap microproces­
sors have led to a number of projects involving distributed 
control. Multiple robots, the fingers of a hand, or the legs 
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of a locomotion system, for example, call for hierarchical 
control, with loops within loops. Compliance calls for hybrid 
control of force, or other sensory modality, and position. 
As with work space analysis, some fruits of this research 
are ready for technology transfer, a steady stream of con­
tributions can be expected over the next few years. Dr. 
J. Kenneth Salis bury of MIT has developed a force sensor 
and a technique for controlling stiffness that uses it. The 
technique has been implemented for one of the fingers of his 
three-fingered robot hand. 

Software Is the Key 

There is more to software for robotics than programming 
languages. Increasingly one needs to be concerned with 
entire systems, sometimes called the factory of the future. 
Many of the key technologies, such as distributed systems, 
multilayered networks, and interactive programming sys­
tems, for the factory of the future were developed originally 
in artificial-intelligence laboratories. 

History shows a steady progression of programming 
languages moving from the universities into industry. In 1971 
researchers at Stanford University implemented the function 
MOVE to tell the robot to move from here to there-quite a 
triumph. MOVE is one of the most important instructions 
ever given a robot or implemented in a programming 
language. The Stanford team implemented homogeneous 
transformations as a· way of saying what here and there 
meant. The resulting programming language was called 
WAVE. It was later modified by Victor Scheinmann and 
immersed in a BASIC-like interactive programming system. 
In 1979, eight years after WAVE, Unimation introduced 
the first commercially available programmable robot, the 
PUMA. The language VAL was a reimplementation of 
Scheinmann's version of WAVE. 

The eight- to ten-year transfer time, far too long in my 
opinion, has continued to hold today, and the sophisticated 
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programming languages under development in. the university 
centers still lead by about the same length of time. AML, the 
programming language for the IBM 7565, the commercially 
available robot that I believe is easiest to program, was much 
influenced by IBM people who studied at Stanford University 
in the 1970s. Two of them participated in the development 
of AL, to which AML bears considerable resemblance. The 
influence of LISP, the language of Artificial Intelligence, on 
AML is strong. AL was designed in 1972; AML became 
available in 1980. 

Programming languages are the repository of what we 
know about robots. A lot of people, especially David 
Grossman of the Yorktown IBM group, have argued that we 
need a whole programming language base. The Yorktown 
IBM group also realized that we need to provide for users 
with widely varying and increasing abilities, from the naive 
user through the applications and systems programmers. 
One of the keys to providing for multiple levels of user 
sophistication is very rich interactive computing systems, 
using joysticks, mice, and window systems. Techniques for· 
building user-friendly systems are already provided in the 
AML system. 

Geometric Reasoning 

Geometric reasoning is an important research issue because 
robots should understand the task 'and work space in ways 
that are more comfortable . ~or an applications engineer. 
Consider figure 7, where the task is to move the block 
from its initial position to the final position without 
crashing into other work space objects. Although solving 
such problems is trivial for human beings, making robots 
do the same is extraordinarily difficult. It is one of the 
major problems prohibiting the linking of CAD models 
with robot programming systems to do flexible automatic 
programming for robot systems. Fortunately there has been 
some recent progress on these kinds of issues. Figure 8 
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Figure 7. A task for a planning system. The block must be moved 
from the intial position to the final position without any contact with 
the cluttered environment. 

shows the intermediate steps found by a geometric reasoning 
program of Professor Rodney Brooks of Stanford University. 

Another issue we are concerned with is under what 
circumstances we can guarantee that a program will meet 
specifications. Consider figure 9, where the task is to get the 
palsied robot to insert the screws into the lid. The problem 
is that the joint angles of the robot are not guaranteed to be 
exact; also the orientations of the held screwdriver and the 
screw are not known completely accurately. The position 
and orientation of the box are subject to error, as are those 
of the lid on the box. We would be lucky to get the screw 
into a bucket. What if we use shorter screws or a shorter 
screwdriver? How does the position of the box in the work 
space alter our ability to meet specifications? How can we 
use the slightly uncertain information delivered by a sensor? 
Brooks has done pioneering work on this class of problems. 

Sensing 

There are two broad types of sensing: contact and non­
contact. Contact sensing includes force, touch, and slip. 
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Figure 8. Path proposed by Brook's planning system. The motions 
are designed such that none of the arm parts bumps into the obstacles. 

N oncontact sensing primarily means vision. Intermediate 
is proximity sensing. A variety of proximity sensors have 
been developed by Tokuji Okada recently in collaboration 
with Takeo Kanade at Carnegie-Mellon University. They 
are ready for transfer to industry. N oncontact sensing is 
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Figure 9. Intelligent reasoning systems can guarantee mating even 
with inaccurate manipulators. 

unobtrusive and reduces positional uncertainty. With non­
contact sensing a robot can adaptively change the position 
of an arm to match the position of an object coming down 
a conveyor belt. 

The purpose of contact sensing can be explained by 
considering scribing on a complex curved surface. The path 
to scribe is defined in the tangent plane of the surface; the 
depth of cutting is defined normal to the surface. Since the 
curved surface cannot be known accurately ahead of time, 
one wants to sense forces normal to the surface-easing 
up if the force exceeds that desired and pressing harder 
if it becomes too small. Again consider inserting a peg 
into a tight tolerance hole as a paradigm of assembly. It is 
hard to do by pure position control. If the robot is made 
very stiff, slight inaccuracies can cause elastic deformation 



J. Michael Brady 196 

called wedging and jamming. An example is closing one 
drawer of a chest of drawers. A better approach is to take 
account of forces and use them to alter the trajectory of 
the peg. Tactile sensors enable one to recognize objects 
by feeling them. There are many applications awaiting the 
development of good tactile sensors and good algorithms 
for interpreting tactile sense data. 

Currently available tactile sensors are subject to wear 
and hysteresis, do not scale well, and do not give good 
responses. Sensor technology is an issue of major concern 
right now in all of the robotics research laboratories, and 
there is good work going on in a number of corporations, 
such as the Lord, General Electric, and Bell Laboratories. 
Poor-quality sensors are inhibiting the development of 
sophisticated interpretation algorithms, just as poor TV 
cameras hindered the development of vision in the 1960s. 
One exciting approach to tactile sensor design incorporates 
sensors directly into VLSI processing chips, like the one 
shown in figure 10. By processing the sense information 
on the sensors, the bandwidth of communication between 
sensor and central processor can be significantly reduced. 
Most early processing of sense data is amenable to local 
parallel processing, well suited to VLSI implementation. 

Developing sensing algorithms is hard. It does not seem 
to be a good idea simply to copy algorithms developed 
in pattern recognition and vision. Industrial robots have 
either poor sensors for touch or none at all. They have 
good sensors for force, ranging from about one-tenth of an 
ounce to about ten pounds. There are simple algorithms for 
picking objects up and simple algorithms for force trajectory. 
University research laboratories have some good ideas about 
sensor design, although most are too fragile for industry. 
The algorithms are much more promising. There is good 
work going on now, although it is likely to be at least five 
years before it is ready for technology transfer. 
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Figure 10. Raibert's touch-sensor chip with onboard processing. 
(Photograph reprinted from International Journal of Robotics Research, 
vol. 1, no. 3, with permission of The MIT Press.) 

Vision is by far the best noncontact sensor because we 
understand the basic physics of vision a lot better than we 
understand the basic physics of the other kinds of sensors. 
Moreover, very reliable vision sensors are available right 
now, unlike those available for touch and force. 

In vision, industry is using techniques that were invented 
in the university research laboratories about ten years ago. 
The basis of the vision systems used by Machine Intelligence 
Corporation, Octek, General Electric, and Automatix is 
a system developed at SRI in the early 1970s. Most of 
these are limited to 2:..D vision, while many of the potential 
applications-for example surface inspection-call for 3-D 
vision. 
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a 

b 

c 

Figure 11. Part a shows a collection of doughnut-shaped objects 
illuminated with a random-dot pattern. Part b shows a perspective 
view of the final result of stereo processing. Part c shows how stereo 
processing moves through multiple; resolution analysis. Courtesy H. 
Keith Nishihara. 
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Figure 12. A pile of doughnut-shaped objects and the surface normals 
produced from them using shading information. Surface normals are 
sufficient for object identification and spatial localization. Courtesy 
Katsu Ikeuchi. 

3-D vision is the most exciting development in vision. This 
research deals with understanding how we see stereoscopi­
cally (figure 11), how we determine the shape of an object 
from shading (figure 12), how we determine the shape of an 
object from a projection of its contour (figure 13), and how 
we perceive structure from motion and parallax. 

Moreover, there is other good work going on that links 
vision systems directly to computer-aided design systems. 
The idea is to recognize images and the viewpoint from 
which the image was taken on the basis of stored models. 

Unlike touch and force sensing, whose transfer is probably 
at least five years away, many vision techniques are ready 
now, particularly those involving structured light, inasmuch 
as surface data like those shown in figure 14 are now 
produced daily in the laboratory. They may be ready, of 
course, but the ten years it took for binary vision to become 
accepted makes me pessimistic. 

Compliance 

Compliance is the solution to the problem of getting robots 
to bring parts in contact with other parts nondestructively. 
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Figure 13. Axes produced from image contours using Brady's theory 
of smoothed local symmetries. The implemented system is insensitive 
to the noise produced while extracting the contours from images. 

When trying to do things with very tight tolerances, we have 
to contend with the fact that most robots are designed for 
accurate and repeatable position-to-position control. Belt 
such a robot with a hammer, and it will not move. That is 
marvelous, until we want to put a screw blade in a screw, 
or do a bayonet insertion, or scribe on a surface. 

For compliance we want a robot that is controllably 
stiff in various dimensions. The problem is that different 
tasks impose different stiffness requirements and different 
geometries. Earlier I discussed scribing on a surface. We want 
to control position tangential to the surface, and we want to 
control force normal to the surface. This naturally calls for 
a hybrid force and position controller. The problem is that 
the constraints are not independent. A small correction in 
position generates a force, leading to a disturbance in force, 
leading to a correction in force, leading to a disturbance 
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Figure 14. Surface reconstructed from laser range data using software 
written by Philippe Brou. Courtesy Philippe Brou. 

in position, and so on. It is hard to implement hybrid 
controllers that are stable yet enjoy all the properties we 
have come to expect of pure position controllers. 

The Draper Laboratory has implemented a device, Remote 
Center Compliance, to do peg-in-hole insertion, but it has 
not been exploited as much as it should have been. There 
has been software for doing so-called active compliance 
since 1976, but no one has implemented it apart from the 
AL system at Stanford. There have also been experimental 
hybrid controllers, but there is a need for much more work. 
Compliance is vital for assembly. Small advances can be 
exploited. The RCC, for example, is used daily in industry. 
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Slow Reality of Artificial Intelligence 

What is the reality of Artificial Intelligence? Contributions 
to current industrial practice span arms, languages, vision, 
software tools, and interactive systems. There is a great 
deal more ready for exploitation, including various kinds 
of newer arms, grippers, programming systems, 3-D vision, 
touch sensors, control ideas, and compliant systems. There 
will be a steady stream of exploitable ideas and devices 
across the entire range of robotics in the foreseeable future. 
History suggests, however, that transfer will be slower than 
it ought to be. 
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The most exciting part of the future is that which deals with 
applied Artificial Intelligence. Sophisticated vision systems, 
initially developed by people in Artificial Intelligence, are 
beginning to be important, making the field of robotics the 
first major commercial use of Artificial Intelligence. 

In part a robot is a substitute for the human brain. In 
part a robot is a substitute for the human arm that can 
handle tools or parts. And in part, in the more modern 
systems, a robot is a substitute for the human eye. 
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o Machine loading/unloading 
o Material transfer 
oDie cast unloading 

o Spot welding 
o Spray painting 
o Palletizing 
o Investment casting 

o Arc welding 
o Foundry cast cleaning 
o Inspection 
o Assembly 
o Deburring machine parts 

Figure 1. Spectrum of robot applications. 

Disturbing Trends 

206 

Let us also review. the size of the commercial field that 
exists today, as shown in figure 1. These are the principal 
applications currently used in the United States and 
elsewhere. Most oftoday's robots fall in the middle category, 
with spot welding consuming the largest single number. But 
intelligent robotics systems form the most exciting and 
highest growth category. 

Figure 2 shows a curve that people in industry need to be 
very conscious of. It shows absolute productivity in leading 
industrial nations. The great interest in robotics is based 
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Figure 2. Productivity per worker in the major industrial nations. 

on the realization that the old formula of winning markets 
through superior product design and marketing is no longer 
good enough. We have to win on the factory floor. Imagine a 
world in which the United States would have a few thousand 
token robots and the Japanese would have 50,000 to 100,000. 
The result would be that we would become one of Japan's 
new sources of low-cost labor. 

Robot sales in the United States passed the $200 million 
mark last year and by the end of the decade should pass $2 
billion. On a world scale, however, we are far from leading. 
Figure 3 shows the comparative view as of December 1981. 



Philippe Villers 208 

Figure 3. World robot population. Adapted from Robot News 
International, March 1982. 

Since then the gap has widened, particularly in the most 
advanced areas such as the area of assembly. Consider arc 
welding. The Japanese produced about 2,000 arc-welding 
robots. We produced or installed about 150. In the area 
of assembly, destined to become the main area for robotic 
applications, Japan produced 1,500 robots in 1982, almost 
all for domestic production. In the United States the total 
number built or installed is estimated to be 100 in the same 
year. 

Vision 

Artificial v1s1on was the first of the widespread uses of 
Artificial Intelligence on the factory floor. The number of 
artificial vision installations is now estimated to be in the 
low hundreds and growing rapidly, covering more than a 
dozen industries and an increasing variety of highly diverse 
applications. 
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Figure 4. General Motors CONSIGHT vision system in action. 

Figure 4 illustrates the widely publicized General Motors 
CONSIGHT, now in production in Canada. It is u~ed for 
sorting castings in a hostile environment in a foundry with 
vision providing guidance for the robot. 

Figure 5 shows bin picking. For those who thought bin 
picking had been solved only in the laboratory, Ford in 
Germany is doing it in production. What Ford has done, 
of course, is cheat a little. This is semi-ordered bin picking. 
Castings have been put down in rows in approximately the 
right position at a negligible increase in cost, making the 
bin-picking problem easier to solve. 

Figure 6 shows the Automatix work horse, AUTOVISIQNR 
II, based largely on SRI technology and some work in struc­
tured lighting done at the National Bureau of Standards and 
at General Motors. It uses the most powerful microproces­
sor currently available, the Motorola 68000, which allows 
million-word memories, and the RAILR language, our own 
proprietary language designed for use by nonprogrammers. 
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Figure 5. Bin picking in a German Ford plant. 

Figure 7 depicts an application at General Motors 
involving automobile front ends. This illustration shows 
the front end of a Chevrolet pickup truck. Ninety holes 
must be inspected in the two seconds available. Before our 
system was installed, if there was any breakage or wear, as 
many as 1,200 bad Chevrolet front ends could be left before 
the next once-hourly inspection. But with our system the 
problem is noted immediately. A part that is bad is sprayed 
red. When three parts in a row are bad, the press is stopped. 

Figure 8 illustrates a process-control application. An 
instrument cluster is undergoing automatic inspection using 
simulated inputs. Both analog and digital outputs are 
involved. 

This next application, shown in figure 9, is a precursor of 
many to come because it involves several concepts: statistical 
process, control, and sophisticated multicamera vision. The 
idea is to inspect the gaps, such as between the car body and 
its hood, to do real-time statistical analysis, and to inform 
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Figure 6. Automatix AUTOVISIONR II vision system. 
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Figure 7. Inspecting a truck front end for correct hole punching. 
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Figure 8. Visual inspection of instrument clusters. 

the upstream stations on the assembly line where hoods are 
being put on. The result is that corrective action can be 
taken before errors creep out of the permissible tolerance 
band, so no bad cars go down the line. 

Vision Plus Manipulation 

Our view is that robot systems are really just computer 
systems in which some of the terminals happen to be 
robots. We therefore stress a computer-centered approach 
to producing intelligent robots. 

Our AI-32 controller, the controller for all our robots, 
uses the Motorola 68000 microprocessor and the RAILR 
language. It controls our AID 800 arc-welding robot, our 
AID 600 assembly robot, our AID 900 long-reach robot, 
as well as our artificial vision system, which can be used 
with all the other products. We will introduce several other 
arms, all running on our universal robot controller with a 
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Figure 9. Using vision to monitor quality. A vision system checks for 
proper gaps between car body and hood. 
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Figure 10. Welding chair frames. 

single unified language, regardless of robot geometry and 
other characteristics. 

Figure 10 shows arc welding at Steelcase Furniture, where 
chairs are turned out at the rate of one every thirty-two 
seconds. Integrated with the system is a turntable so that 
a person can load and unload while the robot welds. 

Figure 11 shows our seam tracker, the result of a marriage 
of artificial vision and welding currently undergoing field 
tests by a major customer. In this application our vision 
system is augmented with a laser beam to provide correction 
for the actual path of the seam, as distinguished from the 
nominal path. Our system works in the presence of the arc 
due to very special filtering techniques. 

In roughly 30 percent of the cases the seam position 
cannot be determined with sufficient accuracy in advance. 
For example, visual seam tracking is often necessary when 
working with the thinner metals, where distortion takes 
place for thermal reasons during the welding process. 
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Figure 11. Guiding a robot arc welder with AUTOVISIONR II seam 
tracker. 

A related problem occurs when the position of the part 
in space is not known with sufficient accuracy even though 
there is no warping or path uncertainty. For this problem we 
have developed a way of using the same system without the 

laser beam, called the Partracker ™. In the Partracker TM 
the vision camera merely does a rectification, provides the 
information to the intelligent robot controller, and the 
standard program is executed with a coordinate system 
transformation. 

Assembly 

The third area of application for intelligent turnkey robotic 
systems is assembly. The robotic assembly field, still in its 
infancy, is clearly destined to be a giant. The example in 
figure 12 is from an application at Texas Instruments, now 
several years old. I include it among assembly examples, 
although it involves testing, because one of the characteristics 
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Figure 12. Texas Instruments robot aids in calculator testing. 

of robotics is that the traditional separation of assembly, 
inspection, and testing no longer exists. The main historical 
reason for the separation is objectivity, a problem there is 
no need to worry about when using robots. 

You see the calculator going down a moving line un­
derneath cameras in the ceiling. The robot picks up the 
calculator and puts it in a test stand, where it is tested. 
The robot then picks it up and puts it back on a belt. 
Another robot works the keys while a vision system wat<;hes 
the read-out to make sure that the calculation is correct. At 
the end of the line another vision-equipped robot identifies 
the calculator, its orientation, and its position so that a 
robot can pick it up and put it in the correct carrying case. 
Texas Instruments is among the companies that have done 
the most advanced work for in-house purposes. 
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Figure 13. Stuffing PC boards. A vision system verifies correct 
identification and proper orientation. 

Now let us look at single-station assembly systems, the 
stuffing of PC boards with nonstandard components, shown 
in figure 13. Here is the end of the AID 600 arm, which has 
a heavy payload capability. That is important because it 
can handle a great deal of tooling, thereby speeding up the 
operation. The lampshade arrangement is used to illuminate 
the part properly so that the component can be identified, 
verifying that it is correct and not in backward. 

Figure 14 shows one of the more advanced applications, 
one involving key caps. At the first station the key caps 
are put into long tubes under vision control, and each 
key cap is inspected for correct legend and good quality. 
At the next station the batter:y of tubes is handled by a 
twenty-two-fingered robot, which does the entire keyboard 
in batches in less than one minute, eight times faster than 
manually. The system uses parallel processing to make up 
for its lack of dexterity and speed co:rt:lpared to a nimble 
human. 
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Figure 14. Robot assembly of keycaps on keyboards. 

Figure 15 shows a large assembly task involving an 
automobile car door. A number of bolts are used to adjust 
the window roll-up assembly. They are in slots bec.ause of 
assembly tolerances so the robot does not know where to 
find the bolt head. Two important advances are involved. 
First, a CAD/CAM system, made by Computervision, was 
used to define the assembly task and feed the information 
to the robot. But to execute the task, the robot needs 
correction for part-to-part variation of the location of the 
bolt head in its slot. The well-known Westinghouse APAS 
system, built mainly for demonstration purposes, is a single 
assembly system that can do mixed production, building 
a whole family of electric motors on the same line under 
software control without tooling change. 

Megassembly 

Since the Westinghouse system was completed, the Japanese 
have gone much further. We have coined the term megas-
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Figure 15. Bolting together car doors using vision to locate bolt 
heads. 

sembly for advanced assembly systems, those that involve 
multistation, multiproduct , progressive assembly using ten 
or more robots. In Japan there are systems with fifty to 
two hundred stations, of which typically at least a third 
are robotic. Many of the rest are hard automation of con­
ventional design, and occasionally there will be four or five 
stations that are manually operated, although the Japanese 
are somewhat apologetic about them. This is revolutionary 
because they are used for mixed production. Up to thirty 
models go down the same line with just software-controlled 
changes. 

Videocassette recorders are made on megassembly systems 
at Panasonic, JVC, and Hitachi. The Sony Walkman is made 
on a megassembly system. All this has happened in the last 
two years, moving the technology from the laboratory to 
the production line. In the United States we must decide if 
we will choose to lag in the introduction of similar systems 
by three or four years, as we have in the case of arc welding. 
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Figure 16. Megassembly system of the future. 

Automatix is very much interested in Megassembly. We 
are talking to perspective partners in developing domestic 
Megassembly systems. I believe it is a very important trend, 
with advanced sensors destined to play a major role, even 
though the early megassembly systems in Japan have few 
advanced sensors and do not use vision. 

The Fut'ure 

Figure 16 shows an artist's conception of a simple megas­
sembly system. More complex ones, with twenty or fifty 
stations, are typically linear, with asynchronous systems 
feeding the parts from station to station and providing 
buffer storage. There are very few of these systems in the 
United States; I hope that the number will increase rapidly 
because it already is growing rapidly in Japan. 
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The current approach to Artificial Intelligence is dominated 
by the clever use of brute force. We use lower-cost, more 
powerful computers to do things we could not do ten years 
ago, but we have not seen any major breakthroughs in 
the way things are done. To me, the A part of Artificial 
Intelligence is certainly a reality; the I part is a myth. 

Factory automation depends upon looking at the factory 
as a whole, thinking in terms of the information in figure 1. 
We cannot look at robotics in isolation because robotics is 
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o Product description 

o Component qualification 
o Parts I i sts 
o Make/buy decisions 

o Tool requirements 
o Operation sequencing 

o Capacity planning 
o Master scheduling 
oMRP 

o Inventory 
o Accounting 
o Production Control 

ODNC 
o Robots 
o Auto insertion 
oTesting 
o Processes 

Figure 1. Many facets of factory automation. 

only a small piece of the solution. Instead we have to think 
about systems for design, manufacturing planning, process 
planning, production planning, factory management, ·and 
the actual intelligent systems themselves. 

All of these systems interact, and they all share data. The 
sharing of data is probably the most fundamental issue to 
be faced if we are to learn how to build integrated factory 
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systems. Machines already replace human muscle. Factory 
intelligence centers will replace human brains to gather 
information and make decisions. How much of that is really 
going on? 

Factory intelligence implies a know ledge base; it implies a 
need for information collection, sensors, and communication; 
and it implies the ability to adapt to changing environments. 

An intelligent factory system must have these attributes. It 
must have a good model of the world and good information­
gathering capabilities. It must operate with incomplete data. 
It must be able to handle exceptions so that it can tolerate 
occasional failures; a factory system must not come to a 
halt because one piece fails. Finally, an intelligent factory 
system should learn, but that is a long-term dream more 
than anything else. 

So the reality is that total factory intelligence is a myth. 
All we have are limited solutions, achieved through brute 
force computation. 

Artificial versus Natural Intelligence 

Let me give some examples of limited roles where artificial­
intelligence concepts are being employed. 

Expert systems can leverage human intelligence. Expert 
systems are real, they are important, and their use will 
increase, especially in areas having to do with the diagnosis, 
repair, and maintenance of equipment. 

Computers can help with process planning, describing 
how to make a part within a given factory architecture. 
That kind of help is on the rise. Systems with that kind 
of capability are installed at between fifty and one hundred 
locations worldwide. 

Computers can be part of smart sensors, permitting 
adaptive control. Smart sensors allow machines to be less 
accurate, to be more tolerant to changes, and to respond to 
the real-world environment. 
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Finally, computers can replace humans in routine tasks, 
but humans must handle many exceptions. Moreover, 
humans must make the strategic decisions, like those 
concerning what equipment to buy and what processes 
to put in. Computers cannot handle the really big problems. 

The Japanese 

Figure 2 shows the various technologies fundamental to 
robotics. They include mechanical design, controls, sensors, 
software. the technology of robot manufacture, and the 
applications of robots. The three in the middle are those 
that I believe are most subject to influence by Artificial 
Intelligence. According to my own assessment, the United 
States leads today in all three categories, however, we 
must be very careful about the Japanese fifth-generation 
computer proje~t. U.S. leadership may change in the future. 

The current robot market is dominated by manipulators. 
In that area Japan is clearly the leader, and the impact 
of Artificial Intelligence is low. But the market is evolving 
from selling manipulators to selling what we call focused­
application systems such as welding systems and assembly 
systems. The market for such systems is increasing, and 
therefore the importance of Artificial Intelligence is increas­
ing. 

The Future 

In the longer term robots will be just one element in in­
tegrated manufacturing systems that link numerical controls, 
programmable controls, CAD/CAM, and communications. 
Here the leader, especially in CAD/CAM, is· the United 
States. As shown in figure 3, the importance of Artificial 
Intelligence is high, and the market today is almost nonex­
istent. 

Robots are going to get smarter in the future. The difficult 
problems of today, like bin picking, will be routine in the 
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Figure 2. Some comparisions between the United States and Japan 
in key robotics technologies. 

Business Leader Importance Current 
of A.l. market 

Manipulators Japan Low High 

' Focused u.s .• Increasing Increasing 
applications Japan 

' One element u.s. High Low 
of automation 

systems 

Figure 3. Evolution of the robotics business. 
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future. We are going to have higher performance robots with 
lighter structures. Today a robot can pick up only about 
5 percent of its own weight because the robot's structure 
must remain rigid. It cannot tolerate any motion or any 
flexing. In the future, smart sensors will enable robots to 

. compensate for flexing, enabling much higher performance. 
Increasingly robots will be parts of systems. Companies 

will sell total solutions, not just robots. 
Factory automation and flexible manufacturing will allow 

companies to respond to changing market demands quickly. 
Reprogrammable factories will become reprogrammable is­
lands of automation through the increasing use of manufac­
turing cells and group-technology concepts. 

Finally, the importance of information management 
and communications will grow. Information handling and 
computer control will be the major obstacles to tying 
factories together into integrated systems in the future. 

No Breakthroughs 

As for Artificial Intelligence, I see more of the same until 
there is a major breakthrough in our understanding of how 
humans deal with incomplete data, make decisions quickly, 
and react smoothly to unforeseen circumstances. 

Computers are becoming less expensive, making the 
computational costs of more applications reasonable. I do 
not see any major breakthroughs on the horizon right now 
in Artificial Intelligence. 

General Electric plans to be a major participant in 
factory automation. We are bullish on intelligent robots and 
intelligent sensors. But as far as making money in Artificial 
Intelligence, I think the best way is to hold meetings with 
paid attendance, such as this one. 



 

Winston 

17 
Robotics: 
A Discussion 

I have an uneasy feeling about the relationship of robotics 
to Artificial Intelligence. Dr. Brady has called robotics 
the intelligent connection of perception to action. When 
phrased that way, Artificial Intelligence is a part of robotics 
rather than the other way around. The rooting of robotics 
in Artificial Intelligence is something we may raise some 
questions about. 

Mr. Villers, you discussed some of the current applications 
of vision that your company is particularly eager to exploit. 
How important is vision? 

Villers 
I have observed an unusual coincidence. The opinion of the 
importance of vision among robotics vendors is divided into 
two camps. Those vendors who have vision in their product 
lines say that it is very important; those who do not have 
it in their product lines say that it is not needed. 

Brady 
Nevertheless most of the discussions today have been about 
2-D vision. The major research push that we have seen in 
the university laboratories in the last seven years has been 
in 3-D vision. There has also been a large push in various 
other kinds of sensor modalities. When do you think that we 
will begin to see commercial exploitation of the kind of 3-D 
vision systems we have been developing in the university 
laboratories? 

Villers 
The first step in that direction is 2 1/2-D v1s1on, using 
structured lighting. For example, we measure the height 



Discussion 230 

difference of a particular point as distinct from trying to 
do a complete reconstruction of the part in 3-D. The main 
thing that is holding back full 3-D systems is that none 
approaches being a real-time system. Having to wait twenty 
or thirty minutes to be able to interpret what you saw limits 
it to certain narrow classes of inspection applications. Some 
more work will be needed before that kind of time scale 
ceases to be representative of what is required to reconstruct 
a part. 

Brady 
I think that is absolutely right. It should be pointed out, 
however, that the actual kinds of computing developed for 
3-D vision have been essentially those that lend themselves 
to parallel irnplementation using the kind of VLSI circuitry 
now being developed. It seems to me that would not be a 
major risk for some company that wanted to do 3-D vision 
on a five-year time span. 

Villers 
I agree that within five years we will see significant 
commercial use of 3-D vision. In industry a company that 
jumps in to what has been done in the university laboratories 
and tries to commercialize it usually goes out of the business, 
and conversely the company that does not keep up with 
what is going on in the universities also goes out of business, 
but a little later. Something in between seems to be the 
right policy. 

Winston 
That brings to mind a question concerning what seems to 
be excessive gloominess on the part of Americans about 
the issue of competition. Dr. Russo, what do you view as 
the right way for U.S. industry to collaborate with univer­
sities to reduce the possibility that we will ~e wiped out 
in what appears to be a highly exciting technical area? 
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Russo 

I am not at all as gloomy as you intimated. U.S. industies tend 
to be ahead technologically. What I think has happened, 
for various reasons, is that our visible-to-the-consumer 
businesses, such as automobiles and consumer electronics, 
have not invested in automation to the extent that high­
technology businesses have. It is not just a technology 
issue; it is a question of having the financial incentives and 
the reasons to implement them. We have not had good 
management in those areas in the past. As far as competing 
in those businesses, I see no reason why the United States 
cannot compete successfully. There is no trick to it; it is the 
way you win football games-blocking and tackling, getting 
down to basics, making quality products, using leading-edge 
technology, and addressing markets that need solutions. 

Villers 

In terms of the users of robots, I think that the fact that 
the Japanese lead is increasing rather than shrinking is 
a matter of great national concern and should be, since 
the kind of megassembly systems I described are ordinary 
techniques with which hard automation or manual labor 
cannot effectively compete. That should be a matter of great 
concern. 

As far as robot manufacturers are concerned, because 
of ·the volume differences, robot arm manufacturing is 
already dominated by Japanese producers. GE, IBM, and 
Automatix use arms made abroad, in many cases in Japan. 
Fortunately the area where we are still very strong is the 
area most relevant to this particular community-Artificial 
Intelligence. More intelligent controllers with better software 
and better sensors are an area of U.S. strength. Automatix 
sells more artificial vision systems in Japan than any 
Japanese firm does. 
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Winston 
Do you find that your sales force is still engaged in 
proselytizing about the usefulness of robotics, or can you 
confine your sales e.fforts to selling Automatix as opposed 
to selling the concept of robotics? 

Villers 
Let me contrast the situation with my experience twelve 
years ago in the CAD /CAM industry at Computervision, 
where we had tremendous difficulty convincing people that 
they should listen to us at all. In the case of robotics that 
is not the case. Between the Japanese and the media, few 
U.S. managements are dense enough not to believe that 
if they intend to have a future, automation and flexible 
automation is necessary. The convincing we have to do is 
that the particular job they have in mind can be done 
cost-effectively and, of course, that we are the most suitable 
vendor. The basic question of whether robotics is important 
never comes up. 

Brady 
Dr. Russo, do you consider the problems of robotics to 
be essentially solved and that the major challenge is the 
development of flexible manufacturing systems? Given the 
existence of hierarchical and local-area networks, what do 
you consider the major challenges to be? What are the 
costs? What are the time scales? 

Russo 
You need a systems approach, and robots are only one 
piece of the puzzle. AI though there are still challenges 
in robotics, there are lots of challenges everywhere in 
the process. I feel the biggest one is the data-handling 
challenge, moving toward the paperless environment, link­
ing CAD systems data bases with manufacturing data 
bases, being able to handle exceptions, and have the thing 
run as a flexible manufacturing automated environment. 
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Brady 

To what extent do you think that some of the ideas of 
Artificial Intelligence could contribute to that flexibility? 
Aft~r all one of the key contributions of Artificial Intelligence 
has always been that it could develop software that responds 
predictably to situations that could not be described in 
advance. 

Russo 

We are now implementing automated process planning that 
uses artificial-intelligence concepts in one of our plants in 
Charlottesville. Even in the manufacturing of a standard 
line of numerical controls, every one is a little bit different. 
You want to develop a process plan to tie everything 
together through the flow of that factory. That is going to 
be done with the aid of computers that use a lot of artificial­
intelligence concepts. Some of those are more difficult and 
more challenging than just vision or just robotics. 

Villers 

Earlier someone described how expert systems for medical 
diagnosis worked well on theoretical patients and poorly on 
real patients. The same thing occurs on the factory floor. 
A flexible manufacturing system as a theoretical process is 
really not intractable. In terms of real processes, Artificial 
Intelligence is needed in several areas but particularly in the 
area of self-adaptive systems that can deal with the nor­
mal occurrences and variability in manufacturing. Whether 
you call it megassembly, as I do in assembly, or flexible 
manufacturing systems, in machining, it is the same concept 
of having the subdivision of labor reach its ultimate limit 
in large, complex operations without the limit of human 
boredom. People are willing to be treated as robots only 
up to a point. But there is no equivalent problem with 
robots. It is just a problem of organization and adaptation. 
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Brady 
It is tremendously difficult to capture knowledge. What you 
have just been raising, in fact, is the whole issue of encoding 
the knowledge about various kinds of processes and about 
parts in order to build flexible manufacturing systems. How 
difficult do you think that is, and what kind of time scale 
do you think we are talking about? 

Villers 
That is a very difficult problem, and yet the time scale is right 
away. Why the paradox? Because just as the bin-picking 
problem has been solved in the restricted but commercially 
useful case, there are flexible manufacturing problems in 
the restricted case that are commercially useful right away. 
The more difficult problems will take a lot longer. 

Winston 
Mr. Villers, you are seated next to two industrial giants. 
What do you feel the role of a relatively small company like 
Automatix will be in the development of robotics? Do you 
see lots of small companies springing up like minicomputer 
companies used to spring up? 

Villers 
It has already happened. There are over fifty companies 
in robotics and over thirty companies making some claim 
to being in some form of artificial vision. That process is 
taking place as it did in the minicomputer industry, and I 
expect the traditional shake-out will follow. 

I believe that being small is, on balance, an advantage. 
When the industry is small, it is a question of whether you 
would rather be David or Goliath. If you are David you had 
better not carry too much armor; you had better be very 
nimble and run quickly. In a young industry I would rather 
be on the side of David than on the side of Goliath. 

The history of technology shows that in the last twenty­
five years, most new fields have eventually had in their 
leadership companies that grew up in that field and that 
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very large companies that came in from other fields did not 
dominate it. IBM still does not dominate the small computer 
field. There is a little company started by Ken Olsen that is 
doing all right. The CAD field is not dominated by General 
Electric and IBM, which are both respected figures in it, 
but by my old company, Computervision, which grew up in 
that industry. The giants are giants, but it is difficult for a 
giant to operate in a tiny field. 

Winston 
Do you regard dreams of robots walking through the parks 
picking up beer cans so far out as to be dangerous science 
fiction, or do you see that type of robotics in the future? 

Villers 
When I was a graduate student here, I saw an amusing 
development of Ivan Sutherland, called SKETCHPAD, 
which was the beginning of CAD I CAM. Students have 
the opportunity to see here what could be commercially 
important years later. That is very exciting. Some students 
have the even more exciting experience of playing a role in 
making it happen. So without assuming that what is in the 
cartoons is going to be on the factory floor, the ability to 
see the beginning kernels here and then see them gradually 
introduced in industry is tremendously exciting. 

Russo 
I think there is excitement across the board in factory 
automation. I look at robots as very exciting; I look at 
CAD I CAM and graphics as very exciting. The technology 
is moving down into our future CAD I CAM systems, which 
will allow you to take objects, view them as solid models, 
and move them around. 

Winston 
The area of nuclear safety comes up from time to time. Some 
of my friends have told me it is already too late because 
we will not have any ro hots in time to go in to fix those 
things. ·They point out that the fusion era, if it ever comes, 
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will be even worse because fusion plants will be even dirtier 
than present atomic power plants. Do you see these things 
as opportunities or as distractions from the main thrust of 
America's budding robotics industry? 

Russo 
You have to look at the maturity of the market. The point 
is that companies are primarily out to ·develop business. 
They need to make a product that will sell in large enough 
quantities to get returns on their investment, or the price 
has to be high enough per unit, a sort of a contract business 
where you can do special applications. With the current 
state of the nuclear business in this country, the volume of 
ro hots to repair the plants would not be very large. 

Winston 
I chose a bad example. There must be many things like 
coal-mining safety or repairing long-distance high-tension 
w1res. 

Brady 
Are there going to be new opportunities because there are 
going to be new kinds of production capabilities? 

Villers 
The examples cited are from a neighboring and related field, 
the field of teleoperators, machines remotely controlled 
by human beings. That is true of nuclear safety, coal 
mining, underwater operations for a variety of purposes, 
and assembly operations in space. I also think it will give rise 
to a new breed of hybrid robot. A robot, of course, operates 
under program control, a teleoperator under remote human 
control. At the present time the field you are talking about 
is not generally considered part of industrial robotics, and 
the manufacturers of industrial robotics systems have not 
turned their attention to the distinct teleoperator field. 
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Winston 
You have already brought up this subject of volumes and 
pointed ·out th~t volumes are of concern to you. As these 
volumes grow, do you see anything dramatic happening in 
the pricing of robots or the way they are made? Are they 
going to be built out of extruded plastic? What do you see 
as the future of that kind of business? 

Russo 
You will get more performance for the buck certainly. In 
certain technologies, like mechanical structures, progress 
will be slower. The big breakthrough there will be the 
ability to use smart sensors that will allow the use of lower­
cost, flexible ~tructures, which can be made of plastic or 
other materials. The controls area will follow the traditional 
computer price-performance curve. You will get a lot more 
computing power for less money as time goes on. The same 
is true for sensors. 

Brady 
Most of those little plastic robots that cost from $50 to 
$1,500, even those controlled by little microprocessors, 
typically are used for education. I wonder if we will see 
the development of robots out of special kinds of cheap, 
composite process materials, that you will be able to buy 
for about the same price as personal computers now, that 
will do a reasonably useful set of things, for example, in the 
kitchen. 

Russo 
I can't think of a reasonable set of useful things you could 
do in a kitchen with a robot. 

One of the problems here is the law of diminishing returns. 
We had an internal discussion at GE where one person went 
to INTERSIL with a need for a custom chip-semi-custom, 
actually-for an ap.plication. He said, "I'm willing to pay 
$25 for 40,000 of the chips but I will pay you $1 if I can get 
a million." I was quick to figure out that you are better off 
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selling him only 40,000 chips. I think at some point we have 
got to look at the total market, if the robot is going to cost 
$1,000 and you are a large company with large overhead. 
My prediction is that those will tend to be specialties. 

Brady 
The big incursion of computers began when they appeared 
in very small companies. Do you see the same kind of trend 
within robotics? 

Villers 
I think you are going to see industrial robots used in very 
small companies. It is already happening in Japan. The 
smallest company to use an industrial robot in Japan has 
one employee, who also happens to be president. 

Brady 
Where do you think the main opportunities for new 
companies, new products, and venture capital activity will 
be in the next five years in robotics? Obviously there is a 
broad spread from sensing through mechanical structures 
through artificial-intelligence programming. Where do you 
think the main opportunities lie for people who want to get 
into this field? 

Russo 
If you want to restrict it to the area of robotics, I would draw 
an analogy with the history of numerical controls, where a 
large market developed in terms of programming aids for 
machines-either stand-alone work stations or time-shared 
services that would allow you to program your robot in 
higher-level languages, in a CAD/CAM environment, to 
simulate the whole function, and then post-process the 
information to a specific robot that you have at hand. I see 
a big opportunity there. 

Winston 
Are there really no VISICALCs in this area? Is there nothing 
that I can do to start my company tomorrow with a little 
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widget that will identify objects with three fingers or inspect 
printed circuit boards? 

Villers 
There are always opportunities, but the problems in the field 
have to do with standardization. What made VISICALC 
interesting is that you could sell it for· large numbers of 
already produced personal computers, and you could have 
several versions to take care of several popular lines. If 
you had to sell a personal computer designed to work with 
VISICALC with every VISICALC, I suspect the sales would 
not even have come within two orders of magnitude. 

Winston 
My guess is that is false. I think an enormous number of 
personal computers were sold specifically to run VISICALC. 
The computer was sold to go along with VISICALC, not 
the other way. 

Villers 
Even if you are right, the cost of the personal computer makes 
that by no means absurd. Standards are missing in robotics. 
For instance, it is ridiculous that every manufacturer has to 
design his own end effectors for every possible purpose. But 
as long as there are no standards on interfaces and on end 
effectors, there can be no ready market for small companies 
that would specialize in making good end effectors. Similarly 
in terms of interfaces of various sorts and in terms of 
application programs, there is no way to write an app!ication 
program that will run on two manufacturers' robots. In many 
cases there is no way for an outside software firm to write 
one application program that will run on one manufacturer's 
robot. 

Russo 
From a development point of view, robotics is fairly mature 
now in the sense that what is now in the marketplace was 
developed in past years. You do not see what is going on 
now. If you had asked that question three or four years ago, 
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you would have gotten a long litany of things that could have 
been done. Right now the problems that are unsolved are 
very difficult to solve. Companies like Automatix, GE, and 
IBM are pursuing areas that they believe they have expertise 
in. There will be a lot of new products coming out in the next 
two or three years that are currently under development. 
But you do have a two- to three-year development cycle, 
so you cannot judge the state of the art by looking at the 
marketplace. 

Villers 
In high technology one of the secrets to being an entrepreneur 
is getting into a new field at the right moment. Several years 
ago the opportunity in robotics was wide open because not 
a great deal had been done. There are always new fields 
that open up about which the same statement can be made. 
If I were starting today, I would not be an entrepreneur on 
last year's frontier or that of the year before. I would be an 
entrepreneur on this year's frontier or next year's frontier. 
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Marvin Minsky 
Donner Professor of Science 
Artificial Intelligence Laboratory 
Massachusetts Institute of Technology 

Professor Minsky has been one of the most influential 
leaders in the field of Artificial Intelligence, emphasizing 
approaches to problems of symbolic description, knowledge 
representation, semantics, machine perception and learning, 
and, recently, in psychological and physiological theories of 
imagery, memory, and new computational structures. He was 
an early contributor to the modern field of intelligence-based 
mechanical robotics, planning the early stages of several such 
projects both in and outside of MIT. Professor Minsky is a 
member of the National Academy of Sciences and president 
of the American Association of Artificial Intelligence. He 
is on the Board of Governors of the L-5 Society and a 
fellow of the Harvard Society of Fellows, the IEEE, and the 
AAAS. Professor Minsky received the BA in Mathematics 
from Harvard University and. the PhD in Mathematics from 
Princeton University. 

It is my impression that American industry does not 
understand the way ideas develop or how they have to be 
nurtured in order not to fall behind in the long run. That is a 
startling indictment, but in areas like automotive machinery, 
consumer electronics, steel, glass, and many other fields, we 
all know that someone goofed. The prosperity that is just 
around the corner for the world, I think, is quite glorious. 
It is questionable whether America's industry and citizens 
will have a reasonable share of it. 
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Missing Links 

Most of the things you hear about are applications. It 
is very important in Artificial Intelligence to pick a good 
problem to work on. But look carefully at the applications 
systems: they. are wonderful, they save money, and they 
solve problems. But are they intelligent? 

The existing applications programs are smart in some 
sense. But I think that something is missing in all of them. 
For example, the expert systems now being marketed and 
manufactured for particular special purposes do not learn, 
and they do not have common sense. They are too narrow. 

Why is it that artificial-intelligence systems do not learn? 
The answer is simple: first, only half a dozen people have 
worked on the problem of writing programs that learn, 
and, second, the problem is hard. The medical systems are 
wonderful, but they do not know what a person is. We have 
a magnificent kidney program at MIT that in its area, is 
probably as good as the best medical specialist, but it does 
not know that the kidney is in the body in any sense. Nor 
does it know what a body is. Nor does it know that if you 
yell at someone, he will get depressed and act sick. 

The Well Is Running Dry 

In the laboratory we regard the term expert system with a 
. certain amount of scorn. Frank Lloyd Wright once said an 
expert is a person who does not have to think; he knows. 

In a sense today's expert systems demonstrate a marvelous 
fact we did not know twenty-five years ago: if you write 
down if-then rules for a lot of situations and put them 
together well, the resulting system can solve problems that 
people think are hard. It is remarkable that much of what we 
think requires intelligence can be done by compiling surface 
behavior rules. Many people in this field are surprised at 
that. 
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Similarly twenty-five years ago we did not know that 
if you wrote a chess program that looked at all possible 
moves for about five layers ahead, it would rank at the level 
of a middle-ranking chess club person. There is no chess 
program that plays at the grand master level, but there are 
chess programs that play at the expert level. Curiously, the 
less intelligence these programs have, the better they have 
done. There have been some experimental programs that 
explored strategic concepts and tried to understand why 
taking someone's queen would be good. But the programs 
in the 1ittle chess machines now for sale say that if you lose 
your queen, you have lost a certain number of points. Those 
work pretty well. 

The success of rule-based systems bodes ill for making 
further progress. Companies hiring people who have been 
trained in this area must look ahead a few years. There is 
no significant increase in the number of people working on 
the ideas that we will want to use in ten years. The number 
of people doing basic research in Artificial Intelligence is 
probably under one hundred people and maybe under fifty. 
The explosion in Artificial Intelligence does not resemble 
the explosion in Molecular Biology. 

If someone discovers that a new antibody can be attached 
to one T cell and cause it to eat a bad T cell, then there are 
dozens of people, maybe hundreds or thousands, who are 
qualified to work on applications of that antibody. When 
someone makes a discovery in expert systems, there are not 
dozens of people to carry on. Among the most successful 
work that we have done in our Laboratory was making a 
robot that could pick up blocks and stack them. In doing 
that we painfully discovered many facts of common sense, 
such as the fact that you should put the bottom block on 
the table first if you are going to build a tower. 

There are no programs yet that can understand simple 
mechanical causality. How can a program know that you 
can pull with a string but not push with it? 
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Mimi Sinclair, a psychologist in Geneva, has studied what 
children do with sticks, spoons, bottles, and pails. She 
discovered that a typical child at some time in his or her 
life will spend three or four weeks almost singlemindedly 
fussing with containers and inserting things in apertures. 
If you look superficially at these children, they look as if 
they are playing. But if you look closely at slow-motion 
videotapes, you will see that a child is a little scientist making 
hypotheses. This process is extensive, meticulous, and goes 
on for hours a day for several weeks. You rarely see an adult 
with the attention span of a child, studying something so 
carefully, except when you watch someone learning to shoot 
baskets or to play chromatic scales on the piano. Then you 
find adults spending hours doing microexperiments. They 
will not realize they are doing experiments, of course, they 
say it is just in their hands, not their brains. 

Basic Research 

My point is that there is very little basic research going 
on right now. The general principles of most of the expert 
systems being made today are very close to the specifications 
published in Alan Newell and Herbert Simon's Human 
Problem Solving over ten years ago. The procedures described 
in their book descend from ideas that appeared in Henry 
Ernst's robotics program in 1960. 

If we do not start to encourage people to work on simple 
matters like telling cups from saucers and apples from 
bananas and people from chairs, we are going to lose out, 
and our software will come from Japan. 

There is a frightening precedent in the way we got 
most of the good Englishmen about ten years ago. The 
British National Research Council decided that Artificial 
Intelligence was childish. There was a report that led to the 
breaking up of the groups at the critical-mass universities, 
particularly the University of Edinburgh. 
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The same sort of thing happened in the United States. 
John Pierce believed that computers could never understand 
language. In the early 1970s he became the head of a National 
Academy of Science committee that decided that work on 
Artificial Intelligence and natural language was fruitless and 
that the government should not support it. Fortunately 
the Defense Advanced Research Projects Agency paid no 
attention. A couple of years ago there was tremendous fear 
in the scientific community that the Reagan administration 
was going to cut basic research budgets. It changed its mind, 
and the basic research cuts have not happened. But the 
opposite has not happened either. 

Many of my students do not do projects that they 
would like to because we cannot afford to buy enough 
LISP Machines. The big laboratories at the Massachusetts 
Institute of Technology, Carnegie-Mellon University, and 
Stanford University have fairly good equipment, but none 
has the amount of equipment per person that is needed to 
pursue basic research at full speed with high morale. One 
consequence is that the computer-starved students are more 
easily tempted by industry. 

High salaries are another temptation, and that is a problem 
that I see no way to solve. I am, however, thinking of starting 
a private research institute to do basic research in Artificial 
Intelligence, feeling that something has to be created that 
is in between the universities and the companies. [This 
company, Thinking Machines, is now in business.-Ed.J 

What Industry Does Not Do 

I think it will be almost impossible for industry to do basic 
research in this field. Many industries think they are doing 
basic research, but nothing basic seems to come back to 
the field from the application. You can say you are doing 
research if you are making a DIPMETER ADVISOR, but 
I do not see new fundamental ideas for constructing such 
programs emerging from that research. 
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IBM has made a tremendous contribution in supporting 
research in the universities. Its efforts in basic research 
in its own laboratories have worked in Physics but have 
not worked well in Computer Science. Xerox succeeded for 
a while. The Xerox Palo Alto Research Center was well 
funded, had very good equipment, and for five or seven 
years was one of the few good industrial laboratories. Bolt, 
Beranek, and Newman did basic research on a shoestring 
for many years. 

None of the artificial-intelligence groups in industry is 
doing really basic research. They do not make machines 
that learn. They do not work on the simplest problems 
of commoii sense. In general they are not working on the 
kinds of things that ten years from now could produce a 
new wave of intelligent systems, just as the current wave of 
expert systems comes from the basic research done in the 
mid-1960s. 

Forgotten Successes 

The successes that have come out of Artificial Intelligence are 
sometimes forgotten, along with the credit. In about 1965 we 
banned daytime computer-game playing in our Laboratory. 
We had invented a game called Spacewar that everyone 
loved, but it ran only on our main research computer. 
Spacewar, written by Model Railroad Club students and 
other hackers in the early 1960s, is very much like Asteroids 
and similar games of today. 

In the early 1970s some students got some capital and 
tried to market such things; they went broke. Computer­
based video games really started to be successful in the late 
1970s, and this was because the microprocessor then cost 
$100 instead of ,$20, 000. The reason that the students did 
not succeed was because the time was not right. 

Word processing also came out of the artificial-intelligence 
community. 
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Time sharing was invented by artificial-intelligence people 
in around 1960 or 1962, on the first PDP1, before DEC 
was really a computer company. Finally, about seven or 
eight years later, the commercial world started to make 
time-sharing systems. 

Moribund Software Industry 

There is a language, called PROLOG, that is becoming 
popular because it has some automatic deduction ideas. 
The Japanese, in their fifth-generation project, have decided 
to use this ultra-hyper-modern gadget, PROLOG. The 
Japanese will provide their researchers with machines that 
are good for that. 

We did this once, in 1970, with a language called 
PLANNER. It turned out to be uncontrollable. That might 
have been our fault or PLANNER's, but I do not think it was 
our fault. I think the Japanese will program in PROLOG for 
two or three years, write some very sophisticated programs, 
and then give up and go back to LISP. But even after a 
three-year waste of time, they will be ten or fifteen years 
ahead of Americans who are still trying to get industrial 
people to use languages like PASCAL. 

The American software establishment is in terrible shape. 
The modern languages that are supposed to replace FOR­
TRAN and COBOL are no better than their predecessors. 
The reason is that to make an intelligent system, you 
eventually want the system to be able to learn to improve 
itself. In order to do that, that system must write its own 
little programs. I defy anyone to write a PASCAL program 
that can write a PASCAL program or a FORTRAN program 
that can write a FORTRAN program. 

A key feature of LISP is that you can either compile 
things or leave them in their source-code form. In fact, in 
fancy systems, if the compiled form is· inconvenient, you 
can uncompile the program again. It seems to me that a 
modern language is one that can talk about itself as well 
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as other things. My test for adequacy is whether you are 
programming in a language that can express things like 
simple programming ideas. If it cannot, failure is around 
the corner. 

Threat Is Internal 

Many marvelous things are happening, but many of them 
are happening because of research done ten or fifteen years 
ago. These things are now within the reach of practical 
applications because computers have become a thousand 
times cheaper. In 1970 memory cost a penny a bit or so or 
maybe five cents; now memory is a hundredth of a cent a 
bit. Processors are much cheaper and faster. It is odd, then, 
that industry is using software developed a long time ago 
under other conditions. 

Let me return to the people· problem. When I have a 
good student, there is no place I can send him other than a 

·university, and the universities have stopped expanding on 
the whole. There is no place the good student can work for 
five years on a hard problem that does not have a near-term 
industrial payoff. There is no place a young person can work 
for five· or ten years on a really hard problem the way all 
those Einsteins and Pasteurs did when they faced a hard 
problem. 

I am not an expert on the future, and I do not know if the 
Japanese fifth-generation project will overtake us. They use 
the right words, but that does not mean they are a serious 
threat. Maybe they are, and maybe they are not. 

The serious threat is internal-in not providing young 
researchers with nonindustrial environments where they can 
work for five or ten years with good equipment. The United 
States is in a state of remilitarization. When I spoke last 
summer at the Artificial Intelligence Association meeting, I 
complained that there then was a plan to build one hundred 
Bl bombers. As Carl Sagan said plaintively one day, maybe 
we can make do with ninety-nine. Just one of those machines 
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that cost a $1 billion would probably pay for ten years of 
basic research. 

But there is no plan. The only agency that funds basic 
research on a large scale is DARPA. The National Science 
Foundation tries, but it is forced to divide its money up 
among a lot of little projects, and you cannot do well in this 
field unless you have five or ten people, a staff, and very 
good equipment. 

Big Companies 

I do not have a solution. I once tried to get a little research 
money from a wealthy company that has boasted about 
how large and capable its artificial-intelligence group is. 
This proposal to support a few students bounced back and 
forth for three years. Generally I am discouraged with what 
happens when large companies get involved. They do not 
seem to understand where the ideas came from and where 
the new ones will come from in another decade. 

*** 

Question from the audience 
How do you feel about the prospect of eventually achieving 
really intelligent machines? 

Minsky 
It is a very hard problem. I certainly believe that we are 
making progress and that as we learn, the machines will 
become more intelligent. Someday they will become smarter 
than people. I do not think there is anything wrong with 
people, but I believe that evolution creeps along and that 
there is no reason to think that just because we are here now, 
we are the end of human evolution either. Since machine 
evolution is only thirty years old, computers are not as 
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smart as a four-year-old child, but I do not see why more 
and more research should not help. 

Let me say something about time scales and perspectives. 
One strange thing is that somewhere in the milieu, there arose 
the idea that Artificial Intelligence had reached a plateau. 
People ask, "Why is Artificial Intelligence on this plateau 
where it does not get any new ideas?" This is ridiculous. For 
the number of people working on the fundamental issues, 
the new ideas are coming along fine. Professor Winston and 
I work on learning in our Laboratory, and there is progress 
there, involving reasoning by analogy. 

Elsewhere there are a lot of people interviewing experts 
and writing down rules for how they work, and that is a 
valuable part of understanding how experts work. But it 
is important to make machines that learn by experience, 
that themselves interview experts and find out how they 
work, and do it themselves, and read books, and embody 
the things that make people so smart. 

We are alway in a hurry to see the fruits of our research. 
Nobody would invest in something with .a payoff of three 
hundred years. Well, nobody? It was three hundred years 
from Newton to Einstein. There was no decade in that three 
hundred years when nothing was discovered. There was no 
plateau in the development of modern physical science. Nor 
has there been any in Artificial Intelligence. 

Suppose there is a student with an idea. He learns the 
techniques. He reads. He finds out what other people have 
done. In about five or six years he has written a thesis. 
So the time between a good idea and understanding its 
implications and fitting it in with other ideas is generally 
about five years. Artificial Intelligence dates perhaps from 
about 1957. So you see, Artificial Intelligence is old enough 
for only five or six waves of ideas. The grim fact is that it 
always looks as if there is a plateau in the last five years 
because you do not know what the good ideas are yet. 
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The short answer to the question is that the machines we 
create will become more intelligent. It might be fifty years, 
or twenty five, before a few great ideas produce remarkable 
improvements in intelligence. It might be that we need one 
hundred more pedestrian ideas, in which case the machines 
will not be smarter than we are for one hundred years. 

Question 

Do you think LISP is outdated and should be replaced? 

Minsky 

LISP is about twenty-five years old. What should replace 
it? LISP is not static. What we want in a modern language 
we do not yet know. One of the things that we want 
in intelligent systems is the ability to solve systems of 
complicated constraints automatically, but I am not sure 
that is the kind of thing you want to put into a language. 
The reason why LISP has retained its popularity in Artificial 
Intelligence is that it is not a language so much as a language 
that you write your own language in. When an artificial­
intelligence person wants to make a program to reason by 
analogy, he starts with LISP because in a week or two he 
can write in LISP the elements of another language that he 
really wants to use. In PAS CAL you just do not go around 
writing another language that you would rather have than 
PASCAL because PASCAL's syntax is too rigid and the 
way it allocates memory is too inflexible. LISP is really the 
machine language of high-level languages. 

For More Information 
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An Investment 
Opportunity? 

Frederick R. Adler 
Managing Partner 
Adler & Company 

Since 1967 Mr. Adler has been a lead investor in venture 
capital and other situations. He is a founder, director, 
secretary, and chairman of the executive committee of Data 
General Corporation, was a founder of Intersil Memory 
Company {an affiliate of Intersil, Incorporated}, has been a 
director and member of the Executive Committee of Applied 
Materials, Incorporated, a director and chairman of the 
Finance Committee of Elscint Limited, is a director Sci- Tex, 
Limited, is chairman and director of Lexidata Corporation, a 
director of Biologicals, Incorporated, and a trustee of Teachers 
Insurance and Annuity Association of America. He has also 
been executive vice-president and a director of Loehmann's, 
Incorporated, a director of Vita Food Products, and a founder 
and director of Expediter Systems, Incorporated. 

I have heard thirty definitions of Artificial Intelligence, 
all of which seem contradictory. Not only do they seem 
contradictory, but I do not think I can. make money out 
of any of them. Artificial Intelligence has all of the surface 
trappings that high-risk investors look for. It is touted as a 
new frontier with great possibilities and unlimited potential. 
Much of the artificial-intelligence research is going on in 
universities. That is wonderful because you can steal people 
who are not used to high pay. 

Lots of books and articles are being written. Once in a 
while, I even see someone reading one. Things are rumbling 
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and buzzing in the big, respectable companies like Atari, 
Bell, DEC, GE, HP, IBM, Schlumberger, TI, and Xerox, 
to name a few. The Japanese are spending their usual half­
billion dollars on something. The start-ups have appeared 
with all the wonderful corporate names with ENTECHs, 
TECHs, and HYPERs. There are important well-attended 
conferences, perhaps the ultimate proof that the area is hot. 

Fads versus Needs 

It is clear that Artificial Intelligence has taken the first 
big steps toward venture capital respectability. Money has 
begun to pour in. The real question for me is whether it is 
a promise or reality, whether it is hype or truth. In other 
words, when will money not only go into it but also come 
out? 

It is very easy to put money into a venture-you write a 
check. Getting money out is another problem. The company 
in theory has to work. So far at least, signs of that are not 
here. 

On the other side, although there is a great deal of hype, 
there is enough reality in the area that I am reasonably sure 
that companies can be created and that those companies 
can make money. What is not clear is how much money and 
whether there are valid venture capital investments at this 
point. I think we know which race tracks to go to, but I am 
not sure which horses are going to win. 

Until now there has been little profit. Arnold Kraft has 
described a program that configures computers, which I 
would call profitable even though it is in a large company 
environment. That program saves DEC millions of dollars 
a year. The same program probably could be modified and 
used in another company. That would have to be considered 
a profit-making activity. 

For long-term venture capital money the words and titles 
are unimportant. What a sensible venture tries to do is to 
satisfy a need, not to fuel a fad. Ultimately ·each company in 
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this area will be judged on the same basis as those in other 
areas: Is it profitable? Does it contribute? Does it satisfy 
a need? Each must have good, profit-oriented management. 
Being creative is not enough. 

Successes and Standards 

Someone recently told me that he understood my company 
put more money into Artificial Intelligence than any other 
company had. I told him I did not know what he was talking 
about. We have not put a dime into Artificial Intelligence. 

We have been on the periphery of using common sense 
in some companies. We have tried to do a few things that 
make it easier for people to operate their companies. For 
example, we backed Daisy, Aryeh Finegold's company, and 
we remain the largest shareholders. But Daisy certainly is 
not in Artificial Intelligence per se. Its business is putting 
design rules and a variety of other things into work stations 
to make it easier for engineers to create VLSI designs. We 
will probably move down the line to the process itself, and 
I suspect we will be doing mask making and a variety of 
other things. 

All of these things, however, are things that have been 
done for twenty or thirty years without using LISP or a 
LISP-like language. These things do make experts operate 
better, and they do include elements of expert judgment. In 
that sense they may be on the edges of Artificial Intelligence, 
but they certainly are not Artificial Intelligence. 

We have a company that specializes in interpreting EKG 
information. Unlike most others it uses microprocessor 
technology to do real-time signal analysis. We use real-time 
algorithms to deal with signal changes and have eliminated 
most off-line analysis. The system is much more reliable 
and sensitive than competing ones, but I do not regard 
it as Artificial Intelligence. I regard it as a very normal 
progression using technology that has been unused but 
available for a long time. 
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We have done the same thing in an Israeli company, 
SCITEX, where we use sophisticated pattern-recognition 
techniques and inference algorithms ~o transmit high-quality 
pictures without transmitting the bulk of the picture. We 
get magazine-quality reproductions rather than newspaper­
quality reproductions. Instead of putting pictures on a jet, 
we now send them by satellite or over telephone wires. The 
software fills in the holes. I never thought that was Artificial 
Intelligence. 

We have a few robotics companies. They use image­
processing techniques developed in the late 1960s. We use 
techniques for making machines adapt to the real world. In 
one of them we have managed to guide a robot's arm after 
synthesizing a path between two located items. If that is 
Artificial Intelligence, it is probably on an IQ level of about 
70. 

These companies do useful work. Each satisfies a -need. 
Each makes money. Each is growing rather well. When you 
talk about long-term venture capital, as distinguished from 
venture capital focused on quick return in the stock market, 
companies have to be judged by those standards. 

There is a good deal of money to be made in such 
companies, and I believe that venture capitalists are willing 
to finance such companies on a rational basis. 

':rrends and Opportunities 

But in spite of the talk and excitement, the area is still 
undefined. The limits have not been set even by the 
participants. It is difficult to find companies that have 
goals that resonate with what we venture capitalists look 
for in an investment, which is essentially a company that 
will have sales of $50 million to $100 million after five or 
six years. There will be companies that will make it. But it 
is going to be infinitely more difficult than the people now 
writing about the area think. 
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The trend will be toward solutions in major problem 
areas. For example, there is much talk about Schlumberger's 
use of Artificial Intelligence in oil well analysis. Artificial 
Intelligence can be used there very effectively. Any programs 
that are developed will be bought quickly because the returns 
are so enormous that the people who develop anything of 
substance will make a great deal of money. The limitation 
will be that the people who develop them will have to work 
either extremely closely with the people in the industry 
or themselves will have to come out of that industry. The 
application is more the key than the technique, and the 
solution will depend on the total understanding of the needs 
of the market. 

The market is potentially enormous. With the right team, 
funding could be obtained in a matter of weeks-maybe 
even faster. 

But if you have developed a process-control system for a 
certain industry, even though the industry has many similar 
processes to control, your process-control system may not 
be a good product. Unless there is a substantial common 
thread, it will take a long time to develop a large, profitable 
company because your program will have to be tailored to 
the needs, company by company. You will be a consulting 
company, and perhaps you will do reasonably well, but I 
doubt if you have a reproducible general-application product 
of the kind we venture capitalists like. 

Funding could be obtained but probably less than for 
companies with reproducible, general application products. 
Consulting companies usually have great trouble raising 
money at reasonable rates. The amount of money that 
could be raised would be based on the team and on the 
desperateness of the industry's need. 

Now let us consider work stations, like those of Symbolics. 
I believe the area will be extremely competitive. The 
tech!lology is moving rapidly. The work station will have to 
be very advanced because it is going to be a big-cost item. 
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An area in which I think there is some room at the moment 
is 3-D visual object recognition equipment. Everything 
currently is 2-D. The MIT Artificial Intelligence Laboratory 
has a prototype 3-D object recognition vision system now. If 
you move to a custom circuit design, it is thought that that 
machine could recognize objects in a quarter of a second. If 
it can be done in a quarter of a second now, my guess is that 
it can be done much faster soon. Speed is a critical element 
in most robotics systems. A company could be built there. 
Backing for that company with the right group, I suspect, 
could be obtained very easily. 

Romance versus Profit 

The artificial-intelligence area has to be assessed in the same 
way as any other venture capital area. Is the need large 
enough so it will be reproducible in volume? Can it reach 
the $50 million figure? Is the team good enough to do it? Is 
the management profit oriented? If the motive is to bring 
Artificial Intelligence into the 1980s, or something romantic 
like that, that is wonderful, but if not done at a profit, it 
will not happen. It is a waste of time. 

Substitutes versus Advisers 

Now let us consider expert systems. We have looked at a lot 
of expert systems companies. We have turned down seven 
medical deals in the last five years. These deals involved 
companies with programs designed to make work easier 
for everyone from cardiologists to pharmacologists. In each 
case we thought that the key element was the substitution 
of a program for the expertise of the expert. We are more 
enthusiastic about programs that are intended to be· advisers 
and checkpoint monitors rather than substitutes. We like 
programs that bring expertise to users, who can then 
use their own expertise and their talents for recognizing 
symptoms, recalling history, and the like. I believe that 
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people who develop programs like that can build rather 
large companies in all sorts of areas. Medicine is just one 
such area. 

Enormous money will be made in the general artificial­
intelligence-oriented software area. A few companies will 
last, but they are going to have to be measured by the 
same standards that apply to other software companies. I 
am chairman of Micropro, a company interested in seeing 
where the ideas of Artificial Intelligence will fit in on our 
future developments. We are putting together some user­
friendly things in integrated packages. If we are looking 
at artificial-intelligence work, you can bet that every other 
microcomputer software firm is too. 

Whether there will be independent artificial-intelligence 
software companies, however, is doubtful because all of the 
talents currently needed in ordinary software companies will 
still be needed. Without those talents, you are going to have 
a small-niche company, and a small-niche company is not 
worth building. 

This area is one of enormous potential. But it is important 
to avoid the hype, to avoid solutions to specific small 
problems. This is an area where everybody seems to be 
looking for problems to solve. It is an area of tools that 
are developing rather than an area of needs that have to 
be satisfied. That has to change. We have to pick areas of 
need as DEC and Schlumberger have done. If you come up 
with any of those areas, my firm and others are loaded with 
money that we would love to give. 

*** 
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Question from the audience 
Do you have any comments about the role of market 
research? 

Adler 
I use market research, but market research is not a substitute 
for decision making or common sense. What market research 
does is get a lot of facts. One of the weaknesses of the 
venture capital business is that we have too many geniuses. 
All venture capitalists are geniuses. Their instinct is to rely 
on their brains rather than to check their facts. That is why 
we lose so much money. 
Question 
Why do you turn down expert-systems companies? Is it 
because they are not adviser-oriented systems? 

Adler 
The systems that we turned down, in my judgment, were 
too brittle. They gave yes-no answers, leaving us concerned 
that doctors would not use them because there was no role 
for the doctor. I have not met a doctor yet, anymore than 
I have met a venture capitalist, whose ego is small enough 
to handle that. 
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William H. Janeway is a vice-president and director of F. 
Eberstadt & Company, Incorporated, a New York investment 
banking firm. He joined F. Eberstadt in 1971 and since 1978 
has served as director of the corporate finance division. Mr. 
Janeway received the BA from Princeton University and the 
PhD in Economics from Cambridge University. 

F. Eberstadt is an independent investment firm, wholly 
owned by active employees, all of whose business is based 
on investment research in technology-related industries. We 
provide brokerage services to financial institutions, infor­
mation services to major corporations, and equity finance to 
growing companies. Our purpose is to identify, to evaluate, 
and to structure investment opportunities, principally for 
institutional investors, occasionally for corporate investors, 
and for ourselves as venture investors. 

This MIT Colloquium presents a collective progress report 
on an intellectual revolution. Even more the Colloquium 
itself represents a meta-report on Artificial Intelligence's 
progression from intellectual revolution to something more: 
the introduction into society's technical-industrial base of 
new techniques for grasping, for structuring, for discovering, 
for inventing reality. To use the technical term, Artificial 
Intelligence is in the process of becoming transparent to a 
rapidly expanding, increasingly diverse population of users. 
Conversely Artificial Intelligence's emergence from infancy 
is suggested by the presence and intercourse among such 
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a varied group of practitioners from the several segments 
of our industrial economy: the academic, institutional; the 
institutionalized, large corporate; and the small corporate, 
entrepreneurial. 

The evidence of this Colloquium is that evaluating the 
reality of Artificial Intelligence is of substantially greater 
interest in industry than among investors. In fact the evident 
interest of industry may represent a leading indicator. F. 
Eberstadt's anticipation that this is the case underlies our 
role in creating this Colloquium. 

My task today would seem to follow from this; for Artificial 
Intelligence, like Biotechnology before, seems ripe for the 
attentions of the capital markets and those who participate 
in them. Now capitalism's ultimate test of enterprise-from 
the creation of the East Indian Company to today's hot new 
issue market-resides in the financing process. Whatever 
is to be done first is to be financed: whether through the 
diversion of capital resources within an existing entity or 
through the external funding of a new venture. Even in the 
public sector our political economy is so suffused by the 
capitalist mode of what Marx termed expanded reproduction 
that analogous tests of cost-benefit, payback, and return 
on investment are conventionally, reflexively applied-as 
if the arguments of the implicit analytical equations had 
objectively discernible and predictable values. 

Three Propositions 

Consider the following propositions. To discuss financing 
the future of Artificial Intelligence presupposes that 

Proposition 1. Between those who finance and those 
who are financed some measure of agreement can be 
reached as to what Artificial Intelligence is. 
Proposition 2. Artificial Intelligence has a future. 
Proposition 3. The future of.Artificial Intelligence will be 
expressed through activities that in principle are suitable 
cases for financing. 



265 Financing the Future 

Before considering each of these propositions in turn, let 
me summarize my own response as: 

Proposition 1. Unnecessary. 
Proposition 2. Misconceived, and-nonetheless­
Proposition 3. In part, yes. 

Proposition 1 

At the margin the financing process may depend hardly at 
all on mutual agreement as to the actual content of the 
activity being funded. Perhaps the most noteworthy of all 
the ventures financed in the London capital market at the 
time of the South Sea Bubble was one "whose purpose will 
be disclosed at a later time." The transaction itself may be 
its own reward for those who are parties to it. 

Of course, these thoughts most forcefully come to mind 
at a time when "Greater Fool Investing" is again at a peak 
not seen in half a generation. Let me make two extended 
points. As in all exercises in diagnosis of which I am aware, 
a binary distinction is useful here. In a hot new issue market 
two generic types of buyers appear: those who buy in order 
to sell and those who buy in order to buy. The demand 
of the former depends strictly on the ability to turn the 
merchandise acquired for a quick gain; they have no interest 
in being around at that later date to learn the purpose their 
capital is to finance. The bubble feeds on the rationing of 
this demand as the characteristic, undiscriminating feeding 
frenzy builds its own momentum. In turn, demand from 
the second sort of investor is also driven by rationing yet 
remains by definition selective. These investors accept the 
imperative to pay up in order to obtain the first piece of a 
position to be accumulated over a substantial time and at 
a variety of valuations. In a hot market the excessive price 
paid at the offering may be deemed to include an entry fee 
for having enough capital at risk to justify the subsequent 
devotion of time and energy. 
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In the environment of a hot market, therefore, proposition 
1 is unnecessary. Yet hot markets demonstrate conclusively 
how one can know that, without knowing any of the 
specific particulars which pertain to that that. Specifically 
one can know that this hot market will self-destruct, the 
bubble will burst, the greater fools will wise up. And then 
communicating each venture's purpose, educating potential 
investors in its technical content and market promise, 
learning how the identification and evaluation of market 
opportunities shape the conception and development of 
technical applications-all this will again be of interest. It 
will, of course, concentrate interest on proposition 2. 

Proposition 2 

The proposition that Artificial Intelligence has a future is 
trivially misconceived since it evidently has so many. There 
may be another sense, however, in which the collective 
future of Artificial Intelligence is problematic. Some two 
years ago we at F. Eberstadt began to acquaint ourselves 
with Artificial Intelligence. First, we went to the various 
academic centers. We rapidly got a feel for the Artificial 
Intelligence community, its shared language and premises, 
its personalities and their temperaments, its broadening 
objects of interests. Second, we began to search beyond this 
Artificial Intelligentsia for more or less practical efforts to 
put Artificial Intelligence to work. Beyond a small number of 
industrial projects and a comparable number of missionary 
entrepreneurs, we found widespread disdain of Artificial 
Intelligence and even more widely spread ignorance a~ong 
a variety of people who in fact were engaged in projects 
recognizably similar in purpose and even in approach to 
artificial-intelligence programs. So, in partial response to the 
recurrent question, What is AI? we formulated a tentative 
proposition: Artificial Intelligence ceases to be Artificial 
Intelligence 'Yhen it enters the real world, at which point it 
becomes something like advanced Computer Science. 
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Over these two years we have seen a cultural transforma­
tion. The Artificial Intelligence community has swung off the 
defensive. The attendance at this Colloquium is the outward 
and visible sign of this transformation. In parallel with the 
process that explains why proposition 1 is unnecessary, 
the third level at which proposition 2 is misconceived is 
this: we may now be at a point of reversal, as whatever 
is plausibly definable as advanced Computer Science seeks 
to gain recognition as Artificial Intelligence. That is to say, 
right now Artificial Intelligence has a rather appalling future 
as a slogan rationalizing the greed-driven triumph of hope 
over expectations. 

It is precisely at this point that we in the audience 
become dependent more than ever on those at the podium. 
A certain discipline in the discipline is our best-perhaps 
our only-defense against excess. Again, as with proposition 
1, there will be life after life. Beyond the generalized 
future of Artificial Intelligence, hyped as it inevitably will 
be, continuing education of users and investors in the 
multitude of specific features of Artificial Intelligence is in 
the enlightened self-interest of the community. This is just as 
much the case if, in reaction to today's hype, it again becomes 
fashionable to disguise genuine breakthroughs in Artificial 
Intelligence as mere incremental advances in Computer 
Science-all of which in turn suggests that proposition 3 
does, after all, have some meaning. 

Proposition 3 

Beneath the frenzied froth of transiently self-justifying 
speculation, there is a discipline of finance. One concise 
formulation derived from this discipline is the capital asset 
valuation model. From purchase of a piece of equipment to 
purchase of a share of stock in a corporation, any investment 
can be modeled in these terms: the present value equals the 
sum of the discounted net cash flows more or less confidently 
expected to be received over a period of time. 
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The equation has four arguments: a discount rate, a set 
of cash flows, a degree of confidence, and a time period. 
Typically the first and last of these are set outside the realm 
of the model: the former influenced by market convention and 
by recognition of the progressively smaller contributions to 
present value of events at more distant dates. Consequently 
I want to focus on the two other arguments: the prediction 
of cash flows and the confidence factor. 

The task of setting out a plausible pattern of revenues 
and expenses represents a formal discipline that all too 
often is satisfied in practice. All too often, the supply of 
numbers expands to meet the demand for rationalization. 
That is not to say that there is no purpose in rigorously 
relating forecast revenues both to a thorough evaluation of 
market opportunities and to the expenditures required to 
support them. However, I would make one further point in 
two different ways: 

• Each step in constructing financial projections requires 
separate and honest assessment of the state and limits of 
relevant knowledge. 

• Successful completion of the exercise results in a dan­
gerously consistent reification of a piece of the future that 
threatens to presume an inappropriately confident degree 
of expectation. 

Applied with intelligence and integrity, exercises in financial 
forecasting can function as a defense against excessive en­
thusiasm, whether emanating from technologists or market­
ing people. Such evaluations help explain how a backlog 
of technical innovation can cumulate, 'frustrating (if not 
bankrupting) entrepreneurial engineers and their venture 
investors alike. This is what is happening now with respect 
to the application of available technology to manufacturing 
processes: an order of magnitude improvement in produc­
tivity yields no positive present value when industry is 
operating at, say, 50% percent of capacity. Now, as with 
every other new technology, Artificial Intelligence will be 
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implemented in a real, historically evolved macro- and 
micro-economic environment. Its implementation will be 
properly subject to such rational financial discipline as is 
available from time to time in a world of contingency and 
chance, driven by greed and fear. 

As the world-weary investment banker said, "I never 
met a forecast that wasn't conservative." The closer to 
the frontier of knowledge that one is operating, the more 
important it is to concentrate on forecasting what needs 
to be learned. The more important, I would emphasize, 
to recognize those projects which are not reducible to the 
terms of the capital valuation model. When individual, 
institutional, and corporate investors are most fervently 
begging to be financially exploited in order to fund essays 
in commercial exploitation of new technology, then is the 
premium on responsible imprecision greatest. Except at the 
most absolutely cynical end of the spectrum, where the 
first transaction is intended from the start to be the last 
interaction and the next stop is Brazil, some respect is owed 
to the certainty that performance will be related to promise 
over time. 

In this respect, let me offer a very different test to supple­
ment conventional misapplication of the asset valuation 
model: namely, the ability to tell a plausible story as to how 
the venture or company in question can grow to support 
an excessive present value on a competitively fundamental 
basis-i.e., a market multiple times visible earnings-within 
a reasonable planning horizon.· The dual implication is: that 
implausible stories and unreasonable planning horizons exist 
and that the me<;hanics of the capital asset model are no 
substitute for the exercise of experienced judgement as to 
plausibility and reasonableness. 

Caveats 

In the autumn of 1981 I spoke at the first MIT-F. Eberstadt 
collaboration, the conference on Biotechnology. I concluded 
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then by suggesting that in the financing of any technology 
high enough to lie beyond the comprehension of the vast 
majority of potential investors, the guiding rule should be 
caveat vendor, let the seller beware, for it is the seller who 
will be called to account once the hype has ended and the 
manic market has come, as the English nanny always said it 
would, "to end in tears." Realism on the way in is likely to 
prove its own reward. Caveat vendor does not mean, given 
the opportunity, one ought not to take advantage of the 
extraordinarily attractive valuations that the market offers 
from time to time. It does mean that those taking advantage 
have good reason to convince themselves, if they can, of the 
plausibility and reasonableness of the story they will tell. 

Many of the applications of Artificial Intelligence.are likely 
to define ventures to be both implemented and financed 
within existing, large organizations, especially industrial 
corporations. The same is true of Biotechnology, for example. 
It is especially the case with respect to applications whose 
present value is derived from cost reduction and productivity 
enhancement. Selling process technology to industry subjects 
a new company to a double burden of risk. First, the vendor's 
performance is as good as the user's implementation. Second, 
the demand function for capacity-related goods is the second 
derivature of the level of final demand for the target 
industry's output: acceleration ·or deceleration for the final 
demand will send the derived demand from zero to infinity 
and back again. This means that the financing decision will 
often-be an internal one, where the discipline on the vendors 
may be the more immediate as it relates to continuity of 
employment. 

The packaging of ignorance by artifice to obtain finance 
distorts not only the returns actually received by investors. 
Distortion of research activity in order. to obtain finance 
on such terms is both a professional and a social cost that 
we in this country seem ill equipped to appreciate. I find 
it depressing not to have been surprised when I learned 
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the extent to which artificial-intelligence research has been 
funded by the Defense Department. Once again, national 
security offers the cover under which our society escapes 
from the calculus of capitalism. In Artificial Intelligence, as 
in all other research activities, much that is in the laboratory 
should stay there and be funded as a social charge whose 
benefits are purely, in economic terms, external-freely 
disseminated and unappropriated as a private return by 
any owner or investor. Only some pieces of the future of 
Artificial Intelligence should be financed as I have defined 
the process, and those may be the ones that by definition 
no longer are Artificial Intelligence. 



 

Winston 

21 
TODAY 
AND TOMORROW: 
A DISCUSSION 

My impression is that many of us will leave this meet­
ing thinking that Artificial Intelligence is not exactly 
Bioengineering yet. But why are we so gloomy? One reason 
may be that Artificial Intelligence is an unusual enterprise 
with respect to definition. It is hard to know what it is even 
after we have talked about it for two days. It is hard to know 
what it is after working on it for fifteen years. Artificial 
Intelligence is a field defined by its objectives rather than 
by its tools. 

Another reason we tend to be a little gloomy is that we 
have been given the impression that people who can do 
Artificial Intelligence are difficult to find, but in fact we 
have seen a range of speculations on that particular issue, 
ranging from Professor Schank's saying that no one can do 
it other than himself and his students to Mr. Kraft, who 
did it with existing people at DEC and a little help from 
Carnegie-Mellon, to Mr. Finegold, who did not know he had 
an artificial-intelligence company until we asked him to join 
this seminar. 

I think they are all right. Artificial Intelligence is a diverse 
field, and some kinds of Artificial Intelligence are accessible 
to any smart person with a background in Computer Science 
and the right book. Other kinds of Artificial Intelligence 
require a slow accumulation of wisdom ·over a period of 
years, including wisdom that cannot be found in books. 

Dr. Brown has a well-deserved reputation for looking at 
what we are doing in Artificial Intelligence thoroughly and 
doing it with a methodology that is to be admired by all. But 
let me make an observation and then ask a question. I think 
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we all believe Xerox surely must have had extraordinarily 
visionary management to have created a laboratory of this 
sort. We do not hear the same kinds of things being said 
about IBM or other giants in the computer industry. We 
always come back to Xerox and the Xerox PARC laboratory. 
On the other hand, I sensed that former Xerox employees 
feel something went wrong with this vision, and perhaps 
that there was some calcification. First then, do you think 
that something went wrong, and in particular, do you 
think that Xerox PARC is backing away from its previous 
commitments to fostering basic research? And second, how 
does your group feel about getting Artificial Intelligence 
accepted inside Xerox and about the Alto not being better 
exploited? 

Brown 

I am quite surprised that there is a belief in the community 
that we are doing less basic research now than we have 
in the past. I believe that we are doing at least as much 
basic research now as we previously did. I do not see the 
downward trend. However, I think the kinds of research we 
are now doing involve less playing around with technology 
for technology sake and more probing into the fundamental 
issues of computation, intelligence, and how Computer 
Science can be informed by serious studies of the mind. 

There is always a problem if you take a company 
that comes from the more traditional computer-science 
orientation and try to get it to accept artificial-intelligence 
systems. Traditional Computer Science has a hard time 
understanding the paradigms under which we operate. It is 
strange, but true, that we have more success getting our 
ideas and knowledge-based systems into line organizations 
within Xerox that deal with copiers, for example, than those 
organizations that deal with systems. In fact Xerox has a 
publishing house in Boston that soon will have more of our 
LISP Machines than even our own research lab. 
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I think also there has been a belief that Xerox has made 
all kinds of catastrophic mistakes by not coming to market 
with the Alto. The Alto is, of course, a brilliant achievement, 
however, there is another side to it. I happen to be one of 
the few people who thinks that in some ways Xerox may 
actually have been held back by the Alto. What happened 
is that the research groups responsible for the Alto did a 
brilliant job of pushing the technology to the very extreme. 
But in those days that meant building a personal machine 
that was limited to only 64K of memory. However, many of 
the ideas we have been talking about here are not imaginable 
within the confines of such small machines. 

Those early 64K machines enabled Xerox to make 
phenomenal advances in user interfaces, bit-map graphics, 
and so on. But these small memory machines tended to 
define and limit the kinds of functionality we were able to 
experiment with. Now that we have personal machines with 
huge virtual memories we begin to appreciate how much 
we counted on beautiful user interfaces to overshadow the 
limited functionality and extensibility of some of these early 
systems. 

I believe a lot of things that P ARC should have been 
experimenting with a long time ago did not happen because 
we cringed at the thought of cramming those ideas into 
that little box. The MIT Artificial Intelligence Laboratory, 
on the other hand, did not go the small, personal machine 
route. In fact it initially stayed with large mainframe 
machines and then in the mid-seventies developed a large­
scale personal machine that enabled it to explore personal 
tools and systems that demanded a lot of memory. I 
think that caused MIT to evolve quite different views 
from Xerox, even in_ terms of the functionality one might 
expect in document-preparation systems. Now you notice 
we are bringing the two views together. The new personal 
LISP Machines emerging from MIT and Xerox both have 
beautiful interactive graphics, stemming from some of the 
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ideas emerging out of SMALL TALK and some powerful ideas 
that came out of the MIT Artificial Intelligence Laboratory. 
For the first time we can have a cost-effective marriage of 
these two world views, and I think that is what is going to 
stimulate a wide range of exciting new activities in PARC. 

Winston 
I asked Dr. Brown if the executives at Xerox put pressure 

on him to develop products. He said, "No; as a matter of 
fact, they did not." He said that he found researchers at 
Xerox to be extraordinarily schizophrenic about the subject 
of product development versus basic research. One the one 
hand, they are angry that Xerox did not rapidly take their 
systems or ideas to the marketplace. On the other hand, 
when Xerox attempts to enlist these same researchers in 
transferring the technology out of PARC, they complain 
that management is trying to turn them into a development 
laboratory. 

Dr. Kay, do you concur with that observation? What 
are your feelings with respect to how these unusual people 
who form the most creative cadre of people in Artificial 
Intelligence can in fact be harnessed to something that will 
have commercial possibilities? 

Kay 
The remark about the schizophrenia of the Xerox PARC 
people is absolutely right. I can think of instances that 
colored it. One was when Xerox management tried to raid 
PARC in order to save SDS as it was slowly sliding down 
into the water. A couple of courageous management people 
at PARC sacrificed five years of their careers to hold off 
Xerox from that. PARC was not set up to save SDS or to 
have anything to do with it. That feeling of invasion was 
something that tempered its way along. 

Part of the problem has to do with management styles. 
One style of management is to handle things the way a 
colonel takes over an arbitrary battalion and leads it into 
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battle. The idea is that the battalion already exists, and 
the manager has to marshal a set of resources that he may 
have not had a great deal to do with creating. That leads 
to ideas like management by objective. 

We owe much of our industry right now to ARPA and 
NASA. ARPA's style during the 1960s was pretty wide open. 
It funded people rather than projects, partly because the 
ARPA funders were drawn out of the research community. 
But the funders were not only from that community but 
also knew that if they were not in the trenches, they really 
did not know as much about what was going on as the 
good people did, if the good people were any good at all. 
Their idea was to fund people rather than projects, taking 
lumps on the percentages and occasionally finding out that 
a person was not as good as previously thought. 

That led to about 90 percent of the interesting inventions 
in Computer Science in the 1960s: time sharing, graphics, 
and personal computers. Thank goodness they did it. There 
was no one else around interested in coming up with that 
kind of money. 

My experience in doing research .is that there is no way 
of managing a group of people who are not first class to 
do first-class work. Research tends to be done in two ways. 
One is the commando approach where you hand pick a team 
by trial by fire, to work together. Then there is the genius 
approach, which is a pretty good one, too. Some people 
who are smarter than everybody else go off by themselves 
to work, and you take percentages on that. 

As management by objectives has come in, the amount 
of serendipity that has been turning up in the last decade 
has been much smaller than it was in the 1960s. A lot 
of the good things that happened depended on a certain 
randomness in approach because people really do not know 
what they are doing. 

My definition of Artificial Intelligence is that it is stuff 
that is interesting that we do not know how to do yet. 
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When we are exploring in that area, we have to make 
allowance for the random character of the terrain being 
explored. The geniuses and hand-picked teams make a great 
deal of sense. Instinct. All of those areas that are hard to 
rationalize are the very things that make up research. 

I think this is why businesspeople and research people do 
not get along very well. The businesspeople want rationaliza­
tions. Research people look for something beautiful or pretty 
or interesting. Those kinds of words strike fear into the 
hearts of funders. 

But that is the approach that works. So let's quit worrying 
about why it works and start getting more of it. 

Janeway 
I am occasionally pleasantly stunned to discover that some 
concept that has survived in economic theory for several 
generations actually does have some relevance. I think that 
what Dr. Kay has just said is a marvelous example of a 
concept that has been kicking around in Economics for about 
150 years-namely, the concept of external economies, which 
are benefits, gains from private activities, from individual 
acts, gains that cannot be captured by the people who are 
doing or funding those acts. 

We are dealing here with something that is very rooted. 
I think it is a big mistake to think about this as a matter 
of temperament or of style. If only those business school 
graduates were a little more visionary. It is not supposed to 
work like that. That is why you have civil society. That is 
why you have taxes. That is why some margin of resources 
is taken away from the sector in which private returns, the 
capturing of returns from activity, is precisely the purpose. 
The schizophrenia at Xerox is replicated at the microlevel 
throughout the system and characterizes the system as 
a whole. To what extent is it really a belief inside the 
business enterprise that has returns to achieve and present 
to stockholders? Is it possible to have a kind of internal 
tax, regardless of the external environment, regardless of 
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what happens to profits over any conceivable future? Is it 
possible to carve out that kind of shelter? Or should we. be 
lobbying for more government funds so that the National 
Science Foundation budget can be increased by a factor of 
twenty or two hundred? 

Russo 
Every major organization that has a central research and 
development center is doing just that. They use the profits to 
fund research and development. Are these research centers 
in industry doing research or are they not doing research? 
At ·General Electric I would say that the bulk of the work 
going on is applied research. That is, it is really advanced 
development looking for feasibility but aimed at specific 
goals. A certain percentage of the GE laboratories' funding 
is exploratory work. 

In general I am not sure I agree with the concept. Having 
been in research and development centers most of my life 
before I came to GE, I think that research people are not 
necessarily against working on long-term product ideas. The 
biggest ego satisfier is seeing your product succeed in the 
marketplace. I do not buy the fact that you want to work 
on something just because it is beautiful. 

Janeway 
It is important to point out that we have been talking about 
the big companies. As we hear about the Fifth-Generation 
Japanese project and the Japanese challenge particularly 
to the big companies, it is important to note that this is 
the only political economy in the world that has evolved a 
structure of venture capital that largely exists to support 
that which the big companies have one way or another found 
themselves incapable of implementing successfully. 

Russo 
Many of the fundamental developments in technology -the 
light bulb, the transistor, the telephone-were made in large 
companies. It is the productizing of these new things that 
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small companies tend to do well because they are able to 
travel new roads, following the vision of an entrepreneur. 
They do not have to convince an upper management that 
might feel that its own markets are threatened by these 
developments. The real key is that the small company 
entrepreneurs seem to productize and test market innovative 
products much more so than some large companies. 

Janeway 

How do you feel about the question of whether having 
a project identified as Artificial Intelligence is positive or 
negative, particularly when it comes to selling that project, 
whether inside the company or outside, for fund raising, in 
order to move it along? 

Harris 

Artificial Intelligence Corporation has been around since 
before it was in vogue to be an artificial-intelligence company. 
We used to lose a lot of points on the name of the company. 
People laughed and made various jokes. Now the name is 
viewed as an asset in many situations. I do not know how long 
that will last. People are looking for a particular solution 
to a certain problem. If Artificial Intelligence provides a 
better solution to that problem than other options, then 
the people are happy. In that sense, whatever comes out of 
Artificial Intelligence has to obey those basic rules of nature 
that all products do. 

Winston 

Dr. Janeway, what is your perception about what we have 
got going so far? Is it healthy? Will the new start-ups form 
the basis for explosive growth <?r catastrophic disaster? I am 
stimulated to ask this question because it has been my obser­
vation that some of the small companies that have started up 
seem more determined to squash each other than to make a 
profit, which leads me to wonder about the health of the basic 
entrepreneurially-oriented artificial-intelligence community. 



281 Today and Tomorrow 

Janeway 
There is a measure here of the extent to which Artificial 
Intelligence is moving from the university into the industrial 
environment and beginning to find practical applications. 
There seems to be greater success inside large corporations 
that understand their own needs pretty well and have begun 
applying artificial-intelligence techniques to the solution 
of those needs. On the other hand the first set of new 
companies founded to exploit the technology should have a 
heavy missionary element. There clearly is that. 

I think we will see that a number of companies, like 
Daisy, will discover after some years of corporate existence 
that they in fact have been becoming artificial-intelligence 
companies, whether or not they call themselves that. 

There is one big question that is often asked by the 
venture people. I am inclined to feel it may be a phony 
question. The venture people feel that all this sounds very 
interesting. There clearly are some applications. But where 
is the reservoir of frustrated talent looking for stock options, 
for an equity kicker for their commitment? If the number 
of people actually doing serious research is between one 
hundred and one thousand, it is not enough to start an 
industry on. When Biotechnology got rolling, there were 
tens of thousands of molecular biologists, biochemist~, and 
cell biologists. 

Winston. 
You are touching one of my stimulus-response buttons, the 
one that has to do with technology transfer to American 
industry. On this particular theme, I have a certain amount 
of latent hostility toward the system as it exists right 
now. The latent hostility has to do with our reluctance to 
copy some of the better features of Japanese technology 
extraction. I think I will deal with this by describing two 
separate events that have occurred to me in the last year. 

On one occasion we were beginning at the MIT Artificial 
Intelligence Laboratory a major new program in the area of 
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robotics. We called it the Year of the Robot, although we 
knew it would stretch out into the Decade of the Robot. It 
was tremendously exciting to us because we thought that it 
was an area ready to be catalyzed. We thought we would 
be able to bring together a lot of people at MIT who had 
not talked to each other before and a lot of people from 
outside MIT who needed to t~lkto each other more. One of 
our ideas was that we would copy the Japanese technique of 
technology transfer that has to do with placing a top young 
person from a company in an academic institution. So we 
went forth with the idea that we would solicit this kind of 
interaction with some of the larger companies involved in 
robotics. 

One of these large companies had a person we wanted very 
badly, so we entered into some discussions about whether 
that person could come. After six months we managed to 
convince the people in the trenches that they could part with 
the person for a few months. But the following six months 
were so occupied with legal gymnastics that I thought I was 
going to have to take a law degree before we were through. 

The other half of the story concerns some interaction I 
had with people at Fujitsu who wanted to send a researcher 
to work at MIT. I told them we have two rules. One is 
that the person will have to be a person that someone at 
MIT wants to work with, and the other is that we will have 
to be convinced that MIT and the country at large will 
get at least as much out of the exchange as we are giving 
up. There was no legal battle. There was no discussion of 
patent rights. There was no question of taking software back 
to Japan. They wanted to put the person in MIT because 
they wanted him to absorb methodologies, points of view, 
attitudes, and ways of doing things that that person could 
take back. 

There is an incredible contrast~ It is only the tip of the 
iceberg, I think, with respect to things that we have to 
figure. out if we are going to have realistic coupling between 
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what is happening in the universities and what is happening 
in U.S. industry. 

Dr. Harris, as a warning to the rest of us, as a person who 
emerged from a university community to start a successful 
small company, can you recollect what was your biggest 
surprise with respect to the kinds of things that you have 
had to worry about? 

Harris 

One is the issue of marketing. I feel that the differences 
between similar artificial-intelligence products are hard to 
perceive from the surface. The success of artificial.:.intelli­
gence companies is going to depend on marketing as opposed 
to technical differences. between the products. 

Another is the importance of customer support. It is 
critical that the customer-support role is performed. But 
given the numbers of people capable of supporting artificial­
intelligence technology, how will we be able to hire these 
people for customer-support roles if we can barely afford 
to hire them in the research laboratories? We clearly 
cannot have a product that depends on artificial-intelligence 
expertise to support it. 

The fundamental techniques used to develop the product 
have to be such that when the product gets produced, it 
can be supported by technical people who do not have 
artificial-intelligence backgrounds. Many companies do not 
seem to take that into account. This, of course, was to some 
degree anticipated. One of the biggest surprises was the 
extremely long and difficult missionary-sell period where 
the essence of what we were trying to promote as a solution 
was mistrusted by the data processing establishment. I 
thought that people would storm our doors once we built a 
better mousetrap. 

Kay 

My favorite quote about reality is from The Hitchiker's 
Guide to the Galaxy: "Reality is frequently inaccurate." 
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I think what Doug Adams was trying to say is that the 
attempt to provide a context for what we think is going on 
forces it into molds determined by how we choose to see the 
world. 

I think I would like to try to steer things back to the source 
of a lot of these ideas. It is a rare company like AT&T with 
Bell Labs that does a reasonable amount of basic research. 
The amount of basic research that actually makes it into 
the world is made by the traditional technology-transfer 
process of the spinoff company from either a university or a 
big company. But I think that the ultimate source of all of 
these ideas is the university. And it is time for industry to 
start putting money back into the universities. The kinds 
of research support that we were used to getting from the 
government have not been seen in any strong way since the 
Vietnam war. The amount of money has not grown at the 
rate proportional that it should, and the character of how 
the money is given and what is expected in return for it has 
changed greatly. The universities are one of the few places 
that can be looked at with pride as a negative profit center. 

My belief is that the universities are the places where the 
new and interesting things will come from, as long as the 
government and industry are not going to get together to 
do large projects as the Japanese do. And that is starting 
to dry out. 

I am making a plea for more support in the liberal arts. 
It has been my experience that it is much easier to teach 
somebody who still has the glint in his eyes from liberal arts 
how to program and about Artificial Intelligence. You can 
teach almost everything that is known that is worthwhile in 
Computer Science to somebody in a year. There is not that 
much of it. But if you take an engineer who really thinks of 
himself as a nerd-type engineer and try to get the glint in 
his eye, you will be in deep trouble. It is extremely difficult 
to get them going the other way. 
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In our society we have hard nerds and soft nerds. The hard 
nerds are the ones who used to have the slide rules at their 
belt; now they have calculators. The soft nerds are the ones 
who get violently ill whenever anybody mentions an integral 
sign. I think that most of the creative scientists around are 
people who have their feet firmly in both cultures because 
both cultures feed the creative process very strongly. I think 
one of the pleasant surprises that people find out about 
MIT is that the liberal arts program is very good. 

Russo 
I think that we are not making the distinction between the 
people who are doing artificial-intelligence research versus 
the people who can develop artificial-intelligence products. 
Your comment about being able to teach everyone everything 
in a year may not be true for doing basic research, but it may 
be true for developing applied artificial-intelligence products. 
I think that the population of people who can do artificial­
intelligence product development is substantially larger than 
the fifty or one hundred doing artificial-intelligence research. 

Janeway 
With respect to the desirability of a more intimate interface 
between industry and universities, we must remember 
that business is ultimately constrained by a bottom line 
consideration. AT&T is bound to be more so now than 
when it was a quasi-public agency with quasi-taxing powers 
through the operating companies. 

The public funding of public projects, the social under­
writing of investments with demonstrable and profound 
external economy, meaning specifically basic research, is a 
problem and a task that no degree of ideological gymnastics 
by the David Stockmans of the world should distract us from 
addressing. Write your senators and congressmen. There is 
nothing that matters more. 
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From the Blocks World 
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The commercial world has become intensely interested 
in opportunities spawned by the technology of Artificial 
Intelligence. Unfortunately it is hard to get a real grip on 
what is going on because few people have real experience 
translating the ambitious dreams of Artificial Intelligence 
into money-making realities. 

Consequently the purpose of the MIT Colloquium on 
which this book is based was to provide an opportunity for 
representative experts to share their experiences and their 
attitudes. One intended result was debate, argument, and 
difference of opinion, all of which we have preserved in this 
book. 

Where We Are 

The MIT Colloquium helped to define the state of the art. 
In the early days of Artificial Intelligence, the world of toy 
blocks was the most popular domain for developing and 
testing ideas. Now there are artificial-intelligence systems 
that are both rooted in artificial-intelligence research and 
proven in commercial use. 

A closer look shows that most of the proven systems 
are based on technology that has been well understood 
for as much as fifteen years. Creators of these proven 
systems succeeded because they did fine jobs of connecting 
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established technology to pressing needs, not because they 
were obsessed with the latest ideas of Artificial Intelligence 
for their own sake. 

Investors must realize that today's technology is still 
modest. The companies that will make money in the near 
term will be those that are able to connect the fledgling ideas 
developed i!l the 1970s and early 1980s to the most vulnerable 
needs of the late 1980s. Soon, however, the ideas of the 
1970s and early 1980s will be exhausted, leaving untouched 
commercial opportunities of immense importance. 

Consequently the long-range future will depend a great 
deal on our current national policies and on the national 
policies of others, particularly Japan. 

Japan and the Fifth Generation 

The Fifth Generation Project is Japan's ambitious plan to 
seize worldwide leadership in the computing industry. The 
plan focuses on Artificial Intelligence, raising the possibility 
that Japan may reap most of the profits derived from 
expensive basic research done in the United States. 

In their extremely influential book, The Fifth Generation, 
Edward A. Feigenbaum and Pamela McCorduck explain 
why we in the United States should be concerned, making 
the following points along the way: 

Knowledge is the new wealth of nations. The old wealth 
had to do with material things. This new wealth has 
to do with acquiring and using superior knowledge to 
design smarter, manufacture better, market stronger, and 
generally outwit and outperform competition, both domestic 
and international. Feigenbaum and McCorduck believe that 
Artificial Intelligence is the key to acquiring and using 
superior knowledge and that Artificial Intelligence will soon 
become a major determinant of who is on top economically. 

The second computer revolution is the one that matters. 
The second computer revolution is the revolution based on 
Artificial Intelligence. It is the one that matters because 
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strength in Artificial Intelligence ensures strength at every­
thing that Artificial Intelligence can help with. And that 
may be just about everything. 

The Feigenbaum-McCorduck scenario is unsettling. Con­
sequen~ly there is a natural tendency to create coun­
terscenarios. Some critics argue, for example, that there 
is nothing to worry about -that the Japanese cannot win 

because the Fifth Generation project's concrete goals are 
impossibly ambitious. A contrary view is that they cannot 
lose, for the Fifth Generation is in reality a rapid education 
effort aimed at making a broad yet quick introduction of the 
artificial-intelligence perspective into Japanese industry . .It 
does not matter if the public goals are reached because suc­
ceeding with the education effort is inevitable. Consequently, 
any viable plan for keeping the United States competitive 
in Artificial Intelligence must include a strong educational 
component. 

What Should Serious Universities Do? 

We are not far from th~ day when all freshmen in science 
and engineering schools will have personal computers. MIT, 
under the direction of Gerald L. Wilson, Dean of Engineering, 
recently began an ambitious project designed to revolutionize 
the use of computers at the university level. The project 
involves installing and linking together over 3,000 work 
stations around campus. Faculty, staff, and students will 
work together to develop imaginative and innovative ways 
to learn more and to learn better. 

How will we use all those computers to learn more and 
to learn better? One answer lies in Seymour Papert 's book, 
Mindstorms. Papert first points out that one of the best 
ways to learn something is to teach it to someone else. 
Papert then champions the idea that the student might as 
well be a computer. 
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Following Papert's lead, we argue that science and 
engineering· schools should teach freshmen how to create 
programs with human-like intelligence. People who have 
created such programs will have a better understanding of 
what it means for a person to become an expert. Since much 
of education is devoted to making human experts, future 
human experts should know what is involved as soon as 
possible. 

The student who knows about expert programs can 
approach his ordinary subjects expecting to learn what 
kind of knowledge is involved, how that knowledge should 
be represented, what procedures exist for working with 
the knowledge, how much knowledge is needed, and what 
exactly the knowledge is. When the student approaches, 
say, electrical network theory, he will be more comfortable 
because he will understand that Kirchoff's laws and circuit 
connections constitute constraint knowledge. He will see 
that differential equations provide useful representations for 
that knowledge, learn that various transform procedures 
exist for working with the knowledge, will be comforted by 
observing that there is not too much knowledge, and will 
note, in particular, that the sum of the currents into any 
node is zero. 

All this can happen because we humans learn a great deal 
through analogies, and programs with humanlike intelligence 
are splendid sources of rich analogies for our own human 
thinking. 

Even now there are plenty of illustrative systems, for 
there are systems that analyze circuits, sequence proteins, 
synthesize. chemical compounds, design integrated circuits, 
interpret instrument signals, lay out gearbox drive trains, 
configure computers, and diagnose disease. 

The time to begin, of course, is now, before more 
conservative computer-oriented subjects establish deep roots 
and become difficult to replace. 
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What Should Serious Companies Do? 

In many major Japanese corporate research centers, there 
are a few people who speak English conspicuously better 
than the rest. In general these are the elite few who were 
selected early in their careers to spend a year in the United 
States to absorb ideas and attitudes. 

When such people write to the MIT Artificial Intelligence 
Laboratory asking to visit, they never question ownership 
of patent rights or request financial support. When they 
come, they work day and night to complete projects that 
contribute to the reputations of their hosts. But when they 
leave the United States, they know what to do and how to 
do it, carrying abilities that no book can teach. 

We need to adapt this practice to our own use, for it is the 
fastest way of transferring technology from the place that 
has it to the place that needs it. We need our own domestic 
visiting tradition. One approach is to develop multimonth, 
in-house training programs, but few companies have enough 
in-house expertise to have such programs. Another approach 
is to do what the Japanese do: most serious companies 
should try to send their best young technical people to a 
strong university research center for a year. 

But domestic visiting is not our tradition, and there are 
objections to making it our tradition. The obvious objections 
have flaws. 

Why shouldn't my company simply hire some bright PhDs 
when we need them? There are too few to go around. 
Besides, if your company makes widgets, you want a person 
passionate about widgets to make better widgets using 
Artificial Intelligence. It is difficult to divert a person whose 
passion is Artificial Intelligence into widget making. 

How can my company possibly spare its best person for a 
year? If you do not put someone in a United States research 
center, your Japanese competitor will. 

What about protecting my company's rights to employees' 
patents? The best thing to do about patents is to forget 
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them. The point of visits is to learn for the medium and 
long term, not to develop instant products. 

Won't another company try to recruit my company's 
person? Certainly someone will try. You will have to 
compensate your person more since he will be worth more. 
You have an advantage though - you have demonstated 
that you believe in your employee and in his future. In 
addition, by placing your employee in a university research 
community, you will have an on-site recruiter for graduating 
students, a powerful asset. 

Won't my company's person collaborate with a competitor's 
person on a research project that the competitor will be 
able to use? Probably not. The idea is to absorb methods 
and views, not to invent something proprietary. But in 
any event, the situation is symmetric. The real losers are 
the companies that do not have anyone visiting university 
research laboratories. 

How can my company get a person into an appropriate 
center? A company that wanted to place a person in a 
university artificial-intelligence center a few years ago had 
to place the person at MIT, Stanford, or Carnegie-Mellon. 
Fortunately the opportunities are expanding rapidly. Today 
there are twenty or so American universities with strong 
efforts and talented people. Enter into discussions with 
university researchers whose interests resonate with yours 
and offer to send your best person for a year. It is hard 
to turn down the opportunity to have a few salary-free, 
mature, hard-working people around. 

Shouldn't my company insist its employees earn credits 
and work toward degrees? No. The need is to educate people 
who work in other fields to bring the methods of Artificial 
Intelligence to those fields. A degree in Artificial Intelligence 
at any level may be a diversion. 

In the end, our inertias may be too great, and we may 
need to stimulate ourselves as a country to do this. There 
is a lot of room for legislators to be innovative: by using 
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government money, by devising favorable tax deals, or 
by inventing favorable government-contractor regulations. 
Since the goal is to ensure the long-range economic survival 
of our country, there will be a lot of credit for those in 
Washington who lead the way. 

Balancing Euphoria with Reality 

Euphoria about the future of Artificial Intelligence is in 
the air. But we must be certain to balance that euphoria 
with reality. It will take time and hard. work to transform 
the commercial potential of Artificial Intelligence into 
achievements. 

We must encourage the rapid transfer of technologies 
developed in university research laboratories to industrial 
development and production engineering laboratories. 

We must develop mechanisms for educating people. Both 
undergraduate students and people already working in 
industry must learn to use the ideas of Artificial Intelligence. 

And we must provide the seed corn for our future: in 
our rush toward commercialization, we must find ways to 
keep university research centers healthy and strong. Such 
centers need top-notch researchers, adequate space, superior 
computing resources, and time for basic research. Satisfying 
these needs takes money. But satisfying these needs ensures 
the success of the imaginative projects, many with no obvious 
commercial potential, that will lead us into the future. 



 

How to Learn More 

We hope that this book has stimulated interest. Here are 
some ways to learn more: 

First, there are many books that provide good introduc­
tions to the field. These include: Artificial Intelligence, 
Second Edition (Winston), Building Expert Systems (Hayes­
Roth, Waterman, and Lenat), Computer Vision (Ballard and 
Brown), LISP (Winston and Horn), and Robot Manipulators: 
Mathematics, Programming, and Control (Paul), all cited in 
the bibliography. 

Second, there are journals. Every library should sub­
scribe to Artificial Intelligence (North Holland Publishing 
Company, Amsterdam), to The AI Magazine (American 
Association for Artificial Intelligence, Menlo Park, CA) and 
perhaps to a half dozen other, more specialized journals, like 
the International Journal of Robotics Research (The MIT 
Press, Cambridge, MA). 

Third, there are many established academic research cen­
ters that offer courses and have active artificial-intelligence 
work. In addition there are research companies like SRI 
International and BBN. All publish technical memoranda 
and reports. 

Fourth, there are professional meetings, particularly 
the biannual International Joint Conference on Artificial 
Intelligence and the annual meeting of the American 
Association for Artificial Intelligence (not held in years 
when the international conference is in North America). 

And finally, there are companies in the expert-systems 
business that sell their expertise. Teknowledge was the first 
expert-systems company to be fornied. Their business, and 
now that of others, is to h:uild knowledge systems that 
have exceptionally high value and that solve problems that 
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other technologies cannot cope with. Inference Corporation 
has a similar business plan. Others, with more specialized 
objectives, are Applied Expert Systems and Syntelligence, 
both of which propose to explore the applications of expert­
systems technology to the financial world. Intelligenetics 
is oriented toward a combination of Artificial Intelligence 
and biomedical applications. Computer Thought works in 
the area of computer-aided education. Artificial Intelligence 
Corporation and Semantec offer products for natural lan­
guage interaction, and Cognitive Systems combines work 
in natural language with work in expert systems. While 
these are representative, there are others, and the list is 
lengthening rapidly. 
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Glossary 

ABEL 
Experimental medical system for diagnosing acid/base 
electrolyte disorders. 

Actor 

Procedure that does its work by generating new actors and 
by sending messages to other actors. 

ADA 

General-purpose computer programming language intended 
to be the primary language used in U.S. defense applications. 

Advisory systems 

Expert system that interacts with a person in the style of 
giving advice rather than in the style of dictating commands. 
Generally advisory systems have mechanisms for explaining 
their advice and for allowing their users to interact at a 
detail level comfortable to the user. 

ALGOL 
Early post-FORTRAN, general-purpose, high-level pro­
gramming language. In the United States ALGOL has 
mostly given way to PASCAL, a descendant, which is more 
powerful and easier to use. 
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AL 
Experimental robot programming language on which AML 
is based in part. 

AML 
Modern manipulator-oriented programming language for 
robot programming. AML is a product of International 
Business Machines. 

APL 
Acronym for .a p_rogramming language. APL is popular 
because of its ability to do certain mathematical calculations 
extremely compactly. 

Artificial Intelligence 

Science of making machines intelligent in order to make 
them more useful and to understand intelligence. 

AUTOVISIONR II 
Vision system for robot applications. AUTOVISIQNR II 
is a product of Automatix, Incorporated, of Billerica, 
Massachusetts. 

Backward chaining 

That problem-solving technique characterized by working 
backward from hypothesized conclusions toward known 
facts. 

BASIC 
Simple, easy-to-learn programming language introduced at 
Dartmouth College. 

Bit-map display 

Display consisting of a large array of tiny, individually 
controllable dots. Advanced types may have a million or 
more dots, each of which may be more or less bright, 1n 
color, or both. 
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BORIS 
Experimental, narrative-understanding natural language 
system developed by Roger Schank and his students. 

c 
Popular programming language, especially for systems 
programming. 

CAD 
Acronym for ~omputer-aided design. 

CAD/CAM 
Acronym for ~omputer-aided design and ~omputer-aided 
manufacturing. 

CADUCEUS 
Diagnosis system for internal medicine under development 
by Harry E. Pople, Jr., and Jack D. Myers, M.D., at the 
University of Pittsburgh. Formerly called INTERNIST. 

CALIS TO 
Experimental system for modeling and monitoring large 
projects. 

CAS NET 
Experimental system for dealing with disease processes. 
Usually associated with a specific application focusing on 
glaucoma. Also the acronym for ~ausal-.associative .network. 

Causal model 
Model in which the causal relations among various actions 
and events are represented explicitly. 

CommonLISP 
Popular dialect of LISP that is likely to become a sort of 
standard. 

Configure 
To specify how the various parts of a computer system are 
to be arranged. 
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CONSIGHT 
Industrial object-recognition system, developed by General 
Motors, that uses special lighting to produce silhouette-like 
images. 

CPU 
Acronym for .c_entral _2rocessing unit, that part of a computer 
that does the computing. Other key parts are the memory 
modules and the input-output modules. 

Cursor 
Prominent, easily seen, user-controlled symbol that identifies 
a location on a terminal's screen. 

DARPA 
Acronym for the Defense Advanced Research Projects 
Agency of the U.S. Defense Department. 

DENDRAL 
Early rule-based expert system that helps determine organic­
compound structure using data from mass spectrometers 
and nuclear magnetic resonance machines. 

DIPMETER ADVISOR 
Expert system that helps analyze dipmeter data. The 
dipmeter is an important tool used in the oil industry 
to determine subsurface tilt. The dipmeter produces tilt 
and tilt-direction data as it moves through an oil well bore 
hole. 

Dynabook 
Early specification for a book-sized computer for education 
and entertainment proposed by Alan Kay. The Dynabook 
concept was a motivating banner when Kay was at the 
Xerox's Palo Alto Research Laboratory. 

EMYCIN 
Nonspecific part of MYCIN consisting of what is left when 
the rules are removed. EMYCIN becomes a new problem 
solver by adding rules for a different problem domain. 
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End effector 
Robot's hand or gripper. 

Ethernet 
Local network for sending messages between computers 
by way of a single coaxial cable that snakes through all 
of the computers to be connected. A coaxial cable is a 
cable consisting of a central wire surrounded by a grounded 
cylindrical shielding sheath. 

Expert system 
System that performs a task that normally takes humans 
a long time to acquire. Most expert systems are rule-based 
systems. Most are able to solve simple problems quickly 
and to explain their own reasoning, but few are able to 
break their own rules, to run simulations, to take a different 
perspective, or to learn. 

EXPRESS 
Sophisticated financial modeling system. EXPRESS is a 
product of Management Decision Systems. 

Fifth generation 
Label used by the Japanese for their ambitious program to 
achieve supremacy in the computer business. Separated from 
previous generations by higher speed and by employment 
of Artificial Intelligence. 

Flex Machine 
Early personal computer designed by Alan Kay. In his 
words, "a noble failure." 

FOCUS 
Modern, sophisticated language for data-base interaction. 

FORTRAN 
Early programming language that still dominates scientific 
computing by virtue of the massive amount of accumulated 
software that has been written using it. FORTRAN is the 
acronym for formula translator. 
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Forward chaining 

Problem-solving technique characterized by working forward 
from known facts toward conclusions. 

FRUMP 

Acronym for fast reading and Jinderstanding memory 
_Erogram. FRUMP is experimental language understanding 
system developed by Gerald F. DeJong to scan the UPI 
newswire, locating and summarizing stories belonging to 
certain classes. 

Gate-array technology 

Approach to integrated circuit design. Rather than starting 
over with a blank slate each time, the circuit designer adds 
specializing detail to a partially wired array of basic circuit 
elements. 

Hacker 

Person devoted to intricate computer programming, par­
ticularly that programming done for its own sake. A good 
hacker is an expert programmer. A bad hacker is a poor 
programmer. 

Hardware debugging 

Process of finding and fixing malfunctioning electronic 
equipment, particularly digital equipment. 

HARPY 

Simple experimental speech-understanding system intended 
to show what can be done without resorting to sophisticated 
techniques. 

HEARSAY II 
Sophisticated experimental speech-understanding system 
stressing the importance of multiple specialized procedures 
and complicated techniques for procedure interaction. 
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Heuristic 
Anything that helps to guide problem solving. Use is 
generally restricted to those things that are not guaranteed 
to be successful. 

IC 
Acronym for integrated ~ircuit, an electronic circuit con­
sisting of a chunk of semiconducting material on which 
many electronic devices have been simultaneously fabri­
cated. Modern techniques make it possible for individual 
ICs to contain tens of thousands of transistors. 

INTELLECT 
First commercially successful natural language interface. 
INTELLECT is sold by Artificial Intelligence, Incorporated, 
of Waltham, Massachusetts. 

Intelligent Robot 
Rrobot backed by powerful reasoning software for things 
like sensing, recognition, mating, trajectory planning, and 
error recovery. 

InterLISP D 
Dialect of LISP championed particularly by Xerox. 

INTERNIST 
Former name of a diagnosis system for internal medicine. 
See CADUCEUS. 

Knowledge Engineer 
One who designs and builds expert systems. 

Knowledge Representation 
A vocabulary of symbols and some conventions for arranging 
them so as to describe things. 

LED 
Acronym for light-~mitting diode. 

Link 
Early personal computer, perhaps the first. 
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LISP 

Popular programming language for use in Artificial Intelli­
gence. LISP is the acronym for list _Qrocessing language. 
LISP was the first language to concentrate on working with 
symbols instead of numbers. Although introduced by John 
McCarthy in the early 1960s, continuous development has 
enabled LISP to remain dominant in Artificial Intelligence. 
Lately LISP has proved to be an outstanding language for 
systems programming as well. 

LOGO 

Education-oriented programming language conceived by 
Seymour Papert and his associates. LOGO is intended to 
help people learn about powerful ideas, such as feedback, by 
seeing those ideas at work in programs. LOGO is suitable 
for children as well as for adults. 

LSI 

See VLSI. 

MACSYMA 

Large computer system with procedures for helping people 
do complicated applied mathematics developed by Joel 
Moses and his colleagues at the Massachusetts Institute of 
Technology. 

Manipulator-oriented language 

Programming language for describing exactly where a robot's 
arm and gripper should go and when. To be contrasted with 
task-oriented languages for describing what the effect of 
robot action should be. 

MARGIE 

Early experimental language-understanding and paraphrase­
generating system developed by Roger Schank and his stu­
dents. A principal purpose was to show that language can 
be understood without attention to details of syntax. 
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Megassembly systems 
Multistation, multiproduct assembly systems containing at 
least ten ro hots. 

META-DENDRAL 
Learning system designed to generate rules for DENDRAL 
automatically. 

Mouse 
Hand-held device that is rolled about on a table to move a 
terminal's cursor . . 
MYCIN 
Early rule-based expert system, developed by Edward H. 
Shortliffe, M.D., that helps to determine the exact identity 
of an infection of the blood and that helps to prescribe the 
appropriate antibiotic. 

Nand 
Basic logical circuit used in designing digital hardware. The 
acronym for not ~nd. 

Nor 
Basic logical circuit used in designing digital hardware. The 
acronym for not Qr. 

0 bject-oriented language 
In robotics a synonym for task-oriented language. In general 
use a programming language in which procedures for doing 
things are accessed through descriptions of the things to be 
worked on. 

PASCAL. 

Popular general-purpose, high-level programming language, 
descendant from ALGOL. 

PC 
Acronym for _2ersonal ~omputer, a computer that is powerful 
enough to be user friendly and inexpensive enough to ·be 
nonshared. 
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Personal computer 
See PC. 

PERT 

314 

Technique for charting project plans that exposes the 
dependency of each task on prior tasks. A principal use 
is in identifying a project's critical path, that is, that set of 
tasks for which any completion delay ensures delay of the 
entire project. 

q,NIX 

Automatic program synthesizer, developed by Schlum­
berger, specialized to helping oil experts working with 
rock models and bore-hole log data. q,NIX generates rock­
constituent computing FORTRAN programs from equations 
representing hypothesized geology. 

Pixel 

Acronym for picture element. Inside a computer, an image 
is represented as an array of pixel values representing the 
brightness at various points on whatever retina-like sensor 
is used. 

PLANNER 
Extinct experimental programming language similar in many 
respects to modern PROLOG. 

PL/1 
Popular general-purpose programming language. 

POLITICS 

Experimental narrative-understanding natural language sys­
tem developed by Roger Schank and his students. Successor 
to MARGIE, predecessor of BORIS. 

Programmer's apprentice 

System that helps programmers program by keeping track of 
decisions, recalling program skeletons, automatically testing 
revised programs, supporting natural language interaction, 
and translating to and from various program representations. 
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Power tool 
Any powerful programming device that dramatically In­
creases programmer productivity. 

PROLOG 
Programming language based on formal logic. PROLOG 
is the language the Japanese have adopted as the main 
language for their Fifth Generation Computer Project. 

PROSPECTOR 
Experimental expert system intended to help geologists 
interpret mineral data and predict the location of mineral 
deposits. In one landmark experiment PROSPECTOR 
correctly pointed to a major unknown extension of a known 
molybdenum deposit. 

PUFF 
Expert system developed for aiding In the diagnosis of 
respiratory diseases. 

QUIP 
Experimental work station, under development by Schlum­
berger, for geologists oriented toward enabling rapid testing 
of geological and rock models. 

Rl 
An alias. See XCON. 

RAILR 
Modern programming language for robot programming. A 
product of Automatix, Incorporated, of Billerica, Massa­
chusetts. 

RAMUS 
Modern, sophisticated language for data-base interaction. 

RCC 
Acronym for remote ~enter .c.ompliance device, a mechanical 
arrangement of linkages that easily inserts peglike objects 
into tight-fitting holes. The RCC has a promising but largely 
neglected future in automated assembly. 
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Robotics science 
Science of connecting perception to action through intelligent 
programs. 

Rule-based system 
System in which knowledge is stored in the form of simple 
if-then or condition-action rules. 

SIMULA 
One of the first object-oriented programming languages. 
Originally intended for simulation work. 

SKETCHPAD 
Early experimental system for computer-aided design. 

SMALL TALK 
Programming language developed at Xerox's Palo Alto 
Research Laboratory. SMALLTALK has popularized a style 
of programming according to which procedures communicate 
by sending each other messages. SMALL TALK is considered 
especially good for graphics-oriented programming. 

SOPHIE 
Experimental instruction system, developed by John Seely 
Brown, that taught students how to debug electronic circuits. 

STEAMER 
Experimental instruction system that teaches propulsion 
engineering. Features sophisticated procedures for graphics­
oriented simulation and for qualitative reasoning. 

Stiction 

Static friction, the force that tends to keep two mated 
surfaces from moving relative to one another. 

Task-oriented language 
Programming language for describing what the effect of 
robot action should be. To be contrasted with manipulator­
oriented languages for describing exactly where a robot's 
arm and gripper should go and when. 
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TEIRESIAS 
Experimental system developed by Randall Davis for helping 
human experts formulate rules for rule-based expert systems. 

VAL 
Manipulator-oriented programming language for robot pro­
gramming. A product of U nimation, Incorporated, of 
Danbury, Connecticut. 

VAX 
Line of powerful computers manufactured by Digital Equip­
ment Corporation. 

VIS I CALC 
First of the electronic-worksheet personal computer software 
products. 

VLSI 
Acronym for yery-large-_scale integration, the process of 
producing integrated circuits containing tens of thousands 
of electronic devices. 

VMS 
Widely-used operating system developed by Digital Equip­
ment Corporation for its line of computers. 

UNIX 
Popular operating system developed and licensed by Bell 
Telephone Laboratories. 

WAVE 
Early experimental robot programming language on which 
VAL was based in part. 

Window system 
A system that divides a terminal's screen into pieces as 
when various-sized pieces of paper are arranged on a desk. 

Work station 
Computer system that acts as a partner to a person, In 
work or play, greatly facilitating productivity. 
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XCON 
Hugely successful expert system developed to configure 
computers-that is, to specify how all the components 
should be placed and how they should be connected. XCON, 
sometimes called Rl, was jointly developed by Digital 
Equipment Corporation and Carnegie-Mellon University. 

XSEL 
·Expert system for assisting CQmputer salespeople. 

XSITE 

Expert system for helping to ensure that a site can handle the 
necessary power, air conditioning, and space for a computer 
installation. 
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