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Preface

With the recent deployment of fourth generation technology (4G), the fifth gen-
eration of mobile communication technology (5G) is slowly emerging to support
the Internet of Things (IoT), where millions of sensors and mobile devices will
be deployed in order to provide data for smart homes, smart buildings and smart
cities. 5G networks will have to handle data (collection, storage, mining, analysis,
etc.) gathered from a very diverse set of sources like traffic, weather, security
incidents, and crowds, and additional issues surfacing due to IoT deployment and
the increasing use of wearable devices. Since any communication network, such as
IoT, is a multi-entity system, decisions are taken by different system entities. All
entities are motivated to make decisions that optimize their own potential benefit,
whether this is experience, profit, resource usage or any other factor that may result
in high utility measurements or high satisfaction for these entities.

The strengthening of the user role allows a user of the 5G communication
network to decide whether or not to participate in a network and offer value to
that network. For example, a user may select it to provide a requested service, its
criterion being user satisfaction in terms of, for example, experience (e.g. service
quality) and cost. Then user experience can be improved by the consideration of
context information, i.e. location, device capabilities, environment, preferences, etc.
Alternatively, the network operator may decide which of the users to admit, how
to allocate available resources to the participating users and how to design certain
mechanisms in order to maximize its capacity. All these decisions are driven mainly
by the network’s revenue maximization criterion.

In this book, we utilize Game Theory in order to model, analyse and finally
propose solutions (in terms of strategies for the involved entities) for a number of
representative types of interactions in 5G communication networks. The interacting
entities are the mobile user devices, IoT nodes and vehicular nodes participating
in the 5G network, on the one hand, and the actual network operators and service
operators, on the other hand. Game Theory has been extensively used in networking
research as a theoretical decision-making framework. Game Theory provides
appropriate models and tools to handle multiple, interacting entities attempting to
make a decision and seek a solution state that maximizes each entity’s utility.
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vi Preface

To this end, in this book four selected interactive situations have been analysed
using existing game theoretical models, and theoretical conclusions are drawn for
each interactive situation; the theoretical conclusions are further reinforced with
appropriate numerical results in several cases. Summarizing the work presented, we
begin with a scenario where multiple IoT nodes cooperate to achieve the adoption
of a password generation mechanism to protect them against malware attacks. Next,
we turn our attention to the offloading scenario where mobile nodes take on the
role of content repeaters to provide an alternative communication path through the
network, subsequently increasing the network coverage. Therefore, 5G communi-
cation service is enabled by data offloading from infrastructure transmission points
onto the mobile users that act as content repeaters, for a monetary payoff. The third
scenario explores the interaction between a receiving node and a sending node in
a vehicular network, in order to motivate trust between them. The final scenario
deals with the bargaining situation between two provider entities, namely a service
provider and a cloud provider, attempting to partition a service payment optimally.

Last but not least, we would like to thank the kind support from the EAI/Springer
Innovations in Communications and Computing managing director and this book
editor, Ms. Eliska Vlckova. We also appreciate the hard work of all those who have
worked together to push forward the publication of the book.

Larnaka, Cyprus Josephina Antoniou
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Chapter 1
Game Theory and Networking

Abstract With the 4th generation technology (4G), only being deployed for a few
years, 5G technology is slowly emerging to support the Internet of things (IoT),
where millions of sensors and mobile devices will be deployed in order to provide
data for smart homes, smart buildings and smart cities. 5G networks will have to
handle data (collection, storage, mining, analysis, etc.) gathered from a very diverse
set of sources like traffic, weather, security incidents, crowds, etc. Data analytics and
network management are thus necessary for 5G deployment. IoT includes sensors
and mobile devices that gather data and perform data mining on data to anticipate
certain circumstances, including human behaviour. Some issues that may arise from
the deployment of 5G and IoT include new security issues because of the IoT
deployment, and additional issues surfacing due to the increasing use of wearable
devices. Since any communication network, such as IoT, is a multi-entity system,
decisions are taken by different system entities. Such decision-making entities are
the “things” in IoT, i.e. the sensors comprising the sensor networks that offer the
capability to create smart spaces and applications, the users of the IoT, the content
and service providers using the IoT as their infrastructure, etc. All entities are
motivated to make decisions that maximize their own potential benefit, whether
this is experience, profit, minimal resource usage or any other factor that may
result in high utility measurements or high satisfaction for these entities. The book
will explore specific interactions using a game theoretic framework and offer the
equilibriums that maximize the payoffs of the interacting entities.

Keywords 5G networks · Game theory · Emerging technologies · Networking ·
Internet of things

1.1 Introducing 5G Networks

With the 4th generation technology (4G), only being deployed for a few years,
5G technology is slowly emerging to support the Internet of things (IoT), where
millions of sensors and mobile devices will be deployed in order to provide data

© Springer Nature Switzerland AG 2020
J. Antoniou, Game Theory, the Internet of Things and 5G Networks,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-16844-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16844-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-16844-5_1


2 1 Game Theory and Networking

for smart homes, smart buildings and smart cities. 5G networks will have to handle
data (collection, storage, mining, analysis, etc.) gathered from a very diverse set
of sources like traffic, weather, security incidents, crowds, etc. Data analytics and
network management are thus necessary for 5G deployment. IoT includes sensors
and mobile devices that gather data and perform data mining on data to anticipate
certain circumstances, including human behaviour.

Some issues that may arise from the deployment of 5G and IoT include new
security issues because of the IoT deployment, and additional issues surfacing due
to the increasing use of wearable devices. Regarding security in IoT, we need to
consider that if end nodes in the IoT are compromised, large botnets or malicious
robot networks are created that use the combined power of the compromised
IoT nodes to launch attacks. These can include the mobile devices of innocent
users that are geographically spread or collocated. Regarding wearable devices,
the issue to consider is when such devices are used to monitor a user’s heart
rate or calories burnt, i.e. are used to collect personal and sensitive data, and are
connected wirelessly to their mobile device, even using the Internet to launch
a relevant application, issues arise such as private data being sold to interested
parties (maliciously or through agreements of the service providers with specific
companies, e.g. advertising companies).

Since any communication network, such as IoT, is a multi-entity system,
decisions are taken by different system entities. Such decision-making entities are
the “things” in IoT, i.e. the sensors comprising the sensor networks that offer the
capability to create smart spaces and applications, the users of the IoT, the content
and service providers using the IoT as their infrastructure, etc. All entities are
motivated to make decisions that maximize their own potential benefit, whether this
is experience, profit, minimal resource usage or any other factor that may result
in high utility measurements or high satisfaction for these entities. Therefore it is
important to decide how such entities in different situations can in fact maximize
their own potential impact or their utility measurements.

The book will explore specific interactions using a game theoretic framework
and offer the equilibriums that maximize the payoffs of the interacting entities.
Implementations of specific numerical models will be presented to support the
model evaluations.

5G networks are the evolution of the mobile network technology. Mobile and
wireless communication networks comprise a mature industry with increasing
user penetration, which has been globally available for some time and is usually
deployed as one or another technology, often in competition with each other. 5G
communication networks are envisioned to be based upon a common, flexible and
scalable convergence platform, where different networking technologies, terminals
and services can coexist. Furthermore, and especially with the increasing deploy-
ment and use of cloud infrastructures, network access is being decoupled from
service provision, resulting in an increasing collection of new services offered by the
newly introduced service providers. Decoupling of network access has favoured the
idea of convergence, i.e. the co-existence and integration of the various networking
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technologies in order to act as a unified platform combining their resources to best
serve the increasing user requirements.

Such networking technologies may employ different wireless and mobile tech-
nologies, and will be interconnected by an IP packet-switched core network. This IP
core network deals with all network functionality and coordinates the participating
networks, in order for the system to behave as a unified platform. The IP multimedia
subsystem (IMS) in past 3G and 4G networks has been an architectural subsystem
for the control and provisioning of IP multimedia services over a packet-based core.
The IMS was first standardized by the 3rd Generation Partnership Project but it has
since been adopted and contributed to by other standardization bodies, including
ITU-T and ETSI. The IMS promises a scalable, integrated platform that enables
the creation of new services and facilitates the convergence of telecommunications
and Internet services. The IMS also promises to achieve fixed mobile convergence
by enabling the seamless distribution of services over fixed and mobile broadband
networks. However, this requires that IMS services need to be able to cater for
heterogeneous access networks and varying user end terminal capabilities. This
adaptation ability presents a significant challenge for multimedia services as such
adaptation is no easy task.

Moreover, the co-existence of different networking technologies, terminals and
services brings forth a new communication paradigm, employed in its totality in
4G, which is user-centric [16], i.e. the user is no longer bound to only one access
network but may indirectly select the best available access network(s) to support
a service session. Upon a new service request or a particular traffic demand, as
well as any dynamic change affecting the session, e.g. mobility, one (or a group)
of the participating access networks needs to be selected in order to support the
session. Therefore, converged communication networks need to be equipped with a
network selection mechanism to assign the best access network(s) to handle service
activation, or any dynamic session change. Such decision may result in the selection
of a single access network or even a group of networks in 4G networking platforms.

A 5G network, as considered in this book, is a multi-entity system, i.e. decisions
are taken by different system entities. The decisions serve to provide the means to
efficiently support a requested service, with most likely much higher demands than
3G and 4G services, to the appropriate user. At least, two entities of decision-making
are necessary; one representing what the user needs and another representing what
the network can provide. Thus, the minimum number of entities responsible for
these decisions are: (i) the user (requesting services) and (ii) the network operator
(responsible to support the user requested services). All decision-making entities
can be driven by satisfaction-maximization functions, which are based on the
individual entity’s criteria [10]. Nevertheless, the roles can easily change in a 5G
network with the user often acting as an infrastructure component and the network
operator interacting with users or other service and content providers on a peer-to-
peer basis.

The strengthening of the user role allows a user of the 5G communication
network to decide whether or not to participate in a network and offer value to
that network, selecting it to provide a requested service, its criterion being user



4 1 Game Theory and Networking

satisfaction [17] in terms of, for example, experience (e.g. service quality) and cost;
user experience can be improved by the consideration of context information, i.e.
location, device capabilities, environment, preferences, etc. On the other hand, the
network operator may decide which of the users to admit, how to allocate available
resources to the participating users and how to design certain resource management
mechanisms in order to maximize its capacity. All these decisions are driven mainly
by only one criterion: the network’s revenue maximization.

Therefore, considering the example entities of the user and the network we
may initially assume the following: on the one hand, the network operator sets the
price per user for using network resources based on its own revenue-maximization
criterion and, on the other hand, the user, given the price set by the network as
well as additional parameters that comprise its own satisfaction function, makes the
decision whether or not to participate in the particular network, always subject to
the network’s own admission policy [11, 13].

1.2 Datagram Networks and Technology Convergence

Traditionally, communication networks provide one of the two different types of
network services: circuit-switched service and datagram. The typical model for a
circuit-switched network is the public switched telephone network (PSTN). Once
a call is established through the various switching centres, the path from source to
destination is also established like a circuit. The transport characteristics in a circuit-
switched path may be predetermined and the connection is said to be predictable in
terms of the QoS it can deliver. On the other hand, the typical model for a datagram
type network is the Internet, where data is broken into small units, called packets,
for transmission through the network using only source and destination addresses
and trusting that existing routing technologies will deliver each packet to the correct
destination; this type of connection is referred to as packet switched and it is not
easy to predict the QoS it can deliver.

Voice communication networks have hitherto embraced the circuit-switched
approach because of the strict delay constraints of the voice service, while data
networks have been successful in using the datagram or packet-switched approach
since delay bounds are more relaxed. However, the rapid deployment of emerging
information technologies, including mobile communications and Internet-related
technologies in general, plus the widespread acceptance of the Internet protocol
(IP) have been some of the driving factors towards integrating voice and data
networks of different technologies into a unified infrastructure, introducing the idea
of convergence, i.e. combining voice, data and other media such as video, audio
and fax, into what appears to be a single network interface but may comprise the
integration of heterogeneous wired and wireless networks.

Despite the inability of IP to offer guaranteed QoS, IP-based networks upon
deployment became a very popular and cost-efficient communication solution.
Even though, there were no QoS guarantees from the IP itself, additional QoS
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mechanisms improved QoS-provisioning so that a multitude of services could be
successfully deployed over IP. The IP trend evolved to the all-IP paradigm, i.e. the IP
supporting next generation communication networks, which are characterized by the
convergence of heterogeneous access technologies, by deploying an IP-based core
where the participating heterogeneous access technologies converge. Consequently,
we may define convergence to be the creation of an environment that can ultimately
provide seamless and high-quality broadband mobile communication service and
ubiquitous service through wired and wireless integrated networks without spatial
and temporal constraints by means of connectivity for anybody and anything,
anytime and anywhere.

A converged network is a datagram type network in principle, combining
traditionally circuit-switched and datagram networking into a single packet-based
network. However, it needs to address reliability in order to be successful. The IP,
which was designed to support datagram type networks, is not sufficient in itself to
transmit real-time traffic such as voice and video. Additional protocols are needed.
Many organizations are addressing this challenge, such as ETSI with TIPHON
(telecommunications and internet protocol harmonization over network), ITU-T
with H.225, and H.245 standards for multimedia communication, and IETF with
SIP (session initiation protocol), SDP (session description protocol), RTP (real-time
protocol), RSVP (resource reservation protocol) and others that facilitate real-time
communications over IP-based networks.

A user participating in a converged network enjoys several advantages. Although
there is a multitude of underlying technologies, only one interface is perceived by
the user, which means the user does not need to know how to manage multiple
systems and in terms of support the user contacts only one organization, the
converged platform administrator, for an increased number of available services.
The access networks themselves enjoy increased user participation and economic
benefits through possible cooperation with other participating networks to better
support the converged network services. In addition, network performance becomes
more efficient since the platform administrator can enforce certain policies to all
the participating networks and due to access network synergies, the participating
networks are expected to become more competitive.

In terms of challenges to overcome, the ones that a converged infrastructure
needs to deal with are threefold: management challenges, architectural challenges
and quality challenges (i.e. service quality perceived by the user). In terms of
management, the appropriate mechanisms must consider the heterogeneity of the
network and perhaps the different ownership, and in turn satisfy several challenging
demands, as, for example, high throughput, authorization and billing, security,
fairness, deployment costs and interoperability issues, ensuring that (a) environment
heterogeneity is transparent to the users who simultaneously have maximum choice
in their selection of and access to a network with suitable QoS and information
services and (b) that information providers can reach all users. In terms of
architecture, the functionalities and interactions of additional components that
will enable the convergence are necessary to ensure the efficient operation of the
system and allow for the management mechanisms to resolve the issues mentioned
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above. Management and architecture issues have various common areas in terms
of design and implementation. Quality, and particularly improving user experience,
touches upon network and resource management and moves on to areas such as
modifications to user devices, improvements to applications and services, enhancing
user capabilities (e.g. exploring context-awareness), etc.

Since network access is being decoupled from service provision, the result is
an increasing collection of new services offered by the newly introduced service
providers. The user-centric view evolving from this advancement introduces a
setting where the user can choose or take active part in the selection of the best
available network to serve a requested service, and no longer has to subscribe to one
particular access provider. Hence, network selection mechanism is a newly intro-
duced resource management mechanism in a converged network, which handles the
selection of the best network to satisfy a service request, aiming to improve both
user experience and network motivation to offer its resources (through increased
revenues). The significance of this advancement is the empowerment of the role of
the mobile user as a part of a communication network that continues similarly in 5G
communication networks as well.

Mobile communication networks have already motivated cooperation at the
level of networks, since they promote the co-existence of different networks on a
convergence platform such that the actual network serving a particular request is
transparent to the mobile user. Network selection is the mechanism responsible
to select the network(s) to serve a particular request out of the set of available
networks. Selecting the network(s) to serve a user demand that satisfies both the
user preferences and the network constraints may become a challenging task. Since
network selection is a mechanism involving important decision-making, it must
take into consideration some strategical planning on behalf of the entities involved
in this decision. Given that game theory is a theoretical framework for strategical
decision-making, it has been a very popular approach among many of the recently
presented research works. In addition to the most commonly seen non-cooperative
games [5, 6], several cooperation schemes have emerged to propose solutions in
situations where limited resources or need for quality guarantees exists [1, 22].

Furthermore, interconnection of networks results in various forms of infrastruc-
ture cooperation, which although socially desirable may not always be beneficial
for the participating networks. Therefore, to avoid defection from cooperation, this
is sometimes made mandatory for the cooperating networks, since higher data
rates, better coverage, improved energy consumption as well as more accurate
location estimation could result from infrastructure cooperation [23]. Underlying
principles of cooperative techniques as well as several applications demonstrating
the use of such techniques in practical systems are demonstrated in [12]. Given such
cooperative environments, enhanced services can be designed to take advantage of
the existing cooperation between networks and network components. Moreover, the
development of wireless and mobile communications industry and technology in the
near future depends largely upon the merging of the Internet with the mobile world,
requiring the cooperation of the involved heterogeneous network entities, to achieve
attractive scenarios for the future mobile user.
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1.3 Introducing Game Theory for Decision-Making in
Networking Environments

We recognize that in a 5G network there exists the need to consider the interaction
between each user and each one of the available networking technology providers,
service providers and content providers as well as any interactions between the
providers themselves, in order to improve decision-making. Interactions between
entities with conflicting interests follow action plans designed by each entity in such
a way as to achieve a particular selfish goal and are known as strategic interactions.
Game theory is a theoretical framework that studies strategic interactions, by
developing models that prescribe actions in order for the interacting entities to
achieve satisfactory gains from the situation.

In this book, we utilize game theory in order to model, analyse and finally
propose solutions (in terms of strategies for the involved entities) for a number of
representative types of interactions in 5G communication networks. The interacting
entities are the mobile user devices, IoT nodes, and vehicular nodes participating
in the 5G network, on the one hand, and the actual network operators and
service operators, on the other hand. Well-designed strategies can enhance capacity
planning on a dynamic basis (for example, on a day-to-day), by allowing the
constituent technologies and participating nodes and consequently the whole 5G
network to make the best use of the available capacity, at any given horizon.

Game theory has been extensively used in networking research as a theoretical
decision-making framework. Game theory is mainly based on [9, 14] appeared
formally in the 1940s in a text by John von Neumann and Oskar Morgenstern
[27], although the ideas of games and equilibria are found as early as 500 AD
in the Babylonian Talmud, which is the compilation of ancient law and tradition
for the Jewish Religion [3], as well as in the 1800s in Darwin’s The Descent of
Man, and Selection in Relation to Sex [8]. Game theory grew more popular in the
1950s and the 1960s with important contributors such as John Nash [20], Thomas
Schelling [25], Robert John Aumann [2] and John Harsanyi [15], as well as in
the 1970s with Reinhard Selten [26], giving all the above scientists Nobel Prize
awards in Economics in 1994 (John Nash, John Harsanyi and Reinhard Selten) and
in 2005 (Robert John Aumann and Thomas Schelling). It is worth mentioning some
more recent, important contributors of game theory such as Ariel Rubinstein who
contributed in the theory of bargaining [24] and Vincent P. Crawford for his work
with redefinition of equilibria [7].

1.3.1 Introducing Utility Theory

Making a decisions is a challenging task because it must consider abstract notions
affecting a particular decision, e.g. the preferences of the agents participating in
the decision-making. It is often convenient to represent preferences with a utility
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function and reason indirectly about preferences with utility functions. Utility
functions express the desirability of a state for an agent.

Utility theory is the area that studies the quantification of the preferences between
different outcomes of various plans. Usually a decision is based upon the outcome
of the agents’ utility functions and the probabilities of occurrence of the relevant
events. Let X be the set of all the mutually exclusive options an agent could prefer.
The agent’s utility function may be defined as u : X → R and it ranks each
option in the consumption set X. If u(x) ≤ u(y), then the agent strictly prefers or
is indifferent to option y in relation to option x. A utility function u : X → R

rationalizes a preference relation � on X, if for every x, y ∈ X, u(x) ≤ u(y) if
and only if x � y.

Therefore, a utility function represents a complete, reflexive, transitive and
continuous preference relation. Such a function represents an ordinal concept, i.e.
it gives an ordering or ranking of preferences but does not reflect the amount of
preference, e.g. if u(x) = 2 and u(y) = 6, it is not implied that y is three times
better than x. According to the specific utility function, different combinations of
input parameters may result in the same utility.

Each possible output of a utility function may be referred to as a utility level
and the combinations of input parameters that result into a specific utility level may
be drawn into a curve, known as an indifference curve because all points on an
indifference curve have equal preference. The more sets of input parameters we
consider, the larger the collection of indifference curves that will be created and
consequently the description of the user’s preferences will improve. Furthermore,
by comparing all possible combinations of input parameters we may create the
complete collection of the user’s indifference curves, each with its assigned utility
level, thus completely representing the user’s preferences. The collection of all
indifference curves for a given preference relation is an indifference map and it
is equivalent to a utility function.

1.4 Game Theory as an Analytical Tool

This book considers the network selection mechanism as a decision resulting
from the interaction between the user and the access networks available to the
user. Describing and analysing entity interactions is a situation that makes a good
candidate to be modelled using the theoretical framework of game theory. Game
theory provides appropriate models and tools to handle multiple, interacting entities
attempting to make decision and seeking a solution state that maximizes each
entity’s utility. Game theory has been extensively used in networking research
as a theoretical decision-making framework, i.e. for routing, congestion control,
resource sharing, etc. The network selection decision may benefit from such a
theoretical framework that considers decision-making, interacting entities.



1.4 Game Theory as an Analytical Tool 9

Game theory is a theoretical framework that attempts to mathematically capture
both human and non-human (computer, animal and plant) behaviour during a
strategic situation. A strategic situation is a situation that involves the interaction
of two or more entities in which the individual’s success depends on the choices of
others attempting to find equilibria between the entities (called the players), i.e. sets
of strategies (action sequences) that players will unlikely want to change. Therefore,
game theory can be used to model situations of interaction and offer solutions so
that mutually agreeable results can be reached; game theoretic models make the
assumption that the entities make rational choices, i.e. choices that are profitable
according to each entity’s own interpretation of profit.

In order for a strategic situation to become a game between two or more players,
there must be a mutual awareness of the participants regarding the cross-effect of
their actions. A strategic situation, where the actions of a participant may alter
another’s outcome, is primarily characterized by the players’ strategies. In addition,
a strategic situation contains other elements that must be taken into consideration
when modelling such a situation as a game, e.g. chance and skill (elements that are
not easily controlled or modified). The idea of signals, i.e. specific observations, is
often used to reach conclusions regarding a situation’s or a player’s information that
would be unclear otherwise. For example, signals may help a player to recognize if
his opponent is exaggerating or even lying, since signals offer objective evidence.

Game models, i.e. models of specific strategic situations, may be categorized in
various ways due to the several elements that they contain. A usual categorization
is made by looking at the players’ movements; if they are sequential we have an
extensive game form, whereas if they are simultaneous the game form is referred to
as normal. Furthermore, an interaction may happen only once or repeatedly; in the
first situation we are faced with one-shot game models, while the second situation
requires repeated game models. An additional dichotomy is whether the players
are in complete conflict, where the model employed is a non-cooperative one, or
they have some commonality, where a more cooperative game model may be more
appropriate. Finally, another important categorization is whether we are dealing with
a game where the players have complete information about all actions taken or only
partial information. When characterizing a game it is important to keep in mind
the various possible categorizations of game models in order to better describe the
required strategic situation as completely as possible.

As mentioned above, strategic games employ the element of rationality. Usually
rationality may imply that players are perfect calculators and flawless followers of
their best strategies, although this may be defined not to be the case. Therefore,
rationality may be better described to be the players’ knowledge of their own
interests based on each player’s own value system. Based on this element of
rationality the players calculate their possible strategies. Depending on whether the
game is normal or extensive strategies may consist of single actions or sequences of
actions and each strategy gives a complete plan of action, considering also reactions
to actions that may be taken by the opponent. Strategies may be pure, i.e. provide
complete definitions of how a player will play in the game (his moves), or mixed,
i.e. assignments of a probability to each pure strategy.
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Games are motivated by profitable outcomes that await the players once the
actions are taken. These outcomes are referred to as payoffs. Payoffs for a particular
player capture everything in the outcomes that the particular player cares about. If
a player faces a random prospect of outcomes, then the number associated with this
prospect is the average of the payoffs associated with each component outcome,
weighted by their probabilities.

The solution to a strategic game is derived by establishing equilibria. Equilibria
may be reached during the interaction of players’ strategies when each player is
using the strategy that is the best response to the strategies of the other players.
The idea of equilibrium is a useful descriptive tool and furthermore, an effective
organizing concept for analysing a game theoretic model. For simultaneous-move
games the Nash equilibrium is used as a solution concept, where every player’s
action is the best response to the actions of all the others. For sequential-move
games, also used in this book, the equilibrium used is known as the subgame perfect
equilibrium or the rollback equilibrium and is generated by the method of backward
induction, which captures the concept of looking ahead and reasoning back. This is
because in such games the players must use a particular type of interactive thinking;
players plan their current moves based on future consequences considering also
opponents’ moves. Therefore, the equilibrium in such a game must satisfy this kind
of interactive thinking and backward induction does exactly that, by planning the
best responses backward starting from the last moves and moving to the first.

Moreover, an easy way to visualize a sequential-move game is by illustrating
the game using tree diagrams made from nodes and branches (a.k.a. game trees);
they are joined decision trees for all of the players in the game, illustrating all of
the possible actions that can be taken by all of the players and indicating all of the
possible outcomes of the game. This book employs the notion of game trees.

1.5 A Glance at Well-Known Game Theoretic Models

The following subsections elaborate on certain game theoretic aspects that are
used in this book. Section 1.5.1 presents and discusses the single-shot as well
as the iterated prisoner’s dilemma game, which is the most well-known game
model between two interacting entities. Section 1.5.2 provides an overview of
bargaining games and focuses on two well-known two-player models, the Nash
bargaining game and the Rubinstein bargaining game. In Sect. 1.5.3 we focus on
games of incomplete information, whereas Sect. 1.5.4 presents the repeated game,
which models iterative interactions. Finally, Sect. 1.5.5 describes the interaction of
coalitions of players instead of single players. Note that all these models, which we
further exploit in this book, employ the element of cooperation to provide solutions
to the various situations. This is appropriate in our study, where we aim to motivate
cooperation of the various heterogeneous entities, so as to achieve satisfactory
outcomes for all entities involved.
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1.5.1 The Prisoner’s Dilemma

The prisoner’s dilemma and Iterated prisoner’s dilemma1 have been a rich source
of research material since the 1950s. However, the publication of Axelrod’s book in
1984 [4] was the main driver that this research was brought to the attention of other
areas outside of game theory, as a model for promoting cooperation.

The prisoner’s dilemma is basically a model of a game, where two players
must decide whether to cooperate with their opponent or whether to defect from
cooperation. Both players make a decision without knowing the decision of their
opponent, and only after the individual decisions are made, these are revealed. The
story behind this model is the following: Two suspects are arrested by the police.
Since the policemen have insufficient evidence for their conviction, they separate
the two suspects and offer them a deal. If one testifies (i.e. defects from the other)
against the other and the other remains silent (i.e. cooperates with the other), the
betrayer goes free and the silent goes to jail for 10 years. If both remain silent,
then they both go to jail for only 6 months with a minor charge. If both testify, each
gets a 5-year sentence. Each suspect must choose whether to testify or to remain
silent, given that neither learns about the decision of the other until the end of the
investigation. What should they do?

Mutual cooperation has a reward for both of receiving the punishment which
is the least harsh. However, such decision entails the risk that in case the other
player defects, then the cooperative player will receive the harshest punishment of
10 years. Given the risk of cooperation, it is very tempting to defect because if
the opponent cooperates, then defecting will result in the best payoff, which is to
go free, although, if the other opponent also defects, then an average punishment
will be received by both (i.e. 5 years). The decision of what to do comes from the
following reasoning: If a player believes that his opponent will cooperate, then the
best option is certainly to defect since the payoff will be to go free. If a player
believes that his opponent will defect, then by cooperating he takes the risk of
receiving the harshest punishment, i.e. 10 years, thus the best option is again to
defect and share the average punishment of 5 years with his opponent. Therefore,
based on this reasoning, each player will defect because it is the best option no
matter what the opponent chooses. However, this is not the best possible outcome
of the game. The best solution would be for both players to cooperate and receive
the least harsh punishment of 6 months.

The desirable cooperative behaviour must be somehow motivated so that the
players’ selfish but rational reasoning results in the cooperative decision. In fact,
what we have described is a one-shot prisoner’s dilemma, i.e. the players have
to decide only once—no previous or future interaction of the two players affects
this decision. Cooperation may evolve, however, from playing the game repeatedly,
against the same opponent. This is referred to as iterated prisoner’s dilemma,

1The text in Sect. 1.5.1 is based on [18].
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which is based on a repeated game model with an unknown or infinite number of
repetitions. The decisions at such games, which are taken at each repetition of the
game, are affected by past actions and future expectations, resulting in strategies
that motivate cooperation. The way motivation may be encouraged in such games
will be analysed within the work presented in this book. The repeated game model
is briefly overviewed in Sect. 1.5.4.

1.5.2 Overview of Bargaining Games

With the exception of the groundbreaking contributions of John F. Nash [20], bar-
gaining theory2 basically evolved from the seminal paper by Ariel Rubinstein [24],
which made the procedure of bargaining quite attractive, mainly due to the proposed
model’s simplicity and ease of understanding.

A bargaining situation is an exchange situation, in which two individuals have
a common interest to trade but simultaneously have conflicting interests about the
price at which to trade, because the seller would like to trade at a higher price, while
the buyer would like to trade at a lower price. Therefore, in a bargaining situation,
the two players have a common interest to cooperate but have conflicting interests
about exactly how to cooperate. On the one hand, each player would like to reach
an agreement rather than disagree; on the other hand, each player wants to reach an
agreement that is as favourable to that player as possible.

Therefore, a bargaining situation may be easily seen as a game situation since
the outcome of bargaining depends on both players’ bargaining strategies, i.e.
whether or not an agreement is reached and the terms of that agreement (if one
is reached) depend on both players’ actions during the bargaining process. Next
we provide brief descriptions of the two well-known game models of a bargaining
situation between two players, the Nash bargaining game model and the Rubinstein
bargaining game model, since we will make use of these models in particular
formulations presented in this book.

The Nash bargaining game model defines a solution (known as the Nash
bargaining solution) by a fairly simple formula and it is applicable to a large class
of bargaining situations. The Nash bargaining example is the situation where two
individuals bargain over the partition of a cake of fixed size. Since the cake will
be partitioned to the two players, the addition of their partitions should equal
the total cake; therefore, the set of non-zero partitions, which sum to the total
amount, is the set of possible agreements in the bargaining situation. In the case
of disagreement, each player receives a penalty, which is defined according to the
bargaining situation under consideration; the definition of a penalty comes from
the fact that in bargaining situations the desirable outcome is agreement; thus,
disagreement results in a non-satisfactory payoff for the two players. The penalties

2The text in Sect. 1.5.2 is based on [19].
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of the two players are defined as the disagreement point of the game. Thus, the
useful payoff for each player may be defined to be the player’s payoff received from
the received partition in case of agreement, minus the penalty that would be received
in case of disagreement as defined in the disagreement point. The unique solution
of the cake partition is therefore the unique pair of partitions that maximizes the
product of the players’ useful payoffs and is referred to as the Nash product or the
Nash bargaining solution.

The Rubinstein bargaining game is modelled as a sequential-moves game, in
which the players take turns to make offers to each other until agreement is secured.
This model has much intuitive appeal, because a lot of real-life negotiations are
based on the idea of making offers and counter-offers. From the sequential-moves
model of the bargaining process, it is easy to see that if the two negotiating players
do not incur any costs or penalties for delaying the agreement decision, the solution
to the bargaining game may be indeterminate, because the two players could
continue to negotiate forever. Given that there is a cost to each player for delaying,
then each player’s bargaining power is determined by the magnitude of this cost.
Consider for the Rubinstein model that, similarly to the Nash bargaining game
model described above, the two players bargain over the partition of a cake of fixed
size. The first player proposes a partition; if the second player accepts, agreement
is reached and the game is over; otherwise, the second player proposes a different
partition, and the process of alternating offers continues until an offer is accepted.
However, for each additional negotiation round there is a cost to each player, i.e.
the size of the cake becomes smaller. The factor by which the cake gets smaller
may be different for each player and it is referred to as the player’s discount factor.
The Rubinstein bargaining game model has a unique subgame perfect equilibrium,
which makes use of the fact that any offer made now by a player should be equal or
greater to the discounted best value that the opponent can get in the next period.

Another element that must be considered in bargaining situations is truthfulness
of the players. In order to motivate the two bargaining players to be truthful
about own information that may affect the bargaining process, there must exist a
mechanism that can penalize a player who turns out to lie on its real cost, assuming
that it is detectable whether a player has lied or not. Such mechanisms exist and are
called pricing mechanisms [21], constituting an interesting and very promising way
to guarantee truthfulness of the participating networks. In the worldwide literature
there is a whole research field that is focused on the development, limitations
and capabilities of such pricing mechanisms, the algorithmic mechanism design
[21]. Successful paradigms in this context include (combinatorial) auctions and
task scheduling using techniques such as the revelation principle [21], incentive-
compatibility [21], direct-revelation [21] and Vickrey–Clarke–Groves mechanisms.
The algorithmic tools and theoretical knowledge that have already developed in
the field of algorithmic mechanism design constitute a fruitful pool for extracting
algorithmic tools for enforcing players to truthfulness, through pricing mechanisms,
once these tools are customized and further developed for handling the needs of any
specific scenario.
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1.5.3 The Bayesian Game Model

In several situations where interactions occur, the interacting entities may not
have complete information about each other’s characteristics. The model of a
Bayesian game is designed to model such situations. A player’s uncertainty about
the opponent’s characteristics is modelled by introducing a set of possible states,
i.e. probable sets of characteristics that a player may have, also known as a
player’s types. Each player assigns a probability of occurrence to each of the
opponent’s possible types. Therefore, a definition of a Bayesian game is similar
to the definition of a normal form game, with the additional elements of the types
for each player and the corresponding probability of occurrence, as believed by the
player’s opponent(s).

A Bayesian game can be modelled by introducing nature as a player in the game.3

Nature assigns a random variable to each player, which could take values of types
for each player and associate probabilities with these types. In the course of the
game, nature randomly chooses a type for each player according to the probability
distribution across each player’s type space. The type of a player determines the
player’s payoff and the fact that a Bayesian game is one of incomplete information
means that at least one player is unsure of the type and thus the payoff of another
player.

In any given play of a Bayesian game, each player knows his type and does not
need to plan what to do in the hypothetical event that he is of some other type.
However, when determining a player’s best action, he must consider what the other
player(s) would do if any of the other possible types were to occur, since any player
may be imperfectly informed about the current state of the game. Therefore, a Nash
equilibrium of a Bayesian game is the Nash equilibrium of the normal form game in
which the set of players includes all possible types for each player, and consequently
the set of actions includes all possible actions for each such state of every player
considered. In brief, to reach a Nash equilibrium in a Bayesian game, each player
must choose the best action available to him, given his belief about the occurrence of
his opponent’s types, the state of the game and the possible actions of his opponent.

1.5.4 The Repeated Game Model

The model of a repeated game is designed to examine the logic of long-term
interaction. It captures the idea that a player will take into account the effect of
his current behaviour on the other player’s future behaviour. Repeated game models
aim to explain phenomena like cooperation, threats and punishment.

3This approach was proposed by John C. Harsanyi in [15].
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The repeated game models offer insight into the structure of behaviour when
individuals interact repeatedly, a structure that may be interpreted in terms of
social norm. The results show that the social norm needed to sustain mutually
desirable outcomes involves each player threatening to punish any other player
whose behaviour is undesirable. Each player uses threats to warn the opponent that
such punishment may follow if the threats are credible and if there is sufficient
incentive for the player to carry out his threat. Thus, punishment depends on how
players value their future payoffs and it may be as harsh as lasting forever, or as
mild as lasting for only one iteration.

The model of a repeated game has two kinds: the horizon may be finite, i.e. it
is known in how many periods the game ends, or infinite, i.e. the number of game
periods is unknown. The results in the two kinds of games are different, for instance,
analysing a finite version of the prisoner’s dilemma ends in the conclusion that the
players are motivated to cheat as in the one-shot prisoner’s dilemma, whereas an
infinite version of the prisoner’s dilemma results in a motivation for both players to
cooperate.

The iterated prisoner’s dilemma is a quite popular repeated game model which
demonstrates how cooperation can be motivated by repetition (in the case the
number of periods is unknown), whereas in the one-shot prisoner’s dilemma as
well as in the finite version of the Iterated prisoner’s dilemma, the two players
are motivated to cheat. The main idea is that if the game is played repeatedly,
then the mutually desirable cooperative outcome is stable because any deviation
will end the cooperation, resulting in a subsequent loss for the deviating players
that outweighs the payoff from the finite horizon game (horizon of one or more
periods). This emerging stability can be used to explain how in finite populations
natural selection (occurring over an unknown number of iterations, thus modelled
as an infinite horizon game) favours cooperation when starting from an individual
using that strategy and further, the analysis of this phenomenon leads to natural
conditions for evolutionary stability in finite populations. Thus, when applying the
model of a repeated game to a specific situation or problem, e.g. natural selection,
we must first determine whether a finite or infinite horizon is appropriate, based on
the characteristics of the realistic situation.

1.5.5 Games of Coalitions

Coalitional games deal with the situation, in which interactions occur between
groups of players (coalitions) and thus actions are assigned to coalitions even though
individual entities may consider their own preferences, especially when selecting
a particular coalition in which to participate. Therefore, a coalitional model is
characterized by its focus on what groups of players can achieve rather than on
what individual players can achieve.
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Furthermore, in coalitional games, the way a coalition operates internally, i.e.
among its members, is not considered as important for a coalitional game so that the
outcome does not depend on such details. A solution concept for coalitional games
assigns to each game a set of outcomes, capturing consequences for the participating
coalitions. The solution defines a set of arrangements that are stable in some sense,
i.e. that the outcomes are immune to deviations of any sort by groups of players.

In order to determine the solution to a coalitional game, we must first define
the way payoffs are assigned to the various coalitions; such assignment can occur
per group as a whole, or per group using a particular division arrangement within
the group for its members. When payoffs are assigned per group, the players that
participate in the same group are associated with the group’s payoff and it is not
defined how this payoff may be further partitioned among its members. This case
of payoff assignment is referred to as transferrable payoff coalitional game. The
alternative is known as non-transferable payoff coalitional game, and in such model
there exists a rule on how group payoffs are divided among participating players.

A well-known solution concept for a coalitional game model is the core. The
core is a solution concept that requires that no set of players be able to break away
and take a joint action that makes all of them better off. Overall, the idea of the
core is analogous to that behind a Nash equilibrium of a non-cooperative game,
i.e. an outcome is stable if no deviation is profitable. In the case of the core, an
outcome is stable if no coalition can deviate and obtain an outcome better off for all
its members.

1.6 Exploring This Book

Interactions in 5G communication networks become a challenging task due to the
heterogeneity of user(s) and the mobile network provider(s), as well as additional
end nodes and provider entities, resulting in different and often conflicting interests
for these entities. Since cooperation between these entities, if achieved, is expected
to be beneficial, we have posed the following question, as a common theme for he
models explored in this book: Can cooperation be motivated in interactive situations
in 5G networks, and if yes, is it beneficial for the interacting entities?

We have utilized, game theory, a theoretical framework suitable for generating
profitable behaviours/strategies for interacting entities in conflicting situations and
we have explored its application upon seemingly conflicting interactions occurring
in 5G communication networks. In particular, four selected interactive situations
have been analysed using existing game theoretical models, and theoretical con-
clusions are drawn for each interactive situation; the theoretical conclusions are
further reinforced with appropriate numerical results in several cases. Overall,
these conclusions show that cooperation can indeed be motivated in the selected
interactive situations and furthermore, that this cooperation is beneficial for the
interacting entities.
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This book has listed and discussed how several networking situations have
shown that cooperation is a beneficial solution both in node-to-node interactive
situations, node-to-network interactive scenarios, as well as in provider-to-provider
interactions. In modelling these situations, we use game theory as the theoretical
framework through the use of which cooperation can be motivated. Overall,
game theory in general and cooperation in particular have been used to solve
various networking problems. In this book we turn our focus on interactions in
5G communication networks as the environment in which the selected scenarios
are motivated; however, applicable cooperation scenario can be expected in other
networking interactive situations.

Summarizing the work presented, we begin with a scenario where multiple IoT
nodes cooperate to achieve the adoption of a password generation mechanism to
protect them against malware attacks. The selected situation involves the interaction
between multiple IoT nodes when they must cooperate to serve a large resource
demand that is best served by more than one nodes (for example, if none of
those networks can serve the demand on its own). The coalition formation process
between multiple nodes has been modelled as a coalition game, in which individual
nodes with insufficient resources form coalitions in order to satisfy service resource
demands. It has been shown that the coalition game is equivalent to the well-known
weighted voting game. This equivalence encourages the use of power indices for
payoff allocation, as often used to resolve the weighted voting game.

A comparative study of well-known power indices representing payoff schemes
is provided for the coalition game. Based on conclusions from this study, the study
proposes the use of a selected power index, the popularity power index (PPI),
which associates the popularity of each network to the number of stable coalitions
it participates in.

It is shown that the selected power index achieves fairness, in the sense that it
only considers the possible coalitions that would be formed if payoffs were assigned
proportionally to the nodes’ contributions. An analysis of the coalition formation is
provided for both transferable and non-transferable payoffs, in order to determine
stable coalitions using the core and inner core concepts. The most appropriate power
index for the coalition game, from the existing power indices investigated, is a power
index that provides stability under the core concept, known as the Holler–Packel
index (HPI). The core and inner core equilibrium concepts are further investigated
to show that coalitions that would be formed using the selected power index, PPI,
to assign payoffs, are only coalitions that would be stable under the inner core
concept. Therefore, the PPI provides a simple and fair payoff allocation method
that is equivalent to a stable cooperative equilibrium solution [1].

Next, we turn our attention to the offloading scenario where mobile nodes take on
the role of content repeaters to provide an alternative communication path through
the network, subsequently increasing the network coverage. Therefore, 5G com-
munication service is enabled by data offloading from infrastructure transmission
points onto the mobile users that act as content repeaters, for a monetary payoff.
The aim is to enhance the communication service performance, especially in terms
of traffic delays, which is a requirement in 5G networks.
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The offloading algorithm is viewed as an ad hoc service where the path of
the traffic through the content repeating devices is selected through a negotiation
process between the mobile users and the infrastructure points, as well as between
the mobile users themselves. The relevant chapter proposes a game theoretic
modelling approach for modelling the strategies of the interacting nodes using a
game model that resembles an auction model. Specifically, each player may take
one of the two roles during an interaction, either the role of a price setter, a bidder,
or the role of price taker, an auctioneer. We assume that all packets are homogeneous
in the sense that they do not differ in terms of the payoff to the forwarder; therefore,
the decision of whether to forward a traffic packet by a node, or to choose the node
that will forward the traffic packet (depending on whether a player is currently in
the role of price setter or price taker), does not depend on the traffic packet itself.
The decisions are taken sequentially, i.e. the price setters advertise their prices and
then the price taker selects one of them to forward the traffic packets to.

The third scenario explores the interaction between a receiving node and a
sending node in a vehicular network, in order to motivate trust between them. The
cooperative nature of this scenario is motivated by an infinitely repetitive game, and
appropriate strategies for both the receiving node and the sending node are evaluated
in order to select the ones that achieve strong motivation for the two entities towards
cooperating and remaining in cooperation during communication; a new adaptive
node strategy and consequently a new game profile are presented in this chapter.

The interaction between the receiving and sending nodes has been modelled
using game theoretic tools, in an attempt to model an interaction that motivates
cooperation. Firstly, the interaction is modelled as a one-shot game, and it is shown
that there exists equivalence of a one-shot game model of node interaction to the
one-shot prisoner’s dilemma game. This is an important finding, since the prisoner’s
dilemma is known to have a cooperative solution under certain conditions, as,
for example, a repeated game, motivating us to explore this interaction further
towards the direction of cooperation. In fact, it has been shown that motivation of
cooperation between the two entities is achieved through a repeated game model of
the repeated interaction.

Exploring existing and new strategies for the two entities, we show that when the
strategies used by the players of the repeated interaction model involve punishment
to motivate cooperation, then harsher punishments motivate cooperation more
easily. However, since practically a node wouldn’t choose to employ the harshest
punishment, i.e. leaving the interaction forever, we propose a new strategy that
uses an adaptive punishment method in the repeated interaction game. The adaptive
strategy is inspired by the 5G network model, which assumes that the participating
nodes are adaptive entities with knowledge about other nodes’ behaviours that
change over time. For that, an internal state for a participating node as an adaptive
entity is defined and used in the game model scheme.

The adaptive strategy motivates cooperation and achieves satisfying results in
terms of motivation and in terms of payoffs, becoming the strategy of choice for a
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node when compared to the other strategies examined in the relevant chapter. As a
consequence, it has been shown that a profile of the repeated interaction game where
the receiving node employs the adaptive punishment method and the sending node
employs the well-known tit-for-tat strategy generates the most profitable payoffs for
both players.

The final scenario deals with the bargaining situation between two provider
entities, namely a service provider and a cloud provider, attempting to partition a
service payment optimally. The interaction is modelled and resolved using the Nash
bargaining game model, and accordingly the Nash bargaining solution, which is
equivalent to the immediate resolution of the widely used Rubinstein bargaining
game. Truthfulness is an issue that must always be considered in such bargaining
situations, and thus, a Bayesian game model helps to propose a way to induce
truthfulness from the participating players in the last chapter.

The specific interaction involves two providers interacting to support a service
with additional data protection requirements (e.g. for a health monitoring service).
The two providers must cooperate to partition the service payment, since the fact
that two providers support the service is transparent to the user offering the service
payment. This interaction between two providers has been modelled using game
theoretic tools, in such a way as to motivate cooperation in terms of partitioning the
available payment for the particular service.

The payment-partition model has been shown to be equivalent to the well-
known Rubinstein bargaining game, if the agreement in the Rubinstein bargaining
game is reached from the first negotiation period. In addition, the chapter shows
that there exists equivalence between the payment-partition game and the Nash
bargaining game, due to the equivalence of the Nash bargaining game to the
Rubinstein bargaining game, if the agreement in the Rubinstein bargaining game is
reached from the first negotiation period. Thus, an optimal solution for the payment-
partition game exists and is based on the Nash bargaining solution, resulting in
a partition determined by the cost each of the two providers has for supporting
the service. As a side result, it has been shown that if a constant probability of
demonstrating quality degradation is included in the providers’ payoff functions
for the payment-partition game, this does not affect the optimal partition proposed
by the Nash bargaining solution, even though it affects the payoff of the individual
networks. This is important since the technology employed by each provider and the
established data protection mechanisms are always susceptible to malicious attacks
due to the dynamic nature of the network and the mobility of the users.

Once the optimal partition is determined, the payment-partition game is modelled
as a one-shot Bayesian game, to investigate truthfulness on behalf of the partici-
pating providers regarding their own costs, since the declaration of costs is very
important in determining the optimal partition. It has been shown that no matter
whether a provider believes that the interacting provider has declared lower or higher
cost than its own cost, it is still motivated to lie about its real costs. To motivate
truthfulness, a pricing mechanism can be used, which works very effectively towards
motivating the providers to be truthful.
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Chapter 2
Using Game Theory to Address New
Security Risks in the IoT

Abstract An Internet of things (IoT) botnet is a network formed by connecting
together a number of computers, smart devices and appliances connected to the
Internet. This new type of network does not come without risk, since devices
participating in the IoT can easily be infected with malicious software in order to
be controlled by authorities that are not the owners of the devices. The botnet is in
turn used, without the knowledge of the devices’ owner(s), and forced to act as a
set of transmitting devices on behalf of the hackers. It is often the case that owners
of smart devices and IoT-connected appliances do not consider the significance of
having strong security when connecting these devices to the Internet, even if it is
as simple as making sure that a strong password is set. It is very important to note
here that strong passwords that are updated often can quite satisfactorily safeguard
access to the device. The chapter uses game theory to model a coalition that would
handle the password generation process in such an IoT scenario, in order to reduce
the risk of IoT nodes being hijacked.

Keywords Internet of things · Botnets · Password generation service · Game
theory · Coalition formation

2.1 Introduction of a Security Scenario in IoT
Communications

An Internet of things (IoT) botnet is a network formed by connecting together
a number of computers, smart devices and appliances connected to the Internet.
The things connected to the Internet often have no user interface, and exchange
data based on automated processes without any user intervention. This new type
of network does not come without risk. In fact, one of the main risks is that the
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devices can be hacked, in order to include them in a botnet, i.e. a network of devices
infected with malicious software in order to be controlled by authorities that are not
the owners of the devices. The botnet is in turn used, without the knowledge of the
devices’ owner(s), and forced to act as a set of transmitting devices on behalf of the
hackers. Once hijacked the devices participating in a botnet are referred to as bots.

Nevertheless, note that the use of the word bot to refer to an interconnected
smart device in the IoT does not always imply malicious behaviour. For example,
Microsoft Azure [7] advertises an IoT bot that makes it easy for the user to control
devices around the house, using voice or interactive chat commands. The company
claims that people love to talk to their things and to affect their environment.

Turning our attention back to the malicious scenario, we will aim to have a more
detailed look into the attack in order to try and model possible strategic behaviour
that can be adopted by the IoT nodes, using game theory. The attack that has the
purpose of hijacking IoT devices, and turn them into bots, can be elaborated in the
following way:

The attacker(s), activates malicious software in the Internet, which scans Internet-connected
Local Area Networks and IoT local networks for connected devices. Once the devices
are detected, the software scans them for active IP addresses. Any device or appliance
connected to the IoT would have an active IP. Once an active IP is found then by using
available software for finding usernames and passwords, the device is broken into and this
is reported back to the attacker, specifically to the software that controls the process. This
software will then forward to the hacked device a copy of the malware for hijacking the
device into joining the botnet. This continues one device at a time, until the botnet is formed.
The botnet can then be controlled to send traffic to specific targets. Even though each
infected device sends a small amount of traffic, often due to its own limited capabilities, the
botnet itself generates sufficient traffic to potentially carry out, potentially harmful, Denial
of Service attacks.

Although such an attack can be carried out on any device connected to the
traditional Internet or the IoT, those devices whose owners are not security-aware are
more susceptible to be attacked. It is often the case that owners of smart devices and
IoT-connected appliances do not consider the significance of having strong security
when connecting these devices to the Internet, even if it is as simple as making sure
that a strong password is set. It is very important to note here that strong passwords
that are updated often can quite satisfactorily safeguard access to the device. A
denial of service attack can thus originate from a botnet of many such bots and
result in the system being attacked to perform badly, e.g. to slow down, or even to
suffer a system crash.

Now, let’s assume that the attacker trying to recruit a specific device in an IoT
botnet will randomly look for an active IP and once the active IP is found that
the controlling software will try to hijack other nearby devices to strengthen the
transmission capabilities [11], either as part of the initial attack or by using the
newly infected devices to hijack their own neighbours. We may assume that once
a device has been hijacked into a bot, it can act as a malicious node and attack its
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neighbours, since IoT devices often don’t have the capabilities to have the malware
removed.

Given the above-mentioned information, the chapter proposes that, in order to
prevent such malware attacks, the IoT devices must automatically be configured
to frequently change their passwords, and always use strong, not recently used
passwords. It is safe to assume here that such connected IoT devices are often
characterized by limited computational power, and that no single device on its own
can handle the anticipated demand of applying the selected security measures for a
certain period (e.g. days, weeks, months, etc.). Therefore, to implement the required
security measures, the chapter proposes that nearby IoT nodes can form a coalition,
such that they use their joined resources to safeguard against such attacks.

Potentially, many different combinations of nearby nodes can jointly provide
sufficient resources to meet demands of employing a group password mechanism,
responsible to regenerate passwords for the IoT nodes that are strong and not
recently used. It may be assumed that for each IoT neighbourhood or group of
nearby nodes, a subset of these nodes is sufficient to support the required security
measures. The following paragraphs and sections in this chapter show how game
theory can be used to choose such a subset of nodes. It is significant to choose the
subset that may provide the minimum required amount of resources, by engaging the
least number of nodes possible in order to avoid relying on a large number of nodes
for each password change. The reason that a large number of nodes are not desired in
this situation is that employing a large number of nodes into the process of password
generation can result in unwanted delays due to the limited computational resources
of each one node on its own, as there will need to be a distributed coordination effort
(Fig. 2.1).

2.1.1 Scenario on Password Generation for IoT Nodes

Consider the scenario where the IoT nodes cooperate to satisfy the need for
accommodating a multiparty security service for the IoT group of collocated or
nearby nodes. Given that all participating IoT nodes will benefit from the employed
password generation mechanism, a selection of the stronger nodes in the group must
be made, such that the employed mechanism can sufficiently serve the group of IoT
nodes, i.e. engage sufficient resources but avoid detrimental communication delays.

The particular scenario considers that it is the case that none of the participating
IoT nodes can support the group in its entirety, by itself. Node cooperation can
ensure a more efficient resource planning and can support the security service for
all users, by having the IoT nodes form coalitions and thus collectively managing
to provide the total resources necessary to support the password service. Note
that when we refer to the security or the password service in this chapter, we
are referring to the same mechanism of password generation for the IoT nodes.
An attacker will be unaware of this cooperation, even though the attacker will be
aware that there exist frequently generated passwords across the group of nodes.
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Fig. 2.1 The IoT nodes are interconnected, through their connections to the Internet, and can be
found in objects such as cars or electronic devices, but also on user devices, e.g. smart mobile
devices

Fig. 2.2 A subset of the nearby IoT nodes can form a coalition to join resources in order to support
the password generation mechanism that may provide security against malware attacks for the
collective group of IoT nodes

The nodes themselves will be indifferent to the subset of nodes responsible to carry
out the password service, as long as the mechanism is successfully employed across
the group. The incentive of the nodes that end up participating in the password
generation coalition is discussed next (Fig. 2.2).
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2.1.2 Incentive for the IoT Nodes to Participate

It is important to note that the IoT nodes themselves have an incentive to participate
in the password generation coalition, in order to eliminate the risk of being hijacked,
which is much greater for a single node than for a coalition of nodes. Since the
participating nodes will be generating the initial passwords (including the necessary
password updates), participating in the subset of nodes involved in this process
implies that the participating nodes themselves will be the first to receive their
updated passwords. Minimizing the quantified risk of being hijacked is considered
to be the basis of the payoff allocation in the proposed scenario. The payoff
allocation to the members of the formed coalition is a consideration for all the IoT
nodes participating in the coalition formation process. Given that each IoT node
participating in a coalition is solely motivated by its need to minimize its risk of
being hijacked, we further investigate how such coalitions are formed, so that they
satisfy the whole IoT group at the same time. For this purpose we make use of the
theoretical tools of coalitional game theory, and subsequently, coalitional games.

Coalitional games deal with the situation, in which interactions occur between
groups of players and not individual players. The term coalition refers to a group of
game players. Therefore, actions are assigned to coalitions even though individual
entities may consider their own preferences, especially when selecting a particular
coalition in which to participate. A coalitional model is characterized by its focus
on what groups of players can achieve rather than on what individual players can
achieve.

In coalitional games, the way a coalition operates internally, i.e. among its
members, is not part of the game definition as it is considered an important aspect for
a coalitional game. The reason is that the outcome does not depend on such details.
A solution concept for coalitional games assigns to each game a set of outcomes,
capturing consequences for the participating coalitions. The solution defines a set
of arrangements that are stable in some sense, i.e. that the outcomes are immune to
deviations of any sort by groups of players.

In order to determine the solution to a coalitional game, the way payoffs are
assigned to the various coalitions must be defined. Such payoff assignment can
occur per group as a whole, or per group using a particular division arrangement
within the group for its members. When payoffs are assigned per group, the players
that participate in the same group are associated with the group’s payoff and it is
not defined how this payoff may be further partitioned among its members. This
case of payoff assignment is referred to as transferrable payoff coalitional game.
The alternative is known as non-transferable payoff coalitional game, and in such
model there exists a rule on how group payoffs are divided among participating
players. The subsequent analysis will provide mathematical definitions for each type
of payoff.

A final note on introducing the concept of coalitional game models is that there
exists a well-known solution concept for a coalitional game model, often used to
quantify the value of each participating coalition. This solution concept is known as
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the core. The core is a solution concept that requires that no set of players be able
to break away and take a joined action that makes all of them better off. Overall, the
idea of the core is analogous to that behind a Nash equilibrium of a non-cooperative
game, i.e. an outcome is stable if no deviation is profitable. In the case of the core,
an outcome is stable if no coalition can deviate and obtain an outcome better off for
all its members.

2.2 Coalition Selection Game

Consider that the nearby IoT nodes are under different administration authority or
ownership, and therefore, the decision of whether to participate in a certain resource
combination or not would be shaped by each node’s goal to minimize its risk of
being hijacked. As a result, a coalition game would arise in this environment, with
each IoT node in the group aiming to participate in a prevailing, otherwise referred
to as a winning coalition (the one that will be selected). Participating in the winning
coalition would yield the largest possible benefit to an IoT node, as this would result
in its own resources being protected from a potential future attack.

The formation of coalitions depends on the available resources of each IoT node,
such that the collective amount of resources is sufficient to support the password
generation mechanism required. In addition to the required resources, the formation
of the coalitions depends on the quantifiable payoffs that will be allocated to the
participating nodes, such that there exists an incentive for the nodes to commit their
available resources towards this group mechanism.

The section introduces and defines a coalitional game, where out of several
coalitions that can be formed, the best one is selected, according to our defined
criteria. We henceforth refer to this game as the coalition selection game. The
nodes participating in the coalition selection game aim to maximize their payoff by
participating in the selected coalition. We consider for this game, a payoff allocation
approach according to values of (normalized) power indices, i.e. numerical values
that are used to measure the influence of a node on the formation of coalitions and
thus on the game itself. Payoffs are thus determined based on the power of each node
in the game, i.e. its index. The reason for this is that since the payoff relates to the
minimization of the risk of being hijacked and this depends on the selected coalition,
then by having a greater contribution in the selected coalition, a node achieves more
control over the security mechanism and thus experiences less risk.

To allocate indices to the participating nodes, we consider well-known indices,
such as the Shapley–Shubik index [10] Banzhaf index [2], the Holler–Packel
index [6], and the popularity power index [1], which is more appropriate for the
particular coalition selection scenario because it associates the popularity of each
IoT node to the number of stable coalitions it participates in, and thus can better
represent the group of IoT nodes by participating in the selected coalition.

Following in the chapter, definitions of such terms as stable, when we refer
to a formed coalition, will be given. The popularity power index aims to achieve
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fairness, in the sense that it only considers the possible coalitions that would be
formed if payoffs were assigned proportionally to the players’ (i.e. the IoT nodes)
contributions, i.e. in a fair manner. Given the payoffs relate to the risks of nearby
IoT nodes being hijacked, then, as previously mentioned, the more the control over
the coalition (i.e. the more resource contribution by a single node), then the less the
risk experienced by the particular node.

The evaluation presented in the subsequent sections of the chapter focuses on the
use of the aforementioned indices, with particular attention to the PPI. The chapter
later evaluates the PPI by introducing an analysis of the stability of coalitions
according to the core and inner core concepts [5], considering both transferable
and non-transferable payoffs, i.e. payoffs that do not vary according to resource
contribution to the coalition and payoffs that do. Furthermore, we show that the
coalitions that are formed when considering the PPI are only coalitions that are
stable.

2.2.1 Definition of the Coalition Selection Game

Next we define the game model, to be used as guide for the payoff allocation
strategies.

Definition 2.1 (The Coalition Selection Game) Let N = 1, 2, . . . , N denote the
set of game players, i.e. the IoT nodes, and let S denote the set of all possible
coalitions, i.e. the set of all non-empty subsets of N . Let R denote the least
amount of resources needed for accommodating password generation demands, and
let ri denote the amount of available resources of the ith member of the coalition
(members can be ordered arbitrarily). We may assume that the available resources
of each member are known to all members of the coalition. Note that although in
such environments, the calculation of available resources may be a difficult task,
e.g. in a wireless environment signal interference may be present, or, a node may
wish to distort resource information made public. However, for the purposes of this
model we assume that appropriate policies are in place, even though a detailed study
of these policies will not be explored here.

The characteristic function of the game is

v(S) =
{

1, if
∑|S|

i=1 ri ≥ R

0, otherwise .
(2.1)

That is, a coalition has positive value only if the sum of available resources of its
members is greater or equal to the resource threshold R. This definition corresponds
to a simple (or 0–1) game; the game is also monotonic since v(S1) ≤ v(S2) for all
S1 ⊆ S2. A coalition S is said to be winning if v(S) = 1, otherwise it is said to
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be losing, i.e. the collective resources of its members are not equal or greater than
the total amount of required resources. A player i ∈ S is said to be a null player
for coalition S if v(S) = v(S \ {i}). It is generally called a null player if this holds
for every coalition S to which it may belong. To avoid trivialities, we will generally
assume that ri < R ∀i ∈ N , and that

∑N
i=1 ri ≥ R.

Candidate solutions to the game are referred to minimal winning coalitions. A
winning coalition is said to be minimal if it becomes a losing one upon departure
of any member. A related notion is that of a by-least winning coalition. In [4], the
authors define a coalition S to be least winning if it is minimal winning and for
any other minimal winning coalition S′ it holds that W(S) ≤ W(S′). A related
definition is introduced here from the point of view of each player i ∈ S. Therefore,
we denote by W(S) = ∑|S|

i=1 ri the sum of the available resources of the members of
S, a coalition S is said to be by-least winning with (or for) player i, if it is a minimal
winning coalition, it contains i, and for any other minimal winning coalition S′
containing i it holds that W(S) ≤ W(S′); thus, the by-least winning coalition is
the best for the node i to participate in, out of all possible winning coalitions it can
participate in.

2.2.2 Definitions of the Power Indices

The formation of a coalition is greatly influenced by the players themselves in terms
of how much they motivate such cooperation with other players. In the password
generation scenario, it is assumed that such motivations for cooperation exist within
the group of nearby IoT nodes, because of the need for a collective solution that
prevents potential hijacking of the IoT nodes (by the use of malware propagated
through the group). The solution is based on the intelligent use of passwords by
employing a password generation mechanism. Although the details of the algorithm
itself are out of the scope of this chapter, it is important to understand the need for
collective resources to support the implementation of this mechanism, as it is not
expected that any one IoT on its own can support its implementation.

For simple (0–1) games, a popular coalition formation method is by using power
indices, briefly mentioned in the previous section. A power index (or value) is
commonly used to measure the influence of a player on the formation of coalitions
and most importantly on the outcome of the game. The notion of power indices can
be used as a solution concept for the game itself, since, if no payoff allocation rule
is specified a priori, then normalized power indices can be used to allocate payoffs.
Alternatively, this approach can be used in cases where the payoff allocation is
determined by the use of a common pool in which IoT nodes share their resources,
i.e. in the case they are controlled by the same authority, and there is no coalition
formation process by the actual IoT nodes themselves. Nevertheless, as we may not
assume that the nodes are all under the same authority, we approach the proposed
solution as a coalition formation approach.
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Widely used power indices are the Shapley–Shubik power index (abbreviated here
as SSPI) [10], and the Banzhaf power index (abbreviated here as BPI) [2]. These are
generally sums of the marginal contributions (v(S)−v(S \{i})) of a player i to each
coalition, weighted by different probability distributions over the set of coalitions.
Thus, a player i is critical to coalition S if its marginal contribution is 1; otherwise,
it is non-critical.

The SSPI assumes all permutations of the order that members form a coalition
are equally likely [1], and is defined by:

Definition 2.2

SSPIi (N, v) =
∑
S⊆N
(S
i)

(|S| − 1)!(N − |S|)!
N ! (v(S) − v(S \ {i})) . (2.2)

The BPI assumes, on the other hand, that all possible coalitions that contain i are
equally likely [1], and is defined by:

Definition 2.3

BPIi (N, v) = 1

2N−1

∑
S⊆N
(S
i)

(v(S) − v(S \ {i})) , (2.3)

for i = 1, . . . , N .

Another popular power index based on minimal winning coalitions is the Holler–
Packel power index (HPI) [6]. For simple games, the HPI is defined as:

Definition 2.4

HPIi (N, v) =
∑

S∈M(N,v)

(v(S) − v(S \ {i}))

= |{S ∈ M(N, v) : i ∈ S}| ,

(2.4)

for i = 1, . . . , N , where M(N, v) is the set of all minimal winning coalitions.

We define also the normalized Holler–Packel value ¯HPIi = HPIi/
∑N

i=1 HPIi ,
which represents the that proportion of minimal winning coalitions player i is in [1].

An important property of both the SSPI and the BPI indices in monotonic simple
games is that players with greater weight (contribution) also get a greater index.
This is evident here since if a player i is critical to a coalition S ∪ {i}, then a player
i′ with bi′ > bi is also critical to coalition S ∪ {i′}.
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2.2.3 The Equivalence of the Coalition Selection Game for the
Password Generation Scenario with Classic Game
Theoretic Models

This section demonstrates the equivalence of the coalition selection game for the
password generation scenario to the weighted voting game, a well-studied paradigm
and game theoretic model from which many useful conclusions can directly apply
upon the studied scenario.

Definition 2.5 A weighted voting game consists of N players and a weight vector
w = (w1, w2, . . . , wN), where wi reflects the voting weight of player i. Let W =∑N

i=1 wi . For a coalition S, the characteristic function of the game is

v(S) =
{

1, if
∑|S|

i=1 wi > W
2

0, otherwise .
(2.5)

We assume wi ≤ W/2 ∀i ∈ N .

Proposition 2.1 The weighted voting game can be mapped onto a coalition
selection game as this may be applied to a password generation scenario with
networks’ resources ri = wi and minimum required resources to accommodate
a service equal to R = W

2 .

Proof To prove the equivalence, it suffices to show that there exists a one-to-one
mapping between vectors w and r = (r1, . . . , rN ) so that

∑
i∈S wi > W/2 if and

only if
∑

i∈S ri ≥ R ∀S ⊆ N . A mapping satisfying these requirements is readily
obtained by setting wi = ri/2 and W to a number R∗ arbitrarily close to R such that∑

i∈S ri ≥ R iff
∑

i∈S ri > R∗. (Mathematically, it is straightforward to postulate
that such a number does exist, since the values represented by ri are discrete.) 
�
In addition to the above observations, based on the equivalence of the coalition
selection game to the weighted voting game, two additional observations are made
in [3, 4] with regard to the behaviour of the power indices defined in Sect. 2.2.2:
firstly, that restricting our attention to minimal winning coalitions as with the HPI
results in weaker players would result in IoT nodes with a relatively smaller amount
of available resources, getting higher power, compared to the measurement with the
SSPI and the BPI, and, secondly, that with the HPI the monotonicity of the players’
power indices to their weights may not be preserved, i.e. an IoT node with smaller
weight may get a higher HPI ranking than an IoT node with greater weight (note
that the weights are directly related to the amount of available resources of each
node).
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2.2.4 Payoff Allocation

In the coalition selection game, we seek for the most possible winning coalition
to support a particular resource demand, i.e. the coalition that is most likely to be
formed, so that the allocation of payoffs is more fair. Nearby IoT nodes participate
in a coalition and offer their resources in return for more security or less risk; thus,
the payoff represents the amount of security achieved or the minimization of risk of
a node to be hijacked. For example, the reward for allowing their available resources
to be reserved, in order to be used to support the password generation mechanism,
can include more sporadic security scans or in cases where IoT nodes don’t undergo
security scans, the reward is the capability to guarantee a less risky implementation
to their owners. It is considered that all IoT nodes are independent and behave
rationally, and that the objective of each IoT node is to maximize its payoff, i.e.
to minimize its risk of being hijacked.

Clearly, which coalition(s) will finally be formed depends on how payoffs are
allocated. Moreover, if coalitions are formed arbitrarily and each IoT node could
participate in more than one coalition, then the criterion for selecting which coalition
to participate in is the payoff received from each, naturally preferring the highest.
This preference should be captured in the power index used to allocate payoffs, i.e.
the power index should be defined in a way that the most popular coalition, i.e. the
one preferred by most players, is favoured. Initially, however, we will concentrate
on payoffs and consider payoff allocations for the game without the use of power
indices, and, subsequently, we will return to a discussion of power indices.

Assuming that no power indices are used, and that payoffs are assigned based on
coalition formation, let the total payoff allocated to the set of players be T and the
payoff allocation vector be t = (11, t2, . . . , tN ), such that ti ≥ 0 ∀i = 1, . . . , N and∑N

i=1 ti = T ; an allocation satisfying the above conditions is said to be feasible.
We may consider two types of payoff, according to coalitional game theory: (a)

transferable payoffs between the participating IoT nodes, and (b) non-transferable
payoffs. In the transferable payoff case, individual IoT nodes can transfer any
portion of their payoff to other members of the coalition, as long as their final payoff
remains greater than zero. These transfers may be viewed as side payments, in this
particular case, serving the needs for password generation of a node ahead of one’s
own similar needs. Such side payments may be used as a means to attract other
players, i.e. IoT nodes, in a specific coalition. In the non-transferable case, such
side payments are not allowed and we will consider that IoT nodes attain a payoff
that is proportional to their resource contribution, relative to the other members of
the coalition, by always serving their own needs for password generation first. More
specifically, if this winning coalition is K consisting of K ≤ N IoT nodes with
available resources r1, r2, . . . , rK , then
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ti =
⎧⎨
⎩

ri∑K
j=1 rj

T , if i ∈ K

0, otherwise .
(2.6)

(It holds that
∑K

j=1 rj ≥ R.)
When payoffs are transferable, this leads to trivial solutions of minimal-sized

coalitions. When payoffs are non-transferable, the proportional payoff allocation
case is more interesting and requires the notion of a by-least winning coalition.
Given the defined power indices, we may relate HPI to minimal winning coalitions;
however, none of the defined power indices relates directly to the concept of by-
least winning coalition. In [1], the authors, having looked at the possible solution
concepts and recognizing the lack of alignment of a particular power index with
the notion of a by-least winning coalition, proposed PPI, which we adopt here as
an appropriate solution concept for the coalition selection game of the password
generation scenario. We thus explain the corresponding stability analysis for the
selected power index to show how the PPI relates to coalitions that are stable.

2.3 A Stability Analysis for the Popularity Power Index

The stability analysis aims to determine a fair way of allocating payoffs to a subset
of the IoT nodes, so that a stable coalition is formed and the desirable password
generation service is provided. Although it could be argued that every minimal
winning coalition could potentially be a solution of the game, the stability analysis
shows that the set of possible solutions can be further reduced, since not all minimal
winning coalitions are equally likely. Rather, each IoT node participating in the
game has specific preferences, i.e. to end up with higher payoff, and to be in one or
more coalitions, which are by-least winning with it.

Let M(N, v) denote the set of all minimal winning coalitions and let Zi(N, v)

be the set of coalitions which are minimal in size for player i. A coalition S is said
to be minimal in size for i ∈ S, iff |S| ≤ |S′| ∀S′ 
 i, where S, S′ ∈ M(N, v).
Considering the proportional allocation rule, if a player i belongs to two minimal
winning coalitions S and S′, then (ri/

∑
j∈S rj )T > (ri/

∑
j∈S′ rj )T if

∑
j∈S rj <∑

j∈S′ rj , and hence it would get a higher payoff in the by-least winning coalition.
We denote by Li(N, v) the set of all by-least winning coalitions for player i.

The popularity power index is based on the popularity of all coalitions which are
in ∪N

i=1Li(N, v) (a subset of M(N, v)). For each minimal winning coalition S ∈
M(N, v), we define as its preference index ω(S) the total number of preferences it
gathers by all players:

ω(S) = |{i ∈ N : S ∈ Li(N, v)}| . (2.7)
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Thus, the PPI is defined as follows:

PPIi (N, v) =
∑

S∈M(N,v)

ω(S)∑
k∈M(N,v) ω(k)

IiS , (2.8)

where IiS equals 1 if i ∈ S and 0 otherwise. Simply put, the index PPIi equals
to the probability that if a coalition would be selected by asking one player in
N randomly (and further, if when this player had multiple equal preferences,
he would select one of them with equal probability), then a winning coalition
would be selected that contains player i. Hence, this index relates the popularity
of minimal winning coalitions a player belongs in, to this player’s power. As with
the other indices, define in [1], a normalized form of PPI is also defined as follows:
PPIi = PPIi/

∑N
i=1 PPIi .

In Sect. 2.3.1, we relate PPI to the stable coalitions formed in case no power
indices are used, and payoffs may be either transferrable or non-transferable and
proportionally allocated.

2.3.1 The Concept of the Core for the Coalition Selection
Game

In this section, the well-known concept of the core (see, e.g. [8]) is used to examine
the stability of coalitions formed according to the payoff allocations considered
if no power index is used to allocate payoffs. The concept will be discussed and
subsequently, the PPI will be shown to be equivalent to this concept with regard
to payoff allocation for stable coalitions, since we aim to show a solution for the
coalition selection game.

Specifically, we may define a payoff allocation to a set of N players to be in
the core of a coalitional game if there is no other coalition wherein each member
can get a strictly higher payoff than the payoff received by participating in the
specific allocation. Such an allocation, as well as the coalitions that it induces, can
be referred to as stable, since there would not be any motivation to break the specific
coalition in order to form other ones by the participating players.

In order to apply the core concept, we redefine the characteristic function of the
coalition selection game, found in Eq. (2.1) in the transferable payoff case to the
following, to refer to the payoff T :

v(S) =
{

T , if
∑|S|

i=1 ri ≥ R

0, otherwise .
(2.9)
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The redefined function states that when the minimum necessary resources are
available, the value of the characteristic function equals the total payoff.

For the transferable payoff case we are not interested in how the payoff is divided
among the members of the coalition, and therefore, an allocation is in the core of the
transferable payoff game—specifically, the coalition selection game—if it does not
give an incentive to the participating IoT nodes to deviate, i.e. to break the coalition,
and obtain an outcome better for all the members of the selected coalition.

Definition 2.6 An allocation t = (t1, t2, . . . , tN ) is said to be in the core of the
coalition selection game of the password generation scenario, when the case of
transferable payoffs is considered iff (if and only if),

∑
i∈N

ti = T and
∑
i∈S

ti ≥ v(S), ∀S ⊆ N .

Since v(S) takes either the value 0 or T in the coalition selection game according
to the definition of the payoff function, this reduces to the requirement that for
every winning coalition that could be formed by the networks, the sum of payoff
allocations should always be equal to T .

For the non-transferable payoff case, we have the following definition:

Definition 2.7 An allocation t = (t1, t2, . . . , tN ) is said to be in the core of the
coalition selection game of the password generation scenario, when the case of non-
transferable payoffs is considered iff (if and only if),

∑
i∈N ti = T and there exists

no other payoff allocation y = (y1, y2, . . . , yN) derived according to (2.6) for which
yi > ti, ∀i ∈ S ⊆ N , for any S ⊆ N .

That is, the allocation must satisfy the requirement that the total amount of resources
is greater or equal to the required resources for supporting the password generation
mechanism, and in addition, that there exists no other allocation which gives strictly
higher payoff to any of the participating IoT nodes that are members of the specific
coalition.

It follows that a single winning coalition is mapped to an allocation in the core
of the game. In the non-transferable payoff case, this is defined to be the coalition
K , based on which the payoff vector is derived. In the transferable payoff case, this
is defined as {i ∈ N : ti > 0}, the set of players with positive payoff. We can
then refer to coalitions in the core, as the set of winning coalitions for which their
corresponding allocations are in the core.

Moreover, we deduce that not all winning coalitions are in the core. In fact, we
have the following:

Theorem 2.1 In both the transferable and non-transferable payoff cases defined
above, only minimal winning coalitions are in the core.

Proof In the transferable payoff case, notice that for any non-minimal winning
coalition, a corresponding minimal one can be formed by the players that are non-
null (in the coalition). Then for any payoff allocation to players in the non-minimal
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winning coalition, the players in the minimal winning coalition can divide the excess
payoff in such a way that they all get strictly higher payoff. In the non-transferable
payoff case, the statement of the theorem follows directly from (2.6).

Remark This theorem follows from Riker’s size principle [9], which was shown for
weighted voting games in [3] and can hence be applied to the coalition selection
game.

Given the above, for the coalition selection game, we will be focusing primarily
on minimal winning coalitions, M(N, v). Note that although the characteristic
function v is defined usually for transferable payoff games, it can also be used in
this discussion in the context of the non-transferable payoff game such as M(N, v)

and Li(N, v), since, along with (2.6), it can be used to define the specific coalition
selection game.

Looking back into the transferable payoffs case, it follows that only minimal
winning coalitions which are also minimal in size for at least one of their members,
denoted as Zi(N, v), will be in the core of the coalition selection game. In fact,
when considering transferable payoffs, all minimal winning coalitions of the same
size can be treated as equivalent, since the payoff is considered for the selected
coalition in its totality and not considered for individual members.

However, considering the non-transferable payoff case, then only coalitions that
are by-least winning for at least one player, denoted by Li(N, v), or simply by Li ,
are solutions in the core of the game. Therefore, we must proceed to investigate
which coalitions are in the inner core of the game. The inner core [8] is a subset
of the core that contains coalitions that are even more stable, in the sense that there
exists no randomized plan that could prevent their formation.

Definition 2.8 A randomized plan is any pair (η(S), y(S)), S ⊆ N , where η is
a probability distribution on the set of coalitions, and y is the vector of payoff
allocations for the members of coalition S, y(S) = (yi(S))i∈S . For non-transferable
payoff games, the inner core is composed of all allocations t (or corresponding
coalitions) for which

∑
S⊇{i} η(S)yi(S) <

∑
S⊇{i} η(S)ti , for some i ∈ N , in all

randomized plans (η(S), y(S)).

To better understand the inner core concept, and how it can be used in the coali-
tion selection game, consider the following example. In the password generation
scenario, the coalition selection game may represent a centralized controller for the
nearby IoT nodes that selects the coalition, which will be S1 with probability t1,
or S2 with probability t2 = 1 − t1, so that it is stable. In order for the coalition
to be stable, the payoff given to each network should not be smaller than the mean
payoff anticipated in the coalition created by the centralized controller. Since nearby
IoT nodes may not have the option of such a centralized controller, then they are
expected to arrive to this payoff allocation agreement on their own. This is further
demonstrated in the following theorem.
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Theorem 2.2 In the coalition selection game of the password generation scenario,
for the case of non-transferable payoffs, where these payoffs are proportional to the
available resources of the participating IoT nodes, all coalitions which are by-least
winning for at least one of their members are in the inner core of the game.

Proof In the coalition selection game, if a participating IoT node also participates
in several coalitions that are by-least winning with it, then in the non-transferable
payoff case it would get the highest possible reward in every one of these coalitions.
This reward would further be the same in every randomized plan among these
coalitions, and lower for randomized plans containing coalitions other than the by-
least winning.

Since, for a player i, the allocation in a by-least winning coalition is the
maximum it can get, there exists no randomized plan that could block these
coalitions from forming and hence the latter are in the inner core of the game. 
�
Remark Of all by-least winning coalitions which are in the inner core, we may
conclude that those that are by-least winning for all their members are most stable.

The formalization of this conclusion referred to as the concept of stability under
uncertainty of formation [1] is presented in Sect. 2.3.2.1.

The game can also be further analysed to show that this minimal in size coalition,
which is by-least winning, does exist.

Theorem 2.3 In the coalition selection game with non-transferable payoffs propor-
tional to the available resources of the participating networks, there exists at least
one coalition which is by-least winning for all its members. Further, regardless of
the payoff allocation, there exists at least one coalition that is minimal in size for all
its members.

Proof The proof presents the above for by-least winning coalitions only since to
prove the theorem for minimal in size coalitions is similar because the existence
of a by-least winning coalition by definition implies the existence of at least one
minimal winning coalition.

Consider the case when there exists a coalition S, such that
∑

i∈S ri = R, since
then S is by-least winning for all its members. When

∑
i∈S ri > R for some

S ∈ ∪N
i=1Li , and there exists j ∈ S such that S /∈ Lj , then necessarily another

coalition S1 �= S exists such that S1 ∈ Lj and
∑

i∈S1
ri <

∑
i∈S ri . Similarly

now, if there exists k ∈ S1, k �= j , such that S1 /∈ Lk , then there exists another
coalition S2 /∈ {S1, S} such that S2 ∈ Lk and

∑
i∈S2

ri <
∑

i∈S1
bi . Continuing this

procedure, since we have a finite number of players, a finite sequence of coalitions
S, S1, S2, . . . , Sm is produced, for which

∑
i∈S ri >

∑
i∈S1

ri >
∑

i∈S2
ri > · · · >∑

i∈Sm
ri > R and Sm is by-least winning for all its members.

It follows that in both transferable and non-transferable payoff cases studied,
interests of at least some players coincide. However, it will be reasonable to assume
that a player will prefer a minimal winning coalition even though it would not be by-
least winning with it, if otherwise it would be excluded from the prevailing coalition
and receive zero payoff.
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2.3.2 Conflicting Preferences in the Coalition Selection Game

We have so far shown that each IoT node participating in the coalition selection
game i would maximize its payoff and hence prefer one of the coalitions in Zi(N, v)

(transferable payoff case) or Li(N, v) (proportional payoff case) to eventually be
formed. Unless

⋂N
i=1 Zi �= ∅ in the former, or

⋂N
i=1 Li �= ∅ in the latter case, there

is no mutually preferred coalition for all participating IoT nodes.
In game theory a model that takes this into consideration is the model of a

coordination game where at least one player has conflicting preferences with one
or more of the others, as is expected to be a situation that may arise in the coalition
selection game.

A possible resolution of such a coordination game is based on the idea of
calculating the probability that these coalitions would randomly form. The analysis
applies equally to the transferable and non-transferable payoff cases, and it further
uses Gi (N, v) (or simply Gi) to denote either Zi(N, v) or Li(N, v), depending on
which of the two payoff cases is under investigation.

2.3.2.1 The Coordination Game Model

The ultimate goal of the game is to find out if one or more stable coalitions can
form, so that the password generation service requirements in terms of resources are
satisfied. Moreover, what is more important is that, under the proportional payoff
allocation rule, if a participating IoT node i can be in multiple minimal winning
coalitions, then it prefers the one (or ones) which is (or are) by-least winning with it.
As previously shown, in the situation that there are more than one by-least winning
coalitions for the same IoT node, then these coalitions must sum to the same total
resource amount and hence payoff. For each player i, we denote by Li(N, v) the set
of all by-least winning coalitions for i (this set will also be denoted simply by Li).

For cases where some players have more than one by-least winning coalitions,
we may examine which coalitions are more likely to be formed. For i = 1, . . . , N ,
we define the probability of formation T

(i)
f (S) to be the probability that player i

would anticipate coalition S to be formed, if player i participated in it and all other
players j ∈ S, j �= i would independently choose to participate in one of their
preferred coalitions with equal probability. That is,

T
(i)
f (S) =

⎧⎨
⎩

∏
j∈S,
j �=i

1
|Gj | , if S ∈ ⋂

j∈S,j �=i Gj

0, otherwise .
(2.10)

Then, given the above, a participating IoT node would ultimately prefer to partic-
ipate in the coalition which has the highest probability of formation, and hence,
under such uncertainty, would potentially offer the highest expected payoff.
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The above concept of stability for the winning coalition is referred to as a
coalition S that is stable under uncertainty of formation if and only if there exists
no other coalition S′ with a common member with S that anticipates a higher
probability of formation for S′. The formal definition is given next:

Definition 2.9 In the coalition selection game with transferable or non-transferable
payoffs, a coalition S is stable under uncertainty of formation iff T

(i)
f (S) > 0 ∀i ∈ S

and,

�S′ �= S s.t T
(j)
f (S′) > T

(j)
f (S) for j ∈ S ∩ S′ .

Note that the initials s.t. refer to the phrase “such that”.
This notion would help to refine solutions of the coordination game model as

this is applied to the coalition selection game in case of conflicting preferences of
the participating IoT nodes. It also creates a formal ground to confine solutions to
coalitions which are minimal in size (transferable payoff case) or by-least winning
(proportional payoff case) for all their members: by definition, only such coalitions
are stable under uncertainty of formation (in view of (2.10), other coalitions have
zero probability of formation for at least one member).

Remark Linking the above concepts to the selected power index for the coalition
selection game, namely PPI, we may remark that PPI associates a player’s value
to the number of stable coalitions it participates in; the higher this number, the
greater the index value. In fact the preference denoted by ω(S), in the definition
of PPI, refers to how many players consider coalition S, by-least winning. Clearly,
the coalition with the highest ωS is stable under uncertainty of formation, according
to Definition 2.9.

Thus, given the above definition, it is evident that PPI excludes a number of
coalitions which are not stable and hence would not appear if nearby IoT nodes
formed coalitions independently. In addition, the PPI is more fair than other indices
examined, in the sense that it only considers stable coalitions in the inner core that
would be formed if payoffs were allocated proportionally to players’ contributions
of resources, i.e. in a fair manner. These coalitions have been shown to be the most
probable to be formed, both in the transferrable and in the non-transferable payoff
cases.

2.4 An Evaluation Example for the Coalition Selection Game

In this section, we propose an example of the coalition selection game by quanti-
fying various indices in order to provide evaluations of different game instances,
specifically a game instance with three players and a game instance with four
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players. The evaluation demonstrates how the PPI allocates payoffs only to the
players that would participate in the minimal in size or by-least winning coalition,
i.e. players that are in the inner core of the game, as we have shown that all coalitions
which are by-least winning for at least one player are in the inner core. The following
tables assign numerical behaviour to three and to four players, according to all
aforementioned power indices described in the previous sections.

Power index values are examined in the example below, for three players first
and subsequently for four players, with different distributions of available resources.
Even though the theory extends to many players, we are demonstrating the concept
through an instance of the game with three players, and with an instance of the game
with four players, only for clarity of illustration and we invite the reader to attempt
to recreate the example with a greater number of players.

In terms of resources, the individual resources for each test instance presented in
the examples sum up to the same total resource amount. This is necessary in order to
better compare results between the different cases, i.e. different instances of player
resources for the three and four players examples. Note that collaboration between
players is considered only if the sum of their resources adds up to or exceeds the
amount of required resources, i.e. one (1) in the example.

In the first example below, the resource distributions Di (i = 0, . . . , 5) of
available resources for each of the three nodes, from the case i = 0 where resources
are uniformly distributed between access networks, i.e. each IoT node has the same
amount of available resources, to non-uniform cases (i = 1, . . . , 5), are carefully
selected to exhibit the varying allocations of the power indices, when available
resources are about the same, or resources are concentrated in only a few of the
IoT nodes. To avoid taking absolute values, we have considered available resources
of each IoT node i normalized with respect to the minimum resource requirement
R, i.e. ri/R. For each of the power indices BPI, SSPI, HPI and PPI, we examine
both the values of the indices as well as their rankings.

Extending the numerical test cases to include four players instead of three, results
in the following:

The values of normalized available resources are shown in Tables 2.1 and 2.3,
for the cases of three and four players, respectively. For each one of these cases the

Table 2.1 Example of
resource distribution with
three players

Distribution r1
R

r2
R

r3
R

D0 0.4 0.4 0.4

D1 0.8 0.2 0.2

D2 0.8 0.3 0.1

D3 0.9 0.2 0.1

D4 0.6 0.35 0.25

D5 0.55 0.45 0.25
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Table 2.2 Instance 1 indices Distribution Index Player 1 Player 2 Player 3

D0 BPI 0.33 0.33 0.33

SSPI 0.33 0.33 0.33

HPI 0.33 0.33 0.33

PPI 0.33 0.33 0.33

D1 BPI 0.6 0.2 0.2

SSPI 0.67 0.17 0.17

HPI 0.5 0.25 0.25

PPI 0.5 0.25 0.25

D2 BPI 0.5 0.5 0

SSPI 0.67 0.33 0

HPI 0.5 0.5 0

PPI 0.5 0.5 0

D3 BPI 0.6 0.2 0.2

SSPI 0.67 0.17 0.17

HPI 0.5 0.25 0.25

PPI 0.5 0 0.5

D4 BPI 0.33 0.33 0.33

SSPI 0.33 0.33 0.33

HPI 0.33 0.33 0.33

PPI 0.33 0.33 0.33

D5 BPI 0.5 0.5 0

SSPI 0.67 0.33 0

HPI 0.5 0.5 0

PPI 0.5 0.5 0

Table 2.3 Instance 2: four
players

Distribution b1
B

b2
B

b3
B

b4
B

D0 0.4 0.4 0.4 0.4

D1 0.85 0.25 0.25 0.25

D2 0.8 0.55 0.15 0.1

D3 0.95 0.45 0.1 0.1

D4 0.6 0.4 0.35 0.25

D5 0.55 0.5 0.3 0.25

three power indices are generated also in a normalized form so that they add up to
one. The values of indices for these cases are shown in Tables 2.2 and 2.4.

Differences between the indices’ values become more pronounced as the number
of players increases (the increased number of possible coalitions allows such
differences to show) (Tables 2.3 and 2.4).



2.5 Conclusion 41

Table 2.4 Instance 2 indices

Distribution Index Player 1 Player 2 Player 3 Player 4

D0 BPI 0.25 0.25 0.25 0.25

SSPI 0.25 0.25 0.25 0.25

HPI 0.25 0.25 0.25 0.25

PPI 0.25 0.25 0.25 0.25

D1 BPI 0.7 0.1 0.1 0.1

SSPI 0.75 0.083 0.083 0.083

HPI 0.5 0.17 0.17 0.17

PPI 0.5 0.17 0.17 0.17

D2 BPI 0.5 0.3 0.1 0.1

SSPI 0.75 0.17 0.042 0.042

HPI 0.4 0.2 0.2 0.2

PPI 0.33 0 0.33 0.33

D3 BPI 0.7 0.1 0.1 0.1

SSPI 0.75 0.083 0.083 0.083

HPI 0.5 0.17 0.17 0.17

PPI 0.5 0 0.25 0.25

D4 BPI 0.33 0.33 0.17 0.17

SSPI 0.33 0.33 0.17 0.17

HPI 0.25 0.25 0.25 0.25

PPI 0.2 0.4 0.2 0.2

D5 BPI 0.33 0.33 0.17 0.17

SSPI 0.33 0.33 0.17 0.17

HPI 0.25 0.25 0.25 0.25

PPI 0.2 0.4 0.2 0.2

2.5 Conclusion

The evaluation section has briefly demonstrated that, in general, the SSPI and BPI
give similar values, favouring the players with greater available resources. A closer
inspection may show that SSPI systematically does that to a slightly greater extent
than BPI. The remaining indices, namely the HPI and PPI, give a higher power to
relatively weaker players. This is because weaker players have smaller contributions
and hence are more often found in coalitions which are minimal winning, or by-least
winning for some players.

It has been shown throughout the chapter that the HPI and PPI are more
appropriate indices for the coalition selection game, since they exclude a number
of coalitions which are not stable and hence would not appear if nearby IoT nodes
formed coalitions independently. Comparing these two indices, we can argue that
the PPI is more fair, in the sense that it only considers stable coalitions in the
inner core that would be formed if payoffs were allocated proportionally to players’
contributions, i.e. in a fair manner.
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Chapter 3
Using Game Theory to Address Mobile
Data Offloading in 5G

Abstract This chapter addresses the situation where 5G communication service is
enabled by data offloading from infrastructure transmission points onto the mobile
users that act as content repeaters, for a monetary payoff. The aim is to enhance the
communication service performance, especially in terms of traffic delays, which is a
requirement in 5G networks. The offloading algorithm is viewed as an ad hoc service
where the path of the traffic through the content repeating devices is selected through
a negotiation process between the mobile users and the infrastructure points, as well
as between the mobile users themselves. The chapter proposes a game theoretic
modelling approach for modelling the strategies of the interacting nodes using a
game model that resembles an auction model. Specifically, each player may take
one of the two roles during an interaction, either the role of a price setter, a bidder,
or the role of price taker, an auctioneer. We assume that all packets are homogeneous
in the sense that they do not differ in terms of the payoff to the forwarder; therefore,
the decision of whether to forward a traffic packet by a node, or to choose the node
that will forward the traffic packet (depending on whether a player is currently in
the role of price setter or price taker), does not depend on the traffic packet itself.
The decisions are taken sequentially, i.e. the price setters advertise their prices and
then the price taker selects one of them to forward the traffic packets to.

Keywords Mobile data offloading · Auctions · Mobile infrastructure ·
Sequential-moves strategy

3.1 Introduction

3.1.1 Overview of Technology Considered

High performance communications are targeted by 5G networks, which mainly
translates in high data rates, reduced traffic delays and additional features such as
energy savings and high device connectivity. As the use of big data is making its way
into our everyday lives, through the increasing deployment of the Internet of things
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Fig. 3.1 As the use of big data is making its way into our everyday lives, through the increasing
deployment of Internet of things (IoT) applications, 5G networks are faced with a new challenge

(IoT), and IoT applications, 5G networks are faced with the challenge of handling
the enormous growth in size of mobile data, in terms of storage and computation,
coupled with an increasing need to rely on mobile devices (smart devices in their
majority) to support this excess of traffic flows (Fig. 3.1).

These mobile devices carry differing characteristics and capabilities supporting
the decoupling of computation and content, which can also be offloaded onto cloud
storage. Such enhanced mobile user devices can even assume the roles of service
or content providers, virtually extending the mobile infrastructure to include them.
Furthermore, the common thread that links all this heterogeneity is the support for
a user-centric paradigm of communication, converging all activities to the system’s
key function, i.e. to satisfy its customers. 5G networks plan to take advantage of
these varying characteristics, exploiting them in complementary manners in order
to achieve to surpass any limits imposed by any mobile infrastructure on its own,
through appropriate synergies with the 5G network users themselves.

Synergies, i.e. cooperation between participating entities in 5G communication
networks, promote the useful co-existence of heterogeneous entities, aiming at
enhancing the overall network, e.g. by extending its coverage through user-initiated
content repetition, since the support of demanding multimedia services, such as
interactive and multiparty multimedia services (to deliver real-time and even critical
time applications), becomes a challenging task due to the heterogeneity of the
entities involved, the user(s) and the network infrastructure. This heterogeneity
results in different and often conflicting interests for these entities. Since cooper-
ation between these entities, if achieved, is expected to be beneficial, we pose the
following question: Can cooperation be motivated in interactive situations arising
in 5G communication networks, and if yes, is it beneficial for the interacting
entities, especially the customers themselves, i.e. the end-user nodes? In pursue of
answering this question, this chapter isolates and studies an interactive situations
between user(s) and the network infrastructure points of transmission, in particular
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infrastructure points that belong to the mobile network, and proposes appropriate
modes of behaviour that allow the interacting entities to achieve own satisfaction, in
this example through the use of monetary payoff, while at the same time enhancing
the performance of the 5G network.

Interactions between entities with conflicting interests follow action plans
designed, by each entity, in such a way as to achieve a particular selfish goal, such
interactions are known as strategic interactions. Strategic interactions are studied by
game theory, which develops models that prescribe actions for entities interacting in
a strategic manner, such that they achieve satisfactory gains from the situation. To
target the question of how to behave in interactive situations between heterogeneous
entities in 5G Networks, the chapter utilizes game theoretical models to propose
models of selected strategic situations and investigates profitable behaviours of the
participating entities. The study shows that cooperation can be motivated in each of
the selected interactive situations and, furthermore, that such cooperative behaviour
can be beneficial for the interacting entities.

3.1.2 On Mobile Data Offloading

The idea of mobile data offloading is actually the use of complementary network
technologies for delivering data originally meant to be carried by the network
infrastructure. Offloading reduces the amount of data being carried onto the
infrastructure resources, therefore, freeing bandwidth for more of the network’s
users. It is also a good alternative in the case the infrastructure resources are
not available, e.g. it can be used in situations where local signal reception may
be poor, allowing the user to connect via alternative points and achieve better
connectivity.

Mobile data offloading actions may be initiated by either an end-user (mobile
subscriber) or an operator (controlling the infrastructure points). The explosion of
Internet data traffic has increased the need for offloading solutions to be available in
5G, since there exists a growing portion of traffic going through mobile networks.
Offloading has been enabled by smartphone devices possessing Wi-Fi capabilities
since Wi-Fi is typically much less costly to build than cellular networks.

In addition to the large amounts of data, there exists a subsequent need for
an increase in connection speeds in 5G networks, because of new real-time and
critical time services that 5G aims to support. The need for increased 5G speeds
motivates a new perspective on how the mobile user is viewed by the network, i.e.
the mobile user undertakes a more active role in the network. Specifically, the mobile
user is now required to participate more actively in the communication stream as a
temporary infrastructure point to help carry the content through to its destination,
by becoming a content repeater. In addition to alleviating congestion at the network
edge, this approach may result in decreased delays.
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It has been often observed that the Internet’s edge, where the user devices are
located, is characterized by congestion. The chapter considers the scenario where
mobile user devices can be used to offload infrastructure transmission points, thus
alleviating congestion at the edge of the Internet, and offering a faster solution
for the path that a communication stream takes, from source to destination. This
results in a seemingly denser infrastructure without actually needing to deploy new,
permanent infrastructure points, but by renting out resources from user devices that
are interested to act as potential content repeaters.

Within the definition of this scenario, the chapter explores a potential offloading
strategy, based on mobile user interactions (as these are expected to take place along
the path of the communication stream). The strategy is based on a game theoretic
model that employs the idea of auctioning the offloading option in return for some
monetary payoff offered by the infrastructure points that wish to rent the resources
of mobile users to support a particular communication stream.

Specifically, the presented game model enables the ad hoc cooperation among
mobile users along the path of the communication stream, for the purpose of
allowing these mobile users to spontaneously forward some of the traffic on behalf
of congested infrastructure points. The incentive for the mobile users would be the
monetary payoffs offered by the operators managing the congested infrastructure
points. Moreover, the operators themselves would be motivated to engage in this
scenario as such agreements would significantly decrease infrastructure costs,
without compromising their customer experience. This is referred to as a mobile
data offloading scenario (Fig. 3.2).

An additional advantage for 5G networks is that by employing this type of
scenario, a natural coverage extension is achieved, which is very important for

Fig. 3.2 The scenario considers the ad hoc cooperation among mobile users along the path of the
communication stream, for the purpose of allowing these mobile users to spontaneously forward
some of the traffic
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the 5G operators. Also, the scenario offers additional redundancy in terms of
communication paths that results in increased resilience of the 5G network in case
of any infrastructure damage or failure.

3.2 The Offloading Scenario Elaborated

In a 5G mobile offloading scenario, we consider that each of the mobile users that
are available to undertake the role of a content repeater may take one of the two
game profiles during an interaction. These two profiles or roles include: the role of
a price setter, and the role of price taker. Note that the price is initially set by the
infrastructure point, motivated by the mobile network operator, that actually initiates
the mobile offloading process.

Once the infrastructure point negotiates with the available user nodes and decides
which node will be the node that will forward the traffic packet, the payment is made
to the forwarding node, which in turn will act as the next price taker and will make
subsequent payment to the selected price setter that will forward the traffic packet
next, and so on. In addition to the available budget advertised by the price taker, i.e.
the maximum price for which the price setters will bid, a possible fine is advertised,
which will be imposed by the infrastructure, i.e. the network operator, in case the
selected price setting node will not carry out its forwarding task successfully. As
will be discussed later, this fine is mainly to prevent malicious behaviour by the
user nodes in an attempt to gain monetary payoff without sharing their resources to
support the communication stream.

One of the assumptions that can be made to simplify the model outline is that
all traffic packets are homogeneous. This is not the case in terms of traffic and data
characteristics in the 5G network but it can be considered in the sense that the traffic
packets do not differ in terms of the payoff to the forwarding nodes; therefore, the
decision of whether to forward a traffic packet or to choose the next forwarding
node (whether a player is currently in the role of price setter or price taker) does not
depend on the traffic packet itself, forcing the decision-making to depend solely on
the interacting nodes, i.e. the potential content repeaters.

The process of creating the path through the 5G mobile user population that
will act as content repeaters to facilitate the communication service is a series of
decisions taken by the mobile users that are positioned in a favourable location to
undertake this task, between the transmission source and destination of the specific
communication stream. The decisions are taken sequentially, i.e. the price setters
advertise their prices, which are then considered by the price taker, who in turn
selects one of them to forward the packet to. Thus, the resulting scenario is that of
a competitive situation between the price setters, since one price taker selects one
of the price setters based on some criteria (mainly the advertised price), causing
the price setters to be antagonistic in their attempt to be selected. Each mobile user
node, also referred to as a player in the game model, may assume both of the two
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roles, as a traffic packet makes its way through the mobile user population in an
attempt to reach each destination.

In the 5G mobile offloading game, the price setters may offer similar or the
same price for forwarding a packet. In addition to the price being advertised the
price taker may consider additional factors for making the final selection (such
could be distance from target, overall topology, probability of a packet reaching
the destination, etc.). Let’s call this parameter: other additional factors (OAF) and
let it represent a cost for the price taker. So, even if prices advertised are equal,
we assume that OAF may still affect a price taker’s decision. Note here that in the
absence of OAF the price taker will always select the lowest price. Thus, the utility
function of a price taker could be an additive function Ui , such that:

Ui = (B − k) − f (OAF), (3.1)

where B − k is the resulting budget, with B representing the original budget and k

representing the selected advertised price that the price taker will have to pay to the
selected price setter. A function depending on OAF represents the risk relevant to
the success of the traffic packet reaching its destination, which does not depend on
the price. This risk should be minimized in order to avoid possible fines imposed by
the infrastructure.

The result of this utility function should be considered by the price setter in
setting the advertised price. The advertised price is enticing for the price taker and
competitive if Ui ≥ 0. At the same time the advertised price should not result
in a loss for the price setter. Thus, the overall payoff for the price setter could be
indicated by:

Πi =
x∑

i=1

ki −
x∑

i=1

φi, (3.2)

for all forwarded packets where x is the total number of packets forwarded, and φi

represents the fine for packet i.
Note that a fine may be imposed by the infrastructure upon mobile nodes that

commit to act as content repeaters but end up not being successful in forwarding the
traffic packet. This could be done maliciously, in an attempt to acquire the monetary
payoff but not share any resources to facilitate the path of a traffic packet to its
destination. Thus, such nodes would be punished by the imposition of fines in order
to prevent similar cheating behaviour in the future.

Given that for a number of packets the player assumes the role of a price taker and
pays an amount B − k to a neighbour to forward a packet, then the overall payoff of
the game for player i would be the sum of the monetary amount acquired to forward
each traffic packet, minus the sum of the amounts that the player would have to
subsequently pay to its neighbouring nodes to forward the packet further along its
path. This should be taken into consideration when advertising the available budget
and potential fines.
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Given the existence of fines and considering that multiple mobile nodes need to
cooperate along the communication path in order to achieve a successful offloading
service (and thus must share the monetary payoff offered by the infrastructure
points), some decisions must be made in advance by the participating mobile users.
The main decision for each price setter in this situation is about selecting the price
at which to advertise its own forwarding service in each interactive situation, being
fully aware that simultaneously, other price setters will be advertising their own
prices as well. Regarding the fine, the players know that there exists a fine, which is
advertised by the price taker and it is the same for all competing mobile nodes,
having no control over it. Thus, the price advertised for a single packet should
consider this as fixed and evaluate the probability of the risk for the particular traffic
packet to be fined as δ, resulting in an estimation for the advertised price P as:

Pi = ki − δ φi, (3.3)

where P i ≥ 0.
Another consideration towards a solution for the offloading game model would

be to form groups of mobile nodes that collaborate in order to achieve higher payoff
by strategically setting prices together, rather than each one node setting a price
on its own. Let’s consider the case where any two nearby mobile nodes decide to
cooperate and set their prices strategically. Consider a possible strategy for two
nodes cooperating in order to maximize their chances of winning the chance to
forward a traffic packet, and subsequently sharing the payoffs:

The two interacting players, will be placed close together so they may set prices for the
same packets. Initially, the players will set a price equal to the possible cost, i.e. equal to the
advertised fine. Thus, if either of the two players is selected and the packet does not reach
the destination, the forwarding player will not earn any profits but will not have any loss.
Given that this will not happen each time, the overall payoff will be positive. In fact, at the
initial bidding no other player has an incentive to set a price lower than the fine, as this is
risking a negative payoff. This attitude might change during the game as the budgets of the
players change, and thus in the beginning the strategy should allow the budget to remain
positive. Moreover, if the players set the advertised price equal to the fine, then if the other
players raise their price above the fine, then they will earn nothing, since forwarding nodes
will probably select the lower price out of the advertised prices (this might not be true as
the topology may also affect the decision, such as other additional factors (OAF) mentioned
above). Therefore at least one of the competing mobile nodes should always advertise a
competitive price, i.e. at cost/fine price.

In fact, no other price is equilibrium in such a situation. If all players set the
same price above the cost and share the forwarding requests, then each player has
an incentive to undercut the others by an arbitrarily small amount and capture all
forwarding requests, increasing its profits. So there can be no equilibrium with all
players advertising the same price above the cost, since strategically each one will
aim to undercut the others. There can be no equilibrium with players advertising
different prices. The players setting the higher price will earn nothing (the lower
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price serves all of the requests). The only equilibrium is when all players set price
equal to their possible cost, which would be the set fine.

The strategy may be modified during the game in order to achieve a more
competitive approach for the team of the two cooperating nodes. Since the cost
is not set but may occur at a risk factor, and also we are looking at a repeated
game, then players have an incentive to advertise even lower than the possible cost
without reaching negative payoffs by simply monitoring their cumulative payoff and
adjusting the risk by the probability that a packet will not reach its destination. This
probability could be adapted throughout the game (implement an adaptive strategy
based on the history of successful forwards). Thus, it would be beneficial to have
a collaboration between at least two players, where one player would stay at the
equilibrium strategy and the other to randomly drop its price to a value that takes
the risk of paying the fine into account, so it can capture some additional forwarding
requests (increase in quantity of forwards will increase the overall payoffs).

For the cooperative strategy between the two players to succeed, the players
would have to eventually share the total payoff; otherwise, the player that would
need to drop the advertised price below the fine threshold would not be motivated
to participate in the competition.

It is noteworthy here to mention that the price taker must advertise the budget
and the fine and a decision needs to be made in terms of maximum budget and
maximum fine since they don’t have to be the same at each hop. More specifically,
at each hop the node that currently must take the role of the price taker must make a
decision of what the fine should be and advertise this to the nodes that will take the
role of the price setters in an attempt to win the chance of forwarding the packet and
receiving the monetary payoff analogous for this action (as this is also advertised at
each hop by the price taker). This must not necessarily be the same budget as in the
previous hop (since the strategy is based on an ad hoc negotiation and forwarding
process). Therefore, in the case of the price taker, the advertised fine should be
equal or less than the advertised budget, which in turn should be equal or less
to the available budget of a node since the upstream node must immediately pay
the selected downstream node, i.e. the price taker must immediately pay the price
setter once it is selected. Finally, as briefly mentioned earlier, the price taker needs a
strategy for selecting the forwarding node, which could be based only on advertised
price but also on other factors such as the topology, etc.

3.3 Single User Strategies for Resolving the Offloading
Scenario Using an Auction Model Approach

3.3.1 Auctioning Strategy

Consider the topology illustrated in Fig. 3.3. In this section we consider strategies
for single players that are not additive functions as the abovementioned scenarios
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Fig. 3.3 A set of infrastructure points is complemented by the use of resources from mobile users
that may support through the offloading service, a path of the communication service through ad
hoc collaborations between them

and we try to quantify a sequence of actions that characterize an interaction based
on the idea of auctions, where the traffic packet is auctioned, and the nearby mobile
users may bid for the chance to forward it and, thus, receive a monetary reward.

For this section, we refer to the price taker mobile node as the auctioneer,
whereas we refer to the price setter mobile node as the bidder, in order to keep
in line with the general philosophy of the auction game model. One of the main
strategic moves of the price taker or the auctioneer is that at all times, the auctioneer
will set a marginal decrease in the advertised budget compared to that of the previous
hop. Moreover, the fine will remain equal to that of the previous hop. There is no
need to decrease the fine, since the threat of punishment will only motivate more
stable collaborations as the risk of losing monetary payoff increases.

In regard to downstream node selection, the auctioneer will be looking not
only at the budget-fine model but also at additional information about the bidder
that accumulate to the risk of forwarding the packet successfully. The risk may
be represented as a coefficient between 0 and 1 that is adjusted according to the
bidders’ profiles in relation to the current forwarding request, e.g. if the bidder has
high probability of successfully forwarding the traffic packet, the coefficient will
be closer to 1, whereas anything less shows a problematic profile for the current
forwarding request.

Considering only the budget-fine model, it will be highly likely that bidders
will be offering the same or similar price tags for forwarding a packet. Inevitably,
auctioneers should be considering additional information to be in a position to better
assess candidate bidders and their potential to successfully deliver a packet to the
destination. As such, the final selection could be based on factors related to the
network and its topology (such could be distance from target, overall topology,
probability of a packet reaching the destination, etc.). Let’s call these auxiliary
parameters: other additional factors (OAF), and let OAF reflect a utility for the
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auctioneer. So, even in cases when all price tags advertised by the bidders are equal,
OAF will be used to differentiate among the bidders and allow the auctioneer to
make a more informed decision. Note here that in the absence of OAF the auctioneer
will always select the lowest price.

Thus, let’s formally define the utility function of a specific auctioneer i to a
specific bidder j to be a weighted function Uij as follows:

Uij = Bi − kj − ci × (f (OAFj )), (3.4)

where Bi is the original budget advertised by the auctioneer i, kj is the bidding price
advertised by the bidder j , ci is an arbitrary cost at the auctioneer for selecting the
next forwarding node j and its magnitude being affected by a function of OAF
specific to node j that indicates the risk probability for selecting j , f (OAFj ).
Clearly this cost is subtracted from i’s budget minus the bid set by bidder j in
order to compute a true utility value for auctioneer i when interacting with bidder
j . The advertised price is enticing for the auctioneer and competitive if Uij ≥ 0.

To successfully forward packets to the destination, the auctioneer will be simply
adjusting f (OAFj ).

3.3.2 Bidding Strategy

At the same time, this utility should be considered by the bidder in setting the
advertised price if it is to be competitive and win the auction. Equally though, the
advertised price should not leave the bidder at a loss. Hence, the decision for each
bidder in this situation is about selecting the price to advertise in each interactive
situation, being fully aware that simultaneously, other bidders will be advertising
their own prices and that the auctioneer behaves as detailed in (3.4). Notably, the
advertised fine send out by the auctioneer is the same for all competitors that have
no control over it. Thus, the price advertised for a single packet should consider this
as fixed and evaluate the risk for the particular packet p using OAF.

3.3.2.1 Equilibrium Strategy

Noticeably, bidding at the advertised fine stems as the safest approach, especially
when each bidder acts alone (contrary to the cooperation strategy elaborated earlier
in the chapter). Actually, no other price will stabilize to equilibrium in such a
situation. Indicatively, if all players set the same price above the fine and share
the forwarding requests, then each player has an incentive to undercut the others
by an arbitrarily small amount and capture all forwarding requests, increasing its
packet delivery ratio. So there can be no equilibrium with all players advertising
the same price above the fine, since strategically each one will aim to undercut the
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others. Moreover, there can also be no equilibrium with players advertising different
prices. The bidders setting the highest price tags will risk being left out. The only
equilibrium is when all players set their price tags equal to the fine.

3.3.2.2 Aggressive Strategy

On the other hand, it is well understood that each and every bid has an associated
risk. This risk might be due to the strategies followed by each player, in addition to a
number of network related factors (most prominently their physical location within
the network topology). Moreover, since we are also looking at a repeated game, then
players might have an incentive to bid at price tags lower than the fine. Since nodes
might be in possession of a high balance, such an aggressive bidding that might
result in negative temporary payoff would not result in an overall negative balance.
Although this type of aggressive strategy has been previously discussed as part of a
collaborative approach, it is not unlikely that in an attempt to increase its cumulative
payoff, a node may risk to bid below the equilibrium threshold, singularly. It is
however important that when such strategies are employed by singular players that
the players themselves are able to monitor their cumulative payoff and accordingly
adjust price tags based on tolerable risk (the risk being the probability that a packet
will not reach its destination at the end). This risk factor should be dynamically
adapted throughout the game, and could be implemented as an adaptive coefficient
that acts as a controller for the decision to be made whether or not it is worth taking
the risk for a particular interaction and packet.

3.4 An Example of a Single Selection on the Communication
Path

Referring to 5G networks, we need to consider that we are dealing with a multi-
level system, where decisions can be taken at different levels and by different
system entities. The main task considered in this example is a single step in the
process of achieving a successful chain of decision-making such that the system
achieves the means to efficiently provide the requested service, and consequently,
the requested communication stream from source to destination. In the specific
example, we consider the decision-making to be the first step in this decision-
making chain, where the infrastructure point advertises a budget and a fine and
requests bids from mobile users, from which, a bidder is then selected to repeat
the content, i.e. the traffic packet. Therefore, the decision-making entities are: (i)
the mobile user bidding on the specific traffic packet and (ii) the infrastructure point
from the operator’s network acting as a service provider (where the service is an
auction that will result in the selection of a mobile user to act as a content repeater).
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Both decision-making entities are driven by “satisfaction–quantification” utili-
ties, which are based on the individual entity’s criteria. The criterion for the selection
by the auctioneer of the content repeater is mainly the mobile user’s low price
in addition to a low risk function in terms of the potential for communication
success.

In the case of a 5G network, the increasing availability of resources at the
user device allows for multiple user devices to be able to bid for the opportunity
to become content repeaters for the infrastructure point and receive appropriate
monetary payoff, e.g. by their network operator. Consequently, multiple mobile
users in this example may interact with the auctioneer, i.e. the infrastructure point
looking to offload a traffic packet, in an attempt to achieve participation in the
offloading service and consequently revenue maximization. The infrastructure point
is now faced with a set of available mobile user nodes from which it may choose the
best one according to its own utility function. The infrastructure point will select
a mobile user to become a content repeater, only in the case that such a decision
results in a positive utility for the specific infrastructure point.

The chapter recognizes that in a 5G network there exists the need to consider
an interaction between the infrastructure and the mobile user, since this can be
necessary to alleviate the increasing congestion at the edge of the network as well
as for decreasing expected traffic delays and supporting real-time and critical time
services. Since the proposed offloading mechanism controls the decision of which
mobile user will be selected as the next content repeater, in a chain of decisions from
source to destination, we refer to the following example model as the node selection
game.

The selection mechanism decides which is the best mobile user to handle a
specific step in the communication stream. The selection may be based on the user’s
bidding price but also on additional factors that may pose a risk to the success of the
communication, such as the mobile node’s context and location, in relation to any
network constraints. In the case the initial conditions are compromised by dynamic
changes such as the user’s mobility, the node selection mechanism may be triggered
so that a different, more appropriate node handles the remaining of the session (as
it is often the case that more than one traffic packet will be repeated by the same
selected node).

A well-designed node selection scheme can support capacity planning on a day-
to-day basis by allowing the constituent mobile nodes and consequently the 5G
infrastructure to make the best use of the available resources.

Once the set of available nodes is known by the infrastructure point, it may
indicate its preferred node using a utility-based approach, i.e. selecting the network
that appears to be the most satisfying choice. This preference is used as an input
for subsequent packets but other criteria to be considered in subsequent decision-
making rounds may include capacity availability and load balancing. Once the node
is selected, the node’s available resources need to be updated so that the next service
request can be handled correctly.
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Selecting the node to serve a traffic request that satisfies both the node and the
infrastructure point may become a challenging task. A careful examination of the
interaction between the two entities during the node selection mechanism is taken
into consideration when the example node selection model was defined.

3.4.1 A Closer Look at the Node Interaction

The interaction between a node and an infrastructure point in a 5G network may
be viewed as a negotiation between the two entities. The infrastructure point gives
some kind of compensation (most likely monetary) and the node gives a promise,
in this case of a specific action supporting the communication service. We will
treat this interaction as a one-shot interaction, i.e. the two entities interact once at
session activation and the decision taken is considered valid for the whole duration
of the session; also, the subsequent decisions are considered independently of this
decision. This is the case that the infrastructure point does not have the intelligence
to remember a node’s past behaviour, although that would significantly affect the
decision-making. Therefore for this example, we maintain the assumption that no
memory is kept once a decision has been made about the interaction between any
node and an infrastructure point.

Investigating the interaction between the two entities, we seek to discover the
incentives for each entity to select certain strategies, i.e. sets of actions. The
incentive is usually realized by the payoff of each entity involved, resulting from
the actions taken by each entity. In the specific interaction between the mobile node
and the infrastructure point:

• the payoff of the infrastructure point acting as the auctioneer is the satisfaction
level perceived by the decision, based on a utility function that considers both
the bidding price and the risk generated by a function of OAF (other additional
factors), where the measurements are subjectively generated by the auctioneer,
and

• the payoff of the node is basically a profit made from the compensation given by
the infrastructure point for the specific content combined with the probability of
being fined in case the communication is not successful.

The auctioneer cannot enforce that the node satisfies the communication request
but can punish the node for any action that would result in an unsuccessful
communication path. The bidder is aware of the risk of being fined and the specific
fine amount prior to the bidding.

In a node selection scenario, the two participating entities make sequential
decisions. In particular, the auctioneer makes a decision first; he chooses a payment
and a fine to advertise to the node, in order to get the desired content repetition
support. Then, it is the turn of the node to make a decision of whether to bid or not
for a portion of the advertised payment, considering the risk of being fined.
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We utilize a notion from game theory to model this sequential decision-making:
sequential-moves games. Regarding sequential-moves games, an easy way to
visualize them is by illustrating the game using tree diagrams made from nodes
and branches (a.k.a. game trees); they are joined decision trees for all of the players
in the game, illustrating all of the possible actions that can be taken by all of the
players and indicating all of the possible outcomes of the game.

According to this modelling, the auctioneer is a first-mover in this game; he
chooses an incentive payment scheme to encourage the node to bid on the specific
content. This interaction model is referred to as the principal–agent interaction
model in game theory [1], which is also adopted in this work, with the auctioneer
taking the role of the principal and the node taking the role of the agent such that
the agent takes an action that affects the payoff to the principal. To further elaborate,
the auctioneer offers an incentive payment as a contract to the node and requests a
specific service in return.

On the other hand, the node, based on the offer provided by the auctioneer and the
requested service, decides whether to bid for the offer or not. The node’s decision is
based on the expected payment compared to the node’s subjective cost of performing
the action, i.e. the risk of being fined.

If the node does not bid for the offer, the interaction terminates. If the network
bids for the offer, it must provide the necessary resources to satisfy it; simultane-
ously, the auctioneer predicts the risk of success of the communication service as
it relates to the specific node. To make the problem tractable, we examine only the
possibility that an auctioneer predicts one of the two possible levels of success:
basic quality and high predicted success. The payoff is adjusted accordingly,
differentiated between a predicted basic or high success. Examining further this
payoff exchange, we observe that the payment scheme from the auctioneer to the
bidder is contractible, i.e. the payment for each different service instance may be
agreed in advance. However, the node’s eventual success is not contractible because
in an IP-based network, quality cannot be guaranteed; there is always, no matter how
small, a non-zero probability of quality degradation, and eventually unsuccessful
communication.

The level of connection quality may be mapped onto the instantaneous amount
of both the auctioneer’s and the bidder’s satisfaction. We model this in our one-shot
game by the payoff function of the auctioneer. The satisfaction of the auctioneer in
a one-shot game can be defined to be a function of requested success level and of
payment offered to the network. Given requested success level q and the payment
offered P , the user payoff function can be defined as follows:

u(q, i, P ) = f (q, i)/P , (3.5)

where f (q, i) is an increasing function, and f (q, i) ≥ 0. This function represents
the prediction of the success that a bidder will have with a specific communication
request. Note that this may be based on several factors indicated as OAF in previous
sections, related to node i for requested success level q. When f (q, i) = 0 a
prediction of no expected success is indicated. Positive values of f (q, i) indicate
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that some positive expected success is predicted. Higher values of f (q, i) indicate
higher perceived qualities. The function f (q, i) depends also on the specific mobile
node under consideration, i. In order to specify the auctioneer’s expected success
level per unit payment offered, we divide f (q, i) by P , and this gives the payoff of
the auctioneer in this example of the node selection game.

The satisfaction function of the node depends on the success q expected by the
auctioneer, which is mapped to an amount of resources required for service support
using function g(q). Given that the node has a cost function c(g(q)) corresponding
to the cost of a network for supporting success level q, the node payoff function may
be defined to be:

v(q, P ) =
{

P − c(g(q)), (T − g(q)) > 0

0, (T − g(q)) ≤ 0,
(3.6)

where T is the total amount of node resources currently available. As the payment
increases, the node’s payoff increases, but the higher the cost of a network to support
a specific success level, the less it is satisfied, because this implies that the profit
made per unit of used node resources decreases. Therefore, the node seeks the
maximum amount of profit that it can make for a specific success level requested.
So, in the case where P −c(g(q)) ≤ 0, the node will not bid to support the specific
communication request.

Game models are based on the element of rationality; however, one may argue
that rationality implies that the players are perfect calculators and flawless followers
of their best strategies, which is not always a correct replicate of a particular
situation, thus we may assert that this is not the case. Therefore, rationality may
be better described to be the players’ knowledge of their own interests based on
each player’s own value system. Based on this element of rationality the players
calculate their strategies. Strategies may consist of single actions (one-shot games)
or sequences of actions (repeated interactions) and each strategy gives a complete
plan of action, considering also reactions to actions that may be taken by the
opponent. Strategies may be pure, i.e. provide complete definitions of how a player
will play in the game (his moves), or mixed, i.e. assignments of a probability to each
pure strategy. Our model employs single-action and pure strategies.

Games are motivated by profitable outcomes that await the players once the
actions are taken. These outcomes are referred to as payoffs. Payoffs for a particular
player capture everything in the outcomes that the particular player cares about.
If a player faces a random prospect of outcomes, then the number associated
with this prospect is the average of the payoffs associated with each component
outcome, weighted by their probabilities. Since we refer to a single-action game,
the calculation of payoffs should be straightforward here.

Nevertheless, an element of probability does exist in our game as well. Even
though a node may promise to offer a certain level of success, this may be degraded
unexpectedly because of node or infrastructure dynamic changes, such as signal
strength degradation or mobility. This probable behaviour must be taken into
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account when payoffs are calculated for the node. If no degradation is observed,
then the node’s payoff is equivalent to the node payoff function v(q, P ).

In case of actual service degradation the auctioneer penalizes the bidder by
offering a decreased amount of compensation, v′(q, P ) = a · v(q, P ), where a

represents a probability of not experiencing degradation of service success; if a = 1,
the payoff received by the node is exactly its profit, whereas if 0 < a < 1, the payoff
received by the node is decreased by a factor of a. Thus, the payoff function of the
node considering the possibility of degradation becomes:

v′(q, P ) =
{

a · [P − c(g(q))], (T − g(q)) > 0

0, (T − g(q)) ≤ 0 .
(3.7)

This refers to the concept of the fine introduced in the previous sections in a more
simplified manner.

From the auctioneer’s side, in case of degradation the payoff of the auctioneer
will be affected in a similar manner, i.e. u′(q, i, P ) = a · [f (q, i)/P ]. Any
interaction model (i.e. any sequential-move game model) may be represented by a
tree diagram, where the root of the tree represents the first-mover and the leaves of
the tree give the payoffs to all interacting entities (first the payoff to the first-mover,
then the payoff to the second-mover, etc.). The intermediary nodes and branches
show the game flow in terms of states and decisions in an event-sequential manner.

In the given interaction model the auctioneer gives a payment to the node to
support a session but since there can be two levels of expected success (basic, high)
and corresponding levels of perceived success by the auctioneer qL and qH , there
can be two levels of payment to the node, PL and PH where PL < PH . Thus, the
advertised payment depends on the level of success that the auctioneer predicts for
the specific communication service.

3.4.2 Bayesian Models and Truthfulness

Since one of the aspects that must be considered in this game model example is the
behaviour of the participating players in terms of whether they will employ honest
or dishonest strategies, we will discuss briefly in this section the idea of Bayesian
games and truthfulness. Bayesian game models are useful because they allow us to
consider the different types of players ahead of the game, e.g. consider a truthful
type or consider a dishonest type of player. A Bayesian game [1] is a strategic form
game with incomplete information attempting to model a player’s knowledge of
private information, such as privately observed costs, that the other player does
not know. Therefore, in a Bayesian game, each player may have several types of
behaviour (with a probability of behaving according to one of these types during
the game). We use the Bayesian form game, in order to investigate the outcomes of
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an otherwise normal form game, given that each player does not know whether the
opponent is truthful or dishonest.

Consider a normal form game where the players have some random payoffs.
Let each player in the normal form game have two types: the truthful type and the
dishonest type. Suppose that each of the two players has incomplete information
about the other player, i.e. does not know the other player’s type. Furthermore, each
of the two players assigns a probability to each of the opponent’s types according to
own beliefs and evaluations. Let pl

i be the probability according to which player i

believes that the opponent is likely to be of type truthful, and ph
i = (1 − pl

i) be the
probability according to which player i believes that the opponent is likely to be of
type dishonest.

Since the two players are identical, i.e. they have the same two types and the
same choice of two actions, we will only analyse player i; conclusions also hold
for player j , where i, j ∈ [2], i �= j . Therefore, player i believes that player j is
of type truthful with probability pl

i , and of type dishonest with probability 1 − pl
i .

Each player has a choice between two possible actions: to admit its type or to lie.
Bayesian games show that if player i believes that the probability pl

i , i.e. that player
j is of type truthful, is higher than the probability ph

i , then it is more motivated to lie,
where i, j ∈ [2], i �= j . If player i believes that the probability ph

i , i.e. that player
j is of type dishonest, is higher than the probability pl

i , then it is more motivated
to lie, where i, j ∈ [2], i �= j . Therefore, by the above statements the two players
playing the Bayesian form of a normal form game are not motivated to be truthful
but instead they are motivated to cheat in order to get greater payoffs. This is shown
to be true in a normal form game model with Bayesian players [1].

In order to motivate the two players to be truthful, there must exist a mechanism
that can penalize a player who turns out to lie, assuming that it is detectable whether
a player has lied or not. We refer to such mechanisms as pricing mechanisms [3]. Let
the lies be detectable after a game round has been complete, whether either of the
participating players has lied. In order to motivate the players to be truthful, we may
introduce a pricing mechanism, i.e. a new variable that tunes the resulting payoffs,
in the payoff function of each player. A side effect for a player that decides to cheat
is that it risks not to receive its expected payoff as the dishonest behaviour may
cause future payoff discounts. The pricing mechanism is a post-game punishment,
i.e. cheating in a game does not affect the game round in which a player cheats
but subsequent games. Thus, a state of history of a player’s behaviour in similar
interactions must be kept.

3.5 Conclusion

A final step to this work would consist of an implementation of the model, with a
selection of numerical values for the payoffs and a randomly generated probability
of success. The implementation could simply make use of a custom numerical
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simulator. The desired outputs from the simulation of single node selection game,
such as the one described in the previous section, would be the accumulated node
payoffs after multiple repetitions of the game, i.e. multiple interactions with the
infrastructure points or with other user nodes, following the above-mentioned rules
at each selection round and eventually summing up all the payoffs from all the
rounds. This can be an interesting set of simulations, in order to determine whether
the nodes are indeed satisfied with the auctioneer-based selection decision (since
the model maximizes the auctioneer’s payoff ). Thus the aim of implementing and
running a simulation model would be to show how the payoffs behave after an
increasing number of iterations.

Since the required outputs are the player payoffs, the element of time is not an
important factor in such a simulation model. The importance of the time factor in a
simulation indicates whether there is a need for a static or a dynamic simulation.
Given the time requirements for the simulation model of single node selection,
one may implement a static simulation model, without compromising the results.
A second factor that must consider is that the selection decision itself, as well as
the node payoffs, are based on parameters, which are not deterministic, i.e. which
cannot be determined in advance. This implies that some of the system variables
must be random, and in turn the simulation model must support random (a.k.a
stochastic) evaluation. Hence, the simulation model must be a stochastic, static
model (such models are known as Monte Carlo models [2]). The implementation
of a Monte Carlo simulation model is out of the scope of this chapter.
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Chapter 4
Using Game Theory to Motivate Trust in
Ad Hoc Vehicular Networks

Abstract This chapter considers the cooperation between vehicular nodes in an
ad hoc network as a decision resulting from the potential interaction between
any two such nodes. We consider the potential for continuous communication
between these nodes, under the condition they keep sharing mutually beneficial
information. Describing and analysing entity interactions is a situation that makes
a good candidate to be modelled using the theoretical framework of game theory.
The fact that this new and interesting mode of human interaction between vehicles
does not need to be a human-initiated process, but a process that can be initiated
by an object-to-object communication, because of IoT, brings up the issue of
establishing a trusted communication between the interacting parties. However,
establishing such trusted, cooperative behaviour in vehicular networks is not an easy
task, even if vehicular networks are considered to be user-centric networks. Game
theory provides appropriate models and tools to handle multiple, interacting entities
attempting to make decisions and seeking a strategic solution state that maximizes
each entity’s utility, incorporating a consideration of trust within that utility. Game
theory has been extensively used in networking research as a theoretical decision-
making framework, and this chapter makes use of this know-how.

Keywords Vehicular networks · Game theory · Prisoner’s dilemma · Trust
model

4.1 Introduction of a Vehicular Node Interaction Scenario

5G networks aim to support communication of vehicles on the road, so that moving
vehicles can form ad hoc networks in order to share or exchange useful and
interesting information. However, the ad hoc nature of these networks and the fact
that sharing information would imply that a vehicular device would have to share
resources with another such device, which may not be trustworthy, have raised
many issues related to trust and security. These issues need to be addressed prior
to deploying such services in a 5G vehicular network.
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Fig. 4.1 An illustration of a vehicular network, highlighting the communication between the
vehicles as these may form ad hoc connections according to their specific travel location

To rectify the aforementioned issues, this chapter approaches the cooperation (i.e.
trusted relationship) between two vehicles i and j in an ad hoc vehicular network,
as a decision resulting from the potential interactions between the vehicular nodes.
These interactions could be finite (i.e. exchanging few messages during a short
time period), or infinite (i.e. i and j keep sharing mutual beneficial information).
It is worth noting that interactions between vehicles are often repeated and there
is no knowledge of the number of such interactions that can take place over time.
The repeated nature of the interaction comes from the premise that 5G is mainly
deployed in dense urban areas, and thus, vehicles that cross each other’s paths during
certain times, e.g. morning rush hour, are bound to cross each other’s path again if
they keep to the same driving routine (Fig. 4.1).

It is important to note that these interactions often incur a cost for both sides. For
the sender, sharing quality information (e.g. traffic related) with the receiver incurs
a cost that includes calculations, communications and the risk of being exposed to
a stranger on the road. For the receiver, the risk of trusting the received information
to act upon and returning the favour to the sender, who is also a stranger, is the main
cost.

Initially, there is no motivation for either vehicular node travelling on the
road to cooperate, i.e. to share information or to accept information from other
vehicular nodes. Hence, this chapter aims to demonstrate how such trust could be
mathematically motivated, and hence a cooperative attitude among vehicular nodes
can also be motivated, in order to eventually establish trusted relationships that bring
mutual benefits (i.e. payoffs) for both sides. Consequently, nurturing the established
relationship for continuous communication under the condition they keep sharing
mutually beneficial trusted information.

To achieve the paper’s aim and incentivise vehicular nodes to share valuable
information over the ad hoc vehicular networks, a trust model should be in place
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Fig. 4.2 An illustration of a two vehicular nodes travelling along the same road with an
opportunity to share information. However, motivation is necessary in order for such nodes to
be able to trust each other in a vehicular network

to promote cooperation and trusted relationships in these ad hoc networks. This
model should highlight the mutual benefits for cooperative travellers and possible
losses of a non-cooperative behaviour (i.e. defection or cheating). Describing and
analysing travelling node interactions in ad hoc vehicular networks is a situation
that makes it a good candidate to be modelled using the theoretical framework of
game theory. Game theory provides appropriate models and tools to handle multiple,
interacting entities attempting to make decisions and seeking a strategic solution
state that maximizes each node’s benefit (Fig. 4.2).

The proposed approach proves that adopting cooperation strategies while inter-
acting with others in vehicular networks results in (1) the highest payoffs (i.e.
benefits), and (2) in an increase in trust between the cooperating users (who gain
more social interactions and better reputation). It is shown that the developed
approach can establish direct and indirect trusted relationships in these networks
showing also mathematically the viability and the efficiency of the proposed
approach.

Game theory has been extensively used in networking research as a theoretical
decision-making framework. In order for a strategic situation to become a game
between two or more players, there must be a mutual awareness of the participants
regarding the cross-effect of their actions. A strategic situation, where the actions of
a participant may alter another’s outcome, is primarily characterized by the players’
strategies. In addition, a strategic situation contains other elements that must be
taken into consideration when modelling such a situation as a game, e.g. chance
and skill (elements that are not easily controlled or modified). Although game
models employ the element of rationality, one may argue that rationality implies
that the players are perfect calculators and flawless followers of their best strategies,
which is not always a correct replicate of a particular situation, thus we may define
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Fig. 4.3 The solution to a
strategic game is derived by
establishing equilibria, i.e.
finding a solution of a specific
combination of strategies
such that none of the
interacting players is
motivated to modify the
selected strategy combination

rationality to be the players’ knowledge of their own interests based on each player’s
own value system. Based on this element of rationality the players calculate their
possible strategies.

The solution to a strategic game is derived by establishing equilibria. Equilibria
may be reached during the interaction of players’ strategies when each player is
using the strategy that is the best response to the strategies of the other players (i.e.
given the strategies of the other players, the selected strategy results in the highest
payoffs for each player participating in the game). The idea of equilibrium is a useful
descriptive tool and furthermore, an effective organizing concept for analysing a
game theoretic model (Fig. 4.3).

The prisoner’s dilemma and iterated prisoner’s dilemma (IPD) have been a rich
source of research material since the 1950s. However, the publication of Axelrod’s
book in 1984 [1] was the main reason that this research was brought to the attention
of other areas outside of game theory, as a model for promoting cooperation. In fact,
IPD is now fundamental to certain theories of cooperation and trust. Subsequent
editions of Axelrod’s The Evolution of Cooperation feature a quote by the Wall
Street Journal that mentioned in reference to the book (see Fig. 4.4): “Our ideas of
cooperation will never be the same”.

4.2 A Game Theoretic Vehicular Node Interaction Model

In order for a strategic situation to become a game between two or more players,
there must be a mutual awareness of the participants regarding the cross-effect
of their actions. A strategic situation, where the actions of a participant may alter
another’s outcome, is primarily characterized by the players’ strategies.



4.2 A Game Theoretic Vehicular Node Interaction Model 65

Fig. 4.4 Axelrod’s book was a milestone publication for game theory
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In addition, a strategic situation contains other elements that must be taken into
consideration when modelling such a situation as a game, e.g. chance and skill,
(elements that are not easily controlled or modified). Game models, i.e. models
of specific strategic situations, may be categorized in various ways due to the
several elements that they contain. A usual categorization is made by looking at
the players’ movements; if they are sequential we have an extensive game form
(a.k.a. sequential-moves game form), whereas if they are simultaneous the game
form is referred to as normal. Furthermore, an interaction may happen only once or
repeatedly; in the first situation we are faced with one-shot game models, while the
second situation requires repeated game models.

An additional dichotomy is whether the players are in complete conflict, where
the model employed is a non-cooperative one, or they have some commonality,
where a more cooperative game model may be more appropriate. Finally, another
important categorization is whether we are dealing with a game where the players
have complete information about all actions taken or only partial information.
When characterizing a game it is important to keep in mind the various possible
categorizations of game models in order to better describe the required strategic
situation as completely as possible.

Next, we take a look at the prisoner’s dilemma and iterated prisoner’s dilemma
(IPD) as solution models for the vehicular node interaction. The prisoner’s dilemma
is basically a model of a game, where two players must decide whether to
cooperate with their opponent or whether to defect from cooperation. Both players
make a decision without knowing the decision of their opponent, and only after
the individual decisions are made, these are revealed. The desirable cooperative
behaviour must be somehow motivated so that the players’ selfish but rational
reasoning results in the cooperative decision. Cooperation may evolve from playing
the game repeatedly, against the same opponent. This is referred to as iterated
prisoner’s dilemma, which is based on a repeated game model with an unknown
or infinite number of repetitions, also referred to as game horizon. The decisions
at such games, which are taken at each repetition of the game, are affected by past
actions and future expectations, resulting in strategies that motivate cooperation.

We consider that node interaction in a vehicular network may be modelled by an
IPD. We show that our proposed model for vehicular node interaction falls within
the prisoner’s dilemma, and specifically, the IPD category for strategic interactions
and, subsequently, we provide proof that cooperation is an equilibrium behaviour
for the outlined game model.

The vehicular node interaction model is defined as follows.

Definition 4.1 Consider the situation: Let a receiving vehicular node i have an
internal evaluation of the significance level q of received information, by a particular
sending vehicular node j �= i. The expected benefit from receiving information
for node i is thus π(q), a proportionally increasing function of the significance
of the received information, e.g. increased traffic would score a lower significance
than a car crash or road constructions. The cost of interaction is modelled as a
constant ρ, which represents the risk in terms of resources that i needs to share
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Table 4.1 Receiving and sending node interaction as a prisoner’s dilemma game

Send. node cooperates Send. node cheats

Rec. node cooperates π(q) − ρ, ρ − τ(q) π(q ′) − ρ, ρ − τ(q ′)
Rec. node cheats π(q) − ρ′, ρ′ − τ(q) π(q ′) − ρ′, ρ′ − τ(q ′)

with j . Therefore, the utility of a receiving node i, Ui = π(q) − ρ. On the other
hand, ρ is a positive payoff for the sending node, i.e. a representation of additional
resources received through i. The sending node also bears certain cost, for sending
information of significance level q. Let’s define this as τ(q). Thus, j has a utility
function Uj = ρ − τ(q).

If the sending node decides to send malicious or incomplete information to save
resources, its utility function may generate a higher payoff in a single interaction,
i.e. Uj = ρ − τ(q ′) > Uj = ρ − τ(q).

If the receiving node decides to cheat and not share the necessary amount of
resources with the sending node, its utility function may also generate a higher
payoff in a single interaction, i.e. Ui = π(q) − ρ′ > Ui = π(q) − ρ.

This situation is referred to as the user–network interaction game.

Let’s consider a single interaction to show how the communication falls under
the prisoner’s dilemma interaction model.

In Table 4.1 we define the players’ utility functions, where ρ represents the cost
for the receiving node, but also the amount of received resources as a gain for the
sending node, π(q) represents the benefit resulting from the received information
for the receiving node, and τ(q) represents the resource cost for sending information
for the sending node, with q representing the significance level of this information.
Note that the action of defecting in a prisoner’s dilemma is represented in the case
of the vehicular node interaction game by the action of cheating, i.e. by sending
malicious or inaccurate information by the sending node or not sharing sufficient
resources by the receiving node.

Proposition 4.1 Consider a single interaction of the vehicular node interaction
game. Then the game is equivalent to a prisoner’s dilemma game.

Proof Our proof utilizes the following:

Definition 4.2 Consider n one-shot game with two players in which the player
has two possible actions: to cooperate with his opponent or to cheat. Furthermore,
assume that the two following additional restrictions on the payoffs are satis-
fied [4]:

1. The order of the payoffs for each player is such that A > B > C > D, where A

is the payoff for cheating when opponent cooperates, B is the payoff when both
cooperate, C is the payoff when both cheat and D is the payoff for cooperating
when opponent is cheating.
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Table 4.2 Sending node and
receiving node payoffs
ordered according to
A,B,C,D

Rec. node payoffs Send. node payoffs

A π(q) − ρ′ ρ − τ(q ′)
B π(q) − ρ ρ − τ(q)

C π(q ′) − ρ′ ρ′ − τ(q ′)
D π(q ′) − ρ ρ′ − τ(q)

2. The reward for mutual cooperation should be such that each player is not
motivated to exploit his opponent with probability 50% and be exploited with
the same probability.

Then, we say that the game is equivalent to the prisoner’s dilemma game.

Claim In the vehicular node interaction game there are two possible actions for the
two players: to cooperate and to cheat.

Therefore, the actions of the players in the vehicular node interaction game
match the actions of the players of a prisoner’s dilemma game. Table 4.2 maps
each player’s payoffs, found in Table 4.1 to actions A,B,C,D as defined in
Definition 4.2.

Lemma 4.1 For both the receiving node and the sending it holds that: A > B >

C > D.

Proof Examining the receiving node, we verify straightforward that π(q) − ρ′ >

π(q)−ρ, thus A > B, and that π(q ′)−ρ′ > π(q ′)−ρ, thus C > D, since ρ > ρ′.
It must also hold that π(q) − ρ > π(q ′) − ρ′. Let the difference between the
maximum and minimum payoff that can be perceived be greater than the difference
between the maximum and minimum amount of resources that may be offered by
the receiving node, such that π(q) − π(q ′) > ρ − ρ′. Therefore, π(q) − ρ >

π(q ′)−ρ′, and B > C. Examining the sending node, we verify straightforward that
ρ − τ(q ′) > ρ − τ(q), thus A > B, and that ρ′ − τ(q ′) > ρ′ − τ(q), since τ(q) >

τ(q ′). It must also hold that κ − τ(q) > κ ′ − τ(q ′). Let the difference between the
maximum and minimum amount of resources that may be offered by the receiving
node be greater than the difference between the maximum and the minimum cost
undertaken by the sending node to support the corresponding significance levels,
such that ρ − ρ′ > τ(q) − τ(q ′). Therefore, ρ − τ(q) > ρ′ − τ(q ′), and B > C.

Lemma 4.2 In the vehicular node interaction game, neither of the two players
plays the game in such a way as to end up being exploited with a probability of
50% and exploiting the other player with the same probability.

Proof In fact, Lemma 4.2 implies that the reward for cooperation is greater than the
payoff for the described situation, i.e. for each player it must hold that B > A+D

2 .
For the receiving node, substituting the corresponding payoffs in the expression we
get, π(q)−ρ >

π(q)−ρ′+π(q ′)−ρ
2 . Rearranging, we get π(q)−ρ >

π(q)+π(q ′)
2 − ρ′+ρ

2 ,
from which the condition holds since π(q) > π(q ′) and ρ > ρ′. For the sending
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Fig. 4.5 The classic prisoner’s dilemma game describes the situation where two prisoners, arrested
for the same crime, are interrogated independently by the police officers, given incentives to
defect against their partner. Each prisoner must decide the best strategy on their own, without
communicating with their partner

node, the expression ρ−τ(q) >
ρ−τ(q ′)+ρ′−τ(q)

2 may be rearranged into ρ−c(q) >
ρ+ρ′

2 − τ(q)+τ(q ′)
2 , from which the condition also holds.

Claim 4.2 and Lemmas 4.1 and 4.2 combined together complete the proof of the
proposition (Fig. 4.5).

Remark Thus, the vehicular node interaction game satisfies Definition 4.2 for
prisoner’s dilemma kind of games.

When playing a prisoner’s dilemma, each player must decide whether to
cooperate with the opponent or whether to defect, assuming that each player does
not know the decision of his opponent. The decision of each player is based on the
following1: If a player believes that his opponent will cooperate, he should defect
to maximize his payoff; in the vehicular node interaction game, this is the payoff
labelled as A in Table 4.2. On the other hand, if a player believes that his opponent
will defect, he should defect as well, because in such case cooperation will give less
(cheating would give the payoff labelled C, whereas cooperation would give the
payoff labelled D). This reasoning immediately implies:

Corollary 4.1 In a single interaction, i.e. one-shot, of a prisoner’s dilemma game,
a best response strategy of both players is to defect.

Corollary 4.2 follows:

Corollary 4.2 In a single interaction of the vehicular node interaction game, a best
response strategy of both players is to cheat.

1Same reasoning as [4].
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Corollaries 4.1 and 4.2 give rise to the question of how cooperation could be
motivated, since the receiving and the sending nodes must cooperate in order to
satisfy their corresponding needs for higher overall payoffs. Section 4.3 addresses
this issue.

4.3 The Iterated Prisoner’s Dilemma Model for the Repeated
Interaction of Vehicular Nodes

Having shown that the vehicular node interaction model is in fact a prisoner’s
dilemma type of interaction, we propose a model for the iterative interaction model.
The decision of whether to cooperate or defect in each interaction between any two
vehicular nodes is modelled as an IPD game with unknown game horizon.

A repeated game makes it possible for the players to condition their moves on the
complete previous history of the various stages, by employing strategies that define
appropriate actions for each period. Such strategies are called trigger strategies. A
trigger strategy is a strategy that changes in the presence of a predefined trigger; it
dictates that a player must follow one strategy until a certain condition is met and
then follow a different strategy, for the rest of the game.

One of the most popular trigger strategies is the grim trigger strategy, which
dictates that the player participates in the relationship in a cooperative manner, but
if dissatisfied for some known reason leaves the relationship forever. Exchanges
based on such threats of non-renewing a relationship, which is based on a particular
agreement between the two parties, are often referred to as contingent renewal
exchanges [3]. Another popular strategy used to elicit cooperative performance from
an opponent is for a player to mimic the actions of his opponent, giving the opponent
the incentive to play cooperatively, since in this way he will be rewarded with a
similar mirroring behaviour. This strategy is referred to as tit-for-tat strategy [2].
The choice for the cooperative iterative grim and tit-for-tat strategies results in an
equilibrium (Fig. 4.6).

Fig. 4.6 In an iterated prisoner’s dilemma, popular strategies include some type of reward or
punishment in reaction to the opponent’s play, e.g. grim strategy and tit-for-tat strategy
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The situation we model is the following: mode j plays first and offers information
to node i �= j . Node i examines the information and makes a decision concerning
whether to accept this as trusted information, according to i’s employed iterative
strategy. In the case that node i does not accept the information as trusted during the
first interaction the game terminates with zero payoff to both i and j . If node i trusts
the information, then the expected benefit from the interaction, Ui , is as defined in
the single interaction game definition, i.e. Ui = π(q) − ρ. The evaluation of π(q)

is based on subjective measures and can be different for each vehicular node. Node
i’s decision to accept or trust information from another node induces the specific
nodes to enter into a repetitive interaction of unknown horizon, having the options
to cooperate with each other or to defect, in each interactive instance.

4.3.1 Subgame Perfect Equilibrium

In this situation, assume that node j plays first and offers information to node
i �= j . Node i examines the information and makes a decision concerning whether
to accept this as trusted information according to i’s employed iterative strategy. If
node i does not accept the information as trusted during the first interaction, the
game terminates with zero payoff to both i and j . If node i trusts the information,
then the expected benefit from the interaction, Ui , is as defined in the single
interaction game (i.e. Ui = π(q)−ρ). The evaluation of π(q) is based on subjective
measures and can be different for each vehicular node. Node i’s decision to accept
or trust information from another node induces the nodes to enter into a repetitive
interaction of unknown horizon, having the options to cooperate with each other or
to defect, in each interactive instance. Subsequently, we may interchange between
referring to the player sending the information as sending node or j , and between
referring to the player receiving the information as receiving node or i.

The analysis of the iterative vehicular node interactions employs the grim
strategy as a cooperative strategy for the receiving node i and the tit-for-tat as
a cooperative strategy for the sending node j . In addition, initially, one non-
cooperative strategy is defined for each node. Specifically, the cheat-and-leave
strategy is defined for i, while the cheat-and-return strategy is defined for j . The
cheat-and-leave strategy is defined so as to allow the receiving node to employ
non-cooperative behaviour (i.e. does not incur any resource sharing risk). With this
strategy, the receiving node leaves the interaction after defecting from cooperation
(i.e. does not continue interaction with the particular vehicular node to avoid any
punishment for defecting from cooperation). The cheat-and-return strategy gives
the opportunity to the sending node to defect from cooperation and not share
information of high quality. Since it is the receiving node that accepts or rejects
the interaction, the sending node can return to the interaction later; however, it must
accept the receiving node’s punishment, if any.
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Consequently, the game profiles considered in the analysis involve combinations
of these strategies. In the iterative vehicular node interaction game, it is possible to
know the move of the opponent only after each interaction, since decisions during a
game iteration are simultaneous. In order to compare different sequences of payoffs
in iterative games, the idea of the present value (PV) of a payoff sequence is utilized.
PV is the sum that a player is willing to accept currently instead of waiting for
the future payoff (i.e. accept a smaller payoff today that will be worth more in the
future) similar to making an investment in the current period that will be increased
by a rate r in the next iteration. This is a popular method of evaluating a repetitive
(possibly infinite or of unknown horizon) sequence of actions at a certain point in
time.

Therefore, if a player’s payoff in the next iteration were equal to 1, currently,
the payoff the player would be willing to accept would be equal to 1

1+r
. Also, if

there is a probability that the game (i.e. interaction) will not continue in the next
iteration, equal to p, then the payoff the player is willing to accept currently (i.e. the
player’s PV) would be equal to δ = 1−p

1+r
, where δ ∈ [0, 1] and often referred to as

the discount factor in iterative games.
Therefore, given a payoff X in the next iteration, its PV in the current iteration

equals δ · X. For an infinitely repeated game, a PV should include the discounted
payoff of all subsequent periods of the game. Let the payoff from the current period
be equal to 1. Then, the additional payoff a player is willing to accept for the next
period equals to δ, for the period after the additional payoff equals to δ2 and so on.
Thus, PV equals to 1 + δ + δ2 + δ3 + δ4 + . . . , which, according to the sum of
infinite geometric series, equals to 1

1−δ
. Therefore, for a payoff X payable at the end

of each period, the present value in an infinitely repeated game equals to X
1−δ

.
In addition to the sum of an infinite geometric series, we remind the reader of the

method for finding the sum of a finite geometric series, as this is useful for the case
when the game under study is expected to finish after a specific number of rounds,
or, if we are interested in only studying a specific number of rounds. Therefore,
the sum for a finite geometric series of n rounds equals to X · (1−δn)

1−δ
. Theorem 4.2

makes use of this, in addition to the sum for an infinite geometric series, which is
also utilized for the proof of Theorem 4.1.

Since in repeated games there is an infinite number of decision nodes, they
are described in terms of histories (i.e. records of all past actions that the players
took [5]), thus a history corresponds to a path to a particular decision node in the
infinitely repeated game tree. When a strategy instructs a player to play the best
response to the opponent’s strategy after every history (i.e. giving the player a higher
payoff than any other action available after each particular history), it is called a
subgame perfect strategy. When all players play their subgame perfect strategies,
then we have an equilibrium in the repeated game, known as a subgame perfect
equilibrium.
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4.4 Defining a Repeated Vehicular Node Interaction Game

Definition 4.3 (Cheat-and-Leave Strategy) When the receiving node cooperates
and then cheats in a random period, immediately leaving in the next period to avoid
punishment, the strategy is referred to as the cheat-and-leave strategy.

Definition 4.4 (Cheat-and-Return Strategy) When the sending node cooperates
and then cheats in a random period, immediately returning to cooperation in the next
period, the strategy is referred to as the cheat-and-return strategy.

We are now ready to introduce a repeated game model of the vehicular node
interactions when the history is taken into account in the decisions of the entities:

Definition 4.5 (Repeated Vehicular Node Interactions Game) Consider a game
with infinite repetitions of the one-shot vehicular node interactions game with one
additional action available to the receiving node: leaving the interaction.2 Let the
payoffs from each iteration be equal to the payoffs from the one-shot vehicular node
interaction game, and in case the user leaves, let the payoff to both players be equal
to zero. Then, the game is referred to as the repeated vehicular node interaction
game.

Because of the unknown number of iterations, the PV of each player is calculated
after a history (i.e. record of all past actions that the players made) to be able
to evaluate each available action in the remaining game. As discussed earlier, the
PV makes use of the idea of a discount factor δ = 1−p

1+r
, where p ∈ [0, 1] is the

probability of termination of the interaction, and r is the rate of satisfaction gain
of continuing cooperation in the next period (i.e. payoff increasing rate). Thus, the
cumulative payoffs for each player from the repeated interaction can be considered.

Let the receiving node have a choice between the two following strategies: (1)
the grim strategy (i.e. if cheating is perceived, then leave the relationship forever),
and (2) the cheat-and-leave strategy. Let the sending node have a choice between:
(a) the tit-for-tat strategy (i.e. mimic the actions of its opponent), and (b) the cheat-
and-return strategy.

When neither of the two players cheats, the sequence of game profiles (from now
on, refer to this simply as profile) is one of cooperation defined more formally next:

Definition 4.6 (Conditional-Cooperation Profile) When the receiving node
employs the grim strategy and the sending node employs the tit-for-tat strategy,
the profile of the repeated game is referred to as conditional-cooperation profile of
the game.

2It is logical to assume that the user can switch to a different information source if dissatisfied,
whereas a sending node does not want to leave the interaction once it has been selected as an
information source.
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The following theorem states that the conditional-cooperation profile strategies
provide the best response to the alternative strategies: cheat-and-leave for the
receiving node and cheat-and-return for the sending node.

Theorem 4.1 In the repeated vehicular node interaction game, assume δ >
τ(q)−τ(q ′)
ρ−τ(q ′) and δ >

ρ−ρ′
π(q)−ρ′ then, the conditional-cooperation profile strategies result

in higher payoffs than the cheat-and-leave and cheat-and-return strategies.

Proof Assuming a history of cooperative moves in the past, the PVs of both
the receiving and the sending nodes are computed. After comparing them, it is
concluded that the conditional-cooperation profile strategies are more motivated
than the cheat-and-leave and cheat-and-return strategies.

1. Assume that the receiving node i plays the grim strategy, the sending node’s j

could either play the tit-for-tat strategy (i.e. cooperate in the current period) or
the cheat-and-return strategy, where it may cheat.

Using the sum of infinite geometric series and the payoff at the end of each
period as previously defined for the sending node, i.e. ρ − τ(q), then:

If the sending node cooperates, then:

PVsn
coop = ρ − τ(q)

1 − δ
.

If the sending node defects, then:

PVsn
def = ρ − τ(q ′) + δ · 0

1 − δ
.

For the sending node to be motivated to cooperate, its PV in case of
cooperation must be preferable than its PV in case of defecting. Thus:

PVsn
coop > PVsn

def = ρ − τ(q)

1 − δ
> ρ − τ(q ′) + δ · 0

1 − δ
.

If the receiving node plays the grim strategy, the sending node is motivated to
cooperate when δ >

τ(q)−τ(q ′)
ρ−τ(q ′) .

2. Assume now that the receiving node i plays the cheat-and-leave strategy.
Considering the sending node’s j possible strategies, it could either cooperate
or cheat in the current period.

If the sending node cooperates, then:

PVsn
coop = ρ′ − τ(q) + δ · 0

1 − δ
.

If the sending node cheats, then:

PVsn
def = ρ′ − τ(q ′) + δ · 0

1 − δ
.
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If the receiving node plays the cheat-and-leave strategy, the sending node is
not motivated to cooperate since PVsn

def > PVsn
coop

3. Assume now that the sending node j plays the tit-for-tat strategy. If the receiving
node i plays the grim strategy, it will cooperate in the current period, whereas if
it plays the cheat-and-leave strategy it may cheat.

Next, using the sum of infinite geometric series and the payoff at the end of
each period as previously defined for the receiving node, i.e. π(q) − ρ, then:

If the receiving node cooperates, then:

PVrn
coop = π(q) − ρ

1 − δ
.

If the receiving node cheats, then:

PVrn
def = π(q) − ρ′ + δ · 0

1 − δ
.

For the receiving node to be motivated to cooperate, its PV in case of
cooperation must be preferable than its PV in case of cheating. Thus:

PVrn
coop > PVrn

def = π(q) − ρ

1 − δ
> π(q) − ρ′ + δ · 0

1 − δ
.

If the sending node cooperates, the receiving node is motivated to cooperate when
δ >

ρ−ρ′
π(q)−ρ′ .

4. Finally, assume that the sending node j plays the cheat-and-return strategy.
Considering the receiving node’s i possible strategies, it could either cooperate
or cheat in the current period.

If the receiving node cooperates, then:

PVrn
coop = π(q ′) − ρ + δ · 0

1 − δ
.

If the receiving node defects, then:

PVrn
def = π(q ′) − ρ′ + δ · 0

1 − δ
.

If the sending node plays the cheat-and-return strategy, the receiving node is
not motivated to cooperate since PVrn

def > PVrn
coop.

From above, it follows that the conditional-cooperation profile is motivated when
δ >

τ(q)−τ(q ′)
ρ−τ(q ′) and δ >

ρ−ρ′
π(q)−ρ′ .
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4.4.1 Using an Adaptive Strategy to Motivate Cooperative
Behaviour

Within the context of the vehicular node interaction game, the interaction model
payoffs should reflect a node’s preference history, where continuous cooperative or
trusted behaviour may be reflected as a lower risk value for a specific node, whereas
continuous defective behaviour can be represented as a higher risk value. We employ
the idea of an adaptive player, such that a node i ’s decision of whether to trust node
j �= i, or not, considers a j ’s probability to stay trustworthy based on the acquired
knowledge gained by i over the course of the repeated game.

Thus, when a node must evaluate the expected benefit from a specific interaction,
the evaluation should consider the probability of remaining trustworthy, calculated
dynamically from observing past node behaviour. Being an adaptive player, the
node makes a more informed decision on whether to cooperate or defect. This is
achieved by multiplying the expected benefit π(q) by a variable α (Definition 4.7),
representing the estimated probability of trustworthy behaviour. To achieve this, we
assume that any node i has an internal state, which modifies probability α after
every interactive period with node j �= i, and that α has a different value for each
different network that interacts with the user.

Definition 4.7 In the vehicular node interaction game, node i possesses an internal
state, which, based on a history of behaviour from node j �= i, estimates node
j ’s probability not to demonstrate degradation, α ∈ [0, 1]. Given that node i has an
expected behaviour e, from node j , such that π(q) ≥ e, the value of α at the end of
an interactive period is modified according to (4.1).

αnow =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αprevious + (αprevious · π(q)f inal−e

π(q)f inal
),

if π(q)f inal ≥ e & αnow ≤ 1

1,

if π(q)f inal ≥ e & αnow ≥ 1

αprevious · π(q)f inal

e
,

otherwise .

(4.1)

By introducing the variable α ∈ [0, 1], node i considers node j ’s history,
approaching the decision of whether to cooperate or defect in an adaptive manner,
i.e. by evaluating π(q) · α instead of only π(q).

In Sect. 4.3 the selection of the grim and tit-for-tat strategies is proposed for a
cooperative game profile, i.e. node i punishes node j forever if deceptive behaviour
is perceived even once, or, node i punishes node j with only one period of absence,
even if node j demonstrates degradation frequently. Considering the adaptive way
in which node i takes a decision with the use of α, we propose a new strategy to be
employed as a means to interact with the selected network.
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Let the strategy be the following: cooperate as long as the interacting node
cooperates; if the interacting node cheats, then leave for a x number of periods;
after that, return and cooperate again. Let the number x be equal to 1 if α = 1 or
1
α

otherwise; such that a node with a lower value for α suffers a separation of more
periods with the user, whereas a network with a higher value for α is punished for
less periods (minimum punishment is 1 period).

Definition 4.8 The adaptive-return strategy dictates that if a node perceives decep-
tion, then the opponent is punished by the node leaving for a x number of periods,
before returning back to cooperation. The value of x is a user-generated value as
defined in (4.2).

x =
{

1, if α = 1

� 1
α
�, otherwise .

(4.2)

Next, we show that when a node employs the adaptive-return strategy, the
interacting node is at least as motivated to cooperate as when the one-period
punishment strategy is employed.

Theorem 4.2 Given a history of cooperation between any two vehicular nodes,
the conditions necessary to impose cooperation when a node employs the adaptive-
return strategy are also necessary to impose cooperation when the profile of the
game is the one-period punishment profile.

Proof Given a history of the game where both players have cooperated in the past,
a node has two options in the current period: cooperate and cheat. When the node
cooperates, the present value is as follows:

PVcooperate = (ρ − τ(q)) · 1 − δx+1

1 − δ
+ δx+2 · ρ − cτ(q)

1 − δ
.

The sum of a finite geometric progression is used to calculate the discounted value
for the first x + 1 periods. If the node cheats, the present value is

PVcheat = ρ − τ(q ′) + 1 − δx · 0

1 − δ
+ δx+2 · ρ − τ(q)

1 − δ
.

The conditions necessary to impose cooperation are calculated next:

PVcooperate > PVcheat = (ρ − τ(q)) · 1 − δx+1

1 − δ
+ δx+2 · ρ − τ(q)

1 − δ

> ρ − τ(q ′) + 1 − δx · 0

1 − δ
+ δx+2 · ρ − τ(q)

1 − δ
.
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Now consider the case that the node cooperates in the current period. Then, the
interacting node has two options: to cooperate or to defect from cooperation.

If the interacting node cooperates, then:

PVnet
coop = ρ − τ(q) + δ · (ρ − τ(q)) + δ2 · (ρ − τ(q))

1 − δ
.

If the interacting node defects, then:

PVnet
def = ρ − τ(q ′) + δ · 0 + δ2 · (ρ − τ(q))

1 − δ
.

In order for cooperation to be motivated, it must be that:

PVcoop > PVdef =
ρ − τ(q) + δ · (ρ − τ(q)) + δ2·(ρ−τ(q))

1−δ
>

ρ − τ(q ′) + δ · 0 + δ2·(ρ−τ(q))
1−δ

.

Simplifying, we get δ >
τ(q)−τ(q ′)

ρ−τ(q)
.

Since δ ∈ (0, 1), x ≥ 1, and δx+1 ≤ δ2, such that δx+1 − 1 ≤ δ2 − 1, we may
simplify for δ to get δ >

τ(q)−τ(q ′)
ρ−τ(q)

, similarly to the value of δ when employing the

one-period punishment strategy. In fact the simplification of δx+1 ≤ δ2 considers
the case that the adaptive-return strategy generates a punishment of only one period,
whereas if we consider greater values of x, the motivation to cooperate increases,
showing that the conditions for sustaining cooperation when the adaptive-return
strategy is used by the user are necessary for sustaining cooperation under the one-
period punishment profile.

4.5 Evaluating User–Network Cooperation

This section examines the numerical behaviour of the sending and receiving node
strategies defined and used for the repeated game defined. The evaluation is based
on a Matlab implementation of the repeated game, where all sending and receiving
node strategies are played against each other multiple times in order to evaluate the
behaviour of each strategy in terms of payoffs. The implementation of the game
model was based on a publicly available Matlab implementation of the iterated
prisoner’s dilemma Game [6], which has been extended to include all existing and
proposed strategies examined in this chapter.

The implementation makes use of the following guidelines, set to reflect the
analytical model of the repeated game. In each simulation run, both players play
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Table 4.3 Payoffs for the different simulation sets

Strategies Simulation set 1 Simulation set 2 Simulation set 3

Player leaves (0, 0) (0, 0) (0, 0)

One defects, one cooperates (4, 1) (100, 1) (90, 10)

Both defect (2, 2) (40, 40) (50, 50)

Both cooperate (3, 3) (60, 60) (60, 60)

their strategies and get payoffs accordingly. In the first set of simulations the payoffs
are the following: when a player leaves, they both get 0 in the specific period, if one
defects and one cooperates, the first gets 4 and the other gets 1, if they both defect,
each gets 2, and if they both cooperate each gets 3. In the second set of simulations,
we investigate the behaviour of the players when the difference between defecting
and cooperating increases. The payoffs for the second set of simulations are the
following: when a player leaves, they both get 0 in the specific period, if one defects
and one cooperates, the first gets 100 and the other gets 1, if they both defect, each
gets 40, and if they both cooperate each gets 60. In the third set of simulations,
we investigate the behaviour of the players when there is a small difference in the
payoffs between the cases of both defecting versus both cooperating. The payoffs
for the third set of simulations are the following: when a player leaves, they both get
0 in the specific period, if one defects and one cooperates, the first gets 90 and the
other gets 10, if they both defect, each gets 50, and if they both cooperate each gets
60.

We use simple numbers as payoffs to help us get some scores for different
strategy combinations but these numbers follow the relationships of the payoffs as
described in their general case in the repeated game model (Table 4.2). The payoffs
for the different simulation sets are summarized in Table 4.3.

Furthermore, for the adaptive strategy, the value of α is randomly generated at the
beginning of each simulation run but adapted according to the players’ behaviour
during the actual simulation (since each run simulates an iterative process). A
randomly generated satisfaction and a fixed threshold of expected satisfaction are
also implemented for the strategies in all simulation runs.

A randomly generated number of iterations was run for each set of simulations
to get cumulative sending and receiving payoffs for each combination of strategies.
The player payoffs per strategy are eventually added to give the most profitable
sending and receiving network strategies, respectively, for the total number of
iterations of a simulation run; then, the average cumulative payoffs from all
simulation runs are calculated. Although the number of iterations is randomly
generated, we still repeat the process 100 times for each set of simulations, i.e.
by randomly generating 100 different numbers of iterations, in order to include
behaviours when the number of iterations is both small and large.
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Table 4.4 Receiving node
payoffs from all strategy
combinations (1st simulation
set)

Rec. node payoffs

Sending node strategies

Rec. node strategies Tit-for-tat Cheat&return

Grim 793.14 4.42

Cheat&leave 6.62 4.65

Leave&return 793.14 252.92

Adaptive-return 793.14 355.05

Table 4.5 Sending payoffs
from all strategy
combinations (1st simulation
set)

Send. node payoffs

Network strategies

Rec. node strategies Tit-for-tat Cheat&return

Grim 793.14 7.42

Cheat&leave 3.82 4.23

Leave&return 793.14 617.21

Adaptive-return 793.14 618.57

For the first set of simulations, i.e. with the payoffs ranging from 0 to 4, the
payoffs are calculated for an average of 264.38 iterations per simulation run.3 In
both tables we see a score for each strategy combination. The score corresponds to
either a receiving node payoff (Table 4.4) or a sending node payoff (Table 4.5).

The results for the first set of simulations show that the most profitable receiving
node strategy is the adaptive return strategy, and that the most profitable sending
node strategy is the tit-for-tat strategy for all payoffs except for the payoff received
from the combination with the cheat&leave strategy of the receiving node. However,
the difference between the payoffs received by the sending node from playing
either the tit-for-tat strategy or the cheat&return strategy, in combination with
the cheat&leave strategy of the receiving node, is negligible. Furthermore, the
combination of the two most profitable strategies in the same game profile gives
the highest cumulative payoffs to both players. Based on these numerical results,
we define the adaptive-punishment profile (Definition 4.9) for the game to consist
of the adaptive-return strategy for the user and the tit-for-tat strategy for the
network.

Definition 4.9 (Adaptive-Punishment Profile) When the receiving node employs
the adaptive-return strategy and the sending node employs the tit-for-tat strategy,
the profile of the repeated game is referred to as adaptive-punishment profile of the
game.

For the second set of simulations, i.e. with the payoffs ranging from 0 to 100, the
payoffs are calculated for an average of 240.59 iterations per simulation run.4 As

3Minimum iterations generated: 8, maximum iterations generated: 1259.
4Minimum iterations generated: 2, maximum iterations generated: 1124.
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Table 4.6 Receiving node
payoffs from all strategy
combinations (2nd simulation
set)

Rec. node payoffs

Sending node strategies

Rec. node strategies Tit-for-tat Cheat&return

Grim 14,435.4 47.8

Cheat&leave 164.2 108.36

Leave&return 14,435.4 4894.76

Adaptive-return 14,435.4 4974.47

Table 4.7 Sending node
payoffs from all strategy
combinations (2nd simulation
set)

Sending node payoffs

Sending node strategies

Rec. node strategies Tit-for-tat Cheat&return

Grim 14,435.4 146.8

Cheat&leave 65.2 95.49

Leave&return 14,337.4 12,850.4

Adaptive-return 14,435.4 12,861.8

Table 4.8 Receiving node
payoffs from all strategy
combinations (3rd simulation
set)

Rec. node payoffs

Sending node strategies

Rec. node strategies Tit-for-tat Cheat&return

Grim 16,416.6 62.7

Cheat&leave 159.9 100.7

Leave&return 16,416.6 6423.6

Adaptive-return 16,416.6 6449.7

previously, we see in both tables a score for each strategy combination. The score
corresponds to either a receiving node payoff (Table 4.6) or a sending node payoff
(Table 4.7).

Again, we observe that for the second set of simulations, the most profitable
strategy for the receiving node is the adaptive-return strategy and the sending node’s
most profitable strategy is the tit-for-tat strategy.5 The increase in the differences
between cooperating and defecting payoffs resulted in higher overall payoffs but has
not changed the general payoff trend for the two players. In total, the highest payoffs
are experienced by the players when they decide to use cooperating strategies
instead of defecting; this result motivates the players to go ahead and cooperate.

For the third set of simulations, i.e. with the payoffs ranging from 0 to 90, the
payoffs are calculated for an average of 268.6 iterations per simulation run.6 As
previously, we see in both tables a score for each strategy combination. The score
corresponds to either a receiving node payoff (Table 4.8) or a sending node payoff
(Table 4.9).

5Except for the payoff in combination with the receiving node’s cheat&leave strategy, however,
the preferred profile for the game is still the adaptive-punishment profile.
6Minimum iterations generated: 2, maximum iterations generated: 1342.
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Table 4.9 Sending node
payoffs from all strategy
combinations (3rd simulation
set)

Sending node payoffs

Sending node strategies

Rec. node strategies Tit-for-tat Cheat&return

Grim 16,416.6 141.9

Cheat&leave 80.7 76.7

Leave&return 16,416.6 13,709.7

Adaptive-return 16,416.6 13,710

Again, for the third set of simulations, the most profitable strategy for the
receiving node is the adaptive-return strategy and the sending node’s most profitable
strategy is the tit-for-tat strategy. Overall, the preferred profile for the game is still
the adaptive-punishment profile. The small difference between the cases of both
players defecting and of both players cooperating has not changed the general
payoff trend for the two players. In total, the highest payoffs are experienced by
the players when they decide to use cooperating strategies instead of defecting; this
result continues to motivate the players towards cooperation.

Furthermore, it is worth noting that, for all simulation sets, when the receiving
node plays the leave&return strategy, the payoffs received by the receiving node are
comparable (though less) to the highest payoffs received, i.e. payoffs for employing
the adaptive-return strategy. The justification for these results is the following:
we have shown that the minimum conditions for the sending node to cooperate
when the receiving node employs the adaptive-return strategy are also necessary
for the sending node to cooperate when the leave&return strategy is employed. In
fact, the conditions for the two strategies are at least equal, and given this, it is
expected to observe payoff values that are numerically closer compared to payoff
values for the other receiving node strategies, although it appears that the adaptive-
return strategy manages to achieve slightly higher payoffs than the leave&return
strategy.

An additional observation is that the leave&return strategy is weaker in the
case the sending node decides to defect, because the receiving node’s reaction is
a fixed-period punishment. On the other hand, when the receiving node employs the
adaptive-return strategy, the punishment period is not fixed but adapts to the sending
node’s past behaviour, appearing to consequently achieve a slight improvement in
the overall receiving node’s payoff.

An additional factor that we should consider when interpreting the obtained
payoffs is that each simulation investigates a single game interaction, thus not
considering dependencies that may arise in an evaluation of multiple co-existing
interactions, where a receiving node may interact with several sending nodes and
vice versa.
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4.6 Conclusion

In general, trusting a perfect stranger is a complicated decision-making process,
let alone while driving. The highly dynamic nature of vehicular networks and the
absence of a trusted third party make it even harder to take such a decision. Institut-
ing the trustworthiness of this type of ad hoc interaction is essential to successfully
establish a social relationship, especially in case that adaptive-type of strategies
are used to motivate cooperation. In this chapter, a game theoretic approach has
been defined to mathematically motivate trusted and cooperative interactions among
users in vehicular networks by harnessing collective intelligence, especially through
the use of feedback from the vehicular network participating nodes, in an adaptive
manner.

In fact, within the context of the vehicular node interaction game, especially
the repeated flavour of the game elaborated above, the interactions model payoffs
should reflect the node’s preference history, where continuous cooperative or trusted
behaviour may be reflected as a lower risk value for a specific node, whereas
continuous defective behaviour can be represented as a higher risk value. The
chapter adopts this approach as a new type of player in the game, the adaptive
player. A player i undertaking this adaptive profile acts such that a node i’s decision
of whether to trust node j �= i, or not, considers the probability of j ’s staying
trustworthy based on the acquired knowledge gained by i over the course of the
repeated game (Fig. 4.7).

Fig. 4.7 The adaptive strategy has been shown to be very effective in the vehicular node
interaction game, as it allows the players to adjust their actions according to their opponent’s level
of cooperative behaviour
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The significance of this particular profile in the resolution of the game comes
from the fact that when a node must evaluate the expected benefit from a specific
interaction, the evaluation should consider the probability of remaining trustworthy,
calculated dynamically from observing past node behaviour.
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Chapter 5
Using Game Theory to Characterize
Trade-Offs Between Cloud Providers and
Service Providers for Health Monitoring
Services

Abstract In this chapter, we consider a 5G network, where service providers offer
health monitoring services, by making use of a wearable devices, which are placed
on the customers such that they are able to collect personal data for each customer,
by monitoring selected health indicators, e.g. the heart rate. A consideration for this
scenario is that the continuous generation of new data makes the complete set of data
that needs to be manipulated, such a large amount, that it is impossible to store it
locally, but alternatively, it becomes necessary to store this data away from the user
and make it accessible through the Internet. This is usually done by using storage
on the cloud, which the health-related data can use as storage. The use of the cloud
offers the additional advantage for the service provider of the health monitoring
service that the data can be easily accessible through the use of the cloud over the
Internet. Therefore, we must consider the interaction between the health monitoring
service providers and the cloud providers over the handling of the user’s data. In
particular, we consider the case where enhanced data protection demands by the
user for the particular health service may require the cooperation of the service
provider and the cloud provider in advance. Once the agreement is reached that the
service provider and the cloud provider prefer to cooperate rather than not for the
particular monitoring service, a bargaining scheme is employed to allow them to
reach an agreement with regard to their individual revenues.

Keywords Game theory · Cloud provider · Service provider · Health monitoring
service · Bargaining model

5.1 Overview of Technology and of Relevant Game-Theoretic
Tools

In a 5G network, service providers offer health monitoring services (often based
on artificial intelligence algorithms, i.e. AI-based health monitoring services), by
making use of a special type of devices that the customers wear continuously,
also known as wearable devices. Wearable devices are fashioned to collect a large
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Fig. 5.1 Service providers
offer health monitoring
services often based on
artificial intelligence
algorithms

amount of data for each customer, by monitoring selected health indicators, e.g. the
heart rate. The continuous generation of new data makes the complete set of data
that needs to be manipulated, such a large amount, that it is impossible to store it
locally, either on the monitoring device or on a personal device owned by the user,
e.g. a mobile phone. It becomes necessary to store this data away from the user and
make it accessible through the Internet. This is usually done by using storage on
the cloud, a global network of servers that interoperate to form a single ecosystem,
which is used, among other functions, to store data. Therefore, the health-related
data can use the cloud ecosystem as storage, which also is an advantage for the
service provider of the health monitoring service, because the data can be easily
accessible through the use of the cloud (Fig. 5.1).

The cloud solution for storing the health-related data does not come without risks
since the cloud is administered by a cloud provider and not the service provider, who
has the original agreement with the user. Thus, essentially two entities have now
access to the user personal and sensitive health data, the health monitoring service
provider (HMSP) and the cloud provider (CP). Note that agreements between the
service and cloud providers are often made to prevent unethical access to, and
subsequently unethical use of data. Furthermore, the data that we are dealing with
in this sort of applications is not only personal data but often sensitive data and
must be handled with care, as many legislations exist that protect from misuse of
the user’s data (e.g. consent forms must be made available for the user to agree to
any personal data manipulation, etc.). It seems that for this scenario to happen, the
HMSP provider and the CP must come to some sort of an agreement. This type of
negotiation and agreement between the HMSP and the CP will be further explored
in the following sections that deal specifically with the details of this scenario
(Fig. 5.2).

5.1.1 Overview of Bargaining and Bayesian Games

With the exception of the groundbreaking contributions of John F. Nash [4],
illustrated in Fig. 5.3, bargaining theory is mainly based on [3], which basically
evolved from the seminal paper by Ariel Rubinstein [6], who succeeded in making
the procedure of bargaining quite attractive, mainly due to the proposed model’s
simplicity and ease of understanding.
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Fig. 5.2 Big data, i.e.
enormous amounts of data,
often use storage on the
cloud, a global network of
servers that interoperate to
form a single ecosystem,
which is used, to store data,
on behalf of end devices with
less storage capacity

Fig. 5.3 Graphical
representation of the
groundbreaking contribution
of John F. Nash in bargaining
theory from his original paper
entitled The Bargaining
Problem [4]

Figure 5.3, shows the anticipated utilities of two bargaining individuals, at the
agreements point of the bargaining problem. While the author uses the graph to
demonstrate the agreement or equilibrium point, the paper further illustrates a set
of examples to showcase the application of the theory, which are reproduced in
Table 5.1. Specifically, the example deals with a set of goods over which two
individuals attempt to trade, negotiating over the goods while knowing the utility
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Table 5.1 Illustration of an
example of a bargaining
situation as presented in [4]

Utility to bill Utility to jack

Bill’s goods

Ball 2 4

Whip 2 2

Ball 2 1

Bat 2 2

Box 4 1

Jack’s goods

Pen 10 1

Toy 4 1

Knife 6 2

Hat 2 2

of each good to each player. The paper [4] refers to the two individuals as Bill and
Jack, and the result of the negotiation (proving also the solution point in Fig. 5.3) is
that Bill gives Jack: book, whip, ball, and, bat and that Jack gives Bill: pen, toy, and,
knife (see 5.1).

More specifically, a bargaining situation is an exchange situation, in which
two individuals have a common interest to negotiate a product or a service but
simultaneously have conflicting interests about the price point at which to trade,
because the seller, offering the service, would like to trade at a higher price, while the
buyer, aiming to acquire the service, would like to trade at a lower price. Therefore,
in a bargaining situation, the two players have a common interest to cooperate but
have conflicting interests about exactly how to cooperate. On the one hand, each
player would like to reach an agreement rather than disagree; on the other hand,
each player wants to reach an agreement that is as satisfying to that player’s request
as possible.

Therefore, a bargaining situation may be modelled as a game situation since the
outcome of bargaining depends on both players’ bargaining strategies, i.e. whether
or not an agreement is reached and the terms of that agreement (if one is reached)
depend on both players’ actions during the bargaining process. There exist two
well-known game models of a bargaining situation between two players, which
will describe briefly next, the Nash bargaining game model and the Rubinstein
bargaining game model.

The Nash bargaining game model defines a solution (known as the Nash
bargaining solution) by a simple formula and it is applicable to a large class of
bargaining situations. The classic Nash bargaining game example is the scenario
where two players bargain over the partition of a cake of fixed size. Since the cake
will be partitioned to the two players, the addition of their partitions should equal the
total cake; therefore, the set of non-zero partitions, which sum to the total amount
of the cake, is the set of possible agreements in the bargaining situation. In the
case of disagreement, each player receives a penalty, which is defined according
to the bargaining situation under consideration; the definition of a penalty comes
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from the fact that in bargaining situations the desirable outcome is agreement, thus
disagreement results in a non-satisfactory payoff for the two players. The penalties
of the two players are defined as the disagreement point of the game.

The useful payoff for each player may be defined to be the player’s payoff
received from the received partition in case of agreement, minus the penalty that
would be received in case of disagreement as defined in the disagreement point. The
unique solution of the cake partition game is therefore, the unique pair of partitions
that maximizes the product of the players’ useful payoffs and is referred to as the
Nash product or the Nash bargaining solution.

The second game scenario that we will describe is known as the Rubinstein
bargaining game. This is a game model that is modelled as a sequential-moves
game, in which the players take turns to make offers to each other until agreement
is secured. This model is an intuitive model, because a lot of real-life negotiations
are based on the idea of making offers and counter-offers. From the sequential-
moves model of the bargaining process, it is easy to see that if the two negotiating
players do not incur any costs or penalties for delaying the agreement decision,
the solution to the bargaining game may be indeterminate, because the two players
could continue to negotiate forever. Given that there is a cost to each player for
delaying, then each player’s bargaining power is determined by the magnitude of
this cost.

With regard to the Rubinstein game model that if we consider that the negotia-
tions take place over the partition of a cake, similarly to the Nash bargaining game
model, then we can compare the two game solutions. Considering the moves of the
players in a sequential manner, we have the following: the first player proposes a
partition of the cake; if the second player accepts, agreement is reached and the
game is over; otherwise, the second player proposes a different partition, and the
process of alternating offers continues until an offer is accepted. However, for each
additional negotiation round there is a cost to each player, a cost could be that the
size of the cake becomes smaller in each round. The factor by which the cake
gets smaller may be different for each player and it is referred to as the player’s
discount factor. The Rubinstein bargaining game model has a unique subgame
perfect equilibrium, which makes use of the fact that any offer made at each round
by a player should be equal or greater to the discounted best value that the opponent
can get in the next round.

Another element that must be considered in bargaining situations is truthfulness
of the players. In order to motivate the two bargaining players to be truthful
about any information that may affect the bargaining process, there must exist a
mechanism that can penalize a player who turns out to be dishonest about the real
cost or discount factor, assuming that it is detectable whether a player has been
dishonest or not. Such mechanisms exist and are called pricing mechanisms [5],
constituting an interesting and very promising way to guarantee the truthfulness of
the participating players. In relevant literature there is a particular research field
that is focused on the development, limitations and capabilities of such pricing
mechanisms, known as the algorithmic mechanism design [5]. The algorithmic tools
and theoretical knowledge that have already developed in the field of algorithmic
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Fig. 5.4 In consideration of
various bargaining situations
and model solutions, an
element that must be
considered and subsequently
verified is the truthfulness of
the players

mechanism design constitute a fruitful pool for extracting algorithmic tools for
enforcing players to act honestly, through pricing mechanisms, once these tools are
customized and further developed for handling the needs of any specific scenario,
e.g. a bargaining scenario in this case (Fig. 5.4).

In several situations where interactions occur, the interacting players may not
have complete information about each other’s characteristics. The model of a
Bayesian game is designed to model such situations. A player’s uncertainty about
the opponent’s properties is modelled by introducing a set of possible states, i.e.
probable sets of characteristics that a player may have, also known as a player’s
types. Each player assigns a probability of occurrence to each of the opponent’s
possible types. Consequently, a definition of a Bayesian game is similar to the
definition of a normal interaction game between a number of players, with the
additional consideration of players’ types and the corresponding probability of
occurrence, as believed by the opponent(s).

A Bayesian game can be modelled by introducing nature as a player in the
game. This approach was proposed by John C. Harsanyi in [2]. Nature assigns a
random variable to each player, which could take values of types for each player and
associate probabilities with these types. In the course of the game, nature randomly
chooses a type for each player according to the probability distribution across each
player’s types. The type of a player determines the player’s payoff and the fact that
a Bayesian game is a game model of incomplete information means that at least one
player is unsure of the type and thus the payoff of another player.

In any given play of a Bayesian game, players know their type and in determining
their best action, they must consider what the other player(s) would do if any of the
other possible types were to occur, since any player may be imperfectly informed
about the current state of the game. Therefore, a Nash equilibrium of a Bayesian
game is the Nash equilibrium of the normal form game in which the set of players
includes all possible types for each player, and consequently the set of actions
includes all possible actions for each such state of every player considered. For a
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Nash equilibrium to be determined in a Bayesian game, each player must choose
the best strategy, given his belief about the occurrence of the opponent’s types, the
state of the game and the possible strategies of the opponent players.

5.1.2 Introducing the Bargaining Scenario Between the HMSP
and the CP

As previously mentioned, we consider a 5G network, where service providers offer
health monitoring services, by making use of wearable devices, which are placed
on the customers such that they are able to collect personal data for each customer,
by monitoring selected health indicators, e.g. the heart rate. A consideration for this
scenario is that the continuous generation of new data makes the complete set of data
that needs to be manipulated, such a large amount, that it is impossible to store it
locally, but alternatively, it becomes necessary to store this data away from the user
and make it accessible through the Internet. This is usually done by using storage
on the cloud, which the health-related data can use as storage. The use of the cloud
offers the additional advantage for the service provider of the health monitoring
service that the data can be easily accessible through the use of the cloud over the
Internet. Therefore, we must consider the interaction between the health monitoring
service providers (HMSP) and the cloud providers (CP) over the handling of the
user’s data (Fig. 5.5).

In this chapter, we consider the case where enhanced data protection demands
by the users for the particular health service may require the cooperation of the

Fig. 5.5 Health monitoring services make use of wearable devices, which are placed on the users
such that they are able to collect personal data for each customer, by monitoring selected health
indicators, e.g. the heart rate
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HMSP and the CP in advance to support a particular user. The HMSP and the
SP are selected such that the HMSP has a contract with the user and the CP has
a contract with the CP with regard to the user’s data storage and manipulation
requirements. Once the selection is completed, the HMSP and the CP are required
to cooperate regarding their revenues. The user makes a payment to the HMSP
and in turn the HMSP makes a payment to the CP, and thus the user’s payment
is indirectly partitioned between the HMSP and the CP. The payment partition
is basically a pre-calculated configuration that is adopted by the HMSP and the
CP, with reference to the particular health monitoring service, to ensure that the
whole process is transparent to the user, obeying the user-centric data protection
requirements dictated for such services in 5G networks.

5.2 The Health Monitoring Service Scenario Elaborated

Consider the case where a customer of the converged mobile communication
networks makes a service request for a particular health monitoring service with
strict data protection requirements especially where it comes to data storage and
manipulation. Both the HMSP and the CP will provide resources to satisfy this
service request. Further consider that it is advantageous for two providers, i.e.
the HMSP and the CP to cooperate in order to offer the user a higher guarantee
of service delivery with the particular data protection requirements satisfied. The
cooperation entails that in order to support the particular user’s health monitoring
service request, the HMSP will serve the request in terms of manipulating the data
to generate the required health indicators, and simultaneously the CP will reserve
resources necessary to efficiently store the data generated, making it available to
the HMSP. This cooperation enables service provision to be offered at the highest
guarantees in terms of service to the user and in terms of data protection for the
user’s data.

Since both the HMSP and the CP may quantify their satisfaction of participating
in the service in terms of their revenue gain, and since the two providers must
cooperate for the single service to the user, then the payment for supporting the
service needs to be partitioned between them, in order for the networks to have an
incentive to cooperate. Note that this may be pre-decided between the HMSP and
the CP, which could in turn set the price at which the user will be charged for the
service, but our analysis will approach this scenario from a cooperation perspective.
Therefore, from the cooperation perspective, the partitioning configuration must be
such that it is satisfying to both providers.

This reasoning motivated this work to model the configuration as a solution to
a cooperative bargaining game, which is presented next. The scenario defines the
payment partition as a game of bargaining between the two providers, specifically
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the HMSP and the CP. Firstly, we define the payment partition as a game and, then,
we show that this is equivalent to the well-known Rubinstein bargaining game [3],
when the agreement is reached in the first negotiation period. Given this equivalence,
an optimal solution to the Rubinstein bargaining game would also constitute an
optimal solution to the payment-partition game. The resolution of the game is
presented in Sect. 5.3.

Let q ∈ Q be the data protection guarantees level for which the two providers
negotiate. Consider the payment-partition scenario, where two providers want to
partition a service payment πi(q) paid by the health monitoring service customer.
Let ci(q) be considering the cost of provider i. Note that this is known to each
provider, e.g. this could represent a resource reservation cost for the CP, whereas it
could represent a computational cost for the HMSP.

Given the cost characteristics of provider i, each provider seeks a portion:

πi(q) = ci(q) + φi(q), (5.1)

where φi(q) is the actual profit of provider i, such that:

π1(q) + π2(q) = Π(q), (5.2)

where Π(q) is the total payment paid by the health monitoring service customer.
The providers’ goal is to find the payment partition, which will maximize the value
of φi(q), given the values of Π(q) and ci(q). Definition 5.1 defines the bargaining
game between the two providers:

Definition 5.1 (Payment-Partition Game) Fix a specific data protection guaran-
tees level q ∈ Q such that a fixed payment Π is received. Consider a one-shot
strategic game with two players corresponding to the two providers. The profiles
of the game, i.e. the strategy sets of the two players, are all possible pairs (π1,
π2), where π1, π2 ∈ [0,Π ] such that π1 + π2 = Π . All such pairs are called
agreement profiles and define set Sa . So, Sa = π1 × π2. In addition, there exists a
so-called disagreement pair {sd

1 , sd
2 }, which corresponds to the case where the two

players do not reach an agreement. So, the strategy set of the game is given by
S = Sa

⋃{sd
1 , sd

2 }. For any agreement point s ∈ Sa the payoff Ui(s), for player
i ∈ [2], is defined as follows:

Ui(s) = πi − ci . (5.3)

Otherwise,

U1(s
d
1 ) = U2(s

d
2 ) = 0. (5.4)

This game is referred to as the payment-partition game.
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Fact
Let s∗ = (π∗

1 , π∗
2 ) be an optimal solution of the payment-partition game. Then

φi = π∗
i − ci , where i ∈ [2] comprises an optimal solution of the payment-partition

scenario.

5.2.1 Equivalence to a Rubinstein Bargaining Game

Initially, we show the equivalence between the payment-partition game and a
Rubinstein bargaining game, a.k.a. the basic alternating-offers game defined next
according to [3]:

Definition 5.2 (Rubinstein Bargaining Game) Assume a game of offers and
counter-offers between two players, πr

i (t), where i ∈ {1, 2} and t indicates the
time of the offer, for the partition of a cake, of initial size of Πr . The offers continue
until either agreement is reached or disagreement stops the bargaining process.

At the end of each period without agreement, the cake is decreased by a factor of
δi . If the bargaining procedure times out, the payoff to each player is 0. Offers can
be made at time slot t ∈ N0. If the two players reach an agreement at time t > 0,
each receives a share πr

i (t) · t · δi , where δi ∈ [0, 1] is a player’s discount factor for
each negotiation period that passes without agreement being reached. The following
equation gives the payment partitions of the two players:

πr
1 (t) · t · δ1 = Πr − πr

2 (t) · t · δ2. (5.5)

So, if agreement is reached in the first negotiation period, the payment partition is
as follows:

πr
1 (t) = Πr − πr

2 (t). (5.6)

The payoff Ur
i of the players i, j ∈ [2] if the agreement is reached in iteration t is

as follows:

Ur
i (t) = πr

i (t) = Πr − πr
j (t). (5.7)

Such a game is called a Rubinstein bargaining game.

Proposition 5.1 Fix a specific quality q. Then, the payment-partition game is
equivalent to the Rubinstein bargaining game, when the agreement is reached in
the first negotiation period.

Proof Assuming that an agreement in the Rubinstein bargaining game is reached in
the first negotiation period t = 1, then the game satisfies the following:

Ur
1 (1) + Ur

2 (1) = Πr(1), (5.8)

which is a constant.
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In the payment-partition game, assuming an agreement profile s, we have:

U1(s) + U2(s) = π1 − c1 + π2 − c2 = Π − c1 − c2,

since Π = π1 + π2 and c1, c2 are constants for a fixed data protection guarantees
level. It follows that U1(s) + U2(s) is also constant. It follows that the Rubinstein
bargaining game and the payment-partition game are equivalent.

We define:

Definition 5.3 (Optimal Payment Partition) The optimal partition is when bar-
gaining ends in an agreement profile that gives the highest possible payoff to each
player given all possible actions taken by the opponent.

Proposition 5.1 immediately implies:

Corollary 5.1 Assume that agreement in a Rubinstein bargaining game is reached
in the first negotiation period, that Πr = Π , and that the corresponding profile s∗ is
an optimal partition for the Rubinstein game. Then, s∗ is also an optimal partition
for the payment-partition game.

5.2.2 Designing a Solution to the Payment-Partition Game

Since the Nash bargaining game [3] and the payment-partition game are equivalent,
we utilize the solution of a Nash bargaining game in order to compute an optimal
solution, i.e. a configuration, which is satisfactory for the two providers in terms of
payoffs from the payment-partition game.

The solution of the Nash bargaining game, known as the Nash bargaining
solution, captures such configuration, where the two bargaining game players are
both satisfied. Therefore, since disagreement results in payoffs of 0, we are looking
for an agreement profile s = (π1, π2) such that the corresponding partition of
the players is an optimal payment partition, i.e. the partition that best satisfies
both players’ objectives (Definition 5.3). Section 5.3 elaborates on resolving the
payment-partition game through the use of the Nash bargaining solution and further
addresses issues of truthfulness that arise when applying such configuration.

5.3 Payment Partition Based on the Nash Bargaining
Solution

We have already shown how to model cooperation between the HMSP and the CP
in order to enable service continuity during a service session for an agreed level of
data protection guarantees. Since disagreement is not a desirable strategy for either
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of the two cooperating players, we may conclude that the two players will reach an
agreement. Consequently, the payment must be partitioned in such a way that both
the participating providers are satisfied. To reach the optimal solution we utilize the
well-known Nash bargaining solution [3], which applies to Rubinstein bargaining
games when the agreement is reached in the first negotiation period, and therefore
to the payment-partition game, given the equivalence presented in Sect. 5.2. Since
the Nash bargaining game and the payment-partition game are equivalent, we
compute an optimal solution, i.e. a configuration, which is satisfactory for the two
providers in terms of payoffs from the payment-partition game. The solution of
the Nash bargaining game, known as the Nash bargaining solution, captures such
configuration. Therefore, since disagreement results in payoffs of 0, we are looking
for an agreement profile s = (π1, π2) such that the corresponding partition of the
players is an optimal payment partition, i.e. the partition that best satisfies both
players’ objectives.

The next theorem proves the existence of an optimal partition of the payment
between the two players, given each provider’s cost ci .

Theorem 5.1 There exists an optimal solution for the payment-partition game, and
is given by the following: π1 = 1

2 (Π + c1 − c2), π2 = 1
2 (Π + c2 − c1).

Proof We consider only agreement profiles and thus refer to the partition πi

assigned to player i. In any such profile it holds that π1 + π2 = Π . Assuming
a disagreement implies that cooperation fails between the two players and the
payoff gained by player i equals to Ui(s

d) = 0. Since in any such profile, it
holds that Ui(s

a) > 0 it follows that the disagreement point is not an optimal
solution. Since the payment-partition game is equivalent to the Nash bargaining
game (Corollary 5.1), a Nash bargaining solution (NBS) of the bargaining game
is an optimal solution of the payment-partition game between two players, i.e. a
partition (π∗

1 , π∗
2 ) of an amount of goods (such as the payment). According to the

NBS properties it holds that:

NBS = (U1(π
∗
1 ) − U1(s

d))(U2(π
∗
2 ) − U2(s

d))

= max(U1(π1) − U1(s
d))(U2(π2) − U2(s

d))

0 ≤ π1 ≤ Π,

π2 = Π − π1.

Since U1(s
d) = 0, U2(s

d) = 0 and π2 = Π − π1:

max(π1 − c1)(Π − π1 − c2)

= (−2π1 + Π − c2 + c1) = 0.
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Therefore,

π1 = 1

2
(Π − c2 + c1), π2 = 1

2
(Π + c2 − c1). (5.9)

We proceed to investigate how the solution to the payment-partition behaves
when we consider the existence of a constant that represents the ever-existing
probability of failure to meet the guarantees level, either due to network service
degradation or due to a malicious attack. These events are unlikely but not
impossible and are considered as a constant probability considered by the players in
this scenario.

Theorem 5.2 Assume that there exists a constant value p
f
i to provider i repre-

senting the expected service degradation or failure, based on the probability of a
malicious attack on the infrastructure or the communication link and also based on
the current network conditions. Then, the value of the optimal solution is the same
as in Theorem 5.1.

Proof Our game has the same strategy set as before. Concerning the utility functions
of the players in case of disagreement, we have also U1(s

d) = 0, U2(s
d) = 0,

π2 = Π − π1 as before. In case of agreement, we have in addition a constant
probability p

f
i in the payoff function of each network:

Ui(s) = (1 − p
f
i )(πi − ci). (5.10)

Therefore,

max(1 − p
f

1 )(π1 − c1)(1 − p
f

2 )(Π − π1 − c2)

= (1 − p
f

1 )(1 − p
f

2 )(−2π1 + Π − c2 + c1) = 0.

The optimization shows that if constant probabilities are considered, the optimal
partition is still as previously, i.e. the providers’ cost is the deciding factor for the
optimal solution similarly to Eq. (5.9):

π1(q) = 1

2
(Π − c2 + c1), π2 = 1

2
(Π + c2 − c1). (5.11)

Remark Note that the estimated probability that may be assigned as the probability
of service degradation or failure does not affect the optimal partition, but affects
each provider’s payoff function; therefore, a provider with a high number for such
estimated probability of degradation will receive much less of a payoff than the
optimal payment partition calculated according to its cost.
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5.4 A Bayesian Form of the Payment-Partition Game

Since the partitioning is based on each provider’s cost, it is required that the
providers are truthful about their costs. Truthfulness is a very important consid-
eration in cooperative situations, especially in bargaining games. The question that
arises is whether it would be wise for a player to lie, considering that the player
cannot guess whether the other player has more or less cost, thus not being able
to correctly assess the risk of such an action. Consider in our scenario that the
infrastructure costs of two providers can be easily verified, since often such costs
are advertised (within the service advertisements). However, advertised costs are
only a part of service costs, which may be different for each provider (Fig. 5.6).

A Bayesian game [1] is a strategic form game with incomplete information
attempting to model a player’s knowledge of private information, such as privately
observed costs, that the other player does not know. Therefore, in a Bayesian game,
each player may have several types of behaviour (with a probability of behaving
according to one of these types during the game). We use the Bayesian form for
the payment-partition game, in order to investigate the outcomes of the game, given
that each provider does not know whether the cost of its opponent is lower or higher
than its own.

Fig. 5.6 In a Bayesian Game
each of the interacting players
moves sequentially and
considers one of various types
of behaviours, each of which
results in different payoffs for
the game
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Table 5.2 Provider i payoffs
when opponent is of type
lower-cost

Provider j actions

D C

Provider i actions

D 1
2 (Π + ci − cj )

1
2 (Π + ci − c′

j )

C 1
2 (Π + c′

i − cj )
1
2 (Π + c′

i − c′
j )

Table 5.3 Provider i payoffs
when opponent is of type
higher-cost

Provider j strategies

D C

Provider i strategies

D 1
2 (Π − cj + ci)

1
2 (Π − c′

j + ci)

C 1
2 (Π − cj + c′

i )
1
2 (Π − c′

j + c′
i )

Let each provider in the payment-partition game have two types: the lower-cost
type (including providers of equal cost) and the higher-cost type. Suppose that each
of the two providers has incomplete information about the other player, i.e. does
not know the other player’s type. Furthermore, each of the two providers assigns a
probability to each of the opponent’s types according to own beliefs and evaluations.
Let pl

i be the probability according to which provider i believes that the opponent
is likely to be of type lower-cost, and ph

i = (1 − pl
i) be the probability according to

which provider i believes that the opponent is likely to be of type higher-cost.
Since the two players are identical, i.e. they have the same two types and the

same choice of two actions, we will only analyse provider i; conclusions also hold
for provider j , where i, j ∈ [2], i �= j . Therefore, provider i believes that provider
j is of type lower-cost with probability pl

i , and of type higher-cost with probability
1 − pl

i . Each provider has a choice between two possible actions: to declare its own
real costs (D) or to cheat (C), i.e. declare higher costs c′

i > ci . The possible payoffs
for provider 1 are given in Table 5.2 and in Table 5.3.

Lemma 5.1 If provider i believes that the probability pl
i , i.e. that provider j is of

type lower-cost, is higher than the probability ph
i , then it is more motivated to lie,

where i, j ∈ [2], i �= j .

Proof In Table 5.2, provider i has higher or equal costs to provider j since provider
j is of type lower-cost, thus ci ≥ cj . When both players play D, i.e. they both
declare their real costs, an equal or greater piece of the payment is assigned
to provider i, since the partition of the payment is directly proportional to the
providers’ costs. If provider i plays C, i.e. cheats, while provider j plays D, then
c′
i > ci > cj , a profitable strategy for provider i, since an even greater piece of

the payment will be received. For the cases that provider j decides to play C, then
the payment partition may or may not favour provider j (it depends on the actual
amount of cheating, and the action of provider i). If provider i plays C, then it is
more likely that c′

i > c′
j , and provider i will get a greater piece, than if it plays D.



100 5 Using Game Theory to Characterize Trade-Offs Between Cloud Providers and. . .

Lemma 5.2 If provider i believes that the probability ph
i , i.e. that provider j is of

type higher-cost, is higher than the probability pl
i , then it is more motivated to lie,

where i, j ∈ [2], i �= j .

Proof In Table 5.3, provider i has lower costs compared to provider j , thus ci < cj .
When both players play D, i.e. they both declare their real costs, an equal or greater
piece of the payment is assigned to provider j . If provider i plays C, i.e. cheats then
c′
i > ci , so playing C will end up in a higher payoff for provider i, and in case

provider j plays D, i may even get the bigger piece of the partition. If provider j

plays C, it is still better for provider i to play C, since this will end up in provider
i receiving a greater piece than it would if it plays D when provider j plays C,
although, more likely, not the greater of the two pieces.

5.4.1 Motivating Truthfulness

Proposition 5.2 Two providers playing the Bayesian form of the payment-partition
game are not motivated to declare their real costs but instead they are motivated to
cheat and declare higher costs, i.e. c′

i > ci , i ∈ [2], in order to get greater payoffs.

Proof Straightforward by Lemmas 5.1 and 5.2.

In order to motivate the two providers to declare their real costs, there must exist
a mechanism that can penalize a player who turns out to lie on its real cost, assuming
that it is detectable whether a player has lied or not. In fact, it is possible to estimate
the costs of the two providers considering that some of their costs are advertised
and hence known; we refer to such mechanisms as pricing mechanisms [5]. Let the
costs be detectable after the service session has terminated, whether either of the
participating providers has lied about its costs. In order to motivate the providers to
declare their real costs we introduce a pricing mechanism, i.e. a new variable that
tunes the resulting payoffs, in the payoff function of each player. A side effect for
a provider that decides to cheat is that it risks not to be selected for supporting the
service in the first place, since by declaring higher costs, the compensation received
from the user might be affected, and subsequently, the user might not select the
particular provider. The pricing mechanism is a post-game punishment, i.e. cheating
in a game does not affect the game in which a provider cheats but subsequent games.
Thus, a state of history of a player’s behaviour in similar interactions must be kept.

We may define a pricing mechanism consisting of variable βi ∈ [0, 1], which
represents the probability of being truthful, and it may adaptively modify the payoffs
of a player. The value of βi is adjusted at the end of a HMSP-CP interaction,
according to the player’s behaviour, i.e. whether the player declared its real costs
or whether the player lied. We consider that a revelation of the real costs of the
two providers is always possible at a later stage of the procedure (e.g. after session
termination). The value is adjusted using a punishment factor γ ∈ [0, 1] set by a
centralized controller affecting the user payment in the future.
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Thus, based on β
previous
i , i.e. the previous value of βi for provider i is defined to

be:

βi =
{

β
previous
i − (β

previous
i · γ ), if provider i is caught lying

β
previous
i − (β

previous
i · γ ) + γ, if provider i is truthful.

(5.12)

Equation (5.12) defines βi such that on the one hand it decreases fast when cheating
behaviour is observed, and on the other hand increases slowly when provider i is
truthful, aiming to motivate the players of the bargaining game to remain truthful
since the less frequently a player cheats, the closer to 1 its βi is. The value of γ = 1

10
is reasonable since it allows the faster decreasing and slower increasing behaviour
of βi .

Next, we plot the general behaviour of βi when γ = 1
10 . Thus, Fig. 5.7 illustrates

the general form of βi as it increases from 0 to 1 and decreases back to 0.
The Bayesian form of the payment-partition game is in fact a sequential game,

whereas the actual one-shot payment partition is in practice simply a configuration
imposed on the two interacting providers. In the Bayesian form of the game,
each provider has a memory of its own behaviour during past participations in
interactions with other providers in payment-partition games. Thus each provider
keeps its own internal state information for its actions, but this does not constitute a
history of the game, since the game actions are not directly affected by the internal
state maintained by each player. Furthermore, the decision of the opponent player or
the history of the game does not depend on this state directly. Indirectly, the action
taken by each player at a given interaction may be such as to reflect the information

Fig. 5.7 General form of βi (increasing and decreasing)
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obtained from this internal state, but this is according to the strategy employed by
each provider.

5.5 An Example of Model Evaluation

In this section we evaluate the Bayesian form of the payment-partition game
between two providers cooperating to support a health monitoring service session
requesting data protection guarantees. The payoffs of the game are based on the
Nash bargaining solution, as this has been demonstrated in Sect. 5.3, and further
include the term βi , described in the same section, in order to motivate the players
to cooperate. The payoff to player i, is

πi = 1

2
(Π + βi · ci − βj · cj ). (5.13)

We first run the game (repeated numerical simulations) with the value for βi always
equal to 1, i.e. when no punishment is imposed for lying about costs. The strategies
used for the evaluation of the game for Case 1 (no punishment imposed) involve
three different strategies for each player, where both providers are allowed to be
truthful or lie as follows:

Case 1
Strategy 1 The player always declares the real costs.
Strategy 2 The player always lies about its real costs.
Strategy 3 The player randomly lies 50% of the time and is truthful the rest of the

time.
Subsequently, we run another set of numerical simulations but allow the value of

βi to vary, i.e. we allow punishment based on the history of the provider’s previous
actions. Thus, for Case 2 (with punishment imposed), one more strategy is added to
allow the value of βi to be monitored so that the paying customer could potentially
a decision according to its value (or the controlling entity). This additional strategy
is the following.

Case 2 (Additional Strategy)
Strategy 4 The player monitors its βi and only lies if the value of βi is high, in

order to minimize the effects of cheating on its payoff.
The numerical values used for Π , ci , cj in case the networks are truthful or lying

obey the payoff relations given in Table 5.2 and in Table 5.3 and the overall model
of the payment-partition game as described in Sect. 5.2 and resolved in Sect. 5.3.

Specifically, the payment to be partitioned is equal to 10, and the costs vary from
3 to 5, 3 and 4 for the two types of providers when they are truthful, 4 and 5 for the
two types of providers when they are lying (they claim costs of one unit more than
the actual cost is). Additional work could potentially investigate how the obtained
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Table 5.4 Payment-partition
payoffs for player 1, β1 = 1

Provider 2 strategies

Only D Only C 50% C/D

Provider 1 strategies

Only D 5079.04 4578.54 4829.91

Only C 5579.04 5078.89 5329.42

50% C/D 5329.82 4829.30 5077.09

Table 5.5 Payment-partition
payoffs for player 2, β2 = 1

Provider 2 strategies

Only D Only C 50% C/D

Provider 1 strategies

Only D 4920.96 5421.46 5170.09

Only C 4420.96 4921.12 4670.59

50% C/D 4670.18 5170.7 4922.91

results would be affected by different cost numbers, e.g. larger costs and unequal
lying amounts.

The payoffs vary based on the type of each provider as well as on whether the
provider has declared its real costs or has cheated. The provider types are: 1 = lower-
cost or 2 = higher-cost as these are explained in Sect. 5.4. The four strategies that
each provider may employ in a simulation run are denoted as follows: (1) always
declare its real costs—indicated as only D, (2) always cheat—indicated as only C,
(3) randomly declare real costs or cheat with a probability of 0.5 for each option—
indicated as 50% C/D and (4) only cheat if the value of βi is high, i.e. cheat only if
βi ≥ 0.9 else declare real costs—indicated as cheat-if-beta-high.

First, we present the results for Case 1, when the value of βi is equal to 1,
i.e. when there is no punishment for lying. Tables 5.4 and 5.5 show, each table
corresponds to a different player, the cumulative payoffs from the payment partitions
that the specific player receives for each strategy combination over 100 simulation
runs.

Considering the rows for Player 1, row 2 in Table 5.4 is the highest, showing that
the best strategy for Player 1 is only C. Also, for Player 2, we consider the columns
in Table 5.5. The highest is column 2, thus for Player 2 the best strategy is also
only C. We observe from these results that the highest payoffs are achieved for each
player when he lies and does not declare his real costs, while at the same time his
opponent declares the real costs. In any case, for each strategy of the opponent
a player’s best response is always to lie. Therefore, these results reinforce the
theoretical findings of this model, i.e. that if no punishment mechanism is adopted
for handling cases when player lies about their real costs, then the players are not
motivated to be truthful and declare their real costs.

Next, we present the results for Case 2, when the value of βi is allowed to vary
according to player i’s actions. Each player’s initial value of βi in the simulations is
randomly generated and then adapted to the player’s play according to the selected
strategy. This initial value is indicated in the results for reasons of completion.



104 5 Using Game Theory to Characterize Trade-Offs Between Cloud Providers and. . .

Table 5.6 Statistics for
providers 1 and 2 regarding
generation of types

Provider 1 type Provider 2 type Number of times

Lower-cost Lower-cost 27

Higher-cost Higher-cost 26

Lower-cost Higher-cost 21

Higher-cost Lower-cost 26

Table 5.7 Average provider 1 payoffs from payment-partition game

Provider 2 strategies

Min. R = 4 Max. R = 1749

Avg. R = 311.67 Only D Only C 50% C/D Cheat-if-beta-high

Provider 1 strategies

Only D 1570.83 1855.16 1879.71 1591.25

Only C 1265.66 1558.72 1405.64 1301.49

50% C/D 1454.89 1718.82 1566.51 1479.84

Cheat-if-beta-high 1548.79 1827.05 1653.01 1569.23

Table 5.8 Average provider 2 payoffs from payment-partition game

Provider 2 strategies

Min. R = 4 Max. R = 1749

Avg. R = 311.67 Only D Only C 50% C/D Cheat-if-beta-high

Provider 1 strategies

Only D 1545.84 1251.89 1436.95 1525.41

Only C 1851.01 1557.94 1711.02 1815.18

50% C/D 1661.77 1397.84 1550.16 1638.83

Cheat-if-beta-high 1567.87 1289.62 1463.66 1547.44

Overall, we have run 100 simulation runs with different initial values for βi and
with a randomly generated number of iterations. The number of iterations for each
simulation run is indicated in the results as R.

Table 5.6 illustrates some simulation statistics that show how many times in
the simulation each network is of either type lower-cost or type higher-cost,
respectively, indicating that there is a uniformity in the generation of the player’s
types, giving us confidence in the fact that the two networks behave similarly and
by examining one of them, we may draw similar conclusions for the other.

Tables 5.7 and 5.8 present the averages of the cumulative payoffs from each
simulation run, for all 100 simulation runs. The results are presented for the two
providers (provider 1 and provider 2) partitioning the service payment. Tables 5.7
and 5.8 illustrate through the similarity in the related payoffs that the behaviour
of the two providers is similar. This is due to the fact that the two providers are
motivated by the same incentives and use the same set of strategies. In addition,
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the generation of provider types in the simulation runs is very similar for the two
players, implying that on average the payoffs are eventually very similar for both.

We observe that in all simulation runs, the second strategy, i.e. always to cheat,
is the least profitable strategy for both providers, regardless of their types and initial
values of βi . This is because of the presence of βi in the payoffs, which punishes
the choice of cheating, by detecting such an action after any iteration. On the other
hand, the other three strategies, which include actions of declaring the real costs,
i.e. being truthful, are more profitable strategies. Specifically, the first strategy of
always being truthful is the most profitable strategy illustrating how βi rewards
truthfulness, motivating the player to follow strategy only D, i.e. always declaring
the real costs. In addition, we observe that the fourth strategy of cheating only if βi

is high generates comparable payoffs to the only D strategy. This shows that even if
the provider decides to employ a strategy, which will allow the provider to cheat a
few times much less than the times it cheats when employing the 50% C/D strategy,
the best option in terms of payoffs is still to be always truthful.

Furthermore, it is interesting to note that for each provider, while it is more
profitable to be truthful, i.e. to declare the real costs, the highest payoffs are
accumulated when the opponent decides to cheat, while a provider is truthful.
Therefore, if a provider believes that the opponent is more likely to cheat, it is very
profitable to always be truthful, i.e. to only declare real costs.

In order to get a better sense of each partition, we provide for each combination
of strategies, the percentage partition of the total payment given to the two providers,
considering only the amount given and not the amount that would be given if they
had cooperated (Table 5.9). We observe that the partitions when the same strategies
are used by the two providers are equal or very close to 50% of the amount given,
whereas, for the rest of the combinations using the strategy of always declaring the
real costs, it results in the greatest partition as it also seen by the corresponding
payoffs.

In conclusion, using βi as a pricing mechanism motivates the interacting
providers to declare their real costs, so as to achieve the highest possible payoffs
from their interactions.

Table 5.9 Payment partitions for each strategy combination

Provider 2 strategies

Only D Only C 50% C/D Cheat-if-beta-high

Provider 1 strategies

Only D 50.4%, 49.6% 59.7%, 40.3% 56.7%, 43.3% 51.1%, 48.9%

Only C 40.6%, 59.4% 50%, 50% 45.1%, 54.9% 41.8%, 58.2%

50% C/D 46.7%, 53.3% 55.1%, 44.9% 50.2%, 49.8% 47.5%, 52.5%

Cheat-if-beta-high 49.7%, 50.3% 58.6%, 41.4% 53%, 47% 50.3%, 49.7%
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5.6 Conclusion

Service and cloud providers may easily need to cooperate in a 5G network due
to emerging big data requirements that services may have. In addition, strict data
protection requirements may impose additional structures to ensure security and
privacy of data, such that a cloud provider is more likely to support than a service
provider. Potentially, many different partitions of the service payment may be
proposed for the cooperating providers, but since the service and cloud provider
must cooperate in order to support the specific health monitoring service customer,
the received payment must be partitioned in a satisfying way. Thus, a model of
payment partition is proposed such that an equilibrium state of negotiations is
reached and both players are motivated to cooperate.
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