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This book provides an introduction to decision making under uncertainty from a
computational perspective. The aim of the first part of the book is to familiarize the
reader with the foundations of probabilistic models and decision theory. The second part
of the book discusses the application of the theory to problems relevant to a variety of
mission areas. The subject of decision making under uncertainty is quite broad and has
its origins in several different fields. The text aims to be as concise as possible, providing
references to additional material that may be relevant to a wide set of applications.
The target audience for this book includes advanced engineering undergraduate and

graduate students as well as professionals. Disciplines for which the book would be
especially useful include computer science, aerospace, electrical engineering, and opera-
tions research. The text is intended to be introductory in nature. Although algorithms
are outlined in the text, proofs are omitted. The book requires some mathematical
maturity and assumes some prior exposure to probability theory and calculus. The first
five chapters can be used as the basis of an undergraduate or graduate course. The topics
in Chapters 6 and 7 are more appropriate for the graduate level.
The book was written over the course of two years while I was at Lincoln Laboratory,

a federally funded research and development center of the Massachusetts Institute of
Technology. While teaching a course on decision making under uncertainty, I was
invited by a member of the Lincoln Laboratory book series to prepare a volume. Much
of the material in this book originated from the course. The later part of the course
consisted of guest lectures from researchers from Lincoln Laboratory and campus with
the aim to show how the principles and techniques discussed in the first part of the
course can be applied to problems of national interest. Some of these guest lectures have
become chapters in this book.
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Stanford, Calif.
February 6, 2015

Ancillary material is available on the book’s webpage:
http://mitpress.mit.edu/decision-making-under-uncertainty
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Many important problems involve decision making under uncertainty, including aircraft
collision avoidance, wildfire management, and disaster response. When one is designing
automated decision support systems, it is important to account for the various sources
of uncertainty when making or recommending decisions. Accounting for these sources
of uncertainty and carefully balancing the multiple objectives of the system can be
very challenging. We will discuss these challenges from a computational perspective,
aiming to provide the theory behind decision-making models and algorithms and then
illustrating the theory on a collection of real problems. This chapter introduces the
problem of decisionmaking under uncertainty, discusses the space of possible approaches
to the problem, and overviews the remainder of the book.

An agent is something that acts based on observations of its environment. Agents may
be physical entities, like humans or robots, or they may be nonphysical entities, such
as decision support systems that are implemented entirely in software. As shown in
Figure 1.1, the interaction between the agent and the world follows an observe-act cycle.

ot

at



The agent at time t receives an observation of the world, denoted ot . Observations
may be made, for example, through a biological sensory process as in humans or by a
sensor system like radar in an air traffic control system.Observations are often incomplete
or noisy; humans may not see an approaching aircraft or a radar system might miss
a detection through electromagnetic interference. The agent then chooses an action
at through some decision-making process to be discussed later. This action, such as
sounding an alert, may have a nondeterministic effect on the world.
Our focus is on intelligent agents that interact intelligently in the world to achieve

their objectives over time. Given the past sequence of observations o0, . . . , ot and knowl-
edge about the environment, the agent must choose an action at that best achieves its
objectives.

There are many examples of problems in which accounting for uncertainty is important.
This section outlines two of them, both of which are revisited in the latter part of this
book.

An example of a decision support system that has significantly improved the safety of air
travelers worldwide is the Traffic Alert and Collision Avoidance System (TCAS). TCAS
is an onboard collision avoidance system that has been mandated on all aircraft with
a maximum takeoff mass of more than 5700 kg or authorized to carry more than 19
passengers. The system provides resolution advisories to the pilots, instructing them to
adjust their climb or descent rate to avoid collision. The advisory is announced aurally
in the cockpit as well as visually on the instrument display.
Figure 1.2 shows an example of a resolution advisory displayed on the vertical speed

indicator. The white arrow, pointing at 0 ft/min, indicates the current vertical rate. The
vertical speed dial is in 1000s of feet per minute. The green arc, shown ranging from
1500 ft/min to 2000 ft/min in the figure, informs the pilots to begin climbing at a
rate within that range. The red square and white diamond indicate the relative lateral
positions of the intruding aircraft, and the numbers below the shapes indicate their
relative altitude in 100s of feet.
The TCAS surveillance system sends out interrogations over the radio and listens for

replies from the beacons onboard the other aircraft. The distance to the other aircraft
can be inferred from measurements of the reply delay. Because TCAS has multiple
antennas, small differences in the reply delay permit the inference of the bearing angle to
the intruder. Replies over the radio also include the altitude of the aircraft. The TCAS
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logic determines which resolution advisory to issue based on estimates of the range,
bearing, and altitude.
In this example, TCAS is the agent, and the environment is composed of both the

aircraft and pilots involved in the encounter. The observations consist of range, bearing,
and altitude. The actions available to TCAS consist of climb or descent rate commands.
The actions taken by the system do not have a deterministic effect on the environment.
Radar data have shown that there is significant variability in the response of the pilots
to their advisories.
Although TCAS may appear to be a rather simple decision support system, it has

required decades of careful design. Given the uncertainty in the observations resulting
from imperfect sensors and the uncertainty in the future trajectories of the aircraft, it is
far from straightforward whether to delay an advisory or change the commanded rate
part way through an encounter. The consequence of a poor choice could cost the lives
of hundreds of passengers. The system must provide an exceptional guarantee of safety
while staying operationally acceptable and not disrupting normal air traffic procedures.

Unmanned aircraft can provide persistent surveillance over an area of interest, such as a
forest fire or battle theater. One approach for enabling surveillance over long durations
is to use a team of geographically distributed, low-cost aircraft. It is important that the
algorithms that drive the aircraft account for communication constraints and the health
of the aircraft.
There are several challenges for building autonomous systems for such a scenario.

Some aircraft will need to be allocated to a communication relay area to route commu-



nications between the control base and the mission area. Without the relay, important
mission data might not be collected and acted upon. The aircraft also have fuel con-
straints and can only operate for a limited amount of time in the communication or
surveillance areas before returning to base. The fuel depletion rate is stochastic.
The aircraft must be robust to failures in the sensors and actuators. At any point

during the mission, a sensor or actuator may fail unexpectedly. An aircraft with a sensor
failure becomes useless in the surveillance area, but it can serve as a communication
relay. However, if an aircraft has an actuator failure, then the aircraft is not useful for
any of the tasks and must be repaired at the base. Building a team of agents to fulfill
this mission with a high degree of reliability is extremely challenging.

There are many different methods for designing decision agents. Depending on the
application, some methods may be more appropriate than others. The methods differ in
the responsibilities of the designer and the tasks left to automation. This section briefly
overviews a collection of these methods. The book will focus primarily on the last two
methods, planning and reinforcement learning, but some of the techniques will involve
elements of supervised learning and optimization.

The most direct method for designing a decision agent is to anticipate all the different
scenarios the agent might find itself in and then explicitly program the agent to do what
is desired. The explicit programming approach may work well for simple problems, but
it places a large burden on the designer to provide a complete strategy. Various agent
programming languages and frameworks have been proposed to make programming
agents easier.

In some problems, it may be easier to show an agent what to do rather than to write a
program for the agent to follow. The designer provides a set of training examples, and
an automated learning algorithm must generalize from these examples. This approach is
known as supervised learning and has been widely applied to classification problems. This
technique is sometimes called behavioral cloning when applied to learning mappings
from observations to actions. Behavioral cloning works well when an expert designer
actually knows the best course of action for a representative collection of example
situations. Although there exists a wide variety of different learning algorithms, they
generally cannot perform better than human designers in new situations.



Another approach is for the designer to specify the space of possible decision strategies
and a performance measure to be maximized. Evaluating the performance of a decision
strategy generally involves running a batch of simulations with the decision strategy.
The optimization algorithm then performs a search in this space for the optimal strategy.
If the space of possible strategies is relatively low dimensional and the performance
measure does not have many local optima, then various local or global search strategies
may be appropriate. Although knowledge of a dynamic model is generally assumed in
order to run the simulations, it is not otherwise used to guide the search for the optimal
strategy, which can be important in complex problems.

Planning is a form of optimization, but it uses a model of the problem dynamics to help
guide the search. A broad literature has arisen on planning problems, much of it focused
on deterministic problems. For some problems, it may be acceptable to approximate the
dynamics with a deterministic model. Assuming a deterministic model permits the use
of methods that more easily scale to high-dimensional problems. For other problems,
accounting for future uncertainty is absolutely critical. This book focuses entirely on
problems in which accounting for uncertainty is important.

Reinforcement learning relaxes the assumption in planning that a model is known ahead
of time. Instead, the decision-making strategy is learned while the agent interacts with
the world. The designer only has to provide a performance measure; it is up to a learning
algorithm to optimize the behavior of the agent. One of the interesting complexities
that arises in reinforcement learning is that the choice of action impacts not only the
immediate success of the agent in achieving its objectives but also the agent’s ability to
learn about the environment and identify the characteristics of the problem that it can
exploit.

This book is organized into two parts: theory and application. The theory part is
organized as follows:



• Chapter 2: Probabilistic Models discusses how uncertainty is represented. It intro-
duces Bayesian networks as a graphical model that captures probabilistic relation-
ships between variables. The chapter presents algorithms for making inferences
from these representations and explains how to learn the structure and parameters
from data.

• Chapter 3:Decision Problems presents utility theory as a framework for understand-
ing optimal decision making under uncertainty. This chapter focuses entirely on
single shot decisions. It presents decision networks as a generalization of Bayesian
networks with the introduction of decision and utility nodes. The chapter also
discusses decision making in the context of multiple, potentially competing, agents.

• Chapter 4: Sequential Problems discusses the problem of making decisions over
time when the outcomes of the actions are probabilistic. It introduces Markov
decision processes as a way to model such problems. The chapter shows how
to compute optimal solutions using a process known as dynamic programming.
Because many problems are too complex to solve exactly, this chapter also discusses
a variety of different approximation methods, such as online methods and direct
policy search.

• Chapter 5:Model Uncertainty introduces the challenges that arise in solving se-
quential problems when the dynamic model is not known exactly. It presents a
variety of methods for balancing exploration with exploitation and overviews both
model-based and model-free approaches. The chapter concludes with a discussion
of how to generalize from limited interaction with the environment.

• Chapter 6: State Uncertainty presents a formulation known as a partially observable
Markov decision process that accounts for uncertainty resulting from imperfect
observations. Such a formulation requires updating beliefs about the current state
of the system. This chapter presents both offline and online methods for solving
these problems.

• Chapter 7: Cooperative Decision Making introduces decision making in a collabora-
tive environment where there are multiple interacting agents. This chapter presents
some of the properties of such problems, notable subclasses, and algorithms for
computing exact and approximate solutions.

The application part of the book shows how the concepts introduced in the theory part
can be applied to real problems. The application chapters are organized as follows:
• Chapter 8: Probabilistic Surveillance Video Search discusses a probabilistic approach
to attribute-based person search. This chapter describes the probabilistic appear-
ance model used in this application and how the model can be used for learning
and inference.

• Chapter 9: Dynamic Models for Speech Applications provides a broad overview of
how the probabilistic methods introduced in the theory chapters have led to major



advances in speech recognition, topic identification, language recognition, speaker
identification, and machine translation.

• Chapter 10: Optimized Airborne Collision Avoidance explains how to represent the
problem of collision avoidance as a partially observable Markov decision process.
The chapter explains how to use dynamic programming to produce safer collision
avoidance systems with fewer disruptions to the airspace.

• Chapter 11: Multiagent Planning for Persistent Surveillance describes how the
algorithms presented earlier can be adapted to problems involving a team of
unmanned aircraft monitoring a region of interest.

• Chapter 12: Integrating Automation with Humans concludes the book with a
summary of various challenges of integrating decision support systems with human
operators and provides strategies for effective implementation.

Each chapter has its own bibliographical section, and the end of the book contains an
index of important terms and acronyms.

The artificial intelligence textbook from Russell and Norvig titled Artificial Intelligence:
A Modern Approach provides an excellent introductory overview of different methods
for building intelligent agents [1]. This book focuses primarily on planning and rein-
forcement learning, and the theory chapters provide additional references for further
reading in those areas. Of course, if the problem is simple enough to be solved without
resorting to such advanced methods, then explicitly programming the decision-making
agents using some agent-oriented programming language might be best [2]. If an expert
can show the system how to behave in different situations, then supervised learning
may be appropriate. Many recent books cover supervised learning in great depth from a
probabilistic perspective [3]–[5]. Generic optimization methods are covered by several
textbooks [6]–[9]. Deterministic planning approaches are summarized in the books
Automated Planning: Theory and Practice [11] and Planning Algorithms [10].The two
example applications discussed in this chapter will be revisited in Chapters 10 and 11.

1. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Upper
Saddle River, NJ: Pearson, 2010.

2. Y. Shoham, “Agent-Oriented Programming,” Artificial Intelligence, vol. 60, no. 1,
pp. 51–92, 1993. doi: 10.1016/0004-3702(93)90034-9.

3. D. Barber, Bayesian Reasoning and Machine Learning. New York: Cambridge
University Press, 2012.



4. K.P. Murphy,Machine Learning: A Probabilistic Perspective. Cambridge, MA: MIT
Press, 2012.

5. C.M. Bishop, Pattern Recognition and Machine Learning. New York: Springer,
2006.

6. A.D. Belegundu and T.R. Chandrupatla, Optimization Concepts and Applications
in Engineering, 2nd ed. New York: Cambridge University Press, 2011.

7. S. Boyd and L. Vandenberghe, Convex Optimization. New York: Cambridge
University Press, 2004.

8. D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization. Belmont,
MA: Athena Scientific, 1997.

9. E.K.P. Chong and S.H. Żak, An Introduction to Optimization, 4th ed. Hoboken,
NJ: Wiley, 2013.

10. M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice.
San Francisco: Morgan Kaufmann, 2004.

11. S.M. LaValle, Planning Algorithms. New York: Cambridge University Press, 2006.
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Rational decision making requires reasoning about one’s uncertainty and objectives.
This chapter focuses on the representation of uncertainty as a probability distribution.
Real-world problems require reasoning about distributions over many different variables.
We will discuss how to construct these models and how to use them to make inferences.

Uncertainty can arise from incomplete information about the state of the world. Suppose,
for example, we are monitoring a satellite orbiting the earth thousands of kilometers away.
Our satellite has been sending mission and telemetry data down to us reliably for months,
but all of a sudden we lose our communication feed. Many different events could lead
to a communication loss, such as an electrical power system or communications system
failure on board the satellite, or it could be due to a failure of a system on the ground
used for monitoring the satellite. Given the information that we have at hand, it is
impossible to make a diagnosis with complete certainty.
Uncertainty can also arise from practical and theoretical limitations in our ability

to predict future events. For example, predicting exactly how a human operator will
respond to advice from a decision support system would require, among other things,
a detailed model of how the human brain works. Even the paths of satellites can be
difficult to predict. Although Newtonian physics permit highly precise predictions of
satellite trajectories, spontaneous failures in the attitude thrusters can result in large
deviations from the nominal path.
A robust decision-making system must account for these sources of uncertainty in the

current state of the world and the future outcomes of events. Accounting for uncertainty
computationally requires a formal representation.



In problems of uncertainty, it is essential to be able to compare the plausibility of
different statements. We would like to be able to represent, for example, that our belief
that “there is an electrical anomaly on our satellite” is stronger than our belief that
“there is a thruster anomaly on our satellite.” If E represents the proposition “there is an
electrical anomaly on our satellite” and T represents the proposition “there is a thruster
system anomaly on our satellite,” then we would write E � T . If we hold E and T
with the same degree of belief, then we write E ∼ T .
It is also useful to be able to compare our beliefs about statements given some in-

formation. For example, we would like to say, “there is an electrical anomaly given a
communication loss” is more likely than “there is a thruster anomaly given a communica-
tion loss.” If C represents communication loss, then we would write (E | C ) � (T | C ).
We want to make certain assumptions about the relationships induced by the oper-

ators � and ∼. The assumption of universal comparability requires exactly one of the
following to hold: (A | C ) � (B | C ), (A | C ) ∼ (B | C ), or (A | C ) ≺ (B | C ). Transi-
tivity requires that if (A | D) � (B | D) and (B | D) � (C | D) then (A | D) � (C | D).
Universal comparability and transitivity assumptions lead to an ability to represent
degrees of belief by a real-valued function [1]. In other words, we can use a function P
that has the following two properties:

P (A | C ) > P (B | C ) if and only if (A | C ) � (B | C )
P (A | C ) = P (B | C ) if and only if (A | C ) ∼ (B | C ).

If we make a set of additional assumptions about the form of P , then we can show
that P must satisfy the basic axioms of probability. Hence, 0 ≤ P (A | B ) ≤ 1. If we
are certain of (A | B ), then P (A | B ) = 1. If we believe (A | B ) is impossible, then
P (A | B ) = 0. Uncertainty in the truth of (A | B ) is represented by values in between
the two extrema.
This book does not provide a comprehensive review of probability theory, but we will

restate two important properties of probabilities. The first is the definition of conditional
probability, which states that

P (A | B ) = P (A,B )
P (B )

, (2.1)

where P (A,B ) represents the probability of A and B both being true. The second
important property is the law of total probability, which requires that if� is a set of
mutually exclusive and exhaustive propositions, then

P (A | C ) =∑
B∈�

P (A | B ,C )P (B | C ). (2.2)



It is easy to show from the definition of conditional probability that the following
holds:

P (A | B ) = P (B | A)P (A)
P (B )

. (2.3)

This equation is known as Bayes’ rule, and it will play an important role in this book.

Suppose we have a binary random variable A that can assume one of two different
values: 0 or 1. The probability distribution associated with A specifies the probabilities
of the various values that can be assigned to A, in particular P (A = 0) and P (A = 1). We
will use lowercase letters and superscripts as shorthand when discussing the assignment
of values to random variables. For example, P (a0) is shorthand for P (A = 0). The
distribution P (A) is defined by the values of P (a0) and P (a1), but the distribution
can be represented with only a single independent parameter, P (a0), because P (a1) =
1− P (a0). If A is a discrete random variable that can assume one of n different values,
then P (A) can be defined by n − 1 parameters, namely, P (a1), . . . ,P (an−1), because
P (an) = 1− (P (a1) + · · ·+ P (an−1)).
If A is a continuous random variable, then representing the distribution over A

is a little less straightforward. The probability of A taking on any particular value is
infinitesimally small. Consider the uniform distribution	 (0,10), which assigns equal
probability to all values in the range (0,10). The probability that a random sample
from this distribution is equal to the constant π is essentially zero. However, we can
define non-zero probabilities for samples being within some interval, say (3,4). If
P (A) =	 (0,10), then the probability that a sample a lies between 3 and 4 is 1/10.
Distributions over continuous variables can be represented using either a cumulative

distribution function or a probability density function. A cumulative distribution function
specifies the probability mass associated with values below some threshold. If p(a) is a
probability density function over A, then p(a)d a is the probability A falls within the
interval (a,a + d a) as d a→ 0. A cumulative distribution function P can be defined in
terms of a probability density as follows:

P (a) =
∫ a

−∞
p(a) d a. (2.4)

Suppose we wanted to represent the distribution over the altitude of aircraft in the
terminal region around New York City’s JFK airport using a density function p(a). We
would first have to choose a form of the distribution and then specify its parameters. A
common distribution for continuous variables is the Gaussian distribution (also called
the normal distribution). The Gaussian distribution is parameterized by the mean μ and



variance σ2:
p(w ) =� (w | μ,σ2). (2.5)

We use� (μ,σ2) to represent the Gaussian distribution with parameters μ and σ2 and
� (w | μ,σ2) to represent the density at w as given by

� (w | μ,σ2) = 1
σ
φ

�
w −μ
σ

�
. (2.6)

The function φ above is the standard normal density function:

φ(x ) =
1
2π

exp(−x 2/2). (2.7)

Although a Gaussian distribution is often convenient because it is defined by only
two parameters and makes computation easy, it has some limitations, especially for
representing altitude distributions. It assigns non-zero probability to negative altitudes,
which of course must be positive. It also assigns non-zero probabilities to aircraft flying at
unrealistically high altitudes. These problems can be remedied by bounding the support,
that is, the range of values assigned non-zero probabilities, resulting in a truncated
Gaussian distribution with density function given by

� (w | μ,σ2,a, b ) =
1
σ φ
�
w−μ
σ

�
Φ
�
b−μ
σ

�−Φ � a−μσ � , (2.8)

when w is within the interval [a, b ]. The function Φ is the standard normal cumulative
distribution function as given by

Φ(x ) =
∫ x

−∞
φ(x ) d x . (2.9)

In our aircraft altitude example, we might truncate below 0 ft and above 65,000 ft.
Another limitation of using a Gaussian distribution is that it is unimodal, meaning

that there is a point in the distribution at which the density increases monotonically on
one side and decreases monotonically on the other side. The distribution over altitudes
in the JFK region is not unimodal. The top-left plot in Figure 2.1 shows the probability
distribution of aircraft between 2000 ft and 10,000 ft, as estimated from 18million radar
reports during August 2011 in the JFK terminal region. Peaks every 1000 ft are due to
the airspace structure. Clearly, using a Gaussian distribution would not be appropriate.
There are different ways to represent continuous distributions that are multimodal.

One way is to mix together a collection of unimodal distributions. A Gaussian mixture
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model (GMM) is simply a weighted average of different Gaussian distributions. The
parameters of a Gaussian mixture model include the parameters of the Gaussian distri-
bution components μ1,σ21 , . . .μn ,σ2n as well as their weights ρ1, . . . ,ρn . The density is
given by

p(x | μ1,σ21 , . . .μn ,σ
2
n ,ρ1, . . . ,ρn) =

n∑
i=1
ρi � (x | μi ,σ

2
i ), (2.10)

with the constraint that the weights sum to 1. If we were to use a Gaussian mixture
model to represent the altitude distribution, then we might use Gaussian components
centered at the peaks and assign appropriate weights.
Another approach to representing multimodal continuous distributions is through

discretization. For example, we could create altitude bins every 100 ft and represent
the distribution as a piecewise-uniform density, as shown in Figure 2.1. The density is
specified by the bin edges, and the probability mass is associated with each bin. Figure 2.1
also shows the impact that different discretization schemes have on the representation
of the altitude distribution. Although 200 ft bins may be acceptable for representing
the altitude distribution, 1000 ft bins lose important features of the distribution.

One of the challenges when representing uncertainty in real-world problems is handling
joint distributions over many variables. For now, let us assume we want to model the
joint distribution over binary variables A, B , and C . An example distribution is shown
in Table 2.1.
Table 2.1 contains 23 = 8 entries specifying probabilities for every possible assignment

of values to the three variables. Because we enumerated every possible assignment, the
probabilities in the table sum to 1. Although there are eight entries in the table, only
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seven of them are independent. If θi represents the probability in the i th row in the
table, then we only need the parameters θ1, . . . ,θ7 to represent the distribution because
we know θ8 = 1− (θ1 + . . .+θ7).
If we have n binary variables, then we need as many as 2n−1 independent parameters

to specify the joint distribution. This exponential growth in the number of parameters
makes representing uncertainty and learning probabilistic models difficult.

A Bayesian network is a compact representation of a joint distribution. The structure of
the network is represented as a graph consisting of nodes and directed edges. Each node
corresponds to a random variable. Directed edges (sometimes called arrows) connect
pairs of nodes, with cycles in the graph being prohibited. The arrows indicate direct
probabilistic relationships. Associated with each node Xi is a conditional distribution
P (Xi | PaXi

), where PaXi
represents the parents of Xi in the graph.

Figure 2.2 shows an example Bayesian network for a satellite-monitoring problem
involving five binary variables. Fortunately, battery failure and solar panel failures are
both rare, although solar panel failures are somewhat more likely than battery failures.
Failures in either can lead to an electrical system failure. There may be causes of electrical
system failure other than battery or solar panel failure, such as a problem with the power
management unit. An electrical system failure can result in trajectory deviation, which
can be observed from the earth by telescope, as well as a communication loss that
interrupts the transmission of telemetry and mission data down to various ground
stations. Other anomalies not involving the electrical system can result in trajectory
deviation and communication loss.
Associated with each of the five variables are five conditional probability distributions,

as shown in Figure 2.3. Because B and S do not have any parents, we only need
to specify P (B ) and P (S ). The distribution P (B ) can be specified by using a single
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P (B ) P (S )

P (E | B , S )

P (D | E ) P (C | E )

E B S P (E | B , S )
0 0 0 0.90
0 0 1 0.05
0 1 0 0.03
0 1 1 0.01
1 0 0 0.10
1 0 1 0.95
1 1 0 0.97
1 1 1 0.99

independent parameter P (b0), and the distribution P (S ) can be specified by using a
single independent parameter P (s 0).
The node associated with E has two parents,B and S . Table 2.2 represents P (E | B , S )

and has 23 rows. Only half of these rows are needed to specify the distribution due to the
constraint that P (e1 | b , s ) = 1− P (e0 | b , s ), where b and s represent any assignment
to B and S . The other two conditional probability tables P (D | E ) and P (C | E ) can
each be represented by two independent parameters. When the variables are binary,
P (X | PaX ) can be represented by 2n independent parameters, where n is the number
of parents of X .
The chain rule for Bayesian networks specifies how to construct a joint distribution

from the local conditional probability distributions. Suppose we have the variables
X1, . . . ,Xn and want to compute the probability of a particular assignment of all these
variables to values P (x1, . . . , xn). We let paxi represent the particular assignment of the



parents of Xi to their values. The chain rule says

P (x1, . . . , xn) =
n∏
i=1

P (xi | paxi ). (2.11)

In the satellite example, suppose we want to compute the probability that nothing is
going wrong, that is, P (b0, s 0, e0, d 0, c 0). From the chain rule,

P (b0, s 0, e0, d 0, c 0) = P (b0)P (s 0)P (e0 | b0, s 0)P (d 0 | e0)P (c 0 | e0). (2.12)

If we had fully specified a joint distribution over the five variables B , S , E , D ,
and C , then we would need 25 − 1 = 31 independent parameters. The structure
assumed in our Bayesian network allows us to specify the joint distribution using only
1 + 1 + 4 + 2 + 2 = 10 independent parameters. The difference between 10 and 31
does not represent an especially significant savings in the number of parameters, but
the savings can become enormous in larger Bayesian networks. The power of Bayesian
networks comes from their ability to reduce the number of parameters required to
specify a joint probability distribution.

The reason that a Bayesian network can represent joint distributions with fewer indepen-
dent parameters than would normally be required is due to the conditional independence
assumptions encoded in its graphical structure. If the conditional independence assump-
tions made by the Bayesian network are invalid, then we run the risk of not properly
modeling the joint distribution, as will be discussed in Section 2.4.
We say that variables A and B are independent if and only if P (A,B ) = P (A)P (B ).

The assertion that A and B are independent is written A⊥B . From Equation (2.1),
we see that A⊥B if and only if P (A) = P (A | B ). In other words, information about
B does not give us any additional information about A, and vice versa. For example,
let us assume that a battery failure on our satellite (B ) is independent of a solar panel
failure (S ). Hence, knowing that we have had a battery failure does not increase or
decrease our belief about whether there has been a solar panel failure. We can specify
the joint distribution P (B , S ) using just two parameters P (b0) and P (s 0), as shown in
Table 2.3. In fact, if we have n independent binary variables, then we can specify the joint
distribution using only n independent parameters, as opposed to 2n − 1 independent
parameters if we could not make the independence assumption.
Variables A and B are conditionally independent given C if and only if P (A,B | C ) =

P (A | C )P (B | C ). The assertion that A and B are conditionally independent given C
is written (A⊥B | C ). It is possible to show from this definition that (A⊥B | C ) if and
only if P (A | C ) = P (A | B ,C ). Given C , information about B provides no additional



B S P (B , S )

0 0 P (b 0)P (s 0)
0 1 P (b 0)(1− P (s 0))
1 0 (1− P (b 0))P (s 0)
1 1 (1− P (b 0))(1− P (s 0))

information about A, and vice versa. For example, let us assume that the presence of
satellite trajectory deviation (D) is conditionally independent of whether we have a
communication loss (C ) given whether we have an electrical system failure (E ). We
would write this (D⊥C | E ). If we know that we have an electrical system failure, then
the fact that we observe a loss of communication has no impact on our belief that there
is a trajectory deviation. We may have an elevated expectation that there is a trajectory
deviation, but that is only because we know that an electrical system failure has occurred.
We can use a set of rules to determine whether nodes A and B are conditionally

independent given a set of nodes � . If (A⊥B | � ), then we say that � d-separates A
and B (where the “d” stands for directional). We also say that a path between A and B
is d-separated by � if any of the following are true:
1. The path contains a chain of nodes, X → Y → Z , such that Y is in � .
2. The path contains a fork, X ← Y → Z , such that Y is in � .
3. The path contains an inverted fork (also called a v-structure), X → Y ← Z , such
that Y is not in � and no descendant of Y is in � .

If all paths between A and B are d-separated by � , then (A⊥B | � ). Sometimes the
termMarkov blanket is used to refer to the minimal set of nodes that d-separates a node
from all other nodes.
In the network in Figure 2.2, there is only one v-structure, B → E ← S . In the

absence of information about E , D , or C , then B and S are independent. Given E , D ,
or C , however, B and S are no longer independent; influence can flow from B to S .
For example, if we know that we have had an electrical system failure, then knowing
that we have had a battery failure reduces our belief that there has been a solar panel
failure. This kind of influence through a v-structure is sometimes called explaining away
because the presence of a battery failure explains away the cause of the electrical system
failure.
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The examples in this chapter so far have involved binary variables, but Bayesian networks
can contain a mixture of both discrete and continuous variables. Bayesian networks
with discrete and continuous variables are often called hybrid Bayesian networks. Fig-
ure 2.4 shows an example hybrid Bayesian network representing the relationship among
characteristics of aircraft, their radar cross section, and the ability of a radar to detect a
target. Aircraft with larger wingspans tend to have larger radar cross sections, where cross
section is measured using a decibel measure relative to one square meter (dBsm). Military
aircraft are sometimes designed to have lower radar cross sections (below 0 dBsm) to
escape detection. Targets that have larger cross sections are more likely to be detected,
although other factors might influence detection. In Figure 2.4, the variables M and D
are naturally binary, and the variablesW and C are naturally continuous.
As with any Bayesian network, we need to specify the conditional distributions

for each node. The nodeW has no parents, so we just need to specify a distribution
over W . We will use a Gaussian distribution defined by the parameters μ and σ2
as discussed in Section 2.1.2, although it may assign small probabilities to negative
wingspans and unrealistically large wingspans. The variable M is binary, so we can
define that distribution using a single parameter specifying P (m0).
The cross section C depends on both the continuous variableW and the binary

variable M . For the moment, we will ignore the dependence on M and define a density
p(c | w). A common approach for defining a distribution over a continuous variable,
given another continuous variable, is to use a linear Gaussian distribution. For example,

p(c | w ) =� (c | θ1w +θ2,θ3). (2.13)

As can be seen above, the mean is a linear function of w defined by parameters θ1 and
θ2. The variance is defined by θ3. Because we want larger wingspans to result in larger
cross sections, we should be sure to make θ1 positive. Aircraft with infinitesimally small



wingspans will also have infinitesimally small cross sections, and so θ2 should probably
be 0. The parameter θ3 controls the amount of variance in the linear relationship
between c and w .
In reality, C depends on bothW and M . We can simply make the parameters used

in the linear Gaussian distribution dependent on M :

P (c | w,m) =
	� (c | θ1w +θ2,θ3) if m0

� (c | θ4w +θ5,θ6) if m1 . (2.14)

This kind of distribution is known as conditional linear Gaussian. In this example, we
require six parameters to represent p(c | w,m). Because military aircraft are more likely
to be designed to have lower radar cross section than nonmilitary aircraft, we would
want θ4 to be smaller than θ1.
Finally, we need to define the conditional distribution P (D | C ). We want to capture

the property that our radar is more likely to detect aircraft with larger cross sections. Of
course, we could just set a threshold θ and say P (d 1 | c ) = 0 if c < θ and P (d 1 | c ) = 1
otherwise. However, such a model would potentially assign zero probability to detections
that may actually occur.
Instead of a hard threshold to define P (D | C ), we could use a soft threshold that

assigns low probabilities when below a threshold and high probabilities above a threshold.
One way to represent a soft threshold is to use a logit model, which produces a sigmoid
curve having an “S” shape:

P (d 1 | c ) = 1

1+ exp
�−2 c−θ1θ2

� . (2.15)

The parameter θ1 governs the location of the threshold, and θ2 controls the “softness”
or spread of the probabilities. Figure 2.5 shows P (d 1 | c ) with θ1 = 0 and θ2 = 1 as a
solid line.
An alternative to the logit model is the probit model :

P (d 1 | c ) = Φ(c −θ1)/θ2, (2.16)

where Φ is the standard normal cumulative distribution function as introduced in
Section 2.1.2. The logit model corresponds closely to the probit model, as shown in
Figure 2.5.
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A temporal model represents how a set of variables evolves over time. A simple temporal
model is aMarkov chain, where the state at time t is denoted St . A Markov chain can
represent, for example, the position and velocity of an aircraft over time. Figure 2.6
shows the structure of a Bayesian network representing a Markov chain. Only the first
three states are shown in the figure, but a Markov chain can continue indefinitely. The
initial distribution is given by P (S0). The conditional distribution P (St | St−1) is often
referred to as the state transition model. If the state transition distribution does not vary
with t , then the model is called stationary.
The state in a Markov chain does not have to be scalar. For example, if we want to

model the random behavior of an aircraft over time, the state might be a vector s = (h , ḣ),
where h is the altitude of the aircraft and ḣ is the vertical rate. The initial distribution
P (S0)may be represented by a multivariate Gaussian distribution parameterized by mean
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vector μ and covariance matrix Σ with density given by

p(s) =� (s |μ,Σ), (2.17)

where � (s | μ,Σ) is a k-dimensional generalization of the Gaussian distribution in
Equation (2.6):

� (s |μ,Σ) = 1
(2π)k/2|Σ|1/2 exp



−1
2
(s−μ)�Σ−1(s−μ)

�
. (2.18)

For our aircraft model, k is two, μ is a vector with two elements, and Σ is a two-by-two
matrix.
The state transition distribution for our aircraft model can be represented as a linear

Gaussian as follows:

p(st | st−1) =� (st |Mst−1 + b,Σ). (2.19)

The mean is simply a linear function of the previous state. If aircraft continue straight
on average, then a sensible choice for the mean is

Mst−1 + b =
�
1 1
0 1


st−1. (2.20)

The covariance matrix Σ controls the amount of randomness applied to the altitude
and vertical rate of the aircraft.
Markov chains can be extended by adding observation nodes, as shown in Figure 2.7.

The observation at time t is denoted Ot . The observation nodes are shaded to indicate
that the values at those nodes are known. If the states correspond to the position and
velocity of an aircraft, then the observations may be noisy radar measurements of
the range and azimuth. If the state variables are discrete, then the model is called a
hidden Markov model (HMM). If the state variables are continuous and the conditional
distributions are linear Gaussian, then the model is called a linear dynamical system.
An example of a linear dynamical system is an extension of the aircraft model

whose true state at time t is represented by the vector (ht , ḣt ). Our observations are
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noisy measurements of the altitude; the vertical rate cannot be observed directly. The
observation at time t is modeled as coming from a linear Gaussian distribution:

p(ot | st ) =�
�
ot

���� �1 0
�
st ,Σ
�
. (2.21)

The covariance matrix Σ, in this case a single-element matrix, controls the measurement
noise.
Stationary temporal models involving multiple state variables can be compactly rep-

resented using a dynamic Bayesian network. A dynamic Bayesian network is composed
of two Bayesian networks, one representing the initial distribution and the other rep-
resenting the transition distribution. The transition distribution is represented by a
Bayesian network with two slices. The first slice represents the variables at time t , and
the second slice represents the variables at time t + 1. Figure 2.8 shows an example
dynamic Bayesian network with four state variables.

The previous section explained how to represent probability distributions. We now
discuss how to use these probabilistic representations to perform inference. Inference
involves determining the distribution over one or more unobserved variables given the
values associated with a set of observed variables. For example, suppose we want to
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infer the distribution P (B | d 1, c 1) using the satellite Bayesian network introduced in
Section 2.1.4. In this case, B is the query variable, D and C are the evidence variables,
and S and E are the hidden variables. After a discussion of a couple examples in which
inference can be helpful, this section explains how to leverage the structure inherent in
a Bayesian network to make efficient inferences.

Inference can be used for classification tasks, where we want to infer the class given a set
of observations or features. For example, suppose we want to determine whether a radar
target is either a bird or an aircraft given properties of the radar track. In this case, the
class is either bird or aircraft, and the observations might include measurements of the
velocity and the amount of fluctuation in the heading over the duration of the track.
Most aircraft travel faster than most birds, but there is some overlap, especially with
smaller, lower performance aircraft. Migrating birds tend to maintain their heading, in
contrast to maneuvering aircraft.
A simple probabilistic model often used in classification tasks is the naive Bayes

model, which has the structure shown in Figure 2.10. An equivalent but more compact
representation is shown in Figure 2.11 using a plate, shown as a rounded box. The
i = 1 : n in the bottom of the box specifies that the i in the subscript of the variable
name is repeated from 1 to n.
In the naive Bayes model, the class C is the query variable, and the observed features

O1, . . . ,On are the evidence variables. For compactness throughout this book, we will
use colon notation occasionally in subscripts. For example, O1:n is a compact way to
write O1, . . . ,On . The naive Bayes model is called naive because it assumes conditional
independence between the evidence variables given the class. Using the notation in-
troduced in Section 2.1.5, we can say (Oi⊥Oj | C ) for all i �= j . Of course, if these
conditional independence assumptions do not hold, then we can add the necessary
directed edges between the observed features.
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In the naive Bayes model, we have to specify the prior P (C ) and the class-conditional
distribution P (Oi | C ). In the radar target classification problem, the prior represents
our belief about whether a target is a bird or an aircraft in the absence of any information
about the track. Figure 2.12 shows example class-conditional distributions for airspeed
as estimated from radar data.
We can apply the chain rule in Equation (2.11) to infer the joint distribution in a

naive Bayes model:

P (c , o1:n) = P (c )
n∏
i=1

P (oi | c ). (2.22)

What we really want for our classification task is the conditional probability P (c |
o1, . . . , on). From the definition of conditional probability in Equation (2.1), we have

P (c | o1:n) = P (c , o1:n)
P (o1:n)

. (2.23)

We can easily compute the denominator using the joint distribution and the law of total
probability in Equation (2.2):

P (o1:n) =
∑
c
P (c , o1:n). (2.24)
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The denominator in Equation (2.23) is not a function of C and can therefore be treated
as a constant. Hence, we can write

P (c | o1:n) = κP (c , o1:n), (2.25)

where κ is the normalization constant such that
∑

c P (c | o1:n) = 1. We often drop the
κ and simply write

P (c | o1:n)∝ P (c , o1:n), (2.26)

where the symbol “∝” is used to represent that the left-hand side is “proportional to”
the right-hand side. For example, suppose from the chain rule we determine:

P (bird, slow, little heading fluctuation) = 0.03 (2.27)
P (aircraft, slow, little heading fluctuation) = 0.01. (2.28)

Of course, these probabilities do not sum to 1. If we want to determine the probability
that a target is a bird given the evidence, then we would make the following calculation:

P (bird | slow, little heading fluctuation) = 0.03
0.03+ 0.01

= 0.75. (2.29)



Using our model and applying the laws of probability, we have determined that
the probability of our target being a bird is 0.75 and the probability of it being an
aircraft is 0.25, but for many applications, we have to commit to a particular class.
A common way to determine a classification is to select the class that has the highest
posterior probability, that is, the one with the highest probability after taking the evidence
into account. However, choosing a class is really a decision problem that often should
take into account the consequences of misclassification. For example, if we are interested
in using our classifier to filter out targets that are not aircraft for the purpose of air
traffic control, then we can afford to occasionally let a few birds and other clutter tracks
through our filter. However, we would want to avoid filtering out any real aircraft
because that could lead to a collision. In this case, we would probably only want to
classify a track as a bird if the posterior probability were close to 1. Decision problems
will be discussed in Chapter 3.

Many important applications, such as speech recognition, aircraft tracking, and crypt-
analysis, involve performing inference in temporal models. Four common inference
tasks include:
• Filtering: P (St |O0:t )• Prediction: P (St ′ |O0:t ) where t ′ > t
• Smoothing: P (St ′ |O0:t ) where t ′ < t
• Most likely explanation: argmaxS0:t P (S0:t |O0:t )

The items above use the hidden Markov structure and notation shown in Figure 2.7.
The variable t represents the current time.
To illustrate inference in temporal models, we will focus on filtering in a hidden

Markov model with discrete state and observation variables. By Bayes’ rule,

P (st | o0:t )∝ P (ot | st , o0:t−1)P (st | o0:t−1). (2.30)

The structure of the Bayesian network representing a hidden Markov model allows us to
make the conditional independence assumption (Ot⊥O0:t−1 | St ), which implies that
P (ot | st , o0:t−1) in the equation above is equal to P (ot | st ). Rewriting Equation (2.30)
and applying the law of total probability to the second term, we get

P (st | o0:t )∝ P (ot | st )
∑
st−1

P (st , st−1 | o0:t−1). (2.31)

Applying the definition of conditional probability to P (st , st−1 | o0:t−1), we get
P (st | o0:t )∝ P (ot | st )

∑
st−1

P (st | st−1, o0:t−1)P (st−1 | o0:t−1). (2.32)



The structure of the model has that (st⊥o0:t−1 | st−1), and so we can simplify the
equation above:

P (st | o0:t )∝ P (ot | st )
∑
st−1

P (st | st−1)P (st−1 | o0:t−1). (2.33)

We know P (ot | st ) and P (st | st−1) directly from the model. The probability
P (st−1 | o0:t−1) on the right-hand side suggests how one would go about recursively
updating the state distribution with the progression of time and new observations.
Algorithm 2.1 shows how this process, called recursive Bayesian estimation, is done. The
posterior state distribution at time t is denoted bt . To reduce the number of subscripts,
Algorithm 2.1 assumes that the state transition distribution P (St | St−1) and observation
distribution P (Ot | St ) are stationary; that is, they do not vary with time.
Algorithm 2.1 Recursive Bayesian estimation
1: function RecursiveBayesianEstimation
2: b0(s )← P (o0 | s )P (s0) for all s
3: Normalize b0
4: for t ← 1 to∞
5: bt (s )← P (ot | s )∑s ′ P (s | s ′)bt−1(s ′) for all s
6: Normalize bt

If observations are continuous instead of discrete, then P (o | s ) will be a probability
density instead of a probability mass. If states are continuous instead of discrete, then
the state transition distribution and b become density functions and the summation on
Line 5 becomes an integral, which in general can be difficult to evaluate exactly.
Filtering in linear dynamical systems, which assume the state transition and observa-

tion distributions are linear Gaussian, can actually be done exactly. If bt−1 is represented
as a normal distribution, then it can be shown that the integration on Line 5 results
in the posterior bt being Gaussian. The Kalman filter is a well-known filter for linear
dynamical systems that simply updates the mean and covariance of bt appropriately.

Let us revisit the network in Figure 2.9 and attempt to exactly infer P (b1 | d 1, c 1). By
the definition of conditional probability, we know that

P (b1 | d 1, c 1) = P (b1, d 1, c 1)
P (d 1, c 1)

. (2.34)



We will focus on the numerator in this discussion because the process of computing the
numerator can be applied to computing the denominator as well. By the law of total
probability,

P (b1, d 1, c 1) =
∑
s

∑
e
P (b1, s , e , d 1, c 1). (2.35)

This process of summing out the hidden variables is called marginalization. By the chain
rule,

P (b1, d 1, c 1) =
∑
s

∑
e
P (b1)P (s )P (e | b1, s )P (d 1 | e )P (c 1 | e ). (2.36)

The trouble with exact inference is that we have to sum out the hidden variables. In
Equation (2.36), we only have to sum out two variables, but for larger networks, this
summing may be infeasible. The number of terms to be added together can grow expo-
nentially with the number of hidden variables, although for many Bayesian networks,
we can take advantage of the structure of the model to make inference efficient.
As an extreme example of how a particular network representation can result in

efficient inference, suppose we had a Bayesian network with binary variables, X1, . . . ,Xn ,
and there are no arrows in the network. We want to compute the following:

P (x 01 ) =
∑
x2

· · ·∑
xn

P (x 01 )P (x2) · · ·P (xn). (2.37)

Here, there are 2n−1 terms, with each term consisting of the product of n factors. Of
course, there is no reason to go to the effort of applying the chain rule to get the joint
distribution and then applying the law of total probability to sum out the hidden
variables. We know the probability P (x 01 ) directly from the table specifying P (X1).
A variety of methods can be used to perform efficient inference in more complicated

Bayesian networks. One method is known as variable elimination, which eliminates the
hidden variables in sequence. We will illustrate the variable elimination algorithm by
computing the distribution P (B | d 1, c 1) for the Bayesian network in Figure 2.9. The
conditional probability distributions associated with the nodes in the network can be
represented by the following tables:

T1(B ),T2(S ),T3(E ,B , S ),T4(D ,E ),T5(C ,E ). (2.38)

Because D and C are observed variables, the last two tables are replaced with T6(E )
and T7(E ), keeping only the rows in which D = 1 and C = 1. We then proceed
by eliminating the hidden variables in sequence. Different strategies can be used for
choosing an ordering, but for this example, we use the ordering E and then S . To
eliminate E , we gather all the tables involving E :

T3(E ,B , S ),T6(E ),T7(E ). (2.39)



We then sum out E from the product of these tables to get a new table:

T8(B , S ) =
∑
e
T3(e ,B , S )T6(e )T7(e ). (2.40)

We can then discard T3,T6,T7 because all the information we need from them is
contained in T8. Now, we eliminate S . Again, we gather all the remaining tables that
involve S and sum out S from the product of these tables:

T9(B ) =
∑
s
T2(s )T8(B , s ). (2.41)

We discard T2 and T8, and now we are left with T1(B ) and T9(B ). We have to normalize
the product of these two tables to obtain P (B | d 1, c 1).
Algorithm 2.2 outlines the variable elimination algorithm for a Bayesian network B , a

set of query variables�, and observed values o. For many networks, variable elimination
allows inference to be done in an amount of time that scales linearly with the size of
the network, but it has exponential time complexity in the worst case. What influences
the amount of computation is the variable elimination order. Choosing the optimal
elimination order, it turns out, isNP-hard, meaning that it cannot be done in polynomial
time in the worst case (Section 2.2.4). Even if we found the optimal elimination order,
variable elimination can still require an exponential number of computations. Variable
elimination heuristics generally try to minimize the number of variables involved in the
intermediate tables generated in Line 6.

Algorithm 2.2 Variable elimination in Bayesian networks
1: function VariableElimination(B ,�,o)
2: � ← set of conditional probability tables associated with nodes in B
3: Remove rows that are inconsistent with o from all the tables in �
4: for i ← 1 to n
5: � ′ ← all the tables in � that involve Xi
6: T ← the product of the tables in � ′ with Xi summed out
7: Remove � ′ from � and add T
8: T ← product of the tables remaining in �
9: P (� | o)← normalize T
10: return P (� | o)
An approach to inference known as belief propagationworks by propagating “messages”

through the network. Belief propagation requires linear time but only provides an exact
answer if the network does not have undirected cycles. If the network has undirected
cycles, then it can be converted into a tree by combining multiple variables into single
nodes by using what is known as the junction tree algorithm. If the number of variables



that have to be combined into any one node in the resulting network is small, then
inference can be done efficiently.

The difficulty of solving certain problems can be grouped into certain complexity classes.
Important classes that will appear frequently throughout this book include:
• P: problems that can be solved in polynomial time,
• NP: problems whose solutions can be verified in polynomial time,
• NP-hard : problems that are at least as hard as the hardest problems in NP, and
• NP-complete: problems that are both NP-hard and in NP.

Formal definitions of these complexity classes are rather involved. It is generally believed
that P �= NP, but it has not been proven and remains one of the most important
open problems in mathematics. In fact, modern cryptography depends on the fact that
there are no known efficient (i.e., polynomial time) algorithms for solving NP-hard
problems. Figure 2.13 illustrates the relationship between the complexity classes under
the assumption that P �=NP.
A common approach to proving whether a particular problem Q is NP-hard is to

come up with a polynomial transformation from a known NP-complete problem Q ′
to an instance of Q . We can show that inference in Bayesian networks is NP-hard by
using an NP-complete problem called 3SAT. The 3SAT problem is the first known
NP-complete problem. It involves determining whether a Boolean formula is satisfiable.
The Boolean formula consists of conjunctions (∧), disjunctions (∨), and negations (¬)
involving n Boolean variables x1, . . . xn . A literal is a variable xi or its negation ¬xi . A
3SAT clause is a disjunction of up to three literals; for example, x3 ∨¬x5 ∨ x6. A 3SAT
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formula is a conjunction of 3SAT clauses like

F (x1, x2, x3, x4) =
( x1 ∨ x2 ∨ x3 ) ∧
( ¬x1 ∨ ¬x2 ∨ x3 ) ∧
( x2 ∨ ¬x3 ∨ x4 )

(2.42)

The challenge in 3SAT is to determine whether a possible assignment of truth values to
variables exists that makes the formula true. In Equation (2.42),

F (true, false, false, true) = true. (2.43)

Hence, the formula is satisfiable. Although a satisfying assignment can be easily found
for some 3SAT problems, sometimes just by quick inspection, they are difficult to
solve in general. One way to determine whether a satisfying assignment can be made is
to enumerate the 2n possible truth values of all the variables. Although determining
whether a satisfying truth assignment exists is difficult, verification of whether a truth
assignment leads to satisfaction can be done in linear time.
It is easy to construct a Bayesian network from an arbitrary 3SAT problem. Figure 2.14

is a Bayesian network representation of Equation (2.42). The variables are represented
by X1:4, and the clauses are represented by C1:3. The distributions over the variables
are uniform. The nodes representing clauses have as parents the participating variables.
Because this is a 3SAT problem, each clause node has exactly three parents. Each clause
node assigns probability 0 to assignments that do not satisfy the clause and probability
1 to all satisfying assignments. The remaining nodes assign probability 1 to true if all
their parents are true. The original 3SAT problem is satisfiable if and only if P (y1) > 0.
Hence, inference in Bayesian networks is at least as hard as 3SAT.
The reason to go to the effort of showing that inference in Bayesian networks is

NP-hard is so that we know to avoid wasting time looking for an efficient, exact inference
algorithm that works on all Bayesian networks. Therefore, research over the past couple
decades has focused on approximate inference methods, which are discussed next.



One of the simplest approaches to approximate inference involves sampling from the
joint distribution represented by the Bayesian network. The first step involves finding
a topological sort of the nodes in the Bayesian network. A topological sort of nodes in
a directed acyclic graph is an ordered list such that if there is an edge A→ B , then A
comes before B in the list. For example, a topological sort for the network in Figure 2.9
is B , S ,E ,D ,C . A topological sort always exists, but it may not be unique. Another
topological sort for the network in Figure 2.9 is S ,B ,E ,C ,D . Algorithm 2.3 provides
an algorithm for finding a topological sort of a graph G .

Algorithm 2.3 Topological sort
1: function TopologicalSort(G )
2: n← number of nodes in G
3: L← empty list
4: for i ← 1 to n
5: X ← any node not in L but all of whose parents are in L
6: Add X to end of L
7: return L

Once we have a topological sort, we can begin sampling from the conditional probabil-
ity distributions. Suppose our topological sort results in the ordering X1:n . Algorithm 2.4
shows how to sample from a Bayesian network B . In Line 4, we draw a sample from
the conditional distribution associated with Xi given the values of the parents that have
already been assigned. Because X1:n is a topological sort, we know that all the parents of
Xi have already been instantiated, allowing this sampling to be done.

Algorithm 2.4 Direct sampling from a Bayesian network
1: function DirectSample(B )
2: X1:n← a topological sort of nodes in B
3: for i ← 1 to n
4: xi ← a random sample from P (Xi | paxi )
5: return x1:n

Table 2.4 shows ten random samples from the network in Figure 2.9.We are interested
in inferring P (b1 | d 1, c 1). Only two of the ten samples (pointed to in the table) are
consistent with the observations d 1 and c 1. One sample has B = 1 and the other sample
has B = 0. From these samples, we infer that P (b1 | d 1, c 1) = 0.5. Of course, we would
want to use more than just two samples to accurately estimate P (b1 | d 1, c 1).
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The problem with direct sampling is that we may waste a lot of time generating
samples that are inconsistent with the observations, especially if the observations are
unlikely. An alternative approach is called likelihood weighting, which involves generating
weighted samples that are consistent with the observations. We begin with a topological
sort and sample from the conditional distributions in sequence. The only difference
in likelihood weighting is how we handle observed variables. Instead of sampling their
values from a conditional distribution, we assign variables to their observed values
and adjust the weight of the sample appropriately. The weight of a sample is simply
the product of the conditional probabilities at the observed nodes. Algorithm 2.5
summarizes this process for a Bayesian network B and observations o1:n . If oi is not
observed, then oi ← nil.

Algorithm 2.5 Likelihood-weighted sampling from a Bayesian network
1: function LikelihoodWeightedSample(B , o1:n)
2: X1:n← a topological sort of nodes in B
3: w ← 1
4: for i ← 1 to n
5: if oi = nil
6: xi ← a random sample from P (Xi | paxi )
7: else
8: xi ← oi
9: w ← w × P (xi | paxi )
10: return (x1:n ,w )
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P (d 1 | e 1)P (c 1 | e 1)
P (d 1 | e 1)P (c 1 | e 1)
P (d 1 | e 0)P (c 1 | e 0)
P (d 1 | e 0)P (c 1 | e 0)
P (d 1 | e 1)P (c 1 | e 1)

Table 2.5 shows five likelihood-weighted samples from the network in Figure 2.9.
We sample from P (B ), P (S ), and P (E | B , S ), as we would with direct sampling. When
we come to D and C , we assign D = 1 and C = 1. If the sample has E = 1, then
the weight is P (d 1 | e1)P (c 1 | e1); otherwise, the weight is P (d 1 | e0)P (c 1 | e0). If we
assume

P (d 1 | e1)P (c 1 | e1) = 0.95 (2.44)

P (d 1 | e0)P (c 1 | e0) = 0.01 (2.45)

then we may approximate from the samples in Table 2.5

P (b1 | d 1, c 1) ≈ 0.95
0.95+ 0.95+ 0.01+ 0.01+ 0.95

(2.46)

= 0.331. (2.47)

Although likelihood weighting makes it so that all samples are consistent with the
observations, it can still be wasteful. Consider the simple chemical detection Bayesian
network shown in Figure 2.15, and assume that we detected a chemical of interest. We
want to infer P (c 1 | d 1). Because this network is small, we can easily compute this
probability exactly by using Bayes’ rule:

P (c 1 | d 1) = P (d 1 | c 1)P (c 1)
P (d 1 | c 1)P (c 1) + P (d 1 | c 0)P (c 0) (2.48)

=
0.999× 0.001

0.999× 0.001+ 0.001× 0.999 (2.49)

= 0.5. (2.50)
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P (c 1) = 0.001

P (d 1 | c 0) = 0.001
P (d 1 | c 1) = 0.999

If we use likelihood weighting, then 99.9% of the samples will have C = 0 with a weight
of 0.001. Until we get a sample of C = 1, which has an associated weight of 0.999, our
estimate of P (c 1 | d 1) will be 0.
An alternative approach is to use Gibbs sampling, which is a kind ofMarkov chain

Monte Carlo technique. Unlike the other sampling methods discussed so far, the samples
produced by this method are not independent. The next sample depends probabilistically
on the current sample, and so the sequence of samples forms a Markov chain. It can be
proven that, in the limit, samples are drawn exactly from the joint distribution over the
unobserved variables given the observations.
The initial sample can be generated randomly with the observed variables set to their

observed values. Algorithm 2.6 outlines how to generate a new sample x ′1:n from an
existing sample x1:n , given a Bayesian network B and observations o1:n . Unlike direct
sampling, we can use any ordering for the nodes in the network; the ordering need not be
a topological sort. Given this ordering, update the sample one variable at a time given the
values of the other variables. To generate the value for x ′i , we sample from P (Xi | x ′1:n\i ),
where x ′1:n\i represents the values of all the other variables except Xi . To compute the
distribution P (Xi | x ′1:n\i ) for a Bayesian network B , we can use Algorithm 2.7. The
computation can be done efficiently because we only need to consider the Markov
blanket of variable Xi (Section 2.1.5).

Algorithm 2.6 Gibbs sampling from a Bayesian network
1: function GibbsSample(B , o1:n , x1:n)
2: X1:n← an ordering of nodes in B
3: x ′1:n← x1:n
4: for i ← 1 to n
5: if oi = nil
6: x ′i ← a random sample from P (Xi | x ′1:n\i )
7: else
8: x ′i ← oi
9: return x ′1:n
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Algorithm 2.7 Distribution at a node given observations at all other nodes
1: function DistributionAtNode(B ,Xi , x1:n\i )
2: � ← all conditional probability tables associated with B involving Xi
3: Remove rows that are inconsistent with x1:n\i from all the tables in �
4: T ← product of the tables remaining in �
5: P (Xi | x1:n\i )← normalize T
6: return P (Xi | x1:n\i )

Figure 2.16 compares the convergence of the estimate of P (c 1 | d 1) using direct,
likelihood weighted, and Gibbs sampling. Direct sampling takes the longest to converge.
The direct sampling curve has long periods during which the estimate does not change
because samples are inconsistent with the observations. Likelihood-weighted sampling
converges faster in this example. Spikes occur when a sample is generated with C = 1
and then gradually decrease. Gibbs sampling, in this example, quickly converges to the
true value of 0.5.
As mentioned earlier, Gibbs sampling, like otherMarkov chainMonte Carlo methods,

produces samples from the desired distribution in the limit. In practice, we have to run
Gibbs for some amount of time, called the burn-in period, before converging to a steady
state distribution. The samples produced during burn-in are normally discarded. In
addition, because of potential correlation between samples, it is common to thin the
samples by only keeping every k th sample.



Other approximate inference methods do not involve generating samples. For exam-
ple, a form of belief propagation called loopy belief propagation can be used in networks
with undirected cycles for approximate inference. Although not guaranteed to be exact,
loopy belief propagation tends to work well in practice and is becoming one of the most
popular methods for approximate inference in Bayesian networks.

So far in this chapter, we have assumed that the parameters and structure of our proba-
bilistic models were known. This section addresses the problem of learning the parame-
ters of the model from data.

Suppose the random variable C represents whether a flight will result in a mid-air
collision, and we are interested in estimating the distribution P (C ). Because C is either
0 or 1, it is sufficient to estimate the parameter θ = P (c 1). What we want to do is infer
θ from data D . Let us say that we have a historical database spanning a decade, and let
us say we know there were n flights and m mid-air collisions. Our intuition, of course,
tells us that a good estimate for θ given the data D is m/n. This estimate corresponds
to the maximum likelihood estimate,

θ̂ = argmax
θ

P (D | θ). (2.51)

The probability of m mid-air collisions out of n flights is given by the binomial distri-
bution:

P (D | θ) = n!
m!(n − m)!

θm(1−θ)n−m (2.52)

∝ θm(1−θ)n−m . (2.53)

The maximum likelihood estimate θ̂ is the value for θ that maximizes Equation (2.53).
Maximizing Equation (2.53) is equivalent to maximizing the logarithm of the likelihood,
often referred to as the log-likelihood and often denoted ℓ(θ):

ℓ(θ)∝ ln �θm(1−θ)n−m� (2.54)

= m lnθ+ (n − m) ln(1−θ). (2.55)

We can use the standard technique for finding the maximum of a function by setting
the first derivative of ℓ to 0 and then solving for θ. The derivative is given by

∂ℓ(θ)
∂θ

=
m
θ
− n − m
1−θ . (2.56)



We can solve for θ̂ by setting the derivative to 0:

m

θ̂
− n − m

1− θ̂ = 0. (2.57)

After a few algebraic steps, we see that, indeed, θ̂ = m/n.
Computing the maximum likelihood estimate for a variable X that can assume k

values is also straightforward. If m1:k are the observed counts for the k different values,
then the maximum likelihood estimate for P (x i | m1:k ) is given by

θ̂i =
mi∑k
j=1 mj

. (2.58)

Maximum likelihood estimation can also be applied to continuous distributions.
Suppose we have airspeed measurements v1:n of the n aircraft tracks that were used to
generate the class conditional distribution in Figure 2.12. Although the density is clearly
not exactly Gaussian, let us try to fit a Gaussian model to these data by using maximum
likelihood estimation of the parameters. The log-likelihood of the mean μ and variance
σ2 is given by

ℓ(μ,σ2)∝−n lnσ −
∑

i (vi −μ)2
2σ2

. (2.59)

Again, we can set the derivative to 0 with respect to the parameters and solve for the
maximum likelihood estimate:

∂ℓ(μ,σ2)
∂μ

=
∑

i (vi − μ̂)
σ̂2

= 0 (2.60)

∂ℓ(μ,σ2)
∂σ

= − n
σ̂
+
∑

i (vi − μ̂)
σ̂3

= 0. (2.61)

After some algebraic manipulation, we get

μ̂ =
∑

i vi
n

(2.62)

σ̂2 =
∑

i (vi − μ̂)2
n

. (2.63)

Figure 2.17 shows a Gaussian with the maximum likelihood estimates μ̂ = 100.2kt and
σ̂ = 31kt. The “true” distribution from Figure 2.12 is shown for comparison. In this
case, the Gaussian is a fairly reasonable approximation of the true distribution.
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Although maximum likelihood estimation may be adequate for many applications, it has
some serious drawbacks when the amount of data is limited. For example, suppose our
aviation safety database was limited to events of the past week, and we found no recorded
mid-air collisions. If θ is the probability that a flight results in a mid-air collision, then
the maximum likelihood estimate would be θ̂ = 0. Believing that there is zero chance
of a mid-air collision is not a reasonable conclusion, unless our prior hypothesis was,
for example, that either all flights were safe or all flights resulted in collision.
The Bayesian approach to parameter learning involves estimating the posterior over

θ and can be viewed as inference in a Bayesian network. For example, Figure 2.18
represents the problem of collision probability estimation, where the observed variable
Oi is 1 if the i th flight resulted in collision and 0 otherwise. We assume that the
observed variables are conditionally independent of each other. We must specify p(θ)
and P (Oi | θ). If we want to use a uniform prior, then we can set the density p(θ) = 1.
We set P (o1i | θ) = θ.



θ

Oi

i = 1 : n

We can proceed with the standard method for performing inference in a Bayesian
network. Here, we will assume a uniform prior.

p(θ | o1:n)∝ p(θ, o1:n) (2.64)

= p(θ)
n∏
i=1

P (oi | θ) (2.65)

=
n∏
i=1

P (oi | θ) (2.66)

=
n∏
i=1
θoi (1−θ)1−oi (2.67)

= θm(1−θ)n−m (2.68)

The posterior is proportional to θm(1 − θ)n−m , where m is the number of mid-air
collisions in our data. To find the normalization constant, we integrate∫ 1

0
θm(1−θ)n−m dθ =

Γ (m + 1)Γ (n − m + 1)
Γ (n + 2)

, (2.69)

where Γ is the gamma function. The gamma function is a real-valued generalization of
the factorial. If n is an integer, then Γ (n) = (n − 1)!. Taking normalization into account,
we have

p(θ | o1:n) = Γ (n + 2)
Γ (m + 1)Γ (n − m + 1)

θm(1−θ)n−m (2.70)

= Beta(θ | m + 1, n − m + 1). (2.71)

The beta distribution Beta(α,β) is defined by parameters α and β, and curves for this
distribution are shown in Figure 2.19. The distribution Beta(1,1) corresponds to the
uniform distribution spanning 0 to 1.
Conveniently, if a beta distribution is used as a prior over a parameter of a binomial

distribution, then the posterior is also a beta distribution. In particular, if the prior
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is given by Beta(α,β) and we make an observation oi , then we get a posterior of
Beta(α+ 1,β) if oi = 1 and Beta(α,β+ 1) if oi = 0. Hence, if we started with a prior
given by Beta(α,β) and our data showed that there were m collisions out of n flights,
then the posterior would be given by Beta(α+m,β+ n−m). The α andβ parameters
in the prior are sometimes called pseudocounts because they are treated similarly to the
observed counts of the two outcomes classes in the posterior, although the pseudocounts
need not be integers.
Choosing the prior, in principle, should be done without knowledge of the data used

to compute the posterior. Uniform priors often work well in practice, although if expert
knowledge is available, then it can be encoded into the prior. For example, suppose we
had a slightly bent coin and we wanted to estimate θ, the probability that the coin would
land heads. Before we collected any data by flipping the coin, we would start with a
belief θ is likely to be around 0.5. Instead of starting with a uniform prior Beta(1,1), we
might use Beta(2,2) (shown in Figure 2.19), which gives more weight to values near 0.5.
If we were more confident in an estimate near 0.5, then we could reduce the variance of
the prior by increasing the pseudocounts. The prior Beta(10,10) is much more peaked
than Beta(2,2). In general, however, the importance of the prior diminishes with the
amount of data used to compute the posterior. If we observe n flips and m were heads,
then the difference between Beta(1+ m, 1+ n − m) and Beta(10+ m, 10+ n − m) is
negligible if we do thousands of coin flips.



The Dirichlet distribution is a generalization of the beta distribution and can be
used to estimate the parameters of a discrete distribution. Suppose X is a discrete
random variable that takes integer values from 1 to n. We define the parameters of the
distribution to be θ1:n , where P (x i ) = θi . Of course, the parameters must sum to 1,
and so only the first n − 1 parameters are independent. The Dirichlet distribution can
be used to represent both the prior and the posterior distribution and is parameterized
by α1:n . The density is given by

Dir(θ1:n | α1:n) = Γ (α0)∏n
i=1 Γ (αi )

n∏
i=1
θαi−1i , (2.72)

where α0 is used to denote the summation of the parameters α1:n . If n = 2, then it is
easy to see that Equation (2.72) is equivalent to the beta distribution.
It is common to use a uniform prior where all the Dirichlet parameters α1:n are set

to 1. A symmetric Dirichlet distribution is one where all the parameters are identical.
As with the beta distribution, the parameters in the Dirichlet are often referred to as
pseudocounts.
If the prior over θ1:n is given by Dir(α1:n) and there are mi observations of X = i ,

then the posterior is given by

p(θ1:n | α1:n ,m1:n) =Dir(θ1:n | α1 + m1, . . . ,αn + mn). (2.73)

As we have seen, Bayesian parameter estimation is straightforward for binary and
discrete random variables because it involves simply counting the various outcomes
in the data. Bayes’ rule can be used to infer the distribution over the parameters for
any parametric distribution. Depending on the choice of prior and the form of the
parametric distribution, calculating the posterior over the space of parameters also might
be done analytically.

The previous two sections assumed that the probabilistic model was of a fixed form and
that a fixed set of parameters were to be learned from the data. An alternative approach
is based on nonparametric methods in which the number of parameters scale with the
amount of data. One of the most common nonparametric methods is called kernel
density estimation.
Given observations o1:n , kernel density estimation represents the density as follows:

p(x ) =
1
n

n∑
i=1

K (x − oi ), (2.74)



where K is a kernel function, which integrates to 1. The kernel function is used to assign
greater density to values near the observed data points. A kernel function is generally
symmetric, meaning that K (x ) = K (−x ). A commonly used kernel is the zero-mean
Gaussian distribution. When a Gaussian is used as a kernel, the standard deviation
is often referred to as the bandwidth. Gaussian kernel densities are smooth, unlike
the piecewise uniform distributions discussed earlier and shown in Figure 2.1. Larger
bandwidths generally lead to smoother densities. Bayesian methods can be applied to
the selection of the appropriate bandwidth based on the data.

The previous sections assumed that the Bayesian network structure was known a priori.
This section discusses methods for learning the structure from data. A maximum
likelihood approach to learning the structure of a Bayesian network involves finding
the graphical structure G that maximizes P (G | D), where D represents the available
data. We first explain how to compute a Bayesian network score based on P (G | D),
and then we explain how to go about searching the space of networks for the highest
scoring network. Like inference in Bayesian networks, it can be shown that for general
graphs and input data, learning the structure of a Bayesian network is NP-hard.

Before discussing how to compute P (G | D), we need to introduce some notation. We
will assume that the n variables in the Bayesian network X1:n are all discrete, although
this need not be the case in general. We use ri to represent the number of instantiations
of Xi and qi to represent the number of instantiations of the parents of Xi . If Xi has no
parents, then qi = 1. The j th instantiation of the parents of Xi is denoted πi j .
There are

∑n
i=1 ri qi parameters in a Bayesian network. Each parameter is written

θi j k and determines
P (Xi = k | πi j ) = θi j k . (2.75)

Although there are
∑n

i=1 ri qi parameters, only
∑n

i=1(ri − 1)qi are independent. We
use θ to represent the set of all the parameters.
We use mi j k to represent the number of times Xi = k given πi j in the dataset D .

The likelihood is given by

P (D | θ,G ) =
n∏
i=1

qi∏
j=1

ri∏
k=1
θ
mi j k

i j k . (2.76)



The prior over the Bayesian network parameters θ can be factorized. If we have that
θi j = (θi j1, . . . ,θi j ri ), then

p(θ |G ) =
n∏
i=1

qi∏
j=1

p(θi j ). (2.77)

The prior p(θi j ), under some weak assumptions, can be shown to follow the Dirich-
let distribution in Equation (2.72). The distribution over Xi given the j th parental
instantiation is given by Dir(αi j1, . . . ,αi j ri ).
We compute P (G | D) using Bayes’ rule and the law of total probability:

P (G | D)∝ P (G )P (D |G ) (2.78)

= P (G )
∫

P (D | θ,G )p(θ |G ) d θ. (2.79)

It turns out that, after integrating the product of Equations (2.76) and (2.77) over θ,
we get

P (G | D) = P (G )
n∏
i=1

qi∏
j=1

Γ (αi j0)

Γ (αi j0 + mi j0)

ri∏
k=1

Γ (αi j k + mi j k )

Γ (αi j k )
. (2.80)

In the equation above,

αi j0 =
ri∑

k=1
αi j k (2.81)

mi j0 =
ri∑

k=1
mi j k . (2.82)

Finding the G that maximizes Equation (2.79) is the same as finding the G that
maximizes what is called the Bayesian score:

lnP (G | D) = lnP (G ) +
n∑
i=1

qi∑
j=1
ln
�

Γ (αi j0)

Γ (αi j0 + mi j0)

�
+

ri∑
k=1
ln
�
Γ (αi j k + mi j k )

Γ (αi j k )

�
.

(2.83)
The Bayesian score is more convenient to compute numerically because it is easier to add
the logarithm of small numbers together than to multiply them together. Many software
libraries can compute the logarithm of the gamma function directly with reasonable
precision.
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P (b1 | a0) = 0.45
P (b1 | a1) = 0.5

P (c 1) = 0.5

A variety of different graph priors have been explored in the literature, although a
uniform prior is often used in practice, in which case lnP (G ) can be dropped from the
computation of the Bayesian score in Equation (2.83). One of the useful properties of
the Bayesian score, even with a uniform graph prior, is that it optimally balances the
complexity of the model with the available data.
To illustrate how Bayesian scoring balances model complexity, consider the simple

Bayesian network in Figure 2.20. The value of A weakly influences the value of B , and C
is independent of the other variables. We sample from this “true” model to generate data
D and then try to learn the model structure. There are 25 possible network structures
involving three variables, but we will focus on the scores for the following models:
• The true model with 1+ 2+ 1 = 4 independent parameters,
• The completely connected model A→ B ,A→ C ,B → C with 1+ 2+ 4 = 7
independent parameters, and

• The completely unconnected model with 1+ 1+ 1 = 3 independent parameters.
Figure 2.21 shows how the Bayesian scores of the fully connected and unconnected

models compare to the true model as the amount of data increases. In the plot, we
subtract the score of the true model, so values above 0 indicate that the model provides
a better representation than the true model given the available data. The plot shows
that the unconnected model does better than the true model when there are fewer than
5000 samples. The fully connected model never does better than the true model, but it
starts to do better than the unconnected model at about 10,000 samples because there
are sufficient data to adequately estimate its seven independent parameters.

The space of possible Bayesian network structures grows superexponentially. With 10
nodes, there are 4.2× 1018 possible directed acyclic graphs. With 20 nodes, there are
2.4× 1072. Except for Bayesian networks with few nodes, we cannot enumerate the
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space of possible structures to find the highest scoring network. Therefore, we have to
rely on a search strategy. Fortunately, search is a general problem, and a wide variety of
different generic search algorithms have been studied over the years.
One of the most common search strategies is called K2 (named such because it is an

evolution of a system called Kutató). The search (Algorithm 2.8) runs in polynomial
time but does not guarantee finding a globally optimal network structure. It can use any
scoring function f , but it is often used with the Bayesian score because of its ability
to balance the complexity of the model with the amount of data available. K2 begins
with a graph with no directed edges and then iterates over an assumed variable ordering,
greedily adding parents to the nodes in a way that maximally increases the score. It
is common for K2 to impose an upper bound on the number of parents for any one
node to reduce the required computation. The original K2 algorithm assumed that the
Dirichlet prior parameters αi j k = 1 for all i , j , and k , but any prior can be used in
principle.
A general search strategy is local search, which is sometimes called hill climbing or

gradient ascent, and is outlined in Algorithm 2.9. We start with an initial graph G0 and
then move to the highest scoring neighbor. The neighborhood of a graph consists of the
graphs that are only one basic graph operation away, where the basic graph operations
include:
• If an edge between A and B does not exist, introduce A→ B .
• If A→ B , remove the edge from A to B .
• If A→ B , then reverse the direction of the edge to get A← B .



Algorithm 2.8 K2 search of space of directed acyclic graphs
1: function K2Search( f )
2: X1:n← ordering of nodes
3: G ′ ← graph containing nodes X1:n and no edges
4: for i ← 1 to n
5: repeat
6: G ← G ′
7: Add a parent to node Xi in graph G ′ that maximizes f (G ′)
8: until f (G ′) ≤ f (G )
9: return G

Of course, not all operations are possible from a particular graph, and operations that
introduce cycles into the graph are invalid. The search continues until the current graph
scores no higher than all of its neighbors.

Algorithm 2.9 Local search of space of directed acyclic graphs
1: function LocalDirectedGraphSearch( f ,G0)
2: G ′ ← G0
3: repeat
4: G ← G ′
5: � ← neighbors of G
6: G ′ ← argmaxG ′∈� f (G ′)
7: until f (G ′) ≤ f (G )
8: return G

Local search can get stuck in local optima, preventing it from finding the globally
optimal network structure. Various strategies have been proposed for addressing local
optima, including the following:
• Randomized restart. Once a local optima has been found, simply restart the search
at a random point in the search space.

• Simulated annealing. Instead of always moving to the neighbor with greatest fitness,
the search can visit neighbors with lower fitness according to some randomized
exploration strategy. As the search progresses, the randomness in the exploration
decreases according to some schedule. This approach is called simulated annealing
because of its inspiration from annealing in metallurgy.

• Tabu search. This approach involves maintaining a tabu list containing recently
visited points in the search space. The search algorithm avoids neighbors in the
tabu list.



• Genetic algorithms. The procedure begins with an initial random population of
points in the search space represented as binary strings. When searching the
space of directed graphs, a bit in the string indicates the presence or absence
of an arrow between two nodes. The individuals in the population reproduce
at a rate proportional to their score. Individuals selected for reproduction have
their strings recombined randomly through genetic crossover. Genetic crossover
involves selecting a crossover point on two randomly selected individuals and then
swapping the strings after that point. Mutations are also introduced randomly into
the population by randomly flipping bits in the strings. The process of evolution
continues until a satisfactory point in the search space is found.

• Memetic algorithms. This approach is sometimes called genetic local search and
is simply a combination of genetic algorithms with local search. After genetic
recombination, local search is applied to the individuals.

Some search strategies may work better than others on certain datasets, but in general
finding the global optima remains NP-hard. Many applications, however, do not require
the globally optimal network structure. A locally optimal structure is often acceptable.

As discussed earlier, the structure of a Bayesian network encodes a set of conditional
independence assumptions. An important observation to make when trying to learn
the structure of a Bayesian network is that two different graphs can encode the same
independence assumptions. As a simple example, consider the two-variable network
A→ B . This network contains the same independence assumptions as A← B . Solely
on the basis of the data, it is difficult to justify the direction of the edge between A and
B .
Two graphs areMarkov equivalent if they encode the same set of conditional indepen-

dence assumptions. It can be proven that two graphs are Markov equivalent if and only
if they have (1) the same edges without regard to direction and (2) the same v-structures.
A Markov equivalence class is a set containing all the directed acyclic graphs that are
Markov equivalent to each other.
In general, two structures belonging to the same Markov equivalence class may be

given different scores. However, if the Bayesian score is used with Dirichlet priors such
that κ =

∑
j
∑

k αi j k is constant for all i , then two Markov equivalent structures are
assigned the same score. Such priors are called BDe, and a special case is the BDeu
prior, which assigns αi j k = κ/(qi ri ). Although the commonly used uniform prior
αi j k = 1 does not always result in identical scores being assigned to structures in the
same equivalence class, they are often fairly close. A scoring function that assigns the
same score to all structures in the same class is called score equivalent.



A Markov equivalence class can be represented as a partially directed graph, sometimes
called an essential graph or a directed acyclic graph pattern. A partially directed graph can
contain both directed edges and undirected edges. An example of a partially directed
graph that encodes a Markov equivalence class is shown in Figure 2.22a. A directed
acyclic graph G is a member of the Markov equivalence class encoded by a partially
directed graph G ′ if and only if G (1) has the same edges as G ′ without regard to
direction and (2) has the same v-structures as G ′. Figures 2.22b and 2.22c are examples
of members of the equivalence class in Figure 2.22a. Figure 2.22d is not a member.
Instead of searching the space of directed acyclic graphs, we can search the space

of Markov equivalence classes represented by partially directed graphs. The space of
Markov equivalence classes is smaller than the space of directed acyclic graphs, and so
search can be done more efficiently. Any of the general search strategies presented in
Section 2.4.2 can be used. If a form of local search is used, then we need to define the
local graph operations that define the neighborhood of the graph, for example,
• If an edge between A and B does not exist, add either A−B or A→ B .
• If A−B or A→ B , then remove the edge between A and B .
• If A→ B , then reverse the direction of the edge to get A← B .
• If A−B −C , then add A→ B ← C .
The Bayesian score is defined for directed acyclic graphs. To score a partially directed

graph, we need to generate a member of its Markov equivalence class and compute its
score. Generating a member from a partially directed graph involves converting the
undirected edges to directed edges in a way that does not introduce new v-structures.

• Uncertainty can arise from incomplete information or the inability to predict
future events because of practical or theoretical limitations.

• Properly accounting for uncertainty is important when building robust decision-
making systems.

• Bayesian networks compactly represent distributions over variables.
• The structure of a network encodes conditional independence assumptions.
• Bayesian networks are a flexible representation for encoding a wide variety of
models.

• Probabilistic inference can be made efficient if network structure is leveraged.
• Bayesian and maximum likelihood methods can be used to infer model parameters
and structure.
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One of the most in-depth treatments of probabilistic models is Probabilistic Graphical
Models: Principles and Techniques by Koller and Friedman [2]. Barber also provides
an overview of probabilistic models and their applications in Bayesian Reasoning and
Machine Learning [3]. Russell and Norvig use Bayesian networks throughout their
popular artificial intelligence textbook, Artificial Intelligence: A Modern Approach [4].
The foundations of probability theory are discussed in Probability Theory: The Logic

of Science by Jaynes [1]. Fishburn surveys the axiomatization of subjective probability
[5], and Dupré and Tipler give a more recent axiomatization [6]. The textbook by
Bertsekas and Tsitsiklis provides a comprehensive introduction to probability [7].
Several textbooks discuss inference in Bayesian networks and other kinds of prob-

abilistic graphical models, such as Markov random fields and factor graphs [2]–[4],
[8]–[10]. These books discuss inference methods, including belief propagation and the
junction tree algorithm mentioned in Section 2.2. The message passing algorithm for
exact inference in polytrees is given by Kim and Pearl [11]. The proof that inference is
NP-hard in Bayesian networks is provided by Cooper [12].
Overviews of Bayesian network structure and parameter learning can be found in

the textbooks Probabilistic Graphical Models: Principles and Techniques [2] and Learning
Bayesian Networks [13]. As mentioned in the text, learning the optimal network structure
is NP-hard [14], [15]. Cooper and Herskovits developed the K2 search algorithm
introduced in Algorithm 2.8. Searching the space of partially directed graphs is discussed
by Chickering [17]. Heckerman, Geiger, and Chickering showed that a BDe prior leads
to identical Bayesian scores for any two Markov equivalent structures [18]. The BDeu
prior was originally proposed by Buntine [19].
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Mykel J. Kochenderfer

The previous chapter focused on uncertainty, including how to build probabilistic
models of uncertainty and use them to make inferences. This chapter focuses on how
to make rational decisions based on a probabilistic model and utility function. We will
focus on single-step decisions, reserving discussion of sequential decision problems for
the next chapter. This chapter begins by introducing the foundations of utility theory
and showing how it forms the basis for rational decision making under uncertainty. We
will then show how notions of utility theory can be incorporated into the probabilistic
graphical models introduced in the previous chapter to form what are called decision
networks. Because many important decision problems involve interacting with other
agents, we will briefly discuss game-theoretic models.

The previous chapter began by discussing the need to compare the degree of belief with
respect to two different statements. This chapter requires the ability to compare the
degree of desirability of two different outcomes. We state our preferences using the
following operators:
• A � B if we prefer A over B .
• A ∼ B if we are indifferent between A and B .
• A � B if we prefer A over B or are indifferent.

Just as beliefs can be subjective, so can preferences.
In addition to comparing events, our preference operators can be used to compare

preferences over uncertain outcomes. A lottery is a set of probabilities associated with a
set of outcomes. For example, if S1:n is a set of outcomes and p1:n are their associated
probabilities, then the lottery involving these outcomes and probabilities is written

[S1 : p1; . . . ; Sn : pn]. (3.1)



This section discusses how the existence of a real-valued measure of utility emerges
from a set of assumptions about preferences. From this utility function, it is possible to
define what it means to make rational decisions under uncertainty.

Just as we imposed a set of constraints on beliefs, we will impose some constraints
on preferences. These constraints are sometimes called the von Neumann-Morgenstern
axioms, named after John von Neumann and Oskar Morgenstern, who formulated a
variation of these axioms in the 1940s.
• Completeness. Exactly one of the following hold: A � B , B � A, or A ∼ B .
• Transitivity. If A � B and B � C , then A � C .
• Continuity. If A � C � B , then there exists a probability p such that [A : p;B :
1− p] ∼ C .

• Independence. If A � B , then for any C and probability p , [A : p ;C : 1− p] � [B :
p;C : 1− p].

These are constraints on rational preferences. They say nothing about the preferences of
actual human beings; in fact, there is strong evidence that humans are not very rational
(Section 3.1.7). Our objective in this book is to understand rational decision making
from a computational perspective so that we can build useful systems. The possible
extension of this theory to understanding human decision making is of only secondary
interest.

Just as constraints on the comparison of plausibility of different statements lead to the
existence of a real-valued probability measure, constraints on rational preferences lead to
the existence of a real-valued utility measure. It follows from our constraints on rational
preferences that there exists a real-valued utility function U such that
• U (A) >U (B ) if and only if A � B , and
• U (A) =U (B ) if and only if A ∼ B .

The utility function is unique up to an affine transformation. In other words, for any
constants m > 0 and b , U ′(S ) = mU (S ) + b if and only if the preferences induced by
U ′ are the same as U . Utilities are like temperatures: you can compare temperatures
using Kelvin, Celsius, or Fahrenheit, all of which are affine transformations of each
other.
It follows from the constraints on rational preferences that the utility of a lottery is

given by

U ([S1 : p1; . . . ; Sn : pn]) =
n∑
i=1

piU (Si ). (3.2)



Suppose we are building a collision avoidance system. The outcome of an encounter
of an aircraft is defined by whether the system alerts (A) and whether a collision results
(C ). Because A and C are binary, there are four possible outcomes. So long as our
preferences are rational, we can write our utility function over the space of possible
lotteries in terms of four parameters: U (a0, c 0), U (a1, c 0), U (a0, c 1), and U (a1, u1).
For example,

U ([a0, c 0 : 0.5;a1, c 0 : 0.3;a0, c 1 : 0.1;a1, c 1 : 0.1]) (3.3)

is equal to

0.5U (a0, c 0) + 0.3U (a1, c 0) + 0.1U (a0, c 1) + 0.1U (a1, c 1). (3.4)

If the utility function is bounded, then we can define a normalized utility function
where the best possible outcome is assigned utility 1 and the worst possible outcome is
assigned utility 0. The utility of each of the other outcomes is scaled and translated as
necessary.

We are interested in the problem of making rational decisions with imperfect knowledge
of the state of the world. Suppose we have a probabilistic model P (s ′ | o,a), which
represents the probability that the state of the world becomes s ′ given that we observe o
and take action a. We have a utility function U (s ′) that encodes our preferences over
the space of outcomes. Our expected utility of taking action a given observation o is
given by

EU (a | o) =∑
s ′

P (s ′ | a, o)U (s ′). (3.5)

The principle of maximum expected utility says that a rational agent should choose
the action that maximizes expected utility

a∗ = argmax
a

EU (a | o). (3.6)

Because we are interested in building rational agents, Equation (3.6) plays a central role
in this book.



In building a decision making or decision support system, it is often helpful to infer
the utility function from a human or a group of humans. This approach is called utility
elicitation or preference elicitation. One way to go about doing this is to fix the utility
of the worst outcome S⊥ to 0 and the best outcome S� to 1. So long as the utilities of
the outcomes are bounded, we can translate and scale the utilities without altering our
preferences. If we want to determine the utility of outcome S , then we determine the
probability p such that S ∼ [S� : p; S⊥ : 1− p]. It follows that U (S ) = p.
In our collision avoidance example, the best possible event is to not alert and not

have a collision, and so we set U (a0, c 0) = 1. The worst possible event is to alert and
have a collision, and so we set U (a1, c 1) = 0. We define the lottery L(p) to be [a0, c 0 :
p ;a1, c 1 : 1− p]. To determine U (a1, c 0), we must find the p such that (a1, c 0) ∼ L(p).
Similarly, to determine U (a0, c 1), we find the p such that (a0, c 1) ∼ L(p).

It may be tempting to use monetary values to infer utility functions. For example, when
one is building a decision support system for managing wildfires, it would be natural to
define a utility function in terms of the monetary cost incurred by property damage
and the monetary cost for deploying fire suppression resources. However, it is well
known in economics that the utility of money, in general, is not linear. If there were a
linear relationship between utility and money, then decisions should be made in terms
of maximizing expected monetary value. Someone who tries to maximize expected
monetary value would have no use for insurance because the expected monetary values
of insurance policies are generally negative.
We can determine the utility of money using the elicitation process in Section 3.1.4.

Of course, different people have different utility functions, but the function generally
follows the curve shown in Figure 3.1. For small amounts of money, the curve is
roughly linear—$100 is about twice as good at $50. For larger amounts of money, the
relationship is often treated as logarithmic. The flattening of the curve makes sense;
after all, $1000 is worth less to a billionaire than it is to the average person.
When discussing monetary utility functions, the three terms below are often used.

To illustrate, assume A represents being given $50 and B represents a 50% chance of
winning $100.
• Risk neutral. The utility function is linear. There is no preference between $50
and the 50% chance of winning $100 (A ∼ B ).

• Risk seeking. The utility function is concave up. There is a preference for the 50%
chance of winning $100 (A ≺ B ).
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• Risk averse. The utility function is concave down. There is a preference for the $50
(A � B ).

In the process of building decision-making systems, it is useful to use monetary value
to inform the construction of the utility function. However, it is important to keep in
mind the potentially nonlinear relationship between money and utility.

The collision avoidance utility function (Section 3.1.4) depended on two binary variables:
whether there was an alert and whether there was a collision. We had to define the utility
over all possible combinations of assignments to these two variables. If we had n binary
variables, then we would have to specify 2n parameters in the utility function. If we are
able to normalize the utility function, then at least one of the parameters will be 0 and
at least one of the parameters will be 1. We can attempt to represent utility functions
compactly by leveraging different forms of independence between variables, similar to
how Bayesian networks compactly represent joint probability distributions.
Under certain assumptions about the preference structure, we can represent a multiple

variable utility function by using a sum of single-variable utility functions. If we have n
variables X1:n , then we can write

U (x1:n) =
n∑
i=1

U (xi ). (3.7)



To represent the utility function, assuming all variables are binary, we need only 2n
parameters:

U (x 01 ),U (x
1
1 ), . . . ,U (x

0
n ),U (x

1
n ). (3.8)

To illustrate the value of an additive decomposition of the utility function, we will
add two additional variables to our collision avoidance example:
• Strengthening (S ), which indicates whether the collision avoidance system in-
structed the pilots to strengthen (or increase) their climb or descent.

• Reversal (R), which indicates whether the collision avoidance system instructed
the pilots to change direction (i.e., up to down or down to up).

If we did not try to leverage the preference structure over A, C , S , and R , then we
would need 24 = 16 parameters. With an additive decomposition, we need only eight
parameters.
Although it is common to normalize utilities between 0 and 1, it may be more natural

to use a different scheme for constructing the utility function. In the collision avoidance
problem, it is easy to formulate the utility function in terms of costs associated with an
alert, collision, strengthening, and reversal. If there is no alert, collision, strengthening,
or reversal, then there is no cost—in other words, U (a0), U (c 0), U (s 0), and U (r 0)
are all equal to 0. The highest cost outcome is collision, and so we set U (c 1) = −1 and
normalize the other utilities with respect to this outcome. An alert provides the lowest
contribution to the overall cost, and a reversal costs more than a strengthening because
it is more disruptive to the pilots. Given our assumptions and keeping U (c 1) fixed at
−1, we only have three free parameters to define our utility function.
The utility function for many problems cannot be additively decomposed into utility

functions over individual variables as in Equation (3.7). For example, suppose our
collision avoidance utility function was defined over three binary variables: whether the
intruder comes close horizontally (H ), whether the intruder comes close vertically (V ),
and whether the system alerts (A). A collision threat only really exists if both h1 and
v1. Therefore, we cannot additively decompose the utility function over the variables
independently. However, we can write U (h , v,a) =U (h , v ) +U (a).
We can make the additive decomposition explicit in a diagram, as shown in Figure 3.2.

The utility nodes are indicated by diamonds. The parents of a utility node are uncertainty
nodes representing the variables on which the utility node depends. If the parents of
a utility node are discrete, then the utility function associated with that node can be
represented as a table. If the parents of a utility node are continuous, then any real-valued
function can be used to represent the utility. If the diagram has multiple utility nodes,
their values are summed together to provide an overall utility value.
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Decision theory is a normative theory that is prescriptive, not a descriptive theory that
is predictive of human behavior. Human judgment and preference often do not follow
the rules of rationality outlined in Section 3.1.1. Even human experts may have an
inconsistent set of preferences, which can be problematic when designing a decision
support system that attempts to maximize expected utility.
Tversky and Kahneman studied the preferences of university students who answered

questionnaires in a classroom setting. They presented students with questions dealing
with the response to an epidemic. The students were to reveal their preference between
the following two outcomes:
• A: 100% chance of losing 75 lives
• B : 80% chance of losing 100 lives

Most preferred B over A. From Equation (3.2), we know

U (lose 75) < 0.8U (lose 100). (3.9)

They were then asked to choose between the following two outcomes:
• C : 10% chance of losing 75 lives
• D : 8% chance of losing 100 lives

Most preferred C over D . Hence, 0.1U (lose 75) > 0.08U (lose 100). We multiply both
sides by 10 and get

U (lose 75) > 0.8U (lose 100). (3.10)

Of course, Equations (3.9) and (3.10) result in a contradiction. We have made no
assumption about the actual value of U (lose 75) and U (lose 100)—we did not even
assume that losing 100 lives was worse than losing 75 lives. Because Equation (3.2)
follows directly from the von Neumann-Morgenstern axioms in Section 3.1.1, there
must be a violation of at least one of the axioms—even though many people who select
B and C seem to find the axioms agreeable.



The experiments of Tversky and Kahneman show that certainty often exaggerates
losses that are certain relative to losses that are merely probable. They found that this
certainty effect works with gains as well. A smaller gain that is certain is often preferred
over a much greater gain that is only probable, in a way that the axioms of rationality
are necessarily violated.
Tversky and Kahneman also demonstrated the framing effect using a hypothetical

scenario in which an epidemic is expected to kill 600 people. They presented students
with the following two outcomes:
• E : 200 people will be saved
• F : 1/3 chance that 600 people will be saved and 2/3 chance that no people will
be saved

The majority of students chose E over F . They then asked them to choose between:
• G : 400 people will die
• H : 1/3 chance that nobody will die and 2/3 chance that 600 people will die

The majority of students chose H over G , even though E is equivalent to G and F is
equivalent to H . This inconsistency is due to how the question is framed.
Many other cognitive biases can lead to deviations from what is prescribed by utility

theory. Special care must be given when trying to elicit utility functions from human
experts to build decision support systems. Although the recommendations of the decision
support systemmay be rational, they may not exactly reflect human preferences in certain
situations.

We can extend the notion of Bayesian networks introduced in the last chapter to decision
networks that incorporate actions and utilities. Decision networks are composed of three
types of nodes:
• A chance node corresponds to a random variable (indicated by a circle).
• A decision node corresponds to each decision to be made (indicated by a square).
• A utility node corresponds to an additive utility component (indicated by a dia-
mond).

There are three kinds of directed edges:
• A conditional edge ends in a chance node and indicates that the uncertainty in that
chance node is conditioned on the values of all of its parents.

• An informational edge ends in a decision node and indicates that the decision
associated with that node is made with knowledge of the values of its parents.
(These edges are often drawn with dashed lines and are sometimes omitted from
diagrams for simplicity.)
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• A functional edge ends in a utility node and indicates that the utility node is
determined by the outcomes of its parents.

Decision networks are sometimes called influence diagrams. Like Bayesian networks,
decision networks cannot have cycles. Representing a decision problem as a decision
network allows us to take advantage of the structure of the problem when computing
the optimal decision with respect to a utility function. This chapter focuses on single-shot
decision problems, in which decisions are made simultaneously. The next chapter will
focus on problems for which decisions can be made sequentially.
Figure 3.3 shows an example decision network. In this network, we have a set of

results from diagnostic tests that may indicate the presence of a particular disease. We
need to decide whether to apply a treatment based on what is known about the diagnostic
tests. The utility is a function of whether a treatment is applied and whether the disease
is actually present. This network is used as a running example in this section.

As introduced in Section 3.1.3, the expected utility of a given o is

EU (a | o) =∑
s ′

P (s ′ | a, o)U (s ′). (3.11)

The s ′ in Equation (3.11) represents an instantiation of the nodes in the decision
network. We can use the equation to compute the expected utility of treating a disease
for the decision network in Figure 3.3. For now, we will assume that we have the result
from only the first diagnostic test and that it came back positive. If we wanted to make
the knowledge of the first diagnostic test explicit in the diagram, then we would draw



an informational edge from O1 to T , and we would have

EU (t 1 | o11 ) =
∑
o3

∑
o2

∑
d

P (d , o2, o3 | t 1, o11 )U (t 1, d , o11 , o2, o3). (3.12)

We can use the chain rule for Bayesian networks and the definition of conditional
probability to compute P (d , o2, o3 | t 1, o11 ). Because the utility node depends only on
whether the disease is present and whether we treat it, we can simplifyU (t 1, d , o11 , o2, o3)
to U (t 1, d ). Hence,

EU (t 1 | o11 ) =
∑
d

P (d | t 1, o11 )U (t 1, d ). (3.13)

Any of the exact or approximate inference methods introduced in the previous section
can be used to evaluate P (d | t 1, o11 ). To decide whether to apply a treatment, we
compute EU (t 1 | o11 ) and EU (t 0 | o11 ) and make the decision that provides the highest
expected utility.
To evaluate general single-shot decision networks, we begin by instantiating the

action nodes and observed chance nodes. We then apply any inference algorithm to
compute the posterior over the parents of the utility nodes. Instead of summing over
the instantiation of all variables in Equation (3.11), we only need to sum over the
instantiations of the parents of the utility nodes. The optimal decision is the one that,
when instantiated in the decision network, provides the highest expected utility.
A variety of methods have been developed over the years to make evaluating decision

networks more efficient. One method involves removing action and chance nodes from
decision networks if they have no children, as defined by conditional, informational, or
functional edges. For example, in Figure 3.3, we can remove O2 and O3 because they
have no children. We cannot remove O1 because we treated it as observed, indicating
there is an informational edge from O1 to T (although it is not drawn explicitly).

So far, we have assumed that for the decision network in Figure 3.3, we have only
observed o11 . Given the positive result from that one diagnostic test alone, then we
may decide against treatment. However, it may be beneficial to administer additional
diagnostic tests to reduce the risk of not treating a disease that is really present. One way
to decide which diagnostic test to administer is to compute the value of information.
In computing the value of information, we will use EU ∗(o) to denote the expected

utility of an optimal action given observation o. The value of information about variable
O ′ given o is

V OI (O ′ | o) =
�∑

o′
P (o′ | o)EU ∗(o, o′)

�
− EU ∗(o). (3.14)



In other words, the value of information about a variable is the increase in expected
utility with the observation of that variable. The expected utility can only increase if the
observation of the variable can lead to a different optimal decision. If observing a new
variable O ′ makes no difference in the choice of action, then EU ∗(o, o′) = EU ∗(o) for
all o′, in which case Equation (3.14) evaluates to 0. For example, if the optimal decision
is to treat the disease regardless of the outcome of the diagnostic test, then the value of
observing the outcome of the test is 0.
The value of information only captures the increase in expected utility from making

an observation. There may be a cost associated with making a particular observation.
Some diagnostic tests may be quite inexpensive, such as a temperature reading; other
diagnostic tests are more costly and invasive, such as a lumbar puncture. The value of
information obtained by a lumbar puncture may be much greater than a temperature
reading, but the costs of the tests should be taken into consideration.
The value-of-information metric is an important and often used metric for choosing

what to observe. Sometimes the value-of-information metric is used to determine an
appropriate sequence of observations. After each observation, the value of information
is determined for the remaining unobserved variables. The unobserved variable with the
greatest value of information is then selected for observation. If there are costs associated
with making different observations, then these costs are subtracted from the value of
information when determining which variable to observe. The process continues until
it is no longer beneficial to observe any more variables. The optimal action is then
chosen. This greedy selection of observations is only a heuristic and may not represent
the truly optimal sequence of observations. The optimal selection of observations can
be determined by using the techniques for sequential decision making introduced in
later chapters.

Decision networks are a powerful framework for building decision support systems. So
far, we have discussed the key elements in building decision networks and how to use
them to make optimal single-shot decisions. We will briefly discuss the procedure for
creating a decision network.
The first step is to identify the space of possible actions. For an airborne collision

avoidance system, the actionsmay be to climb, descend, or do nothing. In some problems,
it may be desirable to factor the space of actions into multiple decision variables. In a
collision avoidance system that can recommend both horizontal and vertical maneuvers,
one decision variable may govern whether we climb or descend and another variable
may govern whether we turn left or right.
The next step is identifying the observed and unobserved variables relevant to the

problem. If we have an electro-optical sensor on our collision avoidance system, we may



be able to observe the relative angle to another aircraft, and so this angular measurement
would correspond to one of the observed chance nodes. The true position of an intruding
aircraft is relevant to the problem, but it cannot be observed directly, and so it is
represented by an unobserved variable in the network.
We then identify the relationships between the various chance and decision nodes.

Determining these relationships can be done by using expert judgment, learning from
data as discussed in Section 2.4, or a combination of both. Often designers try to choose
the direction of arrows to reflect causality from one node to another.
Once the relationships of the chance and decision nodes are identified, we choose

models to represent the conditional probability distributions. For discrete nodes, an
obvious model is a tabular representation. For continuous nodes, we can choose a
parametric model such as a linear Gaussian model. The parameters of these models
can then be specified by experts or estimated from the data by using the techniques
introduced in Section 2.3.
We introduce the utility nodes and add functional edges from the relevant chance and

decision nodes. The parameters of the utility nodes can be determined from preference
elicitation from human experts (Section 3.1.4). The parameters can also be tuned so
that the optimal decision according to the decision network matches the decisions of
human experts.
The decision network should then be validated and refined by human experts. Given

a decision scenario, the decision network can be used to determine the optimal action.
That action can be compared against what a human expert would recommend. Generally,
inspection of many decision scenarios is required before confidence can be established
in a decision network.
If there is disagreement between the decision network and a human expert, then

the decision network can be inspected to determine why that particular action was
selected as optimal. In some cases, closer inspection of the model may result in revising
the conditional probabilities, modifying the relationship between variables, changing
the parameters in the utility nodes, or introducing new variables into to the model.
Sometimes further study results in the human experts revising their choice of action.
Several development iterations may be required before an appropriate decision network
is found.

This chapter has focused on making rational decisions with an assumed model of the
environment. The methods introduced in this chapter so far can, of course, be applied
to environments containing other agents so long as our probabilistic model captures the
effects of the behavior of the other agents. However, there are many cases in which we
do not have a probabilistic model of the behavior of the other agents, but we do have a
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model of their utilities. Making decisions in such situations is the subject of game theory,
which will be briefly discussed in this section.

One of the most famous problems in game theory is the prisoner’s dilemma. We have
two agents who are prisoners and are being interrogated separately. Each is given the
option to testify against the other. If one testifies and the other does not, then the one
who testifies gets released, and the other gets ten years in prison. If both testify, then
they both get five years. If both refuse to testify, then they both get one year.
The utilities of the two agents in the prisoner’s dilemma are shown in Figure 3.4.

The first component in the utility matrix is associated with Agent 1, and the second
component is associated with Agent 2. It is assumed that the utility matrix is com-
mon knowledge between the two agents. The two agents must select their actions
simultaneously without knowledge of the other agent’s action.
In games like the prisoner’s dilemma, the strategy chosen by an agent in a game can

be either a
• pure strategy, in which an action is chosen deterministically, or
• mixed strategy, in which an action is chosen probabilistically.

Of course a pure strategy is just a special case of a mixed strategy in which probability 1
is assigned to a single action. The mixed strategy that assigns probability 0.7 to testifying
in the prisoner’s dilemma can be written using a notation similar to that used earlier for
lotteries:

[Testify : 0.7;Refuse : 0.3].



The utility of a mixed strategy can be written in terms of utilities associated with pure
strategies:

U ([a1 : p1; . . . ;an : pn]) =
n∑
i=1

piU (ai ). (3.15)

The strategy of agent i is denoted si . A strategy profile, s1:n , is an assignment of
strategies to all n agents. The strategy profile of all agents except for that of agent i
is written s−i . The utility of agent i given a strategy profile s1:n is written Ui (s1:n) or,
alternatively, Ui (si , s−i ).
A best response of agent i to the strategy profile s−i is a strategy s ∗i such thatUi (s ∗i , s−i ) ≥

Ui (si , s−i ) for all strategies si . There may be, in general, multiple different best responses
given s−i . In some games, there may exist an si that is a best response to all possible s−i ,
in which case si is called a dominant strategy. For example, in the prisoner’s dilemma,
Agent 1 is better off testifying regardless of whether Agent 2 testifies or refuses. Hence,
testifying is the dominant strategy for Agent 1. Because the game is symmetric, testifying
is also the dominant strategy for Agent 2. When all agents have a dominant strategy,
their combination is called a dominant strategy equilibrium.
The prisoner’s dilemma has generated significant interest because it shows how

playing individual best responses can result in a suboptimal outcome for all agents. The
dominant strategy equilibrium results in both agents testifying and receiving five years
in prison. However, if they both refused to testify, then they would have both only
received one year in prison.

Suppose we have two aircraft on a collision course, and the pilots of each aircraft must
choose between climb or descend to avoid collision. If the pilots both choose the same
maneuver, then there is a crash with utility −4 to both pilots. Because climbing requires
more fuel than descending, there is an additional penalty of −1 to any pilot who decides
to climb. The utility matrix is shown in Figure 3.5.
In the collision avoidance game, there does not exist a dominant strategy equilibrium.

The best response of a particular pilot depends on the decision of the other pilot. There
is an alternative equilibrium concept known as the Nash equilibrium. A strategy profile
is a Nash equilibrium if no agent can benefit by switching strategy, given that the other
agents adhere to the profile. In other words, s1:n is a Nash equilibrium if si is a best
response to s−i for all agents i .
There are two pure-strategy Nash equilibria in the collision avoidance game, namely,

(Climb,Descend) and (Descend,Climb). It has been proven that every game has at
least one Nash equilibrium, which may or may not include pure strategies. There are
no known polynomial time algorithms for finding Nash equilibria for general games,
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although the complexity of finding Nash equilibria is not NP-complete (instead it
belongs to the complexity class known as PPAD).

When one is building a decision-making system that must interact with humans, infor-
mation about the Nash equilibrium is not always helpful. Humans often do not play a
Nash equilibrium strategy. First of all, it may be unclear which equilibrium to adopt if
there are many different equilibria in the game. For games with only one equilibrium,
it may be difficult for a human to compute the Nash equilibrium because of cognitive
limitations. Even if human agents can compute the Nash equilibrium, they may doubt
that their opponents can perform that computation.
An area known as behavioral game theory aims to model human agents. Many different

behavioral models exist, but the logit level-k model, sometimes called the quantal level-k
model, has become popular recently and tends to work well in practice. The logit level-k
model captures the assumption that humans are
• more likely to make errors when those errors are less costly, and
• limited in the number of steps of strategic look-ahead (as in “I think that you
think that I think...”).

The model is defined by
• a precision parameter λ ≥ 0, which controls sensitivity to utility differences (0 is
insensitive); and

• a depth parameter k > 0, which controls the depth of rationality.
In the logit level-k model, a level-0 agent selects actions uniformly. A level-1 agent

assumes the opponents adopt level-0 strategies and selects actions according to the logit
distribution

P (ai )∝ eλUi (ai ,s−i ), (3.16)



where s−i represents the assumed strategy profile of the other agents. A level-k agent
assumes that the other agents adopt level k − 1 strategies and select their own actions
according to Equation (3.16). The parameters k and λ can be learned from data by
using techniques discussed in the previous chapter.
To illustrate the logit level-k model, we will use the traveler’s dilemma. In this game,

an airline loses two identical suitcases from two travelers. The airline asks the travelers
to write down the value of their suitcases, which can be between $2 and $100, inclusive.
If both put down the same value, then they both get that value. The traveler with the
lower value gets their value plus $2. The traveler with the higher value gets the lower
value minus $2. In other words, the utility function is as follows:

Ui (ai ,a−i ) =

⎧⎪⎨
⎪⎩
ai if ai = a−i
ai + 2 if ai < a−i
a−i − 2 otherwise

. (3.17)

Most people tend to put down between $97 and $100. However, somewhat counterin-
tuitively, there is a unique Nash equilibrium of only $2.
Figure 3.6 shows the strategies of the logit level-k model with different values for λ

and k . The level-0 agent selects actions uniformly. The level-1 agent is peaked toward
the upper end of the spectrum, with the precision parameter controlling the spread. As
k increases, the difference between the strategies for λ = 0.3 and λ = 0.5 becomes less
apparent. Human behavior can often be modeled well by logit level 2; as we can see,
this provides a better model of human behavior than the Nash equilibrium.

• Rational decision making combines probability and utility theory.
• The existence of utility function follows from constraints on rational preferences.
• A rational decision is one that maximizes expected utility.
• We can build rational decision-making systems based on utility functions inferred
from humans.

• Humans are not always rational.
• Decision networks compactly represent decision problems.
• Behavioral game theory is useful when making decisions involving multiple agents.

The theory of expected utility was initiated by Bernoulli in 1793 [2]. The axioms for
rational decision making presented in Section 3.1.1 are based on those of Neumann and
Morgenstern in their classic text, Theory of Games and Economic Behavior [3]. Neumann
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and Morgenstern prove that those axioms lead to the existence of a utility function and
establish the basis for the maximum expected utility principle [3]. Schoemaker provides
an overview of the development of utility theory [4], and Fishburn surveys the field [5].
Russell and Norvig discuss the importance of the maximum expected utility principle
to the field of artificial intelligence [6].
Farquhar surveys a variety of methods for utility elicitation [7], and Markowitz

discusses the utility of money [8]. Decisions with Multiple Objectives: Preferences and
Value Tradeoffs by Keeney and Raiffa provides an overview of multiple attribute utility
theory [9]. The book discusses the assumptions about preference structure that allow
certain kinds of utility function decompositions, including the additive decomposition
discussed in Section 3.1.6.
The example of irrational preferences in Section 3.1.7 is taken from Tversky and

Kahneman [1]. Kahneman and Tversky provide a critique of expected utility theory and
introduce an alternative model called prospect theory that appears to be more consistent
with human behavior [10]. Several recent books discuss human irrationality, including
Predictably Irrational: The Hidden Forces That Shape Our Decisions [11] and How We
Decide [12].
The textbook Bayesian Networks and Decision Graphs by Jensen and Nielsen discusses

decision networks. Early papers by Shachter provide algorithms for evaluating deci-
sion networks [14], [15]. Howard introduces the quantitative concept of the value of
information [16], which has been applied to decision networks [17], [18].
Game theory is a broad field, and there are several standard introductory books

[19]–[21]. Koller and Milch extend decision networks to a game-theoretic context [22].



Daskalakis, Goldberg, and Papadimitriou discuss the complexity of computing Nash
equilibria [23]. Camerer provides an overview of behavioral game theory [24]. Wright
and Leyton-Brown discuss behavioral game theory and show how to extract parameters
from experimental data of human behavior [25], [26].
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The previous chapter discussed problems in which a single decision is to be made, but
many important problems require the decision maker to make a series of decisions. The
same principle of maximum expected utility still applies, but optimal decision making
requires reasoning about future sequences of actions and observations. This chapter will
discuss sequential decision problems in stochastic environments.

In this chapter, we will focus on a general formulation of sequential decision problems
under the assumption that the model is known and that the environment is fully
observable. Both of these assumptions will be relaxed in the next two chapters.

In a Markov decision process (MDP), an agent chooses action at at time t based on
observing state st . The agent then receives a reward rt . The state evolves probabilistically
based on the current state and action taken by the agent. The assumption that the next
state depends only on the current state and action and not on any prior state or action
is known as theMarkov assumption.
An MDP can be represented using a decision network as shown in Figure 4.1a. There

are information edges (not shown in the figure) from A0:t−1 and S0:t to At . The utility
function is decomposed into rewards R0:t .
We will focus on stationary MDPs in which P (St+1 | St ,At ) and P (Rt | At , St )

do not vary with time. Stationary MDPs can be compactly represented by a dynamic
decision diagram as shown in Figure 4.1b. The state transition function T (s ′ | s ,a)
represents the probability of transitioning from state s to s ′ after executing action a.
The reward function R(s ,a) represents the expected reward received when executing
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action a from state s . We assume that the reward function is a deterministic function of
s and a, but this need not be the case.
The problem of aircraft collision avoidance can be formulated as an MDP. The states

represent the positions and velocities of our aircraft and the intruder aircraft, and the
actions represent whether we climb, descend, or stay level. We receive a large negative
reward for colliding with the other aircraft and a small negative reward for climbing or
descending.

The rewards in an MDP are treated as components in an additively decomposed util-
ity function (Section 3.1.6). In a finite horizon problem with n decisions, the utility
associated with a sequence of rewards r0:n−1 is simply

n−1∑
t=0

rt . (4.1)

In an infinite horizon problem in which the number of decisions is unbounded, the
sum of rewards can become infinite. Suppose strategy A results in a reward of 1 per time
step and strategy B results in a reward of 100 per time step. Intuitively, a rational agent
should prefer strategy B over strategy A, but both provide the same infinite expected
utility.
There are several ways to define utility in terms of individual rewards in infinite

horizon problems. One way is to impose a discount factor γ between 0 and 1. The utility



is given by
∞∑
t=0
γ t rt . (4.2)

So long as 0 ≤ γ < 1 and the rewards are finite, the utility will be finite. The discount
factor makes it so that rewards in the present is worth more than rewards in the future,
a concept that also appears in economics.
Another way to define utility in infinite horizon problems is to use the average reward

given by

lim
n→∞

1
n

n−1∑
t=0

rt . (4.3)

This book focuses primarily on optimizing with respect to discounted rewards over an
infinite horizon.

The optimal strategy can be found by using a computational technique called dynamic
programming. Although we will focus on dynamic programming algorithms for MDPs,
dynamic programming is a general technique that can be applied to a wide variety
of other problems. For example, dynamic programming can be used in computing a
Fibonacci sequence, finding the longest common subsequence between two strings,
and finding the most likely sequence of states in a hidden Markov model. In general,
algorithms that use dynamic programming for solving MDPs are much more efficient
than brute force methods.

A policy in an MDP determines what action to select given the past history of states and
actions. The action to select at time t , given the history ht = (s0:t ,a0:t−1), is written
πt (ht ). Because the future state sequence and rewards depend only on the current
state and action (as made apparent in the conditional independence assumptions in
Figure 4.1a), we can restrict our attention to policies that depend only on the current
state.
In infinite horizon MDPs in which the transitions and rewards are stationary, we can

further restrict our attention to stationary policies. We will write the action associated
with stationary policy π in state s as π(s ), without the temporal subscript. In finite
horizon problems, however, it may be beneficial to select a different action depending
on how many time steps are remaining. For example, when playing basketball, it is
generally not a good strategy to attempt a half-court shot unless there are just a couple
seconds remaining in the game.



The expected utility of executing π from state s is denoted U π(s ). In the context of
MDPs, U π is often referred to as the value function. An optimal policy π∗ is a policy
that maximizes expected utility:

π∗(s ) = argmax
π

U π(s ) (4.4)

for all states s . Depending on the model, there may be multiple policies that are optimal.

Computing the expected utility obtained from executing a policy is known as policy
evaluation. We may use dynamic programming to evaluate the utility of a policy π for
t steps. If we do not execute the policy at all, then U π0 (s ) = 0. If we execute the policy
for one step, then U π1 (s ) = R(s ,π(s )), which is simply the expected reward associated
with the first step.
Suppose we know the utility associated with executing π for t − 1 steps. Computing

the utility associated with executing π for t steps can be computed as follows:

U πt (s ) = R(s ,π(s )) + γ
∑
s ′

T (s ′ | s ,π(s ))U πt−1(s ′), (4.5)

where γ is the discount factor, which can be set to 1 if discounting is not desired.
Algorithm 4.1 shows how to iteratively compute the expected utility of a policy up to
an arbitrary horizon n.

Algorithm 4.1 Iterative policy evaluation
1: function IterativePolicyEvaluation(π, n)
2: U π0 (s )← 0 for all s
3: for t ← 1 to n
4: Ut (s )← R(s ,π(s )) + γ

∑
s ′ T (s ′ | s ,π(s ))U πt−1(s ′) for all s

5: return Un

For an infinite horizon with discounted rewards,

U π(s ) = R(s ,π(s )) + γ
∑
s ′

T (s ′ | s ,π(s ))U π(s ′). (4.6)

We can computeU π arbitrarily well with enough iterations of iterative policy evaluation.
An alternative is to solve a system of n linear equations where n is the number of states.
We can represent the system of equations in matrix form:

Uπ = Rπ + γTπUπ, (4.7)



where Uπ and Rπ are the utility and reward functions represented as an n-dimensional
vector. The n × n matrix Tπ contains state transition probabilities. The probability of
transitioning from the i th state to the j th state is given by Tπi j .
We can easily solve for U π as follows:

Uπ − γTπUπ = Rπ (4.8)
(I− γTπ)Uπ = Rπ (4.9)

Uπ = (I− γTπ)−1Rπ. (4.10)

Solving for Uπ in this way requires O(n3) time.

Policy evaluation can be used in a general process called policy iteration for computing an
optimal policy π∗ as outlined in Algorithm 4.2. Policy iteration starts with any policy
π0 and iterates the following two steps:
• Policy evaluation. Given the current policy πk , compute U πk .
• Policy improvement. Using U πk , compute a new policy using the equation in
Line 5.

The algorithm terminates when there is no more improvement. Because every step leads
to improvement and there are finitely many policies, the algorithm terminates with an
optimal solution.

Algorithm 4.2 Policy iteration
1: function PolicyIteration(π0)
2: k ← 0
3: repeat
4: Compute U πk

5: πk+1(s ) = argmaxa (R(s ,a) + γ
∑

s ′ T (s ′ | s ,a)U πk (s ′)) for all states s
6: k ← k + 1
7: until πk = πk−1
8: return πk

There are many variants of policy iteration. One method known as modified policy
iteration involves approximating U πk using only a few iterations of iterative policy
evaluation instead of computing the utility function exactly.

An alternative to policy iteration is value iteration (Algorithm 4.3), which is often used
because it is simple and easy to implement. First, let us compute the optimal value



function Un associated with a horizon of n and no discounting. If n = 0, then U0(s ) = 0
for all s . We can compute Un recursively from this base case

Un(s ) =maxa

�
R(s ,a) +

∑
s ′

T (s ′ | s ,a)Un−1(s
′)
�
. (4.11)

For an infinite horizon problem with discount γ , it can be proven that the value of
an optimal policy satisfies the Bellman equation:

U ∗(s ) =max
a

�
R(s ,a) + γ

∑
s ′

T (s ′ | s ,a)U ∗(s ′)
�
. (4.12)

The optimal value function U ∗ appears on both sides of the equation. Value iteration
approximates U ∗ by iteratively updating the estimate of U ∗ using Equation (4.12).
Once we know U ∗, we can extract an optimal policy by using

π(s )← argmax
a

�
R(s ,a) + γ

∑
s ′

T (s ′ | s ,a)U ∗(s ′)
�
. (4.13)

Algorithm 4.3 Value iteration
1: function ValueIteration
2: k ← 0
3: U0(s )← 0 for all states s
4: repeat
5: Uk+1(s )←maxa [R(s ,a) + γ

∑
s ′ T (s ′ | s ,a)Uk (s ′)] for all states s

6: k ← k + 1
7: until convergence
8: return Uk

Algorithm 4.3 shows U0 being initialized to 0, but value iteration can be proven to
converge with any bounded initialization (i.e., |U0(s )| <∞ for all s ). It is common to
initialize the utility function to a guess of the optimal value function in an attempt to
speed convergence.
A common termination condition for the loop in Algorithm 4.3 is when ||Uk −

Uk−1|| < δ . In this context, || · || denotes the max norm, where ||U || = maxs |U (s )|.
The quantity ||Uk −Uk−1|| is known as the Bellman residual.
If we want to guarantee that our estimate of the value function is within ε of U ∗ at

all states, then we should choose δ to be ε(1−γ )/γ . As γ approaches 1, the termination
threshold becomes smaller, implying slower convergence. In general, the less future
rewards are discounted, the more we have to iterate to look out to an acceptable horizon.



If we know that ||Uk −U ∗|| < ε, then we can bound the policy loss of the policy
extracted from Uk . If the extracted policy is π, then the policy loss is defined as ||U π −
U ∗||. It can be proven that ||Uk −U ∗|| < ε implies that the policy loss is less than
2εγ/(1− γ ).

To illustrate value iteration, we will use a 10× 10 grid world problem. Each cell in the
grid represents a state in an MDP. The available actions are up, down, left, and right.
The effects of these actions are stochastic. We move one step in the specified direction
with probability 0.7, and we move one step in one of the three other directions, each
with probability 0.1. If we bump against the outer border of the grid, then we do not
move at all.
We receive a cost of 1 for bumping against the outer border of the grid. There are

four cells in which we receive rewards upon entering:
• (8,9) has a reward of +10
• (3,8) has a reward of +3
• (5,4) has a reward of −5
• (8,4) has a reward of −10

The coordinates are specified using the matrix convention in which the first coordinate
is the row starting from the top and the second coordinate is the column starting from
the left. The cells with rewards of +10 and +3 are absorbing states where no additional
reward is ever received from that point onward.
Figure 4.2a shows the result of the first sweep of value iteration with a discount

factor of 0.9. After this first sweep, the value function is simply the maximum expected
immediate reward—i.e., maxa R(s ,a). The gray pointers indicate the optimal actions
from the cells as determined by Equation (4.13). As indicated in the figure, all actions
are optimal for the interior cells. For the cells adjacent to the wall, the optimal actions
are in the directions away from the wall.
Figure 4.2b shows the result of the second sweep. The values at the states with non-zero

rewards remain the same, but the values are dispersed to adjacent cells. The value of the
cells is based on expected discounted rewards after two time steps. Consequently, cells
more than one step away from an absorbing cell or a cell bordering a wall have zero
value. Cells within one step have had their optimal action set updated to direct us to
positive rewards and away from negative rewards.
Figures 4.3a and 4.3b show the value function and policy after three and four sweeps,

respectively. The value associated with the +3 and +10 cells spread outward over the
grid. As the value is propagated further throughout the grid, there are fewer ties for
optimal actions for the various cells.



Figures 4.4a and 4.4b show the value function and policy at convergence for γ = 0.9
and γ = 0.5, respectively. When γ = 0.9, even the cells on the left side of the grid have
positive value. When the rewards are discounted more steeply with γ = 0.5, the +3 and
+10 rewards do not propagate as far. The effect of steeper discounting can also be seen
in the difference in policy at cell (4,8). With discounting at 0.5, the best strategy is to
head straight to the +3 cell, whereas with discounting at 0.9, the best strategy is to head
toward the +10 cell.

The value iteration algorithm in Section 4.2.4 computes Uk+1 based on Uk for all the
states at each iteration. In asynchronous value iteration, only a subset of the states may be
updated per iteration. It can be proven that, so long as the value function is updated at
each state infinitely often, the value function is guaranteed to converge to the optimal
value function.

Gauss-Seidel value iteration is a type of asynchronous value iteration. It sweeps through
an ordering of the states and applies the following update:

U (s )←max
a

�
R(s ,a) + γ

∑
s ′

T (s ′ | s ,a)U (s ′)
�
. (4.14)

With Gauss-Seidel value iteration, we only have to keep one copy of state values in
memory instead of two because the values are updated in place. In addition, Gauss-Seidel
can converge more quickly than standard value iteration can depending on the ordering
chosen.

The process of using a model to choose an action in a sequential problem is called
planning. There are two general approaches to planning:
• Closed-loop planning accounts for future state information. The dynamic program-
ming algorithms discussed in this chapter fall within this category. They involve
developing a reactive plan (or policy) that can react to the different outcomes of
the actions over time.

• Open-loop planning does not account for future state information. Many path
planning algorithms fall within this category. They involve developing a static
sequence of actions.
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The advantage of closed-loop planning can be illustrated with the example in Fig-
ure 4.5. There are nine states, and we start in state s0. There are two decision steps,
where we must decide between going up (black arrows) or going down (gray arrows).
The effects of the actions are deterministic, except that if we go up from s0, then we
end up in state s1 half the time and in state s2 half the time. We receive a reward of 30
in states s4 and s6 and a reward of 20 in states s7 and s8, as indicated in the figure.
There are exactly four open-loop plans: (up, up), (up, down), (down, up), and (down,

down). In this simple example, it is easy to compute their expected utilities:
• U (up, up) = 0.5× 30+ 0.5× 0 = 15
• U (up, down) = 0.5× 0+ 0.5× 30 = 15
• U (down, up) = 20
• U (down, down) = 20

According to the set of open-loop plans, it is best to choose down from s0 because our
expected reward is 20 instead of 15.
Closed-loop planning, in contrast, takes into account the fact that we can base our

next decision on the observed outcome of our first action. If we choose to go up from
s0, then we can choose to go down or up depending on whether we end up in s1 or s2,
thereby guaranteeing a reward of 30.



In sequential problems where the effects of actions are uncertain, closed-loop planning
can provide a significant benefit over open-loop planning. However, in some domains,
the size of the state space can make the application of closed-loop planning methods,
such as value iteration, infeasible. Open-loop planning algorithms, although suboptimal
in principle, can provide satisfactory performance. There are many open-loop planning
algorithms, but this book will focus on closed-loop methods and ways for addressing
large problems without sacrificing the ability to account for the availability of future
information.

The dynamic programming algorithms described earlier in this chapter have assumed
that the state space is discrete. If the state space is determined by n binary variables, then
the number of discrete states is 2n . This exponential growth of discrete states restricts the
direct application of algorithms such as value iteration and policy iteration to problems
with only a limited number of state variables. This section discusses methods that can
help solve higher dimensional problems by leveraging their structure.

A factored Markov decision process compactly represents the transition and reward func-
tions using a dynamic decision network. The actions, rewards, and states may be factored
into multiple nodes. Figure 4.6 shows an example of a factored MDP with two decision
variables (A and F ), three state variables (B , D , and G ), and two reward variables (C
and E ).
We can use decision trees to compactly represent the conditional probability distri-

butions and reward functions. For example, the conditional probability distribution
P (Gt+1 | Dt ,Ft ,Gt ) shown in tabular form in Figure 4.7a can be represented using the
decision tree in Figure 4.7b.
Additional efficiency can be gained using decision diagrams instead of decision trees.

In trees, all nodes (except for the root) have exactly one parent, but nodes in decision
diagrams can have multiple parents. Figure 4.8 shows an example of a decision tree and
an equivalent decision diagram. Instead of requiring four leaf nodes as in the decision
tree, the decision diagram only requires two leaf nodes.

Several dynamic programming algorithms exist for finding policies for factored MDPs.
Algorithms such as structured value iteration and structured policy iteration perform
updates on the leaves of the decision trees instead of all the states. These algorithms
improve efficiency by aggregating states and leveraging the additive decomposition of
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the reward and value functions. The resulting policy is represented as a decision tree in
which the interior nodes correspond to tests of the state variables and the leaf nodes
correspond to actions.

The methods presented in this chapter so far have required that the problems be discrete.
Of course, we may discretize a problem that is naturally continuous, but doing so may
not be feasible if the state or action spaces are large. This section presents a method for
finding exact optimal policies for problems with continuous state and action spaces that
meet certain criteria:
• Dynamics are linear Gaussian. The state transition function has the form

T (z | s,a) =� (z | Ts s+Taa,Σ), (4.15)

where Ts and Ta are matrices that determine the mean of the next state z based
on s and a, and Σ is a covariance matrix that controls the amount of noise in the
dynamics.

• Reward is quadratic. The reward function has the following form

R(s,a) = s�R s s+ a
�Raa, (4.16)

where R s = R
�
s ≤ 0 and Ra = R

�
a < 0.



For simplicity, we will assume a finite horizon undiscounted reward problem, but the
approach can be generalized to average reward and discounted infinite horizon problems
as well. We may generalize Equation (4.11) for continuous state spaces by replacing
the summation with an integral and making T (s ′ | s ,a) represent a probability density
rather than a probability mass:

Un(s) =maxa



R(s,a) +

∫
T (z | s,a)Un−1(z)d z

�
. (4.17)

From our assumptions about T and R , we can rewrite the equation above:

Un(s) =maxa



s�R s s+ a

�Raa+
∫
� (z | Ts s+Taa,Σ)Un−1(z)d z

�
. (4.18)

It can be proven inductively that Un(s) can be written in the form s�Vns+ qn . We can
rewrite the equation above as

Un(s) =maxa

�
s�R s s+ a

�Raa

+
∫
� (z | Ts s+Taa,Σ)(z

�Vn−1z+ qn−1)d z
�
. (4.19)

Simplifying, we get

Un(s) = qn−1 + s
�R s s

+max
a

�
a�Raa+

∫
� (z | Ts s+Taa,Σ)z

�Vn−1zd z
�
. (4.20)

The integral in the equation above evaluates to

Tr(ΣVn−1) + (Ts s+Taa)
�Vn−1(Ts s+Taa), (4.21)

where Tr represents the trace of a matrix, which is simply the sum of the main diagonal
elements. We now have

Un(s) = qn−1 + s
�R s s+Tr(ΣVn−1)

+max
a

�
a�Raa+ (Ts s+Taa)

�Vn−1(Ts s+Taa)
�
. (4.22)

We can determine the a that maximizes the last term in the equation above by computing
the derivative with respect to a, setting it to 0, and solving for a:

2a�Ra + 2(Ts s+Taa)
�Vn−1Ta = 0 (4.23)



a = −(T�aVn−1Ta +Ra)
−1TaVn−1Ts s. (4.24)

Substituting Equation (4.24) into Equation (4.22) and simplifying, we get Un(s) =
s�Vns+ qn with

Vn = T
�
s Vn−1Ts −T�s Vn−1Ta(T

�
aTa +Ra)

−1T�s Vn−1Ts +R s (4.25)
qn = qn−1 +Tr(ΣVn−1). (4.26)

To compute Vn and qn for arbitrary n, we first set V0 = 0 and q0 = 0 and iterate using
the equations above. Once we know Vn−1 and qn−1, we can extract the optimal n-step
policy

πn(s) = −(T�aVn−1Ta +Ra)
−1TaVn−1Ts s. (4.27)

Interestingly, πn(s) does not depend on the covariance of the noise Σ, although the
optimal cost does depend on the noise. A linear system with quadratic cost that has no
noise in the dynamics is known in control theory as a linear quadratic regulator and has
been well studied.

The field of approximate dynamic programming is concerned with finding approximately
optimal policies for problems with large or continuous spaces. Approximate dynamic
programming is an active area of research that shares ideas with reinforcement learning.
In reinforcement learning, we try to quickly accrue as much reward as possible without a
known model. Many of the algorithms for reinforcement learning (discussed in the next
chapter) can be applied directly to approximate dynamic programming. This section
focuses on several local and global approximation strategies for efficiently finding value
functions and policies for known models.

Local approximation relies on the assumption that states close to each other have similar
values. If we know the value associated with a finite set of states s1:n , then we can
approximate the value of arbitrary states by using the equation

U (s ) =
n∑
i=1
λiβi (s ) = λ

�β(s ), (4.28)

whereβ1:n are weighting functions, such that
∑n

i=1βi (s ) = 1. The value λi is the value
of state si . In general, βi (s ) should assign greater weight to states that are closer (in
some sense) to si . A weighting function is often referred to as a kernel.



Algorithm 4.4 shows how to compute an approximation of the optimal value function
by iteratively updating λ. The loop is continued until convergence. Once an approximate
value function is known, an approximately optimal policy can be extracted as follows:

π(s )← argmax
a

�
R(s ,a) + γ

∑
s ′

T (s ′ | s ,a)λ�β(s ′)
�
. (4.29)

Algorithm 4.4 Local approximation value iteration
1: function LocalApproximationValueIteration
2: λ← 0
3: loop
4: for i ← 1 to n
5: ui ←maxa[R(si ,a) + γ

∑
s ′ T (s ′ | si ,a)λ�β(s ′)]

6: λ← u
7: return λ

A simple approach to local approximation, called nearest neighbor, is to assign all
weight to the closest discrete state, resulting in a piecewise constant value function. A
smoother approximation can be achieved using k-nearest neighbor, where a weight of
1/k is assigned to each of the k nearest discrete states of s .
If we define a neighborhood function N (s ) that returns a set of states from s1:n , then

we can use linear interpolation. If the state space is one dimensional and N (s ) = {s1, s2},
then the interpolated value is given by

U (s ) = λ1

�
1− s − s1

s2 − s1

�
︸ ︷︷ ︸

β1(s )

+λ2

�
1− s2 − s

s2 − s1

�
︸ ︷︷ ︸

β2(s )

. (4.30)

The equation above can be generalized to d -dimensional state spaces and is often
called bilinear interpolation in two dimensions and multilinear interpolation in arbitrary
dimensions.
If the state space has been discretized using a multidimensional grid and the vertices

of the grid correspond to the discrete states, then N (s ) could be defined to be the set of
vertices of the rectangular cell that encloses s . In d dimensions, there may be as many
as 2d neighbors.
Figure 4.9 shows an example grid-based discretization of a two-dimensional state

space. To determine the interpolated value of state s (shown as a black circle in the
figure), we look at the discrete states inN (s ) = {s12, s13, s17, s18} (shown as white circles).
Using the neighboring values and weights shown in the figure, we compute the value at



λ17 = 1.8
β17(s ) = 0.16

λ18 = 2.2
β18(s ) = 0.04

λ13 = 0.5
β13(s ) = 0.16

λ12 = 3.9
β12(s ) = 0.64

s

s as follows:

U (s ) = λ12β12(s ) + λ13β13(s ) + λ17β17(s ) + λ18β18(s ) (4.31)
= 3.9× 0.64+ 0.5× 0.16+ 1.8× 0.16+ 2.2× 0.04 (4.32)
= 2.952. (4.33)

When the dimensionality of the problem is high, it may be prohibitive to interpolate
over the 2d vertices in the enclosing rectangular cell. An alternative is to use simplex-
based interpolation. In the simplex method, the rectangular cells are broken into d !
multidimensional triangles, called simplexes. Instead of interpolating over rectangular
cells, we interpolate over a simplex defined by up to d +1 vertices. Hence, interpolating
over the simplex scales linearly instead of exponentially with the dimensionality of the
state space. However, rectangular interpolation can provide higher quality estimates that
can lead to better policies for the same grid resolution. Figure 4.10 shows an example of
two-dimensional rectangular and simplex interpolation.
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Global approximation uses a fixed set of parameters λ1:m to approximate the value
function over the entire state space � . One of the most commonly used global ap-
proximation methods is based on linear regression. We define a set of basis functions
β1:m , where βi : � → �. Sometimes these basis functions are called features. The
approximation of U (s ) is a linear combination of the parameters and output of the
basis functions:

U (s ) =
m∑
i=1
λiβi (s ) = λ

�β(s ). (4.34)

The approximation above has the same form as Equation (4.28), but the interpretation
is different. The parameters λ1:m do not correspond to values at discrete states. The
basis functions β1:m are not necessarily related to a distance measure, and they need
not sum to 1.
Algorithm 4.5 shows how to incorporate linear regression into value iteration. The

algorithm is nearly identical to Algorithm 4.4, except for Line 6. Instead of simply
assigning λ← u as done in local approximation, we call λ1:m← Regress(β, s1:n , u1:n).
The Regress function finds the λ that leads to the best approximation of the target
values u1:n at points s1:n using the basis function β. A common regression objective is
to minimize the sum-squared error:

n∑
i=1

�
λ�β(si )− ui

�2
. (4.35)



Linear least-squares regression can compute the λ that minimizes the sum-squared
error through simple matrix operations. There are a wide variety of other well-studied
regression approaches, both linear and non-linear.

Algorithm 4.5 Linear regression value iteration
1: function LinearRegressionValueIteration
2: λ← 0
3: loop
4: for i ← 1 to n
5: ui ←maxa[R(si ,a) + γ

∑
s ′ T (s ′ | si ,a)λ�β(s ′)]

6: λ1:m← Regress(β, s1:n , u1:n)
7: return λ

Figure 4.11 compares linear interpolation with linear regression by using different
basis functions. For simplicity, the figure assumes a one-dimensional state space, and
the states s1:10 are evenly spaced. The target values u1:10 obtained through dynamic
programming are plotted as dots.
Figure 4.11a shows linear interpolation, which produces an approximate value func-

tion that matches u1:10 exactly at the states s1:10. Linear interpolation, of course, requires
10 parameters.
Figure 4.11b shows the result of linear least-squares regression with basis functions

β1(s ) = 1 and β2(s ) = s . In this case, λ1 = 4.53 and λ2 = 0.07, meaning that U (s ) is
approximated as 4.53+ 0.07s . Although this λ minimizes the sum-squared error given
those two basis functions, the plot shows that the resulting approximate value function
is not especially accurate.
Figure 4.11c shows the result of adding an additional basis function β3(s ) = s 2.

The approximate value function is now quadratic over the state space. Adding this
additional basis function results in new values for λ1 and λ2. The sum-squared error
of the quadratic value function at the states s1:n is much smaller than with the linear
function.
Figure 4.11d adds an additional cubic basis function β4(s ) = s 3, further improving

the approximation. All of the basis functions in this example are polynomials, but we
could have easily added other basis functions such as sin(s ) and e s . Adding additional
basis functions can generally improve the ability to match the target values at the known
states, but too many basis functions can lead to poor approximations at other states.
Principled methods exist for choosing an appropriate set of basis functions for regression.
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All the methods presented in this chapter so far involve computing the policy for the
entire state space offline—that is, prior to execution in the environment. Although
factored representations and value function approximation can help scale dynamic
programming to higher dimensional state spaces, computing and representing a policy
over the full state space can still be intractable. This section discusses online methods
that restrict computation to states that are reachable from the current state. Because the
reachable state space can be orders of magnitude smaller than the full state space, online
methods can significantly reduce the amount of storage and computation required to
choose optimal (or approximately optimal) actions.

Forward search (Algorithm 4.6) is a simple online action-selection method that looks
ahead from some initial state s0 to some horizon (or depth) d . The forward search
function SelectAction(s , d ) returns the optimal action a∗ and its value v∗. The pseu-
docode uses A(s ) to represent the set of actions available from state s , which may be a
subset of the full action space A. The set of possible states that can follow immediately
from s after executing action a is denoted S (s ,a), which may be a small subset of the
full state spaces S .

Algorithm 4.6 Forward search
1: function SelectAction(s , d )
2: if d = 0
3: return (nil,0)
4: (a∗, v∗)← (nil,−∞)
5: for a ∈ A(s )
6: v ← R(s ,a)
7: for s ′ ∈ S (s ,a)
8: (a′, v ′)← SelectAction(s ′, d − 1)
9: v ← v + γT (s ′ | s ,a)v ′
10: if v > v∗
11: (a∗, v∗)← (a, v )
12: return (a∗, v∗)

Algorithm 4.6 iterates over all possible action and next state pairings and calls itself
recursively until the desired depth is reached. The call tree has depth d with a worst-case



branching factor of |S | × |A| and proceeds depth-first. The computational complexity is
O((|S | × |A|)d ).

Branch and bound search (Algorithm 4.7) is an extension to forward search that uses
knowledge of the upper and lower bounds of the value function to prune portions of
the search tree. This algorithm assumes that prior knowledge is available that allows us
to easily compute a lower bound on the value function U (s ) and an upper bound on
the state-action value function U (s ,a). The pseudocode is identical to Algorithm 4.6,
except for the use of the lower bound in Line 3 and the pruning check in Line 6. The
call to SelectAction(s , d ) returns the action to execute and a lower bound on the
value function.
The order in which we iterate over the actions in Line 5 is important. In order to

prune, the actions must be in descending order of upper bound. In other words, if
action ai is evaluated before aj , then U (s ,ai ) ≥ U (s ,aj ). The tighter we are able to
make the upper and lower bounds, the more we can prune the search space and decrease
computation time. The worst-case computational complexity, however, remains the
same as for forward search.

Algorithm 4.7 Branch-and-bound search
1: function SelectAction(s , d )
2: if d = 0
3: return (nil,U (s ))
4: (a∗, v∗)← (nil,−∞)
5: for a ∈ A(s )
6: if U (s ,a) < v∗
7: return (a∗, v∗)
8: v ← R(s ,a)
9: for s ′ ∈ S (s ,a)
10: (a′, v ′)← SelectAction(s ′, d − 1)
11: v ← v + γT (s ′ | s ,a)v ′
12: if v > v∗
13: (a∗, v∗)← (a, v )
14: return (a∗, v∗)



Sampling methods can be used to avoid the worst-case exponential complexity of
forward and branch-and-bound search. Although these methods are not guaranteed
to produce the optimal action, they can be shown to produce approximately optimal
actions most of the time and can work well in practice. One of the simplest approaches
is referred to as sparse sampling (Algorithm 4.8).
Sparse sampling uses a generative model G to produce samples of the next state

s ′ and reward r . An advantage of using a generative model is that it is often easier
to implement code for drawing random samples from a complex, multidimensional
distribution rather than explicitly representing probabilities. Line 8 of the algorithm
draws (s ′, r ) ∼ G (s ,a). All of the information about the state transitions and rewards
is represented by G ; the state transition probabilities T (s ′ | s ,a) and expected reward
function R(s ,a) are not used directly.

Algorithm 4.8 Sparse sampling
1: function SelectAction(s , d )
2: if d = 0
3: return (nil,0)
4: (a∗, v∗)← (nil,−∞)
5: for a ∈ A(s )
6: v ← 0
7: for i ← 1 to n
8: (s ′, r ) ∼ G (s ,a)
9: (a′, v ′)← SelectAction(s ′, d − 1)
10: v ← v + (r + γ v ′)/n
11: if v > v∗
12: (a∗, v∗)← (a, v )
13: return (a∗, v∗)

Sparse sampling is similar to forward search, except that it iterates over n sam-
ples instead of all the states in S (s ,a). Each iteration results in a sample of r + γ v ′,
where r comes from the generative model and v ′ comes from a recursive call to
SelectAction(s ′, d − 1). These samples of r + γ v ′ are averaged together to estimate
Q (s ,a). The run time complexity O((n × |A|)d ) is still exponential in the horizon but
does not depend on the size of the state space.



One of the most successful sampling-based online approaches in recent years isMonte
Carlo tree search. Algorithm 4.9 is the Upper Confidence Bound for Trees (UCT)
implementation of Monte Carlo tree search. In contrast with sparse sampling, the
complexity of Monte Carlo tree search does not grow exponentially with the horizon.
As in sparse sampling, we use a generative model.

Algorithm 4.9Monte Carlo tree search
1: function SelectAction(s , d )
2: loop
3: Simulate(s , d ,π0)
4: return argmaxa Q (s ,a)
5: function Simulate(s , d ,π0)
6: if d = 0
7: return 0
8: if s �∈ T
9: for a ∈ A(s )
10: (N (s ,a),Q (s ,a))← (N0(s ,a),Q0(s ,a))
11: T = T ∪ {s}
12: return Rollout(s , d ,π0)

13: a← argmaxa Q (s ,a) + c
�

logN (s )
N (s ,a)

14: (s ′, r ) ∼ G (s ,a)
15: q ← r + γSimulate(s ′, d − 1,π0)
16: N (s ,a)←N (s ,a) + 1
17: Q (s ,a)←Q (s ,a) + q−Q (s ,a)

N (s ,a)
18: return q

Algorithm 4.10 Rollout evaluation
1: function Rollout(s , d ,π0)
2: if d = 0
3: return 0
4: a ∼ π0(s )
5: (s ′, r ) ∼ G (s ,a)
6: return r + γRollout(s ′, d − 1,π0)



The algorithm involves running many simulations from the current state while
updating an estimate of the state-action value function Q (s ,a). There are three stages
in each simulation:
• Search. If the current state in the simulation is in the set T (initially empty), then
we enter the search stage. Otherwise we proceed to the expansion stage. During
the search stage, we update Q (s ,a) for the states and actions visited and tried in
our search. We also keep track of the number of times we have taken an action
from a state N (s ,a). During the search, we execute the action that maximizes

Q (s ,a) + c

√√√ logN (s )
N (s ,a)

, (4.36)

where N (s ) =
∑

a N (s ,a) and c is a parameter that controls the amount of
exploration in the search (exploration will be covered in depth in the next chapter).
The second term is an exploration bonus that encourages selecting actions that have
not been tried as frequently.

• Expansion. Once we have reached a state that is not in the set T , we iterate over
all of the actions available from that state and initialize N (s ,a) and Q (s ,a) with
N0(s ,a) and Q0(s ,a), respectively. The functions N0 and Q0 can be based on
prior expert knowledge of the problem; if none is available, then they can both be
initialized to 0. We then add the current state to the set T .

• Rollout. After the expansion stage, we simply select actions according to some
rollout (or default) policy π0 until the desired depth is reached (Algorithm 4.10).
Typically, rollout policies are stochastic, and so the action to execute is sampled
a ∼ π0(s ). The rollout policy does not have to be close to optimal, but it is a way
for an expert to bias the search into areas that are promising. The expected value
is returned and used in the search to update the value for Q (s ,a).

Simulations are run until some stopping criterion is met, often simply a fixed number
of iterations. We then execute the action that maximizes Q (s ,a). Once that action has
been executed, we can rerun the Monte Carlo tree search to select the next action. It is
common to carry over the values of N (s ,a) and Q (s ,a) computed in the previous step.

The previous sections have presented methods that involve computing or approximating
the value function. An alternative is to search the space of policies directly. Although
the state space may be high dimensional, making approximation of the value function
difficult, the space of possible policies may be relatively low dimensional and can be
easier to search directly.



Suppose we have a policy that is parametrized by λ. The probability that the policy
selects action a given state s is written πλ(a | s ). Given an initial state s , we can estimate

U πλ (s ) ≈ 1
n

n∑
i=1

ui , (4.37)

where ui is the i th rollout of the policy πλ to some depth.
The objective in direct policy search is to find the parameter λ that maximizes the

function
V (λ) =

∑
s
b (s )U πλ (s ), (4.38)

where b (s ) is a distribution over the initial state. We can estimate V (λ) using Monte
Carlo simulation and a generative modelG up to depth d as outlined in Algorithm 4.11.

Algorithm 4.11Monte Carlo policy evaluation
1: functionMonteCarloPolicyEvaluation(λ, d )
2: for i ← 1 to n
3: s ∼ b
4: ui ← Rollout(s , d ,πλ)
5: return 1

n
∑n

i=1 ui

The function V (λ), as estimated by Algorithm 4.11, is a stochastic function; given the
same input λ, it may give different outputs. As the number of samples (determined by n
and m) increases, the variability of the outputs of the function decreases. Many different
methods exist for searching the space of policy parameters that maximizes V (λ), and
we will discuss a few of them.

A common stochastic optimization approach is local search, also known as hill climbing
or gradient ascent. Local search begins at a single point in the search space and then
incrementally moves from neighbor to neighbor in the search space until convergence.
The search operates with the assumption that the value of the stochastic function at
a point in the search space is an indication of how close that point is to the global
optimum. Therefore, local search generally selects the neighbor with the largest value.



Some local search techniques directly estimate the gradient ∇λV for a particular
policy and then step some amount in the direction of steepest ascent. For some policy
representations, it is possible to analytically derive the gradient. Other local search
techniques evaluate a finite sampling of the neighborhood of the current search point
and then move to the neighbor with the greatest value. Local search is susceptible to
local optima and plateaus in V (λ). Simulated annealing or some of the other methods
suggested at the end of Section 2.4.2 can be applied to help find a global optimum.

There is another class of policy search methods that maintain a distribution over policies
and updates the distribution based on policies that perform well. One approach to
updating this distribution is to use the cross entropy method. Cross entropy is a concept
from information theory and is a measure of the difference between two distributions.
If distributions p and q are discrete, then the cross entropy is given by

H (p, q ) = −∑
x

p(x ) log q (x ). (4.39)

For continuous distributions, the summation is replaced with an integral. In the context
of direct policy search, we are interested in distributions over λ. These distributions are
parameterized by θ, which may be multivariate.
The cross entropy method takes as input an initial θ and parameters n and m that

determine the number of samples to use. The process consists of two stages that are
repeated until convergence or some other stopping criterion is met:
• Sample.We draw n samples from P (λ;θ) and evaluate their performance using
Algorithm 4.11. Sort the samples in decreasing order of performance so that i < j
implies that V (λi ) ≥V (λ j ).• Update. Use the top m performing samples (often called the elite samples) to
update θ using cross entropy minimization, which boils down to:

θ← argmax
θ

m∑
j=1
logP (λ j | θ). (4.40)

The new θ happens to correspond to the maximum likelihood estimate based on
the m top-performing samples. Further explanation can be found in the references
at the end of the chapter.



Algorithm 4.12 Cross entropy policy search
1: function CrossEntropyPolicySearch(θ)
2: repeat
3: for i ← 1 to n
4: λi ∼ P (·;θ)
5: vi ←MonteCarloPolicyEvaluation(λi )
6: Sort (λ1, . . .λn) in decreasing order of vi
7: θ← argmaxθ

∑m
j=1 logP (λ j | θ)

8: until convergence
9: return λ← argmaxP (λ | θ)
The full process is outlined in Algorithm 4.12. The initial distribution parameter θ, the
number of samples n, and the number of elite samples m are the input parameters to
this process. To prevent the search from focusing too much on local maxima, the initial
θ should provide a diffuse distribution over λ. The choice of the number of samples
and elite samples depends on the problem.
To illustrate the cross entropy method, we will assume that the space of policies is

one dimensional and that V (λ) is as shown in Figure 4.12. We will assume for this
example that the parameter θ = (μ,σ ) and P (λ | θ) =� (λ | μ,σ2). Initially, we set
θ = (0,10). To not overwhelm the plots, we use only n = 20 samples and m = 5 elite
samples. Typically, especially for higher dimensional problems, we use one to two orders
of magnitude more samples.
Figure 4.12a shows the initial distribution over λ. We draw 20 samples from this

distribution. The 5 elite samples are shown with circles, and the 15 other samples are
shown with crosses. Those 5 elite samples are used to update θ. Because we are using a
Gaussian distribution, the update simply sets the mean to the mean of the elite samples
and the standard deviation to the sample standard deviation of the elite samples. The
updated distribution is shown in Figure 4.12b. The process is repeated. In the third
iteration (Figure 4.12c), the distribution is moved toward the more promising area
of the search space. By the fourth iteration (Figure 4.12d), we have found the global
optimum.

Evolutionary search methods derive inspiration from biological evolution. A common
approach is to use a genetic algorithm that evolves populations of (typically binary) strings
representing policies, starting with an initial random population. The strings recombine
through genetic crossover and mutation at a rate proportional to their measured fitness
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to produce a new generation. The process continues until arriving at a satisfactory
solution.
A related approach is genetic programming, which involves evolving tree structures

representing policies. Trees consist of symbols selected from predefined sets of terminals
and non-terminals, allowing more flexible policy representations than fixed-length
bit strings. Crossover works by swapping subtrees, and mutation works by randomly
modifying subtrees.
Genetic algorithms and genetic programming may be combined with other methods,

including local search. For example, a genetic algorithm might evolve a satisfactory
policy and then use local search to further improve the policy. Such an approach is
called genetic local search or memetic algorithms.

• Markov decision processes represent sequential decision-making problems using a
transition and reward function.

• Optimal policies can be found using dynamic programming algorithms.
• Continuous problems with linear Gaussian dynamics and quadratic costs can be
solved analytically.

• Structured dynamic programming can efficiently solve factored Markov decision
processes.

• Problems with large or continuous state spaces can be solved approximately using
function approximation.

• Instead of solving for the optimal strategy for the full state space offline, online
methods search for the optimal action from the current state.

• In some problems, it can be easier to search the space of policies directly using
stochastic optimization methods.

Much of the pioneering work on sequential decision problems was begun in 1949
by Richard Bellman [1]. Markov decision processes have since become the standard
framework for modeling such problems, and there are several books on the subject [2]–
[5]. The example grid world problem in Section 4.2.5 comes from Artificial Intelligence:
Foundations of Computational Agents by Poole andMackworth [6]. The website associated
with the book contains an open-source software demonstration of the grid world
example.
Boutilier, Dearden, and Goldszmidt present structured value iteration and policy

iteration algorithms for factored MDPs using decision trees [7]. As mentioned in
Section 4.3.2, it can be more efficient to use decision diagrams instead of trees [7]–[9].



Approximate linear programming approaches to factored MDPs have been explored by
Guestrin et al. [10].
Optimal control in linear systems with quadratic costs has been well studied in

the control theory community, and there are many books on the subject [11]–[13].
Section 4.4 presented a special case of the linear-quadratic-Gaussian (LQG) control
problem in which the state of the system is known perfectly. Chapter 6 will present the
more traditional version of LQG with imperfect state information.
An overview of the field of approximate dynamic programming is provided in Ap-

proximate Dynamic Programming: Solving the Curses of Dimensionality by Powell [14].
The book Reinforcement Learning and Dynamic Programming Using Function Approx-
imators by Busoniu et al. outlines approximation methods and provides source code
for cases where the model is known and unknown [15]. Solving problems in which
the model is unknown is called reinforcement learning and is discussed in the next
chapter. Reinforcement learning is often used in problems with a known model that is
too complex or high dimensional to apply exact dynamic programming.
As discussed in Section 4.6, online methods are often appropriate when the state

space is high dimensional and adequate computational resources are available to perform
planning during execution. Land and Doig originally proposed the branch and bound
method for discrete programming problems [16]. This method has been applied to
a wide variety of optimization problems. Sparse sampling was developed by Kearns,
Mansour, and Ng [17]. Other methods that can be used online include real-time
dynamic programming [18] and LAO∗ [19].
Kocsis and Szepesvári originally introduced the idea of Monte Carlo tree search with

the use of the exploration bonus in Algorithm 4.9 [20]. Since that paper’s publication
and with the successful application to the game Go, a tremendous amount of work has
focused on Monte Carlo tree search methods [21]. One important extension to the
algorithm presented in this chapter is the idea of progressive widening of the actions
and states considered at each step in the search [22]. Progressive widening allows the
algorithm to better handle large or continuous state or action spaces.
Many methods have been proposed for searching the space of policies directly. Exam-

ples of local search algorithms using gradient methods include those of Williams [23]
and Baxter and Bartlett [24]. The cross entropy method [25], [26] has been applied
to a variety of formulations of MDP policy search [27]–[29]. Any stochastic optimiza-
tion technique can be applied to policy search. The evolutionary methods discussed
in Section 4.7.4 date back to the 1950s [30]. Genetic algorithms, in particular, were
made popular by the work of Holland [31], with more recent theoretical work done by
Schmitt [32], [33]. Genetic programming was introduced by Koza [34].
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Mykel J. Kochenderfer

The previous chapter discussed sequential decision problems with a known transition
and reward model. In many problems, the dynamics and rewards are not known exactly,
and the agent must learn to act through experience. By observing the outcomes of its
actions in the form of state transitions and rewards, the agent is to choose actions that
maximize its long-term accumulation of rewards. Solving such problems in which there
is model uncertainty is the subject of the field of reinforcement learning and the focus of
this chapter. Several challenges in addressing model uncertainty will be discussed. First,
the agent must carefully balance exploration of the environment with the exploitation of
that knowledge gained through experience. Second, rewards may be received long after
the important decisions have been made, so credit for later rewards must be assigned to
earlier decisions. Third, the agent must generalize from limited experience. This chapter
will review the theory and some of the key algorithms for addressing these challenges.

Reinforcement learning problems require us to carefully balance exploration of the
environment with exploitation of knowledge obtained through evaluative feedback. If we
continuously explore our environment, then we may be able to build a comprehensive
model, but we will not be able to accumulate much reward. If we continuously make
the decision we believe is best without ever trying a new strategy, then we may miss out
on improving our strategy and accumulating more reward. This section introduces the
challenges of balancing exploration with exploitation on problems with a single state.

Some of the earliest studies of balancing exploration with exploitation were focused
on slot machines—sometimes referred to as one-armed bandits because they are often
controlled by a single lever and, on average, they take away gamblers’ money. Bandit



problems appear in a wide variety of applications, such as the allocation of clinical trials
and adaptive network routing. They were originally formulated during World War
II and proved exceptionally challenging to solve. According to Peter Whittle, “efforts
to solve [bandit problems] so sapped the energies and minds of Allied analysts that
the suggestion was made that the problem be dropped over Germany as the ultimate
instrument of intellectual sabotage” (see comment following article [1]).
Many different formulations of bandit problems are presented in the literature, but

we will focus on a simple one involving a slot machine with n arms. Arm i pays off 1
with probability θi and 0 with probability 1−θi . There is no deposit to play, but we
are limited to h pulls. We can view this problem as an h-step finite horizon Markov
decision process (Chapter 4) with a single state, n actions, and an unknown reward
function R(s ,a).

We can use the beta distribution introduced in Section 2.3.2 to represent our posterior
over the win probability θi for arm i , and we will use the uniform prior distribution,
which corresponds to Beta(1,1). We just have to keep track of the number of wins wi and
the number of losses ℓi for each arm i . The posterior for θi is given by Beta(wi+1,ℓi+1).
We can then compute the posterior probability of winning:

ρi = P (wini | wi ,ℓi ) =
∫ 1
0
θ×Beta(θ | wi + 1,ℓi + 1) dθ =

wi + 1
wi + ℓi + 2

. (5.1)

For example, suppose we have a two-armed bandit that we have pulled six times. The
first arm had 1 win and 0 losses, and the second arm has 4 wins and 1 loss. Assuming a
uniform prior, the posterior distribution for θ1 is given by Beta(2,1), and the posterior
distribution for θ2 is given by Beta(5,2). The posteriors are plotted in Figure 5.1.
The maximum likelihood estimate for θ1 is 1 and the maximum likelihood estimate

for θ2 is 4/5. If we were to choose the next pull solely on the basis of the maximum-
likelihood estimate, then we would want to go with the first arm—with a guaranteed
win! Of course, just because we have not yet observed a loss with the first arm does not
mean that a loss is impossible.
In contrast with the maximum likelihood estimate of the payoff probabilities, the

Bayesian posterior shown in Figure 5.1 assigns non-zero probability to probabilities
between 0 and 1. The density at 0 for both arms is 0 because at least one win was
observed from both arms. There is also zero density at θ2 = 1 because a loss was
observed. Using Equation (5.1), we can compute the payoff probabilities:

ρ1 = 2/3 = 0.67 (5.2)
ρ2 = 5/7 = 0.71. (5.3)
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Hence, if we assume that we only have one pull remaining, it is best to pull the second
arm.

Several different ad hoc exploration strategies have been suggested in the literature. In
one of the most common strategies, ε-greedy, we choose a random arm with probability
ε; otherwise, we choose argmaxi ρi . Larger values of ε allow us to more quickly identify
the best arm, but more pulls are wasted on suboptimal arms.
Directed exploration strategies involve using information gathered from previous

pulls. For example, the softmax strategy is to pull arms according to the logit model
(introduced in Section 3.3.3), where arm i is selected with probability proportional
to exp(λρi ). The precision parameter λ ≥ 0 controls the amount of exploration, with
uniform random selection as λ→ 0 and greedy selection as λ→∞. Another approach
is to use interval exploration, by which we compute the α% confidence interval for θi
and choose the arm with the highest upper bound. Larger values for α result in more
exploration.

The counts w1,ℓ1, . . . ,wn ,ℓn represent a belief state, which summarizes our belief about
payoffs. As discussed in Section 5.1.2, these 2n numbers can be used to represent n



continuous probability distributions over possible values for ρ1:n . These belief states
can be used as states in an MDP that represents the n-armed bandit problem. We can
use dynamic programming to determine an optimal policy π∗, which specifies which
arm to pull given the counts.
We useQ ∗(w1:n ,ℓ1:n , i ) to represent the expected payoff after pulling arm i and then

acting optimally. The optimal utility function and policy are given in terms of Q ∗:

U ∗(w1,ℓ1, . . . ,wn ,ℓn) =maxi Q ∗(w1,ℓ1, . . . ,wn ,ℓn , i ) (5.4)

π∗(w1,ℓ1, . . . ,wn ,ℓn) = argmaxi Q ∗(w1,ℓ1, . . . ,wn ,ℓn , i ). (5.5)

We can decompose Q ∗ into two terms:

Q ∗(w1,ℓ1, . . . ,wn ,ℓn , i ) =
wi + 1

wi + ℓi + 2

�
1+U ∗(. . . ,wi + 1,ℓi , . . .)

�

+
�
1− wi + 1

wi + ℓi + 2

�
U ∗(. . . ,wi ,ℓi + 1, . . .). (5.6)

The first term is associated with a win for arm i , and the second term is associated with
a loss. The value (wi + 1)/(wi + ℓi + 2) is the posterior probability of a win, which
comes from Equation (5.1). The first U ∗ in the equation above assumes that pulling
arm i brought a win, and the second U ∗ assumes a loss.
Assuming a horizon h , we can compute Q ∗ for the entire belief space. We start with

the belief states with
∑

i (wi + ℓi ) = h. With no pulls left, U ∗(w1,ℓ1, . . . ,wn ,ℓn) = 0.
We can then work backward to the states where

∑
i (wi + ℓi ) = h − 1 and apply

Equation (5.6).
Although this dynamic programming solution is optimal, the number of belief

states—and consequently the amount of computation and memory required—is expo-
nential in h . We can formulate an infinite horizon, discounted version of the problem
that can be solved efficiently using the Gittins allocation index. The allocation index
can be stored as a lookup table that specifies a scalar allocation index value given the
number of pulls and the number of wins associated with an arm. The arm that has the
highest allocation index is the one that should be pulled next.

A variety of reinforcement learning methods have been proposed for addressing problems
with multiple states. Solving problems with multiple states is more challenging than
bandit problems because we need to plan to visit states to determine their value. One
approach to reinforcement learning involves estimating the transition and reward models
directly from experience. We keep track of the counts of transitions N (s ,a, s ′) and the



sum of rewards ρ(s ,a). The maximum likelihood estimates of the transition and reward
models are as follows:

N (s ,a) =
∑
s ′

N (s ,a, s ′) (5.7)

T (s ′ | s ,a) =N (s ,a, s ′)/N (s ,a) (5.8)
R(s ,a) = ρ(s ,a)/N (s ,a). (5.9)

If we have prior knowledge about the transition probabilities or the rewards, then we
can initialize N (s ,a, s ′) and ρ(s ,a) to values other than 0.
We can solve the MDP assuming the estimated models are correct. Of course, we have

to incorporate some exploration strategy, such as those mentioned in Section 5.1.3, in
order to ensure that we converge to an optimal strategy. The basic structure of maximum
likelihood model-based reinforcement learning is outlined in Algorithm 5.1.

Algorithm 5.1Maximum likelihood model-based reinforcement learning
1: functionMaximumLikelihoodModelBasedReinforcementLearning
2: t ← 0
3: s0← initial state
4: Initialize N , ρ, and Q
5: loop
6: Choose action at based on some exploration strategy
7: Observe new state st+1 and reward rt
8: N (st ,at , st+1)←N (st ,at , st+1) + 1
9: ρ(st ,at )← ρ(st ,at ) + rt
10: Update Q based on revised estimate of T and R
11: t ← t + 1

Although we can use any dynamic programming algorithm to update Q in Line 10 of
Algorithm 5.1, the computational expense is often not necessary. One algorithm that
avoids solving the entire MDP at each time step is Dyna. Dyna performs the following
update at the current state:

Q (s ,a)← R(s ,a) + γ
∑
s ′

T (s ′ | s ,a)max
a′

Q (s ′,a′). (5.10)



Here, R and T are the estimated reward and transition functions. We then perform
some number of additional updates of Q for random states and actions depending on
how much time is available between decisions. Following the updates, we use Q to
choose which action to execute—perhaps using softmax or one of the other exploration
strategies.

An approach known as prioritized sweeping uses a priority queue to help identify which
states require updatingQ the most (Algorithm 5.2). If we transition from s to s ′, then we
update U (s ) based on our updated transition and reward models. We then iterate over
the predecessor set, pred(s ) = {(s ′,a′) | T (s | s ′,a′) > 0}, the set of all state-action pairs
leading immediately to state s . The priority of s ′ is increased to T (s | s ′,a′)×|U (s )−u|,
where u was the value of U (s ) prior to the update. Hence, the larger the change in
U (s ), the higher the priority of the states leading to s . The process of updating the
highest priority state in the queue continues for some fixed number of iterations or until
the queue becomes empty.

Algorithm 5.2 Prioritized sweeping
1: function PrioritizedSweeping(s )
2: Increase the priority of s to∞
3: while priority queue is not empty
4: s ← highest priority state
5: Update(s )
6: function Update(s )
7: u←U (s )
8: U (s )←maxa[R(s ,a) + γ

∑
s ′ T (s ′ | s ,a)U (s ′)]

9: for (s ′,a′) ∈ pred(s )
10: p← T (s | s ′,a′)× |U (s )− u|
11: Increase priority of s ′ to p

The previous section used maximum likelihood estimates of the transition probabilities
and rewards and then relied on a heuristic exploration strategy to converge on an
optimal strategy in the limit. Bayesian methods, in contrast, allow us to optimally
balance exploration with exploitation without having to rely on heuristics. This section
describes a generalization of the formulation for multi-armed bandit problems (discussed
in Section 5.1.4) applied to general MDPs.
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In Bayesian reinforcement learning, we specify a prior distribution over all the model
parameters θ. These model parameters may include the parameters governing the
distribution over immediate rewards, but we will focus on the parameters governing
the state transition probabilities. If � represents the state space and represents the
action space, then the parameter vector θ consists of |� |2| | components representing
every possible transition probability. The component of θ that governs the transition
probability T (s ′ | s ,a) is denoted θ(s ,a,s ′).
The structure of the problem can be represented using the dynamic decision network

shown in Figure 5.2, which is an extension of the network shown in Figure 4.1b with
the model parameters made explicit. As indicated by the shaded nodes, the states are
observed, but the model parameters are not. We generally assume that the model
parameters are time invariant, and so θt+1 = θt . However, our belief about θ evolves
with time as we transition to new states.

We want to represent a prior belief over θ, and a natural way to do this for discrete
state spaces is with a product of Dirichlet distributions. Each Dirichlet would represent
a distribution over the next state given the current state s and action a. If θ(s ,a) is an
|� |-element vector representing the distribution over the next state, then the prior
distribution is given by

Dir(θ(s ,a) | α(s ,a)). (5.11)



The Dirichlet distribution above is governed by the |� | parameters in α(s ,a). It is
common to use a uniform prior with all the components of α(s ,a) set to 1, but if we
have prior knowledge about the dynamics, then we can set these parameters differently,
as discussed in Section 2.3.2.
The prior distribution over θ is given by the product

b0(θ) =
∏
s

∏
a
Dir(θ(s ,a) | α(s ,a)). (5.12)

The factorization shown above is often used for small discrete state spaces, but other
lower dimensional parametric representations may be desirable.
The posterior distribution over θ after t steps is denoted bt . Suppose that during

the first t steps, we observe m(s ,a,s ′) transitions from s to s ′ by action a. We compute
the posterior using Bayes’ rule. If m(s ,a) represents a vector of transition counts, then
the posterior is given by

bt (θ) =
∏
s

∏
a
Dir(θ(s ,a) | α(s ,a) +m(s ,a)). (5.13)

We can formulate the problem of acting optimally in an MDP with an unknown model
as a higher dimensional MDP with a known model. This higher dimensional MDP
is known as a Bayes-adaptive Markov decision process, which is related to the partially
observable Markov decision process discussed in the next chapter.
The state space in a Bayes-adaptive MDP is the Cartesian product � ×� , where�

is the space of all possible beliefs over the model parameters θ. Although � is discrete,
� is often a high-dimensional continuous space. A state in a Bayes-adaptive MDP is
written as a pair (s , b ) consisting of the state s of the base MDP and the belief state b .
The action space and reward function are exactly the same as for the base MDP.
The transition function in a Bayes-adaptive MDP is T (s ′, b ′ | s , b ,a), which is the

probability of transitioning to some new state s ′ with a new belief state b ′, given that
you start in state s with belief b and execute action a. The new belief state b ′ is a
deterministic function of s , b , a, and s ′ as computed by Bayes’ rule in Section 5.3.2. Let
us denote this deterministic function τ so that b ′ = τ(s , b ,a, s ′). The Bayes-adaptive
MDP transition function can be decomposed as follows:

T (s ′, b ′ | s , b ,a) = δτ(s ,b ,a,s ′)(b ′)P (s ′ | s , b ,a), (5.14)

where δx (y ) is the Kronecker delta function such that

δx (y ) =
	
1 if x = y
0 otherwise

. (5.15)



Computing P (s ′ | s , b ,a) requires integration:

P (s ′ | s , b ,a) =
∫
θ
b (θ)P (s ′ | s ,θ,a) dθ =

∫
θ
b (θ)θ(s ,a,s ′) dθ. (5.16)

Similar to Equation (5.1), the integral above can be evaluated analytically.

We can generalize the Bellman equation from Section 4.2.4 for MDPs with a known
model to the case in which the model is unknown:

U ∗(s , b ) =max
a

�
R(s ,a) + γ

∑
s ′

P (s ′ | s , b ,a)U ∗(s ′,τ(s , b ,a, s ′))
�
. (5.17)

Unfortunately, we cannot simply use the policy iteration and value iteration algorithms
directly as presented in Chapter 4 because b is continuous. However, we can use the
approximations in Section 4.5 as well as the online methods in Section 4.6. Methods
that better leverage the structure of the Bayes-adaptive MDP will be presented in the
next chapter.
An alternative to solving for the optimal value function over the belief space is to use

a technique known as Thompson sampling. The idea here is to draw a sample θ from the
current belief bt and then assume θ is the true model. We use dynamic programming
to solve for the best action. At the next time step, we update our belief, draw a new
sample, and resolve the MDP. The advantage of this approach is that we do not have to
decide on heuristic exploration parameters. However, Thompson sampling has been
shown to over-explore, and resolving the MDP at every step can be expensive.

In contrast to model-based methods, model-free reinforcement learning does not require
building explicit representations of the transition and reward models. Avoiding explicit
representations is attractive, especially when the problem is high dimensional.

Many model-free methods involve incremental estimation of the expected discounted
return from the various states in the problem. Suppose we have a random variable X
and want to estimate the mean from a set of samples x1:n . After n samples, we have the
estimate:

x̂n =
1
n

n∑
i=1

xi . (5.18)



We can show that

x̂n = x̂n−1 +
1
n
(xn − x̂n−1) (5.19)

= x̂n−1 +α(n)(xn − x̂n−1). (5.20)

The function α(n) is referred to as the learning rate. The learning rate can be a function
other than 1/n; there are rather loose conditions on the learning rate to ensure conver-
gence to the mean. If the learning rate is constant, which is common in reinforcement
learning applications, then the weights of older samples decay exponentially at the rate
(1− α). With a constant learning rate, we can update our estimate after observing x
using the following rule:

x̂ ← x̂ +α(x − x̂ ). (5.21)

The update rule above will appear again in later sections and is related to stochastic
gradient descent. The magnitude of the update is proportional to the difference in the
sample and the previous estimate. The difference between the sample and previous
estimate is called the temporal difference error.

One of the most popular model-free reinforcement learning algorithms is Q-learning.
The idea is to apply incremental estimation to the Bellman equation

Q (s ,a) = R(s ,a) + γ
∑
s ′

T (s ′ | s ,a)U (s ′) (5.22)

= R(s ,a) + γ
∑
s ′

T (s ′ | s ,a)max
a′

Q (s ′,a′). (5.23)

Instead of using T and R , we use the observed next state s ′ and reward r to obtain the
following incremental update rule:

Q (s ,a)←Q (s ,a) +α(r + γ max
a′

Q (s ′,a′)−Q (s ,a)). (5.24)

Q-learning is outlined in Algorithm 5.3. As with the model-based methods, some
exploration strategy is required to ensure that Q converges to the optimal state-action
value function. We can initializeQ to values other than 0 to encode any prior knowledge
we may have about the environment.



Algorithm 5.3 Q-learning
1: function QLearning
2: t ← 0
3: s0← initial state
4: Initialize Q
5: loop
6: Choose action at based on Q and some exploration strategy
7: Observe new state st+1 and reward rt
8: Q (st ,at )←Q (st ,at ) +α(rt + γ maxa Q (st+1,a)−Q (st ,at ))
9: t ← t + 1

An alternative to Q-learning is Sarsa, which derives its name from the fact that it uses
(st ,at , rt , st+1,at+1) to update the Q function at each step. It uses the actual action
taken to update Q instead of maximizing over all possible actions as done in Q-learning.
The Sarsa algorithm is identical to Algorithm 5.3 except that Line 8 is replaced with

Q (st ,at )←Q (st ,at ) +α(rt + γQ (st+1,at+1)−Q (st ,at )). (5.25)

With a suitable exploration strategy, at+1 will converge to the argmaxa Q (st+1,a) that
is used to update the Q function in the Q-learning algorithm. Although Q-learning
and Sarsa both converge to the optimal strategy, the speed of the convergence depends
on the application.

One of the disadvantages of Q-learning and Sarsa is that learning can be very slow. For
example, suppose the environment has a single goal state that provides a large reward.
The reward is zero at all other states. After some amount of random exploration in
the environment, we reach the goal state. Regardless of whether we use Q-learning or
Sarsa, we only update the state-action value of the state immediately preceding the goal
state. The values at all other states leading up to the goal remain at zero. Much more
exploration is required to slowly propagate non-zero values to the remainder of the state
space.
Q-learning and Sarsa can be modified to assign credit to achieving the goal to past

states and actions using eligibility traces. The reward associated with reaching the goal
is propagated backward to the states and actions leading up to the goal. The credit
is decayed exponentially, so states closer to the goal are assigned larger state-action
values. It is common to use λ as the exponential decay parameter, and so the versions of
Q-learning and Sarsa with eligibility traces are often called Q(λ) and Sarsa(λ).



Algorithm 5.4 shows a version of Sarsa(λ). We keep track of an exponentially decaying
visit count N (s ,a) for all the state-action pairs. When we take action at in state st ,
N (st ,at ) is incremented by 1. We then update Q (s ,a) by adding αδN (s ,a) at every
state s and for every action a, where

δ = rt + γQ (st+1,at+1)−Q (st ,at ). (5.26)

After performing the updates, we decay N (s ,a)← γλN (s ,a). Although the impact
of eligibility traces is especially pronounced in environments with sparse reward, the
algorithm can speed learning in general environments where reward is more evenly
distributed.

Algorithm 5.4 Sarsa(λ)-learning
1: function SarsaLambdaLearning(λ)
2: Initialize Q and N
3: t ← 0
4: s0,a0← initial state and action
5: loop
6: Observe reward rt and new state st+1
7: Choose action at+1 based on some exploration strategy
8: N (st ,at )←N (st ,at ) + 1
9: δ← rt + γQ (st+1,at+1)−Q (st ,at )
10: for s ∈ S
11: for a ∈ A
12: Q (s ,a)←Q (s ,a) +αδN (s ,a)
13: N (s ,a)← γλN (s ,a)
14: t ← t + 1

Up to this point in this chapter, we have assumed that the state-action value function can
be represented as a table, which is only useful for small discrete problems. The problem
with larger state spaces is not just the size of the state-action table but also the amount
of experience required to accurately estimate the values. The agent must generalize from
limited experience to states that have not yet been visited. Many different approaches
have been explored, many related to techniques for approximate dynamic programming
Section 4.5.



The assumption in local approximation methods is that states that are close together are
likely to have similar state-action values. A common technique is to store estimates of
Q (s ,a) at a limited number of states in set S and actions in set A. We denote the vector
containing these estimates as θ, which has |S |× |A| elements. To denote the component
associated with state s and action a, we use θs ,a . If we use a weighting function such that∑

s ′β(s , s ′) = 1 for all s , then we can approximate the state action value at arbitrary
states as

Q (s ,a) =
∑
s ′
θs ′,aβ(s , s

′). (5.27)

We can define a vectorized version of the weighting function as follows:

β(s ) = (β(s , s1), . . . ,β(s , s|S |)), (5.28)

where s1, . . . , s|S | are the states in S . We can also define a two-argument version of the
function β that takes as input both a state and an action and returns a vector with
|S | × |A| elements. The vector β(s ,a) is identical to β(s ), except that the elements
associated with actions other than a are set to 0. This notation allows us to rewrite
Equation (5.27) as follows:

Q (s ,a) = θ�β(s ,a). (5.29)

The linear approximation of Equation (5.29) can be easily integrated into Q-learning.
The state-action value estimates represented by θ are updated as follows based on
observing a state transition from st to st+1 by action at with reward rt :

θ← θ+α(rt + γ maxa θ
�β(st+1,a)−θ�β(st ,at ))β(st ,at ). (5.30)

The update rule above comes from substituting Equation (5.29) directly into the
standard Q-learning update rule and multiplying the last term by β(st ,at ) to provide
greater updates at states that are closer to st .
Algorithm 5.5 shows this linear approximation Q-learning method. If we have prior

knowledge about the state-action values, then we can initialize θ appropriately. This
linear approximation method can easily be extended to other reinforcement learning
methods, such as Sarsa.
The algorithm presented above assumes that the points in S remain fixed. However,

for some problems, it may be beneficial to adjust the locations of the points in S to
produce a better approximation. The locations can be adjusted based on the temporal
difference error using a representation such as a self-organizing map (see references in
Section 5.7). Various criteria have been explored for identifying when it is appropriate
to add new points to S , such as when a new state has been observed that is outside some



Algorithm 5.5 Linear approximation Q-learning
1: function LinearApproximationQLearning
2: t ← 0
3: s0← initial state
4: Initialize θ
5: loop

6: Choose action at based on θ
�
aβ(st ) and some exploration strategy

7: Observe new state st+1 and reward rt
8: θ← θ+α(rt + γ maxa θ�β(st+1,a)−θ�β(st ,at ))β(st ,at )
9: t ← t + 1

threshold distance of the states in S . Although memory can become an issue, some
methods simply store all observed states.

Global approximation methods do not rely on a notion of distance. One such approx-
imation method is a perceptron. Perceptrons have been widely used since at least the
1950s to mimic individual neurons for various learning tasks. A perceptron has a set of
input nodes x1:n , a set of weights θ1:n , and an output node q . The value of the output
node is determined as follows:

q =
m∑
i=1
θi xi = θ

�x. (5.31)

The structure of a perceptron is shown in Figure 5.3a.
In perceptron Q-learning, we have a set of n perceptrons, one for each available action.

The input is based on the state, and the output is the state-action value. We define a set
of basis functions β1, . . . ,βm over the state space, similar to the weighting functions
in Section 5.5.1. The inputs to the perceptrons are β1(s ), . . . ,βm(s ). If θa are the m
weights associated with the perceptron for action a, then we have

Q (s ,a) = θ�aβ(s ). (5.32)

We can define a two-argument version of β as done in Section 5.5.1 and define θ to
contain all the weights of all the perceptrons so that we can write

Q (s ,a) = θ�β(s ,a). (5.33)

Q-learning with a perceptron-based approximation follows Algorithm 5.5 exactly, but θ
represents perceptron weights instead of value estimates andβ represents basis functions
instead of distance measures.
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Perceptrons only represent linear functions, but neural networks can represent non-
linear functions. A neural network is a network of perceptrons. They are organized into
an input layer, a hidden layer, and an output layer as shown in Figure 5.3b; the weights
are omitted from the diagram. Adding hidden nodes generally increases the complexity
of the state-action function the network can represent.
We can use an algorithm known as backpropagation to adjust the weights in the

neural network to reduce the temporal difference error. The idea is to first adjust the
weights associated with the edges leading from the hidden nodes to the output node
in much the same way it is done for perceptron learning. We then compute the error
associated with the hidden nodes and adjust the weights from the input nodes to the
hidden nodes appropriately. Although convergence when using this form of function
approximation is not guaranteed, it can result in satisfactory performance in a variety of
domains.

Abstraction methods involve partitioning the state space into discrete regions and esti-
mating the state-action values for each of these regions. Abstraction methods tend to use
model-based learning, which often results in faster convergence than model-free learning.
Abstraction methods often use decision trees to partition the state space. Associated
with the internal nodes of the tree are various tests along the various dimensions of the
state space. The leaf nodes correspond to regions.
There are a variety of different abstraction methods, but one method is to start

with a single region represented by a decision tree with a single node and then apply a
series of acting, modeling, and planning phases. In the acting phase, we select an action
based on the state-action value of the region associated with the current state s . After
observing the transition from state s to s ′ by action a with reward r , the experience
tuple (s ,a, s ′, r ) is stored in the leaf node associated with s .
In the modeling phase, we decide whether to split nodes. For each of the experience

tuples at all of the leaf nodes, we compute

q (s ,a) = r + γU (s ′), (5.34)

where r is the observed reward and U (s ′) is the value of the leaf node associated with
the next state s ′. We want to split a leaf node when the values of the experience tuples
come from different distributions. One approach is to choose the split that minimizes
the variance of the experience tuples at the resulting leaves. We stop splitting when
some stopping criterion is met, such as when the variance at the leaf nodes is below
some threshold.



In the planning phase, we use the experience tuples at the leaf nodes to estimate
the state transition model and reward model. We then solve the resulting MDP us-
ing dynamic programming. The modeling and planning procedures require much
more computation than what is required in the other generalization methods, but this
approach can find better policies without as much interaction with the environment.

• Reinforcement learning is a computational approach to learning intelligent behav-
ior from experience.

• Exploration must be carefully balanced with exploitation.
• In general, solving the exploration problem optimally is not feasible, but there are
several Bayesian and heuristic approximation methods that can work well.

• It is important to determine how much actions in the past are responsible for later
rewards.

• Model-based reinforcement learning involves building a model from experience
and using this model to generate a plan.

• Model-free reinforcement learning involves directly estimating the values of states
and actions without the use of transition and reward models.

• We must generalize from observations of rewards and state transitions because our
interaction with the world is limited.

• Generalization can be done in a variety of ways, such as local and global approxi-
mations of the value function and state abstraction.

The classic book by Sutton and Barto, titled Reinforcement Learning: An Introduction,
is the standard introductory text on classical reinforcement learning and provides a
historical overview of the emergence of the field [2]. The volume edited by Wiering
and Otterlo provides an up-to-date survey of much of the research that occurred since
the publication of the Sutton and Barto book [3]. Kovacs and Egginton survey software
for reinforcement learning [4].
Multi-armed bandit problems and their many variations have received considerable

attention over the years [5]. Gittins developed the concept of an allocation index for
solving multi-armed bandit problems [1]. Recent work has focused on improving the
efficiency of computing allocation indices [6], [7].
Model-based reinforcement learning can be grouped into non-Bayesian and Bayesian

methods [8]. The non-Bayesian methods generally rely on maximum likelihood esti-
mation as discussed in Section 5.2. The Dyna approach was introduced by Sutton [9].
Prioritized sweeping was introduced by Moore and Atkeson [10].



Bayesian model-based methods have started to receive attention more recently [11].
Duff discusses the formulation of model-based reinforcement learning as a Bayes-
adaptive Markov decision process [12]. In general, solving such a belief-state formulation
exactly is intractable. Strens applies the concept of Thompson sampling [14] to model-
based reinforcement learning [13]. Variants of the online planning algorithms presented
in the previous chapter have been extended to Bayesian model-based reinforcement
learning, including sparse sampling [15] and Monte Carlo tree search [16], [17].
Model-free reinforcement learning algorithms are often used for situations in which

it is not feasible to build an explicit representation of the transition and reward models.
Q-learning and Sarsa are two commonly used model-free techniques. Eligibility traces
were proposed in the context of temporal difference learning by Sutton [18], and they
were extended to Sarsa(λ) [19] and Q (λ) [20], [21].
Much of the ongoing work in the field of reinforcement learning is concerned with

generalizing from limited experience. The recent book Reinforcement Learning and
Dynamic Programming Using Function Approximators by Busoniu et al. surveys a variety
of different local and global function approximation methods [22]. Several different
abstraction methods have been proposed over the years [23]–[26].
Although not discussed in this chapter, there has been some work on Bayesian

approaches to model-free reinforcement learning. One approach is to maintain a dis-
tribution over state-action values [27], [28]. There are also Bayesian policy gradient
methods that have been used with some success [29]. Multiagent reinforcement learning
was also not discussed in this chapter, but Busoniu, Babuska, and De Schutter survey
recent research in the area [30].
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Mykel J. Kochenderfer

The previous two chapters discussed sequential decision-making problems in which the
current state is known by the agent. Because of sensor limitations or noise, the state
might not be perfectly observable. This chapter discusses sequential decision problems
with state uncertainty and methods for computing optimal and approximately optimal
solutions.

A sequential decision problem with state uncertainty can be modeled as a partially
observable Markov decision process (POMDP). A POMDP is an extension to the MDP
formulation introduced in Chapter 4. In a POMDP, a model specifies the probability
of making a particular observation given the current state.

Suppose we are assigned the task of taking care of a baby. We decide when to feed the
baby on the basis of whether the baby is crying. Crying is a noisy indication that the
baby is hungry. There is a 10% chance the baby cries when not hungry, and there is a
80% chance the baby cries when hungry.
The dynamics are as follows. If we feed the baby, then the baby stops being hungry

at the next time step. If the baby is not hungry and we do not feed the baby, then 10%
of the time the baby may become hungry at the next time step. Once hungry, the baby
continues being hungry until fed.
The cost of feeding the baby is 5 and the cost of the baby being hungry is 10. These

costs are additive, and so if we feed the baby when the baby is hungry, then there is a
cost of 15. We want to find the optimal strategy assuming an infinite horizon with a
discount factor of 0.9. Figure 6.1 shows the structure of the crying-baby problem as a
dynamic decision network.
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A POMDP is an MDP with an observation model. The probability of observing o given
state s is written O(o | s ). In some formulations, the observation can also depend on the
action a, and so we can write O(o | s ,a). The decisions in a POMDP at time t can only
be based on the history of observations o1:t . Instead of keeping track of arbitrarily long
histories, it is common to keep track of the belief state. A belief state is a distribution
over states. In belief state b , probability b (s ) is assigned to being in state s . A policy in
a POMDP is a mapping from belief states to actions. The structure of a POMDP can
be represented using the dynamic decision network in Figure 6.2.

Algorithm 6.1 outlines how a POMDP policy is executed. We choose actions on the
basis of the policy evaluated at the current belief state. Different ways to represent
policies will be discussed in this chapter. When we receive a new observation and reward,
we update our belief state. Belief-state updating is discussed in Section 6.2.

A POMDP is really an MDP in which the states are belief states. We sometimes call
the MDP over belief states a belief-state MDP. The state space of a belief-state MDP is
simply the set of all possible beliefs,� , in the POMDP. If there are n discrete states,
then� is a subset of �n . The set of actions in the belief-state MDP is exactly the same
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Algorithm 6.1 POMDP policy execution
1: function POMDPPolicyExecution(π)
2: b ← initial belief state
3: loop
4: Execute action a = π(b )
5: Observe o and reward r
6: b ←UpdateBelief(b ,a, o)



as for the POMDP. The state transition function τ(b ′ | b ,a) is given by
τ(b ′ | b ,a) = P (b ′ | b ,a) (6.1)

=
∑
o
P (b ′ | b ,a, o)P (o | bt ,at ) (6.2)

=
∑
o
P (b ′ | b ,a, o)∑

s ′
P (o | b ,a, s ′)P (s ′ | b ,a) (6.3)

=
∑
o
P (b ′ | b ,a, o)∑

s ′
O(o | s ′)∑

s
P (s ′ | b ,a, s )P (s | b ,a) (6.4)

=
∑
o
P (b ′ | b ,a, o)∑

s ′
O(o | s ′)∑

s
T (s ′ | s ,a)b (s ). (6.5)

Here, P (b ′ | b ,a, o) = δb ′(UpdateBelief(b ,a, o)), with δ being the Kronecker delta
function. The immediate reward in the belief-state MDP is

R(b ,a) =
∑
s
R(s ,a)b (s ). (6.6)

Solving belief-state MDPs is challenging because the state space is continuous. We can
use the approximate dynamic programming techniques presented in Section 4.5, but
we can often do better by taking advantage of the structure of the belief-state MDP.
This chapter will discuss such techniques after elaborating on how to update beliefs.

Given an initial belief state, we can update our belief state using recursive Bayesian
estimation based on the last observation and action executed. The update can be done
exactly for problems with discrete states and for problems with linear-Gaussian dynamics
and observations. For general problems with continuous state spaces, we often have to
rely on approximation methods. This section presents methods for belief updating.

In problems with a discrete state space, applying recursive Bayesian estimation is straight-
forward. Suppose our initial belief state is b , and we observe o after executing a. Our



new belief state b ′ is given by

b ′(s ′) = P (s ′ | o,a, b ) (6.7)

∝ P (o | s ′,a, b )P (s ′ | a, b ) (6.8)

∝O(o | s ′,a)P (s ′ | a, b ) (6.9)

∝O(o | s ′,a)∑
s
P (s ′ | a, b , s )P (s | a, b ) (6.10)

∝O(o | s ′,a)∑
s
T (s ′ | a, s )b (s ). (6.11)

The observation space can be continuous without posing any difficulty in computing
the equation above exactly. The value O(o | s ′,a) would represent a probability density
rather than a probability mass.
To illustrate belief state updating, we will use the crying-baby problem. We simply

apply Equation (6.11) to the model outlined in Section 6.1.1. Here are the first six steps
of one potential scenario.
1. We begin with an initial belief state that assigns b (h0) = 0.5 and b (h1) = 0.5; in
other words, uniform probability is assigned to whether the baby is hungry. If we
had some prior belief that babies tend to be hungry more often than not, then we
could have chosen a different initial belief. For compactness, we will represent our
beliefs as tuples, (b (h0), b (h1)). In this case, our initial belief state is (0.5,0.5).

2. We do not feed the baby and the baby cries. According to Equation (6.11), the
new belief state is (0.0928,0.9072). Although the baby is crying, it is only a noisy
indication that the baby is actually hungry.

3. We feed the baby and the baby stops crying. Because we know that feeding the
baby deterministically makes the baby not hungry, the result of our belief update
is (1,0).

4. We do not feed the baby and the baby does not cry. In the prior step, we were
certain that the baby was not hungry, and the dynamics specify that the baby
becomes hungry at the next time step only 10% of the time. The fact that the
baby is not crying further reduces our belief that the baby is hungry. Our new
belief state is (0.9759,0.0241).

5. Again, we do not feed the baby and the baby does not cry. Our belief that the
baby is hungry increases slightly. The new belief state is (0.9701,0.0299).

6. We do not feed the baby and the baby begins to cry. Our new belief is then
(0.4624,0.5376). Because we were fairly certain that the baby was not hungry to
begin with, our confidence that the baby is now hungry is significantly lower than
when the baby started crying in the second step.



If we generalize the linear-Gaussian dynamics in Section 4.4 to partial observability, we
find that we can perform exact belief updates by using what is known as a Kalman filter.
The dynamics and observations have the following form:

T (z | s,a) =� (z | Ts s+Taa,Σs ) (6.12)
O(o | s) =� (o |Os s,Σo). (6.13)

Hence, the continuous dynamics and observation models are specified using matrices
Ts , Ta , Σs , Os , and Σo .
We assume that the initial belief state is represented by a Gaussian:

b (s) =� (s |μb ,Σb ). (6.14)

Under the linear-Gaussian assumptions for the dynamics and observations, it can be
shown that the belief state can be updated as follows:

Σb ← Ts (Σb −ΣbO
�
s (OsΣbO

�
s +Σo)

−1OsΣb )T
�
s +Σs (6.15)

K← TsΣbO
�
s (OsΣbO

�
s +Σo)

−1 (6.16)
μb ← Tsμb +Taa+K(o−Osμb ). (6.17)

The matrix K used for computing μb is called the Kalman gain. Kalman filters are
often applied to systems that do not actually have linear-Gaussian dynamics. A variety
of different modifications to the basic Kalman filter have been proposed to better
accommodate nonlinear dynamics, as discussed in Section 6.7.

If the state space is large or continuous and the dynamics are not well approximated
by a linear-Gaussian model, then a sampling-based approach can be used to perform
belief updates. The belief state is represented as a collection of particles, which are
simply samples from the state space. The algorithm for adjusting these particles based
on observations is known as a particle filter. There are many different variations of the
particle filter, including versions in which the particles are assigned weights.
Our belief b is simply a set of samples from the state space. Updating b is based on a

generative model G . We can draw a sample (s ′, o′) ∼ G (s ,a), which gives the next state
s ′ and observation o′ given the current state s and action a. The generative model can
be implemented as a black-box simulator, without any explicit knowledge of the actual
transition or observation probabilities.



Algorithm 6.2 returns the updated belief state b ′ based on the current belief state
b , action a, and observation o. The process for generating a set of |b | new particles is
simple. Each sample is generated by randomly selecting a sample in b and then drawing
samples (s ′, o′) ∼ G (s ,a) until the sampled o′ matches the observed o. The sampled s ′
is then added to the new belief state b ′.

Algorithm 6.2 Particle filter with rejection
1: function UpdateBelief(b ,a, o)
2: b ′ ← !
3: for i ← 1 to |b |
4: s ← random state in b
5: repeat
6: (s ′, o′) ∼ G (s ,a)
7: until o′ = o
8: Add s ′ to b ′
9: return b ′

The problem with the version of the particle filter in Algorithm 6.2 is that many
draws from the generative model may be required until the sampled observation is
consistent with actual observation. The problem of rejecting many observation draws
becomes especially apparent when the observation space is large or continuous. This
issue was observed in Section 2.2.5 where we were trying to perform inference using
direct sampling from a Bayesian network. The remedy presented in that section was
to not sample the observed values but to weight the results using the likelihood of the
observations.
Algorithm 6.3 is a version of a particle filter that does not involve rejecting samples.

In this version, the generative model only returns states, instead of both states and
observations. An observation model is required that specifies O(o | s ,a), which can
be either a probability mass function or a probability density function depending on
whether the observation space is continuous.
The algorithm is broken into two stages. The first stage involves generating |b | new

samples by randomly selecting samples in b and then propagating them forward using
the generative model. For each of the new samples s ′i , we compute a corresponding
weight wi based on O(o | s ′i ,a), where o is the actual observation and a is the action
taken. The second stage involves building the updated belief state b ′ by drawing |b |
samples from the set of new state samples with probability proportional to their weights.
In both versions of the particle filter presented here, it can be shown that as the

number of particles increases, the distribution represented by the particles approaches
the true posterior distribution. However, in practice, particle filters can fail. Because of
the random nature of the particle filter, it is possible that a series of samples can lead



Algorithm 6.3 Particle filter without rejection
1: function UpdateBelief(b ,a, o)
2: b ′ ← !
3: for i ← 1 to |b |
4: si ← random state in b
5: s ′i ∼ G (si ,a)
6: wi ←O(o | s ′i ,a)
7: for i ← 1 to |b |
8: Randomly select k with probability proportional to wk
9: Add s ′k to b ′

10: return b ′

to no particles near the true state. This problem, known as particle deprivation, can be
mitigated to some extent by introducing additional noise to the particles.

As discussed earlier, a policy for a POMDP is a mapping from belief states to actions.
This section explains how to compute and represent optimal policies.

For now, let us assume that we are interested in computing the optimal policy for a
discrete state POMDP with a one-step horizon. We know U ∗(s ) =maxa R(s ,a), but
because we do not know the state exactly in a POMDP, we have

U ∗(b ) =max
a

∑
s
b (s )R(s ,a), (6.18)

where b is our current belief state. If we let αa represent R(·,a) as a vector and b represent
our belief state as a vector, then we can rewrite Equation (6.18) as

U ∗(b) =max
a
α�a b. (6.19)

The αa in the equation above is often referred to as an alpha vector. We have an
alpha vector for each action in this single-step POMDP. These alpha vectors define
hyperplanes in belief space. As can be seen in Equation (6.19), the optimal value function
is piecewise-linear and convex.
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Figure 6.3 shows the alpha vectors associated with the crying-baby problem. If the
belief vector is represented by the pair (b (not-hungry), b (hungry)), then the two alpha
vectors are

αnot-feed = (0,−10) (6.20)
αfeed = (−5,−15). (6.21)

What is apparent from the plot is that regardless of our current beliefs, the one-step
optimal policy is to not feed the baby. Given the dynamics of the problem, we do not
see any potential benefit of feeding the baby until at least one step later.

The alpha vectors introduced in the computation of the optimal one-step policy can be
generalized to an arbitrary horizon. In multistep POMDPs, we can think of a policy as
a conditional plan represented as a tree. We start at the root node, which tells us what
action to take at the first time step. After taking that action, we transition to one of the
child nodes depending on what we observe. That child node tells us what action to take.
We then proceed down the tree.
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Figure 6.4 shows an example of a three-step plan for the crying-baby problem. The
root node specifies that we do not feed the baby at the first step. For the second time
step, as indicated by the directed edges, we feed the baby if there is crying; otherwise,
we do not. At the third time step, we again feed the baby only if there is crying.
We can recursively compute U p (s ), the expected utility associated with conditional

plan p when starting in state s :

U p (s ) = R(s ,a) +
∑
s ′

T (s ′ | s ,a)∑
o
O(o | s ′,a)U p(o)(s ′), (6.22)

where a is the action associated with the root node of p and p(o) represents the subplan
associated with observation o. We can compute the expected utility associated with a
belief state as follows:

U p (b ) =
∑
s
U p (s )b (s ). (6.23)

We can use the alpha vector α p to represent the vectorized version of U p . If b is the
belief vector, then we can write

U p (b) = α�pb. (6.24)

If we maximize over the space of all possible plans up to the planning horizon, then we
can find

U ∗(b) =max
p
α�pb. (6.25)

Hence, the finite horizon optimal value function is piecewise-linear and convex. We
simply execute the action at the root node of the plan that maximizes α�pb.
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It is generally infeasible to enumerate every possible h-step plan to find the one that
maximizes Equation (6.25) from the current belief state; the number of nodes in
an h-step conditional plan is (|O |h − 1)/(|O | − 1). Associated with each node are |A|
actions. Hence, we have |A|(|O |h−1)/(|O |−1) possible h-step plans. Even for our crying-baby
problem with two actions and two observations, there are 263 six-step conditional
plans—too many to enumerate.
The idea in POMDP value iteration is to iterate over all the one-step plans and toss

out the plans that are not optimal for any initial belief state. The remaining one-step
plans are then used to generate potentially optimal two-step plans. Again, plans that
are not optimal for any belief state are discarded. The process repeats until the desired
horizon is reached. Identifying the plans that are dominated at certain belief states by
other plans can be done using linear programming.
Figure 6.5 shows the two, nondominated, alpha vectors for the crying-baby problem

with a discount factor of 0.9. The two alpha vectors intersect when P (hungry) = 0.28206.
As indicated in the figure, we only want to feed the baby if P (hungry) > 0.28206. Of
course, for this problem, it would have been easier to simply store this threshold instead
of using alpha vectors, but for higher dimensional problems, alpha vectors often provide
a compact representation of the policy.



Discarding dominated plans can significantly reduce the computation required to
find the optimal set of alpha vectors. For many problems, the majority of the potential
plans are dominated by at least one other plan. However, in the worst case, an exact
solution for a general finite-horizon POMDP is PSPACE-complete, which is a complexity
class that includes NP-complete problems and is suspected to include problems even
more difficult. General infinite-horizon POMDPs have been shown to be uncomputable.
Hence, there has been a tremendous amount of research recently on approximation
methods, which will be discussed in the remainder of this chapter.

Offline POMDP solution methods involve performing all or most of the computation
prior to execution. In practice, we are generally restricted to finding only approximately
optimal solutions. Some methods represent policies as alpha vectors, whereas others use
finite-state controllers.

A simple approximation technique is called QMDP. The idea is to create a set of alpha
vectors, one for each action, based on the state-action value function Q (s ,a) under full
observability. We can use value iteration to compute the alpha vectors. If we initialize
α(0)a (s ) = 0 for all s , then we can iterate

α(k+1)a (s ) = R(s ,a) + γ
∑
s ′

T (s ′ | s ,a)max
a′
α(k )a′ (s

′). (6.26)

Each iteration requires O(|A|2|S |2) operations. As k →∞, the resulting set of |A| alpha
vectors can be used to estimate the value function. The value function at belief state b
is given by maxa α�a b, and the approximately optimal action is given by argmaxa α�a b.
The QMDP method assumes all state uncertainty disappears at the next time step. It

can be shown that QMDP provides an upper bound on the value function. In other
words, maxa α�a b ≥U ∗(b) for all b. QMDP tends to have difficulty with problems with
information-gathering actions, such as “look over your right shoulder when changing
lanes.” However, the method performs extremely well in many real problems in which
the particular choice of action has little impact on the reduction in state uncertainty.

Just as with the QMDP approximation, the fast informed bound (FIB) method com-
putes a single alpha vector for each action. However, the fast informed bound takes
into account, to some extent, partial observability. Instead of using the iteration of
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Equation (6.26), we use

α(k+1)a (s ) = R(s ,a) + γ
∑
o
max
a′
∑
s ′

O(o | s ′,a)T (s ′ | s ,a)α(k )a′ (s
′). (6.27)

Each iteration requiresO(|A|2|S |2|O |) operations, only a factor of |O |more thanQMDP.
At all belief states, the fast informed bound provides an upper bound on the optimal
value function that is no higher than that of QMDP. Figure 6.6 compares the alpha
vectors associated with QMDP, FIB, and the optimal policy for the crying baby problem.

There is a family of approximation methods that involves backing up alpha vectors
associated with a limited number of points in the belief space. Let us denote the set
of belief points B = {b1, . . . ,bn} and their associated alpha vectors Γ = {α1, . . . ,αn}.
Given these n alpha vectors, we can estimate the value function at any new point b as
follows:

U Γ (b) =max
α∈Γ α

�b =max
α∈Γ
∑
s
α(s )b (s ). (6.28)



For the moment, let us assume that these belief points are given to us; we will discuss
how to choose these later in Section 6.4.5. We would like to initialize the alpha vectors
in Γ such that U Γ (b) ≤U ∗(b) for all b. One way to compute such a lower bound is to
initialize all the components of all n alpha vectors to

max
a

∞∑
t=0
γ t min

s
R(s ,a) =

1
1− γ maxa min

s
R(s ,a). (6.29)

As we perform backups starting with this initial set of alpha vectors, we guarantee that
U (b) at each iteration never decreases for any b.
We may update the value function at belief b based on the n alpha vectors

U (b )←max
a

�
R(b ,a) + γ

∑
o
P (o | a, b )U (b ′)


, (6.30)

where b ′ is as determined by UpdateBelief(b ,a, o), U (b ′) is as evaluated by Equa-
tion (6.28), and

P (o | b ,a) =∑
s
O(o | s ,a)b (s ). (6.31)

We know from Bayes’ rule that

b ′(s ′) = O(o | s ′,a)
P (o | b ,a)

∑
s
T (s ′ | s ,a)b (s ). (6.32)

Combining Equations (6.28), (6.30), and (6.32) and simplifying, we get the update

U (b )←max
a

#
R(b ,a) + γ

∑
o
max
α∈Γ
∑
s
b (s )
∑
s ′

O(o | s ′,a)T (s ′ | s ,a)α(s ′)
$
. (6.33)

Besides simply updating the value at b, we can compute an alpha vector at b by using
Algorithm 6.4. Point-based value iteration approximation algorithms update the alpha
vectors at the n belief states until convergence. These n alpha vectors can then be used
to approximate the value function anywhere in the belief space.

The point-based value iteration approach discussed in Section 6.4.3 associates an alpha
vector for each of the selected points in the belief space. To reduce the amount of
computation required to perform an update of all the belief points, we can attempt to
limit the number of alpha vectors representing the value function using the approach
outlined in Algorithm 6.5.



Algorithm 6.4 Backup belief
1: function BackupBelief(Γ ,b)
2: for a ∈ A
3: for o ∈ O
4: b′ ←UpdateBelief(b,a, o)
5: αa,o← argmaxα∈Γ α�b′

6: for s ∈ S
7: αa(s )← R(s ,a) + γ

∑
s ′,o O(o | s ′,a)T (s ′ | s ,a)αa,o(s ′)

8: α← argmaxαa α
�
a b

9: return α

The algorithm begins by initializing Γ with a single alpha vector with all components
set to Equation (6.29), which lower bounds the value function. Given this Γ and our
belief points B , we call RandomizedPointBasedUpdate(B , Γ ) to create a new set of
alpha vectors that provides a tighter lower bound on the value function. These new
alpha vectors can be improved on further through another call to this function. The
process repeats until convergence.
Each update involves finding a set of alpha vectors Γ ′ that improves on the value

function represented by Γ at the points in B . In other words, the update finds a set Γ ′
such that U Γ ′ (b) ≥U Γ (b) for all b ∈ B . We begin by initializing Γ ′ to the empty set and
the set B ′ to B . We then take a point b randomly from B ′ and call BackupBelief(b, Γ )
to get a new alpha vector α. If this alpha vector improves the value at b, then we add it
to Γ ′; otherwise, we find the alpha vector in Γ that dominates at b and add it to Γ ′. The
set B ′ then becomes the set of points that still have not been improved by Γ ′. At each
iteration, B ′ becomes smaller, and the process terminates when B ′ is empty.

Many point-based value iteration algorithms involve starting with B initialized to a set
containing only the initial belief state b0 and then iteratively expanding that set. One of
the simplest ways to expand a set B is to select actions from each belief state B (based
on some exploration strategy from Section 5.1.3) and then add the resulting belief states
to B (Algorithm 6.6). This process requires sampling observations from a belief state
given an action (Algorithm 6.7).
Other approaches attempt to disperse the points throughout the reachable state space.

For example, Algorithm 6.8 iterates through B , tries each available action, and adds the
new belief states that are furthest from any of the points already in the set. There are
many ways to measure distance between two belief states; the algorithm shown uses the
L1 distance metric, where the distance between b and b ′ is given by∑s |b (s )− b ′(s )|.



Algorithm 6.5 Randomized point-based backup
1: function RandomizedPointBasedUpdate(B , Γ )
2: Γ ′ ← !
3: B ′ ← B
4: repeat
5: b← belief point sampled uniformly at random from set B ′
6: α← BackupBelief(b, Γ )
7: if α�b ≥U Γ (b)
8: Add α to Γ ′
9: else
10: Add α′ = argmaxα∈Γ α�b to Γ ′

11: B ′ ← {b ∈ B |U Γ ′ (b) <U Γ (b)}
12: until B ′ = !
13: return Γ ′

Algorithm 6.6 Expand belief points with random actions
1: function ExpandBeliefPoints(B )
2: B ′ ← B
3: for b ∈ B
4: a← random action selected uniformly from action space A
5: o← SampleObservation(b ,a)
6: b ′ ←UpdateBelief(b ,a, o)
7: Add b ′ to B ′
8: return B ′

Algorithm 6.7 Sample observation
1: function SampleObservation(b ,a)
2: s ∼ b
3: s ′ ← random state selected with probability T (s ′ | s ,a)
4: o← random observation selected with probability O(o | a, s ′)
5: return o



Algorithm 6.8 Expand belief points with exploratory actions
1: function ExpandBeliefPoints(B )
2: B ′ ← B
3: for b ∈ B
4: for a ∈ A
5: o← SampleObservation(b ,a)
6: ba ←UpdateBelief(b ,a, o)
7: a← argmaxaminb ′∈B ′

∑
s |b ′(s )− ba(s )|

8: Add ba to B ′

9: return B ′

As discussed in Section 6.2.2, the belief state in a problem with linear-Gaussian dynamics
can be represented by a Gaussian distribution � (μb ,Σb ). If the reward function is
quadratic, as assumed in Section 4.4, then it can be shown that the optimal policy can
be computed exactly offline. In fact, the solution is identical to the perfect observability
case outlined in Section 4.4, but the μb computed by the Kalman filter is used in place
of the true state. With each observation, we simply use the Kalman filter to update our
μb , and then we matrix multiply μb with the policy matrix given in Section 4.4 to
determine the optimal action.

Online methods determine the optimal policy by planning from the current belief state.
The belief states reachable from the current state are typically small compared with the
full belief space. Many online methods use a depth-first tree-based search up to some
horizon. The time complexity of these online algorithms is generally exponential in the
horizon. Although online methods require more computation per decision step during
execution than offline approaches, online methods are sometimes easier to apply to
high-dimensional problems.

We can use the one-step lookahead strategy online to improve on a policy that has been
computed offline. If b is the current belief state, then the one-step lookahead policy is
given by

π(b ) = argmax
a

�
R(b ,a) + γ

∑
o
P (o | b ,a)U (UpdateBelief(b ,a, o))


, (6.34)



where U is an approximate value function. This approximate value function may
be represented by alpha vectors computed offline using strategies such as QMDP,
fast informed bound, or point-based value iteration discussed earlier. Experiments
have shown that for many problems, a one-step lookahead can significantly improve
performance over the base offline strategy.
The approximate value function may also be estimated by sampling from a rollout

policy as introduced in Section 4.6.4 but with modifications to handle partial observ-
ability as shown in Algorithm 6.9. The generative model G returns a sampled next state
s ′ and reward r given state s and action a. This algorithm uses a single rollout policy
π0, but we can use a set of rollout policies and evaluate them in parallel. The policy that
results in the largest value is the one that is used to estimate the value at that particular
belief state.

Algorithm 6.9 Rollout evaluation
1: function Rollout(b , d ,π0)
2: if d = 0
3: return 0
4: a ∼ π0(b )
5: s ∼ b
6: (s ′, o, r ) ∼ G (s ,a)
7: b ′ ←UpdateBelief(b ,a, o)
8: return r + γRollout(b ′, d − 1,π0)

An alternative to summing over all possible observations in Equation (6.34) is to use
sampling. We can generate n observations for each action through independent calls to
SampleObservation(b ,a) and then compute

π(b ) = argmax
a

�
R(b ,a) + γ

1
n

n∑
i=1

U (UpdateBelief(b ,a, oa,i ))

. (6.35)

This strategy is particularly useful when the observation space is large.

The one-step lookahead strategy can be extended to look an arbitrary depth into the
future. Algorithm 6.10 defines the function SelectAction(b , d ,U ), which returns the
pair (a∗, u∗) defining the best action and the expected utility, given the current belief b ,
depth d , and approximate value function U .



When d = 0, no action is able to be selected, and so a∗ is nil and the utility is U (b ).
When d > 0, we compute the value for every available action and return the best action
and its associated value. To compute the value for an action a, we evaluate

R(b ,a) + γ
∑
o
P (o | b ,a)Ud−1(UpdateBelief(b ,a, o)). (6.36)

In the equation above, Ud−1(b ′) is the expected utility returned by the recursive call
SelectAction(b ′, d − 1). The complexity is given by O(|A|d |O |d ). Algorithm 6.10
can be modified to sample n observations instead of enumerating all |O | of them, similar
to what is done in Equation (6.35). The complexity then becomes O(|A|d nd ).
Algorithm 6.10 Forward search online policy
1: function SelectAction(b , d )
2: if d = 0
3: return (nil,U (b ))
4: (a∗, u∗)← (nil,−∞)
5: for a ∈ A
6: u← R(b ,a)
7: for o ∈ O
8: b ′ ←UpdateBelief(b ,a, o)
9: (a′, u ′)← SelectAction(b ′, d − 1)
10: u← u + γP (o | b ,a)u ′
11: if u > u∗
12: (a∗, u∗)← (a, u)
13: return (a∗, u∗)

The branch and bound technique originally introduced in Section 4.6.2 in the context
of MDPs can be easily extended to POMDPs. As with the POMDP version of forward
search, we have to iterate over the observations and update beliefs—otherwise the
algorithm is nearly identical to the MDP version. Again, the ordering of the actions in
the for loop is important. To prune as much of the search space as possible, the actions
should be enumerated such that their upper bounds decrease in value. In other words,
action ai comes before aj if U (b ,ai ) ≥U (b ,aj ).
We can use QMDP or the fast informed bound as the upper bound function U .

For the lower bound function U , we can use the value function associated with a blind
policy, which selects the same action regardless of the current belief state. This value



function can be represented by a set of |A| alpha vectors, which can be computed as
follows:

α(k+1)a (s ) = R(s ,a) + γ
∑
s ′

T (s ′ | s ,a)α(k )a (s
′), (6.37)

where α(0)a =mins R(s ,a)/(1− γ ). Equation (6.37) is similar to the QMDP equation
in Equation (6.26) except that it does not have a maximization over the alpha vectors
on the right-hand side.
So long as U and U are true lower and upper bounds, the result of the branch

and bound algorithm will be the same as the forward search algorithm with U as the
approximate value function. In practice, branch and bound can significantly reduce the
amount of computation required to select an action. The tighter the upper and lower
bounds, the more of the search space branch and bound can prune. However, in the
worst case, the complexity of branch and bound is no better than that of forward search.

Algorithm 6.11 Branch and bound online policy
1: function SelectAction(b , d )
2: if d = 0
3: return (nil,U (b ))
4: (a∗, u)← (nil,−∞)
5: for a ∈ A
6: if U (b ,a) ≤ u
7: return (a∗, u)
8: u← R(b ,a)
9: for o ∈ O
10: b ′ ←UpdateBelief(b ,a, o)
11: (a′, u ′)← SelectAction(b ′, d − 1)
12: u← u + γP (o | b ,a)u ′
13: if u > u
14: (a∗, u)← (a, u)
15: return (a∗, u)

The Monte Carlo tree search approach for MDPs can be extended to POMDPs, as
outlined in Algorithm 6.12. The input to the algorithm is a belief state b , depth d , and
rollout policy π0. The main difference between the POMDP algorithm and the MDP
algorithm in Section 4.6.4 is that the counts and values are associated with histories
instead of states. A history is a sequence of past observations and actions. For example,
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if we have two actions a0 and a1 and two observations o0 and o1, then a possible history
could be the sequence h = a0o1a1o1a0o0. During the execution of the algorithm, we
update the value estimates Q (h ,a) and counts N (h ,a) for a set of history-action pairs.
The histories associated with Q and N may be organized in a tree like the one in

Figure 6.7. The root node represents the empty history starting from the initial belief
state b . During the execution of the algorithm, the tree structure expands. The layers of
the tree alternate between action nodes and observation nodes. Associated with each
action node are values Q (h ,a) andN (h ,a), where the history is determined by the path
to the root node. In the algorithm, N (h) =

∑
a N (h ,a).

As with the MDP version, the Monte Carlo tree search algorithm is an anytime
algorithm. The loop in SelectAction(b , d ) can be terminated at any time, and some
solution will be returned. It has been shown that, with a sufficient number of iterations,
the algorithm converges to the optimal action.
Prior knowledge can be incorporated into this algorithm through the choice of

initialization parameters N0 and Q0 as well as the rollout policy. The algorithm does
not need to be reinitialized with each decision. The history tree and associated counts
and value estimates can be maintained between calls. The observation node associated
with the selected action and actual observation becomes the root node at the next time
step.



Algorithm 6.12Monte Carlo tree search
1: function SelectAction(b , d )
2: h←!
3: loop
4: s ∼ b
5: Simulate(s , h , d )
6: return argmaxa Q (h ,a)
7: function Simulate(s , h , d )
8: if d = 0
9: return 0
10: if h �∈ T
11: for a ∈ A(s )
12: (N (h ,a),Q (h ,a))← (N0(h ,a),Q0(h ,a))
13: T = T ∪ {h}
14: return Rollout(s , d ,π0)

15: a← argmaxa Q (h ,a) + c
�

logN (h)
N (h ,a)

16: (s ′, o, r ) ∼ G (s ,a)
17: q ← r + γSimulate(s ′, hao, d − 1)
18: N (h ,a)←N (h ,a) + 1
19: Q (h ,a)←Q (h ,a) + q−Q (h ,a)

N (h ,a)
20: return q



• POMDPs are MDPs over belief states.
• POMDPs are difficult to solve exactly in general but can often be approximated
well.

• Policies can be represented as alpha vectors.
• Large problems can often be solved online.

It was observed in the 1960s that POMDPs can be transformed into MDPs over belief
states [1]. Belief state updating in discrete state spaces is a straightforward application
of Bayes’ rule. A thorough introduction to the Kalman filter and its variants is provided
in Estimation with Applications to Tracking and Navigation by Bar-Shalom, Li, and
Kirubarajan [2]. Arulampalam et al. provide a tutorial on particle filters [3]. Probabilistic
Robotics by Thrun, Burgard, and Fox discusses different methods for belief updating in
the context of robotic applications [4].
Exact solution methods for POMDPs were originally proposed by Smallwood and

Sondik [5] and Sondik [6] in the 1970s. There are several surveys of early work on
POMDPs [7]–[9]. Kaelbling, Littman, and Cassandra present techniques for identifying
dominated plans to improve the efficiency of exact solution methods [10]. Computing
exact solutions to POMDPs is intractable in general [11], [12].
Approximation methods for POMDPs have been the focus of considerable research

recently. Hauskrecht discusses the relationship between QMDP and the fast informed
bound and presents empirical results [13]. Offline approximate POMDP solution
algorithms have focused on point-based approximation techniques, as surveyed by
Shani, Pineau, and Kaplow [14]. The point-based value iteration (PBVI) algorithm
was proposed by Pineau, Gordon, and Thrun [15]. There are other, more involved,
point-based value iteration algorithms. Two of the best algorithms, Heuristic Search
Value Iteration (HSVI) [16], [17] and Successive Approximations of the Reachable
Space under Optimal Policies (SARSOP) [18], involve building search trees through
belief space and maintaining upper and lower bounds on the value function. The
randomized point-based value iteration algorithm discussed in Section 6.4.4 is based on
the Perseus algorithm presented by Spaan and Vlassis [19]. Controller-based solutions
have also been explored for concisely representing policies for infinite-horizon problems
and removing the need for belief updating during execution [20], [21]. Several online
solution methods are surveyed by Ross et al. [22]. Silver and Veness present a Monte
Carlo tree search algorithm for POMDPs called Partially Observable Monte Carlo
Planning (POMCP) [23].
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Christopher Amato

Solving problems in which a group of agents must operate collaboratively in sequential
environments is an important challenge. As the construction of agents (e.g., robots,
sensors, software agents) becomes less costly, more agents can be deployed, but for
a team to achieve its full potential, each agent must reason about the others. In this
chapter, we discuss models in which agents may have uncertainty about both the state
of the environment and the choices of the other agents. Agents seek to optimize a
shared objective function but must develop plans of action based on a partial view
of the environment. We describe modeling this problem as a decentralized partially
observable Markov decision process (Dec-POMDP) and discuss the complexity and
salient properties of this model. We also provide an overview of exact and approximate
solution methods for Dec-POMDPs, discuss the use of communication between agents
in this model, and describe notable subclasses with additional modeling assumptions
and reduced complexity.

Multiagent systems can be modeled in a centralized way using MDPs and POMDPs
by requiring all agent information and decision making to be centralized at each step.
However, many problems require decentralized execution. The Dec-POMDP model is
an extension of the MDP and POMDP models that provides decentralized policies for
each agent. In a Dec-POMDP, the dynamics of the system and the objective function
depend on the actions of all agents, but each agent must make decisions based on local
information. We first present the model, discuss an example problem, and outline two
forms of solution representations.

A Dec-POMDP is defined by the following:
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• I , a finite set of agents,
• S , a finite set of states with designated initial state distribution b0,• Ai , a finite set of actions for each agent i ,• T , transition probability function T (s ′ | s ,a) that specifies the probability of
transitioning from state s to s ′ when action a is taken by the agents,

• R , a reward function R(s ,a) that specifies the immediate reward for being in state
s and taking the actions a,

• Ωi , a finite set of observations for each agent i , and• O , observation model O(o | s ′,a) that specifies the probability of observing o in
state s ′ given action a.

As shown in Figure 7.1, a Dec-POMDP involves multiple agents that operate under
uncertainty on the basis of different streams of observations. Like an MDP or a POMDP,
a Dec-POMDP unfolds over a finite or an infinite sequence of steps. At each step, every
agent chooses an action based purely on its local observations, resulting in an immediate
reward for the set of agents and an observation for each individual agent. Because
the state is not directly observed, it may be beneficial for each agent to remember its
observation history. Unlike in POMDPs, in Dec-POMDPs, it is not always possible to
calculate an estimate of the system state (a belief state) from the observation history of a
single agent (as we will discuss in Section 7.2.1).
A joint policy is a set of policies, one for each agent in the problem. A local policy for

an agent is a mapping from local observation histories to actions. The objective in a
Dec-POMDP is to find a joint policy that maximizes expected utility. As with MDPs
and POMDPs, we can define utility in different ways, such as the sum of rewards over a
finite horizon or the discounted sum of rewards over an infinite horizon (Section 4.1.2).
A generalization of the Dec-POMDP formulation involves specifying independent

reward functions for the various agents. If the agents are to maximize their own accu-
mulation of reward, then the problem becomes a partially observable stochastic game



(POSG). Such problems require a game-theoretic treatment (similar to what was intro-
duced in Section 3.3 for single-shot decisions) and are significantly more difficult to
analyze.

One set of domains that can be modeled as Dec-POMDPs is robot navigation and
exploration problems. A simple grid-based robot navigation problem is shown in Fig-
ure 7.2. The states in this problem correspond to the positions of both robots. The
actions are up, down, left, right, and stay in place. The movement actions move the
agent one grid cell in the desired direction with probability 0.6 or in one of the other
directions or current cell with probability 0.1 each. Movements into a wall result in the
robot’s staying in place. Choosing to stay in place always keeps the agent in the current
location. We assume perfect observation of the grid cells immediately surrounding the
agent (as indicated by the gray lines in the figure). As a result, each robot can observe
the wall configurations in surrounding squares but not its own actual location. The
objective is for the agents to meet as quickly as possible. When both agents occupy the
same square, a reward of one is received; otherwise, no reward is received. The initial
state is the one shown in the figure.
There are three types of uncertainty in this problem: uncertainty about action out-

comes (as in an MDP), uncertainty about sensor information (as in a POMDP), and
uncertainty about the information of the other agents. Although the agents observe
the surrounding grid squares and can narrow down their own possible locations, the
observations usually provide no information about the choices or location of the other
agent. As a result, optimal algorithms will often consider all the possible choices and
locations for the other agents when generating a solution. As discussed later, centralized
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belief states as used by a POMDP are no longer possible, and solving a Dec-POMDP
becomes much more difficult. A solution to this problem would be for each agent to
move toward a central location and, if the other agent is not seen, continue to some
locations the other agent could be. If the other agent is still not seen, then the agent
could move to a location that was agreed on in the solution process and wait for the other
agent to arrive. The solution method would produce the policy of which movements an
agent should make after seeing different observation histories, optimizing these choices
over the uncertainty.

For finite-horizon problems, local policies can be represented by policy trees. An example
is shown in Figure 7.3. Such trees are similar to the policy trees for POMDPs, but now
each agent possesses its own tree that is independent of the other agents’ trees. To make
this more concrete, we consider a simplified version of the example problem above in a
2× 2 grid without obstacles. Agent 1 starts in the top right, and agent 2 starts in the
bottom left. Actions are represented by arrows or the stop symbol, ·, (each agent can
move in the given direction or stay where it is). Observations are labeled “wl” and “wr”
for seeing a wall on the left or the right, respectively. In this representation, an agent
takes the action defined at the root node and then, after seeing an observation, chooses
the next action that is defined by the respective branch. This sequence continues until
the action at a leaf node is executed. For example, agent 1 would first move left, and if a
wall is seen on the right, then the agent would move left again. If a wall is now seen
on the left, then the agent does not move on the final step. A policy tree is a record
of the entire local history for an agent up to some fixed horizon. Because each tree is
independent of the others, it can be executed in a decentralized manner. The resulting
policies allow the agents to meet in the top left square quickly and with high probability.
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These trees can be evaluated by summing the rewards at each step weighted by the
likelihood of transitioning to a given state and observing a given set of observations. For
a set of agents, the value of trees q while starting at state s is given recursively by

U (q, s ) = R(aq, s ) +
∑
s ′,o

P (s ′ | aq, s )P (o | aq, s ′)U (qo, s ′), (7.1)

where aq are the actions defined at the root of trees q, and qo are the subtrees of q that
are visited after o have been seen.
Although this representation is useful for finite-horizon problems, infinite-horizon

problems would require trees of infinite height. Another option is to condition action
selection on some internal memory state. These solutions can be represented as a set of
local finite-state controllers (seen in Figure 7.4). Again, these controllers are similar to
those used by POMDPs except each agent possesses its own independent controller.
The controllers operate in a similar way to the policy trees. There is a designated

initial node, and following the action selection at that node, the controller transitions
to the next node depending on the observation. This process continues for the infinite
steps of the problem. We can also consider stochastic controllers, which choose actions
and transitions stochastically, as they are able to produce higher quality solutions than
deterministic controllers with the same number of nodes. Throughout this chapter,
controller states will be referred to as nodes to help distinguish them from system states.
An example of two-node stochastic controllers for the 2× 2 version of the example

problem can be seen Figure 7.4. Agent 2 begins at node 1, moving up with probability
0.89 and staying in place with probability 0.11. If the agent stayed in place and a wall
is then seen on the left (observation “wl”), on the next step, then the controller would
transition to node 1, and the agent would use the same distribution of actions again. If a
wall was seen on the right instead (observation “wr”), then there is a 0.85 probability that
the controller will transition back to node 1 and a 0.15 probability that the controller
will transition to node 2 for the next step. The resulting policy again allows the agents to



meet quickly and with high probability in the top left square. The finite-state controller
allows an infinite-horizon policy to be represented compactly by remembering some
aspects of the agent’s history without representing the entire local history.
We can evaluate the joint policy by beginning at the initial node and transitioning

through the controller according to the actions taken and observations seen. We define
the probability an action ai will be taken in node qi by agent i to be P (ai | qi ). We
also have P (q ′i | qi ,ai , oi ) represent the probability that the controller transitions to
node q ′i given that the controller is currently in qi , takes action ai , and observes oi . The
value for starting in nodes q and at state s with action selection and node transition
probabilities for each agent, i , is given by the following Bellman equation:

U (q, s ) =
∑
a

�∏
i
P (ai | qi )

�
R(s ,a)

+ γ
∑
s ′,o,q′

P (s ′ | a, s )O(o | s ′,a)∏
j
P (q ′j | qj ,aj , o j )U (q′, s ′)

�
. (7.2)

Note that the values (for either the trees or controllers) can be calculated offline in order
to determine a policy for each agent that can then be executed online in a decentralized
manner. In fact, as we will discuss below, many algorithms consider this offline planning
scenario in which the solution (trees or controllers) is generated offline in a centralized
manner and then the policy is executed online in a decentralized manner.

The decentralized nature of Dec-POMDPs makes them fundamentally different from
POMDPs. We explain some of these differences, discuss the complexity of the general
Dec-POMDP model, and describe an extension of the concept of belief states to
multiagent problems.

In a Dec-POMDP, the decisions of each agent affect all the agents in the domain, but
because of the decentralized nature of the model, each agent must choose actions based
solely on local information. Because each agent receives a separate observation that does
not usually provide sufficient information to efficiently reason about the other agents,
solving a Dec-POMDP optimally becomes difficult. Each agent may receive a different
piece of information that does not allow a common state estimate or any estimate of the
other agents’ decisions to be calculated. For example, in the robot navigation example
problem in Figure 7.2, even though each agent knows the initial location of the other,
agent 1’s observations (until it becomes adjacent) give it no information about agent 2’s



choice of action or location. Therefore, while it may be possible to limit the possible
locations the other agent may be in (such as those not in surrounding grid cells), it is
usually not possible to generate an estimate of the system state. Exceptions to this are
when observations provide this information (e.g., when the other agent is seen) or the
policies of the other agents are known (as discussed later).
State estimates are crucial in single-agent problems because they allow the agent’s

history to be summarized concisely (as belief states), but they are not generally available
in Dec-POMDPs. The lack of state estimates (and thus the lack of a concise sufficient
statistic) requires agents to remember whole action and observation histories in order to
act optimally; therefore, Dec-POMDPs cannot be transformed into belief state MDPs,
and we must use a different set of tools to solve them.

The difference between Dec-POMDPs and POMDPs is seen in the complexity of the
finite-horizon problem. A Dec-POMDP with at least two agents is NEXP-complete, a
category of problem that may require doubly exponential time in practice. This complex-
ity is in contrast to the MDP (P-complete) and the POMDP (PSPACE-complete). As in
solving an infinite-horizon POMDP, optimally solving an infinite-horizonDec-POMDP
is undecidable because it may require infinite resources (infinitely sized controllers),
but ε-optimal solutions can be found with finite time and memory. These complexity
differences show that introducing multiple decentralized agents causes Dec-POMDPs
to be significantly more difficult to solve than POMDPs. The intuition behind this com-
plexity is that agents must consider the possible choices of all other agents in addition
to the state and action uncertainty present in order to produce an optimal policy.

As mentioned above, from an agent’s perspective, not only is there uncertainty about
the state, but there may also be uncertainty about the policies of the other agents. If we
consider the possible policies of the other agents as part of the state of the system, then
we can form a generalized belief state (sometimes called a multiagent belief state). Agents
can also consider the generalized belief space that includes all possible distributions over
states of the system and policies of the other agents. In a two-agent situation, the value
of an agent’s policy p at a given generalized belief state bG is given by

U (p, bG ) =
∑
q ,s

bG (s , q )U (p, q , s ), (7.3)



where q represents a policy of the other agent. If all other agents have known policies,
then the generalized belief state is the same as a POMDP belief state, and we can
solve the Dec-POMDP for the remaining agent as a POMDP (the other agents can be
thought of as part of the environment). Unfortunately, when we solve a Dec-POMDP,
probability distributions for other agent policies are generally not known. As a result,
the generalized belief state cannot usually be calculated. Nevertheless, the idea of the
possible policies of the other agents and the generalized belief space can be used in the
decision-making process.

Because of the high worst-case complexity of Dec-POMDPs, a number of Dec-POMDP
subclasses have been explored that may be more tractable theoretically or in practice.
This section discusses a few of these, including the Dec-MDP, network distributed
POMDP (ND-POMDP), and multiagent MDP (MMDP). The relationships among
Dec-POMDPs, POSGs, POMDPs, MDPs, and Dec-MDPs are shown in Figure 7.5.

A decentralized Markov decision process (Dec-MDP) is a Dec-POMDP with joint full
observability. In other words, if the observations of all the agents are combined, then
the state of the environment is known exactly. A common example of a Dec-MDP is a
problem in which the state consists of the locations of a set of robots and each agent
observes its own location perfectly. Therefore, if all these observations are combined,
then the locations of all robots would be known. Note that (perhaps counterintuitively)



Dec-MDPs do include observations for each agent that are often noisy indicators of the
state. The complexity of Dec-MDPs is the same as Dec-POMDPs; although the true
state may be known if observations are shared, this sharing does not take place.
We now discuss factorization in the context of Dec-MDPs, but similar factorization

can be done in full Dec-POMDPs. A factored n-agent Dec-MDP is a Dec-MDP in
which the world state can be factored into n+1 components, S = S0×S1× . . .×Sn . The
states in Si are the local states associated with agent i . The S0 component is a property
of the environment and is not affected by any agent actions (and is sometimes omitted).
For example, S0 may be the location of a target in a target-tracking scenario. Similarly,
an agent’s local state, Si , might consist of its location in a grid. A factored, n-agent
Dec-MDP is said to be locally fully observable if each agent fully observes its own state
component.
A factored, n-agent Dec-MDP is said to be transition independent if the state transition

probabilities factorize as follows:

T (s ′ | s ,a) = T0(s ′0 | s0)
∏
i
Ti (s

′
i | si ,ai ). (7.4)

Here, Ti (s ′i | si ,ai ) represents the probability that the local state of agent i transitions
from si to s ′i after executing action ai . The unaffected state transition probability is
denoted T0(s ′0 | s0). The robot navigation problem is transition independent if the
robots never affect each other (i.e., they do not bump into each other when moving
and can share the same grid cell).
A factored, n-agent Dec-MDP is said to be observation independent if the observation

probabilities factorize as follows:

O(o | s ,a) =∏
i
Oi (oi | si ,ai ). (7.5)

In the equation above, Oi (oi | si ,ai ) represents the probability that agent i receives
observation oi in state si after executing action ai . If the robots in the navigation problem
cannot observe each other (due to working in different locations or lack of sensors),
then the problem becomes observation independent.
A factored, n-agent Dec-MDP is said to be reward independent if

R(s ,a) = f (R1(si ,ai ), . . . ,Rn(si ,ai )) , (7.6)

with the constraint that f is some monotonically non-decreasing function. Such a
function has the property that xi ≤ x ′i if and only if

f (x1, . . . , xi , . . . , xn) ≤ f (x1, . . . , x
′
i , . . . , xn). (7.7)



Under this assumption, the global reward is maximized by maximizing local rewards.
Additive local rewards are often used in reward independent models, where

R(s ,a) = R0(s0) +
∑
i
Ri (si ,ai ). (7.8)

Table 7.1 shows the complexity of different subclasses of Dec-MDPs. The simplest
case results from having independent transitions, observations, and rewards. It is straight-
forward to see that, in this case, the problem can be decomposed into n separate MDPs,
and their solution can then be combined. When only the transitions and observations
are independent, the problem becomes NP-complete. Intuitively, the NP-completeness
is because the other agents’ policies do not affect an agent’s state (only the reward at-
tained at the set of local states). Because independent transitions and observations imply
local full observability, an agent’s observation history does not provide any additional
information about its own state—it is already known. Similarly, an agent’s observation
history does not provide any additional information about the other agents’ states be-
cause they are independent. As a result, optimal policies become mappings from local
states to actions instead of mappings from observation histories (or local state histories
as local states are locally fully observable in this case) to actions. All other combinations
of independent transitions, observations, and rewards do not reduce the complexity of
the problem, leaving it NEXP-complete in the worst case.

A networked distributed POMDP (ND-POMDP) is a Dec-POMDP with transition and
observation independence and a special reward structure. The reward structure is repre-
sented by a coordination graph or hypergraph. A hypergraph is a generalization of a graph
in which an edge can connect any number of nodes. The nodes in the ND-POMDP
hypergraph correspond to the various agents. The edges relate to interactions between
the agents in the reward function. An ND-POMDP associates with each edge j in the
hypergraph a reward component Rj that depends on the state and action components
to which the edge connects. The reward function in an ND-POMDP is simply the
sum of the reward components associated with the edges. This fact allows the value
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function to be factorable in the same way, and solution methods can take advantage of
this additional structure.
Figure 7.6 shows an example ND-POMDP structure with five agents. There are

three hyper edges: one involving agents 1, 2, and 3; another involving agents 3 and 4;
and another involving agent 5 on its own. The reward function decomposes as follows:

R123(s1, s2, s3,a1,a2,a3) + R34(s3, s4,a3,a4) + R5(s5,a5). (7.9)

Motivating domains for ND-POMDPs are typically sensor network and target tracking
problems.
The ND-POMDP model is similar to the transition and observation independent

Dec-MDP model, but it does not make the joint full observability assumption. Even
if all observations are shared, the true state of the world may not be known. Further-
more, even with factored transitions and observations, a policy in an ND-POMDP
is a mapping from observation histories to actions, unlike the transition and observa-
tion Dec-MDP case in which policies are mappings from local states to actions. The
worst-case complexity remains the same as a full Dec-POMDP (NEXP-complete), but
algorithms for ND-POMDPs are typically much more scalable in the number of agents.
Scalability can increase as the hypergraph becomes less connected.

Another notable subclass is the multiagent Markov decision process (MMDP). In an
MMDP, each agent is able to observe the true state, making the problem fully observable.
Because each agent is able to observe the true state, an MMDP can be solved as an
MDP (using some coordination mechanisms to ensure policies are consistent with each
other) in polynomial time. An example based on the robot navigation problem above
for the MMDP case would assume that each robot knows the location of the other
robots at each step of the problem. The relationships among MMDPs, Dec-POMDPs,
and single-agent models are shown in Figure 7.7.



This section discusses optimal algorithms for finite-horizon problems and ε-optimal
algorithms for infinite-horizon problems. Finite-horizon methods can be used to solve
infinite-horizon problems within any ε by using a horizon that is large enough to cause
further action selection to contribute little to the overall value. POMDP methods are
often scalable enough to produce such solutions, but Dec-POMDP methods are not.
As a result, specific infinite-horizon methods for Dec-POMDPs, which use finite-state
controllers as solution representations, are discussed. Most solution methods assume
the problem is solved centrally offline to produce policies that can be executed online in
a decentralized manner. These methods can also produce solutions in a decentralized
manner with proper coordination mechanisms for the given algorithm.

Algorithm 7.1 is a dynamic programming algorithm for optimally solving a finite-
horizon Dec-POMDP. This approach constructs a set of trees for each agent (repre-
sented as π) from the last step until the first. At each step, the algorithm exhaustively
generates all next step policies, evaluating them, and then pruning policies that are
provably suboptimal for each agent i in turn until no more trees can be removed. This
generation, evaluation, and pruning continues until the desired horizon T is reached.
Dynamic programming in Dec-POMDPs is similar to the value iteration approach for
POMDPs, except generalized belief states are used, resulting in a more complicated
pruning step.
In the dynamic programming algorithm, a set of T -step policy trees, one for each

agent, is generated from the bottom up. More precisely, on the last step of the problem,
each agent will perform just a single action, which can be represented as a one-step
policy tree. All possible actions for each agent are considered, and each combination of



Algorithm 7.1 Dynamic programming for Dec-POMDPs
1: function DecDynamicProgramming(T )
2: t ← 0
3: πt ←!
4: repeat
5: πt+1←ExhaustiveBackup(πt )
6: Compute V πt+1

7: repeat
8: π̂t+1← πt+1
9: for i ∈ I
10: π̂t+1←Prune(π̂t+1, i )
11: Compute V π̂t+1

12: until |πt | = |π̂t |
13: t ← t + 1
14: until t = T
15: return πt

these one-step trees is evaluated at each state of the problem by using Equation (7.1).
Any action that has lower value than some other action for all states and possible actions
of the other agents (the generalized belief space) is then pruned. All two-step policies are
then generated for each agent by an exhaustive backup of the current trees. That is, for
each action and each resulting observation, some one-step tree is chosen. If an agent has
|Qi | one-step trees, |Ai | actions, and |Ωi | observations, then there will be |Ai ||Qi ||Ωi |
two-step trees. After this exhaustive backup of next step trees is completed for each
agent, pruning is again used to reduce their number. This process of backing up trees
and pruning continues until horizon T is reached.
The resulting set of trees will contain an optimal solution for horizon T and any

initial state of the system. This is because we considered all possible trees at each step
and removed only those that were not useful no matter what policies the other agents
chose at that step. This conservative pruning of trees ensures that we can safely remove
trees that will be suboptimal at a given step.
The linear program used to determine whether a tree can be pruned can be represented

as follows. For agent i ’s given tree qi and variables ε and x (q−i , s ), maximize ε, given∑
q−i ,s

x (q−i , s )U (q̂i ,q−i , s ) + ε ≤
∑
q−i ,s

x (q−i , s )U (qi ,q−i , s ) ∀ q̂i (7.10)

∑
q−i ,s

x (q−i , s ) = 1 and x (q−i , s ) ≥ 0 ∀q−i , s . (7.11)



This linear program determines whether agent i tree, qi is dominated by comparing
its value to other trees for that agent, q̂i . The variable x (q−i , s ) is a distribution over
trees of the other agents and system states (the generalized belief state). We maximize ε
while ensuring the variable x that represents the generalized belief state remains a proper
probability distribution and test to see whether there is some distribution of trees that
has higher or equal value for all states and policies of the other agents. Because there is
always an alternative with at least equal value, regardless of system state and other agent
policies, a tree qi can be pruned if ε is non-positive.
The test for dominance is used for trees of a given horizon, ensuring that we consider

all possible policies for a given horizon and remove those that are not useful no matter
what policies are chosen by the other agents. If policies are removed, then the generalized
belief space becomes smaller for the other agents (due to the removal of a possible policy
to consider), and more policies may be able to be pruned. Thus, we can keep testing for
dominated policies for each agent until no agent is able to prune any further policies.
Lines 7–11 in Algorithm 7.1 show that pruning continues for all agents while any agent
is able to remove any tree.
Unlike value iteration for POMDPs, the policy trees must be retained because it is

no longer possible to recover the policy from the value function. Even with one-step
lookahead in the POMDP case, we must calculate the belief state after an action is
chosen. Because it is not possible to calculate a belief state in the Dec-POMDP case,
and because the actions must be chosen based on local information, the optimal value
function is not sufficient to generate a Dec-POMDP policy.

Instead of computing the policy trees from the bottom up, as is done by dynamic
programming methods, we can construct the trees from the top down starting from
a known initial state. This is the approach of multiagent A∗ (MAA∗), which is an
optimal algorithm built on heuristic search techniques. The search is conducted by
using an upper bound on the value of partially defined policies (using POMDP or MDP
solutions) and then choosing the partial joint policy to expand in a best-first ordering.
Actions are then added, and an upper bound on this new partial joint policy is found.
Again, the highest-valued partial joint policy is chosen, and another action choice is
fixed. This process continues until a fully defined joint policy is found that has value
higher than any of the partial joint policies. Algorithm 7.2 outlines the approach.
We can grow a joint policy in a top-down fashion by first considering the possible

actions each agent can take to begin its policies. MAA∗ considers all possible combina-
tions of actions that could be taken at that step and constructs a search tree that has
these combinations as separate search nodes. In the worst case, a search tree could be
constructed that contains all possible policies for each agent by considering all possible



Algorithm 7.2Multiagent A∗
1: functionMultiagentA∗(T ,b0)
2: V ←−∞
3: L←×i Ai
4: repeat
5: δ←select(L)
6: Δ′ ←expand(δ)
7: ΔT ←fullPols(Δ′)
8: π← bestFullPol(ΔT )
9: v ← valueOf(π)
10: if v >V
11: π∗ ← π
12: V ← v
13: prune(L,V )
14: Δ′ ←Δ′ \ΔT

15: L← L \δ ∪Δ′
16: until L is empty
17: return π∗

combinations of actions at the first step, followed by all possible combinations of actions
for each observation at the second step, and so on. Because many of these policies may
be suboptimal, a more intelligent approach for determining which choices to make is
desired.
To assist in choosing better actions, MAA∗ incorporates a heuristic value for continu-

ing execution for a given number of steps after a partial policy has been executed. That
is, using a search based on the A∗ heuristic search method, we can estimate the value of
a set of horizon T policies from a set of horizon t trees using the value of those trees up
to horizon t calculated with Equation (7.1) and then some heuristic value for the value
of continuing to horizon T .
More formally, we will call some set of horizon t < T policy trees q a partial policy

and a set of policiesΔT −t a completion policy. A completion policy consists of appending
T − t policies to each leaf (last action) in the partial policy. Given a partial policy and a
completion policy, we could evaluate them at a state s as follows:

U ({qt ,ΔT −t }, s ) =U (qt , s ) +U (ΔT −t | qt , s ). (7.12)

Rather than explicitly considering completion policies to append, we can instead estimate
the value a completion policy would produce. Therefore, we can produce an estimated
value Û that a partial policy has for the full horizon T as

Û (qt , s ) =U (qt , s ) + Û T −t
qt ,s , (7.13)



where V̂ T −t
qt ,s is the estimate for the value of continuing until horizon T after executing

q starting at s .
There are many ways we can calculate V T −t

qt ,s , but to ensure an optimal policy is
produced, we require the estimated value to be at least as high as the optimal value of
continuing (V̂ ≥V ∗). MAA∗ considers relaxing problem assumptions by using MDP
or POMDP policies to produce the heuristic values. V ∗POMDP(b ) can be defined as the
optimal value of a POMDP policy starting at belief b (i.e., a centralized solution in
which all observations for all agents are known and actions can be chosen based on
this centralized information). Similarly, V ∗MDP(s ) can be defined as the optimal value of
an MDP policy starting at state s (i.e., a centralized policy assuming the state of the
problem can be seen by all agents for the remainder of the problem). It can be shown
that V ∗Dec-POMDP ≤V ∗POMDP ≤V ∗MDP, which intuitively holds because policies are less
constrained as more information is available to the agents. MAA∗ then evaluates a partial
policy by evaluating the policy until its given horizon t and then assumes either the
belief state (in the V ∗POMDP case) or the state (in the V ∗MDP case) is known to the agents
thereafter starting from the leaf nodes of qt .
The search in MAA∗ then chooses to grow the partial policy with the highest heuristic

value. Growing a policy appends actions for each possible observation after the leaves
of the current policy. The expansion of this search node adds an exponential number
of nodes to the search tree at each step. Each of these new policies is then evaluated to
produce an updated heuristic value.
A lower bound on the value of an optimal joint policy is also maintained. If growing

a policy results in a horizon T policy, then the value of this policy is compared with
the lower bound, updating it if the value of this policy is greater. Subsequently, any
partial policy with estimated value less than the lower bound can then be pruned. This
pruning can occur because the estimated value of a policy is an upper bound on its true
value, indicating that it will never have value higher than the policy that produced the
lower bound. The search completes when there are no more partial policies to expand.
In this case, a set of qT policies has been generated with higher value than the heuristic
values of any partial policy.
We now describe Algorithm 7.2 in more detail. A lower bound value, V , which

represents the value of the best known joint policy, is initialized to negative infinity. An
open list L, which represents the partial policies that are available to be expanded, is
initialized to all joint actions for the agents. At each step, the partial joint policy (node
in the search tree) with the highest estimated value V̂ is selected. This partial policy
is then expanded, generating all next step policies for that joint policy (all children in
the search tree). This set is called Δ′. The set of full horizon T joint policies is now
gathered into ΔT , each of which is evaluated, and the one with the highest value v is
chosen. If this value is higher than the value of the best known full policy, then the
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lower bound value and pointer to best policy are updated. Also, any partial policy in the
open list that has estimated upper bound value (using the QMDP or QPOMDP heuristics)
lower than V is pruned. The full trees are removed from the set of expanded nodes, and
the selected node is removed from the open list. The remaining expanded nodes are
then added to the open list. This algorithm continues until the open list is empty and
returns an optimal joint policy π∗.
An example of this search is shown in Figure 7.8. Each search node represents a joint

policy for a given horizon. Subscripts represent the indices of the search node and each
of the ancestor nodes in the search tree, whereas superscripts represent the horizon of
the joint policy. Ancestors are indexed to signify that partial policies are shared for the
appropriate horizon. Note that m represents the number of possible next-step joint
policies, which is |Amax |n|Ωmax |, given the largest action and observation sets among the
n agents Amax , Ωmax . The available partial policies (the open list) are represented by
the leaves of the tree, whereas the nodes that have already been expanded are shown as
internal nodes.

Because the infinite-horizon problem is undecidable, it may not be possible to generate
a solution with the exact optimal value. As a consequence, methods focus on producing
solutions within ε of the optimal value.
The policy iteration approach for Dec-POMDPs is similar to the finite-horizon

dynamic programming algorithm, except finite-state controllers are used as policy
representations (like the policy iteration approach for POMDPs). Starting from an
initial controller for each agent, nodes are added at each step by using an exhaustive
backup to produce any possible next-step policy for each agent. Pruning can then be
completed to remove a node in an agent’s controller if it has lower value than beginning
in another node for all states of the system and all possible controllers of the other agents.



Algorithm 7.3 Policy iteration for Dec-POMDPs
1: function DecPolicyIteration(π0,ε)
2: t ← 0
3: repeat
4: πt+1←ExhaustiveBackup(πt )
5: Compute V πt+1

6: repeat
7: π̂t+1← πt+1
8: for i ∈ I
9: π̂t+1←Prune(π̂t+1, i )
10: UpdateController(π̂t+1, i )
11: Compute V π̂t+1

12: until |πt | = |π̂t |
13: t ← t + 1
14: until

γ t+1|Rmax|
1−γ ≤ ε

15: return πt

These exhaustive backups and pruning steps continue until the solution is provably
within ε of an optimal solution. This algorithm can produce an ε-optimal policy in a
finite number of steps. The details of policy iteration follow.
The policy iteration algorithm is shown in Algorithm 7.3. The input is an initial

joint controller, π0, and a parameter, ε. At each step, evaluation, backup, and pruning
occur. The controller is evaluated using Equation (7.2). Next, an exhaustive backup is
performed to add nodes to the local controllers. An exhaustive backup adds nodes to
the local controllers for all agents at once. Similar to the finite-horizon case, for each
agent i , |Ai ||Qi ||Ωi | nodes are added to the local controller, one for each one-step policy.
Note that repeated application of exhaustive backups amounts to a brute force search in
the space of deterministic policies. Continuing these exhaustive backups converges to
optimality but is obviously quite inefficient.
To increase the efficiency of the algorithm, pruning takes place. Recall that planning

takes place offline, so the controllers for each agent are known at each step, but agents
will not know which node of their controller any of the other agents will be in during
execution. As a result, pruning must be completed over the generalized belief space
(using a linear program that is similar to that described for finite-horizon dynamic
programming). That is, a node for an agent’s controller can only be pruned if there is
some combination of nodes that has higher value for all states of the system and at all
nodes of the other agents’ controllers. If this condition holds, then edges to the removed
node are redirected to the dominating nodes. Because a node may be dominated by
a distribution of other nodes, the resulting transitions may be stochastic rather than



deterministic. The updated controller is evaluated, and pruning continues until no
agent can remove any further nodes.
In contrast to the single-agent case, there is no Bellman residual for testing conver-

gence to ε-optimality. We resort to a simpler test based on the discount rate and the
number of iterations so far. Let |Rmax| be the largest absolute value of an immediate
reward possible in the Dec-POMDP. The algorithm terminates after iteration t if
γ t+1|Rmax|/(1− γ ) ≤ ε. At this point, due to discounting, the value of any policy after
step t is less than ε.

In this section, we discuss approximate dynamic programming methods for finite-
horizon problems and fixed-size controller-based methods for infinite-horizon problems.
The algorithms in this section do not possess error bounds.

The major limitation of dynamic programming approaches is the explosion of memory
and time requirements as the horizon grows. This explosion occurs because each step
requires generating and evaluating all joint policy trees (sets of policy trees for each agent)
before performing the pruning step. Approximate dynamic programming techniques
can mitigate this problem by keeping a fixed number of policy trees for each agent at
each step, using a parameter calledMaxTrees. This approach, called memory-bounded
dynamic programming (MBDP), is outlined in Algorithm 7.4.
MBDP merges top-down (heuristic search) and bottom-up (dynamic programming)

approaches by using heuristics (referred to as H in the algorithm) to choose top-down
policies for each agent up to a given horizon. That is, dynamic programming proceeds
as before, but after each backup,MaxTrees belief states are generated using heuristics to
perform top-down sampling until the current step of dynamic programming is reached
(T − t if dynamic programming is at step t ). It is then assumed that the resulting
belief states are revealed to the agents, and only the trees that have the highest value
at these belief states are retained. During execution, the belief state will not truly be
revealed to the agents, but the hope is that high-valued decentralized policies can still
be produced using this strategy. MBDP is conducted in an iterative fashion similar to
traditional dynamic programming. For example, in a problem of horizon T , heuristic
policies can be used for the first T − 1 steps, and dynamic programming can find the
best one-step trees (actions) for the resulting beliefs. Then, heuristic policies can be used
for the first T −2 steps, and theMaxTrees one-step trees can be built up to two steps by
dynamic programming. This process continues until MaxTrees horizon T trees have
been constructed. Heuristics that have been used include MDP and random policies.



Algorithm 7.4Memory-bounded dynamic programming (MBDP)
1: functionMBDP(MaxTrees,T ,H )
2: t ← 0
3: πt ←!
4: repeat
5: πt+1←ExhaustiveBackup(πt )
6: Compute V πt+1

7: π̂t+1←!
8: for k ∈MaxTrees
9: bk ← GenerateBelief(H ,T − t − 1)
10: π̂t+1← π̂t+1 ∪ argmaxπt+1

V πt+1 (bk )

11: t ← t + 1
12: πt+1← π̂t+1
13: until t = T
14: return πt

Because only a fixed number of trees is retained at each step, the result is a suboptimal
but much more scalable algorithm. In fact, because the number of policies retained at
each step is bounded byMaxTrees, MBDP has time and space complexity linear in the
horizon.

As an alternative to MBDP-based approaches, a method called joint equilibrium search
for policies (JESP) utilizes alternating best response. JESP is shown in Algorithm 7.5.
Initial policies are generated for all agents and then all but one are held fixed. The
remaining agent can then calculate a best response (local optimum) to the fixed policies.
This agent’s policy then becomes fixed, and the next agent calculates a best response.
This process continues until no agents change their policies. The result is a policy that
is only locally optimal, but it may be high valued. JESP can be made more efficient by
incorporating dynamic programming in the policy generation. Note that JESP can be
thought of as finding a Nash equilibrium (as discussed in Section 3.3) in the cooperative
game represented as the Dec-POMDP.

Communication can be implicitly represented using observations, but more explicit
representations of communication have also been developed. Free and instantaneous
communication is equivalent to centralization because all agents can have access to
all observations at each step. When communication is delayed or has a cost, agents



Algorithm 7.5 Joint equilibrium search for strategies (JESP) without DP
1: function JESP(π)
2: k = 0
3: πk ← π
4: repeat
5: πk+1← πk

6: k ← k + 1
7: for i ∈ I
8: Compute V πk

9: πk (i )← BestResponse(πk ,−i )
10: until πk = πk−1
11: return πk

must reason about what and when to communicate. The complexity classes of the
Dec-POMDP model with different types of observability and communication are
shown in Table 7.2.
One extension of the general Dec-POMDP model to explicitly include communica-

tion is the decentralized partially observable Markov decision process with communica-
tion (Dec-POMDP-Com). A Dec-POMDP-Com is a Dec-POMDP, where each agent
can send a message at each step. The reward at each step is a function of the joint state,
joint action, and set of messages sent by the agents.
Producing an optimal solution of a Dec-POMDP-Com has the same complexity as

solving the general Dec-POMDP model (NEXP-complete), and similar algorithms can
be used to solve it as well. It can be shown that the optimal value of communicating
an agent’s history since the last communication will have value at least as high as
any other set of possible messages, assuming fixed communication costs. As a result,
many communication approaches assume that observation histories are used during
communication. Many methods assume communication decisions are made by each
agent separately, but some models assume agents can force all others to send their
observation histories (allowing a POMDP belief state to be calculated).
A natural approach to solving a Dec-POMDP with communication is to produce

a centralized (POMDP) plan and communicate when the observations received by
an agent would cause it to choose a different action from the one prescribed by the
centralized plan. This approach can be thought of as the agents agreeing on a policy
before execution, and when it is noticed (by an agent’s local observations) that this
policy could be improved, communication takes place. This approach does not explicitly
consider communication cost or delay but can limit the number of times communication
takes place.



• Dec-POMDPs can represent cooperative multiagent problems with action out-
come uncertainty, observation uncertainty, and costly, lossy, or no communication.

• Like MDPs and POMDPs, Dec-POMDPs model sequential problems using a
decision-theoretic approach that utilizes probabilities for uncertainties and values
for outcomes.

• Unlike the single-agent models, each agent must make choices based solely on its
own observation history.

• Solving finite-horizon Dec-POMDPs is NEXP-complete.
• Many subclasses of Dec-POMDPs are more efficient in theory or practice.
• Algorithms have been developed that can produce optimal or ε-optimal solutions
for finite and infinite-horizon Dec-POMDPs.

• More scalable approximate algorithms have also been developed.
• Communication can also be explicitly modeled to assist in determining when and
what to communicate to improve performance.

General overviews of Dec-POMDPs with additional algorithms andmodels are provided
by Seuken and Zilberstein [1], Oliehoek [2], and Goldman and Zilberstein [3]. The
complexity of the general Dec-POMDP was proven by Bernstein et al. [4]. A model
similar to a Dec-POMDP is the multiagent team decision problem (MTDP) [5].
Finite-horizon dynamic programming is presented byHansen, Bernstein, and Zilberstein
[6], and infinite-horizon policy iteration is described by Bernstein et al. [7]. Multiagent
A∗ is presented by Szer, Charpillet, and Zilberstein [8].
Dec-MDPs with independent transitions and observations were first discussed and

solved by Becker et al. [9]. Dec-MDPs with event-driven interactions, considering
limited transition dependence, were also discussed [10]. Allen and Zilberstein dis-
cussed a number of different modeling assumptions and resulting complexity [11].
ND-POMDPs were first proposed by Nair et al. [12], and MMDPs are presented
by Boutilier [13]. Approximate finite-horizon algorithms MBDP and JESP are de-



scribed by Seuken and Zilberstein [14] and Nair et al. [15], respectively. Approximate
infinite-horizon algorithms can be found in the literature [16]–[18].
The Dec-POMDP-Com model was presented by Goldman and Zilberstein [3]. The

idea of using a centralized policy as a basis for communication was described by Roth,
Simmons, and Veloso [19]. Forced synchronizing communication was discussed by
Nair and Tambe [20].
Optimal finite-horizon algorithms have been improved in a few directions. Prun-

ing can be used while conducting the backup to limit the subtrees that need to be
considered [21]. Other work has also compressed policies rather than agent histories,
improving the efficiency of the linear program used for pruning [22]. MAA∗ has been
improved in several ways, including the incorporation of new heuristics and improved
search [23]–[25]. Recently, two approaches have been developed for generating more
concise sufficient statistics for offline planning, proving the sufficiency of distributions
of states and joint histories [26] and converting Dec-POMDPs into POMDPs using
decentralizable policies [27].
Approximate algorithms have also seen additional improvements. A number of

approaches have improved on MBDP by compressing observations [28], replacing the
exhaustive backup with a branch-and-bound search in the space of joint policy trees
[29], as well as constraint optimization [30] and linear programming [31] to scale up
the selection of the trees at each step. Additional fixed-size controller approaches have
been developed that utilize an alternative representation of the controller as a Mealy
machine to increase performance [32], employ expectation maximization for parameter
optimization [33], or make use of more structured periodic controllers and an improved
search technique [34].
Algorithms for subclasses have also been developed. The algorithm for solving transi-

tion and observation independent Dec-MDPs was the coverage set method [9]. Addi-
tional methods have also been developed to solve independent transition and observation
Dec-MDPs more efficiently. These methods include a bilinear programming algorithm
[35], a mixture of heuristic search and constraint optimization [36], and recasting the
problem as a continuous MDP [37]. Optimal and approximate methods for solving
ND-POMDPs have been proposed [12]. Other ND-POMDP methods have also been
developed, such as those producing quality bounded solutions [38] and using finite-state
controllers for agent policies [39].
Other models of communication are discussed in the literature [3], [5]. Commu-

nication has been studied in the context of locally fully observable Dec-MDPs with
independent transitions and observations. This problem can be modeled with a cost of
communication to receive the local states of the other agents and solved with a set of
heuristic approaches [40]. Myopic communication, where an agent decides whether
to communicate based on the assumption that communication can take place on this
step or never again, has also been shown to work well in many cases [41]. Other types



of communication explored include stochastically delayed communication [42] and
communication for online planning in Dec-POMDPs [43].
Factored models have been studied in the context of Dec-POMDPs. General factored

models have been described and solved [44]. Witwicki and Durfee summarized different
types of factored models and their complexity [45], and improved algorithms have been
developed [46], [47].
In general, the research community has focused on planning methods for models that

are similar to Dec-POMDPs, but a few learning methods have been explored. These
include model-free reinforcement learning methods using gradient-based methods
to improve the policies [48], [49] and using communication to learn solutions in
ND-POMDPs [50].
Additional solution methods for general Dec-POMDPs have also been proposed.

These include a mixed integer linear programming approach for Dec-POMDPs [51]
and sampling methods [52], [53].
A number of applications have been studied, including multi-robot coordination in

the form of space exploration rovers [54], helicopter flights [5] and navigation [55]–
[57], load balancing for decentralized queues [58], network congestion control [59],
multiaccess broadcast channels [60], network routing [61], sensor network management
[12], target tracking [12], [62], and weather phenomena [63].
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Jason R. Thornton

Driven by recent advances in digital video camera design, video management systems,
and efficient archiving, security personnel at large facilities and urban sites increasingly
deploy comprehensive video surveillance systems [1]. Such systems support the ability
for operators to monitor large areas in real time and the ability for operators to conduct
forensic review after a key incident or report. While the fully attentive human visual
system is adept at interpreting video content, it is also limited in capacity; as a result,
operator review of large amounts of surveillance video can be a slow and tedious process.
Automatic video search technology can help relieve some of the burden on human
operators. This technology can direct the attention of security personnel or investigators
to potentially useful video content [2]. Although there are a number of ways to analyze
and index video (e.g., based on observed actions, motion patterns, or object appearances),
this chapter focuses on the particular problem of attribute-based person search [3].
We will present a probabilistic approach to the problem that is especially suited to the
uncertainty of video observations, and we discuss its performance in realistic surveillance
environments.

The problem of searching for a person recorded within surveillance video may be divided
into two subproblems: biometric search or attribute-based search. Biometric search
refers to the process of looking for a person whose physiological characteristics (such as
facial appearance) indicate a precise match to a known identity. Although automatic
recognition based on face [4] or other biometric signatures [5] can be performed under
certain conditions, this approach requires access to a previously captured biometric
template against which to perform matching. This approach cannot be used when
analysts or investigators are working only with a description of a person of interest or a
sample image that does not adequately capture a unique biometric signature.



An alternative approach is attribute-based search, in which the system looks for
persons who match a basic appearance profile, including attributes that are observable
at a distance, such as hair color, clothing type and color, gender, and accompanying bags
or other carried items. These descriptions are sometimes called “soft biometrics” because
they are temporary in nature and taken together do not necessarily describe a unique
individual in the area under surveillance. However, these profiles are usually specific
enough to significantly narrow the subset of persons who require further inspection.
Automatic attribute-based search is a difficult problem because there can be significant

variations in appearance among images that match the same attribute profile. These
variations are due to determining factors such as pose, clothing style, lighting conditions,
view angle, and naturally occurring differences within the human population. Figure 8.1
shows a sample set of images exhibiting the basic attributes “blue shirt and black pants.”
Although these are all matches to the same description, inspection of the observed pixel
values within these images reveals considerable differences. An accurate search technique
must successfully interpret image content despite these differences.
Although the problem of attribute-based search has been addressed before (with a

particular focus on face attributes in close-range video [6]), in this chapter, we consider
a probabilistic approach to the problem. The chief advantage of probabilistic techniques
is that they provide an elegant way to account for collective variations in appearance,
especially when these variations are dependent on latent (unobserved) factors of image
composition.

Before considering solutions to the attribute search problem, we highlight its value for
security applications. There are many cases in which investigators or security personnel
must monitor multiple distributed camera views for relevant pieces of information
related to pedestrian activity. Example scenarios include monitoring of large public
facilities, the areas surrounding critical infrastructure, or the many urban areas under the



surveillance of law enforcement. In these cases, investigatory actions are often triggered
by either witness or officer descriptions of a person of interest. Systems capable of
performing attribute-based search would be able to scan many hours of surveillance
video for apparent matches to that description, dramatically reducing the tedious video
review process.
In addition to forensic video review, effective attribute search can be used to monitor

a collection of live camera feeds in real time for potential matches. In this mode of
operation, the system constantly scans incoming feeds to look for matches to a supplied
description and updates a list of alerts when a sufficiently strong match appears. Analysts
then review this list to acquire cues about geo-location of potential persons of interest.
Note that in any application, operators have some tolerance to search errors because
they can review and then confirm or deny the validity of the search results. However, the
extent to which an attribute search tool can speed up surveillance video review depends
heavily upon the accuracy of the search technique.

The search technique described in this chapter has two main components: detection
and scoring. The first component ingests raw surveillance video and attempts to detect
all instances of moving persons within each camera view. This process is designed
to run in real time as video is recorded, storing all detections as time-stamped and
location-stamped records in a database for later reference. Rather than process every
frame of video, the system analyzes one sample frame per second because of the high
redundancy in content between consecutive frames. It also detects only persons in
motion because there is no need to store stationary subjects repeatedly to the database.
The method for extracting detections from a single frame applies a standard sliding

window approach to evaluate candidate detection locations within the scene. Each
candidate location is specified by the position of a bounding box (x , y ) and its dimensions
(w, h). Because the technique assumes a fixed aspect ratio of height to width for the
bounding box dimensions, there are effectively three parameter values to sweep through
during search.
At every candidate location, the system evaluates that subsection of the image to

check whether it satisfies three criteria: it must exhibit the shape of a person, it must
fit into the ground plane constraints of the scene, and it must contain a high ratio of
pixels exhibiting motion (as opposed to a static background). The combination of all
three criteria leads to fairly robust moving-person detection [3], with a relatively low
number of false positives (i.e., non-person clutter) stored to the database.
Figure 8.2 depicts the detections for sample frames of video captured within two

different airport surveillance environments. In these cases, the detection process has
successfully captured every example of pedestrian motion. Note that the method does



not always detect every instance of a person moving through the processed camera views
(especially those instances in which there is heavy occlusion by other scene components).
However, it is likely to capture at least a subset of the frame-by-frame appearances of
each person, so that there is some representation of each individual within the database.

Once a database of detections has been constructed, we need a method for finding
matches from that database for a given search request. The search request is composed
of three parts: a search time window, a subset of cameras or regions within cameras
over which to search, and an attribute profile. The first two criteria determine the
records retrieved from the database based on their time and location stamps. Next, each
candidate record is scored for its degree of match to the attribute profile. Finally, the
records with scores exceeding some baseline threshold are sorted based on descending
score, and the top set of matches is returned as the search results.
The most critical part of the search process is the scoring mechanism. It must

be accurate enough to provide a good measure of degree of relevance, ranking clear
matches higher than near-matches and near-matches higher than clear mismatches,
while allowing for rapid evaluation to minimize wait time. The model described in the
following section uses principles of probabilistic reasoning to achieve the desired scoring
behavior.



In this section, we formulate a probabilistic model to describe the relationship between
an attribute description and a surveillance video observation of someone who matches
that description. The model is generative in the sense that it describes the likelihood
that one observed state (the attribute profile) will lead to the generation of another
observed state (the set of digital pixel values that comprise a surveillance image chip).
These pieces of information are collectively referred to as the observed states O of the
system.
The many different ways in which an attribute profile can generate a set of observed

pixel values are due to variations among both the human population and the circum-
stances of video collection.We can account for some of this variation explicitly by adding
a set of hidden states H to the generative model in order to represent important factors,
such as the position of the body components within the observed image chip. Besides
providing a more defined model structure, the hidden states of the generative model
decompose the full joint probability distribution into a collection of more tractable
conditional distributions depending on key states of the image composition.
For a given instantiation of the observed variable set, we compute a match score s by

maximizing the joint probability of the model with respect to the hidden states:

s =max
H

p(O ,H ). (8.1)

Intuitively, this approach finds the most likely explanation of the observed data in the
form of the hidden states that explain image formation before scoring the relevance
of an image chip. When the observed image is a good fit to the attribute description,
there should exist a set of hidden state values that lead to relatively high generative
probabilities. Conversely, when the observed image is not a good match, there should
exist no hidden state values that lead to high-probability model evaluations. When
properly formulated, a generative model is an effective way to interpret the likelihood
of observed image data while accounting for expected variations.

First, we define the observed states of the model more precisely. The attribute vector A
comprises a set of appearance-based properties that are visible at a distance, including
gender, clothing color, and bag information. Table 8.1 lists the individual variables con-
tained within A. In this definition, there are six categorical variables, each of which can
be set to a value of unspecified to accommodate cases in which only limited information
is available.
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The color values are defined to include the following 12 common perceptual cate-
gories: white, gray, black, yellow, orange, pink, red, green, blue, purple, brown, and
beige. As we discuss later in this section, this palette can be extended to incorporate
any value within the color space or mixtures of multiple colors. The bag types are
divided into the three categories most commonly found in transportation settings such
as airports: backpacks, hand-carried bags, and large rolled luggage.
Besides the attribute profile, the other major observed state in the generative model

is the image chip to be evaluated. Rather than using the pixel values directly, we can
apply a feature extraction step to the image to compute features that capture summary
information about color and shape. For instance, every pixel value can be assigned a
color category based on its location in the color space.
Let Xk represent the three-dimensional value of the k th pixel in the hue-saturation-

value (HSV) color space. The HSV color space is defined on a cylindrical coordinate
system and is designed so that the cyclical hue axis corresponds well to perceptual color
differentiation by the human visual system. We model each of the 12 perceptual color
categories as a probability density function within the HSV color space.
Figure 8.3 depicts the statistical dependencies of the color model. Ck represents

the color category variable for pixel k , which can take any integer value from 1 to 12.
Parameter set ψ contains a mean vector μ and covariance matrix Σ for each of the 12
categories. These parameter values are learned by fitting densities to samples assigned to
each category by test subjects. They collectively form the color model that is used to
evaluate every pixel in the image.
We assume the prior probability of each color category is uniform, and the conditional

probability of the pixel observation is given by the quasi-normal density

p (Xk | Ck = i ,ψ) =φ(ψi ) exp(−0.5 · d(Xk ,μi )
�Σ−1i d(Xk ,μi )), (8.2)

where d(·) is a vector difference operator, modified to work on the HSV cylindrical
coordinate system so that the difference on the cyclical hue axis (which ranges from 0
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to 1) is given by

d (X hue
k ,μhue

i ) =mod(X
hue
k −μhue

i + 0.5,1)− 0.5. (8.3)

Because this is a truncated distribution (defined over a finite region of the cylindrical
coordinate space), constant φ(ψi ) is set to normalize the distribution to sum to one.
Using this model, we assign each pixel a color category according to the maximum

likelihood method:
Ck = argmax

i
p
�
Xk | Ck = i ,ψi

�
. (8.4)

The resulting features (i.e., pixel-wise color labels) must only be extracted once when
the image of the moving person is detected, and these labels are stored to a database.
Although we do not discuss the details here, we can apply a similar process to extract

other primitives that capture information about local edges or textures surrounding
each pixel. For example, gradient extraction filters may be applied to an image in order
to assign each pixel a category based on edge magnitude and orientation. Like the
color categories, these features represent observed states with some level of conceptual
meaning; these states relate to the hidden states of image composition within the
generative model.

The generative model described in this section has a hierarchical structure, with key
factors of the image formation encoded as latent variables in the hierarchy. Figure 8.4
depicts the variables and the dependencies between them as a graphical model. First, the
image is partitioned into its component parts (e.g., head, torso, etc.). Then the model
defines a visual theme for each component or a distribution over observable features,
according to the label assigned it by the attribute profile.
Vector Z represents the latent variable that partitions the image into its component

parts: head, torso, lower body, and (optionally) bag. Each of these component regions is
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specified by a bounding box, as depicted by the sample partitions in Figure 8.5. The
first portion of this vector, zbod y , encodes the two-dimensional position of the body
within the image chip because the detected image chip does not form a tight bound
around the person:

zbod y =
�
xbod y , ybod y , wbod y , hbod y

�
. (8.5)

The four values specify x -position, y -position, width, and height in units relative to the
width and height of the full image chip. Representing these values as ratios of the image
chip size makes them invariant to the image resolution at which the person is detected.
In addition to whole body position, there are also separate bounding box rectangles

for the components of interest: zbod y , zhead , zt o r s o , and zba g (if needed). Just as zbod y
is defined relative to the entire image chip, each of these components is defined relative
to the position and size of zbod y . To define a distribution over the partition variables,
the model groups all non-bag components into a single vector,

zbas e =
�
zbod y , zhead , zt o r s o , zl owe r

�
, (8.6)

and assumes that these values are jointly distributed according to a truncated normal
distribution with mean vector μbas e and covariance matrix Σbas e . Selecting these values
from a joint distribution accounts for correlations between the component positions
(e.g., a head position left of center usually corresponds to a torso position left of center).
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The full state vector Z comprises the basic position vector appended to the bag
position vector when bag information is specified by the attribute profile:

Z =
�
zbas e , zba g

�
. (8.7)

Unlike the body positions, the bag position is not sufficiently described by a single
unimodal distribution because there is higher variability in the shape of bags and the
way in which they are transported. In airport environments, for instance, there are at
least three distinct common bag types: backpacks, hand-carried bags such as purses or
small luggage, and larger luggage that is typically transported by rolling. Figure 8.5
shows one example of each bag type.
In the attribute set, variable bt specifies the bag type, and so the model employs three

different distributions (conditioned on bt ). In each case, bag position is modeled as a
nonparametric kernel density learned from training examples. Each density is converted
into a fast lookup table spanning the possible values of the zba g rectangle. Each of the
three lookup tables is denoted by a discrete vector of values T so that the full set of
parameters governing the selection of the partition state is

θ =
%
μbas e , Σbas e , Tbac k pac k , Thand−ca r r i e d , Tr o l l e d−l u g g a g e

&
. (8.8)

With all of the relevant partition variables defined, the conditional distribution of
the partition state given the attribute set and the partition parameters is given by

p(Z | A, θ) =� (zbas e |μbas e ,Σbas e ) · Tbt
(zba g ), (8.9)



where bag type bt from the attribute set is used to select the appropriate lookup table
for determining the probability of Zba g . When no bag information is specified, the
algorithm selects a uniform probability since bag position becomes irrelevant in this
case.
Once the component positions have been established, the model governs the observed

features within each component region according to the attribute profile. To do this,
the model takes a simplified form of the model used in well-known latent topic models,
which have been previously applied to the interpretation of textual [9] and visual [10]
data. In this application, of course, the topics (or mixtures of observed features) are
visual.
To illustrate the concept, we consider the generation of observed color information at

the pixel level, although there are other pixel-level features that the model can incorporate
as well. First, we define a discrete number of elemental color categories, selected to
match the Nc basic perceptual color options of the attribute profile. Each of the N
component regions is associated with a mixture over these color categories, represented
by latent topic vector πi . This real-valued state vector, which sums to one, assigns
a proportional weight to each color category, indicating its likelihood of observation
within the local component.
It is important to note that the observed color categories within a component depend

on the attribute description for that component, but this relationship is not deterministic.
For example, a torso with a “dark red shirt” label is likely to contain a mixture dominated
by red and black color categories. However, the exact mixture depends on a number
of other factors, such as clothing style, material composition, and lighting and shadow
effects. To account for this variation, the color topic state vector is drawn from aDirichlet
prior distribution. As discussed in Section 2.3.2, the Dirichlet density is often used as a
prior distribution over the parameters of a categorical variable. Consequently, the color
mixture πi is drawn according to

p(πi |ω) =φ(ω)
Nc∏
k=1
πi (k )

w (k )−1, (8.10)

where ω is the vector of Dirichlet pseudocount parameters and φ(ω) is the Dirichlet
normalization factor.
Because the Dirichlet parameters are different for each color specified by the attribute

profile, we represent all parameters of the color mixture priors in a matrix α of size
Nc by Nc . The k th row of this matrix, denoted by α(k ), gives the Dirichlet parameter
vector corresponding to the k th color. If we take the color topic of the torso component
πt o r s o as an example, the prior probability of this topic depends on the torso clothing



color t given in the attribute profile A, so that

p(πt o r s o | A, α) =φ(α(t ))
Nc∏
k=1
πt o r s o(k )

α(t )(k )−1. (8.11)

We define the conditional probabilities for each πi component in a similar way by
substituting the relevant variable from the attribute profile for t in the above expression.
After we select the color topic for each local component, the color observation at each

pixel is drawn according to the topic of the component containing it. This generation
of observed color states is performed only at foreground pixels (i.e., pixels that have
been labeled as part of the person or accompanying objects, not the static background).
Let Cq represent the color observation of the q th foreground pixel within the image
chip, which is a categorical variable that can take one of the Nc color categories. The
probability of Cq , conditioned on the partition Z and the set of topics {π1, . . .πn)}, is
given by

P (Cq | Z, π1, . . .πn) = πi (Cq ), (8.12)

where component index i is derived from a selector function

i = S (Z, q ) (8.13)

that maps each pixel index to the component that contains it, according to the partition.
Effectively, the partition determines which color topic applies, and then that topic
becomes the probability mass function for drawing the pixel-level observations.
Because in this model each individual color observation is drawn independently of

the other pixel-level observations, given the topic, it is sufficient to express the observed
states as histograms, or categorical frequency counts. Let function y (Z, i , j ) total all the
observations of color category j within the i th component (according to partition Z).
Then the histogram corresponding to component i is defined as

Y i = [y (Z, i , 1), y (Z, i , 2), . . . y (Z, i ,Nc )] . (8.14)

Instead of drawing individual samples from the topic, we can now use the model
structure depicted in Figure 8.6. In this equivalent but simplified structure, a single
histogram is generated at each local component according to the mixture specified by
the topic. To remove the effect of image resolution, we normalize each histogram so
that the sum across all counts equals 100 because the only information that needs to be
preserved is the relative frequency of each category. For 100 independent draws from a
given probability mass function, the probability of the resulting frequency histogram is
given by the multinomial distribution:

p(Y i | Z,πi ) =
100!∏Nc

k=1 y (Z, i , k )!

Nc∏
k=1
πi (k )

y (Z,i ,k ). (8.15)
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We have now fully defined the foundation for a simple generative image model. The
major conceptual mechanism of the model is a selection of body and accompanying bag
component positions, followed by the selection of feature-based “topics” within each
component, and finally a selection of the observed pixel-level states. In the following
subsection, we consider extensions to this basic model structure.

Although the basic generative model provides an effective foundation for attribute-based
search, we can add flexibility to the model by incorporating additional forms of attribute
profile inputs or pixel-level observations. Each of the following model extensions can
add either precision or accuracy to the attribute search process.

The attribute set described in Table 8.1 includes an observed variable g that indicates
the gender of the person of interest. To add this consideration into the model, we need
some way to derive an observable metric from the image chip relating to apparent
gender.
The person detection process outlined in Section 8.1.2 computes a set of features

that characterize local gradient information (known as histograms of oriented gradients
features [11]). These features are passed into a classifier that is trained to recognize
human-like contours, an important criterion for detection. Because these features also
capture some information relating to apparent gender (e.g., hairstyle, clothing style, body
frame), we can reuse them to build a gender classifier. The resulting classifier produces a



real-valued classification score G , which ranges along the interval [−Gmax,Gmax]. Scores
that approach the two extrema of this interval indicate strong evidence for male or
female, respectively, whereas scores near the center at zero indicate relatively weak or
inconclusive evidence.
Figure 8.7 depicts an extension of the basic generative model that includes the gender

classifier output as an observed state. To define a conditional probability distribution
over G , we first define two functions that remap the value of G by using the gender
specification g from the attribute profile.
The first function s (G , g ) alters the sign of G according to g , so that positive values

always indicate a better match to the specified gender and negative values always indicate
a worse match. If g is unspecified by the attribute profile, then s (G , g ) maps to zero
(because the value of G does not matter in this case).
The second function maps the value of G to an interval ranging from zero to one,

m(G , g ) =
Gmax − s (G , g )

2 ·Gmax
, (8.16)

so that a value of zero corresponds to the strongest possible evidence of a profile match
and a value of one corresponds to the strongest possible evidence of a profile mismatch.
The model defines the conditional probability of the gender score, given the specified

gender attribute, as a truncated exponential distribution over the remapped score:

p(G | A,λ) =φ(λ) · e−λ·m(G , g ). (8.17)

Parameter λ determines the shape of the distribution, andφ(λ) normalizes the truncated
exponential probability density function so that it integrates to one. Note that this
distribution yields relatively high probability values near zero (strong match evidence)
but declines rapidly as the score increases toward one (strong mismatch evidence).
Because λ determines the rate of exponential change, it effectively controls the

influence of this observation compared with the rest of the observations in the model.
In other words, higher λ values cause the gender analysis to have a larger effect on the
full joint probability of the model and, therefore, a larger effect on the overall match
score of the image chip. For this reason, λ can be treated as a tunable parameter of the
matching algorithm, set to emphasize the relative importance of gender compared to
other attribute profile elements.
The gender score is an example of an observed state that can be derived from the

entire image chip by means of a pretrained classifier. Although we do not discuss the
details here, similar types of classifiers can be used to extract other relevant states, such
as a person’s height or build. The generative model can incorporate these states as well
by using equivalent branch structures and conditional probability functions.
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The model employs a predefined set of common perceptual colors to enable categorical
feature extraction and color topic representations. However, we do not necessarily have
to limit the color specifications of the attribute profile to these categorical options. Often
the description of a person of interest will contain specific color shades (e.g., light blue)
or color definitions that do not map well to any of the predefined options.
As an alternative to categorical specifications, we allow colors to be defined by any

point in the RGB or HSV color space (such precise values can be selected easily from a
color palette interface). We then project this point onto the basis of common perceptual
colors using the color space distribution learned for each one. The result is a vector of
proportional coefficients ρ, with length equal to the number of color categories Nc ,
that sums to one.
Equation (8.11) defines the conditional probability of a color topic within one image

component given the Dirichlet parameter set. In that case, where the specified color is
given by a categorical variable t , the relevant vector of Dirichlet parameters is selected
by taking a single row α(t ) from the parameter matrix α. Alternatively, when the color
is represented proportionally by ρ, we use a weighted combination to compute the
Dirichlet parameters:

α(ρ) =
Nc∑
k=1
ρ(k )α(k ). (8.18)

In practice, this approach is an effective way to add flexibility to the color specification
process without requiring large category sets (and many corresponding color models).
This approach also provides a way to handle multiple colors specified for the same image



component. In this case, the multiple color values are mixed by assigning them equal
weights within the ρ vector.

The basic model structure uses color features at the pixel level to characterize the observed
states within each image component. Although color information is an important cue, it
is not the only useful low-level primitive. Especially to help differentiate between types
of components, we may wish to incorporate features based on shapes, edges, gradients,
or textures.
As an example, we consider the extraction of edge information using filter bank

processing. It is possible to extract edge or gradient characteristics surrounding each
pixel within an image chip by applying a set of filters that measure intensity changes
at different scales and orientations (such as Gabor filters [12]) and analyzing the joint
responses. Partitioning the response space categorizes the local edge or gradient type
observed at each location. These features are useful for image interpretation because
different image components (e.g., bags versus torsos) may exhibit different mixtures of
edge types.
Once the edge features have been defined, we can represent the edge topic of each image

component as a latent variable in the model. This model extension is analogous to the
way color topics are incorporated into the basic model because both are representations
of expected frequencies of pixel-level states. Figure 8.8 outlines an extended version
of the base model, with a parallel branch for the generation of edge states. Vector
ωi represents the edge topic for the i th component, and β is an N by Ne matrix of
Dirichlet weights, where N is the number of image components and Ne is the number
of edge categories.
The probability of an edge topic is given by a Dirichlet density with weights selected

from the row of β corresponding to the component index (as opposed to the color
specification used for α row selection):

p(ωi |β) =φ(β(i ))
Ne∏
k=1
ωi (k )

β(i )(k )−1. (8.19)

Vector Ei stores a histogram of edge observation counts, where, just as with the color
histograms, the counts are a function ε(Z, i , k ) of the partition Z, the component index
i , and the feature category k :

Ei = [ε(Z, i , 1), ε(Z, i , 2), . . . ε(Z, i ,Ne )] . (8.20)
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Finally, the conditional probability of the edge histogram (normalized to a total count
of 100) is given by the multinomial distribution

p(Ei | Z,ωi ) =
100!∏Ne

k=1 ε(Z, i , k )!

Ne∏
k=1
ωi (k )

ε(Z,i ,k ). (8.21)

Including an extra primitive type (such as edge features) into the model enables more
accurate image interpretation because the matching process accounts for multiple ob-
served factors simultaneously. This combination of feature types can resolve ambiguities
that manifest in individual feature types. Any categorical pixel-based feature can be
incorporated into the model by extending branches that parallel those in Figure 8.8.

The model presented in this chapter has three fundamental types of variables: parameters,
observed states, and hidden states. The model parameters are estimated during an initial
training stage and then held constant during model application. In this section, we
describe the process of learning the model parameters using maximum likelihood
estimation with respect to a training dataset. Once the parameter values have been
selected, the model may be used to estimate the likelihood of observing an image given
an attribute profile.
We present an efficient procedure for performing inference on the hidden states

of the model to estimate this joint probability value and assign a final match score.
Because the model has a nontrivial variable dependence structure, like most models
of practical application, the maximum likelihood estimates of both parameter values



and hidden states do not necessarily have closed-form solutions. Therefore, we rely on
several approximate estimation techniques to converge on a solution.

To facilitate learning of model parameters, we must have access to a dataset of annotated
training images. For instance, we can take example moving person detections from
multiple source videos and annotate some ground truth regarding the hidden states of
each example. In particular, if we label the partition of each image into its component
parts as depicted in Figure 8.5, along with the primary color and component type
descriptors, then we have enough data to learn the key conditional distributions of the
model. Assigning labels to training data at this level of detail takes some time and effort,
but the process is not prohibitively resource-intensive because it requires selecting only a
few bounding boxes and categories for each image chip. The resulting data are sufficient
for learning the model parameters, as described in the rest of this subsection.

Figure 8.9 expresses the partition parameter learning problem as a plate diagram. Vector
Z j represents the j th partition observation within the labeled dataset, which contains a
total ofM training examples. Recall from Section 8.2.2 that the partition vector consists
of two parts:

Z = [zbas e , zba g ], (8.22)

representing the base body components (whole body, head, torso, and lower body) and
the bag component, if it exists.
The value of zbas e follows a multivariate normal distribution, whereas the value of

zba g follows a nonparametric distribution according to bag type. Consequently, the
parameter set θ contains the following five (multidimensional) parameters:

θ = [μ, Σ, T1, T2, T3]. (8.23)

The first two specify the mean vector and covariance matrix for zbas e , and the last three
represent lookup tables for the probabilities of zba g associated with each of the three
major bag types.
To train the model for body component positions, we assemble a dataset containing

only the zbas e portion of each labeled partition example:

Dbas e =
%
z j : z j = zbas e from Z j

&M
j=1
. (8.24)
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Our objective is to maximize the probability of Dbas e with respect to the multivariate
normal parameters, assuming each training sample is statistically independent. In the
case of a normal distribution, the maximum likelihood estimate of the mean vector μ is
well known to be the sample mean,

μ̂ = argmax
μ

p(Dbas e |μ,Σ) = 1
M

M∑
j=1

z j , (8.25)

and the maximum likelihood estimate of Σ is the sample covariance matrix,

Σ̂ = argmax
Σ

p(Dbas e | μ̂,Σ) = 1
M − 1

M∑
j=1
(z j − μ̂)(z j − μ̂)�. (8.26)

Learning this part of the model is therefore a straightforward process of substituting the
training data values into a closed-form solution for our parameter estimates.
Because the bag positions do not tend to follow unimodal Gaussian distributions,

these require a different type of learning. To distinguish between bag types, we define
three different datasets, D1, D2, and D3, corresponding to the three possible values of
bag type variable bt from the generative model. Each dataset contains all samples of a
particular bag type annotated within the training data:

Di =
%
z j : z j = zba g and bt = i

&Mi

j=1
. (8.27)

Because bag positions are not well characterized by traditional parametric densities,
we instead use nonparametric kernel densities to determine probability. The density
of the bag position is set as a sum of Mi Gaussian-shaped kernels, with each kernel
centered over its corresponding training sample:

p(zba g ) =
1
Mi

Mi∑
j=1

KG (zba g − z j ), (8.28)
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where KG represents a multivariate Gaussian kernel of constant size.
Finally, the resulting density is partitioned into a lookup table Ti to dramatically

speed up probability evaluation. It is possible to form such a lookup table because the bag
position variable spans a relatively low-dimensional space with only four axes (x -position,
y -position, width, height), which can be adequately represented by a coarsely partitioned
lookup table.

The other major parameters in the model are the Dirichlet weights associated with each
component color specification. We can learn each weight vector ω (corresponding to
one row in the α matrix) separately by focusing on one color category at a time. For
a given category, we can collect a dataset of any local components within the training
images that have been annotated with that color label. The resulting dataset consists of
M observed color histograms, one for each component:

D =
%
Y j
&M
j=1
. (8.29)

Figure 8.10 depicts the learning problem for a single ω weight vector. For each of
the M training examples, this parameter vector determines the likelihood of generating
the latent topic vector π j , which in turn determines the likelihood of generating the
observed histogram Y j . The training data are only partially observed because there is no
way to collect annotations on the hidden topic variables. Therefore, we wish to express
the likelihood of observation Y j directly in terms of parameter ω by marginalizing out



variable π j :

p(Y j |ω) =
∫

p(Y j | π j )p(π j |ω) dπ j . (8.30)

Because the two conditional distributions inside this integral have multinomial and
Dirichlet forms, respectively, we can substitute the expressions in Equations (8.10)
and (8.15), resulting in

p(Y j |ω) =
∫ ⎡⎣ 100!∏Nc

k=1 Yj (k )!

Nc∏
k=1
π j (k )

Yj (k )

⎤
⎦#φ(ω) Nc∏

k=1
π j (k )

ω(k )−1
$
dπ j

(8.31)

=
100!φ(ω)∏Nc
k=1 Yj (k )!

∫ # Nc∏
k=1
π j (k )

Yj (k )+ω(k )−1
$
dπ j . (8.32)

Integrating out the latent topic variable, as in the above equation, yields a compound
Dirichlet-multinomial distribution. The resulting closed-form distribution (sometimes
referred to as a Polya distribution [13]) is given by

p(Y j |ω) = 100!∏Nc
k=1 Yj (k )!

· Γ
�∑Nc

k=1ω(k )
�

Γ
�∑Nc

k=1(ω(k ) + Yj (k ))
� · Nc∏

k=1

Γ (ω(k ) + Yj (k ))

Γ (ω(k ))
, (8.33)

with Γ representing the gamma function.
The objective of the learning process is to find the maximum log-likelihood estimate

of parameter ω with respect to the M independent samples of the training dataset:

ω̂ = argmax
ω

log p(D |ω) = argmax
ω

M∑
j=1
log p(Y j |ω). (8.34)

Substituting the expression from Equation (8.33) and dropping any terms that do not
depend on ω give the final objective function for parameter optimization:

ω̂ = argmax
ω

#
M log Γ

� Nc∑
k=1
ω(k )
�
−

M∑
j=1
log Γ
� Nc∑
k=1
(ω(k ) + Yj (k ))

�

+
M∑
j=1

Nc∑
k=1
log Γ (ω(k ) + Yj (k )) − M

Nc∑
k=1
log Γ (ω(k ))

$
. (8.35)



Because there is no closed-form solution to the above optimization problem, the
maximum likelihood estimate ofω must instead be approximated using iterative numer-
ical techniques. The many candidate methods we may apply to this task have different
convergence properties and practical advantages. The following two approaches are
common:
• Fixed-point iteration techniques like Newton-Raphson optimization, in which an
initial estimate is updated repeatedly using the same update rule until convergence.
In the case of Newton-Raphson, the update rule is

ω̂(n+1) = ω̂(n) −Hω(log p(D |ω))−1 · ∂
∂ω

log p(D |ω), (8.36)

where ω̂(n) is the current parameter estimate in the iteration, andHω is the Hessian
matrix with respect to ω. The necessary first- and second-order partial derivatives
can be derived from the log-likelihood function given in Equation (8.35)).

• Direct search optimization methods like the Nelder-Mead technique or the sim-
ulated annealing technique [14]. These iterative procedures do not make use of
function derivatives; instead, they rely on heuristics for determining the location
of new sample values based on the evaluation of previous samples.

Either approach may require many evaluations of large functionals, which can be
computationally costly. However, the learning must only be performed once for a
particular training set before the model is used to perform any attribute-based searches.
We may also apply the same learning process in parallel for any other pixel-based

feature primitives incorporated into the model, such as the edge-based features discussed
in Section 8.2.3.3. Because the conditional distributions for each feature generation
branch retain the same form (Dirichlet and multinomial), the only adjustment to
the learning process is the formation of different training datasets extracted from the
annotated images.
In the end, we have parameter values that reflect the variations in appearance cap-

tured in the training dataset. These values will lead the model to perform accurate
interpretation of new images that exhibit similar characteristics.

To extract a match score between an attribute profile and an image chip, we use the
generative probabilistic model to evaluate the likelihood of these joint observations
(i.e., the likelihood that an image exhibiting the specified attributes would generate the
observed features). Besides the model parameters, the generative model contains a set
of observed variables O and a set of hidden image formation variables H . Figure 8.11
displays the basic model structure along with its partition into observed and hidden
variable sets.
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One way to evaluate the match score is to compute the marginal likelihood of the
observed variables, after integrating out the hidden states:

s = p(O) =
∫

p(O ,H ) d H . (8.37)

Conceptually, this is similar to taking the average likelihood across all possible modes
of image formation. The major drawback to this method is the computational cost
associated with the marginalization. The integral over the hidden states of the model
has no closed-form solution, and numerical integration over a high-dimensional space
like this one is computationally intensive.
Instead, we use an alternative match score evaluation based on the maximum likeli-

hood estimate of the hidden variables:

s =max
H

p(O ,H ). (8.38)

Conceptually, this is equivalent to finding the single most likely explanation of the data
(in the form of latent formation states) and evaluating the model at that point in the
state space. This approach turns inference into a more tractable optimization problem
because the goal is to maximize the joint probability distribution with respect to the
hidden variables.
Although the maximum likelihood approach is more manageable than the marginal

likelihood approach, it still does not have a closed-form solution. However, we can
find a partial solution by focusing on subsets of the full hidden variable set. First, we
factor the joint distribution according to the variable dependencies of the basic model



structure:

p(O ,H ) = p(Z | A, θ)
N∏
i=1

p(πi | A, α) · p(Y i | Z, πi ). (8.39)

If we assume a fixed estimate for Ẑ, then we can optimize over each πi separately by
taking

π̂i = argmax
πi

p(O ,H ) = argmax
πi

p(πi | A, α) · p(Y i | Ẑ, πi ) (8.40)

subject to
Nc∑
k=1
πi (k ) = 1. (8.41)

This assumption simplifies the problem down to finding a single state vector that
maximizes the product of two conditional likelihoods. Substituting the definitions of
these likelihoods provided in Equations (8.11) and (8.15) gives

π̂i = argmax
πi

#
φ(ωi )

Nc∏
k=1
πi (k )

ωi (k )−1
$⎡⎣ 100!∏Nc

k=1 Yi (k )!

Nc∏
k=1
πi (k )

Yi (k )

⎤
⎦ , (8.42)

whereωi is the row of the α matrix corresponding to the color specification for the i th
component, and φ(ωi ) is a normalization term.
Because the maximization is with respect to πi , we can drop any terms that do not

depend on this variable and combine the remaining terms to get

π̂i = argmax
πi

Nc∏
k=1
πi (k )

Yi (k )+ωi (k )−1, (8.43)

still subject to the constraint that all elements of vector πi sum to one.
It is straightforward to derive a closed-form solution to this constrained optimization

problem by using Lagrange multipliers, resulting in the following formula for the
maximum likelihood estimate of the color mixture states:

π̂i =

⎡
⎣ Yi (1) +ωi (1)− 1∑Nc

k=1(Yi (k ) +ωi (k )− 1)
, . . . ,

Yi (Nc ) +ωi (Nc )− 1∑Nc
k=1(Yi (k ) +ωi (k )− 1)

⎤
⎦ , (8.44)

where the color histograms represented by Y i are computed according to the partition
estimate Ẑ. Now that we can derive closed-form estimates for all π̂i based on Ẑ, we
need a method for optimizing the joint probability distribution with respect to the
partition as well.



Because the partition variable essentially controls a selector function for forming fea-
ture histograms, the joint likelihood that we wish to maximize is not differentiable with
respect to the partition state. This limits the range of applicable numerical techniques
for estimating the optimal state value to direct search techniques. Because running an
exhaustive search over all combinations of component positions is not practical, we may
instead use a form of greedy search referred to as iterated conditional modes (ICM)
[15].
First, we set the initial estimate of the partition variable to its most likely a priori

value, the mean of the normal distribution given by parameter μbas e combined (if
necessary) with the maximum likelihood bag position according to the relevant lookup
table. Then for each component in turn (full body, head, torso, lower, bag), we search
for the value of that component’s bounding box that maximizes the joint probability
distribution of the model, conditioned on all other component positions being fixed
at their current estimates. In this way, ICM takes a relatively high-dimensional search
space and breaks it down into a series of more manageable four-dimensional search
spaces. Although not guaranteed to converge on the global maximum, this approximate
optimization technique tends to work well in practice.

This subsection outlines the specific steps of the scoring algorithm. First, for convenience,
we adjust the definition of the match score to equal the maximum log-likelihood of the
joint probability distribution:

ŝ = log p(O , Ĥ ). (8.45)

Because the log function is monotonic, the maximum likelihood estimates of the hidden
states do not change. This log-likelihood can be expressed as

ŝ = s0 +
N∑
i=1

si , (8.46)

where

s0 = log p(Ẑ | A, θ) = log� (ẑbas e |μbas e , Σbas e ) + logTbt
(ẑba g ) (8.47)

is called the partition score, and

si = log p(π̂i | A, α) + log p(Y i | Ẑ, π̂i ) (8.48)

is called the i th component score.



Substituting the relevant conditional probability definitions into the component
score and simplifying gives

si = −
Nc∑
k=1
logYi (k )! +

Nc∑
k=1
(Yi (k ) +ωi (k )− 1) log π̂i (k ) + φi , (8.49)

where the φi term is a normalization constant that does not depend on the image
being evaluated and therefore has no significance in the scoring process. The goal of
the scoring algorithm is to maximize the sum of the partition score and all component
scores with respect to the hidden state estimates.
Algorithm 8.1 details the steps of the match score computation algorithm. First,

the algorithm sets an initial estimate of the partition and the corresponding maximum
likelihood estimates of the color topic states; these are used to set the initial values
of ŝ0 and ŝ1 through ŝN . Until convergence or the maximum number of iterations is
reached, the algorithm cycles through the head, torso, lower body, and bag positions
and updates the estimate for ẑi , the corresponding bounding box within the partition
vector. The position is only updated if the algorithm can find a value within a local
spatial neighborhood of the existing estimate that leads to a higher log-likelihood over all
hidden variables (including updated color topic states). When all updates are complete,
the final match score is the sum of the resulting partition and component scores.
It is straightforward to revise the scoring algorithm for the model extensions discussed

in Section 8.2.3. To incorporate gender, we simply add an extra term to the final match
score by evaluating the conditional probability in Equation (8.17) because this does not
depend on the estimation of any hidden states. To incorporate other feature primitive
types (such as edges), we redefine component score si as a sum of log-likelihoods across
the conditional probability chains of each feature type. The algorithm flow remains the
same.
Figure 8.12 illustrates the iterative process of hidden state estimation. In this example,

the observed image is paired with a matching attribute profile so that the resulting
latent state estimates successfully reflect image formation. The figure shows sample
partition estimate values during the optimization process from initial value (far left) to
convergence (far right). Note that the partition state starts at the average bounding box
across all images (learned during the training process).
As ICMoptimization progresses, the individual component positions begin tomigrate

toward better-fitting bounding boxes, in which a better fit equates to an increase in
the joint probability of the partition and the maximum likelihood latent topic vectors.
Using this technique, when the image chip represents a match to the attribute profile,
the estimation process tends to significantly increase the final optimized score (as the
algorithm finds a good “explanation” of the data according to the probabilistic model);
however, estimation does not typically improve the score much when the image is



Algorithm 8.1 Scoring based on iterative optimization
1: Input: attribute profile, image, model parameters
2: Output: ŝ , estimated match score
3: Initialize partition estimate: ẑbas e ← μbas e , ẑba g ← argmaxzba g Tbt

(zba g )

4: Set partition score ŝ0 based on Ẑ (Equation (8.47))
5: for i ← 1 to N
6: Compute histogram Y i based on initial partition Ẑ (Equation (8.14))
7: Estimate latent topic vector π̂i based on Y i (Equation (8.44))
8: Set component score ŝi based on π̂i (Equation (8.49))
9: repeat
10: for i ← 1 to N
11: for positions x ∈ Neighborhood(ẑi )
12: Set modified partition score s0 based on x (Equation (8.47))
13: Update histogram Y i based on candidate position x (Equation (8.14))
14: Estimate latent topic vector π̂i based on Y i (Equation (8.44))
15: Set modified component score si based on π̂i (Equation (8.49))
16: if s0 + si > ŝ0 + ŝi
17: ẑi ← x
18: ŝ0← s0
19: ŝi ← si
20: until Ẑ has converged or maximum number of iterations is exceeded
21: ŝ ← ŝ0 +

∑N
i=1 ŝi

Z

{πi }Ni=1



a mismatch. The behavior of the scoring algorithm in either case is critical to the
effectiveness of this approach.

To gauge the value of the generative model approach, we may apply this technique to
attribute search tasks within multiple video surveillance environments. Viewing the
results across a range of search requests and comparing to ground truth information
about video content can give us a quantitative and qualitative sense of performance. In
this section, we apply the proposed search technique to the following two representative
data sources to characterize its performance:
• Two hours of surveillance video collected at Gatwick Airport in London [8],
distributed across three cameras at different locations within one terminal of the
airport. There is significant variation in the density of the observed crowds, with
regular arrivals causing spikes in the activity level. Applying the moving-person
detection process described in Section 8.1.2 on this dataset at a rate of 1Hz results
in a database of approximately 14,000 detected instances of moving persons.

• A dataset of surveillance video collected at a major U.S. airport. This dataset
consists of about five total hours of video from six different camera views, arranged
within one terminal of the airport. Applying the detection process at 1Hz results
in approximately 175,000 instances of detected moving persons.

Experimentation with these datasets helps to reveal two aspects of performance critical to
practical application of the attribute-based search technique. The first is search accuracy,
which impacts the ability of the operator to successfully find the person of interest when
reviewing results. The second is search timing, or the duration of the required score
computations, which must be relatively short to avoid long wait times once an operator
has initiated the search.

Figure 8.13 shows examples of search results, using one lower specificity attribute profile
and one higher specificity attribute profile. For each search case, the top row depicts the
best six matches according to a simple (nonprobabilistic) color-matching method. In
this method, the color class labels for all the foreground pixels of the image chip are
accumulated into a single color histogram. The histogram is scored based on its similarity
to the target histogram, which is formed from the colors in the attribute description. In
other words, the simple approach searches for the right mixture of foreground colors
without using a probabilistic model to account for the hidden states of image formation.
As can be seen in the figure, this approach does not typically return good matches to
the profile, often picking up on image regions unrelated to detected moving persons.





The bottom row of each search case in Figure 8.13 shows the results from using
the probabilistic generative model described in this chapter. Because the model can
account for unobserved factors such as the spatial arrangement and component-specific
distributions of color and edge primitives, it does significantly better at finding accurate
matches to the description. For the first, less specific search case, five of the six top
results are complete matches, whereas the other result is a partial match (resulting
from the presence of other pedestrian clutter). For the second, more specific search
case, the model returns a single significant match (the only result scoring above some
minimum threshold), which is the only correct match in the data. Qualitatively, this
comparison demonstrates the value of using a probabilistic generative model over simple
color-matching approaches for the evaluation of matches. However, examples of this
sort do not give a quantitative measure of performance.
To get a quantitative characterization of search performance, we select a particular

area surveilled during one of the airport video data collections and label ground truth for
all pedestrian activity occurring within that area over a fixed time span. The surveillance
video of this (approximately 50 square meter) region has image resolution along the
height of pedestrians ranging from about 80 pixels to 120 pixels, which is sufficient for
accurate moving person detection. Labeling the location and attribute-based appearance
of each person who passes through this region leads to about 1000 frame appearances
of 150 unique individuals. We discuss several metrics of performance on this dataset.

For each person passing through the region of interest of the labeled dataset, we count a
correct detection if the detection algorithm described in Section 8.1.2 flags that person
in at least one analyzed frame of video. We count any detection that does not correspond
to an entire person as a false positive. False-positive sources in the test environment
include shadow effects, parts of pedestrians, and luggage carts.
When we used threshold values that are optimized for crowded indoor environments,

the observed probability of detection is 145 out of 150 (or approximately 97%), with
the missed detections due to either constant occlusion or fleeting intersections with the
region of interest. The corresponding false-positive rate is about once per 200 seconds.
In practice, the detection algorithm supports good search capability because it finds

at least one instance of almost every pedestrian who passes through the scene with an
unobstructed view to the camera while pulling in false positives at a low enough rate
that they constitute a small percentage of records in the detection database. It is worth
noting that the detection performance depends heavily on the characteristics of the
scene, particularly the density of the observed crowds and the resolution of the imagery.



The probabilistic appearance model provides a mechanism to score the likelihood that
each image chip depicts a person with the specified attribute set. When the model
functions correctly, all examples of persons matching the provided description will
appear at the top of the match list, which is ranked in order of descending likelihood
scores.
We may evaluate the accuracy of the model by running multiple sample searches

over the labeled dataset and comparing the actual results to the expected results. The
legend of Figure 8.14 lists a set of attribute profiles for 11 such searches, selected at
random by taking descriptions from the ground truth labels that match one or more
persons who appear within the video.
For each test search, a performance curve by varying the number of top results

returned by the search. Raising the number of results increases the chance of finding all
true matches, but it also increases the occurrence of false positives or returned image
chips that do not fully match the specified profile. The vertical axis in Figure 8.14 plots
recall, or the percentage of all true matches returned by the search, whereas the horizontal
axis plots the number of returned false positives, normalized by the total number of
false-positive individuals in the database. Note that by these metrics, an algorithm
that assigns random match scores to image chips will have an expected performance
represented by the dotted line in Figure 8.14.
As expected, all search results using the proposed model perform significantly better

than the random-scoring baseline. However, there is noticeable variation in error rate
depending on the particular attribute profile. Five of the 11 sample searches (represented
by the red line in Figure 8.14) find all true matches before returning any false positives
and are therefore examples of perfect search accuracy. Other searches return multiple
false positives before recovering all matches.
The more specific search queries, especially those with only one true match among

all pedestrians, tend to show better results because these profiles contain the most
discriminating information.More generic descriptions tend to pull in some false positives
along with all of the true positives. Because the scoring algorithm produces a real-valued
match score related to the probability of the observation, the false-positive results (which
have relatively high scores) still tend to be close matches to the attribute profile, often
deviating in minor ways from the description.

To have operational relevance, an attribute-based search must execute in a reasonable
amount of time. Because the search is not finished until a match score has been assigned
to every candidate image chip, the time to execute a search is directly related to the
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average time to perform an individual match score computation. This operation must be
performed quickly, because a typical search may involve tens or hundreds of thousands
of candidates from the detection database (if not more).
While the scoring algorithm outlined in Algorithm 8.1 is designed to converge

quickly to an approximate optimization of the hidden states of the model, we can take
the following steps in the implementation of this algorithm to help ensure sufficiently
fast computation:
• Perform a preliminary check to see whether the feature primitives representing
the image chip are at all close to the expected observations corresponding to the
attribute profile. For example, if the local color histograms diverge significantly
from any of the colors specified by the attribute profile, we can automatically assign
a low match and refrain from executing the hidden state optimization procedure
under the assumption that no hidden state values will result in a sufficiently high
match score to display it to the operator. For many search criteria, this preliminary
check reduces the total number of required match score computations by more
than one half.

• Eliminate repetitive evaluations of relatively expensive functions, like the log-
factorial in Equation (8.49). Because in this application the log-factorial can only
be evaluated on the set of integers from 0 to 100, it is much more computationally
efficient to precompute these values and store them ahead of time.

• Impose a reasonable limit on the number of iterations of the optimization algo-
rithm. Limiting to a few iterations is typically sufficient for the estimation to near
convergence while preventing superfluous iterations that have relatively minor
effects on the final match score.

Table 8.2 gives the average score computation times for both airport surveillance
datasets. These times were averaged across many attribute search trials because processing
time is partially a function of the attribute profile. For either dataset, the average time
required for a single score computation is about 50μs; therefore, up to 20,000 images
can be scored every second.
For each dataset, Table 8.2 also shows the mean time required to process an hour of

detections from one camera view. For the Gatwick dataset, which has a lower density of
pedestrian flow (and therefore fewer detections overall per hour of data), it takes less than



half a second to search one camera hour of video. For the U.S. airport dataset, which
captures significantly more pedestrians within relatively wide camera views, it takes close
to two seconds per camera hour. However, in either case, the scoring algorithm works
efficiently enough to perform searches over tens of hours of camera data, and millions
of records, within a minute or two.

The concept of probabilistic attribute-based image evaluation is most useful when
incorporated as part of an interactive search capability. In this section, we describe one
implementation of such a tool and show examples of its functionality on sample video
data. The tool connects directly to a database of moving-person detections (created
automatically as incoming video is analyzed) and provides a way to search over those
detections.
The tool has the following functionality:
• It allows the operator to input a set of search criteria through a graphical user
interface, including both the attribute profile and the time and location constraints
of the search.

• It retrieves all records from the detection database that fall within the specified
time period and location constraints.

• It applies the probabilistic model described in Section 8.2 to score how well each
record matches the specified attribute profile.

• It ranks the match results in order of descending score to extract the topN matches
from the database (as long as the match scores exceed some baseline threshold).

• It filters the list of top-scoring matches by using a form of non-maxima suppression
to eliminate redundant appearances of the same person in consecutive frames of
video.

• It displays the top matches back to the operator as a set of browsable image chips.
• Finally, it allows the operator to review associated video by selecting individual
image chips from the top match set.

The resulting system provides an effective way for operators to interactively explore the
database of observed pedestrians within a facility by conducting a series of search and
video review steps.
Figure 8.15 shows a screenshot of the search tool. Launching a search brings up a

search criteria input menu, divided into an attribute profile section (upper half ) and a
search localization section (lower half ). Within the attribute profile section, the operator
may specify any subset of attribute options represented in the menus; any inputs not
provided by the operator are left as unspecified by default, and they will not factor into
the search results.





In addition to the attribute profile, the operator selects a start time and end time
for conducting the search, which may span up to multiple days of archived video. The
operator may also choose the subset of camera views over which to search, focusing
on particular regions within individual camera scenes (e.g., doorways or pedestrian
passageways) if desired. Once all attribute and search localization criteria have been
entered, the search process launches. The time required to finish this processing is
typically at least a few seconds and scales in rough proportion to the area and time
window of the search and the density of pedestrian traffic.
The search results interface has three panels, as depicted on the right side of Fig-

ure 8.15. The first panel contains a set of image chips representing the top matches
to the attribute search criteria. Although these chips are filtered to avoid redundant
displays, the same individual may appear multiple times with some separation in time
and space between the appearances. The operator may scroll through these image chip
results and click on any of them to retrieve the corresponding video content.
The second panel displays the video frame from which the selected match was

detected and allows the operator to view the video with a standard set of playback
controls. The third panel displays both a timeline and a map of the facility and contains
estimated times and locations for each of the top matches. The operator has the option
to retrieve video by selecting an individual detection directly from the map or from the
timeline, in addition to selecting from the image chip set.
In practice, there is no guarantee that all search results will be successful matches

to the attribute description. However, due to the probabilistic scoring process, those
results that are not complete matches often tend to be near matches, in which only one
aspect of the attribute profile is a mismatch. There is also no guarantee that the most
relevant observation to the analyst will appear as the first (most highly scored) image
chip because of limitations in the type of attribute inputs accepted by the software or
limitations of the generative appearance model. However, if the useful content appears
somewhere among the top match results, then it is typically a much easier and quicker
process for the operator to browse through a set of image chips and focus in on the
relevant content than it is for that operator to manually scan large amounts of raw video.

Video search based on content descriptions is a useful capability for multiple surveillance
scenarios. First, this capability can be used forensically to search through archived video
and recover observations related to a witness report or incident investigation. Second,
this capability can be used to monitor live video feeds for apparent matches to a given
description. In either case, automating the search process allows an operator to sort
through large quantities of video data and invest time and attention in only the most
relevant segments.



This chapter discussed a particular type of content search based on the attributes of
a person and associated clothing and bags observed at a distance. Although this type
of video interpretation can typically be performed at high accuracy by human visual
perception, it is difficult to automate this process because of the variations in appearance
for a given description. In fact, there are many different manifestations (in pixel values)
for observations that match an attribute profile depending on factors such as view angle,
lighting conditions, and clothing composition.
Solutions based on probabilistic modeling approaches are a good fit for this problem

because they address the uncertainty of the observations introduced by the ambiguous
high-level descriptions. Such models offer a mechanism to characterize the nature of
the uncertainty and structure it according to key latent states of the interpretation
problem. We reviewed an example of a generative appearance model that defines a
joint probability distribution over the observed pixel-level features and a collection of
hidden states of image formation, conditioned on the attribute profile. The hidden
states of the model can be inferred quickly using approximate optimization techniques,
leading to a more accurate assessment of the degree of match than if these states were
not considered during evaluation. In addition, the parameters of the generative model
are learned directly from (partially labeled) data.
Experimental trials using sample video from several environments demonstrate the

value of employing such a model. Simple color-matching methods do not perform
well because they do not adequately account for the expected joint distribution of
the observation set, making them susceptible to poor image interpretations. However,
scoring based on evaluations of a probabilistic model works well in these trials. When
coupled with a search interface, it enables timely and accurate interactive searches on
test video from airports.
However, the performance of any probabilistic video-interpretation method will

depend on the characteristics of the scene under surveillance and the conditions of video
capture. Common challenges that lead to failure include the following:
• Poor resolution on the scene components of interest (which typically require on the
order of hundreds of total pixels to resolve attribute-based details) or insufficient
lighting to record scene components at reasonable contrast with the background.
Accurate interpretation cannot be performed if the necessary information is not
captured by the surveillance system.

• High crowd density or occlusion levels. Moving-pedestrian detection becomes
difficult when the camera has only a heavily obstructed view of the pedestrians
that prevents the creation of a comprehensive database of person observations
over which search can be performed. Detection is especially problematic when the
video depicts a solid mass of people moving through the scene, denying a clear
line of sight to each person. In these cases, it is sometimes reasonable to rely on



video analysis at other locations within the same facility where crowd levels are
more dispersed.

• Significant differences in clothing style or other appearance factors from those rep-
resented in the training set. For instance, the expected distributions over observed
features is somewhat dependent on local styles of dress and weather conditions.
Because a misalignment between the model and the evaluated observations can
lead to degraded image interpretation performance, one way to solve this problem
is to repeat the model learning process using a more representative dataset.

Most challenges can be addressed by strategic selection of the camera views on which to
perform video analysis or through refinements to the probabilistic model structure and
parameters.
Finally, the approach outlined in this chapter can be extended to the problem of

attribute-based search of other scene component types besides pedestrians. Useful search
capabilities for security personnel include those based on vehicle descriptions (color and
type); high-fidelity luggage, bag, or package descriptions; or facial attributes captured
in close-proximity video. In any of these cases, probabilistic models can be used to
effectively represent and manage uncertainty during the image interpretation task.
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Pedro A. Torres-Carrasquillo

This chapter provides an overview of speech applications and the role of basic modeling
and decision techniques in these applications. We will focus on the area of speech
recognition involving extracting information from speech. Classically, the main piece of
information extracted from a speech signal is the sequence of words. In this chapter,
we will describe the basic speech recognition application as well as other concepts such
as gender, language, and speaker recognition. We will expand on the description of
hidden Markov models (HMMs) and Gaussian mixture models (GMM) presented in
Chapter 2 and discuss how they are typically employed in various speech applications.

Speech processing is the term used to refer to the process by which a speech signal
produced by a human is analyzed by a computer or another automated system to extract
information of interest. The process of extracting information from a speech signal
is usually conducted by performing short-term frequency analysis of the signal and
modeling these frequency components of the signal. These components can be modeled
directly and used by a pattern recognizer, e.g., a dynamic model like an HMM, or
used as a building block for more linguistically significant units like phonemes. These
linguistically significant components can then be used to model even higher level units
such as words or sentences. Table 9.1 presents a hierarchy of speech units or tokens used
for different applications along with their typical time span.
At a high level, the speech production mechanism is usually modeled following

the source-filter paradigm [1], [2]. An excitation signal drives a filter that shapes the
incoming signal and produces the speech signal. The speech signal produced is highly
dynamic with local and nonstationary statistics. The nonstationary characteristics of
the speech signal result in a number of assumptions needed to model the signal. For
example, short-term analysis is employed to exploit the short-term stationarity of the
signal.
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The speech signal conveys information at various levels, ranging from the smallest
unit, the phoneme, to the level of words and sentences. Additionally, the signal carries
rhythm information and information about the characteristics of the individual speaker.
In the following sections, we will describe how statistical modeling of the speech signal
is typically done and applications that exploit these different levels of information to
extract the information of interest.
There are many applications within the field of speech processing. These applications

include coding of the speech signal, information extraction from the speech signal,
and speech-to-speech translation. In this section, we limit our discussion to speech
recognition and information extraction. The process for conducting speech recognition
and information extraction includes feature extraction, classification, and decision
making.

Although many features have been used in the field of speech processing, discussing
all of these is beyond the scope of this book. We focus on the most widely used set of
features within the field of speech recognition, the cepstral features. A cepstral feature is
defined as the inverse Fourier transform of the logarithm of the Fourier transform of
the signal. In the case of a speech signal, we are usually referring to a windowed version
of the signal or the short-term Fourier transform. The most common variant of the
cepstral feature set is the mel-scale cepstral feature set [3], [4].

Hidden Markov models (HMMs), as defined in Section 2.1.7, are stochastic models
that allow for the inclusion of temporal information. HMMs have been used for a large
number of applications within the speech processing field, particularly for recognition
systems [5], [6].



HMMs are extremely flexible and allow for modeling the highly variable components
observed in a speech signal. In the case of speech recognition, a left-to-right, three-state
HMM architecture is commonly used. This architecture allows for either a return
to the current state or a transition to the state to the right of the current state. The
generation of an observation is typically modeled by a probability distribution with a
Gaussian or mixture model. AnHMM requires defining the set of transition probabilities
among states, the observation distribution associated with each state, and an initial state
distribution.
Once the architecture and parameter set that define the HMM are decided, we

typically focus on the three basic problems of interest for data modeling:
• adjusting the parameters with respect to the training data,
• computing the most likely state sequence, and
• computing the likelihood of an observation sequence given the model.

A detailed description of each of these problems is beyond the scope of this chapter, but
a number of algorithms are commonly used to achieve a solution either in the maximum
likelihood sense or using discriminative techniques [7]–[10].

As introduced in Section 2.1.2, a Gaussian mixture model is a representation of a
continuous probability distribution composed of a set of M normal components. The
density is given by

p(x |μ1,Σ1, . . .μM ,ΣM ,α1, . . . ,αM ) =
M∑
i=1
αi � (x |μi ,Σi ). (9.1)

The parameters of the model are defined by θ = (μ1:M ,Σ1:M ,ρ1:M ). One way to
generate a sample from a GMM is to select one of the M components according to
the distribution defined by parameters ρ1:M and then sample from the distribution
associated with that component.
GMMs have an important role within the recognition component of speech pro-

cessing. First, the GMM is typically the distribution of choice for the observation set
in an HMM. Additionally, the GMM technique has been the leading approach in
the area of speaker recognition for more than a decade. More recently, GMM-based
language identification has been shown to provide excellent performance. GMM-based
recognition has been used over the last few years to conduct depression classification
and speech activity detection.



The training for the GMM is commonly performed by the expectation-maximization
(EM) algorithm [9]. The EM algorithm is widely used across multiple fields and for a
variety of problems. The EM algorithm has a number of desirable properties including
convergence to at least a local maximum and computational simplicity. Other methods,
such as gradient descent, tend to be computationally expensive.
EM is generally concerned with estimating the parameters of a probabilistic model

when there are missing data or unobserved variables. In the context of learning the
parameters of a GMM, the missing data might be the component used to generate the
sample. If the observed dataset is X and the unobserved dataset is Y , then EM aims to
find the model parameter θ that maximizes P (X ,Y | θ)—or, more commonly due to
computational convenience, logP (X ,Y | θ). The process outlined in Algorithm 9.1
begins with an initial guess of θ, denoted θ̂. Given θ̂, the algorithm computes

argmax
θ

∑
Y

P (Y | X , θ̂) logP (Y ,X | θ) (9.2)

and sets θ̂ to this value for use in the next iteration. The process repeats until convergence.

Algorithm 9.1 Expectation-maximization estimation
1: function ExpectationMaximization
2: Initialize θ̂
3: loop

4: θ̂← argmaxθ
∑

Y P (Y | X , θ̂) logP (Y ,X | θ)
If the distributions involved are from the exponential family, as is the case with

GMMs, then there is a closed-form solution to Equation (9.2). Bilmes provides an
overview of how to compute the parameters of a GMM using EM [11]. When applying
EM to GMMs, the covariance matrix for each mixture component is often assumed
to be diagonal. Diagonal matrices tend to work well for most speech applications and
simplifies the computation. The parameter θ̂ can be initialized in different ways, such
as random assignment or k -means clustering.

Speech recognition is the process by which computers analyze a speech signal and pro-
duce a sequence of words, a transcript, of the spoken signal. The incoming speech signal
is converted into a stream of feature vectors as described earlier. The resulting stream of
feature vectors is usually decoded into a set of units or tokens with linguistic meaning.



These tokens tend to be either phones or sub-word units obtained via acoustic decoding.
Typically, the acoustic decoding is combined with additional linguistic knowledge about
the language of interest. This additional knowledge is used to constrain the possible set
of acoustic sequences.
Speech recognition involves the application of Bayes’ rule to various pieces of infor-

mation, including the set of wordsW , also known as the language vocabulary, and the
stream of feature vectors X produced for the speech signal. Speech recognition produces
a mapping from the input acoustic sequence, X = x1:n , to the set of words,W = w1:m ,
where n is usually much larger than m.
HMMs are the model of choice used for speech recognition. Typically, an HMM is

created for all the phones in a given language, and the phone-HMMs are combined to
produced word-HMMs via forward-backward estimation. Decoding of the observation
X into words is computationally expensive, and various algorithms are available to
perform this process. The Viterbi algorithm is conventionally employed for this task
[5], [12]. The acoustic model is commonly trained on hours of data spanning multiple
pronunciations of different words and phones.
The decoding process incorporates linguistic knowledge about the language in two

ways. First, the pronunciation is modeled to constrain the different alternatives over
which words in the language of interest can be pronounced. This step is critical in the
search process because it reduces the number of viable decoding alternatives and reduces
the computation required. The pronunciation model is usually built by including all
the likely canonical pronunciations for a word in a given language. This model is also
known as the pronunciation dictionary.
Second, the language model constraints the potential word sequences likely to be

observed in a language. The language model also plays a large role in the search process
to determine the hypothesized word sequences. The language model is trained by
computing the probabilities of word sequences across a large corpus. Traditionally,
trigrams (sequences of three words) are employed as a trade-off between the amount of
training data needed to robustly estimate the sequence statistics and the discriminative
potential of the language model. In the case of the language model, hundreds or even
thousands of hours are used to train the language model. Mathematically, this process is
usually conducted as follows:

argmax
W

p(W | X ) = argmax
W

p(X |W )p(W )
p(X )

= argmax
W

p(X |W )p(W ). (9.3)

The pronunciation and language model are incorporated using

argmax
W

p(W | X ) = argmax
W

p(X | A)p(A |W )p(W ), (9.4)



where p(X | A) is the set of HMMs modeling the acoustics of the language, p(A |W ) is
the pronunciation model for the acoustic sequence given all possible pronunciations, and
p(W ) is the language model constraining the sequences likely observed in a language.
Advances in speech have come at a consistent pace, incorporating knowledge across

multiple research fields. Multidisciplinary ideas from psychology, linguistics, computer
science, and pattern recognition have proved critical to improve performance over the
last few decades. Usually, advances are obtained by constraining the conditions over
which a problem is solved and then relaxing these conditions as improved performance
is obtained. A common performance metric in the field of speech recognition is word
error rate. Word error rate is usually measured as the addition of the three possible types
of error observed. These errors include words that are deleted compared to the reference,
words that are added to those in the reference, and words that are substituted when
compared to the reference. The errors are obtained by aligning the reference (known)
transcript to the one obtained from the system via dynamic programming.
A number of excellent sources address the issues related to speech recognition algo-

rithms [13], [14]. In this chapter, we have not discussed a number of important issues
related to how computational issues are handled and how words that are never observed
during training are handled (out-of-vocabulary words). A large number of techniques
have been developed over the years to reduce the search space over which models are
decoded. Most of these techniques include pruning viable alternatives by eliminating
the least promising decoding paths.
There are several current trends in automated speech recognition research. First, as

additional computing power becomes available, the trend is to include more complex
models with a large number of parameters. For example, many state-of-the-art systems
involve HMMs with millions of parameters for the observation distribution. Second,
the use of discriminative techniques for training the models is typical. In the case of
discriminative techniques, the emphasis usually is to optimize the decision region instead
of focusing on maximizing the likelihood of the models. Third, new techniques dealing
with neural networks are emerging. One of the most recent alternatives being studied in
the field is the use of deep neural networks [15]. Deep neural networks exploit complex
neural network architectures and training techniques to address the speech recognition
problem. A fourth area of interest is the extension to additional languages. Given the
need of systems to be trained on large amounts of transcribed data, work is underway
to obtain data-driven units that can be used for applications in low-resource languages
[16], [17]. In the case of low-resource languages, limited amounts of training data
are available, and the interest is to explore bootstrapping data from additional richer
languages.



Topic identification is the process of identifying the topic in a spoken document. Over
the years, a number of alternatives have been considered for performing the topic identi-
fication tasks. Currently, most of the techniques have a speech recognition preprocessing
stage for extracting words or sub-word units. Each of these methods has advantages and
disadvantages. In the case of word-based systems, we tend to be able to use specialized
vocabulary that could be of interest for a particular application at the cost of higher
computational complexity and limited language coverage. In the case of phonetic sys-
tems, we tend to have better flexibility for adapting to newer conditions and languages
at the cost of more errorful tokenization.
The output of the system, in the form of words or phone sequences, in the prepro-

cessing stage is then processed to obtain a set of features that can be useful for topic
identification. A widely used method for using the speech recognition output is the
bag-of-words approach. The bag-of-words represents a vectorized count of words (or
tokens) observed in the decoded speech. Typically, the set of words is filtered to eliminate
words that are not descriptive of the content in the spoken document. The filtered set
of words includes elements such as filled pauses (e.g., ah, uh, um) or nondescriptive
words (e.g., the, of, that).
The final classification stage consists of a measurement of distance between the

decoded input speech vector and a set of representative vectors of the topics of interest.
In this stage, techniques range from simple distance metrics like cosine distance to
more involved methods like inverse document frequency [18] and latent semantic
analysis [19]. The inverse document frequency technique relies on the concept that the
most frequent words or tokens are not likely to carry as much discriminative power
as those units that are not observed as frequently, and a combination of a set of these
infrequent units is likely a good indicator of the topic. Latent semantic analysis attempts
to constrain the variability in the feature space to a smaller number of dimensions.
Recently, an emerging area of research within topic identification involves systems

that can be trained without any supervision such that the sub-word units used are derived
from the data instead of from previously transcribed data [17], [20]. The advantage of
systems using such an approach that does not require transcriptions for training includes
the extension to new languages. Extending speech recognition and topic identification
to languages for which only small amounts of untranscribed data are available is an
active topic. An additional advantage of these techniques is the flexibility in adaptating
to new acoustical and environmental conditions.



Language identification is the process of identifying the language spoken in a speech
utterance. Over the years, a number of applications have been proposed for language
identification. The first set of proposed applications includes those in which the language
identification process is used as a preprocessing step for future automatic processing.
Examples of this type of application include the initial stage of a speech recognition
system where the hypothesized language is used to determine which models are used
to decode the signal, and similarly, machine translation, where language identification
is used to determine the whole set of models that are used for translating the source
speech into a known target set.
Algorithms have evolved rapidly over the last decade. For most of the previous decade,

the dominant technology was based on phone n-grams. The phone n-gram system,
also known as phonotactics, is the process of studying the sequence of phones that are
obtained when the speech signal is decoded. The basic principle is that these sequences
will be different across languages and facilitate discrimination. Typically, these systems
are constructed in three stages.
The first stage is the phone-decoding stage. In this stage, the incoming speech signal

is decoded into a sequence of phones. This decoding step is similar to the first stage
in the speech recognition system with minor differences. In this case, as in the speech
recognition case, p(X | A) is also an HMM, but it is decoded in open-loop fashion
instead of constrained by pronunciation or the language model. The result is that
the incoming speech is tokenized into a sequence of phones without any linguistic
knowledge used to reduce the search. Concretely, the observation X = x1:n is mapped
to a sequence of phones P = p1:m using the set of HMMs that had been trained
on phonemes. This process can be language specific or universal. It is important to
mention that there does not need to be a relation between the language or languages
over which the phonetic inventory is constructed and the list of target languages that
we are interested in identifying [16].
The second stage is the language model stage. Similar to the idea presented ear-

lier for speech recognition, the language models trained in this stage are based on
language-specific data. The number of language models trained is usually related to
the set of target languages. This stage is key to discriminating across languages. The
discrimination power exploited by the language model is based on the fact that the
frequency of sequences of the tokens observed varies greatly across languages and in
some cases is almost unique to a given language. Across the years, researchers have
looked at sequences ranging from bigrams to 5-grams, with trigrams typically employed
by most systems. An example of a language modeling technique that is widely used
by various researchers including Zissman [21] is the interpolated language model. An
example of an interpolated bigram (n = 2) language model is shown below. In this case,



the sequence is modeled using

P (pt | pt−1) = α2P (pt | pt−1) +α1P (pt ) +α0P0. (9.5)

Here, P (pt | pt−1) is the conditional probability of observing phone pt given that
phone pt−1 has been observed and α0:2 are weights related to how confident we are in
the given n-gram.
The final stage in phonotactic systems is a post-processor component, sometimes

referred to as the backend. The backend can be a simple score normalization process
or can be trained, like a linear classifier, on a held-out set and used to model the distri-
butions of the language model scores across the different classes. The decision in this
case is just the maximum language model score across all the classes of interest. Addi-
tional performance gains are usually obtained by combining multiple language-specific
phonotactic components.
Recent work on acoustic or spectral systems has exploited information at a lower

level in the speech hierarchy. Systems in this category include GMMs, support vector
machines (SVM), or a combination of both. In the case of GMM systems, over the last
decade, performance has greatly improved by three main factors:
• shifted-delta cepstral features, which account for temporal information [22];
• higher order models, with systems including up to 2048 mixture components;
and

• the introduction of discriminative training.
Discriminatively trained systems have been dominant in this area over the last few
years. More recently, systems based on combining GMMs with SVMs have resulted
in additional gains over GMM-only systems. As an example, a language identification
system based on GMMs usually assumes knowledge of a large set of observations labeled
by language. In this case, we built a GMM for each language of interest and compute
the likelihood for each class following

ℓ̂ = argmax
ℓ
log p(X | θℓ ), (9.6)

where

log p(X | θℓ ) = 1
T

T∑
t=1
log p(xt | θℓ ), (9.7)

where ℓ is the language for which the set of parameters θℓ produces the highest likelihood
for observation X .



State-of-the-art performance in this area is currently obtained by employing sub-space
compensation methods, particularly the technique known as i-vectors [23]. The i-vector
algorithm is a result of extending factor analysis methods to language identification. In
this approach, a language-independent GMM is trained and used to create a supervector
(concatenation of mean vectors) for each incoming training speech utterance. Each
supervector is then projected into a lower dimensional space using a matrix T obtained
from all the available training data. The matrix T is related to the eigenvector matrix
obtained by principal component analysis of the covariance matrix of the training data.
Typically, the dimensionality of the i-vector subspace is 200 to 600 dimensions. Once
the data have been projected into the i-vector subspace, either simple distance metrics
or conventional classifiers (e.g., SVN or GMM) are used for classification.
Although phonotactic and acoustic (spectral-based) algorithms have been the domi-

nant technologies in language identification, other techniques have been used with more
limited success. The most notable ideas in this case include prosodics and word n-grams.
Prosodic-based systems attempt to exploit the differences in rhythm observed across dif-
ferent language classes. These systems typically look at features based on the fundamental
frequency (pitch) and its derivatives along with syllabic rate. Word n-gram systems
have shown excellent performance but are usually limited to target languages on which
well-trained systems are available. The limited availability of full-scale, well-trained
systems on a large set of languages results in limiting the set of possible applications for
this technique [24]–[26].
In the field of language identification, the National Institute of Standards and Tech-

nology (NIST) has conducted language-recognition evaluations since the mid-1990s
[27]. The motivation is to assess the state of the technology by providing a uniform
set of data over which different systems can be compared. The evaluation paradigm
is based on creating a previously unseen dataset and having participating sites deliver
classification decisions without knowledge of the truth labels of the data. Figure 9.1
shows results for Lincoln Laboratory systems over the years. These systems are usually
the result of combining various systems, such as a phonotactic system being combined
with various cepstral-based systems [28], [29].

Speaker identification is the process of identifying speakers by their voice. There are two
main applications of interest. The first is speaker verification, in which there is a speech
sample and a claimed identity. In this case, the speech sample is processed and scored
against the model for the claimed speaker, and verification is granted if the produced
score is above a certain threshold. The second application of interest is the identification
case, which lends its name to the general area. In the identification case, there are two
typical scenarios:
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1. A closed-set scenario is one in which a speaker is known to be someone within a
predetermined set of models. The chosen speaker is usually the one that scores the
highest within the set of models.

2. An open-set or out-of-set scenario is one in which the speaker is not guaranteed to
be within the predetermined set of models. In this scenario, the speaker is chosen
to be within the model set only if the score is above a certain threshold.

Over the past 20 years, the area of speaker identification has been dominated by
algorithms based on GMMs that probabilistically model the salient characteristics of
the speakers. The foundational work in this area [30], [31] relies on using a universal
background model to model the general speaker population and serve as a competing
hypothesis for the hypothesis test. Additionally, the universal background model allows
for a computational advantage when multiple speakers are considered [31].
Recent advances have resulted in improved performance over the conventional GMM

approach. Initially, gains in performance were obtained by combining systems based
on GMMs with other systems that provided complementary information. The first of
these systems was based on employing classifiers, such as SVMs, to model the speaker
characteristics [32]. Later on, the GMM- and SVM-based systems were combined
with another class of systems that not only relied on a different set of classifiers but
focused on a different set of features altogether [33]. The new high-level features relied
on information extracted beyond conventional cepstral features into longer-term units
such as phones, words, and word usage [33], [34]. The general idea is that if enough
speaker data are available to train the models, then speaker-specific behavior could be
observed at the phone and word-usage level. Additionally, another type of system was



developed by exploiting the power of SVMs in combination with features derived from
speech-recognition systems.
More recently, a new class of systems has been proposed that addresses one of the main

causes affecting the performance of speaker identification, namely, channel variability.
It is well known [31] that the performance of speaker identification is adversely affected
by having the enrollment data, used to train a speaker model, come from a different
source from the testing data used to evaluate the system performance. In particular,
systems based on factor analysis and nuisance attribute projection specifically exploit
the availability of multiple enrollment utterances for each of a large set of speakers
to extract the channel information that needs to be compensated for. In the case of
nuisance attribute projection, the basic idea is to model a speaker utterance as the
additive combination of a generic speaker component based on the alignment of the
speaker utterance to a universal background model and an offset related to the channel
information. This channel information is constrained to a small subspace and then
eliminated from the original speech. The initial proposal for systems using factor analysis
has been extended further to a technique known as joint factor analysis (JFA), which
attempts to mitigate not only the channel variation but also the variability across the
different speakers.
The most recent extension of the JFA framework has resulted in a new approach

named the i-vectors [35]. The concept of i-vectors relies on the same basic principles
behind the JFA approach but is a different philosophical view of variability. In the
i-vector approach, the underlying assumption is that all the variation related to the
speaker, instead of the channel differences, can be captured in a small subspace. This
type of system right now provides state-of-the-art performance in the field of speaker
recognition [36].

Forensic speaker recognition is an application for speaker recognition that has regained
interest over the last decade. The classical scenario is that of determining whether
an unknown voice sample is from the same speaker as a voice sample for which the
speaker identity is known. In recent years, a number of prototypes have been developed
addressing the needs of the forensic community. One prototype is Vocalinc, which
builds on experience from NIST speaker-recognition evaluations. Figure 9.2 is a screen
shot of the current Vocalinc graphical user interface. In the case of forensic analysis, a
tool like Vocalinc is expected to be used by the forensic practitioner in an interactive
fashion following what is known as the “human-in-the-loop” type of operation.
The user interface allows for the selection of the speaker-recognition algorithms to

be used in the analysis. The algorithms included in the tool are the GMM, SVM, JFA,
IPDF, and i-vector. The inner product discriminant function (IPDF) is a generalization



of a hybrid system including a GMM and an SVM [37]. All of these algorithms can be
used individually or combined. The user can decide to operate the tool in 1-to-1 mode,
the process outlined earlier in which there is a known and a questioned speech sample,
or in list mode, in which the user runs two lists of audio files against each other. List
mode allows for an n-by-m set of comparisons.
The tool allows for audio files to be used and for the user to indicate metadata related

to gender, channel type, channel side (in the case of stereo files), and section marks. The
algorithms use these metadata to select which models should be used during analysis. In
the case of section marks, the marks indicate the sections of the speech signal to analyze.
If marks are used, then it is usually the case that these sections are obtained from the
analysis by listening to the signal and marking the relevant areas where the speaker of
interest could be present.
The interface displays the audio signals to the user and the result of the comparison.

It shows the probability of match for the two speech utterances. There is also a table
that shows the individual results for each of the classifiers that were selected by the user.
In the case of list or matrix operation, the results for the list operation are available
through the results tab in the results section.
The prototype will be extended in a number of areas. As new algorithms are developed,

they will be incorporated into the system. Eliminating the need for user metadata
input and allowing the system to automatically determine information like gender and



channel can result in improved performance. In the future, the system will incorporate
intrinsic information about the speaker, such as emotion, health status, and stress.
Understanding how intrinsic information about the speaker can affect the performance
of speaker-recognition systems is currently not well understood, and it is expected to be
a focus of research in decades to come.

Machine translation, also known as automatic machine translation, is the process of
converting audio or text from one language to audio or text for another language. Over
the years, two main types of systems have been proposed to address the translation
problem. First, rule-based systems have been proposed that focus on applying word-based
translation followed by using linguistic rules to reorder the words or tokens [38]. The
second type of system is based on statistical techniques, in which training data are
available for both languages of interest, and the observations are mapped from one
language to the other using basic statistics about occurrences of words and phrases.
Rule-based systems usually rely on three basic components. A dictionary component

maps words from the input language to the output language. The second and third
components of these systems are typically a set of linguistic rules for the source and
target languages. These linguistic rules usually include rules about the sentence structure
and grammar in each language [39].
Statistical machine translation has been the dominant approach for machine trans-

lation over the last two decades. Although statistical systems were proposed in the
1950s, work conducted at IBM [40] in the late 1980s started the modern shift toward
statistical techniques. At the heart of the modern statistical approach is the concept of
parallel corpora, that is, corpora in both the source and target language where the target
language data represent the human translation of the available data in the source corpus.
Examples of models proposed include word- and phrase-based models. In the case of
word-based models, the typical steps include a conversion from each word (or token) in
the source language to a single word (or token) in the target language. A second step in
this type of system rearranges the words in the target language such that the probability
of the word sequence is maximized.
In the case of phrase-based systems, the approach is similar to that of word-based

systems, but it uses phrases as the unit of interest. Here, the sentences in the source
language are usually parsed into phrases, defined simply as sequences of tokens, and
these phrases are then converted to phrases in the target language. The set of phrases
obtained in the target language is then reordered using a similar approach to that used for
word-based systems. An excellent survey on statistical machine translation approaches
has been written by Lopez [41].



Assessing the performance of translation systems is not easy and provides a difficult
challenge to researchers in this area. Human evaluation of the generated output tends to
provide an inconsistent metric of how good a translation is. Automatic measurements
are needed in the machine translation arena to provide a consistent, automatic, and
unbiased estimate of system performance. A well-known and widely accepted metric is
based on the method known as the Bilingual Language Evaluation Understudy (BLEU)
[42]. The BLEU measure is based on the concept of precision. This measure uses word
and word-sequence matches between the hypothesized translation and high-quality
reference human translations.
Over the last decade, research has focused on human-factor aspects of machine

translation [43]. Although machine translation performance is errorful, there may be
opportunities to make use of the current state of systems. In the past, evaluation metrics
have focused on simply reducing translation errors. However, it is important to measure
the effectiveness of a system. An imperfect or inaccurate system can still be useful to
users for certain applications. Recent work has involved developing new metrics and
measures of effectiveness that can help us understand how current systems can be used.

In this chapter, we have discussed speech processing systems focusing on active areas
of research. In particular, we discussed applications in the areas of automatic speech
recognition, language recognition, speaker recognition, and machine translation. We
have described state-of-the-art algorithms in each of these areas and discussed applica-
tions of interest where appropriate. Speech processing systems are still an active area of
research, and we believe that additional improvements in many areas can be made and
new applications developed in the years to come.
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Mykel J. Kochenderfer

Developing robust aircraft collision avoidance logic that reliably prevents midair colli-
sions without excessive alerting is challenging because of sensor error and uncertainty
in the future paths of the aircraft. Over the past few years, research has focused on the
use of a computational method known as dynamic programming for producing an
optimized decision logic for airborne collision avoidance. This chapter describes recent
research in modeling the collision avoidance problem as a partially observable Markov
decision process and solving for the optimal strategy using dynamic programming. The
performance of the system is evaluated using a statistical airspace model represented as
a dynamic Bayesian network learned from recorded radar data.

Because the sky is so big and aircraft are so small, there were few midair collisions during
the early years of aviation. By the 1950s, air travel had become commonplace, and
the skies became more crowded. In 1956, a midair collision over the Grand Canyon
resulted in 128 fatalities. At the time, this collision was the worst commercial air disaster
in history. The collision caused a press frenzy and congressional hearings, ultimately
leading to the establishment of the Federal Aviation Administration (FAA) in 1958.
The establishment of the FAA led to major improvements in both airspace design

and air traffic control. The airspace was designed to keep aircraft separated. For example,
depending on whether aircraft were flying west or east, they were expected to fly at
different altitudes. Air traffic controllers relied on ground-based radars, keeping aircraft
safely separated by calling out traffic to pilots and by vectoring aircraft.
The enhancements to airspace design and air traffic control significantly improved

the safety of the airspace. However, midair collisions still occurred. A midair collision
involving a commercial airliner over San Diego, California, in 1978 resulted in 144
fatalities, and another commercial airliner collision over Cerritos, California, in 1986
resulted in 82 fatalities. These two collisions, in particular, convinced Congress that an



additional layer of collision protection was needed in the form of an onboard system.
This system would provide an independent safety net to protect against human error,
both by air traffic controllers and pilots.

Development of an onboard capability started shortly after the midair collision over the
Grand Canyon. Early concepts focused on primary radar surveillance that sends out
energy pulses and measures the timing of the echo to infer distance. This approach did
not work well for a variety of reasons, including the inability to accurately estimate the
altitude of the intruder. The focus shifted to beacon-based systems that made use of the
transponders already on board most aircraft. An aircraft would send out an interrogation
over the radio data link and measure the amount of time required for the aircraft to reply.
Information about altitude and intended maneuvers could also be shared across this
radio data link. The initial system, called Beacon Collision Avoidance System (BCAS),
was designed to operate in low-density airspace. The collision over San Diego spurred
the development of the Traffic Alert and Collision Avoidance System (TCAS), which
was based on BCAS but with enhancements that enabled its use in high-density airspace.
The development spanned several decades. The collision over Cerritos led to Congress’s
mandating the use of TCAS in the United States, and now TCAS is required on all
large passenger and cargo aircraft worldwide.
TCAS conducts airborne surveillance, computes advisories using a safety logic, and

relays those advisories to the pilot through audio and a display. If another airborne
aircraft is a potential threat, then TCAS issues a traffic advisory (TA), which gives the
pilots an audio announcement “Traffic, Traffic” and highlights the intruder on a traffic
display. The TA is intended to help pilots achieve visual acquisition of other aircraft
and prepare for a potential avoidance maneuver. If a maneuver becomes necessary, then
the system will issue a resolution advisory (RA), instructing the pilots to climb or
descend to maintain a safe distance. There is an audio announcement of the required
vertical maneuver, and the range of acceptable vertical rates is shown on the vertical
speed indicator. On some aircraft, additional pitch guidance is provided to pilots.
TCAS may issue a variety of different vertical advisories, including:
• do not climb or descend,
• limit climb or descend to 500, 1000, or 2000 ft/min,
• level off,
• climb or descend at 1500 ft/min,
• increase climb or descend to 2500 ft/min, or
• maintain current vertical rate.

Depending on how the encounter evolves, TCAS may strengthen, weaken, or reverse
the direction of the advisory. An RA provides vertical guidance only; TCAS does not



issue horizontal maneuvers such as heading changes or turns. After the encounter has
been resolved, TCAS declares “Clear of Conflict.”
The logic for specifying when to alert and what advisory to issue is represented as a

large collection of rules. The TCAS logic uses straight-line extrapolation to estimate
the time to closest approach and the projected miss distance. If both are small, then
the logic determines that an alert is necessary. If an alert is necessary, then the logic will
model standard climb and descend maneuvers assuming a 5-second pilot response delay,
followed by a 0.25 g acceleration. It chooses the direction that provides the greatest
separation from the intruder. It then models a set of different advisory rates that are
consistent with the chosen direction. TCAS chooses the lowest rate that provides a
required amount of separation.
Although the general steps TCAS uses to select advisories are relatively straightforward,

the details of the logic are complex. Embedded in the TCAS logic specification are many
heuristic rules and parameter settings designed to compensate for sensor noise and error
as well as for variability in the pilot response. There are also rules that govern when to
strengthen, weaken, and reverse advisories and how to handle encounters with multiple
simultaneous intruder aircraft.

TCAS has been successful in preventing midair collisions over the years, but the way
in which the logic was designed limits its robustness. Fundamental to TCAS design
is the use of a deterministic model. However, recorded radar data show that pilots do
not always behave as assumed by the logic. Not anticipating the spectrum of responses
limits TCAS’s robustness, as demonstrated by the collision of two aircraft in 2002
over Überlingen, Germany. TCAS instructed one aircraft to climb and one to descend.
However, the pilot who received the TCAS climb instruction instead descended in
accordance with the air traffic controller’s instructions, leading to a collision with the
second aircraft, which was descending according to its TCAS instruction. If TCAS
recognized the noncompliance of one of the aircraft and reversed the advisory of the
compliant aircraft from a descend to a climb, the collision could have been prevented.
A modification was later developed to address this specific situation, but improving the
overall robustness of the logic requires a fundamental design change.
Just as the airspace has evolved since the 1950s, it will continue to evolve over the next

decade. Significant change will occur with the introduction of the next-generation air
traffic management system, which will be based on satellite navigation. This improved
surveillance will allow aircraft to fly closer together to support traffic growth. In addition,
there are user classes, such as general aviation and unmanned aircraft, that would benefit
from a collision avoidance capability. Unfortunately, the current version of TCAS cannot



support the safety and operational requirements of this new airspace. With aircraft flying
closer together, TCAS will alert pilots too frequently to be useful.
To meet these requirements, a major overhaul of the TCAS logic and surveillance

system is needed. TCAS is currently limited to large aircraft capable of supporting its
hardware and power requirements. The aircraft must also have sufficient performance
to achieve the required vertical rates of climb or descent that the advisories currently
demand. Although a collision avoidance system for small aircraft might help improve
safety within general aviation, TCAS cannot be adapted for small aircraft without a
costly redesign.

Unmanned aircraft have great potential for scientific, law enforcement, and commercial
applications, but they currently cannot fly in civil airspace without special authoriza-
tion. Flexible airspace access requires the capability to sense and avoid other aircraft
effectively. An automated airborne collision avoidance system that meets the strict safety
requirements of civil aviation authorities would greatly expand the utility of unmanned
aircraft.
TCAS cannot be used directly for sense and avoid for several reasons. The legacy

system assumes that TCAS-equipped aircraft can achieve rates of at least 1500 ft/min
to comply with initial climb and descend advisories and 2500 ft/min for strengthened
advisories. Many unmanned aircraft platforms can only achieve around 500 ft/min to
1000 ft/min. These vertical constraints may make it beneficial to maneuver horizontally
rather than vertically. TCAS, however, was not designed to provide heading change or
airspeed guidance.
The TCAS logic was designed assuming a beacon-based surveillance system, but

unmanned aircraft cannot rely solely on such a surveillance system. Because there is not
a pilot on board the aircraft who can physically see and avoid other aircraft, unmanned
aircraft surveillance systems must avoid all categories of aircraft—including those not
equipped with beacon transponders. Sensor systems that can detect aircraft without
transponders include radar, electro-optical, and infrared. These different sensors have
different error characteristics and size, weight, and power constraints.
Given that it took many years to develop and certify TCAS, it is anticipated that

it will be especially challenging to develop and certify different collision avoidance
systems for all the various combinations of sensor systems and aircraft platforms. Efforts
in the unmanned aircraft industry have largely focused on proprietary solutions for
specific platforms and sensors, but a common system that could accommodate different
sensor configurations and flight characteristics would significantly reduce the cost of
development and certification.



Research over the past several years has focused on formulating the problem of collision
avoidance as a partially observable Markov decision process and using dynamic pro-
gramming to optimize the collision avoidance system. Simulation studies with recorded
radar data have confirmed that such an approach leads to a significant improvement to
safety and operational performance. The FAA has formed a team of organizations to
mature the technology into a new collision avoidance system called Airborne Collision
Avoidance System X (ACAS X). The system is intended to become the next international
standard for collision avoidance for both manned and unmanned aircraft.
ACAS X will bring major enhancements to both surveillance and the advisory logic.

The system will move from the beacon-only surveillance of TCAS to a plug-and-play
surveillance architecture that supports surveillance based on global positioning system
(GPS) data and accommodates new sensor modalities. The new surveillance capabilities
will also enable collision avoidance protection for new user classes, including small,
general-aviation aircraft not currently equipped with TCAS. ACAS X represents a
major revolution in how the advisory logic is generated and represented. Instead of
using ad hoc rule-based specification, ACAS X represents much of the logic by using a
numeric table that has been optimized with respect to models of the airspace. This new
approach improves robustness, supports new requirements, and reduces unnecessary
alerts. The process adopted by ACAS X greatly simplifies development and is anticipated
to significantly lower the implementation and maintenance costs.

The collision avoidance problem can be formulated as a partially observable Markov
decision process (POMDP) in a variety of different ways [1]–[4]. This section describes
a formulation of the collision avoidance problem used in an early prototype of ACAS X
designated for large transport and cargo aircraft.

TCAS issues advisories to the pilot through an aural annunciation, such as “Climb,
Climb,” and through a visual display. The visual display varies, but it is typically imple-
mented on a vertical speed indicator, a vertical speed tape, or a pitch cue on the primary
flight display. The set of advisories issued by TCAS can be interpreted as target vertical
rate ranges. If the current vertical rate is outside the target vertical rate range, then the
pilot should maneuver to come within the required range. If the current vertical rate is
within the target range, then a corrective maneuver is not required, but the pilot should
be careful not to maneuver outside the specified range.
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The advisories available to ACAS X are the same as those available to TCAS and are
summarized in Table 10.1. In the POMDP problem formulation, the discrete actions
correspond to the various advisories—except that MCL and MDES are merged into a
single “maintain” action to reduce the size of the action space. Whether the maintain
action is an MCL or an MDES is determined during execution on the basis of the
current vertical rate.
If the current vertical rate is within the prescribed range of the advisory when it is

issued, then the advisory is called preventive. Otherwise, the advisory is called corrective.
In the table, DES1500, CL1500, SDES1500, SCL1500, SDES2500, and SCL2500
are always corrective. The DNC and DND can be either corrective or preventive. If
DNC or DND is issued as a corrective, then it is annunciated as “Level-off, Level-off”
(LOLO); otherwise, it is annunciated as “Monitor Vertical Speed” (MVS). All other
MVS advisories are preventive.
The availability of these 16 discrete actions depends on the current advisory. For

example, SDES2500 can only be issued after an MDES or a DES1500. The constraints
on transitions between advisories are carried over from the original TCAS design so as
to reduce the amount of new pilot training requirements.



The sense of an advisory is either up or down (or neither in the case of COC).
An up advisory instructs the pilots to climb or not descend. A down sense advisory
instructs the pilots to descend or not climb. Transitioning from one sense to another
is called a reversal. Transitioning between two advisories of the same sense is either a
strengthening or weakening depending on whether the new advisory instructs a faster
vertical rate. Distinguishing these categories of transitions is important in modeling the
pilot response.

The ACAS X prototype uses a relatively simple dynamic model of how aircraft behave.
For several reasons, it is important to keep the model as simple as possible while capturing
the important properties of aircraft behavior. Simpler models are easier for designers to
validate and are less likely to be tailored too tightly to the idiosyncrasies of a particular
airspace. In addition, because simpler models require fewer state variables, computing
optimal advisories using dynamic programming is more tractable.
There are six state variables in the POMDP formulation:
• h , the altitude of the intruder relative to the own aircraft,
• ḣ0, the vertical rate of the own aircraft,
• ḣ1, the vertical rate of the intruder aircraft,• τ, the time to potential collision,
• sadv, the current advisory, and• sres, whether the pilot is responding to the advisory.

In past publications, sadv and sres were combined together in a single discrete variable
called sRA, but keeping these variables separate simplifies the explanation.
The discrete-time dynamic model assumes a time step ofΔt = 1 s, which corresponds

to the decision frequency of TCAS. The advisory response at the next time step s ′res
is determined stochastically based on the current advisory sadv, response sres, and new
advisory a according to

P (s ′res = true | sadv, sres,a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if a = COC
1 if sres = true and sadv = a
1/(1+ 5) if sadv = COC and a �= COC
1/(1+ 5) if sadv and a are opposite sense
1/(1+ 3) if sadv and a are same sense

. (10.1)

Because the advisory response is determined according to a Bernoulli process, the delay
until response follows a geometric distribution. If the response probability at each step
in the process is (1/1+ k ), then the mean time until response is k . Hence,



• the pilot always responds to a COC,
• once the pilot responds, the pilot continues to respond for the duration of the
advisory,

• the average response delay for initial advisories is 5 s,
• the average response delay for reversals is 5 s, and
• the average response delay for a strengthening or weakening is 3 s.

A more complex pilot response model has been explored, but it brought little benefit
and added significantly to the size of the state space [5].
The own acceleration ḧ0 is determined stochastically from s ′res and a. If the pilot is

not responding to an advisory, then ḧ0 is sampled from a zero-mean Gaussian with
a standard deviation of 3 ft/s2. If the pilot is responding, then ḧ0 is chosen to bring
the vertical rate to within the range required by the advisory. The magnitude of the
acceleration is drawn from a Gaussian distribution with a standard deviation of 1 ft/s2.
Generally, the mean of the Gaussian distribution is 8.33 ft/s2, but if an advisory has
been reversed or strengthened to a climb or descend, then a stronger acceleration of
10.7 ft/s2 is used instead. These accelerations were chosen to match those used by
TCAS.
The model assumes that the intruder simply applies random accelerations, drawn

independently once per second. The intruder acceleration ḧ1 is simply drawn from a
zero-mean Gaussian with 3 ft/s2 standard deviation.More sophisticated models explored
in the past have captured the influence of the intruder’s own collision avoidance system,
but analysis has shown relatively little benefit [6].
Given a, s ′res, ḧ0, and ḧ1, the state is updated as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

h
ḣ0
ḣ1
τ
sadv
sres

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
←

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h + ḣ1(Δt ) + 1
2 ḧ1(Δt )2 − ḣ0(Δt )− 1

2 ḧ0(Δt )2

ḣ0 + ḧ0(Δt )
ḣ1 + ḧ1(Δt )
τ − 1
a
s ′res

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (10.2)

The reward function is intended to capture the safety and operational considerations.
To easily apply dynamic programming, the reward function can only depend on the six
state variables and the current action. Early in the development of the system, the reward
function had costs assigned to near collision, issuing an initial advisory, strengthening,
and reversing. Analysis of the performance of the system in simulation revealed that a
variety of additional cost parameters were necessary to make the advisories more suitable
and effective [7].
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Table 10.2 outlines the various event rewards. For a reward in the table to apply,
the specified separation, closure, and event must all hold. Given a state and action, all
events that apply in the table contribute to the immediate reward. All the rewards in
the table are negative except for issuing COC. Some rewards depend on the vertical
separation (i.e., |h |) and vertical closure rate (i.e., |ḣ1− ḣ0|). Others depend on whether
the advisory is a crossing, which is defined to occur when either (1) a down sense is
issued when the intruder is below, or (2) an up sense is issued when the intruder is
above. Crossing advisories can require the aircraft to cross each other in altitude and are
avoided when possible by TCAS.
The table contains two rows that depend on a variable Δḣ . This variable is defined

to be the magnitude of the difference between the minimum required change in vertical
rate to comply with the advisory. In other words, if the advisory has a required range of
[ḣmin, ḣmax], then Δḣ =min(|hmin − ḣ0|, |hmax − ḣ0|).
As discussed later, an important part of the development process involves determining

how to set these reward parameters. These parameters can be adjusted to make trades



between different safety and operational considerations. For example, the corrective
advisory cost can be decreased to increase the rate of corrective advisories, leading to
increased safety.

Dynamic programming (Section 4.2) is used to compute the value functionU ∗ assuming
full observability. The dynamics, as described in Section 10.2.2, have the distributions
over the accelerations ḧ0 and ḧ1 specified as continuous probability densities—and,
therefore, the next state distributionT is a density. Hence, the Bellman equation involves
integration instead of summation:

U ∗(s ) =max
a



R(s ,a) + γ

∫
T (s ′ | s ,a)U ∗(s ′) d s ′

�
. (10.3)

Evaluating the integral analytically is not feasible, but any of the standard numerical
integration methods can be used. The approach taken in the ACAS X prototype involves
generating a set of weighted values for ḧ0 and ḧ1 using sigma-point sampling [8]. With
the set of next states given s and a now finite, the Bellman equation becomes

U ∗(s ) =max
a

�
R(s ,a) + γ

∑
s ′

T (s ′ | s ,a)U ∗(s ′)
�
. (10.4)

Because the state space is continuous, the local approximation value iteration algo-
rithm (Section 4.5.1) is used to compute U ∗. In particular, ACAS X uses multilinear in-
terpolation over a grid-based discretization of the state space. The h variable is discretized
into 33 points over the range ±4000 ft with finer discretization near 0 ft. The vertical
rate variables ḣ0 and ḣ1 are discretized into 25 points each between ±10,000 ft/min
with finer discretization near 0 ft/min. The time to potential collision variable τ is
discretized at 1 s from 0 to 40 s.
The structure of the problem is such that only a single sweep of Gauss-Seidel value

iteration (Section 4.2.6) is required. Because states with τ = k depend only on the states
with τ = k − 1, ordering the sweep of the states by increasing τ value results in the
optimal value function. Although there are more than 26 million vertices, the process
requires only a few minutes on a modern workstation. The state-action values Q ∗(s ,a)
produced through dynamic programming are saved in a lookup table. Recent research
has explored methods for reducing the size of the table for use on airborne equipment
with limited memory capacity [9].



The previous section explained how to compute the lookup tables under the assump-
tion of full observability. During flight, uncertainty in the state variables needs to be
accommodated in real time. The system estimates a belief distribution b and uses it to
select the best action:

π∗(b ) = argmax
a

∫
b (s )Q ∗(s ,a)d s , (10.5)

where Q ∗(s ,a) comes from using multilinear interpolation on the lookup table com-
puted offline. This method for approximating the solution to a POMDP was introduced
in Section 6.4.1 as the QMDP technique. To improve the efficiency of computing Equa-
tion (10.5), instead of representing the belief b as a probability density function, the
system uses a set of samples s (1), . . . , s (n) with associated weights w (1), . . . ,w (n). Hence,
Equation (10.5) becomes

π∗(b ) = argmax
a

∑
i
w (i )Q ∗(s (i ),a). (10.6)

The belief state b can be factored as follows:

b (s ) = b (h , ḣ0, ḣ1,τ, sadv, sres) = b (h , ḣ0, ḣ1)b (τ)b (sadv, sres), (10.7)

where the three components are disambiguated in the text here by their arguments.
This section explains how to estimate these three component distributions and how to
incorporate additional operational considerations in real time through the introduction
of online costs.

Aircraft estimate their altitude using an altimeter that measures atmospheric pressure.
These estimates include some error resulting from variability in pressure gradients and
calibration. When an aircraft sends its altitude information to another aircraft across a
radio data link, it is quantized to either 25 or 100 ft depending on the transponder.
TCAS uses a simple alpha-beta filter to estimate vertical rate when the altitude is

quantized at 25 ft [10], but it uses a much more complex, nonlinear filter when the
altitude is quantized at 100 ft [11]. The TCAS filters only provide single estimates of
the altitude and vertical rates.



Early in the development of ACAS X, it was found that performance could be
improved by explicitly taking into account the uncertainty of the estimates of h , ḣ0, and
ḣ1 [12]. Further work resulted in a flexible filter based on the Kalman filter (Section 6.2.2)
modified to better accommodate quantization error [13]. The filter outputs a set of
weighted state samples. A similar filter was also developed to accommodate noise in
angular position measurements [14].

The distribution over whether the pilot is responding to the previously issued advisory
is updated over time according to Bayes’ rule [5]. The update is a function of the
distribution over own vertical rate ḣ0, the advisory issued, and the pilot response model
specified in Equation (10.1).

The time to potential collision τ cannot be known exactly because it depends on the
future trajectories of the aircraft. There are many different models of how the lateral
positions of aircraft evolve over time [15], but one of the simplest models assumes
white-noise acceleration vectors. Using this model, ACAS X estimates the distribution
over the time until another aircraft comes within some fixed lateral distance.
There are different ways to estimate the time to potential collision. For example,

one could use Monte Carlo sampling. Given the initial positions and velocities of the
aircraft, the accelerations can be sampled and the paths simulated forward in time. With
a sufficient number of sampled trajectories, a histogram over the time to collision can
be built. One disadvantage of a sampling approach is that it can be too computationally
demanding to be done in real time. In addition, certifying a safety-critical system that
relies on random-number generation can be difficult.
The approach taken in ACAS X is to compute the distributions offline and store

them in a lookup table. The distributions can be computed efficiently by using an
iterative process. Let Dk (s ) represent the probability that the other aircraft comes within
a fixed lateral distance in k seconds. Computing D0(s ) is straightforward because it is
simply 1 if s is a state in which the other aircraft is within the fixed lateral distance and
0 otherwise. The probability Dk (s ) can be computed from Dk−1 as follows:

Dk (s ) =
∑
s ′

T (s , s ′)Dk−1(s
′), (10.8)

where T (s , s ′) is the probability of transitioning from one horizontal state s to another
horizontal state s ′. The equation above can be applied repeatedly up to some desired
horizon. For the early prototype of ACAS X, this horizon is 40 s, chosen to provide



adequate alert time prior to potential collision. The probability that τ ≥ 40 given state
s is simply 1−∑39

k=0Dk (s ).
By taking advantage of symmetry, it is possible to represent the horizontal state space

using three variables (see [16]). To store the distribution in a table, the horizontal state
space must be discretized. Because there are only three variables, the discretization can
be made relatively fine. To determine the distribution for an arbitrary horizontal state
not corresponding to a discretization vertex, ACAS X uses multilinear interpolation.
The horizontal state, of course, cannot be known exactly, but a distribution can be

inferred from sensor measurements. Specialized state-estimation algorithms based on the
unscented Kalman filter [8] have been developed for different surveillance systems. These
algorithms output weighted horizontal state samples, and their associated distributions
are combined together.
In cases when the aircraft are close to each other horizontally, it can be beneficial to

base b (τ) on h , ḣ0, and ḣ1. The vertical distribution tables can be computed using the
same process specified in Equation (10.8). The vertical dynamic model also assumes
white-noise acceleration and can be represented using three state variables (i.e., h , ḣ0,
and ḣ1).

The real-time execution of ACAS X consists primarily of estimating the belief state
and computing the associated state-action values by interpolating entries in the lookup
table. However, there are certain situations in which the state-action values are modified
online (i.e., during the execution of the logic). This section outlines these online costs
and discusses the handling of multiple threats and traffic alerts.

As discussed in Section 10.2.2, the lookup table is a function of only six variables.
However, several other variables (e.g., altitude above ground) need to be taken into
account during execution that are not part of the offline optimization. Of course, these
other variables could be added to the optimization, but it would be at the expense of
larger table sizes.
Because early prototypes of ACAS X were constrained by table size, research explored

alternatives to increasing the number of state variables in the offline optimization.
Experiments showed that simply adding costs to the action values online can be effective.
One of the first online costs explored in the development of ACAS X was for altitude
inhibits. Legacy TCAS has rules that inhibit advisories on the basis of altitude to prevent
disruption during landing. It was desired that these rules would be preserved in ACAS



X, and so if these rules trigger an advisory inhibit during flight, then infinite cost is
added online to the appropriate actions.
Another example of an online cost is related to the coordination mechanism adopted

from TCAS.When an aircraft issues an advisory against an intruder, it sends the intruder
the sense of its advisory over the radio datalink. The intruder adjusts its advisory, if any,
to be compatible (i.e., in opposite direction). In cases of simultaneous sense selection,
ties are broken based on unique transponder identification numbers. If table size is not
a concern, then the intruder sense could be incorporated into the offline optimization
[17]. The offline optimization could account for the fact that the intruder will likely
maneuver on the basis of the sense information and also account for the fact that the
system cannot select incompatible senses in the future. Although an online cost approach
is suboptimal in general, experiments have shown that this method is effective in practice
[17].
The set of online costs incorporated in a prototype of ACAS X include
• Altitude inhibit prevents issuing advisories below certain altitudes.
• Advisory switch or restart penalizes advisory changes or restarts within a certain
amount of time.

• Initialization prevents advisories from being issued during the first few seconds of
the system’s starting.

• Multiple reversals prevents multiple reversals (unless required by coordination).
• Bad transitions prevents advisory sequences not allowed by TCAS.
• No-response vertical chase penalizes continuing an advisory in a vertical chase
scenario when the pilot is not responding.

• Compatibility prevents issuing advisories that are not compatible with the advisories
issued by other aircraft.

• Crossing forces an advisory when an intruder issues an advisory that requires passing
through the altitude of the own aircraft.

Some of these costs are effectively infinite (e.g., altitude inhibit), but others are rela-
tively small (e.g., advisory switch and restart). The rules governing these online costs
are implemented in code and can be arbitrarily complex without impacting memory
requirements.

The MDP in Section 10.2 assumes a single intruder. It would be relatively straightfor-
ward to add additional state variables for each additional intruder, but the table size
would grow exponentially with the number of intruders. Legacy TCAS determines the
best advisory for each intruder in isolation and then relies on a relatively complex set of
rules to combine these individual advisories to produce a single advisory to provide to
the pilot.



ACAS X, in contrast with TCAS, fuses the state-action costs associated with different
intruders [18]. Experimental results have shown that this method is effective and can
scale to a large number of intruders [17]. In certain situations, the system will issue
a multi-threat level off (MTLO) advisory, which does not belong in the action set
available to the MDP. An MTLO can be issued if two different intruders indicate they
are following different senses. Because an MTLO is neither an up sense or down sense, it
can remain compatible with both intruders. MTLOs are useful in “sandwich” encounters
in which an aircraft must fly between two other aircraft.
Unlike TCAS, ACAS X has the capability to provide different protection modes

against different aircraft. Such a capability is especially useful in situations such as closely
spaced parallel operations [19]. The systemmay want to adopt a less conservative alerting
behavior against another aircraft that is known to be on a simultaneous approach but still
provide the standard alerting behavior against all other aircraft. Early prototypes of ACAS
X that implement this functionality use different lookup tables and state-estimation
parameters for different protection modes and then fuse the state-action values together.

The majority of the development effort on ACAS X has focused on the generation of
RAs, but TAs play an important role in visual acquisition and preparing the pilots to
respond to an RA. Several different approaches can be taken to produce optimized TAs
with respect to the following objectives:
• Allow for appropriate lead time. The ideal time between a TA and RA is around
10 to 15 s. A lead time of less than 6 s is called a surprise RA and is unlikely to be
sufficient.

• Avoid nuisance alerts. TAs without RAs should be avoided. Because of variability
in pilot response, it is not possible to perfectly predict whether an RA will be
issued in the future. Therefore, some TAs without RAs must be tolerated. Limiting
nuisance TAs must be balanced with limiting surprise RAs.

• Avoid split alerts. The system should try to prevent multiple TA segments during
a single encounter.

The approach taken in ACAS X does not require enlarging or modifying the current
lookup table. TAs are generated based on the value of the “no-alert” action. The no-alert
value is primarily influenced by the cost of collision, providing a measure of threat. The
more likely a collision is, the lower the value of no alert. Comparing this value against a
single threshold can cause chatter (i.e., excessive switching of the TA between on and
off) when the value is near the threshold. To help prevent chatter in the original design
of TCAS, TAs were required to stay on for at least 8 s. This requirement is carried over
to ACAS X. To further prevent chatter and improve operational performance, ACAS X
uses the following three thresholds:
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• The on threshold is a constant value threshold. When the no-alert value descends
below the on threshold, it is determined costly enough to allow a TA to be issued
against the intruder.

• The squeeze threshold is a constant offset from the no-alert value. To help prevent
excessive lead times or unnecessary TAs, this threshold allows the system to suppress
TAs when no advisory values are close to the no-alert cost. If an advisory is less
expensive than the no-alert cost offset by the squeeze threshold and the on threshold
is also met, then a TA is issued against the intruder.

• The off threshold is a constant value threshold similar to the on threshold. If a
TA has remained active for at least 8 s and the no-alert cost drops below the off
threshold, then the TA will be discontinued.

These thresholds were chosen by running simulations of the system on radar data [20].
Figure 10.1 is a notional plot comparing the cost of the no-alert value (blue) and the

highest-value advisory (alert value) (red) over the course of a single encounter. First, the
no-alert cost rises above the on threshold, but the highest-value advisory is above the
squeeze threshold, so a TA is not issued. Later, when the highest-value advisory descends
below the squeeze threshold, a TA is issued. When the value of the highest-value advisory
exceeds the value of no alert, an RA is issued [20].



ACAS X must accommodate many operational goals and constraints while meeting the
established safety requirements. It is important that the system provide effective collision
protection without unnecessarily disrupting pilots and the air traffic control system.
In addition to producing as few alerts as possible, it must issue advisories that resolve
encounters in a manner deemed suitable and acceptable by pilots and the operational
community. This section discusses the process of safety and operational performance
analysis, tuning of the logic, and flight tests of an ACAS X prototype.

Collision risk is estimated using an encounter model, which can be used to generate
encounters that are representative of the airspace. Sampling a large collection of situa-
tions from an encounter model and running them in simulation both with and without
a collision avoidance system provides an estimate of the differential in collision risk.
Estimated risk depends strongly on the distribution of the encounters represented by
the model. Hence, it is important that the encounter geometries and aircraft behavior
represented by the model be as representative of the actual airspace as possible; other-
wise, the risk associated with a collision avoidance system could be significantly over-
or underestimated. To ensure a representative model, a large collection of recorded
surveillance data is typically used to extract state probabilities over various encounter
variables.
The encounter model used in the assessment of ACAS X is based on a U.S. radar

data stream from 130 short- and long-range radars with 4.5 and 12 s update rates,
amounting to approximately 10GB of data per day. The raw reports provide range,
azimuth, altitude, and transponder code. Those reports are converted to latitude and
longitude coordinates, and tracks are fused from multiple sensors [21]. A database of
tracks ranging from December 2007 to August 2008 was used to identify encounters
that meet certain distance and time criteria, chosen to be less restrictive than the alerting
criteria used by TCAS.
Associated with each of the 393,077 encounters identified are a set of static features,

such as the horizontal miss distance and the initial vertical rates of the aircraft, along
with a set of dynamic features, such as the turn rate and airspeed acceleration [22].
Bayesian network structure learning (Section 2.4) resulted in the topology of the initial
and transition Bayesian networks shown in Figure 10.2. The distribution parameters
were learned using the process outlined in Section 2.3.2.
Sampling from the model will produce encounters that are representative of the

airspace. The collision avoidance system can then be run in simulation on these encoun-
ters to estimate collision risk. Safety studies typically involve simulating the aircraft as
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point masses and then estimating the probability of near midair collision (NMAC), de-
fined to be when two aircraft come within 500 ft horizontally and 100 ft vertically. One
of the most important metrics in safety analyses is risk ratio, the probability of NMAC
with the collision avoidance system divided by the probability of NMAC without the
collision avoidance system. If the rate of actual midair collision is to be estimated, then
one must simulate aircraft wire frames and estimate distributions over aircraft types
[23].
Directly sampling from the model and computing the average number of NMACs

will provide an unbiased estimate of the probability that an encounter results in an
NMAC. However, because of the rarity of NMAC events in the airspace, direct sampling
from the encounter distribution will result in the generation of relatively few NMACs.
Simulating encounters that are unlikely to result in an NMAC is inefficient. Instead, it
is better to produce encounters that have mostly low vertical and horizontal separation
at the time of closest approach and then weight the encounters appropriately [22].
Such an approach is known as importance sampling and has been widely studied in
the literature as a variance-reduction technique in estimation [24]. The cross entropy
method introduced in Chapter 4 has been applied to finding a suitable importance
sampling distribution [25]. Even with importance sampling, generally on the order of
hundreds of thousands of encounters are required to arrive at a risk ratio estimate with
a relatively narrow confidence interval.
Assuming standard models for altimetry bias, active surveillance, and pilot response,

the risk ratio for the current ACAS X prototype is less than 40% that of TCAS. Although
the overall risk ratio for ACAS X is encouraging, ongoing work involves identifying and
categorizing areas where ACAS X can be further improved. One area of study involves
analyzing the safety of the system in European airspace where the encounter distribution
is known to be different because of different air traffic control procedures. Besides
analyzing failure cases in encounters models designed to be representative of an actual
airspace, the development team studied logic performance on stress testing models. These
stress testing models probe the limits of the system on exhaustive variations of certain
classes of encounters [26]. Analysis of ACAS X has also been done using probabilistic
model checking [27] and a hybrid systems theorem prover [28].

The operational performance of ACAS X is evaluated in simulation using real TCAS
encounters collected under the FAA TCAS monitoring program by the TCAS Resolu-
tion Advisory Monitoring System (TRAMS). The data comprise more than 100,000
encounters that occurred during normal operations in 21 high-density terminal areas
[29]. These encounters reflect all airspace classes, altitudes, domestic and foreign air
carrier and business jet operations, enroute and terminal air traffic separation and pro-



cedures, airport arrival and departure routes, and a variety of intruder aircraft types and
encounter geometries.
In addition to the TRAMS data, procedure-specific mini-models are also used to

comprehensively assess current and future procedures of interest across a wide range
of encounter dynamics [7]. These mini-models include procedures such as 500 ft and
1000 ft vertical separation encounters, closely spaced parallel approaches, and 3 nmi
enroute separation procedures. As future air traffic procedures mature, additional models
will be created to assess the safety and operational compatibility of ACAS X.
One of the key operational suitability metrics is the overall alert rate. The overall

alert rate, as estimated from the TRAMS dataset, is 30% lower than that of TCAS. The
reason that the alert rate is significantly lower than for TCAS can be seen in Figure 10.3.
In these plots, both aircraft are level and are approaching head on. ACAS X has a much
smaller alerting region than TCAS for this geometry. Except for the strengthening
transition to increase climb or descend, all the alerts occur later than TCAS.
Ensuring that pilots will trust the ACAS X alerts is an important goal of logic

tuning. During initial TCAS development, pilots identified that reversal and altitude
crossing alerts warrant extra consideration because of their impact on flight crews.
ACAS X performance was specifically evaluated in these areas to ensure equal or better
performance than TCAS. Reversal performance was assessed with the TRAMS data,
and numerous encounters were manually examined to ensure that they were acceptable.
Overall, the current ACAS X prototype reduces reversals by 22%.
Due to the size of the TRAMS dataset, it is impossible to manually inspect every

encounter; however, hundreds were examined over the nine logic iterations. Assessment
of individual encounters is an important step in verifying that the logic tuning is effective
in encouraging desired behavior. Figure 10.4 shows an example level-off encounter. The
horizontal geometry (not shown) is a 90-degree crossing, common to many encounters.
The aircraft with a collision avoidance system initially descends, and the threat climbs

and then levels off. TCAS issues an initial crossing descend alert and then reverses to a
climb. After the climb alert, TCAS issues a “weakening” level-off, which is intended
to minimize the altitude change when sufficient vertical separation has been achieved.
Finally, the clear-of-conflict notification occurs well after the closest horizontal approach.
ACAS X, in contrast, waits a little longer than TCAS and issues a level-off. The clear

of conflict then occurs shortly after the closest approach. In this example, ACAS X
resolves the encounter without a crossing or reversal alert. The single level-off alert did
not cause a deviation from the pilots’ intentions of leveling off, resulting in an acceptable
resolution, while still providing safe vertical guidance.
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A designer can modify many design parameters in ACAS X to achieve the goals of the
system. Examples of design parameters include the offline cost of alert, the online cost
of restarting an advisory, and the white-noise acceleration parameter used in the MDP.
These design parameters can be adjusted to trade performance on different metrics. For
example, the cost of alert could be increased to reduce the number of alerts but at the
expense of decreased safety.
These design parameters should be distinguished from the system parameters. System

parameters are the parameters that govern the behavior of the system but are not
necessarily adjusted directly by the designer. In ACAS X, many of the design parameters
are also system parameters, but the system parameters also include all the millions of
values stored in the lookup table. Hence, there are many more system parameters than
design parameters. The large number of system parameters allows the alerting behavior
(as illustrated in Figure 10.3) to be more finely adjusted to achieve better performance.
One of the advantages of the design approach taken in ACAS X comes from the

fact that the number of design parameters is small compared to the number of system
parameters. In general, the complexity of the design process can grow exponentially with
the number of design parameters. Each evaluation of a design point requires millions of
simulations using a variety of different models. Even with a high-performance compute
cluster with 64 nodes, evaluating a single design point requires an hour. In addition,
given the results of a single evaluation, it can be challenging to predict which design point
to try next. Hence, during the early development of ACAS X, there was tremendous
interest in automating the process of tuning the design parameters.
To automate the process, there needs to be some scalar utility function u defined

over the design space. If there are two design points θ1 and θ2 and u(θ1) > u(θ2), then
θ1 is preferred to θ2. For ACAS X, u is based on the results of millions of different
simulations generated by a variety of models. Because u is a scalar function, the various
metrics must be weighted together appropriately. Although future work will explore the
use of formal utility elicitation techniques to determine the weights (Section 3.1.4), the
weights in the most recent tuning process were chosen by the consensus of an ad hoc
committee of experts.
The optimization process is outlined in Figure 10.5. The first step involves screening

the design parameters. Searching the design space is made easier by screening out the
parameters that have little impact on the performance of the system. The elementary
effects of the parameters were estimated by varying the parameters individually from
their nominal value. The parameters that did not have a significant effect on the metrics
were not included in the design search [19].
Once the important design parameters are identified, surrogate model optimization

searches for the point in the design space that maximizes utility. Surrogate model



optimization involves using past evaluations of design points to build a surrogate model
of the utility function. Each step in the optimization process involves searching for the
point in the design space that provides the maximum expected improvement according
to the surrogate model. That point is then evaluated in simulation, and the model is
updated using Bayes’ rule. This process is repeated until a selection of high-performing
design points are found. A similar surrogate optimization process has been used in a
variety of other applications, including airfoil design [30].

ACAS X development takes advantage of modeling and simulation, but flight testing is
still critical. Flight tests are required to validate simulation results and update models.
They also expose the system to real environment challenges and are important in
collecting pilot acceptability feedback.
The first flight test of ACAS X was conducted in August 2013 at the FAA William

J. Hughes Technical Center in Atlantic City, New Jersey. MIT Lincoln Laboratory
provided the algorithm specifications and lookup tables. Johns Hopkins University
Applied Physics Laboratory implemented the algorithms on modified legacy hardware
provided by Honeywell, Inc. The ACAS X box was flown on a Convair 580 using TCAS



beacon surveillance. Encounters were scripted with a Beechcraft King Air equipped
with a Mode S transponder and another Convair 580 with TCAS.
The prototype unit operated successfully for more than 21 hours on 11 flights without

any hardware or software failures. There were no unit resets necessary in flight. Because
of memory constraints with the legacy hardware, the lookup tables were compressed
using algorithms that did not significantly impact the timing of real-time lookups [9].
To ensure processing completed within each surveillance cycle, the logic processed
only the four closest intruders. Research is currently underway to investigate ways of
accommodating more intruders each processing cycle.
The logic was tested on a wide variety of different encounter scenarios, including

those discussed in Section 10.5.2. In total, 127 test cards were flown. These encounters
involved both traffic advisories and the various categories of resolutions advisories
provided by TCAS. The encounters exercised the coordination mechanism with legacy
TCAS. Encounters were flown both with and without a pilot response to the advisories.
ACAS X performed as desired in most of the test scenarios. However, there were a few

areas in which the performance could be improved. Some undesirable alerts were issued
in certain level-off encounters with 500 ft separation. Future rounds of optimization will
aim to remove as many of these alerts as possible while still providing the safety required
in blunder scenarios. Alerts were also observed during non-blunder parallel approaches.
Improvements to surveillance anticipated in the final ACAS X system will help remove
these alerts. The encounters also revealed known issues with the older version of the
logic used for the test flight, such as desired reversals not being issued under certain
circumstances. Some differences between the flight test and simulations were observed,
resulting in modifications to the next iteration of analysis and optimization.

This chapter showed how the problem of aircraft collision avoidance can be modeled as
a partially observable Markov decision process and solved using dynamic programming.
Modeling and simulation reveal that such an approach can lead to a system that is less
disruptive than TCAS while improving on the level of safety TCAS provides. This
research has led to the establishment of the ACAS X, which is aimed to become the
next international standard for collision avoidance. As with TCAS, the regulatory effort
required for both U.S. and international acceptance is intensive. Following the flight test,
the standardization process commenced with the federal advisory committee, the Radio
Technical Commission for Aeronautics (RTCA). The system will play an important role
in the next generation of commercial aviation, as well as support the safe introduction
of unmanned aircraft in civil airspace.
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N. Kemal Üre, Girish Chowdhary, Jonathan P. How, and John Vian

An important application of unmanned aircraft is persistent surveillance over areas of
interest. For example, a team of aircraft can be used to monitor a forest for biological
activities, a disaster flooded area for water levels, or a battle theater for movement. In such
scenarios, surveillance must be persistent over an extended duration, and team members
may be geographically distributed. It is important that the planning algorithms account
for communication constraints and the health of the aircraft. This chapter presents a
planning framework for multiagent cooperation and demonstrates the robustness of the
approach in simulation and quadrotor flight tests.

To assess our multiagent planning algorithms, we engaged in a simulated mission to
search for target vehicles while continuously tracking those that have been detected [1],
[2]. The mission area is divided into three regions: base, communication relay area, and
surveillance area. Aircraft start at the base area and travel to other regions for tasking
and communication duties. As fuel depletes or failures occur, the aircraft return to base
for refueling or repair. The communication area is a transition region between the base
and surveillance areas. An agent is required to act as a relay link for communication to
and from the base. The target vehicles to be tracked are located in the surveillance area.
Persistent surveillance presents several challenges:
• Communication relay constraints. In many applications of autonomous systems, it
is necessary to maintain a communications link between the agents performing the
mission and a base. This link may be used by human operators or ground-based
autonomous planning systems to send commands to the agents, or to collect and
analyze real-time sensor data from the agents. For example, in a search-and-rescue
mission with camera-equipped aircraft, a human operator may need to observe
the real-time video feeds from each aircraft to determine probable locations of the



party to be rescued. In many cases, the surveillance area is out of range of the base,
and so a communication relay must be established.

• Fuel constraints. Each vehicle has limited fuel capacity and can therefore only
operate for a limited amount of time in the communication or surveillance areas.
If an aircraft runs out of fuel in either of these areas, then it cannot be recovered.
The battery changing and charging station is located in the base area to refuel the
aircraft. The rate at which fuel is depleted is stochastic.

• System health characteristics. Sensors are required for surveillance, and actuators
are required for mobility. At any point during the mission, a sensor or an actuator
may unexpectedly fail. When a sensor failure occurs, the agent becomes useless in
the surveillance area. However, the agent may still serve as a communication relay.
Upon returning to base, the sensor can be repaired. When an actuator is damaged,
the agent becomes useless for performing any of the tasks in the mission, but the
actuator can be repaired at the base.

The approach described in this chapter is a form of model-based reinforcement
learning (as introduced in Section 5.2). The planner is initialized with a guess for the
model of the system. The planner uses this model up to some horizon to generate a
policy. This policy is then executed in the actual environment for some number of steps,
and the observations are fed to a model learning algorithm. The process repeats with
the planner generating a new policy using the updated model. Because the planning
horizon is limited, the planning algorithm needs to be fast enough to update the current
policy based on the most recent model. Interacting with the real environment is usually
expensive, and so the algorithm must be data-efficient. This chapter presents algorithms
that address the planning needs for persistent surveillance missions.

As introduced in Section 7.3.3, an MMDP is a multiagent Markov decision process.
This section presents an MMDP formulation of the persistent surveillance problem [2],
[3]. The formulation requires specifying the state space, action space, state transition
model, and reward function.

The state space� can be decomposed into the product of the state space of the individual
agents. If �i is the state space of agent i , then � =∏i �i . The state of each agent
is determined by three discrete variables describing the location, fuel remaining, and
health status. The location of agent i is denoted yi , with

yi ∈ Y = {YB ,YC ,YS}, (11.1)



where YB is the base, YC is the communication area, and YS is the surveillance area.
The fuel state of agent i is denoted fi , with

fi ∈ F = {0,Δ f , 2Δ f , . . . ,Fmax −Δ f ,Fmax} (11.2)

where Δ f is an appropriate discrete fuel quantity.
The health status of agent i is denoted hi , with

hi ∈ H = {Hnom, Hsns, Hact}, (11.3)

where Hnom, Hsns, and Hact represent nominal health, a failed sensor, and a damaged
actuator, respectively.
If there are n agents, then the total size of the state space is given by |� | = (|Y | ×

|F | × |H |)n . As discussed later, it is difficult to solve for an optimal strategy with more
than a few agents because of the explosion in the size of the state space.

The actions available to agent i depend on that agent’s current location yi and its
remaining fuel fi :

ai ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{AB ,AR ,AS} if yi = YC
{AB ,AR} if yi = YS

{AR ,AS} if yi = YB
{AR} if fi = 0

, (11.4)

where AB is move toward base, AR is remain in location, and AS is move toward
surveillance area. The size of the action space is given by | | = (|ai |)n = 3n .

Given the fuel level, location, and action by agent i at time t , the location of that agent
at time t + 1 is given by

yi (t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yi (t ) if fi (t ) = 0 or ai (t ) = AR
YB if yi (t ) = YC and ai (t ) = AB
YS if yi (t ) = YC and ai (t ) = AS
YC if yi (t ) = YS and ai (t ) = AB
YC if yi (t ) = YB and ai (t ) = AS

. (11.5)

The dynamics for the fuel state fi are stochastic, with parameter Pfuel representing
the probability of burning fuel at the nominal rate Ḟburn. With probability 1−Pfuel, fuel
is consumed at twice the nominal rate. If the agent is at the base, the fuel level increases
at a rate of Ḟrefuel until reaching Fmax.



The health state of each agent is also a stochastic model. If there is no fuel, then
the health remains the same. If yi (k ) = YB , then hi (k + 1) = Hnom. If agent i is not at
the base and its health is nominal at step k , then hi (k + 1) is determined stochastically
according to

hi (k + 1) =

⎧⎪⎨
⎪⎩
Hnom with probability (1− Psns)(1− Pact)
Hsns with probability Psns(1− Pact)
Hact with probability Pact

, (11.6)

where the probability of a sensor failure is Psns and the probability of actuator failure is
Pact.

The reward function encourages there to be some minimal number of aircraft in the
surveillance region with a communication relay. If nd aircraft are desired in the surveil-
lance region but there are only nS , then there is an immediate cost of Cgap ×max((nd −
nS ), 0), where Cgap is a small penalty for each missing aircraft. If the communication
relay is broken, then a large penalty Cfail is assessed.

The MMDP formulation in the previous section completely captures all inter-agent
interaction and can be used to arrive at the optimal policy through dynamic program-
ming. However, this approach does not scale well with the number of agents. Even
with three agents, the solution can be slow to compute [2]. This section describes two
approximate problem formulations that can scale to problems where there are many
agents. Both approaches involve computing a decentralized policy from a single-agent
perspective given approximate information about the states and actions of other agents.

The centralized problem decomposes the state space� into ×i�i , where�i = (Y ×F ×
H ). We can approximate the formulation from the perspective of agent i by defining
� j (for all j �= i ) to be the set of location-direction pairs associated with agent j . There
are six location-direction pairs that are useful in this problem:

(YB ,AS ), (YC ,AB ), (YC ,AR ), (YC ,AS ), (YS ,AB ), (YS ,AR ). (11.7)

The pair (YB ,AR ) is not included because it is generally not useful to remain at the base.
The size of the state space still grows exponentially with the size of the team, but the
number of location-direction pairs is smaller than |Y | × |F | × |H |.



The state transition model for �i from the perspective of agent i is identical to
that of the centralized formulation. For � j , with j �= i , the state of agent j from the
perspective of agent i is approximated as follows:

si j (k + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(YC ,AR ) if si j (k ) = (YB ,AS ) with probability 0.5
(YC ,AS ) if si j (k ) = (YB ,AS ) with probability 0.5
(YB ,AS ) if si j (k ) = (YC ,AB )
(YC ,AR ) if si j (k ) = (YC ,AR )
(YS ,AR ) if si j (k ) = (YC ,AS )
(YC ,AB ) if si j (k ) = (YS ,AB ) with probability 0.5
(YC ,AR ) if si j (k ) = (YS ,AB ) with probability 0.5
(YS ,AR ) if si j (k ) = (YS ,AR )

. (11.8)

An alternative problem formulation approximates the behavior of all the teammates
collectively with a single, reduced model [4]. Instead of tracking the locations and
directions of each individual teammate, a more compact approximation involves tracking
three features:
• whether there is at least one teammate predicted to be in the communication area,
• the predicted number of agents in the surveillance area, and
• the predicted number of healthy agents in the surveillance area.

The size of the state space from the perspective of a single agent is then only |Y × F ×
H | × 2n2, which grows only quadratically with the size of the team. To predict the
positions of the teammates at the next time step, a single agent policy π(n=1) is used.
In the experiments in this chapter, π(n=1) is set to be the solution of the single-agent
centralized formulation without the communication relay requirement.
Although imitating the reward function from the centralized formulation is straight-

forward, specifying the transition probabilities for the three aggregate features is less
clear. One approach is to create a state-transition table based on running the mission
with five agents under a factored formulation [2]. When there are more than five agents,
bicubic interpolation can be used [4].

Both decomposition methods presented above are from the perspective of a single agent.
Because their corresponding MDPs have relatively low computational complexity, they
can be solved via traditional dynamic programming algorithms, such as value iteration.
The input to both the value function and policy is the decentralized state. From the



perspective of agent i , the decentralized is given by s̄i = DecState(s,a, i ), where s is
the centralized state and a is the collection of actions by all the agents.
Given s̄i , the action taken by agent i is ai = π∗( s̄i ). It is important to note that

the construction of the state s̄i depends on the prediction of the actions of the rest
of the teammates using π(n=1). However, some performance degradation is expected
because the predicted actions of teammates may be different from their actual actions.
To account for the state-action coupling between agents, a planning scheme can be
adopted by which each agent chooses its action in sequence. The resulting action is
passed to the next agent in the sequence who can use it to compute its decision rather
than attempting to predict it. The final agent calculates its action based on the actual
actions of the rest of the team. This scheme is summarized in Algorithm 11.1. In this
algorithm, the function v specifies the fixed ordering, where the i th agent to select its
action is agent v (i ).

Algorithm 11.1 Ordered search
1: function OrderedSearch(v,π(n=1), s)
2: for i ← 1 to n
3: av (i )← π(n=1)(s)
4: for i ← 1 to n
5: s̄v (i )←DecState(s,a, v (i ))
6: av (i )← π∗( s̄v (i ))
7: return a

The choice of ordering v can influence the quality of the resulting policy. Hence,
it may be desirable to try several different orderings at each step. These orderings can
be sampled from the n! permutations of length n. The best ordering to use can be
determined from the expected utility. Algorithm 11.2 shows an example of a scheme
that uses m different orderings v1:m and a generative model that samples the next
state s′ ∼ T (s,a) and reward r ∼ R(s,a). Algorithm 11.3 shows a generalization of the
sampled ordered search process up to depth d . The experiments in this chapter use
d = 2.

The earlier sections presented an approach to multiagent planning under the assumption
that the dynamics are known. In reality, the parameters of the dynamic cannot be
known prior to the mission and must be learned online. The agents must estimate the
state-correlated sensor failure probabilities from observed state transitions. Estimating
and storing these transition probabilities are not feasible due to the size of the planning



Algorithm 11.2 Sampled ordered search
1: function SampledOrderedSearch(v1:m ,π(n=1), s)
2: (a∗, q∗)← (nil,−∞)
3: for i ← 1 to m
4: a←OrderedSearch(vi ,π(n=1), s)
5: s′ ∼ T (s,a)
6: r ∼ R(s,a)
7: s̄1←DecState(s′,a, 1)
8: if r +U ∗( s̄1) > q∗
9: (a∗, q∗)← (a, r +U ∗( s̄1))
10: return (a∗, q∗)

Algorithm 11.3 Forward sampled ordered search
1: function ForwardSampledOrderedSearch(v1:m ,π(n=1), s, d )
2: if d = 0
3: return (nil,0)
4: (a∗, q∗)← (nil,−∞)
5: for i ← 1 to m
6: a←OrderedSearch(vi ,π(n=1), s)
7: s′ ∼ T (s,a)
8: r ∼ R(s,a)
9: (a′, q ′)← ForwardSampledOrderedSearch(vi ,π(n=1), s′, d − 1)
10: if r + q ′ > q∗
11: (a∗, q∗)← (a, r + q ′)
12: return (a∗, q∗)
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space, and so approximation is required. For this work, we employed an incremental
feature dependency discovery algorithm. This algorithm adjusts the flexibility of the
approximation automatically based on observed transitions, freeing the designer from
hand coding a fixed approximation structure. The details of the algorithm can be found
in a paper by Geramifard et al. [5]. Applications to learning state-correlated uncertainties
can be found in the work by Ure et al. [6].
Prior work involved estimating the probability of sensor failure under the assumption

that this probability is uniform throughout the state space [7]. However, it was found
that it is important to take into account the correlation between states and the probability
of sensor failure. For instance, an aircraft in the surveillance area may perform more
aggressivemaneuvers andmay operate in amore hostile and uncertain environment while
tracking its target. Therefore, it may have a higher probability of sensor failure in the
surveillance area compared with the probability of sensor failure in the communication
or base areas. Similarly, an aircraft low on fuel has a tighter power budget, which may
lead to a higher probability of sensor failure or sensor disablement.
To assess the effectiveness of integrating model learning with the various planning

algorithms, we ran a set of 30 simulations. Each simulation involved nine iterations
of learning and planning. The average cumulative cost after each iteration is plotted
in Figure 11.1. The error bars denote the standard deviation in the cost. The learning



algorithm results in better performance as experience is accumulated. Factored decom-
posed planning provides performance within 5% to 7% of the centralized planning
performance. The group aggregate performance is around 2% to 3% of the factored
decomposition performance despite being much more computationally efficient.

The persistent surveillance missions were executed at the MIT Aerospace Control
Laboratory’s RAVEN test environment [8], [9]. The RAVEN test area is equipped with a
Viconmotion capture system, which provides accurate position and velocity information.
The flight vehicles have attitude stabilization loops that use the onboard gyros and
accelerometers to estimate attitude. Three quadrotors are the agents performing the
mission [2]. The vehicles are shown in Figure 11.2. The quadrotors are battery powered.
When fully charged, the batteries are capable of powering the aerial vehicles for 8
to 10 minutes. Therefore, three automated recharge stations are implemented in the
experiment area to enable multiple-hour missions.
Performance depends on both the performance of the planner and learning of the

uncertainty. In particular, the planner performance is expected to improve as uncertainty
is reduced through the use of incremental feature dependency discovery. The uncertain
parameter in this case is the probability of sensor failure, and for purposes of these flight
tests, it is assumed to be constant (0.05) throughout the state space, which results in a
simple state-independent uncertainty model.



The results in Figure 11.3 consist of three subplots. The top plot shows the sum of
the accumulated cost incurred by the cooperative planner for each agent in the mission.
Lower cost is better, and the slope of the lines in this plot represent the rate at which
cost is incurred. The middle plot is a filtered piecewise derivative of the top plot and
provides a notion of how fast cost is incurred. The bottom plot shows a single agent’s
estimate of the probability of experiencing a sensor failure. It can be seen that as the
estimate of the uncertainty improves, cost is incurred at a lower rate. These flight results
demonstrate the desired interaction between the planning and learning algorithms and
the system’s ability to learn from experience and improve the overall performance.
The autonomous flight test lasted for three hours, during which about 120 total

autonomous battery swaps were performed by the three recharge stations. The learning
framework was pessimistically initialized with 30% sensor failure across all states. Ta-
ble 11.1 shows the parameters of the learned state-correlated sensor-failure model. After
every learning update, the policy was recomputed. Figure 11.4 displays the performance
of the updated policy after each learning cycle in terms of average cumulative cost.
Due to the pessimistic initialization of the failure model, the initial policy has a high

cost because it calls the quadrotors back to the base frequently for repair. As the learning
process arrives at better estimates of the parameters, the planning algorithm becomes
more confident in the ability of the aircraft to operate without failures and assigns them
more efficiently between the base and tasking areas. Figure 11.5 shows how the learning
and planning process results in fewer battery swaps in the second half of the mission.

This chapter presented an experimental demonstration of a multiagent planning frame-
work for persistent missions. The planning algorithms were formulated as solutions to
Markov decision processes that approximate the team dynamics. The decomposition
approximation significantly reduces the required computation with only a small sacrifice
in performance. Learning was used to update the model parameters through observed
state transitions. The overall approach was validated on a persistent search and track
testbed with unknown sensor failure dynamics.
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Hayley J. Davison Reynolds

The focus of this book has been on computational methods for decision making. The
successful application of these methods to the building of decision support systems
requires special consideration of the humans using the systems. This chapter discusses
the challenges of human-systems integration and provides strategies for effective imple-
mentation.

Often the human-systems integration is an afterthought, if not completely trimmed
in the budget. Designers depend on the fact that humans are generally flexible and
adaptable to the brittle nature of technology. This section explores some of the perceptual
and cognitive capabilities of humans and coping strategies.
Table 12.1 is a consolidated list of specific design considerations with respect to the

information presented in this section. These are not meant to be inclusive or in any
way replace the value that a human factors professional would have on the design. They
simply point out best practices and commonly ignored issues that tend to pose problems
for the system during implementation, which can provide a starting point for algorithm
designers and development specialists.

Three of the core capabilities to process information are attention, cognition, and
memory [2], [3]. Information is perceived by the human, and the attention capability
allows a portion of this perceived information to be processed. The portion of the
information that is attended to is then cognitively processed by the human, using
memory as an aid to make sense of the information. Each capability is described in
more detail below.





Attention is a capability that allows the human to process only a limited set of
information at a time [2]. Three metaphors in the psychological literature have been
used to describe attention: a filter, a spotlight, and pools. What information is focused
on can change depending on the salience of the information or how the human actively
directs attention [4]. The flashing light on a control panel draws the operator’s attention
to information with unusual readings. The ability of the person to listen to a quiet story
being told in a crowded room at a party also illustrates this filter capability.
It has also been demonstrated in the psychological literature that there are multiple

modalities that have a certain amount of attention capacity [5]–[7]. Humans can ef-
fectively distribute attention between different modalities (e.g., auditory and visual),
processing codes (e.g., spatial and verbal), and processing stages (e.g., perception, cog-
nition, and response). For example, it is easier to attend to math homework while
listening to music with lyrics than it is to attend to reading a novel while doing the same.
Demands on verbal resources required to read a novel and comprehend lyrics can result
in either having to reread sections of the novel or learning to ignore the music. Likewise,
it is easier for a driver to carry on a conversation while driving a road that is familiar
(requiring few perception and cognition resources but mostly response resources) than
it is carrying on the conversation in an unfamiliar city or road segment, which can
overload the perception and cognition attention resources.
Memory is another core capability that has limitations but also extraordinary abilities

if used in the right way. Studies of short-term memory have arrived at a number of 7±2
items for a typical human memory capacity of unlinked individual items [8]. However,
experts in memory challenges have the ability to memorize hundreds of unrelated items
in a particular order [9]. Experts who memorize items with functional relationships
with one another can remember significantly more information than even the experts in
memory challenges [10]. This capability to expand capacity with expertise is critical for
complex-system operators such as pilots and air traffic controllers, who must remember
hundreds of pages of procedures and standards to perform their daily activities in a
time-critical environment. Once information has successfully passed from short-term
to long-term memory through practice or some particular significance attached to
the information, items can be remembered throughout a person’s life. However, even
long-term memory can decay [2]; thus, periodic refresher training of critical information
becomes important.
A majority of the information processing strength occurs within the cognitive pro-

cessing capability. A significant amount of time and space could be dedicated to this
capability alone, but in this chapter, the focus will be on the bottom-up versus top-down
processing that occurs within cognitive processing. Babies and people dropped into
foreign situations use almost exclusively bottom-up processing. In bottom-up processing,
attention is drawn to the salient features of the environment, and sense-making on
these salient features occurs [11]. “What is going on here?” is the prevalent question of



bottom-up processing. As children and adults develop expertise in an environment, they
have previous experiences residing in the memory to aid in this sense-making process.
Top-down processing allows the human to begin searching for information to confirm
or disaffirm hypotheses about what is going on in the environment [12], [13]. The
prevalent question in top-down processing is, “Is this what I think it is?” Presented with
a set of three lights—one red, one yellow, and one green—stacked on the top of one
another, most adults in the United States can make the assumption, “Oh, this is a traffic
light. I am now on a road that requires me to pay attention to what color is lit on the
traffic light. Red means stop. Green means go. Yellow means caution, the light is about
to turn red.” In more complex environments, the top-down processing occurs when
certain states of a system are associated with certain temporal patterns of information
on a display or control console. For example, with information from two radar sweeps
in their trained sectors, experienced air traffic controllers can detect whether there are
any potential separation violations.

Once information has been processed and understood, humans then have decisions
to make about their response to the environment. The field of decision making has
reflected two modeling paths—classical decision theory (a normative model of how
decisions “should” be made) and naturalistic decision making (descriptive models of
how decisions are “actually” made by humans) [14]. Classical decision making relies
on quantitatively evaluating the utility of possible decision choices (see Chapter 3 and
reference [15]). While this is a rational and unbiased means of making a decision, the
reality is that (1) the human may not have access to the values to populate this equation,
and (2) there may not be time to acquire the information or cognitive resources to
perform this process.
Alternatively, descriptive models of decision making have identified ways that de-

cisions are actually made by humans. Satisficing is a common method used in which
humans do not attempt to conceive all of the potential choices but then make a decision
on a choice that is “good enough” [16]. In deciding to take an alternate flight route
around weather, a pilot will not outline every possible flight plan and then evaluate
them all one by one. He or she will likely find a route with minimal deviations from
the original flight route that is not impacted by the weather, even though this choice
may not end up being the “optimal” flight route.
Multiple heuristics have been identified by Kahneman, Slovic, and Tversky that

simplify the decision-making process [17]. The “availability” heuristic suggests that
humans will recall most often the choice that was considered most recently or most
frequently. The “representativeness” heuristic suggests humans will expect a choice to
be as likely as other choices that have similar properties. The “anchoring” heuristic



suggests that an initial numerical estimate will provide the initial “anchor” and bias
any subsequent estimations in the direction of the initial estimate. These heuristics
(and others [2]) reduce the load on working memory and cognitive processing in both
daily and more complex situations. However, these heuristics have the disadvantage
of producing potentially “suboptimal” but efficient and “good enough” results for the
humans.
The scientists who produced descriptive models of human decision making were

followed by others who began extensively studying the decision making of experts in situ.
These experts worked in the fields of firefighting, aviation, medicine, and warfighting.
Their typical decision-making situation was characterized by time pressure, high stakes,
extensive training, inadequate information, dynamic conditions, and team coordination
[18]. The most revealing statement from one of these experts about his decision process
was, “I don’t make decisions. I don’t remember when I’ve ever made a decision” [19].
In other words, there is one choice that is obvious to the expert, revealed as successful
through hundreds or thousands of similar experiences. This pattern matching of the
situation cognitively linked to previous analogous experience to quickly and accurately
produce a satisfactory course of action is termed recognition-primed decision making.
Recognition-primed decision making is built on experts’ mental models of the

systems with which they have extensive experience. Mental models are representations
of an actual system that allow the human to take information from the environment
and predict how the situation will evolve into the future [20], [21]. Firefighters have
mental models of the evolution of the spread of fire in different types of buildings.
Weather forecasters have mental models of convective (thunderstorm) development and
decay. Pilots have mental models of the aircraft and its response to different control
inputs. These mental models must be simple enough to allow the expert to run mental
simulations with different inputs quickly; however, they must be elaborate enough to
adequately describe the complexity of their particular system. These models must also
be able to be adapted to analogous situations. For example, a pilot who has experience
in a Boeing aircraft may be able to use his or her mental model to predict how an Airbus
aircraft would react to a control input. (In some cases, this mental model would be
more successful in correct prediction than others.) With experience, an expert learns
which pieces of the mental model are critical to correct prediction and which can be
dropped to reduce cognitive workload.
Another way that expert users simplify the situation to ensure that the cognitive

processing is manageable is by using the structure of the context to constrain the
possible outcomes of the situation. Structure is defined as the shared knowledge about
the functioning of a system that inherently limits the evolution of the state of a system
[22], [23]. This structure can be an inherent property of the system—for example, the
maximum ascent profile of a Boeing 737 aircraft. Or this structure can be artificially
imposed, such as the arrival and departure procedures into and out of the New York



metro airports. By knowing this structure, a pilot knows that an aircraft cannot reach
30,000 feet in oneminute. An air traffic controller knows that if the departure procedures
out of New York’s LaGuardia Airport are issued (and conformed to), then this aircraft
will not violate separation restrictions with any arrivals or departures from Newark or
John F. Kennedy International Airports. Knowledge of the structure of a system plays a
valuable role in both predicting the evolution of a system and eliminating impossible
outcomes that clog valuable cognitive resources.

The previous section described a number of the capabilities and limitations that humans
exhibit. The consequences of these capabilities and limitations to system design will be
discussed in this section. Table 12.2 provides a set of design considerations with respect
to trust, information uncertainty, and decision making over long timescales.

The first issue that must be overcome when deploying a decision support system to the
field is that the users must be able to trust the information and recommendations the
system is providing [24], [25]. The definition of trust used here is selectively adapted
from Muir [25]. Trust is the expectation held by a member of a system that there
will be reliability and technically competent performance from another member of
the system, which is related to, but not necessarily isomorphic with, objective mea-
sures of these qualities. “Reliability” refers to consistent and predictable performance.
“Technically competent” refers to the capable execution of functions allocated to that
member within certain specified boundaries and constraints. The fact that trust is not
directly representative of these qualities indicates that there is a difference based on the
human’s perception of these attributes, which may be biased. Bias may be due to the
innate cognitive processing limitations discussed in the section above, lack of adequate
information to accurately represent technical competence and reliability, or “willful
miscalibration of trust.” Willful miscalibration of trust can result when a human either
over-relies on a system because of conscious misgivings about his or her own capabilities
or under-reliance on the system due to general mistrust in automation or fear of being
replaced [24]. Other forms of trust miscalibration are discussed later in this section.
The two aspects required to develop appropriate trust in a decision support system

are
1. understanding of the capabilities (and limits of these capabilities) of the system,
and

2. knowledge about the reliability of the information and recommendations provided
by the system.





Some decision support systems are simple, consisting of a succinct algorithm. For
these systems, reliability of the output is straightforward and easily confirmed, so long as
the algorithm is implemented correctly. Even more important, the human can internalize
a highly comprehensive mental model of the system. The benefit to simple decision
logic is that the user is able to internalize the logic fully, leading to accurate predictions
and clarity on the limitations of the system capabilities. For example, on the Boeing
767 horizontal situation indicator, a “green arc” provides a simple indication of the
horizontal position at which the aircraft is expected to capture a selected altitude using
linear extrapolation (Figure 12.1). The logic does not take into account the intent of the
pilot, which may be programmed into the flight management system and may deviate
from the extrapolated position. This limitation of the green arc is quickly internalized
and compensated by the pilot. During one simulated approach, the pilot can try out the
green arc function by changing aircraft pitch and viewing how the arc changes location
with the input. The hundreds of responses on a single approach can be sufficient for a
pilot to understand the function of the green arc and its constraints through feedback.
However, most decision support systems in dynamic environments requiring sig-

nificant amounts of expertise are incredibly complex. Determining reliability of these
systems can, in itself, be difficult because of the nature of the system and potential
unexpected emergent behaviors. Unfortunately, due to human limitations in memory
and cognitive processing discussed in the first section, not even the expert users can
have a complete understanding of the intricacies of the system. In these systems, a
good mental model is required to provide functional detail to the level required. What



level of detail this mental model requires is often an iterative exercise among the users,
trainers, and designers of the decision support system. Too little training on a system
may produce a low-detail mental model that does not adequately allow the user to
predict its behavior, leading to mistrust in the system. However, lengthy and extensive
training on the system may lose the user’s attention or exceed the user’s capability of
comprehension during the training process, and the primary function of the decision
support system may be lost in a sea of less important detail.
The decision support system can exhibit a certain objective reliability and technical

competence. However, as described in the definition, there is also a perceptual element
to trust that may result in the possibility of miscalibrations of trust in the system that do
not reflect the objective reality of the system’s attributes. These miscalibrations include
mistrust, complacency, abuse, and willful miscalibration [24], [25].
Miscalibrations can occur when a user has no (or few) preconceptions about the

decision support system and sufficient confidence in his or her own capabilities as an
operator. Let us consider a parameter of “trustworthiness” as a combination of objective
technical competence and reliability of the system, as depicted in Figure 12.2. Plotting
trust as a function of trustworthiness, a perfectly calibrated user trust in the system
would be a diagonal line that increases the level of trust as the trustworthiness increases.
As the user’s true trust diverges from this diagonal line, the bias in either direction
indicates a particular form of miscalibration.



If the user’s trust is biased below the diagonal line, then there is a certain level of
“mistrust” (or “disuse”) in the system. Mistrust is defined as the “neglect or underuti-
lization of automation” [24]. Biasing the user toward underutilization of the decision
support system can occur when the system produces too many false alarms.
If the user’s trust is biased above the diagonal line, then there is a tendency for the user

to become “complacent” (or “misuse” the decision support). Complacency is defined
as the “overreliance on automation, which can result in the failure of monitoring or
decision biases” [24]. Bias, unfortunately, can occur when the decision support system
has a proven track record of good performance. When a decision support system has
consistently provided accurate recommendations to the user, the user can seek to decrease
cognitive workload and fail to adequately weigh the recommendation provided by the
system before acting on it. Complacency can also occur when the system does not
provide sufficient feedback to the user to detect when the system is not providing good
recommendations [26].
“Abuse” of the decision support system can take several forms. The often discussed

form is when designers overautomate a function such that the role left for the human
user is primarily a supervisory control or monitoring role. When the automation is
successful, a boring role is left for the users, who fall prey to stress and fatigue caused
by maintaining high levels of vigilance [27]. Another form of automation abuse occurs
when users begin to use the system for unintended uses. While often innovative and
useful, these unintended uses stretch the limits of technical competence of the system,
whose usage in these domains was unanticipated by designers. An interesting example
of unintended usage of a system is the M-PESA system, which is a mobile phone-based
money transfer service intended to allow easy replenishment of pay-as-you-go mobile
phone usage. However, because of the perceived instability of the banking systems in
African nations such as Kenya, the M-PESA system has become a sort of ad hoc banking
system in which users are more confident storing money than in the native banking
institutions. Challenges soon followed addressing client information protection not
required for the intended usage but expected from more formal banking transaction
capabilities [26].

In designing a decision support system, a balance is required to provide information or
recommendations to support the decisions that need to be made while accounting for the
capabilities and constraints of human processing. The design process will likely need to
be iterative. To properly calibrate user trust in the decision support system, the designer
would need to determine the appropriate balance of level and type of information for
the domain. In this section, some considerations are provided for different levels of
decision support certainty.



When the decision support system has a clear answer, it should provide:
1. Information or recommendation in the terms of the decision. When designing a
decision support algorithm, designers often consider information in the form of
the problem that needs to be solved, not necessarily in the terms that the user
requires to interpret this information. Once information and/or a recommendation
is generated by the decision support, care should be taken by the designer to
translate this into contextually integratable terminology and form. For example,
in the design of aviation weather decision support, care can be taken to address
the weather forecasting problem. However, it is not sufficient to provide current
weather status and even forecasts of weather status to air traffic controllers. To truly
make this weather information adhere to the definition of “decision support,” the
weather information needs to be translated into recommendations for operational
decision making. Air traffic controllers are less interested in answering the question,
“What is the weather like now? And in the future?” than in answering the question,
“Will I need to close this departure route because of weather? And if so, when?”

2. Timely information or recommendation. Likewise, when the system provides in-
formation or recommendation, it should be provided at the appropriate time.
Some decisions need to be made hours before implementation, whereas others are
time-critical, and the user only has seconds to respond appropriately.

3. Reliable information or recommendation.As discussed in the section above, reliability
of the system is critical to the user’s ability to develop trust in the system. Reliability
under multiple circumstances should be evaluated before system implementation.

4. Frequent opportunities to view information or recommendation trustworthiness. For
designers to appropriately calibrate trust in a decision support system, information
on the trustworthiness of a system must be regularly conveyed to the user. The
designers must provide not only the reliability and technical competence of the
information or recommendation in a variety of circumstances, but also the system
performance feedback once the recommendation has or has not been implemented.

5. The rationale behind the decision support recommendation. Some decision support
systems help decision making on longer timescales, allowing an opportunity
to provide additional information about the decision support information or
recommendation. Although there is a balance between information overload and
lack of information, some studies have shown that providing information on the
rationale behind a decision support recommendation allows the user to better
understand the decision support and improves trust in the system.

When designing a decision support system that utilizes uncertain information and
the information has a confidence associated with it, one must consider additional factors.
It is helpful to provide an indication of the confidence of the information presented, as
well as additional information that can help the user make sense of the information that



the decision support tool finds uncertain. Let us consider one approach to uncertain
information with the example of the Route Availability Planning Tool (RAPT), an air
traffic management decision support tool for aviation weather.
RAPT, shown in Figure 12.3, is a tool that aids air traffic managers in determin-

ing whether airport departure routes are blocked by weather. The system also helps
them identify alternative departure routes that are not blocked. RAPT provides deci-
sion support guidance to the air traffic managers by assigning a status color—“red”
(blocked), “yellow” (impacted), “dark green” (insignificant weather encountered), or
“green” (clear)—to each route for departure times in five-minute intervals up to 30
minutes into the future. The status is determined by combining deterministic weather
forecasts from the Corridor Integrated Weather System (CIWS) with a route-blockage
algorithm that incorporates a model for departure airspace usage. The route-blockage
model calculates the severity of the weather impact on the first 45 minutes of flight time
of the departure route. The sources of uncertainty in this tool stem not only from the
predictability of the weather but also from the ability to determine whether pilots will
fly through the different types of weather present. When considering the level of weather
blockage to assign to each color recommendation, issues of trust in the algorithms
arise. During the RAPT prototyping effort (which has been in iteration since 2003),
adjustments to the algorithm have been made to better adhere to the air traffic managers’
model of the type of guidance that RAPT should be providing. Adjustments have also
been made to provide guidance that has a quantitative effect on the ability of the tool
to improve departure throughput in convective weather (thunderstorm) situations [28].
For the New York prototype of RAPT, the decision was made to show “green” and

“red” status when the information was fairly certain and to flag departure route status as
“yellow” when there was uncertainty present. This decision resulted in a relatively large
number of “yellow” recommendations in convective weather situations. The designers
combated this issue by training users to seek the situation when the recommendation was
“yellow.” Information that the air traffic managers seek in “yellow” situations includes
more information on volatility, extent, severity, geographical distribution, and location
of weather impacts [29]. An example of this information is in the pop-up window
shown in the figure, which displays information about the past blockage color statuses
as well as the storm height on that departure route. The height of the storm is important
because thunderstorms have a natural life-death cycle, of which the “echo tops” height
is one indicator. Besides this information, the air traffic managers can consult the
CIWS weather map above the RAPT timeline, which provides an indication of the
geographical location of the storms as well as the storm “type” (e.g., a predictable front
or less predictable “popcorn” convection). Using the additional information beyond the
core color status recommendations provided by RAPT, air traffic managers can utilize
their own judgment to determine whether and when to open or close the departure
routes to make the most of the available capacity.





Issues can arise when the decision support system provides misleading information
or poor recommendations. Between interpreting uncertain information and the unan-
ticipated complexities of real-life situations, no decision support system can be correct
all the time. At this point, it is critical that the other member of the system team—the
human user—maintains the functioning of the overall system. Throughout the design
process, it is imperative for decision support system designers to consider the role of
the human in the system. To ensure that the human is engaged and capable to override
or supplement the decision support system when the decision support goes awry, the
role of the human user must be an active one in the good times as well as the bad. The
primary means for designers to have an input on the human user’s interaction with the
decision support and the environment as a whole is through the training provided on
the decision support system. Training is usually provided once at the installation of the
decision support system or as the user becomes qualified for the position. Occasionally,
opportunities for recurrent training can be used to refresh the users’ memories about
the subtleties of the decision support tool.
Training issues that should be addressed include:
• Specifying the role of the decision support system in the decision-making process
of the user, outlining scenario-based examples using domain-specific data and
terminology.

• Specifying the constraints within which the system is trustworthy and should be
relied on.

• Specifying the constraints within which the system is not trustworthy.
• Providing indications of what the human user should do in anticipation of cases
in which the system is not trustworthy.

The training should clearly outline the division of responsibility for the functions
that the decision support system and its user provide to the system. These are best
communicated during real-time field usage, when new tools and methods can be best
integrated into naturalistic decision-making processes. Alternatively, unusual situations
may be best communicated in simulated settings. At a minimum, historical examples
using real data and terminology should be used in a tabletop scenario to communicate
the human and automation roles.
Training is also necessary to communicate the capabilities of the decision support

system. Capabilities not only include “buttonology” of the decision support tool but
also how the information or recommendation from the decision support system can
affect operational decision making. Again, this information should be communicated
through scenarios heavily based in the operational context to improve transfer of the
training to the operational decision making. Scenarios aid the user in quickly developing
an accurate mental model of the key aspects of the system from which to predict its
behavior, thus quickly building trust in the system.



Likewise, training should also cover the limitations of the decision support system
capabilities. These capabilities should be outlined to the users, and indications of the
implications of these limitations for operational decision making should be provided. In
the RAPT example from earlier, one of the limitations of weather forecasting is that the
forecasts are inherently less reliable for “popcorn” convection than for large, predictable
fronts. In the training, air traffic managers should be encouraged to use robust traffic
management planning strategies (e.g., assigning routes that are viable, but possibly not
optimal, in different weather situations) to combat the unpredictability of the popcorn
convection type weather. If the user knows that it is popcorn convection, then it is
prudent to reduce the demand traveling through the affected area below the maximum
fair-weather capacity to account for possible pop-up reductions in capacity.

In some decisions that require support, the decision maker has hours or even days to
gather information and then act. Uncertainty of the information provided can change
dramatically over the decision space. A construct for understanding the relationship
between information uncertainty and decision making over long timescales is presented
in this section.
Which action or strategy is best given the information we have? Should I make

a decision now, or would it be best to wait? When should I revisit past decisions
and update my strategy? These three questions are critical to many decision makers
with long-timescale problems. To address these three critical questions in decision
making, procedures, and decision support, there are two key aspects to consider: forecast
information quality and progressive decision making. The forecast information quality
defines the realistic limits of planning and the likelihood that the world will evolve as the
decision maker expects. This forecast should be expressed using an uncertainty metric
that informs practical operational decision making. Because many complex system
entities have a stochastic element, information changes with some regular frequency,
thus requiring users to progressively revisit decisions made based on a forecast.
Choosing the variable to forecast is an important element to the problem. The variable

should be directly correlated to a decision that is available to the user. To use forecast
information effectively, the decision maker needs to understand the behavior of the
forecast and its quality over the forecast horizon. In particular, the decision maker should
have information about the magnitude and sign of the forecast error, bias, and volatility.
Figure 12.4 shows a notional forecast characteristic curve and the interaction among
forecast uncertainty, forecast horizon, acceptable risk, and implementation horizon for
a strategy to address forecast impacts at time timpact.
The time at which the impact is forecasted is timpact. The latest time at which an

action or strategy can be implemented for effect at timpact is timplement. For example,
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occasional disease outbreaks within the population can be declared by public health
departments at a particular time (timpact). These events are monitored because public
health can take action to prevent or reduce the impact of these events by distributing
vaccines or issuing public health alerts to local hospitals. Some actions, such as a public
health alert email, can have an effect within hours, so its timplement is close to timpact.
However, some actions, such as vaccine creation and distribution, take several months to
have an effect, so its timplement is farther away from timpact. The earliest time at which a
decision maker would feel comfortable acting on the information is termed t1. This time
can be highly variable from person to person and from decision to decision for a single
person. For example, a well-seasoned public health official with 30 years of experience
may feel comfortable with a higher threshold of acceptable uncertainty than a newly
graduated epidemiologist. A public health official may also have a higher threshold for
acceptable uncertainty for a decision to issue a public health alert than he or she would
have for a decision to recommend closure of a school.
A decision maker in complex systems often has multiple potential strategies available

for addressing an event. In trying to determine the best strategy (“Which is best?”),
the first aspect to consider is the error bound (with respect to truth) across the forecast
horizon. If the forecast error would not affect whether the decision maker chose choice A
or choice B (i.e., the uncertainty is similar across the forecast horizon), then the forecast
is good enough to make an assessment regardless of other characteristics of its behavior.
However, if there is significant risk that forecast error results in the wrong decision
choice (i.e., uncertainty is greater for one decision at some time on the forecast horizon),



then further characterization of the forecast behavior is required. The assessment of risk
is dependent on the cost of recovery from a poor decision.
If the likelihood of a good decision is unacceptable due to the magnitude of forecast

error, then the next consideration is the forecast improvement over time (“Should I
wait?”). In Figure 12.4, at time t0, the uncertainty of the forecast is too high to provide
a good indication of which decision to make. However, the slope of the uncertainty
curve suggests that forecast uncertainty is decreasing rapidly. Because the latest time
to implement timplement is still fairly far off, it is advisable to postpone the decision. By
time t1, the uncertainty has fallen to an acceptable level, and the decision maker has the
forecast information and accuracy needed to make the decision. The decision maker
could continue to wait a little longer, just to be “extra certain,” so long as time timplement
has not been reached.
Note that the threshold of acceptable uncertainty could change in an operation

depending on the context of the situation. For instance, a medical report of a single
student experiencing neck pain might not normally cause a university doctor to alert
public health. However, if the doctor is aware of a meningitis outbreak on campus, then
his threshold of uncertainty might be lowered, and he might order some tests for the
illness and give a “heads up” to public health. Similarly, depending on the decision, the
minimum lag time to implement will vary for different actions and strategies or for
different scopes of an action (e.g., a public health alert within a city versus the entire
nation). Finally, when there is an extended time over which an acceptable decision may
be made, the slope of the uncertainty can provide the benefit of waiting—if there is any.
For areas of the curve in which uncertainty drops quickly, there can be great benefit in
waiting to ensure that the decision is made with a forecast with a better chance of being
correct. If the decision space lies over an area of the curve in which the slope is nearly
flat, then there is no benefit (and potentially significant costs) to waiting to make this
decision.
Another consideration in addressing all three questions (“Which strategy? Do I wait?

When do I revisit?”) is the volatility of the forecast. Forecasts with low volatility give the
user confidence that the next forecast will be similar to the last forecast, thus providing
stability of information for decision-making purposes. If forecasts are volatile as a result
of the underlying unpredictability of the processes being forecast (e.g., highly dynamic
and rapidly evolving convective weather), then the decision maker needs to know that
the processes are inherently unpredictable and short planning horizons and frequent
adjustments are necessary. However, routine or excessive forecast volatility (e.g., as a
result of poorly conceived or overly precise forecast models) erodes user confidence and
provides little value to decision makers.
In certain circumstances, critical variables in an environment may be impossible

to forecast with acceptable accuracy. The initial decision may not always be the best



decision as time passes and the situation evolves. For this reason, progressive decision
making is required.
Progressive decision making is defined as the periodic revisitation of information and

adaptation of strategic decisions to updated information as it becomes available. This
type of decision making involves (1) making robust strategic decisions that anticipate the
need for downstream adaptation by ensuring multiple tactical options are available later
in the operational time horizon, and (2) revisiting the decisions made as information
updates. Procedures and decision support for progressive decision making must account
for future strategic and tactical adjustment (i.e., the decisions available at different points
over the forecast horizon) and the ability to recognize operationally significant changes in
the forecasts from time step to time step. A similar concept termed “integrated planning”
in the military decision-making literature emphasizes the importance of revisiting a
“concept” with “design” to mitigate potential uncertainty in the early stages of military
planning [30]. Davison Reynolds et al. discuss how a progressive decision-making
framework was applied to air traffic management [31].

Implementing an effective decision support system is an iterative process (Figure 12.5).
Ideally, the decision support design should begin with field observations and analyses
of operational data to understand the operation and the role of users. The designer’s
understanding of the operation, users, and constraints forms the operational model.
From this operational model, the need for decision support may emerge, and require-
ments are defined. The decision support design and development then occurs, resulting
in a procedure, a human-machine interface (HMI), and training. Implementation of
the decision support into the environment then impacts the operations, and the ef-
fect of the decision support can then be measured through operational data analyses
and field observations. This section outlines each phase of the design process. Design
considerations for effective systems implementation are provided in Table 12.3.

When one is designing a decision support tool, there is often a core idea for the system
that has been translated into, at least, a functional decision support requirement. This
requirement is based on an operational model of the entirety of the system, including the
humans, the operations, the procedures, and the constraints. Once a need for decision
support has been determined, the requirement is then translated into a decision support
system design. Taking a broad interpretation of a decision support system, the decision
support provided could include a technical algorithm supported by anHMI visualization
to the human, a new procedure, new or modified training, or some combination of







these three items. The effective implementation of the means of decision support (tool,
procedure, training) should then affect the key variables of the operational system,
resulting in a measurable benefit to operations.

The key to the design process is to ensure that the decision support system is actually
achieving operational benefits and having an impact. Thus, it is the designer’s responsi-
bility to go back to the field and assess the impact that the decision support tool is having.
This measurement process must be both quantitative and qualitative in nature. On the
quantitative side, operational data that result from the improved decision making should
be gathered. For example, if the decision support tool being designed is an airborne traf-
fic collision avoidance system, then operational data on airborne collisions, near-misses,
and separation in general should be gathered. The operational model that fed the design
of the system included a hypothesis: “If pilots had a system to aid in knowing when a
collision was imminent and gave a suggestion about how to avoid it, then there should
be fewer accidents, near-misses, and separation violations in the air.” This hypothesis
forms the input in the “Expected operational problems” in Figure 12.5. Implementing
the decision support system and subsequently measuring the operational data allow the
designer to test this hypothesis. The operational data should eventually reveal whether
this hypothesis made by the designers is correct (i.e., “Are the problems identified the
real problems?” in Figure 12.5). If the operational data reveal that the decision support
implemented does, in fact, reduce accidents, near-misses, and separation violations to
the degree desired, then the designers can consider themselves successful. However, it is
rare that the initial implementation of decision support achieves the benefits it aimed
to achieve.
One reason that the decision support was not successful is that the designer’s hy-

pothesis was wrong and the problem identified was not the actual problem. Gathering
operational data can help correct this issue. For example, in the case of the RAPT
decision support tool, designers initially thought that the operational problem was help-
ing the traffic managers know when to close departure routes during a thunderstorm.
Extensive analysis and thought went into considering training for traffic managers on
how to interpret patterns of the RAPT timeline and what that meant for departure route
closures. Unfortunately, even after in-depth training sessions and operational evaluation,
the tool led to few improvements in delay statistics in poor weather conditions.
The designers returned to the analysis and reconsidered the delay statistic measure-

ment. While doing this, they discovered that a majority of the unnecessary delay was
not caused by traffic managers closing the routes at the wrong time but opening the
routes too late after a storm had already passed through! The designers were slightly
appalled by this finding. The traffic managers were missing the easy decision, which



was opening the departure routes when the routes were clearly GREEN on the RAPT
display. However, once the operational data revealed what the real problem was, the
designers could be surgical about what decision support was provided. They adjusted the
RAPT display to include a “post-impact GREEN” (PIG) timer that began counting as
soon as a route that had been RED turned all-GREEN. This HMI adjustment allowed
the traffic managers to see if or when they were missing an opportunity to open the
route.
The designers also accompanied this HMI adjustment with a training modification

that included providing the trafficmanagers with the statistics that they were not opening
the routes as quickly as they could, providing motivation to use the PIG timer. The
next year, the benefits of using the RAPT tool were measured double over the previous
year, achieving the desired operational impact.
Another reason that the decision support was not successful could be that the de-

signer’s hypothesis was correct but the decision support did not achieve the goal. Better
understanding this requires the use of qualitative measurement of the operational envi-
ronment. Substantial information on the usefulness of the decision support can also
be gathered from the users during use (or lack thereof ) of the decision support. In the
operational environment, users are able to point out directly why the decision support
helps or does not. Placement of the decision support, font size, and lighting issues all
become starkly clear in the operational environment. If these basic needs are satisfied,
then users may point to subtler issues, such as how the information provided is not
exactly what they need to make the decision or that while the decision support is good,
this user is not the decision maker at all. While performing field studies in the evaluation
of RAPT, the designers originally provided RAPT to the traffic managers in the Traffic
Management Unit. During the evaluation, it was discovered that the traffic managers
could use the RAPT tool and decide when a route should be opened, but the individual
sectors with the air traffic controllers who were responsible for separating the aircraft did
not have access to the RAPT tool and therefore would refuse the opening of the route.
The RAPT monitors were inserted into the individual sector areas, and the influence of
RAPT began impacting decisions.
Each of these examples describes the iterative measurement feedback loops in Fig-

ure 12.5. The quantitative loop on top is the contribution that the operational data
analysis makes. This data analysis is usually in the form of a benefits analysis, which al-
lows the designer to monetize the benefit that the decision support has on the operation.
Often the most difficult part of the measurement process is identifying the metric on
which to base operationally measurable benefit. The second loop is the qualitative loop.
Qualitative feedback can be gathered through surveys, formal interviews, or preferably
in situ field observations of the users in the operation. Feedback is useful when users
provide indications of why the decision support is not working as is, as discussed above.
Qualitative feedback also provides a chance for the users to suggest to the designers



decision support ideas of their own, which can be incredibly insightful when it originates
from a “superuser” who has a broad perspective on the operation as a system. As each
evaluation of the decision support systems gathers more data, both quantitative and
qualitative, there is an opportunity to better understand the system into which the
decision support system is to be implemented. The operational model is updated with
this new information, which is critical to improving the design in future iterations.

The feedback loop described above works optimally in a system that is driven primarily
by benefits-centered improvements. The FAA is an example of such a system; at least on
paper, research and acquisition programs are promoted that will provide an established
efficiency or safety benefit to the airspace system.
However, the elements of the system are a product of the organization in which they

are members. Users can be driven by motivations other than optimizing the overall
system function. These other motivations may be personal motivations, but often they
are organizational incentives. For example, the typical traffic manager who works for
the FAA is motivated to adjust the demand on the routes through his or her facility
to optimize the capacity available at any given time. If the demand is too high, then
the sector air traffic controllers will be overwhelmed and stop the flow altogether (and
perhaps get angry at the traffic manager in the process). If the demand is reduced too
low, well below capacity, then the facility could receive pushback the next day from
the Air Traffic Control System Command Center or other facilities. The incentive for
the traffic manager is to effectively balance demand and capacity within his or her own
facility. This incentive sense superficially; however, one must consider that the aviation
system is not composed of “islands” of air traffic but rather is a system in which each
facility’s demand and capacity affects other facilities. The incentives of traffic managers
are based solely on the demand and capacity of their own facilities, not the effect of
decisions on other facilities. Thus, when seeking to optimize air traffic throughout
the airspace, the consideration of incentives becomes an important constraint in the
effective implementation of a solution. Considering the organizational impacts on user
behavior in an operation can translate into a highly developed operational model for
the designers, and this effort can result in better decision support.

In this chapter, several approaches were discussed to aid the designer in considering the
human capabilities and limitations in decision support. A systems approach was provided
as a framework to scaffold an effective iterative design method, which incorporates
training and system measurement in addition to the design work. The concept of trust



was addressed as a key component to both algorithm design and acceptability. Finally, a
point was made that the importance of understanding the decision-making problem in
a naturalistic setting, with all of its constraints and uncertainties, can completely change
the design approach and considerations from problem to problem.
In summary, the best advice is to make a concerted effort to truly understand the

problem, context, and humans involved before designing the decision support. This
understanding will make the difference between a system that provides true decision
support and one that is either an impediment to the operation or not used at all.
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Abstraction, 128
ACAS X, see Airborne Collision Avoidance
System X

Acoustic model, 233
Additive decomposition, 89
Affine transformation, 58
Agent, 2
Air traffic control, 2, 249, 267, 294, 302, 305,
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Airborne Collision Avoidance System X, 253,
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general aviation, 253
unmanned, 3, 252, 253

Airspace model, 249
Alpha vector, 140
Approximate dynamic programming, 93, 109,
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Attention, 291
Attribute-based search, 191
Average reward, 79
Axioms of probability, 12

Backpropagation, 128
Bandit problem, 113, 129
Bandwidth, 46
Basis function, 96, 126
Bayes’ rule, 13, 29, 45, 47, 155, 260, 272
Bayes-adaptive Markov decision process, 120,
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Bayesian network, 17, 19, 21, 31, 54
dynamic, 25, 249
hybrid, 21
inference, 25

parameter learning, 40, 265
representation, 17
structure learning, 46, 265

Bayesian policy gradient, 130
Bayesian score, 47, 52, 54
BDe, 51, 54
BDeu, 51, 54
Behavioral cloning, 4
Belief, 12
Belief propagation, 32, 54
Belief state, 115, 134, 259
Belief state update, 134
Belief-state Markov decision process, 134
Bernoulli process, 255
Best response, 70
Biometric search, 191
Branch and bound, 100, 151

Cepstral feature, 230
Certainty effect, 64
Chain, 20
Chain rule, 18, 27, 31
Chance node, 64
Chatter, 263
Classification, 4, 26
Classifier, 202
Collision avoidance, 59, 61, 249
Collision risk, 42, 265
Communication, 3, 11, 182, 277
Completeness, 58
Completion policy, 173
Compression, 258
Conditional edge, 64
Conditional independence, 26, 79



Conditional plan, 141
Conditional probability, 12
Conditionally, 19
Constraints, 252
Continuity, 58
Cooperation, 277
Coordination graph, 168
Corrective, 254
Cross entropy, 105, 109, 267
Crossing, 257
Crossover, 108
Crying baby, 133, 137, 141–143
Cumulative distribution function, 13

D-separation, 20
Dec-MDP, see Decentralized Markov decision
process

Dec-POMDP, see Decentralized partially
observable Markov decision process

Dec-POMDP-Com, see Decentralized
partially observable Markov decision
process with communication

Decentralized Markov decision process, 166
Decentralized partially observable Markov
decision process, 159

Decentralized partially observable Markov
decision process with communication, 179

Decision diagrams, 89
Decision network, 64, 73

dynamic, 119, 133, 134
Decision node, 64
Decision problem

sequential, 77, 108
single-shot, 65

Decision support system, 3
Decision theory, 294
Decision tree, 89
Design parameter, 271
Deterministic, 251
Diagnosis, 11

Diagnostic test, 67
Direct policy search, 103
Directed acyclic graph pattern, see Partially
directed graph

Directed graph search, 48
Discount factor, 78
Discretization, 16, 91, 94, 258
Distribution

beta, 43, 45, 114
binomial, 40
class-conditional, 27
compound Dirichlet-multinomial, 210
conditional linear Gaussian, 22
Dirichlet, 45, 47, 119, 200, 205
Gaussian, 13, 14, 30, 41, 138, 149, 256
geometric, 255
joint, 16
linear Gaussian, 21, 22, 24, 91, 136,
138

multivariate Gaussian, 23
piecewise-uniform, 16
Polya, 210
prior, 27
quasi-normal, 196
symmetric Dirichlet, 45
uniform, 13, 114

Dominant strategy, 70
Dyna, 117, 129
Dynamic programming, 79, 109, 116, 170,
177, 180, 249, 255, 256, 281
real-time, 109

Eligibility trace, 123, 130
Elite sample, 105
EM, see Expectation maximization
Equilibrium

dominant strategy, 70
Nash, 70, 72, 74, 178

Essential graph, see Partially directed graph
Estimation, 250, 251, 259, 260, 263, 265



kernel density, 45
maximum likelihood, 40, 117, 129,
206

recursive Bayesian, 136
Evaluative feedback, 113
Evidence variable, 26
Expectation maximization, 232
Explaining away, 20
Exploitation, 113
Exploration, 113

ε-greedy, 115
directed, 115
interval, 115
softmax, 115

Extrapolation, 251

Factor graph, 54
Factored Markov decision process, 89
Factorial, 43
Fast informed bound, 144, 151, 155
Features, 96
Feedback, 312
Fibonacci sequence, 79
Filter

alpha-beta, 259
Kalman, 30, 138, 155, 260
nonlinear, 259
particle, 138, 155
unscented Kalman, 261

Filtering, 29
Finite horizon, 78
Flight test, 272
Fork, 20
Forward search, 99, 150
Framing effect, 64
Functional edge, 65
Fusion, 265

Game theory, 69, 73
behavioral, 71, 74

Gamma function, 43

Gaussian mixture model, 16, 229, 231, 232,
237–240

Generalization, 124, 130
Generalized belief state, 165, 170, 171
Generative model, 101, 102, 104, 138, 195
Genetic algorithm, 50, 106, 109
Genetic local search, see Memetic algorithm
Genetic programming, 108, 109
Gittins allocation index, 116
Global approximation, 96, 126
Global positioning system, 253
GMM, see Gaussian mixture model
GPS, see Global positioning system
Gradient ascent, see Local search
Grid world, 83, 108, 161

Heuristic, 177, 251, 294
Heuristic Search Value Iteration, 155
Hidden layer, 128
Hidden Markov model, 24, 29, 79, 229–231,
233, 234, 236

Hidden variable, 26
Hill climbing, see Local search
Histogram, 260
History, 152
History tree, 153
HMI, see Human-machine interface
HMM, see Hidden Markov model
HSV color space, see Hue-saturation-value
color space

Hue-saturation-value color space, 196
Human error, 250
Human-machine interface, 308
Human-systems integration, 291
Hypergraph, 168

I-vector, 238, 240
ICM, see Iterated conditional modes
Imperfect state information, 109
Incremental feature dependency discovery,
284, 285



Independence, 58
Independent, 19
Inference, 25, 27
Infinite horizon, 78
Influence diagram, see Decision network
Information-gathering action, 144
Informational edge, 64
Input layer, 128
Interpolation, 281

bilinear, 94
linear, 94
multilinear, 94, 258, 259, 261
simplex-based, 95

Interview, 312
Inverted fork, see V-structure
Irrationality, 63, 73
Iterated conditional modes, 214
Iterative policy evaluation, 80

JESP, see Joint equilibrium search for policies
Joint equilibrium search for policies, 178, 180
Joint policy, 160
Junction tree algorithm, 32, 54

K2, 49, 54
Kalman gain, 138
Kernel function, 46, 93, 208
Kronecker delta function, 120, 136

Language identification, 231, 236–238
Language model, 233, 234, 236, 237
LAO∗, 109
Latent variable, 192, 197, 205
Law of total probability, 12, 27, 29, 31, 47
Learning rate, 122
Linear dynamical system, 24, 30
Linear programming, 143, 171

mixed integer, 182
Linear quadratic Guassian, 109
Linear quadratic regulator, 93
Linear regression, 96

Local approximation, 125
Local graph operations, 52
Local information, 159, 164
Local optima, 5, 50
Local search, 49, 104, 109
Local states, 167
Locally fully observable, 167
Log-factorial, 222
Log-likelihood, 41, 215
Logic model, 22
Logit level-k , 71
Lookahead, 149
Lookup table, 259–261, 263
Loopy belief propagation, 40
Lottery, 57, 58, 60, 69

MAA∗, see Multiagent A∗
Machine translation, 236, 242, 243
Marginalization, 31, 212
Markov assumption, 77
Markov blanket, 20, 38
Markov chain, 23
Markov chain Monte Carlo, 38
Markov decision process, 77, 108, 114, 159,
172, 281
stationary, 77

Markov equivalence class, 51
Markov equivalent, 51, 54
Markov random field, 54
Match score, 215
Maximum expected utility principle, 59, 63,
73

MBDP, see Memory-bounded dynamic
programming

MDP, see Markov decision process
Medical diagnosis, 65
Memetic algorithm, 108
Memetic algorithms, 51
Memory, 293



Memory-bounded dynamic programming,
177, 180

Mental model, 295, 298
Mental simulations, 295
Message passing algorithm, 54
Mixed strategy, 69
MMDP, see Multiagent Markov decision
process

Modified policy iteration, 81
Monte Carlo tree search, 102, 109, 130, 152,
155

Most likely explanation, 29
Multiagent A∗, 172, 180
Multiagent belief state, see Generalized belief
state

Multiagent Markov decision process, 169,
278, 280

Multiagent planning, 277
Multimodal, 14
Mutation, 108
Myopic communication, 181

Naive Bayes model, 26
Naturalistic decision making, 294
ND-POMDP, see Network distributed
partially observable Markov decision
process

Near midair collision, 267
Nearest neighbor, 94
Nelder-Mead optimization, 211
Network distributed partially observable
Markov decision process, 168, 180

Neuron, 126
NEXP-complete, 165, 168, 169, 179
NMAC, see near midair collision
Nonparametric learning, 45
Normalization constant, 28
Normalized utility function, 59
NP, 33
NP-complete, 33, 71, 168

NP-hard, 32–34, 51, 54

Observation, 2
Observation independent, 167
Observation model, 134, 160
Observe-act cycle, 1
Online cost, 261, 262
Operational considerations, 3, 258
Optimization, 5
Output layer, 128
Overautomation, 300
Overreliance, 300

P, 33
P-complete, 165
Parallel approach, 273
Parameter learning

Bayesian, 42
maximum likelihood, 40

Partial policy, 173
Partially directed graph, 52
Partially observable Markov decision process,
120, 133, 159, 172, 249, 255, 259

Partially Observable Monte Carlo Planning,
155

Partially observable stochastic game, 160
Particle deprivation, 140
Path planning, 84
Perceptron, 126
Perseus, 155
Persistent surveillance, 3, 277
Planning, 5, 84

closed-loop, 84
open-loop, 84

Point estimate, 259
Policy, 79, 134, 278

decentralized, 159
Policy evaluation, 80, 81
Policy improvement, 81
Policy iteration, 81, 176

structured, 89, 108



Policy loss, 83
Policy tree, 141, 162
Polytree, 54
POMDP, see Partially observable Markov
decision process

POSG, see Partially observable stochastic
game

Posterior, 30
Prediction, 29
Preference elicitation, 60
Preventive, 254
Prioritized sweeping, 118, 129
Priority queue, 118
Prisoner’s dilemma, 69, 70
Probability density function, 13
Probit model, 22
Programming, 4
Progressive widening, 109
Prospect theory, 73
Pseudocount, 44, 200
PSPACE-complete, 144, 165
Pure strategy, 69

Q-learning, 122, 130
linear approximation, 125
perceptron, 126

QMDP, 144, 150, 151, 155, 259
Quadratic reward, 91
Quadrotor, 277, 285, 286
Quantization, 259, 260
Query variable, 26

RA, see Resolution advisory
Radar, 2, 14, 21, 26, 249–252, 265, 294
Randomized restart, 50
RAPT, see Route Availability Planning Tool
Rational agent, 59
Rational preference, 58
Recursive Bayesian estimation, 30
Reinforcement learning, 5, 109, 113, 129

Bayesian, 119

Bayesian model-based, 130
Bayesian model-free, 130
model-based, 117, 130, 278
model-free, 121
multiagent, 130

Resolution advisory, 250, 254, 263
Reversal, 255
Reward function, 77, 160, 256, 280
Reward independent, 167
Risk averse, 60
Risk neutral, 60
Risk ratio, 267
Risk seeking, 60
Rollout policy, 103, 150
Route Availability Planning Tool, 302

Safety, 3, 249, 258, 260, 265
Sampling, 265

direct, 35, 39
Gibbs, 38, 39
importance, 267
likelihood-weighted, 36, 39
Monte Carlo, 260
Thompson, 121, 130

Sarsa, 123, 130
Satellite, 11, 17
Satisfiable, 33
Screening, 271
Self-organizing map, 125
Sense, 255
Sense and avoid, 252
Sensor error, 3, 4, 133, 249, 259
Sigmoid, 22
Simulated annealing, 50, 211
Smoothing, 29
Soft biometrics, 192
Sparse sampling, 101, 130
Speaker identification, see Speaker recognition
Speaker recognition, 231, 239, 240
Speech processing, 230, 231



Speech recognition, 230–236, 240
Standard normal cumulative distribution
function, 14

State aggregation, 89
State space, 256, 261, 278, 280
State transition model, 23, 77, 101, 279, 281
Stationary, 23, 30
Stochastic optimization, 109
Strategy profile, 70
Strengthening, 255
Stress testing, 267
Structure learning, 46
Successive Approximations of the Reachable
Space under Optimal Policies, 155

Sum-squared error, 96
Supervised learning, 4
Support, 14
Support vector machine, 237, 239, 240
Surrogate model optimization, 271
Surveillance system, 2, 252
Survey, 312
SVM, see Support vector machine
System parameter, 271

TA, see Traffic advisory
Tabu search, 50
TCAS, see Traffic Alert and Collision
Avoidance System

Temporal difference error, 122
Temporal model, 23, 29
Topic identification, 235
Topological sort, 35
Traffic advisory, 250, 263
Traffic Alert and Collision Avoidance System,
2, 3, 250, 251, 263

Training examples, 4
Transition independent, 167
Transition model, 160, 167
Transitivity, 12, 58
Traveler’s dilemma, 72

Trust, 296, 301

Uncomputable, 144
Undecidable, 165
Underutilization, 300
Unimodal, 14
Universal comparability, 12
Unmanned aircraft, 277
Upper confidence bound for trees, 102
Utility, 58

additively decomposed, 62
multiple variable, 61

Utility elicitation, 60, 271
Utility function, 271
Utility node, 64
Utility of money, 60
Utility theory, 57, 73

V-structure, 20, 51, 52
Value iteration, 81, 143

asynchronous, 84
Gauss-Seidel, 84, 258
linear regression, 96
local approximation, 93, 258
point-based, 145, 150
structured, 89, 108

Value of information, 66, 73
Variable elimination, 31
Video surveillance, 191
Von Neumann-Morgenstern axioms, 58

Weakening, 255
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