
Building Games 
with Ethereum 
Smart Contracts

Intermediate Projects for Solidity  
Developers
—
Kedar Iyer
Chris Dannen



Building Games with 
Ethereum Smart 

Contracts
Intermediate Projects for 

Solidity Developers

Kedar Iyer
Chris Dannen



Building Games with Ethereum Smart Contracts

ISBN-13 (pbk): 978-1-4842-3491-4  ISBN-13 (electronic): 978-1-4842-3492-1
https://doi.org/10.1007/978-1-4842-3492-1

Library of Congress Control Number: 2018943122

Copyright © 2018 by Kedar Iyer and Chris Dannen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC, and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/9781484234914.  
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Kedar Iyer
Brooklyn, New York, USA

Chris Dannen
Brooklyn, New York, USA

https://doi.org/10.1007/978-1-4842-3492-1


iii

About the Authors ��������������������������������������������������������������������������������ix

About the Technical Reviewer �������������������������������������������������������������xi

Acknowledgments �����������������������������������������������������������������������������xiii

What Is Ethereum? �����������������������������������������������������������������������������xv

Table of Contents

Chapter 1:  Conceptual Introduction ������������������������������������������������������1

Blocks �������������������������������������������������������������������������������������������������������������������1

Mining �������������������������������������������������������������������������������������������������������������������2

Transactions ����������������������������������������������������������������������������������������������������������3

Ethereum Virtual Machine (EVM) ���������������������������������������������������������������������������3

State Tree ��������������������������������������������������������������������������������������������������������������5

Web3 Explained ����������������������������������������������������������������������������������������������������6

What’s New with Ethereum �����������������������������������������������������������������������������������7

Bitcoin vs� Ethereum ���������������������������������������������������������������������������������������������8

Addresses and Keypairs ����������������������������������������������������������������������������������������9

Contracts and External Accounts ������������������������������������������������������������������������10

Programs in Ethereum ����������������������������������������������������������������������������������������10

Digging into Solidity ��������������������������������������������������������������������������������������������11

Staying Hack-Free ����������������������������������������������������������������������������������������������12

Block Explorers ���������������������������������������������������������������������������������������������������13



iv

Useful Smart Contracts ���������������������������������������������������������������������������������������14

Pros and Cons of Ethereum Gaming �������������������������������������������������������������������14

People to Follow ��������������������������������������������������������������������������������������������������15

Summary�������������������������������������������������������������������������������������������������������������17

Chapter 2:  The Ethereum Development Environment �������������������������19

Getting Set Up �����������������������������������������������������������������������������������������������������19

Hardware Choices �����������������������������������������������������������������������������������������20

Operating System ������������������������������������������������������������������������������������������21

Programmer’s Toolkit �������������������������������������������������������������������������������������23

Ethereum Clients �������������������������������������������������������������������������������������������26

Deployment ���������������������������������������������������������������������������������������������������28

Basic Geth Commands ����������������������������������������������������������������������������������29

Connecting to the Blockchain �����������������������������������������������������������������������������33

Network Synchronization ������������������������������������������������������������������������������34

Faucets ����������������������������������������������������������������������������������������������������������36

Summary�������������������������������������������������������������������������������������������������������������36

Chapter 3:  First Steps with Ethereum �������������������������������������������������37

Project 3-1: Creating Transactions ����������������������������������������������������������������������37

Generating Wallets�����������������������������������������������������������������������������������������37

Obtaining Ether ����������������������������������������������������������������������������������������������38

Sending Fake Ether with the Geth Command Line ����������������������������������������40

Project 3-2: Deployment 101 ������������������������������������������������������������������������������44

Hello World Contract ��������������������������������������������������������������������������������������44

Manual Deployment ���������������������������������������������������������������������������������������46

Deploying with Truffle ������������������������������������������������������������������������������������49

Summary�������������������������������������������������������������������������������������������������������������56

Table of ConTenTsTable of ConTenTs



v

Chapter 4:  Smart Contracts in the Abstract ���������������������������������������57

Truffle Theory ������������������������������������������������������������������������������������������������������57

Configuration �������������������������������������������������������������������������������������������������58

Migrations �����������������������������������������������������������������������������������������������������60

Development Environment ����������������������������������������������������������������������������63

Scripting ��������������������������������������������������������������������������������������������������������64

Tests ��������������������������������������������������������������������������������������������������������������66

Ethereum Virtual Machine �����������������������������������������������������������������������������������67

Gas Fees ��������������������������������������������������������������������������������������������������������67

Solidity Theory ����������������������������������������������������������������������������������������������������68

Control Flow ��������������������������������������������������������������������������������������������������68

Function Calls in Solidity �������������������������������������������������������������������������������69

Contract ABI ���������������������������������������������������������������������������������������������������72

Working with Data �����������������������������������������������������������������������������������������73

Contract Structure �����������������������������������������������������������������������������������������80

Logging and Events ���������������������������������������������������������������������������������������82

Operators and Built-in Functions �������������������������������������������������������������������83

Error Handling �����������������������������������������������������������������������������������������������87

Ethereum Protocol �����������������������������������������������������������������������������������������89

Summary�������������������������������������������������������������������������������������������������������������90

Chapter 5:  Contract Security ��������������������������������������������������������������91

All Contract Data Is Public! ���������������������������������������������������������������������������������91

Lost Ether ������������������������������������������������������������������������������������������������������������95

Addresses ������������������������������������������������������������������������������������������������������95

Contracts �������������������������������������������������������������������������������������������������������96

Storing Ether in Contracts �����������������������������������������������������������������������������������97

Table of ConTenTsTable of ConTenTs



vi

Sending Ether �����������������������������������������������������������������������������������������������������98

Withdraw Methods ��������������������������������������������������������������������������������������������103

Calling External Contracts ���������������������������������������������������������������������������������107

Re-entrancy Attack ��������������������������������������������������������������������������������������107

Race Conditions �������������������������������������������������������������������������������������������111

Suspendable Contracts �������������������������������������������������������������������������������������111

Random-Number Generation ����������������������������������������������������������������������������113

Issues with Integers ������������������������������������������������������������������������������������������115

Underflow/Overflow �������������������������������������������������������������������������������������115

Truncated Division ���������������������������������������������������������������������������������������118

Functions Are Public by Default ������������������������������������������������������������������������119

Use msg�sender Instead of tx�origin �����������������������������������������������������������������120

Everything Can Be Front-Run ����������������������������������������������������������������������������122

Previous Hacks and Attacks ������������������������������������������������������������������������������122

The DAO �������������������������������������������������������������������������������������������������������123

Parity Multi-Sig ��������������������������������������������������������������������������������������������124

Coindash ������������������������������������������������������������������������������������������������������126

Governmental ����������������������������������������������������������������������������������������������126

Summary�����������������������������������������������������������������������������������������������������������127

Chapter 6:  Crypto-economics and Game Theory ������������������������������129

Securing the Blockchain �����������������������������������������������������������������������������������129

Proof-of-Work ����������������������������������������������������������������������������������������������130

Proof-of-Stake ���������������������������������������������������������������������������������������������131

Proof-of-Authority ����������������������������������������������������������������������������������������132

Forming Consensus ������������������������������������������������������������������������������������������132

Transaction Fees �����������������������������������������������������������������������������������������������133

Incentives ����������������������������������������������������������������������������������������������������������133

Table of ConTenTsTable of ConTenTs



vii

Attack Vectors ���������������������������������������������������������������������������������������������������134

51 % Attacks�������������������������������������������������������������������������������������������������135

Network Spamming �������������������������������������������������������������������������������������136

Breaking Cryptography ��������������������������������������������������������������������������������137

Replay Attacks ���������������������������������������������������������������������������������������������138

Testnet Attacks and Issues ��������������������������������������������������������������������������139

Summary�����������������������������������������������������������������������������������������������������������140

Chapter 7:  Ponzis and Pyramids �������������������������������������������������������143

Schemes: Ponzi vs� Pyramid �����������������������������������������������������������������������������143

Verifiably Corrupt ����������������������������������������������������������������������������������������������144

Simple Ponzi �����������������������������������������������������������������������������������������������������145

Realistic Ponzi ���������������������������������������������������������������������������������������������������150

Simple Pyramid �������������������������������������������������������������������������������������������������155

Governmental ����������������������������������������������������������������������������������������������������162

Summary�����������������������������������������������������������������������������������������������������������170

Chapter 8:  Lotteries ��������������������������������������������������������������������������171

Random-Number Generation ����������������������������������������������������������������������������171

Simple Lottery ���������������������������������������������������������������������������������������������������172

Recurring Lottery ����������������������������������������������������������������������������������������������176

Constants and Variables �����������������������������������������������������������������������������������179

Gameplay ����������������������������������������������������������������������������������������������������������181

Cleanup and Deployment ����������������������������������������������������������������������������������186

RNG Lottery �������������������������������������������������������������������������������������������������������187

Powerball ����������������������������������������������������������������������������������������������������������194

Summary�����������������������������������������������������������������������������������������������������������209

Table of ConTenTsTable of ConTenTs



viii

Chapter 9:  Prize Puzzles �������������������������������������������������������������������211

Obscuring Answers �������������������������������������������������������������������������������������������211

Simple Puzzle ����������������������������������������������������������������������������������������������������212

Commit-Reveal Puzzle ��������������������������������������������������������������������������������������216

Additional Prize Challenges ������������������������������������������������������������������������������223

Summary�����������������������������������������������������������������������������������������������������������224

Chapter 10:  Prediction Markets ��������������������������������������������������������225

Contract Overview ���������������������������������������������������������������������������������������������226

Tracking State with Events �������������������������������������������������������������������������������233

Trading Shares ��������������������������������������������������������������������������������������������������234

Resolving Markets ��������������������������������������������������������������������������������������������240

Single Oracle �����������������������������������������������������������������������������������������������240

Multiple Oracle ��������������������������������������������������������������������������������������������242

Schelling Point Consensus ��������������������������������������������������������������������������243

Summary�����������������������������������������������������������������������������������������������������������244

Chapter 11:  Gambling �����������������������������������������������������������������������245

Gameplay Limitations ���������������������������������������������������������������������������������������245

Satoshi Dice ������������������������������������������������������������������������������������������������������245

Roulette �������������������������������������������������������������������������������������������������������������252

Summary�����������������������������������������������������������������������������������������������������������260

 References ����������������������������������������������������������������������������������������261

Index �������������������������������������������������������������������������������������������������263

Table of ConTenTsTable of ConTenTs



ix

About the Authors

Kedar Iyer is a software engineer who 

runs Emergent Phenomena, a blockchain 

consultancy. He is currently writing 

blockchain software as a member of the 

Everipedia team. He has a bachelor’s degree 

in mechanical engineering from UCLA and 

has worked in the past with microsatellites, 

robotics, and multiple startups.  

Chris Dannen is a cofounder and partner at 

Iterative Capital, a large-scale cryptocurrency 

miner, investment manager, and private digital 

asset exchange. A self-taught programmer, 

he has written three technical books and 

holds one computer hardware patent. He was 

formerly the technical editor at Fast Company. 

He graduated from the University of Virginia 

and lives in New York.  



xi

About the Technical Reviewer

Massimo Nardone has more than 23 years 

of experience in security, web/mobile 

development, and cloud and IT architecture. 

His true IT passions are security and Android.

He holds a master of science degree in 

computing science from the University of 

Salerno, Italy.

He currently works as chief information 

security officer (CISO) for Cargotec Oyj and is 

a member of ISACA Finland Chapter Board.

Massimo has reviewed more than 40 

IT books for various publishing companies and is the coauthor of Pro 

Android Games (Apress, 2015). 



xiii

Acknowledgments

Thank you to Chris Dannen and Solomon Lederer for getting me into 

blockchain and introducing me to the NYC blockchain community. To 

Nancy Chen and James Markham at Apress for putting together this book, 

and Chris for offering me the opportunity to write it. And to my parents 

and sister for being supportive of my odd career choices.

—Kedar

Thank you to my team at Iterative Capital for their hard work and support, 

and to Kedar for traversing the smoky parlors of Las Vegas to make the 

games in this book especially authentic.

—Chris



xv

What Is Ethereum?

Ethereum is a trusted compute platform with a native currency built on 

top of a decentralized network. A global network of nodes works together 

to form a consensus on the state of a shared database.

If Bitcoin offers us a glimpse into the future of money, Ethereum offers 

the equivalent for private property, financial assets, legal contracts, supply 

chains, and personal data. Any digital unit that can be owned by someone 

can be stored in an Ethereum smart contract and transferred between 

owners without the need for a third party or middleman such as a bank, 

exchange, or central government.

Ethereum works by successively executing a series of transactions, 

each of which is a block of code. That code is written in a special language 

named Solidity. This is the language we will be exploring in this book.

We will start by getting set up (Chapter 2), deploying simple contracts 

(Chapter 3), and going over the basics of the Solidity language (Chapter 4). 

Then we will take a brief detour into the theory behind contract security 

(Chapter 5) and crypto-economics (Chapter 6) before spending the last 

half of the book walking through a series of sample projects (Chapters 7–11). 

By the end of this book, you will be comfortable reading and interpreting 

existing Solidity contracts and ready to write your own original Solidity code.

 Prerequisites
Working with Ethereum and Solidity requires some knowledge 

of computer science concepts and prior experience with another 

programming language. You don’t need to be an expert, though; just the 

basics will do.



xvi

 Computing Concepts
The best resource for learning the basics of computer science is the 

Harvard CS50 lecture series on YouTube (www.youtube.com/user/cs50tv). 

It’s a fast-paced, detailed course. If you can make it through all 10 weeks, 

by all means do, but the first five lectures will teach you enough to tackle 

Solidity.

For learning about networking, Linux, or security and hacking,  

check out the popular uploads for Eli the Computer Guy on YouTube  

(www.youtube.com/user/elithecomputerguy/videos?shelf_id=26&view= 

0&sort=p). His videos are much more beginner-friendly than the CS50 

lectures, so if you’re looking for a soft intro to ease you in, this the place to 

start.

We will be using UNIX (Linux or Mac) command lines throughout 

the book. Instructions are given for how to make your Windows system 

compatible with our commands, but we recommend learning Linux if  

you can.

Networking and security are less important concepts to know, and you 

can make it through the book and become a Solidity developer without any 

prior knowledge of either. Networking is important in the Ethereum protocol 

under the hood, but is abstracted away at the application level, where we 

will be writing our code. Security is important because the amount of money 

passing through our contracts will make them lucrative targets. We spend 

an entire chapter discussing contact security (Chapter 5), but any additional 

knowledge you can obtain on the topic will serve you well.

 Programming
Before diving into Solidity, you should have previous programming 

experience with another language. The closest language to Solidity is C, 

but it is neither beginner-friendly nor easy to set up. Your best bet for a 

simple programming introduction is Codecademy. The simplest language 

WhaT Is eThereum?WhaT Is eThereum?

http://www.youtube.com/user/cs50tv
http://www.youtube.com/user/elithecomputerguy/videos?shelf_id=26&view=0&sort=p
http://www.youtube.com/user/elithecomputerguy/videos?shelf_id=26&view=0&sort=p


xvii

to learn is Python, and the simplest Codecademy course is Learn Python 

(www.codecademy.com/learn/learn-python).

JavaScript, while slightly more confusing with syntax, is still easy to 

learn and more relevant to Ethereum programming because it is used by 

most client software for interacting with the blockchain. We will be writing 

and issuing simple JavaScript scripts and commands in this book. The 

best resource for JavaScript is the Codecademy Introduction to JavaScript 

course (www.codecademy.com/learn/introduction-to-javascript).

 Suggested Reading
This book is an intermediate-level programming book. Before starting with 

this book, consider that maybe you should be reading a different one.

Introducing Ethereum and Solidity by Chris Dannen (Apress, 2017) is a 

great book for getting you up to speed with all things Ethereum. If you just 

want to understand how Ethereum works without getting deep into the 

nuances of writing smart contracts, that’s the book you should be reading.

In the Beginning…was the Command Line by Neal Stephenson 

(William Morrow, 1999) is the best book I’ve come across on the history 

and metaphysics of software. It reads like a novel, is far better written than 

this book, and if you’re here for anything except learning Solidity, you 

should probably be there instead.

 Protocols, Platforms, and Frameworks
Ethereum is both a protocol and a platform, but not a framework.

A protocol is a series of rules used to standardize communication over 

a network. Basic protocols such as IP and TCP allow the garbled bytes 

flowing through fiber-optic cables to be routed to their proper destinations 

and decoded into a meaningful structure. Without protocols, the 

communication between computers would be random noise, like a Maori 

and English speaker attempting to hold a conversation.

WhaT Is eThereum?WhaT Is eThereum?

http://www.codecademy.com/learn/learn-python
http://www.codecademy.com/learn/introduction-to-javascript


xviii

The Ethereum protocol allows nodes on the Ethereum network to hold 

a meaningful conversation with each other. Through this conversation, 

they can broadcast transactions, synchronize nodes, and form the 

consensus that underpins the network.

Platforms and frameworks are a little more loosely defined. For our 

purposes, we distinguish them by saying platforms allow applications to be 

built on top of them, whereas frameworks are (usually software) structures 

that make building those applications easier.

Ethereum is a platform. We can build and deploy distributed 

applications, or dapps, onto the Ethereum blockchain. Truffle, which 

we will encounter in Chapter 2, is a framework. It makes developing, 

compiling, and deploying Ethereum dapps easy.

WhaT Is eThereum?WhaT Is eThereum?



1© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_1

CHAPTER 1

Conceptual 
Introduction
This chapter provides a high-level overview of the Ethereum blockchain. 

The blockchain is an ordered series of blocks, each of which is an ordered 

series of transactions. A transaction runs on the Ethereum Virtual Machine 

and executes code that modifies the state tree. We will explore each of 

these concepts in more detail in the following sections.

 Blocks
As stated previously, a blockchain consists of an ordered series of blocks. 

A block consists of a header with meta information and a series of 

transactions. Blocks are created by miners through the mining process and 

broadcast to the remainder of the network. Every node verifies received 

blocks against a series of consensus rules. Blocks that don’t satisfy the 

consensus rules will be rejected by the network.

A fork occurs when a network has competing sets of consensus rules. 

This usually occurs through an update in the official client, which in 

Ethereum’s case is a program called geth.

Soft forks occur when the newer set of rules is a subset of the old rules. 

Clients still using the old rules will not reject blocks created by clients using 

the new rules, so only block creators (miners) have to update their software.



2

Hard forks occur when the new set of rules is incompatible with the old 

set. In this case, all clients must update their software. Hard forks tend to 

be contentious. If a group of users refuses to update their software, a chain 

split occurs, and blocks that are valid on one chain will not be valid on the 

other. There have been six hard forks in Ethereum, one of which led to a 

chain split and the creation of Ethereum Classic (ETC).

 Mining
Mining nodes in the Ethereum network compete to create blocks by 

using a proprietary proof-of-work algorithm called Ethash. The input 

to the Ethash algorithm is the block header, which includes a randomly 

generated number called a nonce. The output is a 32-byte hex number. 

Modifying the nonce modifies the output, but in an unpredictable fashion.

For the network to accept a mined block, the Ethash output for the 

block header must be less than the network difficulty, another 32-byte 

hex number that acts as a target to be beaten. Any miner who broadcasts 

a block that beats the target difficulty receives a block reward. The block 

reward is awarded by including a coinbase transaction in the block. The 

coinbase transaction is usually the first transaction in the block and 

sends the block reward to the miner. The current block reward since the 

Byzantium hard fork is 3 ether.

Sometimes two miners produce a block around the same time, and 

only one gets accepted into the main chain. The unaccepted block is called 

an uncle block. Uncle blocks are included in the chain and receive a lesser 

block reward, but their transactions don’t modify the state tree.

The security of a blockchain is proportional to the amount of hashpower 

in the network. More hashpower in the network means each individual 

miner has a smaller percentage of the total hashpower and makes network 

takeover attacks more difficult (see “51% Attacks” in Chapter 6). Including 

uncle blocks in the chain increases the security of the chain because the 

hashpower used to create the unaccepted block doesn’t get wasted.

Chapter 1  ConCeptual IntroduCtIon



3

The network difficulty is constantly adjusted so that a block is 

produced every 15–30 seconds.

 Transactions
A transaction sends ether, deploys a smart contract, or executes a function 

on an existing smart contract. Transactions consume gas, an Ethereum 

measurement unit that determines the complexity and network cost of 

a code operation. The gas cost of a transaction is used to calculate the 

transaction fee. The transaction fee is paid by the address sending the 

transaction to the miner who mines the block.

Transactions can contain an optional data field. For contract 

deployment transactions, data is the bytecode of the contract. For 

transactions sent to a smart contract, data contains the name and 

arguments for the function to invoke.

 Ethereum Virtual Machine (EVM)
A processor is an integrated circuit that executes a series of given 

instructions. Each processor has a set of operations it can perform. An 

instruction consists of an operation code, or opcode, followed by input data 

for the operation. The x86 instruction set is the most common instruction 

set in use today and has about 1,000 unique opcodes.

A program is a set of instructions executing blindly in order. All 

code—be it punchcards, assembly, or a high-level language such as 

Python—gets compiled or interpreted down to a series of raw bytes. 

These bytes correspond to a series of processor instructions that the 

computer can run in order, like a dumb machine. Listing 1-1 shows what 

a Hello World program looks like in x86 Linux Assembly.

Chapter 1  ConCeptual IntroduCtIon



4

Listing 1-1. Hello World in x86 Linux Assembly1

section     .text

global      _start      ;must be declared for linker (ld)

_start:                     ;tell linker entry point

    mov     edx,len         ;message length

    mov     ecx,msg         ;message to write

    mov     ebx,1           ;file descriptor (stdout)

    mov     eax,4           ;system call number (sys_write)

    int     0x80            ;call kernel

    mov     eax,1           ;system call number (sys_exit)

    int     0x80            ;call kernel

section     .data

msg     db  'Hello, world!',0xa   ;our dear string

len     equ $ - msg          ;length of our dear string

A virtual machine, or VM, is a software program that pretends to be a 

processor. It has its own set of opcodes and can execute a program tailored 

specifically to its instruction set. The low-level bytes that correspond to 

VM instructions are referred to as bytecode. Programming languages can 

be written that compile down to bytecode for execution. The Java Virtual 

Machine (JVM) is the most popular virtual machine in use today. Some 

of you make a living off it. It supports multiple languages including Java, 

Scala, Groovy, and Jython.

Because it is an emulation, a virtual machine has the advantage of 

being agnostic to the hardware it runs on. Once a virtual machine has been 

ported to a new platform such as Windows, Linux, or the embedded OS 

1 Sourceforge, “Hello World!”, http://asm.sourceforge.net/intro/hello.html

Chapter 1  ConCeptual IntroduCtIon

http://asm.sourceforge.net/intro/hello.html


5

in your “smart” refrigerator, programs written for that virtual machine can 

run equally well on the fridge as on your “smart” TV. Java’s “Write Once, 

Run Anywhere” motto comes to mind.

Ethereum has a VM of its own called the Ethereum Virtual Machine 

(EVM). Ethereum requires its own VM because each opcode in the EVM 

has an associated gas fee. Fees act as a spam deterrent and allow the 

EVM to function as a permissionless public resource. Each of the EVM’s 

custom opcodes has its own fee, meaning that well-written contracts can 

be cheaper to execute. For instance, the SSTORE operation stores data into 

the state tree, which is an expensive operation because the data has to be 

replicated across the whole network

The sum of the gas fees accumulated by a transaction’s bytecode 

determines the transaction fee.

 State Tree
The primary Ethereum database is its state tree, which consists of key/value 

pairs that map Keccak256 hash keys to a 32-byte value. Data structures 

in Solidity use one or multiple state tree entries to create programming 

constructs that are more conducive to programming. A simple data type is 

32 bytes or less and can be stored in one state tree entry. A complex data 

type like an array requires multiple state tree entries. See the “Data Types” 

section in Chapter 4 for more on Solidity data structures.

Because a Keccak256 hash is 256 bits long, the Ethereum state tree 

is designed to store up to 2256 unique entries. However, after about 280 

entries, hash collisions will make the tree fairly unusable. Either way, this 

is more disk space than currently exists across the world, so developers 

can assume that unlimited storage exists. Paying for that storage is another 

issue, as storing data in the state tree consumes a significant amount of 

gas. Contracts should be written carefully to minimize the number of 

insertions and updates they make to the state tree.

Chapter 1  ConCeptual IntroduCtIon



6

The state tree is modified and built up by executing transactions. Most 

transactions will modify the state tree.

The state tree is implemented as a Merkle Patricia trie. Understanding 

this data structure is not essential for Solidity programming, but if you are 

interested, the details are documented on GitHub at https://github.com/

ethereum/wiki/wiki/Patricia-Tree.

 Web3 Explained
Many early adopters of blockchain technologies were excited by its 

potential to usher in a new era of the Internet—Web 3.0. Web 1.0 was 

the initial phase of the Internet: a platform used mostly for selling 

goods and posting information. Web 2.0 introduced social networks 

and collaboration to the Internet. Sites including Facebook, Flickr, and 

Instagram brought user-created content front and center. Web 3.0 is the 

hope for a new decentralized Web, where central authorities no longer 

have the power to conduct censorship or control user data.

DARPA originally designed the Internet to be a decentralized 

communication network that could not be taken down by attacking any 

central authority. As the Web became more commercialized in the last 15 

years, the degree of centralization has increased as well.

Scoring well on Google’s search algorithm has become a must for new 

sites to gain traffic. Facebook controls a large percentage of user-generated 

data and content behind its walled garden. Netflix and YouTube combined 

account for about one-third of Internet traffic. Countries such as China 

and Turkey take advantage of this by banning sites that do not agree to 

their censorship rules.

One of the goals of Web 3.0 is to re-decentralize the Web so it is harder 

to censor and control. Ethereum is an exciting platform for Web 3.0 

enthusiasts because any application built on top of it is automatically 

decentralized.

Chapter 1  ConCeptual IntroduCtIon

https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree


7

An application on Ethereum is commonly referred to as a distributed 

application, or dapp. Unlike traditional Internet applications, they do not 

need servers for hosting and data storage. The Ethereum network handles 

all the traditional duties of the server, including authentication, contract 

data storage, and an API. This means dapps cannot be censored like 

traditional sites. Censoring a dapp would require blacklisting every node 

on the Ethereum network—not a trivial task.

The term Web3 can lead to a bit of confusion among the Ethereum 

community. Although initially it referred to the idea of Web 3.0, it now also 

commonly refers to Ethereum’s client library, web3.js. We will be using 

web3 to refer to the client library in this book.

 What’s New with Ethereum
As of this writing, the Ethereum development community is largely 

focused on two initiatives that may be relevant to developers building 

dapps with this book:

• Proof-of-stake: Both Bitcoin and Ethereum’s low- 

transaction throughput make some applications and 

services impractical at present. At peak, Bitcoin can 

process 7 transactions per second (TPS); Ethereum 

tops out around 30. In contrast, Visa and MasterCard 

boast tens of thousands of TPS at their peaks. In proof- 

of- stake (PoS), miners are replaced by validators. 

Swapping out the SHA-256 proof-of-work consensus 

algorithm for a PoS algorithm could greatly reduce 

block times, helping Ethereum to increase throughput 

beyond even Visa and MasterCard’s limits.

Chapter 1  ConCeptual IntroduCtIon



8

• Sharding: Currently, every full archival node on 

the Ethereum network must download the entire 

blockchain, which as of this writing stands at over 

300GB. Options for “light syncing” are available but are 

not long-term solutions. Sharding splits the account 

space into subspaces, each with its own validators, 

removing the requirement for the whole network to 

process every transaction. Transaction throughput 

projections for a sharded, PoS-enabled Ethereum 

network reach as high as 2,000 TPS per shard.

 Bitcoin vs. Ethereum
Many of you have received your first exposure to cryptocurrencies and 

blockchains through Bitcoin. Bitcoin was the first cryptocurrency and is 

still the largest and most used. It enabled users to send and receive money 

anywhere in the world without going through a third-party intermediary 

such as a bank or PayPal. Think of it as counterfeit-proof money for the 

Internet.

Ethereum’s primary innovation over Bitcoin is that it adds a trusted 

compute framework on top of a blockchain. Ethereum nodes may not 

necessarily trust each other, but they can trust that the network will 

execute smart contract code in a deterministic fashion. Combined with the 

inclusion of a native currency, this allows for a variety of functionality that 

Bitcoin does not support.

With the exception of hash-locked time contracts, Bitcoin does not 

support conditional paths. Money is either sent or not sent; the transaction 

does not depend on the internal state of the system. This may seem trivial, 

but adding support for conditional paths allows developers flow of control, 

Chapter 1  ConCeptual IntroduCtIon



9

or the ability to specify the order in which individual statements in their 

program are evaluated and/or executed. An escrow payment is an example 

of an exchange that is conditional on both parties’ participation. Bets are 

another example of payouts conditional on an external event. Users don’t 

need to trust each other to trust that the smart contract logic will execute 

as intended.

In many ways, Ethereum is a leap into the unknown. Bitcoin was 

built to solve the specific problem of creating a decentralized currency. 

Ethereum offers programmable value transfer based on arbitrary logic, 

making it conducive to unimagined blockchain-related solutions of 

the future. The largest use-case at the moment is crowdfunding, but 

experiments and applications for betting, escrows, decentralized 

exchanges, prediction markets, decentralized encyclopedias, user- 

controlled smart data, and more are underway.

 Addresses and Keypairs
Ethereum uses the same asymmetric key cryptography methods as Bitcoin 

to authenticate and secure transactions. Public-private keypairs are 

generated, and messages signed by the private key can be decoded only 

with the corresponding public key, and vice versa. An Ethereum address 

is the last 20 bytes of the Keccak256 hash of a public key. Keccak256 is the 

standard hash function used by Ethereum.

Ether balances tied to an address can be spent by whichever user can 

prove ownership of the corresponding private key. To do so, all Ethereum 

transactions are encrypted with the sender’s private key. If the user’s 

public key can be used to decrypt the broadcasted message into a valid 

transaction, that is proof that the user owns the private key.

Chapter 1  ConCeptual IntroduCtIon



10

 Contracts and External Accounts
Ethereum has two types of accounts: external accounts and contracts. 

External accounts are controlled by users, whereas contracts are 

semiautonomous entities on the blockchain that can be triggered by 

a function call. All accounts have an associated balance and nonce. 

The nonce is incremented after every transaction and exists to prevent 

duplicate transactions. In addition to these two fields, contracts have 

access to storage space where they can store additional data fields as 

specified in their contract code.

 Programs in Ethereum
Programs in Ethereum consist of one or more interacting smart contracts. 

Smart contracts can call functions in other smart contracts. Individual 

contracts are similar to classes in a traditional language.

Smart contracts can be written in EVM Assembly, Solidity, Low-Level 

Lisp (LLL), or Serpent. All contracts are eventually compiled down to EVM 

Assembly bytecode. Solidity is the most commonly used language and the 

one we will be using. Serpent has been phased out, and LLL usage is rare. 

New, experimental languages such as Viper are also under development.

Smart contracts are deployed by sending a transaction to the null 

address (0x0…) with the bytecode as the data.

When Ethereum was designed, its creators envisioned that smart 

contracts would call upon existing contracts for most of their functionality, 

with each new smart contract acting as a building block for new contracts 

on the chain. For example, a contract that wishes to manipulate strings 

would call on an existing StringUtils contract to perform operations like 

string concatenation that are not supported by Solidity.

Chapter 1  ConCeptual IntroduCtIon



11

Unfortunately, developing in this style requires interacting directly 

with the Ethereum mainnet for testing and development, which has turned 

out to be quite expensive. Instead, most developers nowadays would copy 

a standard StringUtils contract into their program so that it’s available 

on a private test chain, and then deploy their own copy of the StringUtils 

contract to use in their program. We will see more examples of this in the 

game projects in the latter half of the book.

Smart contracts automatically expose an application binary interface 

(ABI), which is the binary or bytecode equivalent of an API. The ABI 

contains all public and external functions and excludes private and 

internal functions. ABI functions can be called by either an external 

account while sending a transaction or by another smart contract while 

executing its internal logic.

 Digging into Solidity
Solidity is the primary programming language for the EVM. Because the 

EVM has custom opcodes that are not used by conventional processors, 

existing programming languages are an awkward fit for the EVM. Solidity 

was designed specifically for the task of programming smart contracts on 

Ethereum.

Solidity receives many comparisons to JavaScript, but its closest 

relative is C. Solidity is a strongly typed language with minimal 

functionality that emphasizes limiting storage and CPU usage. It supports 

256-bit data types for the EVM, unlike most languages, which support only 

32- and 64-bit processors.

Developers who have never worked with a strongly typed language 

should not find it difficult to adjust to Solidity. Many people actually find 

typed languages easier to deal with than untyped languages, so don’t 

let that intimidate you. Mobile developers coming from Java, Swift, or 

Objective-C will find Solidity syntax pretty familiar. JavaScript developers 

Chapter 1  ConCeptual IntroduCtIon



12

may require some adaptation, as expressions evaluate more easily 

in loosely typed languages but introduce undesired (and potentially 

expensive) ambiguities into a system where computation is fee-based.

In a production setting, all developers will have to adjust to working 

within the gas constraints that limit storage, memory, and CPU usage. 

Embedded systems developers used to working with limited resources will 

likely have the easiest transition to Solidity.

Chapter 4 has much more on the ins and outs of working with Solidity.

 Staying Hack-Free
Because smart contracts can maintain an ether balance, they are 

lucrative targets for hackers. Hacks including the DAO attack and Parity 

multi-sig attack have led to millions of dollars in losses. Most Solidity 

application code is open source, so following best practices is essential 

to avoid leaving glaring security flaws in your contract code. These 

range from interaction techniques such as using a withdrawal method 

instead of sending ether within a contract (see “Withdrawal Methods” in 

Chapter 5) to code techniques such as minimizing conditional paths.

In general, Solidity development should be treated more like building 

a bridge than building a web site. The process is not iterative. Once 

deployed, a contract’s code and ABI cannot be updated. Transferring 

balances from one contract to another, especially for contracts that 

maintain an internal ledger, ranges from difficult to impossible.

Whenever possible, proven legacy code should be used instead of new, 

untested code. Contracts should be thoroughly tested and vetted before 

being deployed to the mainnet.

Chapter 5 covers contract security in extensive detail. It is the most 

important chapter in the book. Make sure to read it before attempting to 

store any assets or ether on a deployed smart contract.

Chapter 1  ConCeptual IntroduCtIon



13

 Block Explorers
Block explorers are web sites that provide an easy-to-use interface for 

navigating a blockchain. Etherscan (https://etherscan.io/) is currently 

the best block explorer available for Ethereum (Figure 1-1). We can use it 

to check the height of the latest block while syncing, monitor a pending 

transaction, view the final gas fee for a transaction, check the network 

difficulty, view the source code or ABI for a deployed contract, and more.

Figure 1-1. Etherscan block explorer

We will be using Etherscan extensively in this book to monitor our 

transactions and wallets. You can search for individual transactions and 

addresses by using the search box in the upper-right corner.

Chapter 1  ConCeptual IntroduCtIon

https://etherscan.io/


14

 Useful Smart Contracts
Smart contracts and dapps on the blockchain are an emerging technology, 

so no prediction about the use of the technology can be made with 100 

percent certainty. That being said, many use cases are being explored that 

look like they have strong potential.

The most proven use case for smart contracts so far is custom tokens 

and crowdsales. Hundreds of tokens have been launched and sold on 

Ethereum so far. The crowdsales are usually referred to as token sales, initial 

coin offerings, or ICOs.

Escrow smart contracts have become popular for the transfer of tokens 

between untrusted parties. The seller grants control of the tokens to the 

smart contract, and the tokens are sent to the buyer only when the buyer 

sends ether to the contract.

Other digital assets besides tokens can be stored using smart contracts 

as well. Companies have built contracts to make stocks, real estate, 

gold, the US dollar, and many other assets available and tradable on the 

Ethereum blockchain.

 Pros and Cons of Ethereum Gaming
Finally, we arrive at games. Today, game developers have a hard time 

handling payments, especially in web-hosted games. Gaming sites take 

deposits and withdrawals from conventional payment frameworks provided 

by Stripe or PayPal, which often require a few days to clear. Ethereum allows 

the game logic to integrate payments and micropayments easily.

Using open source smart contracts for games allows for a transparent, 

reliable method of executing game logic. Historically, users who give their 

money to sites take on counterparty risk, the risk that the owners of the 

site will never return them the money they are owed. When the FBI shut 

down a series of poker sites in 2011, many users lost the money they had 

stored on those sites. Smart contracts on Ethereum can’t be shut down or 

Chapter 1  ConCeptual IntroduCtIon



15

censored. As long as the contract enables users to withdraw ether, they 

will be able to do so. Properly written smart contracts reduce or eliminate 

counterparty risk.

Gambling sites are notorious for rigging games of chance—for 

instance, a digital slot machine that pays out at a lower percentage than 

advertised. A gambling smart contract with open source code can operate 

with proven odds, making it provably fair.

Gaming on Ethereum has drawbacks. Blocks take 15–30 seconds to 

propagate, which means that any update to the smart contract such as a bet 

placement will take 15–30 seconds to propagate. During this pending period 

before a transaction enters a mined block, that transaction is visible to all 

participants in the network. Transactions are processed in order of gas price, 

not time of arrival, so transactions can be front-run by someone paying a 

higher gas price. If the transaction is the answer to a prize puzzle, an order 

on an exchange, or anything where secrecy matters, this can cause issues.

 People to Follow
Twitter and Reddit are the primary modes of communication in the 

crypto community. Almost every project has its own public subreddit for 

community discussion, while general crypto discussions take place on 

Twitter. Here’s a list of tweeters and influencers you can follow to stay up- 

to- date on all things Ethereum:

• Vitalik Buterin (@VitalikButerin): A cofounder of 

Ethereum and the boy-child wonder genius behind 

Ethereum. His blog (https://vitalik.ca/) is an 

absolute must-read for gaining a deeper understanding 

of blockchain tech.

• Gavin Wood (@gavofyork): A cofounder of Ethereum, 

the creator of Solidity, the writer of the Ethereum 

yellow paper, and current head of Parity Technologies.

Chapter 1  ConCeptual IntroduCtIon

https://vitalik.ca/


16

• Alex Van de Sande (@avsa): Ethereum Foundation 

member and head of the Mist Browser team.

• Vlad Zamfir (@VladZamfir): One of the primary 

developers for the Ethereum protocol. Currently 

working on Casper, Ethereum’s next-generation 

proof- of- stake consensus system.

• Taylor Gerring (@TaylorGerring): Helped set up the 

Ethereum Foundation and used to sit on the Ethereum 

board.

• Anthony Diiorio (@diiorioanthony): Former Ethereum 

team member and founder of the Jaxx wallet, one of the 

first wallet apps.

• Jeffery Wilcke (@jeffehh): Lead developer of Go 

Ethereum (geth), the reference client implementation 

for the Ethereum protocol and EVM.

• Joe Lubin (@ethereumJoseph): Ethereum cofounder 

and founder of ConsenSys, an Ethereum think tank, 

startup accelerator, code contributor, and more. 

ConsenSys is one of the largest companies in the 

Ethereum space.

• Charles Hoskinson (@IOHK_Charles): A one-time CEO 

of Ethereum, he is heavily involved in Ethereum Classic 

and runs IOHK, a blockchain research company.

Chapter 1  ConCeptual IntroduCtIon



17

 Summary
Ethereum is a decentralized compute framework that provides reliable 

code execution. It is sometimes referred to as the “world computer,” and 

it has the eventual goal of becoming just that. Code on the blockchain is 

triggered by transactions or internal messages. Transactions are included 

in blocks and added to the blockchain by miners who secure the chain 

with their hashpower.

Solidity is the most popular language for creating Ethereum smart 

contracts. Solidity compiles down to bytecode executing on the Ethereum 

Virtual Machine (EVM). Each opcode in the EVM has an associated gas 

fee. Summing the opcode gas fees gives the gas fee for the transaction. 

Multiplying the gas fee by the user’s chosen gas price yields the transaction 

fee. Miners prioritize transactions by their gas price.

Users secure their ether and on-chain assets with a private key. 

Any on-chain asset transfer requires the owner of the asset to sign the 

transaction with their key.

Security is of paramount importance in Ethereum. Hacks caused by 

poorly written code have led to millions of dollars of value being lost in 

minutes. We place a heavy emphasis on contract security in this book. 

Having covered the conceptual basics, you are now ready to write your first 

smart contracts.

Chapter 1  ConCeptual IntroduCtIon



19© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_2

CHAPTER 2

The Ethereum 
Development 
Environment
This chapter walks you through the setup and installation of tools required 

to run the Ethereum blockchain. We cover hardware requirements, 

operating system requirements, and software requirements. After covering 

the installation of the software, we provide the basic commands required 

to interact with the Ethereum network.

 Getting Set Up
Coders who have set up a development environment for a compiled 

language in the past will find the setup for Solidity to be a similar process. 

Setting up Solidity and the associated tools requires some knowledge of 

the command line and a UNIX-derived operating system. For first-time 

developers or those with no command-line experience, we recommend 

going through the Learn Enough Command Line to Be Dangerous online 

tutorial (www.learnenough.com/command-line-tutorial) before tackling 

Solidity.

http://www.learnenough.com/command-line-tutorial


20

 Hardware Choices
The primary hardware requirements for any blockchain development, not 

just Ethereum, are a reliable Internet connection and large hard drive.

Syncing a copy of the blockchain with a good Internet connection 

can take up to 8 hours, though this operation has to be completed only 

once. Just for the one-time sync, it is recommended to find a minimum 

5Mbps download connection to connect to for a night. Syncing on a 

slower connection, while possible, will simply take longer. Broadcasting 

transactions, communicating with peers, and downloading new block 

information all require an always-on, but not necessarily high-bandwidth 

Internet connection. A connection of 1Mbps download and 512kbps 

upload should be sufficient for day-to-day operation.

The Ethereum blockchain is large and continually expanding. Running 

a full archive node, as of December 2017, takes 350GB of disk space.1 

Thankfully, we can run a full node with just the latest snapshot of the 

state tree, which as of December 2017 occupies only 35GB of disk space. 

Maintaining the state tree snapshot after syncing requires the equivalent 

of syncing an archive node from the current block forward. Ideally, you 

would have 400GB available, but 75GB is the bare minimum you would 

need available to run a full node.

In addition to the hard disk size, your hard disk must be a solid-state 

drive (SSD). Using a traditional seeking disk drive (HDD) will be too slow. 

Any computer manufactured since 2010 will have sufficient compute 

power and RAM, so those should not be an issue.

1 “Ethereum Database Size”, http://bc.daniel.net.nz/

Chapter 2  the ethereum Development environment

http://bc.daniel.net.nz/


21

 Operating System
All the terminal (command-line) commands in this book are geared 

toward users on UNIX-derived operating systems. In modern speak, that 

means if you are running Mac or Linux, you should be fine. Windows 

users will not find this book difficult to follow, as most of the commands 

and code are the same across all systems, but should you choose to use 

Windows, you will be on your own for the installations in the remainder of 

this section.

Tip to make following along with the book easier, Windows  
users can install Gnu on Windows, a series of uniX shell utilities 
ported over to Windows. the installer can be downloaded from 
https://github.com/bmatzelle/gow/wiki.

 Linux

All variants of Linux (Ubuntu, Debian, Red Hat, Arch Linux) already 

have the necessary tools required to run an Ethereum client. We will be 

spending a lot of time operating in the command-line interface (CLI). All 

Linux systems have a built-in CLI program with a name like Terminal, 

Bash, or Shell. Some variants of Linux are CLI-only. Most aren’t. In many 

Linux systems, the shortcut to access the terminal is Ctrl+Alt+T.

In this book, installation instructions for the required CLI programs are 

included for both the apt and yum package managers. Package managers 

make it easy to install other programs and dependencies from the 

command line. Most Linux distributions come with either apt or yum built 

in. If you are not sure about which one you have, type both commands 

into your CLI and see which one works. Figure 2-1 shows the output of the 

built-in apt manager on Ubuntu. 

Chapter 2  the ethereum Development environment

https://github.com/bmatzelle/gow/wiki
https://github.com/bmatzelle/gow/wiki


22

If you are a Windows user and would like to try Linux for this book, 

your first hurdle is getting a Linux distribution installed on your computer. 

Many detailed tutorials on the Internet indicate how to do so, so we don’t 

cover that here. If you choose to go this route, we recommend using 

Ubuntu 16.04 LTS with VirtualBox. Ubuntu is the most beginner-friendly 

version of Linux, and VirtualBox allows you to run a virtual version of 

Linux without the pain and hassle of partitioning your hard drive and 

setting up a dual boot.

 macOS

Under the hood, macOS and Linux are similar operating systems. Both are 

descended from UNIX, an operating system developed by Bell Labs in the 

1970s. The built-in CLI program in macOS is called Terminal, and it has 

many of the same commands as its Linux counterpart.

Figure 2-1. An Ubuntu CLI with apt installed

Chapter 2  the ethereum Development environment



23

Note mac, or macintosh, is the name of the computer produced 
by apple, and macoS is the operating system that runs on a mac. 
Because the two are always sold together, their names are often used 
interchangeably.

For our purposes, the key difference between the two CLI 

environments is the lack of a package manager for macOS. Let’s fix that by 

installing Homebrew. Open the Terminal (you should be able to open it 

from the Spotlight search pop-up, which can be opened with the shortcut 

Command+spacebar) and copy in the following command and then press 

Enter to run the installation:

/usr/bin/ruby -e "$(curl -fsSL https://raw.\

githubusercontent.com/Homebrew/install/master/install)"

When the installation is complete, type brew into Terminal. You should 

see a list of available commands.

 Programmer’s Toolkit
A few basic programming tools are required for any programming project: 

text editor, compiler/runtime, version control. Let’s get these installed 

before we dive into Ethereum clients.

 Text Editor

A text editor is a tool for editing plain text. Plain text is a format enabling 

every letter or symbol to be encoded directly into binary. Code and CLIs 

operate in plain text because it is the simplest compromise between 

humans who like pretty things and computers that want everything as 0s 

and 1s. Most word processors do not actually edit plain text. Microsoft Word 

uses a proprietary format to allow for advanced styling and formatting and 

because Microsoft likes making it difficult for users to leave its platform.

Chapter 2  the ethereum Development environment



24

Any standard text editor will be good enough for Solidity development. 

For those who haven’t used a text editor before, Sublime Text or Atom 

will be a good start. For the Java-heads and mobile developers used to an 

integrated development environment (IDE), there is an IDE for Ethereum 

development called Remix, but it has limited functionality and most 

developers don’t use it.

 Version Control: git

Version control is an essential tool used to back up code, efficiently 

track changes in a codebase, and enable clean collaboration between 

multiple developers. Git is the most popular version control system (VCS). 

Originally developed by Linus Torvalds to manage the Linux kernel source 

code, git is now used by the vast majority of software projects.

Note We will be using git to connect with this book’s official Github 
repository at https://github.com/k26dr/ethereum-games. 
the official Github repo contains all the project code and links for 
this book, and will be updated regularly as the ethereum ecosystem 
evolves.

Follow Listing 2-1 to install git.

Listing 2-1. Installing git

// macOS

brew install git

// Linux

sudo apt-get install git

Chapter 2  the ethereum Development environment

https://github.com/k26dr/ethereum-games


25

 Runtime: JavaScript

The official client library for interacting with an Ethereum node via RPC is 

web3.js. To use it, we need to install Node.js and NPM. Imagine you dug 

through the Chrome browser source code, pulled out just the JavaScript 

engine, and turned it into a command-line program. That’s how Ryan 

Dahl created Node.js, JavaScript’s server-side sister. Node.js uses a module 

system to organize code, similar to Java or Python or Swift. NPM, Node.js 

Package Manager, was created to streamline this process and make sharing 

modules via the Web easy. Think of it as apt or yum for Node.js modules. 

To install, follow Listing 2-2.

Listing 2-2. Installing Node.js and NPM

// macOS

brew install node

// Linux w/ apt

// The second line creates a shortcut from the node command

// to the nodejs program for consistency with the macOS

// package name

sudo apt-get install nodejs npm

sudo ln -s /usr/bin/nodejs /usr/bin/node

 Compiler: Solidity

Solidity is a compiled language that compiles into EVM bytecode similar to 

Java. The Solidity compiler will be the first NPM package we install. Install 

it globally with the following:

sudo npm install -g solc

Chapter 2  the ethereum Development environment



26

 Ethereum Clients
The Ethereum client is the program that implements the Ethereum 

protocol and interacts with the Ethereum network and blockchain. Here 

are some of its responsibilities:

• Sync new chains

• Download and verify new blocks

• Connect to peers

• Verify and execute transactions

• Broadcast local transactions to the network

• Provide basic mining ability

There are multiple Ethereum clients, each with its own pros and cons. 

We will be using two in this book, geth and TestRPC, but cover two more, 

Eth and Parity, so you can be familiar with them.

 Geth

Geth is the official Go implementation of the Ethereum protocol. It is the 

most up-to-date Ethereum client and serves as the reference client for all 

Ethereum updates. As the official reference implementation for Ethereum, 

geth has all the latest security patches and updates. To install geth, follow 

Listing 2-3.

Listing 2-3. Installing geth

# This is a comment

# Any lines starting with '#' will be ignored by the CLI

# For Linux w/ apt

sudo apt-get install software-properties-common

Chapter 2  the ethereum Development environment



27

sudo add-apt-repository -y ppa:ethereum/ethereum

sudo apt-get update

sudo apt-get install ethereum

# For Mac

brew tap ethereum/ethereum

brew install ethereum

 TestRPC

TestRPC is a lightweight Ethereum client that specializes in running private 

chains for development. We will use it to create private networks that are 

sandboxed from the mainnet. It is built into the Truffle framework, and we 

cover it along with Truffle later in this chapter.

 Eth

Eth is the official C++ implementation of the Ethereum protocol. It is used 

in applications such as mining that require high performance. It used to 

support the mining algorithm itself, but that portion of the codebase has 

since been spun off into its own project called Ethminer.

 Parity

Parity is a third-party Ethereum client that aims to provide a user-friendly 

alternative to the geth client and Mist browser. Its development is led by 

Gavin Wood, an Ethereum cofounder and a prominent member of the 

community. Parity is targeted at Ethereum users rather than developers 

and tends to lag geth in having the latest features.

Chapter 2  the ethereum Development environment



28

 Deployment
Ethereum has two types of addresses: wallet addresses and contract 

addresses. They look and act the same, but one belongs to a user, and one 

belongs to a contract. Only the owner of the private key can send the ether 

belonging to a wallet address. A contract address can have a balance, just 

like a wallet address. Only the contract code can send the ether belonging 

to the contract.

Creating a contract is simple in theory; send the contract bytecode to 

the null address (0x). In practice, though, going from a Solidity contract to 

EVM bytecode with a hand-rolled process is a messy affair, so we’re going 

to pull in one more dependency to simplify the process.

 Introducing Truffle

Truffle is a development framework for Solidity and the EVM. Truffle will 

take care of compiling, deploying, and testing our contracts and allow us 

to focus on writing the game contracts. To install Truffle globally, use this 

command:

sudo npm install -g truffle

Let’s get a feel for Truffle by running some basic commands.  

We will go more into the theory of how all this works later. For now, we’re 

going to deploy our first contract to a private chain. Run the commands 

in Listing 2-4 in the order provided. The truffle develop command 

will open a Truffle development console running TestRPC. The migrate 

command should be run in that console.

Tip Windows users should use truffle.cmd instead of truffle 
for truffle commands. as an example, truffle.cmd develop 
would open the truffle dev console.

Chapter 2  the ethereum Development environment



29

Listing 2-4. Deploying a sample dapp with Truffle

mkdir truffle-test

cd truffle-test

truffle init

truffle develop

# Run this command in the Truffle dev console

migrate

# Exit the dev console

.exit

truffle init scaffolds a series of folders and sample files, one of 

which is the contracts folder. You should see a Solidity contract file in 

there: Migrations.sol. Take a quick browse through the code in the file. 

That is the code we just deployed, and reading through it will give you a 

feel for how Solidity contracts are structured.

Migrating is the Truffle equivalent of deploying. A migration in Truffle 

is essentially a deployment script. One of the directories scaffolded by 

Truffle is the migrations/ folder. There should be a sample migration file 

in there as well. Take a look at it to see what a simple migration looks like.

Congratulations! You’ve set up a development chain for yourself and 

deployed your first Solidity contract.

 Basic Geth Commands
Geth is an in-depth program that handles a large deal of functionality. 

Run geth help to see a full list of commands available in geth. It is quite 

comprehensive. We’re going to focus on a small subset of essential 

commands in this section.

Chapter 2  the ethereum Development environment



30

The first command we’re going to try out is no command. Run geth 

with no options or commands. You should see something similar to 

Figure 2-2. Geth is starting up for the first time, connecting to peers, and 

beginning the sync process. Use Ctrl+C to exit geth.

To interact with geth, we need to open geth in console mode. Let’s 

do so with the command geth console. You should see something like 

Figure 2-3 pop up.

Figure 2-2. Geth on startup

Figure 2-3. Geth console

The geth console exposes a series of modules that allow us to interact 

with geth. This includes functionality for creating wallets, sending ether, 

creating contracts, interacting with contracts, and more. As an example, 

to view a list of our wallets, we could input eth.accounts into the console. 

Chapter 2  the ethereum Development environment



31

We don’t have any wallets generated at the moment, so we receive back an 

empty array. We will be generating wallets and obtaining ether in  

Project 3-1, and we will revisit the geth console and its many commands at 

that time. Type exit in the console to quit the program.

Many users find the log messages flowing across the geth console to 

be distracting. To silence the log messages, run the console in silent mode 

with geth --verbosity 0 console.

In addition to the mainnet, geth can be used to access testnets, 

run private nets, and interact with any other network that observes the 

Ethereum protocol. We will regularly be connecting to the Rinkeby testnet 

in this book to test and deploy contracts without having to use any of our 

precious ether. To connect to the Rinkeby testnet, run geth --rinkeby. 

This will connect to Rinkeby peers and begin the sync process for the 

Rinkeby network.

Account and wallet management is one of the core features of geth, 

especially for nondevelopers. To access the account management 

interface, run geth account. This will pull up a help page and list of 

subcommands that can be used for account management. Let’s test one 

of the commands right now by running geth account list. Just as in the 

console section, you will receive an empty response. The command geth 

account new can be used to create a new account, but we will hold off on 

doing so until later in the chapter.

To communicate with dapps and external clients, geth can run 

a JSON-RPC server. To run geth in RPC mode, use geth --rpc. For 

security reasons, RPC mode by default disables access to local private 

keys. We will be needing RPC access to our private keys to sign and send 

transactions, so we will run the RPC server with geth --rpc --rpcapi 

web3,eth,net,personal. The personal module enables access to account 

services.

Chapter 2  the ethereum Development environment



32

Caution enabling the personal rpC api exposes your geth wallets 
to the internet. the only thing preventing others from stealing your 
ether will be your wallet password. make sure it is strong. We will be 
repeating this warning multiple times throughout the book.

Sometimes we will want to run two networks at the same time. Later 

in the chapter, we will be doing this to sync both the mainnet and Rinkeby 

testnet at the same time. By default, geth connects to port 30303 for 

network actions and 8545 for the RPC server. Only one program can be 

listening on a port at a time, so attempting to run two instances of geth at 

the same time will fail by default. To have one of the instances listen on 

a different network port (say, 31303), run geth --port 31303. To have 

one of the RPC servers run on a different port (say, 9545), run geth --rpc 

--rpcport 9545.

 Docs and Resources

The geth docs can be found on GitHub at https://github.com/ethereum/

go-ethereum/wiki/geth The page has links to both the geth console API 

and geth command reference.

Table 2-1 is a reference for useful geth commands. Some are covered 

in this chapter, and others are not covered until later chapters but are 

included here for completeness.

Chapter 2  the ethereum Development environment

https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/ethereum/go-ethereum/wiki/geth


33

 Connecting to the Blockchain
To execute contract deployments and network transactions, you have to 

sync a full node for each network you wish to use. We will be syncing two 

networks for this book: the Ethereum main network (mainnet) and the 

Rinkeby test network (testnet). A test network is a network that runs the 

Ethereum protocol, but whose token has no value. It’s useful for testing 

code, deployments, and transactions without paying gas fees, which can be 

prohibitively expensive for repetitive testing.

Table 2-1. Useful Geth Commands

Description Command

Default geth mode, used for basic 

operation

geth

interactive console (silent mode) geth console --verbosity 0

Command reference geth help

rinkeby testnet geth --rinkeby

account management geth account

Create account geth account new

Sync mainnet geth --fast --cache=1024

Sync rinkeby geth --rinkeby --fast --cache=1024

rpC mode geth --rpc

rpC mode with local wallet access geth --rpc --rpcapi 

web3,eth,net,personal

listen on custom network port geth --port <port>

listen on custom rpC port geth --rpc --rpcport <port>

Chapter 2  the ethereum Development environment



34

Every public Ethereum network has a unique network ID. The network 

ID of the Ethereum mainnet is 1. The network ID of the Rinkeby testnet 

is 4. The network ID of our private chains will be large, random numbers 

whose only job is to be unique enough to avoid syncing with other 

networks.

 Network Synchronization
Geth offers three modes for network synchronization: light, full, and 

archive.

A light node syncs block headers, but does not process transactions 

or maintain a state tree. Light clients are useful for users who wish only to 

maintain wallets and send/receive ether. For developers, a light client will 

be insufficient; we will require a full node.

A full node maintains a local snapshot of the blockchain state tree, 

downloads full blocks, executes block transactions on its local copy of the 

blockchain, and participates in the consensus process. Full nodes are the 

backbone of the Ethereum network. For those of you familiar with torrents, 

think of the full vs. light client dynamic as analogous to seeds vs. leeches. 

Full nodes seed network information to peers, whereas light nodes leech 

information from the network without seeding anything back. Syncing a 

full node is a slow process that takes about 8 hours and consumes about 

30GB of disk space.

An archive node, sometimes referred to as a full archive node, 

maintains not only a current snapshot of the state tree, but also a copy 

of every state transition that has occurred on the chain since the genesis 

block. A full archive node is the granddaddy of Ethereum nodes, and as of 

December 2017, consumes 350GB of space while growing at a rate of 30GB 

per month. If syncing a full node is a slow process, syncing an archive node 

is damn near impossible. Estimates on my laptop with a standard SSD and 

10Mbps Internet connection placed the sync time at 45 days. For those 

Chapter 2  the ethereum Development environment



35

wishing to run an archive node, your best bet is to use geth’s import/export 

functionality to make a copy of the database from an existing archive node.

We will be syncing full nodes for the mainnet and Rinkeby testnet.

 Mainnet

To sync a full node on the mainnet, run the following:

geth --fast --cache=1024

A fast sync will sync a full node without archives. This process takes 

about 8 hours on a 10Mbps or faster Internet connection with an SSD 

drive. Using an HDD takes two to three times longer. The same goes for 

connections below 3Mpbs. Leave the sync running overnight if you can, 

and you should be ready in the morning. To save time, you can sync both 

the mainnet and the testnet at the same time. We explain how to do so in 

the next section.

 Testnet

For the testnet, we will be syncing to the Rinkeby testnet. Past testnets 

for Ethereum include Olympic, Morden, Ropsten, and Kovan. The Kovan 

testnet is still active but has been mostly supplanted by the Rinkeby 

testnet. The other testnets have all been abandoned. Maintaining a testnet 

turns out to be quite a difficult task, and they get successfully attacked 

quite regularly. More on this can be found in the “Testnet Attacks and 

Issues” section in Chapter 6.

We assume that most of you will be syncing the testnet at the same 

time as the mainnet, so we will run the testnet sync on a different port:

geth --rinkeby --port 31303

Leave both networks to sync overnight, and resume the exercises in 

this book when the syncs are complete.

Chapter 2  the ethereum Development environment



36

 Faucets
Mainnet Ether can be purchased on an exchange with bitcoin or fiat 

currency, but no exchange will list testnet ether because it has no value. 

To solve this problem, most testnets use faucets. Faucets are sites that send 

you free crypto. They originated in the early bitcoin days as a quick way for 

users to obtain small amounts of bitcoin to get a feel for the technology, 

but faded away after the coin gained serious value. Nowadays they are 

used seriously only for testnets.

 Summary
Running an Ethereum node requires a large solid-state hard drive 

and a good Internet connection. 75GB of SSD disk space and a 5Mpbs 

connection are an ideal minimum.

The best operating system for developing Ethereum smart contracts is 

Linux, with macOS a close second. If you must use Windows, make sure to 

download GNU on Windows and use truffle.cmd instead of truffle for 

your Truffle commands.

An Ethereum client takes care of syncing and maintaining a local 

copy of the blockchain. It allows us to broadcast transactions and interact 

with deployed contracts. The two main clients we will use are geth and 

TestRPC. TestRPC provides a local dev chain, and geth allows us to connect 

to the mainnet and Rinkeby testnet. In the next chapter, we will use the 

tools and concepts from this chapter to broadcast a simple transaction and 

deploy our first contract.

Chapter 2  the ethereum Development environment



37© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_3

CHAPTER 3

First Steps 
with Ethereum
This chapter is the first of our applied practice chapters. It walks through 

the two fundamental Ethereum interactions. In the first project, we will 

broadcast a transaction to three Ethereum networks. In the second project, 

we will deploy a simple Hello World contract.

 Project 3-1: Creating Transactions
In this exercise, we will use the geth console to send ether. You may have 

used a wallet service to send ether in the past. We will be using JavaScript, 

the language of the geth console, and web3.js, Ethereum’s official client 

library, to send ether in the command line. If you don’t know JavaScript, 

don’t worry. This exercise won’t require any complex code.

 Generating Wallets
To send ether, we need to own ether. And to own ether, we need a wallet. 

So let’s generate a couple of wallets. Some of you may not be able to obtain 

ether for the mainnet, so we will conduct the exercise on both the mainnet 

and the testnet.



38

 Mainnet

To generate a wallet on the mainnet, run this command:

geth account new

You should be prompted for a passphrase.

Tip During the course of this book, we will use “ethereum” as 
the password for all private keys generated in sample projects and 
exercises. Do not copy this or any other password; choose your own.

Later, when we enable the personal module in geth’s RPC server, the 

only thing standing between you and personal crypto ruin will be that 

password. Use a strong password.

If you’re wondering why nothing is showing up on the screen as 

you type your password, that’s standard practice for the command line; 

passwords are completely hidden. Enter and confirm your password, and 

your new address will display.

After the first account is created, create a second account to act as the 

receiver for the transaction.

 Testnet

To create an account on the testnet, run the following:

geth --rinkeby account new

Create two accounts for the testnet as well.

 Obtaining Ether
To send ether, we need to have ether, so let’s get ourselves some.

Chapter 3  First steps with ethereum



39

 Mainnet

There are two ways to obtain ether: buy it directly with fiat, or buy bitcoin 

and then purchase ether with bitcoin. Readers in the United States, 

Canada, and Europe can use Coinbase (www.coinbase.com) or Gemini 

(https://gemini.com) to purchase ether from a bank account or credit 

card. Readers in China can use OKCoin (www.okcoin.com) or BTCC (www.

btcc.com). Readers from any other country can use Coinmama (www.

coinmama.com) to purchase ether directly from a credit card.

For those without access to a credit card, you have to purchase 

bitcoin first. LocalBitcoins (https://localbitcoins.com) is the best way 

to purchase bitcoin directly with cash across the world. After you have 

bitcoin, you can use ShapeShift (https://shapeshift.io/) or any of the 

exchanges mentioned previously to convert your bitcoin into ether.

If you are unable to obtain ether, or the process is taking too long, know 

that you do not need mainnet ether to do any of the projects in this book. 

The Rinkeby testnet is the same as the mainnet in every way, aside from 

the value of the token. The games might not feel as real without real money 

at play, but the differences will be psychological, not technical.

 Testnet

Rinkeby uses a faucet to distribute “test ether” to developers (see https://

faucet.rinkeby.io/). Ether received from the faucet cannot be used 

or spent on the mainnet. You can verify that your testnet transactions 

are successful by entering your account address into the search box on 

the Rinkeby Etherscan site (https://rinkeby.etherscan.io/). The 

transaction that sent my account 3 test ether is at https://rinkeby.

etherscan.io/tx/0xe51f16a048a3832897b19e3cb5ab861d1d708724c47a7

6d974739604d2bd9b1d.

Chapter 3  First steps with ethereum

http://www.coinbase.com/
https://gemini.com/
http://www.okcoin.com/
http://www.btcc.com/
http://www.btcc.com/
http://www.coinmama.com/
http://www.coinmama.com/
https://localbitcoins.com/
https://shapeshift.io/
https://faucet.rinkeby.io/
https://faucet.rinkeby.io/
https://rinkeby.etherscan.io/
https://rinkeby.etherscan.io/tx/0xe51f16a048a3832897b19e3cb5ab861d1d708724c47a76d974739604d2bd9b1d
https://rinkeby.etherscan.io/tx/0xe51f16a048a3832897b19e3cb5ab861d1d708724c47a76d974739604d2bd9b1d
https://rinkeby.etherscan.io/tx/0xe51f16a048a3832897b19e3cb5ab861d1d708724c47a76d974739604d2bd9b1d


40

After the transaction confirms, open a Rinkeby geth console (geth 

--rinkeby --verbosity 0 console). Check your balance with this 

command:

eth.getBalance(eth.accounts[0])

If you used your second generated address instead of the first one, 

pass in eth.accounts[1] instead. eth.getBalance(address) can be used 

to check the balance of any address on the network, even ones that don’t 

belong to you.

You should see a big positive number similar to Figure 3-1.

Figure 3-1. Wallet balance

This is your balance in wei, the base unit of ether. There are 1018 wei in 1 

ether, so view your balance in ether with this command:

eth.getBalance(eth.accounts[0]) / 1e18

JavaScript recognizes scientific notation, so the number you see is your 

balance in Rinkeby ether.

 Sending Fake Ether with the Geth Command Line
We’re ready to make our first transaction! Let’s use the Rinkeby testnet 

to send some of the fake ether you just obtained to the author’s address. 

Open a Rinkeby geth console (don’t forget the --rinkeby flag or you 

will accidentally send real ether) and use web3 to send a transaction 

(Listing 3-1).

Chapter 3  First steps with ethereum



41

Listing 3-1. Sending Ether

eth.sendTransaction({

  from: eth.accounts[0],

  to: "0x2fbd98e03bd62996b68cc90dd874c570a1f94dcc",

  value: 1e17,

  gas: 90e3,

  gasPrice: 20e9

})

Hold up! We just got an error: Error: authentication needed: 

password or unlock. It turns out we need to unlock the account before we 

can use it. To unlock your account:

// replace password with the passphrase for the account

personal.unlockAccount(eth.accounts[0], password)

Now we can run our send function again. You can use the up and down 

arrows to scroll through the command history. Rerun the code in Listing 3- 1. 

You should now get back a long hex. That hex is a transaction ID. If you 

look up the transaction ID on the Rinkeby Etherscan site, you will see the 

details of your transaction. If you click the account address in the To field 

(Figure 3-2), you’ll be able to see a list of all the other readers who have 

made the same transaction!

Figure 3-2. Etherscan “To” field

Chapter 3  First steps with ethereum



42

Let’s circle back to the send function and go over the details of our 

transaction. The proper syntax for the function is eth.sendTransaction

(txOptions). The tx is shorthand for transaction, an abbreviation you’ll 

see many times in the blockchain world. The txOptions object will be a 

part of every transaction we send using web3.js. It uses a total of seven 

keys, but the five we used are the ones you will see most often:

• from: The sender. This account must be unlocked so it 

can sign the transaction.

• to: The recipient. Leave it blank to send a contract 

creation transaction to the null address. Optional, but 

you will never use it to create a contract directly, so it 

should be set.

• value: The amount to send in wei. Optional, defaults to 0.

• gas: The maximum amount of gas the transaction 

can use. Any unused gas is refunded to the user. If the 

gas limit is exceeded, the transaction will throw an 

OutOfGasError and revert all state changes. Optional, 

defaults to 90e3.

• gasPrice: The price per unit of gas for this transaction 

in wei. Gas prices are usually discussed in Gwei (109 

wei). Transactions on the mainnet are prioritized by gas 

price. Transactions with higher gas prices (~40 Gwei) 

tend to get mined by the next block. Transactions with 

low gas prices (~1 Gwei) generally take 5–10 minutes 

to mine. Optional, defaults to the mean network gas 

price. The mean network gas price on the mainnet as of 

December 2017 is about 10 Gwei.

• data: The raw bytecode data to send along with the 

transaction. Web3 has helpers to take care of the details 

of this for us. Optional; we will rarely use this field.

Chapter 3  First steps with ethereum



43

• nonce: An auto-incrementing counter to signal the 

uniqueness of a transaction to the network. Setting 

it manually allows you to override a transaction that 

hasn’t been mined yet. If you set a gas price too low, 

you can override it with a higher gas price by using the 

same nonce as in the transaction you want to override. 

Optional; we will not use it in this book.

The total cost of a transaction is calculated by (gas used) ×  

(gas price). A send operation like the one we executed consumes 21,000 

gas. At our specified gas price of 20 Gwei, our operation cost 0.00042 

ether. Etherscan is a great resource for checking transaction details. It 

lists whether your transaction is pending or has been mined, when it was 

mined, the gas used, and the total transaction cost; and it converts all 

these numbers to dollars at the current market rate. Figure 3-3 shows a 

sample transaction receipt on Etherscan.

Figure 3-3. Etherscan transaction receipt

Chapter 3  First steps with ethereum



44

CHALLENGE: SEND ETHER ON THE MAINNET

the process for sending ether on the mainnet is the same as sending ether on 

the testnet aside from the choice of network on geth. Connect to the mainnet 

by using geth. using the two wallets you created earlier, send ether from one 

wallet to the other and trace the transactions on etherscan. Vary the gas prices 

and watch your execution times change.

the challenge here is to slowly increase the values you’re sending until you’re 

comfortable sending large amounts of money across the network. as you get 

deeper into the crypto world, you will find yourself making large transactions 

in which an error such as mistyping an address or leaving a field blank can 

send your ether into the void. Gaining the confidence and skill to make large 

transactions is essential to becoming a crypto master!

 Project 3-2: Deployment 101
In this exercise, we’re going to deploy our first contract, a simple Hello 

World contract. We will first deploy the contract manually, walking through 

the steps required to make that happen, and then use Truffle to make the 

same deployment and watch the difficulties fade away.

 Hello World Contract
Here’s the code for our simple Hello World contract. Enter the code in 

Listing 3-2 into a new file at contracts/HelloWorld.sol. We won’t cover 

the details of the contract in depth until Chapter 4. For now, the goal is to 

deploy a contract to an Ethereum network.

Chapter 3  First steps with ethereum



45

Listing 3-2. Hello World Contract

pragma solidity ^0.4.15;

contract HelloWorld {

    address owner;

    string greeting = "Hello World";

    // Constructor function

    function HelloWorld () public {

        owner = msg.sender;

    }

    function greet () constant public returns (string) {

        return greeting;    

    }

    function kill () public {

        require(owner == msg.sender);

        selfdestruct(owner);

    }

}

There are three functions in this contract. All three functions are 

marked as public and can be accessed via the contract ABI.

The first function, the constructor function, has the same name as our 

contract and executes when the contract is deployed. It sets the contract 

deployer as the owner of the contract.

The greet function is a constant function, meaning invoking it doesn’t 

modify the state tree or require a network transaction. This is what we will 

use to display our greeting.

Chapter 3  First steps with ethereum



46

The kill function is a common function we will be using in all our 

contracts. It allows the contract to self-destruct, or remove itself from the 

state tree to prevent blockchain bloat. Only the owner of the contract can 

kill the contract. As a good Ethereum citizen, you should be killing all your 

unused contracts.

 Manual Deployment
We’re going to manually compile and deploy our contract to the testnet to 

understand how smart contracts work under the hood. This will be the first 

and last time we do a manual deployment in this book. In your terminal, 

cd into the contracts/ folder and then run the following command to 

compile the contract:

solcjs --bin --abi -o bin HelloWorld.sol

The --bin and --abi flags indicate that we want to output bytecode 

and ABI, respectively. One file will be created for each in our indicated 

output folder bin/.

To deploy this contract, we have to send a transaction to the empty 

address with the bytecode in the data field of the txObject. We could write 

a script to do this for us, but because we will be doing this only once, let’s 

do it manually. Open the bytecode file that was created, bin/HelloWorld_

sol_HelloWorld.bin, and copy the giant hex in the file into the clipboard. 

Open the Rinkeby geth console, and store the hex as a string in the variable 

bytecode (Figure 3-4).

Chapter 3  First steps with ethereum



47

Now deploy the contract (Listing 3-3). Make sure to replace password 

with your password.

Listing 3-3. Deploy EVM Bytecode Contract

// replace password with your password

personal.unlockAccount(eth.accounts[0], password)

tx = eth.sendTransaction({ from: eth.accounts[0], data: 

bytecode, gas: 500e3 })

Omitting the to field in the address defaults to the empty address. 

Including a data field in a transaction to the empty address will execute 

a contract creation transaction. sendTransaction returns a transaction 

ID. To get the address of the contract that was just deployed, repeatedly 

attempt to get the transaction receipt as in Figure 3-5. This will return null 

until the transaction is mined. Expect the transaction to take about 30 

seconds to get mined.

Figure 3-4. Copying bytecode into the geth console

Chapter 3  First steps with ethereum



48

To interact with the contract, we need to know the contract’s address 

and ABI. The address can be obtained from the transaction receipt. Get the 

address with this code:

address = web3.eth.getTransactionReceipt(tx).contractAddress

The compiler outputs the ABI as one of the compilation outputs, so we 

need to copy that in just as we did to the bytecode. Copy the contents of 

the file bin/HelloWorld_sol_HelloWorld.abi and store it in the variable 

abi. You should get something like Figure 3-6.

Figure 3-5. Attempting to get a transaction receipt

Figure 3-6. Hello World contract ABI

Chapter 3  First steps with ethereum



49

With both of those loaded, we can use web3 to create a contract object 

and call our greet function:

HelloWorld = web3.eth.contract(abi).at(address)

HelloWorld.greet()

You should see the greeting “Hello World” pop up in your console. 

Whew! We did it. We deployed a contract manually without Truffle. 

Thankfully, we won’t be doing that again. Let’s do the same deployment 

with Truffle now.

 Deploying with Truffle
Truffle is going to greatly simplify our deployment process. With a little 

bit of configuration, it will allow us to easily deploy a contract to private 

chains, the testnet, and the mainnet.

 Private Chain

Before we can deploy our contract, Truffle requires us to write a migration 

file. Remember, migration files are the Truffle equivalent of deployment files.

Create a new file in the migrations/ folder called 2_hello_world.js 

and copy Listing 3-4 into it.

Listing 3-4. Hello World Simple Migration

var HelloWorld = artifacts.require("./HelloWorld.sol");

module.exports = function(deployer) {

    deployer.deploy(HelloWorld);

};

Chapter 3  First steps with ethereum



50

This is the simplest form of migration we can write. Truffle migrations 

are required to export a callback that executes when the migration runs. 

The callback takes the deployer as its first argument. We use this deployer 

to deploy our contract.

Let’s run this migration to deploy our contract. As before, the migrate 

command will go inside the console opened by the develop command.

Don’t exit the console with exit this time. We will continue using the 

dev console to interact with the contract after deploying it.

truffle develop

migrate -f 2

And voila, we’re deployed. So much easier than a manual deployment, 

isn’t it? The -f flag forces Truffle to run a specific migration. More about 

the migration process is explained in Chapter 4.

To interact with the contract, we continue using the dev console. The 

console automatically loads up our deployed contracts. To run the greet 

function, here is the command:

HelloWorld.deployed().then(h => h.greet())

For all our contracts, the .deployed function will return a promise to 

the most recently deployed version of the contract. We can then call any of 

the ABI functions on the returned instance.

 Testnet

For the testnet and mainnet, additional Truffle configuration is required. 

Configuration settings for our Truffle project are contained in the 

truffle.js file in the project root. The project root is the folder where 

you ran the truffle init command. Modify the truffle.js file so it 

looks like Listing 3-5.

Chapter 3  First steps with ethereum



51

Listing 3-5. Truffle Configuration

module.exports = {

    networks: {

        development: {

            host: "localhost",

            port: 8545,

            network_id: "*" // Match any network id

        },

        // NEW CONFIGURATION INFO HERE

        rinkeby: {

            host: "localhost",

            port: 8545,

            network_id: 4

        },

        mainnet: {

            host: "localhost",

            port: 8545,

            network_id: 1

        }

    }

};

The truffle migrate command has a --network flag that allows you 

to specify which network configuration you wish to use. By default, the 

truffle.js file contains only configuration information for a development 

network. As you’ll see soon, the migration script we wrote for TestRPC will 

have to be modified for geth networks, so we have included two additional 

networks in the configuration file.

Chapter 3  First steps with ethereum



52

By specifying network IDs for Rinkeby and the mainnet, we can 

eliminate a common source of user error in deployments. Truffle 

will verify during every deployment that the expected network ID 

matches the Ethereum client’s network ID. If we try to deploy a script 

to the testnet with a command such as truffle migrate --network 

rinkeby, but are accidentally running geth on the mainnet, Truffle will 

reject the deployment.

 Things to Note When Pushing Projects to Git

Now that we’ve configured Truffle to use multiple networks, we can use 

those networks to modify our migration files. TestRPC automatically 

unlocks our accounts for us, so we don’t have to do so explicitly. For 

security reasons, geth does not, so we will have to modify our migration file 

to explicitly do so.

Modify the module.exports callback in your migration file to look like 

Listing 3-6.

Listing 3-6. Unlocking Accounts in Migration Files

module.exports = function(deployer, network) {

    // unlock account for geth

    if (network == "rinkeby" || network == "mainnet") {

        var password = fs.readFileSync("password", "utf8")

                         .split('\n')[0];

        web3.personal.unlockAccount(web3.eth.accounts[0], password)

    }

    deployer.deploy(HelloWorld);

};

You’ll notice that we load the password from an external file instead of 

importing it directly. This is important. Do not input the password directly 

into the migration file.

Chapter 3  First steps with ethereum



53

Caution the following are the most important few paragraphs in 
this book. Failure to follow these instructions exactly will most likely 
lead to your account being drained of all its ether. You have been 
warned.

When you commit and push your code to GitHub, all your code 

becomes publicly accessible. There are bots running around the Internet 

scraping public GitHub repositories, waiting on a naive soul to hard-code 

their API keys or passwords into their code. Remember when we said the 

only thing standing between the world and your private key when you 

run geth in RPC mode is your password? Well, putting that password on 

the Internet will pretty much guarantee that you will be hacked, and you 

would deserve it.

The proper way to protect not just this password, but any password or 

API key used in a script, is to place it in a gitignore file. .gitignore is the file 

git uses to determine which files to never commit to its repository. In your 

project root, create a .gitignore file and include Listing 3-7 as its contents.

Listing 3-7. Avoiding Cryptopoverty with a .gitignore File

build

password

We can now safely create the password file. In the project root, create 

a file called password and enter your password into it. The migration file 

will read in the password file to get the password. In the migration, to 

read the password file, we use the code fs.readFileSync("password", 

"utf8").split('\n')[0]; to read the password instead of simply reading 

in the file. The reason for this is that most text editors will add in a newline 

character at the end of a file by default, and Node.js doesn’t truncate this 

character. So this code splits the file into lines and then grabs the first line 

to avoid reading in extraneous characters.

Chapter 3  First steps with ethereum



54

Caution Beware the tale of Chad! Chad was a former student 
of mine who forgot to gitignore a file with his aws keys. hackers 
got ahold of his keys and used them to rack up $200,000 worth of 
charges on his aws account in two months, likely to run Distributed 
Denial of service, or DDos, attacks for extortion. Don’t be Chad. 
Gitignore your password file.

Figure 3-7. Chad waking up to a lifetime of debt

Open the Rinkeby geth console in a separate terminal tab now and 

close any other running Ethereum clients. To allow local programs such as 

Truffle to execute transactions, we have to run geth in RPC mode.

From now on, all migrations to the testnet and mainnet have to 

run from the project root so the password file is available in the current 

directory. Attempt to deploy your contracts with Truffle, as shown in 

Listing 3-8.

Chapter 3  First steps with ethereum



55

Listing 3-8. Deploying Hello World to Rinkeby

# Tab 1

geth --rinkeby --rpc --rpcapi personal,web3,eth,net

# Tab 2

# Run from PROJECT_ROOT

truffle migrate -f 2 --network rinkeby

We use the same migrate command as before to deploy the contract, 

but this time it is preceded by the truffle command. This is because 

migrate is a subcommand of the truffle program. To use Truffle 

subcommands as standalone commands, they must be passed as the first 

argument to the truffle program. Any Truffle subcommand can also 

be called directly in the dev console. When called in the dev console, the 

truffle prefix is not required.

The --network flag is used to indicate that we wish to use the 

configurations for the Rinkeby network. If the deployment feels like it’s taking 

a while, that’s normal. The contract should take about 30 seconds to deploy. 

Once you’ve completed the deployment, complete Exercise 3-1 to practice 

interacting with the contract and Exercise 3-2 if you want to deploy the 

contract to the mainnet.

EXERCISE 3-1. GREETINGS FROM THE TESTNET

use the truffle console to access your deployed contract and run the 

greet function. refer to the code in the “private Chain” section if you can’t 

remember the necessary commands.

Chapter 3  First steps with ethereum



56

EXERCISE 3-2. DEPLOYING TO THE MAINNET

Deploying to the mainnet is a similar process to deploying on the testnet. 

the truffle.js and migration files are already configured for a mainnet 

deployment. try to deploy the hello world contract to the mainnet by using 

truffle.

 Summary
In this chapter, we began working with one of the Ethereum testnets, 

creating addresses and initiating transactions from the command line. 

Then we manually deployed a smart contract to the testnet, and learned 

how to use the Truffle library to speed up the deployment process.

Finally, we went over basic precautions for using git for version control 

when building projects with Truffle. In the next chapter, we’ll step back to 

discuss smart contracts in the abstract before diving into more hands-on 

examples.

Chapter 3  First steps with ethereum



57© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_4

CHAPTER 4

Smart Contracts 
in the Abstract
This chapter covers the theory behind smart contract programming, 

with a special focus on Truffle, Solidity, and the Ethereum protocol. The 

chapter is laid out in a fashion that allows it to be used as a reference 

while we’re coding the games in the later chapters of the book. This 

chapter is intended for readers who have prior exposure to programming. 

Extensive experience is not required to understand the chapter, but new 

programmers should first go through a couple of Codecademy modules in 

JavaScript before reading this chapter (see www.codecademy.com/learn/

introduction-to-javascript).

If you are the sort of person who prefers getting their hands dirty first 

and learning the theory as needed along the way, feel free to skip this 

chapter and lean on it as a reference going forward. For those who like to 

get a grasp on the theory behind a subject before jumping into practical 

applications, let’s get started!

 Truffle Theory
Truffle (http://truffleframework.com/) and Embark (https://github.

com/iurimatias/embark-framework) are the two most popular development 

frameworks for Ethereum. We will be using Truffle in this book, but you are 

free to use Embark. Solidity code works equally well on both.

http://www.codecademy.com/learn/introduction-to-javascript
http://www.codecademy.com/learn/introduction-to-javascript
http://truffleframework.com/
http://truffleframework.com/
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework


58

Truffle offers a powerful feature set for easily developing, testing, and 

deploying Solidity smart contracts. We used some many of the basic Truffle 

commands in the “Deploying with Truffle” section in Chapter 3. This 

section goes into more detail on those Truffle commands and highlights 

some new features that we have not used.

 Configuration
Truffle can be configured to use any number of networks that run the 

Ethereum protocol. The configuration file is located at truffle.js.

We created three network configurations in the “Deploying with 

Truffle” section in Chapter 3. These network configurations will be reused 

for the remainder of the contracts in this book. The configuration we 

created there is reproduced in Listing 4-1.

Listing 4-1. Truffle Configuration File

module.exports = {

    networks: {

        development: {

            host: "localhost",

            port: 8545,

            network_id: "*" // Match any network id

        },

        rinkeby: {

            host: "localhost",

            port: 8545,

            network_id: 4

        },

        mainnet: {

            host: "localhost",

            port: 8545,

Chapter 4  Smart ContraCtS in the abStraCt



59

            network_id: 1

        }

    }

};

The three configurations are for the following networks: private chain 

(TestRPC), testnet (Rinkeby), and mainnet. Each network has the following 

options available, some of which we have not set:

• host: This is localhost for our local RPC node. An 

external IP or domain for a hosted node.

• port: The HTTP RPC port for the running node. 

TestRPC and geth use 8545 by default. If geth uses a 

custom port with the --rpcport flag, this configuration 

has to be updated to match.

• network_id: The network ID of the network—1 for 

mainnet, 4 for Rinkeby, and * to match any network.

• gas (optional): The default gas value to specify for 

transactions. Individual transactions can override this 

value. Default: 90000.

• gasPrice (optional): The default gas price for 

transactions in wei. Defaults to the mean network gas 

price. A good value if you wish to set this is 20 Gwei 

(1Gwei = 109 wei). You can go as low as 1 Gwei and still 

have transactions clear within 10 minutes.

• provider (optional): An advanced configuration used 

to pass in a web3 provider. You will likely never use this.

In addition to networks, the configuration file can be used to set 

testing parameters. We will not be running tests in this book, but feel free 

to do so on your own. Truffle uses the Mocha test framework. To add test 

configurations, use the top-level key mocha. The full list of Mocha options 

Chapter 4  Smart ContraCtS in the abStraCt



60

can be found in the Mocha documentation (https://github.com/

mochajs/mocha/wiki). Listing 4-2 is an example configuration for Mocha.

Listing 4-2. Test Configuration

module.exports = {

    networks: {...},

    mocha: {

        useColors: true

    }

};

By default, Truffle will not use the solc optimizer when compiling 

Solidity contracts. The optimizer reduces the size of contracts significantly 

to help you save on gas costs. Listing 4-3 demonstrates how to enable the 

optimizer.

Listing 4-3. Solc Optimizer Configuration

module.exports = {

    networks: {...},

    solc: {

        optimizer: {

            enabled: true,

            runs: 200

        }

    }

};

 Migrations
Migrations are a Truffle construct for managing Ethereum deployments. 

Think of a migration as version control for deployments. Web developers 

who have used a web framework such as Rails will be familiar with the 

Chapter 4  Smart ContraCtS in the abStraCt

https://github.com/mochajs/mocha/wiki
https://github.com/mochajs/mocha/wiki


61

concept. Every migration has a number associated with it, and migrations 

are run in order of their number. After a migration has been run, it will  

not be run again unless explicitly forced. Migrations make it easy to 

replicate your deployments across multiple networks. You can test your 

deployments on a private chain and then rerun the same migrations on the 

mainnet.

A single migration is a JavaScript file containing deployment code. 

We wrote a simple Hello World migration in Listing 3-4. Take a moment 

to review that section if the details are fuzzy. Listing 4-4 is the standard 

migration template we will be using for our projects.

Listing 4-4. Standard Migration File

var fs = require('fs');

var Contract = artifacts.require("Contract");

module.exports = function(deployer, network) {

    // unlock account for geth

    if (network == "rinkeby" || network == "mainnet") {

        var password = fs.readFileSync("password", "utf8")

                         .split('\n')[0];

        web3.personal

            .unlockAccount(web3.eth.accounts[0], password)

    }

    deployer.deploy(Contract);

};

Replace Contract with the name of the contract you want to deploy and 

you’ll have a migration file for that particular contract. If you want to deploy 

multiple contracts in a migration, require multiple contracts through the 

artifacts helper and run deployer.deploy once for each contract.

Chapter 4  Smart ContraCtS in the abStraCt



62

Migration files must export a callback that takes the deployer and 

network as its two arguments. All deployments must occur inside this 

callback. Internally, Truffle is importing all the migrations as a batch, and 

then executing their callbacks in order with the deployer and network 

arguments.

The deployer.deploy function can be used to pass in a series of 

constructor arguments. Listing 4-5 is a Token constructor that can be 

instantiated with a name and supply.

Listing 4-5. Example Token Contract Constructor

function Token(string _name, uint _totalSupply) public {

    name = _name;

    totalSupply = _totalSupply;

}

This Token contract requires two arguments to be instantiated. To 

deploy the contract in a migration, we would pass the required arguments 

to the deployer.deploy function:

deployer.deploy(Token, 'UnicornToken', 1e15)

We will see many more examples of this in the project chapters in the 

latter half of the book.

To run a migration, the command is truffle migrate. This runs the 

standard migration sequence, in which only new migrations are executed.

Our repository, however, will not use a typical linear development 

model. Each of our games will be a standalone contract or set of contracts 

that do not depend on the other games. To accommodate this structure, 

we will be abusing the Truffle migration flags to deploy games individually. 

A typical migration for us will look like this:

truffle migrate -f 2 --to 2

Chapter 4  Smart ContraCtS in the abStraCt



63

This line would run just migration #2. The -f flag forces the migrations 

to start at a specified number, and the --to flag specifies the last migration 

to be run.

 Development Environment
Truffle has a built-in development environment console for quick 

debugging and testing. The command to run the console is as follows:

truffle develop

The dev environment runs a TestRPC private chain in the background. 

On initialization, it will create 10 keypairs and make them available to the 

user (Figure 4-1).

Figure 4-1. Truffle development console

The console comes preloaded with a web3 connection from web3.js. 

Listing 4-6 demonstrates how to access accounts and block information by 

using web3.

Chapter 4  Smart ContraCtS in the abStraCt



64

Listing 4-6. web3 in the Console

web3.eth.accounts // view accounts

web3.eth.accounts[0] // get first account address

// view transaction receipt

web3.eth.getTransactionReceipt("0xfd8779e35e3b645ab3b3e6d7c2191

0f43841d940db7882ec09d9d3627de9501a")

All the standard Truffle commands are available in the console. The 

truffle prefix is not required to run commands in the console. The 

commands in Listing 4-7 are among the valid commands in the console.

Listing 4-7. Truffle Commands in the Console

compile

migrate

migrate -f 3 --to 3

In addition, we can access our deployed contracts. Let’s say we want to 

access the most recently deployed version of a Token contract. Listing 4-8 

demonstrates how to do so.

Listing 4-8. Accessing Deployed Contracts in the Console

token = Token.at(Token.address) // contract instance

token.name // view name

// run transfer function

token.transfer(...)

 Scripting
Running long or repetitive contract interactions in the console can be a 

tedious affair. To make this easier, Truffle allows you to load scripts into the 

dev console.

Chapter 4  Smart ContraCtS in the abStraCt



65

The command to execute a script in the Truffle environment is exec 

script, where script is a JavaScript file. The script can also be executed 

from the standard command-line prompt with truffle exec, but doing so 

requires running an Ethereum client in a separate tab. Because we will not 

be using any scripts in the book, we do not cover the details of how to do this.

Just as with migrations, any interactions with the blockchain in the 

script must go inside an exported callback function. If we wanted to 

execute the HelloWorld greet function in the Hello World contract from 

Chapter 3, we could do so with the code in Listing 4-9.

Listing 4-9. Hello World Truffle Script

HelloWorld = artifacts.require('HelloWorld');

module.exports = function () {

    instance = HelloWorld.at(HelloWorld.address);

    instance.greet().then(console.log);

}

Within the script, we can import contracts with artifacts.require 

and access deployed contracts as we do in the console.

Truffle scripting tends to be buggy and unintuitive, so we won’t use 

any scripts in this book. If you’re executing large amounts of automated 

code, the purpose is generally to run a test interaction, and doing so with 

Truffle tests is simpler and more powerful.

Most blockchain interactions will return a promise, so managing 

the flow of the promises becomes important in larger scripts and tests. 

Promises were touched on briefly in Chapter 3. If you’ve never worked 

with them before, check out the Google tutorial on JavaScript promises at 

https://developers.google.com/web/ilt/pwa/working-with-promises.

Chapter 4  Smart ContraCtS in the abStraCt

https://developers.google.com/web/ilt/pwa/working-with-promises


66

 Tests
Although not a regular occurrence, this book occasionally provides 

automated test code for contracts. Test files can be found in the test/ 

folder. Truffle supports tests written in both JavaScript and Solidity. The 

JavaScript tests use the web3.js library to interact with the blockchain, 

whereas the Solidity tests execute directly on the blockchain.

JavaScript testing uses the Mocha testing framework with Chai. This is 

one of the more popular test frameworks for JavaScript and comes with a 

clean, easy-to-use command-line interface. If you want to learn more, you 

can read the Mocha docs at https://mochajs.org/.

Solidity testing uses a built-in testing framework provided by Truffle. 

Solidity tests have access to a series of deployed contracts that can be 

used for testing. Both the JavaScript and Solidity run in a “clean-room” 

environment, meaning that every test runs on a fresh, sandboxed set of 

deployed contracts. Tests are free to make whatever modifications they 

want without affecting public or local deployments.

To run all test files at once, use the following command:

truffle test

Most of the time, we will be executing an individual test file focusing 

on a specific contract. To run an individual test file, here is the command:

truffle test path_to_file

As an example, to run the test/reentrancy.js test from the project 

root, use this command:

truffle test test/reentrancy.js

Chapter 4  Smart ContraCtS in the abStraCt

https://mochajs.org/


67

 Ethereum Virtual Machine
In Chapter 1, you learned that the EVM is a platform on which all smart 

contract logic executes. The EVM itself is language agnostic; it executes 

bytecode generated by a compiler. As previously mentioned, we will be 

writing all our contracts in Solidity. EVM Assembly can be used inline with 

Solidity, but we will not be touching that beast in this book.

Standard CPUs have either 32-bit or 64-bit words. A word in computing 

is the size of the processor’s register and size of a memory address. Virtual 

machines such as the JVM and EVM have word sizes as well. The EVM has 

a 256-bit (32-byte) word size. This is because memory addresses in the 

EVM state tree are Keccak256 hashes, which are 32 bytes long. The EVM 

state tree stores only nonzero values, so any variable in Solidity pointing to 

a nonexistent memory address is equal to the zero value for the data type. 

Table 4-1 in the “Zero Values” section contains the zero values for each 

data type.

 Gas Fees
Every opcode in the EVM specification has an associated gas fee. An 

opcode is a single instruction on the EVM. For instance, the ADD opcode 

adds two numbers and costs three units of gas, whereas the SSTORE 

opcode stores one word of data into the state tree and costs 5,000 gas for 

a zero value and 20,000 gas for a nonzero value. Storing data on-chain is 

expensive.1

Refunds are given for operations that remove data from the state tree. 

The SSTORE opcode refunds 15,000 gas for removing a word of data from 

the state tree. Refunds are capped at half the gas costs of a transaction.

1 https://ethereum.github.io/yellowpaper/paper.pdf

Chapter 4  Smart ContraCtS in the abStraCt

https://ethereum.github.io/yellowpaper/paper.pdf


68

Solidity compiles into bytecode, which is actually just a series of 

opcode instructions for the EVM. The sum of the gas fees for the compiled 

bytecode instructions is the gas fee for the transaction.

 Solidity Theory
Let’s get an overview of Solidity by walking through the basics of control 

flow, functions, data storage, contracts, logging, and error handling.

 Control Flow
The basic if, else, else if, for, and while control structures are available 

in Solidity with the exact same syntax as in C. Listing 4-10 gives an example 

using conditionals to pay out an over/under bet.

Listing 4-10. Control Flow with Conditionals

if (totalPoints > bet.line)

    balances[bet.over] += bet.amount * 2;

else if (totalPoints < bet.line)

    balances[bet.under] += bet.amount * 2;

else { // refunds for ties

    balances[bet.under] += bet.amount;

    balances[bet.over] += bet.amount;

}

Note that single-statement bodies can omit the brackets as in the if 

and else if portions, whereas the else body requires brackets because it 

has two statements. This is the same as in most C-inspired languages.

The for and while loops are used for repeating actions (Listing 4- 11).  

The continue statement can be used to move to the next iteration in a 

loop, and the break statement can be used to break out of a loop. This 

implementation of loops is most similar to C.

Chapter 4  Smart ContraCtS in the abStraCt



69

Listing 4-11. Loops

// For loops

uint[] memory game_ids = new uint[](games.length);

for (uint i=0; i < games.length; i++) {

    game_ids[i] = (games[i].id);

}

for (uint i = 0; i < games.length; i++) {

    if (games[i].id == game_id) {

        Game game = games[i];

        break;

    }

}

// While loops

// Adding a bid to an exchange order book

uint insertIndex = stack.length;

while (insertIndex > 0 &&

       bid.limit <= stack[insertIndex-1].limit) {

    insertIndex--;

}

 Function Calls in Solidity
Listing 4-12 is a basic addition function, as written in Solidity.

Listing 4-12. Basic Solidity Function

function add(uint a, uint b) public pure returns (uint) {

    return a + b;

}

Chapter 4  Smart ContraCtS in the abStraCt



70

Functions are declared with the keyword function, a name, a list 

of arguments, an optional list of modifiers, and an optional return type, 

in that order. Of these, all are standard in other languages except the 

modifiers. Modifiers are explained in more detail later in the chapter.

A function can return multiple values as well, as in Listing 4-13.

Listing 4-13. Returning Multiple Values

function getScore (Game game) public view returns

(uint home, uint away) {

    return (game.homeScore, game.awayScore);

}

Return types can be followed by an optional descriptive name to make 

the function definition clearer, as in the preceding function.

 Function Visibility Modifiers

Visibility modifiers determine the contexts in which a function can be 

executed. There are four visibility modifiers in Solidity:

• private: Only the current contract can use the 

function.

• internal: Only the current contract and contracts 

inheriting from the current contract can execute the 

function.

• external: The function can be triggered only by a 

transaction or external contract.

• public: There are no restrictions on how the function 

can be called.

If no modifier is specified, the default visibility is public, but as a best 

practice, you should explicitly declare a visibility for each function. Doing 

so could have prevented the Parity multi-sig hack (see Chapter 5).

Chapter 4  Smart ContraCtS in the abStraCt



71

Only external and public functions are a part of the ABI. The ABI is 

discussed in more detail in the “Contract ABI” section.

 State Permission Modifiers

Only some functions are permitted to modify the state tree. Functions 

declared with one of the following three modifiers cannot modify state or 

send ether:

• view: Can read information from the state tree but 

cannot modify state.

• pure: Cannot read or modify the state tree. The return 

value depends on only the function arguments.

• constant: An alias for view. Deprecated to prevent 

confusion with constant variables.

Although in theory you could declare all your functions without state 

permission modifiers to keep things simple, there’s a huge advantage 

to using state permission modifiers. RPC calls to view or pure functions 

return immediately and don’t send a transaction. This means you can get 

back the information you need without paying gas fees or waiting for the 

transaction to mine. Additionally, functions don’t ordinarily return a value 

if called via transaction, so state permission modifiers are the only way to 

view return values in an Ethereum client.

 Payable

The modifier payable is special, allowing functions to accept ether  

(Listing 4-14). Ordinary functions will throw an error if you attempt to 

send ether along with the function call. The amount of ether sent will be 

available in the msg.value field in units of wei.

Chapter 4  Smart ContraCtS in the abStraCt



72

Listing 4-14. Payable Functions

function buyLottoTicket() payable {

    require(msg.value == TICKET_PRICE);

    players.push(msg.sender);

}

 Fallback Function

Every contract can have one unnamed function that acts as a default 

function to execute when no other functions can match the transaction call 

or when a transaction is sent to a contract without specifying a function. 

This function can be made payable so it accepts ether.

This function is generally used by contracts that are used for a single 

type of purchase, such as a crowdsale or lottery contract. It’s convenient for 

users because they can simply send ether to an address and the function 

will execute. Listing 4-15 gives an example of a fallback function from the 

EOS crowdsale.

Listing 4-15. EOS Crowdsale Fallback Function

function () payable {

   buy();

}

Simple. Sending ether to the contract will execute the buy function. 

Users still have to make sure they are providing enough gas for the function 

to properly execute.

 Contract ABI
The contract ABI (application binary interface) lists all the available 

functions in a contract. Only public and external functions are added to 

the ABI. Functions not in the ABI are inaccessible to outside contracts.

Chapter 4  Smart ContraCtS in the abStraCt



73

Ethereum uses JSON as the standard format for an ABI file. We created 

an ABI file when we compiled the Hello World contract in the “Manual 

Deployment” section of Chapter 3. Truffle handles the creation and 

loading of these files for us internally, so we don’t have to worry about 

them for the most part.

To track a contract and execute contracts through an external wallet 

service, you need access to the ABI. You can find the ABIs for your 

contracts in the JSON files in build/contracts/ under the key abi.

 Working with Data
Data access and storage is the trickiest part of Solidity development. Because 

storage on the blockchain is expensive, Solidity has programming constructs 

designed to minimize storage fees. We will go through those constructs in 

this section after a quick overview of the data types built into the language.

 Data Types

Solidity is a strongly typed language, so every variable has an associated 

data type. Let’s walk through the list of data types available in Solidity. 

Most are standard, but some are unique to Solidity and Ethereum.

The address field is a 20-byte store specifically designed to hold 

Ethereum addresses (Listing 4-16). The address type has two members, 

balance and transfer, that can be used to check an address’s balance and 

transfer its ether.

Listing 4-16. Using Address Types

address user = "0x801aa94F6B13DdF90447827eb905D7591b12eC79";

if (user.balance < 1 ether)

    user.transfer(1 ether);

The boolean type bool has only two possible values: true or false.

Chapter 4  Smart ContraCtS in the abStraCt



74

There are many integer types in Solidity: int is a signed 32-byte integer, 

and uint is an unsigned 32-byte integer. Also available are int8 through 

int256 by multiples of eight, and uint8 through uint256 by multiples of eight. 

So int32 and uint224 are valid, but int55 is not. Integers can be assigned with 

both numbers and hex. All the assignments in Listing 4-17 are valid.

Listing 4-17. Integer Assignments

uint a = 32;

int b = 0x35bb;

uint8 c = uint8(a);

Solidity does not currently support floating- or fixed-point numbers, 

though that should change pretty soon. See Listing 4-29 for how to 

simulate decimal arithmetic with integers.

Solidity also supports multiple byte types: bytes1 through bytes32 

are fixed-size byte arrays holding the specified number of bytes. byte is 

an alias for bytes1. bytes is a dynamically sized byte array. It must be 

initialized with an initial length. Arrays are covered in more detail in the 

next section.

All byte types have a property .length that gives the length of the byte 

array. For fixed-size byte arrays, the value is read-only. For the dynamically 

sized bytes type, the length property can be reassigned to lengthen or 

shorten the array. Listing 4-18 gives a couple of examples using byte types.

Listing 4-18. Byte Types

byte a = byte(1);

uint b = 0x1573593ab3;

bytes32 c = bytes32(b);

c.length; // 32

bytes d = new bytes(32);

d.length = 64; // d is now a 64 byte array

Chapter 4  Smart ContraCtS in the abStraCt



75

In this listing, string is an alias for bytes but it is interpreted by Solidity 

as a Unicode string. Solidity’s string support is minimal (Listing 4-19). Basic 

functions such as string concatenation are not built into the language, and 

any string manipulation requires a conversion to bytes.

Listing 4-19. Solidity’s (Lack of) String Support

string a = "hello";

string b = "world";

string c = a + b; // Error: string concatenation not supported

The type enum is an enumerable type for which only user-defined 

values are permitted. enum is explicitly convertible to integer types. 

The integer value of each enum is its zero-indexed order in the enum 

declaration (Listing 4-20).

Listing 4-20. Enumerables

enum State { Active, Refunding, Closed }

State state = State.Refunding;

uint(state); // 1

uint(State.Active) // 0

The type mapping is Solidity’s version of a hashmap. It’s a key/value 

store in which both the key and the value must adhere to the specified data 

type. The value can be any data type, whereas the key type is restricted 

to address, bool, the integer types, fixed-size arrays, and the fixed-size 

byte types. The most common use case for a mapping is to store internal 

balances of token or ether.

mapping(address => uint) public balances;

balances[msg.sender] += 10;

Every key in a mapping is hashed to a unique address in the state tree, 

so in theory a mapping can be as large as the entire state tree (2256 keys), 

and every key is initialized to the zero value of the data type. Unfortunately, 

Chapter 4  Smart ContraCtS in the abStraCt



76

this also means there is no way to obtain the set keys for a mapping or 

differentiate between unset values and zero values. You will have to 

maintain a separate array if you wish to track set keys.

 Arrays

A sequence of any data type, including structs, can be created with arrays. 

Solidity supports both fixed-size and dynamic arrays. All arrays have a 

.length property. For fixed-size arrays, .length is read-only. Dynamic 

arrays can be resized by setting the .length property. Items can also be 

appended to a dynamic array with .push to automatically lengthen the 

array by 1. Common array examples are given in Listing 4-21.

Listing 4-21. Arrays

uint[3] ids; // empty fixed size array

uint[] x; // empty dynamic array

x.push(2);

x.length; // 1

x.length += 1; // adds a zero value element

 Structs

When the preceding types do not suffice, or a more complex data type is 

required, Solidity supports struct, similar to a C struct (Listing 4-22).

Listing 4-22. Structs

struct Bet {

    uint amount; /* in wei */

    int32 line;

    BetStatus status; /* enum */

}

Bet memory bet = Bet(1 ether, -1, BetStatus.Open);

bet.line; // -1

Chapter 4  Smart ContraCtS in the abStraCt



77

The struct type defines a complex data type that has other data types 

as members. Any data type can appear in a struct, and nesting structs is 

permitted. Declaring a struct creates a constructor that can be used to 

instantiate instances of that struct. Struct members are accessed with the . 

notation (bet.line, bet.amount, etc.).

 Zero Values

The zero value is the default value for an uninitialized variable. Every data 

type has an associated zero value. Table 4-1 lists the zero values for each 

data type.

Table 4-1. Zero Values for Solidity Data Types

Data Type(s) Zero Value

integer types 0

bool false

address 0x0

byte types 0

array [ ] (length = 0)

mapping no keys

For a struct, each individual member will be initialized to its own  

zero value.

Variables set or initialized to the zero value in Solidity are not included 

in the state tree. The delete keyword in Solidity resets a variable to its zero 

value and deletes the variable from the state tree.

Chapter 4  Smart ContraCtS in the abStraCt



78

 Variable Visibility Modifiers

There are two types of variables, state and local. State variables are 

generally declared in the global contract scope. Local variables are 

declared within a function and destroyed when the function is complete. 

State variables can be declared public, private, or internal, but they 

cannot be declared external. See the previous “Visibility Modifiers” 

section for a description of those terms.

Solidity automatically generates a getter ABI function for all public 

state variables. For arrays and mappings, the getter takes one argument, 

corresponding to the index and the key, respectively. The getter functions 

are view functions, so do not require a transaction to access. Listing 4-23 is 

a Bear contract we will use to demonstrate getters.

Listing 4-23. Variable Types and Getters

contract Bear {

    // state variables

    string public name = "gummy";

    uint internal id = 1;

    function touchMe (uint times) public pure returns (bool)

    {

        bool touched = false; // local variable

        if (times > 0) touched = true;

        return touched;

    }

}

In this case, Solidity would generate a getter function for name, but not 

id or touched.

Chapter 4  Smart ContraCtS in the abStraCt



79

 Storage vs. Memory

Solidity stores locations in two places: in the state tree and in memory. 

Storage in the state tree persists on the blockchain, whereas the memory 

is cleared after every transaction. Storage on the state tree is expensive 

and should be used only when necessary. Memory is cheap and should be 

used whenever possible. Solidity refers to these two locations as storage 

for the state tree and memory for memory. We do the same going forward.

Local variables that aren’t arrays or structs and all state variables 

are automatically forced into storage. For local arrays and structs, we 

can choose where to store the variable. Arrays and structs in function 

arguments default to memory, whereas local arrays and structs default 

to storage. Both of these can be overridden when necessary by explicitly 

declaring the variable with the keywords storage or memory. Examples of 

each of these situations are available in Listing 4-24.

Listing 4-24. Basic Data Locations

contract Airbud {

    // state variables forced to storage

    address[] users;

    mapping(address => uint) public balances;

    function yelp () public payable {

        // local variable defaults to storage

           address user = msg.sender;

        // local variable declared to memory

        uint8[3] memory ids = [1,2,3];

    }

}

Chapter 4  Smart ContraCtS in the abStraCt



80

Because data location declarations are not found in other languages, 

we make it a point to clearly explain the uses of the memory and storage 

keywords in our code as we go along.

 Contract Structure
The modular unit of Solidity code is the contract. A contract works 

similarly to a class in classical programming. Contracts can inherit from 

one another, and modifiers can be used to mix in functionality.

 Inheritance

The closest parallel to Solidity’s inheritance system is Python. Solidity 

supports multiple inheritance by using the is keyword. If a function or 

variable is not available in a child contract, Solidity will check the parent 

contract for the function before throwing an error. A basic inheritance 

structure is shown in Listing 4-25.

Listing 4-25. Contract Inheritance

contract owned {

    function owned() { owner = msg.sender; }

    address owner;

}

contract mortal is owned {

    function kill() {

        if (msg.sender == owner) selfdestruct(owner);

    }

}

Here, mortal inherits from owned. When the kill function attempts to 

access the owner variable, Solidity uses the instance declared in the owned 

contract because mortal does not have an owner variable in either the local 

or global scope.

Chapter 4  Smart ContraCtS in the abStraCt



81

This is as complex as we get with inheritance in this book. If you 

would like to know more about inheritance in Solidity, you can read 

the docs (http://solidity.readthedocs.io/en/develop/contracts.

html#inheritance) and check out the OpenZeppelin StandardToken 

contract, which uses multiple inheritance (https://github.com/

OpenZeppelin/zeppelin-solidity/blob/master/contracts/token).

 Modifiers

We talked earlier about function modifiers in Solidity and how they can 

be used to set visibility and state permissions. Solidity allows the creation 

of custom modifiers as well with the keyword modifier. Let’s rewrite our 

inheritance code so that it uses a modifier to restrict access to the kill 

function to the owner of the contract (Listing 4-26).

Listing 4-26. Function Modifiers

contract owned {

    function owned() { owner = msg.sender; }

    address owner;

    modifier onlyOwner {

        require(msg.sender == owner);

        _;

    }

}

contract mortal is owned {

    function kill() onlyOwner {

        selfdestruct(owner);

    }

}

Chapter 4  Smart ContraCtS in the abStraCt

http://solidity.readthedocs.io/en/develop/contracts.html#inheritance
http://solidity.readthedocs.io/en/develop/contracts.html#inheritance
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token


82

Contracts inherit all custom modifiers from parent contracts. The 

modifier onlyOwner is used to make sure the sender of the transaction is the 

owner. Modifiers wrap the function that calls them and can use _; to yield 

execution to the original function—in this case, kill. Listings 4-25 and 4-26 

represent the exact same functionality in two forms.

 Logging and Events
Ethereum has two independent top-level data structures. The first is the 

one we always talk about: the state tree. The second, a log database, is 

rarely mentioned. Solidity contracts can write to both data structures, but 

they can read only from the state tree.

Logs are used either as a trigger for UI actions or as a form of cheap 

storage. Solidity has an easy-to-use interface for logging called Events with 

a syntax similar to structs. Listing 4-27 demonstrates a Withdrawal event.

Listing 4-27. Logging with Events

event Withdrawal(

    address indexed user,

    uint amount,

    uint timestamp

);

function withdraw (uint amount) public {

    Withdrawal(msg.sender, amount, now);

}

Events are declared with the keyword event followed by a name for 

the event. By convention, event names are capitalized. Every field in an 

event must have a data type and name. There is no limit to the number 

of fields you can have in an event. Up to three fields in an event can be 

marked and indexed with the keyword indexed. Front-end clients can 

Chapter 4  Smart ContraCtS in the abStraCt



83

run queries directly on indexed columns. With the event generated 

by Listing 4-27, we would be able to query the blockchain for all 

withdrawals by a given user.

Solidity exposes a low-level log interface as well for direct logging with 

the functions log0, log1...log4, but you should be using events.

 Operators and Built-in Functions
Listing 4-28 lists the available arithmetic operators in Solidity. The 

operators are similar to those in Python.

Listing 4-28. Arithmetic Operators

uint a = 3;

2 + 3; // addition

a += 3; // shorthand for a = a + 3

a++; // shorthand for a += 1

3 - 2; // subtraction

a -= 1; // shorthand for a = a -1

a--; // shorthand for a -= 1

3 * 2; // multiplication

a *= 3; // shorthand for a = a * 3

4 / 2; // integer division

3 / 2; // = 1, no floating point arithmetic

a /= 2; // shorthand for a = a / 2;

10 % 2; // modulus

2**3; // power operator, this is 23

2e7; // scientific notation, this is 2 * 107

Chapter 4  Smart ContraCtS in the abStraCt



84

It’s important to note that because there are no floating-point numbers 

in Solidity, all division is integer division, and decimals are truncated. To 

get decimal precision, you use the workaround similar to Listing 4-29.

Listing 4-29. Decimal Precision with Integer Division

uint a = 10;

uint b = 3;

// multiply by 10**n to add n zeros

// if you add n zeros, the last n digits will

// be the decimal digits

uint c = (a * 10**6) / b; // 3333333

We added six zeros, so the last six digits are decimal digits, and the true 

answer is 3.333333. We will be using this workaround extensively in our games.

Numbers must be the same type to be operated on together. 

Mismatched types throw an error (Listing 4-30).

Listing 4-30. Type Matching with Operators

uint a = 10;

uint b = 3;

int c = 5;

a * b; // 30

b * c; // Error: type mismatch

Solidity comes with built-in time units to make working with time 

easy. The units seconds, minutes, hours, days, weeks, and years are all 

automatically converted into a uint equivalent of seconds. Listing 4-31 

lists some time equalities.

Chapter 4  Smart ContraCtS in the abStraCt



85

Listing 4-31. Time Comparisons

1 == 1 seconds;

60 seconds == 1 minutes;

3600 seconds ==  1 hour;

1 year == 365 days;

The now keyword can be used to get the UNIX timestamp (seconds 

after the UNIX epoch of 1970-01-01 00:00:00). This makes it easy to create 

delayed actions, as in Listing 4-32.

Listing 4-32. Time-Delayed Actions

contract TimedPayout {

    uint start;

    function TimedPayout () payable {

        start = now;

    }

    function claim () {

        if (now > start + 10 days)

            msg.sender.transfer(address(this).balance)

    }

}

Any money sent to the contract when it is deployed can be claimed in 

10 days by the first person to run the claim transaction.

Solidity has currency units, which we’ve used multiple times already 

without explanation. The keywords wei (10-18 ether), finney (10-3 ether), 

szabo (10-6 ether), and ether are supported, but finney and szabo are rarely 

used. Most code, including ours, sticks with ether and wei. The currency 

units are all converted into uint of wei, the smallest denomination of ether. 

msg.value, a built-in function, stores the amount of wei sent to a payable 

function. Some examples of currency math are provided in Listing 4-33.

Chapter 4  Smart ContraCtS in the abStraCt



86

Listing 4-33. Currency Math

1 == 1 wei;

1 ether ==  10**18 wei;

2 ether == 2e18 wei;

2 finney == .002 ether;

if (msg.value == 1 ether) buyLottoTicket();

msg.value; // 1000000000000000000 a.k.a. 1 ether

The following are some of the built-in variables available in 

the global namespace. For a full list, see the Solidity docs (http://

solidity.readthedocs.io/en/develop/units-and-global-variables.

html#special-variables-and-functions).

• block.number  (uint): The current block number/

height.

• now  (uint): Current UNIX timestamp.

• tx.origin  (address): The address of the initiator of a 

transaction.

• msg.sender  (address): The address of the sender of 

a function call. Different from tx.origin. When one 

contract calls another contract, tx.origin is the address 

of the user who sent the transaction, and msg.sender is 

the address of the first contract. tx.origin is always a 

wallet address. msg.sender can be a contract address.

• msg.value: Number of wei sent to a payable function. 

Always 0 for nonpayable functions.

• this: The current contract type (its name). 

address(this) returns the address of the current 

contract.

• this.balance: Alias for address(this).balance. Ether 

balance of the current contract.

Chapter 4  Smart ContraCtS in the abStraCt

http://solidity.readthedocs.io/en/develop/units-and-global-variables.html#special-variables-and-functions
http://solidity.readthedocs.io/en/develop/units-and-global-variables.html#special-variables-and-functions
http://solidity.readthedocs.io/en/develop/units-and-global-variables.html#special-variables-and-functions


87

In addition to global variables, here are some of the useful global 

functions:

• keccak256(...): Takes any number of arguments of 

any data type, converts them in order to a single-byte 

sequence, and then computes the Keccak256 hash of 

the byte sequence. This is the default hash function 

used by the EVM.

• sha256(...): Computes the SHA-256 hash of the 

arguments.

• ripemd160(...): Computes the RIPEMD-160 hash of 

the arguments.

• selfdestruct(address recipient): Removes the 

current contract and all associated data from the state 

tree. Refunds any remaining ether, this.balance, to 

the recipient.

 Error Handling
When a smart contract throws an error, all changes made to the state 

tree during the current transaction are rolled back. The code can decide 

whether to refund any unused gas. For errors that imply malicious intent,  

it is best to consume the unused gas, whereas common errors should 

refund gas.

The revert function throws a manual error and refunds all unused 

gas. require(condition) and assert(condition) throw an error and 

consume all unused gas if condition is false. As of this writing, throw is 

an old form of error handling that has been deprecated. You may see it in 

older code snippets.

Chapter 4  Smart ContraCtS in the abStraCt



88

The assert error is used to check for internal consistency. Properly 

functioning code should never throw an assert error. If it does, your code 

has a bug. When in doubt, use require to check input conditions. It’s up to 

you; using one over the other will not create security flaws in your contract.

The different error-handling mechanisms are demonstrated in  

Listing 4-34.

Listing 4-34. Error Handling

contract BugSquash {

    enum State { Alive, Squashed }

    State state;

    address owner;

    function BugSquash () {

        state = State.Alive;

        owner = msg.sender;

    }

    function squash () {

        // this should never throw an error

        assert(owner != address(0));

        if (state == State.Alive)

            state = State.Squashed;

        else if (state == State.Squashed)

            revert(); // user error, refund gas

    }

Chapter 4  Smart ContraCtS in the abStraCt



89

    function kill () {

        // any nonowner trying to kill the contract

        // likely has malicious intent

        require(msg.sender == owner);

        selfdestruct(owner);

    }

}

 Ethereum Protocol
While we use the RPC server to communicate with our geth instance, 

nodes on the network communicate with each other via the Ethereum 

wire protocol. The RPC server exposes a good deal, but not all, of the wire 

protocol functionality to external clients. The exact specifications for the 

Ethereum protocol can be found on GitHub at https://github.com/

ethereum/wiki/wiki/Ethereum-Wire-Protocol.

Ethereum is a peer-to-peer protocol. Ethereum clients maintain a 

list of peers with whom they share block and transaction information. 

Broadcasting a transaction or block involves sending the appropriate 

message to each of the peers on the peer list, each of whom then forward 

the information onto their peer list until all peers on the network have 

received the information. Consensus is enforced during this process by 

refusing to accept or propagate malformed blocks or transactions.

Note remote procedure call (rpC) is the concept of invoking a 
computing procedure, function, or program on a remote computer. 
http, the protocol of the web browser, is a form of rpC, but there are 
many other forms. ethereum uses JSon-rpC, a simple form of rpC 
that sends JSon terminated by an endline character to invoke remote 
commands.

Chapter 4  Smart ContraCtS in the abStraCt

https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol


90

 Summary
In this chapter, we have gone over the fundamentals of using Truffle 

and the Solidity programming language to code, test, and deploy smart 

contracts to the Ethereum Virtual Machine. Here’s a quick overview.

Control structures in Solidity are similar to those in JavaScript. The 

standard conditional and loop structures available in other languages are 

implemented in a similar fashion in Solidity.

Functions in Solidity can use modifiers to control the visibility of 

the function, restrict access to the state tree, and accept ether. Custom 

modifiers can be written to perform other modifications. Contracts can 

define a fallback function that acts as the default function for the contract.

Data can be stored in memory, in the state tree, or in the log database. 

Memory is the cheapest but doesn’t persist. Logs are still cheap but are 

write-only and can’t be read by smart contracts. The state tree is expensive 

but offers full read and write access. Variables can be designated as 

belonging to either memory or storage.

All the standard arithmetic operators are available in Solidity. In 

addition, time and currency arithmetic are supported with convenient 

units and conversions. Floating-point numbers are not supported, so 

workarounds must be used for decimal arithmetic.

Transactions in Ethereum are atomic, so throwing an error in your 

code will revert all state changes and log entries made by the transaction. 

Errors can be thrown in ways that either consume or refund unused gas.

When the contract code is ready, Truffle can be used to compile the 

contracts. Truffle migrations must be written and executed to deploy the 

contracts. The contracts can be deployed to a private chain, the testnet,  

or the mainnet. We have configured our project so that it is ready to do  

all three.

You now know enough about Solidity to construct your first Ethereum 

games. In the next chapter, we will cover contract security and how to write 

safe code that can’t be hacked.

Chapter 4  Smart ContraCtS in the abStraCt



91© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_5

CHAPTER 5

Contract Security
Strong security is the foundation of blockchain technology. Without it, 

blockchains offer no advantage over traditional software. This chapter, 

covers security best practices for Solidity. Security of the Ethereum 

blockchain itself is covered in Chapter 6. Thousands of ether have been 

lost or hacked from smart contracts because of poorly written code. 

Following the best practices in this chapter will minimize the chances of 

that happening to your own contracts.

Note This is the most complex chapter in the book. If you can work 
your way through the examples in this chapter, the remainder of the 
book gets easier from here.

 All Contract Data Is Public!
All data on the blockchain is public. Any data stored in the Ethereum state 

tree can be read from a node’s local copy.

In Chapter 4, we talked about private functions and variables. Private 

functions and variables cannot be accessed by other contracts or external 

clients, but that doesn’t mean the contents are completely hidden. Block 

explorers will generally respect visibility rules and refuse to display private 

data, but don’t be fooled into complacency because your private data 

doesn’t show up on Etherscan.



92

Every contract has a designated storage space, a subtree within the 

main state tree. Review the contract in Listing 5-1 and then try Exercise 5-1.

Listing 5-1. Not-So-Private Variables

contract NotSoPrivateData {

    uint public money = 16;

    uint public constant lives = 100;

    string private password = "twiddledee";

}

EXERCISE 5-1. DEPLOYMENT

Deploy the contract in Listing 5-1 to the Rinkeby testnet. Note the contract 

address, as we will be using it soon.

To access the contract storage, we will use web3.eth.getStorage 

At(contractAddress, index). The contract address will be the address of 

the deployed contract in Exercise 5-1. If you skipped that exercise, we have 

a deployed version at 0x3400daf738b1b26451cea087bdcffa919d1c04d8 

that you can use. The index comes from the order of the variables in the 

contract. Constant variables are hard-coded into the contract bytecode 

and don’t get an index, so lives will not have an index. In our contract, 

money and password would have indices 0 and 1, respectively.

Open a Rinkeby geth console and enter the code in Listing 5-2. Each 

line of user-entered text is followed by the return value displayed by geth.

ChapTeR 5  CoNTRaCT SeCuRITy



93

Listing 5-2. Accessing Contract Storage

> contractAddress = "0x3400daf738b1b26451cea087bdcffa919d1c04d8"

undefined

> web3.eth.getStorageAt(contractAddress, 0)

"0x0000000000000000000000000000000000000000000000000000000000000010"

> web3.eth.getStorageAt(contractAddress, 1)

"0x74776964646c6564656500000000000000000000000000000000000 

000000014"

Remember that all values in the Ethereum state tree are 32-byte words. 

If you check the length of the returned hex values, you will see that they are 

64 characters long, corresponding to 32 bytes of storage. The value of the 

first index is 0x10, which is 16 in decimal. This matches the value of our 

first public variable, money.

Solidity uses Unicode UTF-8 to encode strings. Short strings fewer 

than 31 bytes long are stored in a single word. The last byte indicates the 

length (L) of the string in nibbles, while the string itself is stored in the first 

L nibbles. A nibble is half a byte, or one hexadecimal character. Our last 

byte is 0x14, so the string is 20 nibbles, or 10 bytes long. The first 20 nibbles 

of the word are 0x74776964646c65646565, which decodes to the Unicode 

string “twiddledee”.

This corresponds to the value of our password variable. But wait! 

Our password was supposed to be private! Now you know, nothing in 

Ethereum is truly private.

As expected, the constant variable lives was skipped. This does 

not mean it is safely hidden, though, as the value can be decoded from 

the contract bytecode. Go to the Etherscan code page for the deployed 

contract at https://rinkeby.etherscan.io/address/0x3400daf738b1

b26451cea087bdcffa919d1c04d8#code, select the Opcodes view for the 

Contract Creation code, and scroll to the bottom. As in Figure 5-1, you 

ChapTeR 5  CoNTRaCT SeCuRITy

https://rinkeby.etherscan.io/address/0x3400daf738b1b26451cea087bdcffa919d1c04d8#code
https://rinkeby.etherscan.io/address/0x3400daf738b1b26451cea087bdcffa919d1c04d8#code


94

will see that the hex value for the constant variable, 0x64, is pushed into 

storage. Decoding EVM Assembly is outside the scope of this book, so we 

do not cover how to determine which statement corresponds to which 

variable except to note that a sufficiently motivated attacker could figure 

it out.

Complex data types and long strings are not as easy to decode as short 

strings or simple data types such as uint. If you’re interested in reading 

more, you can find the full spec for storing variables in storage at http://

solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of- 

state-variables-in-storage.

All complex data types are decodable directly from contract storage, 

except mapping. There is no way to determine the keys of a mapping directly 

from its layout in storage (see the above link for more details). However, 

because all transactions are public and deterministic, if you have access 

to the source code and every transaction that interacted with the contract, 

you can determine which keys have already been set. It may not be simple, 

Figure 5-1. Finding constants in bytecode

ChapTeR 5  CoNTRaCT SeCuRITy

http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage


95

but it is doable. Determining the keys of a mapping from within a smart 

contract without maintaining a separate list is still not possible, though, 

and this is a problem we will struggle with later.

 Lost Ether
It is possible to send ether in a way that it is irrevocably lost. Both 

addresses and contracts can lose their ether.

 Addresses
The simplest way to lose your ether is to lose all copies of your private key. 

Your private key is required to sign any transaction sending your ether, so if 

you lose all copies of the key, you can no longer access your ether.

The best way to avoid this is to back up your key. If possible, you should 

back up your seed phrase instead of your key. Most wallets use a seed 

phrase to generate a fresh key for every transaction. Generating a fresh key 

for every transaction makes it harder to trace the owner of an address by 

using link analysis. The seed phrase is in plain English, so it is a lot easier to 

identify any small copying errors you might make while backing up the key.

Most security experts will warn you against creating a digital backup of 

your seed. If possible, a paper backup is always the safest method because 

it can’t be hacked or compromised. However, if you are the forgetful type 

or don’t trust yourself to not lose the paper, a digital backup is better than 

no backup.

The safest way to perform a digital backup is to take two pictures, 

each with half your seed words, and save the files in separate folders in an 

encrypted external drive or your local hard drive. Saving a text version of 

your words makes it a lot easier for a virus to parse the file and determine 

that it contains a seed phrase or private key. Most viruses will not have 

access to sophisticated image-recognition technology. In case virus 

ChapTeR 5  CoNTRaCT SeCuRITy



96

creators get smarter, splitting your seed words into two images will add one 

more layer of security.

Do not upload these images to any Internet service. Hacks happen to 

cloud providers every day, and if a hacker realizes what they have their 

hands on, you are utterly screwed.

Aside from losing keys, ether can be lost by sending it to an invalid or 

nonexistent address. Most software including geth uses a capitals-based 

checksum to prevent invalid addresses from being used. A checksum is a 

mechanism for making sure entered addresses are valid.

Checksummed addresses using mixed-cased letters were introduced 

in Ethereum in EIP 55.1 To generate an address checksum, create a binary 

Keccack256 hash of the standard address. If a character in the standard 

address at index i is a letter (a–f), and the binary hash contains a 1 at index 

4*i, capitalize that letter. More simply, what this is does is go through 

an address and pseudorandomly but reproducibly capitalize half the 

letters. Using this system, there is only a 1-in-5,000 chance that a mistyped 

address will be valid.

To benefit from checksums, make sure any address you are sending 

ether or tokens to contains both capital and lowercase letters. Addresses 

with just lowercase letters are not checksummed, so a single miscopy or 

typo can result in your ether being sent into the void.

 Contracts
While using geth, the most common way of losing ether is by forgetting 

to include the to field in a transaction. This will send the ether to the null 

address and attempt a contract creation. With no data, an empty contract 

is created containing your ether, and your ether is lost forever. The most 

notorious example of this occurred when the price of ether was less than 

1 Github, “Ethereum Improvement Proposal 55”, https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-55.md, April 4, 2018

ChapTeR 5  CoNTRaCT SeCuRITy

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md


97

$1 on the this transaction at https://etherscan.io/tx/0x7614ee2f5dee

de9748a8c19f092100369a7fc5c59bae8e1938b50c779eb7afa0. That 1,000 

ether is now worth hundreds of thousands of dollars as of this writing.

Another common error is sending contract creation data to the zero 

address instead of the null address. To avoid this, don’t require your 

contracts to be funded on creation. Separate the two processes. If you 

accidentally do send data to the zero address, you will now lose only your 

gas fee. To view a list of people who have lost ether to the zero address, you 

can view the Etherscan page for the zero address (https://etherscan.io/

address/0x0000000000000000000000000000000000000000). Think of it as 

the Ethereum Darwin Awards.

Self-destructing contracts can sometimes lead to problems. If a 

user sends ether to a self-destructed contract, that ether is impossible 

to reclaim. To prevent this, contracts can be designed so that they can 

be suspended instead of self-destructed. Suspended contracts reject all 

attempts at interaction and permit only withdrawals. We will go over 

suspending contracts later in the chapter.

 Storing Ether in Contracts
All ether sent to a contract is stored in the contract and can be dispersed 

only by a contract function that sends the ether to a new address or self- 

destructs the contract. Failing to code output methods will lead to the 

ether being stuck in the contract forever.

Ether can be sent only to payable contract functions. If ether is sent to 

a contract address without transaction data, the send is rejected unless the 

contract has a payable fallback function.

If a contract has no payable functions, this does not mean it is 

guaranteed to have a contract balance of zero. Ether can still be credited to 

the contract by invoking selfdestruct(address) in a second contract with 

the first contract’s address. All ether stored in the second contract will be sent 

ChapTeR 5  CoNTRaCT SeCuRITy

https://etherscan.io/tx/0x7614ee2f5deede9748a8c19f092100369a7fc5c59bae8e1938b50c779eb7afa0
https://etherscan.io/tx/0x7614ee2f5deede9748a8c19f092100369a7fc5c59bae8e1938b50c779eb7afa0
https://etherscan.io/address/0x0000000000000000000000000000000000000000
https://etherscan.io/address/0x0000000000000000000000000000000000000000


98

to the first contract, and this action cannot be rejected. If the first contract 

does not contain any output methods, the ether in the contract is lost.

The easiest way to avoid these problems is to minimize the amount 

of ether held in contracts. If a contract does not require funds on hand, 

withdraw them at regular intervals. If a contract stores user balances, try to 

safely send the user their funds before storing a balance. If a contract has 

served its purpose, self-destruct it if possible and get any extra funds out. 

What isn’t there can’t be stolen, so get ether out of a contract as soon as 

possible.

 Sending Ether
Improper use of the ether transfer functions are the number one source of 

Solidity bugs and hacks. There are three ways to send ether in Solidity:

• address.transfer(value)

• address.send(value)

• address.call.value(value)()

If the transfer fails, address.transfer throws an error, and address.

send returns false. If the receiver address is a contract address, all three of 

these functions will trigger the receiving contract’s fallback function. Both 

address.transfer and address.send provide a fixed gas stipend of 2,300 

gas, which is just enough to log an event and nothing more. If you want to 

provide more gas to a contract recipient, address.call.value will forward 

all unused gas to the participant.

Caution using address.call.value opens you up to re- entrancy 
attacks, which are discussed later in the chapter. This was a crucial 
part of the Dao hack, which lost millions of ether.

ChapTeR 5  CoNTRaCT SeCuRITy



99

Unless you have a good reason to do otherwise, you should use 

.transfer because it is the most secure. Listing 5-3 displays the simplest 

form of payout, sending the whole balance of a contract to an address.

Listing 5-3. Transfer Contract Balance to a Single User

address receiver = address(15); // dummy address

function payout () {

    uint balance = address(this).balance;

    receiver.transfer(balance);

}

This is the simplest way of sending ether out of your contract. Grab 

the whole balance and send it to a receiver’s address. If there is only one 

receiver and that receiver is a wallet address, this will suffice.

If the receiver is a contract address, the transfer function will try to 

execute the fallback function. If the fallback function does not exist or 

is not marked payable, the transfer will throw an error, and the payout 

function cannot execute. Additionally, .transfer provides only 2,300 gas 

to the fallback function, so if it consumes more gas than that, it will fail 

with an OutOfGasError.

This is not a major problem if the function has no other purpose than 

to make the payout. It is the responsibility of each contract creator to 

create proper fallback functions if they wish to receive ether. However, 

if a function has multiple transfers or performs other state updates as in 

Listing 5-4, those transfers and updates will be rolled back along with the 

failed transfer. Attackers can take advantage of this to lock up a contract 

and prevent it from reaching a desired state.

ChapTeR 5  CoNTRaCT SeCuRITy



100

Listing 5-4. Poorly Coded Transfers to Multiple Recipients

// DO NOT USE: BAD CODE

contract TrustFund {

    address[3] children;

    function TrustFund (address[3] _children) {

        children = _children;

    }

    function updateAddress(uint child, address newAddress)

    {

        require(msg.sender == children[child]);

        children[child] = newAddress;

    }

    function disperse () {

        uint balance = address(this).balance;

        children[0].transfer(balance / 2);

        children[1].transfer(balance / 4);

        children[2].transfer(balance / 4);

    }

    function () payable {}

}

Listing 5-4 sets up a TrustFund contract in which one child gets half 

the money, and the other two children get one-quarter each. It has an 

empty payable fallback function that can be used to fund the contract, and 

an updateAddress function so that children can update their addresses.

ChapTeR 5  CoNTRaCT SeCuRITy



101

If I’m the second child and I’m upset that I’m not receiving my fair 

share, I can lock up the contract so that no one can access their funds by 

updating my address to an empty contract with no fallback function:

contract SaltyChild {}

Because this contract is empty and has no fallback function, it will 

reject any ether sent to its address. Now when the first child tries to access 

his funds by running the disperse function, he will find that the failed 

transfer to the second child rolls back all three transfers, and nobody can 

access their funds.

Listing 5-5 solves this particular case by modifying our disperse 

function to use .send instead of .transfer.

Listing 5-5. Safely Dispersing Ether to a Fixed Number of Addresses

function disperse () {

    uint balance = address(this).balance;

    children[0].send(balance / 2);

    children[1].send(balance / 4);

    children[2].send(balance / 4);

}

Now instead of throwing an error, .send will return false for the 

second child, and everybody else will be able to receive their ether.

This solution for a fixed number of addresses does not generalize to 

one in which the number of transfers is high and unknown. Listing 5-6 

creates a contract representing such a situation.

ChapTeR 5  CoNTRaCT SeCuRITy



102

Listing 5-6. Sending Ether to a Large Number of Addresses: UNSAFE

// DO NOT USE: BAD CODE

contract Welfare {

    address[] recipients;

    function register () {

        recipients.push(msg.sender);

    }

    function disperse () {

        uint balance = address(this).balance;

        uint amount = balance / recipients.length;

        for (uint i=0; i < recipients.length; i++) {

            recipients[i].send(amount);

        }

    }

    function () payable {}

}

Just as in our previous contract, this contract is fundable by sending 

ether to the address. This time, however, anybody is free to register for a 

payout, and the number of recipients is unknown. We have used the .send 

method to transfer money, so a single recipient can’t hold up the whole 

queue.

But what if too many people sign up? Each send operation consumes 

9,000 gas. If 1,000 people register, the disperse function will require 9 

million gas. The block gas limit is currently about 7 million. The disperse 

function will throw an OutOfGasError when executed. An attacker can 

take advantage of this to spam the contract and register a bunch of dummy 

addresses. This will lock the ether in the contract.

ChapTeR 5  CoNTRaCT SeCuRITy



103

To avoid these problems, best practice in Solidity is to use a withdraw 

function with internal balances. Let’s see how that looks in the next 

section.

 Withdraw Methods
A withdraw function performs only one transfer per transaction. Combined 

with internal balances, this ensures that errors thrown by transfers lock 

only the ether of the malicious/incompetent user. Listing 5-7 displays how 

a simple Roulette contract would implement internal balances.

Note Listing 5-7 follows best practices and can be used safely in 
your contracts.

Listing 5-7. Internal Balances

// GOOD CODE!

contract Roulette {

    mapping(address => uint) balances;

    function betRed () payable {

        winner = (randomNumber() % 2 == 0);

        if (winner)

            balances[msg.sender] += msg.value * 2;

    }

    function randomNumber() returns (uint) {

        // we will implement this in a later section

        // for now, imagine it returns a number from

        // 0-36

    }

ChapTeR 5  CoNTRaCT SeCuRITy



104

    function withdraw () {

        uint amount = balances[msg.sender];

        balances[msg.sender] = 0;

        msg.sender.transfer(amount);

    }

}

The contract maintains an internal mapping of balances. There is no 

limit to the number of addresses this mapping can store. When a user wins 

a bet, instead of directly transferring them ether, the internal balance is 

updated. The user can then withdraw their ether in a separate transaction.

This specific contract can actually be written safely without the 

withdraw code. If the betRed function is written as in Listing 5-8, the 

withdraw code and internal balances become unnecessary.

Listing 5-8. An Alternate Safe Roulette Implementation

function betRed () payable {

    bool winner = (randomNumber() % 2 == 0);

    if (winner)

        msg.sender.transfer(msg.value * 2);

}

To be safe, it is best to use the withdraw method. Using a direct payout 

requires you to think carefully through the possible attack vectors every 

time. The withdraw method in Listing 5-7 is safe and will always work.

Let’s go back to the Welfare contract now. How would we design it so 

it works as intended? We can’t directly store internal balances for every 

user each time a funding occurs, for the same reason we can’t make 1,000 

transfers: gas costs. The SSTORE opcode to store or update one word of 

storage consumes 20,000 gas. Updating 1,000 balances would consume 20 

million gas, far exceeding the block gas limit. Instead, we will track the total 

funding and individual amounts each user has withdrawn in Listing 5-9.

ChapTeR 5  CoNTRaCT SeCuRITy



105

Listing 5-9. Sending Ether Safely to a Large Number of Recipients

contract Welfare {

    address[] recipients;

    uint totalFunding;

    mapping(address => uint) withdrawn;

    function register () {

        recipients.push(msg.sender);

    }

    function () payable {

        totalFunding += msg.value;

    }

    function withdraw () {

        uint withdrawnSoFar = withdrawn[msg.sender];

        uint allocation = totalFunding / recipients.length;

        require(allocation > withdrawnSoFar);

        uint amount = allocation - withdrawnSoFar;

        withdrawn[msg.sender] = allocation;

        msg.sender.transfer(amount);

    }

}

The allocation is calculated as an even distribution of the total funding 

to each user. The withdraw function requires the allocation to be greater 

than the amount withdrawn by the user. If it is, the allocation is sent to 

the user. In this design, each transfer occurs in an individual transaction, 

so there is no limit to the number of recipients the contract can handle. 

Furthermore, the balances are tracked by updating a withdrawn mapping 

during the withdrawal phase, so no more than one state update occurs per 

transaction as well.

ChapTeR 5  CoNTRaCT SeCuRITy



106

Up to this point, we have used only .transfer and .send to send ether. 

When a contract address attempts a withdrawal, both these functions 

allocate the external fallback function only 2,300 gas. What if we wanted 

contracts with complex fallback functions to be able to withdraw ether? 

Listing 5-10 lists such a contract that splits balances between two users.

Listing 5-10. Complex Fallback Function

contract Marriage () {

    address wife = address(0); // dummy address

    address husband = address(1); // dummy address

    function withdraw () {

        uint amount = balances[msg.sender];

        balances[msg.sender] = 0;

        msg.sender.transfer(amount);

    }

    function () payable {

        balances[wife] += msg.value / 2;

        balances[husband] += msg.value / 2;

    }

}

Here we have a contract that splits all incoming money 50-50 between 

a husband and wife. As we mentioned earlier, updating a word in the state 

tree consumes 20,000 gas, so the fallback function far exceeds a transfer’s 

2,300 gas allocation. Listing 5-11 modifies the withdraw function from 

Listing 5-7 so that our Marriage contract can use it.

Caution The code in Listing 5-11 is safe, but you should not use  
it without reading the next section and understanding the risks of 
re- entrancy.

ChapTeR 5  CoNTRaCT SeCuRITy



107

Listing 5-11. Allow withdraw to Call Complex Fallback Functions

// DO NOT USE WITHOUT UNDERSTANDING RE-ENTRANCY

function withdraw () {

    uint amount = balances[msg.sender];

    balances[msg.sender] = 0;

    bool success = msg.sender.call.value(amount)();

    require(success);

}

The address.call.value(amount)() function is the third way of 

sending ether we mentioned in the previous section. address.call(data) 

can be used to call any external contract function. It can accept two 

modifiers, .value(amount) and .gas(limit), to make the external call 

with the given value and gas. If .gas is omitted as we have done here, the 

method forwards all gas by default.

Here address.call returns a bool indicating whether the external call 

succeeded. If the transfer fails, the require statement will roll back all state 

changes.

 Calling External Contracts
Passing an external contract enough gas to perform complex actions 

can be dangerous because you cannot control the actions of the external 

contract. External contracts can run malicious code to perform re-entrancy 

attacks or induce race conditions. All calls to unknown external functions 

should be treated as potential attack vectors.

 Re-entrancy Attack
A re-entrancy attack occurs when a call to an external contract triggers a 

malicious function that reenters the original calling contract. Listing 5-12 

creates a bad Roulette contract that can be hacked with a re-entrancy attack.

ChapTeR 5  CoNTRaCT SeCuRITy



108

Caution Do not use the code in this section. These snippets are 
all open to re-entrancy attacks. Refer to the code in the “Withdraw 
Methods” section for safe, usable code.

Listing 5-12. Contracts Vulnerable to Re-entrancy Attacks

contract HackableRoulette {

    mapping(address => uint) public balances;

    function betRed () payable {

        bool winner = (randomNumber() % 2 == 0);

        if (winner)

            balances[msg.sender] += msg.value * 2;

    }

    function randomNumber() returns (uint) {

        // we will implement this in a later section

        // for now it returns 0 by default

    }

    function withdraw () {

        uint amount = balances[msg.sender];

        msg.sender.call.value(amount)();

        balances[msg.sender] = 0;

    }

}

The only difference between this and the safe Roulette contract is 

the last two lines of the withdraw function. The transfer occurs before 

zeroing out the user’s balance, and address.call.value is used instead of 

address.transfer, so all remaining gas is forwarded.

ChapTeR 5  CoNTRaCT SeCuRITy



109

This means that a withdrawing contract can reenter the 

HackableRoulette contract, and that the withdrawer’s balance upon 

reentry will still be their full balance. Listing 5-13 takes advantage of 

these security holes to write a contract that will drain all ether from the 

HackableRoulette.

Listing 5-13. Draining a Contract with a Re-entrancy Attack

contract ReentrancyAttack {

    HackableRoulette public roulette;

    function ReentrancyAttack(address rouletteAddress) {

        roulette = HackableRoulette(rouletteAddress);    

    }

    function hack () payable {

        // bet on red until the contract wins a bet

        // and has a non-zero balance

        while (roulette.balances(address(this)) == 0)

            roulette.betRed.value(msg.value)();

        roulette.withdraw();

    }

    // fallback called by HackableRoulette.withdraw

    function () payable {

        if (roulette.balance >=

        roulette.balances(address(this)))

            roulette.withdraw();

    }

}

ChapTeR 5  CoNTRaCT SeCuRITy



110

This contract is instantiated with the address of the HackableRoulette 

contract. When the hack function is called, it first places bets until it wins 

one of the bets. This is necessary because the internal balance on the 

HackableRoulette contract needs to be nonzero to withdraw ether.

Once the balance is nonzero, we can start the withdraw loop by 

calling roulette.withdraw(). The roulette’s withdraw function then 

sends ether to the ReentrancyAttack contract, which triggers its fallback 

function. The fallback function then runs another withdrawal, and 

because the balance hasn’t been zeroed out yet, HackableRoulette allows 

ReentrancyAttack to withdraw its full balance again. This loop continues 

until HackableRoulette’s contract balance is less than ReentrancyAttack’s 

internal balance, at which point no more ether can be drained.

Note you can test this attack on your own by using our official 
Github repo. Contracts (https://github.com/k26dr/ethereum- 
games/blob/master/contracts/ReentrancyAttack.sol), 
a migration (https://github.com/k26dr/ethereum-games/
blob/master/migrations/5_reentrancy_attack.js), and a 
test file (https://github.com/k26dr/ethereum-games/blob/
master/test/reentrancy.js) are all provided. From the project 
root, run truffle test test/reentrancy.js to watch it in 
action.

There are two ways to block the attack: zero out the balance before 

calling the external contract or use msg.transfer to limit the gas provided 

and prevent re-entrancy. Using both would bring us back to the safe 

implementation of Listing 5-7. If you still want to be able to execute 

complex external fallback functions, Listing 5-14 will allow you to do so. You 

will get a chance to test re-entrancy attacks on your own in Exercise 5-2.

ChapTeR 5  CoNTRaCT SeCuRITy

https://github.com/k26dr/ethereum-games/blob/master/contracts/ReentrancyAttack.sol
https://github.com/k26dr/ethereum-games/blob/master/contracts/ReentrancyAttack.sol
https://github.com/k26dr/ethereum-games/blob/master/migrations/5_reentrancy_attack.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/5_reentrancy_attack.js
https://github.com/k26dr/ethereum-games/blob/master/test/reentrancy.js
https://github.com/k26dr/ethereum-games/blob/master/test/reentrancy.js


111

Listing 5-14. Safely Allow Complex Fallback Functions

function withdraw () {

    uint amount = balances[msg.sender];

    balances[msg.sender] = 0;

    msg.sender.call.value(amount)();

}

EXERCISE 5-2. PREVENTING RE-ENTRANCY

Modify the hackableRoulette contract so that it first reflects the code in  

Listing 5-7, and then the code in Listing 5-14. Run the re-entrancy test again 

for each modification and watch the test fail when it attempts to drain the 

contract’s ether.

 Race Conditions
Race condition is the general term for the class of bugs that can occur when 

calling external contracts. A race condition can occur when any unknown 

state change occurs in an external function call. A re-entrancy attack is one 

form of race condition. Another form of race condition can occur if two 

contracts are both modifying the same variable in a third contract. Race 

conditions that don’t involve re-entrancy are rare, and we cover them only 

if they appear in our games.

 Suspendable Contracts
All contracts that either handle large amounts of ether or receive ether for 

limited durations of time should be suspendable.

If a contract holds a large amount of ether and a critical bug is found, 

suspending a contract can put it into withdraw-only mode and prevent 

unsafe external interaction with the contract.

ChapTeR 5  CoNTRaCT SeCuRITy



112

If a contract accepts ether for a limited amount of time as in a token 

sale, suspending the contract instead of killing it prevents investors from 

losing their ether if they participate too late. Listing 5-15 contains an 

example of a suspendable token sale contract.

Listing 5-15. Suspendable Contracts

contract TokenSale {

    enum State { Active, Suspended }

    address public owner;

    ERC20 public token;

    State public state;

    function TokenSale(address tokenContractAddress) {

        owner = msg.sender;

        token = ERC20(tokenContractAddress);

        state = State.Active;

    }

    // 1:1 exchange of ETH for token

    function buy() payable {

        require(state == State.Active);

        token.transfer(msg.sender, msg.value);

    }

    function suspend () {

        require(msg.sender == owner);

        state = State.Suspended;

    }

    function activate () {

        require(msg.sender == owner);

        state = State.Active;

    }

ChapTeR 5  CoNTRaCT SeCuRITy



113

    function withdraw() {

        require(msg.sender == owner);

        owner.transfer(address(this).balance);

    }

}

There is an enumerable in the contract tracking the state. For an 

investor to buy tokens, the state must be active. At any point, the owner of 

the contract can suspend the contract and prevent investors from buying 

tokens. The owner can also reactivate the contract after suspending it. The 

owner of the contract can withdraw all the ether from the contract at any 

time, even if the contract is suspended.

When the contract is suspended, it rejects all attempts to send ether 

to it. This is better than self-destructing the contract. A self-destructed 

contract is equivalent to a wallet address with no private key. Any ether 

sent to a self-destructed contract is lost. If an investor accidentally sends 

ether to a suspended contract, it will reject the transaction and return their 

ether instead of losing it.

 Random-Number Generation
Ethereum is a deterministic environment, so Solidity does not have a 

built-in source of entropy that can be used to generate random numbers. 

The closest we can get to a source of entropy is blockhashes. When a block 

is mined, it produces an unguessable blockhash. We can access the most 

recent blockhash in our contracts with the block.blockhash(block.

number - 1) expression. Listing 5-16 demonstrates a random-number 

generator (RNG) by using block.blockhash.

ChapTeR 5  CoNTRaCT SeCuRITy



114

Listing 5-16. Random Numbers from Parent Blockhash

function random(uint seed) public view returns (uint) {

    return uint(

        keccak256(block.blockhash(block.number-1), seed)

    );

}

This function hashes the parent blockhash with a user-generated seed 

and then takes the integer representation of the bytes. Changing the seed 

will change the output. This gives a number between 0 and 2256 that can be 

used with a modulus to get a smaller range of numbers:

// Random number from 0-99

random(0x7543def) % 100;

Although the blockhash is guaranteed to be lower than the block 

difficulty, the exact number is unknown until the block is mined. 

Unfortunately, the blockhash of the current block is unavailable until after 

the block is mined, so we have to use the blockhash from the parent block. 

This means that the random number can be guessed by anyone who has 

access to the parent blockhash and seed. Additionally, only the 256 most 

recent blockhashes are available, and attempting to call block.blockhash 

for a block older than that will return 0x0.

As a simple attack, the random number can be guessed by an attacker 

by copying and pasting our random function into their contract and 

making sure it gets mined in the same block as a transaction that uses our 

random function. This way, the parent blockhash will be the same, and 

the only unknown is the seed. The seed must come from user input in the 

transaction or from a deterministic source in the contract, either of which 

can be known beforehand.

ChapTeR 5  CoNTRaCT SeCuRITy



115

The only way to maintain the randomness of the source is to use a two- 

transaction system. The first transaction locks in a future block number as 

the source of entropy. After that selected block has been mined, the second 

transaction uses that block’s blockhash as the source of entropy to run its logic.

The two-transaction RNG system is fairly secure, if slow, but it can 

still be slightly manipulated by a miner. Let’s say our RNG is being used to 

determine the winner of a lottery in which the miner is a participant. When 

the miner generates a valid blockhash, they can choose to discard the hash 

and continue mining if the random number it generates does not result 

in them winning the lottery. This allows them to increase their chance of 

winning by an amount proportional to their hashpower on the network.

Although this is an issue in theory, there have been no documented 

cases of this attack. That being said, a sufficiently large jackpot that far 

exceeds the block reward would likely lead a miner to attempt this attack.

Knowing all these flaws, the conclusion is that we should not rely on 

our simple RNG to secure large amounts of ether. If you need to secure 

a large amount of ether with a random number, a superior but far more 

complex method of generating random numbers through a lottery is 

covered in Chapter 8.

 Issues with Integers
Using integer data types in Solidity without safety checks can lead to buggy 

code. The two classes of errors we will look at are underflow/overflow 

errors and errors due to a lack of decimal support in the language.

 Underflow/Overflow
Solidity does not protect against overflow and underflow errors. An 

overflow occurs when the value of an integer type exceeds its maximum 

value. An underflow occurs when the value goes below the minimum value.

ChapTeR 5  CoNTRaCT SeCuRITy



116

The min value for a uint is 0. The max value is 2b – 1, where b is the 

length of the data type in bits. So a uint8 has a max value 28 – 1 = 255, 

while a uint, which is 256 bytes long, has a max value of 2256 – 1.

The min value for an int is 2b – 1, and the max value is 2b – 1 – 1. For 

int8, the min value would be –128, and the max value would be 127.

When an integer overflows, it goes back down to its minimum value. 

When an integer underflows, it goes up to its maximum value.

All the examples in Listing 5-17 cause overflow or underflow.

Listing 5-17. Integer Underflow/Overflow

uint a = 5;

a -= 6; // 2256 -1

a += 1; // 0

int8 b = 64;

b *= 3; // -64

// this loop never ends because i overflows

uint[300] numbers;

uint sum = 0;

for (uint8 i=0; i < numbers.length; i++)

    sum += numbers[i];

To prevent under- and overflow, most developers use a standard 

contract called SafeMath. The SafeMath contract checks for over- and 

underflow conditions and throws an error if it recognizes one. The 

SafeMath contract is reproduced in Listing 5-18 if you wish to use it.

ChapTeR 5  CoNTRaCT SeCuRITy



117

Listing 5-18. SafeMath to Protect Against Under- and Overflow

contract SafeMath {

    function safeMul(uint a, uint b) internal pure returns

    (uint) {

        uint c = a * b;

        assert(a == 0 || c / a == b);

        return c;

    }

    function safeDiv(uint a, uint b) internal pure returns

    (uint) {

        assert(b > 0);

        uint c = a / b;

        assert(a == b * c + a % b);

        return c;

    }

    function safeSub(uint a, uint b) internal pure returns

    (uint) {

        assert(b <= a);

        return a - b;

    }

    function safeAdd(uint a, uint b) internal pure returns

    (uint) {

        uint c = a + b;

        assert(c>=a && c>=b);

        return c;

    }

}

ChapTeR 5  CoNTRaCT SeCuRITy



118

 Truncated Division
Solidity does not support decimal numbers, so integers must be used to 

approximate decimal operations. We covered simulating decimal precision 

in Listing 3-32. Anytime a division operation occurs, there is the possibility 

of losing precision to truncation. Truncation in integer division occurs 

when two numbers don’t divide evenly and the decimal digits get dropped. 

So 11 / 2 would get truncated to 5 in Solidity.

It is most important to keep this in mind when tracking assets for 

which the smallest subdivision of the asset has significant value. With 

ether, losing track of 1 or 2 wei is not a big deal.

Now let’s say we’re trading shares of Google (GOOG), which can’t be 

subdivided and are worth $1,000 each. If we write a contract that splits 

a holding between two people, as in Listing 5-19, we can lose a stock to 

truncation.

Listing 5-19. Losing Assets to Truncation

// WARNING: This contract will not compile without

// defining a Stock contract

contract MarriageInvestment {

    address wife = address(0); // dummy address

    address husband = address(1); // dummy address

    Stock GOOG = Stock(address(2)); // dummy contract

    function split () public {

        uint amount = GOOG.balanceOf(address(this));

        uint each = amount / 2;

        GOOG.transfer(husband, each);

        GOOG.transfer(wife, each);

    }

}

ChapTeR 5  CoNTRaCT SeCuRITy



119

This contract takes a stock holding and divides it between a husband 

and wife. Let’s say the holding for the couple is three shares. When 

attempting to split the holding between the couple, each person would get 

one share. The last remaining share is inaccessible because 1 / 2 = 0!

This can be fixed by transferring any remaining shares to one of the 

participants (Listing 5-20).

Listing 5-20. Preventing Asset Loss from Integer Truncation

function split () public {

    uint amount = GOOG.balanceOf(address(this));

    uint each = amount / 2;

    uint remainder = amount % 2;

    GOOG.transfer(husband, each + remainder);

    GOOG.transfer(wife, each);

}

 Functions Are Public by Default
Functions without a visibility modifier in Solidity are public by default. As 

we mentioned in Chapter 4, best practice is to explicitly specify a visibility 

modifier on each function. As of version 0.4.17, the compiler will include 

a warning if a function has no visibility modifier specified. You should be 

treating warnings like errors and updating code until all compiler warnings 

are fixed.

Failing to mark a function that is supposed to be private with an 

appropriate visibility modifier was the source of the Parity multi-sig hack. 

A function that was supposed to be internal was unmarked and got used to 

take control of the wallet.

ChapTeR 5  CoNTRaCT SeCuRITy



120

 Use msg.sender Instead of tx.origin
The property tx.origin is an alternative available to msg.sender in 

contract functions. Whereas msg.sender points to the most recent contract 

or wallet address that called the particular function, tx.origin points to 

the wallet address that signed the originating transaction. The best use 

for tx.origin is to not use it. In almost all situations, msg.sender is the 

appropriate property to use.

Using msg.sender allows the contract to modify internal contract state 

(such as balances) associated with an address on the sender’s behalf. 

Because the sender must directly call the contract method, it is considered 

safe to use.

Using tx.origin in your contracts exposes your users to forwarding 

attacks. Let’s create a function that uses tx.origin for authorization and 

see how it can be hacked (see Listing 5-21).

Caution Code in this section can be hacked. Do not use it in your 
contracts.

Listing 5-21. Bad Authorization with tx.origin

// DO NOT USE: BAD CODE

function transferTo(address dest) {

    require(tx.origin == owner);

    dest.transfer(address(this).balance);

}

This function allows the owner of the contract to send the balance of 

the contract to any destination address. A hacker can take advantage of 

that with a forwarding contract, as in Listing 5-22.

ChapTeR 5  CoNTRaCT SeCuRITy



121

Listing 5-22. Forwarding Attack on tx.origin Authorization

contract ForwardingAttack {

    HackableTransfer hackable;

    address attacker;

    function ForwardingAttack (address _hackable) public {

        hackable = HackableTransfer(_hackable);

        attacker = msg.sender;

    }

    function () payable public {

        hackable.transferTo(attacker);

    }

}

The hack works as follows. The attacker convinces you to send ether to 

the address of the attacking contract by pretending to be a regular wallet 

address and requesting payment for a service. When you send the ether, the 

fallback function on the attacking contract calls the transferTo function in 

the vulnerable contract and attempts to transfer the vulnerable contract’s 

balance to the attacker’s wallet address. Because the transaction originated 

with your wallet address, the authorization passes, and the attacker 

transfers all your ether in the vulnerable contract to their wallet address.

To prevent the attack, simply change tx.origin to msg.sender, as 

shown in Listing 5-23.

Listing 5-23. Protecting Against Forwarding Attacks

// SAFE CODE

function transferTo(address dest) {

    require(msg.sender == owner);

    dest.transfer(address(this).balance);

}

ChapTeR 5  CoNTRaCT SeCuRITy



122

 Everything Can Be Front-Run
Transactions are broadcast to the whole network and are generally visible 

to all nodes before being included in a block. When transactions are 

included in a block, they are included in order of transaction fee. This 

opens up the opportunity for front running.

Front running is the process of viewing a transaction and taking 

advantage of its contents to send a transaction of your own. If your 

transaction clears before the original transaction, you have front-run 

it. Because all transactions are publicly visible and there is no global 

mechanism forcing a transaction order, all orders can be front-run.

In practice, this is how it would work. Let’s say someone has set 

up a prize puzzle, where the winning answer unlocks a reward of 5 

ether. Because all computation in Ethereum is deterministic, it can be 

determined beforehand whether a given answer will unlock the prize. 

An attacker scans all transactions going into a contract, and if he detects 

a winning answer, he sends a transaction copying the winning answer 

but sets his gas price much higher than the original winner. Because 

transactions are processed in order of gas price, the attacker’s answer will 

be processed first, and the attacker will win the prize.

Protections against front running are different for each contract. For 

the prize contract, we could institute a guessing period and publish the 

answer after the guessing period has concluded so that new answers can’t 

claim the prize. As we go through the games in the latter half of the book, 

we will tackle the front-running problem in different ways.

 Previous Hacks and Attacks
Ethereum smart contracts have suffered a number of fatal bugs that have 

been exploited in the past. This section walks through the major incidents 

and discusses the lessons learned from each incident.

ChapTeR 5  CoNTRaCT SeCuRITy



123

 The DAO
The DAO attack is the most infamous of all the Ethereum hacks and 

resulted in a loss of 3.5 million ether before a hard fork rolled back the 

hack. The attack was so large that the Ethereum Foundation decided to 

hard-fork to roll back the transaction that created the hack and return 

the DAO funds to investors. This highly contentious fork eventually led 

to the split between Ethereum Classic, which did not fork, and the main 

Ethereum chain, which did fork.

The DAO attack was a complex re-entrancy attack. The vulnerable 

code is reproduced in Listing 5-24. The two lines that permit the  

re- entrancy are in bold. As you can see, the balance is being zeroed out 

after the transfer to the external contract.

Listing 5-24. DAO Vulnerability

      // This is the end of the splitDAO function

      Transfer(msg.sender, 0, balances[msg.sender]);

      withdrawRewardFor(msg.sender);

      totalSupply -= balances[msg.sender];

      balances[msg.sender] = 0;

      paidOut[msg.sender] = 0;

      return true;

}

The withdrawRewardFor function calls a payOut function that sends 

ether to an external address in Listing 5-25.

Listing 5-25. Payout Function in the DAO

function payOut(address _recipient, uint _amount) returns 

(bool) {  

    if (msg.sender != owner || msg.value > 0

        || (payOwnerOnly && _recipient != owner))

ChapTeR 5  CoNTRaCT SeCuRITy



124

        throw;

    if (_recipient.call.value(_amount)()) {

        PayOut(_recipient, _amount);

        return true;

    } else {

        return false;

    }

}

The bolded portion is where the external call occurs. It uses the unsafe 

address.call.value method to send ether and forward all gas, so the 

attacker was able to use this to set up a contract with a fallback function 

and repeat the withdraw loop to drain the contract. We saw code to 

perform this attack in the “Re-entrancy Attack” section.

In this case, the recipient contract had a restriction that it had to be a 

child DAO. Because of internal rules, the funds were locked for seven days 

before they could be used:

// The minimum debate period that a split proposal can have

uint constant minSplitDebatePeriod = 1 weeks;

This holding period is what allowed the hard fork to execute safely. If 

the funds had been withdrawn immediately, they could have been moved 

to exchanges and traded, at which point rolling back the hack would have 

been infeasible, because regular people holding ether would have been 

affected as well.

 Parity Multi-Sig
The Parity multi-sig wallet was a smart contract built into the Parity 

software that required multiple keys to sign off on any spending of funds. 

Many ICO startups were using it to secure their funds. It had an insecure 

fallback function that allowed attackers to drain 150,000 ether in total from 

multiple contracts.

ChapTeR 5  CoNTRaCT SeCuRITy



125

The culprit was a function in a library that should have been 

inaccessible to the public (Listing 5-26).

Listing 5-26. Parity Multi-sig Wallet Vulnerability

function initWallet(address[] _owners, uint _required, uint 

_daylimit) {

    initDaylimit(_daylimit);

    initMultiowned(_owners, _required);

}

This function initializes a multi-sig wallet with multiple owners. It 

should be called only when the contract is initialized. It allows anybody 

with access to the function to reset the contract and declare new owners. 

Library functions are usually inaccessible via the ABI, but this contract 

contained an overly permissive fallback function reproduced in  

Listing 5- 27 for executing undeclared functions.

Listing 5-27. Overly Permissive Fallback Function

function () payable {

    // just being sent some cash?

    if (msg.value > 0)

      Deposit(msg.sender, msg.value);

    else if (msg.data.length > 0)

      _walletLibrary.delegatecall(msg.data);

}

The fallback function executes when any unmatched function name is 

called. The delegatecall function can be used to forward function calls 

onto a different library or contract. In this case, any unmatched function 

was being forwarded to a library that contained the initWallet function. 

The attacker was able to call that function and use it to make himself the 

owner, and then drain the funds.

ChapTeR 5  CoNTRaCT SeCuRITy



126

The fix to this one is simple. Never use .delegatecall. It is dangerous 

and can easily lead to security holes. You should be explicitly stating any 

functions you want forwarded.

 Coindash
The Coindash hack wasn’t actually a smart contract vulnerability; it was 

an old-fashioned web hack. During Coindash’s ICO, a hacker replaced 

the Ethereum address on the Coindash ICO with their own address. This 

led investors to send 30,000 ether to the attacker’s address instead of the 

Coindash ICO contract.

 Governmental
Governmental’s contract wasn’t hacked, but it suffered from a subtle bug 

that made the contract’s prize allocation inaccessible for a few months. 

Governmental was a pyramid scheme contract. We discuss more about the 

details of their contract in Chapter 7, but the basics involved one player 

being able to capture a large prize at the end.

The payout code looked like Listing 5-28.

Listing 5-28. Governmental Payout Code

// Sends all contract money to the last creditor

creditorAddresses[creditorAddresses.length - 

1].send(profitFromCrash);

corruptElite.send(this.balance);

// Reset contract state

lastCreditorPayedOut = 0;

lastTimeOfNewCredit = block.timestamp;

profitFromCrash = 0;

ChapTeR 5  CoNTRaCT SeCuRITy



127

creditorAddresses = new address[](0);

creditorAmounts = new uint[](0);

round += 1;

return false;

The two lines in bold required updating a large amount of storage 

in the state tree. Hundreds of people had participated in the game, so 

hundreds of addresses and amounts had to be set to zero. The gas fee for 

this transaction was so high that it exceeded the block gas limit at the time, 

and the payout couldn’t be claimed by the winner. The winner had to wait 

for the block gas limit to increase before claiming the reward.

 Summary
This chapter covered the ins and outs of writing secure contracts with 

Solidity. You now know how to send, store, and withdraw ether safely with 

smart contracts, how to create random numbers, and the many potential 

security pitfalls to watch out for during development. You are now ready 

to progress to the projects. Before we get to that, however, we are going 

to take a slight detour away from code to discuss the economics and 

incentives behind blockchains.

ChapTeR 5  CoNTRaCT SeCuRITy



129© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_6

CHAPTER 6

Crypto-economics 
and Game Theory
Crypto-economics is the name given to the emerging study of incentives, 

economics, and game theory associated with maintaining a blockchain. If 

economics can be simplified as the study of incentives, crypto-economics is 

the study of blockchain-related incentives. In this chapter, we cover block 

production methods, blockchain security, consensus, the importance 

of good incentives, and the most common attack vectors on a typical 

blockchain.

 Securing the Blockchain
Currently, the majority of successful blockchains are secured by 

hashpower: the computing power behind proof-of-work (PoW) mining. 

Other blockchains have begun experimenting with proof-of-stake (PoS) 

and proof-of-authority (PoA), two methods for creating security in the 

system. Ethereum’s researchers have stated that the network will soon be 

switching to proof-of-stake, so that will be of special interest to us.



130

 Proof-of-Work
The creation of the proof-of-work methodology was one of the chief 

enabling innovations for Bitcoin. Ethereum has committed to using proof- 

of- work for the first three years of its existence so far, after which it plans to 

use proof-of-stake. We discussed proof-of-work mining briefly in Chapter 1.

Proof-of-work was first proposed in a 1992 paper as an antispam 

measure. It was proposed again separately as a measure to prevent DDoS 

attacks. Neither was particularly successful, but it paved the way for its use 

in cryptocurrencies.

Bitcoin uses SHA-256 hashing in its proof-of-work algorithm. Miners 

hash the block header repeatedly with SHA-256, using the nonce and 

timestamp fields to create new inputs. Miners that generate a hash lower 

than the 32-byte network difficulty propagate their blocks to the network. 

As a reward for their hashpower, miners can include a coinbase transaction 

rewarding themselves with new bitcoin.

Many variants of the proof-of-work algorithm have been designed to 

remedy SHA-256’s shortcomings. The simplicity of the SHA-256 algorithm 

makes it easy to mine with application-specific integrated circuits (ASICs). 

Litecoin uses Scrypt, which was intended to be memory-intensive, but 

an ASIC was created for it anyway. Monero uses CryptoNight, which has 

successfully utilized specialized system calls to make traditional CPU 

mining the most effective method.

Ethereum uses Ethash, a custom algorithm that, true to its design, has 

remained the most successful method to mine with graphics processing 

units (GPUs). Ethash requires repetitive reads from a directed acyclic graph 

(DAG) stored in memory. The DAG is greater than 1GB in size, so ASICs, 

which generally contain very little memory, are not feasible for mining.

If you want to know the exact details of the Ethash algorithm, check out 

the Ethash wiki (https://github.com/ethereum/wiki/wiki/Ethash). For 

test mining code, you can generate the current DAG with the following:

geth makedag

Chapter 6  Crypto-eConomiCs and Game theory

https://github.com/ethereum/wiki/wiki/Ethash


131

Proof-of-work mining secures the blockchain by forcing any attacker 

who wishes to take over the network to control 51% of the hashpower (see 

“51% Attacks”). Block rewards and transaction fees incentivize miners 

to mine blocks. The network difficulty is adjusted regularly to maintain 

a target mean block time. The target mean block time of the Ethereum 

network is currently around 20 seconds.

This number is slowly creeping upward due to the “difficulty bomb” 

in Ethereum’s code, which slowly raises the mean block time. The motive 

behind this is to force Ethereum to switch to proof-of-stake when block 

times get too large and place a cap on the creation of new ether from block 

rewards. After proof-of-stake is introduced, the block reward will probably 

be decreased or may even go to zero.

 Proof-of-Stake
The details of Ethereum’s proof-of-stake implementation are still being 

hashed out, with no strict timetable for completion. There are multiple 

types of proof-of-stake implementations, each with its own method of 

securing the blockchain. Ethereum’s proof-of-stake system is called Casper 

and allows users to confirm blocks by betting on the probability of their 

approval by the network.

The first proof-of-stake coin was Peercoin, which uses the principle 

of coin-age to secure blocks and mint new supply. More recently, Steemit 

and EOS use Delegated Proof of Stake (DPOS). DPOS requires users to 

vote in a series of block producers who are then authorized to produce 

blocks. If Casper is analogous to a pure democracy, DPOS is more of a 

representative democracy.

Ethereum plans to institute Casper in the near future.

Chapter 6  Crypto-eConomiCs and Game theory



132

 Proof-of-Authority
A proof-of-authority blockchain is similar to a permissioned blockchain. 

Only nodes with authorized keys can publish blocks, so it is not actually a 

decentralized system. Proof-of-authority blockchains can produce blocks 

at a much faster rate than decentralized networks because there is no need 

for the network to come to consensus or mine blocks.

The Ropsten and Kovan testnets for Ethereum are proof-of-authority 

chains. Test ether is worthless, so block rewards and transaction fees 

essentially don’t exist. This means there is no incentive to mine blocks or 

prevent transaction spamming. The standard block production process 

becomes too easy to attack (see “Testnet Attacks and Issues”), so proof-of- 

authority must be used for testnets instead.

 Forming Consensus
Consensus is the process through which nodes decide whether to add a 

block to the blockchain. Consensus is formed through a shared set of rules. 

All nodes on a network must operate by a compatible set of rules if they wish 

to reach a common consensus. Consensus rules are referred to as block 

validation rules by some blockchains because they are used to determine 

whether a node will accept a block into its local copy of the blockchain.

In Ethereum, the consensus rules are encoded in the execution of the 

Ethereum Virtual Machine (EVM) and the Merkle root of the state tree. 

Each node executes the transactions in a block in order. Each transaction is 

a series of EVM opcodes executed in sequence. Assuming that nodes have 

the same rules for EVM execution, they will arrive at the same final state.

A fork occurs when a set of nodes on a network adopt a different set 

of consensus rules. A soft fork occurs when the new rules are a subset of 

the old rules. Only miners have to update their software to the new rules 

because nodes using the old version will still validate blocks produced by 

the new rules.

Chapter 6  Crypto-eConomiCs and Game theory



133

A hard fork occurs when the new rules are not a subset of the new 

rules. Everyone must update their software in a hard fork. Nodes that 

refuse to update their software in a hard fork will diverge from the nodes 

that update. This is how Ethereum Classic was formed. Some nodes 

refused to update their software to accommodate the DAO fork.

 Transaction Fees
Transaction fees secure the network by preventing malicious actors from 

spamming the network. The use of transaction fees creates a marketplace 

for access to the network and prioritizes access for those who find it most 

valuable (those who are willing to pay the highest fees).

In many blockchains, the transaction fee is the only form of payment 

that must be denominated in the network’s native currency. This is why 

you will sometimes hear it mentioned that ether derives its value from 

the net present value (NPV) of future transaction fees, similar to the way a 

stock derives its value from the NPV of future dividends. However, because 

the value produced by the transaction fees give ether a further utility as a 

programmable currency, it might be more accurate to say that the NPV of 

future transaction fees acts as a floor for the price of ether.

 Incentives
Good incentive mechanisms are the foundation of a secure blockchain. 

When evaluating a new blockchain technology, the first question you 

should be asking yourself is, “What sort of behaviors does this blockchain 

incentivize?” You must assume that users in a blockchain will always 

maximize their own self-interest. The anonymity and potential for large 

profits make it too easy to take advantage of poor design.

Chapter 6  Crypto-eConomiCs and Game theory



134

Blockchains are successful because they can operate smoothly under 

any conditions, including when under attack. We will see what happens to 

a blockchain with poorly designed incentives in the “Testnet Attacks and 

Issues” section.

Let’s walk through some of the incentive systems in place for Ethereum 

and describe how they contribute to securing the network:

• Block rewards: Miners receive a block reward when 

they successfully mine a block, so they are willing to 

invest in infrastructure to generate hashpower for the 

network. Greater hashpower secures the network by 

making it difficult for a single entity to take over the 

network with a 51% attack.

• Network difficulty: The network difficulty increases as the 

hashpower of the network increases, creating an arms 

race between miners to generate the most hashpower 

possible. Miners are incentivized to invest in greater 

hashpower until their economic profit reaches zero.

• Transaction fees: Prevent spammers from clogging up 

the network with useless transactions.

• Consensus rules: Decentralize power in the network 

by giving each node an equal say in which blocks get 

accepted. Miners don’t waste valuable hashpower 

producing malicious blocks because they will be 

rejected by the network.

 Attack Vectors
No set of incentives is perfect. Every blockchain will have a series of attack 

vectors that can be used to exploit the system. The goal of a well-designed 

system is to make exploiting the available attack vectors as difficult as 

Chapter 6  Crypto-eConomiCs and Game theory



135

possible. Let’s look at some basic attack vectors that can be used to attack 

the Ethereum network.

 51% Attacks
The Ethereum mining system is designed to be secure so long as no one 

entity controls over half the hashpower. A single entity that controls over 

half the hashpower can destroy faith in the network by conducting a 51% 

attack.

There can be only one main chain when multiple versions of the chain 

head exist. The rule for determining which is the main chain is simple: 

the longest chain is the main chain. The most secure chain is the one with 

the most hashpower on it, and the longest chain will be the one with the 

most hashpower. Furthermore, the rule for determining the main chain 

must be simple enough for all nodes to come to the same consensus in a 

decentralized fashion.

The attack would be conducted as follows: the attacker mines 

blocks on the network but doesn’t broadcast them, letting a number of 

them accumulate locally. Because the attacker controls more than half 

the hashpower, their local chain will be longer than the main chain. 

After a significant number of blocks have passed—say, a day’s worth of 

blocks—the attacker broadcasts their blocks all at once, invalidating any 

transactions that occurred in the last day.

Merchants or any sellers of goods that accepted payments in ether 

would have to track down their customers and demand repayment 

or return of the good. Doing this repeatedly would destroy faith in 

the network. As of now, this attack is highly theoretical for the larger 

blockchains. The amount of capital required to amass 51% of the 

hashpower is prohibitively high to just turn around and destroy the 

network that gives the equipment value. It would take a well-funded 

malicious actor with a seriously good reason to take down the network to 

Chapter 6  Crypto-eConomiCs and Game theory



136

perform a 51% attack on one of the larger chains like Bitcoin or Ethereum. 

No one has ever successfully pulled off the attack, so it would be a big 

gamble to attempt it.

 Network Spamming
We mentioned earlier that transaction fees prevent spammers from 

clogging up the network with useless transactions. That was a bit of a 

misrepresentation. Transaction fees actually just make spamming the 

network a very expensive affair that serves mainly to fill blocks and raise 

transaction fees for the remainder of the network.

Network spamming has been used most effectively in Ethereum 

when targeting specific bugs in the EVM. In September 2016, a network 

spam attack targeting the EXTCODESIZE opcode increased block 

validation times to 60 seconds.1 The EXTCODESIZE opcode performs a 

disk read to get the size of a contract’s code in the state tree. This opcode 

was underpriced with a gas fee of 20 gas, so calling it repeatedly forced 

each block validation to perform about 50,000 disk reads and slowed 

down the whole network.2 The problem was eventually fixed in EIP 150 

(Ethereum Improvement Proposal 150) by increasing the gas cost for the 

opcode to 700.3

Spam attacks have proven to be much more successful on the 

Ethereum testnets where transaction fees are paid in the valueless test 

ether. We discuss those in the “Testnet Attacks and Issues” section.

1 Ethereum Blog, “Transaction Spam Attacks: Next Steps”,  https://blog.
ethereum.org/2016/09/22/transaction-spam-attack-next-steps/

2    “EVM 1.0 gas costs”, https://docs.google.com/spreadsheets/d/1m89CVujr 
Qe5LAFJ8-YAUCcNK950dUzMQPMJBxRtGCqs/edit#gid=0

3 Github, “Ethereum Improvement Proposal 150”, https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-150.md

Chapter 6  Crypto-eConomiCs and Game theory

https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://docs.google.com/spreadsheets/d/1m89CVujrQe5LAFJ8-YAUCcNK950dUzMQPMJBxRtGCqs/edit#gid=0
https://docs.google.com/spreadsheets/d/1m89CVujrQe5LAFJ8-YAUCcNK950dUzMQPMJBxRtGCqs/edit#gid=0
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md


137

 Breaking Cryptography
The most effective way to kill a blockchain would be to break one of the 

cryptographic algorithms used by the network. Ethereum’s proof-of- 

work algorithm, Ethash, uses Keccack256 as a hashing algorithm and the 

Secp256k1 elliptic curve to generate public and private keys. Breaking 

either of these would cause an irredeemable loss of confidence in the 

system. Thankfully, breaking these algorithms is no easy task.

Both algorithms use one-way functions to create security. A one-way 

function is easy to compute in one direction, but hard to compute in the 

other. Given a message, it is easy to compute the Keccak256 hash of the 

message. Given the hash, it is nearly impossible to compute the message.

Hash functions are used extensively in Ethereum smart contracts to 

obscure information. As we’ve seen, Keccak256 is used not only in Ethash, 

but also as an opcode in the EVM, as an instruction in Solidity, as well as 

in address, transaction, and block hashing, in the ABI, and in the Merkle 

Patricia trie.

When we do prize puzzles later, we will use hashes to obscure the 

answer. There are simple ways to attack hash functions. The most basic 

is a dictionary attack. Keep a large key/value database mapping hashes 

of common words and bit sequences to their hashes. Then when you 

encounter a hash, run it through the database and see whether it matches 

any of your common sequences.

To avoid having your hash cracked by a dictionary attack, use a salt. 

A salt is a random sequence you stick in front of every word you hash to 

make the output unique enough that it won’t show up in a database of 

common hashes. If you salt your hashes properly, the only way to attack 

them is by trying random sequences and hashing them until you get a 

match. Doing so is so expensive that not even a supercomputer should be 

able to crack a standard Keccak256 hash.

Chapter 6  Crypto-eConomiCs and Game theory



138

The same idea goes for public-private keys. Public keys are generated 

from private keys by using elliptic curves. The details are beyond the scope 

of this book, but a simple primer is available at https://arstechnica.

com/information-technology/2013/10/a-relatively-easy-to-

understand- primer-on-elliptic-curve-cryptography/ I if you’re 

interested. Determining the private key from the public key is even harder 

than breaking the Keccak256 hash. But anybody who can do so would be 

able to take control of any address on the network and their corresponding 

ether.

 Replay Attacks
Replay attacks occur only during hard forks. They were a major issue 

during the split between Ethereum and Ethereum Classic. Many people 

who sent a transaction on Ethereum after the hard fork had their 

transactions replayed on the Ethereum Classic chain.

During a fork, all users have the same balance on both forks. This 

meant that anyone with an Ethereum balance at the time of the fork had an 

equivalent Ethereum Classic balance as well. Unfortunately, because the 

chains used the exact same transaction logic, a transaction on Ethereum 

was also valid on Ethereum Classic.

Balances are generally protected by a user’s private key; the user 

has to sign a transaction with their private key to send their ether. Right 

after the fork, though, users were using the same private keys for both 

Ethereum and Ethereum Classic, and a signed transaction on Ethereum 

was valid on Ethereum Classic as well. Attackers took advantage by taking 

signed transactions broadcast on the Ethereum network and broadcasting 

them to the Ethereum Classic network too. This meant anyone sending 

their Ethereum was unknowingly sending the recipient their Ethereum 

Classic also.

Chapter 6  Crypto-eConomiCs and Game theory

https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/


139

The strange part of replay attacks is that the attackers themselves rarely 

benefit from the attack. Only the recipients of the transaction benefit, and 

most recipients aren’t malicious or savvy enough to conduct the attack. 

However, anybody can carry out the attack on behalf of the recipient, so 

malicious actors were replaying transactions in order to destabilize Ethereum.

Protecting against replay attacks is simple. EIP 155 (https://github.

com/ethereum/EIPs/blob/master/EIPS/eip-155.md) fixed the issue by 

adding a chain ID field to the transaction. Ethereum has chain ID 1, and 

Ethereum Classic has chain ID 61. If the chain ID of the transaction doesn’t 

match the chain ID of the network client, the client rejects the transaction.

 Testnet Attacks and Issues
Keeping a proof-of-work testnet up and running has proven to be a difficult 

challenge for Ethereum. Because testnet ether has no value, miners have 

no incentive to mine the chain, so 51% attacks and network spam attacks 

that would ordinarily be prohibitively expensive to carry out become 

trivial. Each of the proof-of-work testnets used in the past by Ethereum 

have been taken down by attackers.

The first Ethereum release was the Olympic testnet. It occasionally 

came under spam attack—but nothing serious. The main issue with the 

testnet came when the initial upgrade to the Frontier mainnet took place. 

Because Frontier didn’t have replay protection, anybody reusing keys/

addresses between Olympic and Frontier could have their test Olympic 

transactions replayed on the Frontier mainnet. Users were warned to use 

different keys for the new Frontier mainnet in order to avoid this problem.

The next official Ethereum testnet was Morden. Morden uses the 

account nonce to implement replay protection. It set the starting nonce of 

every account on the network to 2**20 to prevent transactions from being 

replayed on the mainnet. Unfortunately, when EIP 161 (https://github.

com/ethereum/EIPs/blob/master/EIPS/eip-161.md) implemented a 

change to the nonce creation code, a Morden-specific difference in the 

Chapter 6  Crypto-eConomiCs and Game theory

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md


140

Parity and geth implementations led to a consensus split (a fork) between 

the two clients. At this point, it was decided to retire the Morden testnet 

and replace it with the new Ropsten testnet.

Ropsten implemented EIP 155 (https://github.com/ethereum/EIPs/

blob/master/EIPS/eip-155.md) replay protection to prevent transactions 

from being replayed on the mainnet. The network difficulty still remained low, 

though, so a small amount of hashpower was enough to control the network.

A year into Ropsten’s existence, a malicious user took over the network 

hashpower and began inflating the block size. Every time a block is 

mined, the miner can propose a block gas limit increase of 1/1024 of the 

current block gas limit. The malicious miner repeatedly did this and filled 

the blocks with large spam transactions that took a long time to import 

and validate. The blocks became so large and slow that syncing with the 

network became impossible, and Ropsten had to be temporarily retired.

Ropsten was replaced by Rinkeby, a proof-of-authority testnet. Proof- 

of- authority whitelists a series of authorities to produce blocks. Rinkeby 

produces blocks every 15 seconds. It isn’t as realistic as a mined testnet in 

which block production time is variable, but it is impervious to attacks by 

miners and spammers.

A revival of the Ropsten testnet was eventually created using a 

donation of GPU hashpower. The hashpower was used to mine a new 

longest chain from before the spam attack. Because the longest chain is 

the main chain, this new longest chain allowed clients to drop the spam 

blocks. All nonspam transactions were then replayed on the revival chain.

 Summary
Proof-of-work, proof-of-stake, and proof-of-authority are the three 

methods used for securing blockchains in the Ethereum ecosystem. 

Proof-of-work is the currently used security method. Proof-of-stake will 

replace proof-of-work in an upcoming Ethereum hard fork with the Casper 

protocol. Proof-of-authority is used in the Ethereum testnets.

Chapter 6  Crypto-eConomiCs and Game theory

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md


141

In addition to proof-of-work hashpower, nodes use consensus rules 

to secure the network. Nodes individually apply their software-encoded 

consensus rules to a block and its transactions and decide whether to 

accept the block. In the case of multiple competing blocks or chains, the 

longest chain is the main chain. All nodes in a network must use the exact 

same consensus rules to validate blocks. If a subset of the network decides 

to use a different set of rules, a fork occurs and the chains split.

Blockchains use incentives and market mechanisms to induce desired 

behavior. Designing proper incentive structures is the key to building 

a successful blockchain. Block rewards, transaction fees, and network 

difficulty adjustments are all examples of incentives used by Ethereum to 

secure the blockchain and promote beneficial behavior.

Incentive systems are never perfect, though, and there will always be 

attack vectors. Ethereum in particular has in the past been shown to be 

vulnerable to spam attacks targeted at specific bugs in the platform and 

replay attacks. Fifty-one percent attacks and cryptographic attacks, while 

theoretically possible, have not been used against the Ethereum mainnet 

so far.

Testnets are another story. Because proof-of-work testnet block 

rewards and transaction fees are valueless, it is cheap to both spam the 

network and control the hashpower and block production. The testnet we 

use in this book, Rinkeby, is a proof-of-authority blockchain in which only 

whitelisted addresses can produce blocks.

In the preceding four chapters, we covered the basics of the Solidity 

language, best security practices for Solidity, and the basics of how a 

blockchain operates. With this knowledge, you are ready to build your first 

game. Let’s get started with some simple Ethereum pyramid schemes.

Chapter 6  Crypto-eConomiCs and Game theory



143© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_7

CHAPTER 7

Ponzis and Pyramids
This is the first of the project and game chapters that will take us through 

the remainder of the book. The first six chapters covered the basics of 

Ethereum and Solidity. We will now move away from theory and dive in 

to practical examples of Solidity code. Admittedly, Ponzi schemes do not 

seem at first glance to be the most practical of examples. Surprisingly, 

though, some of the first interactive smart contracts released on Ethereum 

were verifiable Ponzi schemes. In this chapter, we will first write a simple 

Ponzi contract and then explore examples that were deployed on the 

Ethereum mainnet.

 Schemes: Ponzi vs. Pyramid
In a pyramid scheme, participants generate income both by selling a 

product and recruiting new members to participate in the scheme. 

Members usually get a cut of the sales revenue of any of the members 

they recruit. A pyramid scheme is distinguished from its legal brother, 

multilevel marketing, by the source and distribution of returns. If the 

majority of returns are from sales, it’s multilevel marketing. If the majority 

of returns are from recruiting, it’s a pyramid scheme.

In a Ponzi scheme, investors think they’re buying a security or investing 

in a real company that produces returns to its investors. In reality, the 

money generated from new investment is used to pay off old investors. 

Ponzi schemes can last for years before falling apart dramatically. These 

schemes are named for their originator, Charles Ponzi, who famously ran 



144

such a scheme in the 1920s. But the most famous Ponzi to today’s readers 

is the one run by Bernie Madoff, who took in $20 billion in investments 

over a span of 48 years and used the continued investment to convince 

investors their holdings were worth $65 billion.1

Pyramid schemes are generally easy to identify because members must 

recruit additional members to generate any sort of meaningful income. 

Additionally the “suckers” are a part of the scheme and can see how the 

company operates. In a Ponzi, the “suckers” are on the outside and don’t 

have any knowledge of the internal workings of the company, so they can 

last much longer without being discovered.

The terms pyramid scheme and Ponzi scheme are often used 

interchangeably, despite meaning different things. As you’ll see, the 

majority of deployed Ethereum schemes are Ponzis, but their creators tend 

to refer to them as pyramids anyway.

 Verifiably Corrupt
Is a Ponzi scheme better if it’s verifiably corrupt? So far, the answer 

from the Ethereum community has been a resounding yes. There was 

an unnatural level of excitement over Ponzi and pyramid schemes that 

could be deterministically coded to rip off their users in the early days of 

Ethereum. Let’s write our own simple one before looking at existing ones 

on the blockchain.

Note All the code for this chapter is available in our GitHub repo 
at https://github.com/k26dr/ethereum-games/blob/
master/contracts/PonzisAndPyramids.sol.

1 CNN Money, “Five Things You Didn’t Know About Bernie Madoff’s Epic Scam,” 
http://money.cnn.com/2013/12/10/news/companies/bernard-madoff-ponzi/
index.html, 2013.

CHApter 7  ponzis And pyrAmids

https://github.com/k26dr/ethereum-games/blob/master/contracts/PonzisAndPyramids.sol
https://github.com/k26dr/ethereum-games/blob/master/contracts/PonzisAndPyramids.sol
http://money.cnn.com/2013/12/10/news/companies/bernard-madoff-ponzi/index.html
http://money.cnn.com/2013/12/10/news/companies/bernard-madoff-ponzi/index.html


145

 Simple Ponzi
The simplest version of a Ponzi involves taking the money sent by the 

current investor and transferring it to the previous investor. As long as 

each investment is larger than the previous one, every investor except the 

last will get a return on their investment. Let’s code this into a contract 

(Listing 7-1).

Listing 7-1. A Simple Ponzi Scheme

contract SimplePonzi {

    address public currentInvestor;

    uint public currentInvestment = 0;

    function () payable public {

        // new investments must be 10% greater than current

        uint minimumInvestment = currentInvestment * 11/10;

        require(msg.value > minimumInvestment);

        // document new investor

        address previousInvestor = currentInvestor;

        currentInvestor = msg.sender;

        currentInvestment = msg.value;

        // payout previous investor

        previousInvestor.send(msg.value);

    }

}

Let’s walk through the contract in detail a couple of lines at a time, 

starting with the variables in Listing 7-2.

CHApter 7  ponzis And pyrAmids



146

Listing 7-2. A Simple Ponzi: Variables

address public currentInvestor;

uint public currentInvestment = 0;

function () payable public {

The contract has two variables: currentInvestor and 

currentInvestment. The variable currentInvestor is the address of 

the most recent investor in the contract. This address is the only one 

that hasn’t received a return on their investment, and if no one ever 

tops their bid, they will be the one to lose their investment. The variable 

currentInvestment is the amount of the investment they stand to lose.

This contract has a single function, the fallback function in Listing 7-3 

that can be executed by sending ether directly to the deployed contract’s 

address.

Listing 7-3. A Simple Ponzi: Minimum Investment

uint minimumInvestment = currentInvestment * 11/10;

require(msg.value > minimumInvestment);

Any new investment must be at least 10% greater than the current 

investment or it will be rejected. Our investors are expecting a juicy return, 

and your shenanigans are not welcome here. To calculate the minimum 

investment, we need to multiply by 1.1. Unfortunately, we cannot use 

decimals in Solidity, so we multiply by 11 and then divide by 10 to achieve 

the same effect (Listing 7-4).

Listing 7-4. A Simple Ponzi: Onboarding the New Sucker

address previousInvestor = currentInvestor;

currentInvestor = msg.sender;

currentInvestment = msg.value;

CHApter 7  ponzis And pyrAmids



147

We keep a reference to the previous investor so we can pay him out 

with the new investment:

previousInvestor.send(msg.value);

The new investment is sent directly to the previous investor. No ether 

is ever actually held in the contract for insignificant things like company 

development.

An important note: we use .send instead of .transfer intentionally 

here. Using .transfer would allow any user to lock up our contract by 

investing from a poorly written or malicious contract. By using .send, 

an investor who sends ether from a poorly written or malicious contract 

will simply never receive any ether. In such a scenario, .send will fail and 

return false, we will ignore the return value, and the contract will overwrite 

their address with the new investor. The ether will remain in the contract 

and be unclaimable. Note that .send forwards only 2,300 gas when 

sending to a contract, so we will be safe from re-entrancy attacks as well.

This is a common theme you will be observing in the contracts we 

write. Whenever possible, we will deter attackers by imposing a monetary 

penalty for attempting a hack. If in the process a few well-intentioned 

developers get penalized for their errors, that is a collateral we are willing 

to accept. In blockchain engineering, security is paramount. All else is a 

secondary consideration.

As always, deploying this contract requires a migration. Listing 7- 5  

presents the migration without explanation. For an explanation, see 

Chapter 3.

Listing 7-5. Simple Ponzi Migration

var fs = require('fs');

var SimplePonzi = artifacts.require("SimplePonzi");

module.exports = function(deployer, network) {

CHApter 7  ponzis And pyrAmids



148

    // unlock account for geth

    if (network == "rinkeby" || network == "mainnet") {

        var password = fs.readFileSync("password", "utf8")

                         .split('\n')[0];

        web3.personal.unlockAccount(

            web3.eth.accounts[0], password);

    }

    deployer.deploy(SimplePonzi);

};

A copy of this migration can be found on our GitHub repo at  

https://github.com/k26dr/ethereum-games/blob/master/

migrations/6_simple_ponzi.js. Run the code in Listing 7-6 to deploy 

the contract to a private net. The first line opens the Truffle development 

environment, and the second deploys the contract. We assume that your 

migration has the same number as ours. If it doesn’t, replace 6 with the 

appropriate number.

Listing 7-6. Deploy Simple Ponzi

truffle develop

migrate -f 6

We’re going to run through a sample interaction with the contract in 

Listing 7-7. We will invest in the contract with two separate accounts and 

watch the money flow from the second investor to the first.

Listing 7-7. Interacting with the Simple Ponzi

// The following lines should be entered one by one into

// the same truffle dev environment as Listing 6-7

accounts = web3.eth.accounts

CHApter 7  ponzis And pyrAmids

https://github.com/k26dr/ethereum-games/blob/master/migrations/6_simple_ponzi.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/6_simple_ponzi.js


149

web3.eth.sendTransaction({ from: accounts[0], to: SimplePonzi.

address, value: 1e18 })

web3.eth.getBalance(accounts[0]) // first check

web3.eth.sendTransaction({ from: accounts[1], to: SimplePonzi.

address, value: 1e17 }) // error

web3.eth.sendTransaction({ from: accounts[1], to: SimplePonzi.

address, value: 2e18 })

web3.eth.getBalance(accounts[0]) // second check

The first attempt to invest by accounts[1] sends less ether than the 

investment by accounts[0], so it will be rejected. Between the first and 

second balance checks, you should see the balance of the account increase 

by 2 ether, which is the amount sent by the second address. Let’s make this 

a little more real in Exercises 7-1 and 7-2 by running the same code on the 

mainnet.

EXERCISE 7-1. INVESTMENT OF A LIFETIME!

ponzis aren’t fun if nobody’s making or losing money, so we’ve deployed our 

simpleponzi contract to the ethereum mainnet to allow readers to get in on the 

fun. you can view the contract source, view the current investment, and see a 

history of transactions at https://etherscan.io/address/0xd09180f

956c97a165c23c7f932908600c2e3e0fb. this contract is a real live ponzi. 

you will get a return on your investment only if someone invests after you. We 

have seeded the contract with 0.005 ether to get the ponzi started. may the 

brave be rewarded with riches.

CHApter 7  ponzis And pyrAmids

https://etherscan.io/address/0xd09180f956c97a165c23c7f932908600c2e3e0fb
https://etherscan.io/address/0xd09180f956c97a165c23c7f932908600c2e3e0fb


150

EXERCISE 7-2. MY FIRST HACK

A minor security flaw in the simpleponzi contract can render it nearly 

unusable. describing it further would make it too easy to find, so we won’t. 

Can you find it and exploit it? A 0.1 ether reward will be given to the first 

user to reply with a link to a transaction that exploits the flaw on the GitHub 

issue (https://github.com/k26dr/ethereum-games/issues/1). 

Alternatively, any user who manages to steal ether from the contract or 

another user will also receive the reward, but don’t expect such a flaw to exist!

 Realistic Ponzi
Our SimplePonzi was simple to create and created a suspenseful scenario 

in which users aren’t sure whether they will receive their money back. Real 

Ponzis, however, tend to pay out investors gradually with above-average 

percentage returns until the Ponzi gets too large to sustain. Let’s write a 

contract (Listing 7-8) that captures this more realistic scenario. Again, we 

will go through this in blocks to explain things more clearly, so don’t worry 

if you don’t grasp all of it at once.

Listing 7-8. A More Realistic Gradual Ponzi

contract GradualPonzi {

    address[] public investors;

    mapping (address => uint) public balances;

    uint public constant MINIMUM_INVESTMENT = 1e15;

    function GradualPonzi () public {

        investors.push(msg.sender);

    }

CHApter 7  ponzis And pyrAmids

https://github.com/k26dr/ethereum-games/issues/1


151

    function () public payable {

        require(msg.value >= MINIMUM_INVESTMENT);

        uint eachInvestorGets = msg.value /

                                investors.length;

        for (uint i=0; i < investors.length; i++) {

            balances[investors[i]] += eachInvestorGets;

        }

        investors.push(msg.sender);

    }

    function withdraw () public {

        uint payout = balances[msg.sender];

        balances[msg.sender] = 0;

        msg.sender.transfer(payout);

    }

}

This gradual Ponzi has three state variables and three functions. 

Because we have a significantly greater number of payouts to handle, we 

will use a withdrawal function and internal balances instead of sending 

ether directly. Additionally, we have added a minimum investment 

to prevent freeloaders from sending a 0-value transaction to become 

an investor. Because new investments are distributed evenly between 

investors, there is no incentive to send more than the minimum 

payment. This was done to avoid adding the complexity of tracking 

investor shares.

Let’s walk through the code in blocks, starting with the variables and 

constructor in Listing 7-9.

CHApter 7  ponzis And pyrAmids



152

Listing 7-9. GradualPonzi Variables and Constructor

contract GradualPonzi {

    address[] public investors;

    mapping (address => uint) public balances;

    uint public constant MINIMUM_INVESTMENT = 1e15;

    function GradualPonzi () public {

        investors.push(msg.sender);

    }

This sets up two state variables and a minimum investment constant. 

The constructor adds the contract creator as the first investor. Because 

there’s no one else available to send money to, the creator gets the 

privilege of joining the Ponzi without having to send any ether.

Investors must meet the minimum investment to join the Ponzi. When 

they send in their ether, their investment is distributed evenly among all 

investors (Listing 7-10).

Listing 7-10. GradualPonzi Investment Logic

function () public payable {

    require(msg.value >= MINIMUM_INVESTMENT);

    uint eachInvestorGets = msg.value / investors.length;

    for (uint i=0; i < investors.length; i++) {

        balances[investors[i]] += eachInvestorGets;

    }

    investors.push(msg.sender);

}

As the number of investors in the Ponzi increases, the return for an 

investor from each new investment decreases. After the distribution is 

complete, the newest investor is added to the list of investors (Listing 7-11). 

CHApter 7  ponzis And pyrAmids



153

Listing 7-11. GradualPonzi Withdrawals

function withdraw () public {

    uint payout = balances[msg.sender];

    balances[msg.sender] = 0;

    msg.sender.transfer(payout);

}

The migration for this contract can be found on the GitHub repo 

at https://github.com/k26dr/ethereum-games/blob/master/

migrations/7_gradual_ponzi.js. It is a standard migration, so it is 

offered without explanation in Listing 7-12.

Listing 7-12. GradualPonzi Migration

var fs = require('fs');

var GradualPonzi = artifacts.require("GradualPonzi");

module.exports = function(deployer, network) {

    // unlock account for geth

    if (network == "rinkeby" || network == "mainnet") {

        var password = fs.readFileSync("password", "utf8")

                         .split('\n')[0];

        web3.personal.unlockAccount(web3.eth.accounts[0], password);

    }

    deployer.deploy(GradualPonzi);

};

Open a Truffle dev console with truffle develop. We’re going to 

deploy and then interact with the contract in the dev console. Enter the 

code in Listing 7-13 into the dev console one line at a time.

CHApter 7  ponzis And pyrAmids

https://github.com/k26dr/ethereum-games/blob/master/migrations/7_gradual_ponzi.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/7_gradual_ponzi.js


154

Listing 7-13. Deploying and Using GradualPonzi

migrate -f 7

ponzi = GradualPonzi.at(GradualPonzi.address)

web3.eth.sendTransaction({ from: web3.eth.accounts[1], to: 

ponzi.address, value: 1e15, gas: 200e3 })

ponzi.balances(web3.eth.accounts[0])

ponzi.withdraw({ from: web3.eth.accounts[0] })

The first line deploys the contract. If you used a different number than 

us for your migration, change the 7 to your migration number. The rest 

of the lines run through a sample interaction with the contract. Account 

1 invests in the Ponzi by sending 0.001 ether to the contract, and then 

Account 0 checks his balance and withdraws. Because Account 0 is the 

only existing investor when Account 1 invests, all the ether goes to Account 

0. In subsequent investments, the money will be split between multiple 

investors. You will be running a more in-depth interaction with the 

contract in Exercise 7-3 before having a chance to invest real ether on the 

mainnet in Exercise 7-4.

EXERCISE 7-3. GRADUAL PONZI

Use the sample code from Listing 7-13 to run a series of 10 investments, 

one from each of the accounts in the truffle dev console. After running all the 

investments, check the balances of each of the accounts. the distribution of 

returns should follow a classic ponzi, with the earliest investor receiving the 

most, and the latest investor receiving the least.

CHApter 7  ponzis And pyrAmids



155

EXERCISE 7-4. THE BEAUTIFUL PONZI

We have deployed a version of the Gradualponzi contract to the mainnet. the 

transaction history and contract state can be read at https://etherscan.

io/address/0xf89e29fd10716757d1d3d2997975c639c8750e92. Get 

in on the ponzi by sending .001 ether to the contract. Get in early enough, and 

you’ll get a handsome return. How early is early enough? you’ll have to play to 

find out.

 Simple Pyramid
Pyramids are a little more complex than Ponzis because they require 

the creation of an ever-widening pyramid and staggered payouts to 

participants. We’ve constructed a SimplePyramid contract in Listing 7-14 

that works in layers. Each layer is twice as large as the previous layer. Each 

layer receives its investment back when the next layer fills. The leftover 

ether is then distributed among all participants.

Listing 7-14. SimplePyramid

contract SimplePyramid {

    uint public constant MINIMUM_INVESTMENT = 1e15; // 0.001 ether

    uint public numInvestors = 0;

    uint public depth = 0;

    address[] public investors;

    mapping(address => uint) public balances;

    function SimplePyramid () public payable {

        require(msg.value >= MINIMUM_INVESTMENT);

        investors.length = 3;

        investors[0] = msg.sender;

CHApter 7  ponzis And pyrAmids

https://etherscan.io/address/0xf89e29fd10716757d1d3d2997975c639c8750e92
https://etherscan.io/address/0xf89e29fd10716757d1d3d2997975c639c8750e92


156

        numInvestors = 1;

        depth = 1;

        balances[address(this)] = msg.value;

    }

    function () payable public {

        require(msg.value >= MINIMUM_INVESTMENT);

        balances[address(this)] += msg.value;

        numInvestors += 1;

        investors[numInvestors - 1] = msg.sender;

        if (numInvestors == investors.length) {

            // pay out previous layer

            uint endIndex = numInvestors - 2**depth;

            uint startIndex = endIndex - 2**(depth-1);

            for (uint i = startIndex; i < endIndex; i++)

                balances[investors[i]] += MINIMUM_INVESTMENT;

            // spread remaining ether among all participants

            uint paid = MINIMUM_INVESTMENT * 2**(depth-1);

             uint eachInvestorGets = (balances[address(this)]  

- paid) /

                                     numInvestors;

            for(i = 0; i < numInvestors; i++)

                balances[investors[i]] += eachInvestorGets;

            // update state variables

            balances[address(this)] = 0;

            depth += 1;

            investors.length += 2**depth;

        }

    }

CHApter 7  ponzis And pyrAmids



157

    function withdraw () public {

        uint payout = balances[msg.sender];

        balances[msg.sender] = 0;

        msg.sender.transfer(payout);

    }

}

Let’s go through this and break it down into easier-to-understand 

blocks starting with the variables in Listing 7-15.

Listing 7-15. SimplePyramid Variables

contract SimplePyramid {    

    uint public constant MINIMUM_INVESTMENT = 1e15;

    uint public numInvestors = 0;

    uint public depth = 0;

    address[] public investors;

    mapping(address => uint) public balances;

The opening block of code declares four variables and a constant. 

All the variables and constants are public:

• MINIMUM_INVESTMENT: The minimum amount required 

to participate in the contract. Sending more than the 

minimum has no benefit and is not advised. We’ve set it 

to 115 wei, or 0.001 ether, to make it easy to participate, 

but you can modify this up to create a high-stakes 

pyramid.

• numInvestors: A running internal count of the number 

of addresses that have invested so far.

CHApter 7  ponzis And pyrAmids



158

• depth: The current pyramid level. The number of 

investors in a level is 2depth. Payouts occur as each 

subsequent layer fills. Because the layer sizes are 

increasing exponentially, they will eventually get too 

large to fill. The first layer is depth = 0 and contains 

one investor, the second layer (depth = 1) contains 

two investors, the third layer (depth = 2) contains four 

investors, and so forth.

• investors: An array containing every address that has 

invested so far, in order. Because the investors are in 

order, the level at which the investment occurred can 

be calculated from the investor’s position in the array.

• balances: A standard internal ledger of ether balances.

Listing 7-16 displays the constructor logic.

Listing 7-16. SimplyPyramid Constructor

function SimplePyramid () public payable {

    require(msg.value >= MINIMUM_INVESTMENT);

    investors.length = 3;

    investors[0] = msg.sender;

    numInvestors = 1;

    depth = 1;

    balances[address(this)] = msg.value;

}

The constructor requires the creator of the contract to become the first 

investor. The creator must send at least the minimum investment. Initially, 

open slots are available for three investors. The creator of the contract is 

by himself in the first layer, and the second layer has two unfilled slots. No 

payouts are made until the second layer fills, so the initial investment is 

added to the contract’s internal balance.

CHApter 7  ponzis And pyrAmids



159

Listing 7-17 contains the initial portion of the investment logic.

Listing 7-17. SimplePyramid Investment Logic

function () payable public {

    require(msg.value >= MINIMUM_INVESTMENT);

    balances[address(this)] += msg.value;

    numInvestors += 1;

    investors[numInvestors - 1] = msg.sender;

For a basic investment that doesn’t fill a layer and trigger a payout, the 

contract updates only state variables. If the investment exceeds the minimum 

investment, the contract’s internal balance is updated with the investment 

value, and the investor is added to the end of the investors array.

If the latest investor fills a layer in the pyramid, the payout logic in 

Listing 7-18 executes.

Listing 7-18. SimplePyramid Repayments

if (numInvestors == investors.length) {

    // pay out previous layer    

    uint endIndex = numInvestors - 2**depth;

    uint startIndex = endIndex - 2**(depth-1);

    for (uint i = startIndex; i < endIndex; i++)

        balances[investors[i]] += MINIMUM_INVESTMENT;

We start by paying back the previous layer their initial investment. 

Because each layer contains 2depth participants, the end of the previous 

layer can be determined by going back 2depth indexes in the array. That 

previous layer is only half as large as the current layer, so the start of that 

layer will be the 2depth-1 indexes back from the end of the layer. Looping 

from the start to the end index of the layer, the internal balances of each 

investor are paid back their initial investment.

CHApter 7  ponzis And pyrAmids



160

Once the previous layer has been repaid, the remaining ether in the 

contract is distributed evenly among all members (Listing 7-19).

Listing 7-19. SimplePyramid Interest Payments

// spread remaining ether among all participants

uint paid = MINIMUM_INVESTMENT * 2**(depth-1);

uint eachInvestorGets = (balances[address(this)] - paid) /

                         numInvestors;

for(i = 0; i < numInvestors; i++)

    balances[investors[i]] += eachInvestorGets;

To determine the amount paid out as repayments, the minimum 

investment is multiplied by the size of the previous layer, 2depth-1. The 

remainder is split evenly and added to the internal balances of each 

investor (Listing 7-20).

Listing 7-20. SimplePyramid Adding a Layer

// update state variables

balances[address(this)] = 0;

depth += 1;

investors.length += 2**depth;

The contract’s internal balance is zeroed because it has been 

distributed among the investors, the depth increases, and the investors 

array is lengthened to accommodate the next layer of investors.

The contract uses a standard withdrawal function (Listing 7-21). See 

Chapter 4 for an explanation.

Listing 7-21. SimplePyramid Withdrawals

function withdraw () public {

    uint payout = balances[msg.sender];

CHApter 7  ponzis And pyrAmids



161

    balances[msg.sender] = 0;

    msg.sender.transfer(payout);

}

The migration for this contract is standard with one exception: a value 

of 115 wei is included with the deployment for the initial investment. The 

full migration can be found on the GitHub repo at https://github.com/

k26dr/ethereum-games/blob/master/migrations/8_simple_pyramid.js. 

Only the nonstandard line is printed here:

deployer.deploy(SimplePyramid, { value: 1e15 });

To deploy the contract to a private network, use Listing 7-22 in the 

Truffle dev console. As always, replace our migration number (8) with your 

custom migration number if necessary.

Listing 7-22. Deploying SimplePyramid

truffle develop

# The following commands go in the opened dev console

migrate -f 8

pyramid = SimplePyramid.at(SimplePyramid.address)

This creates a pointer variable to the deployed contract. We will be 

using that pointer to interact with the contract in Exercise 7-5.

EXERCISE 7-5. PYRAMID DISTRIBUTIONS

in the truffle dev console, use the pyramid variable created in Listing 7-22 

to interact with your simplepyramid. Use the 10 accounts created by truffle to 

fill up the first three layers and then watch the investments get redistributed 

among the pyramid.

CHApter 7  ponzis And pyrAmids

https://github.com/k26dr/ethereum-games/blob/master/migrations/8_simple_pyramid.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/8_simple_pyramid.js


162

When you feel comfortable using the pyramid scheme on a private 

network, Exercise 7-6 will allow you to join the scheme on the mainnet.

EXERCISE 7-6. ROAD TO DESTITUTION

We have deployed a version of our simplepyramid to the mainnet so that you 

can be scammed too. the minimum investment is set to a reasonable 0.001 

ether so that you don’t have to worry about losing too much money to play. if 

you get in early, you might even make money. Use the geth console to send 

.001 ether to the pyramid scheme and track the activity on etherscan. the 

contract code and state can be read at https://etherscan.io/address/

0x9b0033bccf2d913dd17c08a5844c9dd31dd34833.

 Governmental
Governmental was a complex pyramid scheme that ran on the Ethereum 

mainnet for about 40 days in early 2016. It was one of the most popular 

contracts on the Ethereum network at the time. The rules and code for the 

game are reproduced in Listings 7-23 and 7-24, respectively. You can also 

see the rules at http://governmental.github.io/GovernMental/ and the 

code at https://etherscan.io/address/0xf45717552f12ef7cb65e95476

f217ea008167ae3#code.

Listing 7-23. Governmental Rules

• You can lend the government money; they promise to pay 

it back with 10% interest. Minimum contribution is 1 ether.

• If the government does not receive new money for 12 

hours, the system breaks down. The latest creditor saw 

the crash coming and receives the jackpot. All others 

will lose their claims.

CHApter 7  ponzis And pyrAmids

https://etherscan.io/address/0x9b0033bccf2d913dd17c08a5844c9dd31dd34833
https://etherscan.io/address/0x9b0033bccf2d913dd17c08a5844c9dd31dd34833
http://governmental.github.io/GovernMental/
https://etherscan.io/address/0xf45717552f12ef7cb65e95476f217ea008167ae3#code
https://etherscan.io/address/0xf45717552f12ef7cb65e95476f217ea008167ae3#code


163

• All incoming money is used in the following way: 5% 

goes into the “jackpot” (capped at 10,000 ether); 5% 

goes to the corrupt elite that runs the government; 

90% is used to pay out creditors in order of their date 

of credit. When the jackpot is full, 95% goes toward the 

payout of creditors.

• Creditors can share an affiliate link. Money deposited 

this way is distributed as follows: 5% goes toward the 

linker directly, 5% to the corrupt elite, 5% into the 

jackpot (until full). The rest is used for payouts.

Listing 7-24. Governmental Code

contract Government {

    // Global Variables

    uint32 public lastCreditorPayedOut;

    uint public lastTimeOfNewCredit;

    uint public profitFromCrash;

    address[] public creditorAddresses;

    uint[] public creditorAmounts;

    address public corruptElite;

    mapping (address => uint) buddies;

    uint constant TWELVE_HOURS = 43200;

    uint8 public round;

    function Government() {

        // The corrupt elite establishes a new government

        // this is the commitment of the corrupt Elite -

        // everything that can not be saved from a crash

        profitFromCrash = msg.value;

        corruptElite = msg.sender;

CHApter 7  ponzis And pyrAmids



164

        lastTimeOfNewCredit = block.timestamp;

    }

    function lendGovernmentMoney(address buddy) returns (bool) {

        uint amount = msg.value;

        // check if the system already broke down. If for 12h no

         // new creditor gives new credit to the system it will 

brake down.

        // 12h are on average = 60*60*12/12.5 = 3456

        if (lastTimeOfNewCredit + TWELVE_HOURS < block.timestamp) {

            // Return money to sender

            msg.sender.send(amount);

            // Sends all contract money to the last creditor

            creditorAddresses[creditorAddresses.length - 1]

                .send(profitFromCrash);

            corruptElite.send(this.balance);

            // Reset contract state

            lastCreditorPayedOut = 0;

            lastTimeOfNewCredit = block.timestamp;

            profitFromCrash = 0;

            creditorAddresses = new address[](0);

            creditorAmounts = new uint[](0);

            round += 1;

            return false;

        }

        else {

            // the system needs to collect at least 1% of the profit

            // from a crash to stay alive

            if (amount >= 10 ** 18) {

                // the System has received fresh money,

                // it will survive at least 12h more

                lastTimeOfNewCredit = block.timestamp;

CHApter 7  ponzis And pyrAmids



165

                // register the new creditor and his amount with

                // 10% interest rate

                creditorAddresses.push(msg.sender);

                creditorAmounts.push(amount * 110 / 100);

                // now the money is distributed

                // first the corrupt elite grabs 5% - thieves!

                corruptElite.send(amount * 5/100);

                 // 5% are going into the economy (they will 

increase

                 // the value for the person seeing the crash coming)

                if (profitFromCrash < 10000 * 10**18) {

                    profitFromCrash += amount * 5/100;

                }

                // if you have a buddy in the government (and he is

                 // in the creditor list) he can get 5% of your 

credits.

                // Make a deal with him.

                if(buddies[buddy] >= amount) {

                    buddy.send(amount * 5/100);

                }

                buddies[msg.sender] += amount * 110 / 100;

                 // 90% of the money will be used to pay out old 

creditors

                if (creditorAmounts[lastCreditorPayedOut] <=

                    address(this).balance - profitFromCrash) {

                    creditorAddresses[lastCreditorPayedOut].send(

                        creditorAmounts[lastCreditorPayedOut]);

                     buddies[creditorAddresses[lastCreditorPayed

Out]] -=

                        creditorAmounts[lastCreditorPayedOut];

                    lastCreditorPayedOut += 1;

CHApter 7  ponzis And pyrAmids



166

                }

                return true;

            }

            else {

                msg.sender.send(amount);

                return false;

            }

        }

    }

    // fallback function

    function() {

        lendGovernmentMoney(0);

    }

    function totalDebt() returns (uint debt) {

         for(uint i=lastCreditorPayedOut; i<creditorAmounts.

length; i++){

            debt += creditorAmounts[i];

        }

    }

    function totalPayedOut() returns (uint payout) {

        for(uint i=0; i<lastCreditorPayedOut; i++){

            payout += creditorAmounts[i];

        }

    }

    // better don't do it

    // (unless you are the corrupt elite and you

    // want to establish trust in the system)

    function investInTheSystem() {

        profitFromCrash += msg.value;

    }

CHApter 7  ponzis And pyrAmids



167

    // From time to time the corrupt elite inherits

    // it's power to the next generation

    function inheritToNextGeneration(address nextGeneration) {

        if (msg.sender == corruptElite) {

            corruptElite = nextGeneration;

        }

    }

    function getCreditorAddresses() returns (address[]) {

        return creditorAddresses;

    }

    function getCreditorAmounts() returns (uint[]) {

        return creditorAmounts;

    }

}

As a warning, this code will not work properly on the latest version of 

Solidity. It uses a few quirks of the language that have been deprecated 

since the contract was written. A version of the code that works with 

the most recent version of Solidity is available on the GitHub repo at 

contracts/Governmental.sol. You can deploy and interact with that one 

if you wish. Doing so will be left as an exercise for you.

The code is well commented, so we won’t go through the entirety of it 

in detail as we did with the other contracts. We will cover only the portions 

that are difficult to understand, starting with the variables in Listing 7-25.

Listing 7-25. Governmental Variables

// Global Variables

uint32 public lastCreditorPayedOut;

uint public lastTimeOfNewCredit;

uint public profitFromCrash;

CHApter 7  ponzis And pyrAmids

https://github.com/k26dr/ethereum-games/blob/master/contracts/Governmental.sol


168

address[] public creditorAddresses;

uint[] public creditorAmounts;

address public corruptElite;

mapping (address => uint) buddies;

uint constant TWELVE_HOURS = 43200;

uint8 public round;

Understanding the state variables in use will get us halfway to 

understanding the contract itself. Let’s go through them:

• lastCreditorPayedOut: This is a poorly named 

variable. It stores the index of the first creditor that 

hasn’t been paid out. It is used in conjunction with 

creditorAddresses and creditorAmounts.

• lastTimeOfNewCredit: This is a UNIX timestamp 

storing the timestamp of the last investment. If a new 

investment doesn’t arrive within 12 hours, the Ponzi 

“collapses,” and the last creditor receives the jackpot.

• profitFromCrash: This is the jackpot that the last 

creditor stands to win. It is seeded within an initial 

amount from the corrupt elite and added to by 5% of 

every creditor’s investment.

• creditorAddresses: A list of creditor addresses. cred

itorAddresses[lastCreditorPayedOut] refers to the 

first creditor in line that hasn’t been paid out.

• creditorAmounts: A list of the amounts owed to each 

creditor. creditorAmounts[lastCreditorPayedOut] 

refers to the amount owed to the first creditor in line 

that hasn’t been paid out.

• corruptElite: The creator of the contract. This address 

receives 5% of every investment.

CHApter 7  ponzis And pyrAmids



169

• buddies: A mapping of creditor addresses to 

creditor amounts. It’s a redundant combination of 

creditorAddresses and creditorAmounts, but it’s much 

faster for lookup of a single address because it’s a mapping 

instead of an array. Used to determine affiliate bonuses.

• TWELVE_HOURS: A constant—12 hours in seconds.

• round: Every time a jackpot is paid out, a new round 

begins. In theory, the game could go on forever. In 

practice, see what happened when the game got too 

large in Chapter 5.

If you understand the variables, the payout of creditors is the only 

other portion of the contract that is difficult to interpret (Listing 7-26).

Listing 7-26. Governmental Creditor Payouts

// 90% of the money will be used to pay out old creditors

if (creditorAmounts[lastCreditorPayedOut] <=

    address(this).balance - profitFromCrash) {   

    creditorAddresses[lastCreditorPayedOut].send(

        creditorAmounts[lastCreditorPayedOut]);

    buddies[creditorAddresses[lastCreditorPayedOut]] -=

        creditorAmounts[lastCreditorPayedOut];

    lastCreditorPayedOut += 1;

}

We’ve added spacing between each line to make the code more 

readable. The if condition resolves only if paying out the next creditor 

will leave enough ether in the contract to pay out a jackpot. The jackpot is 

given priority over creditor repayments. This means that a stack of unpaid 

creditors can potentially line up.

CHApter 7  ponzis And pyrAmids



170

If there is enough ether in the contract to pay out the next creditor, the 

amount owed to that creditor is sent to the creditor’s address. Remember, 

the amount owed to the creditor includes a 10% markup on their initial 

investment.

The third line here subtracts the amount paid out from the buddies list. 

This line could be simplified by setting the value to zero. After an address 

has been paid out, they can no longer claim referral bonuses. The final line 

then increments the creditor index so the next creditor can be paid in the 

next transaction.

 Summary
This chapter went through a series of pyramid and Ponzi contracts and 

exposed you to your first real-world contract, Governmental. Mainnet 

deployments for SimplePonzi, GradualPonzi, and SimplePyramid are all 

available for you to use in collaboration with other readers. Ponzis and 

pyramids formed the first exploration of some of the unique game designs 

Ethereum makes possible. We will continue this exploration in the next 

chapter with lotteries.

CHApter 7  ponzis And pyrAmids



171© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_8

CHAPTER 8

Lotteries
Lotteries are an excellent use case for Ethereum. Like pyramids, lotteries 

were among the first contracts on the Ethereum blockchain. Results are 

provably fair, enabling the lottery to be run without a central authority 

taking a cut of the winnings, and without anchoring its operation in any 

single legal jurisdiction. It is highly likely that the lotteries of the future will 

be conducted on a blockchain. This chapter covers the primary roadblock 

to running a good lottery—random-number generation—and develops a 

series of increasingly complex lottery contracts.

Note All the code for this chapter is available in our GitHub repo 
at https://github.com/k26dr/ethereum-games/blob/
master/contracts/Lotteries.sol.

 Random-Number Generation
We covered random-number generation (RNG) in detail in Chapter 5. 

As a brief overview, our primary options for a source of entropy are the 

blockhash and external oracles. To minimize complexity and external 

dependencies, we will be using blockhashes for our random numbers.

Because only the previous blockhash is available to us, and it is known 

at the time the transaction is executed, we will have to take additional 

measures to make the final result unpredictable. Specifically, we will be 

https://github.com/k26dr/ethereum-games/blob/master/contracts/Lotteries.sol
https://github.com/k26dr/ethereum-games/blob/master/contracts/Lotteries.sol


172

instituting time delays between the ticket purchase period and the drawing 

of the winner, so that the blockhash used to determine the winner is not 

known at any point when lottery tickets are being distributed.

We mentioned in Chapter 5 that we can create a better RNG by using 

lotteries. We will be doing that later in this chapter. It is more complex 

and less user-friendly than using the blockhash, but in return it provides a 

better source of entropy.

 Simple Lottery
We will start with the simplest lottery possible. Our simple lottery will 

be nonrecurring, uses blockhashes for random numbers, and has only 

one winner. We present the code in its entirety first (Listing 8-1) before 

explaining in detail.

Listing 8-1. A Simple Lottery

contract SimpleLottery {

    uint public constant TICKET_PRICE = 1e16; // 0.01 ether

    address[] public tickets;

    address public winner;

    uint public ticketingCloses;

    function SimpleLottery (uint duration) public {

        ticketingCloses = now + duration;

    }

    function buy () public payable {

        require(msg.value == TICKET_PRICE);

        require(now < ticketingCloses);

        tickets.push(msg.sender);

    }

CHApter 8  Lotteries



173

    function drawWinner () public {

        require(now > ticketingCloses + 5 minutes);

        require(winner == address(0));

        bytes32 rand = keccak256(

            block.blockhash(block.number-1)

        );

        winner = tickets[uint(rand) % tickets.length];

    }

    function withdraw () public {

        require(msg.sender == winner);

        msg.sender.transfer(this.balance);

    }

    function () payable public {

        buy();

    }

}

The lottery has a constructor and three public functions corresponding 

to the three actions a user can take: buy a ticket, draw a winner, and claim 

their winnings. By default, the fallback function buys a ticket if a user sends 

ether to the contract address.

Reviewing the state variables and constants declared in the contract 

will give us a good feel for the implementation details:

• TICKET_PRICE: The price of a lottery ticket. When a user 

buys a ticket, they will be sending this value along with 

their transaction.

• tickets: A list of addresses that have bought tickets. An 

address can be in the array multiple times if the user 

buys multiple tickets.

CHApter 8  Lotteries



174

• winner: The winner of the lottery. This is the user who 

gets to claim the prize. The prize cannot be withdrawn 

until the winner is set.

• ticketingCloses: A UNIX timestamp. Tickets can 

be purchased up until this time. The winner is drawn 

at least 5 minutes after this time so that the random 

blockhash is unknown during the ticketing process.

The only variable that needs to be set at contract creation is 

ticketingCloses. The duration of the contract is specified as the 

argument to the constructor, and the ticket close time is set to duration 

seconds in the future.

Because the constructor takes an argument, that argument needs to be 

passed in from the migration. The full migration is available in the GitHub 

repo at https://github.com/k26dr/ethereum-games/blob/master/

migrations/9_simple_lottery.js. Listing 8-2 lists only the nonstandard 

portions of the migration in which the constructor argument is specified.

Listing 8-2. SimpleLottery Migration with Constructor Arguments

    ...

    var duration = 3600 * 24 * 3; // 3 days

    deployer.deploy(SimpleLottery, duration);

};

Buying a ticket is fairly simple, so we will cover it briefly without 

reprinting. The value must be exactly equal to the ticket price, and the 

transaction must be mined before the ticketing close time. Buying a ticket 

adds the sender’s address to the tickets array.

Drawing a winner (Listing 8-3) picks a random address from the tickets 

array.

CHApter 8  Lotteries

https://github.com/k26dr/ethereum-games/blob/master/migrations/9_simple_lottery.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/9_simple_lottery.js


175

Listing 8-3. Drawing a Winner in SimpleLottery

function drawWinner () public {

    require(now > ticketingCloses + 5 minutes);

    require(winner == address(0));

    bytes32 rand = keccak256(

        block.blockhash(block.number-1)

    );

    winner = tickets[uint(rand) % tickets.length];

}

Picking a winner requires the ticketing window to be closed for at 

least 5 minutes. This is done to ensure no one can know the blockhash, our 

source of entropy, while buying a ticket. Checking that the winning address 

is currently set to the zero address ensures that the winner hasn’t already 

been picked.

We generate a random sequence of bytes by hashing the most recent 

blockhash. Converting those bytes into an integer and then using the 

modulus to bound the range of the number yields a random index.  

The winning address is the address located at the randomly generated 

index in the tickets array.

We have seen the remaining two functions in the contract before. The 

withdrawal function is standard and sends the whole contract balance to 

the winner. The fallback function simply executes a buy. In Exercise 8-1,  

modify the lottery code so that we can quickly run an end-to-end 

interaction with the contract.

CHApter 8  Lotteries



176

EXERCISE 8-1. QUICK LOTTERY

Change the wait period before drawing a winner from 5 minutes to 1 minute 

and set the duration of the lottery to 1 minute in the migration. Deploy the 

modified lottery to a private chain and use a loop to purchase a ticket for each 

of the 10 accounts. Wait a couple of minutes for the ticketing and waiting 

periods to end, and then draw a winner and claim the prize from the winning 

address. All contract variables are public, so you should be able to track the 

state of the contract as you go.

 Recurring Lottery
The lottery we wrote in the previous section focused on simplicity while 

sacrificing real-world usability. In this section, we’re going to build a 

more realistic lottery contract that can be deployed to the mainnet. The 

new lottery will occur in rounds so that a new prize pool is started every 

time the old one closes. It will also allow users to purchase multiple 

tickets in one transaction instead of just one and add a couple of security 

improvements. Listing 8-4 displays the whole contract before we get into 

the details of the code.

Listing 8-4. Recurring, Multiticket Lottery

contract RecurringLottery {

    struct Round {

        uint endBlock;

        uint drawBlock;

        Entry[] entries;

        uint totalQuantity;

        address winner;

    }

CHApter 8  Lotteries



177

    struct Entry {

        address buyer;

        uint quantity;

    }

    uint constant public TICKET_PRICE = 1e15;

    mapping(uint => Round) public rounds;

    uint public round;

    uint public duration;

    mapping (address => uint) public balances;

    // duration is in blocks. 1 day = ~5500 blocks

    function RecurringLottery (uint _duration) public {

        duration = _duration;

        round = 1;

        rounds[round].endBlock = block.number + duration;

        rounds[round].drawBlock = block.number + duration + 5;

    }

    function buy () payable public {

        require(msg.value % TICKET_PRICE == 0);

        if (block.number > rounds[round].endBlock) {

            round += 1;

            rounds[round].endBlock = block.number + duration;

            rounds[round].drawBlock = block.number + duration + 5;

        }

        uint quantity = msg.value / TICKET_PRICE;

        Entry memory entry = Entry(msg.sender, quantity);

        rounds[round].entries.push(entry);

        rounds[round].totalQuantity += quantity;

    }

CHApter 8  Lotteries



178

    function drawWinner (uint roundNumber) public {

        Round storage drawing = rounds[roundNumber];

        require(drawing.winner ==  address(0));

        require(block.number > drawing.drawBlock);

        require(drawing.entries.length > 0);

        // pick winner

        bytes32 rand = keccak256(

            block.blockhash(drawing.drawBlock)

        );

        uint counter = uint(rand) % drawing.totalQuantity;

        for (uint i=0; i < drawing.entries.length; i++) {

            uint quantity = drawing.entries[i].quantity;

            if (quantity > counter) {

                drawing.winner = drawing.entries[i].buyer;

                break;

            }

            else

                counter -= quantity;

        }

         balances[drawing.winner] += TICKET_PRICE * drawing.

totalQuantity;

    }

    function withdraw () public {

        uint amount = balances[msg.sender];

        balances[msg.sender] = 0;

        msg.sender.transfer(amount);

    }

CHApter 8  Lotteries



179

    function deleteRound (uint _round) public {

        require(block.number > rounds[_round].drawBlock + 100);

        require(rounds[_round].winner != address(0));

        delete rounds[_round];

    }

    function () payable public {

        buy();

    }

}

As you can see, this is a much more complex contract than our 

simple lottery. Some functionality is reused, but for the most part it is a 

brand- new contract.

 Constants and Variables
We have a couple of structs defined at the top of our contract before the 

state variables (Listing 8-5).

Listing 8-5. RecurringLottery Struct Definitions

struct Round {

    uint endBlock;

    uint drawBlock;

    Entry[] entries;

    uint totalQuantity;

    address winner;

}

struct Entry {

    address buyer;

    uint quantity;

}

CHApter 8  Lotteries



180

Type and struct definitions usually go at the beginning of a contract 

because they are used in the variable definitions and rest of the contract. 

We have defined two structs: Round and Entry.

A round ends when block number endBlock is mined and the winner 

is determined by selecting a random entry from entries. A random seed 

generated by the blockhash from block number drawBlock will determine 

which entry gets the prize. A single Entry contains the buyer address and 

quantity of tickets purchased. Since an Entry can hold more than one 

ticket, determining the total number of tickets sold requires a calculation 

that gets more expensive with more entries. Instead, totalQuantity is 

defined to track the number of tickets sold in each round.

The majority of the state complexity is captured in the struct 

definitions, so the state variables and constants in the contract are 

minimal:

• TICKET_PRICE: The price of a single ticket. This can 

be small because multiple tickets can be purchased at 

once.

• round: The round number. This variable allows the 

lottery to be recurring.

• rounds: A mapping from round numbers to Round 

structs.

• duration: The duration of a single round in blocks. One 

day spans approximately 5,500 blocks.

• balances: A standard mapping of user balances.

The constructor function (Listing 8-6) has to initialize a few variables 

this time.

CHApter 8  Lotteries



181

Listing 8-6. RecurringLottery Constructor

function RecurringLottery (uint _duration) public {

    duration = _duration;

    round = 1;

    rounds[round].endBlock = block.number + duration;

    rounds[round].drawBlock = block.number + duration + 5;

}

The duration and times are measured in blocks instead of seconds 

this time. This is because we care about the number of blocks between 

ticketing and drawing, not the number of seconds since block times can 

be varied. The endBlock and drawBlock are set five blocks apart so that the 

blockhash is unknown to all participants.

 Gameplay
The round incrementing logic is handled during the ticket purchase 

(Listing 8-7).

Listing 8-7. Round Incrementing Logic

function buy () payable public {

    require(msg.value % TICKET_PRICE == 0);

    if (block.number > rounds[round].endBlock) {

        round += 1;

        rounds[round].endBlock = block.number + duration;

        rounds[round].drawBlock = block.number +

            duration + 5;

    }

    ...

CHApter 8  Lotteries



182

First, we check to make sure the ether value of the transaction is a 

multiple of the ticket price. Multiple tickets can be purchased at once, 

but fractional tickets are not allowed. Then we check to see whether the 

current round has expired. If it has, we increment the round counter and 

set end and draw times for the new round. The ticket purchase will still go 

through, but it will be the first purchase of the new round.

Listing 8-8 details the ticket purchase logic in the second half of the 

buy function.

Listing 8-8. Ticket Purchase Logic

    ...

    uint quantity = msg.value / TICKET_PRICE;

    Entry memory entry = Entry(msg.sender, quantity);

    rounds[round].entries.push(entry);

    rounds[round].totalQuantity += quantity;

}

The quantity of tickets purchased is the multiple of the ticket price sent 

with the transaction. This is a payable function so it can receive ether.

The second line is interesting. It’s the first time we’ve explicitly used 

the memory modifier in one of our contracts. Solidity automatically creates 

constructors for all structs. These constructors take the properties of 

the struct in order as arguments. When the struct is created, it is created 

in memory, not storage. If you omit the memory modifier, Solidity will 

create a storage Entry pointer by default. The compiler will throw a 

type mismatch error because the value of type memory Entry cannot be 

referenced by a storage Entry pointer (Figure 8-1).

Figure 8-1. Type mismatch error between storage and memory

CHApter 8  Lotteries



183

When a memory struct is pushed to a storage array, Solidity 

automatically converts the memory struct to a storage struct before 

pushing the item to the array. This is why the third line in Listing 8-8 does 

not throw an error.

After a round has ended, there is a five-block waiting period before 

a winner can be drawn. Five blocks is far enough out in the future that 

no one can know the blockhash ahead of time. Minimally, two would be 

enough because the latest available blockhash is from the previous block 

(see “Random-Number Generation” in Chapter 5 for an explanation), but 

we will wait five to be safe.

Listing 8-9 reproduces the first half of the drawWinner function. The 

function takes a round number as an argument.

Listing 8-9. Initial Conditions and Local Variables for Drawing a 

Winner

function drawWinner (uint roundNumber) public {

    Round storage drawing = rounds[roundNumber];

    require(drawing.winner ==  address(0));

    require(block.number > drawing.drawBlock);

    require(drawing.entries.length > 0);

    // pick winner

    bytes32 rand = keccak256(

        block.blockhash(drawing.drawBlock)

    );

    uint counter = uint(rand) % drawing.totalQuantity;

    ...

CHApter 8  Lotteries



184

Three checks are performed. The first ensures that a winner hasn’t 

already been set for the specified round, the second verifies that the 

drawBlock blockhash is now available, and the third ensures that at least 

one ticket was purchased. Anybody can trigger the drawWinner function for 

any round at any time, but these checks combine to ensure that it will run 

successfully only once.

Regardless of when the drawing occurs, the random-number generator 

uses the blockhash specifically from the drawBlock to generate a random 

seed. This corrects a small security flaw we didn’t address for simplicity’s 

sake in SimpleLottery. The blockhash of the previous block is known to 

the user when they trigger the drawWinner function. If they see that the 

blockhash is going to give them the prize, they can keep waiting to trigger 

the function until they see a blockhash that will give them the prize. The 

only user with an incentive to trigger the function is the one who would 

receive the prize from that particular hash. So everybody would have to 

sit there running moduli on the blockhashes and triggering the function 

for their winning block so that a malicious actor doesn’t take advantage of 

their laziness.

Specifying an exact block for the blockhash solves this problem. No 

matter when the drawWinner function is triggered, the same blockhash is 

used, so there is no advantage to waiting on the next block.

Unfortunately, this introduces another small worry for us to keep 

track of. Solidity and the EVM provide access to only the 256 most recent 

blockhashes. Anything older than that will return a value of 0x0. If the 

drawWinner function is not triggered within 256 blocks (~80 min) of the 

specified drawing block, the drawing will no longer be pseudorandom. 

Avoiding this flaw is thankfully simple. Make sure the lottery winner is drawn 

within an hour of the end of the lottery, and the flaw is no longer an issue.

The counter in the last line is actually the winning ticket. Because of 

the way our entries are stored, though, it ends up being used as a counter 

while determining the winning address (Listing 8-10), so that’s why it has 

been named as such.

CHApter 8  Lotteries



185

Listing 8-10. Calculating a RecurringLottery Round Winner

...

for (uint i=0; i < drawing.entries.length; i++) {

    uint quantity = drawing.entries[i].quantity;

    if (quantity > counter) {

        drawing.winner = drawing.entries[i].buyer;

        break;

    }

    elsea

        counter -= quantity;

}

balances[drawing.winner] += TICKET_PRICE *

                            drawing.entries.length;

...

Every entry has a quantity associated with it. The sum of the quantities 

in all entries, drawing.totalQuantity, was used to modulus the seed 

in Listing 8-9, and the result was stored in counter. This initial value of 

counter is the winning ticket, and we need to determine the address this 

ticket belongs to.

To do so, we loop through the entries and subtract the quantity of 

each entry from the counter. Eventually, we reach a point where the 

quantity of tickets in the entry is greater than the number left in the 

counter. This means one of the tickets in that entry must be the winning 

ticket, so we can mark the buyer of the entry as the winner and break out of 

the loop.

The prize is determined by multiplying the ticket price by the number 

of tickets sold in the round. It is credited to the user’s balance for them to 

withdraw. The contract uses a standard withdraw function (see “Withdraw 

Methods” in Chapter 5).

CHApter 8  Lotteries



186

 Cleanup and Deployment
After a round is complete and the user has been paid out, the state for that 

round is no longer required. Because this state can be quite large if the 

contract becomes popular, a deleteRound function is provided so that we 

can be good blockchain citizens and clean up old data (Listing 8-11).

Listing 8-11. Deleting Old Round State

function deleteRound (uint _round) public {

    require(block.number > rounds[_round].drawBlock + 100);

    require(rounds[_round].winner != address(0));

    delete rounds[_round];

}

If it has been more than 100 blocks since the drawing block and the 

winner has already been drawn, this function deletes the specified round. 

Anyone can call this function.

The migration for this contract is similar to SimpleLottery. A duration 

is specified in blocks instead of seconds. The full migration is available 

at the GitHub repo at https://github.com/k26dr/ethereum-games/

blob/master/migrations/10_recurring_lottery.js. Only the two 

nonstandard lines are printed in Listing 8-12.

Listing 8-12. RecurringLottery Migration

// duration is in blocks. 1 day = ~5500 blocks

var duration = 5500 * 7; // 7 days

deployer.deploy(RecurringLottery, duration);

We’ve set the round duration to approximately seven days in our 

migration and the deployed contracts in Exercise 8-2, but feel free to 

modify it for your own use.

CHApter 8  Lotteries

https://github.com/k26dr/ethereum-games/blob/master/migrations/10_recurring_lottery.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/10_recurring_lottery.js


187

EXERCISE 8-2. PLAY THE LOTTERY

We have deployed our recurringLottery to both the mainnet (https://

etherscan.io/address/0x9283340ee8f47b59511a4f1a4bad3c54662

83c09) and the testnet (https://rinkeby.etherscan.io/address/0x

6d198b8c429da4536f2b77d3b92731e025207884) if you wish to play. Buy 

a ticket and try your luck. While you wait on the weekly lottery draw, check 

whether there are any undrawn rounds or rounds that can be deleted. if there 

are, do your fellow readers a service and run the transactions required to draw 

or delete the rounds.

 RNG Lottery
Using a blockhash as the source of entropy for RNG has its theoretical 

limits. If the ether prize for the lottery greatly exceeds the block reward, the 

miners become incentivized to manipulate the blockhashes in their favor, 

discarding any valid hashes they create that don’t award them the prize.

At the moment, this attack vector is merely theoretical. No one has 

exploited it with any sort of success. In the case of a lottery with hundreds 

of tickets, a miner could improve their odds only by a few percentage 

points by discarding hashes. However, a more secure RNG using lotteries 

has been proposed and is worth covering here.

Because the purpose of this contract is to demonstrate the use of a 

more secure RNG, we will keep the lottery functionality simple. It will be a 

nonrecurring lottery with only single-ticket purchases.

The idea behind the RNG lottery is to use a commit-reveal sequence 

to create a verifiably random number. Every buyer submits a commitment 

hash when they buy a ticket. The commitment is generated by hashing 

together the user’s address and a secret number known only to the user.

CHApter 8  Lotteries

https://etherscan.io/address/0x9283340ee8f47b59511a4f1a4bad3c5466283c09
https://etherscan.io/address/0x9283340ee8f47b59511a4f1a4bad3c5466283c09
https://etherscan.io/address/0x9283340ee8f47b59511a4f1a4bad3c5466283c09
https://rinkeby.etherscan.io/address/0x6d198b8c429da4536f2b77d3b92731e025207884
https://rinkeby.etherscan.io/address/0x6d198b8c429da4536f2b77d3b92731e025207884


188

When the ticketing period is over, there is a reveal period during 

which each player must reveal the secret number used to generate their 

commitment hash. The secret number is hashed on-chain with the player’s 

address, and this hash must match the commitment submitted with the 

ticket. Players who don’t reveal their numbers during the reveal period 

are dropped from the lottery. The secret numbers are hashed together to 

generate the random seed for picking a winner.

Listing 8-13 lists the whole contract before we explore the contract in 

detail.

Listing 8-13. RNG Lottery

contract RNGLottery {

    uint constant public TICKET_PRICE = 1e16;

    address[] public tickets;

    address public winner;

    bytes32 public seed;

    mapping(address => bytes32) public commitments;

    uint public ticketDeadline;

    uint public revealDeadline;

    uint public drawBlock;

    function RNGLottery (uint duration,

      uint revealDuration) public {

        ticketDeadline = block.number + duration;

        revealDeadline = ticketDeadline + revealDuration;

        drawBlock = revealDeadline + 5;

    }

    function createCommitment(address user, uint N)

      public pure returns (bytes32 commitment) {

        return keccak256(user, N);

    }

CHApter 8  Lotteries



189

    function buy (bytes32 commitment) payable public {

        require(msg.value == TICKET_PRICE);

        require(block.number <= ticketDeadline);

        commitments[msg.sender] = commitment;

    }

    function reveal (uint N) public {

        require(block.number > ticketDeadline);

        require(block.number <= revealDeadline);

        bytes32 hash = createCommitment(msg.sender, N);

        require(hash == commitments[msg.sender]);

        seed = keccak256(seed, N);

        tickets.push(msg.sender);

    }

    function drawWinner () public {

        require(block.number > drawBlock);

        require(winner == address(0));

        uint randIndex = uint(seed) % tickets.length;

        winner = tickets[randIndex];

    }

    function withdraw () public {

        require(msg.sender == winner);

        msg.sender.transfer(this.balance);

    }

}

CHApter 8  Lotteries



190

This contract has four new variables that you haven’t seen before:

• seed: This is the random seed we will use to determine 

a winner. Each time a secret number is revealed, the 

seed is modified to incorporate the reveal.

• commitments: Every player submits a commitment 

with their ticket purchase. This mapping stores those 

commitments.

• ticketDeadline: The equivalent of endBlock from 

earlier contracts. Tickets cannot be purchased after this 

block number.

• revealDeadline: The reveal phase is new and requires 

a deadline as well. All reveals must occur after the ticket 

deadline and before the reveal deadline.

The constructor takes two duration parameters instead of one this time 

(one for the ticketing period and one for the reveal period) and uses the 

durations to set deadlines for the ticket and reveal periods.

Before purchasing a ticket, a user must first create a commitment. To 

make this easy for the user, the contract contains a createCommitment 

function (Listing 8-14).

Listing 8-14. Solidity Function for Creating a Commitment

function createCommitment(address user, uint N)

  public pure returns (bytes32 commitment) {

    return keccak256(user, N);

}

This function uses an address and a secret number, N, to create a 

commitment hash. The address should be the user’s address so that the 

commitment can be verified properly on-chain during the reveal phase.

CHApter 8  Lotteries



191

The user’s address is concatenated to the secret number before the 

hash for the same reason salts are used in password storage. Using just 

the number exposes the commitment to a dictionary attack. An attacker 

can maintain a large database containing hashes of common numbers, 

phrases, or byte sequences. If the secret number ends up being a common 

number, an attacker could determine the number from the hash. 

Prepending the user address to the number before hashing makes it highly 

unlikely that the hash will be available in a database.

This is the first time we’ve had a use for a pure function. The output 

of a pure function depends solely on the function arguments. Because of 

this, calling a pure function does not require sending a transaction. The 

result can be calculated and used locally without having to update the 

state tree and go through the consensus protocol. A user can generate a 

commitment locally in the Truffle dev console (Listing 8-15).

Listing 8-15. Creating a Commitment Locally

lottery = RNGLottery.at(RNGLottery.address)

N = 173849032

lottery.createCommitment(web3.eth.accounts[0], N)

The third line will spit out the commitment as a 32-byte hex string. 

This commitment can then be used in a ticket purchase transaction 

(Listing 8-16).

Listing 8-16. Purchasing a Ticket with a Commitment

commitment = lottery.createCommitment(

  web3.eth.accounts[0], N)

lottery.buy(commitment,

  { from: web3.eth.accounts[0], value: 1e16 })

CHApter 8  Lotteries



192

Note if you are interested in seeing a more in-depth interaction 
with multiple commits and reveals, a full test interaction is available 
on the GitHub repo at test/RNGLottery.js.

The ticket purchase logic is simple (Listing 8-17). It verifies that the 

proper value was sent with the transaction and that that the ticket deadline 

hasn’t passed, and stores the commitment for later use.

Listing 8-17. RNG Lottery Ticket Purchase Logic

function buy (bytes32 commitment) payable public {

    require(msg.value == TICKET_PRICE);

    require(block.number <= ticketDeadline);

    commitments[msg.sender] = commitment;

}

The reveal logic is more interesting (Listing 8-18).

Listing 8-18. Revealing and Verifying Secret Numbers

function reveal (uint N) public {

    require(block.number > ticketDeadline);

    require(block.number <= revealDeadline);

    bytes32 hash = createCommitment(msg.sender, N);

    require(hash == commitments[msg.sender]);

    seed = keccak256(seed, N);

    tickets.push(msg.sender);

}

CHApter 8  Lotteries

https://github.com/k26dr/ethereum-games/tree/master/test/RNGLottery.js


193

The function takes one argument: the secret number N being revealed. 

The first two checks ensure that the current block is in the reveal period. 

Then a commitment hash is created from the revealed number and user 

address, using the same function as in the commit phase to avoid errors 

from differences in implementation. This generated hash must match the 

hash from the commitment exactly, or the function will throw an error.

To generate an updated seed, the secret number is concatenated to the 

current seed, and the hash of the concatenated byte sequence is stored as 

the new seed. In this way, each reveal updates the seed with its own secret 

number until all players have modified the seed.

The beauty of this system is that it requires only one honest actor 

to succeed. A single unknown reveal is enough to make it impossible to 

predict the final generated seed. This means players don’t have to trust 

each other to ensure a fair outcome. Each player has to ensure only that 

their own number is kept secret. To predict the outcome, an attacker 

would have to know every secret number, the order in which they will be 

revealed, and the total number of tickets that will be purchased.

The remainder of the code, the drawWinner and withdraw functions, 

are nearly identical to SimpleLottery, so we do not discuss them further 

here.

The migration for the RNG lottery is slightly different from the other 

lotteries because it takes two arguments instead of one. Only the differing 

lines are reproduced in Listing 8-19. The full migration is available on 

the GitHub repo at https://github.com/k26dr/ethereum-games/blob/

master/migrations/11_rng_lottery.js.

Listing 8-19. Deploying the RNG Lottery

// duration is in blocks. 1 day = ~5500 blocks

var duration = 5500 * 7; // 7 days

var revealDuration = 5500 * 3; // 3 days

deployer.deploy(RNGLottery, duration, revealDuration);

CHApter 8  Lotteries

https://github.com/k26dr/ethereum-games/blob/master/migrations/11_rng_lottery.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/11_rng_lottery.js


194

 Powerball
Powerball is the most popular type of lottery played in the United States. 

In this section, we are going to write a contract that ports this game onto 

Ethereum.

In Powerball, the user picks six numbers per ticket. The first five 

numbers are standard numbers from 1–69, and the sixth number is a 

special Powerball number from 1–26 that offers extra rewards. Every three 

or four days, a drawing is held, and a winning ticket consisting of five 

standard numbers and a Powerball number is picked. Prizes are paid out 

based on the number of winning numbers matched on your ticket.

Figure 8-2 reproduces the payouts and odds from the official Powerball 

site (www.powerball.com/powerball/pb_prizes.asp). The Grand Prize 

refers to the full jackpot, which in our case will be the full balance of the 

contract.

CHApter 8  Lotteries

http://www.powerball.com/powerball/pb_prizes.asp
http://www.powerball.com/powerball/pb_prizes.asp


195

The code for the full Powerball contract is displayed in Listing 8-20.

Listing 8-20. Powerball Smart Contract

contract Powerball {

    struct Round {

        uint endTime;

        uint drawBlock;

        uint[6] winningNumbers;

        mapping(address => uint[6][]) tickets;

    }

Figure 8-2. Powerball win criteria, odds, and payouts

CHApter 8  Lotteries



196

    uint public constant TICKET_PRICE = 2e15;

    uint public constant MAX_NUMBER = 69;

    uint public constant MAX_POWERBALL_NUMBER = 26;

    uint public constant ROUND_LENGTH = 3 days;

    uint public round;

    mapping(uint => Round) public rounds;

    function Powerball () public {

        round = 1;

        rounds[round].endTime = now + ROUND_LENGTH;

    }

    function buy (uint[6][] numbers) payable public {

        require(numbers.length * TICKET_PRICE == msg.value);

        for (uint i=0; i < numbers.length; i++) {

            for (uint j=0; j < 6; j++)

                require(numbers[i][j] > 0);

            for (j=0; j < 5; j++)

                require(numbers[i][j] <= MAX_NUMBER);

            require(numbers[i][5] <= MAX_POWERBALL_NUMBER);

        }

        // check for round expiry

        if (now > rounds[round].endTime) {

            rounds[round].drawBlock = block.number + 5;

            round += 1;

            rounds[round].endTime = now + ROUND_LENGTH;

        }

        for (i=0; i < numbers.length; i++)

            rounds[round].tickets[msg.sender].push(numbers[i]);

    }

CHApter 8  Lotteries



197

    function drawNumbers (uint _round) public {

        uint drawBlock = rounds[_round].drawBlock;

        require(now > rounds[_round].endTime);

        require(block.number >= drawBlock);

        require(rounds[_round].winningNumbers[0] == 0);

        for (uint i=0; i < 5; i++) {

            bytes32 rand = keccak256(block.blockhash(drawBlock), i);

            uint numberDraw = uint(rand) % MAX_NUMBER + 1;

            rounds[_round].winningNumbers[i] = numberDraw;

        }

        rand = keccak256(block.blockhash(drawBlock), uint(5));

        uint powerballDraw = uint(rand) % MAX_POWERBALL_NUMBER + 1;

        rounds[_round].winningNumbers[5] = powerballDraw;

    }

    function claim (uint _round) public {

        require(rounds[_round].tickets[msg.sender].length > 0);

        require(rounds[_round].winningNumbers[0] != 0);

         uint[6][] storage myNumbers = rounds[_round].

tickets[msg.sender];

         uint[6] storage winningNumbers = rounds[_round].

winningNumbers;

        uint payout = 0;

        for (uint i=0; i < myNumbers.length; i++) {

            uint numberMatches = 0;

            for (uint j=0; j < 5; j++) {

                for (uint k=0; k < 5; k++) {

                    if (myNumbers[i][j] == winningNumbers[k])

                        numberMatches += 1;

                }

CHApter 8  Lotteries



198

            }

            bool powerballMatches =

              (myNumbers[i][5] == winningNumbers[5]);

            // win conditions

            if (numberMatches == 5 && powerballMatches) {

                payout = this.balance;

                break;

            }

            else if (numberMatches == 5)

                payout += 1000 ether;

            else if (numberMatches == 4 && powerballMatches)

                payout += 50 ether;

            else if (numberMatches == 4)

                payout += 1e17; // .1 ether

            else if (numberMatches == 3 && powerballMatches)

                payout += 1e17; // .1 ether

            else if (numberMatches == 3)

                payout += 7e15; // .007 ether

            else if (numberMatches == 2 && powerballMatches)

                payout += 7e15; // .007 ether

            else if (powerballMatches)

                payout += 4e15; // .004 ether

        }

        msg.sender.transfer(payout);

        delete rounds[_round].tickets[msg.sender];

    }

    function ticketsFor(uint _round, address user) public view

      returns (uint[6][] tickets) {

        return rounds[_round].tickets[user];

    }

CHApter 8  Lotteries



199

    function winningNumbersFor(uint _round) public view

      returns (uint[6] winningNumbers) {

        return rounds[_round].winningNumbers;

    }

}

This is the most complex of the lotteries in this chapter. It is a recurring 

lottery with multiticket purchases and multiple payouts.

The Round struct is similar to the one from the recurring lottery. Each round 

has a ticket purchase deadline endTime, a future block number drawBlock 

to use for generating a random number, an array of six winningNumbers, 

and a mapping of user addresses to tickets. A ticket consists of six 

numbers chosen by a player while buying a ticket. Because a single player 

can have multiple tickets, the data type of the tickets is uint[6][].

As a reminder, Solidity multidimensional array syntax is the opposite 

of Java and C. In Solidity, uint[6][] refers to a dynamic array of uint[6] 

elements, not a six-element array of uint[]. A list of three tickets would 

take the shape of Listing 8-21.

Listing 8-21. Multidimensional Ticket Array

tickets = [

    [1, 2, 3, 4, 5, 6],

    [10, 2, 31, 43, 37, 15],

    [60, 15, 14, 12, 1, 6]

]

We define four constants for use in the contract:

• TICKET_PRICE: The price of a single ticket. Set to .002 ether.

• MAX_NUMBER: This is the maximum number permitted 

while picking ticket numbers. We will be following the 

official Powerball rules, which sets this to 69.

CHApter 8  Lotteries



200

• MAX_POWERBALL_NUMBER: The Powerball number has 

a more constricted range than the first five standard 

numbers. Official Powerball rules set this to 26.

• ROUND_LENGTH: The length of a round in seconds. This 

is set to 3 days for the full game, but the test script 

provided later in the chapter requires this to be set to 15 

seconds for speedier rounds.

Because the majority of the complexity is contained in the Round struct, 

we have only two state variables:

• round: The current round number. Tickets bought for a 

round are matched against only the winning numbers 

for that round.

• rounds: A mapping from round numbers to Round 

structs.

The constructor function is similarly simple, and we do not reproduce 

it here. It starts the lottery by setting the round to 1 and setting the endTime 

for the round ROUND_LENGTH seconds in the future.

There are three state-modifying functions in the contract and two 

additional view functions to make it easier for users to read the contract 

state. The first of these is the buy function. The first half of the buy function 

performs a series of checks on the input data (Listing 8-22).

Listing 8-22. Powerball Ticket Purchase Requirements

function buy (uint[6][] numbers) payable public {

    require(numbers.length * TICKET_PRICE == msg.value);

    for (uint i=0; i < numbers.length; i++) {

        for (uint j=0; j < 6; j++)

            require(numbers[i][j] > 0);

CHApter 8  Lotteries



201

        for (j=0; j < 5; j++)

            require(numbers[i][j] <= MAX_NUMBER);

        require(numbers[i][5] <= MAX_POWERBALL_NUMBER);

    }

    ...

In order to buy a ticket, the user must pass in a list of ticket numbers 

similar to those in Listing 8-20. The code in Listing 8-22 verifies that the 

appropriate amount of ether has been passed for the number of ticket 

submissions. It then loops through the tickets and verifies that each of them 

has selected numbers in an appropriate range. Standard numbers must be 

in the range of 1–69, and Powerball numbers must be in the range of 1–26.

If the tickets pass inspection, the second half of the buy function 

updates the contract state with the tickets (Listing 8-23).

Listing 8-23. Ticket Purchase Logic

    // check for round expiry

    if (now > rounds[round].endTime) {

        rounds[round].drawBlock = block.number + 5;

        round += 1;

        rounds[round].endTime = now + ROUND_LENGTH;

    }

    for (i=0; i < numbers.length; i++)

        rounds[round].tickets[msg.sender].push(numbers[i]);

}

First, round update logic must be handled. If the current round has 

expired, a drawBlock is set for that round, round is incremented, and an 

endTime is set for the new round.

This logic has a small flaw that should be addressed. The drawBlock 

for a round is not set until the first ticket of the next round is purchased. 

In theory, the drawing for a round could be delayed forever if no one 

CHApter 8  Lotteries



202

purchases a ticket for the next round. In practice, we expect the lottery 

to be continuous and not run into this issue. In the worst-case scenario, 

someone could simply purchase a ticket for the next round to trigger a 

drawing.

Once the round has been determined, the tickets are pushed one by 

one into the user’s ticket pool for that round.

When a round is complete and its drawBlock has passed, the 

drawNumbers function can be called for that round. This function randomly 

draws six numbers that serve as the winning ticket for that round. The first 

half of the function runs a series of checks to make sure the numbers are 

drawn only once at the appropriate time (Listing 8-24).

Listing 8-24. Time and State Checks Before Drawing Numbers

function drawNumbers (uint _round) public {

    uint drawBlock = rounds[_round].drawBlock;

    require(now > rounds[_round].endTime);

    require(block.number >= drawBlock);

    require(rounds[_round].winningNumbers[0] == 0);

    ...

This block of code verifies that the round has ended, the drawBlock 

has passed, and the winning numbers haven’t already been set. Unset 

numbers are always zero, and the winning numbers can never be zero, 

so just checking the first winning number is enough to know whether the 

winning ticket has already been drawn.

It seems redundant to require that the round has ended when we are 

also checking that drawBlock has passed. We include both checks because 

drawBlock is not set until the end of a round. An unset uint has a value of 

zero, so that check is insufficient during a round; hence, we run a check 

against the round’s endTime as well.

The winning numbers are drawn randomly from the set of valid 

numbers (Listing 8-25).

CHApter 8  Lotteries



203

Listing 8-25. Drawing Winning Powerball Numbers

for (uint i=0; i < 5; i++) {

    bytes32 rand = keccak256(block.blockhash(drawBlock),i);

    uint numberDraw = uint(rand) % MAX_NUMBER + 1;

    rounds[_round].winningNumbers[i] = numberDraw;

}

rand = keccak256(block.blockhash(drawBlock), uint(5));

uint powerballDraw = uint(rand) % MAX_POWERBALL_NUMBER + 1;

rounds[_round].winningNumbers[5] = powerballDraw;

This is a pretty complex piece of logic, but it simplifies when you 

realize that the last three lines are mostly a repeat of the three lines inside 

the for loop.

This code generates a random number, uses a modulus to bound the 

range of the random numbers, and then stores the generated number as 

one of the winning numbers. Keep in mind that Solidity stores only the 256 

most recent blockhashes, so this logic must be executed within 256 blocks 

(~80 min) of the drawBlock.

When generating a random number, we can’t simply reuse the same 

blockhash every time, because we would end up with the same number 

repeated five times. Instead, we concatenate a unique number (in this 

case, i) to the blockhash each time, and hash the resulting byte string to 

get our seed.

The difference between the five iterations inside the for loop and the 

one outside is the number used for the modulus. The first five numbers are 

standard numbers from 1–69 and use MAX_NUMBER for the modulus. The 

final number, the Powerball number, is restricted to the range 1–26 and 

uses MAX_POWERBALL_NUMBER for the modulus. Both versions add 1 to the 

modulus output to prevent 0 from being drawn.

CHApter 8  Lotteries



204

After the numbers have been drawn, any user with a winning ticket 

can claim their rewards for the round. The first part of the claim function 

performs some checks and declares the necessary variables (Listing 8-26).

Listing 8-26. Claiming Powerball Rewards: Checks and Variables

function claim (uint _round) public {

    require(rounds[_round].tickets[msg.sender].length > 0);

    require(rounds[_round].winningNumbers[0] != 0);

    uint[6][] storage myNumbers =   

      rounds[_round].tickets[msg.sender];

    uint[6] storage winningNumbers =

      rounds[_round].winningNumbers;

    uint payout = 0;

    ...

The function takes a round number as an argument. Tickets from one 

round are not valid in another round. The user must have bought tickets 

in the specified round, and the winning numbers for the round must have 

been drawn already in order to claim rewards.

The user’s tickets and the winning numbers for the round are pulled 

from the state tree to myNumbers and winningNumbers. The total reward 

paid out to the user will be tracked with payout.

Next, we count the number of matches between the user’s numbers 

and the winning numbers (Listing 8-27).

Listing 8-27. Claiming Powerball Rewards: Counting Matches

for (uint i=0; i < myNumbers.length; i++) {

    uint numberMatches = 0;

    for (uint j=0; j < 5; j++) {

        for (uint k=0; k < 5; k++) {

CHApter 8  Lotteries



205

            if (myNumbers[i][j] == winningNumbers[k])

                numberMatches += 1;

        }

    }

    bool powerballMatches =

      (myNumbers[i][5] == winningNumbers[5]);

    ...

The outermost loop (using i) is a loop through the user’s tickets. 

Each ticket has an individual set of six numbers, so each ticket must be 

evaluated separately. The two inner loops (using j and k) compare the 

ticket’s first five numbers (standard numbers) to the winning standard 

numbers and count the number of matches. The order of the standard 

numbers does not matter in Powerball, so a match against any of the 

standard winning numbers is counted. Matches between a Powerball 

number and a standard number are not counted.

After the standard numbers are compared, the ticket’s Powerball 

number is compared directly to the winning Powerball number. When 

this is complete, payouts can be made based on the number and type of 

matches (Listing 8-28).

Listing 8-28. Claiming Powerball Rewards: Calculating Payouts

// win conditions

if (numberMatches == 5 && powerballMatches) {

    payout = this.balance;

    break;

}

else if (numberMatches == 5)

    payout += 1000 ether;

else if (numberMatches == 4 && powerballMatches)

    payout += 50 ether;

CHApter 8  Lotteries



206

else if (numberMatches == 4)

    payout += 1e17; // .1 ether

else if (numberMatches == 3 && powerballMatches)

    payout += 1e17; // .1 ether

else if (numberMatches == 3)

    payout += 7e15; // .007 ether

else if (numberMatches == 2 && powerballMatches)

    payout += 4e15; // .004 ether

else if (powerballMatches)

    payout += 4e15; // .004 ether

These payouts are pulled directly from the rules in Figure 8-2. This 

block of code is contained within the outermost for loop (using i) from 

Listing 8-27 and executes once for each ticket. The final value of payout 

will be the sum of the winnings from each ticket.

The one exception to this rule occurs on the rare chance that a user 

hits the jackpot and matches all five numbers plus the Powerball. In that 

case, we break out of the loop and hand the user the full balance of the 

contract. If we attempted to use the standard payout logic with a jackpot, 

we might accidentally run into a situation where the user also has another 

ticket that earns a payout. In this case, we would end up trying to pay out 

something like this.balance + .004 ether, which would be greater than 

the balance of the contract and throw an error due to insufficient funds. 

The user would have somehow magically hit the jackpot and not be able to 

claim it.

After calculating the payout, we attempt to send the payout to the user:

msg.sender.transfer(payout);

delete rounds[_round].tickets[msg.sender];

If the payout goes through successfully, we delete the user’s tickets so 

that they can’t attempt to claim their prize again.

CHApter 8  Lotteries



207

There’s one catch to the payout. It can occur only if the contract has 

enough ether to make the payout. Unlike a traditional lottery, in which 

the lottery is funded by an initial investor who backs the prizes, our 

decentralized lottery can pay out only a prize that has been paid to it with 

ticket purchases. If you match five numbers and the contract doesn’t have 

1,000 ether, you must wait until the contract has 1,000 ether to claim your 

prize. You can claim your prize at any time and attempt to claim your prize 

as many times as you want, so you will never lose your potential reward.

The remaining functions in the contract are view functions for reading 

the contract state (Listing 8-29).

Listing 8-29. Viewing Powerball Tickets and Winning Numbers

function ticketsFor(uint _round, address user) public view

  returns (uint[6][] tickets) {

    return rounds[_round].tickets[user];

}

function winningNumbersFor(uint _round) public view

  returns (uint[6] winningNumbers) {

    return rounds[_round].winningNumbers;

}

For a public struct, Solidity will automatically generate a getter 

function. This getter will return a list of items corresponding to the 

variables in the struct in their order of declaration. However, Solidity will 

not include complex data types in the returned array. For mappings and 

arrays, we must generate our own view functions. Figure 8-3 shows the 

expected output from calling the .rounds() getter.

CHApter 8  Lotteries



208

There are two fields in the returned JavaScript array corresponding to 

endTime and drawBlock. The other two fields, winningNumbers and tickets, 

are not displayed because they are complex data types. The two view 

functions in Listing 8-29 allow us to read these otherwise unreadable states.

We have covered the details of the contract, but we have not covered 

exactly how to interact with the contract. Doing so is left as an exercise 

for you. A standard migration for deploying the contract is available on 

the GitHub repo at https://github.com/k26dr/ethereum-games/blob/

master/migrations/12_powerball.js. We expect you will be able to run 

a sample interaction on your own, but if you get stuck, a test interaction is 

available at https://github.com/k26dr/ethereum-games/blob/master/

test/powerball.js. When you feel comfortable with the contract, you can 

play on the mainnet in Exercise 8-3.

EXERCISE 8-3. POWERBALLING

play the powerball lottery and win big prizes! Millionaires are minted every 

day—only two finney to play! Come one, come all! Get your savings and 

throw them down the drain! For novices, we have powerball on the testnet 

(https://rinkeby.etherscan.io/address/0x274c0f91642acbe737

d10c9ceddeb1b500caf39b). For our true high rollers we have powerball on 

the ethereum mainnet (https://etherscan.io/address/0xcab5fb317

667978e5c428393ddf98a5dc4bc15dc).

(p.s. if you still think playing the lottery is a good deal after this, run the test script 

that buys 500 tickets at a time and watch how little you get back in winnings.)

Figure 8-3. Viewing Powerball round structs

CHApter 8  Lotteries

https://github.com/k26dr/ethereum-games/blob/master/migrations/12_powerball.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/12_powerball.js
https://github.com/k26dr/ethereum-games/blob/master/test/powerball.js
https://github.com/k26dr/ethereum-games/blob/master/test/powerball.js
https://rinkeby.etherscan.io/address/0x274c0f91642acbe737d10c9ceddeb1b500caf39b
https://rinkeby.etherscan.io/address/0x274c0f91642acbe737d10c9ceddeb1b500caf39b
https://etherscan.io/address/0xcab5fb317667978e5c428393ddf98a5dc4bc15dc
https://etherscan.io/address/0xcab5fb317667978e5c428393ddf98a5dc4bc15dc


209

 Summary
In this chapter, we slowly progressed from writing simple lotteries to writing 

the most complex contract we’ve written to date, Powerball. We included a 

lot of niche Solidity features into our contracts for the first time, including 

multidimensional arrays, view functions, and pure functions. We spent a 

considerable amount of time perfecting our use of random numbers with 

blockhashes and commit-reveal lotteries. In the next chapter, we will take a 

break from scams and gambling to cover prize puzzles.

CHApter 8  Lotteries



211© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_9

CHAPTER 9

Prize Puzzles
Prize puzzles are a unique use case for smart contracts and a great example 

of blockchains unlocking new functionality. The idea behind a prize puzzle 

is for a benefactor to put up a bounty for answering a question, using a 

smart contract to verifiably lock up the reward so that only the correct 

answer can unlock the contract.

In this chapter, we will create two types of prize puzzles: a simple 

puzzle that unlocks immediately when the answer is provided and a 

commit- reveal style puzzle that permits multiple winners. We will then 

present a couple of prize puzzles that we have posted to the mainnet and 

invite you to take a shot at claiming the rewards.

Before getting into the code, however, we have to cover the basics of 

answer obfuscation.

 Obscuring Answers
The security of a prize puzzle rests on its ability to obscure the answer 

from players. Because all data in a smart contract is public, the answer in 

some form must rest on the blockchain without leaking its exact contents. 

Updating the contract with the answer after players have submitted 

guesses is a less-than-ideal option because the contract creator could 

change the answer after the players have submitted guesses.



212

We will be using the following simple hash scheme to obscure our 

answers in the contract. Before creating the contract, the creator must 

hash the answer with their address to produce a commitment. The 

address acts as a salt that makes cracking the hash virtually impossible. 

The commitment is then submitted along with a bounty during contract 

creation and stored in the contract.

For the simple puzzle, players submit their guesses directly to the 

contract, which then uses the salt to hash the guess and compare it to the 

commitment. If the hash matches the commitment, the prize is unlocked.

In the commit-reveal puzzle, players create their own commitments 

off-chain by hashing their address with their guess and then submit the 

commitment to the chain. The creator then reveals the answer, and any 

player who reveals a correct guess during the reveal period gets a share of 

the prize.

 Simple Puzzle
For our simple puzzle, let’s set up the following question as the prize 

(Listing 9-1).

Listing 9-1. A Simple Puzzle

If we list all the natural numbers below 10 that are multiples of 

3 or 5, we get 3, 5, 6, and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1,000.

This question is from the Project Euler questions page at https://

projecteuler.net/problem=1 if you’re interested in solving more like it.

We want to create a contract that unlocks ether when the correct 

answer is guessed. Listing 9-2 displays a simple contract that will do so.

Chapter 9  prize puzzles

https://projecteuler.net/problem=1
https://projecteuler.net/problem=1


213

Listing 9-2. Simple Prize Puzzle

contract SimplePrize {

    bytes32 public constant salt = bytes32(987463829);

    bytes32 public commitment;

    function SimplePrize(bytes32 _commitment)

      public payable {

        commitment = _commitment;   

    }

    function createCommitment(uint answer)

      public view returns (bytes32) {

        return keccak256(salt, answer);

    }

    function guess (uint answer) public {

        require(createCommitment(answer) == commitment);

        msg.sender.transfer(this.balance);

    }

    function () public payable {}

}

This contract has one constant and only one state variable:

• salt: A long byte string to prepend to hashes. Used 

to prevent attackers from guessing the answer with 

a dictionary attack. Any random byte string will be 

adequate as a salt. We kept ours small so it would fit on 

the page, but ideally it would be a full 32-byte string.

• commitment: The byte string created by hashing the salt 

and the answer together. Used to verify guesses without 

revealing the answer.

Chapter 9  prize puzzles



214

The logic of the contract is fairly simple and straightforward. The 

constructor function stores the provided commitment for later use. The 

createCommitment function is the same as the one from the RNG lottery in 

Chapter 8.

Both the constructor and fallback functions are payable so that 

the prize can be funded. Our migration will be funding the contract on 

creation, but it can be funded at any time by sending ether to the contract’s 

address as well. This way, multiple addresses can fund a single prize if they 

have an interest in doing so.

The guess function (Listing 9-3) determines whether a proposed 

answer is correct.

Listing 9-3. Guessing Answers for a Simple Prize

function guess (uint answer) public {

    require(createCommitment(answer) == commitment);

    msg.sender.transfer(this.balance);

}

Using the same function used to create the original commitment, a 

hash is computed from the answer and salt. If the hash matches the stored 

commitment, the user is sent the full balance of the contract. The answer is 

public, and anybody can view the winning submission if they wish to verify 

the answer themselves.

Deploying the contract is the complex part of this contract. We have 

a chicken-and-egg problem in front of us. To create a commitment, we 

need a contract, but to create a contract, we need a commitment. We solve 

this issue by first deploying a contract with a bogus commitment. The 

migration for the contract can be found on the GitHub repo at https://

github.com/k26dr/ethereum-games/blob/master/migrations/13_

simple_prize.js. Just the relevant portions are reproduced in Listing 9-4.

Chapter 9  prize puzzles

https://github.com/k26dr/ethereum-games/blob/master/migrations/13_simple_prize.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/13_simple_prize.js
https://github.com/k26dr/ethereum-games/blob/master/migrations/13_simple_prize.js


215

Listing 9-4. Deploying the Simple Prize Contract

//deployer.deploy(SimplePrize, "0x0"); //  use this to generate 

commitment

deployer.deploy(SimplePrize, 

"0x9e85ce2a4f5c2955f54aa61046f6f13b096d025166f03b5dd7faacc3e1e8f07e",

{ value: 1e16 });

The migration contains two separate deployment statements. The 

first one is the dummy deployment, which will allow us to create the 

commitment. The second one is the true prize puzzle deployment with a 

proper answer. The first line is intentionally commented out to show that 

only one of them is used at a time.

For the first line, we will uncomment the first line and comment out the 

second deploy statement. The migration will run the following code only:

deployer.deploy(SimplePrize, "0x0");

To deploy the contract and create a commitment, run the code in 

Listing 9-5 one line at a time in the dev console. The code assumes that 

migration 13 contains the SimplePrize deployment code.

Listing 9-5. Creating a Commitment

migrate -f 13

prize = SimplePrize.at(SimplePrize.address)

prize.createCommitment(42)

The final line will spit out a hash that corresponds to our commitment. 

This is the commitment we will use to deploy the real version of our 

contract.

There’s a catch, though. If you check the real commitment in Listing 9-4 

against the commitment generated by Listing 9-5, you will see that they 

don’t match. That’s because we didn’t give you the real answer in Listing 9-5! 

Instead, you’re going to deploy the contract in Exercise 9-1 and figure out 

the answer yourself.

Chapter 9  prize puzzles



216

EXERCISE 9-1. MAKE EULER PROUD

Deploy the simpleprize contract to the dev console by using 

migrations/13_simple_prize. the contract contains a prize you can 

unlock by solving the puzzle given in listing 9-1. solve the puzzle and use 

the dev console to unlock the prize. You will know your guess is correct if the 

transaction returns a receipt. Wrong answers will throw an error.

 Commit-Reveal Puzzle
In a commit-reveal puzzle, each user has a chance to make a guess before 

the answer is revealed. The prize is then split among all the users who 

guess right. For our commit-reveal puzzle example, we will use the second 

question from Project Euler (https://projecteuler.net/problem=2); see 

Listing 9-6.

Listing 9-6. Commit-Reveal Puzzle Question

Each new term in the Fibonacci sequence is generated by adding 

the previous two terms. By starting with 1 and 2, the first 10 

terms will be as follows:

        1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values 

do not exceed 4 million, find the sum of the even-valued terms.

As usual, we will produce the full contract in Listing 9-7 and discuss 

specifics later.

Chapter 9  prize puzzles

https://projecteuler.net/problem=2


217

Listing 9-7. Commit-Reveal Puzzle Contract

contract CommitRevealPuzzle {

    uint public constant GUESS_DURATION_BLOCKS = 5; // 3 days

    uint public constant REVEAL_DURATION_BLOCKS = 5; // 1 day

    address public creator;

    uint public guessDeadline;

    uint public revealDeadline;

    uint public totalPrize;

    mapping(address => bytes32) public commitments;

    address[] public winners;

    mapping(address => bool) public claimed;

     function CommitRevealPuzzle(bytes32 _commitment) public 

payable {

        creator = msg.sender;

        commitments[creator] = _commitment;

        guessDeadline = block.number + GUESS_DURATION_BLOCKS;

        revealDeadline = guessDeadline + REVEAL_DURATION_BLOCKS;

        totalPrize += msg.value;

    }

    function createCommitment(address user, uint answer)

      public pure returns (bytes32) {

        return keccak256(user, answer);

    }

    function guess(bytes32 _commitment) public {

        require(block.number < guessDeadline);

        require(msg.sender != creator);

        commitments[msg.sender] = _commitment;

    }

Chapter 9  prize puzzles



218

    function reveal(uint answer) public {

        require(block.number > guessDeadline);

        require(block.number < revealDeadline);

        require(createCommitment(msg.sender, answer) ==

                commitments[msg.sender]);

        require(createCommitment(creator, answer) ==

                commitments[creator]);

        require(!isWinner(msg.sender));

        winners.push(msg.sender);

    }

    function claim () public {

        require(block.number > revealDeadline);

        require(claimed[msg.sender] == false);

        require(isWinner(msg.sender));

        uint payout = totalPrize / winners.length;

        claimed[msg.sender] = true;

        msg.sender.transfer(payout);

    }

    function isWinner (address user) public view returns (bool) {

        bool winner = false;

        for (uint i=0; i < winners.length; i++) {

            if (winners[i] == user) {

                winner = true;

                break;

            }

        }

        return winner;

    }

Chapter 9  prize puzzles



219

    function () public payable {

        totalPrize += msg.value;

    }

}

This contract is much more complex than our simple prize puzzle. The 

contract is split into guessing, revealing, and claiming periods, each with 

its own function. Let’s step through the state variables and constants:

• GUESS_DURATION_BLOCKS: The duration of the guessing 

period in blocks. We will set this number low for testing 

and at 16,500 (three days) for a real deployment.

• REVEAL_DURATION_BLOCKS: The duration of the reveal 

period. Standard is 5,500 blocks (1 day), but we will set 

this lower for testing.

• creator: The creator of the contract.

• guessDeadline: The block number corresponding to 

the end of the guessing period.

• revealDeadline: The block number corresponding to 

the end of the reveal period.

• totalPrize: The value of the prize in wei. This needs to 

be tracked because the balance of the contract changes 

as each winner withdraws their prize.

• commitments: A mapping from user addresses to the 

commitments they submit with their guess.

• winners: List of winning addresses.

• claimed: As winners claim their share of the prize, we 

will mark their share as claimed by using this mapping.

Chapter 9  prize puzzles



220

The constructor requires a commitment created from hashing the 

creator’s address with the puzzle answer to be included on contract 

creation (Listing 9-8).

Listing 9-8. Commit-Reveal Puzzle Constructor

function CommitRevealPuzzle(bytes32 _commitment)

  public payable {

    creator = msg.sender;

    commitments[creator] = _commitment;

    guessDeadline = block.number + GUESS_DURATION_BLOCKS;

    revealDeadline = guessDeadline +

                     REVEAL_DURATION_BLOCKS;

    totalPrize += msg.value;

}

The commitment is generated off-chain by passing the contract 

creator’s address and the puzzle answer to the createCommitment function. 

See the “Simple Puzzle” section previously in this chapter, and the “RNG 

Lottery” section in Chapter 8 for details on generating the commitment.

The constructor sets deadlines, stores the answer commitment, and 

adds any ether passed with the message to the prize. The prize can be 

increased at any point by sending more ether to the contract. The fallback 

function is payable and adds the ether sent to the total prize.

The guess function requires a similar commitment, this time from the 

player (Listing 9-9).

Listing 9-9. Submitting a Guess to Commit-Reveal Puzzle

function guess(bytes32 _commitment) public {

    require(block.number < guessDeadline);

    require(msg.sender != creator);

    commitments[msg.sender] = _commitment;

}

Chapter 9  prize puzzles



221

The function verifies that the guessing deadline has not passed, and 

more important, that the sender is not the creator. Because we store the 

answer to the puzzle in the commitments mapping along with the guesses, 

allowing the creator to guess would be the equivalent of allowing the 

creator to change the answer to the puzzle.

The reveal function runs a series of checks and adds the player to the 

winners array if the submission passes all the checks (Listing 9-10).

Listing 9-10. Revealing Answers in a Commit-Reveal Puzzle

function reveal(uint answer) public {

    require(block.number > guessDeadline);

    require(block.number < revealDeadline);

    require(createCommitment(msg.sender, answer) ==

            commitments[msg.sender]);

    require(createCommitment(creator, answer) ==

            commitments[creator]);

    require(!isWinner(msg.sender));

    winners.push(msg.sender);

}

The function can be called only after the guessing deadline and 

before the revealing deadline. The answer must match both the player’s 

guessing submission and the creator’s answer submission. This requires 

creating two commitments, one using the player’s address and one using 

the creator’s address. If both commitments match, and the player is not 

already in the list of winners, we add the player to the list of winners.

To check whether a player is in the winners list, we will create a 

separate function, isWinner (Listing 9-11), because the code will need to 

be reused later, when claiming the prize.

Chapter 9  prize puzzles



222

Listing 9-11. Checking Whether an Address Is in the List of Winners

function isWinner (address user) public view returns (bool) {

    bool winner = false;

    for (uint i=0; i < winners.length; i++) {

        if (winners[i] == user) {

            winner = true;

            break;

        }

    }

    return winner;

}

This function loops through the list of winners, checking whether 

any of them are the provided address. If one is, the loop breaks and the 

function returns true. If not, the function returns false.

Any player who makes the list of winners can claim their prize after the 

reveal deadline is over (Listing 9-12).

Listing 9-12. Claiming a Commit-Reveal Puzzle Prize

function claim () public {

    require(block.number > revealDeadline);

    require(claimed[msg.sender] == false);

    require(isWinner(msg.sender));

    uint payout = totalPrize / winners.length;

    claimed[msg.sender] = true;

    msg.sender.transfer(payout);

}

Prizes can be claimed anytime after the reveal deadline. The total prize 

is split among all the winners. The function marks the player as having 

claimed their reward so that they cannot double-claim their prize.

Chapter 9  prize puzzles



223

Deploying this contract requires the same steps as deploying the 

simple prize contract. Deploy the contract with a fake commitment first, 

use the dummy contract to generate the answer commitment, and then 

deploy the real contract with the answer commitment. The code can 

be found in migrations/14_commit_reveal_puzzle.js in the GitHub 

repo. There is nothing new from the simple prize migration, so it is not 

reproduced here.

 Additional Prize Challenges
In Exercises 9-2 and 9-3, we present two additional challenges that will 

allow you to interact directly with the mainnet. In the first challenge, we 

provide a prize puzzle for you to solve; and in the second one, we ask you 

to create your own.

EXERCISE 9-2. FIRST TO THE PRIZE

We have deployed a simple prize puzzle to the ethereum mainnet. the 

etherscan page for the contract is at https://etherscan.io/address/

0x73388dc2f89777cbdf53e5352f516cd703d070a6. the answer to the 

following question will unlock the 0.02 ether prize:

What is the sum of the first 1 million primes?

EXERCISE 9-3. CREATE YOUR OWN PUZZLE

Now that you’ve seen a series of example prize puzzles, it’s time to create 

your own. Deploy a prize puzzle with your answer commitment, and then head 

over to the Github issue created for this exercise (https://github.com/

k26dr/ethereum-games/issues/2). reply to the issue with your question 

and a link to the etherscan page for the contract. if you can’t or don’t want to 

create your own puzzle, donate to one of the existing ones.

Chapter 9  prize puzzles

https://github.com/k26dr/ethereum-games/blob/master/migrations/14_commit_reveal_puzzle.js
https://etherscan.io/address/0x73388dc2f89777cbdf53e5352f516cd703d070a6
https://etherscan.io/address/0x73388dc2f89777cbdf53e5352f516cd703d070a6
https://github.com/k26dr/ethereum-games/issues/2
https://github.com/k26dr/ethereum-games/issues/2


224

 Summary
In this chapter, we reviewed two types of prize puzzles: one that unlocks 

a prize immediately upon receiving a correct guess, and another that 

uses a commit-reveal method and allows multiple winners. We walked 

extensively through the logic behind answer obfuscation, which is 

necessary for running a fair contest.

In the next chapter, we cover prediction markets, which allow us to bet 

on the probability of future events.

Chapter 9  prize puzzles



225© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_10

CHAPTER 10

Prediction Markets
On the gambling spectrum, prediction markets are somewhere between 

proposition bets (“prop” bets) and stock markets. They don’t enjoy the full 

legitimacy of stock markets, but they tend to be less silly and address more 

serious matters than your standard prop bet. Prediction markets start by 

posing a yes/no question about a future event with a verifiable answer. 

Users can then bet on the possibility of the event by buying or selling 

shares in the market.

Here is an example of a typical prediction market question:

Will Ethereum trade at $2,000 or higher on GDAX on January 1, 

2019 00:00.000 UTC?

This is a clear question with a publicly verifiable answer ending at 

an exact time. Good prediction market questions eliminate all sources of 

ambiguity so that users can verify and track the state of their bet.

The format of this chapter is slightly different from previous chapters. 

Instead of presenting multiple contracts, we spend the majority of the 

chapter walking through a complex prediction market contract. At the 

end, we cover resolution methods that you will be free to implement on 

your own.



226

 Contract Overview
In a prediction market, trading is split into shares. Each share pays out 100 

wei if the answer resolves to Yes, and 0 wei if the answer resolves to No. In 

this way, the price per share reflects the market’s possibility of resolving 

to Yes. If the price for the preceding market is 60, the market thinks there’s 

a 60% probability that Ethereum will be above $2,000 at the beginning  

of 2019.

To start a market, a market creator must post collateral for the payouts, 

100 wei for each share. If the market resolves to Yes, the collateral is paid 

out to the owners of the shares. If the market resolves to No, the collateral 

is paid back to the market creator. In exchange for taking on this risk, the 

market creator is allowed to charge a fee on every trade. Typical fees on 

cryptocurrency exchanges are between 0.1% and 0.25%. Our contract will 

charge 0.2% on each side of a trade, but this can be changed easily.

The full contract is presented in Listing 10-1, with commentary and 

analysis to follow.

Listing 10-1. Prediction Market

contract PredictionMarket {

    enum OrderType { Buy, Sell }

    enum Result { Open, Yes, No }

    struct Order {

        address user;

        OrderType orderType;

        uint amount;

        uint price;

    }

Chapter 10  prediCtion Markets



227

    uint public constant TX_FEE_NUMERATOR = 1;

    uint public constant TX_FEE_DENOMINATOR = 500;

    address public owner;

    Result public result;

    uint public deadline;

    uint public counter;

    uint public collateral;

    mapping(uint => Order) public orders;

    mapping(address => uint) public shares;

    mapping(address => uint) public balances;

     event OrderPlaced(uint orderId, address user, OrderType 

orderType, uint amount, uint price);

    event TradeMatched(uint orderId, address user, uint amount);

    event OrderCanceled(uint orderId);

    event Payout(address user, uint amount);

    function PredictionMarket (uint duration) public payable {

        require(msg.value > 0);

        owner = msg.sender;

        deadline =  now + duration;

        shares[msg.sender] = msg.value / 100;

        collateral = msg.value;

    }

    function orderBuy (uint price) public payable {

        require(now < deadline);

        require(msg.value > 0);

        require(price >= 0);

        require(price <= 100);

        uint amount = msg.value / price;

Chapter 10  prediCtion Markets



228

        counter++;

         orders[counter] = Order(msg.sender, OrderType.Buy, 

amount, price);

         OrderPlaced(counter, msg.sender, OrderType.Buy, amount, 

price);

    }

    function orderSell (uint price, uint amount) public {

        require(now < deadline);

        require(shares[msg.sender] >= amount);

        require(price >= 0);

        require(price <= 100);

        shares[msg.sender] -= amount;

        counter++;

        orders[counter] = Order(msg.sender, OrderType.Sell, amount,

                                price);

         OrderPlaced(counter, msg.sender, OrderType.Sell, 

amount, price);

    }

    function tradeBuy (uint orderId) public payable {

        Order storage order = orders[orderId];

        require(now < deadline);

        require(order.user != msg.sender);

        require(order.orderType == OrderType.Sell);

        require(order.amount > 0);

        require(msg.value > 0);

        require(msg.value <= order.amount * order.price);

        uint amount = msg.value / order.price;

        uint fee = (amount * order.price) * TX_FEE_NUMERATOR /

                                            TX_FEE_DENOMINATOR;

Chapter 10  prediCtion Markets



229

         uint feeShares = amount * TX_FEE_NUMERATOR / TX_FEE_

DENOMINATOR;

        shares[msg.sender] += (amount - feeShares);

        shares[owner] += feeShares;

        balances[order.user] += (amount * order.price) - fee;

        balances[owner] += fee;

        order.amount -= amount;

        if (order.amount == 0)

            delete orders[orderId];

        TradeMatched(orderId, msg.sender, amount);

    }

    function tradeSell (uint orderId, uint amount) public {

        Order storage order = orders[orderId];

        require(now < deadline);

        require(order.user != msg.sender);

        require(order.orderType == OrderType.Buy);

        require(order.amount > 0);

        require(amount <= order.amount);

        require(shares[msg.sender] >= amount);

        uint fee = (amount * order.price) * TX_FEE_NUMERATOR /

                                            TX_FEE_DENOMINATOR;

         uint feeShares = amount *  TX_FEE_NUMERATOR /  

TX_FEE_DENOMINATOR;

        shares[msg.sender] -= amount;

        shares[order.user] += (amount - feeShares);

        shares[owner] += feeShares;

Chapter 10  prediCtion Markets



230

        balances[msg.sender] += (amount * order.price) - fee;

        balances[owner] += fee;

        order.amount -= amount;

        if (order.amount == 0)

            delete orders[orderId];

        TradeMatched(orderId, msg.sender, amount);

    }

    function cancelOrder (uint orderId) public {

        Order storage order = orders[orderId];

        require(order.user == msg.sender);

        if (order.orderType == OrderType.Buy)

            balances[msg.sender] += order.amount * order.price;

        else

            shares[msg.sender] += order.amount;

        delete orders[orderId];

        OrderCanceled(orderId);

    }

    function resolve (bool _result) public {

        require(now > deadline);

        require(msg.sender == owner);

        require(result == Result.Open);

        result = _result ? Result.Yes : Result.No;

        if (result == Result.No)

            balances[owner] += collateral;

    }

Chapter 10  prediCtion Markets



231

    function withdraw () public {

        uint payout = balances[msg.sender];

        balances[msg.sender] = 0;

        if (result == Result.Yes) {

            payout += shares[msg.sender] * 100;

            shares[msg.sender] = 0;

        }

        msg.sender.transfer(payout);

        Payout(msg.sender, payout);

    }

}

The contract defines three custom data types:

• OrderType: An enum, the type of an order—Buy or Sell.

• Result: An enum representing the current resolution of 

the market. Open means the market is actively trading 

or has not been resolved. Yes or No refer to resolved 

markets. A Yes result pays out shareholders, whereas a 

No result returns the collateral to the market creator.

• Order: A struct representing an active order on the market. 

It contains information on the user who placed the order, 

the type of order (Buy or Sell), the amount of outstanding 

shares in the order, and the price of the order.

The contract contains the following constants and state variables:

• TX_FEE_NUMERATOR: The transaction fee is set at .002 

(0.2%), but because Solidity doesn’t support decimals, 

it needs to be defined as a fraction in two parts. The 

exact fraction is 1/500. This constant is the numerator 

of that fraction.

Chapter 10  prediCtion Markets



232

• TX_FEE_DENOMINATOR: The denominator portion of the 

1/500 transaction fee.

• owner: The creator of the contract or market creator.

• result: The current state of the contract result—Open, 

Yes, or No.

• deadline: A UNIX timestamp corresponding to the end 

of permitted market trading.

• counter: An incrementing integer used to assign order IDs.

• collateral: The value of the collateral held in the 

contract in wei.

• orders: The order book. A mapping from order IDs to 

Order structs.

• shares: A mapping from user addresses to the number 

of shares held by the user.

• balances: A standard mapping from user addresses to 

internal balances in wei.

The contract constructor is payable and sets the number of shares in 

the market (Listing 10-2). It takes a duration as its only argument and uses 

it to set the deadline.

Listing 10-2. Prediction Market Constructor

function PredictionMarket (uint duration) public payable {

    require(msg.value > 0);

    owner = msg.sender;

    deadline =  now + duration;

    shares[msg.sender] = msg.value / 100;

    collateral = msg.value;

}

Chapter 10  prediCtion Markets



233

The full collateral for each share’s payout must be posted upon 

contract creation. Because each share has a potential payout of 100 wei, 

the number of shares created is the amount of wei sent divided by 100. The 

collateral will be returned to the creator if the market resolves to No.

 Tracking State with Events
Most large Solidity contracts cannot expose their full internal state with 

just getter functions. This makes building a user-friendly front end nearly 

impossible without additional information. For instance, a front end 

that wishes to display a full order book would not be able to retrieve this 

information from our contract because it is impossible to determine the 

set keys for a mapping from a contract.

Events and logs fill in this gap by providing an easily parsable history of 

all actions that have occurred in the contract. They are stored in a separate 

data structure from the contract state so they are accessible by only front 

ends and clients (see “Logging and Events” in Chapter 4). By recording 

every relevant action in the contract, a front end can reconstruct the full 

state of the contract.

Our prediction market contains four events. Combined with the public 

state variables, they can be used to construct a full snapshot of the contract 

state to display to users. The four events are as follows:

• OrderPlaced: Logged when an order is added to the 

order book. Contains information about the price, 

amount, user, and orderType (Buy or Sell) of the order. 

This event alone is not sufficient to capture the full state 

of the order book because it does not cover canceled or 

matched orders.

Chapter 10  prediCtion Markets



234

• TradeMatched: Logged when an order is matched and 

a trade is executed. References the orderId of the 

matched order, the amount of shares traded, and the 

user who matched the order. Orders can be partially 

filled, so matching less than the full amount of an order 

will leave it on the order book.

• OrderCanceled: Logged when an order is canceled. A 

canceled order is deleted from the order book. An order 

can be partially filled when canceled, so a single order 

could have all three OrderPlaced, TradeMatched, and 

OrderCanceled events.

• Payout: Logged when a user makes a withdrawal. Logs 

the amount in wei of the payout along with the user 

address.

 Trading Shares
A user can take five types of trading actions in our prediction market: place 

a buy order, place a sell order, fill a buy order, fill a sell order, and cancel an 

open order. Each of these actions has a corresponding public function in 

our smart contract.

Listing 10-3 contains code for placing a buy order.

Listing 10-3. Placing a Buy Order

function orderBuy (uint price) public payable {

    require(now < deadline);

    require(msg.value > 0);

    require(price >= 0);

    require(price <= 100);

    uint amount = msg.value / price;

Chapter 10  prediCtion Markets



235

    counter++;

    orders[counter] = Order(msg.sender, OrderType.Buy,

                           amount, price);

    OrderPlaced(counter, msg.sender, OrderType.Buy, amount,

                price);

}

A buy order must be placed at a specified price between 0 and 100 

inclusive. All orders must be placed before the market deadline. The 

amount of shares in the order is calculated automatically from the ether 

value sent with the order and the price. Sending an order with no ether 

value will throw an error.

The counter is incremented to generate a fresh order ID, and then the 

order is created and stored in the order book. An event is logged to indicate 

that a new order has been added to the book.

One small nuance is hidden from view here: Solidity creates structs 

in memory, not storage. When Solidity encounters a memory struct being 

saved to a state variable as in the preceding code, it automatically converts 

the memory struct to a storage struct before updating the state tree. The 

same automatic conversion does not occur for local variables. If you 

attempt to store the created struct to an Order storage instead of an 

Order memory variable, it will throw an error.

Listing 10-4 contains code for placing a sell order.

Listing 10-4. Placing a Sell Order

function orderSell (uint price, uint amount) public {

    require(now < deadline);

    require(shares[msg.sender] >= amount);

    require(price >= 0);

    require(price <= 100);

    shares[msg.sender] -= amount;

Chapter 10  prediCtion Markets



236

    counter++;

    orders[counter] = Order(msg.sender, OrderType.Sell,

                            amount, price);

    OrderPlaced(counter, msg.sender, OrderType.Sell,

                amount, price);

}

Placing a sell order is similar to placing a buy order. The order must be 

placed before the deadline, and the price must be from 0–100. The user 

must specify a number of shares to sell no greater than the number of 

shares they currently hold.

When a sell order is placed, the number of shares in the order is 

deducted from the user’s share holdings. This is done to prevent users 

from double-listing their shares.

Listing 10-5 contains code for filling a buy order. It is called tradeSell 

because the act of filling a buy order requires a user to sell their shares.

Listing 10-5. Filling a Buy Order

function tradeSell (uint orderId, uint amount) public {

    Order storage order = orders[orderId];

    require(now < deadline);

    require(order.user != msg.sender);

    require(order.orderType == OrderType.Buy);

    require(order.amount > 0);

    require(amount <= order.amount);

    require(shares[msg.sender] >= amount);

    uint fee = (amount * order.price) * TX_FEE_NUMERATOR /

                                        TX_FEE_DENOMINATOR;

    uint feeShares = amount * TX_FEE_NUMERATOR /

                              TX_FEE_DENOMINATOR;

Chapter 10  prediCtion Markets



237

    shares[msg.sender] -= amount;

    shares[order.user] += (amount - feeShares);

    shares[owner] += feeShares;

    balances[msg.sender] += (amount * order.price) - fee;

    balances[owner] += fee;

    order.amount -= amount;

    if (order.amount == 0)

        delete orders[orderId];

    TradeMatched(orderId, msg.sender, amount);

}

The order-filling functions are quite complex. A buy order is filled by 

specifying an order ID and an amount of shares that must be less than or 

equal to both the number of shares in the order and the number of shares 

held by the user.

A user cannot fill their own buy order. This is a practice known as wash 

trading, which is prohibited by most exchanges because it creates artificial 

volume.

When an order is filled, the contract takes a fee from each side of the 

trade and gives it to the market creator. The buyer is receiving shares, and 

the seller is receiving ether, so the fee for the buyer is taken in shares, and 

the fee for the seller is taken in ether.

When updating the shares, the sale amount of shares is deducted 

from the seller and added to the buyer minus the fee. When updating the 

balances, ether is added to the seller minus the fee, but the balance is not 

subtracted from the buyer because the buyer is sending their funds directly 

to the function.

Solidity doesn’t permit decimal arithmetic, so a fractional fee is 

calculated by using TX_FEE_NUMERATOR and TX_FEE_DENOMINATOR. Because 

the fee is 1/500 and only integer fees are permitted, the fee calculation 

Chapter 10  prediCtion Markets



238

will not be entirely accurate, and small trades of less than 500 wei can be 

placed without incurring a fee. This number is so much smaller than the 

gas fee for a transaction, however, that it is not a major security flaw.

Orders can partially fill, so the amount of shares filled by the seller is 

subtracted from the number of open shares in the order. If an order is 

completely filled and has no open shares remaining, it is deleted from the 

order book.

After all of the trade logic is complete, an event is logged with the 

details of the trade.

Listing 10-6 contains code for filling a sell order. It is called tradeBuy 

because filling a sell order requires a user to buy shares.

Listing 10-6. Filling a Sell Order

function tradeBuy (uint orderId) public payable {

    Order storage order = orders[orderId];

    require(now < deadline);

    require(order.user != msg.sender);

    require(order.orderType == OrderType.Sell);

    require(order.amount > 0);

    require(msg.value > 0);

    require(msg.value <= order.amount * order.price);

    uint amount = msg.value / order.price;

    uint fee = (amount * order.price) * TX_FEE_NUMERATOR /

                                        TX_FEE_DENOMINATOR;

    uint feeShares = amount * TX_FEE_NUMERATOR /

                              TX_FEE_DENOMINATOR;

    shares[msg.sender] += (amount - feeShares);

    shares[owner] += feeShares;

Chapter 10  prediCtion Markets



239

    balances[order.user] += (amount * order.price) - fee;

    balances[owner] += fee;

    order.amount -= amount;

    if (order.amount == 0)

        delete orders[orderId];

    TradeMatched(orderId, msg.sender, amount);

}

Filling a sell order is similar to filling a buy order. Instead of including 

an amount with the transaction, the buyer sends ether with the transaction, 

and the amount of shares to buy is automatically calculated. The transfers 

and fees are calculated and distributed the same as before, except this time 

the shares are not subtracted from the seller because the subtraction took 

place when the sell order was placed.

Listing 10-7 contains code for canceling an order.

Listing 10-7. Canceling an Order

function cancelOrder (uint orderId) public {

    Order storage order = orders[orderId];

    require(order.user == msg.sender);

    if (order.orderType == OrderType.Buy)

        balances[msg.sender] += order.amount * order.price;

    else

        shares[msg.sender] += order.amount;

    delete orders[orderId];

    OrderCanceled(orderId);

}

Chapter 10  prediCtion Markets



240

The function is called by specifying the ID of the order to cancel. Only 

the user who placed the order can cancel it. For buy orders, the ether value 

of the remaining shares is refunded to the user’s balance. For sell orders, 

the remaining shares are credited back to the user’s holdings. The order is 

then deleted, and an event is logged specifying the ID of the deleted order.

 Resolving Markets
Resolving prediction markets on blockchains is still an open area of 

research. Our contract uses simple single-oracle resolution. Other systems 

include multiple-oracle resolution and Schelling point consensus. We will 

discuss the last two in theory, but leave the coding of the them to you as an 

exercise.

 Single Oracle
An oracle is a user or program on a blockchain network that brings external 

off-chain information onto the chain. Because Ethereum can’t interact 

directly with the HTTP Web or other blockchain networks, oracles are 

required to bring any external information on-chain. A single-oracle 

system is the simplest form of oracle. A single user is given exclusive 

permission to upload the result of the market to the contract. The code is 

given in Listing 10-8.

Listing 10-8. Single-Oracle Resolution

function resolve (bool _result) public {

    require(now > deadline);

    require(msg.sender == owner);

    require(result == Result.Open);

Chapter 10  prediCtion Markets



241

    result = _result ? Result.Yes : Result.No;

    if (result == Result.No)

        balances[owner] += collateral;

}

Anytime after the deadline, if the result is still open, the owner (and 

only the owner) can set the result of the market. The function takes a 

boolean as its single argument. If true, the market resolves to Yes. If false, 

the market resolves to No. If the market resolves to No, the collateral is 

paid out to the owner. If the market resolves to Yes, users can claim their 

payouts by using the code in Listing 10-9.

Listing 10-9. Claiming Payouts

function withdraw () public {

    uint payout = balances[msg.sender];

    balances[msg.sender] = 0;

    if (result == Result.Yes) {

        payout += shares[msg.sender] * 100;

        shares[msg.sender] = 0;

    }

    msg.sender.transfer(payout);

    Payout(msg.sender, payout);

}

The payout total has only two parts. Refunds from canceled orders 

and ether from share sales are already recorded in the internal balances. 

Share payouts must be computed separately, 100 wei for every share held 

if the market has resolved to Yes. These are combined, paid out to the user, 

and both the balances and the shares are zeroed out. An event is logged to 

signal the front end that a payout has processed.

Chapter 10  prediCtion Markets



242

Fees and collateral can be claimed by the owner through this function 

as well. Fees in both ether and shares are credited to the owner’s balance 

and share holdings during the contract, while collateral is credited to the 

owner’s balance.

 Multiple Oracle
Single-oracle resolution systems have a number of flaws. An error in 

resolution is irreversible, so a slip of mind can lead to the market being 

resolved incorrectly. Additionally, the oracle may have a stake in the 

market through other unknown addresses and resolve the game to their 

own benefit instead of correctly. The pseudonymity of Ethereum addresses 

would make it hard to trace the cheater.

Multiple-oracle resolution offers a slight advantage over single-oracle 

resolution. Instead of having a single oracle determine the result, multiple 

oracles would have to verify the result before the market resolves.

One way of implementing this is with N of M verification, where  

two- of- three or four-of-five oracles must agree on a result for a game to be 

resolved properly. A five-oracle system with four or five oracles required 

for resolution is a good standard.

For a publicly verifiable event, there should be no doubt as to which 

way the market should resolve. The purpose of using multiple oracles is 

to prevent human error and cheating, not clear up an ambiguous result. 

Allowing for one dissenting oracle is enough to account for human error or 

a lone cheater. Anything more than that is likely a sign of active collusion. 

For a market that does not clear the threshold for resolving in either 

direction, the best practice is to nullify the market and return everybody’s 

initial investments.

In Exercise 10-1, we will implement this multi-oracle system.

Chapter 10  prediCtion Markets



243

EXERCISE 10-1. MULTIPLE ORACLES

Modify the resolution system in our predictionMarket contract so that four out 

of five oracles must agree on the result for a market to resolve. implementing 

refunds for unresolvable markets is a much more complex task and can be left 

out for now.

 Schelling Point Consensus
Schelling points are a generalization of the multiple-oracle system. Instead 

of a fixed number of predetermined oracles, anybody is free to participate 

in Schelling point resolution. Game theory research sometimes refers to 

Schelling points as focal points.

To participate in a prediction market Schelling point, every user stakes 

a nontrivial amount of ether on their proposed resolution of the market, 

Yes or No. At the end of the staking period, the market resolves to the side 

with the most votes. All the ether goes into a staking pool that gets split by 

the winners of the vote. If a market resolves to Yes and you vote No, you 

lose your stake and it gets split by all voters who voted Yes.

This provides a powerful incentive for people to vote with the side 

that they think will be the winner. If the voting system is large and 

decentralized enough, collusion becomes difficult, and users gravitate to a 

focal point that they believe others will gravitate to as well. In this case, the 

focal point is the correct resolution for the market, so in theory everyone 

voting in their own interest should vote for the correct resolution.

This system has a couple of apparent flaws. The largest is the possibility 

for a highly invested market participant to game the system by submitting 

a bunch of votes under different addresses. There is no way to prevent a 

user from generating and staking with multiple addresses in Ethereum 

without additional restrictions on who can vote. Attacks on blockchains 

that use multiple addresses like this are called Sybil attacks.

Chapter 10  prediCtion Markets



244

To prevent Sybil attacks, one possible restriction is to allow only market 

participants holding shares at the end of the market to vote. Unfortunately, 

all users are incentivized to vote Yes so that they can receive a payout, so 

collusion becomes a major issue there as well.

Schelling point resolution in blockchain systems is mostly theoretical 

at this point and hasn’t been extensively tested. Augur, a decentralized 

prediction market creator, has proposed using Schelling points to resolve 

its markets with restrictions on who can vote in the Schelling points 

determined using an internal token (REP). This should give us data about 

the real-world effectiveness of Schelling points on Ethereum in the near 

future.

 Summary
Prediction markets allow users to bet on and profit from the probability of 

an arbitrary event occurring. Using our smart contract, users can buy or 

sell shares in a prediction market, where each share pays out 100 wei if the 

market resolves to Yes.

Every order, trade, and payout logs an event to the Ethereum log 

database. These logs allow front ends to determine the full state of a 

contract and present an order book to users, something they would be 

unable to do with just the getter functions built into Solidity.

Our contract used single-oracle resolution to determine the result of 

the market. It is simple, but also susceptible to human error and cheating. 

Multiple-oracle resolution reduces the likelihood of a market resolving 

incorrectly. The most generalized version of multiple-oracle resolution is 

Schelling point consensus. Schelling point consensus looks promising, but 

it has yet to be implemented successfully in a real-world contract.

In the next and final chapter, we will dive straight into our gambling 

roots and cover casino games.

Chapter 10  prediCtion Markets



245© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1_11

CHAPTER 11

Gambling
Online casinos and gambling sites are notorious for rigging their games. 

Blockchain-based gambling games offer users a chance to play games with 

provably fair odds and minimal or no house fees. In this chapter, we cover 

two gambling games: Satoshi dice and roulette.

 Gameplay Limitations
Casino games aren’t a perfect fit for blockchains. The problem lies in 

random-number generation. Secure RNG requires two transactions 

spaced at least a minute or so apart, making anything more than single- 

play games nearly impossible on-chain. A multiturn game such as 

blackjack or poker would be painstakingly slow and practically unusable 

using completely on-chain implementations. A hybrid approach in which 

portions of the game are run off-chain and then results are committed to 

the chain would be required to run these games. Because off-chain games 

are not the focus of this book, we stick to single-turn games in this chapter.

 Satoshi Dice
Satoshi dice was an early Bitcoin gambling game that was the first widely 

used application on a blockchain. For a while, it was responsible for half 

the transactions on the Bitcoin network. The company ran into legal 

problems after a while, but the idea has lived on, and many alternate 

implementations of it still exist today.



246

The idea behind the game is simple. Along with your Bitcoin 

transaction, submit a number from 0–65,535 (216 = 65,536). The game 

then generates a random number in the same range by using a secret 

seed. If the generated number is below the submitted number, the user 

wins money. The amount of money won is dependent on the submitted 

number. The lower the number, the higher the multiplier and payout 

(32,000 = ~2x, 16,000 = ~4x).

To provide provably fair gameplay, the original Satoshi dice published 

the hash of its secret seed to the blockchain along with the betting address. 

They would then periodically publish old seeds so that old bets could be 

verified.

We want to convert this game into a decentralized, trustless setup. 

Under the old system, the onus was on the user to verify each of their own 

bets to make sure no cheating was occurring. Under our system, there will 

be no way for a nonminer to cheat, and even miners will be able to only 

minimally influence outcomes.

Listing 11-1 gives the code for our implementation before discussing it 

in detail.

Listing 11-1. Satoshi Dice

contract SatoshiDice {

    struct Bet {

        address user;

        uint block;

        uint cap;

        uint amount;

    }

    uint public constant FEE_NUMERATOR = 1;

    uint public constant FEE_DENOMINATOR = 100;

    uint public constant MAXIMUM_CAP = 100000;

    uint public constant MAXIMUM_BET_SIZE = 1e18;

Chapter 11  GamblinG



247

    address owner;

    uint public counter = 0;

    mapping(uint => Bet) public bets;

    event BetPlaced(uint id, address user, uint cap, uint amount);

    event Roll(uint id, uint rolled);

    function SatoshiDice () public {

        owner = msg.sender;

    }

    function wager (uint cap) public payable {

        require(cap <= MAXIMUM_CAP);

        require(msg.value <= MAXIMUM_BET_SIZE);

        counter++;

         bets[counter] = Bet(msg.sender, block.number + 3, cap, 

msg.value);

        BetPlaced(counter, msg.sender, cap, msg.value);

    }

    function roll(uint id) public {

        Bet storage bet = bets[id];

        require(msg.sender == bet.user);

        require(block.number >= bet.block);

        require(block.number <= bet.block + 255);

        bytes32 random = keccak256(block.blockhash(bet.block), id);

        uint rolled = uint(random) % MAXIMUM_CAP;

        if (rolled < bet.cap) {

            uint payout = bet.amount * MAXIMUM_CAP / bet.cap;

            uint fee = payout * FEE_NUMERATOR / FEE_DENOMINATOR;

            payout -= fee;

            msg.sender.transfer(payout);

        }

Chapter 11  GamblinG



248

        Roll(id, rolled);

        delete bets[id];

    }

    function fund () payable public {}

    function kill () public {

        require(msg.sender == owner);

        selfdestruct(owner);

    }

}

The contract defines a custom Bet struct containing information about 

the bet. It contains the user address, the block number from which the 

blockhash will be pulled, the number submitted with the bet (cap), and the 

amount of the bet.

The contract has four constants:

• FEE_NUMERATOR: The numerator portion of the fee. The 

fee is set to 1%.

• FEE_DENOMINATOR: The denominator portion of the fee.

• MAXIMUM_CAP: The maximum value of the number that 

can be submitted with a bet. In the original Satoshi 

dice, this was 216 so it could fit in 2 bytes. Because we 

have access to integer types, we will set this to a more 

pleasant number: 100,000 (105).

• MAXIMUM_BET_SIZE: The maximum value that can be 

wagered in a single bet. This is mostly to prevent user 

error from accidentally wagering too much money. It 

does not provide a guarantee that a winning bet can be 

paid out. It is up to the user to verify that the contract 

contains enough money to pay off their bet before 

Chapter 11  GamblinG



249

placing it. If the contract cannot, the user will have to 

wait until the contract accumulates enough ether to 

make the payout. The inclusion of the fee ensures that 

the contract balance will slowly increase.

The majority of the state complexity is in the Bet struct, so there are 

only three state variables:

• owner: The creator of the contract. Only used for killing 

the contract; the owner has no other special rights.

• counter: An incrementing counter used to assign 

unique IDs.

• bets: A mapping from bet IDs to Bet structs.

There are two events as well for front-ends to consume: a BetPlaced 

event for when a wager is placed, and a Roll event for when the wager is 

resolved.

The contract has two primary functions: one for placing the wager 

and locking in the block number for the RNG, and one for resolving the 

bet by generating a random number. The wager function is reproduced in 

Listing 11-2.

Listing 11-2. Wagering on Satoshi Dice

function wager (uint cap) public payable {

    require(cap <= MAXIMUM_CAP);

    require(msg.value <= MAXIMUM_BET_SIZE);

    counter++;

    bets[counter] = Bet(msg.sender, block.number + 3, cap,

                        msg.value);

    BetPlaced(counter, msg.sender, cap, msg.value);

}

Chapter 11  GamblinG



250

The wager takes a cap as an argument and accepts ether for the bet. 

The cap must be below the MAXIMUM_CAP, and the ether value must be 

below the MAXIMUM_BET_SIZE. The counter is incremented to generate a 

new ID and then a new Bet is saved to the state. The block number for the 

RNG is set three blocks in the future, a sufficient amount forward that the 

blockhash is unknown.

The second major function is the roll function (Listing 11-3). This 

function “rolls” the dice and resolves the wager by using the blockhash 

from the block specified in the wager.

Listing 11-3. Resolving Satoshi Dice Wagers

function roll(uint id) public {

    Bet storage bet = bets[id];

    require(msg.sender == bet.user);

    require(block.number >= bet.block);

    require(block.number <= bet.block + 255);

    bytes32 random = keccak256(block.blockhash(bet.block),

                               id);

    uint rolled = uint(random) % MAXIMUM_CAP;

    if (rolled < bet.cap) {

        uint payout = bet.amount * MAXIMUM_CAP / bet.cap;

        uint fee = payout * FEE_NUMERATOR /

                            FEE_DENOMINATOR;

        payout -= fee;

        msg.sender.transfer(payout);

    }

    Roll(id, rolled);

    delete bets[id];

}

Chapter 11  GamblinG



251

A bet ID must be included with the function call so that the function 

knows which bet to resolve. Only the user who originated the bet can “roll” 

the dice for the bet, and that user must wait three blocks after wagering to 

do so. The user must trigger the roll within 255 blocks of the bet block or 

forfeit their wager. This is because Solidity stores only the 256 most recent 

blockhashes, and waiting longer than that will lead to a deterministic roll 

in which the blockhash is always 0x0.

A pseudorandom number is generated using the blockhash of the 

specified block and the bet ID. Because the bet ID is unique to each bet, 

no two bets will generate the same pseudorandom number. The random 

bytes generated are converted into a “dice roll” in the acceptable range. If 

the rolled number is less than the bet cap, the user receives a payout.

To calculate the payout, the bet amount is multiplied by the ratio of the 

maximum cap to the bet cap. The maximum cap is fixed, so the lower the 

bet cap, the higher the multiplier. To allow the contract to gradually accept 

larger and larger bets, a 1% fee is taken from each bet. The fee is retained 

by the contract, and the remainder of the payout is sent to the user.

After the bet has been resolved, the bet is deleted. This prevents the bet 

from being double-claimed by the user and cleans up unneeded data from 

the blockchain. A deleted struct sets each of its members to the zero value 

for the data type. The user of a deleted bet will be the zero address, so it 

will throw an error when the function attempts to verify that msg.sender is 

the bet user.

Two additional simple functions are included in the contract. A 

standard kill function is included to allow the owner to self-destruct 

the contract and claim fees. A payable function to fund the contract is 

included as well. Before fees start accumulating, the contract will have to 

be funded with enough ether to allow initial bets to pay out.

If you would like to play Satoshi dice on the mainnet, you will be able 

to do so in Exercise 11-1.

Chapter 11  GamblinG



252

EXERCISE 11-1. ROLL YOUR DICE

We have deployed a version of our Satoshi dice contract to the ethereum 

mainnet. the etherscan page for the contract is at https://etherscan.

io/address/0x55283a2f07be1b95e1e417af7efaab6750fedd0d. play 

the game, try to hack the contract—whatever you’d like. the ether from the 

fees will accumulate in the contract, and if anybody successfully hacks the 

contract, the ether is theirs. We will not come after you.

 Roulette
Roulette is a classic casino game that translates well to a blockchain 

implementation. The game traditionally has a wagering phase and a 

spinning phase in which wagers are resolved. We have re-created that 

setup with our contract.

Before the spin, users can wager on either a Color bet or a Number bet. 

Traditionally, roulette tables permit a wider variety of bets such as High/

Low, Odd/Even, Split, and more, but we have left the implementation of 

those additional bet varieties as an exercise for you.

Listing 11-4 contains the full roulette contract. Because we have an 

existing contract called Roulette from Chapter 5, we have named this one 

CasinoRoulette to prevent conflicts.

Listing 11-4. Roulette Contract

contract CasinoRoulette {

    enum BetType { Color, Number }

    struct Bet {

        address user;

        uint amount;

Chapter 11  GamblinG

https://etherscan.io/address/0x55283a2f07be1b95e1e417af7efaab6750fedd0d
https://etherscan.io/address/0x55283a2f07be1b95e1e417af7efaab6750fedd0d


253

        BetType betType;

        uint block;

        // @prop choice: interpretation is based on BetType

            // BetType.Color: 0=black, 1=red

            // BetType.Number: -1=00, 0-36 for individual numbers

        int choice;

    }

    uint public constant NUM_POCKETS = 38;

    // RED_NUMBERS and BLACK_NUMBERS are constant, but

    // Solidity doesn't support array constants yet so

    // we use storage arrays instead

    uint8[18] public RED_NUMBERS = [

        1, 3, 5, 7, 9, 12,

        14, 16, 18, 19, 21, 23,

        25, 27, 30, 32, 34, 36

    ];

    uint8[18] public BLACK_NUMBERS = [

        2, 4, 6, 8, 10, 11,

        13, 15, 17, 20, 22, 24,

        26, 28, 29, 31, 33, 35

    ];

    // maps wheel numbers to colors

    mapping(int => int) public COLORS;

    address public owner;

    uint public counter = 0;

    mapping(uint => Bet) public bets;

     event BetPlaced(address user, uint amount, BetType betType, 

uint block, int choice);

    event Spin(uint id, int landed);

Chapter 11  GamblinG



254

    function CasinoRoulette () public {

        owner = msg.sender;

        for (uint i=0; i < 18; i++) {

            COLORS[RED_NUMBERS[i]] = 1;

        }

    }

    function wager (BetType betType, int choice) payable public {

        require(msg.value > 0);

        if (betType == BetType.Color)

            require(choice == 0 || choice == 1);

        else

            require(choice >= -1 && choice <= 36);

        counter++;

        bets[counter] = Bet(msg.sender, msg.value, betType,

                            block.number + 3, choice);

        BetPlaced(msg.sender, msg.value, betType, block.number + 3,

                  choice);

    }

    function spin (uint id) public {

        Bet storage bet = bets[id];

        require(msg.sender == bet.user);

        require(block.number >= bet.block);

        require(block.number <= bet.block + 255);

        bytes32 random = keccak256(block.blockhash(bet.block), id);

        int landed = int(uint(random) % NUM_POCKETS) - 1;        

Chapter 11  GamblinG



255

        if (bet.betType == BetType.Color) {

            if (landed > 0 && COLORS[landed] == bet.choice)

                msg.sender.transfer(bet.amount * 2);

        }

        else if (bet.betType == BetType.Number) {

            if (landed == bet.choice)

                msg.sender.transfer(bet.amount * 35);

        }

        delete bets[id];

        Spin(id, landed);

    }

    function fund () public payable {}

    function kill () public {

        require(msg.sender == owner);

        selfdestruct(owner);

    }

}

Like Satoshi dice, the roulette contains a Bet struct as well. It tracks 

the user, amount, and block just like Satoshi dice, but also includes two 

additional fields, betType and choice. betType is an enum defined at the 

top of the contract. It currently has only two accepted values, Color and 

Number. A winning Color bet pays out 2×, and a winning Number bet pays 

out 35×. You will be responsible for adding more bet types in the exercise 

at the end of this section.

The choice property has different allowed values for each betType. 

For BetType.Color, choice must be either 0 for block, or 1 for red. For 

BetType.Number, it can be –1 for double-zero (00), or 0–36 for the numbers 

0–36 on a roulette wheel.

Chapter 11  GamblinG



256

The contract contains one constant, and three pseudoconstants that 

do not change in value:

• NUM_POCKETS: The number of pockets in a roulette 

wheel, 38.

• RED_NUMBERS: The numbers that correspond to red- 

colored pockets on a roulette wheel. Solidity doesn’t 

support array constants, so this is held in a public 

nonconstant field instead.

• BLACK_NUMBERS: The numbers that correspond to black- 

colored pockets on a roulette wheel.

• COLORS: A mapping that maps from roulette wheel 

numbers to colors. The permitted values are 0 for black, 

and 1 for red. This mapping doesn’t hold any new 

information, but it makes executing the color-checking 

logic much simpler.

The contract has three state variables and two events. They are the 

exact same as the state variables and events in Satoshi dice, so we do not 

go over them again here. The only small difference to note is that the Roll 

event from Satoshi dice has been renamed Spin here.

The constructor function reproduced in Listing 11-5 populates the 

COLORS pseudoconstant.

Listing 11-5. CasinoRoulette Constructor

function CasinoRoulette () public {

    owner = msg.sender;

    for (uint i=0; i < 18; i++) {

        COLORS[RED_NUMBERS[i]] = 1;

    }

}

Chapter 11  GamblinG



257

The COLORS pseudoconstant is populated by looping through the list 

of red numbers and setting all their values to 1. This will be useful later for 

determining the color of a number in the spin logic.

The first of the two major functions is the wager function in Listing 11- 6.

Listing 11-6. Wagering on Roulette

function wager (BetType betType, int choice) payable public {

    require(msg.value > 0);

    if (betType == BetType.Color)

        require(choice == 0 || choice == 1);

    else

        require(choice >= -1 && choice <= 36);

    counter++;

    bets[counter] = Bet(msg.sender, msg.value, betType,

                        block.number + 3, choice);

    BetPlaced(msg.sender, msg.value, betType,

              block.number + 3, choice);

}

Wagers are placed by specifying a bet type and choice. Wager 

transactions must include a nonzero ether value and be within 

the restricted number ranges for the given bet type. The counter is 

incremented to generate a new ID before storing the new bet in the 

contract state and logs. The block for the spin RNG is set to three blocks in 

the future.

After the three-block waiting period is complete, the user can spin the 

roulette wheel to resolve their bet (Listing 11-7).

Chapter 11  GamblinG



258

Listing 11-7. Resolving Roulette Bets

function spin (uint id) public {

    Bet storage bet = bets[id];

    require(msg.sender == bet.user);

    require(block.number >= bet.block);

    require(block.number <= bet.block + 255);

    bytes32 random = keccak256(block.blockhash(bet.block),

                               id);

    int landed = int(uint(random) % NUM_POCKETS) - 1;        

    if (bet.betType == BetType.Color) {

        if (landed > 0 && COLORS[landed] == bet.choice)

            msg.sender.transfer(bet.amount * 2);

    }

    else if (bet.betType == BetType.Number) {

        if (landed == bet.choice)

            msg.sender.transfer(bet.amount * 35);

    }

    delete bets[id];

    Spin(id, landed);

}

Only the user who placed the bet can resolve it. The user must spin 

after the bet block has passed and within 255 blocks of the bet block so that 

the blockhash will be valid.

The trickiest part of this function is the random-number generation. 

Random bytes are generated by using the designated block’s blockhash and 

the ID. The blockhash is unknown during the wager, and the ID is unique, so 

the outputted bytes are both unguessable and unique for every wager.

Chapter 11  GamblinG



259

To turn the random bytes into a pocket on the roulette wheel, the bytes 

are converted to a uint, and the remainder operation is used to place the 

number from 0–37. That number is then converted to a signed int and 

decremented to get a roulette pocket, with a value of –1 standing in for the 

00 pocket.

The bytes can’t be converted directly to a signed int before the 

remainder operation because performing the remainder on a negative 

number would yield a negative number. To ensure that the remainder 

returns a positive number, the bytes must be cast to an unsigned integer 

first. Then the remainder output must be cast again to a signed integer so 

that it can take on a value of –1 if necessary.

After the winning pocket has been determined, payouts are doled out 

based on the bet type. For a color bet, if the winning pocket color is the 

same as the bet choice color, the user receives a 2× payout. For a number 

bet, if the winning pocket is the same as the bet choice, the user receives a 

35× payout.

After payouts have been made, the bet is deleted so any payouts can’t 

be reclaimed.

The contract contains two additional functions, one to fund the 

contract and one to kill it. Because they are the same as in Satoshi dice, 

they are not reproduced here.

In Exercise 11-2, you will have a chance to add additional features to 

the roulette contract.

EXERCISE 11-2. ROULETTE BET VARIETIES

So far, our roulette contract can accept only number and Color bets. modify 

the contract so that it can also accept Odd/even bets, high/low bets, and any 

other bet types you would like to add.

Chapter 11  GamblinG



260

 Summary
Ethereum gambling games allow for provably fair odds and gameplay. 

In this chapter, we created Satoshi dice and roulette game contracts for 

decentralized play on Ethereum. Both games are well-suited to blockchain 

gameplay because they are one-shot games with a wagering period that is 

separate from the one-shot gameplay.

We have now come to the end of this book. We have covered the 

basics of Solidity, dived deep into the intricacies of contract security, and 

written a series of increasingly complex Ethereum games that can be 

played wholly on-chain. Having successfully worked your way through 

the contracts and exercises in this book, you can consider yourself a 

qualified Solidity developer with the knowledge to tackle smart contract 

development at the highest level. Congratulations, and best of luck on your 

future Solidity endeavors!

Chapter 11  GamblinG



261© Kedar Iyer and Chris Dannen 2018 
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1

 References
Buterin, Vitalik. Vitalik’s blog. Updated December 17, 2017.  

https://vitalik.ca/

Daniel BC. Ethereum Blockchain Size. Updated February 26, 2018. 

http://bc.daniel.net.nz/

Dannen, Chris. Introducing Ethereum and Solidity: Foundations of 

Cryptocurrency and Blockchain Programming for Beginners. Apress, 2017.

Ethereum Foundation. Ethereum Official Blog. Updated February 14, 2018. 

https://blog.ethereum.org/

Ethereum Research. Technical Discussion Forum for Ethereum Research.  

https://ethresear.ch/

Etherscan. The Ethereum Block Explorer. Updated February 26, 2018. 

https://etherscan.io/

GitHub. Ethereum Improvement Proposals. Updated February 24, 2018. 

https://github.com/ethereum/EIPs

GitHub. Mocha Test Framework. Updated February 20, 2018.  

https://github.com/mochajs/mocha/

GitHub. Truffle Framework. Updated February 26, 2018.  

https://github.com/trufflesuite/truffle

GitHub. Web3 JavaScript API. February 16, 2018.  

https://github.com/ethereum/wiki/wiki/JavaScript-API

Medium. ConsenSys Medium Blog. Updated February 26, 2018. 

https://media.consensys.net/@ConsenSys

Parity Technologies. Parity Ethereum Client. Last modified December 2017. 

www.parity.io

Reddit. Ethereum Sub-Reddit. Updated February 26, 2018.  

 http://reddit.com/r/ethereum

https://doi.org/10.1007/978-1-4842-3492-1
https://vitalik.ca/
http://bc.daniel.net.nz/
https://blog.ethereum.org/
https://ethresear.ch/
https://etherscan.io/
https://github.com/ethereum/EIPs
https://github.com/mochajs/mocha/
https://github.com/trufflesuite/truffle
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://media.consensys.net/@ConsenSys
https://www.parity.io/
http://reddit.com/r/ethereum


262

Solidity. Developer Documentation. Updated February 2018.  

http://solidity.readthedocs.io

StackExchange. Ethereum StackExchange.  

https://ethereum.stackexchange.com/

Truffle Framework. Ethereum Development Framework. 2018. 

http://truffleframework.com/

YouTube. “Crockford on JavaScript—Chapter 2: And Then There Was 

JavaScript.” History of JavaScript. September 20, 2011.  

www.youtube.com/watch?v=RO1Wnu-xKoY#t=430

Zeppelin Solution. Zeppelin Blog. Updated February 23, 2018.  

 https://blog.zeppelin.solutions/

RefeRences

http://solidity.readthedocs.io/
https://ethereum.stackexchange.com/
http://truffleframework.com/
https://www.youtube.com/watch?v=RO1Wnu-xKoY#t=430
https://blog.zeppelin.solutions/


263© Kedar Iyer and Chris Dannen 2018
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,  
https://doi.org/10.1007/978-1-4842-3492-1

Index

A
Application binary  

interface (ABI), 11
Application-specific integrated 

circuits (ASICs), 130
Archive node, 34
Arithmetic operators, 83
Asymmetric key cryptography 

methods, 9
Attack vectors

51% attack, 135–136
breaking cryptography, 137–138
network spamming, 136
replay attacks, 138–139
testnet attacks, 139–140

B
Bitcoin, 8, 130
Blockchain

archive node, 20
faucets, 36
hard disk, 20
Linux, 21
macOS, 22
programming tools, 23–25
syncing, 20

test network, 33
truffle, 28–29

Block explorers, 13
Block reward, 2
Blocks, 1
Block validation rules, 132
Bytecode, 4

C
Chain split, 2
Coinbase transaction, 2
Coindash hack, 126
Command-line interface (CLI), 21
Commit-reveal puzzle

claim prize, 222
constructor, 220
contract, 216
Fibonacci sequence, 216
guess function, 220
isWinner function, 221
reveal function, 221

Consensus, 132, 134
Contract address, 28
Contracts, 10
Contract security

Coindash hack, 126
Contract Creation code, 93

https://doi.org/10.1007/978-1-4842-3492-1


264

DAO attack, 123–124
front running, 122
governmental, 126–127
integer data types (see Integer 

data types)
mapping, 94
msg.sender, 120–122
nibbles, 93
Parity multi-sig wallet, 124–125
race condition, 111
re-entrancy attack, 107–111
RNG, 113–115
storage space, 92
suspendable, 111, 113
tx.origin, 120–122
visibility modifier, 119

Counterparty risk, 14
Cryptography, 137–138

D
DAO attack, 123–124
DARPA, 6
Delegated Proof of  

Stake (DPOS), 131
Dictionary attack, 137
Directed acyclic graph (DAG), 130
Distributed application/dapp, 7

E
Escrow smart contracts, 14
Eth, 27

Ethash algorithm, 2
Ether

checksum address, 96
to fixed number of address, 101
form of payout, 99
to large number of  

address, 102
payable functions, 97
seed phrase, 95
self-destructed contracts, 97
in Solidity, 98
store contracts, 98
.transfer, 99
TrustFund contract, 99–100

Ethereum client
Eth, 27
install geth, 26
Parity, 27
responsibilities, 26
TestRPC, 27

Ethereum Virtual  
Machine (EVM), 132

gas fee, 67
state tree, 67
x86 Linux Assembly, 3–4

Etherscan block explorer, 13
Ethminer, 27
EXTCODESIZE opcode, 136
External accounts, 10

F
Fallback function, 72
Faucets, 36

Contract security (cont.)

Index



265

Flow of control, 8
Focal points, see Schelling  

points
Fork, 1, 132
Frontier mainnet, 139
Front running, 122
Full node, 34

G
Gambling games

prediction market (see 
Prediction market)

roulette (see Roulette (casino 
game))

satoshi dice (see Satoshi dice)
Gambling sites, 15
Gaming sites, 14
Gas fee, 67
Geth commands

account management  
interface, 31

console mode, 30
create new account, 31
Ethereum client, 26
Rinkeby testnet, 31
RPC mode, 31
running geth help, 29
startup, 30
useful commands, 33
wallets, 30

Git, 24
Governmental  

contract, 126–127

H
Hello World contract

gitignore file, 53
greet function, 45
kill function, 46
manual deployment, 46–47, 49
Truffle

configuration, 50, 52
create password file, 53
modifying migration files, 52
private chain, 49–50
Rinkeby, 54

I
ICOs, 14
Integer data types

truncated division, 118–119
underflow/overflow, 115–116, 118

J
JavaScript, 25
Java Virtual Machine (JVM), 4

K
Keccak256, 5, 9, 137–138
Kovan testnets, 132

L
Light node, 34
Linux, 21

Index



266

Litecoin, 130
Lottery

clean up old data, 186
deleteRound function, 186
drawWinner function, 183–184
powerball (see Powerball lottery)
RecurringLottery

calculating round winner, 184
constructor function, 180
migration, 186
multiticket, 176
variables and constants, 179

RNG
createCommitment 

function, 190
deployment, 193
reveal logic, 192–193
ticket purchase logic, 191
Truffle dev console, 191
variables, 188, 190

round incrementing logic, 181
SimpleLottery

code, 172–173
drawing a winner, 174–175
migration with constructor 

argument, 174
ticket purchase logic, 182
variables and constants, 180

Low-Level Lisp (LLL), 10

M
macOS, 22
Mining nodes, 2

Monero, 130
Morden testnet, 139–140
Multiple-oracle resolution  

systems, 242

N
Net present value (NPV), 133
Network spamming, 136
Network synchronization

archive node, 34
full node, 34
light node, 34
mainnet, 35
testnet, 35

Nonce, 2, 10

O
Olympic testnet, 139

P, Q
Parity, 27
Parity multi-sig wallet, 124–125
Peercoin, 131
Peer-to-peer protocol, 89
Plain text, 23
Ponzi scheme

GradualPonzi
deployment, 153
investment logic, 152
migration, 153
realistic scenario, 151

Index



267

variables and  
constructor, 151–152

withdrawals, 152
vs. pyramid scheme, 143–144
SimplePyramid

deployment, 148
interaction with, 148
migration, 147–148
minimum investment, 146
simplest version, 145

variables, 146
Powerball lottery

buy function, 200
calculating payouts, 205–206
claim function, 204
counting matches, 204–205
drawNumbers function, 202
draw winning numbers, 202, 204
multidimensional array, 199
payouts and odds, 194
purchase logic, 201
purchase requirements, 200
smart contract, 195
view functions, 207–208

Prediction market
commentary and analysis, 226
constructor, 232
events, 233
oracle

multiple resolution  
systems, 242

single resolution  
systems, 240–241

Schelling points, 243–244

shares, 226
trading actions

buy order, 234, 236–237
canceling order, 239–240
sell order, 235–236, 238–239

Prize puzzles
commit-reveal (see Commit-

reveal puzzle)
SimplePrize

constant and  
variable, 212, 214

create commitment, 215
deployment, 214–215
guess function, 214

Proof-of-authority (PoA), 132
Proof-of-stake (PoS), 7, 131
Proof-of-work (PoW), 130–131
Pyramid scheme

governmental
code, 163
creditor payouts, 169
rules, 162–163
variables, 167, 169

vs. ponzi, 143–144
SimplePyramid

add layer to, 160
constructor, 158
deployment, 161
interest payments, 160
investment logic, 159
repayments, 159
variables and constants, 157
withdrawal function, 160

Python, 3

Index



268

R
Race condition, 111
Random-number  

generator (RNG), 113–115
Re-entrancy attack, 107–111
Remix, 24
Remote procedure call (RPC), 89
Replay attacks, 138–139
Rinkeby testnet, 31, 140
Ropsten testnet, 132, 140
Roulette (casino game)

constructor function, 256
contract, 252
resolving bets, 257–258
wager function, 257

Round incrementing logic, 181

S
SafeMath contract, 116–118
Salt, 137
Satoshi dice

constants and variables, 246
kill function, 251
payable function, 251
roll function, 250
wager function, 249

Schelling points, 243–244
Serpent, 10
Sharding, 8
Single-oracle resolution  

systems, 240, 242
Smart contract, 10–12, 14

Solidity, 10–12
arithmetic operators, 83
basics of control flow, 68
compiler, 25
contract ABI, 72
contract structure

inheritance system, 80
modifiers, 81–82

currency math, 85
data structures, 5
data type

address field, 73
arrays, 76
bytes type, 74
enumerable type, 75
structs, 77
zero values, 77

error-handling  
mechanisms, 88–89

events, 82
fallback function, 72
function, 69–70
global functions, 87
global namespace, 86
integer division, 84
logging, 82
memory, 79
mismatched types, 84
payable functions, 71
peer-to-peer protocol, 89
state permission modifiers, 71
state tree, 79
time comparisons, 84
time-delayed actions, 85

Index



269

variable types, 78
visibility modifiers, 70

Spam attacks, 136
State tree, 5–6
Sybil attacks, 244

T
Testnet attacks, 139–140
Test network, 33
TestRPC, 27
Text editor, 23–24
Token sales, 14
Transaction fees, 3, 133–134
Transactions, creating

ether
mainnet, 39, 44
send function, 41
seven keys, 42
testnet, 39

wallets, 38
Truffle

configuration file, 58
deployer.deploy function, 62
development environment 

console, 63–64
Hello World script, 65
install, 28
migrate commands, 28–29
migration, 60–62
mocha, 59
networks, 59

solc optimizer, 60
Solidity tests, 66
test files, 66

Two-transaction system, 115

U
Unaccepted block/uncle  

block, 2

V
Version control, 24
Virtual machine (VM), 4
Visibility modifiers, 70

W
Wallet address, 28
Web3, 6–7
Withdraw methods, 12

complex fallback  
functions, 106–107

internal balances, 103–104
Welfare contract, 104–105

X, Y
x86 Linux Assembly, 3

Z
Zero values, 77

Index


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	What Is Ethereum?
	Chapter 1: Conceptual Introduction
	Blocks
	Mining
	Transactions
	Ethereum Virtual Machine (EVM)
	State Tree
	Web3 Explained
	What’s New with Ethereum
	Bitcoin vs. Ethereum
	Addresses and Keypairs
	Contracts and External Accounts
	Programs in Ethereum
	Digging into Solidity
	Staying Hack-Free
	Block Explorers
	Useful Smart Contracts
	Pros and Cons of Ethereum Gaming
	People to Follow
	Summary

	Chapter 2: The Ethereum Development Environment
	Getting Set Up
	Hardware Choices
	Operating System
	Linux
	macOS

	Programmer’s Toolkit
	Text Editor
	Version Control: git
	Runtime: JavaScript
	Compiler: Solidity

	Ethereum Clients
	Geth
	TestRPC
	Eth
	Parity

	Deployment
	Introducing Truffle

	Basic Geth Commands
	Docs and Resources


	Connecting to the Blockchain
	Network Synchronization
	Mainnet
	Testnet

	Faucets

	Summary

	Chapter 3: First Steps with Ethereum
	Project 3-1: Creating Transactions
	Generating Wallets
	Mainnet
	Testnet

	Obtaining Ether
	Mainnet
	Testnet

	Sending Fake Ether with the Geth Command Line

	Project 3-2: Deployment 101
	Hello World Contract
	Manual Deployment
	Deploying with Truffle
	Private Chain
	Testnet
	Things to Note When Pushing Projects to Git


	Summary

	Chapter 4: Smart Contracts in the Abstract
	Truffle Theory
	Configuration
	Migrations
	Development Environment
	Scripting
	Tests

	Ethereum Virtual Machine
	Gas Fees

	Solidity Theory
	Control Flow
	Function Calls in Solidity
	Function Visibility Modifiers
	State Permission Modifiers
	Payable
	Fallback Function

	Contract ABI
	Working with Data
	Data Types
	Arrays
	Structs
	Zero Values
	Variable Visibility Modifiers
	Storage vs. Memory

	Contract Structure
	Inheritance
	Modifiers

	Logging and Events
	Operators and Built-in Functions
	Error Handling
	Ethereum Protocol

	Summary

	Chapter 5: Contract Security
	All Contract Data Is Public!
	Lost Ether
	Addresses
	Contracts

	Storing Ether in Contracts
	Sending Ether
	Withdraw Methods
	Calling External Contracts
	Re-entrancy Attack
	Race Conditions

	Suspendable Contracts
	Random-Number Generation
	Issues with Integers
	Underflow/Overflow
	Truncated Division

	Functions Are Public by Default
	Use msg.sender Instead of tx.origin
	Everything Can Be Front-Run
	Previous Hacks and Attacks
	The DAO
	Parity Multi-Sig
	Coindash
	Governmental

	Summary

	Chapter 6: Crypto-economics and Game Theory
	Securing the Blockchain
	Proof-of-Work
	Proof-of-Stake
	Proof-of-Authority

	Forming Consensus
	Transaction Fees
	Incentives
	Attack Vectors
	51% Attacks
	Network Spamming
	Breaking Cryptography
	Replay Attacks
	Testnet Attacks and Issues

	Summary

	Chapter 7: Ponzis and Pyramids
	Schemes: Ponzi vs. Pyramid
	Verifiably Corrupt
	Simple Ponzi
	Realistic Ponzi
	Simple Pyramid
	Governmental
	Summary

	Chapter 8: Lotteries
	Random-Number Generation
	Simple Lottery
	Recurring Lottery
	Constants and Variables
	Gameplay
	Cleanup and Deployment
	RNG Lottery
	Powerball
	Summary

	Chapter 9: Prize Puzzles
	Obscuring Answers
	Simple Puzzle
	Commit-Reveal Puzzle
	Additional Prize Challenges
	Summary

	Chapter 10: Prediction Markets
	Contract Overview
	Tracking State with Events
	Trading Shares
	Resolving Markets
	Single Oracle
	Multiple Oracle
	Schelling Point Consensus

	Summary

	Chapter 11: Gambling
	Gameplay Limitations
	Satoshi Dice
	Roulette
	Summary

	References
	Index



