

Praise	for	CSS	Secrets

“This	is	a	new	generation	of	CSS	books,	for	a	new	generation	of	CSS.	No	longer	a
simple	language	tied	to	complicated	browser	hacks	and	workarounds,	CSS	is	now	a
richly	powerful	and	deeply	complex	ecosystem	of	over	80	W3C	specifications.	Nobody
is	better	at	making	 sense	of	 this	new	CSS,	and	of	providing	design	principles	 that
help	 you	 solve	 problems	 with	 it,	 than	 Lea	 Verou—among	 the	 handful	 of	 truly
amazing	coders	I’ve	known.”

—	Jeffrey	Zeldman
author,	Designing	with	Web	Standards

“Lea	Verou’s	encyclopaedic	mind	is	one	of	a	kind,	but	thanks	to	this	generous	book,
you	too	can	get	an	insight	into	what	it’s	like	to	wield	CSS	to	do	just	about	anything
you	can	think	of.	Even	if	you	think	you	know	CSS	inside-out,	I	guarantee	that	there
are	still	secrets	in	this	book	waiting	to	be	revealed.”

—	Jeremy	Keith
Shepherd	of	Unknown	Futures,	Clearleft

“If	 you	want	 the	 inside	 scoop	 on	 fascinating	CSS	 techniques,	 smart	 best	 practices,
and	some	flat-out	brilliance,	don’t	hesitate—read	this	book.	I	loved	it!”

—	Eric	A.	Meyer

“Lea	 is	an	exceedingly	 clever	 coder.	This	book	 is	absolutely	packed	with	 clever	and
useful	ideas,	even	for	people	who	know	CSS	well.	Even	better,	you’ll	feel	more	clever
in	your	work	as	this	book	encourages	pushing	beyond	the	obvious.”

—	Chris	Coyier
CodePen

“CSS	Secrets	 is	an	 instant	 classic—so	many	wonderful	 tips	and	 tricks	 you	 can	use
right	away	to	enhance	your	UX	designs!”

—	Christopher	Schmitt
author	of	CSS	Cookbook

“There	aren’t	many	books	that	provide	as	many	practical	techniques	as	Lea	Verou’s

CSS	Secrets.	Filled	with	dozens	of	solutions	to	common	design	problems,	the	book	is	a
truly	 valuable	 collection	 of	 smart	 tips	 and	 tricks	 for	 getting	 things	 done	well,	 and
fast.	Worth	reading,	even	if	you	think	that	you	know	the	ins	and	outs	of	CSS!”

—	Vitaly	Friedman
cofounder	and	editor-in-chief	of	Smashing	Magazine

“Without	fail,	whenever	I	read	something	written	by	Lea	Verou,	I	manage	to	learn
something	new.	CSS	Secrets	is	no	different.	The	book	is	broken	down	into	easy-to-
digest	 chunks	 filled	with	 lots	 of	 juicy	 bits	 of	 knowledge.	While	 some	 of	 the	 book	 is
very	forward	looking,	there	is	plenty	that	I’ve	been	able	to	take	away	and	apply	to
my	own	projects	right	away.”

—	Jonathan	Snook
web	designer	and	developer

“Lea’s	 book	 is	 fantastic.	 She	 bends	 and	 contorts	CSS	 to	 do	 things	 I’m	 pretty	 sure
even	the	spec	authors	never	imagined!	You	will	learn	multiple	ways	of	accomplishing
each	graphic	effect	by	trying	out	the	techniques	she	walks	through	in	each	chapter.
Later,	in	your	work,	you’ll	find	yourself	saying,	“hmm,	that	thing	Lea	did	will	work
perfectly	 here!”	 Before	 you	 know	 it,	 your	 site	 is	 almost	 image	 free	 because	 your
graphics	are	all	in	easy	to	maintain	CSS	components.	What’s	more,	her	techniques
are	fun,	walking	the	line	between	practical	and	improbable!”

—	Nicole	Sullivan
Principal	Software	Engineer,	creator	of	OOCSS

“Lea	Verou’s	CSS	Secrets	is	useful	not	so	much	as	a	collection	of	CSS	tips,	but	as	a
textbook	 on	 how	 to	 solve	 problems	 with	 CSS.	 Her	 in-depth	 explanation	 of	 the
thought	process	behind	each	secret	will	teach	you	how	to	create	your	own	solutions	to
CSS	 problems.	 And	 don’t	 miss	 the	 Introduction,	 which	 contains	 some	 must-read
CSS	best	practices.”

—	Elika	J.	Etemad	(aka	fantasai)
W3C	CSS	Working	Group	Invited	Expert

“Lea’s	presentations	have	long	been	must-see	events	at	web	development	conferences
around	 the	 world.	 A	 distillation	 of	 her	 years	 of	 experience,	 CSS	 Secrets	 provides
elegant	solutions	for	thorny	web	design	issues,	while	also—and	more	importantly—
showing	how	to	solve	problems	in	CSS.	It’s	an	absolute	must-read	for	every	frontend

designer	and	developer.”
—	Dudley	Storey

designer,	developer,	writer,	web	education	specialist

“I	thought	I	had	a	pretty	advanced	understanding	of	CSS,	then	I	read	Lea	Verou’s
book.	If	you	want	to	take	your	CSS	knowledge	to	the	next	level,	this	is	a	must-own.”

—	Ryan	Seddon
Team	Lead,	Zendesk

“CSS	Secrets	is	by	far	the	most	technical	book	that	I	have	ever	read	on	the	topic.	Lea
has	managed	to	push	the	boundaries	of	a	language	as	simple	as	CSS	so	far	that	you
will	not	be	able	to	distinguish	this	from	magic.	Definitely	not	a	beginner’s	read;	it’s
heavily	recommended	to	anyone	thinking	they	know	CSS	all	too	well.”

—	Hugo	Giraudel
frontend	developer,	Edenspiekermann

“I	often	think	that	CSS	can	seem	a	bit	like	magic:	a	few	rules	can	transform	your
web	pages	 from	blah	to	beautiful.	 In	CSS	Secrets,	Lea	takes	 the	magic	 to	a	whole
new	 level.	 She	 is	 a	master	magician	 of	CSS,	 and	we	 get	 to	 explore	 that	magical
world	along	with	her.	I	can’t	count	how	many	times	I	said	out	loud	while	reading
this	book,	“That’s	so	cool!”	The	only	trouble	with	CSS	Secrets	is	that	after	reading
it,	I	want	to	stop	everything	else	I’m	doing	and	play	with	CSS	all	day.”

—	Elisabeth	Robson
cofounder	of	WickedlySmart.com	and	coauthor	of	Head	First	JavaScript

Programming

“CSS	Secrets	 is	a	book	that	all	web	developers	 should	have	 in	their	 library.	Using
the	 information	 it	 contains	 you’ll	 learn	 numerous	 hints	 and	 tips	 to	 make	 CSS
perform	tasks	you	never	thought	possible.	I	was	astonished	at	how	often	the	author
came	 up	 with	 simple	 and	 elegant	 lateral	 thinking	 solutions	 to	 problems	 that	 had
bugged	me	for	years.”

—	Robin	Nixon
web	developer,	online	instructor,	and	author	of	several	books	on	CSS

“As	a	master	designer	and	programmer,	Lea	Verou’s	book	is	as	beautiful	and	as	well
thought	 out	as	her	 code.	Whether	you’re	 fairly	new	 to	CSS,	 or	well	versed	 in	 the

http://WickedlySmart.com

intricacies	of	CSS3,	this	book	has	something	for	everyone.”
—	Estelle	Weyl

Open	Web	Evangelist	and	coauthor	of	CSS:	The	Definitive	Guide

CSS	SECRETS
BETTER	SOLUTIONS	TO	EVERYDAY	WEB	DESIGN

PROBLEMS

LEA	VEROU

Beijing	·	Boston	·	Farnham	·	Sebastopol	·	Tokyo	

CSS	Secrets
by	Lea	Verou	Copyright	©	2015	Lea	Verou.	All	rights	reserved.
Printed	in	Canada.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions
are	 also	 available	 for	 most	 titles	 (http://safaribooksonline.com).	 For	more	 information,	 contact	 our
corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Editors:	 Mary	 Treseler	 and	Meg	 Foley	 Production	 Editor:	 Kara	 Ebrahim	Copyeditor:	 Jasmine
Kwityn

Indexer:	 WordCo	 Indexing	 Services	 Proofreader:	 Charles	 Roumeliotis	 Interior	 Designer:	 Lea
Verou	Cover	Designer:	Monica	Kamsvaag	Illustrator:	Lea	Verou

See	http://www.oreilly.com/catalog/errata.csp?isbn=0636920031123	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	The	cover	image	and	related	trade
dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	 the	publisher	and	 the	author	have	used	good	 faith	efforts	 to	ensure	 that	 the	 information	and
instructions	 contained	 in	 this	 work	 are	 accurate,	 the	 publisher	 and	 the	 author	 disclaim	 all
responsibility	for	errors	or	omissions,	including	without	limitation	responsibility	for	damages	resulting
from	 the	use	of	or	 reliance	on	 this	work.	Use	of	 the	 information	 and	 instructions	 contained	 in	 this
work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work	contains	or	describes	 is
subject	to	open	source	licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to
ensure	that	your	use	thereof	complies	with	such	licenses	and/or	rights.

Print	History:	First	Edition,	June	2015

Revision	History	for	the	First	Edition:

2015-06-03								First	Release	2015-07-17								Second	Release	ISBN:978-1-44937263-7
[TI]

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://www.oreilly.com/catalog/errata.csp?isbn=0636920031123

In	loving	memory	of
my	mother	&	best	friend,	Maria	Verou	(1952–2013),

who	left	this	world	way	too	early.

Table	of	Contents

Foreword

Preface

Words	of	thanks

Making	of

About	this	book

CHAPTER	1
Introduction	Web	standards:	friend	or	foe?

CSS	coding	tips

CHAPTER	2
Backgrounds	&	Borders	 1 	Translucent	borders

2 	Multiple	borders

3 	Flexible	background	positioning

4 	Inner	rounding

5 	Striped	backgrounds

6 	Complex	background	patterns

7 	(Pseudo)random	backgrounds

8 	Continuous	image	borders

CHAPTER	3
Shapes

9 	Flexible	ellipses

10 	Parallelograms

11 	Diamond	images

12 	Cutout	corners

13 	Trapezoid	tabs

14 	Simple	pie	charts

CHAPTER	4
Visual	Effects	 15 	One-sided	shadows

16 	Irregular	drop	shadows

17 	Color	tinting

18 	Frosted	glass	effect

19 	Folded	corner	effect

CHAPTER	5
Typography	 20 	Hyphenation

21 	Inserting	line	breaks

22 	Zebra-striped	text	lines

23 	Adjusting	tab	width

24 	Ligatures

25 	Fancy	ampersands

26 	Custom	underlines

27 	Realistic	text	effects

28 	Circular	text

CHAPTER	6
User	Experience	 29 	Picking	the	right	cursor

30 	Extending	the	clickable	area

31 	Custom	checkboxes

32 	De-emphasize	by	dimming

33 	De-emphasize	by	blurring

34 	Scrolling	hints

35 	Interactive	image	comparison

CHAPTER	7
Structure	&	Layout	 36 	Intrinsic	sizing

37 	Taming	table	column	widths

38 	Styling	by	sibling	count

39 	Fluid	background,	fixed	content

40 	Vertical	centering

41 	Sticky	footers

CHAPTER	8
Transitions	&	Animations	 42 	Elastic	transitions

43 	Frame-by-frame	animations

44 	Blinking

45 	Typing	animation

46 	Smooth	state	animations

47 	Animation	along	a	circular	path

Index

Secrets	by	Specification

CSS	Animations

w3.org/TR/css-animations

42 	Elastic	transitions

43 	Frame-by-frame	animations

44 	Blinking

45 	Typing	animation

46 	Smooth	state	animations

47 	Animation	along	a	circular	path

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

1 	Translucent	borders

2 	Multiple	borders

3 	Flexible	background	positioning

4 	Inner	rounding

5 	Striped	backgrounds

6 	Complex	background	patterns

7 	(Pseudo)random	backgrounds

8 	Continuous	image	borders

9 	Flexible	ellipses

12 	Cutout	corners

14 	Simple	pie	charts

15 	One-sided	shadows

19 	Folded	corner	effect

http://w3.org/TR/css-animations
http://w3.org/TR/css-backgrounds

22 	Zebra-striped	text	lines

26 	Custom	underlines

30 	Extending	the	clickable	area

32 	De-emphasize	by	dimming

34 	Scrolling	hints

35 	Interactive	image	comparison

CSS	Backgrounds	&	Borders	Level	4

dev.w3.org/csswg/css-backgrounds-4

12 	Cutout	corners

CSS	Basic	User	Interface

w3.org/TR/css3-ui

2 	Multiple	borders

4 	Inner	rounding

35 	Interactive	image	comparison

CSS	Box	Alignment

w3.org/TR/css-align

40 	Vertical	centering

CSS	Flexible	Box	Layout

w3.org/TR/css-flexbox

40 	Vertical	centering

41 	Sticky	footers

CSS	Fonts

w3.org/TR/css-fonts

24 	Ligatures

http://dev.w3.org/csswg/css-backgrounds-4
http://w3.org/TR/css3-ui
http://w3.org/TR/css-align
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-fonts

25 	Fancy	ampersands

CSS	Image	Values

w3.org/TR/css-images

5 	Striped	backgrounds

6 	Complex	background	patterns

7 	(Pseudo)random	backgrounds

8 	Continuous	image	borders

12 	Cutout	corners

14 	Simple	pie	charts

19 	Folded	corner	effect

22 	Zebra-striped	text	lines

26 	Custom	underlines

34 	Scrolling	hints

35 	Interactive	image	comparison

CSS	Image	Values	Level	4

w3.org/TR/css4-images

5 	Striped	backgrounds

6 	Complex	background	patterns

14 	Simple	pie	charts

CSS	Intrinsic	&	Extrinsic	Sizing

w3.org/TR/css3-sizing

36 	Intrinsic	sizing

CSS	Masking

w3.org/TR/css-masking

11 	Diamond	images

http://w3.org/TR/css-images
http://w3.org/TR/css4-images
http://w3.org/TR/css3-sizing
http://w3.org/TR/css-masking

12 	Cutout	corners

CSS	Text

w3.org/TR/css-text

20 	Hyphenation

23 	Adjusting	tab	width

CSS	Text	Level	4

dev.w3.org/csswg/css-text-4

20 	Hyphenation

CSS	Text	Decoration

w3.org/TR/css-text-decor

26 	Custom	underlines

27 	Realistic	text	effects

CSS	Transforms

w3.org/TR/css-transforms

10 	Parallelograms

11 	Diamond	images

12 	Cutout	corners

13 	Trapezoid	tabs

14 	Simple	pie	charts

19 	Folded	corner	effect

35 	Interactive	image	comparison

40 	Vertical	centering

47 	Animation	along	a	circular	path

CSS	Transitions

http://w3.org/TR/css-text
http://dev.w3.org/csswg/css-text-4
http://w3.org/TR/css-text-decor
http://w3.org/TR/css-transforms

w3.org/TR/css-transitions

11 	Diamond	images

12 	Cutout	corners

17 	Color	tinting

33 	De-emphasize	by	blurring

42 	Elastic	transitions

CSS	Values	&	Units

w3.org/TR/css-values

3 	Flexible	background	positioning

32 	De-emphasize	by	dimming

40 	Vertical	centering

41 	Sticky	footers

45 	Typing	animation

Compositing	and	Blending

w3.org/TR/compositing

17 	Color	tinting

35 	Interactive	image	comparison

Filter	Effects

w3.org/TR/filter-effects

16 	Irregular	drop	shadows

17 	Color	tinting

18 	Frosted	glass	effect

33 	De-emphasize	by	blurring

35 	Interactive	image	comparison

Fullscreen	API

http://w3.org/TR/css-transitions
http://w3.org/TR/css-values
http://w3.org/TR/compositing
http://w3.org/TR/filter-effects

fullscreen.spec.whatwg.org

32 	De-emphasize	by	dimming

Scalable	Vector	Graphics

w3.org/TR/SVG

6 	Complex	background	patterns

14 	Simple	pie	charts

28 	Circular	text

Selectors

w3.org/TR/selectors

31 	Custom	checkboxes

38 	Styling	by	sibling	count

http://fullscreen.spec.whatwg.org
http://w3.org/TR/SVG
http://w3.org/TR/selectors

Foreword

Ah,	 the	 good	 old	 days.	 Back	 in	 the	 previous	millennium,	we	 had	 just	 two
CSS-capable	 browsers,	 and	 what	 they	 did	 was	 a	 fairly	 limited	 subset	 of	 a
fairly	limited	specification,	so	you	could	fairly	easily	keep	a	complete	map	of
what	worked	and	what	didn’t	 in	your	head.	That	map	included	the	bugs	in
each	implementation,	as	they	had	many	errors	and	oversights,	some	of	them
verging	 on	 the	 comical.	 Heck,	 some	 bugs	 were	 so	 fundamental	 that	 they
made	 the	browsers’	 layout	behavior	completely	 incompatible,	 forcing	us	 to
come	 up	 with	 a	 whole	 army	 of	 parser-bug-exploiting	 hacks	 just	 to	 work
around	the	differences!

Wait	a	minute.	The	old	days	were	horrible.	Glad	we’re	done	with	all	that!
Things	 really	have	gotten	 so	much	better	 in	 the	 last	 several	 years,	CSS-

wise.	 Browsers	 have,	 for	 the	 most	 part,	 converged	 on	 compatibility,	 and
where	they	are	incompatible,	it’s	nearly	always	because	one	browser	doesn’t
support	 a	 feature	 that	 another	 does,	 as	 opposed	 to	 both	 of	 them	 trying	 to
support	 the	 same	 thing	 differently,	 and	 usually	 badly.	 The	 specifications
have	pushed	capabilities	forward	even	as	they’ve	added	features	that	recreate
the	convoluted	tricks	of	old	in	much	simpler,	more	compact	ways.	CSS	has
far	more	features	and	far	more	power	than	ever	before—but,	as	we	all	know,
with	great	power	comes	great	complexity.	It’s	not	even	a	case	of	intentional
complexity:	when	you	combine	enough	working	parts,	no	matter	how	simple
each	may	be,	interesting	things	can	and	do	emerge.	(For	more	on	this	topic,
see	The	LEGO	Movie.)

But	 it’s	 exactly	 that	 unintended	 complexity	 that	 gives	CSS	 the	 ability	 to
surprise	 us	 with	 emergent	 features	 we	 never	 expected,	 or	 even	 planned.
There	 are	 secrets	 to	 be	 found	 in	 the	 intersections	 of	 properties	 and	 the
bending	of	values.	You	can	carve	corners	with	gradients,	animate	elements,
increase	clickable	areas,	even	create	pie	charts…and	so	much	more.	CSS	has
capabilities	that	we	only	dreamed	of	back	when	I	was	but	a	lad,	possibilities
beyond	anything	we	imagined.	It’s	added	abilities	that	I	once	thought	could
never	 be	 expressed	 in	 a	 compact,	 human-readable	manner—animations,	 to
pick	 one	 example.	 It’s	 advanced	 far	 enough	 that	 I’m	 confident	 there	 are
many,	many	 secrets	 yet	 to	 be	 discovered.	 Perhaps	 you’ll	 discover	 some	 of

them.
Until	that	day	arrives,	there	are	plenty	of	fascinating	techniques	that	have

already	been	unearthed,	and	few	have	done	more	than	Lea	Verou	to	find	and
share	 them	 with	 the	 world.	 From	 her	 blog	 posts	 to	 her	 open	 source
contributions	 to	 her	 dynamic,	 interactive	 talks	 all	 over	 the	world,	 Lea	 has
amassed	 a	 formidable	 reserve	 of	CSS	 knowledge.	This	 book	 is	 a	 beautiful
distillation	of	that	knowledge.	You	now	possess	a	guide	to	some	of	the	most
interesting,	 surprising,	and	useful	 techniques	 that	CSS	has	yielded,	a	guide
compiled	by	one	of	the	brightest	minds	in	the	field.	What	Lea	has	prepared
for	you	in	these	pages	will	enrich,	delight,	and—yes—even	astonish.

Go	forth,	learn	well,	and	let	these	discoveries	be	secrets	no	more.

—	Eric	A.	Meyer

Preface

In	the	past	few	years,	CSS	has	undergone	a	transformation,	similar	to	the
JavaScript	 revolution	 circa	 2004.	 It	went	 from	being	 a	 dead-simple	 styling
language	with	 limited	power,	 to	 a	 complex	 technology	defined	by	over	80
W3C	specifications	(including	drafts),	with	its	own	developer	ecosystem,	its
own	conferences,	and	 its	own	frameworks	and	tooling.	CSS	has	grown	so
much	that	it’s	practically	impossible	for	any	single	person	to	hold	all	of
it	 in	their	brain.	Even	 in	 the	W3C	CSS	Working	Group	that	defines	 the
language,	nobody	is	an	expert	on	every	single	aspect	of	CSS—and	few	even
come	close.	Instead,	most	WG	members	focus	on	certain	CSS	specifications
and	might	know	very	little	about	others.

Up	 until	 roughly	 2009,	CSS	 expertise	was	 not	 defined	 by	 how	well	 the
language	 was	 known.	 This	 was	 more	 or	 less	 a	 given	 for	 any	 serious	 CSS
work.	Instead,	CSS	prowess	was	defined	by	the	number	of	browser	bugs	and
workarounds	 that	 had	 been	 committed	 to	memory.	 Fast-forward	 to	 2015,
and	 browsers	 are	 now	 designed	 to	 support	 standards,	 and	 flimsy	 browser-
specific	 hacks	 are	 frowned	 upon.	 There	 are	 still	 some	 unavoidable
incompatibilities,	but—especially	because	most	browsers	now	auto-update—
the	pace	of	change	 is	 so	 fast,	 that	attempting	 to	document	 them	 in	a	book
would	be	a	waste	of	time	and	space.

The	 challenge	 in	 modern	 CSS	 has	 little	 to	 do	 with	 working	 around
transient	 browser	 bugs.	 The	 challenge	 now	 is	 using	 the	 CSS	 features	 we
have	 in	 a	 creative	 way,	 in	 order	 to	 come	 up	 with	 DRY,	 maintainable,
flexible,	 lightweight,	 and	 as	 much	 as	 possible,	 standards-compliant
solutions.	This	is	exactly	what	this	book	is	all	about.

DRY	is	an	acronym	that	stands	for	“Don’t	Repeat	Yourself.”	It’s	a	popular	programming	mantra
to	promote	an	aspect	of	maintainable	code:	being	able	to	change	its	parameters	with	as	few	edits
as	possible,	ideally	one.	Emphasis	on	DRY	CSS	code	is	a	recurring	theme	in	this	book.	The
opposite	of	DRY	is	WET,	which	stands	for	“We	Enjoy	Typing”	or	“Write	Everything	Twice.”

There	are	many	books	out	there	that	document	certain	CSS	features	from
A	to	Z.	CSS	Secrets,	for	better	or	for	worse,	is	not	one	of	them.	Its	purpose	is
to	 fill	 the	 knowledge	 gaps	 that	 are	 left	 after	 you’ve	 already	 familiarized
yourself	with	the	reference	material—to	open	your	mind	to	new	ways	to	take

advantage	of	the	features	you	already	know	about,	or	to	let	you	know	about
useful	CSS	features	that	aren’t	as	shiny	and	popular,	and	that	deserve	more
love.	However,	above	all,	the	main	purpose	of	this	book	is	to	teach	you	how
to	solve	problems	with	CSS.

CSS	Secrets	is	not	a	cookbook	either.	Each	“secret”	is	not	a	canned	recipe,
with	 rigid	 steps	 you	must	 follow	 to	 achieve	 a	 specific	 effect.	 Instead,	 I’ve
tried	to	describe	the	thinking	behind	every	technique	 in	detail,	as	 I	believe
that	 understanding	 the	 process	 of	 finding	 a	 solution	 is	 far	 more
valuable	 than	 the	 solution	 itself.	 Even	 if	 you	 don’t	 think	 that	 a	 certain
technique	 is	relevant	to	your	work,	 learning	how	to	reach	a	solution	might
still	 prove	 valuable	 for	 tackling	 even	 completely	 different	 problems.	 Long
story	short,	you	will	hopefully	get	many	proverbial	fish	from	this	book,
but	its	main	goal	is	to	“feed	you	for	a	lifetime,”	by	teaching	you	how	to
catch	them.

Words	of	thanks

This	book	would	not	have	been	possible	without	the	help	and	support	of	a
number	 of	 fantastic	 people,	 to	 whom	 I’m	 deeply	 grateful.	 A	 big,	 heartfelt
thank	you	goes	to:

All	those	who	supported	my	work	over	the	years,	otherwise	I	wouldn’t
have	found	myself	in	the	position	of	writing	a	book	in	the	first	place.	To
readers	of	my	blog	(lea.verou.me),	Twitter
(twitter.com/leaverou),	and	elsewhere,	and	even	more	to	you,
dear	reader	of	my	first	book!	To	everyone	who	has	used	my	open
source	work	(github.com/leaverou)	and	even	more	to	those
who	contributed.

All	the	conference	organizers	who	have	invited	me	for	talks	and
workshops	over	the	years,	especially	to	Damian	Wielgosik	and	Paweł
Czerski	who	first	believed	in	me	and	invited	me	to	the	inaugural	Front-
Trends	conference	in	2010.	And	to	Vasilis	Vassalos	who	trusted	me	to
design	a	web	development	course	for	Athens	University	of	Economics
and	Business	back	in	2010,	as	all	these	experiences	taught	me	a	great
deal	about	teaching	(and	a	technical	book	is	basically	teaching).

Everyone	in	the	CSS	Working	Group	who	voted	to	bring	me	on	as	an
Invited	Expert,	which	has	transformed	my	perspective	on	web
technologies	in	general	and	on	CSS	in	particular.

My	editors,	Mary	Treseler	and	Meg	Foley,	who	gave	me	control	over
the	entire	process	and	have	been	incredibly	patient	with	me	when	I
missed	deadlines	(which	happened	more	often	than	I’d	care	to	admit).

My	production	editor,	Kara	Ebrahim,	who	spent	copious	amounts	of
time	fixing	layout	issues	and	manually	compensating	for	CSS	rendering
bugs	and	limitations	in	the	PDF	renderer	used	for	this	book.

My	technical	editors:	Elika	Etemad,	Tab	Atkins,	Ryan	Seddon,
Elisabeth	Robson,	Ben	Henick,	Robin	Nixon,	and	Hugo	Giraudel.

http://lea.verou.me
http://twitter.com/leaverou
http://github.com/leaverou

They	not	only	helped	me	correct	factual	mistakes,	but	also	provided
invaluable	feedback	regarding	the	understandability	of	the	prose.

Eric	Meyer,	who	I	still	cannot	believe	agreed	to	write	a	Foreword	for
my	book.

My	research	advisor,	David	Karger,	who	was	extremely	understanding
when	I	arrived	at	MIT	without	having	finished	this	book,	which	was
supposed	to	be	done	long	before	then.	Without	his	continued	patience,
the	fate	of	this	book	would	have	been	bleak.

My	dad,	Miltiades	Komvoutis,	who	taught	me	art	and	aesthetics	very
early	on.	Without	him,	I	would	probably	have	zero	interest	in	design
and	CSS,	and	this	book	would	have	been	about	something	else,	like	C++
or	kernel	programming.

My	uncle/second	dad,	Stratis	Veros,	and	his	lovely	wife,	Maria	Brere,
who	put	up	with	me	when	I	was	at	my	most	cranky	while	writing	this
book.	Also	to	their	kids,	Leonie	and	Phoebe,	who	are	the	cutest	little
girls	in	the	world	and	without	whom,	this	book	would	have	finished
around	a	month	earlier.

My	incredible	late	mother,	Maria	Verou,	to	whom	this	book	is
dedicated.	For	the	27	years	our	lives	overlapped,	she	was	my	best	friend
and	biggest	supporter.	Her	own	life	was	a	huge	inspiration:	she	moved
to	the	other	side	of	the	world	to	do	postgraduate	research	at	MIT	in	the
1970s,	a	time	when	most	women	in	Greece	barely	made	it	to	college,
and	got	her	degree	with	distinction.	She	taught	me	ambition,	kindness,
integrity,	independence,	open-mindedness.	But	most	importantly,	she
taught	me	to	not	take	life	too	seriously.	I	miss	her	sorely.

Photo	credits
A	big	thanks	to	the	lovely	people	who	publish	their	photos	with	permissive
Creative	 Commons	 licenses;	 otherwise,	 every	 example	 in	 this	 book	 would
feature	pictures	of	my	cat	(and	many	examples	do,	regardless).	Here	is	a	list
of	 the	 CC	 photos	 I	 used	 and	 where	 you	 can	 find	 them:	 “House	 Made
Sausage	 from	 Prairie	 Grass	 Cafe,	 Northbrook,”	 Kurman
Communications,	Inc.
flickr.com/kurmanphotos/7847424816

“Cats	that	Webchick	Is	Herding,”	Kathleen	Murtagh
flickr.com/ceardach/4549876293

“Stone	Art,”	by	Josef	Stuefer
flickr.com/josefstuefer/5982121

http://flickr.com/kurmanphotos/7847424816
http://flickr.com/ceardach/4549876293
http://flickr.com/josefstuefer/5982121

“A	Field	of	Tulips,”	Roman	Boed
flickr.com/romanboed/867231576

“Resting	in	the	Sunshine,”	Steve	Wilson
flickr.com/pokerbrit/10780890983

“Naxos	Island,	Greece,”	Chris	Hutchison
flickr.com/employtheskinnyboy/3904743709

http://flickr.com/romanboed/867231576
http://flickr.com/pokerbrit/10780890983
http://flickr.com/employtheskinnyboy/3904743709

Making	of

This	 is	a	book	that	eats	 its	own	dog	 food,	proverbially	 speaking.	 It	was
written	 in	 clean	 HTML5,	 with	 a	 few	 data-	 attributes,	 defined	 by
O’Reilly’s	 HTMLBook	 standard
(oreillymedia.github.io/HTMLBook).	This	means	 that	 everything
you	see	in	this	book—the	layout,	the	figures,	the	colors—is	HTML	styled
with	CSS.	A	lot	of	the	figures	are	also	generated	with	SVG	or	use	SVG	data
URIs,	generated	via	SCSS	functions.	The	few	math	formulas	were	written	in
LaTeX	and	then	converted	to	MathML	behind	the	scenes.	You	may	find	it
amusing	 that	 the	 page	numbers,	 chapter	 numbers,	 and	 secret	 numbers	 are
merely	CSS	counters.

Many	of	the	books	O’Reilly	publishes	these	days	are	made	that	way.	They
have	 built	 a	 system	 especially	 for	 this	 purpose,	 called	 Atlas
(atlas.oreilly.com).	 The	 best	 thing	 about	 Atlas	 is	 that	 it’s	 also
available	for	the	public,	not	just	for	official	O’Reilly	use.

However,	this	book	was	not	a	typical	Atlas	use	case.	It	pushed	the	limits	of
what	 is	 possible	 today	 with	 CSS	 for	 printing,	 in	 a	 way	 that—to	 my
knowledge—no	 other	 book	 has.	 It	 helped	 us	 find	many	 bugs	 in	 Atlas	 and
Antenna	House	(the	PDF	renderer	used	by	Atlas)	and	even	many	issues	with
the	 print-related	 CSS	 specifications	 themselves,	 which	 I	 took	 to	 the	 CSS
WG.

“How	 much	 code	 does	 it	 take	 to	 make	 a	 book	 like	 this	 with	 web
technologies?”	 you	 might	 ask.	 Let’s	 look	 at	 a	 few	 statistics	 (before
production):

This	book	is	styled	with	4,700	lines	of	SCSS,	compiling	to	3,800	lines
of	CSS.

A	little	over	10,000	lines	of	HTML.

There	are	322	figures	in	the	entire	book,	but	only	140	image	files
(including	SVG	images	and	screenshots),	as	most	figures	are	just	a	series
of	divs	styled	with	CSS.	(Figure	styling	accounts	for	65%	of	the	book’s
CSS	and	SCSS	code!)

http://oreillymedia.github.io/HTMLBook
http://atlas.oreilly.com

Here	is	a	list	of	tools	used	in	making	this	book,	besides	Atlas:

Git	for	version	control

SCSS	for	CSS	preprocessing

The	entire	book	was	written	in	the	Espresso
(macrabbit.com/espresso)	text	editor

CodeKit	was	used	for	compiling	SCSS	to	CSS

Dabblet	(dabblet.com)	was	used	for	the	live	demos	and	for	the	few
figures	that	are	screenshots	of	the	demos

The	SVG-based	figures	that	were	not	hand	coded	were	created	in
Adobe	Illustrator

Adobe	Photoshop	was	used	to	edit	screenshots,	when	needed

The	fonts	used	were	Rockwell	for	the	headings,	Frutiger	for	the	body	text,
Consolas	 for	 the	 code,	 and	Baskerville	 for	 the	dedication	 and	many
figures.

The	 book	was	written	 on	 a	 13″	MacBook	Air,	 in	 a	 variety	 of	 countries,
including	 Greece,	 Kenya,	 Australia,	 New	 Zealand,	 the	 Philippines,
Singapore,	Chile,	Brazil,	 the	United	States,	France,	Spain,	 the	UK,	Wales,
Poland,	Canada,	and	Austria.

http://macrabbit.com/espresso
http://dabblet.com

About	this	book

Who	this	book	is	for

The	 primary	 target	 audience	 for	 this	 book	 is	 intermediate	 to	 advanced
CSS	developers.	By	getting	 the	 introductory	 stuff	out	of	 the	way,	we	 can
explore	more	advanced	use	cases	of	modern	CSS	features	and	combinations
thereof.	This,	however,	means	that	quite	a	few	assumptions	have	been	made
about	you,	dear	reader:

I	assume	you	know	CSS	2.1	inside	out,	and	have	a	few	years	of
experience	with	it.	You	don’t	struggle	to	understand	how	positioning
works.	You’ve	used	generated	content	to	enhance	your	designs	without
extraneous	markup	or	images.	You	don’t	resort	to	plastering
!important	all	over	your	code	because	you	actually	understand
specificity,	inheritance,	and	the	cascade.	You	know	what	the	different
parts	of	the	box	model	are,	and	you	are	not	fazed	by	margin	collapsing.
You	are	familiar	with	the	different	length	units	and	know	when	it’s	best
to	use	each	one.

You’ve	read	quite	a	bit	about	the	most	popular	CSS3	features,	online
and/or	in	books,	and	have	tried	them	out,	even	if	only	in	personal
projects.	Even	if	you	haven’t	studied	them	in	depth,	you	know	how	to
create	rounded	corners,	add	a	box-shadow,	or	create	a	linear	gradient.
You’ve	played	with	some	basic	2D	transforms,	and	have	enhanced
interactions	with	basic	transitions	and	animations.

You	have	seen	SVG	and	know	what	it’s	used	for,	even	if	you	don’t	quite
know	how	to	write	it	yourself.

You	can	read	and	understand	basic,	vanilla	JavaScript,	such	as	creating
elements,	manipulating	their	attributes,	and	adding	them	to	the
document.

You’ve	heard	of	CSS	preprocessors	and	know	what	they	can	do,	even
if	you	choose	not	to	use	one.

You’re	familiar	with	middle	school	level	math,	such	as	square	roots,
the	Pythagorean	theorem,	sines,	cosines,	and	logarithms.

However,	 to	 enable	 readers	 that	don’t	meet	 all	 these	 assumptions	 to	 enjoy
this	book,	there	is	a	“Prerequisites”	box	in	the	beginning	of	some	secrets,
briefly	listing	any	CSS	knowledge	or	previous	secrets	that	need	to	be	known
for	the	secret	to	make	sense	(excluding	CSS	2.1	features,	otherwise	the	box
would	get	really	long).	It	looks	like	this:

Prerequisites
box-shadow,	basic	CSS	gradients,	the	“Flexible	ellipses”	secret	on	page
76

This	way,	even	 if	 certain	 things	are	not	already	known,	one	can	read	up
about	 them	 and	 come	 back	 to	 the	 secret	 afterward.	 As	 long	 as	 their
prerequisites	 are	met,	 the	 secrets	 can	 actually	 be	 read	 in	 any	 order,
though	there	is	value	in	reading	them	in	the	book	order,	as	a	lot	of	thought
has	been	put	into	what	the	optimal	order	is.

Note	that	I	mentioned	“CSS	developers”	and	that	“design	skills”	are	not
in	 the	 list	 of	 assumptions	 above.	 It’s	 important	 to	 note	 that	 this	 is	 not	 a
design	book.	While	it	unavoidably	touches	on	certain	design	principles	and
describes	a	 few	UX	improvements,	CSS	Secrets	 is	 first	and	foremost	a	book
about	solving	problems	with	code.	CSS	might	have	a	visual	output,	but	it
is	still	code,	just	like	SVG,	WebGL/OpenGL,	or	the	JavaScript	Canvas	API
is	 code,	 not	 design.	Writing	 good,	 flexible	CSS	 requires	 the	 same	 kind	 of
analytical	 thinking	 that	 programming	 does.	 Nowadays,	 most	 people	 use
preprocessors	for	their	CSS,	with	variables,	math,	conditionals,	and	loops,	so
it’s	almost	starting	to	look	like	programming!

This	is	not	to	imply	that	designers	are	discouraged	from	reading	this
book.	Anybody	who	has	sufficient	coding	experience	with	CSS	can	benefit
from	it,	and	there	are	many	talented	designers	who	can	also	write	excellent
CSS	 code.	 However,	 it’s	 important	 to	 note	 that	 teaching	 you	 how	 to
improve	the	visual	design	or	usability	of	a	website	is	not	among	the	goals	of
this	book,	even	if	it	happens	as	a	side	effect.

Format	&	conventions	used

The	 book	 consists	 of	 47	 “secrets,”	 grouped	 by	 topic	 in	 seven	 chapters.
These	 secrets	 are	 more	 or	 less	 independent	 and—as	 long	 as	 their
prerequisites	are	met—can	be	read	in	any	order.	The	demos	in	every	secret
are	not	 complete	websites,	 or	 even	parts	 thereof.	They	 are	purposefully	 as
small	 and	 simple	 as	 possible,	 in	 order	 to	 facilitate	 understanding.	 The
assumption	 is	 that	 you	 already	 know	 what	 you	 want	 to	 implement.	 The
purpose	 of	 this	 book	 is	 not	 to	 give	 design	 ideas,	 but	 implementation
solutions.

FIGURE	P.1.	This	is	an	example	sidebar	figure,	introducing	the	great	Sir
Adam	Catlace

Every	 secret	 is	 split	 into	 two	 or	more	 sections.	 The	 first	 section,	 titled
“The	problem,”	introduces	a	common	CSS	challenge	that	we	are	going	to
solve.	Sometimes	this	 introduction	might	describe	widely	popular	solutions
that	are	suboptimal	(e.g.,	solutions	that	require	a	 lot	of	markup,	hardcoded
values,	etc.),	and	usually	concludes	with	variations	of	the	question	“Is	there	a
better	way	to	achieve	this?”

After	 introducing	 the	problem,	one	or	more	 solutions	 follow.	This	book
was	 inspired	by	 the	CSS	 talks	 I	have	presented	at	 various	 conferences	 so	 I
tried	 to	 maintain	 the	 interactive	 presentation	 format	 as	 much	 as	 a	 book
allows.	 Therefore,	 every	 solution	 is	 illustrated	 by	 a	 number	 of	 figures,
demonstrating	the	visual	output	for	every	step	of	the	solution	that	results	in
a	visual	change.	Because	figures	are	not	always	directly	next	to	the	text	that
describes	what	 they	demonstrate,	 they	are	numbered	and	referenced	 in	 the
text.	 You	 can	 see	 an	 example	 of	 a	 figure	 in	 Figure	 P.1	 and	 the	 current
sentence	was	an	example	of	a	reference	to	it.

Notes,	such	as	this	one,	provide	additional	information	or	explain	a	term	mentioned	in	the	text.

	This	is	a	warning.	Its	purpose	is	to	warn	you	(surprising,	I	know!)	about	possible	false
assumptions	and	certain	things	that	could	go	wrong.

Inline	 code	 is	 denoted	 by	 monospace	 text	 and	 colors	 often	 have	 a

small	preview	next	to	them	as	well	(e.g.,	 	#f06).	Block-level	code	looks
like	this:

background:	url("adamcatlace.jpg");

or	this:

HTML
<figure>
				
				<figcaption>Sir	Adam	Catlace</figcaption>
</figure>

As	you	might	have	noticed,	when	the	language	of	a	code	block	is	not	CSS,
it’s	 noted	 in	 the	 top-right	 corner.	 Also,	 when	 the	 example	 discussed	 only
involves	 a	 single	 element,	 and	 no	 pseudo-classes	 or	 pseudo-elements	 are
involved,	 there	 is	 usually	 no	 selector	 or	 braces	 ({})	 included	 in	 the	 code
blocks,	for	brevity.

All	 JavaScript	 examples	 in	 the	 book	 are	 vanilla	 JavaScript,	 with	 no
frameworks	 or	 libraries	 required.	 There	 is	 only	 one	 helper	 function	 used,
$$(),	in	order	to	make	it	easier	to	loop	over	a	set	of	elements	that	match	a

certain	CSS	selector.	The	function’s	definition	is:

JS
function	$$(selector,	context)	{
				context	=	context	||	document;
				var	elements	=	context.querySelectorAll(selector);
				return	Array.prototype.slice.call(elements);
}

TRIVIA 	Side	trivia
Dark	 “Trivia”	 sections	 at	 the	 bottom	 of	 pages	 introduce	 tangentially
related	trivia,	such	as	the	historical	or	technical	background	behind	a	CSS
feature.	 They	 are	 not	 necessary	 for	 using	 or	 understanding	 the	 main
material,	but	readers	might	find	them	interesting	nevertheless.

Every	 secret	 includes	one	or	more	 live	 examples	 that	 can	be	 accessed	with
short,	 memorable	 URLs	 in	 play.csssecrets.io.	 The	 references	 to
them	look	like	this:

	PLAY! 	play.csssecrets.io/polka

It	 is	 strongly	 recommended	 that	 you	 check	 out	 the	 “Play!”	 examples,
especially	if	you	are	confused	by	the	techniques	described	or	if	you	get	stuck
while	following	along.

Credit	 where	 it’s	 due:	 When	 a	 technique	 described	 was	 first	 documented	 by
someone	else	in	the	community,	credit	will	be	given	in	a	“Hat	Tip”	paragraph	like
this	one,	referencing	the	URL	of	the	source	as	well.	We	all	know	that	having	to	find
the	“References”	section	at	the	end	of	a	book	is	a	hassle,	 so	these	essentially	provide
references	in	context.

http://play.csssecrets.io
http://play.csssecrets.io/polka

FUTURE 	Future	solutions
“Future”	 sections	 (positioned	 at	 the	 bottom	 of	 pages	 and	 set	 on	 a	 dark
background)	 introduce	techniques	that	are	already	in	draft	specifications,
but	at	the	time	of	writing	have	no	implementations.	Readers	should	always
check	 if	 these	 techniques	 are	 supported,	 as	 they	 might	 have	 been
implemented	after	the	publication	of	this	book.	In	cases	where	the	feature
is	obscure	enough	that	browser	support	websites	might	not	include	it,	the
section	will	 include	 a	 test	 that	 the	 reader	 can	 load,	 in	 short	memorable
URLs,	such	as	the	one	shown	here	in	the	“Test!”	example.	These	tests	are
usually	 designed	 so	 that	 shades	 of	 green	 appear	 when	 the	 feature	 is
supported	 and	 shades	 of	 red	 otherwise.	 The	 exact	 instructions	 are
mentioned	in	the	code,	as	a	comment.

TEST! 	play.csssecrets.io/test-conic-gradient

At	the	end	of	almost	every	secret	you’ll	find	a	list	of	related	specifications
that	looks	like	this:

RELATED
SPECS

CSS	Backgrounds	&	Borders
w3.org/TR/css-backgrounds

Selectors
w3.org/TR/selectors

Scalable	Vector	Graphics
w3.org/TR/SVG

This	includes	references	to	all	the	specifications	from	which	features	were
mentioned.	However,	just	like	the	“Prerequisites”	box,	this	does	not	apply	to
CSS	 2.1	 (w3.org/TR/CSS21),	 otherwise	 it	 would	 be	 listed	 in	 the

http://play.csssecrets.io/test-conic-gradient
http://w3.org/TR/css-backgrounds
http://w3.org/TR/selectors
http://w3.org/TR/SVG
http://w3.org/TR/CSS21

“Related	 Specs”	 section	 of	 every	 single	 secret.	 This	 means	 that	 the	 few
secrets	that	only	discuss	CSS	2.1	features	have	no	“Related	Specs”	section	at
all.

Browser	support	&	fallbacks

Possibly	 the	 biggest	 peculiarity	 of	 this	 book	 is	 the	 complete	 lack	 of
browser	 compatibility	 tables.	 This	 was	 a	 conscious	 decision,	 as	 with
today’s	browser	release	cycles,	such	information	is	bound	to	get	out	of	date
before	 this	 book	 even	 hits	 the	 shelves.	 I	 believe	 that	 inaccurate	 browser
support	 information	 is	 misleading,	 and	 is	 actually	 worse	 than	 no
information.

However,	 most	 secrets	 described	 either	 currently	 have	 decent	 browser
support	 and/or	 degrade	 gracefully.	 In	 cases	 where	 a	 technique	 described
presently	 has	 particularly	 poor	 browser	 support,	 there	 is	 a	 “Limited
Support”	warning	icon	next	to	the	relevant	solution,	like	the	one	next	to	this
paragraph.	 This	 should	 be	 enough	 to	 hint	 that	 you	 should	 not	 use	 the
solution	without	looking	up	browser	support	for	it	and	taking	extra	care	for
providing	good	fallbacks.

There	 are	 plenty	 of	 excellent	 websites	 containing	 up-to-date	 browser
support	information.	Here	are	some	suggestions:

Can	I	Use…?	(caniuse.com)

WebPlatform.org

Mozilla	Developer	Network	(developer.mozilla.org)

Wikipedia’s	“Comparison	of	Layout	Engines	(Cascading	Style
Sheets)”
(en.wikipedia.org/wiki/Comparison_of_layout_engines_(Cascading_Style_Sheets)

Sometimes	 you	might	 find	 that	 a	 certain	 feature	 is	 supported,	 but	 slightly

http://caniuse.com
http://WebPlatform.org
http://developer.mozilla.org
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(Cascading_Style_Sheets)

differently	across	browsers.	For	example,	it	might	need	a	vendor	prefix,	or
slightly	different	syntax.	Only	 the	standards-compliant,	unprefixed	syntax
will	 be	 included	 in	 the	 examples.	 However,	 you	 can	 almost	 always	 use
different	syntaxes	alongside	and	let	the	cascade	take	care	of	which	one	wins.
For	 this	 reason,	always	place	 the	 standard	 version	 last.	 For	 example,	 to

get	a	vertical	linear	gradient	from	 	yellow	to	 	red,	the	book	would
only	list	the	standard	version:

background:	linear-gradient(90deg,	yellow,	red);

However,	 if	 you	 want	 to	 support	 very	 old	 browsers,	 you	might	 end	 up
having	to	write	something	like	the	following:

background:	-moz-linear-gradient(0deg,	yellow,	red);
background:	-o-linear-gradient(0deg,	yellow,	red);
background:	-webkit-linear-gradient(0deg,	yellow,	red);
background:	linear-gradient(90deg,	yellow,	red);

You	can	read	more	on	vendor	prefixes,	why	they	exist,	and	how	to	abstract	them	away	from	your
code	in	the	“A	story	of	ice,	fire,	and	vendor	prefixes”	section	on	page	6.

Because	the	landscape	of	these	differences	is	just	as	fluid	as	browser	support,
it	 is	expected	that	things	 like	this	are	part	of	your	standard	research	before
using	a	CSS	feature	and	are	not	discussed	further	in	the	solutions	presented.

Similarly,	most	of	the	time	it’s	good	practice	to	provide	fallbacks,	so	that
your	website	doesn’t	break	in	older	browsers,	even	if	it	doesn’t	look	as	fancy
in	them.	These	are	not	discussed	extensively	when	they	are	obvious,	as	 the
assumption	 is	 that	 you	 know	 how	 the	 cascade	 works.	 For	 example,	 when
specifying	a	gradient,	such	as	the	one	just	shown,	you	should	also	add	a	solid
color	version	before	all	of	them.	A	good	idea	for	the	solid	color	might	be	the

average	of	the	two	gradient	colors	(in	this	case,	 	rgb(255,	128,	0)):

background:	rgb(255,	128,	0);
background:	-moz-linear-gradient(0deg,	yellow,	red);
background:	-o-linear-gradient(0deg,	yellow,	red);
background:	-webkit-linear-gradient(0deg,	yellow,	red);
background:	linear-gradient(90deg,	yellow,	red);

However,	sometimes	it’s	not	possible	to	provide	decent	fallbacks	through	the
cascade.	 As	 a	 last	 resort,	 you	 could	 use	 tools	 like	 Modernizr
(modernizr.com),	 which	 adds	 classes	 like	 textshadow	 or
notextshadow	 to	 the	 root	 element	 (<html>),	 so	 you	 can	 use	 them	 to
target	elements	only	when	certain	features	are	(not)	supported,	like	so:

h1	{	color:	gray;	}

.textshadow	h1	{
				color:	transparent;
				textshadow:	0	0	.3em	gray;
}

If	 the	feature	you	are	trying	to	create	a	 fallback	for	 is	sufficiently	new,	you
could	 use	 the	 @supports	 rule,	 which	 is	 the	 “native”	 Modernizr.	 For
example,	the	preceding	code	would	become:

h1	{	color:	gray;	}

@supports	(textshadow:	0	0	.3em	gray)	{
					h1	{
								color:	transparent;

								textshadow:	0	0	.3em	gray;
				}
}

However,	for	now,	be	wary	of	using	@supports.	By	using	it	here	we	just
limited	our	effect	not	only	to	browsers	that	support	text	shadows,	but	also	to
browsers	that	support	the	@supports	rule—a	much	more	limited	set.

Last,	but	not	least,	there	is	always	the	option	of	using	a	few	lines	of	home-
baked	 JavaScript	 to	 perform	 feature	 detection	 and	 add	 classes	 to	 the	 root
element	 in	 the	 same	 fashion	 as	 Modernizr.	 The	 main	 way	 to	 determine
whether	 a	 property	 is	 supported	 is	 to	 check	 its	 existence	 on	 the
element.style	object	of	any	element:

JS
var	root	=	document.documentElement;	//	<html>

http://modernizr.com

if	('textShadow'	in	root.style)	{
				root.classList.add('textshadow');
}
else	{
				root.classList.add('notextshadow');
}

If	 we	 need	 to	 test	 for	 multiple	 properties,	 we	 can	 easily	 turn	 this	 into	 a
function:

JS
function	testProperty(property)	{
				var	root	=	document.documentElement;

				if	(property	in	root.style)	{
								root.classList.add(property.toLowerCase());
								return	true;
				}

				root.classList.add('no-'	+	property.toLowerCase());
				return	false;
}

If	we	want	to	test	a	value,	we	need	to	assign	it	to	the	property	and	check	if
the	 browser	 retains	 it.	 Because	 we	 are	 modifying	 styles	 here	 and	 not	 just
testing	for	their	existence,	it	makes	sense	to	use	a	dummy	element:

JS
var	dummy	=	document.createElement('p');
dummy.style.backgroundImage	=	'lineargradient(red,tan)';

if	(dummy.style.backgroundImage)	{
				root.classList.add('lineargradients');
}
else	{
				root.classList.add('no-lineargradients');
}

This	can	easily	be	converted	to	a	function	as	well:

JS

function	testValue(id,	value,	property)	{
				var	dummy	=	document.createElement('p');
				dummy.style[property]	=	value;

				if	(dummy.style[property])	{
								root.classList.add(id);
								return	true;
				}

				root.classList.add('no-'	+	id);
				return	false;
}

Testing	 selectors	 and	@rules	 is	 a	 bit	more	 complex,	 but	 follows	 the	 same
principle:	 when	 it	 comes	 to	 CSS,	 browsers	 drop	 anything	 they	 don’t
understand,	 so	 we	 can	 check	 if	 a	 feature	 is	 recognized	 by	 dynamically
applying	 it	 and	checking	 if	 it	was	 retained.	Of	course,	keep	 in	mind	 that	 a
browser	 being	 able	 to	parse	 a	 CSS	 feature	 offers	no	 guarantee	 that	 the
feature	is	correctly	implemented,	or	even	that	it’s	implemented	at	all.

1	Introduction

Web	standards:	friend	or	foe?

The	standards	process

Contrary	 to	 popular	 belief,	 the	W3C	 (World	Wide	Web	 Consortium)
does	not	“make”	standards.	Instead,	it	acts	as	a	forum	for	interested	parties
to	 get	 together	 and	 do	 so,	 in	 its	W3C	Working	 Groups.	 Of	 course,	 the
W3C	 is	 not	 a	mere	 observer:	 it	 sets	 the	 ground	 rules	 and	 it	 oversees	 the
process.	 But	 it’s	 not	 (primarily)	 W3C	 staff	 that	 actually	 write	 the
specifications.

FIGURE	1.1	“Standards	are	like	sausages:	it’s	better	not	to	see	them	being
made”
—Anonymous	W3C	WG	member

CSS	specifications,	 in	particular,	are	written	by	the	members	of	the	CSS
Working	Group,	often	abbreviated	as	CSS	WG.	At	the	time	of	writing,	the
CSS	WG	includes	98	members,	and	its	composition	is	as	follows:

86	members	from	W3C	member	companies	(88%)

7	Invited	Experts,	including	yours	truly	(7%)

5	W3C	staff	members	(5%)

As	you	might	notice,	 the	vast	majority	of	WG	members	 (88%)	come	from
W3C	 member	 companies.	 These	 are	 companies—such	 as	 browser	 vendors,
popular	websites,	 research	 institutes,	 general	 technology	 companies,	 etc.—
that	 have	 a	 vested	 interest	 in	 seeing	 web	 standards	 flourish.	 Their	 yearly
membership	dues	represent	the	majority	of	the	W3C’s	funding,	enabling	the
Consortium	 to	distribute	 its	 specifications	 freely	 and	openly,	 unlike	other
standards	bodies	that	have	to	charge	for	them.

Invited	Experts	 are	web	developers	who	have	been	asked	 to	participate	 in
the	 standards	 process,	 after	 demonstrating	 a	 continuous	 commitment	 to
helping	 out,	 and	 a	 sufficient	 technical	 background	 to	 participate	 in	 the
discussions.

Last,	but	not	least,	W3C	staff	members	are	people	who	actually	work	at	the
Consortium	and	facilitate	communication	between	the	WG	and	the	W3C.

A	 widespread	 misconception	 among	 web	 developers	 is	 that	 the	 W3C
creates	standards	from	up	high	that	the	poor	browsers	then	have	to	follow,
whether	 they	 like	 them	or	not.	However,	 this	couldn’t	be	 further	 from	the
truth:	browser	vendors	have	much	more	of	a	say	than	the	W3C	 in	what
goes	into	standards,	as	evidenced	by	the	numbers	listed	before.

Also	contrary	to	popular	belief,	standards	are	not	created	in	a	vacuum,
behind	closed	doors.	The	CSS	WG	is	committed	to	transparency	and	all	its
communications	are	open	to	the	public,	inviting	review	and	participation:

FIGURE	1.2	The	composition	of	the	CSS	WG:

	Member	companies

	Invited	Experts

	W3C	staff	members

Most	discussions	happen	in	its	mailing	list,	www-style
(lists.w3.org/Archives/Public/www-style).	www-style	is
publicly	archived,	and	is	open	to	participation	from	anyone.

There	is	a	weekly	telcon,	with	a	duration	of	one	hour.	This	is	not	open
to	participation	by	non-WG	members,	but	is	minuted	in	real	time	in
the	#css	channel	on	the	W3C’s	IRC	server	(irc.w3.org/).	These
minutes	are	then	cleaned	up	and	posted	to	the	mailing	list	a	few	days
later.

There	are	also	quarterly	face-to-face	meetings,	which	are	also
minuted	in	the	same	fashion	as	telcons.	They	are	also	often	open	to
observation	(auditing),	after	requesting	permission	from	the	WG
chairs.

All	 this	 is	 part	 of	 the	W3C	 process	 and	 has	 to	 do	 with	 decision	making.
However,	the	ones	that	are	actually	responsible	for	putting	these	decisions	to
writing	 (i.e.,	 authoring	 the	specifications)	are	 the	Spec	Editors.	Spec	Editors
might	 be	 W3C	 staff	 members,	 browser	 developers,	 interested	 Invited
Experts,	or	member	company	employees	who	are	doing	it	as	a	full-time	job,
paid	by	their	companies	to	advance	standards	for	the	common	good.

http://lists.w3.org/Archives/Public/www-style
http://irc.w3.org/

Each	 specification	goes	 through	multiple	 stages	 as	 it	 evolves	 from	 initial
inception	to	maturity:

Interested	in	learning	more?	Elika	Etemad	(fantasai)	has	written	a	series	of	amazing	articles	on
how	the	CSS	WG	operates	(fantasai.inkedblade.net/weblog/2011/inside-
csswg).	Very	highly	recommended.

1.	Editor’s	Draft	(ED):	The	first	stage	of	a	spec	could	be	as	messy	as	being
just	a	collection	of	ideas	by	the	spec	editor.	There	are	no	requirements	for
this	stage	and	no	guarantee	that	it’s	approved	by	the	WG.	However,	this	is
also	the	first	stage	of	every	revision:	all	changes	are	first	made	in	an	ED,
then	published.

2.	First	Public	Working	Draft	(FPWD):	The	first	published	version	of	a
spec,	after	it’s	deemed	ready	for	public	feedback	by	the	WG.

3.	Working	Draft	(WD):	There	are	many	WDs	after	the	first	one,	each
slightly	better,	incorporating	feedback	from	the	WG	and	the	broader
community.	First	implementations	often	start	at	this	stage,	but	it’s	not
unheard	of	to	have	experimental	implementations	of	earlier	stage	specs.

4.	Candidate	Recommendation	(CR):	This	is	considered	a	relatively	stable
version.	Now	it’s	time	for	implementations	and	tests.	A	spec	cannot
advance	past	this	stage	without	a	full	test	suite	and	at	least	two
independent	implementations.

5.	Proposed	Recommendation	(PR):	Last	chance	for	W3C	member
companies	to	express	disagreement	with	the	specification.	This	rarely
happens,	so	it’s	usually	just	a	matter	of	time	for	every	PR	spec	to	move	to
the	next,	final	stage.

6.	Recommendation	(REC):	The	final	stage	of	a	W3C	specification.

One	 or	 two	 WG	 members	 have	 the	 role	 of	 being	 chairs.	 Chairs	 are
responsible	 for	 organizing	 meetings,	 coordinating	 calls,	 timekeeping,	 and
generally	moderating	the	whole	thing.	Being	chair	is	a	very	time-consuming
and	 energy-draining	 role,	 and	 is	 frequently	 compared	 to	herding	cats.	Of
course,	 everyone	 involved	 in	 standards	 knows	 that	 such	 a	 comparison	 is
moot:	herding	cats	is	actually	considerably	easier.

http://fantasai.inkedblade.net/weblog/2011/inside-csswg

FIGURE	1.3	Chairing	a	W3C	Working	Group	is	frequently	compared	to
herding	cats

CSS3,	CSS4,	and	other	mythical	creatures

CSS	1	was	a	very	short	and	relatively	simple	specification,	published	in	1996
by	Håkon	Wium	Lie	and	Bert	Bos.	It	was	so	small	that	it	was	all	included	in
a	single	HTML	page,	which	required	around	68	sheets	of	A4	paper	to	print.

CSS	2,	published	in	1998,	was	more	strictly	defined,	and	included	much
more	power	and	two	more	spec	editors:	Chris	Lilley	and	Ian	Jacobs.	At	this
point,	the	length	of	the	specification	had	grown	to	480	(!)	printed	pages	and
was	already	getting	too	big	to	be	held	in	human	memory	in	its	entirety.

After	CSS	Level	2,	 the	CSS	WG	realized	 that	 the	 language	was	getting
too	big	to	be	contained	in	a	single	specification.	Not	only	was	 it	extremely
unwieldy	to	read	and	edit,	but	it	was	also	holding	CSS	back.	Remember	that
for	a	specification	to	advance	to	the	final	stages,	every	single	feature	in
it	 needs	 at	 least	 two	 independent	 implementations	 and	 exhaustive
tests.	 This	 was	 no	 longer	 practical.	 Therefore,	 it	 was	 decided	 that	 going
forward,	CSS	was	going	to	be	broken	into	multiple	specifications	(modules),
each	 with	 its	 own	 versioning.	 Those	 that	 expand	 on	 features	 that	 were
already	 present	 in	CSS	 2.1	would	 have	 a	 level	 number	 of	 3.	 For	 example,
some	of	these	modules	are:

CSS	Syntax	(w3.org/TR/css-syntax-3)

CSS	Cascading	and	Inheritance	(w3.org/TR/css-cascade-3)

CSS	Color	(w3.org/TR/css3-color)

Selectors	(w3.org/TR/selectors)

CSS	Backgrounds	&	Borders	(w3.org/TR/css3-background)

CSS	Values	and	Units	(w3.org/TR/css-values-3)

CSS	Text	(w3.org/TR/css-text-3)

CSS	Text	Decoration	(w3.org/TR/css-text-decor-3)

CSS	Fonts	(w3.org/TR/css3-fonts)

CSS	Basic	User	Interface	(w3.org/TR/css3-ui)

However,	modules	that	introduce	entirely	new	concepts	start	from	Level	1.
Here	are	a	few	examples:

CSS	Transforms	(w3.org/TR/css-transforms-1)

Compositing	and	Blending	(w3.org/TR/compositing-1)

Filter	Effects	(w3.org/TR/filter-effects-1)

CSS	Masking	(w3.org/TR/css-masking-1)

CSS	Flexible	Box	Layout	(w3.org/TR/css-flexbox-1)

CSS	Grid	Layout	(w3.org/TR/css-grid-1)

Despite	 the	 popularity	 of	 the	 “CSS3”	 buzzword,	 there	 is	 actually	 no
specification	 defining	 such	 a	 thing,	 like	 there	 was	 for	 CSS	 2.1	 or	 its
predecessors.	Instead,	what	most	authors	are	referring	to	 is	an	arbitrary	set
of	 Level	 3	 specs,	 plus	 some	 Level	 1	 specs.	 Although	 there	 is	 some	 good
degree	of	consensus	among	authors	on	which	specs	are	included	in	“CSS3,”

http://w3.org/TR/css-syntax-3
http://w3.org/TR/css-cascade-3
http://w3.org/TR/css3-color
http://w3.org/TR/selectors
http://w3.org/TR/css3-background
http://w3.org/TR/css-values-3
http://w3.org/TR/css-text-3
http://w3.org/TR/css-text-decor-3
http://w3.org/TR/css3-fonts
http://w3.org/TR/css3-ui
http://w3.org/TR/css-transforms-1
http://w3.org/TR/compositing-1
http://w3.org/TR/filter-effects-1
http://w3.org/TR/css-masking-1
http://w3.org/TR/css-flexbox-1
http://w3.org/TR/css-grid-1

as	CSS	modules	evolve	at	different	rates	over	the	years,	it	will	become	more
and	more	 difficult	 to	 refer	 to	 things	 like	 CSS3,	 CSS4,	 and	 so	 on	 and	 be
universally	understood.

A	story	of	ice,	fire,	and	vendor	prefixes

In	 standards	development,	 there	 is	 always	a	big	catch-22:	 standards	groups
need	 input	 from	 developers	 to	 create	 specifications	 that	 address	 real
development	 needs.	 However,	 developers	 are	 generally	 not	 interested	 in
trying	 out	 things	 they	 can’t	 use	 in	 production.	 When	 experimental
technologies	get	widely	used	in	production,	the	WG	is	forced	to	stick	with
the	early,	experimental	version	of	the	technology,	to	avoid	breaking	several
existing	 websites	 if	 they	 change	 it.	Obviously,	 this	 completely	 negates	 the
benefits	of	getting	developers	to	try	out	early	standards.

Over	 the	 years,	 many	 solutions	 have	 been	 proposed	 to	 address	 this
conundrum,	none	of	them	perfect.	The	universally	despised	vendor	prefixes
were	 one	 of	 them.	 The	 idea	 was	 that	 every	 browser	 would	 be	 able	 to
implement	experimental	(or	even	proprietary)	features	with	their	own	prefix
prepended	to	its	name.	The	most	common	prefixes	are	-moz-	for	Firefox,	-
ms-	 for	 IE,	 -o-	 for	 Opera,	 and	 -webkit-	 for	 Safari	 and	 Chrome.
Developers	would	be	able	 to	 freely	experiment	with	these	prefixed	features
and	 provide	 feedback	 to	 the	 WG,	 which	 would	 then	 incorporate	 this
feedback	into	the	specs	and	slowly	perfect	the	design	of	the	feature.	Because
the	 final,	 standardized	 version	 would	 have	 a	 different	 name	 (no	 prefix),	 it
wouldn’t	collide	with	the	existing	uses	of	its	prefixed	counterparts.

Sounds	 great,	 right?	 Of	 course,	 as	 you	 probably	 know,	 the	 reality	 was
quite	 different	 from	 the	 vision.	 When	 developers	 realized	 that	 these
experimental,	 vendor-prefixed	 properties	 could	 make	 it	 so	 much	 easier	 to
create	effects	that	previously	required	messy	workarounds,	they	started	using
them	everywhere.	Vendor-prefixed	properties	quickly	became	the	CSS	trend
of	 the	 time.	Tutorials	were	written,	StackOverflow	replies	were	given,	 and
soon	almost	every	self-respecting	CSS	developer	was	using	them	all	over	the
place.

Eventually,	authors	realized	that	using	only	existing	vendor	prefixes	meant
they	would	have	to	go	back	to	previous	work	and	add	new	declarations	every
time	another	browser	implemented	their	favorite	cool	new	CSS	feature.	Not

to	mention	how	hard	it	became	to	keep	up	with	which	prefixes	were	needed
for	 what	 feature.	 The	 solution?	 Add	 all	 possible	 vendor	 prefixes
preemptively,	including	the	unprefixed	version	at	the	end,	to	future-proof	it.
We	ended	up	with	code	like	the	following:

-moz-border-radius:	10px;
-ms-border-radius:	10px;
-o-border-radius:	10px;
-webkit-border-radius:	10px;
border-radius:	10px;

Two	 of	 the	 declarations	 here	 are	 completely	 redundant:	 -ms-border-
radius	and	-o-border-radius	never	existed	in	any	browser,	as	IE	and
Opera	implemented	border-radius	unprefixed	from	the	get-go.

Obviously,	 repeating	 every	 declaration	 up	 to	 five	 times	was	 tedious	 and
unmaintainable.	 It	 was	 only	 a	 matter	 of	 time	 until	 tools	 were	 built	 to
automate	this:

Websites	like	CSS3,	Please!	(css3please.com)	or	pleeease
(pleeease.io/playground.html)	allow	you	to	paste	your
unprefixed	CSS	code	and	get	back	CSS	with	all	necessary	prefixes
added.	Such	apps	were	among	the	first	ideas	devised	to	automate	vendor
prefix	addition,	but	are	not	very	popular	anymore,	as	using	them	incurs
quite	a	lot	of	overhead	compared	to	other	solutions.

Autoprefixer	(github.com/ai/autoprefixer)	uses	the	database
from	Can	I	Use…	(caniuse.com)	to	determine	which	prefixes	to
add	to	unprefixed	code	and	compiles	it	locally,	like	a	preprocessor.

My	own	-prefixfree	(leaverou.github.io/prefixfree)
performs	feature	testing	in	the	browser	to	determine	which	prefixes	are
needed.	The	benefit	is	that	it	rarely	needs	updating,	as	it	gets	everything
from	the	browser	environment,	including	the	list	of	properties.

Preprocessors	like	LESS	(lesscss.org)	or	Sass	(sass-
lang.com)	don’t	offer	any	means	of	prefixing	out	of	the	box,	but
many	authors	create	mixins	for	the	features	they	prefix	most	often,	and
there	are	several	libraries	of	such	mixins	in	circulation.

http://css3please.com
http://pleeease.io/playground.html
http://github.com/ai/autoprefixer
http://caniuse.com
http://leaverou.github.io/prefixfree
http://lesscss.org
http://sass-lang.com

Because	authors	were	using	the	unprefixed	version	of	features	as	a	means	to
future-proof	 their	 code,	 it	 became	 impossible	 to	 change	 them.	 We	 were
basically	 stuck	 with	 half-baked	 early	 specs	 that	 we	 could	 change	 in	 very
limited	ways.	It	didn’t	take	long	for	everyone	involved	to	realize	that	vendor
prefixes	were	an	epic	failure.

These	 days,	 vendor	 prefixes	 are	 rarely	 used	 for	 new	 experimental
implementations.	 Instead,	 experimental	 features	 require	config	 flags	 to	 be
turned	on,	effectively	preventing	developers	from	using	them	in	production,
as	 you	can’t	 really	 tell	users	 to	 change	 their	 settings	 in	order	 to	 view	your
website	properly.	Of	course,	this	has	the	consequence	that	fewer	authors	get
to	 play	 with	 experimental	 features,	 but	 we	 still	 get	 enough	 feedback,	 and
arguably,	better	quality	feedback,	without	the	drawbacks	of	vendor	prefixes.
However,	 it	will	be	a	 long	time	before	the	ripple	effects	of	vendor	prefixes
stop	haunting	us	all.

CSS	coding	tips

Minimize	code	duplication

Keeping	 code	 DRY	 and	 maintainable	 is	 one	 of	 the	 biggest	 challenges	 in
software	development,	and	that	applies	to	CSS	as	well.	In	practice,	one	big
component	 of	 maintainable	 code	 is	 minimizing	 the	 amount	 of	 edits
necessary	to	make	a	change.	For	example,	if	to	enlarge	a	button	you	need
to	make	10	edits	in	many	different	rules,	chances	are	you	will	miss	a	few	of
them,	especially	if	you	are	not	the	one	who	wrote	the	original	code.	Even	if
the	edits	are	obvious,	or	you	eventually	find	them,	you	have	just	wasted	time
that	could	be	put	to	better	use.

Furthermore,	this	is	not	just	about	future	changes.	Flexible	CSS	makes	it
easier	to	write	CSS	once,	and	then	create	variations	with	very	little	code,	as
there	are	only	a	few	values	you	need	to	override.	Let’s	look	at	an	example.

Take	 a	 look	 at	 the	 following	 CSS,	 which	 styles	 the	 button	 shown	 in
Figure	1.4:

FIGURE	1.4	The	button	we	are	going	to	use	in	our	example

padding:	6px	16px;
border:	1px	solid	#446d88;
background:	#58a	linear-gradient(#77a0bb,	#58a);
border-radius:	4px;
box-shadow:	0	1px	5px	gray;
color:	white;
text-shadow:	0	-1px	1px	#335166;
font-size:	20px;
line-height:	30px;

There	are	several	issues	with	the	maintainability	of	this	code	that	we	can	fix.
The	 low-hanging	 fruit	 is	 the	 font	metrics.	 If	we	decide	 to	 change	 the	 font
size	 (perhaps	 to	 create	 a	 variation	 that	 will	 be	 used	 for	 important,	 bigger
buttons),	we	also	need	 to	adjust	 the	 line	 spacing,	as	 they	are	both	absolute
values.	Furthermore,	the	line	spacing	doesn’t	reflect	what	its	relationship	is
to	the	font	size,	so	we	would	even	need	to	perform	calculations	to	figure	out
what	 it	 should	be	 for	 a	different	 font	 size.	When	values	depend	on	each
other,	try	to	reflect	their	relationship	in	the	code.	 In	this	case,	 the	 line
spacing	 is	 150%	 the	 line	 height.	 Therefore,	 it	 would	 be	 much	 more
maintainable	to	show	this	in	the	code:

font-size:	20px;
line-height:	1.5;

While	we’re	at	it,	why	did	we	specify	the	font	size	as	an	absolute	length?
Sure,	absolute	lengths	are	easy	to	work	with,	but	they	come	back	to	bite	you
every	single	time	you	make	changes.	Now,	if	we	decide	to	make	the	parent
font	size	bigger,	we	would	have	to	change	every	single	rule	in	the	stylesheet
that	uses	absolute	font	measurements.	It’s	much	better	to	use	percentages	or
ems:

font-size:	125%;	/*	Assuming	a	16px	parent	font	size	*/
line-height:	1.5;

Now	 if	 I	 change	 the	 parent	 font	 size,	 the	 button	 will	 instantly	 become
bigger.	However,	it	will	look	quite	different	(Figure	1.5),	because	all	other
effects	were	designed	for	a	smaller	button	and	did	not	scale.	We	can	make	all
the	other	 effects	 scalable	 as	well,	 by	 specifying	 any	 lengths	 in	ems,	 so	 that
they	 all	 depend	on	 the	 font	 size.	This	way,	we	 can	 control	 the	 size	 of	 the
button	in	one	place:

Here	we	wanted	our	font	size	and	measurements	to	be	relative	to	the	parent	font	size,	so	we	used
ems.	In	some	cases,	you	want	them	to	be	relative	to	the	root	font	size	(i.e.,	the	font	size	of
<html>),	and	ems	result	in	complex	calculations.	In	that	case,	you	can	use	the	rem	unit.
Relativity	is	an	important	feature	in	CSS,	but	you	do	have	to	think	about	what	things	should	be
relative	to.

padding:	.3em	.8em;
border:	1px	solid	#446d88;
background:	#58a	linear-gradient(#77a0bb,	#58a);
border-radius:	.2em;
box-shadow:	0	.05em	.25em	gray;
color:	white;
text-shadow:	0	-.05em	.05em	#335166;
font-size:	125%;
line-height:	1.5;

FIGURE	1.5	Enlarging	the	font	size	breaks	other	effects	in	our	button
(corner	rounding	being	the	most	noticeable),	as	they	are	specified	using
absolute	lengths

Now	 our	 larger	 button	 looks	 much	 more	 like	 a	 scaled	 version	 of	 the
original	 (Figure	 1.6).	 Notice	 that	 we	 still	 left	 some	 lengths	 as	 absolute
values.	It’s	a	 judgment	call	which	effects	should	scale	with	the	button
and	which	ones	should	stay	the	same.	In	this	case,	we	wanted	our	border
thickness	to	stay	1px	regardless	of	the	button	dimensions.

However,	making	 the	 button	 smaller	 or	 larger	 is	 not	 the	 only	 thing	we
might	want	to	change.	Colors	are	another	big	one.	For	example,	what	if	we
want	 to	 create	 a	 red	Cancel	button,	or	 a	green	OK	button?	Currently,	we

would	need	 to	override	 four	declarations	 (border-color,	background,
box-shadow,	text-shadow),	not	to	mention	the	hassle	of	recalculating

all	 the	 different	 darker/lighter	 variants	 of	 our	 main	 color,	 #58a,	 and
figuring	out	how	much	lighter	or	darker	each	color	is.	Also,	what	if	we	want

to	 place	 our	 button	 on	 a	 non-white	 background?	Using	 	gray	 for	 its
shadow	will	only	look	as	intended	on	a	white	background.

FIGURE	1.6	Now	we	can	make	our	button	larger,	and	all	its	effects	scale
too

We	could	easily	eliminate	this	hassle	by	using	semi-transparent	white	and
black	for	lighter/darker	variants,	respectively,	overlaid	on	our	main	color:

TIP! 	Use	HSLA	instead	of	RGBA	for	semi-transparent	white,	as	it	has	slightly	fewer	characters
and	is	quicker	to	type,	due	to	the	lack	of	repetition.

padding:	.3em	.8em;
border:	1px	solid	rgba(0,0,0,.1);
background:	#58a	linear-gradient(hsla(0,0%,100%,.2),
																																	transparent);
border-radius:	.2em;
box-shadow:	0	.05em	.25em	rgba(0,0,0,.5);
color:	white;
text-shadow:	0	-.05em	.05em	rgba(0,0,0,.5);
font-size:	125%;
line-height:	1.5;

FIGURE	1.7	All	it	took	to	create	these	color	variations	was	changing	the
background	color

Now	 all	 it	 takes	 to	 create	 variations	 with	 different	 colors	 is	 to	 override
background-color	(Figure	1.7):

button.cancel	{
				background-color:	#c00;
}

button.ok	{
				background-color:	#6b0;
}

Our	 button	 is	 already	much	more	 flexible.	However,	 this	 example	 doesn’t
demonstrate	every	opportunity	to	make	your	code	more	DRY.	You	will	find
a	few	more	tips	in	the	following	sections.

Maintainability	versus	brevity

Sometimes,	maintainability	and	brevity	can	be	mutually	exclusive.	Even
in	 the	 previous	 example,	 our	 final	 code	 is	 a	 bit	 longer	 than	 our	 original.
Consider	the	following	snippet	to	create	a	10px	thick	border	on	every	side
of	an	element,	except	the	left	one:

border-width:	10px	10px	10px	0;

It’s	only	one	declaration,	but	to	change	the	border	thickness	we	would	need
to	make	three	edits.	It	would	be	much	easier	to	edit	as	two	declarations,	and
it’s	arguably	easier	to	read	that	way	too:

border-width:	10px;
border-left-width:	0;

currentColor

In	CSS	Color	 Level	 3	(w3.org/TR/css3-color),	 we	 got	many	 new
color	 keywords	 like	 	 lightgoldenrodyellow,	 which	 aren’t	 that
useful.	However,	we	 also	got	 a	 special	new	color	keyword,	borrowed	 from
SVG:	 currentColor.	 This	 does	 not	 correspond	 to	 a	 static	 color	 value.

http://w3.org/TR/css3-color

Instead,	 it	 always	 resolves	 to	 the	 value	 of	 the	color	 property,	 effectively
making	 it	 the	 first	 ever	 variable	 in	 CSS.	 A	 very	 limited	 variable,	 but	 a
variable	nevertheless.

Some	would	argue	that	the	em	unit	was	actually	the	first	variable	in	CSS,	as	it	referred	to	the
value	of	font-size.	Most	percentages	play	a	similar	role,	though	in	less	exciting	ways.

For	 example,	 let’s	 assume	 we	 want	 all	 of	 the	 horizontal	 separators	 (all
<hr>	 elements)	 to	 automatically	 have	 the	 same	 color	 as	 the	 text.	 With
currentColor,	we	could	do	this:

hr	{
				height:	.5em;
				background:	currentColor;
}

You	might	have	noticed	similar	behavior	with	many	existing	properties.	For
example,	if	you	specify	a	border	with	no	color,	it	automatically	gets	the	text
color.	This	is	because	currentColor	is	also	the	initial	value	of	many	CSS
color	 properties:	 border-color,	 the	 text-shadow	 and	 box-shadow
colors,	outline-color,	and	others.

In	the	future,	when	we	get	functions	to	manipulate	colors	in	native	CSS,
currentColor	 will	 become	 even	more	 useful,	 as	 we	 will	 be	 able	 to	 use
variations	of	it.

Inheritance

While	 most	 authors	 are	 aware	 of	 the	 inherit	 keyword,	 it	 is	 often
forgotten.	The	inherit	keyword	can	be	used	in	any	CSS	property	and	it
always	corresponds	to	the	computed	value	of	the	parent	element	(in	pseudo-
elements	 that	 is	 the	 element	 they	 are	 generated	 on).	 For	 example,	 to	 give
form	elements	 the	same	font	as	 the	rest	of	 the	page,	you	don’t	need	to	re-
specify	it,	just	use	inherit:

input,	select,	button	{	font:	inherit;	}

Similarly,	 to	 give	 hyperlinks	 the	 same	 color	 as	 the	 rest	 of	 the	 text,	 use
inherit:

a	{	color:	inherit;	}

The	inherit	keyword	can	often	be	useful	for	backgrounds	as	well.	For
example,	 to	 create	 speech	bubbles	where	 the	pointer	 automatically	 inherits
the	background	and	border	(Figure	1.8):

.callout	{	position:	relative;	}

.callout::before	{
				content:	"";
				position:	absolute;
				top:	-.4em;	left:	1em;
				padding:	.35em;
				background:	inherit;
				border:	inherit;
				border-right:	0;
				border-bottom:	0;
				transform:	rotate(45deg);
}

FIGURE	1.8	A	speech	bubble	where	the	pointer	gets	the	background	color
and	border	from	the	parent

Trust	your	eyes,	not	numbers

The	human	eye	is	far	from	being	a	perfect	input	device.	Sometimes	accurate
measurements	result	 in	 looking	 inaccurate	and	designs	need	 to	account	 for
that.	 For	 example,	 it’s	well	 known	 in	 visual	 design	 literature	 that	 our	 eyes

don’t	perceive	something	as	being	vertically	centered	when	 it	 is.	 Instead,	 it
needs	 to	be	 slightly	 above	 the	geometrical	middle	 to	be	perceived	 as	 such.
See	that	phenomenon	for	yourself,	in	Figure	1.9.

Similarly,	 in	type	design,	 it	 is	well	known	that	round	glyphs	such	as	“O”
need	 to	 be	 slightly	 larger	 than	 more	 rectangular	 glyphs,	 as	 we	 tend	 to
perceive	round	shapes	as	smaller	 than	they	actually	are.	Check	that	out	 for
yourself	in	Figure	1.10.

Such	optical	illusions	are	very	common	in	any	form	of	visual	design,
and	need	to	be	accounted	for.	An	extremely	common	example	is	padding	in
containers	with	text.	The	issue	is	present	regardless	of	the	amount	of	text—it
could	 be	 a	 word	 or	 several	 paragraphs.	 If	 we	 specify	 the	 same	 amount	 of
padding	 on	 all	 four	 sides	 of	 a	 box,	 it	 actually	 ends	 up	 looking	 uneven,	 as
Figure	1.11	demonstrates.	The	reason	is	that	letterforms	are	much	more
straight	on	the	sides	than	their	top	and	bottom,	so	our	eyes	perceive	that
extra	space	as	extra	padding.	Therefore,	we	need	to	specify	less	padding	for
the	top	and	bottom	sides	if	we	want	it	to	be	perceived	as	being	the	same.
You	can	see	the	difference	this	makes	in	Figure	1.12.

FIGURE	1.9	In	the	first	rectangle,	the	brown	square	is	mathematically
vertically	centered,	but	doesn’t	look	so;	in	the	second	one,	it	is	actually
placed	slightly	above	the	geometrical	center,	but	it	looks	more	centered	to
the	human	eye

FIGURE	1.10	The	circle	looks	smaller,	but	its	bounding	box	is	exactly	the
same	as	the	square

On	Responsive	Web	Design

RWD	 (Responsive	Web	 Design)	 has	 been	 all	 the	 rage	 over	 the	 past	 few
years.	 However,	 the	 emphasis	 is	 often	 placed	 on	 how	 important	 it	 is	 for
websites	 to	 be	 “responsive,”	 leaving	 a	 lot	 unsaid	 about	 what	 good	 RWD
entails.

The	 common	 practice	 is	 testing	 a	 website	 in	 multiple	 resolutions	 and
adding	more	and	more	media	queries	 to	 fix	 the	 issues	 that	arise.	However,
every	media	query	adds	overhead	to	future	CSS	changes,	and	they	should
not	be	 added	 lightly.	Every	 future	 edit	 to	 the	CSS	 code	 requires	 checking
whether	any	media	queries	apply,	and	potentially	editing	those	too.	This	 is
often	forgotten,	resulting	in	breakage.	The	more	media	queries	you	add,	the
more	fragile	your	CSS	code	becomes.

FIGURE	1.11	Specifying	the	same	padding	(.5em	here)	on	all	four	sides	of
a	container	with	text	makes	it	look	larger	on	the	top	and	bottom	sides

That	is	not	to	say	that	media	queries	are	a	bad	practice.	Used	right,	they
can	 be	 indispensable.	 However,	 they	 should	 be	 a	 last	 resort,	 after	 every
other	attempt	to	make	a	website	design	flexible	has	failed,	or	when	we	want
to	 completely	 change	 an	 aspect	 of	 the	 design	 in	 smaller/larger	 viewports
(e.g.,	making	 the	 sidebar	 horizontal).	The	 reason	 is	 that	media	 queries	 do

not	fix	issues	in	a	continuous	manner.	They	are	all	about	specific	thresholds
(a.k.a.	“breakpoints”),	and	unless	the	rest	of	the	code	is	written	to	be	flexible,
media	 queries	 will	 only	 fix	 specific	 resolutions,	 essentially	 sweeping	 issues
under	the	rug.

FIGURE	1.12	Specifying	larger	padding	(here:	.3em	.7em)	on	the	left	and
right	side	makes	it	look	much	more	uniform

Of	 course,	 it	 goes	without	 saying	 that	media	query	 thresholds	 should
not	 be	 dictated	 by	 specific	 devices,	 but	 by	 the	 design	 itself.	 Not	 only
because	 there	 are	 so	 many	 different	 devices	 (especially	 if	 we	 take	 future
devices	 into	 account)	 that	 a	 website	 should	 look	 good	 at	 any	 possible
resolution,	but	also	because	a	website	on	the	desktop	might	be	viewed	 in	a
window	of	any	size.	If	you	are	confident	that	your	design	works	well	in	every
possible	 viewport	 size,	 who	 cares	 about	 what	 resolution	 specific	 devices
have?

TIP! 	 Consider	 using	 ems	 in	 your	 media	 queries	 instead	 of	 pixels.	 This	 allows	 text	 zoom	 to
trigger	layout	changes	as	necessary.

Following	the	principles	described	in	the	“Minimize	code	duplication”
section	on	page	9	will	also	help	with	this,	as	you	won’t	have	to	override	as
many	 declarations	 in	 your	 media	 queries,	 essentially	 minimizing	 the
overhead	they	cause.

Here	are	a	few	more	tips	to	avoid	needless	media	queries:

Use	percentages	instead	of	fixed	widths.	When	that’s	not	possible,	use
viewport-relative	units	(vw,	vh,	vmin,	vmax),	which	resolve	to	a
fraction	of	the	viewport	width	or	height.

When	you	want	a	fixed	width	for	larger	resolutions,	use	max-width,
not	width,	so	it	can	still	adapt	to	smaller	ones	without	media	queries.

Don’t	forget	to	set	a	max-width	of	100%	for	replaced	elements	such

as	img,	object,	video,	and	iframe.

In	cases	when	a	background	image	needs	to	cover	an	entire	container,
background-size:	cover	can	help	maintain	that	regardless	of	said
container’s	size.	However,	bear	in	mind	that	bandwidth	is	not
unlimited,	and	it’s	not	always	wise	to	include	large	images	that	are
going	to	be	scaled	down	via	CSS	in	mobile	designs.

When	laying	out	images	(or	other	elements)	in	a	grid	of	rows	and
columns,	let	the	number	of	columns	be	dictated	by	the	viewport	width.
Flexible	Box	Layout	(a.k.a.	Flexbox)	or	display:	inline-block
and	regular	text	wrapping	can	help	with	that.

When	using	multi-column	text,	specify	column-width	instead	of
column-count,	so	that	you	get	one	column	only	in	small	resolutions.

In	 general,	 the	 idea	 is	 to	 strive	 for	 liquid	 layouts	 and	 relative	 sizing
between	media	query	breakpoints.	When	a	design	is	sufficiently	flexible,
making	 it	 responsive	 shouldn’t	 take	more	 than	 a	 few	 short	media	 queries.
The	designers	of	Basecamp	wrote	about	this	very	matter	in	late	2010:

“As	it	turned	out,	making	the	layout	work	on	a	variety	of	devices	was	just	a	matter
of	adding	a	 few	CSS	media	queries	 to	 the	 finished	product.	The	key	 to	making	 it
easy	was	that	the	layout	was	already	liquid,	so	optimizing	it	for	small	screens	meant
collapsing	a	few	margins	to	maximize	space	and	tweaking	the	sidebar	layout	in	the
cases	where	the	screen	is	too	narrow	to	show	two	columns.”

—Experimenting	with	responsive	design	in	Iterations
(signalvnoise.com/posts/2661-experimenting-with-

responsive-design-in-iterations)

If	 you	 find	 yourself	 needing	 a	 boatload	 of	 media	 queries	 to	 make	 your
design	adapt	 to	 smaller	 (or	 larger)	 screens,	 take	 a	 step	back	and	 reexamine
your	code	structure,	because	in	all	likelihood,	responsiveness	is	not	the	only
issue	there.

Use	shorthands	wisely

http://signalvnoise.com/posts/2661-experimenting-with-responsive-design-in-iterations

As	you	probably	know,	the	following	two	lines	of	CSS	are	not	equivalent:

background:	rebeccapurple;

background-color:	rebeccapurple;

The	former	is	a	shorthand	and	will	always	give	you	a	 	rebeccapurple
background,	 whereas	 the	 element	 with	 the	 longhand	 (background-
color)	 could	end	up	with	a	pink	gradient,	a	picture	of	a	cat,	or	anything
really,	as	 there	might	also	be	a	background-image	declaration	 in	effect.
This	 is	 the	problem	when	you	mainly	use	 longhands:	you	are	not	resetting
all	 the	 other	 properties	 that	 could	 be	 affecting	 what	 you’re	 trying	 to
accomplish.

You	could	of	course	try	to	set	all	the	longhands	and	call	it	a	day,	but	then
you	might	forget	some.	Or	the	CSS	WG	might	 introduce	more	longhands
in	the	future,	and	your	code	will	have	failed	to	reset	those.	Don’t	be	afraid	of
shorthands.	It	is	good	defensive	coding	and	future-proofing	to	use	them,
unless	we	 intentionally	want	 to	use	cascaded	properties	 for	everything
else,	 like	 we	 did	 for	 the	 colored	 button	 variants	 in	 the	 “Minimize	 code
duplication”	section	on	page	9.

Longhands	are	also	very	useful	 in	combination	with	shorthands,	to	make
code	DRY-er	in	properties	whose	values	are	a	comma-separated	list,	such	as
the	background	properties.	This	is	best	explained	with	an	example:

background:	url(tr.png)	no-repeat	top	right	/	2em	2em,
												url(br.png)	no-repeat	bottom	right	/	2em	2em,
												url(bl.png)	no-repeat	bottom	left	/	2em	2em;

Notice	how	the	background-size	and	background-repeat	values	are
repeated	three	times,	despite	being	the	same	for	every	 image.	We	can	take
advantage	 of	CSS	 list	 expansion	 rules	which	 say	 that	 if	 only	one	 value	 is
provided,	 it	 is	 expanded	 to	 apply	 to	 every	 item	 in	 the	 list,	 and	move
these	repeated	values	to	longhands:

background:	url(tr.png)	top	right,

												url(br.png)	bottom	right,
												url(bl.png)	bottom	left;
background-size:	2em	2em;
background-repeat:	no-repeat;

Now	we	 can	 change	 the	background-size	 and	background-repeat
with	 only	 one	 edit	 instead	 of	 three.	 You	 will	 see	 this	 technique	 used
throughout	the	book.

Should	I	use	a	preprocessor?

You’ve	 probably	 heard	 of	 CSS	 preprocessors	 such	 as	 LESS
(lesscss.org),	 Sass	 (sass-lang.com),	 or	 Stylus
(learnboost.github.io/stylus).	 They	 offer	 several	 conveniences
for	 authoring	CSS,	 such	 as	 variables,	mixins,	 functions,	 rule	 nesting,	 color
manipulation,	and	more.

Used	 properly,	 they	 can	 help	 keep	 code	 more	 flexible	 in	 a	 large
project,	when	CSS	itself	proves	too	limited	to	let	us	do	so.	As	much	as	we
strive	to	code	robust,	flexible,	DRY	CSS,	sometimes	we	just	stumble	on	the
limitations	 of	 the	 language.	However,	 preprocessors	 also	 come	with	 a	 few
issues	of	their	own:

You	lose	track	of	your	CSS’	filesize	and	complexity.	Concise,	small
code	might	compile	to	a	CSS	behemoth	that	is	sent	down	the	wires.

Debugging	becomes	harder,	as	the	CSS	you	see	in	the	developer	tools
is	not	the	CSS	you	wrote.	This	is	becoming	less	of	an	issue,	as
SourceMaps	get	more	debugger	support.	SourceMaps	are	a	cool	new
technology	that	aims	to	mitigate	this	issue	by	telling	the	browser	what
preprocessor	CSS	corresponds	to	what	generated	CSS,	down	to	the	line
number.

They	introduce	some	degree	of	latency	in	our	development	process.
Even	though	they	are	generally	fast,	it	still	takes	a	second	or	so	to
compile	your	code	to	CSS,	which	you	have	to	wait	for	before
previewing	its	result.

http://lesscss.org
http://sass-lang.com
http://learnboost.github.io/stylus

With	every	abstraction,	comes	more	effort	required	by	someone	to	start
working	on	our	codebase.	We	either	have	to	only	collaborate	with
people	fluent	in	the	preprocessor	dialect	of	our	choice,	or	teach	it	to
them.	So	we	are	either	restricted	in	our	choice	of	collaborators	or
need	to	spend	extra	time	for	training,	both	of	which	are	suboptimal.

Let’s	not	forget	the	Law	of	Leaky	Abstractions:	“All	non-trivial
abstractions,	to	some	degree,	are	leaky.”	Preprocessors	are	written	by
humans,	and	like	every	non-trivial	program	humans	have	ever	written,
they	have	their	own	bugs,	which	can	be	very	insidious	as	we	rarely
suspect	that	a	preprocessor	bug	might	be	the	culprit	behind	our	CSS
issues.

TRIVIA 	Weird	shorthand	syntax
You	 might	 have	 noticed	 in	 the	 shorthand	 and	 longhand	 example	 that
specifying	background-size	 in	 the	background	 shorthand	 requires
also	 providing	 a	background-position	 (even	 if	 it’s	 the	 same	 as	 the
initial	 one)	 and	 using	 a	 slash	 (/)	 to	 separate	 them.	 Why	 do	 some
shorthands	have	such	weird	rules?

This	 is	 almost	 always	 done	 for	 disambiguation	 purposes.	 Sure,	 in	 the
example	 here,	 it’s	 obvious	 that	 top	 right	 is	 a	 background-
position	 and	 2em	 2em	 a	 background-size	 regardless	 of	 their
ordering.	However,	think	of	values	like	50%	50%.	Is	it	a	background-
size	 or	 a	 background-position?	 When	 you	 are	 using	 the
longhands,	 the	 CSS	 parser	 knows	 what	 you	 mean.	 However,	 in	 the
shorthand,	 the	 parser	 needs	 to	 figure	 out	what	 that	50%	50%	 refers	 to
without	any	help	from	the	property	name.	This	is	why	the	slash	is	needed.

For	most	 shorthands,	 there	 is	 no	 such	 disambiguation	 issue	 and	 their
values	can	be	specified	in	any	order.	However,	it’s	always	good	practice	to
look	up	the	exact	syntax,	to	avoid	nasty	surprises.	If	you	are	familiar	with
regexes	and	grammars,	you	could	also	check	the	grammar	for	the	property
in	the	relevant	specification,	which	 is	probably	the	quickest	way	to	see	 if
there	is	a	specific	ordering.

In	 addition	 to	 the	 issues	 listed	 here,	 preprocessors	 also	 pose	 the	 risk	 of

making	 authors	 dependent	 on	 them,	 perpetuating	 their	 use	 even	 when
unnecessary,	 such	 as	 in	 smaller	 projects	 or	 in	 the	 future,	 after	 their	 most
popular	 features	 have	 been	 added	 to	 native	 CSS.	 Surprised?	 Yes,	 many
preprocessor-inspired	 features	have	been	making	 their	way	 into	pure
CSS:

There	is	already	a	draft	about	variable-like	custom	properties,	under	the
title	of	CSS	Custom	Properties	for	Cascading	Variables
(w3.org/TR/css-variables-1).

The	function	calc()	from	CSS	Values	&	Units	Level	3	not	only	is
very	powerful	for	performing	calculations,	but	also	very	well	supported,
even	today.

The	color()	function	in	CSS	Color	Level	4
(dev.w3.org/csswg/css-color)	will	provide	means	to
manipulate	colors.

There	are	several	serious	discussions	in	the	CSS	WG	about	nesting,	and
even	a	draft	spec	(ED)	existed	about	it	in	the	past.

Note	 that	native	 features	 like	 these	 are	generally	much	more	powerful
than	 the	 ones	 provided	 by	 preprocessors,	 as	 they	 are	 dynamic.	 For
example,	a	preprocessor	has	no	clue	how	to	perform	a	calculation	like	100%
-	50px,	 because	 the	 value	 percentages	 resolve	 to	 is	 not	 known	 until	 the
page	 is	 actually	 rendered.	 However,	 native	 CSS	 calc()	 has	 no	 trouble
evaluating	such	expressions.	Similarly,	variable	use	 like	the	following	 is	not
possible	with	preprocessor	variables:

Don’t	forget	that	native	CSS	features	like	these	can	be	manipulated	through	scripting	too.	For
example,	you	could	use	JS	to	change	the	value	of	a	variable.

ul	{	--accent-color:	purple;	}
ol	{	--accent-color:	rebeccapurple;	}
li	{	background:	var(--accent-color);	}

Can	you	see	what	we	did	there?	The	background	of	list	items	in	ordered	lists

will	 be	 	 rebeccapurple,	 whereas	 the	 background	 of	 list	 items	 in

http://w3.org/TR/css-variables-1
http://dev.w3.org/csswg/css-color

unordered	lists	will	be	 	purple.	Try	doing	that	with	a	preprocessor!	Of
course,	 in	 this	 case,	 we	 could	 have	 just	 used	 descendant	 selectors,	 but	 the
point	of	the	example	was	to	show	how	dynamic	these	variables	will	be.

FIGURE	1.13	Myth	(myth.io)	is	an	experimental	preprocessor	that
emulates	these	native	CSS	features,	instead	of	introducing	proprietary
syntax,	essentially	acting	like	a	CSS	polyfill

Because	 most	 of	 the	 aforementioned	 native	 CSS	 features	 are	 not	 well
supported	 today,	 in	 many	 cases	 using	 preprocessors	 is	 unavoidable	 if
maintainability	matters	(and	it	should).	My	advice	would	be	to	start	off	every
project	with	pure	CSS,	and	when	it	starts	being	impossible	to	keep	it	DRY,
switch	 to	 using	 a	 preprocessor	 then.	 To	 avoid	 becoming	 completely
dependent	 on	 preprocessors	 or	 using	 them	 when	 they	 are	 not	 actually
needed,	 their	use	needs	 to	be	a	conscious	decision,	not	 a	mindless	 first
step	performed	by	default	in	every	new	project.

http://myth.io

In	 case	 you	were	wondering	 (and	 haven’t	 read	 the	 first	 chapter,	 tsktsk),
the	style	of	this	book	was	authored	in	SCSS,	although	it	started	as	pure
CSS	and	only	switched	when	the	code	grew	too	complex	to	be	maintainable.
Who	said	CSS	and	its	preprocessors	are	only	for	the	Web?

2	Backgrounds	&	Borders

1	Translucent	borders

Prerequisites
RGBA/HSLA	colors

The	problem

By	now,	you’ve	probably	dabbled	quite	a	bit	with	semi-transparent	colors	in
CSS,	 such	 as	rgba()	 and	hsla().	They	were	 a	 huge	 revolution	back	 in
2009,	 when	 we	 were	 finally	 able	 to	 use	 them	 in	 our	 designs,	 despite	 the
required	 fallbacks,	 shims,	 and	 even	 ugly	 IE	 filter	 hacks	 for	 the	 daring.
However,	their	uses	 in	the	wild	were	mostly	centered	around	backgrounds.
There	were	a	few	reasons	for	this:

Some	early	adopters	hadn’t	quite	realized	that	these	new	color	formats

were	actually	colors	just	like	 #ff0066	or	 	orange,	and	treated
them	like	images,	using	them	only	in	backgrounds.

It	was	much	easier	to	provide	fallbacks	for	backgrounds	than	for	other
properties.	For	example,	the	fallback	for	a	semi-transparent	background
could	be	a	single	pixel	semi-transparent	image.	For	other	properties,	the
only	possible	fallback	was	a	solid	color.

Using	them	in	other	properties,	such	as	borders,	wasn’t	always	as
straightforward.	We’ll	see	why	next.

FIGURE	2.1	24ways.org	was	one	of	the	first	websites	to	really	utilize	semi-
transparent	colors	in	its	design,	as	early	as	2008,	although	they	were	also
mostly	backgrounds	(design	by	Tim	Van	Damme)

Suppose	we	want	to	style	a	container	with	a	white	background	and	a	semi-
transparent	white	border,	 through	which	our	body	background	shows.	Our
first	attempt	would	probably	look	like	this:

border:	10px	solid	hsla(0,0%,100%,.5);
background:	white;

FIGURE	2.2	Our	initial	attempt	to	achieve	semi-transparent	borders

Unless	 you	 have	 a	 good	 understanding	 of	 how	 backgrounds	 and	 borders
work,	the	result	(shown	in	Figure	2.2)	can	be	quite	baffling.	Where	did	our
border	 go?	 And	 if	 we	 cannot	 achieve	 semi-transparent	 borders	 by	 using	 a
semi-transparent	color	for	the	border,	then	how	can	we	do	it?!

The	solution

Although	 it	 might	 not	 look	 like	 it,	 our	 border	 is	 still	 there.	 By	 default,
backgrounds	extend	underneath	the	border	area,	which	you	can	easily	check
by	 applying	 a	 good	 ol’	 dashed	 border	 to	 an	 element	 with	 a	 background
(Figure	 2.3).	 This	 doesn’t	 make	 much	 of	 a	 difference	 when	 you’re	 using
solid	 opaque	 borders,	 but	 in	 this	 case,	 it	 completely	 changes	 our	 design.
Instead	of	having	 a	 semi-transparent	white	border	 through	which	our	nice
body	 background	 shows,	 we	 ended	 up	 having	 semi-transparent	 white
borders	 on	 opaque	 white,	 which	 are	 indistinguishable	 from	 plain	 white
borders.

FIGURE	2.3	By	default,	backgrounds	extend	underneath	the	border	area

In	CSS	2.1,	this	was	just	how	backgrounds	worked.	We	just	had	to	accept
it	 and	 move	 on.	 Thankfully,	 since	 Backgrounds	 &	 Borders	 Level	 3
(w3.org/TR/css3-background),	 we	 are	 able	 to	 adjust	 this	 behavior
when	 it’s	 not	 convenient,	 through	 the	 background-clip	 property.	 Its
initial	value	 is	border-box,	which	means	that	backgrounds	are	clipped	at
the	outer	edge	of	the	element’s	border	box.	If	we	want	our	background	to	not
extend	 underneath	 the	 border,	 all	 we	 have	 to	 do	 is	 to	 give	 it	 the	 value
padding-box,	 which	 tells	 the	 browser	 to	 clip	 the	 background	 at	 the
padding	edge:

border:	10px	solid	hsla(0,0%,100%,.5);
background:	white;
background-clip:	padding-box;

The	much	nicer	result	can	be	seen	in	Figure	2.4.

http://w3.org/TR/css3-background

FIGURE	2.4	Fixing	the	issue	with	background-clip

	PLAY! 	play.csssecrets.io/translucent-borders

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

2	Multiple	borders

Prerequisites
Basic	box-shadow	use

The	problem

Back	 in	 the	 day,	 when	 Backgrounds	 &	 Borders	 Level	 3
(w3.org/TR/css3-background)	 was	 still	 a	 draft,	 there	 was	 a	 lot	 of

http://play.csssecrets.io/translucent-borders
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css3-background

discussion	 in	 the	 CSS	 WG	 about	 whether	 multiple	 borders	 should	 be
allowed,	just	like	multiple	background	images.	Unfortunately,	the	consensus
at	 the	 time	 was	 that	 there	 weren’t	 enough	 use	 cases,	 and	 authors	 could
always	 use	borderimage	 to	 achieve	 the	 same	 effect.	However,	 what	 the
Working	Group	missed	is	that	we	usually	want	the	flexibility	of	being	able	to
adjust	borders	in	CSS	code,	so	developers	ended	up	resorting	to	ugly	hacks
such	as	using	multiple	elements	to	emulate	multiple	borders.	However,	there
are	better	ways	to	solve	this	without	polluting	our	markup	with	useless	extra
elements.

box-shadow	solution

By	 now,	 most	 of	 us	 have	 probably	 (over)used	 box-shadow	 to	 create
shadows.	 However,	 it	 is	 little	 known	 that	 it	 accepts	 a	 fourth	 parameter
(called	“spread	radius”),	which	makes	the	shadow	larger	(positive	lengths)
or	smaller	 (negative	 lengths)	by	 the	amount	you	specify.	A	positive	 spread
radius	 combined	 with	 zero	 offsets	 and	 zero	 blur	 creates	 a	 “shadow”	 that
looks	more	like	a	solid	border	(Figure	2.5):

FIGURE	2.5	Emulating	an	outline	with	box-shadow

background:	yellowgreen;
box-shadow:	0	0	0	10px	#655;

This	is	not	particularly	impressive,	as	you	can	create	the	same	kind	of	border
by	 using	 the	 border	 property.	 However,	 the	 good	 thing	 about	 box-

shadow	 is	 that	 we	 can	 have	 as	 many	 of	 them	 as	 we	 want,	 comma

separated.	So,	we	can	pretty	easily	add	a	second	 	deeppink	“border”	to
the	previous	example:

background:	yellowgreen;
box-shadow:	0	0	0	10px	#655,	0	0	0	15px	deeppink;

FIGURE	2.6	Emulating	two	outlines	with	box-shadow

The	only	 thing	to	keep	 in	mind	 is	 that	box-shadows	are	overlaid	one	on
top	of	the	other,	with	the	first	one	being	the	topmost.	Therefore,	you	need
to	adjust	the	spread	radius	accordingly.	For	example,	in	the	preceding	code,
we	 wanted	 a	 5px	 outer	 border,	 so	 we	 specified	 a	 spread	 radius	 of	 15px
(10px	 +	 5px).	 You	 can	 even	 specify	 a	 regular	 shadow	 after	 all	 the
“outlines,”	if	you	want:

background:	yellowgreen;
box-shadow:	0	0	0	10px	#655,
												0	0	0	15px	deeppink,
												0	2px	5px	15px	rgba(0,0,0,.6);

FIGURE	2.7	Including	an	actual	shadow	after	the	“outlines”

The	shadow	solution	works	quite	well	in	most	cases,	but	has	a	few	caveats:

Shadows	don’t	work	exactly	like	borders,	as	they	don’t	affect	layout	and
are	oblivious	to	the	box-sizing	property.	However,	you	can	emulate
the	extra	space	a	border	would	occupy	via	padding	or	margins
(depending	on	whether	the	shadow	is	inset	or	not).

The	method	we	demonstrated	creates	fake	“borders”	on	the	outside	of
elements.	These	do	not	capture	mouse	events	such	as	hovering	or
clicking.	If	this	is	important,	you	can	add	the	inset	keyword	to	make
the	shadows	be	drawn	on	the	inside	of	your	element.	Note	that	you	will
need	to	add	extra	padding	to	produce	sufficient	spacing.

	PLAY! 	play.csssecrets.io/multiple-borders

outline	solution

In	some	cases,	 if	we	only	need	two	borders,	we	can	use	a	regular	border
and	 the	outline	property	 for	 the	outer	one.	This	 also	gives	us	 flexibility
regarding	 the	 border	 style	 (what	 if	 we	 want	 a	 dashed	 second	 border?),
whereas	with	the	box-shadow	method,	we	can	only	emulate	solid	borders.
Here	is	how	the	code	for	Figure	2.6	would	look	with	this	method:

http://play.csssecrets.io/multiple-borders

background:	yellowgreen;
border:	10px	solid	#655;
outline:	15px	solid	deeppink;

Another	 good	 thing	 about	 outlines	 is	 that	 you	 can	 control	 their	 distance
from	 the	 boundaries	 of	 the	 element,	 via	 outline-offset,	 which	 even
accepts	 negative	 values.	 This	 can	 be	 useful	 for	 a	 number	 of	 effects.	 For
example,	check	out	Figure	2.8	for	a	basic	stitching	effect.

However,	this	method	has	a	few	limitations:

As	mentioned,	it	only	works	for	two	“borders,”	as	outline	does	not
accept	a	comma-separated	list	of	outlines.	If	we	need	more,	the	previous
technique	is	our	only	option.

Outlines	do	not	have	to	follow	rounding	(through	border-radius),
so	even	if	your	corners	are	round,	the	outline	may	have	straight	corners
(Figure	2.9).	Note	this	behavior	is	considered	a	bug	by	the	CSS	WG,
and	is	likely	to	be	changed	to	match	the	border-radius	in	the
future.

Per	the	CSS	User	Interface	Level	3	specification
(w3.org/TR/css3-ui),	“Outlines	may	be	non-rectangular.”
Although	in	most	cases	they	tend	to	be	rectangular,	if	you	use	this
method,	make	a	mental	note	to	test	the	result	thoroughly	in	different
browsers.

FIGURE	2.8	Using	negative	outline-offset	with	a	dashed	outline,	for
a	basic	stitching	effect

http://w3.org/TR/css3-ui

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

CSS	Basic	User	Interface

w3.org/TR/css3-ui

FIGURE	2.9	Outlines	created	through	the	outline	property	do	not	follow
the	element’s	rounding,	although	that	could	change	in	the	future

3	Flexible	background	positioning

The	problem

http://w3.org/TR/css-backgrounds
http://w3.org/TR/css3-ui

FIGURE	2.10	background-position:	bottom	right;	doesn’t
usually	yield	very	aesthetically	pleasing	results,	as	the	image	has	no
spacing	from	the	sides

Fairly	 often,	 we	want	 to	 position	 a	 background	 image	with	 offsets	 from	 a
different	corner	than	the	top-left	one,	such	as	the	bottom	right.	In	CSS	2.1,
we	 could	only	 specify	 offsets	 from	 the	 top-left	 corner	or	 keywords	 for	 the
other	 three	 corners.	However,	we	often	want	 to	 leave	 some	 space	 (akin	 to
padding)	 between	 the	 background	 image	 and	 the	 corner	 it’s	 on,	 to	 avoid
things	that	look	like	Figure	2.10.

For	containers	with	fixed	dimensions,	this	is	possible	with	CSS	2.1,	but	it’s
messy:	we	can	calculate	what	offset	your	background	image	would	have	from
the	top-left	corner	based	on	its	dimensions	and	the	offset	we	want	from	the
bottom-right	 corner,	 and	 apply	 that.	 However,	 on	 elements	 with	 variable
dimensions	(due	to	variable	contents),	this	is	not	possible.	Developers	often
end	 up	 approximating	 it	 by	 setting	 the	 background	 position	 to	 some
percentage	 that	 is	 slightly	 smaller	 than	 100%,	 such	 as	 95%.	 Surely,	 with
modern	CSS,	there	must	be	a	better	way!

Extended	background-position	solution

The	background-position	 property	 was	 extended	 to	 allow	 specifying
offsets	 from	 any	 corner	 in	 CSS	 Backgrounds	 &	 Borders	 Level	 3
(w3.org/TR/css3-background),	 by	 providing	 keywords	 before	 the
offsets.	 For	 example,	 if	 we	 want	 our	 background	 image	 to	 have	 a	 20px
offset	from	the	right	side	and	a	10px	offset	from	the	bottom	side,	we	can	do
this:

http://w3.org/TR/css3-background

FIGURE	2.11	Specifying	offsets	from	different	sides;	the	background	image
is	shown	here	with	a	dashed	outline,	to	make	it	clearer	how	the	offsets
work

background:	url(code-pirate.svg)	no-repeat	#58a;
background-position:	right	20px	bottom	10px;

You	can	see	the	result	in	Figure	2.11.	The	last	step	is	to	provide	a	decent
fallback.	As	it	currently	stands,	on	browsers	that	don’t	support	the	extended
background-position	 syntax,	 the	 background	 image	 will	 be	 stuck	 on
the	top-left	corner	(the	default	position)	and	will	look	awful,	not	to	mention
it	will	 render	 the	 text	 unreadable	 (Figure	2.12).	 Providing	 a	 fallback	 is	 as
easy	as	including	a	good	ol’	bottom	right	position	in	the	background
shorthand:

background:	url(code-pirate.svg)
												no-repeat	bottom	right	#58a;
background-position:	right	20px	bottom	10px;

	PLAY! 	play.csssecrets.io/extended-bg-position

http://play.csssecrets.io/extended-bg-position

FIGURE	2.12	We	need	to	specify	a	fallback,	if	we	don’t	want	users	of	older
browsers	to	see	this

background-origin	solution

One	of	the	most	common	cases	for	wanting	to	apply	offsets	from	a	corner	is
to	 make	 the	 background	 image	 follow	 padding.	 With	 the	 extended
background	position	we	just	described,	the	code	would	look	like	this:

FIGURE	2.13	Applying	offsets	to	the	background	image	that	are	equal	to
the	padding	value

padding:	10px;
background:	url(code-pirate.svg)	no-repeat	#58a;
background-position:	right	10px	bottom	10px;

You	can	see	the	result	in	Figure	2.13.	As	you	can	see,	it	works,	but	it’s	not
very	DRY:	every	time	we	change	the	padding	value,	we	need	to	update	it	in

three	different	places!	Thankfully,	 there	 is	 a	 simpler	way	 to	do	 this,	which
automatically	follows	the	padding	we	specify,	without	the	need	to	redeclare
the	offsets.

You’ve	 probably	 written	 things	 like	 background-position:	 top
left;	quite	a	 few	times	over	 the	course	of	your	web	development	career.
Have	you	ever	wondered:	which	top-left	 corner?	As	you	may	know,	there	are
four	boxes	in	every	element	(Figure	2.14):	the	margin	box,	the	border	box,
the	padding	box,	and	the	content	box.	Which	box’s	top	left	corner	does
background-position	refer	to?

FIGURE	2.14	The	box	model

By	default,	background-position	refers	to	the	padding	box,	so	that
borders	don’t	end	up	obscuring	background	images.	Therefore,	top	left
is	 by	 default	 the	 top-left	 outer	 corner	 of	 the	 padding	 box.	 In
Backgrounds	 &	 Borders	 Level	 3	 (w3.org/TR/css3-background),
however,	 we	 got	 a	 new	 property	 that	we	 can	 use	 to	 change	 this	 behavior:
background-origin.	 By	 default,	 its	 value	 is	 (quite	 predictably)
padding-box.	If	we	change	it	to	content-box,	as	in	the	following	code,
the	side	and	corner	keywords	we	use	in	background-position	will	refer
to	the	edge	of	the	content	box	(effectively,	this	means	that	any	background
images	will	be	offset	from	the	sides/corners	as	much	as	our	padding	is):

padding:	10px;
background:	url("code-pirate.svg")	no-repeat	#58a
												bottom	right;	/*	or	100%	100%	*/
background-origin:	content-box;

http://w3.org/TR/css3-background

The	visual	result	is	exactly	the	same	as	in	Figure	2.13,	just	with	more	DRY
code.	 Keep	 in	 mind	 that	 you	 can	 also	 combine	 the	 two	 techniques	 we
showed	if	needed!	If	you	want	offsets	that	generally	vary	with	the	padding,
but	 are	 inset/outset	 a	 little	 more	 than	 that,	 you	 can	 use	 background-
origin:	content-box	together	with	additional	offsets	via	the	extended
background-position.

	PLAY! 	play.csssecrets.io/background-origin

calc()	solution

Let’s	 revisit	 our	 original	 challenge:	 we	 want	 to	 position	 our	 background
image	10px	from	the	bottom	and	20px	from	the	right	side.	However,	if	we
think	of	it	in	terms	of	offsets	from	the	top-left	corner,	we	basically	want
an	 offset	 of	 100%	 -	 20px	 horizontally	 and	 100%	 -	 10px	 vertically.
Thankfully,	 the	 calc()	 function	 allows	 us	 to	 do	 exactly	 that	 sort	 of
calculation	and	it	works	perfectly	with	background-position:

background:	url("code-pirate.svg")	no-repeat;
background-position:	calc(100%	-	20px)	calc(100%-10px);

	Don’t	forget	to	include	white-space	around	any	-	and	+	operators	in	calc(),	otherwise	it’s
a	parsing	error!	The	reason	for	this	weird	rule	is	forward	compatibility:	 in	the	future,	keywords
might	be	allowed	inside	calc(),	and	they	can	contain	hyphens.

	PLAY! 	play.csssecrets.io/background-position-calc

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

http://play.csssecrets.io/background-origin
http://play.csssecrets.io/background-position-calc
http://w3.org/TR/css-backgrounds

CSS	Values	&	Units

w3.org/TR/css-values

4	Inner	rounding

Prerequisites
box-shadow,	outline,	the	“Multiple	borders”	secret	on	page	28

The	problem

Sometimes	we	want	a	container	that	is	only	rounded	on	the	inside,	but	the
outer	corners	of	its	border/outline	are	sharp,	such	as	the	one	in	Figure	2.15.
It’s	 an	 interesting	 effect	 that’s	 not	 overdone	 yet.	 It’s	 trivial	 to	 achieve	 this
effect	with	two	elements:

FIGURE	2.15	A	container	with	an	outline	and	rounding	only	on	the	inside

HTML
<div	class="something-meaningful"><div>
				I	have	a	nice	subtle	inner	rounding,
				don't	I	look	pretty?
</div></div>

.something-meaningful	{
				background:	#655;

http://w3.org/TR/css-values

				padding:	.8em;
}

.something-meaningful	>	div	{
				background:	tan;
				border-radius:	.8em;
				padding:	1em;
}

This	works	fine,	but	it	forces	us	to	use	two	elements	when	we	only	need	one.
Is	there	a	way	to	achieve	the	same	effect	with	only	one	element?

The	solution

The	previous	solution	is	more	flexible,	as	it	allows	us	to	use	the	full	power	of
backgrounds.	 For	 example,	 if	 we	want	 our	 “border”	 to	 not	 just	 be	 a	 solid
color,	but	have	a	noise	texture	as	well,	it’s	pretty	easy	to	do.	However,	when
we’re	dealing	with	good	ol’	solid	colors,	there	is	a	way	to	do	this,	with	just
one	element	(granted	it	is	a	bit	hacky).	Take	a	look	at	the	following	CSS:

FIGURE	2.16	Using	the	outline	property	on	a	rounded	element

background:	tan;
border-radius:	.8em;
padding:	1em;
box-shadow:	0	0	0	.6em	#655;
outline:	.6em	solid	#655;

Can	 you	 guess	 what	 the	 visual	 result	 is?	 It	 produces	 the	 effect	 in	Figure
2.15.	We	basically	took	advantage	of	the	fact	that	outlines	do	not	follow	the
element’s	 rounding	 (and	 thus,	 have	 sharp	 corners)	 but	box-shadows	 do.

Therefore,	 if	we	overlay	one	on	top	of	the	other,	 the	box-shadow	covers
the	 gaps	 that	 the	 outline	 leaves	 on	 the	 corners	 (Figure	 2.17),	 so	 their
combination	gives	us	the	desired	effect.	Figure	2.18	displays	the	shadow	and
outline	with	different	colors,	to	provide	a	clearer	visual	explanation.

FIGURE	2.17	Using	the	box-shadow	property	with	no	offsets	and	no	blur
on	an	element	with	rounded	corners

Note	that	we	didn’t	 really	need	to	specify	a	box-shadow	 spread	that	 is
equal	to	the	outline,	we	only	need	to	specify	a	large	enough	spread	to	cover
those	“gaps.”	In	fact,	specifying	a	spread	equal	to	our	outline	width	can	cause
rendering	artifacts	in	some	browsers,	so	I	would	recommend	something	a	bit
smaller.	 This	 begs	 the	 question:	what	 is	 the	 smallest	 spread	 we	 could
specify	that	covers	these	gaps?

FIGURE	2.18	Here	the	outline	is	shown	in	black	and	the	shadow	in
magenta,	to	make	it	clearer	what	is	going	on;	notice	that	the	outline	is	the
one	drawn	on	top

To	answer	this	question,	we	need	to	remember	the	Pythagorean	theorem	we
learned	at	school	about	calculating	the	lengths	of	the	sides	of	right	triangles.
The	 theorem	 states	 that	 the	 hypotenuse	 (the	 longest,	 diagonal	 side	 of	 the

triangle)	is	equal	to	 	where	a	and	b	are	the	lengths	of	its	legs.	When

both	legs	are	of	equal	length,	the	formula	becomes	 .

	Why	 is	 this	hacky?	Because	 it	depends	on	 the	 fact	 that	outlines	do	not	 follow	corner
rounding,	but	there	is	no	guarantee	this	will	stay	that	way.	The	spec	currently	gives	browsers	a
lot	 of	 leeway	 in	 outline	 drawing,	 but	 in	 the	 future	 it	 will	 explicitly	 recommend	 following
rounding,	per	a	recent	CSS	WG	decision.	Whether	browsers	will	honor	that	decision	remains
to	be	seen.

You	 might	 be	 wondering	 how	 on	 Earth	 middle	 school	 geometry	 is
relevant	 to	 our	 inner	 rounding	 effect.	Check	 out	Figure	 2.19	 for	 a	 visual
explanation	of	how	it	can	be	used	to	calculate	the	minimum	spread	we	need.
In	 our	 case,	 border-radius	 is	 .8em,	 so	 the	 minimum	 spread	 is	

.	 All	 we	 need	 is	 to	 round	 it	 up	 a	 little	 and
specify	a	 spread	radius	of	.34em.	To	avoid	having	to	make	the	calculation
every	time,	you	can	just	use	half	of	your	corner	radius,	which	is	guaranteed
to	be	large	enough,	because	 .

Note	that	these	calculations	uncover	another	constraint	of	this	method:
for	this	effect	to	work,	our	spread	radius	needs	to	be	smaller	than	our	outline
width,	but	it	also	needs	to	be	larger	than	 ,	where	r	is	our	border-
radius.	This	means	that	if	our	outline	width	is	smaller	than	 ,	this
is	not	possible	and	we	cannot	apply	this	effect.

FIGURE	2.19	When	our	border	radius	is	r,	the	length	from	the	center	of	the

border-radius	circle	to	the	corner	of	the	outline	rectangle	is	 ,

which	means	the	minimum	possible	spread	is	

	PLAY! 	play.csssecrets.io/inner-rounding

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

CSS	Basic	User	Interface

w3.org/TR/css3-ui

5	Striped	backgrounds

Prerequisites
CSS	linear	gradients,	background-size

The	problem

Stripes	of	all	sizes,	colors,	and	angles	are	at	least	as	ubiquitous	on	the	Web	as
in	 any	 other	 medium	 of	 visual	 design,	 from	 magazines	 to	 wallpaper.
However,	the	workflow	of	implementing	them	is	far	from	ideal.	Usually,	we
would	create	a	separate	bitmap	image	and	need	an	image	editor	every	time
we	 needed	 to	make	 changes.	 Some	might	 use	 SVG	 instead,	 but	 it’s	 still	 a
separate	 file	and	the	syntax	 is	 far	 from	friendly.	Wouldn’t	 it	be	awesome	if
we	could	create	stripes	directly	in	our	CSS?	You	might	be	surprised	to	find
that	we	actually	can.

http://play.csssecrets.io/inner-rounding
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css3-ui

The	solution

Assume	we	have	a	basic	vertical	linear	gradient,	from	 	#fb3	to	 	#58a
(Figure	2.20):

FIGURE	2.20	Our	starting	point

background:	linear-gradient(#fb3,	#58a);

Now	let’s	try	to	bring	the	color	stops	a	little	closer	together	(Figure	2.21):

FIGURE	2.21	Gradient	now	occupies	60%	of	total	height,	the	rest	being
solid	colors;	color	stop	positions	are	shown	with	dashed	lines

background:	linear-gradient(#fb3	20%,	#58a	80%);

Now	 the	 top	 20%	 of	 our	 container	 is	 filled	 with	 solid	 	#fb3	 and	 the

bottom	20%	with	solid	 	#58a.	The	actual	gradient	only	occupies	60%	of

our	container	height.	If	we	bring	the	color	stops	even	closer	together	(40%
and	 60%	 respectively,	 seen	 in	 Figure	 2.22),	 the	 actual	 gradient	 becomes
even	smaller.	One	starts	to	wonder,	what	happens	if	the	color	stops	meet	at
the	exact	same	position?

FIGURE	2.22	Gradient	now	occupies	20%	of	total	height,	the	rest	being
solid	colors;	color	stop	positions	are	shown	with	dashed	lines

background:	linear-gradient(#fb3	50%,	#58a	50%);

“If	 multiple	 color	 stops	 have	 the	 same	 position,	 they	 produce	 an	 infinitesimal
transition	from	the	one	specified	first	 in	the	rule	to	the	one	specified	 last.	In	effect,
the	color	suddenly	changes	at	that	position	rather	than	smoothly	transitioning.”

—CSS	Image	Values	Level	3	(w3.org/TR/css3-images)

As	you	can	see	 in	Figure	2.23,	 there	 is	no	 longer	any	gradient,	 just	 two
solid	colors,	each	occupying	half	of	our	background-image.	Essentially,
we	have	already	created	two	big	horizontal	stripes.

Because	 gradients	 are	 just	 generated	 background	 images,	 we	 can	 treat
them	 the	 same	 as	 any	 other	 background	 image	 and	 adjust	 their	 size	 with
background-size:

background:	linear-gradient(#fb3	50%,	#58a	50%);
background-size:	100%	30px;

http://w3.org/TR/css3-images

FIGURE	2.23	Both	stops	are	now	at	50%

As	you	can	 see	 in	Figure	2.24,	we	 shrunk	 the	 size	of	our	 two	 stripes	 to
15px	 height	 each.	 Because	 our	 background	 is	 repeated,	we	 now	 have	 our
whole	container	filled	with	horizontal	stripes	(Figure	2.25).

We	can	similarly	create	stripes	with	unequal	widths,	by	adjusting	the	color
stop	positions	(Figure	2.26):

background:	linear-gradient(#fb3	30%,	#58a	30%);
background-size:	100%	30px;

To	avoid	having	 to	 adjust	 two	numbers	 every	 time	we	want	 to	 change	 the
stripe	width,	we	can	take	advantage	of	the	specification:

FIGURE	2.24	Our	generated	background	without	the	repetition

“If	a	color	stop	has	a	position	that	is	less	than	the	specified	position	of	any	color	stop
before	it	in	the	list,	set	its	position	to	be	equal	to	the	largest	specified	position	of	any
color	stop	before	it.”

—CSS	Images	Level	3	(w3.org/TR/css3-images)

FIGURE	2.25	The	final	horizontal	stripes

This	means	that	if	we	set	the	second	color’s	position	at	0,	its	position	will
be	adjusted	by	the	browser	to	be	equal	to	the	position	of	the	previous	color
stop,	which	 is	what	we	wanted	anyway.	Therefore,	 the	 following	code	also
creates	 the	exact	same	gradient	we	saw	in	Figure	2.26,	but	 is	a	 little	more
DRY:

FIGURE	2.26	Stripes	with	unequal	widths

background:	linear-gradient(#fb3	30%,	#58a	0);
background-size:	100%	30px;

It’s	just	as	easy	to	create	stripes	with	more	than	two	colors.	For	example,
the	following	snippet	will	produce	horizontal	stripes	of	three	colors	(Figure
2.27):

background:	linear-gradient(#fb3	33.3%,

http://w3.org/TR/css3-images

												#58a	0,	#58a	66.6%,	yellowgreen	0);
background-size:	100%	45px;

	PLAY! 	play.csssecrets.io/horizontal-stripes

FIGURE	2.27	Stripes	with	three	colors

Vertical	stripes

Horizontal	stripes	are	the	easiest	to	code,	but	not	all	striped	backgrounds	we
see	 on	 the	Web	 are	 horizontal.	 Just	 as	 many	 are	 vertical	 stripes	 (Figure
2.28),	and	probably	the	most	popular	and	visually	interesting	are	some	form
of	diagonal	stripes.	Thankfully,	CSS	gradients	can	help	us	recreate	those	too,
with	varying	degrees	of	difficulty.

The	code	for	vertical	stripes	is	almost	the	same,	with	one	main	difference:
an	extra	first	argument	that	specifies	the	gradient	direction.	We	could	have
specified	 it	 for	 horizontal	 stripes	 too,	 but	 the	 default	 (to	 bottom)	 was
exactly	 what	 we	 needed	 for	 them.	 We	 also	 need	 to	 set	 a	 different
background-size,	for	obvious	reasons:

background:	linear-gradient(to	right,	/*	or	90deg	*/
														#fb3	50%,	#58a	0);
background-size:	30px	100%;

	PLAY! 	play.csssecrets.io/vertical-stripes

http://play.csssecrets.io/horizontal-stripes
http://play.csssecrets.io/vertical-stripes

FIGURE	2.28	Our	vertical	stripes
Top:	Our	background	tile	without	the	repetition
Bottom:	The	repeated	stripes

Diagonal	stripes

After	 creating	 horizontal	 and	 vertical	 stripes,	 we	 might	 attempt	 to	 create
diagonal	 stripes	 (45°)	 by	 just	 changing	 the	 background-size	 and
direction	of	the	gradient	again,	like	so:

FIGURE	2.29	Our	first	failed	attempt	for	diagonal	stripes

background:	linear-gradient(45deg,
														#fb3	50%,	#58a	0);
background-size:	30px	30px;

However,	as	you	can	see	in	Figure	2.29,	this	doesn’t	work.	The	reason	is
that	 we	 just	 rotated	 the	 gradient	 inside	 each	 tile	 by	 45	 degrees,	 not	 the
repeated	 background	 as	 a	 whole.	Try	 to	 remember	 the	 bitmap	 images	we
usually	use	to	create	diagonal	stripes,	such	as	the	one	in	Figure	2.30.	They
include	 four	 stripes	 instead	of	 two,	 so	 that	 they	 tile	 seamlessly.	This	 is	 the
kind	of	 tile	we	need	 to	 recreate	 in	CSS,	 so	we	will	need	quite	 a	 few	more
color	stops:

FIGURE	2.30	The	kind	of	image	that	tiles	seamlessly	to	create	diagonal
stripes;	does	it	look	familiar?

background:	linear-gradient(45deg,
														#fb3	25%,	#58a	0,	#58a	50%,
														#fb3	0,	#fb3	75%,	#58a	0);
background-size:	30px	30px;

FIGURE	2.31	Our	45°	stripes;	the	dashed	lines	indicate	the	repeating	tile

You	can	see	the	result	in	Figure	2.31.	As	you	can	see,	we	were	successful	at
creating	 diagonal	 stripes,	 but	 they	 look	 thinner	 than	 our	 horizontal	 and
vertical	ones.	To	understand	why	this	happened,	we	need	to	remember	the
Pythagorean	theorem	we	learned	at	school	about	calculating	the	lengths	of	the
sides	of	right	triangles.	The	theorem	states	that	the	hypotenuse	(the	longest,

diagonal	 side	 of	 the	 triangle)	 is	 equal	 to	 	 where	 a	 and	 b	 are	 the
lengths	 of	 its	 legs.	 On	 a	 45°	 right	 triangle,	 both	 its	 legs	 are	 of	 the	 same

length,	 so	 the	 formula	 becomes	 .	 In	 our	 diagonal	 stripes,	 the
background	size	specifies	the	length	of	the	hypotenuse,	but	the	stripe	width
is	 actually	 the	 length	 of	 the	 leg.	 Check	 out	 Figure	 2.32	 for	 a	 visual
explanation.

This	 means	 that	 to	 get	 our	 original	 stripe	 width	 of	 15px,	 we	 need	 to
specify	a	background	size	of	 	pixels:

background:	linear-gradient(45deg,
														#fb3	25%,	#58a	0,	#58a	50%,
														#fb3	0,	#fb3	75%,	#58a	0);
background-size:	42.426406871px	42.426406871px;

FIGURE	2.32	A	background	size	of	20px	results	in	a	stripe	width	of	

	pixels

FIGURE	2.33	Our	final	45°	stripes;	note	that	now	the	stripe	width	is	the
same	as	our	other	examples

You	can	see	the	final	result	in	Figure	2.33.	However,	unless	somebody	is
pointing	 a	 gun	 at	 your	head	 threatening	 to	 kill	 you	unless	 you	 are	 able	 to
produce	diagonal	stripes	that	are	exactly	15	pixels	wide	(in	which	case,	you

would	die	anyway,	because	 	 is	not	a	 rational	number,	 so	even	 this	 is	an
approximation—though	 a	 very	 high-precision	 one),	 I	 would	 strongly
recommend	rounding	this	unwieldy	number,	 to	something	 like	42.4px	or
even	42px.

	PLAY! 	play.csssecrets.io/diagonal-stripes

Better	diagonal	stripes

The	method	shown	in	the	previous	section	is	not	very	flexible.	What	 if	we
want	stripes	 that	are	60°	 instead	of	45°?	Or	30°?	Or	3.1415926535°?	If	we
just	try	to	change	the	angle	of	the	gradient,	the	result	looks	awful	(check	out
Figure	2.34	for	a	failed	attempt	at	60°	stripes).

Thankfully,	there	is	a	better	way	to	create	diagonal	stripes.	A	little-known
fact	 is	 that	 linear-gradient()	 and	 radial-gradient()	 also	 have
repeating	versions:	repeating-linear-gradient()	and	repeating-
radial-gradient().	 These	 work	 exactly	 the	 same	 way,	 with	 one
difference:	 the	 color	 stops	 are	 repeated	 indefinitely,	 until	 they	 fill	 up	 the
whole	 image.	 So,	 for	 example,	 this	 repeating	 gradient	 (shown	 in	 Figure
2.35):

http://play.csssecrets.io/diagonal-stripes

FIGURE	2.34	Our	failed	naïve	attempt	at	60°	stripes

background:	repeating-linear-gradient(45deg,
														#fb3,	#58a	30px);

would	be	equivalent	to	this	simple	linear	gradient:

FIGURE	2.35	A	repeating	linear	gradient

background:	linear-gradient(45deg,
														#fb3,	#58a	30px,
														#fb3	30px,	#58a	60px,
														#fb3	60px,	#58a	90px,
														#fb3	90px,	#58a	120px,
														#fb3	120px,	#58a	150px,	...);

Repeating	 linear	gradients	are	perfect	 for—you	guessed	 it—stripes!	Due	to
their	 repeating	 nature,	 it	 means	 our	 whole	 background	 can	 be	 in	 the
generated	gradient	image.	Therefore,	we	don’t	need	to	worry	about	creating
seamless	tiles	that	can	be	repeated.

For	 comparison,	 the	 background	we	 created	 in	Figure	 2.33	 could	 have
been	produced	by	this	repeating	gradient:

background:	repeating-linear-gradient(45deg,
														#fb3,	#fb3	15px,	#58a	0,	#58a	30px);

The	 first	 obvious	 benefit	 is	 reduced	 repetition:	 we	 can	 change	 any	 of	 the
colors	with	two	edits	instead	of	three.	Also	note	that	our	measurements	are
now	 in	 the	 gradient	 color	 stops	 instead	 of	 background-size.	 The
background	 size	 is	 the	 initial	 one,	 which	 for	 gradients	 is	 the	 size	 of	 the
element.	This	means	that	the	lengths	are	also	more	straightforward,	as	they
are	measured	on	the	gradient	line,	which	is	perpendicular	to	our	stripes.	No
more	clunky	 	calculations!

However,	the	biggest	benefit	is	that	now	we	can	just	change	the	angle	to
whatever	we	want,	and	it	 just	works	without	having	to	think	hard	and	long
about	 how	 to	make	 a	 seamless	 tile.	 For	 example,	 here	 are	 our	 60°	 stripes
(Figure	2.36):

background:	repeating-linear-gradient(60deg,
														#fb3,	#fb3	15px,	#58a	0,	#58a	30px);

FIGURE	2.36	Our	actual	60°	stripes

It	was	as	easy	as	just	changing	the	angle!	Note	that	with	this	method	we	need
four	 color	 stops	 for	 two	 stripe	 colors,	 regardless	 of	 the	 stripe	 angle.	 This
means	 it’s	usually	better	 to	use	 the	 first	method	 for	horizontal	and	vertical
stripes	and	this	one	for	diagonal	stripes.	If	we’re	dealing	with	45°	stripes,	we
could	even	combine	 the	 two	methods,	by	essentially	using	 repeating	 linear
gradients	to	simplify	the	code	that	creates	our	repeating	tile:

background:	repeating-linear-gradient(45deg,

														#fb3	0,	#fb3	25%,	#58a	0,	#58a	50%);
background-size:	42.426406871px	42.426406871px;

	PLAY! 	play.csssecrets.io/diagonal-stripes-60deg

FUTURE 	Color	stops	with	two	positions
Soon,	we	will	be	able	to	specify	two	positions	on	the	same	color	stop,	as
one	 of	 the	 simpler	 planned	 additions	 in	 CSS	 Image	 Values	 Level	 4
(w3.org/TR/css4-images).	 This	 will	 work	 as	 a	 shortcut	 to	 two
consecutive	color	stops	with	the	same	color	and	different	positions,
something	very	commonly	needed	to	create	gradient-based	patterns.	For
example,	the	code	for	the	diagonal	stripes	in	Figure	2.36	would	become:

background:	repeating-linear-gradient(60deg,	#fb3	0	15px,	#58a	0	
30px);

Not	 only	 is	 this	 significantly	 more	 concise,	 but	 also	 considerably	 more
DRY:	 the	 colors	 are	 no	 longer	 duplicated,	 so	we	 can	 change	 them	with
only	 one	 edit.	 Unfortunately,	 at	 the	 time	 of	 writing,	 this	 is	 not	 yet
supported	in	any	browser.

TEST! 	play.csssecrets.io/test-color-stop-2positions

Flexible	subtle	stripes

More	 often	 than	 not,	 our	 stripes	 are	 not	 completely	 different	 colors	 but
subtle	 brightness	 variations	 of	 the	 same	 color.	For	 example,	 take	 a	 look	 at
these	stripes:

background:	repeating-linear-gradient(30deg,
														#79b,	#79b	15px,	#58a	0,	#58a	30px);

http://play.csssecrets.io/diagonal-stripes-60deg
http://w3.org/TR/css4-images
http://play.csssecrets.io/test-color-stop-2positions

You	can	see	in	Figure	2.37	that	they	are	stripes	of	one	color	(#58a)	and
a	lighter	variant	of	that.	However,	that	relationship	between	the	colors	is	not
easy	to	tell	by	reading	the	code.	Moreover,	if	we	wanted	to	change	the	base
color,	we	would	have	to	make	four	(!)	edits.

Thankfully,	there	is	a	better	way:	instead	of	specifying	separate	colors	for
every	stripe,	we	can	specify	our	darkest	color	as	the	background	color,	which
will	show	through	stripes	with	semi-transparent	white:

FIGURE	2.37	Stripes	with	subtle	lightness	variation

background:	#58a;
background-image:	repeating-linear-gradient(30deg,
																				hsla(0,0%,100%,.1),
																				hsla(0,0%,100%,.1)	15px,
																				transparent	0,	transparent	30px);

The	result	 looks	exactly	 the	 same	as	Figure	2.37,	 but	we	can	now	change
the	color	in	only	one	place.	We	also	get	the	added	benefit	of	our	base	color
functioning	 as	 a	 fallback	 color	 for	 browsers	 that	 don’t	 support	 CSS
gradients.	Furthermore,	 as	we	will	 see	 in	 the	next	 secret,	gradient	patterns
with	 transparent	 regions	 allow	 us	 to	 create	 very	 complex	 patterns	 by
superimposing	multiple	different	ones.

	PLAY! 	play.csssecrets.io/subtle-stripes

RELATED

http://play.csssecrets.io/subtle-stripes

SPECS

CSS	Image	Values

w3.org/TR/css-images

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

CSS	Image	Values	Level	4

w3.org/TR/css4-images

6	Complex	background	patterns

Prerequisites
CSS	gradients,	the	“Striped	backgrounds”	secret	on	page	40

The	problem

In	 the	previous	 section,	we	 learned	how	 to	use	CSS	gradients	 to	 create	 all
sorts	 of	 stripes.	 However,	 stripes	 are	 not	 the	 be-all	 and	 end-all	 of
background	patterns	or	 even	 just	 geometric	patterns.	We	quite	often	need
many	 other	 different	 types,	 such	 as	 grids,	 polka	 dots,	 checkerboards,	 and
many	others.

Thankfully,	CSS	gradients	can	help	with	many	of	these	too.	It’s	possible
to	 create	 almost	 any	 kind	 of	 geometric	 pattern	 with	 CSS	 gradients,
although	 it’s	not	 always	 practical.	 If	 we’re	 not	 careful,	 we	might	 end	 up
with	 an	 insane	 amount	 of	 unmaintainable	 code.	CSS	patterns	 are	 also	 one
case	where	it	really	pays	off	to	use	a	CSS	preprocessor,	such	as	Sass	(sass-
lang.com)	 to	 reduce	 repetition,	 as	 the	 more	 complex	 they	 get,	 the	 less

http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css4-images
http://sass-lang.com

DRY	they	become.

FIGURE	2.38	My	CSS3	Patterns	Gallery	(found	at
lea.verou.me/css3patterns)	showed	what	is	possible	with	CSS
gradients	as	early	as	2011.	It	was	included	in	almost	every	article,	book,
and	conference	talk	that	mentioned	CSS	gradients	between	2011	and
2012	and	was	used	by	several	browser	vendors	to	fine-tune	their	CSS
gradients	implementations.	However,	not	every	pattern	showcased	in	it
would	be	a	good	use	case	for	a	production	website.	Some	of	them	are
included	only	to	show	what	is	possible,	but	their	code	is	extremely	long
and	repetitive.	For	those	cases,	SVG	is	a	better	choice.	For	some	examples
of	SVG	patterns,	visit	philbit.com/svgpatterns,	which	was	created
as	the	SVG	answer	to	the	CSS	Patterns	Gallery.

In	 this	 secret,	we	will	 focus	on	creating	some	of	 the	easiest	and	commonly
needed	patterns.

Grids

When	 using	 only	 one	 gradient,	 there	 aren’t	 that	 many	 patterns	 we	 can
create.	The	magic	 starts	 to	unfold	when	we	combine	multiple	gradients,
having	 them	 show	 through	 each	 other’s	 transparent	 regions.	 Perhaps	 the
easiest	 such	 pattern	 is	 overlaying	 horizontal	 and	 vertical	 stripes	 to	 create
various	 types	 of	 grids.	 For	 example,	 the	 following	 code	 creates	 the
tablecloth-reminiscent	(gingham)	pattern	shown	in	Figure	2.39:

background:	white;
background-image:	linear-gradient(90deg,
																				rgba(200,0,0,.5)	50%,	transparent	0),
																		linear-gradient(
																				rgba(200,0,0,.5)	50%,	transparent	0);
background-size:	30px	30px;

http://lea.verou.me/css3patterns
http://philbit.com/svgpatterns

FIGURE	2.39	Our	tablecloth	(gingham)	pattern,	as	well	as	the	two	gradients
that	comprise	it	(transparency	shown	here	as	the	conventional	gray
checkerboard)

In	some	cases,	we	want	to	be	able	to	adjust	the	cell	size	of	the	grid,	and
have	the	width	of	 its	 lines	remain	constant—for	example,	 to	create	grid
lines	that	serve	as	guides.	This	is	a	great	use	case	for	using	lengths	instead
of	percentages	as	gradient	color	stops:

background:	#58a;
background-image:
				linear-gradient(white	1px,	transparent	0),
				linear-gradient(90deg,	white	1px,	transparent	0);

background-size:	30px	30px;

The	result	(seen	on	Figure	2.40)	is	a	grid	of	1px	white	lines	with	a	grid	cell
size	of	30px.	Just	like	in	the	“Flexible	subtle	stripes”	section	on	page	48,
the	base	color	is	also	functioning	as	a	fallback	color.

FIGURE	2.40	A	basic	blueprint	grid	CSS	pattern	whose	lines	remain	1px
regardless	of	the	size	of	the	grid

This	grid	is	a	good	example	of	a	pattern	that	can	be	made	with	reasonably
maintainable	(though	not	completely	DRY)	CSS	code:

It’s	quite	easy	to	figure	out	what	to	edit	if	we	need	to	change	the	grid
size,	line	thickness,	or	any	of	the	colors.

We	don’t	have	to	make	tons	of	edits	to	change	any	of	this;	we	only	need
to	edit	one	or	two	values.

It’s	also	quite	short,	at	only	four	lines	of	code	and	170	bytes.	An	SVG
would	not	have	been	shorter.

We	can	even	overlay	two	grids	with	different	line	widths	and	colors	to	create
a	more	realistic	blueprint	grid	(Figure	2.41):

TIP! 	 To	 calculate	 the	 file	 size	 of	 your	 CSS	 pattern,	 paste	 the	 code	 in
bytesizematters.com.

background:	#58a;
background-image:
				linear-gradient(white	2px,	transparent	0),
				linear-gradient(90deg,	white	2px,	transparent	0),

http://bytesizematters.com

				linear-gradient(hsla(0,0%,100%,.3)	1px,
						transparent	0),
				linear-gradient(90deg,	hsla(0,0%,100%,.3)	1px,
						transparent	0);
background-size:	75px	75px,	75px	75px,
																	15px	15px,	15px	15px;

	PLAY! 	play.csssecrets.io/blueprint

FIGURE	2.41	A	more	complex	blueprint	grid,	comprised	of	two	grids	with
different	parameters

Polka	dot

So	far,	we	have	only	used	linear	gradients	to	make	patterns.	However,	radial
gradients	can	be	very	useful	as	well,	as	they	allow	us	to	create	circles,	ellipses,
or	parts	thereof.	The	simplest	pattern	we	can	create	with	a	radial	gradient	is
an	array	of	dots	(Figure	2.42):

background:	#655;
background-image:	radial-gradient(tan	30%,	transparent	0);
background-size:	30px	30px;

http://play.csssecrets.io/blueprint

FIGURE	2.42	An	array	of	dots;	the	repeating	tile	is	shown	with	dashed	lines

Admittedly,	this	is	not	very	useful	on	its	own.	However,	we	can	combine	two
of	those	gradients	and	give	them	different	background	positions,	to	create	a
polka	dot	pattern	(Figure	2.43):

background:	#655;
background-image:	radial-gradient(tan	30%,	transparent	0),
																		radial-gradient(tan	30%,	transparent	0);
background-size:	30px	30px;
background-position:	0	0,	15px	15px;

	PLAY! 	play.csssecrets.io/polka

FIGURE	2.43	Polka	dot	pattern;	both	repeating	tiles	are	shown	with	dashed
lines

Note	 that	 for	 the	 effect	 to	work,	 the	 second	background	position	must	 be
half	of	the	tile	size.	Unfortunately,	this	means	that	to	change	the	tile	size,	we
need	 to	 make	 four	 edits.	 This	 is	 on	 the	 brink	 of	 being	 unmaintainable,

http://play.csssecrets.io/polka

although	 whether	 it	 has	 crossed	 the	 line	 is	 debatable.	 If	 you	 are	 using	 a
preprocessor,	you	may	want	to	convert	it	into	a	mixin:

SCSS
@mixin	polka($size,	$dot,	$base,	$accent)	{
				background:	$base;
				background-image:
								radial-gradient($accent	$dot,	transparent	0),
								radial-gradient($accent	$dot,	transparent	0);
				background-size:	$size	$size;
				background-position:	0	0,	$size/2	$size/2;
}

Then,	to	create	the	polka	dot	pattern,	we	would	call	it	like	this:

SCSS
@include	polka(30px,	30%,	#655,	tan);

Checkerboards

Checkerboard	patterns	 are	 used	 in	 a	 number	 of	 cases.	For	 instance,	 subtle
checkerboards	 can	 be	 an	 interesting	 alternative	 to	 a	 bland	 solid	 color
background.	Also,	a	gray	checkerboard	pattern	is	the	de	facto	standard	way
to	 depict	 transparency,	 which	 is	 required	 in	 a	 number	 of	 different	 UIs.
Making	a	checkerboard	pattern	in	CSS	is	possible,	but	considerably	trickier
than	one	might	expect.

FIGURE	2.44	A	gray	checkerboard	pattern	to	indicate	transparency;	if	this

was	created	by	repeating	an	image,	the	tile	would	be	the	one	denoted	by
the	dashed	line

The	 typical	 tile	 that	generates	 a	 checkerboard	when	repeated	consists	of
two	squares	from	each	color,	like	the	one	indicated	in	Figure	2.44.	It	looks
like	it	should	be	easy	to	recreate	with	CSS:	we	would	just	create	two	squares
with	 different	 background	 positions,	 right?	 Not	 exactly.	 Yes,	 we	 can
technically	 create	 squares	with	CSS	gradients,	 but	with	no	 spacing	 around
them,	 the	 result	 will	 look	 like	 a	 solid	 color.	However,	 there	 is	 no	 way	 to
create	 squares	 with	 space	 around	 them	 with	 one	 CSS	 gradient.	 If	 you’re
having	 doubts,	 try	 to	 find	 a	 gradient	 that,	 when	 repeated,	 produces	 the
image	in	Figure	2.45.

The	 trick	 is	 to	 compose	 the	 square	 from	 two	 right	 triangles.	 We
already	know	how	to	create	right	triangles	(remember	our	failed	attempt	at
diagonal	stripes	in	Figure	2.29?).	To	refresh	your	memory,	the	code	looked
like	this	(here	with	different	colors	and	transparency):

FIGURE	2.45	Repeating	a	square	with	space	around	it;	the	tile	is	shown
with	dashed	lines

background:	#eee;
background-image:
				linear-gradient(45deg,	#bbb	50%,	transparent	0);
background-size:	30px	30px;

You	might	be	wondering	how	this	helps	with	anything.	Sure,	if	we	tried	to
compose	squares	from	two	triangles	like	the	ones	in	Figure	2.29,	we	would
end	 up	 with	 a	 solid	 color.	 However,	 what	 if	 we	 reduce	 the	 legs	 of	 these

triangles	to	half	their	original	size,	so	that	they	occupy	 	of	the	tile,	instead

of	 the	 current	 ?	 We	 can	 easily	 do	 that	 by	 changing	 the	 color	 stop
position	to	25%	instead	of	50%.	Then	we	would	end	up	with	something
like	Figure	2.46.

Similarly,	we	can	create	 triangles	of	 the	opposite	direction	 if	we	 flip	 the
color	stops	(Figure	2.47):

FIGURE	2.46	Right	triangles	with	a	lot	of	spacing	around	them

FUTURE 	Conical	gradients
In	the	future,	we	won’t	have	to	resort	to	meticulously	overlaying	triangles
to	 create	 checkerboards.	 CSS	 Image	 Values	 Level	 4
(w3.org/TR/css4-images)	defines	a	new	set	of	gradient	functions	to
generate	 conical	gradients	 (a.k.a.	 “angle	gradients”).	These	gradients	often
look	like	a	cone	observed	from	above,	hence	the	name	“conical.”	They	are
generated	by	a	line	that	gradually	changes	color	as	it	rotates	around	a	fixed
point.	For	example,	the	hue	wheel	shown	here	would	be	created	with	the
following	gradient:

http://w3.org/TR/css4-images

background:	conic-gradient(red,	yellow,	lime,	aqua,	blue,	fuchsia,	
red);

Conical	 gradients	 are	 useful	 for	 far	 more	 things	 than	 hue	 wheels:
starbursts,	 brushed	metal	 effects,	 and	many	 other	 kinds	 of	 backgrounds,
including	(you	guessed	it!)	checkerboards.	They	would	enable	us	to	create
the	repeating	tile	of	Figure	2.44	in	just	one	gradient:

background:	repeating-conic-gradient(#bbb	0,	#bbb	25%,	#eee	0,	#eee	
50%);
background-size:	30px	30px;

Unfortunately,	 there	 is	 no	 browser	 support	 for	 conical	 gradients	 at	 the
time	of	writing.

TEST! 	play.csssecrets.io/test-conic-gradient

background:	#eee;
background-image:
				linear-gradient(45deg,	transparent	75%,	#bbb	0);
background-size:	30px	30px;

http://play.csssecrets.io/test-conic-gradient

FIGURE	2.47	If	we	flip	the	color	stops,	we	get	triangles	in	the	opposite
direction

Can	you	guess	what	happens	if	we	combine	the	two?	The	code	would	look
like	this:

background:	#eee;
background-image:
				linear-gradient(45deg,	#bbb	25%,	transparent	0),
				linear-gradient(45deg,	transparent	75%,	#bbb	0);
background-size:	30px	30px;

At	 first,	 the	 result	 in	 Figure	 2.48	 doesn’t	 look	 like	 we’re	 getting
anywhere.	However,	we	just	need	to	move	the	second	gradient	by	half	the
tile	size,	in	order	to	combine	them	into	a	square:

background:	#eee;
background-image:
				linear-gradient(45deg,	#bbb	25%,	transparent	0),
				linear-gradient(45deg,	transparent	75%,	#bbb	0);
background-position:	0	0,	15px	15px;
background-size:	30px	30px;

Can	you	guess	what	the	result	looks	like?	It’s	exactly	what	we	were	trying
to	achieve	earlier,	and	looks	like	Figure	2.49.	Notice	that	this	is	essentially
half	a	checkerboard.	All	we	need	to	turn	this	into	a	full	checkerboard	is	to
repeat	 the	 two	 gradients	 to	 create	 another	 set	 of	 squares	 and	 offset	 their
positions	again,	a	bit	like	applying	the	polka	dot	technique	twice:

FIGURE	2.48	Combining	the	two	triangles

background:	#eee;

background-image:
				linear-gradient(45deg,	#bbb	25%,	transparent	0),
				linear-gradient(45deg,	transparent	75%,	#bbb	0),
				linear-gradient(45deg,	#bbb	25%,	transparent	0),
				linear-gradient(45deg,	transparent	75%,	#bbb	0);
background-position:	0	0,	15px	15px,
																					15px	15px,	30px	30px;
background-size:	30px	30px;

The	result	 is	 a	checkerboard,	 identical	 to	 the	one	 in	Figure	2.44.	We	can
improve	the	code	a	bit	by	combining	the	opposite	facing	triangles	(i.e.,	 the
first	with	 the	second	and	 the	 third	with	 the	 fourth)	and	making	 the	darker
gray	 semi-transparent	black,	 so	 that	we	 can	 change	 the	base	 color	without
always	having	to	adjust	the	top	color	accordingly:

FIGURE	2.49	Our	combined	triangles	now	form	squares	with	space	around
them;	the	two	tiles	are	shown	with	dashed	lines	and	the	second	gradient
is	shown	slightly	darker

background:	#eee;
background-image:
				linear-gradient(45deg,
								rgba(0,0,0,.25)	25%,	transparent	0,
								transparent	75%,	rgba(0,0,0,.25)	0),
				linear-gradient(45deg,
								rgba(0,0,0,.25)	25%,	transparent	0,
								transparent	75%,	rgba(0,0,0,.25)	0);
background-position:	0	0,	15px	15px;
background-size:	30px	30px;

Now	 we	 have	 two	 gradients	 instead	 of	 four,	 but	 the	 code	 is	 almost	 as
WET	 as	 before.	 To	 change	 the	 accent	 color	 or	 the	 cell	 size,	 we	 need	 to
make	four	edits.	At	this	point,	it	might	be	a	good	idea	to	use	a	preprocessor
mixin	to	reduce	duplication.	For	example,	in	Sass	it	would	look	like	this:

FIGURE	2.50	This	is	a	complex	pattern	and	it’s	often	difficult	to	wrap	one’s
head	around	how	it	works,	especially	after	reducing	it	to	two	gradients.	It
usually	aids	understanding	of	how	a	pattern	works	to	give	a	random	color
to	one	of	the	gradients	or	color	stops.	For	example,	here	the	first	gradient

is	shown	with	 	rebeccapurple	instead	of	the	semi-transparent	black
and	the	two	tiles	are	outlined	with	dashed	lines.

WET	stands	for	“We	Enjoy	Typing”	and	is	the	opposite	of	DRY	code	(i.e.,	it	refers	to	repetitive,
unmaintainable	code).

SCSS
@mixin	checkerboard($size,	$base,
																				$accent:	rgba(0,0,0,.25)	{

background:	$base;
background-image:

				linear-gradient(45deg,
								$accent	25%,	transparent	0,
								transparent	75%,	$accent	0),
				linear-gradient(45deg,
								$accent	25%,	transparent	0,
								transparent	75%,	$accent	0);
background-position:	0	0,	$size	$size,
background-size:	2*$size	2*$size;
}

/*	Used	like…	*/
@include	checkerboard(15px,	#58a,	tan);

In	any	case,	 this	 is	 so	much	code	 that	 it	might	actually	be	better	 to	go	 the
SVG	route.	An	SVG	tile	for	Figure	2.44	would	be	as	small	and	simple	as:

SVG
<svg	xmlns="http://www.w3.org/2000/svg"
					width="100"	height="100"	fill-opacity=".25"	>
				<rect	x="50"	width="50"	height="50"	/>
				<rect	y="50"	width="50"	height="50"	/>
</svg>

One	 could	 reply,	 “But	CSS	 gradients	 save	 us	HTTP	 requests!”	However,
with	modern	browsers,	we	can	embed	the	SVG	file	in	our	stylesheet	as	a	data
URI,	and	we	don’t	even	need	to	base64	or	URLencode	most	of	it:

background:	#eee	url('data:image/svg+xml,\
												<svg	xmlns="http://www.w3.org/2000/svg"	\
																	width="100"	height="100"
																	fill-opacity=".25">\
												<rect	x="50"	width="50"	height="50"	/>	\

												<rect	y="50"	width="50"	height="50"	/>	\
												</svg>');
background-size:	30px	30px;

TIP! 	Note	how	you	can	break	a	CSS	string	into	multiple	lines	for	readability,	by	just	escaping
the	line	breaks	with	a	backslash	(\)!

The	SVG	version	is	not	only	40	characters	shorter,	but	also	considerably
less	repetitive.	For	example,	we	can	change	the	colors	in	only	one	place	and
the	size	with	two	edits.

	PLAY! 	play.csssecrets.io/checkerboard-svg

RELATED
SPECS

CSS	Image	Values

w3.org/TR/css-images

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

Scalable	Vector	Graphics

w3.org/TR/SVG

CSS	Image	Values	Level	4

w3.org/TR/css4-images

http://play.csssecrets.io/checkerboard-svg
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/SVG
http://w3.org/TR/css4-images

FIGURE	2.51	Combining	these	techniques	with	blending	modes
(w3.org/TR/compositing-1),	by	using	background-blend-mode
with	values	other	than	normal	for	some	(or	even	all)	of	the	layers	a
background	pattern	is	made	of	can	yield	very	interesting	results,	as	this
pattern	gallery	by	Bennett	Feely	(bennettfeely.com/gradients)
demonstrates.	Most	of	these	patterns	only	use	the	multiply	blending
mode,	but	other	values	such	as	overlay,	screen,	or	difference	can
be	very	useful	too.

7	(Pseudo)random	backgrounds

Prerequisites
CSS	 gradients,	 the	 “Striped	 backgrounds”	 secret	 on	 page	 40,	 the
“Complex	background	patterns”	secret	on	page	50

The	problem

Repeating	 geometric	 patterns	 are	 nice,	 but	 can	 be	 a	 bit	 boring.	 Hardly
anything	 in	 nature	 ever	 repeats	 in	 identical	 tiles.	 Even	 in	 repetition,
there	is	always	variation	and	randomness.	Look	at	a	field	with	flowers:	while
it’s	 uniform	 enough	 to	 be	 beautiful,	 it	 is	 also	 random	 enough	 to	 be
interesting.	No	two	flowers	are	ever	exactly	the	same.	This	is	why	when	we
are	trying	to	make	background	patterns	appear	as	natural	as	possible,	we	are
also	 trying	 to	 have	 as	 few	 and	 as	 hard	 to	 notice	 “seams”	 between	 the
repeating	 tiles	 as	 possible,	which	 directly	 conflicts	with	 our	 desire	 to	 keep
the	filesize	low.

http://w3.org/TR/compositing-1
http://bennettfeely.com/gradients

FIGURE	2.52	Nature	doesn’t	repeat	itself	in	“seamless”	tiles

“[W]hen	you	notice	a	distinctive	feature—for	instance,	a	knot	in	some	woodgrain—
repeating	at	regular	intervals,	it	really	breaks	the	illusion	of	organic	randomness.”

—	Alex	Walker,	The	Cicada	Principle	and	Why	It	Matters	to	Web
Designers	(sitepoint.com/the-cicada-principle-and-why-it-

matters-to-web-designers)

Replicating	 randomness	 can	 be	 challenging,	 because	CSS	does	 not	 offer
any	 inherent	 randomness	 capabilities.	 Let’s	 take	 the	 example	 of	 stripes.
Assume	we	want	 vertical	 stripes	 of	 various	 colors	 and	widths	 (let’s	 keep	 it
simple	and	say	 four	colors),	with	no	visible	“seams”	of	 repeating	 tiles.	Our
first	thought	might	be	to	create	one	gradient	with	all	four	stripes,	like	so:

background:	linear-gradient(90deg,
														#fb3	15%,	#655	0,	#655	40%,

http://sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers

														#ab4	0,	#ab4	65%,	hsl(20,	40%,	90%)	0);
background-size:	80px	100%;

FIGURE	2.53	Our	original	attempt	at	pseudorandom	stripes,	with	all	the
colors	generated	by	the	same	linear	gradient

As	 you	 can	 see	 in	 Figure	 2.53,	 the	 repetition	 is	 obvious,	 as	 the	 pattern
repeats	itself	every	80px	(our	background-size).	Can	we	do	better?

The	solution

One	 first	 idea	might	be	 to	enhance	 the	 illusion	of	 randomness	by	 splitting
the	 flat	 stripe	 tile	 into	 layers:	 one	 base	 color	 and	 three	 layers	 of	 stripes,
repeating	in	different	intervals.	We	can	easily	achieve	this	by	hardcoding	the
stripe	 width	 in	 the	 color	 stops	 and	 using	 background-size	 to	 control
their	spacing.	The	code	might	look	like	this:

background:	hsl(20,	40%,	90%);
background-image:
				linear-gradient(90deg,	#fb3	10px,	transparent	0),
				linear-gradient(90deg,	#ab4	20px,	transparent	0),
				linear-gradient(90deg,	#655	20px,	transparent	0);
background-size:	80px	100%,	60px	100%,	40px	100%;

FIGURE	2.54	Our	second	attempt,	involving	overlaying	different	gradients
with	different	background	sizes;	the	(perceived)	repeating	tile	is	shown
with	dashed	lines

Because	the	repetition	in	the	topmost	tile	will	be	most	noticeable	(as	it’s	not
covered	 by	 anything),	we	 want	 to	 put	 the	 tile	 with	 the	 largest	 repeat
interval	on	top	(in	this	case,	the	orange	stripes).

As	you	can	see	in	Figure	2.54,	these	look	significantly	more	random,	but
if	we	look	closely,	we	can	still	see	the	repeating	tile	every	240px.	The	end	of
the	 first	 repeating	 tile	of	 such	 a	 composition	 is	 the	offset	 at	which	all	our
individual	 background	 images	 have	 repeated	 an	 integer	 amount	 of
times.	As	you	might	remember	from	school,	if	we	have	a	few	numbers,	the
minimum	number	that	can	contain	any	of	them	an	integer	amount	of	times
is	 their	 least	 common	multiple	 (often	 abbreviated	 as	LCM).	Therefore,	 here
the	size	of	the	tile	is	the	LCM	of	the	background	sizes	and	the	LCM	of
40,	60,	and	80	is	240.

Note	that	here	“tile”	is	used	a	bit	liberally:	it’s	not	referring	to	the	repeated	image	of	any
individual	gradient,	but	the	perceived	repeating	tile	of	their	composition	(i.e.,	if	we	weren’t
using	multiple	backgrounds,	what	size	would	our	repeated	background	image	have	to	be	to
achieve	the	same	result?).

It	 logically	 follows	 that	 to	 increase	 perceived	 randomness,	 we	 need	 to
maximize	the	size	of	the	repeating	tile.	Thanks	to	math,	we	don’t	have	to
think	long	and	hard	about	how	to	achieve	this,	because	we	already	know	the
answer.	To	achieve	maximum	LCM,	the	numbers	need	to	be	relatively
prime.*	In	that	case,	their	LCM	is	their	product.	For	example,	3,	4,	and	5	are
relatively	prime,	so	their	LCM	is	3	×	4	×	5	=	60.	An	easy	way	to	achieve	this
is	 to	 choose	 prime	 numbers,	 because	 they’re	 always	 relatively	 prime
with	 any	 other	 number.	 Lists	 of	 primes	 up	 to	 very	 large	 numbers	 are
widely	available	on	the	Web.

FIGURE	2.55	Our	final	stripes,	using	prime	numbers	to	increase	perceived

randomness

To	maximize	 randomness	 even	 further,	we	 can	even	use	prime	numbers
for	the	stripe	widths.	This	is	what	our	code	would	look	like:

background:	hsl(20,	40%,	90%);
background-image:
				linear-gradient(90deg,	#fb3	11px,	transparent	0),
				linear-gradient(90deg,	#ab4	23px,	transparent	0),
				linear-gradient(90deg,	#655	41px,	transparent	0);
background-size:	41px	100%,	61px	100%,	83px	100%;

Yes,	the	code	is	not	pretty,	but	good	luck	trying	to	find	any	seams	in	Figure
2.55.	The	size	of	our	repeating	 tile	 is	now	41	×	61	×	83	=	207,	583	pixels,
larger	than	any	screen	resolution	one	could	possibly	imagine!

This	 technique	 was	 dubbed	 “The	Cicada	 Principle”	 by	Alex	Walker,
who	first	had	the	idea	of	using	primes	to	increase	perceived	randomness	of
backgrounds.	Note	that	this	is	not	only	useful	for	backgrounds,	but	also	for
anything	that	involves	repetition.	Other	applications	include:

Applying	small	pseudorandom	rotations	on	the	images	in	a	photo
gallery,	with	multiple	:nth-child(an)	selectors	where	a	is	a	prime.

Making	an	animation	that	doesn’t	seem	to	ever	repeat	exactly	in	the
same	way,	by	applying	multiple	animations	with	prime	durations.
(Check	out	play.csssecrets.io/cicanimation	for	an
example.)

	PLAY! 	play.csssecrets.io/cicada-stripes

Hat	tip	to	Alex	Walker	for	coming	up	with	an	idea	that	inspired	this	technique	in
“The	 Cicada	 Principle	 and	 Why	 It	 Matters	 to	 Web	 Designers”
(sitepoint.com/the-cicada-principle-and-why-it-
matters-to-web-designers).	 Eric	 Meyer	 (meyerweb.com)	 later

http://play.csssecrets.io/cicanimation
http://play.csssecrets.io/cicada-stripes
http://sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers
http://meyerweb.com

had	 the	 idea	 of	 creating	 something	 called	 “Cicadients”
(meyerweb.com/eric/thoughts/2012/06/22/cicadients),
which	 involves	 applying	 the	 technique	 on	 background	 images	 generated	 via	 CSS
gradients.	Dudley	 Storey	 has	 also	 written	 a	 very	 informative	 piece	 on	 this
concept	 (demosthenes.info/blog/840/Brood-X-Visualizing-
The-Cicada-Principle-In-CSS).

RELATED
SPECS

CSS	Image	Values

w3.org/TR/css-images

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

8	Continuous	image	borders

Prerequisites
CSS	gradients,	basic	borderimage,	the	“Striped	backgrounds”	secret	on
page	40,	basic	CSS	animations

The	problem

Sometimes	we	want	to	apply	a	pattern	or	image	not	as	a	background,	but
as	 a	 border.	 For	 example,	 check	 out	Figure	 2.57	 for	 an	 element	 with	 a
decorative	 border	 that	 is	 basically	 an	 image	 clipped	 to	 the	 border	 area.	 In
addition,	 we	 want	 the	 image	 to	 resize	 to	 cover	 the	 entire	 border	 area
regardless	of	the	dimensions	of	our	element.	How	would	we	attempt	to	do

http://meyerweb.com/eric/thoughts/2012/06/22/cicadients
http://demosthenes.info/blog/840/Brood-X-Visualizing-The-Cicada-Principle-In-CSS
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds

something	like	this	with	CSS?

FIGURE	2.56	Our	stone	art	image,	used	throughout	this	secret

At	 this	 point,	 there	might	 be	 a	 very	 loud	 voice	 in	 your	head	 screaming,
“borderimage,	 borderimage,	 we	 can	 use	 borderimage,	 that’s	 not	 a
problem	 anymore!!!11.”	 Not	 so	 fast,	 young	 padawan.	 Recall	 how
borderimage	 actually	 works:	 it’s	 basically	9-slice	 scaling.	 You	 slice	 the
image	into	nine	boxes	and	apply	them	to	the	corners	and	sides	accordingly.
Figure	2.58	offers	a	visual	reminder	of	how	this	works.

How	could	we	possibly	 slice	our	 image	via	borderimage	 to	 create	 the
example	 in	Figure	 2.57?	 Even	 if	 we	meticulously	 get	 it	 right	 for	 specific
dimensions	and	border	width,	it	wouldn’t	adjust	properly	for	different	ones.
The	issue	is	that	there	is	no	specific	part	of	the	image	that	we	want	to	be	at
the	corners;	the	part	of	the	image	shown	in	the	corner	squares	changes	with
the	dimensions	of	the	element	and	border	width.	If	you	try	it	for	a	bit,	you
will	 likely	 also	 conclude	 that	 this	 is	 not	 possible	with	borderimage.	 But
then	what	can	we	do?

The	easiest	way	 is	 to	use	 two	HTML	elements:	one	using	a	background
with	our	stone	art	 image,	and	one	with	a	white	background	covering	 it	 for
our	content	area:

FIGURE	2.57	Our	image	used	as	a	border	with	varying	heights

HTML
<div	class="something-meaningful"><div>
				I	have	a	nice	stone	art	border,
				don't	I	look	pretty?
</div></div>

.something-meaningful	{
				background:	url(stone-art.jpg);
				background-size:	cover;
				padding:	1em;
}

.something-meaningful	>	div	{
				background:	white;

				padding:	1em;
}

This	works	fine	to	create	the	“border”	shown	in	Figure	2.57,	but	it	requires
an	 extra	 HTML	 element.	 This	 is	 suboptimal:	 not	 only	 does	 it	 mix
presentation	and	styling,	but	modifying	the	HTML	is	simply	not	an	option
in	certain	cases.	Can	we	do	this	with	only	one	element?

The	solution

Thanks	 to	 CSS	 gradients	 and	 the	 background	 extensions	 introduced	 in
Backgrounds	 &	 Borders	 Level	 3	 (w3.org/TR/css3-background),
we	can	achieve	the	exact	same	effect	with	only	one	element.	The	main	idea	is
to	 use	 a	 second	 background	 of	 pure	 white,	 covering	 the	 stone	 art
image.	However,	to	make	the	second	image	show	through	the	border	area,
we	should	apply	different	values	of	background-clip	 to	 them.	One	 last
thing	 is	 that	we	can	only	have	 a	background	color	on	 the	 last	 layer,	 so	we
need	to	fake	the	white	via	a	CSS	gradient	from	white	to	white.

This	is	how	our	first	attempt	to	apply	this	idea	might	look:

padding:	1em;
border:	1em	solid	transparent;
background:	linear-gradient(white,	white),
												url(stone-art.jpg);
background-size:	cover;
background-clip:	padding-box,	border-box;

As	we	can	see	in	Figure	2.59,	the	result	is	very	close	to	what	we	wanted,	but
there	is	some	weird	repetition.	The	reason	is	that	the	default	background-
origin	 is	 padding-box,	 and	 thus,	 the	 image	 is	 sized	 based	 on	 the
padding	box	and	placed	on	the	0,0	point	on	the	padding	box.	The	rest	is	just
repetitions	of	that	first	background	tile.	To	correct	this,	we	just	need	to	set
background-origin	to	border-box	as	well:

http://w3.org/TR/css3-background

FIGURE	2.58	A	quick	primer	on	borderimage
Top:	Our	sliced	image;	the	dashed	lines	indicate	its	slicing
Middle:	borderimage:	33.34%	url(…)	stretch;
Bottom:	borderimage:	33.34%	url(…)	round;	Play	with	the	code
at	play.csssecrets.io/borderimage

padding:	1em;
border:	1em	solid	transparent;
background:	linear-gradient(white,	white),
												url(stone-art.jpg);
background-size:	cover;
background-clip:	padding-box,	border-box;
background-origin:	border-box;

These	 new	 properties	 are	 also	 available	 on	 the	 background	 shorthand,
which	can	help	us	reduce	our	code	significantly	here:

padding:	1em;
border:	1em	solid	transparent;
background:
				linear-gradient(white,	white)	padding-box,
				url(stone-art.jpg)	border-box	0	/	cover;

	PLAY! 	play.csssecrets.io/continuous-image-borders

Of	course,	we	can	use	the	same	technique	with	gradient-based	patterns.
For	 example,	 take	 a	 look	 at	 the	 following	code,	which	generates	 a	vintage
envelope	themed	border:

FIGURE	2.59	Our	first	attempt	is	very	close	to	what	we	wanted

padding:	1em;

http://play.csssecrets.io/borderimage
http://play.csssecrets.io/continuous-image-borders

border:	1em	solid	transparent;
background:	linear-gradient(white,	white)	padding-box,
												repeating-linear-gradient(-45deg,
														red	0,	red	12.5%,
														transparent	0,	transparent	25%,
														#58a	0,	#58a	37.5%,
														transparent	0,	transparent	50%)
													0	/	5em	5em;

You	can	see	the	result	in	Figure	2.61.	You	can	easily	change	the	width	of
the	stripes	via	the	background-size	and	the	thickness	of	the	border	via
the	border	declaration.	Unlike	our	stone	art	border	example,	this	effect	is
doable	with	borderimage	too:

FIGURE	2.60	An	actual	vintage	envelope

TIP! 	 To	 see	 these	 issues	 in	 action,	 visit	 play.csssecrets.io/vintage-envelope-
borderimage	and	experiment	with	changing	values.

padding:	1em;
border:	16px	solid	transparent;
borderimage:	16	repeating-linear-gradient(-45deg,
																			red	0,	red	1em,
																			transparent	0,	transparent	2em,
																			#58a	0,	#58a	3em,
																			transparent	0,	transparent	4em);

http://play.csssecrets.io/vintage-envelope-border-image

However,	the	borderimage	approach	has	several	issues:

We	need	to	update	borderimage-slice	every	time	we	change	the
border-width	and	make	them	match.

Because	we	cannot	use	ems	in	borderimage-slice,	we	are
restricted	to	only	pixels	for	the	border	thickness.

The	stripe	thickness	needs	to	be	encoded	in	the	color	stop	positions,	so
we	need	to	make	four	edits	to	change	it.

FIGURE	2.61	Our	“vintage	envelope”	border

	PLAY! 	play.csssecrets.io/vintage-envelope

Another	 fun	 application	 of	 this	 technique	 is	 using	 it	 to	make	marching
ants	borders!	Marching	ants	borders	are	dashed	borders	that	seem	to	scroll
like	 marching	 ants	 (if	 you	 imagine	 that	 the	 dashes	 are	 ants).	 These	 are
incredibly	 common	 in	 GUIs;	 image	 editors	 use	 them	 almost	 always	 to
indicate	area	selection	(Figure	2.62).

To	create	marching	ants,	we	are	going	to	use	a	variation	of	 the	“vintage
envelope”	effect.	We	will	convert	the	stripes	to	just	black	and	white,	reduce
the	width	of	the	border	to	1px	(notice	how	the	stripes	now	turn	to	a	dashed
border?),	 and	 change	 the	 background-size	 to	 something	 appropriate.
Then,	we	animate	the	background-position	to	100%	to	make	it	scroll:

http://play.csssecrets.io/vintage-envelope

FIGURE	2.62	Marching	ants	are	also	used	in	Adobe	Photoshop	to	indicate
area	selection

@keyframes	ants	{	to	{	background-position:	100%	}	}

.marching-ants	{
				padding:	1em;

				border:	1px	solid	transparent;
				background:
								linear-gradient(white,	white)	padding-box,
								repeating-linear-gradient(-45deg,
										black	0,	black	25%,	white	0,	white	50%
)	0	/	.6em	.6em;
				animation:	ants	12s	linear	infinite;
}

You	can	see	a	still	of	the	result	in	Figure	2.63.	Obviously,	this	is	not	only
useful	for	marching	ants,	but	also	for	creating	all	sorts	of	custom	dashed
borders,	with	different	color	dashes	and	custom	dash-gap	width.

Currently,	the	only	way	to	achieve	a	similar	effect	via	borderimage	is	to
use	 an	 animated	 GIF	 for	 borderimage-source,	 as	 shown	 in
chrisdanford.com/blog/2014/04/28/marching-ants-
animated-selection-rectangle-in-css.	 When	 browsers	 start
supporting	 gradient	 interpolation,	 we	 will	 also	 be	 able	 to	 do	 it	 with
gradients,	though	in	a	messy,	WET	way.

http://chrisdanford.com/blog/2014/04/28/marching-ants-animated-selection-rectangle-in-css

FIGURE	2.63	It’s	not	really	possible	to	show	marching	ants	in	a	book	(a	still
just	looks	like	dashed	borders);	visit	the	live	example—it’s	fun!

	PLAY! 	play.csssecrets.io/marching-ants

FIGURE	2.64	Top	border	clipping,	to	mimic	traditional	footnotes

However,	borderimage	can	also	be	quite	powerful,	and	even	more	when
used	with	gradients.	For	example,	assume	we	want	a	clipped	top	border,	like
the	 one	 commonly	 used	 in	 footnotes.	 All	 it	 takes	 is	borderimage	 and	 a
vertical	 gradient,	with	 the	 clipping	 length	hardcoded.	The	border	width	 is
controlled	by	…border-width.	The	code	would	look	like	this:

border-top:	.2em	solid	transparent;
borderimage:	100%	0	0	linear-gradient(90deg,
																									currentColor	4em,
																									transparent	0);
padding-top:	1em;

The	 result	 is	 identical	 to	 Figure	 2.64.	 In	 addition,	 because	 we	 specified
everything	 in	 ems,	 the	 effect	 will	 adjust	 with	 font-size	 changes,	 and
because	 we	 used	 currentColor,	 it	 will	 also	 adapt	 to	 color	 changes
(assuming	we	want	the	border	to	be	the	same	color	as	the	text).

	PLAY! 	play.csssecrets.io/footnote

http://play.csssecrets.io/marching-ants
http://play.csssecrets.io/footnote

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

CSS	Image	Values

w3.org/TR/css-images

http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images

3	Shapes

9	Flexible	ellipses

Prerequisites
Basic	usage	of	the	border-radius	property

The	problem

You	 have	 probably	 noticed	 at	 some	 point	 that	 any	 square	 element	 with	 a
sufficiently	 large	border-radius	 can	 turn	 into	 a	 circle,	 with	 CSS	 code
akin	to	the	following:

FIGURE	3.1	A	circle,	generated	by	fixed	dimensions	and	a	border-
radius	of	half	that

background:	#fb3;
width:	200px;
height:	200px;
border-radius:	100px;	/*	>=	half	the	side	*/

You	might	have	 also	noticed	 that	 you	 could	 specify	any	 radius	 larger	 than
100px	 and	 it	 will	 still	 result	 in	 a	 circle.	 The	 reason	 is	 outlined	 in	 the
specification:

“When	the	sum	of	any	two	adjacent	border	radii	exceeds	the	size	of	the	border	box,
user	agents	must	proportionally	reduce	the	used	values	of	all	border	radii	until	none
of	them	overlap.”

—	CSS	Backgrounds	&	Borders	Level	3	(w3.org/TR/css3-
background/#corner-overlap)

However,	 we	 often	 cannot	 provide	 a	 specific	 width	 and	 height	 on	 an
element,	 as	we	want	 it	 to	adjust	 to	 its	content,	which	may	not	be	known
ahead	of	time.	Even	if	we	are	designing	a	static	website	and	its	exact	content
is	predetermined,	we	might	want	to	modify	it	at	some	point,	or	it	could	be
displayed	 in	 a	 fallback	 font	with	 different	metrics.	 In	 that	 case,	we	 usually
want	it	to	be	an	ellipse	when	the	width	and	height	are	not	exactly	equal
and	a	circle	when	they	are.	However,	with	our	previous	code,	 that	 is	not
the	 case.	 The	 resulting	 shape	 when	 the	 width	 is	 larger	 than	 the	 height	 is
shown	in	Figure	3.2.	Can	we	even	use	border-radius	to	make	an	ellipse,
let	alone	a	flexible	one?

FIGURE	3.2	Our	previous	circle	example,	when	the	height	is	smaller	than
the	width;	the	border-radius	circle	is	shown	here	with	dashed	lines

The	solution

One	 lesser	 known	 fact	 is	 that	 border-radius	 accepts	 different
horizontal	and	vertical	radii,	if	you	use	a	slash	(/)	to	separate	the	two.	This

http://w3.org/TR/css3-background/#corner-overlap

allows	us	to	create	elliptical	rounding	at	the	corners	(Figure	3.3).	So,	if	we
had	 an	 element	with	 dimensions	 of	 200px	 ×	 150px,	 for	 example,	we	 could
turn	 it	 into	 an	 ellipse	 with	 radii	 equal	 to	 half	 its	 width	 and	 height,
respectively:

FIGURE	3.3	A	box	with	unequal	horizontal	and	vertical	border-radius;
our	corner	curving	now	follows	an	ellipse	with	horizontal	and	vertical	radii
equal	to	the	border-radius	we	specified,	shown	here	with	dashed	lines

border-radius:	100px	/	75px;

You	can	see	the	result	in	Figure	3.4.
However,	this	has	a	major	flaw:	if	the	dimensions	change,	the	border-

radius	values	need	to	change	as	well.	You	can	see	in	Figure	3.5	how	the
border-radius	 looks	when	 you	 have	 a	 200px	 ×	 300px	 element	 instead.
When	our	dimensions	vary	depending	on	content,	we	have	a	problem.

Or,	 do	 we?	 Another	 lesser	 known	 feature	 of	border-radius	 is	 that	 it
accepts	 percentages,	 not	 just	 lengths.	 The	 percentage	 resolves	 to	 the
corresponding	dimension,	width	 for	 the	horizontal	 radius	 and	height	 for
the	 vertical	 one.	 This	 means	 the	 same	 percentage	 can	 compute	 to
different	 horizontal	 and	 vertical	 radii.	 Therefore,	 to	 create	 a	 flexible
ellipse,	we	can	replace	both	radii	with	50%:

FIGURE	3.4	Irregular	border-radius	curves	used	to	create	an	ellipse

border-radius:	50%	/	50%;

And	 because	 the	 parts	 before	 and	 after	 the	 slash	 are	 now	 the	 same	 (even
though	they	don’t	compute	to	the	same	value),	we	can	further	simplify	it	to:

border-radius:	50%;

The	result	is	a	flexible	ellipse	with	just	one	line	of	CSS,	regardless	of	width
and	height.

FIGURE	3.5	Our	ellipse	breaks	when	the	dimensions	change;	the	silver
lining	though	is	that	this	shape	would	be	super	useful	for	some	sort	of
cylinder!

	PLAY! 	play.csssecrets.io/ellipse

Half	ellipses

Now	 that	 we	 know	 how	 to	 make	 a	 flexible	 ellipse	 with	 CSS,	 it	 naturally
follows	to	wonder	if	we	can	make	other	common	shapes,	like	fractions	of	an
ellipse.	Let’s	 take	 a	moment	 to	 think	 about	 a	 half	 ellipse	 (e.g.,	 the	one	 in
Figure	3.6).

TRIVIA 	Why	“border-radius”?
Many	wonder	why	border-radius	was	 named	 that	way,	 as	 it	 doesn’t
require	borders	to	work.	It	seems	that	corner-radius	would	have	been
much	more	appropriate.	The	reason	for	this	(admittedly	confusing)	name
is	 that	 border-radius	 rounds	 the	 edge	 of	 the	 element’s	 border	 box.

http://play.csssecrets.io/ellipse

When	the	element	has	no	borders,	this	makes	no	difference,	but	when	it
does,	it’s	the	outer	corner	of	the	border	that	is	rounded.	The	rounding	of
the	 inner	 corner	 is	 smaller	 (max(0,	 border-radius	 -	 border-
width)	to	be	precise).

A	half	ellipse	can	become	a	semicircle	when	the	width	is	double	the	height	(or	when	the	height	is
double	the	width,	for	ellipses	cut	down	the	vertical	axis).

It’s	symmetrical	across	the	vertical	axis,	but	not	across	the	horizontal	one.
Even	 if	 we	 can’t	 know	 the	 exact	border-radius	 values	 (or	 if	 it’s	 at	 all
possible)	yet,	it	starts	to	become	obvious	that	we	will	need	different	radii	per
corner.	However,	the	values	we’ve	examined	so	far	only	allow	for	one	value
for	all	four	corners.

Fortunately,	the	border-radius	syntax	is	more	flexible	than	that.	You
might	 be	 surprised	 to	 find	 that	border-radius	 is	 actually	 a	 shorthand.
We	can	provide	different	values	for	each	corner,	and	there	are	two	different
ways	 to	 do	 that.	 One	 way	 would	 be	 to	 use	 the	 longhand	 properties	 it’s
comprised	of:

FIGURE	3.6	A	half	ellipse

border-top-left-radius

border-top-right-radius

border-bottom-right-radius

border-bottom-left-radius

However,	 the	more	concise	way	 is	 to	use	 the	border-radius	 shorthand
and	 to	provide	multiple	whitespace-separated	values.	 If	we	provide	 four

values,	 they	 each	 apply	 to	 one	 corner,	 in	 clockwise	order,	 starting	 from
the	top	left.	If	we	provide	fewer	than	four	values,	they	are	multiplied	in	the
usual	CSS	way,	akin	to	properties	like	border-width.	Three	values	mean
the	fourth	is	the	same	as	the	second.	Two	values	mean	the	third	is	the	same
as	the	first.	Figure	3.7	provides	a	visual	explanation	of	how	this	works.	We
can	 even	 provide	 different	 horizontal	 and	 vertical	 radii	 for	 all	 four
corners,	by	 specifying	1–4	values	before	 the	 slash	and	1–4	different	values
after	 it.	 Note	 that	 these	 are	 expanded	 into	 four	 values	 individually.	 For
example,	a	border-radius	value	of	10px	/	5px	20px	is	equivalent	to
10px	10px	10px	10px	/	5px	20px	5px	20px.

FIGURE	3.7	The	rounding	of	which	corner	is	specified	with	a	border-
radius	of	4,	3,	2,	or	1	whitespace-separated	values	(note	that	for
elliptical	radii,	there	could	be	up	to	four	arguments	before	and	after	the
slash,	and	they	refer	to	the	same	corners,	regarding	the	horizontal	radii
before	the	slash	and	the	vertical	radii	after	it)

Let’s	 now	 examine	 the	 half	 ellipse	 problem	 again	 with	 this	 newfound
knowledge.	Is	it	possible	to	specify	such	border-radius	values	that	would
generate	a	shape	like	this?	We	cannot	know	until	we’ve	tried.	Let’s	start	by
making	a	few	observations:

The	shape	is	symmetrical	horizontally,	which	means	both	the	top	left
and	top	right	radii	should	be	the	same;	likewise,	the	bottom	left	and
bottom	right	radii	should	also	match.

There	are	no	straight	horizontal	edges	at	the	top	(i.e.,	the	entire	top

side	is	curved),	which	means	the	top	left	and	top	right	radii	together
should	total	100%	of	the	shape’s	width.

From	the	previous	two	observations,	we	can	deduce	that	the	horizontal
left	and	right	radii	should	be	50%.

Vertically,	it	seems	that	the	rounding	for	the	two	top	corners
occupies	the	entire	element’s	height	and	there	is	no	rounding	at
the	bottom	corners.	Therefore,	it	seems	that	a	reasonable	value	for	the
vertical	part	of	the	border-radius	would	be	100%	100%	0	0.

Because	the	vertical	rounding	of	the	bottom	corners	is	zero,	it	doesn’t
matter	what	horizontal	rounding	they	have,	as	that	will	always	compute
to	zero	anyway.	(Can	you	imagine	a	corner	with	zero	vertical	rounding
and	positive	horizontal	rounding?	Yup,	neither	could	the	spec	writers.)

Putting	all	this	together,	we	can	come	up	with	the	CSS	code	for	the	flexible
half	ellipse	in	Figure	3.6	pretty	easily:

border-radius:	50%	/	100%	100%	0	0;

It’s	 equally	 simple	 to	 come	 up	 with	 values	 that	 create	 half	 ellipses	 cut
down	the	vertical	axis	instead,	like	the	one	shown	in	Figure	3.8:

border-radius:	100%	0	0	100%	/	50%;

FIGURE	3.8	A	half	ellipse	cut	down	the	vertical	axis

As	an	exercise,	try	to	write	CSS	code	for	the	other	half	of	the	ellipse.

	PLAY! 	play.csssecrets.io/half-ellipse

Quarter	ellipses

Similarly	to	the	half	ellipse	example,	when	the	width	and	height	are	equal,	this	will	be	a	quarter
circle.

After	creating	a	whole	ellipse	and	a	half	ellipse,	the	natural	next	question	is
whether	we	 can	make	 a	 quarter	 ellipse,	 like	 the	one	 shown	 in	Figure	3.9.
Following	a	similar	thought	process	as	before,	we	can	notice	that	to	create	a
quarter	 ellipse,	one	 of	 the	 corners	 needs	 to	 have	 a	 100%	 radius	 both
horizontally	 and	vertically,	 and	 the	other	 four	will	have	no	 rounding.
Because	 the	 percentage	 will	 be	 the	 same	 for	 both	 horizontal	 and	 vertical
radii	of	all	 four	corners,	no	slash	notation	 is	needed.	The	code	would	 look
like	this:

FIGURE	3.9	A	quarter	ellipse

border-radius:	100%	0	0	0;

Unfortunately,	 in	 case	 you	 are	 now	 wondering	 what	 other	 fractions	 of

ellipses	 are	 possible	 with	 border-radius	 (e.g.,	 is	 th	 of	 an	 ellipse
possible?	One	third?),	I’m	afraid	you	will	be	disappointed,	because	there	are
no	possible	border-radius	values	to	generate	that.

http://play.csssecrets.io/half-ellipse

FIGURE	3.10	Simurai	masterfully	used	border-radius	to	its	full	extent
to	create	all	sorts	of	shapes	for	his	BonBon	buttons
(simurai.com/archive/buttons)

	PLAY! 	play.csssecrets.io/quarter-ellipse

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

10	Parallelograms

http://simurai.com/archive/buttons
http://play.csssecrets.io/quarter-ellipse
http://w3.org/TR/css-backgrounds

Prerequisites
Basic	CSS	transforms

The	problem

Parallelograms	 are	 a	 superset	of	 rectangles:	 their	 sides	 are	parallel	but	 their
corners	 are	 not	 necessarily	 straight	 (see	 Figure	 3.11).	 In	 visual	 design,
they’re	often	useful	to	make	the	design	appear	more	dynamic	and	convey	a
sense	of	movement	(Figure	3.12).

FIGURE	3.11	A	parallelogram

Let’s	 try	 to	 create	 a	 button-style	 link	with	 that	 style	 in	CSS.	Our	 starting
point	will	 be	 a	 plain	 flat	 button,	with	 some	 simple	 styling,	 like	 the	 one	 in
Figure	 3.13.	 Then,	 we	 can	 create	 the	 skewed	 rectangle	 shape	 with	 a
skew()	transform,	like	so:

transform:	skewX(-45deg);

FIGURE	3.12	Parallelograms	in	web	design	(design	by	Martina	Pitakova)

However,	 this	 also	 results	 in	 the	 content	 being	 skewed,	 which	makes	 it
ugly	 and	 unreadable	 (Figure	 3.14).	 Is	 there	 a	 way	 to	 only	 skew	 the
container	shape	without	skewing	the	contents?

FIGURE	3.13	Our	button,	before	any	transforms	are	applied

Nested	elements	solution

We	can	apply	an	opposite	skew()	transform	to	the	content,	which	will
cancel	out	 the	outer	 transform,	 effectively	 giving	us	 the	 result	we	want.
Unfortunately,	 that	means	we	will	have	 to	use	an	extra	HTML	element	 to
wrap	around	the	content,	such	as	a	div:

FIGURE	3.14	Our	skewed	button,	making	the	text	hard	to	read

FIGURE	3.15	The	final	result

HTML

				<div>Click	me</div>

.button	{	transform:	skewX(-45deg);	}

.button	>	div	{	transform:	skewX(45deg);	}

	If	you’re	applying	this	effect	to	an	element	that	is	inline	by	default,	don’t	forget	to	set	its
display	property	to	something	else,	like	inline-block	or	block,	otherwise	transforms
will	not	apply.	Same	goes	for	the	inner	element.

As	you	can	see	in	Figure	3.15	 it	works	quite	well,	but	it	means	we	have	to
use	an	extra	HTML	element.	 If	markup	changes	are	not	an	option	or	you
really	want	markup	purity,	fear	not,	as	there’s	also	a	pure	CSS	solution.

	PLAY! 	play.csssecrets.io/parallelograms

Pseudo-element	solution

Another	 idea	 is	 to	 use	 a	 pseudo-element	 to	 apply	 all	 styling	 to
(backgrounds,	borders,	etc.),	and	then	transform	that.	Because	our	content

http://play.csssecrets.io/parallelograms

is	 not	 contained	 in	 the	 pseudo-element,	 it	 is	 not	 affected	 by	 the
transformation.	Let’s	try	to	use	this	technique	to	style	a	link	in	the	same	way
as	in	the	previous	section.

We	 need	 our	 pseudo-element	 box	 to	 remain	 flexible	 and	 automatically
inherit	 the	dimensions	of	 its	parent,	 even	when	 they	are	determined	by	 its
contents.	An	easy	way	to	do	that	is	to	apply	position:	relative	to	the
parent,	position:	absolute	to	the	generated	content,	and	set	all	offsets
to	zero	so	that	it	stretches	horizontally	and	vertically	to	the	size	of	its	parent.
This	is	how	this	code	would	look:

.button	{
				position:	relative;
				/*	text	color,	paddings,	etc.	*/
}
.button::before	{
				content:	'';
				position:	absolute;
				top:	0;	right:	0;	bottom:	0;	left:	0;
}

At	 this	point,	 the	generated	box	 is	above	 the	content	and	once	we	apply
some	 background	 to	 it,	 it	 will	 obscure	 the	 contents	 (Figure	 3.16).	To	 fix
this,	we	can	apply	z-index:	-1	 to	 the	pseudo-element,	 so	 that	 it	moves
underneath	its	parent.

Now	it’s	finally	time	to	apply	transforms	to	our	heart’s	content	on	it	and
enjoy	the	result.	The	finished	code	would	look	like	this	and	produce	exactly
the	same	visual	result	as	the	previous	technique:

FIGURE	3.16	Our	pseudo-element	is	currently	above	the	contents,	so
applying	background:	#58a	to	it	obscures	them

.button	{
				position:	relative;
				/*	text	color,	paddings,	etc.	*/
}
.button::before	{

				content:	'';	/*	To	generate	the	box	*/
				position:	absolute;
				top:	0;	right:	0;	bottom:	0;	left:	0;
				z-index:	-1;
				background:	#58a;
				transform:	skew(45deg);
}

These	techniques	are	not	only	useful	for	skew()	transforms.	They	can	also
be	 used	 with	 any	 other	 transformation,	 in	 order	 to	 transform	 an
element’s	shape	without	transforming	its	contents.	For	example,	using	a
variation	of	this	technique	with	a	rotate()	transform	on	a	square	element
would	easily	give	us	a	diamond	(rhombus)	shape.

Also,	the	idea	of	using	pseudo-elements	and	positioning	to	generate	a	box
that	is	then	styled	and	placed	underneath	its	parent	can	be	used	in	a	number
of	cases,	for	very	different	types	of	effects,	such	as:

It	was	a	common	workaround	for	multiple	backgrounds	in	IE8,
discovered	by	Nicolas	Gallagher
(nicolasgallagher.com/multiple-backgrounds-and-
borders-with-css2).

It	could	be	another	solution	to	effects	like	the	“Inner	rounding”
secret	on	page	36.	Can	you	guess	how?

It	could	be	used	to	independently	apply	properties	like	opacity	to	a
“background,”	pioneered	by	Nicolas	Gallagher
(nicolasgallagher.com/css-background-image-hacks).

It	can	be	used	to	emulate	multiple	borders	in	a	more	flexible	way,	in
case	we	can’t	use	the	techniques	in	the	“Multiple	borders”	secret	on
page	28.	For	example,	when	we	need	multiple	dashed	borders	or
multiple	borders	with	spacing	and	transparency	between	them.

	PLAY! 	play.csssecrets.io/parallelograms-pseudo

RELATED

http://nicolasgallagher.com/multiple-backgrounds-and-borders-with-css2
http://nicolasgallagher.com/css-background-image-hacks
http://play.csssecrets.io/parallelograms-pseudo

SPECS

CSS	Transforms

w3.org/TR/css-transforms

11	Diamond	images

Prerequisites
CSS	transforms,	the	“Parallelograms”	secret	on	page	84

The	problem

Cropping	images	in	a	diamond	shape	is	rather	common	in	visual	design,	but
still	 not	 quite	 straightforward	 to	 do	 in	CSS.	 In	 fact,	 until	 recently,	 it	 was
basically	 impossible.	 Therefore,	 when	 web	 designers	 want	 to	 follow	 this
style,	they	more	often	than	not	pre-crop	their	images	via	an	image	editor.	Of
course,	 it	 goes	without	 saying	 that	 this	 is	 really	 not	 a	maintainable	way	 to
apply	any	effect	and	ends	up	being	a	mess	if	one	wants	to	change	the	image
styling	in	the	future.

Surely,	 these	days	 there	must	 be	 a	 better	way,	 right?	Actually,	 there	 are
two!

http://w3.org/TR/css-transforms

FIGURE	3.17	Following	its	2013	redesign,	24ways.org	now	displays	author
profile	pictures	cropped	in	a	diamond	shape,	using	the	technique
discussed	here

transform-based	solution

The	 main	 idea	 is	 the	 same	 as	 the	 first	 solution	 discussed	 in	 the	 previous
secret	 (the	 “Parallelograms”	 secret	 on	 page	 84)—we	 need	 to	 wrap	 our
image	with	a	<div>,	then	apply	opposite	rotate()	transforms	to	them:

HTML
<div	class="picture">
				
</div>

FIGURE	3.18	Our	original	image,	which	we	are	going	to	crop	in	a	diamond
shape

.picture	{
				width:	400px;
				transform:	rotate(45deg);
				overflow:	hidden;
}
.picture	>	img	{
				max-width:	100%;
				transform:	rotate(-45deg);
}

However,	as	you	can	see	in	Figure	3.19,	this	doesn’t	quite	work	out	of	the
box	 and	 accomplish	 what	 we	 are	 trying	 to	 achieve.	 Unless,	 of	 course,	 we
were	 trying	 to	crop	 the	 image	 in	an	octagon	shape,	 in	which	case	we	can
stop	now	and	go	do	something	else	with	our	time.	To	crop	it	to	a	diamond
shape,	however,	there’s	still	some	more	sweating	in	order.

FIGURE	3.19	Opposite	rotate()	transforms	are	not	enough	to	achieve
this	effect	(.picture	div	is	shown	with	a	dashed	outline)

The	main	issue	is	the	max-width:	100%	declaration.	100%	refers	to	the
side	 of	 our	 .picture	 container.	 However,	 we	 want	 our	 image	 to	 be	 as
wide	 as	 its	 diagonal,	 not	 its	 side.	 You	might	 have	 guessed	 that	 yes,	 we
need	the	Pythagorean	theorem	again	(if	you	need	a	refresher,	there	is	one	in
the	“Diagonal	stripes”	section	on	page	43).	As	 the	 theorem	tells	us,	 the
diagonal	 of	 a	 square	 is	 equal	 to	 its	 side	multiplied	 by	 .
Therefore,	 it	 makes	 sense	 to	 set	 max-width	 to	

,	or	round	it	up	to	142%,	as	we	don’t	want	it
to	be	smaller	under	any	circumstances	(but	slightly	larger	is	OK,	as	we’re
cropping	our	image	anyway).

Actually,	 it	 makes	 even	 more	 sense	 to	 enlarge	 the	 image	 through	 a
scale()	transform,	for	a	couple	of	reasons:

We	want	the	size	of	the	image	to	remain	100%	if	CSS	transforms	are
not	supported.

Enlarging	an	image	through	a	scale()	transform	will	scale	it	from	the
center	(unless	a	different	transform-origin	is	specified).	Enlarging
it	via	its	width	property	will	scale	it	from	the	top-left	corner,	so	we	will
end	up	having	to	use	negative	margins	to	move	it.

FIGURE	3.20	Our	final	cropped	image

Putting	it	all	together,	our	final	code	looks	like	this:

.picture	{
				width:	400px;
				transform:	rotate(45deg);
				overflow:	hidden;
}
.picture	>	img	{
				max-width:	100%;
				transform:	rotate(-45deg)	scale(1.42);
}

As	you	can	verify	in	Figure	3.20,	this	finally	gives	us	the	result	we	wanted.

	PLAY! 	play.csssecrets.io/diamond-images

Clipping	path	solution

The	 previous	 solution	works,	 but	 it’s	 basically	 a	 hack.	 It	 requires	 an	 extra

http://play.csssecrets.io/diamond-images

HTML	element,	and	it’s	messy,	convoluted,	and	fragile:	if	we	happen	to	be
dealing	with	non-square	images,	it	will	break	miserably	(Figure	3.21).

Actually,	there	is	a	much	better	way	to	do	it.	The	main	idea	is	to	use	the
clip-path	property,	another	feature	borrowed	from	SVG,	that	these	days
can	be	applied	to	HTML	content	too	(at	least	in	supporting	browsers)	with	a
nice,	 readable	 syntax,	 unlike	 its	 SVG	counterpart,	which	 is	 known	 to	have
driven	 people	 to	 madness.	 Its	 main	 caveat	 is	 its	 (at	 the	 time	 of	 writing)
limited	 browser	 support.	However,	 it	 degrades	 gracefully	 (no	 clipping),	 so
it’s	an	alternative	that	should	at	least	be	considered.

You	might	 be	 familiar	with	 clipping	 paths	 from	 image	 editing	 apps	 like
Adobe	Photoshop.	Clipping	paths	allow	us	to	clip	the	element	in	the	shape
that	 we	 please.	 In	 this	 case,	 we’re	 going	 to	 use	 a	 polygon()	 shape	 to
specify	a	diamond,	which	allows	us	to	specify	any	polygon	shape	as	a	series	of
comma-separated	points.	We	can	even	use	percentages,	and	they	refer	to	the
dimensions	of	the	element.	The	code	is	as	simple	as:

FIGURE	3.21	The	transform-based	solution	breaks	badly	when	dealing	with
non-square	images

clip-path:	polygon(50%	0,	100%	50%,	50%	100%,	0	50%);

That’s	it,	believe	it	or	not!	The	result	is	identical	to	Figure	3.20,	but	instead
of	requiring	two	HTML	elements	and	eight	 lines	of	cryptic	CSS	code,	 it’s
now	created	with	only	one	simple	line.

The	 wonders	 of	 clip-path	 don’t	 stop	 here.	 The	 property	 is	 even
animatable,	 as	 long	 as	 we	 animate	 between	 the	 same	 shape	 functions
(polygon(),	in	our	case),	with	the	same	number	of	points.	Therefore,	if	we
want	 to	 smoothly	 uncover	 the	 whole	 image	 on	 mouseover,	 we	 would	 do
something	like	this:

FIGURE	3.22	The	clip-path	method	adjusts	nicely	to	non-square	images

img	{
				clip-path:	polygon(50%	0,	100%	50%,
																							50%	100%,	0	50%);
				transition:	1s	clip-path;
}

img:hover	{
				clip-path:	polygon(0	0,	100%	0,
																							100%	100%,	0	100%);
}

Furthermore,	 this	method	 adjusts	 nicely	 to	 non-square	 images,	 as	 you	 can
verify	in	Figure	3.22.	Ah,	the	joys	of	modern	CSS…

	PLAY! 	play.csssecrets.io/diamond-clip

http://play.csssecrets.io/diamond-clip

RELATED
SPECS

CSS	Transforms

w3.org/TR/css-transforms

CSS	Masking

w3.org/TR/css-masking

CSS	Transitions

w3.org/TR/css-transitions

12	Cutout	corners

Prerequisites
CSS	gradients,	background-size,	the	“Striped	backgrounds”	secret	on
page	40

The	problem

FIGURE	3.23	A	button	with	cutout	corners,	creating	an	arrow	shape	that
emphasizes	its	meaning

http://w3.org/TR/css-transforms
http://w3.org/TR/css-masking
http://w3.org/TR/css-transitions

Cutting	corners	is	not	just	a	way	to	save	money,	but	also	a	rather	popular	style
in	both	print	and	web	design.	It	usually	involves	cutting	out	one	or	more	of
an	element’s	corners	in	a	45°	angle	(also	known	as	beveled	corners).	Especially
lately,	 with	 flat	 design	 winning	 over	 skeuomorphism,	 there	 has	 been	 an
increase	in	the	popularity	of	this	effect.	When	the	cutout	corners	are	only	on
one	side	and	occupy	50%	of	 the	element’s	height	each,	 it	creates	an	arrow
shape	 that	 is	 very	 popular	 for	 buttons	 and	 breadcrumb	 navigation—see
Figure	3.23.

However,	CSS	is	still	not	well	equipped	for	creating	this	effect	in	an	easy,
straightforward	one-liner.	This	leads	most	authors	toward	using	background
images	 to	 achieve	 it,	 either	 by	 obscuring	 the	 cutout	 corners	with	 triangles
(when	the	backdrop	is	a	solid	color),	or	by	using	one	or	more	images	for	the
entire	background,	with	the	corner(s)	already	cut.

FIGURE	3.24	An	example	of	a	website	where	a	cutout	corner	(bottom-left	of
the	semi-transparent	“Find	&	Book”	box)	really	adds	to	the	design

Such	methods	 are	 clearly	 inflexible,	 difficult	 to	maintain,	 and	 add	 latency,
both	by	 increasing	HTTP	 requests	 and	 the	 total	 filesize	of	 the	website.	 Is
there	a	better	way?

The	solution

One	 solution	 comes	 in	 the	 form	 of	 the	 omnipotent	 CSS	 gradients.	 Let’s
assume	we	 only	 want	one	 cutout	 corner,	 say	 the	 bottom-right	 one.	The

main	 trick	 is	 to	 take	 advantage	 of	 the	 fact	 that	 gradients	 can	 accept	 an
angle	direction	 (e.g.,	45deg)	and	color	stop	positions	 in	absolute	 lengths,
both	 of	 which	 are	 not	 affected	 by	 changes	 in	 the	 dimensions	 of	 the
element	the	background	is	on.

Putting	it	all	together,	all	we	need	is	one	linear	gradient.	It	would	need	a
transparent	 color	 stop	 for	 the	 cutout	 corner	 and	 another	 color	 stop	 in	 the
same	position,	with	the	color	we	want	for	our	background.	The	CSS	looks
like	this	(for	a	15px	size	corner):

FIGURE	3.25	An	element	with	the	bottom	right	corner	cut	off,	through	a
simple	CSS	gradient

background:	#58a;
background:
				linear-gradient(-45deg,	transparent	15px,	#58a	0);

TIP! 	 We	 are	 using	 separate	 colors	 (#58a	 and	 	 #655)	 for	 easier	 debugging.	 In
practice,	both	gradients	would	be	the	same	color.

Simple,	wasn’t	it?	You	can	see	the	result	in	Figure	3.25.	Technically,	we
don’t	 even	need	 the	 first	 declaration.	We	only	 included	 it	 as	 a	 fallback:	 if
CSS	gradients	are	not	supported,	the	second	declaration	will	be	dropped,	so
we	still	want	to	get	at	least	a	solid	color	background.

Now,	let’s	assume	we	want	two	cutout	corners,	say	the	two	bottom	ones.
We	can’t	achieve	this	with	only	one	gradient,	so	we	will	need	two.	Our	first
thought	might	be	something	like	this:

background:	#58a;
background:
				linear-gradient(-45deg,	transparent	15px,	#58a	0),
				linear-gradient(45deg,	transparent	15px,	#655	0);

However,	 as	 you	 can	 see	 in	Figure	 3.26,	 this	 doesn’t	work.	 By	 default,
both	gradients	occupy	the	entire	element,	so	they	obscure	each	other.	We
need	 to	 make	 them	 smaller,	 by	 using	 background-size	 to	 make	 each
gradient	occupy	only	half	the	element:

background:	#58a;
background:
				linear-gradient(-45deg,	transparent	15px,	#58a	0)
								right,
				linear-gradient(45deg,	transparent	15px,	#655	0)
								left;
background-size:	50%	100%;

FIGURE	3.26	Failed	attempt	to	apply	the	cutout	effect	to	both	bottom
corners

You	 can	 see	 what	 happens	 in	 Figure	 3.27.	 As	 you	 can	 see,	 although
background-size	 was	 applied,	 the	 gradients	 are	 still	 covering	 each
other.	The	reason	for	this	is	that	we	forgot	to	turn	background-repeat
off,	 so	 each	 of	 our	 backgrounds	 is	 repeated	 twice.	 Therefore,	 our
backgrounds	 are	 still	 obscuring	 each	 other—by	 repetition	 this	 time.	 The
new	code	would	look	like	this:

FIGURE	3.27	background-size	is	not	enough

background:	#58a;
background:
				linear-gradient(-45deg,	transparent	15px,	#58a	0)
								right,
				linear-gradient(45deg,	transparent	15px,	#655	0)
								left;
background-size:	50%	100%;
background-repeat:	no-repeat;

You	can	see	the	result	 in	Figure	3.28	and	verify	that—finally—it	works!
At	this	point,	you	are	probably	able	to	figure	out	how	to	apply	this	effect	to
all	four	corners.	You	will	need	four	gradients,	and	the	code	looks	like	this:

FIGURE	3.28	Our	bottom-left	and	bottom-right	cutout	corners	work	now

background:	#58a;
background:

				linear-gradient(135deg,	transparent	15px,	#58a	0)
								top	left,
				linear-gradient(-135deg,	transparent	15px,	#655	0)
								top	right,
				linear-gradient(-45deg,	transparent	15px,	#58a	0)
								bottom	right,
				linear-gradient(45deg,	transparent	15px,	#655	0)
								bottom	left;
background-size:	50%	50%;
background-repeat:	no-repeat;

You	can	see	the	result	in	Figure	3.29.	One	issue	with	the	preceding	code
is	that	it’s	not	particularly	maintainable.	It	requires	five	edits	to	change	the
background	 color	 and	 four	 to	 change	 the	 corner	 size.	 A	 preprocessor
mixin	could	help	reduce	the	repetition.	Here’s	how	the	code	could	look	with
SCSS:

FIGURE	3.29	The	effect	applied	to	all	four	corners,	with	four	gradients

SCSS
@mixin	beveled-corners($bg,
									$tl:0,	$tr:$tl,	$br:$tl,	$bl:$tr)	{
				background:	$bg;
				background:
								linear-gradient(135deg,	transparent	$tl,	$bg	0)
												top	left,
								linear-gradient(225deg,	transparent	$tr,	$bg	0)
												top	right,
								linear-gradient(-45deg,	transparent	$br,	$bg	0)
												bottom	right,
								linear-gradient(45deg,	transparent	$bl,	$bg	0)
												bottom	left;
				background-size:	50%	50%;

				background-repeat:	no-repeat;
}

Then,	where	needed,	it	would	be	used	like	this,	with	2–5	arguments:

SCSS
@include	beveled-corners(#58a,	15px,	5px);

In	 this	example,	 the	element	we	will	get	a	15px	 top-left	and	bottom-right
cutout	 corner	 and	 a	 5px	 top-right	 and	 bottom-left	 one,	 similar	 to	 how
border-radius	works	when	we	provide	 fewer	than	four	 lengths.	This	 is
due	 to	 the	 fact	 that	 we	 provided	 default	 values	 for	 the	 arguments	 in	 our
SCSS	mixin,	 and	 yes,	 these	 default	 values	 can	 refer	 to	 other	 arguments	 as
well.

	PLAY! 	play.csssecrets.io/bevel-corners-gradients

Curved	cutout	corners

A	variation	of	the	gradient	method	works	to	create	curved	cutout	corners,	an
effect	 many	 people	 refer	 to	 as	 “inner	 border	 radius,”	 as	 it	 looks	 like	 an
inverse	 version	 of	 rounded	 corners.	 The	 only	 difference	 is	 using	 radial
gradients	instead	of	linear	ones:

http://play.csssecrets.io/bevel-corners-gradients

FIGURE	3.30	An	excellent	use	of	curved	cutout	corners	in
g2geogeske.com;	the	designer	has	made	them	the	central	design
element,	as	they	are	present	in	the	navigation,	the	content,	and	even	the
footer

background:	#58a;
background:
				radial-gradient(circle	at	top	left,
													transparent	15px,	#58a	0)	top	left,
				radial-gradient(circle	at	top	right,
													transparent	15px,	#58a	0)	top	right,
				radial-gradient(circle	at	bottom	right,
													transparent	15px,	#58a	0)	bottom	right,
				radial-gradient(circle	at	bottom	left,
													transparent	15px,	#58a	0)	bottom	left;
background-size:	50%	50%;
background-repeat:	no-repeat;

http://g2geogeske.com

FIGURE	3.31	Curved	cutout	corners,	with	radial	gradients

You	can	 see	 the	 result	 in	Figure	3.31.	 Just	 like	 in	 the	previous	 technique,
the	 corner	 size	 can	 be	 controlled	 through	 the	 color	 stop	 positions	 and	 a
mixin	would	make	the	code	more	maintainable	here	as	well.

	PLAY! 	play.csssecrets.io/scoop-corners

Inline	SVG	&	border-image	solution

While	the	gradient-based	solution	works,	it	has	quite	a	few	issues:

The	code	is	very	long	and	repetitive.	In	the	common	case,	where	we
want	the	same	corner	size	on	all	four	corners,	we	need	to	make	four
edits	to	modify	it.	Similarly,	we	need	to	make	four	edits	to	modify	the
background	color,	five	counting	the	fallback.

It	is	messy	to	downright	impossible	(depending	on	the	browser)	to
animate	between	different	corner	sizes.

Thankfully,	there	are	a	couple	different	methods	we	could	use,	depending
on	our	needs.	One	of	 them	 is	 to	use	border-image	with	an	 inline	SVG
that	generates	the	corners.	Given	how	border-image	works	(if	you	don’t
remember,	take	a	look	at	the	quick	primer	in	Figure	2.58),	can	you	imagine
how	our	SVG	would	look?

http://play.csssecrets.io/scoop-corners

FIGURE	3.32	Our	SVG-based	border	image,	with	its	slicing

Because	 dimensions	 don’t	matter	 (border-image	 takes	 care	 of	 scaling
and	 SVGs	 scale	 perfectly	 regardless	 of	 dimensons—ah,	 the	 joy	 of	 vector
graphics!),	every	measurement	could	be	1,	for	easier,	shorter,	numbers.	The
corners	would	be	of	 length	1,	and	 the	 straight	edges	would	also	be	1.	The
result	(zoomed)	would	look	like	Figure	3.32.	The	code	would	look	like	this:

border:	15px	solid	transparent;
border-image:	1	url('data:image/svg+xml,\
				<svg	xmlns="http://www.w3.org/2000/svg"
									width="3"	height="3"	fill="%2358a">\
				<polygon	points="0,1	1,0	2,0	3,1	3,2	2,3	1,3	0,2"/>\
				</svg>');

Note	that	we	used	a	slice	size	of	1.	This	does	not	mean	1	pixel;	it	is	referring
to	the	coordinate	system	of	the	SVG	file	(hence	the	lack	of	units).	If	we	had

specified	 it	 in	 percentages,	 we	would	 need	 to	 approximate	 	 of	 the	 image
with	 something	 like	 33.34%.	 Approximating	 numbers	 is	 always	 risky,
because	not	all	browsers	use	the	same	level	of	precision.	However,	by	using
units	of	 the	coordinate	 system	of	 the	SVG	file,	we’re	 saved	 from	precision
headaches.

The	result	is	shown	in	Figure	3.33.	As	you	can	see,	our	cutout	corners	are
there,	but	there	is	no	background.	We	can	solve	that	in	two	ways:	either	by
specifying	a	background,	or	by	adding	the	keyword	fill	 to	our	border-
image	 declaration,	 so	 that	 it	 doesn’t	 discard	 the	 middle	 slice.	 In	 this
case,	we	are	going	to	go	with	specifying	a	background,	because	 it	will	also

act	as	a	fallback.

FIGURE	3.33	Applying	our	SVG	on	the	border-image	property

In	addition,	you	may	have	noticed	that	our	corners	are	smaller	than	with
the	 previous	 technique,	 which	 can	 be	 baffling.	 But	 we	 specified	 a	15px
border	width!	The	reason	is	that	with	the	gradient,	the	15px	was	along	the
gradient	 line,	 which	 is	 perpendicular	 to	 the	 direction	 of	 the	 gradient.	 The
border	 width,	 however,	 is	 not	 measured	 diagonally,	 but
horizontally/vertically.	 Can	 you	 see	 where	 this	 is	 going?	 Yup,	 it’s	 the
ubiquitous	 Pythagorean	 theorem	 again,	 that	 we	 also	 saw	 in	 the	 “Striped
backgrounds”	 secret	 on	 page	 40.	Figure	 3.34	 should	 help	make	 things
clearer.	Long	story	short,	to	achieve	the	same	size,	we	need	to	use	a	border
width	 that	 is	 	 times	 larger	 than	the	size	we	would	use	with	 the	gradient
method.	In	this	case,	that	would	be	 	pixels,	which
is	 sensible	 to	 approximate	 to	20px,	 unless	 we	 really,	 absolutely	need	 the
diagonal	size	to	be	as	close	to	15px	as	possible:

FIGURE	3.34	Specifying	a	border-width	of	15px,	results	in	a

(diagonally	measured)	corner	size	of	 ,	which	is	why	our
corners	looked	smaller

border:	20px	solid	transparent;
border-image:	1	url('data:image/svg+xml,\
				<svg	xmlns="http://www.w3.org/2000/svg"
									width="3"	height="3"	fill="%2358a">\
				<polygon	points="0,1	1,0	2,0	3,1	3,2	2,3	1,3	0,2"/>\
				</svg>');
background:	#58a;

However,	 as	 you	 can	 see	 in	 Figure	 3.35,	 this	 doesn’t	 exactly	 have	 the
expected	result.	Where	did	our	laboriously	created	cutout	corners	go?	Fear
not,	 young	 padawan,	 for	 our	 corners	 are	 still	 there.	 You	 can	 understand

what’s	happening	if	you	set	the	background	to	a	different	color,	such	as	
#655.

FIGURE	3.35	Where	did	our	nice	corners	go?!

As	 you	 can	 see	 in	Figure	 3.36,	 the	 reason	 our	 corners	 disappeared	was
that	the	background	we	specified	was	obscuring	them.	All	we	need	to	do	to
fix	 this	 is	 to	 use	 background-clip	 to	 prevent	 the	 background	 from
extending	to	the	border	area:

border:	20px	solid	transparent;
border-image:	1	url('data:image/svg+xml,\
				<svg	xmlns="http://www.w3.org/2000/svg"\
									width="3"	height="3"	fill="%2358a">\
				<polygon	points="0,1	1,0	2,0	3,1	3,2	2,3	1,3	0,2"/>\

				</svg>');
background:	#58a;
background-clip:	padding-box;

FIGURE	3.36	Changing	our	background	to	another	color	solves	the	…
disappearing	corners	mystery

The	 issue	 is	now	 fixed	 and	our	box	now	 looks	 exactly	 like	Figure	3.29.
However,	we	can	easily	change	the	corner	size	in	only	one	place:	we	just
modify	 the	 border	 width.	 We	 can	 even	 animate	 it,	 because	 border-
width	 is	 animatable!	We	 can	 also	 change	 the	 background	with	 only	 two
edits	 instead	 of	 five.	 In	 addition,	 because	 our	 background	 is	 now
independent	of	the	corner	effect,	we	can	even	specify	a	gradient	on	it,	or	any

other	pattern,	as	 long	as	 it’s	 still	 	#58a	 toward	the	edges.	For	example,
check	 out	 Figure	 3.37	 for	 an	 example	 using	 a	 radial	 gradient	 from
hsla(0,0%,100%,.2)	to	transparent.

FIGURE	3.37	Our	cutout	corners	with	a	radial	gradient	background

There	 is	 only	 one	 small	 issue	 remaining.	 If	 border-image	 is	 not
supported,	 the	 fallback	 is	 not	 only	 the	 absence	 of	 corners.	 Due	 to
background	 clipping,	 it	 also	 looks	 like	 there	 is	 less	 spacing	 between	 the
box	edge	and	its	content.	To	fix	that,	we	could	just	give	our	border	a	color
that	is	identical	to	the	background:

border:	20px	solid	#58a;
border-image:	1	url('data:image/svg+xml,\
				<svg	xmlns="http://www.w3.org/2000/svg"\
									width="3"	height="3"	fill="%2358a">\
				<polygon	points="0,1	1,0	2,0	3,1	3,2	2,3	1,3	0,2"/>\
				</svg>');
background:	#58a;
background-clip:	padding-box;

This	 color	 is	 ignored	 when	 border-image	 applies,	 but	 will	 provide	 a
more	graceful	 fallback	when	 it	doesn’t,	which	will	 look	 like	Figure	3.35.
As	 a	 drawback,	 this	 increases	 the	 number	 of	 edits	 we	 need	 to	make	 to
change	the	background	color	to	three.

	PLAY! 	play.csssecrets.io/bevel-corners

Hat	tip	to	Martijn	Saly	(twitter.com/martijnsaly)	for	coming	up	with
the	initial	idea	of	using	border-image	and	inline	SVG	as	a	solution	for	beveled
corners,	 in	 a	 tweet	 of	 his	 from	 January	 5,	 2015
(twitter.com/martijnsaly/status/552152520114855936).

Clipping	path	solution

While	the	border-image	solution	is	very	compact	and	relatively	DRY,	it
still	has	its	limitations.	For	example,	we	still	need	to	have	either	a	solid	color
background,	or	a	background	that	is	a	solid	color	toward	the	edges.	What	if
we	want	 a	 different	 kind	 of	 background,	 such	 as	 a	 texture,	 a	 pattern,	 or	 a

http://play.csssecrets.io/bevel-corners
http://twitter.com/martijnsaly
http://twitter.com/martijnsaly/status/552152520114855936

linear	gradient?

There	 is	 another	 way	 that	 doesn’t	 have	 these	 limitations,	 though	 it	 of
course	has	other	limitations	of	its	own.	Remember	the	clip-path	property
from	the	“Diamond	images”	secret	on	page	90?	The	amazing	thing	about
CSS	 clipping	 paths	 is	 that	 we	 can	 mix	 percentages	 (which	 refer	 to	 the
element	 dimensions)	 with	 absolute	 lengths,	 offering	 us	 tremendous
flexibility.

For	 example,	 the	 code	 for	 the	 clipping	 path	 to	 clip	 an	 element	 in	 a
rectangle	with	beveled	corners	of	20px	 size	 (measured	horizontally)	would
look	like	this:

background:	#58a;
clip-path:	polygon(
				20px	0,	calc(100%	-	20px)	0,	100%	20px,
				100%	calc(100%	-	20px),	calc(100%	-	20px)	100%,
				20px	100%,	0	calc(100%	-	20px),	0	20px
);

Despite	the	code	being	short,	this	doesn’t	mean	it’s	DRY,	which	is	one	of
its	 biggest	 issues	 if	 you’re	 not	 using	 a	 preprocessor.	 In	 fact,	 it’s	 the	most
WET	of	the	pure	CSS	solutions	we	presented,	with	eight	(!)	edits	required
to	change	the	corner	size.	On	the	other	hand,	we	can	change	the	background
in	only	one	place,	so	there’s	that.

Among	its	benefits	is	that	we	can	have	any	background	we	want,	or	even
clip	 replaced	 elements	 such	 as	 images.	 Check	 out	 Figure	 3.38	 for	 an
image	 styled	 with	 beveled	 corners.	None	 of	 the	 previous	methods	 can	 do
this.	In	addition,	it	is	also	animatable,	not	only	to	different	corner	sizes,	but
different	shapes	altogether.	All	we	need	to	do	is	use	a	different	clipping	path.

FIGURE	3.38	An	image	styled	with	beveled	corners,	via	clip-path

Beyond	 its	 WETness	 and	 its	 limited	 browser	 support,	 it	 also	 has	 the
drawback	that	it	will	clip	text,	if	there	is	no	sufficient	padding,	as	it	just
clips	 the	 element	without	distinguishing	between	 its	 parts.	 In	 contrast,	 the
gradient	method	will	 just	 let	the	text	overflow	beyond	the	corners	(because
they’re	just	a	background)	and	the	border-image	method	will	act	just	like
a	border	and	make	the	text	wrap.

FUTURE 	Cutout	corners
In	the	future,	we	won’t	have	to	resort	to	CSS	gradients,	clipping,	or	SVG
for	 this	 effect.	 A	 new	 property,	 corner-shape,	 is	 coming	 in	 CSS
Backgrounds	 &	 Borders	 Level	 4	 (dev.w3.org/csswg/css-
backgrounds-4/)	 to	 save	 us	 from	 these	 pains.	 It	 will	 be	 used	 in
conjunction	with	border-radius	to	produce	cutout	corners	of	different
shapes,	 with	 their	 sizes	 defined	 in	 border-radius.	 For	 example,
specifying	15px	cutout	corners	on	all	sides	would	be	as	simple	as:

border-radius:	15px;
corner-shape:	bevel;

	PLAY! 	play.csssecrets.io/bevel-corners-clipped

http://dev.w3.org/csswg/css-backgrounds-4/
http://play.csssecrets.io/bevel-corners-clipped

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

CSS	Image	Values

w3.org/TR/css-images

CSS	Transforms

w3.org/TR/css-transforms

CSS	Masking

w3.org/TR/css-masking

CSS	Transitions

w3.org/TR/css-transitions

CSS	Backgrounds	&	Borders	Level	4

dev.w3.org/csswg/css-backgrounds-4

13	Trapezoid	tabs

Prerequisites
Basic	3D	transforms,	the	“Parallelograms”	secret	on	page	84

http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-transforms
http://w3.org/TR/css-masking
http://w3.org/TR/css-transitions
http://dev.w3.org/csswg/css-backgrounds-4

The	problem

Trapezoids	are	even	more	generalized	than	parallelograms:	only	two	of	their
sides	 are	 parallel.	 The	 other	 two	 can	 be	 at	 any	 angle.	 Traditionally,	 they
have	been	notoriously	difficult	shapes	to	create	in	CSS,	although	they	are
also	 very	 frequently	 useful,	 especially	 for	 tabs.	 When	 authors	 were	 not
emulating	 them	 through	 carefully	 crafted	 background	 images,	 they	 were
usually	created	as	a	rectangle	with	two	triangles	on	each	side,	faked	through
borders	(Figure	3.39).

FIGURE	3.39	Trapezoid	shapes,	faked	through	borders	on	pseudo-elements
(for	clarity,	the	pseudo-elements	are	shown	here	in	darker	blue)

Although	this	technique	saves	us	the	extra	HTTP	request	we	would	spend
on	an	image,	and	can	easily	adjust	to	different	widths,	it’s	still	suboptimal.	It
wastes	 both	 available	 pseudo-elements,	 and	 is	 also	 very	 inflexible	 styling-
wise.	 For	 example,	 good	 luck	 adding	 a	 border,	 a	 background	 texture,	 or
some	rounding	on	that	tab.

FIGURE	3.40	Cloud9	IDE	(c9.io)	features	trapezoid	tabs	for	each	open
document

http://c9.io

FIGURE	3.41	An	earlier	redesign	of	css-tricks.com	featured	trapezoid
tabs,	although	they	were	only	slanted	in	one	direction

Because	 all	 of	 the	well-known	 techniques	 for	 trapezoids	 are	 quite	messy
and/or	difficult	 to	maintain,	most	 tabs	we	see	on	 the	Web	are	not	 slanted,
although	 real-life	 tabs	 usually	 are.	 Is	 there	 a	 sane,	 flexible	 way	 to	 make
trapezoid	tabs?

The	solution

If	 a	 combination	 of	 2D	 transforms	 existed	 that	 could	 create	 a	 trapezoid
shape,	 we	 could	 just	 apply	 a	 variation	 of	 the	 solutions	 discussed	 in	 the
“Parallelograms”	secret	on	page	84	 and	be	done	with	 it.	Unfortunately,
there	isn’t.

However,	 think	 about	 rotating	 a	 rectangle	 in	 the	 physical,	 three-
dimensional	world.	The	two-dimensional	image	we	usually	end	up	seeing	is
a	 trapezoid,	 due	 to	 perspective!	 Thankfully,	 we	 can	 emulate	 this	 effect	 in
CSS	by	using	a	3D	rotation:

transform:	perspective(.5em)	rotateX(5deg);

http://css-tricks.com

FIGURE	3.42	Creating	a	trapezoid	shape	through	3D	rotation
Top:	Before
Bottom:	After

You	can	see	how	this	creates	a	 trapezoid	 shape	 in	Figure	3.42.	Of	course,
because	we	applied	the	3D	transform	to	our	entire	element,	the	text	is	also
distorted.	 3D	 transforms	 cannot	 be	 “canceled”	 inside	 the	 element	 in
the	 same	 way	 as	 2D	 transforms	 can	 (i.e.,	 via	 an	 opposite	 transform).
Canceling	 them	 on	 the	 inner	 element	 is	 technically	 possible,	 but	 very
complicated.	 Therefore,	 the	 only	 pragmatic	 way	 to	 take	 advantage	 of	 3D
transforms	to	create	a	trapezoid	shape	is	to	apply	the	transform	to	a	pseudo-
element,	 akin	 to	 the	 approach	 taken	 for	 parallelograms	 in	 the
“Parallelograms”	secret	on	page	84:

FIGURE	3.43	Applying	the	3D	transform	to	the	box	generated	by	the
pseudo-element,	so	that	our	text	is	not	affected

.tab	{
				position:	relative;
				display:	inline-block;
				padding:	.5em	1em	.35em;
				color:	white;
}

.tab::before	{
				content:	'';	/*	To	generate	the	box	*/
				position:	absolute;
				top:	0;	right:	0;	bottom:	0;	left:	0;
				z-index:	-1;

				background:	#58a;
				transform:	perspective(.5em)	rotateX(5deg);
}

As	 you	 can	 see	 in	 Figure	 3.43,	 this	 works	 to	 create	 a	 basic	 trapezoid
shape.	There	is	still	one	issue,	though.	When	we	apply	a	transform	without
setting	 a	transform-origin,	 the	 element	 is	 rotated	 in	 space	 around	 its
center.	Therefore,	its	dimensions	on	the	2D	projection	in	our	screen	change
in	many	ways,	as	Figure	3.44	highlights:	its	width	increases,	it	shifts	a	bit	to
the	top,	there	is	a	small	decrease	in	its	height,	and	so	on,	which	makes	it	hard
to	design	around.

FIGURE	3.44	Our	trapezoid	overlaid	on	its	pre-transform	version,	to
highlight	the	changes	its	metrics	go	through

To	make	its	metrics	a	bit	more	manageable,	we	can	specify	transform-
origin:	bottom;	so	that	its	base	remains	fixed	as	it	rotates	in	space.
You	can	see	the	difference	in	Figure	3.45.	Now	it’s	much	more	predictable:
only	its	height	decreased.	However,	the	decrease	in	height	is	much	sharper,
because	 the	 entire	 element	 rotates	 away	 from	 the	 viewer,	 whereas	 before,
half	 of	 it	 rotated	 “behind”	 the	 screen	 and	 the	 other	 half	 above	 it,	 so	 the
entire	element	was	closer	to	the	viewer	 in	the	three-dimensional	space.	To
fix	 this,	we	might	 think	of	applying	some	extra	 top	padding.	However,	 the
result	 will	 then	 look	 awful	 in	 browsers	 with	 no	 3D	 transforms	 support
(Figure	3.46).	Instead,	we	will	increase	its	size	via	a	transform	as	well,	so
that	 the	 entire	 thing	 is	 dropped	 when	 3D	 transforms	 are	 not	 supported.
With	 a	 little	 experimentation,	 we	 find	 that	 some	 vertical	 scaling	 (i.e.,	 the
scaleY()	 transform)	of	 about	 130%	 is	 sufficient	 to	make	up	 for	 the	 lost
space:

FIGURE	3.45	Our	trapezoid	overlaid	on	its	pre-transform	version,	to

highlight	the	changes	its	metrics	go	through	when	using	transform-
origin:	bottom;

FIGURE	3.46	Fixing	the	issue	with	extra	padding	results	in	a	very	weird-
looking	fallback	(shown	at	the	top)

transform:	scaleY(1.3)	perspective(.5em)
											rotateX(5deg);
transform-origin:	bottom;

You	can	see	both	 the	result	and	the	 fallback	 in	Figure	3.47.	At	 this	point,
the	result	is	visually	equivalent	to	the	old	border-based	technique	discussed
earlier;	 it’s	only	the	syntax	that	is	considerably	more	concise.	However,	the
superiority	of	this	technique	begins	to	emerge	when	you	start	applying	some
styling	to	the	tabs.	For	example,	take	a	look	at	the	following	code,	which	is
used	for	styling	the	tabs	in	Figure	3.48:

FIGURE	3.47	Making	up	the	lost	height	with	scale()	provides	a	much
better	fallback	(shown	at	the	top)

nav	>	a	{
				position:	relative;
				display:	inline-block;
				padding:	.3em	1em	0;
}

nav	>	a::before	{
				content:	'';
				position:	absolute;
				top:	0;	right:	0;	bottom:	0;	left:	0;
				z-index:	-1;
				background:	#ccc;
				background-image:	linear-gradient(
																								hsla(0,0%,100%,.6),
																								hsla(0,0%,100%,0));
				border:	1px	solid	rgba(0,0,0,.4);
				border-bottom:	none;
				border-radius:	.5em	.5em	0	0;
				box-shadow:	0	.15em	white	inset;
				transform:	perspective(.5em)	rotateX(5deg);
				transform-origin:	bottom;
}

As	 you	 can	 see,	we’ve	 applied	backgrounds,	 borders,	 rounded	 corners,	 and
box	 shadows—and	 they	 just	 worked,	 no	 questions	 asked!	 Furthermore,	 by
merely	 changing	 the	transform-origin	 to	bottom	left	 or	bottom
right,	we	can	get	left-or	right-slanted	tabs,	respectively!	(For	an	example,
see	Figure	3.49.)

FIGURE	3.48	The	advantage	of	this	technique	is	its	flexibility	regarding
styling

FIGURE	3.49	Slanted	tabs	by	changing	the	transform-origin

Despite	all	its	virtues,	this	technique	is	not	perfect	by	any	means.	It	involves
a	pretty	major	drawback:	the	angle	of	the	sides	depends	on	the	width	of
the	element.	Therefore,	 it’s	 tricky	 to	 get	 trapezoids	with	 the	 same	 angles
when	dealing	with	variable	content.	However,	this	works	great	for	elements
that	 involve	 small	 width	 variations,	 such	 as	 a	 navigation	menu.	 In	 those
cases,	the	difference	is	hardly	noticeable.

	PLAY! 	play.csssecrets.io/trapezoid-tabs

RELATED
SPECS

CSS	Transforms

w3.org/TR/css-transforms

http://play.csssecrets.io/trapezoid-tabs
http://w3.org/TR/css-transforms

14	Simple	pie	charts

Prerequisites
CSS	 gradients,	 basic	 SVG,	 CSS	 animations,	 the	 “Striped	 backgrounds”
secret	on	page	40,	the	“Flexible	ellipses”	secret	on	page	76

The	problem

Pie	 charts,	 even	 in	 their	 simplest	 two-color	 form,	 have	 traditionally	 been
anything	 but	 simple	 to	 create	 with	 web	 technologies,	 despite	 being
incredibly	 common	 for	 things	 ranging	 from	 simple	 stats	 to	 progress
indicators	and	timers.

Implementations	usually	involved	either	using	an	external	image	editor	to
create	 multiple	 images	 for	 multiple	 values	 of	 the	 pie	 chart,	 or	 large
JavaScript	frameworks	designed	for	much	more	complex	charts.

Although	the	feat	is	not	as	impossible	as	it	once	was,	there’s	still	no	simple
one-liner	for	it.	However,	there	are	many	better,	more	maintainable	ways	to
achieve	it	today.

transform-based	solution

This	solution	is	the	best	in	terms	of	markup:	it	only	needs	one	element	and
the	rest	is	done	with	pseudo-elements,	transforms,	and	CSS	gradients.	Let’s
start	with	a	simple	element:

HTML
<div	class="pie"></div>

For	 now,	 let’s	 assume	 we	 want	 a	 pie	 chart	 that	 displays	 the	 hardcoded
percentage	20%.	We	will	work	on	making	 it	 flexible	 later.	Let’s	 first	 style
the	element	as	a	circle,	which	will	be	our	background	(Figure	3.50):

FIGURE	3.50	Our	starting	point	(or,	a	pie	chart	showing	0%)

.pie	{
				width:	100px;	height:	100px;
				border-radius:	50%;
				background:	yellowgreen;
}

Our	pie	 chart	will	 be	green	 (specifically	 	yellowgreen)	with	brown	 (

	 #655)	 showing	 the	 percentage.	 We	 might	 be	 tempted	 to	 use	 skew
transforms	 for	 the	 percentage	 part,	 but	 as	 a	 little	 experimentation	 shows,
they	prove	 to	 be	 a	 very	messy	 solution.	 Instead,	we	will	 color	 the	 left	 and
right	 parts	 of	 our	 circle	 in	 our	 two	 colors,	 and	 use	 a	 rotating	 pseudo-
element	to	uncover	only	the	percentage	we	need.

To	 color	 the	 right	 part	 of	 our	 circle	 brown,	we	will	 use	 a	 simple	 linear
gradient:

background-image:
				linear-gradient(to	right,	transparent	50%,	#655	0);

As	you	can	see	in	Figure	3.51,	this	is	all	that’s	needed.	Now,	we	can	proceed
to	styling	the	pseudo-element	that	will	act	as	a	mask:

FIGURE	3.51	Coloring	the	right	part	of	our	circle	brown,	with	a	simple
linear	gradient

.pie::before	{
				content:	'';
				display:	block;
				margin-left:	50%;
				height:	100%;
}

You	 can	 see	 in	 Figure	 3.52	 where	 our	 pseudo-element	 currently	 lies
relative	 to	 the	 pie	 element.	 Currently,	 it’s	 not	 styled	 and	 it	 doesn’t	 cover
anything.	 It’s	merely	an	 invisible	rectangle.	To	start	 styling	 it,	 let’s	make	a
few	observations:

FIGURE	3.52	The	pseudo-element	that	will	act	as	a	mask	is	shown	here
with	dashed	lines

Because	we	want	it	to	cover	the	brown	part	of	our	circle,	we	need	to
apply	a	green	background	to	it,	using	background-color:
inherit	to	avoid	duplication,	as	we	want	it	to	have	the	same
background	color	as	its	parent.

We	want	it	to	rotate	around	the	circle’s	center,	which	is	on	the
middle	of	the	pseudo-element’s	left	side,	so	we	should	apply	a
transform-origin	of	0	50%	to	it,	or	just	left.

We	don’t	want	it	to	be	a	rectangle,	as	it	makes	it	bleed	past	the	edges	of
the	pie	chart,	so	we	need	to	either	apply	overflow:	hidden	to	the
.pie,	or	an	appropriate	border-radius	to	make	it	a	semicircle.

	 Careful	 not	 to	 use	 background:	 inherit;,	 instead	 of	 the	 background-color:
inherit;,	otherwise	the	gradient	will	be	inherited	too!

Putting	it	all	together,	our	pseudo-element’s	CSS	will	look	like	this:

.pie::before	{
				content:	'';
				display:	block;
				margin-left:	50%;
				height:	100%;
				border-radius:	0	100%	100%	0	/	50%;
				background-color:	inherit;
				transform-origin:	left;
}

Our	pie	 currently	 looks	 like	Figure	3.54.	This	 is	where	 the	 fun	begins!
We	 can	 start	 rotating	 the	 pseudo-element,	 by	 applying	 a	 rotate()
transform.	 For	 the	20%	 we	were	 trying	 to	 achieve,	we	 can	 use	 a	 value	 of
72deg	(0.2	×	360	=	72),	or	.2turn,	which	is	much	more	readable.	You	can
see	how	it	looks	for	a	few	other	values	as	well,	in	Figure	3.53.

We	might	be	tempted	to	think	we’re	done,	but	unfortunately	it’s	not	that
simple.	Our	pie	chart	works	great	for	displaying	percentages	from	0	to	50%,
but	 if	we	try	to	depict	a	60%	percentage	(by	applying	a	.6turn	 rotation),
Figure	3.55	happens.	Don’t	lose	hope	yet	though,	as	we	can—and	we	will—
fix	this!

If	we	think	about	50%–100%	percentages	as	a	separate	problem,	we	might

notice	 that	we	 can	use	an	 inverted	 version	of	 the	previous	 solution	 for
them:	 a	 brown	 pseudo-element,	 rotating	 from	0	 to	.5turn,	 respectively.
So,	for	a	60%	pie,	the	pseudo-element	code	would	look	like	this:

.pie::before	{
				content:	'';
				display:	block;
				margin-left:	50%;
				height:	100%;
				border-radius:	0	100%	100%	0	/	50%;
				background:	#655;
				transform-origin:	left;
				transform:	rotate(.1turn);
}

FIGURE	3.53	Our	simple	pie	chart	showing	different	percentages;	from	top
to	bottom:	10%	(36deg	or	.1turn),	20%	(72deg	or	.2turn),	40%

(144deg	or	.4turn)

You	can	see	this	in	action	in	Figure	3.56.	Because	we’ve	now	figured	out	a
way	 to	depict	 any	percentage,	we	could	even	animate	 the	pie	chart	 from
0%	to	100%	with	CSS	animations,	creating	a	fancy	progress	indicator:

@keyframes	spin	{
				to	{	transform:	rotate(.5turn);	}
}

@keyframes	bg	{
				50%	{	background:	#655;	}
}

.pie::before	{
				content:	'';
				display:	block;
				margin-left:	50%;
				height:	100%;
				border-radius:	0	100%	100%	0	/	50%;
				background-color:	inherit;
				transform-origin:	left;
				animation:	spin	3s	linear	infinite,
															bg	6s	step-end	infinite;
}

FIGURE	3.54	Our	pseudo-element	(shown	here	with	a	dashed	outline)	after
we	finished	styling	it

FIGURE	3.55	Our	pie	chart	breaks	for	percentages	greater	than	50%
(shown	here:	60%)

	PLAY! 	play.csssecrets.io/pie-animated

All	 this	 is	 good,	 but	 how	 do	 we	 style	 multiple	 static	 pie	 charts	 with
different	 percentages,	 which	 is	 the	 most	 common	 use	 case?	 Ideally,	 we
want	to	be	able	to	type	something	like	this:

HTML
<div	class="pie">20%</div>
<div	class="pie">60%</div>

...and	 get	 two	 pie	 charts,	 one	 showing	 20%,	 and	 the	 other	 one	 showing
60%.	First,	we	will	explore	how	we	can	do	it	with	inline	styles,	and	then	we
could	always	write	a	short	script	to	parse	the	text	content	and	add	said	inline
styles,	 for	 code	 elegance,	 encapsulation,	 maintainability,	 and	 perhaps
most	importantly,	accessibility.

http://play.csssecrets.io/pie-animated

FIGURE	3.56	Our	now	correct	60%	pie

The	challenge	to	controlling	the	pie	chart	percentage	with	inline	styles	is
that	the	CSS	code	that	is	responsible	for	setting	the	percentage	is	set	on	the
pseudo-element.	 As	 you	 already	 know,	 we	 cannot	 set	 inline	 styles	 on
pseudo-elements,	so	we	need	to	be	inventive.

The	 solution	 comes	 from	 one	 of	 the	most	 unlikely	 places.	We	 are
going	 to	use	 the	animation	we	already	presented,	 but	 it	will	be	paused.
Instead	of	running	it	like	a	normal	animation,	we	are	going	to	use	negative
animation	delays	to	step	through	to	any	point	in	the	animation	statically
and	 stay	 there.	Confused?	Yes,	 a	negative	animation-delay	 is	not	only
allowed	by	the	specification,	but	is	very	useful	for	cases	like	this:

TIP! 	 You	 can	 use	 the	 same	 technique	 for	 other	 cases	where	 you	want	 to	 use	 values	 from	 a
spectrum	without	repetition	and	complex	calculations,	as	well	as	for	debugging	animations	by
stepping	 through	 them.	 For	 a	 simpler,	 isolated	 example	 of	 the	 technique,	 check	 out
play.csssecrets.io/static-interpolation.

“A	negative	delay	is	valid.	Similar	to	a	delay	of	0s,	it	means	that	the	animation	executes	immediately,
but	is	automatically	progressed	by	the	absolute	value	of	the	delay,	as	if	the	animation	had	started	the
specified	time	in	the	past,	and	so	it	appears	to	start	partway	through	its	active	duration.”

—	CSS	Animations	Level	1	(w3.org/TR/css-
animations/#animation-delay)

Because	 our	 animation	 is	 paused,	 the	 first	 frame	 of	 it	 (defined	 by	 our
negative	 animation-delay),	 will	 be	 the	 only	 one	 displayed.	 The
percentage	 shown	 on	 the	 pie	 chart	 will	 be	 the	 percentage	 of	 the	 total

http://play.csssecrets.io/static-interpolation
http://w3.org/TR/css-animations/#animation-delay

duration	 our	 animation-delay	 is.	 For	 example,	 with	 the	 current
duration	of	6s,	we	would	need	an	animation-delay	of	-1.2s	to	display
a	20%	 percentage.	To	 simplify	 the	math,	we	will	 set	 a	 duration	 of	100s.
Keep	in	mind	that	because	the	animation	is	paused	forever,	the	duration
we	specify	has	no	other	effect.

There	 is	 one	 last	 issue:	 the	animation	 is	 on	 the	pseudo-element,	 but
we	want	to	set	an	 inline	style	on	the	.pie	element.	However,	because
there	is	no	animation	on	the	<div>,	we	can	set	the	animation-delay	on
that	 as	 an	 inline	 style,	 and	 then	use	animation-delay:	inherit;	 on
the	pseudo-element.	To	put	it	together,	our	markup	for	the	20%	and	60%
pie	charts	will	look	like	this:

HTML
<div	class="pie"
					style="animation-delay:	-20s"></div>

<div	class="pie"
					style="animation-delay:	-60s"></div>

And	the	CSS	code	we	just	presented	for	this	animation	would	now	become
(not	including	the	.pie	rule,	as	that	stays	the	same):

@keyframes	spin	{
				to	{	transform:	rotate(.5turn);	}
}

@keyframes	bg	{
				50%	{	background:	#655;	}
}

.pie::before	{
				/*	[Rest	of	styling	stays	the	same]	*/
				animation:	spin	50s	linear	infinite,
															bg	100s	step-end	infinite;
				animation-play-state:	paused;
				animation-delay:	inherit;
}

FIGURE	3.57	Our	text,	before	we	hide	it

At	this	point,	we	can	convert	the	markup	to	use	percentages	as	content,	like
what	we	originally	aimed	for,	and	add	the	animation-delay	inline	styles
via	a	simple	script:

JS
$$('.pie').forEach(function(pie)	{
				var	p	=	parseFloat(pie.textContent);
				pie.style.animationDelay	=	'-'	+	p	+	's';
});

Note	 that	we	 left	 the	 text	 intact,	 because	we	 need	 it	 for	 accessibility	 and
usability	reasons.	Currently,	our	pie	charts	look	like	Figure	3.57.	We	need
to	hide	the	text,	which	we	can	do	accessibly	via	color:	transparent,	so
that	it	remains	selectable	and	printable.	As	extra	polish,	we	can	center	the
percentage	 in	 the	pie	 chart,	 so	 that	 it’s	 not	 in	 a	 random	place	when	 the
user	selects	it.	To	do	that,	we	need	to:

Convert	the	pie’s	height	to	line-height	(or	add	a	line-height
equal	to	the	height,	but	that’s	pointless	code	duplication,	because
line-height	would	set	the	computed	height	to	that	as	well).

Size	and	position	the	pseudo-element	via	absolute	positioning,	so	that
it	doesn’t	push	the	text	down

Add	text-align:	center;	to	horizontally	center	the	text.

The	final	code	looks	like	this:

.pie	{
				position:	relative;
				width:	100px;
				line-height:	100px;
				border-radius:	50%;
				background:	yellowgreen;
				background-image:
								linear-gradient(to	right,	transparent	50%,	#655	0);
				color:	transparent;
				text-align:	center;
}

@keyframes	spin	{
				to	{	transform:	rotate(.5turn);	}
}
@keyframes	bg	{
				50%	{	background:	#655;	}
}

.pie::before	{
				content:	'';
				position:	absolute;
				top:	0;	left:	50%;
				width:	50%;	height:	100%;
				border-radius:	0	100%	100%	0	/	50%;
				background-color:	inherit;
				transform-origin:	left;
				animation:	spin	50s	linear	infinite,
															bg	100s	step-end	infinite;
				animation-play-state:	paused;
				animation-delay:	inherit;
}

	PLAY! 	play.csssecrets.io/pie-static

SVG	solution

SVG	makes	a	 lot	of	graphical	 tasks	easier,	and	pie	charts	are	no	exception.
However,	 instead	 of	 creating	 a	 pie	 chart	 with	 paths,	 which	 would	 require
complex	math,	we	are	going	to	use	a	little	trick	instead.

Let’s	start	from	a	circle:

SVG
<svg	width="100"	height="100">
<circle	r="30"	cx="50"	cy="50"	/>
</svg>

FIGURE	3.58	Our	starting	point:	a	green	SVG	circle	with	a	fat	 	#655
stroke

Now,	let’s	apply	some	basic	styling	to	it:

circle	{
				fill:	yellowgreen;
				stroke:	#655;
				stroke-width:	30;
}

As	you	might	know,	these	CSS	properties	are	also	available	as	attributes	on	the	SVG	element,
which	might	be	convenient	if	portability	is	a	concern.

You	 can	 see	 our	 stroked	 circle	 in	Figure	 3.58.	 SVG	 strokes	 don’t	 just
consist	 of	 the	 stroke	 and	 stroke-width	 properties.	 There	 are	 many

http://play.csssecrets.io/pie-static

other	 less	 popular	 stroke-related	 properties	 to	 fine-tune	 strokes.	 One	 of
them	 is	 stroke-dasharray,	 intended	 for	 creating	 dashed	 strokes.	 For
example,	we	could	use	it	like	this:

stroke-dasharray:	20	10;

FIGURE	3.59	A	simple	dashed	stroke,	created	with	stroke-dasharray

This	means	we	want	 dashes	 of	 length	20	with	 gaps	 of	 length	10,	 like	 the
ones	in	Figure	3.59.	At	this	point,	you	might	have	started	wondering	what
on	Earth	this	SVG	stroke	primer	has	to	do	with	pie	charts.	It	starts	getting
clearer	 when	 we	 apply	 a	 stroke	 with	 a	 dash	 width	 of	 0	 and	 a	 gap	 width
greater	than	or	equal	to	the	circumference	of	our	circle	(C	=	2πr,	so	in	our
case	C	=	2π	×	30	≈	189):

stroke-dasharray:	0	189;

FIGURE	3.60	Multiple	stroke-dasharray	values	and	their	effect;	from
left	to	right:
0	189
40	189
95	189
150	189

As	you	can	see	in	the	first	circle	in	Figure	3.60,	this	completely	removes
any	stroke,	and	we’re	left	with	just	a	green	circle.	However,	the	fun	begins
when	we	start	increasing	the	first	value	 (Figure	3.60):	because	the	gap	is
so	 long,	 we	 no	 longer	 get	 a	 dashed	 stroke,	 just	 a	 stroke	 that	 covers	 the
percentage	of	the	circle’s	circumference	that	we	specify.

You	might	have	started	to	figure	out	where	this	is	going:	if	we	reduce	the
radius	of	our	circle	enough	that	it’s	completely	covered	by	its	stroke,	we
end	up	with	something	that	resembles	a	pie	chart	quite	closely.	For	example,
you	can	see	 in	Figure	3.61	how	that	 looks	when	applied	to	a	circle	with	a
radius	 of	 25	 and	 a	 stroke-width	 of	 50,	 like	 what’s	 produced	 by	 the
following	code:

FIGURE	3.61	Our	SVG	graphic	is	starting	to	resemble	a	pie	chart

SVG
<svg	width="100"	height="100">
				<circle	r="25"	cx="50"	cy="50"	/>
</svg>

circle	{
				fill:	yellowgreen;
				stroke:	#655;
				stroke-width:	50;
				stroke-dasharray:	60	158;	/*	2π	×	25	≈	158	*/
}

Remember:	SVG	strokes	are	always	half	inside	and	half	outside	the	element	they’re	applied	to.	In
the	future,	we	will	be	able	to	control	this	behavior.

Now,	turning	it	into	a	pie	chart	like	the	ones	we	made	with	in	the	previous
solution	 is	 rather	 easy:	 we	 just	 need	 to	 add	 a	 larger	 green	 circle
underneath	 the	 stroke,	 and	 rotate	 it	 90°	 counterclockwise	 so	 that	 it

starts	 from	 the	 top	middle.	Because	 the	<svg>	 element	 is	 also	 an	HTML
element,	we	can	just	style	that:

svg	{
				transform:	rotate(-90deg);
				background:	yellowgreen;
				border-radius:	50%;
}

FIGURE	3.62	The	final	SVG	pie	chart

You	 can	 see	 the	 final	 result	 in	Figure	3.62.	This	 technique	makes	 it	 even
easier	to	animate	the	pie	chart	 from	0%	 to	100%.	We	just	need	to	create	a
CSS	 animation	 that	 animates	stroke-dasharray	 from	0	158	 to	158
158:

@keyframes	fillup	{
				to	{	stroke-dasharray:	158	158;	}
}

circle	{
				fill:	yellowgreen;
				stroke:	#655;
				stroke-width:	50;
				stroke-dasharray:	0	158;
				animation:	fillup	5s	linear	infinite;
}

As	an	additional	improvement,	we	can	specify	a	certain	radius	on	the	circle
so	that	the	length	of	its	circumference	is	(infinitesimally	close	to)	100,	so
that	 we	 can	 specify	 the	 stroke-dasharray	 lengths	 as	 percentages,
without	having	to	make	calculations.	Because	the	circumference	 is	2πr,	our

radius	needs	 to	be	 ,	which	 for	our	needs	could	be
rounded	 up	 to	 16.	 We	 will	 also	 specify	 the	 SVG’s	 dimensions	 in	 the
viewBox	attribute	instead	of	the	width	and	height	attributes,	to	make	it
adjust	to	the	size	of	its	container.

After	 these	modifications,	 the	markup	 for	 the	 pie	 chart	 of	Figure	 3.62
would	now	become:

SVG
<svg	viewBox="0	0	32	32">
				<circle	r="16"	cx="16"	cy="16"	/>
</svg>

And	the	CSS	would	become:

svg	{
				width:	100px;	height:	100px;
				transform:	rotate(-90deg);
				background:	yellowgreen;
				border-radius:	50%;
}

circle	{
				fill:	yellowgreen;
				stroke:	#655;
				stroke-width:	32;
				stroke-dasharray:	38	100;	/*	for	38%	*/
}

Note	how	easy	it	now	is	to	change	the	percentage.	Of	course,	even	with
this	simplification,	we	don’t	want	to	have	to	repeat	all	this	SVG	markup	for
every	pie	chart.	It’s	time	for	JavaScript	to	lend	us	its	helping	hand	for	a	little
bit	 of	 automation.	 We	 will	 write	 a	 small	 script	 to	 take	 simple	 HTML
markup	like	the	following…

HTML
<div	class="pie">20%</div>
<div	class="pie">60%</div>

…and	 add	 an	 inline	 SVG	 inside	 every	 .pie	 element,	 with	 all	 necessary
elements	 and	 attributes.	 It	 will	 also	 add	 a	 <title>	 element,	 for
accessibility,	 so	 that	 screen	reader	users	can	also	know	what	percentage	 is
displayed.	The	final	script	will	look	like	this:

JS
$$('.pie').forEach(function(pie)	{
				var	p	=	parseFloat(pie.textContent);
				var	NS	=	"http://www.w3.org/2000/svg";
				var	svg	=	document.createElementNS(NS,	"svg");
				var	circle	=	document.createElementNS(NS,	"circle");
				var	title	=	document.createElementNS(NS,	"title");
				circle.setAttribute("r",	16);
				circle.setAttribute("cx",	16);
				circle.setAttribute("cy",	16);
				circle.setAttribute("stroke-dasharray",	p	+	"	100");
				svg.setAttribute("viewBox",	"0	0	32	32");
				title.textContent	=	pie.textContent;
				pie.textContent	=	'';
				svg.appendChild(title);
				svg.appendChild(circle);
				pie.appendChild(svg);
});

FUTURE 	Pie	charts
Remember	 conical	 gradients	 from	 the	 “Checkerboards”	 section	 on
page	55?	They	would	be	immensely	helpful	here	too.	All	it	would	take	for
a	 pie	 chart	 would	 be	 a	 circular	 element,	 with	 a	 conical	 gradient	 of	 two
color	stops.	For	example,	the	40%	pie	chart	 in	Figure	3.53	would	be	as
simple	as:

.pie	{
				width:	100px;	height:	100px;
				border-radius:	50%;
				background:	conic-gradient(#655	40%,	yellowgreen	0);
}

Furthermore,	once	the	updated	attr()	function	defined	in	CSS	Values
Level	 3	 (w3.org/TR/css3-values/#attr-notation)	 is	 widely
implemented,	 you	 will	 be	 able	 to	 control	 the	 percentage	 with	 a	 simple
HTML	attribute:

background:	conic-gradient(#655	attr(data-value	%),	yellowgreen	0);

This	also	makes	it	incredibly	easy	to	add	a	third	color.	For	example,	for	a
pie	chart	 like	 the	one	 shown	on	 the	 top	right	of	 this	box,	we	would	 just
add	two	more	color	stops:

background:	conic-gradient(deeppink	20%,	#fb3	0,	#fb3	30%,	
yellowgreen	0);

That’s	it!	You	might	be	thinking	that	the	CSS	method	is	better,	because
its	code	 is	 simpler	and	 less	alien.	However,	the	SVG	method	has	certain
benefits	that	the	pure	CSS	solution	lacks:

http://w3.org/TR/css3-values/#attr-notation

It’s	very	easy	to	add	a	third	color:	just	add	another	stroked	circle	and
shift	its	stroke	with	stroke-dashoffset.	Alternatively,	add	its
stroke	length	to	the	stroke	length	of	the	circle	before	(underneath)	it.
How	exactly	do	you	picture	adding	a	third	color	to	pie	charts	made	with
the	first	solution?

We	don’t	have	to	take	any	extra	care	for	printing,	as	SVG	elements
are	considered	content	and	are	printed,	just	like		elements.	The
first	solution	depends	on	backgrounds,	and	thus,	will	not	print.

We	can	change	the	colors	with	inline	styles,	which	means	we	can
easily	change	them	via	scripting	(e.g.,	depending	on	user	input).	The
first	solution	relies	on	pseudo-elements,	which	cannot	take	inline	styles
except	via	inheritance,	which	is	not	always	convenient.

	PLAY! 	play.csssecrets.io/pie-svg

RELATED
SPECS

CSS	Transforms

w3.org/TR/css-transforms

CSS	Image	Values

w3.org/TR/css-images

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

Scalable	Vector	Graphics

w3.org/TR/SVG

http://play.csssecrets.io/pie-svg
http://w3.org/TR/css-transforms
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/SVG

CSS	Image	Values	Level	4

w3.org/TR/css4-images

http://w3.org/TR/css4-images

4	Visual	Effects

15	One-sided	shadows

The	problem

One	of	 the	most	common	questions	I	see	being	asked	about	box-shadow
on	Q&A	websites	is	how	a	shadow	could	be	applied	on	one	(or,	more	rarely,
two)	sides	only.	A	quick	search	on	stackoverflow.com	reveals	close	to	a
thousand	results	for	this.	This	makes	sense,	as	showing	a	shadow	only	on	one
side	creates	a	subtler,	but	equally	realistic	effect.	Often,	frustrated	developers
will	 even	 write	 to	 the	 CSS	 Working	 Group	 mailing	 list	 requesting	 new
properties	like	box-shadow-bottom	to	be	able	to	do	this.	However,	such
effects	 are	 already	 possible	 with	 clever	 use	 of	 the	 good	 ol’	 box-shadow
property	we’ve	learned	and	love.

Shadow	on	one	side

Most	people	use	box-shadow	with	three	lengths	and	a	color,	like	so:

box-shadow:	2px	3px	4px	rgba(0,0,0,.5);

FIGURE	4.1	Example	mental	model	of	a	box-shadow	being	painted

The	 following	 series	 of	 steps	 is	 a	 good	 (albeit	 not	 completely	 technically
accurate)	way	to	visualize	how	this	shadow	is	drawn	(Figure	4.1):

http://stackoverflow.com

Unless	otherwise	noted,	referring	to	an	element’s	dimensions	here	means	the	dimensions	of	its
border	box,	not	its	CSS	width	and	height.

1.	A	rgba(0,0,0,.5)	rectangle	is	drawn	with	the	same	dimensions	and
position	as	our	element.

2.	It’s	moved	2px	to	the	right	and	3px	to	the	bottom.
3.	It’s	blurred	by	4px	with	a	Gaussian	blur	algorithm	(or	similar).	This

essentially	means	that	the	color	transition	on	the	edges	of	the	shadow
between	the	shadow	color	and	complete	transparency	will	be
approximately	as	long	as	double	the	blur	radius	(8px,	in	our	example).

4.	The	blurred	rectangle	is	then	clipped	where	it	intersects	with	our
original	element,	so	that	it	appears	to	be	“behind”	it.	This	is	a	little
different	from	the	way	most	authors	visualize	shadows	(a	blurred	rectangle
underneath	the	element).	However,	for	some	use	cases,	it’s	important	to
realize	that	no	shadow	will	be	painted	underneath	the	element.	For
example,	if	we	set	a	semi-transparent	background	on	the	element,	we	will
not	see	a	shadow	underneath.	This	is	different	than	text-shadow,
which	is	not	clipped	underneath	the	text.
The	use	of	4px	blur	radius	means	that	the	dimensions	of	our	shadow	are

approximately	 4px	 larger	 than	 our	 element’s	 dimensions,	 so	 part	 of	 the
shadow	will	show	through	from	every	side	of	the	element.	We	could	change
the	offsets	to	hide	any	shadow	from	the	top	and	left,	by	increasing	them	to	at
least	 4px.	 However,	 then	 this	 results	 in	 a	 way	 too	 conspicuous	 shadow,
which	doesn’t	look	nice	(Figure	4.2).	Also,	even	if	this	wasn’t	a	problem,	we
wanted	a	shadow	on	only	one	side,	not	two,	remember?

To	be	precise,	we	will	see	a	1px	shadow	on	the	top	(4px	-	3px),	2px	on	the	left	(4px	-
2px),	6px	on	the	right	(4px	+	2px),	and	7px	on	the	bottom	(4px	+	3px).	In	practice,	it	will
look	smaller	because	the	color	transition	on	the	edges	is	not	linear,	like	a	gradient	would	be.

The	solution	lies	in	the	lesser	known	fourth	length	parameter,	specified
after	 the	 blur	 radius,	which	 is	 called	 the	 spread	 radius.	The	 spread	 radius
increases	 or	 (if	 negative)	 decreases	 the	 size	 of	 the	 shadow	 by	 the
amount	you	specify.	For	example,	a	spread	radius	of	-5px	will	reduce	the
width	and	height	of	the	shadow	by	10px	(5px	on	each	side).

It	logically	follows	that	if	we	apply	a	negative	spread	radius	whose	absolute
value	 is	 equal	 to	 the	 blur	 radius,	 then	 the	 shadow	 has	 the	 exact	 same
dimensions	 as	 the	 element	 it’s	 applied	 on.	Unless	 we	move	 it	 with	 offsets
(the	 first	 two	 lengths),	we	will	not	see	any	of	 it.	Therefore,	 if	we	apply	a

positive	vertical	offset,	we	will	 start	 seeing	a	 shadow	on	 the	bottom	of	our
element,	but	not	on	any	of	the	other	sides,	which	is	the	effect	we	were	trying
to	achieve:

FIGURE	4.2	Trying	to	hide	the	shadow	from	the	top	and	left	sides	by	using
offsets	equal	to	the	blur	radius

box-shadow:	0	5px	4px	-4px	black;

You	can	see	the	result	in	Figure	4.3.

	PLAY! 	play.csssecrets.io/shadow-one-side

FIGURE	4.3	box-shadow	on	the	bottom	side	only

Shadow	on	two	adjacent	sides

Another	frequently	asked	question	concerns	applying	a	shadow	on	two	sides.
If	the	two	sides	are	adjacent	(e.g.,	right	and	bottom),	then	this	is	easier:	you
can	either	settle	for	an	effect	like	the	one	in	Figure	4.2	or	apply	a	variation
of	the	trick	discussed	in	the	previous	section,	with	the	following	differences:

http://play.csssecrets.io/shadow-one-side

FIGURE	4.4	box-shadow	on	two	adjacent	sides	only

We	don’t	want	to	shrink	the	shadow	to	account	for	blurring	in	both
sides,	but	only	one	of	them.	Therefore,	instead	of	the	spread	radius
having	the	opposite	value	of	the	blur	radius,	it	will	be	half	of	that.

We	need	both	offsets,	as	we	want	to	move	the	shadow	both	horizontally
and	vertically.	Their	value	needs	to	be	greater	or	equal	to	half	the	blur
radius,	as	we	want	to	hide	the	remaining	shadow	from	the	other	two
sides.

For	 example,	 here	 is	 how	we	 can	 apply	 a	 	black,	6px	 shadow	 to	 the
right	and	bottom	sides:

box-shadow:	3px	3px	6px	-3px	black;

You	can	see	the	result	in	Figure	4.4.

	PLAY! 	play.csssecrets.io/shadow-2-sides

Shadow	on	two	opposite	sides

It	starts	getting	trickier	when	we	want	a	shadow	on	two	opposite	sides,	such
as	the	left	and	right.	Because	the	spread	radius	is	applied	on	all	sides	equally
(i.e.,	 there	 is	 no	 way	 to	 specify	 that	 we	 want	 to	 enlarge	 the	 shadow
horizontally	 and	 shrink	 it	 vertically),	 the	only	way	 to	do	 this	 is	 to	use	 two
shadows,	one	on	each	side.	Then	we	basically	apply	the	trick	discussed	in
the	“Shadow	on	one	side”	section	on	page	130	twice:

http://play.csssecrets.io/shadow-2-sides

There	are	discussions	in	the	CSS	WG	about	allowing	for	separate	horizontal/vertical	spread
radius	values	in	the	future,	which	would	simplify	this.

box-shadow:	5px	0	5px	-5px	black,
											-5px	0	5px	-5px	black;

You	can	see	the	result	in	Figure	4.5.

FIGURE	4.5	box-shadow	on	two	opposite	sides

	PLAY! 	play.csssecrets.io/shadow-opposite-sides

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

16	Irregular	drop	shadows

Prerequisites
box-shadow

http://play.csssecrets.io/shadow-opposite-sides
http://w3.org/TR/css-backgrounds

The	problem

box-shadow	 works	 great	 when	 we	 want	 to	 cast	 a	 drop	 shadow	 on	 a
rectangle	or	any	shape	that	can	be	created	with	border-radius	 (refer	to
the	 “Flexible	 ellipses”	 secret	 on	 page	 76	 for	 a	 few	 examples	 on	 that).
However,	it	becomes	less	useful	when	we	have	pseudo-elements	or	other
semi-transparent	decorations,	because	box-shadow	 shamelessly	 ignores
transparency.	Some	examples	include:

Semi-transparent	images,	background	images,	or	border-images
(e.g.,	a	vintage	gold	picture	frame)

Dotted,	dashed,	or	semi-transparent	borders	with	no	background	(or
when	background-clip	is	not	border-box)

Speech	bubbles,	with	their	pointer	created	via	a	pseudo-element

Cutout	corners	like	the	ones	we	saw	in	the	“Cutout	corners”	secret
on	page	96

Most	folded	corner	effects,	including	the	one	later	in	this	chapter

Shapes	created	via	clip-path,	like	the	diamond	images	in	the
“Diamond	images”	secret	on	page	90

FIGURE	4.6	Elements	with	CSS	styling	that	renders	box-shadow	useless;
the	value	of	the	box-shadow	applied	is	2px	2px	10px
rgba(0,0,0,.5)

The	results	of	the	futile	attempt	to	apply	box-shadow	to	some	of	them	is

shown	in	Figure	4.6.	Is	there	a	solution	for	such	cases,	or	do	we	have	to	give
up	shadows	altogether?

The	solution

The	Filter	Effects	specification	 (w3.org/TR/filter-effects)	offers
a	solution	to	this	problem,	through	a	new	filter	property,	borrowed	from
SVG.	However,	although	CSS	filters	are	basically	SVG	filters,	they	do	not
require	any	SVG	knowledge.	Instead,	they	are	specified	through	a	number
of	 convenient	 functions,	 such	 as	blur(),	grayscale(),	 or—wait	 for	 it
—drop-shadow()!	You	may	even	daisy-chain	multiple	filters	if	you	want
to,	by	white-space	separating	them,	like	this:

filter:	blur()	grayscale()	drop-shadow();

The	 drop-shadow()	 filter	 accepts	 the	 same	 parameters	 as	 basic	 box-
shadows,	meaning	no	spread	radius,	no	inset	keyword,	and	no	multiple,
comma-separated	shadows.	For	example,	instead	of:

box-shadow:	2px	2px	10px	rgba(0,0,0,.5);

we	would	write:

filter:	drop-shadow(2px	2px	10px	rgba(0,0,0,.5));

You	can	see	the	result	of	this	drop-shadow()	filter	when	applied	on	the
same	elements	as	Figure	4.6	in	Figure	4.7.

	These	might	use	different	blur	algorithms,	so	you	might	need	to	adjust	your	blur	value!

http://w3.org/TR/filter-effects

FIGURE	4.7	A	drop-shadow()	filter,	applied	to	the	elements	from	Figure
4.6

The	best	thing	about	CSS	filters	is	that	they	degrade	gracefully:	when	they
are	not	supported,	nothing	breaks,	there	is	just	no	effect	applied.	You	can	get
slightly	better	browser	support	by	using	an	SVG	filter	alongside,	if	you
absolutely	need	this	effect	to	work	in	as	many	browsers	as	possible.	You	can
find	 the	 corresponding	 SVG	 filters	 for	 every	 filter	 function	 in	 the	 Filter
Effects	specification	(w3.org/TR/filter-effects/).	You	can	include
both	the	SVG	filter	and	the	simplified	CSS	one	alongside	and	let	the	cascade
take	care	of	which	one	wins:

filter:	url(drop-shadow.svg#drop-shadow);
filter:	drop-shadow(2px	2px	10px	rgba(0,0,0,.5));

Unfortunately,	if	the	SVG	filter	is	a	separate	file,	it’s	not	as	customizable	as	a
nice,	 human-friendly	 function	 that’s	 right	 in	 your	 CSS	 code,	 and	 if	 it’s
inline,	 it	clutters	the	code.	The	parameters	are	fixed	inside	the	file,	and	it’s
not	practical	to	have	multiple	files	if	we	want	a	slightly	different	shadow.	We
could	use	data	URIs	 (which	would	also	 save	 the	extra	HTTP	request),	but
they	 would	 still	 contribute	 to	 a	 large	 filesize.	 Because	 this	 is	 a	 fallback,	 it
makes	sense	to	use	one	or	two	variations,	even	for	slightly	different	drop-
shadow()	filters.

Another	 consideration	 to	 keep	 in	 mind	 is	 that	 every	 non-transparent
area	 will	 cast	 a	 shadow	 indiscriminately,	 including	 text	 (when	 your
background	 is	 transparent),	 as	 you	 have	 already	 seen	 in	 Figure	 4.7.	 You
might	 think	 you	 can	 cancel	 this	 by	 using	 text-shadow:	 none;,	 but
text-shadow	 is	 completely	 separate	 and	will	not	 cancel	 the	 effects	 of	 a
drop-shadow()	filter	on	text.	In	addition,	if	you’re	using	text-shadow

http://w3.org/TR/filter-effects/

to	cast	an	actual	shadow	on	the	text,	this	shadow	will	also	be	shadowed	by	a
drop-shadow()	filter,	essentially	creating	a	shadow	of	a	shadow!	Take
a	look	at	the	following	example	CSS	code	(and	excuse	the	cheesiness	of	the
result—it’s	trying	to	demonstrate	the	issue	in	all	its	weirdness):

FIGURE	4.8	text-shadows	also	cast	a	shadow	through	the	drop-
shadow()	filter

color:	deeppink;
border:	2px	solid;
text-shadow:	.1em	.2em	yellow;
filter:	drop-shadow(.05em	.05em	.1em	gray);

You	 can	 see	 a	 sample	 rendering	 in	Figure	 4.8,	 showing	 both	 the	text-
shadow	and	the	drop-shadow()	it	casts.

	PLAY! 	play.csssecrets.io/drop-shadow

RELATED
SPECS

Filter	Effects

w3.org/TR/filter-effects

http://play.csssecrets.io/drop-shadow
http://w3.org/TR/filter-effects

17	Color	tinting

Prerequisites
HSL	color	model,	background-size

The	problem

Adding	 a	 color	 tint	 to	 a	 grayscale	 image	 (or	 an	 image	 that	 has	 been
converted	to	grayscale)	is	a	popular	and	elegant	way	to	give	visual	unity	to	a
group	 of	 photos	 with	 very	 disparate	 styles.	 Often,	 the	 effect	 is	 applied
statically	and	removed	on	:hover	and/or	some	other	interaction.

Traditionally,	we	use	an	image	editing	application	to	create	two	versions
of	 the	 image,	 and	 write	 some	 simple	 CSS	 code	 to	 take	 care	 of	 swapping
them.	This	approach	works,	but	it	adds	bloat	and	extra	HTTP	requests,	and
is	 a	 maintenance	 nightmare.	 Imagine	 deciding	 to	 change	 the	 color	 of	 the
effect:	 you	 would	 have	 to	 go	 through	 all	 the	 images	 and	 create	 new
monochrome	versions!

FIGURE	4.9	The	CSSConf	2014	website	used	this	effect	for	speaker
photos,	but	showed	the	full	color	picture	on	hover	and	focus

Other	approaches	involve	overlaying	a	semi-transparent	color	on	top	of	the
image	or	 applying	opacity	 to	 the	 image	 and	overlaying	 it	 on	 a	 solid	 color.
However,	this	is	not	a	real	tint:	in	addition	to	not	converting	all	the	colors	in
the	image	to	tints	of	the	target	color,	it	also	reduces	contrast	significantly.

There	 are	 also	 scripts	 that	 turn	 images	 into	 a	 <canvas>	 element	 and
apply	 the	 tint	 through	JavaScript.	This	does	produce	proper	 tinting,	but	 is
fairly	slow	and	restrictive.

Wouldn’t	 it	be	so	much	easier	 to	be	able	 to	apply	a	color	 tint	 to	 images
straight	from	our	CSS?

Filter-based	solution

Because	there	is	no	single	filter	function	specifically	designed	for	this	effect,
we	need	to	get	a	bit	crafty	and	combine	multiple	filters.

The	 first	 filter	 we	will	 apply	 is	sepia(),	 which	 gives	 the	 image	 a	de-
saturated	orange-yellow	tint,	with	most	pixels	having	a	hue	of	around	35–
40.	If	this	is	the	color	we	wanted,	then	we’re	done.	However,	in	most	cases	it
won’t	be.	If	our	color	is	more	saturated,	we	can	use	the	saturate()	filter
to	 increase	 the	 saturation	of	 every	pixel.	Let’s	 assume	we	want	 to	give	 the

image	 a	 tint	 of	 	 hsl(335,	 100%,	 50%).	 We	 need	 to	 increase
saturation	 quite	 a	 bit,	 so	 we	 will	 use	 a	 parameter	 of	 4.	 The	 exact	 value
depends	on	your	case,	 and	we	generally	have	 to	eyeball	 it.	As	Figure	4.11
demonstrates,	this	combined	filter	gives	our	image	a	warm	golden	tint.

As	 nice	 as	 our	 image	 now	 looks,	we	 didn’t	want	 to	 colorize	 it	with	 this
orangish	 yellow,	 but	with	 a	 deep,	 bright	 pink.	Therefore,	we	 also	 need	 to
apply	 a	 hue-rotate()	 filter,	 to	 offset	 the	 hue	 of	 every	 pixel	 by	 the
degrees	we	specify.	To	make	the	hue	335	from	around	40,	we’d	need	to	add
around	295	(335	-	40)	to	it:

FIGURE	4.10	Top:	Original	image	Bottom:	Image	after	sepia()	filter

filter:	sepia()	saturate(4)	hue-rotate(295deg);

At	 this	 point,	 we’ve	 colorized	 our	 image	 and	 you	 can	 check	 out	 how	 it
looks	in	Figure	4.12.	If	it’s	an	effect	that	gets	toggled	on	:hover	or	other
states,	we	could	even	apply	CSS	transitions	to	it:

FIGURE	4.11	Our	image	after	adding	a	saturate()	filter

img	{
				transition:	.5s	filter;
				filter:	sepia()	saturate(4)	hue-rotate(295deg);
}

img:hover,
img:focus	{
				filter:	none;
}

FIGURE	4.12	Our	image	after	adding	a	hue-rotate()	filter	as	well

	PLAY! 	play.csssecrets.io/color-tint-filter

Blending	mode	solution

The	filter	solution	works,	but	you	might	have	noticed	that	the	result	is	not
exactly	the	same	as	what	can	be	obtained	with	an	image	editor.	Even	though
we	 were	 trying	 to	 colorize	 with	 a	 very	 bright	 color,	 the	 result	 still	 looks
rather	washed	out.	If	we	try	to	increase	the	parameter	in	the	saturate()
filter,	we	start	getting	a	different,	overly	stylized	effect.	Thankfully,	there
is	a	better	way	to	approach	this:	blending	modes!

If	 you’ve	 ever	 used	 an	 image	 editor	 such	 as	 Adobe	 Photoshop,	 you	 are

http://play.csssecrets.io/color-tint-filter

probably	already	familiar	with	blending	modes.	When	two	elements	overlap,
blending	modes	control	how	the	colors	of	the	topmost	element	blend
with	 the	 colors	 of	 whatever	 is	 underneath	 it.	 When	 it	 comes	 to
colorizing	 images,	 the	 blending	 mode	 you	 need	 is	 luminosity.	 The
luminosity	 blending	 mode	 maintains	 the	 HSL	 lightness	 of	 the
topmost	 element,	 while	 adopting	 the	 hue	 and	 saturation	 of	 its
backdrop.	 If	 the	backdrop	 is	our	 color	 and	 the	element	with	 the	blending
mode	 applied	 to	 it	 is	 our	 image,	 isn’t	 this	 essentially	what	 color	 tinting	 is
supposed	to	do?

FIGURE	4.13	Comparison	of	the	filter	method	(top)	and	the	blending	mode
method	(bottom)

To	 apply	 a	 blending	 mode	 to	 an	 element,	 there	 are	 two	 properties
available	 to	us:	mix-blend-mode	 for	 applying	blending	modes	 to	entire
elements	and	background-blend-mode	for	applying	blending	modes	to
each	background	layer	separately.	This	means	that	to	use	this	method	on
an	image	we	have	two	options,	neither	of	them	ideal:

Wrapping	our	image	in	a	container	with	a	background	color	of	the

color	we	want

Using	a	<div>	instead	of	an	image,	with	its	background-image	set
to	the	image	we	want	to	colorize	and	a	second	background	layer
underneath	with	our	color

Depending	 on	 the	 specific	 use	 case,	we	 can	 choose	 either	 of	 the	 two.	 For
example,	 if	we	wanted	 to	apply	 the	effect	 to	an		 element,	we	would
need	 to	 wrap	 it	 in	 another	 element.	However,	 if	 we	 already	 have	 another
element,	such	as	an	<a>,	we	can	use	that:

HTML

				

Then,	you	only	need	two	declarations	to	apply	the	effect:

a	{
				background:	hsl(335,	100%,	50%);
}

img	{
				mix-blend-mode:	luminosity;
}

Just	 like	 CSS	 filters,	 blending	 modes	 degrade	 gracefully:	 if	 they	 are	 not
supported,	no	effect	is	applied	but	the	image	is	still	perfectly	visible.

An	important	consideration	is	that	while	filters	are	animatable,	blending
modes	 are	 not.	We	 already	 saw	 how	 you	 can	 animate	 the	 picture	 slowly
fading	 into	 monochrome	 with	 a	 simple	 CSS	 transition	 on	 the	 filter
property,	 but	 you	 cannot	 do	 the	 same	with	 blending	modes.	However,	 do
not	 fret,	 as	 this	 does	 not	mean	 animations	 are	 out	 of	 the	 question,	 it	 just
means	we	need	to	think	outside	the	box.

As	already	explained,	mix-blend-mode	blends	 the	whole	element	with
whatever	is	underneath	it.	Therefore,	if	we	apply	the	luminosity	blending
mode	 through	 this	property,	 the	 image	 is	 always	going	 to	be	blended	with
something.	 However,	 using	 the	 background-blend-mode	 property

blends	each	background	image	layer	with	the	ones	underneath	it,	unaware	of
anything	outside	 the	element.	What	happens	 then	when	we	only	have	one
background	image	and	a	transparent	background	color?	You	guessed	it:
no	blending	takes	place!

We	 can	 take	 advantage	 of	 that	 observation	 and	 use	 the	background-
blend-mode	 property	 for	 our	 effect.	The	HTML	will	 have	 to	 be	 a	 little
different:

HTML
<div	class="tinted-image"
					style="background-image:url(tiger.jpg)">
</div>

Then	we	only	need	to	apply	CSS	to	that	one	<div>,	as	this	technique	does
not	require	any	extra	elements:

.tinted-image	{
				width:	640px;	height:	440px;
				background-size:	cover;
				background-color:	hsl(335,	100%,	50%);
				background-blend-mode:	luminosity;
				transition:	.5s	background-color;
}

.tinted-image:hover	{
				background-color:	transparent;
}

However,	 as	 mentioned	 previously,	 neither	 of	 the	 two	 techniques	 are
ideal.	The	main	issues	at	play	here	are:

The	dimensions	of	the	image	need	to	be	hardcoded	in	the	CSS
code.

Semantically,	this	is	not	an	image	and	will	not	be	read	as	such	by
screen	readers.

Like	most	things	in	life,	there	is	no	perfect	way	to	do	this,	but	in	this	section
we’ve	 seen	 three	different	ways	 to	apply	 this	effect,	each	with	 its	own	pros

and	cons.	The	one	you	choose	depends	on	the	specific	needs	of	your	project.

	PLAY! 	play.csssecrets.io/color-tint

Hat	 tip	 to	Dudley	Storey	(demosthenes.info)	 for	coming	up	with	 the
animating	 trick	 for	 blending	 modes
(demosthenes.info/blog/888/Create-Monochromatic-Color-
Tinted-Images-With-CSS-blend).

RELATED
SPECS

Filter	Effects

w3.org/TR/filter-effects

Compositing	and	Blending

w3.org/TR/compositing

CSS	Transitions

w3.org/TR/css-transitions

18	Frosted	glass	effect

Prerequisites

http://play.csssecrets.io/color-tint
http://demosthenes.info
http://demosthenes.info/blog/888/Create-Monochromatic-Color-Tinted-Images-With-CSS-blend
http://w3.org/TR/filter-effects
http://w3.org/TR/compositing
http://w3.org/TR/css-transitions

RGBA/HSLA	colors

The	problem

We	are	using	the	term	“backdrop”	here	to	mean	the	part	of	the	page	that	is	underneath	an
element,	which	shows	through	its	semi-transparent	background.

One	 of	 the	 first	 use	 cases	 of	 semi-transparent	 colors	 was	 using	 them	 as
backgrounds,	 over	 photographic	 or	 otherwise	 busy	 backdrops,	 to	 decrease
contrast	and	make	 the	 text	possible	 to	read.	The	result	 is	quite	 impressive,
but	can	still	be	hard	to	read,	especially	with	very	low	opacity	colors	and/or
busy	backdrops.	For	 example,	 take	 a	 look	 at	Figure	4.14,	where	 the	main
element	 has	 a	 semi-transparent	 white	 background.	The	markup	 looks	 like
this:

HTML
<main>
				<blockquote>
								"The	only	way	to	get	rid	of	a	temptation[…]"
								<footer>—
												<cite>
																Oscar	Wilde,
																The	Picture	of	Dorian	Gray
												</cite>
								</footer>
				</blockquote>
</main>

And	the	CSS	looks	like	this	(with	all	irrelevant	bits	omitted	for	brevity):

body	{
				background:	url("tiger.jpg")	0	/	cover	fixed;
}

main	{
				background:	hsla(0,0%,100%,.3);
}

As	you	can	observe,	the	text	is	really	hard	to	read,	due	to	the	image	behind	it
being	busy	and	the	background	color	only	being	25%	opaque.	We	could	of

course	 improve	 readability	 by	 increasing	 the	 alpha	 parameter	 of	 the
background	color,	but	then	the	effect	will	not	be	as	interesting	(see	Figure
4.15).

FIGURE	4.14	Our	semi-transparent	white	background	makes	the	text	hard
to	read

FIGURE	4.15	Increasing	the	alpha	value	of	our	background	color	does	fix
the	readability	issue,	but	also	makes	our	design	less	interesting

In	 traditional	 print	 design,	 this	 issue	 is	 often	 addressed	by	blurring	 the
part	 of	 the	 photo	 that	 is	 underneath	 our	 text	 container.	 Blurred
backgrounds	 are	 not	 as	 busy,	 and	 thus,	 text	 on	 them	 is	 easier	 to	 read.
Because	 blurring	 is	 computationally	 expensive,	 in	 the	 past	 its	 toll	 on
resources	was	prohibitive	for	using	this	technique	in	websites	and	UI	design.
However,	with	GPUs	improving	and	hardware	acceleration	becoming	more
commonplace	 for	 more	 and	 more	 things,	 these	 days	 it’s	 used	 quite
frequently.	 In	 the	 past	 few	 years,	 we	 have	 seen	 this	 technique	 in	 newer
versions	of	both	Microsoft	Windows,	as	well	as	Apple	 iOS	and	Mac	OS	X
(Figure	4.16).

FIGURE	4.16	Translucent	UIs	with	a	blurred	backdrop	have	been	becoming
increasingly	common	in	the	past	few	years,	as	the	toll	of	blurring	on
resources	has	stopped	being	prohibitively	expensive	(Apple	iOS	8.1	is
shown	on	the	left	and	Apple	OS	X	Yosemite	is	shown	on	the	right)

We	also	got	the	ability	to	blur	elements	in	CSS,	via	the	blur()	filter,	which
is	essentially	a	hardware-accelerated	version	of	the	corresponding	SVG	blur
filter	 primitive	 that	 we	 always	 had	 for	 SVG	 elements.	 However,	 if	 we
directly	apply	a	blur()	filter	to	our	example,	the	entire	element	is	blurred,
which	makes	 it	 even	 less	 readable.	 (Figure	 4.17).	 Is	 there	 any	way	 to	 just
apply	 it	 to	 the	 element’s	 backdrop	 (i.e.,	 the	part	 of	 the	background	 that	 is
behind	our	element)?

FIGURE	4.17	Applying	a	blur()	filter	to	the	element	itself	makes	things
worse

The	solution

Provided	 that	 our	 element	 has	 a	 background-attachment	 of	 fixed,
this	 is	possible,	albeit	a	bit	 tricky.	Because	we	cannot	apply	 the	blurring	to
our	 element	 itself,	 we	 will	 apply	 it	 to	 a	 pseudo-element	 that	 is
positioned	 behind	 the	 element	 and	 whose	 background	 seamlessly
matches	the	one	on	<body>.

It’s	also	possible	even	with	non-fixed	backgrounds,	just	messier.

First,	 we	 add	 the	 pseudo-element	 and	 position	 it	 absolutely,	 with	 all
offsets	being	0,	so	that	it	covers	the	entire	<main>	element:

main	{
				position:	relative;
				/*	[Rest	of	styling]	*/

}

main::before	{
				content:	'';
				position:	absolute;

				top:	0;	right:	0;	bottom:	0;	left:	0;
				background:	rgba(255,0,0,.5);	/*	for	debugging	*/
}

We	 also	 applied	 a	 semi-transparent	 red	 background,	 so	 we	 can	 see
what	we’re	doing,	otherwise	debugging	becomes	difficult	when	we’re	dealing
with	 a	 transparent	 (and	 therefore,	 invisible)	 element.	 As	 you	 can	 see	 in
Figure	 4.18,	 our	 pseudo-element	 is	 currently	 above	 our	 content,	 thus
obscuring	it.	We	can	fix	this	by	adding	z-index:	-1;	(Figure	4.20).

	Be	 careful	when	using	 a	 negative	z-index	 to	move	 a	 child	 underneath	 its	 parent:	 if	 said
parent	is	nested	within	other	elements	with	backgrounds,	the	child	will	go	below	those	as	well.

Now	it’s	time	to	replace	that	semi-transparent	red	background,	with	one
that	 actually	 matches	 our	 backdrop,	 either	 by	 copying	 over	 the	 <body>
background,	or	by	splitting	it	into	its	own	rule.	Can	we	blur	now?	Let’s	try
it:

Why	not	just	use	background:	inherit	on	main::before?	Because	then	it	will	inherit
from	main,	not	body,	so	the	pseudo-element	will	get	a	semi-transparent	white	background	as
well.

body,	main::before	{
				background:	url("tiger.jpg")	0	/	cover	fixed;
}

main	{
				position:	relative;
				background:	hsla(0,0%,100%,.3);
}

main::before	{
				content:	'';
				position:	absolute;
				top:	0;	right:	0;	bottom:	0;	left:	0;
				filter:	blur(20px);
}

FIGURE	4.18	The	pseudo-element	is	currently	obscuring	the	text

FIGURE	4.19	We	fixed	the	faded	blurring	at	the	edges,	but	now	there	is
some	blurring	outside	our	element	too

As	you	can	see	in	Figure	4.21,	we’re	pretty	much	there.	The	blurring	effect
looks	perfect	toward	the	middle,	but	is	less	blurred	closer	to	the	edges.	This
happens	because	blurring	reduces	the	area	that	is	covered	by	a	solid	color	by

the	blur	radius.	Applying	a	 red	background	to	our	pseudo-element	helps
clarify	what’s	going	on	(Figure	4.22).

FIGURE	4.20	Moving	the	pseudo-element	behind	its	parent,	with	z-
index:	-1;

To	circumvent	this	issue,	we	will	make	the	pseudo-element	at	least	20px	(as
much	as	our	blur	radius)	larger	than	the	dimensions	of	its	container,	by
applying	 a	 margin	 of	 -20px	 or	 less	 to	 be	 on	 the	 safe	 side,	 as	 different
browsers	 might	 use	 different	 blurring	 algorithms.	 As	 Figure	 4.19
demonstrates,	 this	 fixes	 the	 issue	with	 the	 faded	blurring	 at	 the	 edges,	 but
now	there	is	also	some	blurring	outside	our	container,	which	makes	it	look
like	a	smudge	instead	of	frosted	glass.	Thankfully,	this	is	also	easy	to	fix:	we
will	 just	 apply	 overflow:	 hidden;	 to	 main,	 in	 order	 to	 clip	 that
extraneous	 blurring.	The	 final	 code	 looks	 as	 follows,	 and	 its	 result	 can	 be
seen	in	Figure	4.23:

body,	main::before	{
				background:	url("tiger.jpg")	0	/	cover	fixed;
}

main	{
				position:	relative;
				background:	hsla(0,0%,100%,.3);
				overflow:	hidden;
}

main::before	{

				content:	'';
				position:	absolute;
				top:	0;	right:	0;	bottom:	0;	left:	0;
				filter:	blur(20px);
				margin:	-30px;
}

FIGURE	4.21	Blurring	our	pseudo-element	almost	works,	but	its	less	blurry
on	the	edges,	diminishing	the	frosted	glass	illusion

FIGURE	4.22	Adding	a	 red	background	helps	make	sense	of	what’s
happening

FIGURE	4.23	Our	final	result

Note	how	much	more	 readable	our	page	has	now	become,	 and	how	much
more	 elegant	 it	 looks.	 It’s	 debatable	 whether	 the	 fallback	 for	 this	 effect
constitutes	graceful	degradation.	If	filters	are	not	supported,	we	will	get	the
result	we	saw	 in	 the	beginning	 (Figure	4.14).	We	can	make	our	 fallback	a
bit	more	readable	by	increasing	the	opacity	of	the	background	color.

	PLAY! 	play.csssecrets.io/frosted-glass

RELATED
SPECS

Filter	Effects

w3.org/TR/filter-effects

19	Folded	corner	effect

Prerequisites
CSS	transforms,	CSS	gradients,	the	“Cutout	corners”	secret	on	page	96

The	problem

Styling	one	corner	(usually	the	top-right	or	bottom-right	one)	of	an	element
in	a	way	that	makes	it	look	folded,	with	various	degrees	of	realism,	has	been
a	very	popular	decoration	for	years	now.

These	 days,	 there	 are	 several	 helpful	 pure	CSS	 solutions,	 the	 first	 of
which	was	published	as	easly	as	2010	by	the	pseudo-element	master,	Nicolas
Gallagher	 (nicolasgallagher.com/pure-css-folded-corner-
effect).	Their	main	premise	is	usually	adding	two	triangles	on	the	top-left

http://play.csssecrets.io/frosted-glass
http://w3.org/TR/filter-effects
http://nicolasgallagher.com/pure-css-folded-corner-effect

corner:	one	for	the	page	flip	and	a	white	one,	 to	obscure	the	corner	of	 the
main	element.	These	triangles	are	usually	created	with	the	old	border	trick.

FIGURE	4.24	Several	earlier	redesigns	of	css-tricks.com	featured
folded	corners,	on	the	top-right	corner	of	every	article	box

Impressive	as	these	solutions	were	for	their	time,	today	they	are	very	limiting
and	fall	short	in	several	cases:

When	the	background	behind	our	element	is	not	a	solid	color,	but	a
pattern,	a	texture,	a	photo,	a	gradient,	or	any	other	kind	of	background
image

When	we	want	a	different	angle	than	45°	and/or	a	rotated	fold

Is	 there	a	way	 to	create	a	more	 flexible	 folded	corner	effect	with	CSS	 that
doesn’t	fail	on	these	cases?

The	45°	solution

We	 will	 start	 from	 an	 element	 with	 a	 beveled	 top-right	 corner,	 which	 is
created	with	the	gradient-based	solution	in	the	“Cutout	corners”	secret	on
page	96.	To	create	a	top-right	bevel	corner	of	size	1em	with	this	technique,

http://css-tricks.com

the	 code	 looks	 like	 this	 and	 the	 sample	 rendering	 can	 be	 seen	 in	Figure
4.25:

FIGURE	4.25	Our	starting	point:	an	element	with	a	top-right	cutout	corner,
done	via	a	gradient

background:	#58a;	/*	Fallback	*/
background:
				linear-gradient(-135deg,	transparent	2em,	#58a	0);

At	 this	 point,	 we’re	 already	 halfway	 done:	 all	 we	 need	 to	 do	 is	 to	 add	 a
darker	 triangle	 for	 the	 page	 flip.	 We	 will	 do	 that	 by	 adding	 another
gradient	 to	 create	 the	 triangle,	 which	 we	 will	 resize	 to	 our	 needs	 with
background-size	and	position	on	the	top-right	corner.

To	create	 the	 triangle,	all	we	need	 is	an	angled	 linear	gradient	with	 two
stops	that	meet	in	the	middle:

background:
				linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.4)	0)
								no-repeat	100%	0	/	2em	2em;

You	 can	 see	 the	 result	 of	 having	only	 this	 background	 in	Figure	 4.26.
The	last	step	would	be	to	combine	them,	and	we’ll	be	done,	right?	Let’s	try
that,	 making	 sure	 that	 the	 page	 flip	 triangle	 is	 above	 our	 cutout	 corner
gradient:

FIGURE	4.26	Our	second	gradient	for	the	folded	triangle,	isolated;	the	text
is	shown	here	as	faint	gray	instead	of	white,	so	you	can	see	where	it	is

background:	#58a;	/*	Fallback	*/
background:
				linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.4)	0)
								no-repeat	100%	0	/	2em	2em,
				linear-gradient(-135deg,	transparent	2em,	#58a	0);

As	you	can	see	in	Figure	4.27,	the	result	is	not	exactly	what	we	expected.
Why	don’t	the	sizes	match?	They’re	both	2em!

The	reason	is	that	(as	we’ve	discussed	in	the	“Cutout	corners”	secret	on
page	96)	the	2em	corner	size	in	our	second	gradient	is	in	the	color	stop,	and
thus	is	measured	along	the	gradient	line,	which	is	diagonal.	On	the	other
hand,	 the	2em	 length	 in	background-size	 is	 the	width	 and	height	of
the	background	tile,	which	is	measured	horizontally	and	vertically.

FIGURE	4.27	Combining	the	two	gradients	doesn’t	produce	exactly	the
expected	result

To	make	the	two	align,	we	need	to	do	one	of	the	following,	depending	on
which	of	the	two	sizes	we	want	to	keep:

To	keep	the	diagonal	2em	size,	we	can	multiply	the	background-
size	with	 .

To	keep	the	horizontal	and	vertical	2em	size,	we	can	divide	the	color
stop	position	of	our	cutout	corner	gradient	by	 .

Because	 the	background-size	 is	 repeated	 twice,	and	most	other	CSS
measurements	are	not	measured	diagonally,	going	with	the	 latter	 is	usually

preferable.	The	color	 stop	position	will	become	 ,
which	we	will	round	up	to	1.5em:

background:	#58a;	/*	Fallback	*/
background:
				linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.4)	0)
								no-repeat	100%	0	/	2em	2em,
				linear-gradient(-135deg,
								transparent	1.5em,	#58a	0);

As	 you	 can	 see	 in	 Figure	 4.28,	 this	 finally	 gives	 us	 a	 nice,	 flexible,
minimalistic	rounded	corner.

FIGURE	4.28	After	changing	the	color	stop	position	of	the	blue	gradient,
our	folded	corner	finally	works

	Make	 sure	 to	have	at	 least	 as	much	padding	as	 the	corner	 size,	 otherwise	 the	 text	will
overlap	the	corner	(because	it’s	just	a	background),	spoiling	the	folded	corner	illusion.

	PLAY! 	play.csssecrets.io/folded-corner

Solution	for	other	angles

Folded	corners	in	real	life	are	rarely	exactly	45°.	If	we	want	something	a
tad	 more	 realistic,	 we	 can	 use	 a	 slightly	 different	 angle,	 for	 example
-150deg	 for	a	30°	one.	If	we	 just	change	the	angle	of	 the	beveled	corner,
however,	 the	 triangle	 representing	 the	 flipped	 part	 of	 the	 page	 will	 not
adjust,	resulting	in	breakage	that	looks	like	Figure	4.29.	However,	adjusting
its	dimensions	is	not	straightforward.	The	size	of	that	triangle	is	not	defined
by	an	angle,	but	by	its	width	and	height.	How	can	we	find	what	width	and
height	we	need?	Well,	it’s	time	for	some—gasp—trigonometry!

FIGURE	4.29	Changing	the	angle	of	our	cutout	corner	causes	this	breakage

The	code	currently	looks	like	this:

background:	#58a;	/*	Fallback	*/
background:
				linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.4)	0)
								no-repeat	100%	0/2em	2em,
				linear-gradient(-150deg,
								transparent	1.5em,	#58a	0);

http://play.csssecrets.io/folded-corner

A	30-60-90	right	triangle	is	a	right	triangle	whose	other	two	angles	are	30°	and	60°.

As	you	can	see	in	Figure	4.30,	we	basically	need	to	calculate	the	length	of
the	hypotenuse	from	two	30-60-90	right	triangles	when	we	know	the	length
of	 one	 of	 their	 legs.	 As	 the	 trigonometric	 circle	 shown	 in	 Figure	 4.31
reminds	 us,	 if	 we	 know	 the	 angles	 and	 the	 length	 of	 one	 of	 a	 right
triangle’s	sides,	we	can	calculate	the	length	of	its	other	two	sides	by	using
sines,	 cosines,	 and	 the	 Pythagorean	 theorem.	We	 know	 from	 math	 (or	 a

calculator)	that	cos	 	and	 .	We	also	know	from	the

trigonometric	circle	that	in	our	case,	sin	 	and	 .
Therefore:

FIGURE	4.30	Our	cutout	corner,	enlarged	(the	gray	marked	angles	are	30°)

FIGURE	4.31	Sines	and	cosines	help	us	calculate	the	legs	of	right	triangles
based	on	their	angle	and	hypotenuse

At	this	point,	we	can	also	calculate	z,	via	the	Pythagorean	theorem:

We	can	now	resize	the	triangle	to	match:

background:	#58a;	/*	Fallback	*/
background:
				linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.4)	0)
								no-repeat	100%	0	/	3em	1.73em,
				linear-gradient(-150deg,
								transparent	1.5em,	#58a	0);

At	 this	 point,	 our	 corner	 looks	 like	 Figure	 4.32.	 As	 you	 can	 see,	 the
triangle	now	does	match	our	cutout	corner,	but	the	result	looks	even	less
realistic!	Although	we	might	not	be	able	to	easily	figure	out	why,	our	eyes
have	 seen	many	 folded	 corners	 before	 and	 instantly	 know	 that	 this	 grossly
deviates	 from	 the	 pattern	 they	 are	 used	 to.	 You	 can	 help	 your	 conscious
mind	understand	why	it	looks	so	fake	by	trying	to	fold	an	actual	sheet	of
paper	 in	approximately	this	angle.	There	 is	 literally	no	way	 to	 fold	 it	and
make	it	look	even	vaguely	like	Figure	4.32.

FIGURE	4.32	Although	we	did	achieve	the	result	we	wanted,	it	turns	out
that	it	looks	even	less	realistic	than	before

As	 you	 can	 see	 in	 an	 actual,	 real-life	 folded	 corner,	 such	 as	 the	 one	 in
Figure	4.33,	the	triangle	we	need	to	create	is	slightly	rotated	and	has	the
same	dimensions	as	the	triangle	we	“cut”	from	our	element’s	corner.	Because
we	 cannot	 rotate	 backgrounds,	 it’s	 time	 to	 move	 the	 effect	 to	 a	 pseudo-
element:

.note	{
				position:	relative;
				background:	#58a;	/*	Fallback	*/
				background:
								linear-gradient(-150deg,
												transparent	1.5em,	#58a	0);

}
.note::before	{
				content:	'';
				position:	absolute;
				top:	0;	right:	0;
				background:	linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.4)	0)
								100%	0	no-repeat;
				width:	3em;
				height:	1.73em;
}

FIGURE	4.33	An	analog	version	of	the	folded	corner	effect	(fancy	sheet	of
paper	courtesy	of	Leonie	and	Phoebe	Verou)

At	 this	 point,	we’ve	 just	 replicated	 the	 same	 effect	 as	 in	Figure	4.32	with
pseudo-elements.	Our	next	 step	would	be	 to	 change	 the	orientation	of	 the
existing	triangle	by	swapping	its	width	and	height	to	make	it	mirror	the
cutout	corner	 instead	of	complementing	 it.	Then,	we	will	rotate	 it	by	30°
((90°	 –	 30°)	 –	 30°)	 counterclockwise,	 so	 that	 its	 hypotenuse	 becomes
parallel	to	our	cutout	corner:

.note::before	{
				content:	'';
				position:	absolute;
				top:	0;	right:	0;
				background:	linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.4)	0)
								100%	0	no-repeat;
				width:	1.73em;
				height:	3em;
				transform:	rotate(-30deg);
}

You	 can	 see	how	our	note	 looks	 after	 these	 changes	 in	Figure	4.34.	As
you	can	see,	we’re	basically	 there	and	we	 just	need	to	move	the	triangle	so

that	the	hypotenuses	of	our	two	triangles	(the	dark	one	and	the	cutout	one)
coincide.	 As	 things	 currently	 stand,	 we	 need	 to	 move	 the	 triangle	 both
horizontally	and	vertically,	so	it’s	more	difficult	to	figure	out	what	to	do.	We
can	 make	 things	 easier	 for	 ourselves	 by	 setting	 transform-origin	 to
bottom	 right,	 so	 that	 the	 bottom-right	 corner	 of	 the	 triangle
becomes	the	center	of	rotation,	and	thus,	stays	fixed	in	the	same	place:

FIGURE	4.34	We’re	starting	to	get	there,	but	we	need	to	move	the	triangle

.note::before	{
				/*	[Rest	of	styling]	*/
				transform:	rotate(-30deg);
				transform-origin:	bottom	right;
}

As	you	 can	 see	 in	Figure	4.35,	we	now	only	need	 to	move	our	 triangle
vertically	 toward	 the	 top.	 To	 find	 the	 exact	 amount,	 we	 can	 use	 some
geometry	 again.	 As	 you	 can	 see	 in	 Figure	 4.36,	 the	 vertical	 offset	 our
triangle	needs	 is	 ,	which	we	can	 round	up
to	1.3em:

FIGURE	4.35	Adding	transform-origin:	bottom	right;	makes
things	easier:	now	we	only	need	to	move	our	triangle	vertically

.note::before	{
				/*	[Rest	of	styling]	*/
				transform:	translateY(-1.3em)	rotate(-30deg);
				transform-origin:	bottom	right;
}

The	 sample	 rendering	 in	Figure	4.37	 confirms	 that	 this	 finally	 gives	us
the	effect	we	were	going	 for.	Phew,	 that	was	 intense!	 In	addition,	now	that
our	 triangle	 is	 generated	 via	 pseudo-elements,	we	 can	make	 it	even	more
realistic,	by	adding	rounded	corners,	(actual)	gradients,	and	box-shadows!
The	final	code	looks	as	follows:

FIGURE	4.36	Figuring	out	how	much	to	move	our	triangle	isn’t	as	difficult
as	it	first	looks

	Make	sure	to	put	the	translateY()	transform	before	the	rotation,	otherwise	our	triangle
will	move	along	its	30°	angle,	as	every	transformation	also	transforms	the	entire	coordinate
system	of	the	element,	not	just	the	element	per	se!

.note	{
				position:	relative;
				background:	#58a;	/*	Fallback	*/
				background:
								linear-gradient(-150deg,
												transparent	1.5em,	#58a	0);
				border-radius:	.5em;
}
.note::before	{
				content:	'';
				position:	absolute;
				top:	0;	right:	0;
				background:	linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.2)	0,	rgba(0,0,0,.4))
								100%	0	no-repeat;
				width:	1.73em;
				height:	3em;
				transform:	translateY(-1.3em)	rotate(-30deg);
				transform-origin:	bottom	right;
				border-bottom-left-radius:	inherit;
				box-shadow:	-.2em	.2em	.3em	-.1em	rgba(0,0,0,.15);
}

FIGURE	4.37	Our	triangles	are	finally	aligned	and	touching

And	you	can	admire	the	fruits	of	our	labor	in	Figure	4.38.

FIGURE	4.38	With	a	few	more	effects,	our	folded	corner	comes	to	life

	PLAY! 	play.csssecrets.io/folded-corner-realistic

The	effect	looks	nice,	but	how	DRY	is	it?	Let’s	think	about	some	common
edits	and	variations	one	might	want	to	make:

It	only	takes	one	edit	to	change	the	element	dimensions	and	other
metrics	(padding,	etc.).

It	only	takes	two	edits	(one	without	the	fallback)	to	change	the
background	color.

It	takes	four	edits	and	several	nontrivial	calculations	to	change	the
folded	corner	size.

It	takes	five	edits	and	several	even	less	trivial	calculations	to	change
the	folded	corner	angle.

The	last	two	are	really	bad.	It	might	be	time	for	a	preprocessor	mixin:

SCSS
@mixin	folded-corner($background,	$size,
																					$angle:	30deg)	{
position:	relative;

http://play.csssecrets.io/folded-corner-realistic

background:	$background;	/*	Fallback	*/
background:
				linear-gradient($angle	-	180deg,
								transparent	$size,	$background	0);
border-radius:	.5em;

$x:	$size	/	sin($angle);
$y:	$size	/	cos($angle);

&::before	{
				content:	'';
				position:	absolute;
				top:	0;	right:	0;
				background:	linear-gradient(to	left	bottom,
								transparent	50%,	rgba(0,0,0,.2)	0,
								rgba(0,0,0,.4))	100%	0	no-repeat;
				width:	$y;	height:	$x;
				transform:	translateY($y	-	$x)
															rotate(2*$angle	-	90deg);
				transform-origin:	bottom	right;
				border-bottom-left-radius:	inherit;
				box-shadow:	-.2em	.2em	.3em	-.1em	rgba(0,0,0,.2);
}
}

/*	used	as...	*/
.note	{
				@include	folded-corner(#58a,	2em,	40deg);
}

	At	the	time	of	writing,	SCSS	does	not	support	trigonometric	functions	natively.	To	enable
support,	 you	 could	 use	 the	 Compass	 framework	 (compass-style.org),	 among	 other
libraries.	 You	 could	 even	 write	 them	 yourself,	 using	 the	 Taylor	 expansions	 of	 the	 functions!
LESS,	on	the	other	hand,	includes	them	out	of	the	box.

	PLAY! 	play.csssecrets.io/folded-corner-mixin

RELATED
SPECS

CSS	Backgrounds	&	Borders

http://compass-style.org
http://play.csssecrets.io/folded-corner-mixin

w3.org/TR/css-backgrounds

CSS	Image	Values

w3.org/TR/css-images

CSS	Transforms

w3.org/TR/css-transforms

http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-transforms

5	Typography

20	Hyphenation

The	problem

Designers	 love	 text	 justification.	 If	 you	 look	 at	 any	 stunningly	 designed
magazine	 or	 book,	 you	 will	 see	 it	 everywhere.	 However,	 on	 the	 Web,
justification	is	very	sparingly	used,	and	even	less	so	by	skilled	designers.	Why
is	that,	given	that	we’ve	had	text-align:	justify;	since	CSS	1?

The	reason	becomes	apparent	 if	you	 look	at	Figure	5.1.	Look	at	all	 the
“rivers	of	white”	created	by	adjusting	spacing	to	justify	the	text.	Not	only	does
this	look	bad,	it	also	hinders	readability.	In	print,	justification	always	goes
hand	 in	 hand	with	hyphenation.	 Because	 hyphenation	 allows	words	 to	 be
broken	 down	 into	 syllables,	 much	 less	 white-space	 adjustment	 is	 needed,
resulting	in	the	text	looking	much	more	natural.

FIGURE	5.1	The	default	effect	of	CSS	justification

Until	 recently,	 there	were	ways	 to	hyphenate	 text	on	 the	Web,	but	 they
were	the	kind	of	solution	that	is	worse	than	the	problem.	The	usual	way
involved	 using	 server-side	 code,	 JavaScript,	 online	 generators,	 or	 even	 just
our	bare	hands	and	lots	of	patience	to	insert	soft	hyphens	(­)	between
syllables,	 so	 that	 the	 browser	 knows	 where	 each	 word	 could	 be	 broken.
Usually,	 such	 an	 overhead	was	 not	worth	 it	 so	 the	 designer	 decided	 to	 go

with	a	different	kind	of	text	alignment	instead.

The	solution

In	CSS	Text	Level	3,	a	new	property	came	along:	hyphens.	It	accepts	three
values:	none,	manual,	and	auto.	Its	initial	value	is	manual,	to	match	the
existing	behavior:	we	 could	 always	hyphenate	manually,	with	 soft	hyphens.
Obviously,	 hyphens:	 none;	 would	 disable	 this	 behavior,	 but	 the	 truly
magical	results	are	achieved	with	this	very	simple	line	of	CSS:

hyphens:	auto;

FIGURE	5.2	The	result	of	hyphens:	auto

That’s	all	it	takes.	You	can	see	the	result	in	Figure	5.2.	Of	course,	for	this
to	 work,	 you	 need	 to	 have	 declared	 a	 language	 through	 the	 lang
HTML	attribute,	but	that’s	something	you	should	have	done	regardless.

If	 you	 want	 more	 fine-grained	 control	 over	 hyphenation	 (e.g.,	 in	 short
intro	 text),	 you	 can	 still	 use	 a	 few	 soft	 hyphens	 (­)	 to	 help	 the
browser.	The	hyphens	property	will	prioritize	them,	and	then	figure	out
where	else	it	can	break	words.

TRIVIA 	How	does	word	wrapping	work?
Like	many	things	in	computer	science,	word	wrapping	sounds	simple	and
straightforward,	 but	 is	 actually	 neither.	 There	 are	 many	 algorithms	 to
accomplish	 it,	 but	 the	 most	 popular	 are	 the	 Greedy	 algorithm	 and	 the
Knuth-Pass	algorithm.	The	Greedy	algorithm	works	by	analyzing	one	line
at	 a	 time,	 filling	 it	 with	 as	 many	 words	 (or	 syllables,	 when	 using

hyphenation)	 as	 possible	 and	 moving	 on	 to	 the	 next	 line	 when	 it
encounters	the	first	word/syllable	that	doesn’t	fit.

The	 Knuth-Plass	 algorithm,	 derived	 from	 the	 names	 of	 the	 engineers
who	developed	it,	 is	far	more	sophisticated.	It	works	by	taking	the	entire
text	into	account,	and	produces	much	more	aesthetically	pleasing	results,
but	is	also	considerably	slower	to	calculate.

Most	 desktop	 text	 processing	 applications	 use	 the	 Knuth-Plass
algorithm.	 However,	 browsers	 currently	 use	 the	 Greedy	 one	 for
performance	reasons,	so	their	justification	results	are	still	not	as	good.

CSS	 hyphenation	 degrades	 very	 gracefully.	 If	 the	hyphens	 property	 is
not	supported,	you	just	get	text	justification	that	looks	like	Figure	5.1.	Sure,
it’s	not	pretty	or	particularly	pleasant	to	read,	but	is	still	perfectly	accessible.

	PLAY! 	play.csssecrets.io/hyphenation

RELATED
SPECS

CSS	Text

w3.org/TR/css-text

CSS	Text	Level	4

dev.w3.org/csswg/css-text-4

FUTURE 	Control	over	hyphenation
If	you	are	coming	from	a	more	design-oriented	background,	you	might	be
cringing	at	the	idea	of	hyphenation	as	a	toggle,	with	no	other	settings	to
control	how	it	breaks	words.

http://play.csssecrets.io/hyphenation
http://w3.org/TR/css-text
http://dev.w3.org/csswg/css-text-4

You	might	be	happy	to	hear	that	in	the	future,	we	will	have	more	fine-
grained	control	over	hyphenation,	with	several	related	properties	planned
in	CSS	 Text	 Level	 4	 (dev.w3.org/csswg/css-text-4),	 some	 of
which	are:

hyphenate-limit-lines

hyphenate-limit-chars

hyphenate-limit-zone

hyphenate-limit-last

hyphenate-character

21	Inserting	line	breaks

The	problem

The	 need	 to	 insert	 line	 breaks	 via	 CSS	 usually	 arises	 with	 definition	 lists
(Figure	5.3),	but	also	in	several	other	cases.	More	often	than	not,	we	use	a
definition	list	because	we	want	to	be	good	netizens	and	use	proper,	semantic
markup,	 even	 when	 what	 we	 visually	 wanted	 was	 just	 a	 few	 lines	 of
name/value	pairs.	For	example,	consider	this	markup:

FIGURE	5.3	A	definition	list	with	a	name/value	pair	on	each	line

http://dev.w3.org/csswg/css-text-4

HTML
<dl>
				<dt>Name:</dt>
				<dd>Lea	Verou</dd>

				<dt>Email:</dt>
				<dd>lea@verou.me</dd>

				<dt>Location:</dt>
				<dd>Earth</dd>
</dl>

FIGURE	5.4	The	default	styling	of	our	definition	list

The	visual	result	we	wanted	was	something	like	the	simple	styling	shown	in
Figure	 5.3.	 The	 first	 step	 is	 usually	 to	 apply	 some	 basic	 CSS	 like	 the
following:

dd	{
				margin:	0;
				font-weight:	bold;
}

However,	because	<dt>s	and	<dd>s	are	block	elements,	we	end	up	with
something	that	looks	more	like	Figure	5.4,	with	both	names	and	values	on
their	own	 line.	The	next	attempt	usually	 involves	 trying	different	values	of
the	display	property	on	<dt>s,	<dd>s,	or	both,	often	even	at	random	as
we	 slowly	 become	more	 desperate.	However,	 that	way,	we	 usually	 end	 up

with	something	like	Figure	5.5.

FIGURE	5.5	display:	inline	just	breaks	everything	even	worse

Before	we	start	pulling	our	hair	out,	cursing	at	the	CSS	gods,	or	giving	up
separation	 of	 concerns	 and	modifying	 our	markup,	 is	 there	 a	 way	 to	 keep
both	our	sanity	and	our	(coding)	morals?

The	solution

Basically,	what	we	need	to	do	is	add	line	breaks	at	the	end	of	every	<dd>.	If
we	didn’t	mind	presentational	markup,	we	could	have	done	it	with	good	ol’

	elements,	like	so:

HTML
<!--	If	you	do	this,	kittens	die	-->
<dt>Name:</dt>
<dd>Lea	Verou
<dd>
...

Then,	 we	 would	 apply	 display:inline;	 to	 both	 <dt>s	 and	<dd>s
and	 we’d	 be	 done	 with	 it.	 Of	 course,	 not	 only	 is	 this	 a	 bad	 practice	 for
maintainability,	but	it	also	bloats	our	markup.	If	only	we	could	use	generated
content	to	add	line	breaks	that	work	like	
	elements,	then	our	problem
would	be	solved!	But	we	can’t	do	that,	right?	…Or	can	we?

Technically,	0x000A	corresponds	to	“Line	Feed”	characters,	which	is	what	we	get	in	JavaScript
with	"\n".	There	is	also	the	“Carriage	Return”	character	("\r"	in	JS,	"\D"	in	CSS),	but	that	is
not	needed	in	modern	browsers.

There	 is	 actually	 a	 Unicode	 character	 that	 corresponds	 to	 line	 breaks:
0x000A.	In	CSS,	this	would	be	written	as	"\000A",	or	more	simply	"\A".
We	could	use	it	as	the	content	of	our	::after	pseudo-element	in	order	to

add	it	at	the	end	of	every	<dd>,	like	so:

dd::after	{
				content:	"\A";
}

This	 looks	 like	 it	 could	 work,	 but	 if	 we	 try	 it	 out,	 the	 results	 are
disappointing:	 nothing	 changed	 from	 Figure	 5.5.	 However,	 this	 doesn’t
mean	 we’re	 not	 on	 the	 right	 track;	 it	 just	 means	we	 forgot	 something.
What	 we	 effectively	 did	 with	 this	 CSS	 code	 is	 equivalent	 to	 adding	 line
breaks	 in	 our	 HTML	 markup,	 right	 before	 the	 closing	 </dd>	 tags.
Remember	 what	 happens	 with	 line	 breaks	 in	 HTML	 code?	 By	 default,
they’re	collapsed	 along	with	 the	 rest	 of	 our	white-space.	This	 is	 usually	 a
great	 thing,	otherwise	we’d	have	 to	 format	our	 entire	HTML	page	 as	one
line!	However,	sometimes	we	want	to	retain	white-space	and	line	breaks,
such	 as	 in	 code	 blocks.	 Remember	what	we	 usually	 do	 in	 such	 cases?	We
apply	white-space:	pre;.	We	can	do	exactly	the	same	here,	and	apply
it	only	to	the	generated	line	break.

We	only	have	 one	 line	 break	 character,	 so	we	don’t	 really	 care	whether
white-space	 will	 be	 preserved	 or	 not	 (because	 there	 is	 none),	 so	 any	 pre
value	would	work	(pre,	pre-line,	pre-wrap).	I	would	recommend	pre,
for	its	wider	browser	support.	Let’s	put	it	all	together:

dt,	dd	{	display:	inline;	}

dd	{
				margin:	0;
				font-weight:	bold;
}

dd::after	{
				content:	"\A";
				white-space:	pre;
}

If	you	test	this,	you	will	see	that	it	actually	works	and	it	renders	exactly	like
Figure	5.3!	However,	is	it	really	flexible?	Assume	we	want	to	add	a	second
email	to	the	user	our	definition	list	was	describing:

HTML
...
<dt>Email:</dt>
<dd>lea@verou.me</dd>
<dd>leaverou@mit.edu</dd>
...

FIGURE	5.6	Our	solution	breaks	with	multiple	<dd>s

Now	the	result	looks	like	Figure	5.6,	which	is	really	confusing.	Because	we
have	a	line	break	after	every	<dd>,	every	value	is	on	a	separate	line,	even
when	there’s	no	need	to	wrap.	It	would	be	much	better	if	the	multiple	values
were	separated	by	commas,	and	on	the	same	line	(provided	there	is	sufficient
space).

Ideally,	we	would	want	 to	 target	 the	 last	<dd>	before	a	<dt>	 and	only
add	 line	 breaks	 in	 that	 one,	 not	 in	 all	 <dd>s.	 However,	 this	 is	 still	 not
possible	with	 the	 current	 state	 of	CSS	 selectors,	 because	 they	 cannot	 look
ahead	to	elements	after	the	subject	in	the	DOM	tree.	We	need	to	think	of	a
different	way.	One	idea	would	be	to	try	adding	the	line	breaks	before	<dt>s
instead	of	after	<dd>s:

dt::before	{
				content:	'\A';
				white-space:	pre;
}

However,	 this	 leads	 to	 a	blank	 first	 line,	 as	 the	 selector	 applies	 to	 the	 first
<dt>	too.	To	mitigate	this,	we	could	try	using	any	of	the	following	selectors
instead	of	dt:

dt:not(:first-child)

dt	~	dt

dd	+	dt

We	 are	 going	 to	 use	 the	 latter,	 as	 it	 also	 works	 when	 there	 are	 multiple
<dt>s	for	the	same	value,	unlike	the	first	two	selectors	which	would	break	in
that	 case.	We	 also	 need	 to	 separate	 the	 multiple	 <dd>s	 somehow,	 unless
we’re	fine	with	multiple	values	being	space	separated	(which	is	perfectly	fine
for	 some	 cases,	 but	 not	 others).	 Ideally,	 we	 want	 to	 be	 able	 to	 tell	 the
browser	“add	a	comma	after	every	<dd>	that	precedes	another	<dd>,”	but	again,
that’s	 not	 possible	with	CSS	 selectors	 today.	 So,	we	will	 have	 to	 resort	 to
adding	a	comma	before	every	<dd>	that	follows	another	<dd>.	Here’s	the
CSS	we	end	up	with	(you	can	see	the	result	in	Figure	5.7):

dd	+	dt::before	{
				content:	'\A';
				white-space:	pre;
}

dd	+	dd::before	{
				content:	',	';
				font-weight:	normal;
}

FIGURE	5.7	The	final	result

Keep	 in	 mind	 that	 if	 your	 markup	 includes	 (uncommented)	 white-space
between	the	multiple	consecutive	<dd>s,	 there	will	be	a	space	before	the
comma.	 There	 are	 many	 ways	 to	 fix	 this,	 none	 perfect.	 For	 example,
negative	margins:

dd	+	dd::before	{
				content:	',	';
				margin-left:	-.25em;
				font-weight:	normal;
}

This	 would	 work,	 but	 it’s	 quite	 flimsy.	 If	 your	 content	 is	 displayed	 on	 a
different	 font,	 with	 different	 metrics,	 the	 space	 might	 be	 wider	 or
narrower	 than	 0.25em,	 in	 which	 case	 the	 result	 could	 look	 a	 little	 off.
However,	with	most	fonts,	the	difference	is	negligible.

	PLAY! 	play.csssecrets.io/line-breaks

22	Zebra-striped	text	lines

Prerequisites
CSS	gradients,	background-size,	the	“Striped	backgrounds”	secret	on
page	40,	the	“Flexible	background	positioning”	secret	on	page	32

The	problem

When	we	first	got	 the	:nth-child()/:nth-of-type()	pseudo-classes
a	 few	years	 ago,	 one	of	 the	most	 common	use	 cases	was	“zebra-striping”
tables	 (Figure	 5.8).	 While	 this	 previously	 required	 server-side	 code,
clientside	 scripts,	 or	 tedious	 handcoding,	 it	 had	 now	 become	 as	 simple	 as
these	lines	of	code:

tr:nth-child(even)	{
				background:	rgba(0,0,0,.2);
}

http://play.csssecrets.io/line-breaks

FIGURE	5.8	Tables	with	zebra-striped	rows	have	always	been	common	both
in	UI	design	(such	as	the	Mac	OS	X	Yosemite	file	listing	shown	here)	as
well	as	print	design,	as	the	zebra	striping	helps	our	eyes	follow	a	long	line
more	easily

However,	we	were	still	 left	powerless	when	it	came	to	applying	the	same
effect	to	lines	of	text,	instead	of	rows	in	a	table.	This	is	especially	useful	for
making	 snippets	 of	 code	more	 readable.	Many	 authors	 ended	 up	 using
JavaScript	to	wrap	every	line	in	its	own	<div>	so	they	can	follow	the	same
:nth-child()	 technique,	 often	 abstracting	 this	 ugliness	 away	 in	 the
syntax	highlighters.	Not	only	is	this	suboptimal	for	theoretical	purity	reasons
(JS	should	not	be	concerned	with	styling),	but	also	because	too	many	DOM
elements	 can	 slow	 down	 the	 page	 and	 it’s	 a	 fragile	 solution	 anyway
(what	happens	when	you	increase	the	text	size	and	one	of	the	“lines”	wraps?).
Is	there	a	better	way?

Many	authors	even	ended	up	requesting	an	:nth-line()	pseudo-class	from	the	CSS	Working
Group,	which	was	rejected	for	performance	reasons.

The	solution

Instead	 of	 applying	 a	 darker	 background	 to	 elements	 that	 represent	 rows,
let’s	 think	 about	 the	 problem	 in	 a	 different	 way.	 Why	 not	 apply	 a

background	 image	 to	 the	 whole	 element,	 and	 have	 the	 zebra	 striping
baked	 in	 it?	This	might	 sound	 like	an	 terrible	 idea	at	 first,	but	 remember
that	 we	 can	 generate	 backgrounds	 directly	 in	 CSS,	 through	 CSS
gradients,	and	size	them	in	ems,	so	that	they	automatically	adapt	to	font-
size	changes.

Let’s	give	 this	 idea	a	 spin	 to	make	the	code	 in	Figure	5.9	zebra	striped.
First,	 we	 need	 to	 create	 horizontal	 stripes,	 in	 the	 way	 described	 in	 the
“Striped	 backgrounds”	 secret	 on	 page	 40.	 The	 background-size
needs	 to	 be	 twice	 the	 line-height,	 as	 each	 stripe	 accounts	 for	 two
lines.	The	code	for	our	first	attempt	would	look	like	this:

FIGURE	5.9	A	snippet	of	code,	without	any	zebra	striping,	just	a	plain	ol’
solid	color	background

padding:	.5em;
line-height:	1.5;
background:	beige;
background-image:	linear-gradient(
																		rgba(0,0,0,.2)	50%,	transparent	0);
background-size:	auto	3em;

As	 Figure	 5.10	 demonstrates,	 the	 result	 is	 very	 close	 to	 what	 we
wanted.	We	can	even	try	to	change	the	font	size,	and	the	stripes	shrink	or
grow	 as	 necessary!	However,	 there’s	 a	 bit	 of	 a	 serious	 issue:	 the	 lines	 are
misaligned,	which	kind	of	defeats	the	purpose.	Why	is	that?

FIGURE	5.10	Our	first	attempt	at	zebra-striping	our	code	snippet

If	 you	 look	 more	 closely	 at	 Figure	 5.10,	 you	 will	 notice	 that	 the	 first
stripe	 begins	 at	 the	 top	 of	 our	 container,	 as	 we	 would	 expect	 from	 a
background	 image.	 However,	 our	 code	 doesn’t	 start	 there,	 as	 then	 it
would	 look	 ugly.	 As	 you	 can	 see,	 we	 have	 applied	 a	 .5em	 padding	 to	 it,
which	is	exactly	the	offset	our	stripes	have	from	where	they	should	be.

One	way	to	solve	this	would	be	to	use	background-position	to	move
the	 stripes	.5em	 to	 the	 bottom.	However,	 if	we	 decide	 to	 later	 adjust	 the
padding,	 we	 would	 also	 need	 to	 adjust	 the	 background	 position	 as	 well,
which	 is	 not	 very	 DRY.	 Can	 we	 make	 the	 background	 automatically
follow	the	padding	length?

Let’s	remember	background-origin	from	the	“Flexible	background
positioning”	secret	on	page	32.	This	is	exactly	what	we	need:	a	way	to	tell
the	browser	to	use	the	content	box	edge	as	the	reference	for	resolving
background-position,	instead	of	the	default,	which	is	the	padding	box
edge.	Let’s	add	that	to	the	mix	as	well:

FIGURE	5.11	The	final	result

padding:	.5em;
line-height:	1.5;
background:	beige;
background-size:	auto	3em;
background-origin:	content-box;
background-image:	linear-gradient(rgba(0,0,0,.2)	50%,
																																		transparent	0);

As	you	can	see	in	Figure	5.11,	this	was	exactly	what	we	needed	to	achieve
the	 zebra-striped	 effect!	 Because	 we	 used	 semi-transparent	 colors	 in	 the
stripes,	we	can	even	adjust	the	background	color,	and	the	zebra	striping	will
still	work.	Basically,	it’s	so	flexible	that	the	only	way	to	break	it*	would	be
to	 change	 the	 line-height,	 without	 changing	 the	 background-
size	accordingly.

Why	did	we	not	just	use	the	background	shorthand	for	all	our	background-related	values?
Because	then	we	would	need	a	separate	fallback	declaration	for	older	browsers,	so	we	would	need
to	include	beige	twice,	making	our	code	WET.

	PLAY! 	play.csssecrets.io/zebra-lines

RELATED
SPECS

http://play.csssecrets.io/zebra-lines

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

CSS	Image	Values

w3.org/TR/css-images

23	Adjusting	tab	width

The	problem

Code-heavy	web	pages,	such	as	documentation	or	tutorials,	come	with	their
own	 styling	 challenges.	The	<pre>	 and	<code>	 elements	 that	we	 use	 to
display	 code	 do	 come	 with	 some	 default	 styling	 by	 the	 user	 agent,	 which
looks	like	this:

FIGURE	5.12	Code	displayed	with	the	default	tab	width	of	eight	characters

pre,	code	{
				font-family:	monospace;
}

pre	{
				display:	block;

http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images

				margin:	1em	0;
				white-space:	pre;
}

However,	this	is	hardly	sufficient	to	account	for	all	the	unique	challenges
of	displaying	code.	One	of	the	biggest	issues	is	that	while	tabs	are	ideal	for
indenting	 code,	 they	 are	 often	 avoided	 on	 the	 Web	 because	 browsers
display	them	with	a	width	of	eight	characters	(!).	Take	a	look	at	Figure	5.12
and	see	how	bad	such	wide	indents	look	and	how	wasteful	they	are:	our	code
didn’t	even	fit	in	its	box!

Did	you	just	wince	at	the	mention	of	tabs	for	indentation?	The	topic	is	out	of	scope	for	this	book,
but	you	can	find	my	reasoning	here	(lea.verou.me/2012/01/why-tabs-are-clearly-
superior).

The	solution

Thankfully,	 in	CSS	Text	Level	3,	we	got	 a	new	CSS	property	 to	 control
that:	tab-size.	It	accepts	a	number	 (of	characters)	or	a	 length	 (which	is
rarely	useful).	We	would	usually	want	to	set	it	at	4	(meaning	four	characters
wide),	or	2,	which	seems	to	be	the	latest	trend	in	indent	sizes:

pre	{
				tab-size:	4;
}

FIGURE	5.13	The	same	code	as	Figure	5.12,	displayed	with	a	tab	width	of

http://lea.verou.me/2012/01/why-tabs-are-clearly-superior

two	characters

As	 you	 can	 verify	 in	Figure	 5.13,	 it	 now	 looks	much	 easier	 to	 read.	 You
could	even	set	tab-size	to	0	to	completely	disable	tabs,	but	that’s	rarely	(if
ever)	a	good	idea,	as	you	can	see	for	yourself	in	Figure	5.14.	If	the	property
is	not	supported,	nothing	breaks—we	just	get	 the	default	awfully	wide	tabs
that	we’ve	learned	to	live	with	all	these	years.

FIGURE	5.14	Code	displayed	with	a	tab	size	of	0,	making	all	tab-based
indents	disappear—don’t	do	this!

	PLAY! 	play.csssecrets.io/tab-size

RELATED
SPECS

CSS	Text

w3.org/TR/css-text

24	Ligatures

http://play.csssecrets.io/tab-size
http://w3.org/TR/css-text

The	problem

Just	like	people,	not	all	glyphs	go	naturally	well	together.	For	example,
take	 f	 and	 i	 in	 most	 serif	 fonts.	 The	 dot	 in	 the	 i	 often	 clashes	 with	 the
ascender	 of	 the	 f,	 making	 the	 pair	 look	 clumsy	 (first	 example	 in	 Figure
5.15).

To	mitigate	this,	type	designers	often	include	extra	glyphs	in	their	fonts,
called	 ligatures.	 These	 are	 individually	 designed	 pairs	 and	 triplets	 of
glyphs,	 destined	 to	 be	 used	 by	 the	 typesetting	 program	 when	 their
equivalent	 characters	 are	 next	 to	 each	 other.	 For	 example,	 look	 at	Figure
5.15	for	some	common	ligatures	and	how	much	better	they	look	than	their
equivalent	glyphs	put	together.

There	are	also	the	so-called	discretionary	ligatures	(Figure	5.16),	which	are
designed	 as	 a	 stylistic	 alternative,	 and	 not	 because	 there	 is	 an	 issue	 when
their	equivalent	pairs	of	characters	are	next	to	each	other.

However,	browsers	never	use	discretionary	 ligatures	by	default	 (which	 is
the	correct	behavior)	and	often	don’t	even	utilize	common	ligatures	(which
is	 a	bug).	 In	 fact,	until	 recently,	 the	only	way	 to	explicitly	use	 any	 ligature
was	to	use	its	equivalent	Unicode	character—for	example,	typing	ﬁ
for	the	fi	ligature.	This	method	brings	more	problems	than	it	solves:

FIGURE	5.15	Common	ligatures	found	in	most	serif	typefaces

In	fact,	the	humble	ampersand	(&)	we	all	know	and	love	started	off	as	a	ligature	of	the	letters	E
and	t	(“et”	is	latin	for	“and”).

Obviously,	it	makes	the	markup	difficult	to	read	and	even	more	difficult
to	write	(good	luck	figuring	out	what	word	deﬁne	is!).

If	the	current	font	doesn’t	include	this	ligature	character,	the	result	will
resemble	ransom	notes	(Figure	5.17).

Not	every	ligature	has	an	equivalent,	standardized,	Unicode	character.
For	example,	the	ct	ligature	does	not	correspond	to	any	Unicode
character	and	any	fonts	that	include	it	need	to	place	it	in	the	Unicode
PUA	(Private	Use	Area)	block.

It	can	break	accessibility	of	the	text,	including	copy/paste,	searches,	and
voice.	Many	applications	are	smart	enough	to	handle	this	well,	but	not
all.	It	even	breaks	search	in	some	browsers.

FIGURE	5.16	Discretionary	ligatures	found	in	many	professionally	designed
serif	typefaces

Surely,	at	this	time	and	age,	there	ought	to	be	a	better	way,	right?

The	solution

In	CSS	Fonts	Level	3	(w3.org/TR/css3-fonts),	the	good	ol’	font-
variant	was	converted	to	a	shorthand,	comprised	of	many	new	longhand
properties.	 One	 of	 them	 is	 font-variant-ligatures,	 designed
specifically	 for	 the	purpose	of	 turning	 ligatures	on	 and	off.	To	 turn	on	all

http://w3.org/TR/css3-fonts

possible	ligatures,	you	would	have	to	use	three	identifiers:

FIGURE	5.17	Using	hardcoded	ligatures	can	often	have	awful	results,	when
the	used	font	doesn’t	have	a	glyph	for	our	ligature

font-variant-ligatures:	common-ligatures
																								discretionary-ligatures
																								historical-ligatures;

The	 property	 is	 inherited.	 You	might	 find	 that	 discretionary	 ligatures	 can
hinder	 readability	 and	 you	might	want	 to	 turn	 them	off.	 In	 that	 case,	 you
might	want	to	only	turn	on	common	ligatures:

font-variant-ligatures:	common-ligatures;

You	can	even	explicitly	turn	the	other	two	kinds	off:

font-variant-ligatures:	common-ligatures
																								no-discretionary-ligatures
																								no-historical-ligatures;

font-variant-ligatures	also	accepts	the	value	none,	which	turns	off
ligatures	 altogether.	Don’t	 use	none	unless	 you	 absolutely	 know	what
you’re	 doing.	 To	 reset	font-variant-ligatures	 to	 its	 initial	 value,
you	should	use	normal,	not	none.

	PLAY! 	play.csssecrets.io/ligatures

RELATED

http://play.csssecrets.io/ligatures

SPECS

CSS	Fonts

w3.org/TR/css-fonts

25	Fancy	ampersands

Prerequisites
Basic	font	embedding	through	@font-face	rules

The	problem

FIGURE	5.18	A	few	nice	ampersands	in	fonts	that	are	readily	available	in
most	computers;	from	left	to	right:	Baskerville,	Goudy	Old	Style,
Garamond,	Palatino	(all	italic)

You	 will	 find	 many	 hymns	 to	 the	 humble	 ampersand	 in	 typographic
literature.	 No	 other	 character	 can	 instantly	 add	 the	 elegance	 a	 nicely
designed	 ampersand	 has	 the	 power	 to	 add.	 Entire	 websites	 have	 been
devoted	to	finding	the	font	with	the	best	looking	ampersands.	However,	the
font	with	 the	nicest	 ampersand	 is	not	necessarily	 the	one	you	want	 for	 the
rest	of	your	text.	After	all,	a	really	beautiful	and	elegant	effect	for	headlines	is
the	contrast	between	a	nice	sans	serif	font	and	beautiful,	intricate	serif
ampersands.
Web	 designers	 realized	 this	 a	 while	 ago,	 but	 the	 techniques	 employed	 to
achieve	it	are	rather	crude	and	tedious.	They	usually	involve	wrapping	every

http://w3.org/TR/css-fonts

ampersand	with	a	,	through	a	script	or	manually,	like	so:

HTML
HTML	&	CSS

Then,	we	apply	the	font	styling	we	want	to	just	the	.amp	class:

FIGURE	5.19	Our	“HTML	&	CSS”	headline,	before	and	after	the	ampersand
treatment

.amp	{
				font-family:	Baskerville,	"Goudy	Old	Style",
																	Garamond,	Palatino,	serif;
				font-style:	italic;
}

This	 works	 fine	 and	 you	 can	 see	 the	 before	 and	 after	 in	 Figure	 5.19.
However,	 the	 technique	 to	 achieve	 it	 is	 rather	messy	 and	 sometimes	 even
downright	 impossible,	 when	 we	 cannot	 easily	modify	 the	HTML	markup
(e.g.,	when	using	a	CMS).	Can’t	we	just	tell	CSS	to	style	certain	characters
differently?

The	solution

It	 turns	out	 that	we	can,	 indeed,	 style	certain	characters	 (or	even	ranges	of
characters)	 with	 a	 different	 font,	 but	 the	 way	 to	 do	 it	 is	 not	 as
straightforward	as	you	might	have	hoped.

We	 usually	 specify	 multiple	 fonts	 (font	 stacks)	 in	 font-family
declarations	so	that	 in	case	our	top	preference	 is	not	available,	 the	browser
can	 fall	back	 to	other	 fonts	 that	would	also	 fit	our	design.	However,	many
authors	forget	that	this	works	on	a	per-character	basis	as	well.	If	a	font	is
available,	 but	 only	 contains	 a	 few	 characters,	 it	 will	 be	 used	 for	 those

characters	and	the	browser	will	fall	back	to	the	other	fonts	for	the	rest.	This
applies	to	both	local	and	embedded	fonts	included	through	@font-face
rules.

It	 follows	 that	 if	 we	 have	 a	 font	 with	 only	one	 character	 (guess	 which
one!),	 it	will	only	be	used	for	that	one	character,	and	all	others	will	get	the
second,	third,	etc.	font	from	our	font	stack.	So,	we	have	an	easy	way	to	only
style	ampersands:	create	a	web	font	with	just	the	ampersand	we	want,	include
it	through	@font-face,	then	use	it	first	in	your	font	stack:

@font-face	{
				font-family:	Ampersand;
				src:	url("fonts/ampersand.woff");
}

h1	{
				font-family:	Ampersand,	Helvetica,	sans-serif;
}

FIGURE	5.20	Including	local	fonts	through	@font-face	results	in	them
being	applied	to	the	whole	text	by	default

While	 this	 is	 very	 flexible,	 it’s	 suboptimal	 if	 all	we	wanted	was	 to	 style
ampersands	with	one	of	the	built-in	fonts.	Not	only	is	it	a	hassle	to	create	a
font	file,	it	also	adds	an	extra	HTTP	request,	not	to	mention	the	potential
legal	issues,	if	the	font	you	were	going	for	forbids	subsetting.	Is	there	a	way
to	use	local	fonts	for	this?

You	 might	 know	 that	 the	 src	 descriptor	 in	 @font-face	 rules	 also
accepts	 a	local()	 function,	 for	 specifying	 local	 font	 names.	 Therefore,
instead	of	a	separate	web	font,	you	could	instead	specify	a	font	stack	of	local
fonts:

@font-face	{
				font-family:	Ampersand;
				src:	local('Baskerville'),
									local('Goudy	Old	Style'),
									local('Garamond'),
									local('Palatino');
}

However,	 if	you	try	to	apply	the	Ampersand	font	now,	you	will	notice	that
our	 serif	 font	was	 applied	 to	 the	entire	 text	 (Figure	 5.20),	 as	 these	 fonts
include	all	characters.	This	doesn’t	mean	we’re	going	the	wrong	way;	it	just
means	we	are	missing	a	descriptor	to	declare	that	we	are	only	interested	in
the	ampersand	glyph	from	these	local	fonts.	Such	a	descriptor	exists,	and	its
name	is	unicode-range.

The	unicode-range	 descriptor	 only	works	 inside	@font-face	 rules
(hence	the	term	descriptor;	it	is	not	a	CSS	property)	and	limits	the	characters
used	to	a	subset.	It	works	with	both	local	and	remote	fonts.	Some	browsers
are	even	smart	enough	to	not	download	remote	fonts	if	those	characters	are
not	used	in	the	page!

Unfortunately,	unicode-range	 is	as	cryptic	 in	its	syntax	as	it	 is	useful
in	 its	 application.	 It	 works	 with	 Unicode	 codepoints,	 not	 literal	 characters.
Therefore,	 before	 using	 it,	 you	need	 to	 find	 the	hexadecimal	 codepoint	 of
the	character(s)	you	want	to	specify.	There	are	numerous	online	sources	for
that,	or	you	can	just	use	the	following	snippet	of	JS	in	the	console:

JS
"&".charCodeAt(0).toString(16);	//	returns	26

	 String#charCodeAt()	 returns	 incorrect	 results	 for	 Unicode	 characters	 beyond	 the
BMP	(Basic	Multilingual	Plane).	However,	99.9%	of	the	characters	you	will	need	to	look	up	will
be	in	it.	If	the	result	you	get	is	in	the	D800-DFFF	range,	it	means	you	have	an	“astral”	character
and	you’re	better	off	using	a	proper	online	tool	to	figure	out	what	its	Unicode	codepoint	is.	The
ES6	method	String#codePointAt()	will	solve	this	issue.

Now	that	you	have	the	hex	codepoint(s),	you	can	prepend	them	with	U+	and
you’ve	already	specified	a	single	character!	Here’s	how	the	declaration	would
look	for	our	ampersand	use	case:

unicode-range:	U+26;

If	you	wanted	to	specify	a	range	of	characters,	you	would	still	need	one	U+,
like	 so:	U+400-4FF.	 In	 fact,	 for	 that	 kind	 of	 range,	 you	 could	 have	 used
wildcards	and	specified	it	as	U+4??	instead.	Multiple	characters	or	ranges

are	also	allowed,	separated	by	commas,	such	as	U+26,	U+4??,	U+2665-
2670.	In	this	case,	however,	a	single	character	is	all	we	need.	Our	code	now
looks	like	this:

@font-face	{
				font-family:	Ampersand;
				src:	local('Baskerville'),
									local('Goudy	Old	Style'),
									local('Palatino'),
									local('Book	Antiqua');
				unicode-range:	U+26;
}

h1	{
				font-family:	Ampersand,	Helvetica,	sans-serif;
}

FIGURE	5.21	Applying	a	different	font	to	our	ampersands,	with	the	help	of
font	stacks	and	the	unicode-range	descriptor

If	you	 try	 it	out	 (Figure	5.21),	 you	will	 see	 that	we	did,	 in	 fact,	 apply	a
different	font	to	our	ampersands!	However,	the	result	is	still	not	exactly	what
we	want.	The	ampersand	 in	Figure	5.19	was	 from	the	 italic	variant	of	 the
Baskerville	 font,	as	 in	general,	 italic	serif	 fonts	tend	to	have	much	nicer
ampersands.	 We’re	 not	 styling	 the	 ampersands	 directly,	 so	 how	 can	 we
italicize	them?

Our	 first	 thought	 might	 be	 to	 use	 the	 font-style	 descriptor	 in	 the
@font-face	rule.	However,	this	does	not	have	the	effect	we	want	at	all.	It
merely	 tells	 the	 browser	 to	 use	 these	 fonts	 in	 italic	 text.	Therefore,	 it	will
make	our	Ampersand	font	be	completely	ignored,	unless	the	whole	headline
is	italic	(in	which	case,	we	will	indeed	get	the	nice	italic	ampersand).

Unfortunately,	 the	only	 solution	here	 is	 a	 bit	 of	 a	 hacky	one:	 instead	of
using	 the	 font	 family	 name,	 we	 need	 to	 use	 the	 PostScript	 Name	 of	 the
individual	 font	style/weight	we	want.	So,	 to	get	 the	 italic	 versions	of	 the
fonts	we	used,	the	final	code	would	look	like	this:

To	find	a	font’s	PostScript	Name	in	Mac	OS	X,	select	it	in	the	FontBook	application	and	press	

I.

@font-face	{
				font-family:	Ampersand;
				src:	local('Baskerville-Italic'),
									local('GoudyOldStyleT-Italic'),
									local('Palatino-Italic'),
									local('BookAntiqua-Italic');
				unicode-range:	U+26;
}

h1	{
				font-family:	Ampersand,	Helvetica,	sans-serif;
}

And	this	finally	works	great	to	give	us	the	ampersands	we	wanted,	just	like	in
Figure	5.19.	Unfortunately,	if	we	need	to	customize	their	styling	even	more
(e.g.,	 to	 increase	 their	 font	 size,	 reduce	 their	opacity,	or	anything	else),	we
would	 need	 to	 go	 the	HTML	element	 route.	However,	 if	we	 only	want	 a
different	 font	and	 font	 style/weight,	 this	 trick	works	wonders.	You	can	use
the	same	general	idea	to	also	style	numbers	with	a	different	font,	symbols,
punctuation—the	possibilities	are	endless!

	PLAY! 	play.csssecrets.io/ampersands

Hat	 tip	 to	Drew	McLellan	(allinthehead.com)	 for	 coming	 up	with	 the
first	 version	 of	 this	 effect	 (24ways.org/2011/creating-custom-
font-stacks-with-unicode-range).

RELATED
SPECS

CSS	Fonts

http://play.csssecrets.io/ampersands
http://allinthehead.com
http://24ways.org/2011/creating-custom-font-stacks-with-unicode-range

w3.org/TR/css-fonts

26	Custom	underlines

Prerequisites
CSS	 gradients,	 background-size,	 text-shadow,	 the	 “Striped
backgrounds”	secret	on	page	40

The	problem

Designers	 are	 a	 picky	 bunch.	 We	 always	 strive	 to	 customize	 things	 and
carefully	craft	them	to	closely	match	our	vision	and	make	our	designs	more
intuitive	and	easier	to	use.	The	default	is	rarely	good	enough.

Text	underlines	are	one	of	those	things	we’d	love	to	customize.	Although
the	default	is	useful,	it’s	usually	too	intrusive,	not	to	mention	it’s	rendered
differently	 in	every	browser.	Although	 text	underlines	have	been	with	us
since	 the	 dawn	 of	 the	Web,	 we	 never	 really	 got	 more	 ways	 to	 customize
them.	 Even	 after	CSS	 came	 along,	 it	merely	 gave	 us	 an	 on/off	 switch	 for
them:

text-decoration:	underline;

As	 usual,	 when	 we	 are	 not	 given	 the	 tools	 we	 need,	 we	 hack	 them
together.	We	had	no	way	to	customize	text	underlines,	so	we	started	faking
them	with	 borders,	 probably	 one	 of	 the	 first	CSS	 tricks	 we	 ever	 came	 up
with:

http://w3.org/TR/css-fonts

FIGURE	5.22	Fake	underlines	created	with	border-bottom

a[href]	{
				border-bottom:	1px	solid	gray;
				text-decoration:	none;
}

While	 emulating	 a	 text	 underline	 with	 border-bottom	 gave	 us	 control
over	color,	 thickness,	and	style,	 it	wasn’t	perfect.	As	you	can	see	 in	Figure
5.22,	 these	 “underlines”	 have	 a	very	 large	distance	 from	 the	 text,	 being
even	underneath	the	descenders	of	the	glyphs!	We	could	attempt	to	fix	the
issue	 by	 giving	 the	 links	 a	 display	 of	 inline-block	 and	 a	 smaller
line-height,	like	so:

FIGURE	5.23	Trying	to	fix	the	issue	with	border-based	“underlines”	works,
until	the	text	needs	to	wrap—then	hell	breaks	loose

display:	inline-block;
border-bottom:	1px	solid	gray;
line-height:	.9;

This	works	to	bring	the	underline	closer	to	the	text,	but	it	prevents	proper
text	wrapping,	as	you	can	see	in	Figure	5.23.

These	 days,	 we	 might	 try	 to	 use	 an	 inset	 box-shadow	 to	 emulate	 an
underline:

box-shadow:	0	-1px	gray	inset;

How	much	closer?	As	much	as	the	line	thickness,	as	the	only	difference	of	this	method	is	that	it’s
drawn	inside	the	box.

However,	 this	 has	 the	 same	 issues	 as	border-bottom,	 except	 that	 it’s
drawn	 slightly	 closer	 to	 the	 text.	 Is	 there	 any	 way	 to	 get	 proper,	 flexible,
custom	underlines?

The	solution

Often	the	best	solutions	come	from	the	most	unexpected	places.	In	this	case,
it	 comes	 in	 the	 form	of	background-image	 and	 related	properties.	You
might	 think	 this	 is	 insane,	 but	bear	with	me	 for	 a	bit.	Backgrounds	 follow
wrapped	text	perfectly,	and	with	the	new	background-related	properties	we
got	in	CSS	Backgrounds	&	Borders	Level	3	such	as	background-size,
we	have	very	fine-grained	control	over	them.	We	don’t	even	need	a	separate
HTTP	request	for	them,	as	we	can	generate	the	image	on	the	fly,	through
CSS	gradients:

background:	linear-gradient(gray,	gray)	no-repeat;
background-size:	100%	1px;
background-position:	0	1.15em;

You	 can	 see	 how	 elegant	 and	 unobtrusive	 the	 result	 looks	 in	 Figure
5.24.	However,	we	can	still	make	one	small	 improvement.	Notice	how	our
underlines	cross	the	descenders	of	letters	like	p	and	y.	Wouldn’t	it	look	so
much	 nicer	 if	 there	 was	 some	 breathing	 space	 around	 them?	 If	 our
background	is	a	solid	color,	we	can	fake	that	with	two	solid	text-shadows
in	the	same	color	as	our	background	(Figure	5.25):

TRIVIA 	Text	underlines	in	the	future
In	the	future,	we	will	not	have	to	resort	to	such	hacks	for	customizing	our
underlines.	 There	 are	 several	 properties	 planned	 in	 CSS	 Text
Decoration	 Level	 3	 (w3.org/TR/css-text-decor-3),	 specifically
for	this,	such	as:

text-decoration-color	to	customize	the	color	of	underlines
and	other	decorations

http://w3.org/TR/css-text-decor-3

text-decoration-style	to	customize	the	style	of	decorations
(e.g.,	solid,	dashed,	wavy,	etc.)

text-decoration-skip	to	skip	spaces,	descenders,	and	other
objects

text-underline-position	to	fine-tune	the	exact	placement	of
the	underline	line

However,	these	properties	currently	have	very	little	browser	support.

FIGURE	5.24	Our	carefully	crafted	custom	underlines,	through	CSS
gradients

background:	linear-gradient(gray,	gray)	no-repeat;
background-size:	100%	1px;
background-position:	0	1.15em;
text-shadow:	.05em	0	white,	-.05em	0	white;

The	 brilliant	 thing	 about	 using	 gradients	 for	 this	 is	 that	 they	 are
extremely	flexible.	For	example,	to	create	a	dashed	underline,	you	could	do
something	like	(Figure	5.26):

FIGURE	5.25	Our	custom	underlines,	treated	with	text-shadow	to	not
cross	our	descenders

background:	linear-gradient(90deg,
												gray	66%,	transparent	0)	repeat-x;
background-size:	.2em	2px;
background-position:	0	1em;

FIGURE	5.26	Fully	customized	dashed	underlines,	with	CSS	gradients

Then	 you	 could	 control	 the	 dash	 and	 gap	 proportion	 via	 the	 color	 stop
positions	and	their	size	via	background-size.

	PLAY! 	play.csssecrets.io/underlines

As	 an	 exercise,	 you	 could	 try	 to	 create	wavy	 red	 underlines,	 such	 as	 the
ones	 used	 for	 highlighting	 spelling	 mistakes.	 (Hint:	 You	 will	 need	 two
gradients.)	You	will	find	the	solution	in	the	following	Play!	example,	but	try
to	avoid	peeking	at	the	solution	without	giving	it	a	shot—it’s	more	fun	that
way!

	PLAY! 	play.csssecrets.io/wavy-underlines

Hat	 tip	 to	Marcin	Wichary	(aresluna.org)	 for	 coming	up	with	 the	 first
version	 of	 this	 effect	 (medium.com/designing-medium/crafting-
link-underlines-on-medium-7c03a9274f9).

RELATED

http://play.csssecrets.io/underlines
http://play.csssecrets.io/wavy-underlines
http://aresluna.org
http://medium.com/designing-medium/crafting-link-underlines-on-medium-7c03a9274f9

SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

CSS	Image	Values

w3.org/TR/css-images

CSS	Text	Decoration

w3.org/TR/css-text-decor

27	Realistic	text	effects

Prerequisites
Basic	text-shadow

The	problem

Sometimes,	 certain	 text	 treatments	 become	 very	 widespread	 on	 the	Web.
For	example,	letterpress	text,	blurring	text	on	mouseover,	extruded	(pseudo-
3D)	 text,	 and	 so	 on.	 These	 usually	 depend	 on	 a	 combination	 of	 carefully
crafted	text	shadows,	and	some	knowledge	of	how	our	eyes	work,	as	many	of
these	are	based	on	optical	illusions	to	some	degree.	They	are	easy	to	make,
once	you	know	the	tricks	involved,	but	not	always	as	easy	to	reverse	engineer
through	developer	tools.

This	secret	is	devoted	to	creating	such	effects,	so	that	you	never	again	find
yourself	wondering,	“How	on	Earth	does	this	effect	work?”

http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-text-decor

FIGURE	5.27	It’s	easy	to	forgo	accessibility	when	using	such	effects,	but
never	forget	to	test	your	contrast	ratios	(a	useful	tool	for	this	is
leaverou.github.io/contrast-ratio,	as	it	accepts	any	supported	CSS	color
format)

Letterpress

The	 letterpress	 effect	 is	 one	 of	 the	 most	 popular	 text	 treatments	 on
skeuomorphic	design	websites.	While	skeuomorphic	design	is	not	as	trendy
as	it	used	to	be,	it	will	always	have	its	devoted	fans.

This	 effect	works	best	with	 a	medium	 lightness	 background	with	darker
text,	but	it	can	also	be	used	with	lighter	text	on	darker	backgrounds,	as	long
as	the	text	is	not	black	and	the	background	is	not	completely	white	or	black.

It’s	based	on	the	same	premise	that	has	been	used	since	the	very	first	GUIs
to	create	the	impression	of	pressed	or	extruded	buttons:	a	lighter	shadow	at
the	bottom	(or	a	darker	one	at	the	top)	creates	the	illusion	that	an	object	is
“carved	in”	the	main	surface.	Similarly,	a	darker	shadow	at	the	bottom	(or	a
lighter	one	at	the	top),	creates	the	illusion	that	an	object	is	extruded	from
the	main	surface.	The	reason	this	works	is	that	we	usually	assume	that	the
light	 source	 is	 above	 us,	 so	 an	 extruded	 object	 would	 create	 a	 shadow
underneath	it,	and	an	embossed	object	would	be	lit	at	the	bottom.

http://leaverou.github.io/contrast-ratio

FIGURE	5.28	The	letterpress	effect	on	dark	text	on	a	lighter	background
(top:	before,	bottom:	after)

Let’s	use	the	colors	in	Figure	5.28	as	a	starting	point.	The	text	color	is	

hsl(210,	 13%,	 30%)	 and	 hsl(210,	 13%,	 60%)	 is	 the
background	color:

background:	hsl(210,	13%,	60%);
color:	hsl(210,	13%,	30%);

When	we	have	darker	text	on	lighter	background	(like	in	our	example	here),
a	 lighter	shadow	at	 the	bottom	usually	works	best.	How	 light	depends
on	the	exact	colors	you	have	and	how	subtle	you	want	the	effect	to	be,	so	you
need	to	experiment	a	bit	with	the	alpha	parameter	until	it	looks	good.	In	this
case,	we	settled	on	80%	white,	but	your	mileage	may	vary:

background:	hsl(210,	13%,	60%);
color:	hsl(210,	13%,	30%);
text-shadow:	0	1px	1px	hsla(0,0%,100%,.8);

FIGURE	5.29	Letterpress	gone	wrong:	applying	the	previous	effect	on	text
that	is	lighter	than	its	background

You	can	see	the	result	in	Figure	5.28.	In	this	case,	we	used	pixels	instead
of	ems	for	the	effect,	but	if	you	have	text	that	could	be	any	size,	from	tiny	to
very	large,	ems	might	suit	your	case	better:

text-shadow:	0	.03em	.03em	hsla(0,0%,100%,.8);

What	 happens	when	we	 have	 lighter	 text	 on	 a	 darker	 background?	Our
shadow	above	would	yield	awful	results	 if	 the	colors	were	reversed	(Figure
5.29),	making	our	text	blurry.	Does	this	mean	we	cannot	apply	a	letterpress
effect	in	this	case?	No,	it	just	means	we	need	to	adjust	our	approach.	In	these
cases,	 a	 darker	 shadow	on	 the	 top	works	 best,	 as	 you	 can	 verify	 in	Figure
5.30.	The	CSS	code	would	look	like	this:

FIGURE	5.30	Letterpress	effect	when	using	lighter	text	on	darker
background	(top:	before,	bottom:	after)

background:	hsl(210,	13%,	40%);
color:	hsl(210,	13%,	75%);
text-shadow:	0	-1px	1px	black;

	PLAY! 	play.csssecrets.io/letterpress

Stroked	text

In	the	future,	outlined/stroked	text	will	be	quite	easy,	as	we	will	be	able	to
just	 use	 the	 spread	 parameter	 of	text-shadows	 to	make	 them	 larger	 so
that	 they	 look	 like	 a	 stroke,	 akin	 to	 how	 we	 use	 box-shadow	 spread	 to
emulate	 outlines.	Unfortunately,	 browser	 support	 for	 this	 is	 currently	 very
limited,	so	we	have	to	resort	to	other	ways	to	emulate	it,	with	more	or	less
satisfying	results.

FIGURE	5.31	True	stroked	text,	via	text-shadow	spread

The	 most	 widespread	 way	 is	 to	 layer	 multiple	 text-shadows	 with
slightly	different	offsets,	like	so	(Figure	5.32):

background:	deeppink;
color:	white;
text-shadow:	1px	1px	black,	-1px	-1px	black,
													1px	-1px	black,	-1px	1px	black;

http://play.csssecrets.io/letterpress

FIGURE	5.32	Fake	1px	outline	by	layering	multiple	text-shadows

Alternatively,	 you	 could	 layer	 multiple	 slightly	 blurred	 shadows,	 with	 no
offsets:

text-shadow:	0	0	1px	black,	0	0	1px	black,
													0	0	1px	black,	0	0	1px	black,
													0	0	1px	black,	0	0	1px	black;

However,	this	doesn’t	always	produce	great	results	and	is	more	expensive
performance-wise,	due	to	blurring.

Unfortunately,	 the	 thicker	 the	 stroke,	 the	worse	 the	 result	both	of	 these
ideas	produce.	For	example,	see	how	bad	a	3px	outline	looks	(Figure	5.33):

FIGURE	5.33	An	(awful)	3px	outline,	created	with	multiple	text-
shadows	with	slightly	different	offsets

background:	deeppink;
color:	white;
text-shadow:	3px	3px	black,	-3px	-3px	black,
													3px	-3px	black,	-3px	3px	black;

There	is	always	the	solution	of	using	SVG,	but	it	adds	a	lot	of	cruft	to	our

markup.	For	 example,	 assume	we	wanted	 to	 use	 it	 in	 a	 first-level	 heading.
The	HTML	would	look	like	this:

FIGURE	5.34	Using	SVG	for	proper	thick	outlines

SVG
<h1><svg	width="2em"	height="1.2em">
				<use	xlink:href="#css"	/>
				<text	id="css"	y="1em">CSS</text>
</svg></h1>

Then	in	our	CSS,	we’d	write	something	like:

h1	{
				font:	500%/1	Rockwell,	serif;
				background:	deeppink;
				color:	white;
}

h1	text	{
				fill:	currentColor;
}

h1	svg	{	overflow:	visible	}

h1	use	{
				stroke:	black;
				stroke-width:	6;
				stroke-linejoin:	round;
}

Certainly	not	ideal,	but	it	produces	the	best	visual	results	(Figure	5.34),	and
even	 in	 ancient	 browsers	 where	 SVG	 is	 not	 supported,	 the	 text	 is	 still
readable,	styled,	and	crawlable.

	PLAY! 	play.csssecrets.io/stroked-text

Glowing	text

Glowing	text	is	a	rather	common	effect	for	hovering	over	links,	or	headlines
in	 certain	 types	 of	 websites.	 It’s	 one	 of	 the	 easiest	 effects	 to	 create.	 In	 its
simplest	form	you	just	use	a	couple	layered	text-shadows,	with	no	offsets
and	the	same	color	as	the	text	(Figure	5.35):

FIGURE	5.35	Glowing	text	with	only	two	simple	text-shadows

background:	#203;
color:	#ffc;
text-shadow:	0	0	.1em,	0	0	.3em;

If	used	as	a	hover	effect,	you	should	also	include	a	transition,	like	so:

a	{
				background:	#203;
				color:	white;
				transition:	1s;
}
a:hover	{
				text-shadow:	0	0	.1em,	0	0	.3em;
}

http://play.csssecrets.io/stroked-text

FIGURE	5.36	Pseudo-blurred	text,	by	hiding	the	text	and	showing	only	its
shadows

You	can	create	 an	even	more	 interesting	effect	by	hiding	 the	 text	 itself	on
:hover,	 effectively	making	 it	 appear	 like	 it’s	 slowly	 blurring	 (see	Figure
5.36):

a	{
				background:	#203;
				color:	white;
				transition:	1s;
}
a:hover	{
				color:	transparent;
				text-shadow:	0	0	.1em	white,	0	0	.3em	white;
}

However,	keep	in	mind	that	depending	on	text-shadow	for	text	to	appear
does	not	degrade	gracefully:	if	text-shadow	is	not	supported,	no	text	will
show	up.	So,	you	need	to	be	careful	to	only	apply	this	in	environments	that
support	text-shadow.	 Alternatively,	 you	 can	 blur	 the	 text	 through	CSS
filters:

a	{
				background:	#203;
				color:	white;
				transition:	1s;
}
a:hover	{
				filter:	blur(.1em);
}

It	may	have	worse	browser	support	this	way,	but	at	least	nothing	will	break
when	it’s	not	supported.

	PLAY! 	play.csssecrets.io/glow

Extruded	text

http://play.csssecrets.io/glow

Another	popular	(and	perhaps	overused)	effect	in	skeuomorphically	designed
websites	 is	 extruded	 (pseudo-3D)	 text	 (Figure	 5.37).	 The	 main	 idea	 is
having	 lots	 of	 stacked	 shadows,	 with	 no	 blur	 and	 only	 1px	 difference,
getting	progressively	darker,	with	a	highly	blurred	dark	shadow	at	 the	end,
emulating	the	shade	the	whole	thing	would	create.

Let’s	 use	 the	 text	 on	 Figure	 5.38	 as	 a	 starting	 point,	 which	 is	 styled
through	this	simple	CSS	code:

FIGURE	5.37	Extruded	text	through	multiple	CSS	text-shadows

background:	#58a;
color:	white;

FIGURE	5.38	Our	starting	point

Now	let’s	add	a	few	progressively	darker	text-shadows:

background:	#58a;
color:	white;
text-shadow:	0	1px	hsl(0,0%,85%),
													0	2px	hsl(0,0%,80%),
													0	3px	hsl(0,0%,75%),
													0	4px	hsl(0,0%,70%),
													0	5px	hsl(0,0%,65%);

As	you	can	see	in	Figure	5.39,	we’re	getting	there,	but	the	result	still	looks
quite	unrealistic.	Believe	it	or	not,	all	we	need	to	go	from	this	to	the	finished

result	in	Figure	5.37	is	one	more	shadow	at	the	bottom:

FIGURE	5.39	Almost	there,	but	still	looks	unrealistic

background:	#58a;
color:	white;
text-shadow:	0	1px	hsl(0,0%,85%),
													0	2px	hsl(0,0%,80%),
													0	3px	hsl(0,0%,75%),
													0	4px	hsl(0,0%,70%),
													0	5px	hsl(0,0%,65%),
													0	5px	10px	black;

	PLAY! 	play.csssecrets.io/extruded

This	 kind	 of	 repetitive,	 unwieldy	 code	 is	 a	 prime	 candidate	 for	 a
preprocessor	mixin.	Here	is	one	way	we	could	do	this	in	SCSS:

SCSS
@mixin	text-3d($color:	white,	$depth:	5)	{
				$shadows:	();
				$shadow-color:	$color;

				@for	$i	from	1	through	$depth	{
								$shadow-color:	darken($shadow-color,	10%);
								$shadows:	append($shadows,
																				0	($i	*	1px)	$shadow-color,	comma);
				}

				color:	$color;
				text-shadow:	append($shadows,
																			0	($depth	*	1px)	10px	black,	comma);
}

h1	{	@include	text-3d(#eee,	4);	}

http://play.csssecrets.io/extruded

There	 are	 many	 variations	 of	 this	 effect.	 For	 example,	 by	 having	 all
shadows	be	 black	and	removing	the	last	blurry	shadow,	you	can	emulate
a	typography	effect	commonly	found	in	old/retro	signage	(Figure	5.40):

FIGURE	5.40	Retro-style	typography

color:	white;
background:	hsl(0,50%,45%);
text-shadow:	1px	1px	black,	2px	2px	black,
													3px	3px	black,	4px	4px	black,
													5px	5px	black,	6px	6px	black,
													7px	7px	black,	8px	8px	black;

This	one	is	even	easier	to	convert	to	a	mixin,	or	—	more	appropriately	for
this	case	—	a	function:

SCSS
@function	text-retro($color:	black,	$depth:	8)	{
				$shadows:	(1px	1px	$color,);

				@for	$i	from	2	through	$depth	{
								$shadows:	append($shadows,
																				($i*1px)	($i*1px)	$color,	comma);
				}

				@return	$shadows;
}

h1	{
				color:	white;
				background:	hsl(0,50%,45%);
				text-shadow:	text-retro();
}

RELATED
SPECS

CSS	Text	Decoration

w3.org/TR/css-text-decor

28	Circular	text

Prerequisites
Basic	SVG

The	problem

Although	it’s	not	a	particularly	common	effect,	sometimes	the	need	arises	to
have	a	short	line	of	text	follow	a	circular	path.	When	that	time	comes,	CSS
leaves	us	in	the	cold.	There	is	no	CSS	property	or	feature	to	achieve	this	and
the	only	CSS	ways	we	can	think	of	are	so	hacky	they	make	us	feel	dirty	just
for	thinking	about	them.	Is	there	any	way	to	achieve	such	a	type	treatment
without	resorting	to	images	and	without	losing	our	sanity	and	self-respect?

The	solution

There	are	a	few	scripts	out	there	to	accomplish	this.	They	rely	on	wrapping
each	 letter	 in	 a	 separate		 element	 and	 rotating	 them	 separately	 to
form	a	circle.	Not	only	is	this	extremely	hacky,	it	also	adds	a	lot	of	bloat	and
dozens	of	DOM	elements	to	our	page	for	no	good	reason.

http://w3.org/TR/css-text-decor

FIGURE	5.41	Circular	text	used	on	juliancheal.co.uk	for	the	buttons
(see	what	I	did	there?)	on	the	left	side;	note	that	circular	text	here	was	the
only	way	to	avoid	breaking	the	button	metaphor,	as	the	center	of	the
button	shape	is	taken	by	the	holes	and	thread

Although	there	is	currently	no	better	way	to	accomplish	this	with	pure
CSS,	we	 can	 easily	 do	 it	with	a	 little	 inline	SVG.	 SVG	natively	 supports
text	on	any	path,	and	circles	are	 just	a	special	case	of	a	path.	Let’s	give	it	a
shot!

The	basic	way	text	on	a	path	works	in	SVG	is	by	having	a	<textPath>
element	containing	our	 text,	 inside	a	<text>	 element.	The	<textPath>
element	also	references	a	<path>	element	defining	our	path	by	its	id.	Text
within	 inline	 SVG	 also	 inherits	 most	 of	 our	 font	 styling	 (except	 line-
height,	 as	 that’s	manual	 in	SVG),	 so	we	don’t	have	 to	worry	 about	 that,
like	we	do	with	an	external	SVG	image.

Unfortunately,	<textPath>	only	works	with	<path>	elements,	which	is	why	we	cannot	use	the
much	more	readable	<circle>	element	for	our	circle.

Let’s	assume	we	want	to	style	the	phrase	“circular	reasoning	works	because”
as	circular	text,	occupying	the	entire	circumference	of	a	circle,	like	it	looks	in
Figure	5.42.	We	start	by	adding	an	inline	SVG	inside	our	HTML	element,
and	defining	a	path	for	our	circle:

http://juliancheal.co.uk

SVG
<div	class="circular">
				<svg	viewBox="0	0	100	100">
								<path	d="M	0,50	a	50,50	0	1,1	0,1	z"
														id="circle"	/>
				</svg>
</div>

FIGURE	5.42	The	final	result	we	want	to	accomplish

Note	that	we	defined	its	units	via	viewBox	and	not	the	width	and	height
attributes.	This	 enables	us	 to	 set	 the	coordinate	 system	and	aspect	 ratio	of
the	 graphic,	 without	 it	 having	 an	 intrinsic	 size.	 Not	 only	 is	 this	 more
compact,	it	also	saves	us	a	few	lines	of	CSS,	as	we	no	longer	need	to	apply	a
width	and	height	of	100%	to	the	<svg>	element—it	just	naturally	adjusts	to
the	size	of	its	container.

If	you	do	not	understand	the	path	syntax,	do	not	worry.	Hardly	anyone
does,	and	even	those	initiated	into	the	secret	art	of	SVG	path	syntax	tend	to
forget	 about	 it	 in	 a	 matter	 of	 minutes.	 If	 you	 are	 curious,	 the	 three
commands	this	exceedingly	cryptic	syntax	includes	are:

Why	is	the	SVG	path	syntax	so	cryptic?	Back	when	it	was	designed,	it	was	believed	that
nobody	would	author	SVG	by	hand,	so	the	SVG	WG	went	for	the	most	compact	syntax	possible,
to	reduce	filesize.

M	0,50:	Move	to	the	point	(0,50)

a	50,50	0	1,1	0,1:	Draw	an	arc	from	the	point	you	are	at	currently,
to	a	point	that	is	0	units	to	the	right	and	1	unit	to	the	bottom	of	your
current	position.	The	arc	should	have	a	radius	of	50,	both	horizontally
and	vertically.	Out	of	the	two	possible	angles,	pick	the	largest	and
out	of	those	two	possible	arcs,	pick	the	one	on	the	right	of	the	two
points,	not	the	one	on	the	left.

z:	Close	the	path	via	a	straight	line	segment.

Currently,	our	path	is	just	a	black	circle	(Figure	5.43).	We	add	the	text	via
the	 <text>	 and	 <textPath>	 elements	 and	 link	 it	 to	 our	 circle	 via	 the
xlink:href	property,	like	so:

FIGURE	5.43	Our	path	is	currently	a	circle,	with	the	default	 black	fill

SVG
<div	class="circular">
				<svg	viewBox="0	0	100	100">
								<path	d="M	0,50	a	50,50	0	1,1	0,1	z"
														id="circle"	/>
								<text><textPath	xlink:href="#circle">
												circular	reasoning	works	because
								</textPath></text>
				</svg>
</div>

As	you	can	see	in	Figure	5.44,	although	we	still	have	a	lot	of	work	to	do
to	 make	 this	 presentable	 and	 readable,	 we’ve	 already	 achieved	 something
that	we	could	not	in	a	million	years	have	done	with	CSS!

The	next	step	would	be	to	remove	the	black	fill	from	our	circle	path.
We	don’t	want	the	circle	to	be	visible	in	any	way;	we	only	want	it	to	act	as	a
guide	for	our	text.	There	are	many	ways	to	do	that,	such	as	nesting	it	into	a
<defs>	 element	 (which	 is	designed	 for	 this	 very	purpose).	However,	here
we	want	to	minimize	the	amount	of	SVG	markup	we	need	for	this	effect,	so
we	are	going	to	apply	a	fill:	none	via	CSS:

.circular	path	{	fill:	none;	}

FIGURE	5.44	Although	there	is	a	lot	left	to	do,	we	have	already	achieved
something	that	CSS	simply	cannot	do

Now	that	 the	black	circle	 is	gone	 (Figure	5.45),	we	can	study	 the	other
problems	more	carefully.	The	next	biggest	issue	is	that	most	of	our	text	is
outside	the	SVG	element,	and	clipped	by	it.	To	correct	this,	we	need	to
make	our	containing	element	smaller,	and	apply	overflow:	visible	to
the	SVG	element,	so	that	it	doesn’t	clip	any	content	outside	its	viewport:

FIGURE	5.45	After	making	our	path	invisible,	the	other	issues	become
easier	to	see

.circular	{
				width:	30em;
				height:	30em;
}

.circular	svg	{
				display:	block;
				overflow:	visible;
}

You	can	 see	 the	 result	 in	Figure	5.46.	Note	 that	we	are	almost	 there,	but
some	 text	 is	 still	 clipped.	The	 reason	 is	 that	 the	SVG	element	 affects	 flow
only	based	on	its	dimensions,	not	its	overflow.	Therefore,	the	fact	that	there
is	text	overflowing	outside	the	box	the	<svg>	element	creates	does	not	push
the	SVG	element	down.	We	need	to	do	that	manually,	via	a	margin:

FIGURE	5.46	Top:	Applying	a	width	and	height	to	our	container	element
Bottom:	Adding	overflow:	visible	to	the	mix

.circular	{
				width:	30em;
				height:	30em;
				margin:	3em	auto	0;
}

.circular	svg	{
				display:	block;
				overflow:	visible;
}

That’s	 it!	Our	example	now	 looks	exactly	 like	Figure	5.42,	 and	 the	 text	 is
perfectly	 accessible.	 If	 we	 only	 have	 one	 instance	 of	 circular	 text	 (e.g.,	 a

website	 logo),	 then	 we	 are	 done.	 However,	 if	 we	 have	 more	 than	 one
instance	of	this	type	treatment,	we	don’t	want	to	have	to	repeat	this	SVG
markup	 every	 time.	 To	 avoid	 that,	 we	 can	 write	 a	 short	 script	 that
generates	the	necessary	SVG	elements	automatically,	from	markup	like	this:

HTML
<div	class="circular">
				circular	reasoning	works	because
</div>

The	 code	 would	 go	 through	 all	 elements	 with	 a	 class	 of	 “circular”,
remove	 their	 text	 and	 store	 it	 in	 a	 variable,	 and	 add	 the	 necessary	 SVG
elements	to	it:

JS
$$('.circular').forEach(function(el)	{
				var	NS	=	"http://www.w3.org/2000/svg";
				var	xlinkNS	=	"http://www.w3.org/1999/xlink";
				var	svg	=	document.createElementNS(NS,	"svg");
				var	circle	=	document.createElementNS(NS,	"path");
				var	text	=	document.createElementNS(NS,	"text");
				var	textPath	=	document.createElementNS(NS,	"textPath");

				svg.setAttribute("viewBox",	"0	0	100	100");

				circle.setAttribute("d",	"M0,50	a50,50	0	1,1	0,1z");
				circle.setAttribute("id",	"circle");

				textPath.textContent	=	el.textContent;
				textPath.setAttributeNS(xlinkNS,	"xlink:href",	"#circle");

				text.appendChild(textPath);
				svg.appendChild(circle);
				svg.appendChild(text);
				el.textContent	=	'';
				el.appendChild(svg);
});

	PLAY! 	play.csssecrets.io/circular-text

http://play.csssecrets.io/circular-text

RELATED
SPECS

Scalable	Vector	Graphics	(SVG)

w3.org/TR/SVG

http://w3.org/TR/SVG

6	User	Experience

29	Picking	the	right	cursor

The	problem

The	purpose	of	a	mouse	pointer	is	not	just	to	display	where	the	cursor	is	on
the	screen,	but	also	to	communicate	which	actions	are	possible	to	the	user.
This	 common	UX	practice	 in	 desktop	 applications	 often	 gets	 forgotten	 in
web	apps.

Authors	are	not	the	only	ones	to	blame	for	this.	Back	in	the	days	of	CSS
2.1,	we	didn’t	 really	have	access	 to	many	built-in	cursors.	We	mainly	used
the	 cursor	 property	 to	 indicate	 that	 something	 is	 clickable,	 with	 a
pointer	 cursor,	 or	 sometimes	 to	 indicate	 tooltips	 with	 a	 help	 cursor.
Some	 also	 utilized	 a	 the	 wait	 or	 progress	 cursors	 instead	 of	 (or
alongside)	a	loader.	But	that	was	about	it.	However,	although	in	CSS	User
Interface	Level	3	(w3.org/TR/css3-ui/#cursor)	we	got	a	boatload
of	new	built-in	cursors	 to	utilize,	most	 authors	 comfortably	 stayed	 in	 their
old	 cursor	 habits.	 Like	 many	 UX	 improvements,	 you	 don’t	 really	 realize
there	is	a	problem,	until	you	reach	the	solution.	Let’s	advance	to	that	then!

http://w3.org/TR/css3-ui/#cursor

FIGURE	6.1	The	set	of	built-in	cursors	in	CSS	2.1	was	rather	limited
(cursors	shown	as	they’re	displayed	in	OS	X)

The	solution

You	 can	 see	 the	 full	 list	 of	 new	built-in	 cursors	 in	Figure	6.2	 and	 read
about	 their	purpose	 in	 the	 specification,	but	 as	you	can	 imagine,	not	 all	of
them	are	useful	for	most	web	apps.	For	example,	there’s	even	a	cell	cursor,
which	“indicates	 that	a	 cell	 or	 set	 of	 cells	may	be	 selected.”	As	you	can	 imagine,
there	aren’t	many	use	cases	for	that	beyond	spreadsheets	and	editable	grids.

This	secret	is	not	aiming	to	be	an	exhaustive	reference	of	the	potential	use
cases	of	all	these	new	cursors.	However,	a	few	of	them	stand	out,	as	they	can
instantly	improve	the	usability	of	a	large	number	of	web	apps,	with	very	little

code.

FIGURE	6.2	The	new	built-in	cursors	we	got	in	CSS	User	Interface	Level	3
(w3.org/TR/css3-ui/#cursor)	(cursors	shown	as	they’re	displayed	in
OS	X)

Indicating	disabled	state

Arguably,	 the	most	widely	applicable	addition	 is	 the	not-allowed	cursor

http://w3.org/TR/css3-ui/#cursor

(Figure	 6.3).	 It’s	 incredibly	 useful	 to	 hint	 that	 interaction	 with	 a	 certain
control	is	not	possible	for	whatever	reason	—	usually	because	said	control	is
disabled.	Especially	 these	days,	where	most	 forms	are	extremely	 stylized,	 it
can	often	be	difficult	 to	 tell	whether	a	 form	control	 is	enabled	or	not,	 and
this	is	a	welcome	aid.	You	could	use	it	in	a	quite	generic	way,	like	so:

FIGURE	6.3	Using	a	not-allowed	cursor	to	hint	that	a	control	is	disabled

:disabled,	[disabled],	[aria-disabled="true"]	{
				cursor:	not-allowed;
}

	PLAY! 	play.csssecrets.io/disabled

Hiding	the	cursor

Hiding	 the	 cursor	 sounds	 like	 a	 usability	 nightmare,	 doesn’t	 it?	Why	 on
Earth	would	somebody	want	to	do	that	and	why	would	web	standards	make
it	easier	for	them?	Before	you	get	angry	at	all	these	people	that	clearly	have
some	unresolved	issues	against	usability,	remember	all	those	times	when	you
used	one	of	those	awful	public	touchscreens	(e.g.,	those	used	for	information
booths	 or	 in-flight	 entertainment)	 and	 the	 developers	 forgot	 to	 hide	 the
mouse	cursor,	so	there	was	one	lingering	on	the	screen	in	weird	places.	Or
those	 times	when	 you	had	 to	move	 your	mouse	 to	 the	 right	 of	 the	 screen
while	watching	a	video,	because	your	cursor	was	in	the	way.

Clearly,	 there	 are	 multiple	 use	 cases	 where	 hiding	 the	 cursor	 can
actually	improve	usability.	This	is	why	one	of	the	new	cursor	keywords	is
none.	Hiding	 the	 cursor	was	 possible	 in	CSS	 2.1,	 but	 it	 involved	 using	 a
transparent	1×1	GIF,	like	so:

video	{

http://play.csssecrets.io/disabled

				cursor:	url(transparent.gif);
}

These	 days,	 we	 don’t	 need	 this,	 as	 we	 can	 just	 use	 cursor:	 none.
However,	 you	 might	 still	 want	 to	 provide	 a	 fallback,	 for	 browsers	 that
haven’t	caught	up	with	Level	3	cursors	yet.	We	can	easily	do	that	with	the
cascade:

	If	you	hide	the	cursor	over	videos,	make	sure	you	don’t	accidentally	also	hide	it	over	playback
controls	as	well,	otherwise	you	will	be	causing	more	harm	than	good.

cursor:	url('transparent.gif');
cursor:	none;

RELATED
SPECS

CSS	Basic	User	Interface

w3.org/TR/css3-ui

30	Extending	the	clickable	area

The	problem

If	you	are	interested	in	user	experience,	you	have	likely	heard	of	Fitts’	Law.
First	 proposed	 by	 American	 psychologist	 Paul	 Fitts	 in	 as	 early	 as	 1954,
Fitts’	 law	 is	 the	 idea	 that	 the	time	required	to	rapidly	move	to	a	 target
area	is	a	logarithmic	function	of	the	ratio	between	the	distance	to	the
target	and	the	width	of	the	target.	Its	most	commonly	used	mathematical

formulation	 is	 expressed	 as	 	 where	 T	 is	 the	 time

http://w3.org/TR/css3-ui

taken,	D	 is	 the	 distance	 to	 the	 center	 of	 the	 target,	W	 is	 the	width	 of	 the
target,	and	a	and	b	are	constants.

TIP! 	 See	 Fitts’	 Law	 in	 action,	 via	 the	 interactive	 visualization	 at
simonwallner.at/ext/fitts.

Although	 graphical	 user	 interfaces	 did	 not	 exist	 at	 the	 time,	 Fitts’	 Law
applies	 perfectly	 to	pointing	devices	 and	has	now	become	 the	most	widely
known	 HCI	 (Human-Computer	 Interaction)	 principle.	 This	 may	 sound
surprising	 at	 first,	 but	 keep	 in	mind	 that	 Fitts’	 Law	 has	more	 to	 do	 with
human	motor	control	than	with	specific	hardware.

An	obvious	corollary	is	that	the	bigger	the	target,	the	easier	it	is	to	reach.
Therefore,	 it	often	 increases	usability	 to	extend	the	clickable	area	 (hit
area)	 around	 smaller	 controls	 that	might	otherwise	be	difficult	 to	 reach,	 if
enlarging	 them	 is	 not	 an	 option.	With	 the	 increasing	 popularity	 of	 touch
screens,	 this	 has	 become	 even	 more	 important.	Nobody	 wants	 to	 tap	 a
dozen	times	trying	to	get	that	pesky	little	button	and	yet,	this	is	still	an
everyday	occurence.

Other	times,	we	want	an	element	to	slide	in	when	we	hover	over	a	side	of
the	 window—for	 example,	 an	 auto-hiding	 header	 that	 slides	 from	 the	 top
when	the	mouse	 is	near,	which	also	 involves	 increasing	 its	hit	area	 (toward
one	direction	only).	Can	we	do	this	with	plain	CSS?

The	solution

FIGURE	6.4	Our	starting	point	in	two	states:	with	the	cursor	on	the	button
(right)	or	further	down	(left)

Let’s	assume	we	have	a	simple	button	like	the	one	shown	on	Figure	6.4	and
we	 want	 to	 increase	 its	 hit	 area	 by	 10px	 in	 all	 four	 directions.	We	 have
already	 applied	 some	 simple	 styling	 to	 it,	 as	 well	 as	cursor:	pointer,
which	both	provides	an	affordance*	for	mouse	interaction,	but	also	helps	us

http://simonwallner.at/ext/fitts

test	where	the	hit	area	actually	is.
The	 easiest	 way	 to	 extend	 our	 hit	 area	 is	 a	 transparent	 solid	 border,	 as

mouse	 interaction	on	borders	 triggers	 these	mouse	 events	 on	 the	 element,
unlike	outlines	and	shadows.	For	example,	extending	an	element’s	hit	area	by
10px	toward	all	directions	is	as	simple	as	this:

border:	10px	solid	transparent;

However,	as	you	can	see	 in	Figure	6.5,	 this	 is	no	good,	as	 it	also	makes
our	 button	 larger!	 The	 reason	 is	 that	 backgrounds	 extend	 underneath
borders	 by	 default.	 Good	 ol’	 background-clip	 can	 help	 constrain	 the
background	where	it	should	be:

FIGURE	6.5	Oops!	Extending	our	hit	area	with	border	also	made	our
button	larger

border:	10px	solid	transparent;
background-clip:	padding-box;

As	you	can	see	in	Figure	6.6,	this	works	fine.	Until	you	end	up	needing	an
actual	border	around	the	button	and	realize	you’ve	already	used	up	the	only
one	 you	 get	 to	 extend	 the	 hit	 area.	What	 happens	 then?	 Easy,	 you	 could
emulate	a	(solid)	border	with	an	inset	shadow	(Figure	6.7):

FIGURE	6.6	Getting	our	button	size	back	to	normal	with	background-

clip

border:	10px	solid	transparent;
box-shadow:	0	0	0	1px	rgba(0,0,0,.3)	inset;
background-clip:	padding-box;

FIGURE	6.7	Using	an	inset	box-shadow	to	emulate	a	border

	PLAY! 	play.csssecrets.io/hit-area-border

Unlike	borders,	you	don’t	only	get	one	box-shadow,	so	if	you	need	more,
you	can	just	use	a	comma-separated	list	of	shadows	instead.	However,	if	we
combine	 inset	 and	 outset	 (non-inset)	 shadows,	 we	 get	 a	 very	 weird	 effect,
because	outset	shadows	are	drawn	outside	the	border	box.	For	example,
we	might	think	of	doing	something	like	this	to	add	an	actual	blurred	shadow
to	make	the	button	“pop	out”	of	 the	page,	which	 is	another	affordance	 for
clicking:

FIGURE	6.8	Adding	an	actual	shadow	as	well	doesn’t	work	well	with	this
solution

box-shadow:	0	0	0	1px	rgba(0,0,0,.3)	inset,
												0	.1em	.2em	-.05em	rgba(0,0,0,.5);

However,	if	we	try	that,	we	see	that	the	result	is	very	different	from	what	we
might	expect	(Figure	6.8).	This	solution	is	not	perfect	for	other	reasons	too.

http://play.csssecrets.io/hit-area-border

Borders	affect	layout,	and	that	might	be	out	of	the	question	in	certain	cases.
What	do	we	do	then?	We	remove	the	border	and	take	advantage	of	the	fact
that	 pseudoelements	 also	 capture	 mouse	 interaction	 for	 their	 parent
element.

We	can	 then	overlay	 a	 transparent	pseudoelement	on	our	button	 that	 is
10px	larger	on	every	direction:

button	{
				position:	relative;
				/*	[rest	of	styling]	*/
}

button::before	{
				content:	'';
				position:	absolute;
				top:	-10px;	right:	-10px;
				bottom:	-10px;	left:	-10px;
}

This	 just	 works,	 and	 as	 long	 as	 we	 don’t	 need	 both	 pseudoelements,	 it
doesn’t	 really	 interfere	 with	 anything.	 The	 pseudoelement	 solution	 is
incredibly	 flexible—we	 could	 basically	 make	 the	 hit	 area	 be	 any	 size,
place,	 or	 shape	 we	 want,	 even	 completely	 disconnected	 from	 the
element	itself!

	PLAY! 	play.csssecrets.io/hit-area

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

http://play.csssecrets.io/hit-area
http://w3.org/TR/css-backgrounds

31	Custom	checkboxes

The	problem

Designers	 always	wanted	more	 control	 over	 every	 element	 in	 a	web	 page.
When	a	graphic	designer	with	 limited	CSS	experience	 is	 tasked	to	create	a
website	 mockup,	 they	 almost	 always	 produce	 one	 with	 customized	 form
elements,	 making	 the	 developer	 tasked	 to	 convert	 it	 to	 CSS	 want	 to	 pull
their	hair	out.

For	readability,	we	will	refer	to	“checkboxes”	throughout	this	secret,	but	everything	discussed
applies	to	both	checkboxes	and	radio	buttons	unless	otherwise	noted.

When	CSS	was	first	introduced,	form	styling	was	extremely	limited	and	is
still	not	 clearly	defined	 in	 any	of	 the	various	CSS	 specifications.	However,
browsers	 got	 more	 and	 more	 permissive	 over	 the	 years	 about	 what	 CSS
properties	 they	 allow	 on	 form	 controls,	 enabling	 us	 to	 style	most	 of	 them
quite	extensively.

Unfortunately,	checkboxes	and	radio	buttons	are	not	among	those	form
controls.	 To	 this	 day,	 most	 browsers	 allow	 little	 to	 no	 styling	 when	 it
comes	to	them.	As	a	result,	authors	end	up	either	coming	to	terms	with	their
default	look	or	employing	awful,	inaccessible	hacks,	such	as	recreating	them
with	divs	and	JS.

Is	there	a	way	to	get	around	these	restrictions	and	customize	the	look	of
our	 checkboxes,	 without	 bloat	 and	 without	 giving	 up	 on	 semantics	 and
accessibility?

The	solution

Until	a	few	years	ago,	this	task	was	impossible	without	scripting.	However,
in	 Selectors	 Level	 3	 (w3.org/TR/css3-selectors),	 we	 got	 a	 new
pseudo-class:	 :checked.	 This	 pseudo-class	 only	 matches	 when	 the
checkbox	 is	 checked,	 whether	 that	 is	 done	 through	 user	 interaction,	 or
through	script.

It’s	 not	 very	 useful	 when	 applied	 directly	 to	 checkboxes,	 as	 —	 like	 we

http://w3.org/TR/css3-selectors

previously	mentioned	—	 there	 aren’t	 many	 properties	 we	 can	 successfully
apply	 to	 them.	However,	 we	 can	 always	use	 combinators	 to	 style	 other
elements	based	on	a	checkbox	state.

TIP! 	 Wondering	 what	 the	 difference	 is	 between	 :checked	 and	 the	 attribute	 selector
[checked]?	 The	 latter	 doesn’t	 update	 based	 on	 user	 interaction,	 as	 user	 interaction	 doesn’t
affect	the	HTML	attribute.

You	might	be	wondering	what	other	elements	we	may	want	to	style	based
on	whether	a	checkbox	is	checked	or	not.	Well,	there	is	one	kind	of	element
that	has	special	behavior	around	checkboxes:	<label>s.	A	<label>	that	is
associated	with	a	checkbox	also	acts	as	a	toggle	for	it.

Because	labels—unlike	checkboxes—are	not	replaced	elements,*	we	can	add
generated	 content	 to	 them	 and	 style	 that	 based	 on	 checkbox	 state.
Then,	 we	 could	hide	 the	 real	 checkbox	 in	 a	 way	 that	 doesn’t	 remove	 it
from	 the	 tabbing	order,	 and	have	 the	generated	content	act	 as	 a	 styled
checkbox	instead!

Let’s	see	this	in	action.	We	will	start	from	the	following	simple	markup:

HTML
<input	type="checkbox"	id="awesome"	/>
<label	for="awesome">Awesome!</label>

Nesting	the	checkbox	in	the	label	would	free	us	from	using	ids,	but	then	we	wouldn’t	be	able	to
target	the	label	based	on	the	checkbox	status,	because	we	do	not	yet	have	parent	selectors.

The	next	step	is	to	generate	a	pseudoelement	that	will	be	used	as	our	styled
checkbox,	and	apply	some	basic	styling	to	it:

input[type="checkbox"]	+	label::before	{
				content:	'\a0';	/*	non-break	space	*/
				display:	inline-block;
				vertical-align:	.2em;
				width:	.8em;
				height:	.8em;
				margin-right:	.2em;
				border-radius:	.2em;
				background:	silver;
				text-indent:	.15em;
				line-height:	.65;
}

FIGURE	6.9	Our	rudimentary	custom	checkbox	alongside	the	original
checkbox

The	style	we	will	apply	to	our	checkboxes	in	these	examples	is	pretty	basic,	but	the	possibilities
are	endless.	You	could	even	skip	CSS	styling	altogether	and	use	images	for	all	different	checkbox
states!

You	 can	 see	 how	 our	 checkbox	 and	 label	 currently	 look	 in	Figure	 6.9.
The	original	checkbox	is	still	visible,	but	we	will	hide	it	later.	Now	we	need
to	apply	a	different	style	to	our	checkbox	when	it’s	checked.	This	could	be	as
simple	as	applying	a	different	color	and	adding	a	checkmark	as	content:

input[type="checkbox"]:checked	+	label::before	{
				content:	'\2713';
				background:	yellowgreen;
}

FIGURE	6.10	Styling	our	pseudoelement	as	a	customized	checked
checkbox

As	you	can	see	in	Figure	6.10,	this	is	already	functioning	as	a	rudimentary
styled	checkbox.	Now,	we	need	to	hide	the	original	checkbox	in	an	accessible
way,	which	means	we	can’t	use	display:	none,	as	that	would	remove	it
from	the	keyboard	tabbing	order	entirely.	Instead,	we	could	use	something
like	this:

	Be	careful	when	using	such	permissive	selectors.	Using	input[type="checkbox"]	will
also	 hide	 checkboxes	 without	 a	 label	 after	 them	 (e.g.,	 those	 nested	 in	 a	 label),	 essentially
making	them	unusable.

input[type="checkbox"]	{
				position:	absolute;
				clip:	rect(0,0,0,0);
}

That’s	 it,	we’ve	made	a	very	basic	custom	checkbox!	We	could	of	course
improve	 it	 further—for	example,	by	changing	 its	 style	when	 it’s	 focused	or
disabled,	which	you	can	see	in	Figure	6.11:

input[type="checkbox"]:focus	+	label::before	{
				box-shadow:	0	0	.1em	.1em	#58a;
}

input[type="checkbox"]:disabled	+	label::before	{
				background:	gray;
				box-shadow:	none;
				color:	#555;
}

You	 could	 even	 make	 these	 effects	 smoother	 by	 applying	 transitions	 or
animations	 or	 go	 nuts	 and	 create	 things	 like	 skeuomorphic	 switches.	 The
possibilities	really	are	endless!

FIGURE	6.11	Top	to	bottom:	customized	focused	checkbox,	customized
disabled	checkbox,	and	checked	checkbox

Although	the	possibilities	are	endless,	avoid	styling	checkboxes	as	circles:	most	users	associate
round	toggles	with	radio	buttons.	Same	applies	to	square	radio	buttons.

	PLAY! 	play.csssecrets.io/checkboxes

Hat	 tip	 to	Ryan	Seddon	 for	 coming	 up	with	 the	 first	 version	 of	 this	 effect,	 now

http://play.csssecrets.io/checkboxes

known	 as	 “the	 checkbox	 hack”
(thecssninja.com/css/custominputs-using-css).	Ryan	has	since
used	this	idea	to	implement	all	sorts	of	widgets	that	require	state	persistence
(labs.thecssninja.com/bootleg),	 such	 as	 modal	 dialogs,	 dropdown
menus,	 tabs,	 and	 carousels,	 though	 abusing	 checkboxes	 this	 much	 results	 in
accessibility	problems.

Toggle	buttons

You	could	use	a	variation	of	“the	checkbox	hack”	to	emulate	toggle	buttons,
as	HTML	does	not	provide	a	native	way	to	create	them.	Toggle	buttons	are
push	buttons	that	act	like	checkboxes:	they	are	used	to	toggle	a	setting	on	or
off,	 and	 look	 pressed	 when	 checked	 and	 unpressed	 when	 unchecked.
Semantically,	 there	 is	 no	 real	 difference	 between	 toggle	 buttons	 and
checkboxes,	so	you	can	both	use	this	trick	and	maintain	semantic	purity.

FIGURE	6.12	A	toggle	button	in	both	its	states

To	create	toggle	buttons	with	this	trick,	you	would	just	style	the	labels	as
buttons,	instead	of	using	pseudoelements.	For	example,	to	create	the	toggle
buttons	shown	in	Figure	6.12,	the	code	would	look	like	this:

input[type="checkbox"]	{
				position:	absolute;
				clip:	rect(0,0,0,0);
}

input[type="checkbox"]	+	label	{
				display:	inline-block;
				padding:	.3em	.5em;

http://thecssninja.com/css/custominputs-using-css
http://labs.thecssninja.com/bootleg

				background:	#ccc;
				background-image:	linear-gradient(#ddd,	#bbb);
				border:	1px	solid	rgba(0,0,0,.2);
				border-radius:	.3em;
				box-shadow:	0	1px	white	inset;
				text-align:	center;
				text-shadow:	0	1px	1px	white;
}

input[type="checkbox"]:checked	+	label,
input[type="checkbox"]:active	+	label	{
				box-shadow:	.05em	.1em	.2em	rgba(0,0,0,.6)	inset;
				border-color:	rgba(0,0,0,.3);
				background:	#bbb;
}

However,	be	wary	about	using	toggle	buttons.	In	most	cases,	toggle	buttons
hinder	 usability	 as	 they	 can	 easily	 be	 confused	 with	 regular	 buttons	 that
perform	an	action	when	pressed.

	PLAY! 	play.csssecrets.io/toggle-buttons

RELATED
SPECS

Selectors

w3.org/TR/selectors

32	De-emphasize	by	dimming

Prerequisites
RGBA	colors

http://play.csssecrets.io/toggle-buttons
http://w3.org/TR/selectors

The	problem

Quite	 often,	 we	 need	 to	 dim	 everything	 behind	 an	 element	 through	 a
semitransparent	 dark	 overlay,	 to	 emphasize	 and	 draw	 user	 attention	 to	 a
certain	 UI	 element.	 For	 example,	 lightboxes	 (Figure	 6.13)	 and	 interface
“quick	tours”	often	benefit	from	this	effect.	The	most	common	technique	to
do	this	is	to	add	an	extra	HTML	element	for	the	dimming	and	apply	some
CSS	that	looks	like	this:

.overlay	{	/*	For	dimming	*/
				position:	fixed;
				top:	0;
				right:	0;
				bottom:	0;
				left:	0;
				background:	rgba(0,0,0,.8);
}

.lightbox	{	/*	The	element	to	draw	attention	to	*/
				position:	absolute;
				z-index:	1;
				/*	[rest	of	styling]	*/
}

The	overlay	 is	 responsible	 for	dimming	everything	behind	 the	 element	we
want	to	draw	attention	to.	The	.lightbox	then	gets	a	higher	z-index	to
be	drawn	above	the	overlay.	All	this	is	fine	and	dandy,	but	it	requires	an	extra
HTML	element,	which	means	the	effect	cannot	be	applied	with	CSS	alone.
This	 is	 not	 a	 major	 problem,	 but	 it’s	 an	 inconvenience	 that	 we’d	 rather
avoid,	if	possible.	Thankfully,	in	most	cases	we	can.

FIGURE	6.13	Twitter	is	using	this	effect	for	its	popup	dialogs

Pseudoelement	solution

We	 can	 use	 pseudoelements	 to	 eliminate	 the	 need	 for	 an	 extra	 HTML
element,	like	so:

body.dimmed::before	{
				position:	fixed;
				top:	0;
				right:	0;
				bottom:	0;
				left:	0;
				z-index:	1;
				background:	rgba(0,0,0,.8);
}

This	 is	 a	 slightly	 better	 solution,	 as	 it	means	we	 can	now	 apply	 this	 effect
directly	 from	CSS.	However,	 the	problem	 is	 that	 it’s	 not	 very	portable,	 as
the	 <body>	 element	 might	 already	 have	 something	 else	 applied	 on	 its

::before	pseudoelement.	Also,	it	means	that	to	apply	this	effect	we	usually
need	some	sort	of	JavaScript	to	apply	the	dimmed	class.

We	 could	 solve	 this	 by	 applying	 the	 overlay	 on	 the	 element’s	 own
::before	 pseudoelement	 and	 giving	 it	 a	 z-index:	 -1;	 so	 that	 it’s
underneath	our	element.	Although	this	solves	the	portability	issue,	it	doesn’t
give	 us	 very	 fine-grained	 control	 over	 the	 overlay’s	 Z	 axis	 placement.	 It
might	 end	 up	 being	 underneath	 our	 element	 (which	 is	 desirable)	 or
underneath	our	element	and	several	of	its	ancestors.

Another	issue	with	this	 is	that	pseudoelements	cannot	have	their	own
JavaScript	event	handlers.	When	using	a	separate	element	for	an	overlay,
we	could	assign	event	handlers	 to	 it	 so	that	—	for	example	—	the	 lightbox
closes	when	the	user	clicks	on	the	overlay.	When	using	pseudoelements	on
the	same	element	we	want	to	highlight,	it	becomes	trickier	to	detect	whether
the	user	clicked	on	the	overlay	or	the	element.

box-shadow	solution

The	 pseudoelement	 solution	 is	 more	 flexible	 and	 usually	 fits	 what	 most
people	 expect	 from	 an	 overlay.	 However,	 for	 simpler	 use	 cases	 or
prototyping,	we	can	take	advantage	of	the	fact	that	a	box-shadow’s	spread
radius	enlarges	 it	by	 the	amount	you	specify	on	every	side.	This	means	we
can	 create	 an	 extremely	 large	 shadow	 with	 zero	 offsets	 and	 zero	 blur,	 to
emulate	an	overlay	the	quick-and-dirty	way:

box-shadow:	0	0	0	999px	rgba(0,0,0,.8);

One	obvious	problem	with	this	first	pass	solution	is	that	it	won’t	work	with
very	 large	 resolutions	 (>	 2000px).	We	 can	 mitigate	 this	 either	 by	 using	 a
larger	number,	or	 solve	 it	 completely	by	using	viewport	units,	 so	 that	we
can	be	sure	that	the	“overlay”	is	always	larger	than	our	viewport.	Because	we
can’t	use	different	horizontal	and	vertical	spread	radius	values,	the	viewport
unit	 that	makes	 the	most	 sense	 to	use	 is	vmax.	 In	 case	you’re	not	 familiar
with	the	vmax	unit,	1vmax	is	equivalent	to	either	1vw	or	1vh,	whichever	is
larger.	 100vw	 is	 equal	 to	 the	 viewport’s	 width	 and,	 similarly,	 100vh	 is
equivalent	to	its	height.	Therefore,	the	minimum	value	that	covers	our	needs

is	50vmax,	as	it	will	be	added	on	each	side,	so	our	overlay’s	final	dimensions
will	be	100vmax	+	our	element’s	dimensions:

box-shadow:	0	0	0	50vmax	rgba(0,0,0,.8);

This	technique	is	very	quick	and	easy	to	apply,	but	it	has	two	rather	serious
issues	that	limit	its	usefulness.	Can	you	spot	them?

First,	because	the	dimensions	of	our	element	are	viewport	related	and	not
page	related,	we	will	see	the	boundaries	of	the	overlay	when	we	scroll,
unless	the	element	has	position:	fixed;	or	the	page	isn’t	long	enough
for	scrolling.	Furthermore,	because	pages	can	be	really	 long,	 it	wouldn’t	be
wise	 to	 attempt	 to	overcome	 this	by	 just	 increasing	 the	 spread	 radius	 even
more.	 Instead,	 I’d	 recommend	 limiting	 your	 use	 of	 this	 technique	 to
elements	with	fixed	positioning	or	pages	with	minimal	to	no	scrolling.

Second,	 using	 a	 separate	 element	 (or	 a	 pseudoelement)	 as	 the	 overlay
doesn’t	only	visually	guide	 the	user’s	 focus	 to	 the	element	we	want.	 It	also
prevents	 them	 from	using	 the	mouse	 to	 interact	with	 the	 rest	of	 the
page,	because	it	captures	pointer	events.	A	box-shadow	does	not	have	this
property.	Therefore,	it	only	visually	helps	draw	the	user’s	attention	to	a
particular	 element,	 but	 it	 will	 not	 capture	 any	mouse	 interaction	 by
itself.	Whether	this	is	acceptable	or	not	depends	on	your	specific	use	case.

	PLAY! 	play.csssecrets.io/dimming-box-shadow

backdrop	solution

If	 the	 element	 you	 want	 to	 bring	 into	 focus	 is	 a	 modal	 <dialog>	 (a
<dialog>	element	displayed	via	its	showModal()	method),	it	already	has
an	 overlay,	 via	 the	User	 Agent	 stylesheet.	 This	 native	 overlay	 can	 also	 be
styled	via	the	::backdrop	pseudoelement,	for	example,	to	make	it	darker:

http://play.csssecrets.io/dimming-box-shadow

dialog::backdrop	{
		background:	rgba(0,	0,	0,	.8);
}

The	 only	 caveat	 of	 this	 method	 is	 that	 at	 the	 time	 of	 writing,	 browser
support	 for	 it	 is	 very	 limited,	 so	 make	 sure	 to	 check	 its	 current	 status
before	 using	 it.	 Keep	 in	 mind,	 however,	 that	 even	 if	 it’s	 not	 supported,
nothing	 will	 break	 if	 a	 dialog	 has	 no	 overlay	 because	 it’s	 just	 a	 UX
improvement.

	PLAY! 	play.csssecrets.io/native-modal

RELATED
SPECS

CSS	Values	&	Units

w3.org/TR/css-values/#viewport-relative-lengths

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

Fullscreen	API

fullscreen.spec.whatwg.org/#::backdrop-pseudo-
element

33	De-emphasize	by	blurring

Prerequisites

http://play.csssecrets.io/native-modal
http://w3.org/TR/css-values/#viewport-relative-lengths
http://w3.org/TR/css-backgrounds
http://fullscreen.spec.whatwg.org/#::backdrop-pseudo-element

Transitions,	 the	 “Frosted	 glass	 effect”	 secret	 on	 page	 146,	 the	 “De-
emphasize	by	dimming”	secret	on	page	234

The	problem

In	the	“De-emphasize	by	dimming”	secret	on	page	234,	we	saw	a	way	to
de-emphasize	 parts	 of	 a	 web	 app	 by	 dimming	 them,	 through	 a
semitransparent	 black	 overlay.	However,	 when	 there	 is	 a	 lot	 going	 on	 the
page,	we	need	to	dim	it	quite	a	lot	to	provide	sufficient	contrast	for	text	to
appear	 on	 it,	 or	 to	 draw	 attention	 to	 a	 lightbox	or	 other	 element.	A	more
elegant	way,	shown	in	Figure	6.14,	is	to	blur	everything	else	in	addition	to
(or	instead	of)	dimming	it.	This	is	also	more	realistic,	as	it	creates	depth	by
mimicking	how	our	vision	treats	objects	that	are	physically	closer	to	us
when	we	are	focusing	on	them.

FIGURE	6.14	The	gaming	website	polygon.com	features	an	excellent
example	of	drawing	user	attention	to	a	dialog	box	by	blurring	everything
else	behind	it

However,	 this	 is	 a	 far	more	difficult	 effect	 to	achieve.	Until	Filter	Effects
(w3.org/TR/filter-effects),	 it	 was	 impossible,	 but	 even	 with	 the

http://polygon.com
http://w3.org/TR/filter-effects

blur()	filter,	it	is	quite	difficult.	What	do	we	apply	the	blur	filter	to,	if	we
want	to	apply	it	to	everything	except	a	certain	element?	If	we	apply	it	to	the
<body>	 element,	 everything	 in	 the	 page	 will	 be	 blurred,	 including	 the
element	we	want	 to	draw	 attention	 to.	 It’s	 very	 similar	 to	 the	problem	we
addressed	in	the	“Frosted	glass	effect”	secret	on	page	146,	but	we	cannot
apply	 the	 same	 solution	here,	 as	 anything	 could	be	behind	our	dialog	box,
not	just	a	background	image.	What	do	we	do?

The	solution

Unfortunately,	we	will	need	an	extra	HTML	element	for	this	effect:	we	will
need	to	wrap	everything	 in	our	page	except	 the	elements	 that	 shouldn’t	be
blurred	 in	a	wrapper	element,	 so	 that	we	can	apply	 the	blurring	 to	 it.	The
<main>	 element	 is	 perfect	 for	 this,	 because	 it	 serves	 a	 double	 purpose:	 it
both	 marks	 up	 the	 main	 content	 of	 the	 page	 (dialogs	 aren’t	 usually	 main
content)	and	gives	us	the	styling	hook	we	need.	The	markup	could	look	like
this:

HTML
<main>Bacon	Ipsum	dolor	sit	amet…</main>
<dialog>

				O	HAI,	I'm	a	dialog.	Click	on	me	to	dismiss.
</dialog>
<!--	any	other	dialogs	go	here	too	-->

We	assume	that	all	<dialog>	elements	will	be	initially	hidden	and	at	most	one	of	them	will	be
visible	at	any	time.

You	can	see	how	this	looks	with	no	overlay	in	Figure	6.15.	Then,	we	need
to	apply	a	class	to	the	<main>	element	every	time	we	make	a	dialog	appear
and	apply	the	blur	filter	then,	like	so:

FIGURE	6.15	A	plain	dialog	with	no	overlay	to	de-emphasize	the	rest	of	the
page

main.deemphasized	{
				filter:	blur(5px);
}

As	 you	 can	 see	 in	 Figure	 6.16,	 this	 already	 is	 a	 huge	 improvement.
However,	right	now	the	blurring	is	applied	immediately,	which	doesn’t	look
very	 natural	 and	 feels	 like	 rather	 awkward	 UX.	 Because	 CSS	 filters	 are
animatable,	we	can	instead	smoothly	transition	to	the	blurred	page:

FIGURE	6.16	Blurring	the	<main>	element	when	the	dialog	is	visible

main	{
				transition:	.6s	filter;
}

main.deemphasized	{
				filter:	blur(5px);
}

It’s	often	a	good	 idea	 to	combine	 the	 two	deemphasizing	effects	 (dimming
and	 blurring).	 One	 way	 to	 do	 this	 is	 using	 the	 brightness()	 and/or
contrast()	filters:

FIGURE	6.17	Applying	both	blurring	and	dimming,	both	via	CSS	filters

main.deemphasized	{
				filter:	blur(3px)	contrast(.8)	brightness(.8);
}

You	can	see	the	result	in	Figure	6.17.	Dimming	via	CSS	filters	means	that	if
they	 are	 not	 supported,	 there	 is	no	 fallback.	 It	might	 be	 a	 better	 idea	 to
perform	 the	 dimming	 via	 some	 other	 method,	 which	 can	 also	 serve	 as	 a
fallback	(e.g.,	the	box-shadow	method	we	saw	in	the	previous	secret).	This
would	also	save	us	from	the	“halo	effect”	you	can	see	on	the	edges	of	Figure
6.17.	Notice	how	in	Figure	6.18	where	we	used	a	shadow	for	the	dimming,
this	issue	is	gone.

	PLAY! 	play.csssecrets.io/deemphasizing-blur

http://play.csssecrets.io/deemphasizing-blur

FIGURE	6.18	Applying	blurring	via	CSS	filters	and	dimming	via	a	box-
shadow,	which	also	serves	as	a	fallback

Hat	tip	to	Hakim	El	Hattab	(hakim.se)	for	coming	up	with	a	smiliar	effect
(lab.hakim.se/avgrund).	In	addition,	in	Hakim’s	version	of	the	effect,	the
content	 also	 becomes	 smaller	 via	 a	scale()	 transform,	 to	 further	 enhance	 the
illusion	that	the	dialog	is	getting	physically	closer	to	us.

RELATED
SPECS

Filter	Effects

w3.org/TR/filter-effects

CSS	Transitions

w3.org/TR/css-transitions

http://hakim.se
http://lab.hakim.se/avgrund
http://w3.org/TR/filter-effects
http://w3.org/TR/css-transitions

34	Scrolling	hints

Prerequisites
CSS	gradients,	background-size

The	problem

Scrollbars	are	the	primary	control	to	 indicate	that	there	is	more	content	 in
an	element	than	meets	the	eye.	However,	they	are	often	clunky	and	visually
distracting,	 so	modern	 operating	 systems	 have	 started	 to	 streamline	 them,
often	hiding	them	completely	until	 the	user	 is	actually	 interacting	with	the
scrollable	element.

FIGURE	6.19	This	box	has	more	content	and	is	scrollable,	but	unless	you
interact	with	it,	you	won’t	know

While	scrollbars	are	rarely	used	to	control	scrolling	these	days	(users	tend
to	scroll	via	gestures	instead),	indicating	that	there	is	more	content	in	an
element	than	what	meets	the	eye	is	very	useful	information	that	is	helpful
to	 convey	 in	 a	 subtle	 way,	 even	 for	 elements	 the	 user	 is	 not	 currently
interacting	with.

The	UX	designers	working	on	Google	Reader,	a	(now	discontinued)	feed

reader	by	Google,	found	a	very	elegant	way	to	indicate	this:	when	there	was
more	content,	a	subtle	shadow	was	displayed	on	the	top	and/or	bottom	side
of	the	sidebar	(Figure	6.20).

FIGURE	6.20	Google	Reader’s	elegant	UX	pattern	to	indicate	that	scrolling
is	needed	to	view	the	full	contents	of	the	sidebar
Left:	Scrolled	all	the	way	up
Middle:	Scrolled	to	the	middle	of	the	feed	list
Right:	Scrolled	all	the	way	to	the	bottom

However,	to	achieve	this	effect	in	Google	Reader,	quite	a	bit	of	scripting	was
used.	Was	that	really	needed,	or	can	we	achieve	the	same	effect	with	CSS?

The	solution

Let’s	 first	start	with	some	simple	markup,	a	plain	unordered	list	with	some
placeholder	content	(geeky	cat	names!):

HTML

				Ada	Catlace
				Alan	Purring

				Schrödingcat
				Tim	Purrners-Lee
				WebKitty
				Json
				Void
				Neko
				NaN
				Cat5
				Vector

We	can	then	apply	some	basic	styling	to	the		to	make	it	smaller	than	its
contents	and	scrollable:

overflow:	auto;
width:	10em;
height:	8em;
padding:	.3em	.5em;
border:	1px	solid	silver;

This	 is	where	 things	start	 to	get	 interesting.	Let’s	apply	a	 shadow	at	 the
top,	with	a	radial	gradient:

FIGURE	6.21	Our	top	shadow

background:	radial-gradient(at	top,	rgba(0,0,0,.2),
																											transparent	70%)	no-repeat;
background-size:	100%	15px;

You	can	see	the	result	 in	Figure	6.21.	Currently	 it	stays	 in	the	same	place
when	we	scroll.	This	is	on	par	with	how	background	images	work	by	default:
their	 position	 is	 fixed	 relative	 to	 the	 element,	 regardless	 of	 how	 far	 the
element	 is	 scrolled.	 This	 also	 applies	 to	 images	 with	 background-
attachment:	fixed.	Their	only	difference	is	that	they	also	stay	in	place
when	the	page	itself	scrolls.	Is	there	any	way	to	get	a	background	image	to
scroll	with	an	element’s	contents?

Until	 a	 few	 years	 ago,	 this	 simple	 thing	 was	 impossible.	 However,	 the
problem	 was	 pretty	 obvious	 and	 a	 new	 background-attachment
keyword	 was	 added	 in	 Backgrounds	 &	 Borders	 Level	 3
(w3.org/TR/css3-background/#local0)	to	address	it:	local.

However,	 background-attachment:	 local	 doesn’t	 solve	 our	 use
case	 out	 of	 the	 box.	 If	we	 apply	 it	 to	 our	 shadow	 gradient,	 it	 gives	 us	 the
exact	opposite	result:	we	get	a	shadow	when	we	scroll	all	the	way	to	the	top,
but	when	we	scroll	down,	the	shadow	disappears.	It	is	a	start,	though—we’re
starting	to	get	somewhere.

The	trick	is	to	use	two	backgrounds:	one	for	the	shadow,	and	one	that
is	basically	a	white	rectangle	to	cover	the	shadow,	acting	as	a	mask.	The
background	that	generates	the	shadow	will	have	the	default	background-
attachment	 (scroll),	 because	 we	 want	 it	 to	 stay	 in	 place	 at	 all	 times.
However,	 we	 will	 give	 the	 masking	 background	 a	 background-
attachment	of	local,	so	that	it	covers	the	shadow	when	we	are	scrolled
all	 the	 way	 up,	 but	 scrolls	 with	 the	 contents	 when	 we	 scroll	 down,	 thus
revealing	the	shadow.

We	will	 use	 a	 linear	 gradient	 to	 create	 the	masking	 rectangle,	 with	 the
same	color	as	the	element’s	background	(in	our	case,	white):

background:	linear-gradient(white,	white),
												radial-gradient(at	top,	rgba(0,0,0,.2),
																												transparent	70%);
background-repeat:	no-repeat;
background-size:	100%	15px;
background-attachment:	local,	scroll;

You	can	 see	how	 this	 looks	 in	different	 stages	of	 scrolling	 in	Figure	6.22.
You	may	notice	that	this	seems	to	produce	the	desired	effect,	but	it	has	one
significant	drawback:	when	we	are	only	slightly	scrolled,	the	way	the	shadow

http://w3.org/TR/css3-background/#local0

is	 revealed	 is	 very	 choppy	 and	 awkward.	 Is	 there	 any	 way	 to	 make	 it
smoother?

FIGURE	6.22	Our	two	backgrounds	in	different	stages	of	scrolling
Left:	Scrolled	all	the	way	to	the	top
Middle:	Slightly	scrolled	down
Right:	Scrolled	down	significantly

FIGURE	6.23	Using	a	gradient	of	white	to	transparent	as	a	first
attempt	to	fade	the	shadow	in	smoothly

We	can	take	advantage	of	the	fact	that	our	“mask”	is	a	(degenerate)	linear
gradient	and	convert	it	to	a	real	gradient	from	white	to	transparent	white
(hsla(0,0%,100%,0)	or	rgba(255,255,255,0)),	so	that	it	smoothly
reveals	our	shadow:

Why	transparent	white	and	not	just	transparent?	The	latter	is	actually	an	alias	of
rgba(0,0,0,0),	so	the	gradient	might	include	shades	of	gray	as	it	transitions	from	opaque

white	to	transparent	black.	If	browsers	are	interpolating	colors	in	what	is	called	a	premultiplied
RGBA	space	per	the	specification,	this	shouldn’t	happen.	Different	interpolation	algorithms	are
outside	the	scope	of	this	book,	but	there	is	a	lot	of	material	on	this	online.

background:	linear-gradient(white,	hsla(0,0%,100%,0)),
												radial-gradient(at	top,	rgba(0,0,0,.2),
																												transparent	70%);

This	is	a	step	in	the	right	direction.	As	you	can	see	in	Figure	6.23,	 it	does
progressively	reveal	the	shadow,	like	we	wanted.	However,	it	currently	has	a
pretty	 serious	 flaw:	 it	 no	 longer	 completely	 obscures	 the	 shadow	when	we
are	 scrolled	 all	 the	way	 to	 the	 top.	We	 can	 fix	 this	 by	moving	 the	white
color	 stop	 a	 little	 lower	 down	 (15px	 to	 be	 precise,	 equal	 to	 our	 shadow
height),	 so	 that	 we	 get	 an	 area	 of	 solid	 white	 before	 the	 fading	 starts.
Furthermore,	we	need	 to	 increase	 the	 size	of	 the	“mask”	 to	be	 larger	 than
the	shadow,	otherwise	we	would	get	no	gradient.	The	exact	height	depends
on	how	smooth	we	want	the	effect	to	be	(i.e.,	how	quickly	should	shadow	be
revealed	when	we	scroll?).	After	some	experimentation,	it	seems	that	50px	is
a	reasonable	value.	The	final	code	looks	as	follows,	and	you	can	see	the	result
in	Figure	6.24:

FIGURE	6.24	The	final	result

background:	linear-gradient(white	30%,	transparent),
												radial-gradient(at	50%	0,	rgba(0,0,0,.2),
																												transparent	70%);
background-repeat:	no-repeat;
background-size:	100%	50px,	100%	15px;
background-attachment:	local,	scroll;

Of	course,	to	achieve	the	original	effect,	we	need	two	more	gradients	for
the	bottom	shadow	and	its	mask,	but	the	logic	is	exactly	the	same,	so	this
can	 be	 left	 as	 an	 exercise	 for	 the	 reader	 (or	 check	 out	 the	 following	 Play!
example	for	the	solution).

	PLAY! 	play.csssecrets.io/scrolling-hints

Hat	tip	to	Roman	Komarov	for	coming	up	with	an	early	version	of	this	effect
(kizu.ru/en/fun/shadowscroll).	His	version	used	 pseudoelements	 and
positioning	 instead	 of	 background	 images,	and	might	be	an	 interesting	alternative
for	certain	use	cases.

RELATED
SPECS

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

CSS	Image	Values

w3.org/TR/css-images

35	Interactive	image	comparison

The	problem

http://play.csssecrets.io/scrolling-hints
http://kizu.ru/en/fun/shadowscroll
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images

Sometimes	 the	 need	 arises	 to	 showcase	 the	 visual	 differences	 between	 two
images,	 usually	 as	 a	 before-and-after	 comparison.	 For	 example,
demonstrating	the	effects	of	photo	manipulation	in	a	portfolio,	the	results	of
certain	beauty	treatments	in	a	beautician’s	website	or	the	visible	results	of	a
catastrophic	event	in	a	geographical	area.

The	most	common	solution	would	be	to	just	place	the	images	side	by	side.
However,	this	way	the	human	eye	only	notices	very	conspicuous	differences
and	misses	the	smaller	ones.	This	is	fine	if	the	comparison	is	unimportant	or
the	 differences	 are	 large,	 but	 in	 all	 other	 cases,	 we	 need	 something	more
helpful.

There	 are	 many	 solutions	 to	 this	 problem	 from	 a	 UX	 perspective.	 A
common	 solution	 is	 to	 show	 both	 images	 in	 the	 same	 place	 in	 quick
succession,	 through	 an	 animated	 GIF	 or	 a	 CSS	 animation.	 This	 is	 much
better	than	showing	the	images	next	to	each	other,	but	it’s	time	consuming
for	 the	 user	 to	 notice	 all	 the	 differences	 as	 they	 have	 to	 wait	 for	 several
iterations,	fixating	their	eyes	at	a	different	area	of	the	images	every	time.

FIGURE	6.25	An	example	of	an	interactive	image	comparison	widget,
enabling	users	to	compare	the	catastrophic	results	of	the	2011	London
riots,	from	major	UK	news	outlet	The	Guardian.	The	user	is	supposed	to
drag	the	white	bar	separating	the	two	images,	but	there	is	no	affordance	to
indicate	the	bar	is	draggable,	which	is	why	the	help	text	(“Move	the
slider…”)	was	needed.	Ideally,	a	good,	learnable,	interface	doesn’t	need
help	text.

Source:
theguardian.com/uk/interactive/2011/aug/09/london-
riots-before-after-photographs

A	 solution	 that	 is	 much	 more	 usable	 is	 what	 is	 known	 as	 an	 “image
comparison	slider.”	This	control	superimposes	both	images	and	lets	the	user

http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs

drag	 the	divisor	 to	 reveal	one	or	 the	other.	Of	course,	 such	a	control	does
not	actually	exist	in	HTML.	We	have	to	emulate	it	via	the	elements	we	do
have,	 and	 there	 have	 been	 many	 such	 implementations	 over	 the	 years,
usually	requiring	JavaScript	frameworks	and	a	boatload	of	JS	code.

Is	 there	 a	 simpler	way	 to	 implement	 such	 a	 control?	Actually,	 there	 are
two!

In	some	variations,	the	user	just	moves	the	mouse	instead	of	dragging.	This	has	the	benefit	of
being	easier	to	notice	and	use,	but	the	experience	can	be	quite	irritating.

CSS	resize	solution

If	we	think	about	it,	an	image	comparison	slider	basically	includes	an	image
and	 a	 horizontally	 resizable	 element	 that	 progressively	 reveals	 another
image.	This	is	where	the	JavaScript	frameworks	usually	come	in:	to	make	the
top	image	horizontally	resizable.	However,	we	don’t	really	need	scripting	to
make	 an	 element	 resizable.	 In	 CSS	 User	 Interface	 Level	 3
(w3.org/TR/css3-ui/#resize),	 we	 got	 a	 property	 for	 that:	 the
humble	resize!

It’s	usually	a	good	idea	to	apply	resize:	vertical	to	<textarea>s	to	maintain	resizability
but	disable	horizontal	resizing,	which	usually	breaks	layouts.

Even	if	you’ve	never	heard	of	this	property,	you’ve	probably	experienced
its	behavior	 as	 it’s	 set	 to	both	 by	default	on	<textarea>s,	which	makes
them	 resizable	 in	 both	 directions.	 However,	 it	 can	 actually	 be	 set	 on	 any
element,	as	long	as	its	overflow	property	is	not	visible.	In	almost	every
element	resize	 is	set	to	none	by	default,	which	disables	resizing.	Besides
both,	 it	 also	 accepts	 the	 values	 horizontal	 and	 vertical,	 which
restrict	the	direction	of	the	resizing.

Once	object-fit	and	object-position	gain	more	widespread	browser	support,	this	won’t
be	an	issue,	as	we’ll	be	able	to	control	how	images	scale	in	the	same	way	as	we’re	able	to	control
background	image	scaling.

This	 might	 make	 one	 wonder:	 could	 we	 perhaps	 use	 this	 property	 to
implement	our	image	slider?	We	can’t	know	until	we	give	it	a	shot!

Our	first	thought	might	be	to	just	include	two		elements.	However,
applying	 resize	 directly	 to	 an	 	 would	 look	 awful,	 as	 resizing	 an
image	 directly	 distorts	 it.	 It	 makes	 more	 sense	 to	 apply	 it	 to	 a	 container

http://w3.org/TR/css3-ui/#resize

<div>.	Therefore,	we	end	up	with	markup	like	the	following:

HTML
<div	class="image-slider">
				<div>
								
				</div>
				
</div>

Then	we	need	to	apply	some	basic	CSS	for	positioning	and	dimensions:

FIGURE	6.26	After	some	basic	styling,	this	is	already	starting	to	resemble
an	image	slider,	but	we	can’t	change	the	width	of	the	top	image	yet

.image-slider	{
				position:relative;
				display:	inline-block;
}

.image-slider	>	div	{
				position:	absolute;
				top:	0;	bottom:	0;	left:	0;
				width:	50%;	/*	Initial	width	*/
				overflow:	hidden;	/*	Make	it	clip	the	image	*/
}
.image-slider	img	{	display:	block;	}

Right	now	the	result	looks	like	Figure	6.26	but	is	still	static.	If	we	manually
change	 the	width,	we	can	 see	 it	going	 through	all	 stages	 that	a	user	would
resize	 it	 to.	To	make	 the	width	 change	 dynamically	with	 user	 interaction,
through	the	resize	property,	we	need	two	more	declarations:

.image-slider	>	div	{
				position:	absolute;
				top:	0;	bottom:	0;	left:	0;
				width:	50%;
				overflow:	hidden;
				resize:	horizontal;
}

The	only	visual	change	is	that	a	resize	handler	now	appears	at	the	bottom-
right	corner	of	the	before	image	(Figure	6.27),	but	we	can	now	drag	it	and
resize	 it	 to	 our	 heart’s	 content!	However,	 playing	with	 our	 widget	 a	 little
reveals	a	few	weaknesses:

We	can	resize	the	<div>	past	the	width	of	the	images.

The	resize	handler	is	difficult	to	spot.

FIGURE	6.27	Our	image	slider	now	actually	functions	like	an	image	slider,
but	still	has	a	few	issues

The	first	issue	is	very	easy	to	solve.	All	we	need	is	to	specify	a	max-width
of	 100%.	 However,	 the	 second	 issue	 is	 a	 bit	 more	 complicated.

Unfortunately,	 there	 is	 still	 no	 standard	 way	 to	 style	 the	 resize	 handler.
Some	 rendering	 engines	 support	 proprietary	 pseudoelements	 (such	 as	::-
webkitresizer)	 for	 this,	 but	 their	 results	 are	 limited,	 both	 in	 terms	 of
browser	 support,	 as	well	 as	 styling	 flexibility.	However,	hope	 is	not	 lost:	 it
turns	 out	 that	 overlaying	 a	 pseudoelement	 on	 the	 resize	 handle	 doesn’t
interfere	with	its	 function,	even	without	pointer-events:	none.	So,	a
cross-browser	solution	to	style	the	resize	handler	would	be	to	just	…overlay
another	on	top	of	it.	Let’s	do	that:

.image-slider	>	div::before	{
				content:	'';
				position:	absolute;
				bottom:	0;	right:	0;
				width:	12px;	height:	12px;
				background:	white;
				cursor:	ew-resize;
}

FIGURE	6.28	Styling	the	resize	handler	as	a	white	square,	by	overlaying	a
pseudoelement	on	it

Note	 the	 cursor:	 ew-resize	 declaration:	 this	 adds	 an	 extra
affordance,	 as	 it	 hints	 to	 the	 user	 that	 they	 can	 use	 this	 area	 as	 a	 resize
handler.	However,	we	should	not	depend	on	cursor	changes	as	our	only
affordance,	because	they	are	only	visible	when	the	user	is	already	interacting
with	a	control.

Right	now,	our	 resize	handler	will	 appear	 as	 a	white	 square	 (see	Figure

6.28).	At	this	point,	we	can	go	ahead	and	style	it	to	our	liking.	For	example,
to	make	 it	 a	 white	 triangle	with	5px	 spacing	 from	 the	 sides	 of	 the	 image
(Figure	6.29),	we	could	write:

FIGURE	6.29	Styling	the	fake	resizer	pseudoelement	as	a	triangle	with	5px
spacing	from	the	edges	of	the	image

padding:	5px;
background:
				linear-gradient(-45deg,	white	50%,	transparent	0);
background-clip:	content-box;

As	 an	 additional	 improvement,	 we	 could	 apply	user-select:	none	 to
both	 images,	 so	 that	 failing	 to	 grab	 the	 resize	 handler	would	 not	 result	 in
them	pointlessly	 being	 selected.	To	 sum	up,	 the	 full	 code	would	 look	 like
this:

.image-slider	{
				position:relative;
				display:	inline-block;
}
.image-slider	>	div	{
				position:	absolute;
				top:	0;	bottom:	0;	left:	0;
				width:	50%;
				max-width:	100%;
				overflow:	hidden;
				resize:	horizontal;
}

.image-slider	>	div::before	{
				content:	'';
				position:	absolute;
				bottom:	0;	right:	0;
				width:	12px;	height:	12px;
				padding:	5px;
				background:
								linear-gradient(-45deg,	white	50%,	transparent	0);
				background-clip:	content-box;
				cursor:	ew-resize;
}

.image-slider	img	{
				display:	block;
				user-select:	none;
}

	PLAY! 	play.csssecrets.io/image-slider

Range	input	solution

The	CSS	 resize	method	described	 in	 the	previous	 section	works	great	 and
involves	very	little	code.	However,	it	has	a	few	shortcomings:

It’s	not	keyboard	accessible.

Dragging	is	the	only	way	to	resize	the	top	image,	which	can	be	tedious
for	large	images	or	motor-impaired	users.	Being	able	to	also	click	to	a
point	and	have	the	image	resize	to	that	point	offers	a	much	better
experience.

The	user	can	only	resize	the	top	image	from	its	bottom-right	corner,
which	might	be	hard	to	notice,	even	if	we	style	it	in	the	way	previously
described.

If	 we	 are	 willing	 to	 use	 a	 little	 scripting,	 we	 could	 use	 a	 slider	 control
(HTML	range	input)	overlaid	on	top	of	the	images	to	control	the	resizing,
which	solves	all	three	issues.	Because	we’re	using	JS	anyway,	we	can	add	all
extra	 elements	 via	 scripting,	 so	 we	 can	 start	 with	 the	 cleanest	 possible
markup:

http://play.csssecrets.io/image-slider

HTML
<div	class="image-slider">
				
				
</div>

Then,	our	JS	code	will	convert	it	to	the	following,	and	add	an	event	on	the
slider	so	that	it	also	sets	the	div’s	width:

HTML
<div	class="image-slider">
				<div>
								
				</div>
				
				<input	type="range"	/>
</div>

The	JavaScript	code	is	fairly	straightforward:

JS
$$('.image-slider').forEach(function(slider)	{
				//	Create	the	extra	div	and
				//	wrap	it	around	the	first	image
				var	div	=	document.createElement('div');
				var	img	=	slider.querySelector('img');
				slider.insertBefore(img,	div);
				div.appendChild(img);

				//	Create	the	slider
				var	range	=	document.createElement('input');
				range.type	=	'range';
				range.oninput	=	function()	{
								div.style.width	=	this.value	+	'%';
				};
				slider.appendChild(range);
});

The	 CSS	 we	 will	 use	 as	 a	 starting	 point	 is	 basically	 the	 same	 as	 in	 the
previous	solution.	We	will	only	delete	the	parts	we	no	longer	need:

We	don’t	need	the	resize	property.

We	don’t	need	the	.image-slider	>	div::before	rule,	because
we	no	longer	have	a	resizer.

We	don’t	need	max-width	because	the	slider	will	control	that.

Here’s	how	our	CSS	code	will	look	after	these	modifications:

.image-slider	{
				position:relative;
				display:	inline-block;
}

.image-slider	>	div	{
				position:	absolute;
				top:	0;	bottom:	0;	left:	0;
				width:	50%;
				overflow:	hidden;
}

.image-slider	img	{
				display:	block;
				user-select:	none;
}

FIGURE	6.30	Our	control	now	works,	but	we	still	need	to	style	that	range
input

If	we	test	this	code	now,	you	will	see	that	 it	already	works,	but	 it	 looks
awful:	there’s	a	range	input	just	randomly	placed	under	our	images	(Figure
6.30).	We	 need	 to	 apply	 some	 CSS	 to	 position	 it	 on	 top	 of	 them,	 and
make	it	as	wide	as	they	are:

.image-slider	input	{
				position:	absolute;
				left:	0;
				bottom:	10px;
				width:	100%;
				margin:	0;
}

TIP! 	Use	input:in-range	 instead	 of	 just	input	 to	only	 style	 the	 range	 input	 if	 range
inputs	are	supported.	Then	you	could	use	the	cascade	to	hide	it	or	style	it	differently	in	older
browsers.

As	you	can	see	in	Figure	6.31,	this	already	looks	decent.	There	are	several
proprietary	pseudoelements	to	style	range	inputs	exactly	how	we	want	them.
These	 include	 ::-moz-range-track,	 ::-ms-track,	 ::-webkit-
slider-thumb,	::-moz-range-thumb,	and	::-ms-thumb.	Like	most
proprietary	features,	their	results	are	inconsistent,	flimsy,	and	unpredictable,
so	I	would	recommend	against	using	them,	unless	you	really	have	to.	You’ve
been	warned.

FIGURE	6.31	Our	range	input	styled	to	be	overlaid	on	the	images

However,	 if	 we	 just	 want	 to	 visually	 unify	 the	 range	 input	 with	 the

control	 a	 bit	 more,	 we	 could	 use	 a	 blending	 mode	 and/or	 a	 filter.	 The
blending	 modes	 multiply,	 screen,	 or	 luminosity	 seem	 to	 produce
good	 results.	Also,	filter:	contrast(4)	would	make	 the	 slider	black
and	white	and	a	contrast	value	lower	than	1	would	make	it	more	gray.	The
possibilities	are	endless,	and	there’s	no	universally	optimal	choice	here.	You
could	even	combine	blending	modes	and	filters,	like	so:

filter:	contrast(.5);
mix-blend-mode:	luminosity;

We	could	also	increase	the	area	the	user	can	use	for	resizing	to	make	it	a
more	pleasant	experience	(per	Fitts’	Law),	by	reducing	the	width	and	making
up	the	difference	with	CSS	transforms:

width:	50%;
transform:	scale(2);
transform-origin:	left	bottom;

FIGURE	6.32	Using	blending	modes	and	filters	to	visually	unify	the	range
input	with	our	control	and	CSS	transforms	to	make	it	larger

You	can	see	the	result	of	both	treatments	in	Figure	6.32.	Another	benefit	of
this	 approach—albeit	 a	 transient	 one—is	 that	 range	 inputs	 currently	 have
better	browser	support	than	the	resize	property.

Hat	tip	to	Dudley	Storey	 for	coming	up	with	the	first	version	of	this	solution
(demosthenes.info/blog/819/A-Before-And-After-Image-
Comparison-Slide-Control-in-HTML5).

RELATED
SPECS

CSS	Basic	User	Interface

w3.org/TR/css3-ui

CSS	Image	Values

w3.org/TR/css-images

CSS	Backgrounds	&	Borders

w3.org/TR/css-backgrounds

Filter	Effects

w3.org/TR/filter-effects

Compositing	and	Blending

w3.org/TR/compositing

CSS	Transforms

w3.org/TR/css-transforms

http://demosthenes.info/blog/819/A-Before-And-After-Image-Comparison-Slide-Control-in-HTML5
http://w3.org/TR/css3-ui
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/filter-effects
http://w3.org/TR/compositing
http://w3.org/TR/css-transforms

7	Structure	&	Layout

36	Intrinsic	sizing

The	problem

As	 we	 all	 know,	 if	 we	 don’t	 set	 a	 specific	 height	 on	 an	 element,	 it
automatically	adjusts	to	its	contents.	What	if	we	want	a	similar	behavior	for
the	width	as	well?	For	example,	let’s	assume	we	have	HTML5	figures,	with
markup	like	the	following:

HTML
<p>Some	text	[…]</p>
<figure>
				
				<figcaption>
								The	great	Sir	Adam	Catlace	was	named	after
								Countess	Ada	Lovelace,	the	first	programmer.
				</figcaption>
</figure>
<p>More	text	[…].</p>

Let’s	 also	 assume	 we’re	 applying	 some	 basic	 styling	 to	 them,	 such	 as	 a
border	around	the	figures.	By	default,	this	looks	like	Figure	7.1.	We	want	to
make	the	figures	as	wide	as	the	image	they	contain	 (which	could	vary	 in
size)	and	center	them	horizontally.	The	current	rendering	is	quite	far	from
what	we	want:	the	lines	of	text	are	much	longer	than	the	image.	How	do	we
make	 the	 width	 of	 the	 figure	 determined	 by	 the	 width	 of	 the	 image	 it
contains	 instead	of	the	width	of	 its	parent?*	Over	the	course	of	our	career,
we	have	probably	built	our	own	list	of	CSS	styles	that	result	 in	such	width
behavior,	 usually	 as	 a	 side	 effect:	

FIGURE	7.1	The	default	way	our	markup	is	rendered,	after	a	bit	of	CSS	for
borders	and	padding

Floating	the	<figure>	gives	us	the	right	width,	but	also	drastically
alters	the	layout	of	the	figure,	in	ways	we	might	not	want	(Figure	7.2).

Applying	display:	inline-block	to	the	figure	does	size	it	based
on	its	contents,	but	not	in	the	way	we	want	(Figure	7.3).	In	addition,
even	if	the	width	computation	was	on	par	with	our	expectations,	it
would	be	very	tricky	to	horizontally	center	figures	this	way.	We	would
need	to	apply	text-align:	center	to	its	parent	and	text-
align:	left	to	any	possible	child	of	that	parent	(p,	ul,	ol,	dl,
...).

As	a	last	resort,	developers	often	apply	a	fixed	width	or	max-width	to
figures,	and	apply	max-width:	100%	to	figure	>	img.	However,
this	underutilizes	the	available	space,	might	still	be	off	for	overly	small
figures,	and	is	not	responsive.

FIGURE	7.2	Trying	to	solve	the	width	issue	by	floating	creates	new	issues	Is
there	any	decent	CSS	solution	to	this	problem	or	should	we	give	up	and
start	coding	a	script	to	dynamically	set	the	figure	widths?

FIGURE	7.3	Contrary	to	our	expectations,	display:	inline-block
does	not	result	in	the	width	we	wanted

The	solution

A	 relatively	new	 specification,	CSS	Intrinsic	&	Extrinsic	Sizing	Module
Level	 3	 (w3.org/TR/css3-sizing),	 defined	 several	 new	 width	 and
height	 keywords,	 one	 of	 the	 most	 useful	 of	 which	 was	 min-content.
This	keyword	gives	us	 the	width	of	 the	 largest	unbreakable	element	 inside
the	box	 (i.e.,	 the	widest	word	or	 image	or	 fixed-width	box).	This	 is	exactly
what	 we	 need!	 Now,	 giving	 our	 figures	 an	 appropriate	 width	 and
horizontally	 centering	 them	 as	 simple	 is	 two	 lines	 of	 code:	Another	 value,
max-content,	would	 give	 us	 the	 same	width	 as	we	 saw	with	display:
inline-block	earlier.	And	fit-content	gives	us	the	same	behavior	as
floats	(which	is	often	the	same	as	min-content,	but	not	always).

figure	{
				width:	min-content;
				margin:	auto;
}

http://w3.org/TR/css3-sizing

FIGURE	7.4	The	final	result	You	can	see	the	result	in	Figure	7.4.	To	offer	a
graceful	fallback	for	older	browsers,	we	could	combine	this	technique	with
a	fixed	max-width,	like	so:

figure	{
				max-width:	300px;
				max-width:	min-content;
				margin:	auto;
}

figure	>	img	{	max-width:	inherit;	}

On	 a	modern	 browser,	 the	 latter	max-width	 declaration	 would	 override
the	 former	and	 if	 the	 figure	 is	 sized	 intrinsically,	max-width:	inherit
has	no	effect.

	PLAY! 	play.csssecrets.io/intrinsic-sizing

Hat	tip	to	Dudley	Storey	(demosthenes.info)	for	coming	up	with	this	use
case	 (demosthenes.info/blog/662/Design-From-the-Inside-
Out-With-CSS-MinContent).

RELATED
SPECS

CSS	Intrinsic	&	Extrinsic	Sizing

w3.org/TR/css3-sizing

37	Taming	table	column	widths

http://play.csssecrets.io/intrinsic-sizing
http://demosthenes.info
http://demosthenes.info/blog/662/Design-From-the-Inside-Out-With-CSS-MinContent
http://w3.org/TR/css3-sizing

The	problem

Although	we	stopped	using	tables	for	layout	long	ago,	tables	still	have	their
place	on	modern	websites,	for	tabular	data	such	as	statistics,	emails,	 listings
of	 items	with	 lots	 of	metadata,	 and	many	other	 things.	Also,	we	 can	make
other	elements	behave	like	table-related	elements,	by	using	the	table-related
keywords	 for	 the	 display	 property.	 However,	 convenient	 as	 they	 may
seem	at	times,	their	layout	is	very	unpredictable	for	dynamic	content.	This	is
due	to	the	fact	that	column	dimensions	are	adjusted	based	on	their	contents
and	even	explicit	width	declarations	are	treated	more	like	hints,	as	Figure
7.5	illustrates.

For	this	reason,	we	often	end	up	using	different	elements	even	for	tabular
data	or	we	just	accept	the	unpredictability	of	it	all.	Is	there	any	way	we	could
get	tables	to	just	behave?

The	solution

The	solution	comes	in	the	form	of	a	little-known	CSS	2.1	property	called
table-layout.	 Its	 default	 value	 is	 auto,	 which	 results	 in	 the	 so-called
automatic	 table	 layout	algorithm,	with	 the	 familiar	behavior	 shown	 in	Figure
7.5.	 However,	 there	 is	 a	 second	 value,	 fixed,	 which	 results	 in	 more
predictable	behavior.	It	leaves	more	up	to	the	author	(you,	that	is!)	and	less
up	 to	 the	 rendering	 engine.	 Styling	 is	 respected	 and	not	 treated	 like	 some
sort	of	hint,	overflow	behaves	the	same	way	as	any	other	element	(including
text-overflow),	 and	 table	 contents	 only	 affect	 the	 height	 of	 each	 row
and	nothing	else.

FIGURE	7.5	The	default	table	layout	algorithm	for	tables	with	2	columns
and	varied	contents	(the	container	of	these	tables	is	shown	with	a	dashed
border)	In	addition	to	being	more	predictable	and	convenient,	the	fixed
table	layout	algorithm	is	also	considerably	faster.	Because	table	contents	do
not	affect	cell	widths,	no	redraws/repaints	are	needed	while	the	page	is
downloading.	We	are	all	familiar	with	the	disruptive	image	of	a	table	that
keeps	readjusting	the	widths	of	its	columns	as	the	page	is	downloading.
This	never	happens	with	fixed	table	layouts.

To	use	it,	we	apply	the	property	to	<table>	elements	and	elements	with
display:	table.	Note	 that	 you	need	 to	 specify	 a	width	 to	 these	 tables
(even	 if	 it’s	100%)	 for	 the	magic	 to	 happen.	 Also,	 for	text-overflow:
ellipsis	 to	work,	we	need	 to	set	a	width	 to	 that	column	as	well.	That’s
all!	You	can	see	the	results	in	Figure	7.6:
table	{
				table-layout:	fixed;
				width:	100%;
}

	PLAY! 	play.csssecrets.io/table-column-widths

Hat	 tip	 to	 Chris	 Coyier	 (css-tricks.com)	 for	 coming	 up	 with	 this
technique	(css-tricks.com/fixing-tables-long-strings).

http://play.csssecrets.io/table-column-widths
http://css-tricks.com
http://css-tricks.com/fixing-tables-long-strings

FIGURE	7.6	The	same	tables	as	in	Figure	7.5,	but	with	table-layout:
fixed	applied.	Note	the	following,	in	order:

When	we	don’t	define	any	widths,	all	columns	get	the	same	width.

A	second	row	does	not	affect	the	column	widths.

Large	widths	are	applied	as-is,	not	shrunk	down.

The	overflow	and	text-overflow	properties	are	respected.

Content	can	overflow	table	cells	(if	overflow	is	visible)

38	Styling	by	sibling	count

The	problem

There	are	many	cases	when	we	need	to	style	elements	differently	based	on
how	many	siblings	they	have	total.	The	main	use	case	is	improving	UX	and
conserving	 screen	 real	 estate	 in	 an	 expanding	 list,	 by	 hiding	 controls	 or
making	them	more	compact	as	the	list	grows.	Here	are	a	few	examples:

A	list	of	emails	or	similar	text-based	items.	If	we	only	have	a	handful	of
items,	we	can	display	a	long	preview.	As	the	list	grows,	we	reduce	the
lines	of	preview	we	can	show.	When	the	length	of	the	list	is	longer	than
the	viewport	height,	we	might	opt	to	hide	previews	completely	and
make	any	buttons	smaller,	to	minimize	scrolling.

A	to-do	list	app,	where	we	show	every	item	with	a	large	font	when	there
are	fewer	items,	but	progressively	make	the	font	size	smaller	(for	all
items)	as	the	total	number	of	items	increases.

A	color	palette	app,	with	controls	displayed	on	every	color.	One	might
want	to	make	these	controls	more	compact	as	the	number	of	colors
increases	and	the	space	they	occupy	decreases	accordingly	(Figure	7.7).

An	app	with	multiple	<textarea>s	where	every	time	we	add	a	new
one,	we	make	them	all	smaller	(like	in	bytesizematters.com).

http://bytesizematters.com

FIGURE	7.7	Progressively	making	controls	smaller	as	the	number	of	colors
increases	and	the	available	space	shrinks.	Note	the	special	handling	on
the	case	where	we	only	have	one	color:	We	then	hide	the	delete	button.

Colors	are	taken	from	the	Adobe	Color	(color.adobe.com)	palettes:

Agave	(color.adobe.com/agave-color-theme-387108)

Sushi	Maki	(color.adobe.com/Sushi-Maki-color-theme-
350205)

However,	targeting	elements	based	on	their	total	number	of	siblings	is	not

http://color.adobe.com
http://color.adobe.com/agave-color-theme-387108
http://color.adobe.com/Sushi-Maki-color-theme-350205

trivial	 with	CSS	 selectors.	 For	 example,	 suppose	we	want	 to	 apply	 certain
styles	to	a	list’s	items	when	their	total	count	is	4.	We	could	use	li:nth-
child(4)	 to	 select	 the	 fourth	 item	 in	 the	 list,	 but	 this	 is	 not	 what	 we
needed;	we	needed	to	select	every	item,	but	only	when	their	total	count	is
4.

FIGURE	7.8	Which	elements	get	selected	with	li:nth-child(4),
li:nth-child(4)	~	li

Our	 next	 idea	 might	 be	 to	 use	 the	 generalized	 sibling	 combinator	 (~)
together	 with	 :nth-child(),	 like	 li:nth-child(4),	 li:nth-
child(4)	~	li.	However,	 this	 only	 targets	 the	 fourth	 child	 and	 items
after	 it	 (Figure	 7.8),	 regardless	 of	 the	 total	 count.	 Because	 there	 is	 no
combinator	 that	 can	 “look	 backward”	 and	 select	 previous	 siblings,	 is
attempting	to	accomplish	this	with	CSS	doomed	to	fail?	Let’s	not	lose	hope
just	yet.

The	solution

For	the	special	case	of	having	exactly	one	item,	there	is	an	obvious	solution:
:only-child,	which	was	created	exactly	for	this	purpose.	This	is	not	only
useful	as	a	starting	point,	but	there	are	several	use	cases	for	it,	which	is	why	it
was	added	to	the	specification.	For	example,	note	in	Figure	7.7	that	we	are
hiding	the	delete	button	when	we	only	have	one	color;	this	could	be	done	by
a	CSS	selector	using	:only-child:
li:only-child	{
				/*	Styles	for	when	we	only	have	1	item	*/
}

However,	:only-child	 is	equivalent	 to	:first-child:last-child,
for	obvious	reasons:	if	the	first	item	is	also	the	last	item,	it	logically	follows
that	 it	 is	 the	 only	 item.	 However,	 :last-child	 is	 also	 a	 shortcut,	 to
:nth-last-child(1):	 We	 will	 use	 :nth-child()	 selectors

throughout	 this	 section,	 but	 everything	 discussed	 applies	 to	 :nth-of-
type()	selectors	equally,	which	are	often	a	better	fit,	as	we	usually	have
siblings	of	different	types	and	we	are	only	concerned	with	one	type.	We	will
be	 using	 list	 items	 in	 the	 examples,	 but	 what	 we	 discuss	 is	 applicable	 to
elements	of	any	type.

li:first-child:nth-last-child(1)	{
				/*	Same	as	li:only-child	*/
}

However,	now	1	is	a	parameter,	and	we	can	tweak	it	to	our	liking.	Can	you
guess	 what	 li:first-child:nth-last-child(4)	 targets?	 If	 you
answered	 that	 it	 generalizes	 :only-child	 by	 targeting	 list	 items	 when
their	total	count	is	four,	you	might	be	overdoing	it	a	bit	with	the	optimism.
We’re	 not	 there	 yet,	 but	 we	 are	 on	 the	 right	 track.	 Think	 about	 both
pseudo-classes	 separately:	 we	 are	 looking	 for	 elements	 that	 match	 both
:first-child	 and	 :nth-last-child(4).	 Therefore,	 elements	 who
are—at	 the	 same	 time—the	 first	 child	 of	 their	 parent	 counting	 from	 the
start,	 and	 the	 fourth	 child	 counting	 from	 the	 end.	Which	 elements	would
fulfill	this	criteria?

The	 answer	 is	 the	 first	 element	 in	 a	 list	with	 exactly	 four	 elements
(Figure	7.9).	This	is	not	quite	what	we	wanted,	but	it’s	very	close:	because
we	 now	 have	 a	way	 to	 target	 the	 first	 child	 of	 such	 a	 list,	 we	 can	 use	 the
general	 sibling	combinator	 (~)	 to	 target	every	sibling	 that	 follows	 such	a
first	 child,	 effectively	 targeting	 every	 list	 item	 in	 a	 list	 if	 and	 only	 if	 it
contains	 four	 items	 total,	 which	 is	 exactly	 what	 we	 were	 trying	 to
accomplish:
li:first-child:nth-last-child(4),
li:first-child:nth-last-child(4)	~	li	{
				/*	Target	list	items	iff	the	list
							contains	exactly	four	items	*/
}

To	 avoid	 the	 verbosity	 and	 repetition	 of	 the	 solution	 just	 shown,	 a
preprocessor,	 such	as	SCSS,	could	be	used,	although	 the	 syntax	of	existing

preprocessors	for	this	is	rather	clumsy:	
FIGURE	7.9	Which	elements	get	selected	with	li:first-child:nth-
last-child(4)	in	lists	of	three,	four,	and	eight	elements

SCSS
/*	Define	mixin	*/
@mixin	n-items($n)	{
				&:first-child:nth-last-child(#{$n}),
				&:first-child:nth-last-child(#{$n})	~	&	{
								@content;
				}
}

/*	Use	it	like	so:	*/
li	{
				@include	n-items(4)	{
								/*	Properties	and	values	*/
				}
}

Hat	 tip	 to	 André	 Luís	 (andr3.net)	 for	 coming	 up	 with	 an	 idea	 that
inspired	this	technique	(andr3.net/blog/post/142).

Selecting	by	range	of	sibling	count

http://andr3.net
http://andr3.net/blog/post/142

In	most	practical	applications,	we	do	not	want	to	target	specific	numbers	of
items,	 but	 ranges	 thereof.	There	 is	 a	 handy	 trick	 that	we	 can	use	 to	make
:nth-child()	 selectors	 target	 ranges	 such	 as	 “select	 everything	 after	 the
fourth	 child.”	Besides	 simple	numbers	 as	 parameters,	we	 can	 also	use	an+b
expressions	(e.g.,	:nth-child(2n+1)),	where	n	stands	for	a	variable	that
ranges	from	0	to	+∞	in	theory	(in	practice,	values	after	a	certain	point	don’t
select	anything	anymore	because	the	number	of	elements	we	have	is	finite).
If	we	use	an	expression	of	the	form	n+b	 (where	a	 is	 implied	to	be	1),	then
there	 is	no	positive	 integer	 for	n	 that	could	give	us	a	value	smaller	 than	b.
Therefore,	 expressions	 of	 the	 form	n+b	 can	 be	 used	 to	 select	every	 child
from	the	bth	onward;	for	example,	:nth-child(n+4)	selects	every	child
except	the	first,	second,	and	third	(Figure	7.10).

TIP! 	It	can	be	hard	to	wrap	one’s	head	around	:nth-*	selectors.	If	you’re	having	trouble,	you
could	 use	 an	 online	 tester	 to	 experiment	 with	 a	 few	 expressions.	 I’ve	 written	 one	 at
lea.verou.me/demos/nth.html,	but	there	are	plenty	of	others	around.

FIGURE	7.10	Which	elements	get	selected	with	li:nth-child(n+4)	in
lists	of	three,	four,	and	eight	elements	We	can	take	advantage	of	this	to
select	list	items	when	the	total	number	of	items	is	four	or	more	(Figure
7.11).	In	this	case,	we	could	use	n+4	as	the	expression	inside	:nth-
last-child():

li:first-child:nth-last-child(n+4),
li:first-child:nth-last-child(n+4)	~	li	{
				/*	Target	list	items	iff	the	list
							contains	at	least	four	items	*/
}

Similarly,	 expressions	 of	 the	 form	-n+b	 can	 be	 used	 to	 select	 the	 first	b

http://lea.verou.me/demos/nth.html

elements.	Therefore,	to	select	all	list	items	if	and	only	if	there	are	four	or
fewer	of	them	in	the	same	list	(Figure	7.12),	we	would	write:
li:first-child:nth-last-child(-n+4),
li:first-child:nth-last-child(-n+4)	~	li	{
				/*	Target	list	items	iff	the	list
							contains	at	most	four	items	*/
}

Of	 course,	 we	 could	 combine	 the	 two,	 but	 the	 code	 now	 gets	 even	more
unwieldy.	 Assume	 we	 want	 to	 target	 list	 items	 when	 the	 list	 contains

between	2–6	items:	
FIGURE	7.11	Which	elements	get	selected	with	li:first-child:nth-
last-child(n+4),	li:first-child:nth-last-child(n+4)	~
li	in	lists	of	three,	four,	and	eight	elements

li:first-child:nth-last-child(n+2):nth-last-child(-n+6),
li:first-child:nth-last-child(n+2):nth-last-child(-n+6)	~	li	{
				/*	Target	list	items	iff	the	list
							contains	2-6	items	*/
}

FIGURE	7.12	Which	elements	get	selected	with	li:first-child:nth-
last-child(-n+4),	li:first-child:nth-last-child(-n+4)
~	li	in	lists	of	three,	four,	and	eight	elements	 	PLAY!
play.csssecrets.io/styling-sibling-count

RELATED
SPECS

Selectors

w3.org/TR/selectors

39	Fluid	background,	fixed	content

The	problem

In	 the	 past	 few	 years,	 there	 is	 a	 certain	 web	 design	 trend	 that	 has	 been
growing	 in	 popularity:	 it’s	 what	 I	 call	 “fluid	 background	 width,	 fixed	 content
width.”	 The	 typical	 characteristics	 of	 this	 pattern	 are:	

http://play.csssecrets.io/styling-sibling-count
http://w3.org/TR/selectors

FIGURE	7.13	Popular	home-sharing	website	airbnb.com	uses	this	pattern	in
its	footer

There	are	multiple	sections,	each	occupying	the	entire	width	of	the
viewport	and	each	with	a	different	background.

The	content	is	of	fixed	width,	even	if	that	width	varies	in	different
resolutions	because	said	fixed	width	is	modified	by	media	queries.	In
some	cases,	different	sections	have	different	content	widths	as	well.

Sometimes	 the	 entire	 website	 is	 comprised	 of	 sections	 styled	 this	 way
(Figure	7.15,	or,	more	subtly,	Figure	7.14).	More	frequently,	only	specific
sections	follow	this	pattern,	especially	footers	(Figure	7.13).

http://airbnb.com

FIGURE	7.14	Popular	travel	booking	website	kayak.com	uses	this	pattern
throughout	its	homepage,	in	a	very	subtle	way	The	most	common	way	to
accomplish	something	like	this	is	using	two	elements	for	each	section,	one
for	the	fluid	background	and	one	for	the	fixed	content	width.	The	latter	is
centered	horizontally	via	margin:	auto.	For	example,	the	markup	for
such	a	footer	could	look	like	this:

HTML
<footer>
				<div	class="wrapper">
								<!--	Footer	content	here	-->
				</div>
</footer>

The	CSS	usually	involves	rules	of	this	general	structure:
footer	{
				background:	#333;
}
.wrapper	{
				max-width:	900px;
				margin:	1em	auto;
}

Looks	familiar?	Most	web	designers/developers	have	written	similar	code	at
some	point.	Are	 the	extra	elements	a	necessary	evil,	or	can	we	use	modern
CSS	to	avoid	them?

http://kayak.com

The	solution

Let’s	 think	 for	 a	 bit	 about	 what	 margin:	 auto	 does	 in	 this	 case.	 The
margin	it	produces	is	equal	to	half	of	the	viewport	width,	minus	half	of	our
page	width.	Because	percentages	here	refer	to	the	viewport	width	(assuming
there	is	no	ancestor	with	an	explicit	width),	we	could	express	this	in	our	case
as	50%	-	450px.	However,	the	calc()	function,	defined	in	CSS	Values
and	Units	Level	3	(w3.org/TR/css-values-3/#calc),	 allows	us	 to
specify	 this	 kind	 of	 simple	math	 directly	 in	 our	 stylesheet.	 By	 substituting
auto	with	calc(),	our	wrapper	rule	will	become:
.wrapper	{
				max-width:	900px;
				margin:	1em	calc(50%	-	450px);
}

The	only	reason	we	had	to	use	a	second	wrapper	element	was	to	be	able	to
apply	the	magic	auto	keyword	on	its	margin.	However,	now	we	removed
the	magic	and	replaced	it	with	calc(),	so	it’s	just	another	CSS	length	value
that	can	be	used	in	any	property	that	accepts	lengths.	This	means	that	if	we
want,	 we	 can	 now	 apply	 it	 to	 the	 parent	 instead	 as	 padding:	

http://w3.org/TR/css-values-3/#calc

FIGURE	7.15	The	beautiful	Irish	website	of	Cono	Sur	Vineyards	and	Winery
(conosur.ie)	makes	extensive	use	of	this	pattern

footer	{
				max-width:	900px;
				padding:	1em	calc(50%	-	450px);
				background:	#333;
}
.wrapper	{}

	Don’t	forget	to	include	white-space	around	any	-	and	+	operators	in	calc(),	otherwise	it’s
a	parsing	error!	The	reason	for	this	weird	rule	is	forward	compatibility:	in	the	future,	identifiers
might	be	allowed	inside	calc(),	and	they	can	contain	hyphens.

As	you	 can	 see,	by	doing	 that,	we’ve	 eliminated	 any	CSS	code	 from	 the
wrapper,	which	means	we	don’t	really	need	it	anymore	and	we	can	safely	get
rid	of	it	from	our	markup.	We	have	now	achieved	the	style	we	wanted	with
no	redundant	HTML.	Can	we	improve	it	even	further?	As	usual,	the	answer
to	this	question	is	yes.

Notice	that	if	we	comment	out	the	width	declaration,	nothing	happens.
The	 visual	 result	 is	 exactly	 the	 same,	 and	 behaves	 the	 same	 regardless	 of
viewport	size.	Why	is	that?	Because	a	padding	of	50%	-	450px	only	leaves
900px	(2	×	450px)	of	available	space	anyway.	We	would	see	a	difference	if
width	was	anything	other	than	900px,	smaller	or	larger.	But	900px	is	the
space	we	get	anyway,	so	it’s	redundant	and	we	can	remove	it,	which	results	in
DRY-er	code.

Another	improvement	we	can	make	is	to	improve	backward	compatibility,
by	adding	a	fallback	so	that	we	at	least	get	some	padding	if	calc()	 is	not
supported:
footer	{
				padding:	1em;
				padding:	1em	calc(50%	-	450px);
				background:	#333;
}

This	 is	 it:	 we’ve	 achieved	 a	 flexible,	 DRY,	 backward-compatible	 result	 in
only	three	lines	of	CSS	and	no	extra	markup!

http://conosur.ie

FIGURE	7.16	Popular	Mac	OS	productivity	application	Alfred
(alfredapp.com)	also	uses	this	style	throughout	its	website	 	PLAY!
play.csssecrets.io/fluid-fixed

RELATED
SPECS

CSS	Values	&	Units

w3.org/TR/css-values

	This	 solution	 could	 end	 up	with	 no	 padding	 if	 the	 screen	 got	 narrower	 than	 the	 content
width!	We	can	fix	that	with	media	queries.

40	Vertical	centering

The	problem

“44	years	ago	we	put	a	man	on	the	moon,	yet	we	still	can’t	vertically	centre	things	in
CSS.”

—	James	Anderson
(twitter.com/jsa/status/358603820516917249)

Centering	an	element	horizontally	in	CSS	is	very	straightforward:	if	it’s	an
inline	 element,	 we	 apply	 text-align:	 center	 to	 its	 parent,	 if	 it’s	 a
block	element,	we	apply	margin:	auto	to	it.	However,	just	the	thought	of
vertically	centering	an	element	is	enough	to	make	our	skin	crawl.

Over	 the	 years,	 vertical	 centering	 has	 become	 the	 holy	 grail	 of	CSS,	 as
well	 as	 a	 popular	 inside	 joke	 between	 frontend	 professionals.	 The	 reason
being	that	it	has	all	of	the	following	properties	at	the	same	time:

http://alfredapp.com
http://play.csssecrets.io/fluid-fixed
http://w3.org/TR/css-values
http://twitter.com/jsa/status/358603820516917249

It’s	very	frequently	needed.

It	sounds	exceedingly	easy	and	simple	in	theory.

It	used	to	be	incredibly	difficult	in	practice,	especially	for	elements	of
variable	dimensions.

Frontend	developers	over	the	years	have	exhausted	their	creativity	in	coming
up	with	 solutions	 to	 this	 conundrum,	most	 of	 them	disturbingly	 hacky.	 In
this	secret,	we	are	going	to	explore	some	of	the	best	modern	techniques	to
achieve	 vertical	 centering	 for	 all	 needs.	Note	 that	 there	 are	 a	 few	 popular
techniques	that	are	not	discussed	here,	for	various	reasons:

The	table	layout	method	(using	table	display	modes)	is	not	included,
as	it	requires	several	redundant	HTML	elements.

The	inline-block	method	is	not	included,	as	it’s	too	hacky	for	my
taste.

However,	if	you	are	interested,	you	can	read	about	both	of	these	techniques
on	Chris	Coyier’s	 excellent	 article	“Centering	 in	 the	Unknown”	(css-
tricks.com/centering-in-the-unknown).

Unless	otherwise	noted,	we	will	use	the	following	markup	right	inside	the
<body>	 element,	 although	 the	 solutions	 we	 will	 explore	 should	 work
regardless	of	container:

HTML
<main>
				<h1>Am	I	centered	yet?</h1>
				<p>Center	me,	please!</p>
</main>

We	also	apply	some	basic	CSS	for	backgrounds,	padding,	and	so	on,	in	order
to	get	to	the	starting	point	shown	in	Figure	7.17.

http://css-tricks.com/centering-in-the-unknown

FIGURE	7.17	Our	starting	point

The	absolute	positioning	solution

One	 of	 the	 earliest	 vertical	 centering	 techniques	was	 the	 following,	 which
required	a	fixed	width	and	height:
main	{
				position:	absolute;
				top:	50%;
				left:	50%;
				margin-top:	-3em;	/*	6/2	=	3	*/
				margin-left:	-9em;	/*	18/2	=	9	*/

				width:	18em;
				height:	6em;
}

Essentially,	 it	 places	 the	 element’s	 top-left	 corner	 at	 the	 center	 of	 the
viewport	(or	the	closest	positioned	ancestor)	and	then	uses	negative	margins
of	 half	 its	 width	 and	 height	 to	move	 it	 up	 and	 left	 so	 that	 the	 element’s
center	 is	 at	 the	 center	 of	 the	 viewport.	 With	 calc()	 it	 could	 be
simplified	to	use	two	declarations	fewer:
main	{
				position:	absolute;
				top:	calc(50%	-	3em);
				left:	calc(50%	-	9em);
				width:	18em;
				height:	6em;

}

Obviously,	the	biggest	problem	with	this	technique	is	that	it	requires	fixed
dimensions,	while	we	often	need	 to	 center	 elements	whose	dimensions	 are
determined	by	their	contents.	If	only	we	had	a	way	to	use	percentages	that
resolve	 to	 the	 element’s	 dimensions,	 our	 issue	 would	 be	 solved!
Unfortunately,	 for	 most	 CSS	 properties	 (including	 margin),	 percentages
resolve	relative	to	the	dimensions	of	their	parent.

FIGURE	7.18	Vertical	centering	with	unspecified	dimensions	via	our	CSS
transforms	trick	As	is	common	with	CSS,	often	solutions	come	from	the
most	unlikely	places.	In	this	case,	CSS	transforms.	When	we	use
percentages	in	translate()	transforms,	we	are	moving	the	element
relative	to	its	own	width	and	height,	which	is	exactly	what	we	need	here.
We	can	thus	replace	the	negative	offsets	that	hardcode	our	elements
dimensions	with	percentage-based	CSS	transforms	and	get	rid	of	the
hardcoded	dimensions:

main	{
				position:	absolute;
				top:	50%;
				left:	50%;
				transform:	translate(-50%,	-50%);
}

You	can	see	the	result	 in	Figure	7.18,	but	 there	aren’t	really	any	surprises
there:	our	container	is	perfectly	centered,	just	like	what	we’d	expect.

Of	course,	no	technique	is	perfect,	and	this	one	has	a	few	caveats:

Absolute	positioning	is	often	not	an	option	as	its	effects	on	the	whole
layout	are	quite	drastic.

If	the	element	to	be	centered	is	taller	than	the	viewport,	its	top	is
clipped	(Figure	7.19).	There	are	ways	to	work	around	this,	but	they	are
incredibly	hacky.

In	some	browsers,	this	can	cause	elements	to	appear	slightly	blurry,	due
to	them	being	placed	on	a	half	pixel.	This	can	be	fixed	by	applying
transform-style:	preserve-3d,	although	this	is	a	hack	and	is
not	guaranteed	to	be	future-proof.

FIGURE	7.19	If	the	element	we	are	trying	to	center	is	taller	than	the
viewport,	its	top	is	clipped	 	PLAY!
play.csssecrets.io/vertical-centering-abs

It	 proved	 quite	 difficult	 to	 track	 down	 who	 originally	 came	 up	 with	 this	 helpful
trick,	 but	 the	 earliest	 source	 seems	 to	 be	 the	 StackOverflow
(stackoverflow.com)	 user	 “Charlie”
(stackoverflow.com/users/479836/charlie)	 as	 a	 response	 to	 the
question	 “Align	 vertically	 using	 CSS	 3?”
(stackoverflow.com/a/16026893/90826)	on	April	16,	2013.

http://play.csssecrets.io/vertical-centering-abs
http://stackoverflow.com
http://stackoverflow.com/users/479836/charlie
http://stackoverflow.com/a/16026893/90826

The	viewport	unit	solution

Assuming	 we	 want	 to	 avoid	 absolute	 positioning,	 we	 could	 still	 use	 the
translate()	 trick	 to	 move	 the	 element	 by	 half	 its	 width	 and	 height.
However,	how	do	we	give	it	the	initial	offsets	of	50%	from	the	top	and	left
corner	of	the	container,	without	left	and	top?

Our	 first	 thought	might	be	 to	use	percentages	 in	 the	margin	 property,
like	so:
main	{
				width:	18em;
				padding:	1em	1.5em;
				margin:	50%	auto	0;
				transform:	translateY(-50%);
}

However,	as	you	can	see	in	Figure	7.20,	this	produces	rather	odd	results.
The	reason	is	that	percentages	in	margin	are	computed	relative	to	the
width	of	the	parent.	Yes,	even	percentages	for	margin-top	and	margin-
bottom!

FIGURE	7.20	Using	percentages	in	margin	to	refer	to	the	viewport
dimensions	does	not	produce	the	expected	results	Thankfully,	if	we	are
trying	to	center	an	element	on	the	viewport,	there	is	still	hope.	CSS	Values
and	Units	Level	3	(w3.org/TR/css-values-3/#viewport-
relative-lengths)	defined	a	family	of	new	units,	called	viewport-
relative	lengths:

vw	is	relative	to	the	viewport	width.	Contrary	to	many	expectations,
1vw	stands	for	1%	of	the	viewport	width,	not	100%.

Similarly	to	vw,	1vh	represents	1%	of	the	viewport	height.

1vmin	is	equal	to	1vw	if	the	viewport	width	is	smaller	than	the	height,
otherwise	it	is	equal	to	1vh.

1vmax	is	equal	to	1vw	if	the	viewport	width	is	larger	than	the	height,
otherwise	it	is	equal	to	1vh.

In	this	case,	what	we	need	is	vh	for	our	margins:	Note	that	you	can	also
use	viewport-relative	lengths	to	create	full-screen	sections	with	no	scripting.
For	more	details,	see	“Make	full	screen	sections	with	1	line	of	CSS”	by
Andrew	 Ckor	 (medium.com/@ckor/make-full-screen-
sections-with-1-line-of-css-b82227c75cbd).

main	{
				width:	18em;
				padding:	1em	1.5em;
				margin:	50vh	auto	0;
				transform:	translateY(-50%);
}

As	 you	 can	 see	 in	 Figure	 7.21,	 this	 works	 flawlessly.	 Of	 course,	 the
usefulness	 of	 this	 technique	 is	 severely	 limited	 due	 to	 the	 fact	 that	 it	 only
works	for	vertically	centering	in	the	viewport.

	PLAY! 	play.csssecrets.io/vertical-centering-vh

http://w3.org/TR/css-values-3/#viewport-relative-lengths
http://medium.com/@ckor/make-full-screen-sections-with-1-line-of-css-b82227c75cbd
http://play.csssecrets.io/vertical-centering-vh

FIGURE	7.21	Using	50vh	as	the	top	margin	solved	our	problem	and	now
our	box	is	vertically	centered

The	Flexbox	solution

This	 is	 undoubtedly	 the	 best	 solution	 available,	 as	 Flexbox
(w3.org/TR/css-flexbox)	was	 designed	 precisely	 to	 help	with	 issues
like	this.	The	only	reason	other	solutions	are	still	discussed	is	because	other
methods	have	better	browser	support,	although	these	days	browser	support
for	Flexbox	in	modern	browsers	is	very	good.

All	 it	 takes	 is	 two	 declarations:	display:	flex	 on	 the	 parent	 of	 the
centered	 element	 (the	 <body>	 element	 in	 our	 example)	 and	 our	 familiar
margin:	auto	on	the	child	to	be	centered	(<main>	in	our	example):
body	{
				display:	flex;
				min-height:	100vh;
				margin:	0;
}

main	{
				margin:	auto;
}

Note	that	when	using	Flexbox,	margin:	auto	doesn’t	only	center	the
element	horizontally,	but	vertically	as	well.	Also	note	that	we	didn’t	even
have	to	set	a	width	(though	we	could,	if	we	wanted	to):	the	assigned	width	is

http://w3.org/TR/css-flexbox

equivalent	to	max-content	(remember	the	intrinsic	sizing	keywords	from
the	“Intrinsic	sizing”	secret	on	page	262?).

If	Flexbox	is	not	supported,	the	result	would	look	like	our	starting	point	in
Figure	 7.17	 (if	 we	 set	 a	 width),	 which	 is	 perfectly	 acceptable,	 even	 if	 not
vertically	centered.

Another	 advantage	 of	 Flexbox	 is	 that	 it	 can	 be	 used	 to	 vertically	 center
anonymous	containers	 (i.e.,	 text	without	 any	wrapper).	For	example,	 if	our
markup	was	the	following:

HTML
<main>Center	me,	please!</main>

FIGURE	7.22	Using	Flexbox	to	center	anonymous	text	boxes	We	could
specify	fixed	dimensions	to	main	and	center	the	text	inside	it	too,	via	the
align-items	and	justify-content	properties	that	Flexbox
introduced	(Figure	7.22):	We	could	have	used	the	same	properties	on
<body>	to	center	the	<main>	element,	but	the	margin:	auto
approach	is	more	elegant	and	doubles	as	a	fallback.

FUTURE 	Align	all	the	things!
As	 is	 already	 planned	 in	 CSS	 Box	 Alignment	 Level	 3
(w3.org/TR/css-align-3),	in	the	future	we	won’t	even	need	to	use	a

http://w3.org/TR/css-align-3

different	layout	mode	for	easy	vertical	centering,	we	will	just	be	able	to	do
it	with	the	following	line:
align-self:	center;

This	will	 just	work,	 regardless	 of	what	 other	 properties	 are	 applied	 to	 the
element.	It	may	sound	too	good	to	be	true,	but	it’s	coming	soon	at	a	browser
near	you!

main	{
				display:	flex;
				align-items:	center;
				justify-content:	center;
				width:	18em;
				height:	10em;
}

	PLAY! 	play.csssecrets.io/vertical-centering

RELATED
SPECS

CSS	Transforms

w3.org/TR/css-transforms

CSS	Values	&	Units

w3.org/TR/css-values

CSS	Flexible	Box	Layout

w3.org/TR/css-flexbox

CSS	Box	Alignment

w3.org/TR/css-align

http://play.csssecrets.io/vertical-centering
http://w3.org/TR/css-transforms
http://w3.org/TR/css-values
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-align

41	Sticky	footers

Prerequisites
Viewport-relative	units	(see	the	“Vertical	centering”	secret	on	page	280),
calc()

The	problem

Specifically,	the	issue	appears	on	pages	whose	content	is	shorter	than	the	viewport	height	minus
the	footer	height.

This	 is	 one	 of	 the	 oldest	 and	 most	 common	 problems	 in	 web	 design,	 so
common	that	most	of	us	have	experienced	it	at	one	point	or	another.	It	can
be	 summarized	 as	 follows:	 a	 footer	 with	 any	 block-level	 styling,	 such	 as	 a
background	or	shadow,	works	fine	when	the	content	is	sufficiently	long,	but
breaks	on	shorter	pages	(such	as	error	messages).	The	breakage	in	this	case
being	that	the	footer	does	not	“stick”	at	the	bottom	of	the	viewport	like	we
would	want	it	to,	but	at	the	bottom	of	the	content.

It	is	not	only	its	ubiquity	that	made	it	popular,	but	also	how	deceptively
easy	 it	 looks	 at	 first.	 It’s	 a	 textbook	 case	 of	 the	 type	 of	 problem	 that
requires	significantly	more	time	to	solve	than	expected.	In	addition,	this	 is
still	not	a	solved	problem	in	CSS	2.1:	almost	all	classic	solutions	require	a
fixed	height	for	the	footer,	which	is	flimsy	and	rarely	feasible.	Furthermore,
all	 of	 them	 are	 overly	 complicated,	 hacky,	 and	 have	 specific	 markup
requirements.	 Back	 then,	 this	 was	 the	 best	 we	 could	 do,	 given	 the
limitations	of	CSS	2.1.	But	 can	we	do	better	with	modern	CSS,	 and	 if	 so,
how?

If	you’ve	never	had	the	pleasure	of	pulling	your	hair	out	and	diving	in	the	existing	literature	for
this	problem,	here	are	a	few	popular	links	with	existing,	widely	used	solutions	that	have	served
many	a	web	developer	before	CSS	Level	3	specs	were	conceived:

cssstickyfooter.com

ryanfait.com/stickyfooter

http://cssstickyfooter.com
http://ryanfait.com/sticky-footer

css-tricks.com/snippets/css/stickyfooter

pixelsvsbytes.com/blog/2011/09/sticky-css-footers-the-flexible-way

mystrd.at/modern-clean-csssticky-footer

The	last	two	are	the	most	minimal	in	the	lot,	but	still	have	their	own	limitations.

Fixed	height	solution

We	will	work	with	an	extremely	bare-bones	page	with	the	following	markup
inside	the	<body>	element:

HTML
<header>
				<h1>Site	name</h1>
</header>
<main>
				<p>Bacon	Ipsum	dolor	sit	amet…
				<!--	Filler	text	from	baconipsum.com	--></p>
</main>
<footer>
				<p>©	2015	No	rights	reserved.</p>
				<p>Made	with	♥	by	an	anonymous	pastafarian.</p>
</footer>

We	have	also	applied	some	basic	styling	to	it,	including	a	background	on
the	footer.	You	can	see	how	it	 looks	in	Figure	7.23.	Now,	let’s	reduce	the
content	a	bit.	You	can	 see	what	happens	 then,	 in	Figure	7.24.	This	 is	 the
sticky	footer	problem	in	all	its	glory!	Great,	we	have	recreated	the	problem,
but	how	do	we	solve	it?

If	we	assume	 that	our	 footer	 text	will	never	wrap,	we	can	deduce	a	CSS
length	 for	 its	 height:	

http://css-tricks.com/snippets/css/sticky-footer
http://pixelsvsbytes.com/blog/2011/09/sticky-css-footers-the-flexible-way
http://mystrd.at/modern-clean-css-sticky-footer

FIGURE	7.23	How	our	simple	page	looks	when	its	content	is	sufficiently
long	2	lines	×	line	height	+	3	×	paragraph	margin	+	vertical	padding	=	2
×	1.5em	+	3	×	1em	+	1em	=	7em	Similarly,	the	header	height	is	2.5em.
Therefore,	by	using	viewport-relative	units	and	calc(),	we	can	“stick”
our	footer	to	the	bottom	with	essentially	one	line	of	CSS:	

FIGURE	7.24	The	sticky	footer	problem	in	all	its	glory

main	{
				min-height:	calc(100vh	-	2.5em	-	7em);
				/*	Avoid	padding/borders	screwing	up	our	height:	*/
				box-sizing:	border-box;
}

	Be	careful	when	using	calc()	with	subtraction	or	addition:	the	+	and	-	operators	require
spaces	around	them.	This	very	odd	decision	was	made	for	future	compatibility.	If	at	some	point
keywords	 are	 allowed	 in	 calc(),	 the	 CSS	 parser	 needs	 to	 be	 able	 to	 distinguish	 between	 a
hyphen	in	a	keyword	and	a	minus	operator.

Alternatively,	we	could	apply	a	wrapper	around	our	<header>	and	<main>

elements	so	that	we	only	need	to	calculate	the	footer	height:
#wrapper	{
				min-height:	calc(100vh	-	7em);
}

This	works	(Figure	7.25)	and	it	seems	to	be	slightly	better	than	the	existing
fixed	 height	 solutions,	mainly	 due	 to	 its	minimalism.	However,	 except	 for
very	simple	layouts,	this	is	not	practical	at	all.	It	requires	us	to	assume	that
the	 footer	 text	 will	never	wrap,	 we	 need	 to	 edit	 the	min-height	every
time	we	change	the	footer	metrics	(i.e.,	 it	 is	not	DRY),	and	unless	we’re
willing	to	add	a	wrapper	HTML	element	around	our	header	and	content,	we
need	 to	do	 the	 same	 calculations	 and	modifications	 for	 the	header	 as	well.
Surely,	in	this	day	and	age	we	can	do	better,	right?

FIGURE	7.25	The	footer	after	we’ve	applied	CSS	to	make	it	stick	 	PLAY!
play.csssecrets.io/stickyfooter-fixed

http://play.csssecrets.io/sticky-footer-fixed

Flexible	solution

Flexbox	 is	 perfect	 for	 these	 kinds	 of	 problems.	 We	 can	 achieve	 perfect
flexibility	 with	 only	 a	 few	 lines	 of	 CSS	 and	 there	 is	 no	 need	 for	 weird
calculations	or	 extra	HTML	elements.	First,	we	need	 to	 apply	display:
flex	 to	 the	<body>	 element,	 as	 it’s	 the	 parent	 of	 all	 three	 of	 our	main
blocks,	 to	 toggle	 Flexible	Box	Layout	 (Flexbox)	 for	 all	 three	 of	 them.	We
also	need	to	set	flex-flow	to	column,	otherwise	they	will	be	all	laid	out
horizontally	on	a	single	row	(Figure	7.26):
body	{
				display:	flex;
				flex-flow:	column;
}

FIGURE	7.26	Applying	flex	without	applying	anything	else	arranges	the
children	of	our	element	horizontally	At	this	point,	our	page	looks	about	the
same	as	it	did	before	all	the	Flexbox	stuff,	as	every	element	occupies	the
entire	width	of	the	viewport	and	its	size	is	determined	by	its	contents.
Ergo,	we	haven’t	really	taken	advantage	of	Flexbox	yet.

To	make	the	magic	happen,	we	need	to	specify	a	min-height	of	100vh
on	<body>,	so	that	it	occupies	at	least	the	entire	height	of	the	viewport.
At	 this	 point,	 the	 layout	 still	 looks	 exactly	 like	Figure	 7.24,	 because	 even
though	we	have	specified	a	minimum	height	for	the	entire	body	element,	the
heights	 of	 each	 box	 are	 still	 determined	 by	 their	 contents	 (i.e.,	 they	 are
intrinsically	determined,	in	CSS	spec	parlance).

What	 we	 need	 here	 is	 for	 the	 height	 of	 the	 header	 and	 footer	 to	 be
intrinsically	 determined,	 but	 the	 height	 of	 the	 content	 should	 flexibly
stretch	 to	all	 the	 leftover	 space.	We	can	do	 that	by	applying	a	flex	 value
that	is	larger	than	0	(1	will	work)	to	the	<main>	container:
body	{
				display:	flex;
				flex-flow:	column;
				min-height:	100vh;
}

main	{	flex:	1;	}

TIP! 	The	flex	property	 is	actually	a	shorthand	of	flex-grow,	flex-shrink,	and	flex-
basis.	Any	element	with	a	flex	value	greater	than	0	becomes	flexible	and	flex	controls	the
ratio	between	the	dimensions	of	different	flexible	elements.	For	example,	in	our	case,	if	<main>
had	flex:	2	and	<footer>	had	flex:	1,	the	height	of	the	footer	would	be	twice	the	height
of	the	content.	Same	if	the	values	were	4	and	2	instead	of	2	and	1,	because	it’s	their	relationship
that	matters.

That’s	 it,	 no	 more	 code	 required!	 The	 perfect	 sticky	 footer	 (same	 visual
result	as	in	Figure	7.25),	with	only	four	simple	lines	of	code.	Isn’t	Flexbox
beautiful?

	PLAY! 	play.csssecrets.io/stickyfooter

Hat	 tip	 to	Philip	Walton	 (philipwalton.com)	 for	 coming	 up	 with	 this
technique	 (philipwalton.github.io/solved-by-
flexbox/demos/stickyfooter).

http://play.csssecrets.io/sticky-footer
http://philipwalton.com
http://philipwalton.github.io/solved-by-flexbox/demos/sticky-footer

RELATED
SPECS

CSS	Flexible	Box	Layout

w3.org/TR/css-flexbox

CSS	Values	&	Units

w3.org/TR/css-values

http://w3.org/TR/css-flexbox
http://w3.org/TR/css-values

8	Transitions	&	Animations

42	Elastic	transitions

Prerequisites
Basic	CSS	transitions,	basic	CSS	animations

The	problem

Elastic	 transitions	 and	 animations	 (i.e.,	 transitions	 that	 “bounce”)	 are	 a
popular	 way	 to	 make	 an	 interface	 feel	 more	 playful	 and	 realistic—when
objects	are	moving	in	real	life,	they	rarely	go	from	A	to	B	with	no	elasticity.

From	 a	 technical	 point	 of	 view,	 a	 bouncing	 effect	 is	 when	 a	 transition
reaches	 the	 final	 value,	 then	 rewinds	 for	 a	 little	 bit,	 then	 reaches	 the	 final
value	 again,	 one	 or	more	 times	 diminishingly,	 until	 it	 reaches	 the	 end	 for
good.	For	 example,	 let’s	 assume	we	 are	 animating	 an	 element	 styled	 like	 a
falling	 ball	 (see	 Figure	 8.1),	 by	 transitioning	 transform	 from	 none	 to
translateY(350px).

Why	use	transforms	and	not	some	other	CSS	property,	like	top	or	margin-top?	At	the	time	of
writing,	transforms	tend	to	be	smoother,	whereas	other	CSS	properties	often	snap	to	pixel
boundaries.

Of	 course,	 bounces	 are	 not	 just	 about	 positional	 movement.	 They	 can
greatly	enhance	almost	any	kind	of	transition,	including:

Size	transitions	(e.g.,	making	an	element	larger	on	:hover,	displaying	a
popup	that	grows	from	transform:	scale(0),	animating	the	bars
in	a	bar	chart)

Angular	movement	(e.g.,	rotations,	a	pie	chart	whose	slices	grow	from	0
via	an	animation)

Quite	 a	 few	 JavaScript	 libraries	 offer	 animation	 capabilities	 with	 bounce
built	 in.	 However,	 these	 days	 we	 don’t	 need	 scripting	 for	 animations	 and
transitions	 any	 longer.	However,	what’s	 the	 best	way	 to	 code	 a	 bounce	 in
CSS?

FIGURE	8.1	A	real-life	bouncing	movement

Bouncing	animations

Our	first	hunch	might	be	to	use	a	CSS	animation,	with	keyframes	such	as	the
following:

@keyframes	bounce	{
				60%,	80%,	to	{	transform:	translateY(350px);	}
				70%	{	transform:	translateY(250px);	}
				90%	{	transform:	translateY(300px);	}

}

.ball	{
				/*	Dimensions,	colors,	etc.	*/
				animation:	bounce	3s;
}

The	keyframes	in	the	preceding	code	specify	exactly	the	same	steps	as	in
Figure	8.1.	However,	if	you	run	this	animation,	you	will	notice	that	it	looks
very	artificial.	One	of	the	reasons	for	this	is	that	every	time	the	ball	changes
direction,	 it	 continues	 accelerating,	 which	 looks	 unnatural.	 The	 reason	 is
that	its	timing	function	is	the	same	across	all	these	keyframes.

FIGURE	8.2	The	default	timing	function	(ease)	for	all	transitions	and
animations

“Its	 timing…what?”	 you	 might	 ask.	 Every	 transition	 and	 animation	 is
associated	with	a	curve	 that	specifies	how	 it	progresses	over	 time	 (also
known	as	“easing”	in	some	contexts).	If	you	don’t	specify	a	timing	function,
it	will	get	the	default	one,	which	unlike	what	you	might	expect	is	not	linear
and	is	shown	in	Figure	8.2.	Note	(as	shown	by	the	pink	point	in	Figure	8.2)
how	 when	 half	 of	 the	 time	 has	 elapsed,	 the	 transition	 is	 about	 80%
along	the	way!

The	 default	 timing	 function	 can	 also	 be	 explicitly	 specified	 with	 the
keyword	ease,	 either	 in	 the	animation/transition	 shorthand	 or	 the
animation-timing-function/transition-timing-function
longhands.	However,	 because	ease	 is	 the	default	 timing	 function,	 it’s	 not

very	useful.	There	are	four	more	pre-baked	curves	you	can	use	to	change	the
way	the	animation	progresses,	shown	in	Figure	8.3.

As	 you	 can	 see,	ease-out	 is	 the	 reverse	of	ease-in.	This	 is	 exactly
what	 we	 wanted	 for	 our	 bounce	 effect:	 we	 want	 to	 reverse	 the	 timing
function	 every	 time	 the	 direction	 reverses.	We	 can	 therefore	 specify	 a
main	 timing	 function	 in	 the	 animation	 property	 and	 override	 it	 in	 the
keyframes.	We	 want	 the	 timing	 function	 of	 the	 main	 direction	 to	 be	 the
accelerating	 one	 (ease-out)	 and	 the	 one	 of	 the	 reverse	 direction	 to	 be
decelerating	(ease-in):

FIGURE	8.3	The	available	keywords	that	correspond	to	predetermined
timing	functions

@keyframes	bounce	{
				60%,	80%,	to	{
								transform:	translateY(400px);
								animation-timing-function:	ease-out;
				}
				70%	{	transform:	translateY(300px);	}
				90%	{	transform:	translateY(360px);	}
}

.ball	{

				/*	Rest	of	styling	here	*/
				animation:	bounce	3s	ease-in;
}

If	you	test	the	code	out,	you	will	see	that	even	this	simple	change	instantly
results	 in	 a	 considerably	 more	 realistic	 bounce.	 However,	 restricting
ourselves	 to	 these	 five	 predetermined	 curves	 is	 extremely	 limiting.	 If	 we
could	 pick	 arbitrary	 timing	 functions,	 we	 would	 be	 able	 to	 achieve	 much
more	 realistic	 results.	For	example,	 if	 the	bounce	animation	 is	 for	a	 falling
object,	 then	 a	 higher	 acceleration	 (such	 as	 the	 one	 provided	 by	 ease)
would	create	a	more	realistic	result.	But	how	could	we	create	the	inverse	of
ease,	when	there	is	no	keyword	for	it?

All	 five	 of	 these	 curves	 are	 specified	 through	 (cubic)	Bézier	 curves.	Bézier
curves	are	the	kinds	of	curves	you	work	with	in	any	vector	application	(e.g.,
Adobe	Illustrator).	They	are	defined	by	a	number	of	path	segments,	with	a
handle	on	each	end	to	control	their	curvature	(these	handles	are	often	called
control	 points).	 Complex	 curves	 contain	 a	 large	 number	 of	 such	 segments,
which	are	 joined	at	their	endpoints	(Figure	8.4).	CSS	timing	functions	are
Bézier	 curves	 with	 only	 one	 segment,	 so	 they	 only	 have	 two	 control
points.	As	an	example,	you	can	see	the	default	timing	function	(ease)	with
its	control	points	exposed	in	Figure	8.5.

FIGURE	8.4	A	cubic	Bézier	curve	for	a	spiral,	with	its	nodes	and	control
points	showing

In	 addition	 to	 the	 five	 predefined	 curves	 we	 discussed	 in	 the	 previous
section,	 there	 is	 also	 a	 cubic-bezier()	 function	 that	 allows	 us	 to
specify	a	custom	timing	function.	 It	 takes	 four	arguments,	which	are	the
coordinates	 of	 the	 two	 control	 points,	 to	 create	 the	 Bézier	 curve	 we	 are
specifying,	with	the	form	cubic-bezier(x1,	y1,	x2,	y2)	where	(x1,
y1)	are	the	coordinates	of	the	first	control	point	and	(x2,	y2)	of	the	second.
The	 endpoints	 of	 the	 line	 segment	 are	 fixed	 at	 (0,0),	 which	 is	 the
beginning	of	the	transition	(zero	elapsed	time,	zero	progression)	and	(1,1),
which	is	its	end	(100%	elapsed	time,	100%	progression).

FIGURE	8.5	The	ease	timing	function	with	its	nodes	and	control	points
displayed

Note	that	the	restriction	on	having	a	single	segment	whose	endpoints	are
fixed	is	not	the	only	one.	The	x	values	of	both	control	points	are	restricted	to
the	 [0,	 1]	 range	 (i.e.,	 we	 cannot	 move	 the	 handles	 outside	 of	 the	 graph
horizontally).	 This	 restriction	 is	 not	 arbitrary.	 As	 we	 cannot	 (yet?)	 travel
through	time,	we	cannot	specify	a	transition	that	begins	before	it	is	triggered
or	 ends	 after	 its	 duration.	The	 only	 real	 limitation	 here	 is	 the	 number	 of
nodes:	 restricting	 the	 curve	 to	 only	 two	 nodes	 limits	 the	 result	 quite
considerably,	but	 it	 also	makes	 the	cubic-bezier()	 function	 simpler	 to
use.	Despite	these	limitations,	cubic-bezier()	allows	us	to	create	a	very
diverse	set	of	timing	functions.

It	logically	follows	that	we	can	reverse	any	timing	function	by	swapping
the	horizontal	with	the	vertical	coordinates	for	both	its	control	points.
This	applies	to	keywords	too;	all	 five	keywords	we	discussed	correspond	to
cubic-bezier()	 values.	 For	 example,	 ease	 is	 equivalent	 to	 cubic-
bezier(.25,.1,.25,1),	 so	 its	 reverse	 is	 cubic-bezier(.
1,.25,1,.25)	 and	 is	 shown	 in	 Figure	 8.6.	 This	 way,	 our	 bounce
animation	can	now	use	ease	and	look	even	more	realistic:

@keyframes	bounce	{
				60%,	80%,	to	{
								transform:	translateY(400px);
								animation-timing-function:	ease;
				}
				70%	{	transform:	translateY(300px);	}
				90%	{	transform:	translateY(360px);	}
}
.ball	{
				/*	Styling	*/
				animation:	bounce	3s	cubic-bezier(.1,.25,1,.25);
}

FIGURE	8.6	The	reverse	timing	function	for	ease

Using	 a	 graphical	 tool	 like	 cubic-bezier.com	 (Figure	 8.7)	 we	 can
experiment	further	and	improve	our	bounce	animation	even	more.

	PLAY! 	play.csssecrets.io/bounce

http://cubic-bezier.com
http://play.csssecrets.io/bounce

FIGURE	8.7	Cubic	Bézier	curves	are	notoriously	hard	to	specify	and
understand	without	a	visualization,	especially	when	they	are	acting	as
timing	functions	for	a	transition;	thankfully,	there	are	quite	a	few	online
tools	for	this,	such	as	cubic-bezier.com	(shown	here),	made	by	yours	truly

In	 the	 animate.css	 animation	 library	 by	Dan	 Eden	 (daneden.me),	 the
timing	function	used	is	cubic-bezier(.215,.61,.355,1)	and	cubic-
bezier(.755,.05,.855,.06)	 instead	 of	 its	 reverse,	 which	 is	 steeper,	 for
increased	realism.

Elastic	transitions

Suppose	 we	 want	 to	 show	 a	 callout	 every	 time	 a	 text	 field	 is	 focused,	 to

http://cubic-bezier.com
http://daneden.me

supply	 additional	 information,	 such	 as	 allowed	 values.	 The	 markup	 could
look	like	this:

TIP! 	If	you	were	using	a	height	and	not	a	transform	to	show	the	callout,	you	would	notice	that
transitions	from	height:	0	(or	any	other)	to	height:	auto	do	not	work,	because	auto	is	a
keyword	 and	 cannot	 be	 expressed	 as	 an	 animatable	 value.	 In	 those	 cases,	 use	 max-height
instead	with	a	sufficiently	large	height.

HTML
<label>
				Your	username:	<input	id="username"	/>
				Only	letters,	numbers,
				underscores	(_)	and	hyphens	(-)	allowed!
</label>

FIGURE	8.8	How	our	transition	looks	initially

And	the	CSS	for	toggling	the	display	could	look	like	the	following	(we	have
omitted	everything	related	to	styling	or	layout):

input:not(:focus)	+	.callout	{
				transform:	scale(0);
}

.callout	{
				transition:	.5s	transform;
				transform-origin:	1.4em	-.4em;
}

As	it	currently	stands,	when	the	user	focuses	on	our	text	field,	there	is	a	half-

second	transition	that	looks	like	Figure	8.8.	Nothing	wrong	with	that,	but	it
would	look	more	natural	and	playful	if	it	overshot	a	bit	at	the	end	(e.g.,	if	it
grew	to	110%	its	size,	and	then	snapped	back	to	100%).	We	can	do	this	by
converting	the	transition	to	an	animation,	and	applying	what	we	learned	in
the	previous	section:

@keyframes	elastic-grow	{
				from	{	transform:	scale(0);	}
				70%	{
								transform:	scale(1.1);
								animation-timing-function:
												cubic-bezier(.1,.25,1,.25);	/*	Reverse	ease	*/

				}
}

input:not(:focus)	+	.callout	{	transform:	scale(0);	}

input:focus	+	.callout	{	animation:	elastic-grow	.5s;	}

.callout	{	transform-origin:	1.4em	-.4em;	}

If	we	try	it	out,	we	will	see	that	it	does	indeed	work.	You	can	see	how	it	looks
in	Figure	8.9	and	compare	it	with	the	previous	transition.	However,	we’ve
essentially	used	an	animation	when	we	really	needed	a	transition.	Animations
might	be	very	powerful,	but	 in	a	case	 like	 this	where	all	we	needed	was	 to
add	 some	 elasticity	 to	 our	 transition,	 it	 feels	 a	 bit	 overkill,	 like	 using	 a
chainsaw	 to	 cut	 ourselves	 a	 slice	 of	 bread.	 Is	 there	 a	 way	 to	 accomplish
something	like	this	with	a	transition?

The	 solution	 lies	 again	 in	 custom	cubic-bezier()	 timing	 functions.
So	far,	we	have	only	discussed	curves	whose	control	points	were	in	the	0–	1
range.	As	we	mentioned	in	the	previous	section,	we	cannot	exceed	this	range
horizontally,	although	this	might	change	in	the	future	if	time	machines	are
ever	 invented.	 However,	 we	 are	 allowed	 to	 exceed	 the	 0–1	 range
vertically	 and	 get	 our	 transition	 to	 go	 below	 0%	 progression	 or	 above
100%.	Can	you	guess	what	that	means?	It	means	that	if	we	are	moving	from
a	 scale(0)	 transform	 to	 a	 scale(1)	 transform,	 we	 can	 make	 it	 go
further	 than	 the	 final	 value,	 and	 reach	 values	 like	 scale(1.1),	 or	 even
more,	depending	on	how	steep	we	make	the	timing	function.

FIGURE	8.9	Our	UI	feels	more	realistic	and	playful	if	we	add	some
elasticity	to	our	transition

In	 this	 case,	 we	 only	 want	 very	 little	 elasticity,	 so	 we	 want	 our	 timing
function	 to	 reach	 110%	progression	 (which	 corresponds	 to	scale(1.1))
and	then	start	transitioning	back	to	100%.	Let’s	start	from	the	initial	ease
timing	function	(cubic-bezier(.25,.1,.25,1))	and	move	the	second
control	 point	 toward	 the	 top	 until	 we	 reach	 something	 like	 cubic-
bezier(.25,.1,.3,1.5).	As	you	can	see	in	Figure	8.10,	the	transition
now	 reaches	 100%	 progression	 at	 roughly	 50%	 of	 its	 total	 duration.
However,	 it	 does	 not	 stop	 there;	 it	 continues	moving	past	 the	 end	 value
until	it	reaches	110%	progression	at	the	70%	time	mark	and	then	spends	the
remaining	 30%	 of	 its	 available	 time	 transitioning	 back	 to	 the	 final	 value,
resulting	in	a	transition	that	is	very	similar	to	our	animation,	but	is	achieved
with	only	one	line	of	code.	For	the	sake	of	comparison,	our	code	is	now:

FIGURE	8.10	A	custom	timing	function	with	vertical	coordinates	outside
the	0–1	range

input:not(:focus)	+	.callout	{	transform:	scale(0);	}

.callout	{
				transform-origin:	1.4em	-.4em;
				transition:	.5s	cubic-bezier(.25,.1,.3,1.5);
}

However,	 although	our	 transition	 looks	 as	 expected	when	we	 focus	on	 the
text	field	and	the	callout	shows	up,	the	results	might	not	be	exactly	what	one
would	 expect	 when	 the	 text	 field	 loses	 focus	 and	 the	 callout	 shrinks	 and
disappears	 (Figure	 8.11).	What	 happened	 here?!	Odd	 as	 the	 result	might
look,	it’s	actually	expected:	when	we	tab	out	of	the	input	field,	the	transition
that	 fires	 has	 scale(1)	 as	 its	 starting	 value	 and	 scale(0)	 as	 it’s	 final
value.	Therefore,	because	the	same	timing	function	is	applied,	the	transition
will	 still	 reach	 110%	 progression	 after	 350ms.	 Only	 this	 time,	 110%
progression	does	not	translate	to	scale(1.1),	but	to	scale(-0.1)!

Don’t	give	up	just	yet	though,	because	fixing	this	issue	only	adds	one	more

line	of	 code.	Assuming	we	 just	want	a	 regular	ease	 timing	 function	when
the	callout	shrinks,	we	can	do	it	by	overriding	the	current	timing	function	in
the	CSS	rule	that	defines	its	closed	state:

FIGURE	8.11	What	happened	here?!

input:not(:focus)	+	.callout	{
				transform:	scale(0);
				transition-timing-function:	ease;
}

.callout	{
				transform-origin:	1.4em	-.4em;
				transition:	.5s	cubic-bezier(.25,.1,.3,1.5);
}

If	you	try	it	again,	you	will	see	that	it	now	closes	in	exactly	the	same	way	as	it
did	 before	 our	 custom	cubic-bezier()	 function,	 but	when	 it	 opens,	 it
has	the	nice	elastic	effect	we	were	going	for.

The	most	 vigilant	 of	 readers	will	 also	 notice	 another	 issue:	 closing	 the
callout	feels	very	slow.	Why	is	that?	Think	about	it.	When	it’s	growing,	it
reaches	 100%	 of	 its	 final	 size	 at	 50%	 progression	 (i.e.,	 after	 250ms).
However,	when	it	is	shrinking,	going	from	0%	to	100%	takes	up	all	of	the
time	we	specified	for	the	transition	(500ms),	so	it	feels	half	as	fast.

To	fix	that	 last	 issue,	we	can	just	override	the	duration	as	well,	either	by
using	transition-duration	 or	 by	 using	 the	transition	 shorthand
and	 overriding	 everything.	 If	 we	 do	 the	 latter,	 we	 don’t	 have	 to	 explicitly
specify	ease,	because	it	is	the	initial	value:

input:not(:focus)	+	.callout	{
				transform:	scale(0);
				transition:	.25s;
}

.callout	{
				transform-origin:	1.4em	-.4em;
				transition:	.5s	cubic-bezier(.25,.1,.3,1.5);
}

FIGURE	8.12	An	elastic	color	transition	from	 	rgb(100%,	0%,	40%)	to
	gray	(rgb(50%,	50%,	50%))	with	a	timing	function	of	cubic-

bezier(.25,.1,.2,3).	Each	RGB	coordinate	interpolates	individually,
so	we	reach	weird	colors	like	 	rgb(0%,	100%,	60%).	Check	out
play.csssecrets.io/elastic-color.

While	 elastic	 transitions	 can	 be	 a	 nice	 touch	 in	many	 kinds	 of	 transitions
(some	of	which	we	mentioned	in	the	“The	problem”	section	of	this	secret),
they	are	a	terrible	idea	for	others.	The	typical	case	where	you	don’t	want
elastic	 transitions	 is	 colors.	 Although	 elastic	 transitions	 on	 colors	 can	 be
quite	amusing	(see	Figure	8.12),	they	are	usually	not	desirable	for	a	UI.

To	guard	against	accidentally	applying	elastic	transitions	to	colors,	try	to
restrict	 transitions	 to	 specific	 properties,	 instead	 of	 not	 specifying	 any
like	 we	 did	 before.	 When	 we	 don’t	 specify	 any	 properties	 in	 the
transition	 shorthand,	transition-property	 gets	 its	 default	 value:
all.	 This	 means	 that	 anything	 that	 can	 be	 transitioned,	 will	 be
transitioned.	Therefore,	if	we	later	add	a	background	change	on	the	rule
that	is	applied	to	open	callouts,	the	elastic	transition	will	now	be	applied	to
that	too.	The	final	code	looks	like	this:

http://play.csssecrets.io/elastic-color

input:not(:focus)	+	.callout	{

				transform:	scale(0);
				transition:	.25s	transform;
}

.callout	{
				transform-origin:	1.4em	-.4em;
				transition:	.5s	cubic-bezier(.25,.1,.3,1.5)	transform;
}

TIP 	 Speaking	 of	 restricting	 transitions	 to	 specific	 properties,	 you	 can	 even	 queue	 the
transitions	for	the	different	properties,	via	transition-delay,	which	is	the	second	time	value
in	the	transition	shorthand.	For	example,	if	both	width	and	height	are	transitioning	and
you	want	 the	 height	 to	 go	 first	 and	 the	width	 second	 (an	 effect	 popularized	 by	many	 lightbox
scripts),	 you	 could	 do	 it	 with	 something	 like	 transition:	 .5s	 height,	 .8s	 .5s
width;	 (i.e.,	 the	 delay	 of	 the	 width	 transition	 is	 equal	 to	 the	 duration	 of	 the	 height
transition).

	PLAY! 	play.csssecrets.io/elastic

RELATED
SPECS

CSS	Transitions

w3.org/TR/css-transitions

CSS	Animations

w3.org/TR/css-animations

43	Frame-by-frame	animations

Prerequisites

http://play.csssecrets.io/elastic
http://w3.org/TR/css-transitions
http://w3.org/TR/css-animations

Basic	CSS	animations,	the	“Elastic	transitions”	secret	on	page	294

The	problem

Quite	often,	we	need	an	animation	that	is	difficult	or	impossible	to	achieve
by	transitioning	CSS	properties	on	elements.	For	example,	a	cartoon	moving
or	 a	 complex	 progress	 indicator.	 In	 this	 case,	 image-based	 frame-by-frame
animations	 are	 perfect,	 but	 surprisingly	 challenging	 to	 accomplish	 on	 the
Web	in	a	flexible	manner.

At	 this	 point,	 you	 might	 be	 wondering,	 “Can’t	 we	 just	 use	 animated
GIFs?”	 The	 answer	 is	 yes,	 for	 many	 cases,	 animated	 GIFs	 are	 perfect.
However,	 they	 have	 a	 few	 shortcomings	 that	 might	 be	 a	 dealbreaker	 for
certain	use	cases:

FIGURE	8.13	A	semi-transparent	progress	indicator	(on	dabblet.com);	this	is
impossible	to	achieve	with	animated	GIFs

They	are	limited	to	a	256	color	palette,	shared	across	all	frames.

They	cannot	have	alpha	transparency,	which	can	be	a	big	problem
when	we	don’t	know	what	will	be	underneath	our	animated	GIF.	For
example,	this	is	very	common	with	progress	indicators	(see	Figure
8.13).

http://dabblet.com

There	is	no	way	to	modify	certain	aspects	from	within	CSS,	such	as
duration,	repetitions,	pausing,	and	so	on.	Once	the	GIF	is	generated,
everything	is	baked	into	the	file	and	can	only	be	changed	by	using	an
image	editor	and	generating	another	file.	This	is	great	for	portability,
but	not	for	experimentation.

Back	in	2004,	there	was	an	effort	by	Mozilla	to	address	the	first	two	issues
by	allowing	frame-by-frame	animation	in	PNG	files,	akin	to	the	way	we
can	 have	 both	 static	 and	 animated	GIF	 files.	 It	was	 called	APNG	 and	was
designed	to	be	backward	compatible	with	non-supporting	PNG	viewers,	by
encoding	 the	 first	 frame	 in	 the	 same	way	 as	 traditional	 PNG	 files,	 so	 old
viewers	would	 at	 least	 display	 that.	 Promising	 as	 it	 was,	 APNG	never	 got
enough	traction	and	to	this	day,	has	very	limited	browser	and	image	editor
support.

For	more	information	about	APNG,	see	wikipedia.org/wiki/APNG.

Developers	have	even	used	 JavaScript	 to	achieve	 flexible	 frame-by-frame
animations	 in	 the	 browser,	 by	 using	 an	 image	 sprite	 and	 animating	 its
background-position	 with	 JS.	 You	 can	 even	 find	 small	 libraries	 to
facilitate	this!	Is	 there	a	straightforward	way	to	achieve	this	with	only	nice,
readable	CSS	code?

The	solution

Let’s	assume	we	have	all	 frames	of	our	animation	 in	a	PNG	sprite	 like	 the
one	shown	in	Figure	8.14.

FIGURE	8.14	Our	spinner’s	eight	frames	(dimensions:	800×100)

We	also	have	an	element	 that	will	hold	 the	 loader	 (don’t	 forget	 to	 include
some	 text,	 for	 accessibility!),	 to	 which	 we	 have	 already	 applied	 the
dimensions	of	a	single	frame:

http://wikipedia.org/wiki/APNG

HTML
<div	class="loader">Loading…</div>

.loader	{
				width:	100px;	height:	100px;

				background:	url(img/loader.png)	0	0;

				/*	Hide	text	*/
				text-indent:	200%;
				white-space:	nowrap;
				overflow:	hidden;
}

Currently,	 the	result	 looks	 like	Figure	8.15:	 the	 first	 frame	 is	displayed,
but	there	is	no	animation.	However,	if	we	play	with	different	background-
position	values,	we	will	notice	that	-100px	0	gives	us	the	second	frame,
-200px	0	gives	us	the	third	frame,	and	so	on.	Our	first	thought	could	be	to
apply	an	animation	like	this:

FIGURE	8.15	The	first	frame	of	our	loader	shows,	but	there	is	no	animation
yet

@keyframes	loader	{
				to	{	background-position:	-800px	0;	}
}

.loader	{
				width:	100px;	height:	100px;
				background:	url(img/loader.png)	0	0;
				animation:	loader	1s	infinite	linear;

				/*	Hide	text	*/

				text-indent:	200%;
				white-space:	nowrap;
				overflow:	hidden;
}

However,	 as	 you	 can	 see	 in	 the	 following	 stills	 (taken	 every	 167ms),	 this
doesn’t	really	work:

FIGURE	8.16	Our	initial	attempt	for	a	frame-by-frame	animation	failed,	as
we	did	not	need	interpolation	between	keyframes

It	might	seem	like	we’re	going	nowhere,	but	we	are	actually	very	close	to	the
solution.	The	secret	here	is	to	use	the	steps()	timing	function,	instead	of	a
Bézier-based	one.

“The	what	 timing	 function?!”	 you	might	 ask.	As	we	 saw	 in	 the	previous
chapter,	all	Bézier-based	timing	functions	interpolate	between	keyframes	to
give	 us	 smooth	 transitions.	 This	 is	 great;	 usually,	 smooth	 transitions	 are
exactly	the	reason	we	are	using	CSS	transitions	or	animations.	However,	in
this	case,	this	smoothness	is	destroying	our	sprite	animation.

Very	 unlike	 Bézier	 timing	 functions,	 steps()	 divides	 the	 whole
animation	 in	 frames	 by	 the	 number	 of	 steps	 you	 specify	 and	 abruptly
switches	 between	 them	 with	 no	 interpolation.	 Usually	 this	 kind	 of
abruptness	 is	undesirable,	 so	steps()	 is	not	 talked	about	much.	As	 far	as
CSS	 timing	 functions	 go,	 Bézier-based	 ones	 are	 the	 popular	 kids	 that	 get
invited	 to	 all	 the	 parties	 and	 steps()	 is	 the	 ugly	 duckling	 that	 nobody
wants	to	have	 lunch	with,	sadly.	However,	 in	this	case,	 it’s	exactly	what	we
need.	Once	we	convert	our	animation	to	the	following,	our	loader	suddenly

starts	working	the	way	we	wanted	it	to:

FIGURE	8.17	A	comparison	of	steps(8),	linear	and	the	default	timing
function,	ease

animation:	loader	1s	infinite	steps(8);

Keep	 in	 mind	 that	 steps()	 also	 accepts	 an	 optional	 second	 parameter,
start	 or	 end	 (default)	 that	 specifies	 when	 the	 switch	 happens	 on	 every
interval	(see	Figure	8.17	for	the	default	behavior	of	end),	but	that	is	rarely
needed.	If	we	only	need	a	single	step,	there	are	also	shortcuts:	step-start
and	 step-end,	 which	 are	 equivalent	 to	 steps(1,	 start)	 and
steps(1,	end),	respectively.

	PLAY! 	play.csssecrets.io/frame-by-frame

Hat	tip	to	Simurai	(simurai.com/)	for	coming	up	with	this	useful	technique
in	 Sprite	 sheet	 animation	 with	 steps()
(simurai.com/blog/2012/12/03/step-animation).

http://play.csssecrets.io/frame-by-frame
http://simurai.com/
http://simurai.com/blog/2012/12/03/step-animation

RELATED
SPECS

CSS	Animations

w3.org/TR/css-animations

44	Blinking

Prerequisites
Basic	CSS	 animations,	 the	 “Frame-by-frame	 animations”	 secret	 on	 page
308

The	problem

Remember	the	old	<blink>	tag?	Of	course	you	do.	It	has	become	a	cultural
symbol	 in	our	 industry,	 reminding	us	of	 the	humble,	clumsy	beginnings	of
our	 discipline,	 and	 always	 willing	 to	 serve	 as	 an	 inside	 joke	 between	 old-
timers.	 It	 is	 universally	 despised,	 both	 because	 it	 violated	 separation	 of
structure	and	style,	but	mainly	because	its	overuse	made	it	a	pain	for	anyone
browsing	the	Web	in	the	late	90s.	Even	its	own	inventor,	Lou	Montulli,	has
said	“[I	consider]	the	blink	tag	to	be	the	worst	thing	I’ve	ever	done	for	the	Internet.”

However,	now	that	the	nightmare	of	the	<blink>	tag	is	long	behind	us,
we	sometimes	still	find	ourselves	needing	a	blinking	animation.	It	feels	weird
at	first,	a	bit	 like	discovering	some	sort	of	strange	perversion	inside	us	that
we	never	knew	we	had.	The	identity	crisis	stops	when	we	realize	that	there
are	 a	 few	use	 cases	 in	which	blinking	 can	enhance	usability,	 rather	 than
reduce	it.

A	 common	UX	pattern	 is	blinking	a	 few	 times	 (no	more	 than	 three!)	 to
indicate	that	a	change	has	been	applied	somewhere	in	the	UI	or	to	highlight

http://w3.org/TR/css-animations

the	 current	 link	 target	 (the	 element	 whose	 id	 matches	 the	 URL	 #hash).
Used	in	such	a	limited	way,	blinking	can	be	very	effective	to	draw	the	user’s
attention	to	an	area,	but	due	to	the	limited	number	of	 iterations,	 it	doesn’t
have	the	adverse	effects	the	<blink>	tag	did.	Another	way	to	keep	the	good
of	blinking	(directing	user	attention)	without	the	bad	(distracting,	annoying,
seizure	inducing)	is	to	“smoothe”	it	out	(i.e.,	instead	of	alternating	between
an	 abrupt	 “on”	 and	 “off”	 state,	 to	 have	 a	 smooth	progression	between	 the
two).

However,	how	do	we	implement	all	this?	The	CSS-only	replacement	for
the	<blink>	tag,	text-decoration:	blink,	is	too	limited	to	allow	us
to	do	what	we	want,	and	even	if	it	was	powerful	enough,	its	browser	support
is	very	poor.	Can	we	use	CSS	animations	for	this,	or	is	JS	our	only	hope?

The	solution

There	are	actually	multiple	ways	to	use	CSS	animations	to	achieve	any	kind
of	 blinking:	 on	 the	 whole	 element	 (via	 opacity),	 on	 the	 text	 color	 (via
color),	on	 its	border	 (via	border-color),	and	so	on.	 In	 the	rest	of	 this
section,	we	will	 assume	 that	we	want	 to	 blink	 the	 text	 only,	 as	 that	 is	 the
most	common	use	case.	However,	the	solution	for	other	parts	of	an	element
is	analogous.

Achieving	a	smooth	blink	is	rather	easy.	Our	first	attempt	would	probably
look	like	this:

@keyframes	blink-smooth	{	to	{	color:	transparent	}	}

.highlight	{	animation:	1s	blink-smooth	3;	}

This	almost	works.	Our	text	smoothly	fades	from	its	text	color	to	transparent,
however	it	then	abruptly	jumps	back	to	the	original	text	color.	Plotting	the
change	of	text	color	over	time	helps	us	figure	out	why	this	happens	(Figure
8.18).

FIGURE	8.18	The	progression	of	our	text	color	over	three	seconds	(three
iterations)

This	might	actually	be	desirable.	In	that	case,	we	are	done!	However,	when
we	want	the	blinking	to	be	smooth	both	when	the	text	fades	out	and	when	it
fades	in,	we	have	a	bit	more	work	to	do.	One	way	to	achieve	this	would	be	by
changing	 the	 keyframes	 to	make	 the	 switch	 happen	 in	 the	middle	 of	 each
iteration:

@keyframes	blink-smooth	{	50%	{	color:	transparent	}	}

.highlight	{
				animation:	1s	blink-smooth	3;
}

This	looks	like	the	result	we	wanted.	However,	although	it	doesn’t	show	in
this	 particular	 animation	 (because	 it’s	 difficult	 to	 differentiate	 between
timing	 functions	 with	 color/opacity	 transitions),	 it’s	 important	 to	 keep	 in
mind	 that	 the	 animation	 is	 accelerating	both	when	 it	 fades	 in	 and	when	 it
fades	out,	which	could	look	unnatural	for	certain	animations	(e.g.,	pulsating
animations).	 In	 that	 case,	 we	 can	 pull	 a	 different	 tool	 out	 of	 our	 toolbox:
animation-direction.

The	 only	 purpose	 of	 animation-direction	 is	 to	 reverse	 either	 all
iterations	 (reverse),	 every	 even	 one	 (alternate)	 or	 every	 odd	 one
(alternate-reverse).	What	is	great	about	it	is	that	it	also	reverses	the
timing	function,	creating	far	more	realistic	animations.	We	could	try	it	on
our	blinking	element	like	so:

@keyframes	blink-smooth	{	to	{	color:	transparent	}	}

.highlight	{
				animation:	.5s	blink-smooth	6	alternate;
}

Note	 that	 we	 had	 to	 double	 the	 number	 of	 iterations	 (instead	 of	 the
duration,	 like	 the	 previous	 method),	 as	 now	 one	 fade-in/fade-out	 pair
consists	 of	 two	 iterations.	 For	 the	 same	 reason,	we	 also	 cut	animation-
duration	in	half.

FIGURE	8.19	All	four	values	of	animation-direction	and	their	effect
on	a	color	animation	from	black	to	transparent	over	three	iterations

If	 we	want	 a	 smooth	 blink	 animation,	 we’re	 done	 at	 this	 point.	However,
what	 if	we	want	 a	 classic	 one?	How	do	we	 go	 about	 it?	Our	 first	 attempt
might	look	like	this:

@keyframes	blink	{	to	{	color:	transparent	}	}

.highlight	{
				animation:	1s	blink	3	steps(1);
}

However,	this	will	fail	spectacularly:	absolutely	nothing	will	happen.	The
reason	 is	 that	 steps(1)	 is	 essentially	 equivalent	 to	 steps(1,	 end),
which	 means	 that	 the	 transition	 between	 the	 current	 color	 and
transparent	will	happen	in	one	step,	and	the	value	switch	will	occur	at
the	 end	 (Figure	 8.20).	 Therefore,	we	 will	 see	 the	 start	 value	 for	 the
entire	length	of	the	animation,	except	one	infinitesimally	short	point	in
time	at	the	end.	If	we	change	it	to	steps(1,	start)	 the	opposite	will
happen:	 the	 switch	will	 occur	 at	 the	 start,	 so	we	will	 only	 see	 transparent
text,	with	no	animation	or	blinking.

FIGURE	8.20	What	steps(1)	actually	does	to	our	animation

A	logical	next	step	would	be	to	try	steps(2)	in	both	its	flavors	(start	and
end).	Now	we	do	see	some	blinking,	but	 it’s	between	semi-transparent	text
and	 transparent	 or	 semi-transparent	 and	 normal	 respectively,	 for	 the	 same
reason.	Unfortunately,	because	we	cannot	configure	steps()	 to	make	the
switch	 in	 the	middle,	but	only	 at	 the	 start	 and	end,	 the	only	 solution	here
would	be	to	adjust	the	animation	keyframes	to	make	the	switch	at	50%,	like
we	did	earlier:

@keyframes	blink	{	50%	{	color:	transparent	}	}

.highlight	{
				animation:	1s	blink	3	steps(1);	/*	or	step-end	*/
}

This	 finally	 works!	 Who	 would	 have	 guessed	 that	 a	 classic	 abrupt	 blink
would	 have	 been	 harder	 to	 accomplish	 than	 a	modern,	 smooth	 one?	 CSS
never	ceases	to	surprise….

	PLAY! 	play.csssecrets.io/blink

RELATED
SPECS

http://play.csssecrets.io/blink

CSS	Animations

w3.org/TR/css-animations

45	Typing	animation

Prerequisites
Basic	CSS	 animations,	 the	 “Frame-by-frame	 animations”	 secret	 on	 page
308,	the	“Blinking”	secret	on	page	314

The	problem

Sometimes	we	want	 to	make	 text	appear	one	by	one	character,	 to	 simulate
typing.	This	effect	 is	especially	popular	on	 tech	websites,	using	monospace
fonts	 to	 resemble	 a	 terminal	 command	 prompt.	 Used	 right,	 it	 can	 really
contribute	to	the	rest	of	the	design.

Usually,	this	is	done	with	long,	hacky,	complicated	JS	code.	Even	though
this	is	pure	presentation,	using	CSS	for	this	kind	of	effect	seems	like	a	pipe
dream.	Or	could	it	be	possible?

http://w3.org/TR/css-animations

FIGURE	8.21	We	used	a	variation	of	this	kind	of	animation	at	CERN,	when
creating	a	web-based	simulation	of	the	first	line	mode	browser	(line-
mode.cern.ch)

The	solution

The	main	idea	is	to	animate	the	width	of	the	element	that	contains	our	text
from	0	 to	 its	 content	width	one	by	one	character.	You	might	have	already
realized	 what	 the	 limitation	 of	 this	 approach	 is:	 it	 will	 not	 work	 for
multiline	 text.	 Thankfully,	 most	 of	 the	 time,	 you	 only	 want	 to	 use	 such
styling	on	single-line	text	anyway,	such	as	headings.

Theoretically,	we	could	make	this	work	for	multiline	text,	but	it	would	involve	wrapping	each	line
in	its	own	element	and	maintaining	the	appropriate	animation	delays	(i.e.,	it’s	the	kind	of	solution
that	is	worse	than	the	problem).

Another	 thing	 to	 keep	 in	 mind	 is	 that	 every	 animation	 effect	 has

http://line-mode.cern.ch

diminishing	returns	as	 its	duration	increases:	 short	duration	animations
make	an	interface	appear	more	polished	and	in	some	cases	can	even	improve
usability.	However,	 the	 longer	 the	 duration	 of	 the	 animation,	 the	more	 it
starts	 becoming	 annoying	 for	 the	 user.	Therefore,	 even	 if	 the	 technique
could	be	used	on	longer,	multiline	text,	 in	most	cases	that	would	not
be	a	good	idea.

Let’s	 get	 started	with	 the	 code!	Assume	we	want	 to	 apply	 this	 to	 a	 top-
level	heading	(<h1>)	that	we’ve	already	styled	with	monospace	text,	and	that
looks	like	the	following:

FIGURE	8.22	Our	starting	point

HTML
<h1>CSS	is	awesome!</h1>

We	can	easily	add	an	animation	 that	goes	 from	0	 to	 the	 final	width	of	 the
heading,	like	so:

@keyframes	typing	{
				from	{	width:	0	}
}

h1	{
				width:	7.7em;	/*	Width	of	text	*/
				animation:	typing	8s;
}

It	makes	perfect	sense,	right?	However,	as	you	can	see	in	Figure	8.23,	it’s
a	trainwreck	that	has	nothing	to	do	with	what	we	wanted.

You	might	have	guessed	what	the	problems	are.	First,	we	forgot	to	apply
white-space:	nowrap;	to	prevent	text	wrapping,	so	as	the	width	grows,
its	 number	 of	 lines	 changes.	 Second,	 we	 forgot	 to	 apply	 overflow:
hidden;,	so	there	is	no	clipping.	If	we	fix	these	issues,	the	real	issues	with
our	animation	get	uncovered	(Figure	8.24).	Namely:

FIGURE	8.23	Our	first	attempt	at	a	typing	animation	does	not	resemble
typing	at	all

The	obvious	problem	is	that	the	animation	is	smooth	instead	of
revealing	the	text	character	by	character.

The	less	obvious	problem	is	that	so	far	we	have	been	specifying	the
width	in	ems,	which	is	better	than	doing	it	in	pixels,	but	still	suboptimal.
Where	did	this	7.7	come	from?	How	do	we	calculate	it?

We	 can	 fix	 the	 first	 issue	 by	using	steps(),	 just	 like	 in	 the	“Frame-by-
frame	 animations”	 secret	 on	 page	 308	 and	 the	 “Blinking”	 secret	 on
page	 314.	 Unfortunately,	 the	 number	 of	 steps	 we	 need	 is	 the	 number	 of
characters	 in	 our	 string,	 which	 is	 difficult	 to	 maintain	 or	 downright
impossible	 for	 dynamic	 text.	 However,	 we	 will	 see	 later	 on	 that	 we	 can
automate	this	with	a	tiny	snippet	of	JavaScript	code.

FIGURE	8.24	Our	second	attempt	is	closer,	but	still	not	quite	there

The	second	issue	could	be	alleviated	by	using	the	ch	unit.	The	ch	unit	is
one	 of	 the	 new	 units	 introduced	 in	 CSS	 Values	 and	 Units	 Level	 3
(w3.org/TR/css3-values),	 and	 represents	 the	width	of	 the	 “0”	glyph.
It’s	one	of	the	most	unknown	new	units,	because	in	most	cases,	we	don’t	care

http://w3.org/TR/css3-values

about	sizing	things	relative	to	the	width	of	the	0	glyph.	However,	monospace
fonts	are	special.	In	monospace	fonts,	the	width	of	the	“0”	glyph	is	the
same	 as	 the	 width	 of	 every	 glyph.	 Therefore,	 the	 width	 in	 ch	 is	 the
number	of	characters:	15	in	our	example.

Let’s	put	all	this	together:

@keyframes	typing	{
				from	{	width:	0;	}
}

h1	{
				width:	15ch;	/*	Width	of	text	*/
				overflow:	hidden;
				white-space:	nowrap;
				animation:	typing	6s	steps(15);
}

As	you	can	see	in	the	frames	in	Figure	8.25,	now	we	finally	got	the	expected
result:	 our	 text	 is	 revealed	 character	by	 character.	However,	 it	 still	 doesn’t
look	realistic.	Can	you	spot	what’s	missing?

The	last	touch	that	will	make	this	way	more	realistic	is	adding	a	blinking
caret.	 We	 have	 already	 seen	 how	 to	 create	 blinking	 animations	 in	 the
“Blinking”	secret	on	page	314.	In	this	case,	we	could	either	implement	the
caret	via	a	pseudo-element,	and	use	opacity	for	the	blinking,	or	we	could
save	our	limited	pseudo-elements	in	case	we	need	them	for	something	else,
and	use	a	right	border	instead:

FIGURE	8.25	Now	the	text	is	revealed	character	by	character,	but
something	is	still	missing

@keyframes	typing	{
				from	{	width:	0	}
}

@keyframes	caret	{
				50%	{	border-color:	transparent;	}
}

h1	{
				width:	15ch;	/*	Width	of	text	*/
				overflow:	hidden;
				white-space:	nowrap;
				border-right:	.05em	solid;
				animation:	typing	6s	steps(15),
															caret	1s	steps(1)	infinite;
}

Note	 that	 unlike	 the	 text	 revealing	 animation,	 the	 caret	 needs	 to	 blink
indefinitely	 (even	 after	 all	 of	 the	 text	 has	 been	 revealed),	 hence	 the
infinite	keyword.	Also,	we	did	not	have	to	specify	a	border	color,	as	we
want	it	to	automatically	get	the	text	color.	You	can	see	a	few	stills	from	the
result	on	Figure	8.26.

Now	 our	 animation	 works	 perfectly,	 although	 it’s	 still	 not	 very
maintainable:	it	requires	setting	different	styles	on	every	heading,	depending
on	the	number	of	characters	in	the	content,	and	having	to	update	them	every
time	we	edit	said	content.	This	 is	exactly	the	kind	of	task	that	JS	is	perfect
for:

FIGURE	8.26	Our	animation	is	now	complete	with	a	realistic	blinking	caret

JS
$$('h1').forEach(function(h1)	{
				var	len	=	h1.textContent.length,	s	=	h1.style;

				s.width	=	len	+	'ch';
				s.animationTimingFunction	=	"steps("+len+"),steps(1)";
});

Just	with	these	few	lines	of	JS	we	can	now	have	our	cake	and	eat	it	too:	our
animation	is	not	only	realistic,	but	maintainable	as	well!

All	 this	 is	 nice	 and	 dandy,	 but	 what	 happens	 with	 browsers	 that	 don’t
support	 CSS	 animations?	 They	 will	 essentially	 drop	 all	 animation-related
stuff,	so	they	will	only	read	this:

h1	{
				width:	15ch;	/*	Width	of	text	*/
				overflow:	hidden;
				white-space:	nowrap;
				border-right:	.05em	solid;
}

FIGURE	8.27	The	potential	fallbacks	for	browsers	with	no	CSS	animation
support	(top:	with	ch	unit	support,	bottom:	without	ch	unit	support)

Depending	on	whether	or	not	they	support	the	ch	unit,	they	will	see	one	of
the	fallbacks	in	Figure	8.27.	If	you	want	to	avoid	the	bottom	one,	you	can
provide	a	fallback	in	em	units	as	well.	If	you	do	not	want	a	non-blinking	caret
in	your	fallback,	you	could	change	the	caret	animation	to	include	the	border
in	 the	 keyframes,	 so	 that	 when	 it’s	 dropped	 you	 only	 get	 an	 invisible
transparent	border,	like	so:

@keyframes	caret	{
				50%	{	border-color:	currentColor;	}
}

h1	{
				/*	...	*/
				border-right:	.05em	solid	transparent;
				animation:	typing	6s	steps(15),
															caret	1s	steps(1)	infinite;
}

This	 is	pretty	much	as	good	as	 fallbacks	get:	 in	older	browsers,	 there	 is	no

animation,	but	nothing	breaks	at	all	and	the	text	 is	perfectly	accessible	and
even	styled	the	same	way.

	PLAY! 	play.csssecrets.io/typing

RELATED
SPECS

CSS	Animations

w3.org/TR/css-animations

CSS	Values	&	Units

w3.org/TR/css-values

46	Smooth	state	animations

Prerequisites
Basic	 CSS	 animations,	 animation-direction	 (briefly	 mentioned	 in
the	“Blinking”	secret	on	page	314)

The	problem

Animations	do	not	always	start	on	page	load.	More	often	than	not,	we	want
to	use	animations	in	response	to	a	user	action,	such	as	hovering	over	an
element	or	holding	the	mouse	down	on	it	(:active).	In	that	case,	we	might
not	have	control	over	the	actual	number	of	iterations,	as	user	activity	might
force	the	animation	to	stop	before	 it	gets	a	chance	to	finish	the	number	of
iterations	 we	 have	 specified.	 For	 example,	 the	 user	 might	 trigger	 a	 fancy

http://play.csssecrets.io/typing
http://w3.org/TR/css-animations
http://w3.org/TR/css-values

:hover	 animation	 and	 mouse	 out	 of	 the	 element	 before	 the	 animation
finishes.	What	do	you	expect	should	happen	in	these	cases?

If	you	answered	something	along	the	lines	of	“the	animation	should	stay	at
its	current	state”	or	“it	should	smoothly	transition	to	the	pre-animation	state”	you
are	 in	 for	 a	 nasty	 surprise.	 By	 default,	 the	 animation	 will	 just	 stop	 and
abruptly	jump	back	to	the	pre-animation	state.	This	might	sometimes	be
acceptable	 in	 the	case	of	very	 subtle	animations.	However,	 in	most	cases	 it
just	results	in	very	choppy	user	experience.	Can	we	change	this	behavior?

FIGURE	8.28	I	finally	decided	to	find	a	solution	to	this	problem	when
working	on	a	simple	one-page	website	as	a	birthday	gift	for	my	friend
Julian	(juliancheal.co.uk).	Notice	the	circular	picture	on	the	right.
The	image	file	I	had	was	actually	landscape.	The	circle	crops	its	right
part,	but	when	the	user	hovers	over	it,	it	slowly	starts	scrolling	to	the	left,
revealing	the	cropped	part.	By	default,	when	the	user	moved	their	cursor

http://juliancheal.co.uk

away,	it	abruptly	snapped	back	to	its	original	position,	which	made	the	UI
feel	broken.	Because	this	was	a	tiny	website,	and	this	picture	the
centerpiece,	I	decided	I	couldn’t	turn	a	blind	eye	to	the	issue.

This	is	yet	another	reason	to	use	transitions	when	possible.	Instead	of	abruptly	jumping	to	the
pre-animation	state,	transitions	play	in	reverse	to	smoothly	transition	back	to	the	original	value.

The	solution

Assume	 we	 have	 a	 very	 long	 landscape	 photo,	 such	 as	 the	 one	 in	Figure
8.29,	but	the	space	we	have	available	to	display	it	is	a	150	×	150	pixel	square.
One	way	to	solve	the	problem	is	animation:	show	the	left	edge	of	the	image
by	default,	and	make	it	scroll	to	reveal	the	rest	when	the	user	is	interacting
with	 it	 (e.g.,	hovering	over	 it).	We	will	use	 a	 single	element	 for	 the	 image
and	animate	its	background	position:

FIGURE	8.29	The	entire	naxos-greece.jpg	image	file,	used	in	the
examples	throughout	this	secret	(photo	taken	by	Chris	Hutchison)

.panoramic	{
				width:	150px;	height:	150px;
				background:	url("img/naxos-greece.jpg");
				background-size:	auto	100%;
}

Currently,	 it	 looks	 like	 Figure	 8.30	 and	 there	 is	 no	 animation	 or

interactivity.	If	we	experiment	however,	we	can	see	that	manually	changing
background-position	 from	 the	 original	 0	 0	 to	 100%	 0	 scrolls
through	the	entire	image.	We	just	found	our	keyframes!

FIGURE	8.30	Our	image	is	cropped

@keyframes	panoramic	{
				to	{	background-position:	100%	0;	}
}

.panoramic	{
				width:	150px;	height:	150px;
				background:	url("img/naxos-greece.jpg");
				background-size:	auto	100%;
				animation:	panoramic	10s	linear	infinite	alternate;
}

This	works	great.	It	sort	of	resembles	a	panoramic	view	and	it	almost	 feels
like	being	in	the	place	and	looking	left	or	right.	However,	the	animation	is
triggered	 on	 page	 load,	 which	 could	 be	distracting	 in	 the	 context	 of,	 for
example,	 a	 travel	 web	 page,	 where	 the	 user	 might	 be	 trying	 to	 focus	 on
reading	the	text	about	Naxos,	instead	of	looking	at	the	beautiful	panoramic
picture.	It	would	be	better	to	enable	the	animation	when	the	user	hovers
over	the	image.	So,	our	first	thought	would	be	this:

.panoramic	{
				width:	150px;	height:	150px;
				background:	url("img/naxos-greece.jpg");
				background-size:	auto	100%;

}

.panoramic:hover,	.panoramic:focus	{
				animation:	panoramic	10s	linear	infinite	alternate;
}

This	does	work	as	expected	when	we	hover	over	the	image:	it	starts	from	the
initial	 state	of	 showing	 the	 leftmost	part	of	 the	 image	and	slowly	 scrolls	 to
reveal	the	right	part	of	it.	However,	when	we	mouse	out,	 it	abruptly	jumps
to	the	left	position	again	(Figure	8.31).	We’ve	just	stumbled	on	the	problem
this	secret	is	about!

FIGURE	8.31	Mousing	over	is	very	smooth,	but	mousing	out	is	abrupt	and
feels	broken

To	fix	this,	we	need	to	think	differently	about	what	we	are	trying	to	achieve
here.	What	we	need	is	not	to	apply	an	animation	on	:hover,	as	this	implies
no	 memory	 of	 its	 previous	 position.	What	 we	 need	 is	 to	 pause	 it	 when
there	is	no	:hover	happening.	Thankfully,	we	have	a	property	just	for	the
purpose	of	pausing	an	existing	animation:	animation-play-state!

FIGURE	8.32	Now	mousing	out	just	pauses	the	animation—no	abrupt
jumps	anymore

Therefore,	we	are	going	 to	apply	our	original	 animation	 to	.panoramic,

but	have	 it	paused	 initially,	until	:hover	 applies.	Because	 it’s	no	 longer	 a
matter	 of	 applying	 and	 canceling	 an	 animation,	 but	 just	 pausing	 and
resuming	an	existing	animation,	there	is	no	abrupt	rewinding.	The	final
code	looks	like	this	and	you	can	see	the	result	in	Figure	8.32:

@keyframes	panoramic	{
				to	{	background-position:	100%	0;	}
}

.panoramic	{
				width:	150px;	height:	150px;
				background:	url("img/naxos-greece.jpg");
				background-size:	auto	100%;
				animation:	panoramic	10s	linear	infinite	alternate;
				animation-play-state:	paused;
}

.panoramic:hover,	.panoramic:focus	{
				animation-play-state:	running;
}

	PLAY! 	play.csssecrets.io/state-animations

RELATED
SPECS

CSS	Animations

w3.org/TR/css-animations

47	Animation	along	a	circular	path

Prerequisites

http://play.csssecrets.io/state-animations
http://w3.org/TR/css-animations

CSS	animations,	CSS	transforms,	the	“Parallelograms”	secret	on	page	84,
the	“Diamond	 images”	 secret	on	page	90,	 the	 “Blinking”	 secret	on	page
314

The	problem

A	 few	 years	 ago,	 back	 when	 basic	 CSS	 animations	 were	 still	 new	 and
exciting,	Chris	Coyier	(css-tricks.com)	 asked	me	 if	 I	could	 think	of
any	way	to	animate	an	element	on	a	circular	path	with	CSS	animations.	At
the	time,	it	was	just	a	fun	CSS	exercise,	but	in	the	future	I	stumbled	on	many
real	 use	 cases.	 For	 example,	Google+	 uses	 such	 an	 animation	when	 a	 new
member	is	added	to	a	circle	with	more	than	11	members:	the	existing	avatars
animate	on	a	circular	path	to	make	space	for	the	new	one.

FIGURE	8.33	Google+	uses	animation	on	a	circular	path	to	show	that	a	new
member	was	added	to	a	“circle”

A	different,	fun	example	can	be	seen	on	the	popular	Russian	tech	website
habrahabr.ru	 (Figure	8.34).	As	 is	often	a	good	practice	with	404	pages,	 it
offers	a	navigation	menu	to	a	few	main	areas	of	the	website.

http://css-tricks.com
http://habrahabr.ru

FIGURE	8.34	The	404	page	of	popular	Russian	tech	website	habrahabr.ru

However,	each	menu	 item	is	presented	as	a	planet	orbiting	on	a	circle	and
the	 text	 above	 reads	 “Fly	 to	 other	 planets	 of	 our	 universe.”	 Of	 course,	 it
makes	sense	to	 just	move	the	planets	on	a	circular	path	and	not	also	rotate
them,	which	would	make	their	text	almost	impossible	to	read.	These	are	only
a	few	out	of	many	possible	examples.	But	how	can	we	achieve	such	an	effect
with	CSS	animations?

We	are	going	to	work	on	a	very	simple	example	of	an	avatar	animating	on
a	circular	path,	a	bit	like	a	simplified	version	of	the	aforementioned	Google+
effect.	The	markup	would	look	like	this:

HTML
<div	class="path">
				
</div>

Before	we	 start	 thinking	 about	 our	 animation,	we	will	 apply	 some	 basic
styling	 to	 it	 (sizes,	backgrounds,	margins,	etc.),	 so	 that	 it	 looks	 like	Figure
8.35.	Because	 this	 styling	 is	pretty	basic,	 it	 is	not	 included	here,	but	 if	you

http://habrahabr.ru

are	having	difficulty	with	 it,	 you	can	 find	 it	 in	 the	 live	example.	The	main
thing	 to	keep	 in	mind	 is	 that	 the	diameter	of	 the	path	 is	300px,	 ergo	 the
radius	is	150px.

FIGURE	8.35	Our	starting	point,	after	applying	some	basic	styling—now	we
can	get	our	hands	dirty	with	some	CSS	animation!

After	 we’re	 done	 with	 basic	 styling,	 we	 can	 start	 thinking	 about	 our
animation.	We	want	 to	move	 the	avatar	 in	a	circle,	 along	 the	orange	path.
How	 could	 we	 possibly	 use	 CSS	 animations	 to	 do	 this?	When	 presented
with	this	problem,	some	are	quick	to	reply	with	something	like	this:

@keyframes	spin	{
				to	{	transform:	rotate(1turn);	}
}

.avatar	{
				animation:	spin	3s	infinite	linear;
				transform-origin:	50%	150px;	/*	150px	=	path	radius	*/
}

If	you’re	unsure	about	how	to	make	circular	shapes	with	CSS,	take	a	look	at	the	“Flexible
ellipses”	secret	on	page	76.

While	this	is	a	step	in	the	right	direction,	it	does	not	only	move	the	avatar	on
a	 circular	 path,	 it	 also	 rotates	 it	 around	 itself	 (Figure	 8.36).	 For	 example,
notice	how	when	the	avatar	 is	halfway	through,	 it	 is	also	upside	down.	If	 it
had	text,	the	text	would	also	be	upside	down,	which	can	be	quite	a	readability
issue.	We	only	wanted	 it	 to	move	along	the	circle,	while	still	maintaining

the	same	orientation	relative	to	itself.

FIGURE	8.36	A	few	stills	from	our	failed	attempt	at	animating	on	a	circular
path

Back	then,	neither	me	nor	Chris	could	think	of	a	reasonable	way.	The	best
way	 we	 could	 come	 up	 with	 was	 specifying	 multiple	 keyframes	 to
approximate	 a	 circle,	 which	 is	 obviously	 not	 a	 good	 idea	 by	 any	 possible
definition	of	one.	There	must	be	a	better	way,	right?

Two	element	solution

I	finally	came	up	with	a	solution	to	Chris’	challenge	a	few	months	later,	after
thinking	 about	 the	 problem	 as	 a	 background	 process	 for	 quite	 some	 time.
The	main	idea	behind	this	solution	is	the	same	as	in	the	“Parallelograms”
secret	on	page	84	or	the	“Diamond	images”	secret	on	page	90:	nested
transforms	canceling	each	other.	However,	instead	of	doing	this	statically,
in	this	case	it	happens	on	every	single	frame	of	the	animation.	The	caveat
is	 that,	 just	 like	 the	 aforementioned	 secrets,	 this	 requires	 two	 elements.
Therefore,	 we	 need	 to	 amend	 our	 original	 clean	 HTML	 with	 an	 extra
wrapper	div:

HTML
<div	class="path">
				<div	class="avatar">
								
				</div>
</div>

Let’s	apply	 the	 initial	animation	we	 tried	earlier	 to	 the	.avatar	wrapper.
Now,	as	we’ve	seen	in	Figure	8.36,	this	doesn’t	work	because	it	also	rotates
the	 element	 itself.	 But	what	 if	we	 applied	another	 rotation	 to	 the	 avatar,
and	 rotate	 it	 around	 itself	 by	 the	 same	 amount	 of	 degrees	 in	 the
opposite	direction?	Then	 the	 two	 rotations	would	cancel	 each	other,	 and
we	 would	 only	 see	 the	 circular	 movement	 created	 by	 the	 difference	 in
transform	origins!

There	is	one	problem	though:	we	don’t	have	a	static	rotation	that	we	can
cancel,	but	an	animation	that	goes	through	a	range	of	angles.	For	example,	if
it	 was	 60deg,	 we	 would	 cancel	 it	 with	 -60deg	 (or	 300deg),	 if	 it	 was
70deg	 we	 would	 cancel	 it	 with	 -70deg	 (or	 290deg).	 But	 now	 that	 it’s
anything	between	0-360deg	(or	0-1turn,	which	is	the	same	thing),	what
do	we	cancel	it	with?	The	answer	is	much	easier	than	it	might	seem.	We	just
animate	over	the	reverse	range	(360-0deg),	like	so:

@keyframes	spin	{
				to	{	transform:	rotate(1turn);	}
}
@keyframes	spin-reverse	{
				from	{	transform:	rotate(1turn);	}
}

.avatar	{
				animation:	spin	3s	infinite	linear;
				transform-origin:	50%	150px;	/*	150px	=	path	radius	*/
}

.avatar	>	img	{
				animation:	spin-reverse	3s	infinite	linear;
}

Now,	 at	 any	 point,	 when	 the	 first	 animation	 is	 rotated	 by	 x	 degrees,	 the
second	one	is	rotated	by	360	–	x	degrees,	because	one	of	them	is	increasing
and	the	other	is	decreasing.	This	is	exactly	what	we	wanted	and	as	you	can
see	in	Figure	8.37,	it	produces	the	desired	effect.

The	 code,	 however,	 could	 use	 some	 improvement.	 For	 one,	 we	 are
repeating	 all	 parameters	 of	 the	 animation	 twice.	 If	 we	 need	 to	 adjust	 its
duration,	 we	 would	 need	 to	 do	 it	 twice,	 which	 is	 not	 very	DRY.	We	 can
easily	solve	this	by	inheriting	all	animation	properties	from	the	parent,	and

overriding	the	animation	name:

FIGURE	8.37	We	have	now	achieved	the	animation	we	wanted,	but	the
code	is	unwieldy

@keyframes	spin	{
				to	{	transform:	rotate(1turn);	}
}
@keyframes	spin-reverse	{
				from	{	transform:	rotate(1turn);	}
}

.avatar	{
				animation:	spin	3s	infinite	linear;
				transform-origin:	50%	150px;	/*	150px	=	path	radius	*/
}

.avatar	>	img	{
				animation:	inherit;
				animation-name:	spin-reverse;
}

However,	 we	 shouldn’t	 need	 a	 whole	 new	 animation	 just	 to	 reverse	 our
initial	 one.	 Remember	 the	 animation-direction	 property	 from	 the
“Blinking”	 secret	 on	 page	 314?	 In	 that	 secret,	 we	 saw	 why	 the
alternate	value	is	useful.	Here	we	are	going	to	use	the	reverse	value,	to
get	a	reversed	copy	of	our	original	animation,	thus	eliminating	the	need
for	a	second	one:

@keyframes	spin	{
				to	{	transform:	rotate(1turn);	}
}

.avatar	{
				animation:	spin	3s	infinite	linear;
				transform-origin:	50%	150px;	/*	150px	=	path	radius	*/
}

.avatar	>	img	{

				animation:	inherit;
				animation-direction:	reverse;
}

And	 there	 we	 go!	 It	 might	 not	 be	 ideal,	 due	 to	 the	 extra	 element
requirement,	 but	 we’ve	 achieved	 a	 rather	 complex	 animation,	 with	 fewer
than	10	lines	of	CSS!

	PLAY! 	play.csssecrets.io/circular-2elements

Single	element	solution

The	technique	described	in	the	previous	section	works,	but	is	suboptimal,	as
it	requires	HTML	modifications.	When	I	first	came	up	with	that	technique,
I	wrote	to	the	mailing	list	of	the	CSS	Working	Group	(of	which	I	was	not	a
part	 of,	 at	 the	 time)	 and	 suggested	 that	 it	 should	 be	 possible	 to	 specify
multiple	 transform	 origins	 for	 the	 same	 element.	 That	 should	 make	 it
possible	 to	 implement	 something	 like	 this	 with	 a	 single	 element,	 and	 it
seemed	like	a	reasonable	thing	to	ask	for	in	general.

You	can	read	the	whole	discussion	at	lists.w3.org/Archives/Public/www-
style/2012Feb/0201.html.

The	discussion	was	in	high	gear,	when	at	some	point	Aryeh	Gregor,	one
of	 the	 editors	 of	 the	 CSS	 Transforms	 specification	 at	 the	 time,	 made	 a
statement	that	seemed	confusing	at	first:

“transform-origin	 is	 just	 syntactic	 sugar.	You	 should	 always	 be	 able	 to	use
translate()	instead.”

—	Aryeh	Gregor

However,	 it	turns	out	that	every	transform-origin	can	be	simulated

http://play.csssecrets.io/circular-2elements
http://lists.w3.org/Archives/Public/www-style/2012Feb/0201.html

with	 two	translate()	 transforms.	For	 example,	 the	 following	 two	 code
snippets	are	equivalent:

transform:	rotate(30deg);
transform-origin:	200px	300px;

transform:	translate(200px,	300px)
											rotate(30deg)
											translate(-200px,	-300px);
transform-origin:	0	0;

This	seems	strange	at	first,	but	becomes	more	clear	if	we	keep	in	mind	that
transform	 functions	 are	 not	 independent.	 Each	 of	 them	 doesn’t	 just
transform	the	element	it	is	applied	on,	it	transforms	the	entire	coordinate
system	 of	 that	 element,	 thus	 affecting	 all	 transforms	 that	 come	 after	 it.
This	 is	exactly	why	transform	order	matters,	 and	different	orderings	of
the	 same	 transforms	 can	 produce	 entirely	 different	 results.	 If	 this	 is	 still
unclear,	Figure	8.38	should	help	eliminate	any	confusion.

Therefore,	 we	 can	 use	 the	 same	 transform-origin	 for	 both	 our
previous	 animations	 by	 using	 this	 idea	 (we	 are	 going	 to	 use	 separate
animations	again	as	their	keyframes	are	now	completely	different):

FIGURE	8.38	How	we	can	substitute	a	transform	origin	with	two
translations.	The	red	dot	represents	the	transform	origin	each	time.	Top:
Using	transform-origin.	Bottom:	Using	two	translations,	step	by
step.

@keyframes	spin	{
				from	{
								transform:	translate(50%,	150px)
																			rotate(0turn)
																			translate(-50%,	-150px);
				}
				to	{
								transform:	translate(50%,	150px)
																			rotate(1turn)
																			translate(-50%,	-150px);
				}
}
@keyframes	spin-reverse	{
				from	{
								transform:	translate(50%,50%)
																			rotate(1turn)
																			translate(-50%,-50%);

				}
				to	{
								transform:	translate(50%,50%)
																			rotate(0turn)
																			translate(-50%,	-50%);
				}
}

.avatar	{
				animation:	spin	3s	infinite	linear;
}

.avatar	>	img	{
				animation:	inherit;
				animation-name:	spin-reverse;
}

This	looks	awfully	unwieldy,	but	do	not	worry,	as	we	will	improve	it	a	lot	by
the	 end	 of	 this	 section.	 Notice	 that	 we	 now	 no	 longer	 have	 different
transform	origins,	which	was	 the	only	 reason	we	needed	 two	elements	and
two	 animations	 earlier.	Now	 that	 everything	 uses	 the	 same	 origin,	we	 can
combine	the	two	animations	into	one	and	only	work	with	.avatar:

@keyframes	spin	{
				from	{
								transform:	translate(50%,	150px)
																			rotate(0turn)
																			translate(-50%,	-150px)
																			translate(50%,50%)
																			rotate(1turn)
																			translate(-50%,-50%)
				}
				to	{
								transform:	translate(50%,	150px)
																			rotate(1turn)
																			translate(-50%,	-150px)
																			translate(50%,50%)
																			rotate(0turn)
																			translate(-50%,	-50%);
				}
}

.avatar	{	animation:	spin	3s	infinite	linear;	}

The	code	is	definitely	improving,	but	is	still	 long	and	confusing.	Can	we
make	it	a	bit	more	concise?	There	are	a	few	potential	improvements.

Note	that	we	don’t	need	two	HTML	elements	anymore:	we	can	just	apply	the	avatar	class	to
the	image	itself,	as	we’re	not	styling	them	separately	any	longer.

The	 low-hanging	 fruit	 is	 to	 combine	 consecutive	 translate()
transforms,	 specifically	 translate(-50%,	 -150px)	 and
translate(50%,	50%).	Unfortunately,	percentages	and	absolute	lengths
cannot	be	combined	 (unless	we	use	calc()	which	 is	also	quite	unwieldy).
However,	the	horizontal	translations	cancel	each	other,	so	we	basically	have
two	 translations	 on	 the	 Y	 axis	 (translateY(-150px)
translateY(50%)).	Also,	because	the	rotations	cancel	each	other,	we	can
remove	the	horizontal	translations	before	and	after	as	well	and	combine	the
vertical	ones.	We	currently	have	these	keyframes:

@keyframes	spin	{
				from	{
								transform:	translateY(150px)	translateY(-50%)
																			rotate(0turn)
																			translateY(-150px)	translateY(50%)
																			rotate(1turn);
				}
				to	{
								transform:	translateY(150px)	translateY(-50%)
																			rotate(1turn)
																			translateY(-150px)	translateY(50%)
																			rotate(0turn);
				}
}

.avatar	{	animation:	spin	3s	infinite	linear;	}

This	is	a	bit	shorter	and	less	repetitive,	but	still	not	great.	Can	we	do	any
better?	 If	 we	 start	 from	 the	 avatar	 in	 the	 center	 of	 the	 circle	 (like	 in
Figure	8.39),	we	 can	eliminate	 the	 first	 two	 translations,	which	essentially
just	place	it	at	the	center.	Then	the	animation	becomes:

@keyframes	spin	{
				from	{
								transform:	rotate(0turn)
																			translateY(-150px)	translateY(50%)
																			rotate(1turn);
				}
				to	{
								transform:	rotate(1turn)
																			translateY(-150px)	translateY(50%)

																			rotate(0turn);
				}
}

.avatar	{	animation:	spin	3s	infinite	linear;	}

FIGURE	8.39	If	we	center	the	avatar	as	the	starting	point,	our	keyframes
become	a	bit	shorter;	however,	note	that	this	state	will	also	be	our
fallback	in	case	animations	are	not	supported,	which	may	or	may	not	be
desirable

This	 seems	 to	 be	 the	 best	we	 can	 do	 today.	 It’s	 not	 the	DRY-est	 possible
code,	 but	 it’s	 quite	 short.	 There	 is	 now	 minimal	 repetition	 and	 no
redundant	 HTML	 elements.	 To	 make	 it	 completely	 DRY	 and	 avoid
repeating	 the	 path	 radius,	we	 could	 use	 a	 preprocessor,	which	 is	 left	 as	 an
exercise	for	the	reader.

	PLAY! 	play.csssecrets.io/circular

RELATED
SPECS

CSS	Animations

w3.org/TR/css-animations

http://play.csssecrets.io/circular
http://w3.org/TR/css-animations

CSS	Transforms

w3.org/TR/css-transforms

http://w3.org/TR/css-transforms

Index

Symbols
(pseudo)random	backgrounds,	62-65

.avatar,	337-340,	343

.lightbox,	235

3D	rotation,	for	trapezoids,	109-113

::backdrop,	for	dimming,	238

:nth-child()	pseudo-class,	178,	271-275

:only-child,	272

<blink>,	314

<code>	element,	182

<dd>,	173-177

<dialog>,	238

<div>,	252

<dt>,	173-177

<labels>,	229

<main>,	241

<path>,	211

<pre>	element,	182

,	189,	210

<textPath>,	211

@font-face,	189

(soft	hyphens),	168

A
absolute	positioning,	for	vertical	centering,	281

acceleration,	timing	function	and,	296-299

affordance,	225

align-items,	vertical	centering	and,	286

ampersands,	fancy,	188-193

Anderson,	James,	280

animated	GIFs,	shortcomings	of,	308

animation,	294-345

along	a	circular	path,	334-345

blinking,	314-318

bouncing,	295-299

converting	to	transition,	301

duration	vs.	effectiveness,	321

elastic	transitions,	294-305

for	pie	charts,	119-121

frame-by-frame,	308-312

smooth	state,	328-332

typing,	320-326

animation-direction,	316,	339

animation-playstate,	332

animation-timing-function,	296

APNG,	309

assumptions,	xxiv

Atlas	system,	xxii

automatic	table	layout	algorithm,	266

B
background(s)

(pseudo)random,	62-65

and	inner-rounded	borders,	37

and	zebra-striped	lines,	180

checkerboards,	55-60

complex	patterns,	50-60

diagonal	stripes,	43-47

flexible	positioning,	32-35

fluid	with	fixed	content,	276-279

grids,	52

polka	dots,	53

striped,	40-48

vertical	stripes,	43

background-attachment,	246

background-blend	mode,	141

background-clip,	26,	70,	225

background-image,	text	underlining	and,	196

background-origin,	33

background-position,	33,	310,	330

background-size

for	(pseudo)random	backgrounds,	62-65

for	stripes,	43

beveled	corners,	96,	157-159

Bézier	curves,	298

blending	modes

filters	vs.,	142

for	color	tinting,	141-143

for	interactive	image	comparison,	259

blinking,	314-318

blinking	caret,	323

block	elements,	173

blur()	filter,	149

blurring,	for	de-emphasis,	240-243

border-bottom,	195

border-box,	26

border-image

for	curved	cutout	corners,	102-105

limitations	of,	68

with	gradients,	73

border-radius

for	ellipses,	76-81

for	pie	charts,	116

borders,	24

continuous	image,	68-74

inner	rounding	of,	36-38

multiple,	28-30

translucent,	24-26

Bos,	Bert,	5

bouncing	animations,	295-299

bouncing	effect,	294

box-shadow

and	extension	of	clickable	area,	226

and	inner-rounded	borders,	37

for	dimming,	237

for	multiple	borders,	29

for	one-sided	shadows,	130

with	irregular	drop	shadows,	134

box-sizing,	30

brevity,	maintainability	vs.,	12

brightness()	filter,	242

browser	support,	xxix-xxxiv

buttons,	10-12

parallelograms	and,	84

regular	v.	toggle,	232

toggle	buttons,	231

C
calc()	(function)

and	vertical	centering,	282

for	flexible	background	positioning,	35

for	sticky	footers,	290

callouts,	elastic	transitions	for,	300-304

caret,	blinking,	323

cell	cursor,	219

Centering	in	the	Unknown	(Chris	Coyier),	281

centering,	vertical,	280-286

ch	unit,	323

checkboxes

custom,	228-232

toggle	buttons	vs.,	232

checked	(pseudo-class),	229

checkerboards,	55-60

Cicada	Principle,	The,	63,	65

circular	path,	animations	along,	334-345

circular	text,	210-214

clickable	area,	extending,	224-227

clip-path

for	cutout	corners,	105-107

for	diamond	images,	93

clipped	top	border,	73

code	duplication,	minimizing,	9-12

coding	tips,	9-22

and	eyes	behavior,	15

and	Responsive	Web	Design,	15-17

currentColor,	13

inheritance,	13

maintainability	vs.	brevity,	12

minimize	code	duplication,	9-12

preprocessors,	19-22

shorthand	use,	17-19

color,	11

and	elastic	transitions,	305

currentColor,	13

for	pie	charts,	115

with	curved	cutout	corners,	104

with	flexible	subtle	stripes,	48

color	stops

and	checkerboard	patterns,	56

and	striped	backgrounds,	44

for	grids,	52

color	tinting,	138-143

blending	modes	for,	141-143

filters	for,	139

column	widths,	table,	266-268

complex	background	patterns,	50-60

checkerboards,	55-60

grids,	52

polka	dots,	53

continuous	image	borders,	68-74

contrast()	filter,	242

control	points,	298

corners,	cutout,	96-107

Coyier,	Chris,	281,	334

CSS

recent	growth	and	transformation	of,	xvii

standards/specifications,	2-8

CSS	1,	5

CSS	2,	5

CSS	3,	6

CSS	Working	Group	(CSS	WG),	2-8

cubic-bezier	()	function,	298-299,	302

currentColor,	13

cursors

built-in,	218-221

hiding,	221

indicating	disabled	state,	220

curved	cutout	corners,	100

cutout	corners,	96-107

clipping	path	method	for,	105-107

curved,	100

gradients	for,	97

inline	SVG/border-image	method,	102-105

D
de-emphasis

by	blurring,	240-243

by	dimming,	234-238

definition	lists,	line	breaks	for,	172

diagonal	stripes,	43-47

diamond	images,	90-94

dimming

backdrop	method,	238

de-emphasis	by,	234-238

pseudo-element	method,	236

disabled	state,	cursor,	220

discretionary	ligatures,	184

display:	flex

and	vertical	centering,	285

for	sticky	footers,	291

drop	shadows,	irregular,	134-137

drop-shadow	()	filter,	135,	137

DRY	programming,	xviii

duplication	of	code,	minimizing,	9-12

E
ease	(keyword),	296

Eden,	Dan,	300

elastic	transitions,	294-305

bouncing	animations,	295-299

for	callouts,	300-304

ellipses

flexible,	76-81

half,	79-81

quarter,	81

extended	background-position	method,	33

extending	the	clickable	area,	224-227

extruded	text,	206

eye,	human,	15

F
fill	(keyword),	103

fill:	none,	213

filter(s)

blending	modes	vs.,	142

for	color	tinting,	139

for	interactive	image	comparison,	259

with	irregular	drop	shadows,	135

Fitts	Law,	224

Fitts,	Paul,	224

fixed	content,	fluid	backgrounds	with,	276-279

fixed	table	layout	algorithm,	268

flex-flow,	291

Flexbox

for	vertical	centering,	285

flexible	background	positioning,	32-35

background-origin	method	for,	33

calc()	method	for,	35

extended	backgrounds	for,	33

flexible	ellipses,	76-81

flexible	subtle	stripes,	48

fluid	backgrounds,	fixed	content	with,	276-279

folded	corner	effect,	156-165

for	45°	angles,	157-159

for	angles	other	than	45°,	159-165

font	size,	10

font-family	declarations,	189

font-variant-ligatures,	185

footers,	sticky,	288-292

footnote	border,	73

formats	and	conventions,	xxvi

frame-by-frame	animations,	308-312

frosted	glass	effect,	146-154

future	sections,	xxviii

G
Gallagher,	Nicolas,	87,	156

Gaussian	blur	algorithm,	131

GIFs,	animated,	shortcomings	of,	308

glowing	text,	205

glyphs,	ligatures	as,	184

Google	Reader,	244

Google+,	334

gradient-based	patterns,	71

gradients,	for	cutout	corners,	97

Greedy	algorithm,	169

Gregor,	Aryeh,	340

H
habrahabr.ru,	334

half	ellipses,	79-81

Hattab,	Hakim	El,	243

hiding	the	cursor,	221

hue-rotate()	filter,	140

hyphenation,	168-170

hyphens:	auto,	169

I
image	comparison,	interactive,	250-259

CSS	resize	method	for,	251-254

range	input	method	for,	255-259

image,	as	border,	68

infinite	(keyword),	324

inherit	(keyword),	13

inheritance,	13

inline	SVG,	102-105,	211

inner	border	radius,	100

inner	rounding	(borders),	36-38

interactive	image	comparison,	250-259

intrinsic	sizing,	262-264

irregular	drop	shadows,	134-137

J
Jacobs,	Ian,	5

JavaScript

for	frame-by-frame	animation,	309

for	typing	animation,	324

justification,	text,	168

justify-content,	286

K
Knuth-Pass	algorithm,	169

Komarov,	Roman,	249

L
latency,	20

Law	of	Leaky	Abstractions,	20

layout,	262-292

fluid	backgrounds	with	fixed	content,	276-279

intrinsic	sizing,	262-264

sticky	footers,	288-292

styling	by	sibling	count,	270-275

table	column	widths,	266-268

vertical	centering,	280-286

least	common	multiple	(LCM),	for	(pseudo)random	backgrounds,	64

letterpress	effect,	201

Lie,	Håkon	Wium,	5

ligatures,	184-186

Lilley,	Chris,	5

line	breaks,	inserting,	172-177

linear	gradient

and	grids,	52

and	striped	backgrounds,	41

for	cutout	corners,	97

lines,	text,	zebra-striped,	178-181

local()	function,	190

longhands,	18

M
maintainability,	brevity	vs.,	12

marching	ants	border,	72

margin:	auto,	277,	285

max-width,	264

McClellan,	Drew,	193

media	queries,	15-17

Meyer,	Eric,	66

min-content	(keyword),	263

mix-blend	mode,	141

modal	dialog,	238

Montulli,	Lou,	314

mouse	pointer,	218

Mozilla,	309

multiple	borders,	28-30

box-shadow	for,	29

outlines	for,	30

N
negative	animation	delays,	119-121

nested	elements,	for	parallelograms,	85

nested	transforms,	337

not-allowed	cursor,	220

O
one-sided	shadows,	130-133

optical	illusions,	15,	200

outline-offset,	30

outlines,	for	multiple	borders,	30

overflow:	hidden,	116,	152

overflow:	visible,	213

P
parallelograms,	84-87

pattern,	as	border,	68

pie	charts

SVG	solution	for,	122-128

transform-based	solution	for,	115

pie	charts,	simple,	114-128

PNG	sprite	animation,	309-312

polka	dot	backgrounds,	53

polygon(),	for	diamond	images,	93

position:	relative/absolute,	86

preprocessors,	19-22

for	complex	background	patterns,	50

for	folded-corner	effect,	165

prerequisites,	xxv

prime	numbers,	for	(pseudo)random	backgrounds,	65

pseudo-elements

for	parallelograms,	86

for	pie	charts,	116

pseudo-elements

for	dimming,	236

for	pie	charts,	117

for	trapezoids,	110

mouse	interaction	capture	by,	226

Pythagorean	theorem,	160

and	inner-rounded	borders,	38

and	striped	backgrounds,	44

for	curved	cutout	corners,	103

Q
quarter	ellipses,	81

R
radial	gradients

for	curved	cutout	corners,	100

for	polka	dots,	53

random	backgrounds,	62-65

readability,	justification	and,	168

repeating-linear-gradient(),	45-47

repeating-radial-gradient(),	45

resize,	for	interactive	image	comparison,	251-254

Responsive	Web	Design	(RWD),	15-17

rotate()	transform

for	animation	along	circular	path,	337-340

for	diamond	images,	91

for	parallelograms,	87

for	pie	charts,	117

rounding,	inner	(borders),	36-38

S

Saly,	Martijn,	105

saturate	()	filter,	139

scale()	transform

for	diamond	images,	92

for	elastic	transitions,	302

scrolling,	244-249

Seddon,	Ryan,	231

shadows

irregular	drop,	134-137

on	one	side,	130-132

on	two	adjacent	sides,	132

on	two	opposite	sides,	133

one-sided,	130-133

shapes,	76-128

cutout	corners,	96-107

diamond	images,	90-94

flexible	ellipses,	76-81

half	ellipses,	79-81

parallelograms,	84-87

pie	charts,	114-128

quarter	ellipses,	81

trapezoid	tabs,	108-113

shorthands,	use	of,	17-19

sibling	count,	styling	by,	270-275

simple	pie	charts,	114-128

Simurai,	312

sizing,	intrinsic,	262-264

skew()	transform,	84

slider	control,	256-259

smooth	state	animations,	328-332

soft	hyphens	(),	168

spread	radius,	29,	131

sprite	animation,	309-312

steps()	timing	function,	311,	317,	322

sticky	footers,	288-292

Storey,	Dudley,	66,	144,	259,	264

striped	backgrounds,	40-48

diagonal	stripes,	43-47

flexible	subtle	stripes,	48

vertical	stripes,	43

striped	text	lines,	178-181

stroke-dasharray,	122-126

stroked	text,	203

style	elements,	sibling	count	and,	270-275

SVG

for	checkerboard	patterns,	59

for	pie	charts,	122-128

T
tab	width	adjustments,	182

tab-size,	183

table-layout	(property),	266

tables

column	widths,	266-268

zebra-striped	lines	in,	178-181

text	effects

circular	text,	210-214

extruded	text,	206

glowing	text,	205

letterpress,	201

realistic,	200-208

stroked	text,	203

typing	animation,	320-326

text	justification,	168

text	lines,	zebra-striped,	178-181

text	underlines,	custom,	194-197

text-decoration:	blink,	315

text-shadow

and	extruded	text,	207

and	glowing	text,	205

and	letterpress	effect,	202

and	stroked	text,	203

and	text	underlining,	197

with	irregular	drop	shadows,	137

three-dimensional	(3D)	rotation,	for	trapezoids,	109-113

timing	function,	296-299

tinting,	138-143

toggle	buttons,	231

transform(s)

and	parallelograms,	86

for	diamond	images,	91

for	pie	charts,	115,	117

for	trapezoids,	109-113

interdependence	of	transform	functions,	341

transform-origin,	163

for	trapezoids,	111

translate()	vs.,	340

transform-style,	vertical	centering	and,	283

transition-duration,	304

transition-property,	305

transition-timing-function,	296

transitions	and	animations,	294-345

animations	along	a	circular	path,	334-345

blinking,	314-318

converting	animation	to	transition,	301

elastic	transitions,	294-305

frame-by-frame	animations,	308-312

smooth	state	animations,	328-332

typing	animation,	320-326

translate()

and	vertical	centering,	282

for	animation	along	circular	path,	343

transform-origin	vs.,	340

translucent	borders,	24-26

transparency,	gray	checkerboard	patterns	for	depicting,	55

trapezoid	tabs,	108-113

triangles

and	folded	corner	effect,	156-165

for	checkerboard	patterns,	55

typing	animation,	320-326

typography,	168-214

circular	text,	210-214

custom	underlines,	194-197

extruded	text	effect,	206

fancy	ampersands,	188-193

glowing	text	effect,	205

hyphenation,	168-170

inserting	line	breaks,	172-177

letterpress	effect,	201

ligatures,	184-186

realistic	text	effects,	200-208

stroked	text	effect,	203

tab	width	adjustments,	182

zebra-striped	text	lines,	178-181

U
underlines,	custom,	194-197

unicode-range	descriptor,	191

user	experience,	218-259

cursor	selection,	218-221

custom	checkboxes,	228-232

de-emphasis	by	blurring,	240-243

de-emphasis	by	dimming,	234-238

extending	the	clickable	area,	224-227

interactive	image	comparison,	250-259

scrolling,	244-249

toggle	buttons,	231

V
vendor	prefixes,	6-8

vertical	centering,	280-286

absolute	positioning	for,	281

Flexbox	for,	285

viewport	unit	for,	284

vertical	stripes,	43

viewBox,	212

viewport	units,	237

vintage	envelope	themed	border,	71

visual	effects,	130-165

color	tinting,	138-143

folded	corner	effect,	156-165

frosted	glass	effect,	146-154

irregular	drop	shadows,	134-137

one-sided	shadows,	130-133

W
W3C	(World	Wide	Web	Consortium),	2

Walker,	Alex,	63,	65

web	standards,	2-8

and	CSS	evolution,	5

and	vendor	prefixes,	6-8

creation	process,	2-4

WET	programming,	xviii

white-space:,	174

Wichary,	Marcin,	198

word	wrapping,	169

wrapping,	word,	169

Z
z-index,	235

zebra-striped	text	lines,	178-181

Footnotes

2	Backgrounds	&	Borders
*	Prime	numbers	are	integers	that	can’t	be	divided	by	any	other	number	besides	1	and	themselves.	For
example,	the	first	10	prime	numbers	are	2,	3,	5,	7,	11,	13,	17,	19,	23,	29.	On	the	other	hand,	relatively
prime	is	a	relation	between	numbers,	not	an	attribute	of	a	single	number.	Relatively	prime	numbers
have	no	common	divisors,	but	may	have	many	divisors	in	general	(e.g.,	10	and	27	are	relatively	prime,
but	neither	is	prime).	Of	course,	a	prime	number	is	relatively	prime	with	any	other	number.

5	Typography

*	This	assumes	we’re	dealing	with	code	snippets.	In	the	general	case,	it	can	also	break	when	there	are
inline	elements	that	force	a	larger	line	height,	such	as	images	or	inline	content	with	a	larger	font-
size.

6	User	Experience
*	In	usability,	an	affordance	is	a	property	of	a	control	that	visibly	hints	how	we	can	interact	with	it.	For
example,	a	button’s	3D	appearance	hints	that	it	can	be	pushed,	and	a	doorknob’s	appearance	that	it	can	be
pulled	or	turned.	For	more	info,	check	out	en.wikipedia.org/wiki/Affordance.	There	is
some	debate	among	usability	professionals	as	to	whether	mouse	cursor	changes	are	an	affordance	or
visual	feedback.

*	From	the	CSS	2.1	specification:	“[A	replaced	element	is]	an	element	whose	content	is	outside	the	scope
of	the	CSS	formatting	model,	such	as	an	image,	embedded	document,	or	applet.”	Replaced	elements
cannot	have	generated	content	applied	to	them,	though	some	browsers	allow	it.

7	Structure	&	Layout

*	In	CSS	spec	jargon,	we	need	the	width	to	be	intrinsically	determined	instead	of	extrinsically.

http://en.wikipedia.org/wiki/Affordance

	Title Page
	Copyright Page
	Dedication
	Secrets by Specification
	Foreword
	Preface
	Words of thanks
	Making of
	About this book
	Chapter 1. Introduction
	Web standards: friend or foe?
	CSS coding tips

	Chapter 2. Backgrounds & Borders
	1 Translucent borders
	2 Multiple borders
	3 Flexible background positioning
	4 Inner rounding
	5 Striped backgrounds
	6 Complex background patterns
	7 (Pseudo)random backgrounds
	8 Continuous image borders

	Chapter 3. Shapes
	9 Flexible ellipses
	10 Parallelograms
	11 Diamond images
	12 Cutout corners
	13 Trapezoid tabs
	14 Simple pie charts

	Chapter 4. Visual Effects
	15 One-sided shadows
	16 Irregular drop shadows
	17 Color tinting
	18 Frosted glass effect
	19 Folded corner effect

	Chapter 5. Typography
	20 Hyphenation
	21 Inserting line breaks
	22 Zebra-striped text lines
	23 Adjusting tab width
	24 Ligatures
	25 Fancy ampersands
	26 Custom underlines
	27 Realistic text effects
	28 Circular text

	Chapter 6. User Experience
	29 Picking the right cursor
	30 Extending the clickable area
	31 Custom checkboxes
	32 De-emphasize by dimming
	33 De-emphasize by blurring
	34 Scrolling hints
	35 Interactive image comparison

	Chapter 7. Structure & Layout
	36 Intrinsic sizing
	37 Taming table column widths
	38 Styling by sibling count
	39 Fluid background, fixed content
	40 Vertical centering
	41 Sticky footers

	Chapter 8. Transitions & Animations
	42 Elastic transitions
	43 Frame-by-frame animations
	44 Blinking
	45 Typing animation
	46 Smooth state animations
	47 Animation along a circular path

	Index
	Footnotes

