
Tyler

Building Great Sof tware Engineering Teams provides engineering leaders, startup founders, and
CTOs concrete, industry-proven guidance and techniques for recruiting, hiring, and managing
sof tware engineers in a fast-paced, competitive environment.

With so much at stake, the challenge of scaling up a team can be intimidating. Engineering
leaders in growing companies of all sizes need to know how to f ind great candidates, create
ef fective interviewing and hiring processes, bring out the best in people and their work, provide
meaningful career development, learn to spot warning signs in their team, and manage their
people for long-term success.

Author Josh Tyler has spent nearly a decade building teams in high-growth startups,
experimenting with every aspect of the task to see what works best. He draws on this
experience to outline specif ic, detailed solutions augmented by instructive stories from his
own experience.

In this book you’ll learn how to build your team, starting with your f irst hire and continuing
through the stages of development as you manage your team for growth and success.
Organized to cover each step of the process in the order you’ll likely face them, and
highlighted by stories of success and failure, it provides an easy-to-understand recipe for
creating your high-powered engineering team.

Readers of Building Great Sof tware Engineering Teams will learn the following critical skills:

• �Ef fective techniques for f inding engineering candidates for your company, including how
to make your company more attractive to prospective employees and tips for navigating the
employment visa process

• �How to leverage commonly overlooked resources for f inding employees, such as hiring from
other geographic regions and how to approach college recruiting

• �How to successfully hire the best candidates, from f irst contact through making an of fer and
getting it accepted

• �How to manage engineers for optimum morale and performance, foster conf idence
throughout your organization, and promote career development for your team members

• �What to expect as you build an engineering team: common challenges, growing pains, and
solutions

• �How to use team-building skills to propel your career as individual contributor

www.apress.com

Building Great Sof
 tw

are Engineering Team
s

US $29.99

Shelve in
Sof tware Engineering/Sof tware Development

User Level
Beginning–Advanced

Building Great Software Engineering Teams
Recruiting, Hiring, and Managing
Your Team from Startup to Success

Recruiting, Hiring, and Managing
Your Team from Startup to Success
―
Josh Tyler

Building Great
Sof  tware
Engineering
Teams

9 781484 211342

52999
ISBN 978-1-4842-1134-2

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

http://www.it-ebooks.info/

Contents
About the Author���ix

Acknowledgments���xi

Introduction���xiii

Chapter 1:	T he Challenge of Building an Engineering Team ����������������� 1

Part 1:	 Recruiting �� 11
Chapter 2:	A n Enlightened Approach to Recruiting ������������������������������13

Chapter 3:	 Six Destructive Myths About Technical Recruiting��������������19

Chapter 4:	N ine Steps to Recruiting Success��27

Part II:	 Hiring �� 55
Chapter 5:	 Hiring Is Hard ��57

Chapter 6:	T he Myth of the Ninja Rockstar Developer��������������������������65

Chapter 7:	T he Hiring Decision Checklist��71

Chapter 8:	 Making Interviews Fun for Your Team����������������������������������75

Chapter 9:	 Why We Don’t Allow Java in Job Interviews������������������������83

Part III:	 Managing �� 89
Chapter 10:	D o I Want to Be a Manager?��91

Chapter 11:	A Manager’s Most Important Deliverable ����������������������������99

Chapter 12:	�T echnical vs. Management Tracks: Helping Your
People Grow ��105

Chapter 13:	T ricks of the Trade for Engineering Managers��������������������115

Appendix A:	C areer Advice for Software Engineers��������������������������������137

Index��147

http://www.it-ebooks.info/

Introduction
In my career as a software engineer, manager, and executive, I’ve read many
great books and other resources on the challenges of finding and managing
software engineers. I have never found, however, a comprehensive guide for
a specific problem that I’ve faced several times: getting a startup engineering
team off the ground.

Over the years, I’ve gradually created and refined a set of thoughts on this
topic. With this book, I aim to provide a thorough guide to the most important
challenges of building and managing a software team in a competitive, fast-
paced environment.

Who Should Read This Book?
This book will be useful for anyone trying to hire software engineers. More
specifically, however, it’s targeted at people in the following roles:

•	 Startup founders (technical and nontechnical)

•	 CTOs of startups or small, growing companies

•	 Engineering managers in fast-growing teams

•	 Anyone looking to build the skills necessary to succeed in
one of the preceding roles

In these high-stakes environments, the challenge of scaling up an engineering
team can be intimidating. Engineering leaders need to know how to find great
candidates, create effective interviewing and hiring processes, bring out the best
in their people and their work, provide meaningful career development, learn
to spot warning signs in their team, and manage people for long-term success.

What Will You Learn?
In this book, you’ll learn how to build your software team, starting with your
first hire and continuing through the stages of development you’ll encounter
as you manage your team for growth and success. Designed to cover each
step of the process in the order you’ll likely face them, and highlighted by
stories of success and failure, this book provides an easy-to-understand recipe
for creating your high-powered engineering team.

http://www.it-ebooks.info/

Introduction xiv

Here are some specific topics we’ll cover:

•	 Effective techniques for finding engineering candidates
for your company, including how to make your company
more attractive to prospective employees

•	 Tips for navigating the employment visa process

•	 How to leverage commonly overlooked resources for
finding employees, such as hiring from other geographic
regions

•	 How to approach college recruiting

•	 How to successfully hire the best candidates, from first
contact through making an offer and getting it accepted

•	 How to manage engineers for optimal morale and
performance, foster confidence throughout your organi-
zation, and promote career development for your team
members

•	 What to expect as you build an engineering team:
common challenges, growing pains, and solutions

•	 How to use team-building skills to propel your career as
an individual contributor

This book is organized into three parts: Recruiting, Hiring, and Managing,
followed by an appendix of useful advice for anyone in a software engineering
career. You don’t need to read it from front to back—feel free to skip to any
section that covers a topic of the most interest to you, or an issue you’re
currently facing.

I sincerely hope and believe this book will help many aspiring founders,
managers, and team-builders unlock the growth potential present in their
teams.

http://www.it-ebooks.info/

C h a p t e r

The Challenge
of Building an
Engineering
Team
Startups fall into one of two groups: Growing and Dying.

There’s no in-between.

To clarify, in this book the term startup refers to a product-oriented company
in the process of finding and scaling a high-growth business model. There are
many kinds of small, young, and growing companies, but this book focuses on
the experience of technology startups, most likely backed by venture capital or
seed funding, of the sort you find in Silicon Valley and other major tech hubs.

If your company is growing, odds are good that you’re looking to hire software
engineers. You know that hiring engineers is difficult, either from personal
experience or because everyone tells you so.

The purpose of this book is to show you how to make tangible progress on
this intimidating problem. Though written from the perspective of a startup,
the material here should be useful for those building technical teams in a
variety of environments.

1

http://www.it-ebooks.info/

Chapter 1 | The Challenge of Building an Engineering Team2

Why Is It So Hard to Build an
Engineering Team?
Building an engineering team is a multidimensional challenge. The high-risk,
high-reward nature of technology startups means that some will be huge
successes, but only very few. The economics of venture capital place a huge
importance on getting the absolute best talent, especially when it comes
to engineers, who are typically the primary builders of a startup’s product.
Industry conventional wisdom compounds this problem by promoting the
premise that some programmers are 10 times (or even 100 times) more valu-
able than the “average” coder. It’s also difficult to know how to identify top
engineers without extensive hands-on experience, which is of course impos-
sible to get in typical interviews.

Once you’ve finally found an engineer you think is good, getting that person
to join your team is another daunting challenge. You’re probably competing
against other attractive companies and facing unanswerable questions, such
as these: How much should we offer? Should we extend our offer deadline?
What are the candidate’s true decision-making criteria? And so on.

Finally, as you start to assemble a team of promising engineers, you confront
one of the most neglected and misunderstood functions in tech startup com-
panies: management. How will you help the people on your team be more
productive, happy, and grow their own capabilities along with the company?

This book is written for startup founders, engineering managers, and other
technical leaders trying to build a team in a high-growth, competitive environ-
ment. Before we get into the details of potential techniques, considerations,
and solutions for the challenges I’ve described, let’s consider them each in a
bit more detail.

Tech Talent Is in Short Supply
The rise of computing technology has created an ever-increasing demand for
people who can write the software to control nearly all aspects of our econ-
omy and industry. As noted entrepreneur and investor Marc Andreesseen
puts it, “Software is eating the world.”1

Software isn’t written for only desktop computers. It’s in everything, from
toasters, to laptops, to watches, to mainframe computers, to the systems that
control all the life-sustaining infrastructure of the modern world. Tesla Motors
isn’t a car company; it’s a software company that makes cars. Implementing the

1www.wsj.com/articles/SB10001424053111903480904576512250915629460

http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.it-ebooks.info/

Building Great Software Engineering Teams 3

Affordable Care Act was mostly a software problem (and one that had a few
bugs). Google has a team of over 50,000 people to provide search results for
one empty text box.

Unfortunately, the world’s educational system hasn’t produced software
engineers to meet the rate of job creation. And it’s likely to get worse:
“Employment of software developers is projected to grow 22 percent from
2012 to 2022, much faster than the average for all occupations. The main
reason for the rapid growth is a large increase in the demand for computer
software.”2

In short, the world needs more programmers.

Tech Culture Exaggerates the Problem
While the engineering shortage is real, it also gets exaggerated in mislead-
ing and unproductive ways. Very much a part of tech culture, the difficulty of
finding developers is one of the most frequently discussed topics in Silicon
Valley—in the media, in coffee shops, and within companies themselves.

While it’s easy to simply complain, as many do, that there aren’t any engineers
available to hire, it’s also lazy and not totally accurate. It would be more accu-
rate to say that everyone is trying to hire the same small subset of engineers,
and there definitely aren’t enough of them to go around.

Why are most companies looking to hire the same people? It starts with the
notion of the 10x programmer—a coder or software engineer who is 10 (or
more) times more productive than average. Whether or not you believe this dis-
parity exists, enough people do that competition for possible candidates is fierce.

The problem is that you can’t truly and reliably identify 10x talent in your
interviews. If you could, engineering salaries would vary by up to 10 times
as well. Even at the height of a boom in Silicon Valley, engineers aren’t being
offered millions per year in salary.

This hasn’t stopped some people from trying, however. The ideal candidate
typically looks something like this:

•	 Bachelor’s degree in computer science (CS) from Stanford
or MIT (advanced degrees are OK but don’t really add to
perceived value)

•	 Worked for a little while—but not too long—at a phe-
nomenally successful company (Google or Facebook, for
example)

2www.bls.gov/ooh/computer-and-information-technology/software-
developers.htm

http://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
http://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
http://www.it-ebooks.info/

Chapter 1 | The Challenge of Building an Engineering Team4

•	 Documented experience with the latest and greatest
software development languages, tools, techniques, and
frameworks (the specifics depend on the company and
market)

The venture capital (VC) industry, which guides so much of what happens in
Silicon Valley startups, has a unique approach to maximizing return on invest-
ment. VC firms are typically trying to land a small number (even just one)
of “homeruns”—deals that make them 100 times, or even 1,000 times the
amount they originally put in. For example, in 1999 two firms, Sequoia Capital
and Kleiner Perkins Caulfield & Byers, each invested $12.5 million for 10 per-
cent of a fast-growing search startup with a funny name. At the time of this
writing, Google’s market capitalization is near $400 billion, meaning that, even
considering dilution and other factors, each firm’s stake would be worth well
over 1,000 times the original amount.

This high-stakes, winner-take-all (or close to it) environment further fuels the
notion that you must find the absolute best, the elite technical minds of the
world, in order to succeed. If you’re hoping to see an investment grow by at
least 10 times, it’s logically consistent to look for 10x staff, including program-
mers. And since the early-stage startups are mostly programmers, that’s the
role for which this problem is most acute.

The emphasis on finding premier engineers has permeated the culture and
vocabulary of Silicon Valley. It’s not enough to hire a good coder—they need
to be “rock stars” or “ninjas.” Not only is this approach arbitrary and elitist,
it’s not even accurate.

A great engineer has little in common with a true rock star. Music and enter-
tainment icons must relish the spotlight and play up a larger-than-life persona.
It’s hard to imagine a successful engineering career with similar behavior. Nor
would you want an engineer with the espionage, sabotage, and assassination
skills of a ninja.

Nonetheless, startups everywhere advertise their need to hire a “rock-star
coder” or “front-end ninja,” further perpetuating the damaging myth that only
a select few people are qualified to help create great products.

Identifying Top Performers Is Difficult
Interviews are a tall order. In a few hours, you’re attempting to make a decision
about a person with whom you hope to have a relationship for many years.
You often spend as much time (or more) with your work colleagues than you
do with a spouse or partner, but the courtship process is much, much shorter.

Let’s assume that 10x programmers do exist. How might you successfully and
repeatedly identify them in a brief interview process? Great question. Even
the best, brightest, and most resource-rich minds have trouble with this one.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 5

Laszlo Bock, the head of all people operations at Google, made waves a couple
of years ago when he admitted the poor predictive quality of their interviews:

Years ago, we did a study to determine whether anyone at Google is
particularly good at hiring. We looked at tens of thousands of interviews,
and everyone who had done the interviews, and what they scored the
candidate, and how that person ultimately performed in their job. We
found zero relationship. It’s a complete random mess, except for one guy
who was highly predictive because he only interviewed people for a very
specialized area, where he happened to be the world’s leading expert.3

Furthermore, interview techniques that have long been used in the technol-
ogy industry might be misguided as well. Bock continues:

On the hiring side, we found that brainteasers are a complete waste of
time. How many golf balls can you fit into an airplane? How many gas
stations in Manhattan? A complete waste of time. They don’t predict
anything. They serve primarily to make the interviewer feel smart.

Before you give up altogether and simply hire the next engineer who walks
through your door, take heart that you’re not the only one facing this chal-
lenge. Thinking continues to evolve, especially around the use of behavioral
interviews and tests of emotional intelligence as good predictors of success.
New approaches and techniques are being tried all the time, and there are
ways to help identify the potential top performers for your future team—but
they’re definitely not perfect.

Hiring Is Hard
Finding candidates is only the first step in a long process. Next, you have to
hire them.

Hiring is made complicated by several factors:

•	 Hiring decisions by your team are often not unanimous,
especially at first. Ideally, everyone would share the same
enthusiasm for a candidate, covering all the aspects of
what was tested. In reality, however, it’s typically much
more difficult to build consensus and make decisions
confidently.

3www.nytimes.com/2013/06/20/business/in-head-hunting-big-data-may-not-
be-such-a-big-deal.html

http://www.nytimes.com/2013/06/20/business/in-head-hunting-big-data-may-not-be-such-a-big-deal.html
http://www.nytimes.com/2013/06/20/business/in-head-hunting-big-data-may-not-be-such-a-big-deal.html
http://www.it-ebooks.info/

Chapter 1 | The Challenge of Building an Engineering Team6

•	 Just as you’re looking for consensus on hiring decisions,
the same is true of your overall hiring strategy, and peo-
ple may have a wide variety of opinions. It’s important to
agree on a strategy before conducting interviews; other-
wise, your discussions may go in circles.

•	 Each candidate is different. It’s your responsibility to
understand them as well as possible, so that you can craft
the most convincing argument for why they should join
your company, but this can be tricky. They may choose to
withhold information, change their minds, or simply be
skilled negotiators. People are complicated—there’s no
one approach that’s guaranteed to work in all cases.

•	 You need to be effective in selling people on the merits
of your opportunity. Great candidates have many options,
and it’s up to you to present your company and team
in the most attractive way possible, for each specific
candidate.

•	 Your job doesn’t end when an offer is sent. You need to
maintain contact and build a connection with candidates,
which can be time-consuming but valuable. Help them
develop an increasingly clear picture of what life will be
like on your team.

Once an offer is accepted, you can finally relax, right? You’ve done it—landed
a big fish—and now it’s time to celebrate.

Not so fast.

Many things can still happen between the time an offer is accepted and the
first day of work. The candidate may have a change of heart, external circum-
stances may force the candidate to change plans, there may be problems get-
ting a visa or work permit, and so on. The most important thing to do is stay
in close contact with the candidate throughout the entire process. This com-
munication will also start to build your working relationship, which is valuable
for your long-term success together.

Management: The Overlooked Opportunity
Creating long-term success for your organization isn’t only about building a
team. Fixing your recruiting and hiring process without also improving how
you manage and retain engineers would be like trying to sustain a bonfire with
nothing but kindling. You want your company’s fire to burn hot, but also for
a long time.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 7

Engineering management, especially at startups, is far too often neglected and
overlooked as a core discipline, which is good news for you. Why? Because you
can outperform the market. By investing a bit of time, attention, and resources
into improving the management skills and process of you and your team, you
can reap long-term gains over your competitors in terms of productivity and
team morale.

Compared to engineering recruiting, which is fiercely competitive, exhaust-
ing, and uncertain, managing your people effectively provides a relatively rich
opportunity to deliver value.

If you’re not convinced this opportunity exists, consider the following financial
calculation.

Let’s say your team is looking for another senior engineer, with experience
in Python and the Django web framework. If you factor in the costs of a con-
tingent recruiter bonus, onboarding time and expenses, and other general
overhead for adding a new person, you might end up spending $30,000 on the
hire. Maybe more.

What if you invested the same $30,000 training somebody on your team?
Think about how far that money could go toward things like workshops,
classes, books, online materials, and more. In some places, you might even be
able to get a master’s degree. Or you could spread the money out and train
your whole team.

Similarly, it tends to be cheaper, overall, to keep good people than to replace
them. By providing the kind of career growth, work environment, and com-
pensation people desire, you can reduce the number of occasions in which
you need to hire somebody.

What’s in This Book
This book discusses the challenges of building and managing a high-perfor-
mance engineering team. These challenges are paired with ideas, techniques,
and strategies for making tangible progress and reaching your team-building
goals.

Part 1 opens with a discussion of the engineering recruiting process. Before
detailing some successful techniques, we first attempt to debunk some
common myths and conventional wisdom about recruiting that limit many
people and teams. After deconstructing these counterproductive tendencies,
we’ll discuss specific, industry-tested approaches to finding and landing top
engineering talent.

http://www.it-ebooks.info/

Chapter 1 | The Challenge of Building an Engineering Team8

Part 2 discusses the final step of recruiting: hiring. Much more than simply
creating and sending an offer to a viable candidate, hiring requires preparation,
strategy, and consideration of many often overlooked factors. We’ll look at
the challenges of hiring in more detail, outline some specific approaches to try
with your team, suggest possible modifications, and build toward long-term
success.

Part 3 concludes with an in-depth look at management, starting with a decep-
tively simple question: Do you even want to be a manager? To help you answer
the question, we’ll discuss the important aspects of the job, trade-offs involved
with being in management, and what you can expect in the role. We’ll also
cover the ways in which you can get the best performance and satisfaction
from your team, achieve career growth, and generally help your company suc-
ceed by practicing effective management.

About Me: Why I Wrote This Book
After several years as a professional software engineer in a variety of Silicon
Valley companies, I started to develop an interest in technical management.
The primary reason was simple: I disagreed with decisions being made by my
superiors (or at least thought I did) and realized the only way to do some-
thing about it was to get into those conversations. This wasn’t purely driven
by hubris or an inflated sense of self-importance; I honestly felt I could make
things better for the engineers with whom I worked. I believed we needed an
advocate and representative for the technical folks on my team, and that I was
the most willing and motivated to provide that service.

My first real experience in management came at a local-events web-search
company called Zvents. Later acquired by eBay, Zvents was in many ways a
typical fast-paced Silicon Valley venture-funded startup. At the time I became
a manager, my small team of engineers was working furiously on several initia-
tives as the company iterated and experimented on the product. I had a lot of
ideas about how my team, and the company in general, could be doing things
better—and I was certainly wrong about most of them.

Over the next several years at Zvents, robotics research lab Willow Garage,
and robotic telepresence startup Suitable Technologies, I gradually figured
things out. Through a series of mistakes (some of which are detailed in this
book), a consistent effort to learn by reading and consulting with experienced
managers and leaders, and analysis of what has worked and failed in my own
experience, I developed a deep appreciation for the challenges of the position
and much sharper instincts about how to succeed. Only now do I believe that
I truly understand what it means to build and manage a team.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 9

As vice president of engineering and design at Course Hero, the world’s
leading crowd-sourced educational materials platform, I’m able to apply this
knowledge and experience on a daily basis. With the support of our chief
executive officer (CEO) Andrew Grauer, we’ve created a team that’s produc-
tive, sustainable, growing fast, and a joy to be part of.

I don’t look at the information in this book as part of a zero-sum game. By
sharing what I’ve learned, I hope to make others more effective in their work,
help build value in interesting new companies, and, perhaps most important,
make engineers around the world just a little bit happier.

http://www.it-ebooks.info/

Recruiting

p A R T

I

http://www.it-ebooks.info/

C h a p t e r

An Enlightened
Approach to
Recruiting
The first step in constructing your engineering team is recruiting some great
people to join you.

For too many people and companies, recruiting is an afterthought. It’s consid-
ered an unavoidable nuisance that stands between you and having a produc-
tive team of builders who share your passion and vision for creating a great
company.

Almost everyone starts by thinking this way, and I suppose it’s understandable.
For many people, their first experience with recruiting is as the target of a
recruiter’s search. If you’ve worked in a technical field for any length of time,
you’ve probably been contacted many times by recruiters about positions that
are clearly not of interest, and these recruiters can waste your time because
they haven’t done much research on who you actually are or what you actu-
ally want to do.

Unfortunately, most recruiters take a scattershot, or “spray and pray,”
approach, contacting as many people as possible and hoping to get a few
nibbles. Being on the receiving end of these queries will understandably make
you cynical about the recruiting process in general. And LinkedIn, as the most
popular medium for these requests, has developed a bit of a reputation as a
magnet for recruiting spam.

2

http://www.it-ebooks.info/

Chapter 2 | An Enlightened Approach to Recruiting14

As we’ll discuss later, this broken, frustrating system is an outgrowth of the
contingent recruiting model. A contingent recruiter is paid only when a can-
didate is successfully hired, in the form of a bonus that’s typically a percentage
of the new hire’s starting salary.

The appeal of contingent recruiting is obvious: You pay only for results. It
aligns well with the thinking that recruiting isn’t an important function of your
company, only a necessary evil that must be completed in order to move on.
It requires very little investment on the part of the hiring manager, who simply
enjoys the results at the end.

Startup founders and hiring managers know they need developers, and they
want to hire somebody to solve this problem for them, so they can stay
focused on their own work of laying out the product roadmap and planning
business objectives.

Or at least, that’s the idea.

The downside of contingent recruiting is that it creates a poor alignment of
incentives between the hiring manager, recruiter, and candidates. It rewards
the shotgun approach to contacting candidates, which creates a lot of extra
work for the hiring manager, who must sort through lots of poorly-matched
candidates, as well as the candidates themselves, who have to deal with tons
of incoming requests that are a waste of their time.

Fortunately, there are better ways to build your team—models that properly
align the incentives of everyone involved, including the recruiters themselves.
Furthermore, the role of the recruiter is only one small part in the overall
effort required to find and hire great people.

Companies that do this well, over long periods of time, and have structured
their team, process, and culture to maximize their chances of success, are the
ones I believe have achieved recruiting enlightenment.

This chapter introduces the philosophy of enlightened recruiting. We’ll briefly
discuss important cultural aspects of successful recruiting, including how you
should think about your role in creating a recruiting strategy, and we’ll set the
stage for a deeper tactical discussion in the following chapters.

What Is Recruiting Enlightenment?
An enlightened approach to recruiting includes the following:

•	 Recruiting is a first-order company and business
priority, equivalent to (or even ahead of) building the
product, booking sales, or anything else you consider
highly important. Recruiting never takes a back seat.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 15

•	 Your company is committed to building expertise in
recruiting. Rather than looking to outsource a solution,
you invest the time and resources necessary to develop
deep knowledge, skill, and intuition about recruit-
ing through your organization. You may (and probably
should) engage with external parties for education and
help, but never as a complete substitute. No short cuts.

•	 You value and reward individual contributions to the
overall recruiting effort. These rewards may take the
form of referral bonuses, consideration in performance
reviews, recognition in public settings, or others. However
you choose to do it, you should make sure that everyone
considers a contribution to recruiting something to be
celebrated and part of doing a great job.

•	 Everyone is involved in recruiting. Everyone. Each depart-
ment or team in your company should have an idea of
how they can help.

•	 Recruiting is an integral part of your company culture. It
may even appear in your mission statement or goals.

•	 You hire people who care about recruiting and will be
enthusiastic about helping you do it better. For each pro-
spective hire, you consider their ability to attract, directly
or indirectly, more great people to the company.

•	 You’re willing to experiment with your recruiting and see
what works—to take the extra time and resources to try
different things, analyze the results, and never settle with
the status quo.

Enlightenment does not come easily, but can be incredibly valuable. The effort
invested in learning the skills necessary for successful recruiting will pay off
in meaningful, profound ways over the life of your company and your career
hiring engineers.

Get Your Hands Dirty
Most hiring managers would prefer not to invest the time required to under-
stand and perfect the recruiting process, and they would certainly prefer not
to do it themselves. Getting your hands dirty, however, is a critical part of
achieving recruiting enlightenment.

Chapter 4 covers a number of techniques and ideas to help improve your
recruiting success. An important prerequisite for these, or any other recruit-
ing approaches, to work is for you (the hiring manager) to first implement

http://dx.doi.org/10.1007/9781484211342_4
http://www.it-ebooks.info/

Chapter 2 | An Enlightened Approach to Recruiting16

them yourself. Don’t tell someone else what to try—do it yourself, refine the
idea, and then, only when you’re sure that it’s working, instruct others on how
to proceed.

To put it in engineering terms: Prototype the solution, iterate rapidly, and
when you’re satisfied with the results, look to scale it up quickly.

When I started as VP of Engineering at Course Hero, I was given a clear man-
date to scale up the technical team as fast as possible. Based on my previous
years of experience, I was confident we could do it, but I was also aware that
the current team had struggled quite a bit with the task. (This was, of course,
why I was hired.)

The engineers at Course Hero had contracted with several contingency-
based recruiters to bring them candidates. As I described, this appears to be
a logical strategy.

What transpired, however, was also what I described—the team was stuck in
a quagmire of mediocre candidates, wasting tons of engineer time and building
a growing sense of frustration and cynicism with the process.

After taking stock of the situation, my first step was basically to push the reset
button. We cancelled every existing contingent recruiter agreement (with one
exception), gave up our non-technical in-house candidate screener, and took
over the entire process. For the next month, I spent all of my available time
searching for candidates directly, doing all phone screens and initial interviews,
and coordinating the entire interview process.

If this sounds like a lot of work, it was. But after a month or so, I had a much
better idea of the answers to the following critical questions:

•	 What sources are the most productive in terms of finding
qualified candidates?

•	 Within these sources, what search terms and filters pro-
duce the best matches?

•	 What candidate attributes correlate most strongly with
success in our interviews and work performance, when
hired?

•	 Is our interview process effective in filtering out poor
candidates and selecting good ones?

•	 Are we asking the right questions in our interviews?

After a month or two, we were starting to see some improvements. The over-
all number of interviews had gone down, and the quality had gone up, making
recruiting much less burdensome and frustrating for the team. And, of course,
we had started hiring some good new people.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 17

At this point, it was time to start scaling things up. This meant primarily two
things:

•	 Bringing more engineers into the process, so that they
could help evaluate candidates and conduct interviews. I
couldn’t do the whole thing forever.

•	 Finding some recruiters, either internally or externally,
who could understand, replicate, and even improve the
process I had established, broadening our reach and
increasing our candidate flow without compromising the
quality.

Chapter 4 covers much more detail on how to find and work with effec-
tive recruiters, but you can probably guess by now that I don’t recommend
the contingency-based model. Once you’re enlightened about recruiting, you’ll
appreciate that the way to hire a recruiter is similar to hiring nearly any other
professional—you do the research to find somebody who is skilled at the
craft and pay them for their time. Yes, you’ll spend a lot of money before mak-
ing any hires, but in the long term, with properly aligned incentives, you should
see much better results. (If you don’t, you chose the wrong recruiter.)

Furthermore, with your own personal experience, you’ll be more effec-
tive in guiding recruiters toward what works, building a truly collaborative
relationship.

Recruiting as a Core Company Principle
Course Hero’s engineering team has five core principles that guide our activi-
ties and influence individual decision-making:

•	 Ship Early and Often

•	 Only One Project at a Time

•	 Testing Is a First-Class Activity

•	 Communicate Openly and Frequently

•	 Always Be Recruiting

As you can see, recruiting is up there with everything else. It’s just as impor-
tant to our culture, both now and in the future, as anything related to develop-
ment or technical work.

By “Always Be Recruiting,” we mean that engineers, along with everyone else
in the company, should be looking for every opportunity to find, entice, and
land great people for our teams. Every interaction with someone outside the

http://dx.doi.org/10.1007/9781484211342_4
http://www.it-ebooks.info/

Chapter 2 | An Enlightened Approach to Recruiting18

company is an opportunity to spread positive information into the world, or
to connect, even if it’s the beginning of a second- or third-degree link, with
somebody who might be interested and able to help you out.

If you think about recruiting only during predefined, isolated times, you’re
missing out on countless serendipitous opportunities to make valuable con-
nections. Most of them won’t go anywhere. But some of them will—even if
they take months or years—and you won’t know ahead of time which those
will be. Keep your mind in recruiting mode at all times, and train your team
to do the same.

Summary
Don’t let bad previous experience make you cynical about the prospects
of recruiting great engineers to your team. In the next two chapters, we’ll
cover in detail how to create a winning strategy, common pitfalls to avoid, and
specific techniques that will help your team unlock its next level of growth.

http://www.it-ebooks.info/

C h a p t e r

Six Destructive
Myths About
Technical
Recruiting
Before we discuss the details of how to build a recruiting strategy, we need to
dismantle the destructive thinking that surrounds technical recruiting today.
This chapter details six specific misconceptions about recruiting and proposes
some alternate ways of thinking.

Myth 1: You Need to Find More Candidates
Almost everyone has the same idea about how to solve the hiring problem:
find more candidates. It’s easy to see why—filling the top of the funnel is a sim-
ple way to increase your hiring output without changing anything about your
philosophy and process. It also allows you to outsource the work required,
typically to third-party recruiters.

Here’s my response:

Finding more candidates is the hardest possible way to solve your hiring problem.

3

http://www.it-ebooks.info/

Chapter 3 | Six Destructive Myths About Technical Recruiting20

Of course this approach can work, but you should look for some easier and
more cost-effective alternatives as well. The first step is to identify things
you’re doing to artificially limit the pool of possible candidates. Myths 2–5
contain more detail on this topic and common hiring pitfalls.

Second, you may not be considering all the ways to take advantage of your
current resources. Instead of focusing everything on hiring a senior iOS engi-
neer, is there someone on your team who could get there in a few months
with the right amount of support and training? It may end up being cheaper
and faster, when you consider the time taken and recruiter bonuses paid out,
to train someone into the role than hire externally.

Finally, you may not need more candidates; you may need better candidates.
Your recruiting process, and the people helping you with it, may not be the
right ones for the challenge.

We want to make recruiting and hiring as deterministic as we can. Read on.

Myth 2: Dealing with Visas Is Too Hard
Earlier in my career, I viewed employment visas as an intractable problem. In
my first experience as a manager, I assumed that hiring people from other
countries was going to be expensive, difficult, and risky. Every situation is dif-
ferent, but none of these things is necessarily true. The trick is learning to
recognize and handle all the situations that come up.

Learning how to recruit, hire, and manage people who require sponsorship to
work in the United States is different from what you might be used to, how-
ever. They have different concerns, requirements, and considerations, some
of which might be surprising or even counterintuitive to you. The ability to
maintain their visa status, or work toward a green card and citizenship, will
often trump just about everything else, including compensation or job details.
Furthermore, requirements are placed on them by their visas that you might
not fully understand. For example, an H-1B (one of the most common work
visas) makes it difficult for a spouse to find work, which puts additional pres-
sure on an employee with a family to be a stable provider.

Yes, navigating the visa process is a lot of work and costs money, but if you’re
trying to recruit and hire without investing any money or effort, you need to
reset your expectations immediately. When it comes to finding great people
for your team, this is an investment worth making, and the first step is to find
an immigration attorney who can help you.

Chapter 4 goes into a lot more detail about the various types of visas, con-
siderations when recruiting and hiring people who require a visa, and specific
recommendations for your own strategy.

http://dx.doi.org/10.1007/9781484211342_4
http://www.it-ebooks.info/

Building Great Software Engineering Teams 21

Myth 3: Algorithmic Knowledge Trumps
Everything
One day, my team was deep in an unusually long hiring meeting about a par-
ticular candidate. We were stuck in a bit of a hiring drought, and it seemed like
a lot of people we interviewed just weren’t quite good enough.

Not wanting cynicism to overtake the process, I polled the team about the
qualities most important to them in a prospective candidate. The list was as
long as it was interesting, and I was surprised by the wide range of attributes
people care about. The top five are listed in the following sidebar.

FIVE ATTRIBUTES TO LOOK FOR IN SOFTWARE
CANDIDATES

1.	 The candidate has something to teach me, such as new skills,
techniques, or conventions. I will learn and grow in my own work
by virtue of this person being on my team.

2.	 The candidate loves programming and technology. They share my
enthusiasm for creating great software and building a product.

3.	 The candidate is pleasant to be around. They take feedback well,
collaborate with others, know when to ask for help, are open to
learning new things and ways to work, and have multiple interests.

4.	 The candidate takes pride in their work. They have an attention
to detail, aim to make a great product, and emphasize code
readability and reuse.

5.	 The candidate thinks entrepreneurially. They think about how to
improve all aspects of a product and company, and are proactive
about problem solving.

Notice anything missing that you might have expected? How about, “The
candidate can implement merge sort”? Conspicuously absent is any kind of
technical test or algorithmic puzzle.

Clearly, we require a minimum set of technical skills in order to trust some-
one to add to our code base safely and without creating mountains of future
problems. But perhaps we’re overweighting the importance of those skills in
the grand scheme of things? Silicon Valley giants like Google and Facebook are
famously algorithm-heavy in their interviews, choosing to do most of their
interaction at a whiteboard (we’ll come back to this topic later), and many
smaller companies have made the totally rational decision to emulate their

http://www.it-ebooks.info/

Chapter 3 | Six Destructive Myths About Technical Recruiting22

technique. But what’s right for them may not be right for you. If you’re a small
startup, you have different factors to consider.

In particular, a large company needs to make sure its interview results are
consistent—across time, location, interview team, and a lot of other vari-
ables—and in some ways are reduced to the lowest common denominator in
their process. Algorithmic knowledge is more empirical than almost anything
else you can test. If your team is small, you have the opportunity to create a
more insightful interview process. Take advantage of it.

Furthermore, influential works such as The Mythical Man-Month have
entrenched the idea of a 10x programmer—a software engineer who is (at
least) 10 times more productive than an “average” engineer.1 This ongoing
debate is spirited on both sides, but no matter which side is right, this topic
has affected how teams conduct interviews. If you’re looking to find someone
10 times better than average, what kind of questions can you ask? How you
determine if their communication skills are 10x? Or their personality?

Teams have gravitated toward algorithmic questions because they lend them-
selves more readily to a mathematical, empirical comparison of candidates. By
measuring runtime complexity, time to complete a task, lines of code written,
or bug rate, for example, you can decide whether someone is 10 times better
in this dimension. The danger is in extrapolating this thinking to also decide
that they’re 10 times better as an engineer, overall.

Which is related to…

Myth 4: You Need to Find People with
Experience
Some experience is required, yes, but probably not as much as you think.

I don’t intend to debate the particular requirements of the jobs you’re trying
to fill, since every situation is different. My point, which applies to almost every
one of these situations, though, is this:

If you find yourself rejecting candidates primarily because they need more experience, consider

making an investment in providing that experience yourself.

1Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, 2nd Edition.
Addison-Wesley Professional, 1995: p. 30.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 23

Sure, it would be great for people to be fully productive from day one. More
realistically, however, figure out how to invest more in training. For example:

•	 Develop a training or onboarding program for new hires.

•	 Encourage or require pair programming for more knowl-
edge transfer.

•	 Add some slack into the product timeline, allowing for
more learning.

These, and related ideas, are discussed in more detail in Chapter 4.

Were you fully qualified for every new role you started? Did someone ever
take a chance on you? Calculated risks are intrinsic to all parts of the startup
experience, and hiring is no exception.

Furthermore, if you take the same amount of time, money, and effort required
to find a great, experienced employee, and put that into training and mentor-
ship for people you already have, you might be able to create an experienced
employee rather than find one.

Myth 5: You Need to Find Local People
The San Francisco Bay Area houses approximately 7 million people. By my
math, that’s approximately 0.1 percent of the world population. Even if you
account for the relative concentration of skilled technical and creative people,
it’s still a small slice of the world’s talent. By comparison, how well would your
business run if you threw away 99.9 percent of your sales leads?

Once you’ve decided to expand your search geography, you’ll have to decide
an important cultural question:

How important is it for your people to work in the same physical location?

Consider it carefully, as it’s one of the most important decisions you’ll ever
make. Both options have pros and cons (and elicit strong opinions). Let’s con-
sider each side of the argument.

http://dx.doi.org/10.1007/9781484211342_4
http://www.it-ebooks.info/

Chapter 3 | Six Destructive Myths About Technical Recruiting24

Why You Should Build a Local Team
In 2013, Yahoo CEO Marissa Mayer made waves by ending Yahoo’s liberal
work-from-home policy. Many employees valued the flexibility the policy
offered, but for a company struggling to find a new, more relevant identity,
Mayer felt it was an important step. From the Yahoo internal memo:

To become the absolute best place to work, communication and
collaboration will be important, so we need to be working side-by-side.
That is why it is critical that we are all present in our offices. Some of the
best decisions and insights come from hallway and cafeteria discussions,
meeting new people, and impromptu team meetings. Speed and quality
are often sacrificed when we work from home. We need to be one Yahoo!,
and that starts with physically being together.2

Many other companies have succeeded while placing the same importance on
being together. Google now has over 50,000 employees spread over 70 offices
worldwide, but still demonstrates a strong preference for bringing its top
technical talent to Mountain View. Individual productivity may be higher when
working remotely, but if communication and collaboration are paramount for
your team’s work culture, you can’t do any better than having everyone in the
same physical space.

Why You Should Build a Distributed Team
The controversy over Mayer’s remarks show just how divisive this issue can
be. Many companies have also built large, successful teams in an entirely dis-
tributed fashion.

The primary advantage is obvious: you have a much larger pool of people from
which to recruit. Not everyone wants to live near your office, or is willing and
able to relocate, even for a great opportunity.

There are secondary advantages as well: by creating a culture that supports
remote and distributed work, many people feel grateful for the unique oppor-
tunity it provides them to work for your company in a way that affords them
more flexibility in their personal lives. This freedom can be abused as well, but
when done right, creates a positive environment. The key to this approach is
to get the right tools and processes in place, and make sure they’re consis-
tently and appropriately used.

2Nicholas Carlson, Marissa Mayer and the Fight to Save Yahoo! Twelve, 2015: p. 262.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 25

It’s critical that every team member, no matter where they sit, has the same
information, access, and influence they would have anywhere else. Chat apps
such as Slack and HipChat are invaluable, as are other electronic tools for
communication, project management, and supporting technical development.
Videoconferencing, in particular, is useful in creating shared understanding and
context, as is the next iteration of that particular technology: the telepresence
robot.3

Myth 6: You Should Avoid Recruiters
Like any field, technical recruiting is full of a variety of people. They’re not all
the same.

If you’re working with a bad recruiter—one who is wasting your time or doesn’t have your best

interests at heart—you haven’t put enough effort into finding a good one.

Working in technical recruiting is a lot like real estate. There are low bar-
riers to entry, the potential upside is high (and typically commission based),
and communication and networking skills are essential. As in real estate, this
attracts a wide variety of people to the field, and you need to quickly separate
the ones who can help you from the ones who can’t.

How to find and work with great recruiters is covered in the next chapter.
Don’t be scared off by the price tag or stories you may have heard from
others. Recruiters are an indispensable resource for building your team in a
competitive environment.

Summary
Recruiting software engineers to your team is difficult, arduous work. By
breaking down some of the common myths that limit success in this endeavor,
you can maximize the return on your investment of time and money into
recruiting.

3For further reading on the nascent telepresence robotics industry, I recommend Parmy
Olson’s overview, “Rise Of The Telepresence Robots,” in the July 15, 2013 issue of Forbes
magazine.

http://www.it-ebooks.info/

C h a p t e r

Nine Steps
to Recruiting
Success
Developing a winning recruiting strategy takes time and effort. It can seem
overwhelming, so let’s break it down into specific steps. Here’s what we’ll
cover:

•	 Prepare Yourself for the Grind

•	 Prepare to Spend

•	 Identify the Top Qualities to Look For

•	 Make Your Company Attractive

•	 Learn Where to Look for Engineers

•	 Develop a Strategy for Visas

•	 Develop Your Training Program

•	 Find a Recruiter

•	 Establish Long-Term Solutions

The steps are discussed in roughly the order you’ll want to address them,
although obviously every situation is different. Let’s get started.

4

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success28

Step #1: Prepare Yourself for The Grind
Recruiting isn’t magic. It’s not really even an art. It’s a grind. A full-court press.
It requires the willingness to do anything and everything, all the time, to maxi-
mize your chances of success. The first step on your path to recruiting success
is to reset your expectations and prepare yourself for “The Grind”.

For arduous or repetitive tasks, this means coming up with a work style or
pattern that you can sustain. If you’re the one searching LinkedIn and contact-
ing candidates, set aside a portion of every day for this task. Don’t let yourself
procrastinate the task away, or let it be trumped by seemingly more urgent
things that will inevitably come up. Set goals based on quantity for this time,
such as the examples shown in the sidebar.

EXAMPLES OF QUANTITATIVE RECRUITING GOALS

•	 Contact at least five new candidates

•	 Spend 30 minutes searching LinkedIn or other job boards

•	 Spend 10 minutes with each person on your team, asking them
about potential contacts

•	 Post jobs on at least three different boards

Creative professionals know the importance of quantitative goals and how
they can lead to qualitative results. A writer might write several thousand
words a week, every week, even without a compelling topic. A photographer
might try for 250 photos per day. Regular practice leads to mastery, but even
more important, it increases the chances of having one spectacular success.
The more chips you can spread around the roulette table, the higher the likeli-
hood you’ll hit a winner.

So, like the artist toiling away at his craft without a clear result in mind, you
need to be persistent, disciplined, and trust that in time, success will be yours.

Similarly, you need to prioritize your recruiting activities above everything else
you do. Yes, everything. Speed is essential. Candidates will pick up on your
responsiveness, as it’s an indicator of how truly interested you are, and how
much you care about their interests and goals.

Big companies take a long time to usher candidates through their lengthy hir-
ing processes. Use this lethargy to create a competitive advantage for yourself.
People want to go where they feel appreciated, and one of the best ways you
can do that is to stay engaged and, indeed, aggressive throughout the entire
process.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 29

Whenever an action or information is required from you, make sure you
handle it within 24 hours. Aim to go from initial contact to a hiring decision
within seven days. If a candidate can come in tomorrow (when you’re busy) or
next Tuesday (which is open for you), find a way to make it happen tomorrow.

Welcome to The Grind.

Step #2: Prepare to Spend
If you want to build a top-notch engineering team in today’s competitive tech
market, you’re going to have to spend some money. There are different ways
to spend it, but almost everything you can do to increase your chances of suc-
cess is going to come with a price tag. There’s no free lunch here—the less
expensive approaches require more time and effort.

How much will it cost? That depends on how urgent and specific your hir-
ing needs are. The upper bound would be a 25 percent contingent recruiter
bonus, but as you’ll see later, I think there are better options. My rule of thumb
is that, for each hire, expect to invest at least $10,000, 100 hours of your time,
or some combination of the two. To put it in a formula:

X of your dollars + Y*100 of your hours >= 10,000

Where does the money go? Lots of places, if you look at the entire task of
finding, hiring, and getting a new person started on your team.

Table 4-1 shows some approximate numbers for how much various aspects of
recruiting and hiring cost, per hire.

Table 4-1. Approximate Recruiting and Hiring Costs

Recruiting Expense Approximate Cost

Contingent recruiter fees 20-40K

Contract recruiter fees 5K-15K

In-house recruiter compensation 5K-10K

Interview trips 1K-2K

Visa applications 2K-10K

Relocation 2K-10K

Referral bonuses 1K-5K

Job board postings 500-1K

Web site improvements 1K-2K

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success30

Even if you don’t incur all of these costs for each hire, you can see that it adds
up quickly.

One encouraging thing to keep in mind is that your first few hires are likely
to be your most expensive. When you start a search to fill a new position,
there are ramp-up costs—in both time and money—but as you develop effec-
tive recruiting channels and screening filters, the average cost per hire will
decrease. If you’re working with a recruiter, they’ll build a stronger sense of
what you’re looking for as well, thereby decreasing the time (and cost) to
make a hire.

Step #3: Identify the Top Qualities to Look For
Conventional wisdom in Silicon Valley is that you need to find ninja-rockstar-
superstar engineers, mythical creatures that are only occasionally seen in real
life. Some even use the term “unicorn” to emphasize this status. Hiring any-
thing less will consign your company to eternal mediocrity. This thinking has
led to Chapter 3’s third myth, Algorithmic Knowledge Trumps Everything.

While this knowledge may in fact be the most important thing for your team
(for example, if you’re building a team of quantitative analysts for a high-fre-
quency trading hedge fund), don’t start by assuming it to be true. Take a long
look at what qualities are the most valuable to you, discuss it with your team,
and build consensus about what the ideal candidate actually looks like.

A good way to start is to look at recent successful hires and see what quali-
ties stand out in those people. What aspects of their personality or skillset
make them successful? How can you find or evaluate those qualities in new
candidates? Make a list and use it to help craft your interview plans. In hiring
discussions, refer back to the list, asking for your team’s opinions on how it
applies to the candidate.

In Chapter 3, we debunked the supremacy of algorithmic knowledge as a hir-
ing signal and discussed some other characteristics to consider instead. These,
and others your team comes up with, may be very useful in identifying great
candidates whom you might otherwise have overlooked.

Teachability
In my years of hiring, however, one particular quality stands out above all oth-
ers in predicting the success of a prospective software engineering candidate:
Teachability.

Similarly, it’s the factor that also rules out more candidates than any other.

http://dx.doi.org/10.1007/9781484211342_3
http://dx.doi.org/10.1007/9781484211342_3
http://www.it-ebooks.info/

Building Great Software Engineering Teams 31

Every new hire is going to spend time learning and growing into a new posi-
tion. No one is a perfect fit right away. The question, therefore, is, how much
of an investment do you need to make in this person, and how much will it
pay off? Junior candidates will likely require more mentorship than senior
ones, but in both cases, some will be required. Even experienced candidates
will need to do some amount of learning—about how your team does things,
where their experience can best help, and the nuances of your product and
business. Skilled programmers will need to learn your engineering process,
codebase, and conventions.

At all levels, the interest and aptitude for learning are a strong, clear signal for
how well someone will do in your organization.

Your company is growing, and you want people who will grow with you. Think
beyond the challenges of today. You need people who will learn in ways that
enable them to solve the problems of tomorrow.

Finally, in all my companies, and especially at Course Hero, we’ve found that
we just generally like being around people who love to learn. It’s a wonderful,
infectious spirit that’s ideally suited for teams that are on the rise. Culturally,
it’s a good fit for the kind of environment you want to foster.

So how do you determine if someone is teachable?

Throughout your interview process, look for signs that your mentorship of
the candidate will be productive. Let’s break it down into two separate but
important questions:

•	 Is this person capable of learning?

•	 Is this person interested in learning?

You need to be confident that the answer to both questions is “yes.” Here are
some specific things to look for:

•	 Does the candidate receive and incorporate feedback
from the interviewer? If you suggest a way to approach a
problem, do they listen? You should be clear that you’re
not trying to trap them with trick questions. See how
they respond to your feedback and incorporate it into
their work.

•	 Does the candidate apply things discussed earlier in the
interview to subsequent questions or problems? This is a
great way for them to demonstrate that they’ve learned
something and are receptive to feedback.

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success32

•	 Does the candidate communicate well and have an active
dialogue as you work through problems? Effective com-
munication during the interview suggests that you can
look forward to productive work sessions with this
person.

•	 Is the candidate able to talk about past projects where
they’ve tried to learn things beyond strictly what was asked
of them? Have they shown that they’re self-motivated to
learn, improve, and share knowledge with others?

Being “teachable” means that a person is receptive to testing out and trying
new approaches. The people on your team will be mentors and colleagues for
any new hires, and will want to share their knowledge and perspectives. The
willingness to learn, and to consider new approaches to solving problems, will
be highly valued by your team, and will help them embrace a potential new
teammate.

Whether you decide that teachability is your top, must-have quality, or some-
thing else is, the most important thing you must to do is develop a clear pic-
ture of what you’re actually looking for in a candidate, and how it correlates
with on-the-job success.

Step #4: Make Your Company Attractive
First impressions make a big difference. Imagine you’re selling a house. Would
you spend thousands of dollars on marketing, trying to drum up interest for
an open house to show it off, and then neglect to mow the lawn or make sure
the windows are clean? Of course not. To borrow a phrase from the real
estate industry, you want to make sure your company has curb appeal.

Your Web Site
The first place to consider is your company web site, as it’s typically the first
place an applicant will go to learn more about an opportunity, whether they
were referred by a friend or found you on a job board. Does your site convey
the correct impression of what it’s like to work there, and provide a positive
signal to the kind of person you want to hire?

Candidates now often look for information about company culture before
the details of a particular role. More than knowing what they will do at your
company, they want to know why they will love doing it. Job descriptions for
software engineering positions all start to look the same after you’ve seen a
few, and most candidates already have a pretty good idea of the day-to-day
details—writing code, shipping product, fine-tuning your application stack, and

http://www.it-ebooks.info/

Building Great Software Engineering Teams 33

so on. To pique the interest of a potential applicant, therefore, you need to
focus on the peripherals. For example:

•	 How does your team communicate? What tools do you use?

•	 How do you foster collaboration?

•	 What new things will new employees learn if they work
there?

•	 How do people grow in their careers? Are there
examples?

•	 Why is working there fun?

Similarly, don’t go overboard highlighting all your fancy perks, unless they truly
are unique. These don’t set you apart and just take up space and attention
that could be used to express what does make you unique. As Ben Horowitz
writes, “Every smart company values their employees. Perks are good, but
they are not culture.”1 In crafting your online presence for potential employ-
ees, focus on your culture.

Humans respond positively to other humans. Showcase your team and give it
a human feel. Nobody dreams of working for a faceless, unfeeling corporate
monolith. Even if your company is huge, there are smiling, caring people mak-
ing it tick. Show that to the world.

The “About Us” page is critical, and under no circumstances should you con-
sider skipping or shortchanging it. People have learned that this is the first
stop to learn more about the actual people in company. And on this page, the
first person they will read about is the CEO. Culture flows downhill, so it’s
essential that you project a CEO persona that fits with your core values and
will inspire confidence about what your company is truly like.

Some companies show personal profiles only for senior management, and
some aim to have equal billing for every single employee. Both approaches are
fine, but keep in mind that it’s important to keep the page up to date. Having
incorrect or outdated information on your site chips away at your credibility.

This may seem self-evident, but it’s also essential to have an accurate, current
list of your job openings on your site. You don’t want to turn away talented
people simply because you haven’t gotten around to adding that new mobile
developer position yet. Some people will contact you to see if there’s an
opportunity for something that isn’t explicitly listed—but most people won’t.

Your job descriptions should also lead off with information about company
culture, selling people on why you’re such a uniquely fun and exciting place to
work. The job requirements come at the end. Why? For many applicants, this

1www.bhorowitz.com/programming_your_culture

www.bhorowitz.com/programming_your_culture
http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success34

may be the first thing they see. For example, they might receive a direct link to
a particular job listing from a friend, or click through to a listing from a job site.
Maybe they’ll eventually click over to your “About Us” page or other company
pages, but maybe they won’t.

Always be selling. Use every opportunity to convince people that you have a
great place to work. Even if it doesn’t work out for them, they may pass this
information on to somebody else.

Most job descriptions focus too much on simply what the company wants.
“Five years Java experience.” “CS degree.” “Proven track record of shipping
great products.” What most are missing is a description of what somebody
will accomplish by working there. For example, instead of this:

Candidate must have two years of experience building web applications
with Django.

Try something like this:

As part of our team, you’ll leverage your experience in building Django
web apps to help architect the next generation of features in our 2.0
product.

Always be selling. Make it sound interesting. Assume you want to get every-
body who reads your description to be excited about the opportunity.

Profiles on Other Sites
Once you’ve added slick, enticing job descriptions to your own web site, repli-
cate them on other sites where people might be looking for jobs. In particular,
use AngelList and LinkedIn.

Make sure that your company profiles, and all job descriptions on other sites,
are accurate and kept up-to-date. Check that you’ve included all the appropri-
ate keywords that a good candidate might be using to search. Assume that the
first thing somebody will do, after seeing a job post from your company, is click
through to your profile on that site. Don’t lose them at that step.

Step #5: Learn Where to Look for Engineers
When you start your search, your ideal candidate will be:

•	 Local to your office

•	 From a top 10 school

•	 Looking for a job

http://www.it-ebooks.info/

Building Great Software Engineering Teams 35

•	 Passionate about your product or market

•	 Highly experienced in the skills you need

Unfortunately, unless you’re Google or Facebook, you’ve narrowed the popu-
lation down to essentially zero. To have success, you’re going to have to com-
promise on at least one of these criteria.

I suggest you expand your search in two ways:

•	 Look outside your local area

•	 Look for students or alumni from the “second tier” of
engineering schools

Recruiting Remotely
First, you need to decide that you’re willing to recruit from other regions. This
means, by extension, that you’re willing to either pay for people to relocate to
you or build a distributed team. Both can work—but you should be clear on
what your strategy is.

If you’re trying to build a local, co-located team, then obviously you’ll need to
relocate people.

•	 Be clear about your expectations. Make sure people
know that they will be expected to relocate, if offered a
job. Don’t let that be a surprise at the end.

•	 Be clear about what you cover. State your relocation
policy up front, so candidates aren’t worried about the
potential costs.

•	 Be generous. Paying to relocate somebody is almost
always going to be much less than a recruiter fee, and
well within the range of what you should be expecting to
pay for a hire.

There are some tools that can help you identify people who not only are
willing to relocate, but might actually be excited to do it. Obviously, being in a
highly-desirable location, such as San Francisco, makes this more likely.

AngelList (http://angel.co) is a great resource for finding people inter-
ested in startups, and it has some useful and powerful search tools for both
candidates and employers. In particular, it offers a search filter called “Will
Move To,” shown in Figure 4-1, that lets you select individuals who have
explicitly expressed a desire to move to your location.

http://angel.co/
http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success36

LinkedIn, the most popular tool for finding candidates, doesn’t have quite so
precise a filter. Even so, you can be creative. For example, search for profiles
with the term “relocate”. More than a few people will have indicated their
willingness to move in their profile description.

The next level of searching is to target your efforts at other, remote locations.
Keep in mind that as you do so, your chances of success go down, and the
effort required goes up. You’re targeting a minority of the population, so you
have to go through a lot more people to find the right ones. This is a good
time to remember that you’re in The Grind.

Figure 4-1. AngelList “Will Move To” input

http://www.it-ebooks.info/

Building Great Software Engineering Teams 37

Rather than recruiting from everywhere, pick one or two specific areas to
focus on. Research local companies, communities, and other resources that
you would know about if you were located there. For example, if you’re in
San Francisco, you might target your searches at, let’s say, Salt Lake City. The
University of Utah has a great Computer Science department, there are a
number of successful technology companies in the region, and there are thriv-
ing open source software and developer communities. If you’re just a little bit
lucky, you’ll find a few folks who are curious about what it would be like to
live and work in Silicon Valley or San Francisco, or who are willing to work
remotely in a distributed team.

Searching other locations is also a good way to leverage the effort of a con-
tract or in-house recruiter. Point them at a few places to target and see what
happens. They’ll have more time than you to cast a wide net and see what’s
caught.

When recruiting in other locations, remember to be up front about your
expectations, in terms of relocation or remote work. It’s not fair to a candi-
date to spring this information on them midway through the process.

When hiring remote employees into a distributed team, there are some good
resources available. Sites such as We Work Remotely (https://weworkre-
motely.com/) and the Hacker News (https://news.ycombinator.com/)
“Who’s Hiring?” threads have an emphasis on remote work, and good com-
munities of people looking for these opportunities. Searching AngelList and
LinkedIn can also be targeted at people looking for remote work. Figure 4-2
shows the AngelList search filter to find such people.

https://weworkremotely.com/
https://weworkremotely.com/
https://news.ycombinator.com/
http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success38

For companies in the United States, searching for people in other countries
can also be productive, but make sure you understand all the visa, immigration,
and other considerations before you get started.

The “Second Tier”
Recruiting engineering students directly from school, or in their first one or
two years of work, is a great way to find highly talented people with a lot of
growth potential. When recruiting new college graduates to your company,
it’s tempting to go after the top schools. This makes a lot of sense. You want
the best and brightest to come in and help lead your company into the future.

There may actually be more opportunity, however, in the next layer—say, any-
where from 11 to 50, and beyond. While all the big companies and deep-pock-
eted recruiters go after MIT and Stanford, there are lots of really talented,
bright people at places like Georgia Tech, Michigan, and the UC schools.

Figure 4-2. AngelList “Willing to Work in a Distributed Team” search filter

http://www.it-ebooks.info/

Building Great Software Engineering Teams 39

For example, here are the top 10 U.S. Computer Science schools in the most
recent US News & World Report rankings:

•	 Carnegie Mellon University

•	 Massachusetts Institute of Technology

•	 Stanford University

•	 University of California—Berkeley

•	 University of Illinois—Urbana-Champaign

•	 Cornell University

•	 University of Washington

•	 Princeton University

•	 Georgia Institute of Technology

•	 University of Texas—Austin

Visit a job fair at any of those schools and I bet you’ll see a huge recruiting
contingent from Google, Facebook, and other name-brand tech companies.
It can be hard to stand out in a crowd like that. But let’s look at the next 38,
schools ranked 11-48:

California Institute of Technology University of Wisconsin—Madison

University of California—Los Angeles University of Michigan—Ann Arbor

Columbia University University of California—San Diego

University of Maryland—College Park Harvard University

University of Pennsylvania Brown University

Purdue University—West Lafayette Rice University

University of Southern California Yale University

Duke University Univ. of North Carolina—Chapel Hill

Johns Hopkins University New York University

Pennsylvania State University—
University Park

University of California—Irvine

University of Minnesota—Twin Cities University of Virginia

Northwestern University Ohio State University

Rutgers, The State University of New
Jersey—New Brunswick

University of California—Davis

University of California—Santa Barbara University of Chicago

(continued)

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success40

Dartmouth College Stony Brook University—SUNY

Texas A&M University—College Station University of Arizona

University of Colorado—Boulder University of Utah

Virginia Tech Washington University in St. Louis

Arizona State University Boston University

North Carolina State University

Each of those schools has a lot of great candidates too. They might not be
as plentiful, but they’re there. And a school like Ohio State is so much larger
than, say, Stanford, that in absolute terms you may actually find more people
there. If your screening and hiring process is sound, and you’re willing to put
in a little effort, you’ll have a lot of success expanding your horizons and your
pool of candidates.

Step #6: Develop a Strategy for Visas
It’s no secret that some of the best and brightest engineers are from outside
the United States. If you really want to put together the best team possible, at
some point you’re going to have to hire someone who requires a work visa.
The registration and legal fees can add up, but still usually end up being less than
our upper-bound recruiter bonus. Perhaps even more daunting are the myriad
options and complex rules that govern the process. There are many types of
visas, each with their own criteria and restrictions.

For all of these reasons and more, your first step in creating a visa strategy
should be to find an immigration attorney—someone who can help you and
your prospective employees through the process, minimize your administra-
tive burden, and maximize your chances of success. (This is probably the right
time to point out that this book’s author is not a lawyer.)

You should plan to offer the services of your attorney to the people you hire.
Both you and your employees have the same goal in mind, and you’re best off
having an attorney who knows all of the relevant information on both sides.
Consider it part of your recruiting expenses.

There are many types of visas, but here are the ones you’re most likely to
encounter or find useful in building a startup:

•	 H1-B

•	 TN (for Canadians and Mexicans)

•	 E-3 (for Australians)

http://www.it-ebooks.info/

Building Great Software Engineering Teams 41

•	 F-1 / OPT-STEM

•	 J-1

•	 Green Card (Permanent Residence)

Here’s a quick overview of each. Please keep in mind that the laws and regula-
tions surrounding U.S. immigration policy can change frequently, so it’s always
wise to check for the latest information.

H-1B
Probably the most commonly discussed of all U.S. work visas, the H-1B is
a three-year visa for foreign workers in specialized fields, which generally
includes engineering or development jobs. Availability for this visa is strictly
limited, and often exhausted before the end of each year.

Key facts about the H-1B:

•	 There’s a yearly limit of 65,000 granted visas, plus an
additional 20,000 for applicants holding Masters degrees.
(There are also some other uncommon exceptions.)

•	 If there are more than 65,000 applicants in the initial filing
period, a lottery is held to determine whose applications
are accepted. In 2014, for example, 172,500 applications
were received by April.

•	 Once the limit has been hit, that’s it for the year. Consider
the following example: You have a candidate who will
need a new H-1B visa. It’s June, and you discover that the
annual cap has already been reached. You simply won’t be
able to hire that person (on an H-1B) until at least the
following year, when you can apply for that year’s lottery.

•	 To be included in the lottery, the H-1B petition must
be filed during the first week in April. Even if the peti-
tion is selected in the lottery and approved, the H-1B
employment cannot begin until the following October 1.
(Normally, this wait is not a problem for recent grads,
who may have authorization to work for any employer in
their field for at least 12, and up to 29, months.)

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success42

•	 An H-1B can generally only be extended once, for a total
of six years. However, this six-year limit can be extended
by starting the Green Card process (specifically, getting
an approved I-140 Immigrant Petition), until a decision is
made on the Green Card application. This is one reason
why Green Card sponsorship is so valuable to provide.
Not only does it provide a path to permanent residence,
it also extends the life of the H-1B.

•	 A person who is already in H-1B status (e.g., working for
another employer) is not subject to the annual cap, and
can be hired immediately (as soon as the H-1B petition
can be prepared and filed).

•	 If an employee is terminated while on an H-1B, they may
have to leave the country. There is no guaranteed “grace
period.” However, H-1B employees can normally transfer
to another job if the new employer files an H-1B petition
within 30 days.

For more details on the H-1B, please consult an attorney or additional legal
resources.

Because of the complex factors surrounding H-1B employment and life in
the United States, there some additional, and possibly unexpected, things to
consider. Here are some other important considerations when dealing with
the H-1B or people holding it:

•	 It’s very difficult for spouses of H-1B holders to get work
authorization. Keep this in mind when considering an
employee’s personal situation—they’re probably mak-
ing a decision knowing they have to be the sole finan-
cial provider for their family. (At the time of this writing,
regulations are pending that would grant employment
authorization to some H-1B spouses.)

•	 Job security is possibly a higher priority, because it’s
required to continue residing in the United States.

•	 Once people have an H-1B, they’re careful to protect it.
They may be more risk-averse than your other employ-
ees and candidates.

Hiring Discussions
The unique circumstances of the H-1B visa mean that the process of hiring a
good candidate—extending an offer, negotiating, aligning incentives, complet-
ing all of the paperwork—may surprise you if you’re not familiar with it.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 43

To start with, people who need this visa have a bit of a different mindset than,
for example, a U.S. citizen, when it comes to employment offers. For example:

•	 They will often make decisions simply to maximize their
chances of safely remaining in the country. This is com-
pletely rational, when you understand their perspective,
but may surprise you if you don’t. Offers that look supe-
rior in every other way might be declined because of this
one consideration.

•	 After visa stability, they are probably focused next on the
length of time to get their Green Card (become a per-
manent resident). If they’re partway through the process
with one company, they may prefer to continue there,
even if the position is inferior to other opportunities. It
also depends where they are in the process, and how
much of a reset they’re risking.

•	 When leaving the country, they will probably need to
obtain a new visa entry stamp from a U.S. consulate. This
can take a while, up to a few weeks, so vacations outside
the country tend to be longer and less frequent.

Thousands of highly qualified professionals join U.S. companies every year on
H-1B visas. Learning how the process works will help you recruit from this
talent pool.

TN
Technically not a visa, TN status is a special program available to citizens
of Canada and Mexico. Created as part of the North American Free Trade
Agreement (NAFTA), it allows people in the United States, Canada, and
Mexico to work in each North American country.

Applying for TN status is very similar to the process of obtaining a work visa
such as the H-1B. It’s a relatively straightforward process, but does require
proof of employment (such as a job offer) before entering the United States.
The TN visa has a couple important advantages over the H-1B:

•	 There’s no annual limit.

•	 It can be extended indefinitely.

•	 It is faster. Canadian TN applications are submitted at the
border or at an international airport in Canada, and are
normally adjudicated within an hour. Mexicans can apply
at a U.S. Consulate, a process that may take a week or
two.

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success44

TN status is not transferable. If the holder wants to take a new job, they have
to leave the country and restart the process.

E-3
Similar to the TN program and NAFTA, the E-3 visa was created as a result
of the Australia-United States Free Trade Agreement (AUSFTA). It applies to
Australian citizens with professional training and also has many advantages
over the H-1B:

•	 Although it has an annual limit of 10,500 visas, this num-
ber has never been reached.

•	 It can be extended indefinitely.

•	 Spouses of E-3 holders may also work in the United
States without restrictions.

•	 The application fees are low.

If done quickly, an E-3 holder can successfully transfer to a new job without
returning to Australia.

F-1/OPT/STEM
The F-1 is one particular type of student visa that permits foreigners to study
in America. It requires the recipient to have a full study schedule, and strictly
limits the ability to work.

After graduation, however, F-1 holders can apply for Optional Practical
Training (OPT), which permits them to stay in the United States to work for
an additional 12 months. Although called “Training,” OPT does not require a
formal training program, and any employment qualifies, as long as it is in a field
related to the employee’s major field of study. The student will arrange for
the OPT through the university, so there is zero burden on the employer in
obtaining this form of work authorization. However, employees who join in
F-1 OPT status will eventually need H-1B sponsorship.

Students in STEM fields (Science, Technology, Engineering, and Mathematics),
which generally covers any prospective startup engineering hires, can extend
this time by 17 more months, for a total of 29 months. This extension has
important implications for subsequently obtaining an H-1B to remain in the
United States, which we’ll discuss in the next section.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 45

J-1
The J-1 visa is designed to foster cultural exchange between countries. It can
be used to support study or work abroad programs, so it may be useful in
hiring people for limited amounts of time, such as work internships or co-ops.
A formal training program, with milestones and educational goals, is usually
required, and there are requirements for providing cultural enrichment. J-1
sponsors and employers are not permitted to use J-1 status as a temporary
bridge while waiting for H-1B approval. Because of the administrative burdens
and the short period of employment eligibility (usually one year for trainees),
J-1 visas are usually not very cost-effective.

Green Card (Permanent Residence)

■■ Note  The U.S. Green Card program is complicated, takes many years to complete, and has many

nuances. This section is only a rough overview, highlighting some of the important considerations

for an employer.

A Green Card establishes a person’s permanent residence in the United
States. For employment purposes, a Green Card holder can work and move
between jobs in the same way as a U.S. citizen. For people who want to have a
long career working in the United States, attaining a Green Card is a tremen-
dous relief, as they finally feel in control of their own destiny.

There are several ways to get a Green Card, but here we focus on the
employer sponsorship. The application process is much longer, more involved,
and more expensive than most work visas, but the value to the recipient is
tremendous. You should at least consider participating for people you value
and want to retain for a long time.

Green Card sponsorship can be a valuable short-term retention tool, since if
you do not provide the sponsorship, the employee will leave for an employer
who will. However, it cannot, in and of itself, be relied upon for long-term
employee retention. If that’s the only reason to stay, an employee will leave
as soon as he or she gets the Green Card. As with U.S. citizens, salary, career
advancement, and working conditions should be the primary retention tools,
and the Green Card sponsorship can be considered a bonus.

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success46

The Process
There are two primary milestones for the Green Card application process.

Labor Certification (PERM)

The first step is typically to file a labor certification application with the
Program Electronic Review Management (PERM) system. This requires dem-
onstrating that there are not sufficient U.S. workers to fill the position, after
conducting recruitment of U.S. workers pursuant to Department of Labor
rules. A normal PERM case should take less than a year to complete, but some
cases are selected for audit or additional processing, which can add a year. This
is a tricky process, and as with all visa matters, should be led by an attorney
who specializes in the field.

The PERM application also establishes the employee’s priority date, which is
very important, as it dictates when the Green Card application will finally be
processed, years later. The applicant will want to ensure they preserve their
priority date throughout their employment.

Immigrant Petition (I-140)

Once labor certification is approved, an employer can file form I-140 for
employment-based immigration. The approved I-140 fixes the priority date,
which the employee retains even after transferring to another employer.

Normally, an employee who was not born in India or China can obtain the
Green Card a few months after the I-140 approval. However, the immigrant
visas are allocated by country, and the quota for those born in India or China
is oversubscribed.

At the time of this writing, the current backlog of applications for those born
in India with Bachelor’s degrees is approximately 13 years. Applicants with
advanced degrees (such as a Masters or PhD), or who have jobs that require
at least five years of experience, can file in a separate category, where the
backlog is currently a mere eight years. This time is estimated from the prior-
ity date, which is why it’s important to establish that date as early as possible.

It’s possible, perhaps even likely, that legislative changes, court decisions, or
executive actions will affect this process and the amount of time it takes.
Immigration is a hot political issue in the United States, and there are many
factors at work. It’s wise to monitor the situation for new developments.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 47

Costs
The total cost of a Green Card application depends on many details, but a
rough estimate is around $10,000. It’s important to note, however, that the
first stage, labor certification, must be fully covered by the employer, and
you’re not allowed to seek reimbursement for it. This is one of the reasons
that companies choose to wait some period of time (typically six months or
one year) of employment before starting the process.)

H-1B Ramifications
A very important feature of the Green Card process is that it allows the
employee to extend an H-1B visa beyond the typical six-year limit. There are
two ways:

•	 If labor certification (PERM) has been completed at least
one year before the end of the H-1B, it can be extended
by one more year.

•	 If the I-140 petition has been approved at any time during
the H-1B, it can be extended by three more years.

This is another reason that Green Card sponsorship is important for valued
members of your team.

Successful Strategies
Now that you have some information, let’s put it to use. These are strategies
and other advice I’ve seen used successfully to hire people with work visas. It’s
not an exhaustive list, but should give you some ideas to get started.

Cover the Costs
You should plan, from the beginning, to cover all of the costs related to visa
applications and attorney fees. In doing so, you remove a huge burden and
source of anxiety from the candidate.

Start by finding an immigration attorney to work with on all of your com-
pany’s cases. By creating a trusted relationship and amortizing the costs of
each hire over time, you can leverage your investment into a much higher
perceived value to prospective candidates, who face the daunting challenge of
doing this alone.

Also, your competition is doing this already. For top candidates, this is simply
table stakes.

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success48

Converting Graduates from F-1 to H-1B
Many international engineering students come to the United States to get a
Masters degree, not only because of the high quality of graduate education,
but also because it gives them a leg up on getting a work visa and, ultimately,
a Green Card.

Most students are here on an F-1 visa, which only lasts as long as their edu-
cation does. By extending their eligibility with F-1 OPT, plus the 17-month
STEM extension, they can work for approximately 29 months after graduation.
(Note: Membership in the government “E-Verify” program is required to get
the STEM extension.)

While this extension is finite, it provides another benefit: The opportunity
to apply for an H-1B two, or possibly three, more times. While the current
lottery numbers indicate that a single application is likely to fail, being able to
apply two or three times tips the odds in your favor. It’s not a sure thing, but
nothing in startup life is.

J-1 Work Exchange Programs
The J-1 visa, designed for work- or study-based exchange programs, is another
option for hiring people for a limited period of time, especially interns. It
requires that you consider a person’s entire experience of working and living
in the United States and provide some enrichment as part of it. Working in
a startup can be a valuable experience, so it may be worth considering how
to augment this in a way that makes the J-1 a good option. There are many
organizations that can assist with program sponsorship.

Canadians Have an Advantage
TN status is much easier to obtain than an H-1B visa, meaning that Canadians
(and, to some degree, Mexicans, although the rules are a bit different) are
easier to hire than people from any other country. Furthermore, there’s no
limit or annual quota to worry about.

For practical purposes, it’s pretty safe to think of hiring Canadian citizens in
the same way that you would an American, except that it will take up to a few
weeks to get all the paperwork prepared.

Summary of Visa Strategies
If there’s one thing to take away from this discussion about visas, it’s this: Find
an immigration attorney. Having someone you can trust will open up many
new hiring possibilities, and they will be indispensable as you grow your team.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 49

And the first thing you should probably discuss with your attorney (and start
thinking about now) is what your policy will be with respect to visa applica-
tions, and especially the Green Card, as you’re likely to get asked about it and
tested on your limits. For example: Will you offer Green Card sponsorship
to everyone? Only to certain hires? If so, when are you willing to start the
process? How much support will you give? And so on.

How do you find a good attorney? Consult your network. Other startup
founders and hiring managers probably know somebody they’ve worked with
and would recommend. Your Board of Directors will likely have some good
referrals as well. Don’t procrastinate this task just because you’re not good
friends with an immigration lawyer. Make it a top priority to find one.

Step #7: Develop Your Training Program
There’s a common and tragic mistake made by many small companies and
startups. They put lots of effort and resources into recruiting and hiring peo-
ple with great potential, but that effort stops the day those people start work.
It’s an absolute shame to hire a great engineer, or someone who can become
a great engineer, and not help them achieve their potential.

Before bringing in more new people, make sure you have a plan for onboard-
ing. Facebook is famous for its six-week Bootcamp, a program that all new
engineering hires must complete, no matter how much experience they
already have.

Six weeks may be a bit much for a smaller company, but the main point is
that you should at least have a plan. Consider including the following in your
education for new hires:

•	 Describe the core principles of your company. What are
the primary criteria you make to prioritize projects and
judge their success?

•	 Show them your workflow—all the steps in the lifecycle
of a project, from research and conception through to
production deployment and verification.

•	 Work with them, possibly by pair programming with a
senior team member, to complete a small project from
beginning to end. This experience should give them a
chance to learn and understand your workflow.

•	 Describe and outline the projects they’ll be working on
as they get started.

•	 Introduce their support structure. How and where can
they find help? Of whom should they ask questions first?

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success50

At Course Hero, we recognized the need to create an onboarding process,
as our new hires were having inconsistent results getting up to speed. We felt
like we should be doing more to help them. So we put together an extremely
simple, but ultimately effective, plan: Pair the new person with a senior engi-
neer, until that senior engineer was confident the new hire was ready to work
independently. The amount of time required, to cover all the points listed
previously, depends on the experience of the new person, but in all cases we
believe it’s an excellent investment of our time.

Step #8: Find a Recruiter
Okay, now that you’ve considered the basics, let’s throw some gas on the fire.
If you’re looking to hire rapidly, you’re almost certainly going to need help
from a recruiter.

The first mistake a lot of people make, when looking for a recruiter, is to
assume they can just hand over the entire task to someone else.

Roll Up Your Sleeves
In his startup manifesto, “The Hard Thing about Hard Things,” entrepreneur
and venture capitalist Ben Horowitz writes that the best way to hire people
into roles you don’t understand is to try to do the job yourself:

The very best way to know what you want is to act in the role. Not just
in title, but in real action—run the team meeting, hold one-on-ones with
the staff, set objectives, etc. In my career, I’ve been acting VP of HR, CFO,
and VP of Sales. Often CEOs resist acting in functional roles, because they
worry that they lack the appropriate knowledge. This worry is precisely
why you should act—to get the appropriate knowledge. In fact, acting is
really the only way to get all of the knowledge that you need to make the
hire, because you are looking for the right executive for your company
today, not a generic executive.

I believe the same applies to recruiting. For the best long-term results, you
need to be willing to dive into recruiting directly, learning what works and
what doesn’t. Before you hire a recruiter, spend a month trying figure it out
yourself. Then, when you do hire someone, you’ll have a much better idea
what’s going to work.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 51

Stay Involved
Even the best recruiters can’t guess exactly which people are going to be right
for your roles. They’ll need to work with you, over time, to refine the search
and match your expectations.

If the extent of your relationship with a recruiter is simply to receive incom-
ing candidates, you’re going to be dealing with a lot of noise in the channel.
You should expect to maintain close contact with your recruiter, providing
feedback about what’s working and how to refine the search.

Look at this way, instead:

Once you’ve figured out what recruiting strategies and criteria are working for you
(by rolling up your sleeves), hire a recruiter who lets you scale that effort up. You’re
trying to replicate and improve your technique by getting other people involved.

If you feel like the time you spend talking to a recruiter isn’t being leveraged
valuably into better results, you need to find a better recruiter.

Characteristics of Great Recruiters
You should consider a recruiter an essential and integral part of your team.

One of the fundamental problems with contingency-based recruiters is that
their incentives aren’t truly aligned with yours. By tying all of their compensa-
tion to the single act of getting an offer accepted, you’re encouraging them to
make choices that aren’t optimal for you. They don’t have a strong incentive
to set your team up for long-term hiring success, nor do they benefit much by
filtering out marginal candidates.

There’s a better way. Find a recruiter who can help carry out (and improve)
the hiring strategy you’ve already developed, and then simply pay them for
their time. In the short-term, this means on an hourly, weekly, or monthly
basis. In the long-term, this means hiring them as a full-time in-house recruiter.

But, you might be asking, doesn’t this mean I could spend a lot on recruiting
without getting any results? Of course. But most professionals, especially in
highly-skilled fields, work this way. Start thinking about technical recruiting
as a skill that requires years of experience to master, and maybe it will make
more sense.

A great recruiter should also be able to help you with many other parts of the
process as well, such as hiring discussions, negotiations, and crafting great job
descriptions. Hiring recruiters on a contingency basis marginalizes their skills
and the value they can provide to you and your team.

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success52

How to Find a Recruiter
Ask around. Who are the people and companies you know that have built
teams quickly and effectively? Chances are, they had some help.

The best recruiters you find might all be booked already. That’s ok—stay
in touch with them. It’s a fickle and cyclical business, so they might free up
sooner than expected.

Finally, as discussed above, look for recruiters who prefer to work on a con-
tract or hourly basis, not contingencies. They’ll be confident they can deliver
results, and not have you second-guessing their fees. In the long run, you’ll save
time and money, and get better hiring results, by working this way.

Step #9: Establish Long-Term Solutions
If you’ve created your recruiting pipelines, set up an onboarding program,
crafted great job descriptions and company profile material, and found recruit-
ers and immigration experts to help you, you’re well on your way. You’ve done
everything you can to achieve short-term results.

To continue building your team over several years, however, you should con-
sider new initiatives. These things take longer to pay off, but will end up cost-
ing less, per hire, than what we’ve discussed so far. They will also help build
engineering culture in your team, encouraging personal development among
the people you already have.

Internships
Hiring engineering interns for your team, whether in the summer or any other
time of year, can produce many benefits:

•	 Accomplishing additional projects

•	 Injecting fresh ideas or new concepts currently being
taught in higher education

•	 Possible full-time hires upon graduation

•	 Building brand recognition for your company when they
return to campus

An intern with previous work experience, strong academic credentials, and
a good cultural match for your team can produce at the same level of a new
hire, although only for a limited time. Less experienced or skilled interns will
require more mentorship, but still can be a net positive. Beyond simply work
product, though, interns can be a positive influence in many ways.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 53

In terms of hiring, the competition for top students in college has extended
back into the internships they complete during school. Even as their senior
year begins, some of these students will already be “off the market,” having
accepted offers to return to the company where they spent the summer.
The big players, such as Facebook and Google, will do everything they can to
lock these students down before you even have a chance to talk with them.
Therefore, if you want to compete, you’ll need to get started even earlier.

Finally, having interns return to their school after a great experience with your
company is a fantastic way to build interest in other students. It’s a positive
feedback loop—these students tell others, who apply the next year, who then
continue spreading the word about your exciting, growing company.

Co-Ops
Similar to an internship, an increasing number of schools offer Co-operative
education programs (or “co-ops”). Typically, co-ops are longer than intern-
ships and more central to the degree program of the school. Some degrees
require co-op experience as a way of developing true work experience during
a student’s education.

Participation in a co-op program will require more effort on your part, as the
school will want to ensure that its students are getting valuable experience.
This investment can be well worth it, as the students produced by these pro-
grams tend to be more professionally prepared and capable.

One school that particularly stands out for its co-op program is the University
of Waterloo in Waterloo, Canada. By the time students complete their degree,
they will have done several extended internships, and tend to be well above
average in both skills and readiness to enter the workforce. The secret is out,
however—competition for top students at Waterloo is fierce, and the school
has a huge staff dedicated to supporting this program.

Open Source Projects
Another option for building the attractiveness of your company in the long
term is to create and contribute to open source software projects. This works
in a few ways:

•	 People outside your company may find your software
useful, and over time develop a good impression of you.
Perhaps in the future they may even think, “That’s a place
I’d like to work.”

•	 You and your engineers can start to build relationships
with engineers outside the company. Not only can you
learn from each other, but they may start to develop an
interest in working with you more directly.

http://www.it-ebooks.info/

Chapter 4 | Nine Steps to Recruiting Success54

•	 Open source projects give people on your team a chance
to show their work to the outside world. Most software
engineering is anonymous, and many engineers are grate-
ful and proud to have the chance to show some of their
accomplishments to their friends and others.

It can take a while, but it’s never too soon to start building an open source
library to generate interest from the outside world and pride from your team.

Community Involvement
You can also build long-term benefits by becoming more involved in developer
communities. The reasons are similar to those for open source projects. In
particular, you have the opportunity to build relationships with engineers and
technical people outside your company.

Some people are reluctant to encourage these types of activities, as they see
it the other way around. The worry that by exposing their engineers to oth-
ers, they run the risk of having them recruited away. I believe that this line of
thinking is cynical and short-sighted.

You should believe that if an engineer from your company meets an engineer
from another company, you’re more likely to attract the other person to you,
than vice versa. If this isn’t true, then stop worrying about recruiting and fix that
problem.

Summary
Recruiting is difficult, but it doesn’t have to be mysterious. It’s actually closer
to science than it is to art. By committing yourself to diligent, thorough work,
and by following industry-tested techniques, you can achieve success where
many have struggled.

http://www.it-ebooks.info/

Hiring

p A R T

Ii

http://www.it-ebooks.info/

C h a p t e r

Hiring Is Hard
You would like every hiring decision to be a slam dunk. In an ideal scenario,
everyone on your team is enthusiastic about a candidate, the candidate is
equally excited about your company, and it’s just a matter of drawing up an
offer and scribbling some signatures.

It rarely works out that way.

In the real world, building consensus on a hiring strategy is challenging, deci-
sions are rarely unanimous, candidates are cagey and capricious, and sure
things turn out to be anything but.

Furthermore, as a hiring manager, you’re trying to make a two-sided sale: you
need your own team to be supportive of the hiring decision, as well as con-
vince the candidate that this is the right choice for them.

Let’s discuss some of the trickiest parts of making a successful hire, and what
you can do about them.

Agreeing on a Strategy
One of the most important aspects of your interview strategy is that each
interviewer knows what they’re looking for, and how to determine whether
they’ve found it. They also need to trust that the composition of these inter-
views will give your team a complete picture, from which you can make a good
decision.

It’s critical to derive this strategy ahead of time. Once you’re in a hiring meet-
ing, it’s too late. You have only the information you’ve gathered, so make
sure it’s useful. Calling back the candidate for additional interviews will instill
doubts, and should be done only when absolutely necessary.

5

http://www.it-ebooks.info/

Chapter 5 | Hiring Is Hard 58

Chapter 3 listed a few valuable attributes to look for in software candidates.
Once you’ve identified your own set of criteria, you need to devise the inter-
view questions that will help you assess them, as well as any other job skills
you require. For example, an interview plan (or at least part of it) for a back-
end web developer might look something like this:

Technical interview: Algorithms and computer science fundamentals

In this interview, you’ll want to assess the basic mathematical skills and logic
that are essential to being an effective developer. You may also, however, want
to find out how well the candidate can learn unfamiliar concepts and quickly
develop an understanding of them. Perhaps they couldn’t reverse a linked list
right away. But after the interview, do you feel confident they could do it now?

Technical interview: Database design and practical skills

Similar to the first interview, you’re looking to understand this person’s ability
to create and interact with a database. In addition, you could be looking to test
their ability to find information to solve new problems. Given an unfamiliar
task and access to Google, are they able to make good progress?

Product management interview

Talk to the candidate about how they view your product. How thoroughly do
they understand it, and how much effort have they made? Do they have any
ideas to make it better? In general, is this person going to help your company
innovate, or would they prefer to simply code to someone else’s spec?

Technical interview: Database design and practical skills

Similar to the first interview, in this session you’re looking to understand this
person’s ability to create and interact with a database. In addition, you could
be looking to test their ability to find information to solve new problems.
Given an unfamiliar task and access to Google, are they able to make good
progress?

And so forth. Throughout all of these interviews, you should be looking for
signs of a cultural fit, and developing confidence that your team will enjoy
working with this person.

It’s also useful to look at whether the candidate applied information or discus-
sions from earlier in the day to subsequent interviews. Did they keep making
the same mistakes? Or were they paying attention, and showed that they can
pick things up quickly and make use of them?

http://dx.doi.org/10.1007/9781484211342_3
http://www.it-ebooks.info/

Building Great Software Engineering Teams 59

Getting to “Yes”
It’s almost always easier to decide No on a candidate than Yes. It’s the safe
choice. It doesn’t disturb your status quo, and doesn’t create the risk of mak-
ing a bad decision and dealing with the consequences. Furthermore, nobody’s
perfect, so there will always be something you can find for criticism.

As much as you would like your hiring decisions to be unanimous and straight-
forward, it just doesn’t happen that often. Even if someone is outstanding
technically, there might be concerns about their enthusiasm for your company.
On the other hand, someone might be a perfect cultural fit, but have some
question marks in, for example, problem-solving ability.

One of the most important, and trickiest, skills you can develop as a manager
(in a small company) is knowing how to guide your team toward the right
decision. You should not be looking to make a unilateral decision, but rather
to encourage the proper discussion that helps your team see candidates in
the best light. And clearly, you need to know when to back off, when it’s just
not headed the right way.

In general, this means

•	 Preventing discussions from deep-ending on negative
topics

•	 Considering the big picture—what will it mean to have
hired this person, 3, 6, or 12 months from now?

•	 Detecting cynicism when it creeps into your team, and
changing things up appropriately

•	 Making sure your interview process is gathering the cor-
rect information

Chapter 6 covers specific questions and discussion topics that will help you
achieve consensus in hiring meetings.

Candidates Are Crafty
Once your team is a Yes on a candidate, you can shift into all-out sell mode.
Focus all of your available attention on the candidate, and make closing the
deal your top priority. Getting to this point took a long time, a team-wide
effort, and a lot of false starts, so don’t shortchange this part of the process.
Here are some strategies and techniques for sealing the deal.

http://dx.doi.org/10.1007/9781484211342_6
http://www.it-ebooks.info/

Chapter 5 | Hiring Is Hard 60

Keep Moving Fast
As with all parts of the hiring process, speed is critical. Your responsiveness
and expeditiousness are keenly observed by candidates, and can strongly affect
their impression of your team.

Getting an offer out quickly can absolutely improve your chances of having it
accepted. Perhaps the chances increase only a small amount, but you’re look-
ing for any edge you can find.

Once the offer is out, your job isn’t done. You need to stay in close contact
with the candidate all the way until they make a decision. How often should
you communicate? In my experience, once a day provides the right balance of
demonstrating commitment without scaring people away.

Other ways you can keep moving fast:

•	 Answer questions immediately.

•	 Provide any necessary revisions as quickly as possible.

•	 Update the candidate on all the great things happening
with your team, just during the time in which they’re
making a decision.

Finally, one of the most important reasons to be quick and responsive at all
stages of hiring is that you can more realistically expect the same from the
candidate. This can be very important.

How Tight Should Your Deadline Be?
The quicker your offer gets a response, the more likely that response is posi-
tive. Conversely, the longer it takes for a candidate to decide on your offer, the
more likely they’ll decline.

Therefore, you have an incentive to push for a quick decision. Push too hard,
however, and you risk losing the candidate by making them feel uncomfortable
or rushed.

Here’s where your expediency throughout the hiring process is valuable.
When you are quick and responsive at every stage, the urgency to accept
an offer is much more authentic. If your team has taken five weeks to get
through its interviews, an offer deadline of 48 hours is downright obnoxious.
It suggests you don’t value or respect the candidate’s time. If, on the other
hand, you’ve managed to get through everything in just a few days, and have
consistently answered questions within an hour or two, it doesn’t seem so
crazy. You make things happen, and the candidate gets that.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 61

So, how much time should give them to decide? If you’ve been quick through
the process—and you should have been—two business days isn’t unreasonable.

What if they ask for more time? I’ll say this: In all my years of hiring, I can’t
recall an instance where giving a candidate more time to consider an offer led to an
acceptance.

My preferred approach, when a candidate asks for more time to consider an
offer, is to respond by asking what additional information would help them
make a decision. (And then to make sure they get that information right away.)
If they’re waiting for other offers, learn as much as you can about those offers,
and in particular the ways in which they’re better than yours.

Another way to head this off is to ask the candidate about their timeline at the
beginning of the process. If they indicate they’ve already planned to interview
for a few weeks, consider delaying your interviews with them until they’re
closer to the end of that period. You want to engage the candidate when
they’re ready to act, so your impression is fresh and you can maintain positive
momentum.

Finally, be up-front about your desire to get a quick response, so it doesn’t
come as an unwelcome surprise at the end of a promising discussion.

Negotiate Effectively
Hiring managers can benefit greatly from studying the art of negotiation, but
be careful; hiring someone isn’t like selling a car. In most sales situations, the
relationship ends there. With hiring, however, you’re creating a relationship
that will (hopefully) last for many years. You’re going to see and work with
this person every day.

Talk to the candidate to find out their true decision points. It may take a while,
but it’s worth it, as their top criteria may not be what you think. A lot of
people are motivated to find the highest possible salary—but not everyone.

At Course Hero, I was once about to lose a candidate to another startup. It
wasn’t quite a done deal yet, so I tried to learn why our offer didn’t stack up.
Was it money? No, that was competitive. Our product? No, education tech-
nology was appealing. Our team? No, the candidate would enjoy working with
us and thought everyone was friendly. Only after ruling out these possibilities,
and many others, was I able to uncover the crucial item: This person wanted
to work on technically challenging problems, in order to develop, academically,
as a computer scientist. After setting up a conversation with one of our engi-
neers to go over some of our machine learning research, the candidate felt
more comfortable about the opportunity, and joined us soon after.

You may not get every candidate, but don’t rest until you at least know why.

http://www.it-ebooks.info/

Chapter 5 | Hiring Is Hard 62

For further study of negotiation, here are two recommended books:

•	 Getting to Yes: Negotiating Agreement Without Giving In, by
Roger Fisher, William L. Ury, and Bruce Patton.1

•	 Secrets of Power Negotiating: Inside Secrets from a Master
Negotiator, by Roger Dawson.2

Have No Regrets
Athletes talk about “leaving it all on the playing field.” Not to push a sports
metaphor too far, but I think the same applies to hiring.

In hiring, as in most negotiations, it’s tempting to strive for the best “deal”—
to hire somebody for the least cost possible. This feels like “winning” the
negotiation.

I think this is a risky way to play it, and that the best approach starts with figur-
ing out what your absolute best offer is. Hiring is too critical to whittle away at
the margins. Get the right people in, as long as you can afford it. You’re building
the foundation of your company’s future.

You don’t have to put everything in the first offer. Sometimes you can tell that
a round or two of revisions is likely, such as when the candidate informs you
they have other offers. But have your best offer in mind and be prepared to
give it. It’s not a question of if you make your best offer, but when.

Set aside any regrets that you may have overpaid, and replace them with opti-
mism that this new employee will exceed all of your expectations.

Hire at the Limit
Hopefully, you’re always trying to hire people who make your team better.
If so, you’re constantly pushing the limits of the caliber of candidate you can
successfully hire, which in turn means that the candidates you like are going
to be a tough sell.

Don’t be afraid and don’t get discouraged. Aim high and do everything you can.

1Fisher, Roger, William Ury, and Bruce Patton, Getting to Yes: Negotiating Agreement Without
Giving In. New York: Penguin, 2011.
2Roger Dawson, Secrets of Power Negotiating: Inside Secrets from a Master Negotiator. Pompton
Plains, NJ: Career, 2011.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 63

Your Job Doesn’t End with the Offer
You’ve gotten the idea by now that your work does not end when you send
an offer. You need to stay in close contact with candidates until they make a
final decision.

Build a Connection
Once you decide that a candidate should be part of your team, consider ways
to help them see what that would be like.

A great way to build a connection with a candidate is to set up an infor-
mal conversation with someone on the team. The two of them can discuss
the day-to-day details of how you do things, what projects are going on, and
answer any questions the candidate may not have been able to ask in an inter-
view. If possible, choose someone who came into the company via a similar
process—relocating from the same area, for example, or a graduate from the
same school—to make the candidate even more comfortable with the idea of
joining your team.

Another option is to invite the candidate to join your team for a work or
informal activity. For example:

•	 Observe (or even participate in) a product meeting,
to see what projects are active and how decisions get
made. (Obviously, be careful about sharing confidential
information.)

•	 Join your team for lunch, to see how friendly and wel-
coming you are.

•	 Participate in a team off-site activity, to start building rela-
tionships with others on the team.

The better a candidate gets to know you, the more they’ll be able to visualize
life in your company, which will only help them feel comfortable accepting an
offer.

Connect with Students
Building a connection with college graduate hires is especially important.
Students are unique in that they typically take longer, and interview with more
companies, than other candidates. They also tend to be less sure about what
they’re looking for, and enthusiastic to just get started and see what they like.

http://www.it-ebooks.info/

Chapter 5 | Hiring Is Hard 64

The techniques listed previously work well with students, but may require
more time and effort. Introducing a student to recent graduates on your team
is helpful and effective. And once an offer is accepted, don’t stop there—stay
in touch and try to create a bond, so that their excitement builds as they fin-
ish their studies.

Start Preparing
Even before your candidate accepts an offer, it’s not too soon to start prepar-
ing for them to join your team. Great people want to hit the ground running,
and by discussing these topics, you’ll get a better idea of how truly interested
this person is in your company. Enthusiastic candidates will be excited to talk
about these details, whereas candidates who aren’t likely to sign will become
quiet.

Here are a few specific ways to prepare:

•	 Ask the candidate for a start date. This question makes
the decision very real, if it wasn’t already. It also gives you
an idea of how much time you have to get ready.

•	 Ask the candidate what kind of tools they need or want.
What kind of laptop? Would they like any additional
hardware? Get them to start envisioning their dream
setup—in your office.

•	 Some candidates will ask what they can do to prepare. If
this happens, be ready to respond with some ideas. This
is a great way to get them more engaged.

•	 In some cases, and with the candidate’s permission, it’s
helpful to introduce them to some or all of your team.
They may want to learn more about how you do things,
get advice on their upcoming job transition, or ask ques-
tions about the company.

The more you can get a candidate to think and act as part of your team, the
easier you make it for them to join in earnest.

Summary
The final stages of the hiring process are the toughest, full of a variety of pit-
falls as you try to successfully convince great candidates to join your team. By
crafting a realistic and effective strategy, learning how to negotiate, and seeing
things through all the way until an employee’s first day on the job, you may not
guarantee success, but you can at least tip the odds a bit more in your favor.

http://www.it-ebooks.info/

C h a p t e r

The Myth of the
Ninja Rockstar
Developer
In 2007, I was hired as a senior web developer at the local events search
engine Zvents. On my first day, not more than 15 minutes after entering the
office as an employee for the first time, the CEO asked me, “Are you our new
rockstar developer?”

To be clear, he meant well. He meant the term as a compliment, consistent
with industry jargon, as well as an expectation of big things.

I had certainly heard the term before, but was still taken aback. I had never
thought of myself as a “rockstar” before, and wasn’t entirely sure what it truly
meant. (Actually, it might be more accurate to say I already thought of myself
as a failed rockstar, having played keyboard in a few rock bands in my younger
days, none of which achieved the glory we had hoped.)

I don’t recall exactly how I responded to the CEO, but I definitely tried
to create a more accurate and professional expectation of what I could do.
To be called a rockstar was flattering, in a way, but not something with which
I felt totally comfortable.

6

http://www.it-ebooks.info/

Chapter 6 | The Myth of the Ninja Rockstar Developer66

Where Did All These Ninjas and Rockstars
Come From?
For reasons I don’t completely understand, a certain vernacular has taken over
the description of talented software engineers. It’s no longer good enough to
simply be an excellent engineer, now people have to be ninjas or rockstars.

Figure 6-1 shows the growth of the term “ninja” over the past six years. The
term appears to originate, or at least first appear widely in technology cul-
ture, with John Resig’s book, Secrets of the JavaScript Ninja.1 Resig, one of the
most widely-respected authors on software development, and now Dean of
Computer Science at Khan Academy, had noble intentions for the use of this
term. From the book’s description:

You can’t always attack software head-on. Sometimes you come at it
sideways or sneak up from behind. You need to master an arsenal of tools
and know every stealthy trick. You have to be a ninja.

Figure 6-1.  Google trends for the terms “python ninja” (Blue) and “ruby ninja” (Red)2

Unfortunately, usage of the term “ninja” has gone a bit sideways since then,
with developers everywhere referring to themselves as ninjas and companies
trying desperately to hire ninjas for everything from software development to
human resources. Figure 6-2 shows a sample of listings returned by searching
LinkedIn Jobs for “ninja.”

1Resig, John, and Bear Bibeault. Secrets of the JavaScript Ninja. Manning Publications, 2013.
2https://www.google.com/trends/.

https://www.google.com/trends/
http://www.it-ebooks.info/

Building Great Software Engineering Teams 67

The history of “rockstar” as it pertains to software development is a bit harder to
trace, but probably less benign. Referring to anyone as a rockstar connotes a
type of behavior that doesn’t always fit well in a team dynamic—brilliant, but
high-maintenance; productive, but seeking individual glory.

There are other theories on the use of these terms as well. Some people
believe that they’re used as a cheap appeal to one’s ego. Lauding a developer
with honorifics may reduce their requirements in terms of actual influence or
even compensation. This is certainly a cynical interpretation, and in most cases,
such an effect would be short-lived.

Similarly, the language around rockstars and ninjas may reflect an attempt to
make software development more cool or fashionable. As the profession has
become more central to our modern economy, there’s a growing need to
attract and retain those who are skilled at it. You could argue we need more
people to aspire to be rockstar developers than, well, actual rockstars.

Figure 6-2.  Some of the top hits for the search “ninja” on LinkedIn Jobs3

3https://www.linkedin.com/job/.

https://www.linkedin.com/job/
http://www.it-ebooks.info/

Chapter 6 | The Myth of the Ninja Rockstar Developer68

What’s the Big Deal?
Okay, so maybe a few engineers or other startup folks are feeding their egos
by being called rockstars or ninjas. Whom is this really hurting?

It’s hurting you, the person trying to build a team. Here’s why:

•	 It creates a false expectation of someone’s ability or poten-
tial for impact. Rockstars—actual rockstars—capture
the hearts of millions, bring in tons of money, and affect
the culture of an entire society. (They also tend to trash
hotel rooms and flame out quickly.) It’s not accurate or
even fair to suggest the next developer you hire is going
to have an impact on that scale. It’s setting you and the
developer up for disappointment.

•	 These people don’t really exist. Rockstars are literally one
in a million, or even fewer, and ninjas have barely existed
outside mythology for hundreds of years. It may be dif-
ficult to find a software developer, but the odds are still
orders of magnitude better than one in a million. These
terms create a false feeling of scarcity, further feeding the
preconception that you can only hire truly exceptional
candidates—mythical characters who don’t actually exist.
Developers, by contrast, do exist, and deserve your atten-
tion and consideration.

•	 These terms artificially elevate people out of proportion to
their contributions, which can damage your company culture
of trust and collaboration.

•	 People who truly act like rockstars and ninjas might not be
the best for your team. Remember, rockstars are known
for their flamboyant disregard for the property and feel-
ings of others, and ninjas, well, they kill people. Even if
your people don’t internalize these characteristics to the
extreme, it’s still a message that can be counterproductive.

•	 You’re trying to assemble a team. Even the most success-
ful rock bands have how many stars—one, maybe two?
The Beatles and The Rolling Stones, arguably the two
most influential and successful bands of all time, were
unique in the way all of their members became stars in
their own right, but even in these cases, there were only
four such people. At the time of this writing, Course
Hero’s Engineering and Design team has 28 people, and
I can’t think of any rock bands with 28 identifiable star
personalities.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 69

It may seem harmless, but indiscriminate use of the terms “rockstar,” “ninja,”
and others like them can undermine your efforts to build a quality software
engineering team.

Better Terminology for Software Developers
Hopefully you’re now convinced that you shouldn’t call your developers
“rockstars” or “ninjas.” But what should you call them instead?

Most developers, especially the ones you want to hire, are perfectly con-
tent with a description that matches what they actually do, such as “Senior
Software Engineer,” “Mobile Developer,” or “UX/UI Designer.” Keep it simple
and you’ll be fine. This will also make it easier to have an open conversation
about the expectations of the role and the things on which it’s important to
focus.

Summary
The high-stakes environment of Silicon Valley has, for many years, built up the
premise that you must find the absolute best, the most elite technical minds of
the world, in order to succeed. This emphasis on finding exceptional developers
has contributed to a culture and vocabulary in which it’s not enough to hire
someone proficient or competent—they need to be “rockstars” or “ninjas.”
Not only is this terminology arbitrary and elitist, it’s not even accurate.

For the best results building your technical team, stop thinking about mythical
characters and spend your time focused on people who actually exist.

http://www.it-ebooks.info/

C h a p t e r

The Hiring
Decision
Checklist
Startups experiencing rapid growth have a lot of hiring meetings. In fact, these
meetings may be the single largest use of meeting time in your company.

In my early days at Course Hero, hiring meetings tended to be long, drawn-out
discussions that often went in circles. We debated topics that were often too
open-ended and general to be useful. For example:

•	 Is this person smart?

•	 Do they match our requirements?

•	 Do they fit in with the culture?

At the end of the meeting, we had a hard time making clear, confident decisions.

Over time, we’ve refined our discussions to be much more efficient and deci-
sive, and one of the biggest improvements has been to articulate a specific,
actionable checklist of characteristics to discuss:

•	 What is this person’s ceiling?

•	 How does this person make us better?

•	 Is this person teachable?

7

http://www.it-ebooks.info/

Chapter 7 | The Hiring Decision Checklist72

•	 What exactly will this person work on during the first
30/90 days?

•	 Will we like being around this person?

We don’t always discuss every item for every candidate. Knowing which ones
to focus on with each candidate is an important skill that you and your team
will learn over time.

Let’s discuss each question in more detail.

What Is this Person’s Ceiling?
Growing companies are looking for people who have a lot of potential. As a
leader in such a company, you need and expect people to expand into new
positions with the company, take on bigger challenges, and generally unlock
new skills and talents. You want each new hire to be a great long-term addi-
tion, not just fill a short-term need.

Senior candidates are probably closer to their ceiling already, which should
come through in the form of strong job skills. But in every case, we want
to find someone with the potential to be outstanding. If you look forward,
beyond where this person’s skills are right now, what do you see?

The definition of “ceiling” depends on your company, role, and culture. In general,
however, you might want to:

•	 Compare the role you’re considering for the candidate to
one that’s more senior. For example, for a junior engineer,
this might be a senior engineering role. Are you confident
this person will be able to hold that role someday?

•	 Consider whether the candidate has shown a consistent
track record of improvement and learning throughout
their career. Does that growth or learning appear to have
tapered off or hit a plateau?

•	 Consider how quickly and enthusiastically this person can
learn new things. (More on this in a bit.)

It’s worth spending time to decide how your team evaluates someone’s ceiling,
in order to make these discussions more productive.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 73

How Does this Person Make Us Better?
It’s far easier to find reasons why you shouldn’t hire someone than make a
convincing case that you should, especially when one negative opinion has
veto power. I’ve found it helpful to flip the question around and ask the team
to look for specific ways this person will improve our team. For example:

•	 What skills do they have that we don’t?

•	 What can they do better than anyone here?

•	 What can they teach us?

•	 What changes to our culture or process will they lead or
precipitate to make us better?

With junior candidates, it might be less obvious, but there should still be some
potential. For example, will their creativity help us brainstorm new projects?
Will their ambition drive us to accomplish more? Will they bring in new, fresh
ideas?

If you can’t come up with at least one specific way that a potential employee
will improve your team, it’s probably not a good match.

By contrast, if you find that you’re learning new and useful things from the
candidate during the interview, you’ve probably found a great addition to your
team.

Is this Person Teachable?
For any hire, we’re going to be investing precious time helping them succeed.
For a junior hire, this means on-the-job technical training, mentorship, and
patience as they learn the skills to be effective. For a senior hire, it means help-
ing them understand our code base, practices, and philosophy, so that they can
start contributing and improving what we do.

In all cases, we want to be confident that there’s going to be a great return on
that investment. For example:

•	 Will they learn something the first time, or will we have
to keep reminding them?

•	 Will they be able to extrapolate new skills and ideas into
problems they haven’t seen before?

•	 Are they open-minded about how to do things?

In a growing company, it’s also important to have people who can themselves
grow—who can learn new things, take on new responsibilities, and solve the
increasingly complex problems that your organization will face. Being teach-
able is a critical characteristic for achieving this personal growth.

http://www.it-ebooks.info/

Chapter 7 | The Hiring Decision Checklist74

What Will this Person Work On?
It’s important to discuss the specific projects on which you anticipate a new
hire will work during their first 30, 60, or 90 days. If this is difficult—if you
can’t come up with a good list of valuable tasks that you’re confident they can
handle—that’s a bad sign.

Create a detailed roadmap of projects for this person and then ask the
following questions:

•	 Is this work worth the cost of hiring someone?

•	 Will we be happy in 90 days with these results?

•	 What does this free other people on our team up to do?

This topic can bring a lot of clarity to the hiring discussion.

Will We Like Being Around this Person?
Sometimes called the “Airport Test,” it’s important to discuss how you’ll feel
about spending several hours per day with this person. You go through a lot
of good and bad times as a team, and it’s a lot easier to do so with people who
generally make you happy.

One way to help assess this quality in candidates is to include interview ques-
tions that test self-awareness and emotional intelligence. For example:

•	 Tell me about a time when a project went off track. How
did you know, what did you do, and what did you learn
from the experience?

•	 What do you enjoy about your work?

•	 How will this position help you achieve what you want?

People with high emotional intelligence—who understand how their actions
affect those around them—are likely to be great teammates and generally
pleasant people with whom to spend several hours solving hard problems
each day.

Summary
At Course Hero, we’ve managed to cut our hiring meetings from an aver-
age length of one hour down to about 15 minutes. This is a valuable savings,
since we’re doing more hiring than ever. We’ve also adjusted our interview
approach to make sure we get answers to these five hiring questions.

The specific questions you use may be specific to your team, but answering
these types of questions, as a team, will help focus your hiring decisions.

http://www.it-ebooks.info/

C h a p t e r

Making
Interviews Fun
for Your Team
Interviews should be fun. Think about it… You get to meet people, learn new
things, and hear about interesting experiences. Why wouldn’t it be an enjoy-
able experience?

Unfortunately, the interview process in many companies is mundane, mechani-
cal, and, frankly, joyless. Conducting interviews is considered just another obli-
gation that contributes to an engineer’s “overhead”—time spent doing things
less fun than building a product.

You’ll get the best results if your team truly enjoys conducting interviews.
They’ll be more enthusiastic, more engaged, and more insightful. Candidates
will notice the attitudes of your interviewers as well, and they will respond
positively to a team that appears to love their work. This perception can be
critical for landing the best hires.

Finally, some personalities are simply better suited to being an interviewer.
Look to build a team that possesses, in addition to the necessary technical and
analytical skills, the ability to connect with people, a deep empathy for others,
and consistent enthusiasm for your company and their work.

8

http://www.it-ebooks.info/

Chapter 8 | Making Interviews Fun for Your Team76

The Importance of Fun Interviews
You may be thinking, “Isn’t this kind of silly? Interviews are serious business
and too important to worry about being fun.” Actually, the importance of the
interview is exactly why it should be fun for everyone involved.

Fun for the Candidate
You’ve probably heard that an interview is a two-way street—while you’re
interviewing a candidate, they’re simultaneously sizing up you, your team, and
the opportunity. Obviously, you want them to have a favorable impression of
you, and one of the best ways to accomplish this goal is for them to enjoy their
time with you. There are many ways to make an interview more enjoyable for
the candidate. For example:

•	 Start with a tour of your office and the best benefits of
working there. Sell them on your company from the very
beginning. Candidates know they’re going to get grilled, so
taking the time to pitch them up front shows optimism
that they’ll do well, which can rub off on them.

•	 Give the candidate some goodies to take home, such
as a company T-shirt or mug. Again, it’s a sign of faith
and confidence in their ability, which creates a positive
impression.

•	 Bring candidates into team activities. Social events such
as team lunches are a great way for a candidate to meet
and learn about a lot of people in your company, not just
the ones interviewing them. When possible, meetings
about engineering design or product development are
also highly engaging ways to help a candidate envision life
in your company.

•	 Select and train interviewers to be engaging and person-
able. Your interview team is representing your company
to the candidate—put your best foot forward.

•	 Compose your interviews of interesting and novel ques-
tions and challenges. If your interview questions are the
same tired ones that candidates have been hearing for
years, they won’t think of you as a dynamic engineering
team with a forward-thinking culture. Some of the best
interview questions are derived from problems your
team is actually facing. Such questions also give candi-
dates a better picture of the work they might do at your
company.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 77

Every candidate who visits your office should come away hoping to work
there. Resist the temptation to lower enthusiasm for candidates you know
aren’t going to succeed—keep selling until the very end. Look at it this way:
A candidate who doesn’t get an offer from you is going to be disappointed, of
course, and probably going to be thinking one of two things:

•	 Eh, I didn’t like that place anyway.

•	 Darn! That place is awesome.

You definitely want them thinking the latter, for several reasons:

•	 They may be more qualified in the future and worth con-
sidering again.

•	 They might recommend your company to friends or
colleagues.

•	 A prospective candidate, upon hearing of their interview,
may ask for their opinion of your team.

Every time a new person walks into your office, including job interviewees,
you have an opportunity to sell and promote your company to the world.
Take advantage of these opportunities, as you never know to what they
may lead.

Fun for Your Team
An engineer who dreads interviewing candidates will look for excuses not to
participate, provide feedback veiled in cynicism, and represent your company
in an unfavorable light. It’s critical to find ways to make the process enjoyable
for your engineers, and a process in which they value being a part. Tolerating
interviews isn’t good enough—you want your team to look forward to them.

What makes an interview fun for an engineer?

Quality Candidates
First and foremost, the interviewee must be a high-quality candidate. Engineers
are intellectually curious and creative people and enjoy talking with others
who share these traits.

Some of the best interviews are those in which the interviewer feels like
they learned something useful or important. This experience makes a strong
impression that hiring the candidate will lead to lots more learning and growth.

By contrast, an interview with a poor candidate will feel like a waste of time. If
this happens too many times, the engineer will start trying to figure out how
to get out of the interviews altogether. Who could blame them?

http://www.it-ebooks.info/

Chapter 8 | Making Interviews Fun for Your Team78

In order to make sure your team is only spending time with high-potential
candidates, perform rigorous screening at the start of the process. For most
engineering positions, this will mean a focus on technical aspects of the job,
particularly coding, as this tends to be the most difficult requirement to meet.

As a rule of thumb, aim for at least a 50% success rate for candidates in the
next interview round. For example, once you’ve advanced a candidate to a
full on-site interview, they should have at least even odds of getting a posi-
tive decision from your team. If you don’t think a candidate’s chances are that
strong, you probably shouldn’t invest any more time with your team.

A high success rate ensures that your interviewers will treat each new can-
didate with optimism and excitement. They’ll be looking for good reasons to
hire this person, rather than excuses not to.

An Example from Course Hero: Conduct Interviews in Reverse

Most teams start their interview process with an engineer. If that goes well,
the candidate typically comes in for several more engineering interviews. And
then, only after all the engineers have given a collective thumbs-up, does an
executive or manager come in for the final assessment and possibly make an
employment offer.

At Course Hero, we flip that around.

Our interviews start with me, the executive in charge of the engineering team.
Here’s why:

•	 I prefer to assume that an engineer’s time is more valu-
able than mine. Even if that’s not always true, the time
of five or six engineers definitely is. It’s better to lose an
hour of my time than several hours, combined, from the
team.

•	 I also want to make sure that our engineers generally
have a good experience in their interviews, and it’s a lot
more fun to interview a great candidate. By making inter-
views something that the team looks forward to, we get
the best results and collectively give the interview pro-
cess the priority it deserves.

•	 Finally, this process helps me to keep thinking like an engi-
neer. As my own job has progressed away from writing
code on a daily basis, the regular interaction over code
in our interviews helps me stay at least somewhat con-
nected to the craft. It’s usually the only time of the day
I get to write any code, even if it’s just pairing with the
candidate.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 79

I don’t do the typical executive interview. This is mostly technical—after a
few questions about the candidate’s interest, motivation, and other details, we
jump right into some coding and design. I want to be confident that anyone
passing the interview has a good chance of succeeding with the rest of the
process. We can always meet again to discuss high-level topics, if necessary.

Being the first interviewer also lets me start selling the candidate on Course
Hero from the beginning. Interviewing is truly a two-way process, and if you
do nothing but grill a candidate for several hours before discussing the merits
of your company and the position, you risk pushing them away. A motivated
candidate is probably going to perform better, and it’s in your interest to have
everyone trying their best.

Owning the Process
Your interview process is just as much a work product of your team as the
code you write. If you don’t practice top-down, waterfall project management
for product development, you shouldn’t apply that technique here either. Your
interview team will do their best if they feel some personal ownership of the
strategy and responsibility for the results.

One of the best ways to involve your team is to have them craft their own
interview questions. The overall composition of the entire interview needs
to carefully planned, but this can be done with a bottom-up approach. For
example:

•	 Give each interviewer an area to test (for example, SQL
and relational databases), but let them devise the actual
questions.

•	 Encourage your engineers to derive their interview topics
from real-world problems, so that the interview results
are a good predictor of job performance.

•	 Construct and review the overall interview strategy with
input from all members of your team.

•	 Discuss and review your list of hiring criteria and require-
ments with your team.

You’ll know your team feels ownership of the process when they start to
suggest unsolicited improvements or, even better, recruit candidates on their
own.

http://www.it-ebooks.info/

Chapter 8 | Making Interviews Fun for Your Team80

How to Make Interviews Fun: Screen Out All
But the Best Candidates
Interviewing engineers, like engineering work itself, is a creative process, and
people perform better in creative roles when they’re happy. How can you
make interviews fun, overall?

For engineers, the most enjoyable interviews are generally conducted with
high-caliber candidates. For example:

•	 It’s satisfying to have someone solve problems effectively
with you.

•	 You can start to imagine how much better your team will
be with this person on board.

•	 You may learn new things during the interview.

•	 It’s just generally fun to converse with a bright, friendly
person.

Here’s the key insight: If you screen out all but the very best candidates before
your team even talks with them, you ensure that nearly every interview they
conduct is going to be fun. Furthermore, as they learn that interviews are
fun, they become more enthusiastic about participating, which leads to better
interviews and a better representation of your team to the candidate.

Many teams share the load of screening candidates. It’s certainly easy to see
why—initial phone screens, resume reviews, and other early phases of the
recruiting process are arduous, repetitive tasks. Under the weight of this
responsibility, it’s tempting to divide and conquer.

If at all possible, however, you, as the manager of a team of busy engineers,
should try to shoulder this burden yourself. Sharing the difficult parts of
recruiting and interviewing will just make everyone equally frustrated with
the process. Your job is to make everyone else more productive, and ensuring
that your engineers only interact with exciting, high-quality prospective new
teammates is one of the single biggest ways you can do this.

Who Makes a Good Interviewer?
In general, it’s good to involve as much of your team as possible in your inter-
views. Participation in the process and in the decision-making builds a sense
of ownership and responsibility, which will help bring out the best in those
taking part.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 81

Not everyone is born to be an interviewer, however. One way to help make
interviews fun for your team is to select interviewers who naturally enjoy the
process. It’s also important to select and trust the people on your team who
perform the function well.

Here are some qualities to look for in your interview team.

Technical and Analytical Skill
Technical skill is probably the first thing teams and managers consider when
selecting interviewers. It’s not the only consideration, but it’s certainly very
important. In order to determine the breadth and depth of the candidate’s
skill, an interviewer needs to be at least as strong.

Don’t forget: The candidate is testing you as well. Most engineers care deeply
about the ability to learn from their colleagues, so they’re looking to see if
your team has the knowledge and skill to teach them new things.

Empathy for Others
Only people who actually have emotional intelligence can test for it in others.
A growing body of research indicates that this type of intelligence—which
includes self-awareness, the understanding of motivating factors, regulating
one’s own emotions, and empathy for others—is highly influential in individual
and team success.

You may need to learn more about emotional intelligence yourself, so that you
can identify it in your team. As with technical ability, this quality will be noticed
and judged by your interview candidates. Just like you, they want to work with
people who understand and care about them, and will be helpful allies as they
confront difficult challenges.

Enthusiasm for Their Work
Not everyone loves their work, but you only want to hire people who do. For
someone to be excited to join your team, and bring their energy and excite-
ment to your company, they absolutely need to feel that this enthusiasm will
be reciprocated.

Your interviewers, and in fact everyone in your company, should be selling a
candidate on your company’s merits at every opportunity. Even if they don’t
get the job, you want them to wish they had. They’ll talk with friends and
colleagues afterward—whether it’s three days or three years—and you want
their impression to be as positive as possible.

http://www.it-ebooks.info/

Chapter 8 | Making Interviews Fun for Your Team82

It’s difficult to fake enthusiasm for something for an entire hour or more. Be
sure that everyone on your interview team is truly excited about what they
do and the opportunities ahead.

Summary
Conducting an interview is more than just asking questions and writing down
the answers. It’s a chance to connect with a new person, discuss interesting
ideas, and make an important decision affecting the future of your company.

If people on your team, or the candidates you interview, don’t seem to appre-
ciate being part of this process, something’s wrong. By planning an enjoyable
experience for the candidate, aggressively screening out all but the best candi-
dates early on, and sharing ownership and responsibility with your team, you
can work toward a process that everyone enjoys and embraces, ultimately
leading to better results.

http://www.it-ebooks.info/

C h a p t e r

Why We Don’t
Allow Java in Job
Interviews
An engineering interview process should be designed to quickly and accurately
select the best candidates. As each team is different, the requirements and cri-
teria for hiring will vary. What’s important, though, is that your process helps
you increase your precision and make the best use of your time. Don’t be
afraid to challenge conventional wisdom or industry standards along the way.

At Course Hero, we’ve taken the very unusual step of removing Java, one of
the most widely-used and widely-known programming languages in the world,
from our coding interviews. It was a difficult decision to make, and one that
we debated at length, but the results have been excellent.

Whether or not such a policy is right for you and your team, it is my hope
that our experience will help you think of ways to examine and question
traditional interviewing methods and discover more accurate predictors of
success.

No Java
A few months after I joined Course Hero, we instituted an important, and
somewhat unusual, change to our interview process.

We no longer allow candidates to use Java.

9

http://www.it-ebooks.info/

Chapter 9 | Why We Don’t Allow Java in Job Interviews84

For all parts of the hiring process that involve writing code (which is most of
them), candidates are free to choose any language they like. Except Java.

None of us, myself included, has any personal issue with Java as a programming
language. It’s unquestionably one of the most powerful, versatile, and influential
languages ever devised. Like many software engineers, I’ve written countless
programs and architected myriad applications, large and small, in Java.

Course Hero is an analytical company, and we’re always looking at data for
signs of improvements to be made. Hiring is no exception. After my first 40 or
50 phone screens at Course Hero, I was beginning to notice a pattern—can-
didates who chose Java for their interviews tended to fare poorly.

At this point, I wasn’t looking for a reason why that might be the case. I just
wondered if the data was trying to tell us something. I asked the other engi-
neers who conduct interviews, and they said that now that I mentioned it, it
seemed like a pattern for them as well.

We do a lot of interviewing, so I’m always looking for something that will help
us separate signal from noise, and I was starting to think we were on to some-
thing. I next looked at our recent hiring history, to see what language had been
chosen in those successful instances. Of the last 14 engineering hires, only two
had used Java, and both people indicated another language would have been
fine too. (The most frequently chosen languages were PHP and Python.)

Now we were really on to something. Java was almost never used by people
we ended up hiring, and was frequently used by people who fared poorly. In
coding interviews, we let the candidate choose the language, while keeping
the questions or challenges the same. The candidate is also free to change
languages at any time, so it’s unlikely that Java is simply a poor match for our
interview questions.

With this analysis, we were ready to cut Java out of the picture, but wanted
to be thoughtful about how to best make this change. Since many of us still
like programming in Java, we also discussed and debated why this poor perfor-
mance could be happening.

What’s Wrong with Java?
Why have we moved away from Java? This is really just a data-driven decision.
Candidates who have chosen Java in our interviews have fared poorly, on aver-
age. And, of the ones who did well (and those who we subsequently hired),
each person indicated they would have been just as comfortable in another
language.

But this experience also got us thinking about why this phenomenon might be
happening. Here are some possible explanations.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 85

Java for Web Apps
Course Hero is a web startup, doing web development. For this type of work,
Java is not as frequently the tool of choice for people using modern practices
and methodologies. Exceptions exist, of course, but in many ways, languages
such as Python, Ruby, PHP, and JavaScript are better suited for rapid develop-
ment, iteration, and deployment of a consumer web product. Since this is the
type of work we do, our interviews reflect and try to emulate these factors.

For example, some of our coding challenges require parsing and manipulating
strings of text—common tasks when dealing with millions of user-generated
text documents. Python, Ruby, and PHP have handy built-in methods that
make these manipulations simple, whereas Java requires a bit more compli-
cated approach.

Java Is Just One of Many Tools
For web development interview problems, Java is often not the best choice for
creating a clear, concise solution. It’s tough to watch someone write 20 lines
of Java for something that can be done in one line of Python. Being aware of
the capabilities of multiple languages and being able to select the right one for
a particular task are important skills.

We’re looking for candidates who can learn quickly and apply that learning to
new problems. For this reason, we prefer to conduct the interview in a lan-
guage well suited for our work, even if it’s less familiar to the candidate, to see
how well they can pick things up with our help. We frequently find that can-
didates prefer to use familiar techniques, especially in Java, even when they’re
not the best choice for a particular problem.

Furthermore, we’re looking for candidates who try to stay current on the
latest thinking and trends in web development. Languages such as Python and
Ruby, as well as JavaScript frameworks like Node.js, AngularJS, and jQuery,
have enjoyed a faster pace of innovation and experimentation in recent years.
The technology industry changes quickly, and it’s important to build a team
of people who can change along with it. A desire to learn and play with new
development tools correlates positively with strong performance in the rest
of our interview process.

Side Projects
Another strong indicator of creativity and energy in a software engineer is
the presence of side projects. Many of the best engineers I’ve worked with are
constantly tinkering with new ideas or tools. They’re looking for better, more
powerful ways to build, and no responsible engineer would kick off a large

http://www.it-ebooks.info/

Chapter 9 | Why We Don’t Allow Java in Job Interviews86

project with an untested, unfamiliar technology. And in many cases, these side
projects are done in new languages, as a way to learn.

I believe—and I know many will disagree—that you’re less likely to find a
creative, diligent, forward-looking engineer who has done side projects only
in Java.

People Start with Java
Java is the most common language used in computer science instruction and
has been for many years. Any computer science degree completed in the past
15 years likely included a lot of Java for projects and coursework. To succeed
in a startup, however, you need the drive to learn new things and a wide vari-
ety of skills, and someone using only what they learned in class probably hasn’t
shown that drive yet. Startups need engineers who aren’t satisfied with the
basic skills that everyone is taught; they need explorers and creative, curious
minds who are always looking for better ways to solve hard problems.

Classes focused on web development do tend to use a wider variety of lan-
guages, such as Python and Ruby. Students who have moved past the basics
and begun to specialize in software engineering for the web are more likely
to have skills in languages other than Java, and these are typically the students
we’re looking for.

Just because Java can be used for nearly anything doesn’t mean it’s the best
choice for everything.

Results: Has this Policy Worked?
At the time of this writing, Course Hero’s “No Java” policy has been in place
for nearly a year. During this time, we’ve screened and interviewed hundreds
of candidates. Here are some of our early findings.

Interviews Are More Focused
As mentioned, Java isn’t a perfect fit for many of our interview questions.
Working on solutions in Java is a bit more convoluted and makes it harder to
see and discuss the important logic underlying the candidate’s implementation.

By using a better-suited language, we’re able to more quickly and consistently
hone in the actual problem-solving ability of the candidate. Perhaps more
importantly, we’re more confident about our analysis of the interview and our
ability to make decisions afterward. The results are more clear.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 87

Sometimes We Give In
Occasionally, we relent. For a variety of reasons—for example, when the can-
didate pushes unusually hard to use Java, or the candidate is a new grad and
has little experience outside Java—we sometimes give in and let a candidate
proceed in Java.

We always regret it.

Seemingly without exception, the candidates for whom we allow Java fail to
meet our expectations. They don’t have the technical skill, creativity, or ability
to learn quickly that we need.

Interestingly, many candidates who prefer Java end up doing better in another
language. I recently conducted an interview with a young candidate who
clearly preferred Java, but was a good sport and agreed to give it a try in C++
(his second choice). Although he was rusty, he showed a lot of good traits—he
took suggestions well and made use of them, learned new concepts quickly,
and came up with multiple approaches to hard problems. Halfway through
the interview, it was painfully clear he was frustrated in C++, so I offered him
the chance to switch to Java for the second half of the session. He gratefully
accepted. Once in Java, however, he reverted to familiar habits, whether they
were a good solution or not. He stopped listening as much to suggestions.
He was less creative in looking for alternative solutions. In summary, he may
have felt more comfortable, but his overall interview performance suffered
noticeably.

Based on our results, we’ve become more insistent about the “No Java” rule.

Personality Screening
Restricting the use of Java has filtered out more than just technical skills. It has
also helped us screen candidates who don’t have the desire and capability to
push themselves and learn new things.

To our initial surprise, people rarely raise a fuss when they learn they won’t
be able to use Java. Some are clearly anxious, but our experience so far is that
they do just fine in the interview. Very few, however, are upset to the point
where they lose interest in the opportunity. We often have an open discus-
sion about the policy and why we believe it’s important. Most people under-
stand our goals and are happy to proceed. In the rare cases where somebody
declines to continue, we’re confident it wasn’t going to be a good match, and
if anything, we’re grateful to have figured that out more quickly.

http://www.it-ebooks.info/

Chapter 9 | Why We Don’t Allow Java in Job Interviews88

It’s Awkward
There’s no denying that carrying out this policy has been, at times, socially
awkward. An interview may be off to a great start—developing a good rela-
tionship with the candidate, starting to understand the depth of their skills
and experience, and feeling optimistic about their overall chances—when you
have to throw in this unusual wrinkle. It’s so unexpected that it typically takes
people aback. The question is, for how long?

We have two basic choices when it comes to enacting the policy:

•	 Tell everyone about the No Java policy at the very begin-
ning of the interview process, to prevent confusion when
we get to coding interviews.

•	 Wait until it’s time to write code and see what language
the candidate chooses. Only if they choose Java will we
have to discuss the policy.

We’ve decided to go with the first approach. We’d much rather clear up
any confusion or concern early in the process, rather than during the most
important part of the interview, when the candidate is about to showcase
their coding skills.

No matter how you carry out a policy like this, there’s going to be some social
awkwardness. In order to have such a policy, you need to be willing to enforce
and defend it in a variety of circumstances.

Summary
At Course Hero, we’ve made a somewhat unusual and controversial decision
to exclude Java from our software engineering interviews. The results have
been good for us so far, even if we can’t fully explain why, or what it means.

Such a policy isn’t necessarily right for you and your team, but don’t be afraid
to think differently. Everything about a startup should be considered for
experimentation and innovation, including how and why you conduct your
interviews.

One more note: We’re definitely not suggesting people should stop learning
Java! It’s a powerful and useful language. What we are suggesting, though, is
that if you’re interested in fast-paced, modern web development, you should
have a few more tools in your belt.

http://www.it-ebooks.info/

Managing

p A R T

Iii

http://www.it-ebooks.info/

C h a p t e r

Do I Want to Be
a Manager?
Years ago, in an interview for an engineering management position, I was asked,
“Why do you like being a manager?” I had never been asked this question so
plainly. Having no prepared answer, I had to think about it for a bit. Finally, I
responded, “I like to make people happy.”

It’s more than just making people happy, of course. A more complete descrip-
tion of technical management might be, “Achieving business and product objec-
tives while simultaneously creating an engineering culture that delivers results
and makes people feel their work has an impact and that they are progressing
and developing new skills.”

You’ll struggle to be effective in the long run, however, if you don’t truly enjoy
the idea of making people happy. Not just your direct reports, but all of the
other departments of the company that count on you as well—Product,
Marketing, Support, and so on. All of these people are looking to you to make
them more productive, efficient, confident, and, well, happy.

As you consider the prospect of a career managing engineers, let’s discuss
some of the important aspects of the role.

You Work for Them
Contrary to what you may see and hear from a lot of people, a manager is not
most effective when telling everyone what to do. When you’re responsible for
creative professionals, the best results come from creating the environment,
structure, and process in which those people can flourish, and then trying to
stay out of the way and remove obstacles.

10

http://www.it-ebooks.info/

Chapter 10 | Do I Want to Be a Manager?92

Michael Lopp (aka Rands, of the influential technology blog “Rands in Repose”)
captures this concept perfectly in his excellent book, Managing Humans1:

Another favorite move of the busy manager is to schedule a 1:1 for 15
minutes or less. It’s the best I can do, Rands. I’ve got 15 people working
for me. First, those 15 people don’t work for you; you work for them.
Think of it like this: if those 15 people left, just left the building tomorrow,
how much work would actually get done? Second, if you’ve got 15 people
working for you, you’re not their manager, you’re just the guy who grins
uncomfortably as you infrequently fly by the office, ask how it’s going, and
then don’t actually listen to the answer.

You’re trying to build a team of people you can trust to do great work, which
is why recruiting and hiring are so critically important. To achieve scale and
speed in your organization, you simply must hire people you can trust, and
then give them as much autonomy as possible.

These people don’t work for you; you work for them.

Your Time Is Less Important Than Theirs
A good manager is obsessed with removing obstacles and time-sinks. In many
cases, this means taking on tasks that would ordinarily distract people on your
team.

To fully embrace this mission, you should adopt the attitude that your time
is less valuable than the team’s. Although not strictly true in all cases, this
philosophy will give you a useful perspective on how to best spend your time.

The typical workday of a manager is different from an engineer’s in a few
important ways. First, it’s full of interruptions and context shifts. Whenever
someone has a problem, you’re there to help, no matter what you were already
doing. Second, a manager usually talks to more people, more frequently, than
an engineer. The job is largely about communication. Finally, a manager is a
pressure release valve for issues building inside a team. By coming to you first,
people can head off more destructive outcomes that interrupt the workflow
of the larger team.

These differences make a manager better suited for handling a lot of tasks
that affect a team. By spending a few minutes resolving a personal conflict or
bureaucratic process question, you can save an engineer hours of interrup-
tions, learning about things in which they have no interest, and dealing with
frustration.

1Lopp, Michael. Managing Humans: Biting and Humorous Tales of a Software Engineering Manager.
New York: Apress, 2012. 40.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 93

Perhaps it’s not totally accurate to say that your time is “less valuable” than
your team’s, but that the time you invest in certain tasks is returned many
times over in what it saves your team.

Example: Hiring
As Course Hero’s Engineering and Design team has grown past 25 people,
one thing that hasn’t changed is that I, the VP of Engineering and Design, still
screen all resumes and conduct our first-round phone screens. Although it’s
appealing at times to farm out these tasks, and I know our senior staff would
pitch in without complaint, I continue to resist the temptation.

Screening resumes is arduous, unending work. As soon as you finish one batch,
more come in, and unless you’re motivated above all else by the excitement of
meeting new people and hopefully bringing them into your team, it will wear
you down. I love building a team, and even I get fatigued by the process from
time to time.

Asking for help starts innocently, but before long could create a burden that’s
stealing hours a week, taking your best engineers away from the work they
love, and sowing seeds of frustration. For these reasons, I plan to continue
handling the front end of the hiring funnel for as long as possible.

You Care About Helping People with Their
Careers
Career development is one of the most important functions of a manager.
Creative, thoughtful people want to make progress, learn new things, and
work toward goals, and it’s your job to help them. Furthermore, not everyone
knows exactly what they want or where they’re going, and you need to help
them chart that course as well.

Being effective with career development requires many skills. Chief among
them are: Being a thoughtful listener; possessing and being able to dis-
cuss relevant experience; and attentiveness to peoples’ goals and potential
opportunities.

Listening
You absolutely must be a good listener—to have the patience to hear and dis-
cuss a person’s goals and thoughts and give them the consideration required
to be useful. Don’t interrupt and don’t start giving advice until you’re confident
you’ve gotten to the bottom of an issue.

http://www.it-ebooks.info/

Chapter 10 | Do I Want to Be a Manager?94

If you quickly tire of hearing what other people want or need, management
may not be for you.

Experience
It’s difficult to advise others on their careers if you don’t share their experi-
ence. How can you properly advise them on important choices if you’ve never
faced similar ones? Your own path from engineer to manager or leader is a
critical teaching point, and you must be comfortable using your experience to
educate and advise others.

Furthermore, your credibility as a mentor will be limited if your employees
don’t trust that you have the proper experience to guide them. Sharing rel-
evant stories and information from your career is an important way to build
the confidence of your team in your abilities as a coach.

Attentiveness
Understanding a person’s goals is only the first step. Next, you must find
opportunities for them to make progress toward those goals. Do you have an
engineer who’s been aching for a chance to move into mobile development?
Remember that the next time you have a position open on your mobile team.
Has someone been hoping to add front-end skills? Suggest an upcoming con-
ference or workshop that would help.

Being a manager means constantly trying to match people with the correct
opportunities and projects. You’ll never make perfect choices, but in order to
make the best ones possible, you must remain attentive and mindful of your
people at all times.

If you’re only able to talk about career growth, but never able to follow
through on it, you’ll eventually lose your team’s faith. Career development
isn’t just a discussion of an abstract set of goals—it’s the realization of those
goals through real-world projects and responsibilities.

You’re Not Afraid to Correct Behavior
When you see something being done the wrong way, or people behaving
inappropriately, are you comfortable being the one to step in? Or would you
prefer to wait and hope the issue resolves itself, or that someone else takes
care of it?

As a manager, it’s your responsibility to handle problem situations. You shouldn’t
be looking for confrontations, but neither should you run from them. Your
team is counting on you to know when and how to correct incorrect behavior.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 95

You need to do the dirty work.

Although you may have to deal with difficult tasks in the short-term, such as
coaching an employee through an improvement plan, terminating a poor per-
former, or conducting a layoff, you should see clearly that these actions benefit
the team and company as a whole. If you can’t convince yourself of that fact,
then either you’re not suited for management, or the plan itself is flawed.

These sorts of tasks should be painful. If you actually enjoy firing people, you’re
probably also not suited for management. You’re dealing with real people and
significant consequences—it should be difficult to deliver harsh feedback or
tell someone their job is gone. Only the conviction that your actions are nec-
essary should push you to make these difficult choices.

You Can Trust Others
An effective manager must be able to delegate responsibilities and tasks to
others. In some ways, your effectiveness as a manager is the sum (or product)
of the actions of your team, so the more you can delegate, the more leverage
you get.

As Andy Grove writes in his classic book, High Output Management:

Because managerial time has a hierarchy of values, delegation is an
essential aspect of management. The “delegator” and “delegate” must
share a common information base and a common set of operational
ideas or notions on how to go about solving problems, a requirement that
is frequently not met.

Grove continues:

[B]e sure to know exactly what you’re doing, and avoid the charade of
insincere delegation, which can produce immense negative managerial
leverage.

It takes time to learn when and how to best delegate work, but the first
prerequisite is an ability to trust others to do things that you could yourself
do. Without this trust, effective (or in Grove’s terms, “sincere”) delegation is
impossible.

One useful approach to delegation is to look for ways to make yourself redundant.
By creating the ability in others to accomplish your tasks, you free yourself
up to work on other, higher-value projects. And by contrast, those who feel
threatened by making themselves redundant (because it diminishes perceived
job security) are not management material.

http://www.it-ebooks.info/

Chapter 10 | Do I Want to Be a Manager?96

It can be a bit uncomfortable to trust others with tasks you can do, especially
when you, as their manager, will be judged on the results. Don’t give in to the
temptation to jump in and handle it directly—rather, trust your training and
monitor progress from a distance. Get involved only if you see things going
wrong.

Over time, this trust will be rewarded, as you build a team that can handle not
only the tasks you used to do, but a variety of others as well.

You Like to Garden
One of the best metaphors for management is gardening.

To grow a garden, you start by preparing the ground and planting seeds, but if
that’s all you do, your results will be disappointing. A thriving garden requires
constant care, attention, and small adjustments.

Just like gardening, effective management requires patience and diligence.
Cutting corners rarely works, and the results correlate strongly with the
amount of effort put in.

The seeds of your garden are the people you hire. The soil is the team struc-
ture, process, and culture you instill. You must regularly water your garden
with one-on-ones, discussions of how to improve things, and events that build
team relationships. Every day you should be looking for signs of disease, over-
or under-watering, or any of the myriad other dangers that can befall your
team. And the harvest, when you ship your product, is a time for celebration
that your diligence and hard work have paid off.

Just as you can’t grow a potato in a week, no matter how badly you want to,
you can’t rush things as a manager. Short-term sprints are useful when used
sparingly, but if you don’t want to strip the soil—burn out your team—you’ll
save them for true emergencies.

You Obsess Over Details
If you miss something important that affects your performance, that’s a
problem.

If you miss something important that affects someone else, someone for
whom you’re responsible, that’s a catastrophe.

The people you manage depend on your ability to represent their interests,
further their careers, and, by extension, improve their lives. That’s a lot of
pressure. If you let them down by making simple errors, you’ll quickly lose this
trust, and probably feel pretty bad about it too. The best managers double- and

http://www.it-ebooks.info/

Building Great Software Engineering Teams 97

triple-check their work, and they learn techniques and tools to help them.
These techniques often involve copious use of notebooks, calendars, and vari-
ous types of productivity software.

You Care About Accomplishments More
Than Friendships
In many ways, being a manager is a lonely job.

One of the most difficult parts of being promoted to a manager, from within
a team, is accepting that you can no longer be friends with those on the team.
Your priorities have shifted, and your primary responsibility is now to get the
best results out of your team—not to be buddies.

As a leader, you now represent the company to the people on your team.
Your actions reflect the culture, mission, and goals of the company, and your
people will see you more as a company representative than as an individual.
This loss of identity can be difficult to accept.

In some ways, becoming a manager means losing a lot of friends. No longer
can you commiserate with your team about decisions with which you disagree
or make jokes at the company’s expense. You always have to be “on” in front
of your team, showing your best and most professional side. Furthermore,
they don’t want to hear about your problems. It’s hard to empathize with
your boss.

Your friends are now the other managers at your level—and there aren’t
nearly as many.

Personal Experience: First-Time Manager
My first experience as a manager was at local events search startup Zvents
(later acquired by eBay), where I was promoted from web developer to man-
ager of the front-end engineering team. Like a lot of first-time managers, I
was more confident than I deserved to be. I thought, “I’m smart; how hard
can it be?”

Needless to say, I faced a lot of challenges during that time, but one of the
biggest changes I had to accept was the relationship change between me and
my former colleagues, now my reports.

I had a lot of fun with the other engineers. We worked hard, but also joked
around, teased each other, and spent time together outside the office.

http://www.it-ebooks.info/

Chapter 10 | Do I Want to Be a Manager?98

We also shared our successes and failures. Shipping big releases was a bond-
ing activity. More importantly, when we found bugs and other problems, we
didn’t point fingers or try to find someone to blame. Instead, we shared the
responsibility of coming up with a solution. When the VP came over to tell us
the site was down, we buckled down and fixed it together.

After I became the manager of the team, though, that changed. Now the VP
came to tell me, specifically, when there was a problem. Being friends with
the other engineers was now secondary to delivering results. I couldn’t com-
miserate about things like company decisions we found silly, since it was now
my job to keep morale up and motivation strong. And it was hard to have
fun and goof around when I also knew that I would have to judge peoples’
performance.

This shift was hammered home for me, conclusively and permanently, when
I first had to help the company prepare for a layoff. In some ways, laying off
an employee is harder than firing them, because it’s less about their perfor-
mance and more about the company’s. It’s an admission that the company,
and—by extension—you, have let them down in some way by failing to suc-
ceed as a team.

Zvents, like many startups, went through some ups and downs. It reached a
point where our burn rate was too high and we simply had to bring costs
down. My role in the layoff was small, but it left an indelible mark on my
management philosophy. I came to realize that my commitment to help peo-
ple succeed in their careers, and to make our company successful, are more
important than friendships, and that I would be letting my people down if I
didn’t act accordingly.

This experience, and others like it, that I faced while receiving my education in
management from the School of Hard Knocks, had me frequently questioning
whether management was the right career choice for me. Ultimately I decided
that it was, and I have loved my work ever since, but I wasn’t totally prepared for
the challenges and decisions I would have to face.

Summary
The job of a manager, when done well, is often difficult and lonely. Those best
suited for management positions, and who achieve excellent results in the
long term, are individuals who genuinely enjoy enabling the accomplishments
of others, are willing to speak up in difficult or controversial situations, and
have a tireless attention to details and organization. If you’re not naturally this
type of person, people management may not be the ideal role for you.

http://www.it-ebooks.info/

C h a p t e r

A Manager’s
Most Important
Deliverable
Management work, as compared to engineering work, is abstract and challeng-
ing to define precisely. In this chapter, we’ll discuss the ways in which a manager
adds value to an organization and how to assess a manager’s performance.

People moving toward management in their careers often develop a sense of
unease about their contributions. This is natural.

While it’s fairly straightforward to see and understand your output as an
individual, a manager’s work product is harder to define. Making peace with
this ambiguity, and understanding the subtle ways in which you have impact,
are critical steps in becoming an effective manager of people. In many ways,
what you’re delivering—to your team, your manager, and your organization—
is confidence.

As a software engineer, I always had a good, rewarding feeling seeing my code
running in production. I knew that I had helped complete a project or ship a
product. The hours I worked translated directly to an equivalent impact on
the company. Furthermore, it was pretty clear whether or not I was doing a
good job. Meeting deadlines, making customers happy, and keeping our prod-
uct free of bugs are all relatively easy to measure.

11

http://www.it-ebooks.info/

Chapter 11 | A Manager’s Most Important Deliverable100

As I started to take on management responsibilities, a new sort of stress crept
in. More than just, “Am I doing a good job?” I started to wonder, “How do I
know what a good job is?” And, “What exactly am I doing, anyway?”

There’s an initial temptation to quell this anxiety by simply continuing to do
a lot of work as an individual contributor—to keep doing your old job while
you learn the new one. For me, this meant writing and shipping code. For a
little while, this makes you feel better, and might seem like a solution. Over
time, however, the pressures of doing two jobs simultaneously will break you.
I speak from personal experience.

My first stint as a manager, at the local events search startup Zvents (later
acquired by eBay), was as a “player-coach.” I continued to work as a senior
developer while simultaneously assuming the duties of managing the web engi-
neering team. Not only was I recruiting, hiring, and managing a small team of
engineers, but I was also writing and shipping production code under tight
deadlines.

At first, I thought I was doing fine. We were keeping up with the development
schedule, and everyone seemed as happy as they were before. There was
more to do, and I was energized by the new role and happy to do it.

Over time, however, I started to make a few more mistakes—mistakes I nor-
mally wouldn’t have made. Bugs were slipping into my code, I wasn’t collabo-
rating as effectively with others, and I certainly wasn’t on top of things with my
team in the way a manager ought to be. In hindsight, it’s a little embarrassing I
didn’t notice these changes.

I reached the breaking point—I prefer to call it an epiphany—one evening
when I fell asleep on the train home and missed my stop. I’m a light sleeper and
almost never fall asleep unless it’s on purpose, but on this occasion I woke up
a half hour later, groggy and confused, 15 miles from where I was supposed to
be. It was the first and last time it ever happened. At that point, I knew I had to
choose—be an engineer or be a manager. You can’t be both at the same time.

Confidence
What I now understand, years later, after many lessons learned both the hard
way and the easy way, is that the primary deliverable of a manager—the most
important thing a manager can produce—is confidence.

This means different things for all the people you interact with.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 101

Your team is confident that:

•	 You have their best interests at heart.

•	 You give them the timely information and tools they need
to succeed.

•	 You help them grow as people and professionals.

•	 You protect them and advocate for them, insulating them
from the distractions of corporate politics.

Your manager is confident that:

•	 You get good results from your team.

•	 Your team acts and behaves consistently with company
goals and practices.

•	 Your team is happy and satisfied with their situation.

•	 You provide adequate career development for the people
on your team.

Everyone else in the company with whom you interact is confident that:

•	 You’re doing the things that the company needs you to
do, and you’re doing them well.

•	 You’re a valuable person to have in the company.

Recognizing that your deliverable is confidence makes some things easier—In
particular, determining how much value you’re adding. Are these statements
true, for your team, manager, and colleagues? If you think they are, how sure
are you?

Testing for Confidence
Understanding your effectiveness in delivering confidence is critical.

As an engineer, you typically write unit tests to make sure your code is func-
tioning as desired, and to detect when it breaks. Think about the equivalent
for assertions about confidence. Your tests aren’t in code, but people. Who
can you trust to tell you when people are concerned about a decision you
make? What communication patterns can you establish to tip you off to a
looming crisis of confidence? Regular one-on-one and staff meetings, if con-
ducted correctly, are an important part of the solution.

Honesty is absolutely essential for you to maintain an accurate picture of
your reputation in the company. In your one-on-ones with your team, you
need them to be open about any and all concerns they have, to alert you to

http://www.it-ebooks.info/

Chapter 11 | A Manager’s Most Important Deliverable102

problems while they’re small and manageable. Here some important ways to
foster honesty and openness:

•	 Don’t judge ideas when you first hear them.

•	 Listen and encourage sharing.

•	 Be honest yourself and open up about important topics.

•	 Remember details from previous discussions, to show
that you take them seriously.

The same is true for team meetings, especially those with senior or more
trusted staff. Your internal leaders should be your early warning system—
they have the experience to detect issues before others and the willingness
to inform you about them. Staff meetings are particularly useful because one
or more of your staff may have an inkling or partial indication of a problem,
which, combined with the perspectives of the rest of your staff, forms a more
complete picture. Again, honesty in your team is critical for your effectiveness.
You need as much information as possible.

Warning Signs of Losing the Confidence of
Others
Other than unexpectedly falling asleep on a commuter train, how will you
know if things are going off track—if you’re losing the confidence of others?
Here are some warning signs that merit at least further investigation.

People Try to Solve Problems Without You
As much as it may be frustrating to hear about and deal with problems all the
time, it’s much better than the alternative—that people are trying to handle
them without your knowledge. As a manager, you’re the chief problem-solver
for your team. If you’re not accomplishing that, and your colleagues don’t
believe you can do it, you have a serious problem.

When there’s a major bug, service outage, or customer complaint, are you the
first person to be notified? If someone on your team is facing a crisis, do they
come to you first for help?

People should see you as an indispensable ally for solving tough problems.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 103

People Go Around You
Similarly, it’s a sign of trouble when people cut you out of the communication
chain. For example:

•	 One of your reports goes directly to your manager for
assistance.

•	 Your own manager (possibly an executive) prefers to
contact people on your team directly.

•	 People in other parts of the company go directly to your
team with questions or requests, skipping you.

In each of these cases, people have lost confidence in your ability to help them
accomplish their work.

People Complain a Lot
If you start to hear an increase in complaints from, or about, your team, some-
thing’s wrong. People who have confidence in you would come to you in a
more open and constructive fashion. When they resort to complaining as a
tactic, they’re skeptical that things will improve and are voicing this frustration.

People Stop Seeking You Out for Help
Successful teams are built of people who help each other, and the sign of a
healthy organization is that these requests flow freely throughout. If people
rarely ask for your assistance, guidance, or opinion, there’s a good chance
you’ve lost their confidence.

Your Perception Doesn’t Square with Others
Things happen quickly and there are tons of factors affecting your business, so
you may perceive things differently than others from time to time. If you find,
however, that you frequently misunderstand important information, such as
company strategies, upcoming initiatives, or success metrics, it may be a sign
of bigger problem. If your perception isn’t consistent with others, or with the
company in general, it may be that people aren’t making the effort to keep you
in the loop.

Dig into the issues and figure out what’s causing the discrepancy. Don’t accept
this kind of inconsistency.

http://www.it-ebooks.info/

Chapter 11 | A Manager’s Most Important Deliverable104

Your Manager Tells You
Finally, your manager might tell you directly about this issue. Obviously, this a
serious situation, and you should consider taking whatever steps your man-
ager recommends to remedy it.

Summary: The Value of Confidence
Getting great results from a team requires confidence. Without confidence,
people will regress toward second-guessing each other, avoiding risks, and
generally not collaborating productively. Confidence underpins morale and
enthusiasm for your goals. Building and maintaining confidence in your team,
and in others, is an incredibly important and valuable skill, and the most impor-
tant one for a manager.

http://www.it-ebooks.info/

C h a p t e r

Technical vs.
Management
Tracks: Helping
Your People
Grow
In the early days of a startup, when there are only a handful of people and
every one of those people is consumed with the challenge of finding traction
with the product, there isn’t much time or need to discuss things like career
development. It just doesn’t make sense to spend a lot of time talking about
such long-term goals when the short-term future of your company is in doubt.

In early 2011, I was part of the founding team of Suitable Technologies, a
robotics startup building a totally new type of technology. We called it remote
presence.

Our first product, a telepresence robot called Beam, was a remotely oper-
ated mobile videoconferencing unit. By integrating multiple cameras, an array
of microphones, sophisticated Wi-Fi roaming algorithms, a 17-inch screen,

12

http://www.it-ebooks.info/

Chapter 12 | Technical vs. Management Tracks106

8-hour battery, and a motorized base, we were able to deliver an experi-
ence that felt very much like being there in person. The operator of the
device enjoyed an immersive experience in a far-off location, with full freedom
of movement and communication, and the people local to the device had a
much more authentic interaction with the operator—far better than existing,
stationary videoconferencing solutions.

For the first 18 months of the company’s life, our small team was dedicated to
shipping the first version of our product. Nothing else mattered. We all knew
that unless we were able to demonstrate some viability in the marketplace,
there probably wasn’t much of a future or opportunity to build the next version.

Once your company reaches a certain size or stability, however, topics like
career development become relevant and important. This development
is typically a good sign for your company; it means that people see a true
possibility of the company lasting for a long time, and having the opportunity
to grow with the team.

It’s hard to say exactly when and how this shift will occur. Basically, an increase
in the importance of career development in your company correlates
positively with a corresponding increase in the chances of the company’s
long-term success. When risk is high, career development remains an
afterthought.

Growth Paths for Engineers
A common mistake, made by companies everywhere, is to reward top
engineers by promoting them into management positions. Though this may
seem like an appropriate reward for your most productive people, it often
backfires, for a variety of reasons:

•	 Great engineers love writing code. Changing their job in
a way that takes them away from writing code may ulti-
mately decrease their happiness with their work.

•	 Once you’ve turned an engineer into a manager, it may be
difficult to move them back to an individual engineering
role without it feeling like a failure. This transition can be
made successfully, but often is not.

•	 Management is hard. Unless someone is truly committed
to training themselves on the skills required and building up
years of experience, they probably won’t be highly effective.

The risk, therefore, is that you take a productive, happy engineer and unwit-
tingly turn them into a mediocre, frustrated manager who feels locked into a
dead-end position. This characterization may sound extreme, but all too often
it ends in people leaving a company to find a fresh start.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 107

Why does this mistake get repeated so often? Promoting an individual
contributor to a management position is the way many careers advance.
For technical roles, however, it may not be the best choice.

Furthermore, engineers (especially the good ones) take pride in their ability
to solve hard problems, so many of them will see management, if offered, as an
interesting challenge to attack. Only after months or years of frustration will
they learn that it’s not a job they enjoy.

Thankfully, other options exist. Course Hero, like an increasing number of
companies, offers engineers two distinct growth paths:

•	 Technical leadership

•	 Managerial leadership

Many companies recognize these paths with parallel tracks for advancement.
Technical leaders set the examples and standards for professional work in
engineering, whereas managers build responsibilities in maintaining the
performance, morale, and growth of their teams. Both are necessary functions,
and both become more highly valued as a person advances.

Many engineers may not want to be managers, but they absolutely care about
career growth. Engineers want to build on their accomplishments, develop a
larger role in making their team and company successful, and become leaders
in their own ways.

Figure 12-1 captures some of the similarities and differences of technical and
managerial career paths.

Figure 12-1. Technical and managerial leadership career paths

http://www.it-ebooks.info/

Chapter 12 | Technical vs. Management Tracks108

In a small to medium-sized technology company, it can be useful to illustrate
the progression of each career path by example. In most cases, the technical
path leads ultimately to chief technical officer (CTO). A startup CTO is the
most senior and respected engineer at the company, with a broad understand-
ing of all development activity, insight into the future of the team’s architecture
and technical needs, and the ability to lead the company’s most important
engineering projects.

The managerial path, by contrast, typically leads to vice president (VP) of
engineering. A startup VP of engineering is usually the manager of most, if not
all, engineers in the company, either directly or indirectly. In addition to manag-
ing people for top performance and retention, a VP of engineering’s top task
is often recruiting and hiring talented engineers as quickly as possible, while
also building a productive and sustainable engineering culture for the company.

The CTO and VP of engineering roles are complementary in many ways.
By focusing on the unique aspects of each, the leaders in these positions can
work together effectively to lead all aspects of technical development in a
growing company.

In advising engineers on my teams about what career path might be best,
and therefore what kinds of skills to develop, I’ve found it helpful to point to
specific individuals as examples. For example, I might ask, “In a few years, do
you think you’d like to have a job like mine? Or maybe something more like
our CTO?” By discussing the differences in responsibilities between these
positions, we’re able to start charting a course for a person to make progress
in the way they find most compelling.

Technical Leadership Paths
As junior software engineers get started in their professional careers, they
typically are focused on learning from others and developing the skills to write
clean, efficient production code. As they progress, some will look to take on
more responsibility.

Technical leadership, as a function distinct from management, has many facets:

•	 Setting an excellent example for other engineers to follow.

•	 Establishing best practices for technical work.

•	 Enforcing best practices and keeping an eye on the work
of the broader team.

•	 Mentoring other engineers, in an individual or group setting.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 109

•	 Anticipating future technical needs of the product and
company. Researching and crafting potential solutions for
those future needs.

•	 Creating a strong relationship with other parts of the
company. Ensuring communication is smooth and effec-
tive, both inside and outside engineering.

When speaking to members of my team, I sometimes summarize technical
leadership as “making other engineers better.”

This type of technical leadership is the growth most engineers prefer—not
becoming a manager. They enjoy the technical challenges of their profession
and don’t want to leave them behind. Ambitious, successful engineers seek
bigger and more impactful technical challenges, leading them to leadership
positions.

At Course Hero, the first step on the path of technical leadership is to
become a lead engineer in one of our product teams. This role of leading a
small group of (typically three to five) engineers boils down to two primary
responsibilities:

•	 Set a great example for the other engineers to emulate.

•	 Make the other engineers better, happier, and more
productive.

More specifically, we look for lead engineers to provide mentorship and
guidance on all technical matters, to help define engineering best practices,
and to ensure that these best practices are being followed in the team. Lead
engineers should be thinking a few steps ahead about the technical challenges
facing the team, preparing other engineers for upcoming projects or new
initiatives.

We also expect lead engineers to be a strong ally for the team’s product
manager. Together, the lead engineer and product manager work to scope
long-term projects, prioritize tasks, and make sure the team has the informa-
tion necessary to be successful. We look for all team members to contribute
product ideas and business innovation, especially the leads.

One of the most important relationships we build at Course Hero is the
one between the lead engineers. Together, this group discusses and plans
for all the important technical challenges faced throughout the company. In
regular meetings, the leads share experiences from their own team about
what is working and what isn’t, ask for advice from other leads, and generally
make sure we’re all on the same page about our top priorities, workflow, and
culture.

http://www.it-ebooks.info/

Chapter 12 | Technical vs. Management Tracks110

Each lead engineer is responsible for taking this information about best
practices, workflow, and tools back to their own team. They instruct their team
on how to follow best practices, make use of new tools, and generally under-
stand the guidance of the group of leads. In this way, we’ve avoided building a
reliance on documentation, specs, long meetings, and other techniques that
feel heavy-handed or bureaucratic, but have traditionally been needed to
manage the organizational complexity of a growing team.

The independence and autonomy of our product teams is a defining charac-
teristic of Course Hero culture, and the lead engineers play a critical role in
making this possible.

Managerial Leadership Paths
The other primary path for career advancement in engineering is to become
a manager of people. The management path seems to be more widely
discussed and understood, which is probably because it’s similar to many
other professions.

An engineering manager still needs to be technical and have strong technical
skills and intuition. Without these skills, a manager will have a difficult time
earning the trust and credibility of their team, no matter how big or small.
I believe it’s useful for a manager to periodically test themselves on their abil-
ity to do front-line engineering work for their company, such as writing code
that follows established standards, conducting code reviews, performing data
analysis, and even pushing fully tested code into production.

Becoming a manager does, however, move an engineer into a less technical
role, which is something that many engineers prefer not to do. The primary
responsibilities of an engineering manager are no longer related to writing
code, but rather finding and solving people-related problems, both now and in
the future. Technical skill is critical for being able to do this effectively, but it’s
no longer the main focus.

Countless books have been written on management itself, so I’ll just provide a
quick list of the top responsibilities of an engineering manager:

•	 Recruiting and hiring great engineers

•	 Providing career advice and guidance for engineers

•	 Finding ways to deliver high productivity from a team

•	 Building a culture that encourages excellent work and
high job satisfaction

•	 Detecting and resolving performance and interpersonal
problems

http://www.it-ebooks.info/

Building Great Software Engineering Teams 111

As a manager’s team grows larger, these responsibilities gradually replace
technical contributions.

Engineering managers at Course Hero are distinct from lead engineers.
Managers are responsible for the people management functions for a group
of engineers across multiple product teams. The roles of managers and leads
are quite orthogonal. In fact, it’s entirely possible for a lead engineer to report
to a manager, who is in turn part of a different team, following the technical
direction of another lead engineer.

Combining Technical and Managerial
Leadership
It’s possible for one person to progress toward both technical and manage-
rial leadership. However, such people are rare (and should be treasured!) and
are much more of the exception than the rule. These people have executive
potential and bright futures.

One common mistake to avoid, though, is to expect a manager to continue
contributing as an individual engineer. Being an effective manager is a full-time
occupation. Attempting to be successful as both a manager and an engineer,
simultaneously, is truly an effort to hold two full-time jobs at once.

I speak on this topic from personal experience. In my first stint as a man-
ager at Zvents, I thought I could continue to hit my engineering deadlines
and throughput goals while also learning the ropes as a new manager, as did
the company. Certainly, some hubris was involved. After a few mistake-filled
months, I came to the inescapable conclusion that I could probably be a good
engineer and a good manager—but not at the same time.

As engineers try to map out their future, I encourage them to focus on
choosing a leadership path—technical or managerial—and see where it goes.
Even if you’re interested in both aspects of engineering leadership, it’s best to
concentrate on learning these skills separately, so you can acquire and under-
stand the important nuances and details required to be successful.

Transitioning New Leaders
It’s best to transition people gradually into new roles, especially when they’re
as important and difficult as first-time leadership positions. It’s unnecessarily
risky to thrust an engineer into any kind of leadership without some training,
mentorship, or at least a bit of warning about what to expect.

http://www.it-ebooks.info/

Chapter 12 | Technical vs. Management Tracks112

Before starting any kind of transition, it’s also useful to share as much advice
and experience as possible with your potential leader, so they know what
to expect and can make sound decisions about their future. Here is some
particularly useful advice to give in this situation:

•	 This is a new role. This isn’t your old job plus a new one
at the same time.

•	 Our expectations of you are going to change. You were
chosen for leadership because we think you have the
potential for even greater impact by working with others,
so that’s what we’ll expect.

•	 Please let me know if you start to suspect this role isn’t
right for you. There’s no harm in moving back to your
previous responsibilities, and it’s far preferable to do that
than to remain unhappy and frustrated in the leadership
position.

•	 Continue setting a model example for other engineers.
Now that you’re a leader, your team will naturally look to
you for an indication of how to act and work.

Once you’ve had some earnest conversations about what to expect, and
reached agreement that this is a good opportunity for your employee, your-
self, and the company as a whole, it’s important to develop a plan. It’s not
as simple as flipping a switch from engineer to manager or lead engineer.
Sometimes external events will force your hand, but whenever possible, it’s
best to gradually build new responsibilities, with several checkpoints along
the way.

Here’s a very high-level plan for transitioning engineers into new leadership
positions:

•	 Start with a partial set of the total responsibilities you
plan to give someone. For example, with new managers,
I first ask them to conduct regular one-on-one meet-
ings with all engineers. These meetings are a simple,
easy-to-understand, and relatively low-risk function of
management, and also help develop a good relationship
between the new manager and their team. Finally, it’s a
small first test of whether the manager enjoys the work
and finds it a productive use of time.

•	 Continue gradually adding more responsibilities. Each
time you do, have an open conversation with the indi-
vidual about whether they would like to continue the
progression toward leadership.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 113

•	 Have an end date in mind. By this date, the transition
should be complete. It’s important that the process not
seem indefinite or undefined. Like any engineering project,
you should track your progress and assess problems as
they arise.

Summary
I’ve found, through years of conversations with thoughtful engineers, that most
people are interested in career development, but often don’t have a clear idea
of what’s possible or best for them. The high-level distinction between tech-
nical and managerial leadership is a great starting point for many engineers,
and can help shape productive careers. As always, the right decision in any
situation depends on specific and complex factors. There’s no substitute for
truly getting to know the people on your team and thinking about what’s right
for them, and you.

http://www.it-ebooks.info/

C h a p t e r

Tricks of the
Trade for
Engineering
Managers
Managers in all disciplines face a wide variety of unpredictable and complex
challenges. Compared to a role as an individual contributor, each day tends to
be, to borrow a computing term, more interrupt-driven—you need to be ready
for anything. This chapter contains an assortment of tips, tricks, and advice
for many of the situations likely to be encountered by technical managers and
leaders.

What Does a Vice President of Engineering
Do All Day?
Earlier in my career, I used to wonder what a VP of engineering actually does.
I think it’s a fair question for people who have never held that kind of role.
I would see VPs and other senior staff sitting in a lot of meetings, talking on
the phone, and doing a bunch of other things that seemed less productive than
writing code. What did they do what was so important? Also, what had they
done to deserve that position?

13

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers116

Years later, out of the blue, a member of my team innocently asked me what
I do all day. Now that I had become a VP, I could understand and empathize
with his question. He didn’t mean it in a suspicious way; he was just curious.
I realized he truly didn’t know how I spent my time, and that we could both
benefit by understanding each other’s roles better.

Therefore, in response to an honest question, I was motivated to write an
honest answer.

But first, some details about the team I lead at Course Hero, for context:

•	 We have 24 full-stack web and mobile developers.

•	 Total company size is around 75 people.

•	 Developers are divided among five (Scrum-like) product
teams, each of which has its own product manager and
designer.

•	 We have new developers coming on board all the time,
and are always looking for more.

Overall, most of my activities fall into one of two categories:

1.	 Recruiting and hiring

2.	 Looking for ways for our team to perform better,
now and in the future

And even those two functions are similar in that they’re really about helping
other people with their own work. My day is more interrupt-driven than a
typical engineer’s—I know, I used to be one, for many years. Several things can
happen, at any time, that will make me stop what I’m doing and shift my focus.
For example:

•	 A new candidate shows interest through our recruiting
channels.

•	 I get new information about an in-process candidate.

•	 A site performance issue occurs.

•	 A new bug is reported.

•	 Someone comes to me with a personal problem.

•	 Someone comes to me with a problem about our team
or company.

•	 I detect a problem with our team.

Responsiveness is critical for handling these types of issues, so I’m constantly
scanning for new ones.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 117

With that background, this is what I do all day. This day, specifically, was Tuesday,
May 20, 2014, and a fairly typical one for me:

7:45–7:50 a.m.: Quick e-mail check. Nothing urgent.

8:45–9:30 a.m.: E-mail (and chat) time. Today’s topics:

•	 Check in with our new hires who start next month — what
do they need?

•	 Review all new incoming recruiting opportunities
(including 16 new resumes).

•	 Chat briefly with a team member about details of our
web framework.

•	 Provide feedback to our recruiters about next steps for
two candidates from the day before.

9:30–9:40 a.m.: Set up a meeting for the afternoon about a current project
that has turned out much longer and more difficult than expected. Determine
who needs to be there, the meeting format (Five Whys), and schedule it.

9:40–10 a.m.: Skim a large code review and comments for this project, which
is nearing completion. More than looking for bugs, I’m looking to see whether
we’re consistent in our conventions and patterns, whether I agree with our
choices, and whether other team members are doing the same analysis.

10–10:30 a.m.: Phone-screen a new candidate.

10:30–11 a.m.: Eavesdrop on product team stand-up meetings while continu-
ing to review code.

11–11:30 a.m.: Continue code review, asking questions of team members
along the way.

11:30 a.m.–12 p.m.: Regular (biweekly) one-on-one meeting with a team
member.

12–12:20 p.m.: Go for a walk around the campus. Enjoy the sunshine and
weather.

12:20–12:50 p.m.: Lunch (casual, not a meeting) with a team member.

12:55–1 p.m.: Meeting prep. Prepare the notes template, get the room set up,
have all material ready to go at 1 p.m. sharp.

1–2 p.m.: Lead the full-team discussion about our troubled project.

2–2:20 p.m.: Synthesize meeting notes to generate specific recommendations
for improvement in future projects and circulate with the team.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers118

2:20–2:30 p.m.: Look at a new code review, on a project to start a migration to
a new web framework. Try to understand the differences (and improvements)
over our current system.

2:30–3:30 p.m.: Do a final review of all peer feedback and notes for an
upcoming team member performance review. Write up the review (overall
assessment, strengths, opportunities for improvement, and goals), review our
budget and finalize a decision on a raise for this person, and share with our
CEO and director of people operations for review.

3:30–3:45 p.m.: Phone call with recruiting staff at University of Waterloo to
clarify some details of their co-op program.

3:45–4 p.m.: Read Hacker News.

4–5 p.m.: Review new internal (such as marketing and support) projects with
our COO and CTO to assess priority and discuss which teams could take
them on. Discuss some of the challenges faced by these new teams, and what
we can do to improve. Also discuss the best way to bring our new hires onto
the teams and generally learn how things are done.

5–5:10 p.m.: Check in on the status of the code review and bug list for the
large project.

5:10–5:20 p.m.: Final review of e-mail and new recruiting candidates, mostly
intern or co-op possibilities.

8:30–9 p.m.: Review the latest version of our new company recruiting videos
and provide feedback.

9–9:10 p.m.: Review details of a new candidate forwarded by one of our
recruiters.

10–10:20 p.m.: Chat with a former colleague in an effort to determine whether
he’s interested in a position.

Not every day is the same, but this one seems pretty typical. It’s a great job
and I love it, mostly because of all the ways I get to work with and help other
people build great software.

Levels of Engineer Performance
I’ve conducted many performance reviews over the years, and the engineers
involved have ranged from difficult and underperforming to superlative and
delightful. No matter how well someone is doing, they always want to know
how to do better—particularly when it comes to compensation, promotions,
and overall responsibility.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 119

Through these years, I’ve created and refined a simple model for evaluating
engineer performance. It has four levels:

•	 A mediocre engineer does what is asked.

•	 A good engineer does what is asked, and does it well.

•	 A great engineer does what is asked, looks for possible
problems, edge cases, and overlooked issues, and solves
those as well.

•	 An outstanding engineer does all of the above, but also
tells you about problems you didn’t even know existed,
and plans for situations you never envisioned.

To make it even simpler: How much can you improve the happiness and
productivity of other people?

The most basic required skill for a software engineer is the ability to write
code that meets requirements, is relatively bug-free, and relatively on time.
To progress beyond a limited individual role, however, an engineer needs to
learn to how to make things better for others.

By others, we might mean other engineers, who benefit from suggested
improvements for their own code, learning about new techniques, or the
enjoyment of working with a pleasant colleague. As an engineer, helping your
colleagues fix bugs or solve difficult problems is always appreciated. Even
better, help them find the bugs and problems, explain how you did so, and then
help with the solution.

An engineer can also improve the productivity of nonengineering colleagues,
such as product managers, designers, and testers. Even if they’re not writing
code, you can still help them with whatever challenges they confront, such as
designing new features, brainstorming future projects, or debugging part of a
product. You might also build tools to help make them more effective.

Finally, a great engineer should push people in management and leadership to
be better. These engineers bring not only ideas and concerns, but also sugges-
tions and solutions. They constructively challenge their managers and others
in positions of authority, helping improve the overall organization.

This model of engineer performance is a useful teaching tool. It helps explain
what is required to be a successful engineer, and outlines what it takes to
advance in an engineering career.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers120

A Word About Promotions
I frequently encounter a misconception about how promotions are given.
(Full disclosure: I first encountered this misconception in myself.)

People often overestimate the amount to which their company is observing
their performance and assessing their potential. They believe that at some
point, their manager will approach them about being promoted into a larger
role, based on their ability to grow into that role.

In truth, promotions are usually given to people who are already fulfilling the
duties of that larger role, and haven’t yet been recognized formally for doing
so. The promotion is more of a reflection of reality.

If you’re interested in a promotion—and not everyone should be, as your
current job may be the one you enjoy the most—the best strategy is to look
for ways to start doing the job. It’s critical to do this in a constructive and
helpful way, of course. Don’t try to steal responsibilities or decisions from
others. Prove that your team, and the company as a whole, will be better off
if you’re in that new role, and that you’re totally capable of being successful.
By doing so, you make the decision to give you that role a no-brainer.

Upside-down Engineering Management
Managers, by definition, are caught in the middle—reporting to the senior
management or executives above, and responsible for directing the contrib-
utors (or other managers) below. Conventional wisdom suggests that the
former are more important than the latter. They pay your salary, evaluate
your performance, and generally tell you what you should be doing.

It’s actually the other way around.

When tech companies hire managers, it’s almost always with growth in mind.
They’re looking for someone who can attract and retain top talent. Strange as
it may sound, actual “management” is only a secondary concern.

Therefore, the best way to be successful as a manager, in the long term, is for
people to love working for you. You will get amazing results. These results
might not be exactly what the people above you asked for, but that’s where
your skill is required—show that it’s better and that they can trust you and
your team more than they thought.

Your career is an opportunity to build a group of people who will follow
you anywhere, thus making you very valuable yourself. Getting people to love
working for you, while still making senior decision-makers happy, is a nontrivial
skill that requires a lot of study and practice. (You’ll make mistakes.)

Here are some ways to earn the loyalty and trust of your team.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 121

Let People on Your Team Grow
Talented people love to try new things. They’re constantly looking to learn
new skills, improve their current abilities, and generally expand their knowl-
edge. This is a wonderful characteristic to nurture and encourage in your
team.

Here are some examples of how to let technical people grow:

•	 Let an engineer try a new language or platform for their
next project. Do they need to write a message queue and
have always wanted to learn more about Erlang? Maybe
this is the perfect time.

•	 Ask a developer to design a new feature themselves,
rather than being handed a spec. Put them through the
design review process to build an appreciation of what
other team members contribute.

•	 Put your staff in direct contact with customers. Trust
them to represent the company’s interests and contrib-
ute to the requirements-gathering process.

Different things will appeal to different people, but everyone wants to learn.

Grow Yourself
Be humble, and ask your team how you could do your job better. This requires
an open, trusting relationship, so do everything you can to nurture that as well.
If people trust you, they will not see this as an opportunity to take advantage
of you. They will respect you for trying to improve.

You should also apply the same advice and encouragement you share with
your team to yourself. Do you encourage people to read technical or business
books as a way of developing new skills? Share your own learning from books
as you read them. Are you looking for engineers to contribute to open source
projects or attend technical conferences? Find a way to participate yourself.
Lead by example, demonstrating your own desire to grow, and your team will
follow suit.

Fight for Your Team
Show that you advocate their interests throughout the company, whether
it’s in terms of compensation, strategy, or culture. As a manager, you hold a
critical and highly influential role in people’s careers. Demonstrate to those
people that they can trust you to represent what’s important to them and
their colleagues.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers122

In my early days as a manager at Zvents, I began to perceive frustration on
the part of several engineers at the way product requirements were delivered,
which was typically in the form of a long, detailed spec document.

The product managers meant well. They were attempting to provide all the
relevant information and instructions in a nicely packaged format, so that it
would be clear what needed to be done. From the engineers’ perspective,
however, this approach had a few problems:

•	 No matter how detailed a spec was, some things were
always missing. This is simply a fact of life in a dynamic,
fast-paced environment. Having the spec in hand, how-
ever, created an expectation that an engineer should
exhaustively process and understand it all before raising
any questions, which added a lot of time and effort to
handle small clarifications.

•	 The spec was created with a finality that removed oppor-
tunities for engineers to be creative and add their own
ideas to the design. Engineers don’t typically look to rede-
sign everything in their own image, but still enjoy being
able to be part of the discussion.

•	 Specs get out-of-date quickly, creating a burden on the
developer to verify the correctness of everything as it’s
being implemented.

Reflecting these concerns, I began to push for some changes in our product
development process. I felt it was necessary to speak up on behalf of the
engineering team.

Thankfully, our product managers were supportive of looking for alternatives
(they had their own set of frustrations with the process). With the support
of other key staff and internal leaders, we began a process of experimen-
tation and training that eventually led the entire company to adopt Scrum
methodology. While not perfect, Scrum was a major improvement for every-
one involved (not just engineers), in terms of both productivity and job
satisfaction.

If you see people suffering, do something about it.

Be Proactive About Rewards
Sadly, some of the largest raises and promotions are given to employees when
they threaten to leave. This is, of course, the worst time for such a reward, as
it means you already have a crisis on your hands. Don’t let it get to that point,
as it may already be too late.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 123

Treat your team like the precious resource that they are, and you will be
rewarded in the long run. You should feel that your people are compensated
fairly, at all times—not just when they bring it up or when problems arise.
If you were to try to hire them today, what would you offer? Is it more than
they’re currently receiving? Get that fixed.

When people start to wonder whether they’re fairly compensated, it starts a
dangerous series of dominoes—talking to friends about it, maybe talking with
a recruiter, interviewing with other companies, considering other offers—
each one increasing the chances they might decide to leave.

Don’t let the first domino fall. Be proactive about compensation and rewards,
so that it never even becomes an issue.

Preventing Big Projects from Becoming Big
Headaches
Has this happened to you?

Your team starts out on an interesting project. You know it’s a pretty big one,
but not that big. You should be able to get it done in a few weeks or so, and
it’s going to be awesome.

Things go smoothly at first. You’ve got high-level goals, scope estimates, and
everyone pretty much knows what they need to be doing.

Fast-forward to your target ship date. Lots of new features have been added,
mostly in the last week, bugs are piling up much faster than the team can
handle them, and now the question isn’t whether you’re going to ship late, but
rather by how much.

How did this happen?

That’s an easy question to answer: Life is complicated. Things happen. They
always do.

A better, and more difficult, question is this: How can you prevent this from
happening next time?

Here are four specific techniques to prevent projects from ballooning out of
control.

Break Things Down
Look for ways to break a project down into smaller, discrete pieces—not
just conceptually, but operationally. Make sure that all project tasks have been
decomposed into subtasks that take no longer than a day or two, and that
team members report their progress just as often. Daily stand-up meetings
are an excellent tool for sharing status among all members of a small team.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers124

Ship Constantly
Your team is making its way through a large project, which has been nicely
broken down into discrete subtasks. You may still be setting yourself up for a
big headache at the end, however, unless you’re also completing the release to
production for each of these subtasks.

A group of many small tasks, each completed successfully but not deployed,
can add up to a huge, monolithic changeset, a mega-merge, and a daunting
code review. Ship all these pieces as you go. If you do, your development code
base will never differ from what’s running in production by more than a day or
two’s worth of work. This relatively small delta is valuable if you unexpectedly
need to accelerate your schedule or make other changes.

Use Feature Toggles
The term feature toggle, or gatekeeper, refers to a software switch built into
your code that allows you to activate (or deactivate) it at a desired time.
Toggles have many benefits, but the key one for this discussion is that they
allow you to ship your code before the whole project is finished. In order to
ship your product constantly, you may need a tool to selectively activate new
code as it hits production.

Shipping your code one piece at a time usually means you don’t want that
partially complete code used until the rest is ready. With a toggle in place, you
can ship your code incrementally, running each portion through your full set
of reviews and tests. Once everything is fully deployed to production, you can
then toggle your new feature on with confidence.

You probably don’t even need to write the code for your feature toggle. Many
options already exist, for a variety of languages, frameworks, and platforms.

Keep Everyone Working on Only This Project
Over time, it becomes more likely that other projects, issues, and demands
on people’s time will creep in. Try to make sure this project is the only thing
on which your team is working, until it’s done. The fewer projects that are
in progress simultaneously, the more likely each project will be completed on
schedule and with good results.

Finally, managing a large project requires vigilance. It’s easy, for both you and
your team, to lapse back into what’s comfortable, easy, or convenient. Watch
closely to see whether things are breaking down, and if so, why.

Or to put it another way: Ship early and often.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 125

Managing People with More Experience Than
You
My first experience as a manager (at the local-events search startup Zvents)
evolved naturally from being a senior member of a web development team.
I could speak confidently and authoritatively on most matters affecting the
team, and had the necessary experience to mentor and guide the other
engineers.

My second management position, however, at robotics startup Suitable
Technologies, presented me with a new challenge: for the first time, I was
managing engineers with significantly more experience than me.

Though it adds some complexity, managing people with more experience is
certainly something that can be done well. Here are some tips:

•	 Don’t deny the reality of the situation. Everyone on your
team, including yourself, needs to see you and treat you
as a manager. If you have any lingering self-doubt about
your position, do your best to move beyond it.

•	 Don’t pretend to have more knowledge or experience
than you do, in an effort to maintain authority. Be hon-
est about what you know and what you don’t know, and
ask for help from your team whenever needed. They’ll
respect your self-awareness and desire to learn.

•	 There’s a good chance that your senior engineers aren’t
totally interested in being managers, or else they might
already be in that position. If so, they’ll be happy to let
you do your job, since they don’t want to do it, and they
know that if you can’t, some of that responsibility may fall
to them. They should be your strongest supporters.

•	 It is, however, important to understand whether any of
your engineers do believe they should be the manager,
and whether they resent you being given the position. The
easiest way to find out is simply to ask. If this is the case,
you should explain, and ultimately demonstrate, how your
managerial skills will help them grow, and prepare them
for opportunities in their own future. Pay special attention,
though, to see whether they support you more over time.

In general, your approach to management should be the same, regardless of
the relative seniority of your team. You’re looking to give people the tools,
guidance, and environment they need to do great work. Managing experienced
engineers is, in some ways, a special opportunity for you to learn even more
and expand your own knowledge and skillset.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers126

Leading a Team Without Deep Domain
Knowledge
Another new challenge of leading the software team at Suitable Technologies
was that, for the first time, I was responsible for technical work that I didn’t
fully understand. I had years of experience in web development, but now
I was leading a team that was building robotics systems and videoconferencing
software.

This situation is similar to managing people with more experience, and the
approach is basically the same:

•	 Be humble. Don’t pretend to know things you don’t, and
try to learn as much as you can.

•	 Focus on providing value with your management skills.
Your team will appreciate these contributions, as they
care more about the product they’re building.

•	 Provide mentorship and career guidance for your team.
This is fairly independent of your technical domain.

It’s fun to learn new things. Leading a team outside your field of experience is
a unique opportunity to grow as both a manager and a technologist.

Lessons from a Case Study of Engineering
Process
As companies grow larger, they are forced to adopt additional layers of
process and hierarchy to manage the increasing complexity of projects and
relationships. It’s just simple combinatorics. The number of pairwise connec-
tions in a group of people grows quickly. The math looks like this:

C(10, 2) = 45 (or “10 choose 2”)

This equation indicates that for a group of 10 people, there are 45 possible
pairs of 2. Notice how the number of combinations accelerates:

C(20, 2) = 190

C(30, 2) = 435

When you consider larger groups, it becomes even more alarming:

C(30, 3) = 4,060

http://www.it-ebooks.info/

Building Great Software Engineering Teams 127

For a company of 30, there are over 4,000 possible groupings of only 3 people.
This is where process becomes necessary, in the form of documentation,
meetings, specifications, standards, formal best practices, and so on. These
techniques, which are necessary to managing the increasing complexity of a
growing team, are also what starts to make it feel like a “big company.” What
one person calls process, another person might call overhead or bureaucracy.

A critical tipping point comes when an organization is sufficiently large that
not everyone knows everyone else. British anthropologist Robin Dunbar
famously hypothesized that this point (now known as Dunbar’s number) is
around 150 people, based on research comparing primate and human brain
sizes.1 Whenever it happens, reaching this size in an organization requires the
adoption of more-formal organizational structures, titles, and communica-
tion patterns. Without shared context between employees, it’s important to
supplement their interaction with additional guidance and information.

Like many startups, Course Hero strives to maintain the agility, dynamism, and
rapid iteration of a small startup, even as we grow larger. Our journey isn’t yet
complete (75 employees at the time of this writing), but we’re off to a great
start. This section describes some of the tools, architecture, and yes, process
we use to maintain agility and a “startup feeling” in our product development
team.

Product Teams
The core building block of product development at Course Hero is what we
call a product team. Similar to Scrum, these teams are composed of a prod-
uct manager, designer, and a few engineers. We believe strongly, as do most
practitioners of Scrum, that the ideal team size is around seven people.2

Each product team is focused on one specific area of our product. For example,
at the time of this writing, we have five teams:

•	 New Users (all unpaid use of our site)

•	 Premier Users (all paid use of our site)

•	 Tutoring and Q&A Products

•	 Mobile

•	 Internal Tools and Services

11 R.I.M. Dunbar, “Neocortex Size as a Constraint on Group Size in Primates,” Journal of
Human Evolution 22.6 (1992): pp. 469–493.
22 George A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” Psychological Review 63.2 (1956): pp. 81–97.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers128

One of the most important aspects of our structure is that each team is given
a large amount of independence and autonomy. As much as possible, we want
each team to feel like its own seven-person startup (with one critical differ-
ence: the teams have secure funding). Each team has its own mission, list of
long-term goals, metrics to track, and roadmap of upcoming projects.

The teams share some process—each team has a daily stand-up meeting,
weekly status meeting, and a quarterly planning and vision discussion. We
also strive for a consistent engineering workflow, which I’ll detail in the next
section. But other than those things, the teams are free to come up with ideas
and solutions that work best for them.

Development Workflow
Each project, in each team, follows a consistent sequence of steps. Table 13-1
lists each step along with the member of the team responsible for it.

Table 13-1.  Development Workflow at Course Hero

Project Phase Phase Owner

Ideation Product

Requirements Product

Scope Meeting Product

Design Ready Design

Design in Progress Design

Architecture Review Developer

Development Ready Developer

Development in Progress Developer

Code Review Developer

Final Testing Product

Launch Product

Some steps may be quick, and others may take days or weeks. In all cases,
though, each step must be completed, and there must be a person responsible
for that step. In addition, some steps may need to be repeated. For example,
if a problem is discovered during Code Review or Final Testing, the project
might be sent back to Development in Progress as the team works to fix
the code.

Here are some more details on each step.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 129

Ideation
The Ideation phase reflects the creation of a new project idea. These ideas can
come from a variety of sources, including employees, customers, and research
of market trends. We expect all members of a product team to contribute
ideas, not just the product manager.

A project in the Ideation phase should have at least the following:

•	 A clear definition of the concept

•	 A high-level business goal

Projects should be prioritized in Ideation, and move to the next step only
when the product manager has been able to define requirements for them.

Requirements
The goal of this stage is to build a business case for the project. What needs
to be built, and what problem does it solve? What is the opportunity, and what
is the potential value of that opportunity?

The information for requirements may come from a variety of sources, includ-
ing these:

•	 Competitor/market analysis

•	 Customer feedback and research

•	 Internal analytics and data

•	 Team brainstorm sessions

•	 Other internal company teams

•	 Technical performance or reliability

The requirements should describe specific use cases or user stories, and
expectations of desired outcomes. Beyond listing new features and design
elements, these requirements should also include communication and market-
ing tasks, expectations of customer support, and other rollout plans.

The Requirements phase is complete when we have a summary description
of the project, business case, high-level task list, and a test plan—a set of tests
that can be run by anyone on the team to verify that the work is complete
and correct.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers130

Scope Meeting
This phase is a meeting with everyone who is expected to be involved with
this task, including the following:

•	 Product owner for this task—a team member responsi-
ble for driving this task to completion, but not necessarily
a product manager

•	 Technical lead—a developer with appropriate expertise
and experience, but not necessarily the one to complete
the work

•	 Design lead for this task—similar to tech lead, but for
front-end design

•	 Anyone else who has a task assigned as part of the
project, such as marketing or customer support

The purpose of this meeting is to review the requirements and provide an
initial scope.

Course Hero’s work estimates take the form of engineer days or designer
days—the “real world” number of days required to complete the task, factor-
ing in overhead such as bug fixes, code reviews, meetings, and everything else
that isn’t writing code or generating designs. These estimates must also be a
Fibonacci number: 1, 2, 3, 5, 8, 13, 21, and so on. Ranges and other values are
not allowed. (We require such a number to demonstrate that estimates are
necessarily less precise as they grow larger.)

Design Ready
A project in this phase is waiting to be assigned to a designer. This phase gives
designers visibility into their upcoming tasks, and allows other team members
to prepare for future work.

Design in Progress
At Course Hero, design includes not only the preparation of visual assets, but
also user research and front-end development in HTML, CSS, and JavaScript.
The Design in Progress phase has three subcomponents:

1.	 Research into user interface and user experience design
trends, looking for best practices and patterns

2.	 Development and iteration of storyboards, wireframes,
mocks, and final messaging and content, including any user
research on these concepts

3.	 Front-end coding and final asset production

http://www.it-ebooks.info/

Building Great Software Engineering Teams 131

Design is complete when the front-end code is finished and reviewed by at
least one other designer.

Technical Architecture Review
Before beginning development, we need at least two engineers (with appropri-
ate knowledge) to review the proposed implementation.

This phase is complete when at least one other engineer (not the developer
ultimately doing the work) reviews and signs off on the proposed solution.

For small tasks, architecture review might take only a minute. For large
projects, this phase could require a design meeting with several engineers.

Development Ready
At this point, the project is waiting for technical implementation. When a
developer is available to start, they will assign the project to themselves and
begin work. Allocation of resources is accomplished by having developers
always select the next, most important project from the master prioritized
backlog.

Development in Progress
This is the phase in which the coding gets done.

During development, engineers should consider all possible solutions, regularly
review progress with their teammates and the product owner, and adhere to
company coding conventions and best practices.

We use Git for code version control, and one of our few strict rules is that all
new development—no matter how big or small a project is—must be done in
a branch (not master). Only after Code Review (the next phase) is complete,
may the code be merged back into master.

The engineers on a project are also responsible for creating all necessary unit
and functional code tests. We’ve developed tools to help with this process,
such as a client-side precommit Git hook that automatically runs all unit tests
on a commit, aborting the commit if any tests fail.

Code Review
When coding is complete for a project, the project’s lead developer needs
to perform a code review with at least one other developer. We leave it up
to the developer to choose the most appropriate reviewer. Typically, this is
another developer with good knowledge of the area(s) of code affected.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers132

As described previously, one important rule that we strictly enforce is that
no code should be merged back into our master branch without a complete
code review.

The Code Review phase is complete when the following are true:

•	 The code is complete.

•	 The code review is complete.

•	 The code has been tested and verified by the developer(s)
against the test cases in the initial project description.

Quality Assurance
Course Hero has no full-time testing staff, so all members of the team share
the responsibility to test our products.

Projects in this phase are ready to launch but need to be tested, and should
be running on one of our staging servers. The testing tasks may be shared, but
final sign-off on the readiness of the project is the sole responsibility of the
team’s product manager.

Launch
We made it! At this point, the work is running live in production.

Course Hero puts every new project through an A/B test to verify that it’s
an improvement on our existing product. Each test is unique, but we typically
measure metrics such as the following:

•	 Web traffic impact

•	 Conversion rate

•	 New user sign-up rate

•	 Revenue impact

•	 Bounce rate

If the test results look good, the final step is to optionally execute a commu-
nications plan around the new feature or product. For example:

•	 Notify internal stakeholders or customers

•	 Update customer support about the feature

•	 Launch external marketing and communication

The project is totally finished when all communications, test analyses, and bug
fixes are complete.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 133

Course Hero’s Engineering Principles
The Course Hero product teams have a large amount of autonomy and inde-
pendence, and are free to solve challenges in whatever way suits them best.
To provide high-level consistency for our engineering team, we’ve established
a list of five engineering principles:

•	 Ship Early and Often

•	 Only One Project at a Time

•	 Testing is a First-Class Problem

•	 Communicate Openly and Frequently

•	 Always Be Recruiting

Here’s a short description of each principle.

Ship Early and Often
A common pitfall of large projects (or even small projects that unexpectedly
become large) is that by the time they are complete, the changes are so large
that a huge amount of time is expended merging code, testing, and checking
initial requirements. Our preferred approach is to break a project into small
pieces and ship those pieces to production incrementally. Here are some
more specifics of how we do this:

•	 Engineers conduct code reviews throughout a project,
rather than waiting until the end.

•	 As subtasks are completed, they’re code reviewed and
merged to our master branch.

•	 A feature toggle is used to allow partially completed
projects to be shipped to production, but remain inactive
until the entire project is complete, at which point we can
simply “flip the switch” to activate them.

Only One Project at a Time
We try to resist the temptation to do a lot of things at once. Engineers should
say no when necessary, or at least, “I’ll have to do it later.” We believe that
an engineer should be focused on one task—whichever one is currently the
most important—and give that their full attention and energy until it’s fully
completed.

http://www.it-ebooks.info/

Chapter 13 | Tricks of the Trade for Engineering Managers134

Testing Is a First-Class Problem
Testing is an important part of everyone’s job. For an engineer, testing
your code is just as important as writing it. For a product manager, testing
a product before release is just as important as doing market research and
writing requirements. Testing should never be shortchanged because of other
tasks, and test plans must be completed as part of a project.

In addition, it’s important to include the time to develop software tests in all
project estimates. Don’t leave tests out in hopes that you’ll get to them later.

Communicate Openly and Frequently
We believe strongly in the DRY (don’t repeat yourself) principle, especially at
the team level. Before implementing a new library, component, or widget, ask
around to see whether there might already be something similar that could
be used.

We encourage all team members to leverage their team to the fullest—to ask
for help when they get stuck, or to clarify something that’s confusing. A simple
question can save hours of work and headaches.

Always Be Recruiting
As a company in constant growth, we want everyone to share a recruiting
mindset. You never know where an opportunity might arise, so it’s important
to be attentive and proactive.

We strive to make every candidate’s experience at Course Hero an excellent
one. Even the people not directly involved in our recruiting or hiring process
should be welcoming and friendly to all visitors they encounter at Course
Hero. Every person, not just job candidates, should leave our office thinking,
“I really want to work there.” Even if we don’t end up extending an offer to a
candidate, they might share their experience with others.

Finally, having a recruiting mindset means thinking critically about how to make
Course Hero the ideal place for you to work. We don’t want to settle for
what’s good enough right now. What will help us attract the best and bright-
est for the future as well?

Pair Programming
One of the most important ways we try to build a culture of collaboration at
Course Hero is through the use of pair programming.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 135

Our definition of pair programming is any situation in which two engineers are
working on a problem at one computer, and only one of them is controlling
the keyboard and mouse. We don’t force people to pair but try to encourage
it whenever possible. The benefits are numerous:

•	 Pairing is an effective way for engineers to learn from
each other. For this reason, it’s typically best to let the
less-experienced engineer control the computer.
Otherwise, they may have a hard time keeping up.

•	 Pairing catches a lot of bugs. Having an extra set of eyes
on a problem can save a lot of time spotting problems,
and working next to another engineer tends to make
people more careful too.

•	 Pairing can be fun. Working on a hard problem can feel
less intimidating or frustrating when someone is by
your side.

•	 Pairing is an excellent way to converge on common
coding standards and best practices. This kind of informal
information sharing is a beneficial side-effect of working
on projects together, and the more pairwise combina-
tions you foster in your team, the faster you’ll achieve
consistency of thought.

Many people are reluctant to try pair programming because they think it will
decrease a team’s throughput by half. The benefits I’ve described, however,
often outweigh any short-term delay and lead to great productivity improve-
ments in the long run.

Summary
Successful managers have toolboxes with lots of different tools in them. In this
chapter, we’ve discussed a variety of strategies, techniques, and tools to solve
some of the myriad challenges you’ll face while building and leading a team.

In your experience as a manager, you’ll undoubtedly create and archive tips
and tricks of your own. Over time, you’ll learn to recognize familiar problems
and challenges, anticipate likely outcomes, and call on the most appropriate
techniques at the correct times. Maintain an open mind and a desire to keep
learning throughout your journey.

http://www.it-ebooks.info/

A p p e n d i x

Career Advice
for Software
Engineers
Before I became a manager of engineers, I was an engineer. This appendix
contains advice on a variety of topics to help software engineers find a great
job, fulfilling work, and growth in their careers.

Career Paths: Silicon Valley vs. Traditional
Technology Companies
Silicon Valley venture capitalist and Google/YouTube veteran Hunter Walk
once posted a tweet that prompted me to more deeply examine something
I’d been thinking about for a while—something I wish people had told me
when I was starting my career in technology.

Optimize for working w smart folks early in career. Today hung w peeps
i met 2001, 2005, 2007. All doing amazing stuff.1

A

1Hunter Walk (hunterwalk), 27 Dec 2012, 6:09 p.m. Tweet.

http://www.it-ebooks.info/

Appendix A | Career Advice for Software Engineers 138

I started my career by working in two big companies, Xerox (at the famous
Palo Alto Research Center, or PARC) and Hewlett-Packard (at HP Labs).
The career path for a software engineer at a large tech company such as HP,
IBM, or Intel typically looks something like this:

•	 Software engineer

•	 Senior software engineer

•	 Staff software engineer

•	 Senior staff software engineer

•	 Principal software engineer

•	 Master software engineer

•	 Software architect

•	 Chief software architect

•	 Fellow

•	 CTO

Similar progressions exist for other types of engineering as well. Typically,
there’s a parallel track for management that diverges at some point, and leads
to positions such as these:

•	 Engineering manager

•	 Senior engineering manager

•	 Director of software engineering

•	 Senior director of software engineering

•	 Vice president of software engineering

•	 Senior vice president of software engineering

•	 Executive vice president of software engineering

In both cases, you’re “working your way up” (my list is upside down), in the
way that people in the United States have thought about career advancement
since at least World War II.

After living and working in both worlds, I now understand that the Silicon
Valley startup career path looks a little different:

•	 Company A

•	 Company B

•	 Company C

http://www.it-ebooks.info/

Building Great Software Engineering Teams 139

•	 Company D

•	 Company E

Here’s the key difference: in the traditional path, your career success is defined
mostly by your individual advancement. In the Silicon Valley path, however,
you may have different positions at each company, depending on what you
like to do, but your career success, especially in financial terms, will likely
be dominated by the overall success of the companies. Ask any of the first
1,000 employees at Google, no matter what their title. Therefore, it’s vitally
important for you to work with the people who are most likely to succeed,
and maximize the opportunities for doing so. If you work at Company B with
an outstanding team, but the concept didn’t quite make it, your chances at
Company D will be much better if you can work with some of them again.

Furthermore, your opportunities at subsequent companies will come from the
people at the previous ones. Otherwise, your fate is in the hands of recruiters
and HR departments. If the all-star team from Company B is reassembling for
another try, you want them to be thinking of you.

This can also apply to projects—within companies or open source, for
example. Even if you’re not switching companies, look for projects with great
people. I certainly met some at both Xerox PARC and HP Labs, and did end
up working with some of them later. I just wish I had known how important
that was going to be.

In summary, here are the lessons to share from my experience:

•	 Do everything you can to work with great people.

•	 Figure out who’s on your team—the people you want to
work with again, and build your career with.

•	 Go where the great people are. (They may not be where
you think.)

•	 If there aren’t great people where you are, leave.

How to Find the Best People to Work With:
Be One
To build a successful career in Silicon Valley, it’s important to find great
people to work with. How can you make this happen? A good place to start
is to examine that question from the other direction. Namely, “How do I
make sure others think I’m one of the best people to work with?” It’s a
two-way street.

http://www.it-ebooks.info/

Appendix A | Career Advice for Software Engineers 140

Let’s face it. Not everyone may want to work with you. Even if you find the
company, group, or project of your dreams, they may not accept you in return.
I haven’t gotten an offer for every job for which I’ve interviewed.

So how do you get yourself to the top of the others’ lists of people with whom
I’d like to work again?

Be Good at What You Do
It may seem obvious, but it’s worth stating—you should be a strong practi-
tioner of your craft. A mobile app startup doesn’t want an iOS developer;
they want the best iOS developer. Companies don’t want someone who can
perform all the functions listed in their job descriptions; they want someone
who can do them all and then some.

Keep your skills sharp and current. Don’t coast. Just because you can do your
current job with the skills you already have, doesn’t mean you should. Learn
new skills. Try new techniques. Look to do your work better.

Here’s a test: are you always asking others for help, or do they come to you?

If you’re not the expert, strive to get there. And asking others for help is a
great way to start.

Know What You Do
People have different skills, and most teams require a wide variety. Understand
where you create the most value—where you can provide the most improve-
ment over the next best alternative.

This may not be as simple as you think. Drawing again on my experience in
software, if you describe yourself as, say, a Ruby developer, your ability to write
Ruby code is only the beginning. How versatile are you? If your team needed
to build something using C++, would you be able to help? What if they needed
someone to learn Hadoop for a new project? Would they ask you first? Does
your code need much maintenance? Do your colleagues read your code to
learn the best way to do things? This topic probably merits an entire post of
its own, just for software development.

At this point in my career, I contribute more value as a software manager than
as a developer. This obviously means that some opportunities aren’t right for
me—if good management is already in place, or the team is too small to need
it yet, for example. But if you have a growing team that’s having a hard time
keeping up with the competing demands of product management, reliability,
development speed, and overall employee morale, I want to be the one you
think of first.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 141

Stay in Touch
This is the easy part. Don’t lose contact with the superstars in your life. There
are plenty of tools with which to do this—the best choice depends on your
contacts. Go where they are, and stay in touch.

How to Get Ahead: Document Everything
If you’re looking to advance in your career—to get new opportunities, respon-
sibilities, authority, and, yes, paid more—I have a simple but invaluable piece
of advice.

Write down everything you do.

Every day, week, or month, add to a running list of your accomplishments at
work. Include as much as you can think of, no matter how big or small.

As much as you might like to think that your manager, peers, and colleagues
appreciate and remember all of your wonderful contributions, the fact is that
they don’t. They have their own busy lives to worry about, their own projects,
and their own interests to consider. It’s not intentional or antagonistic—they
simply don’t remember everything. That’s why you need to give them a little help.

If your company performs annual reviews, there’s probably a part of the review
process to go over your accomplishments during that time. You might be
asked to provide a list. Coming up with a summary of your accomplishments
for the past year is difficult and time-consuming, and you’re certain to miss
some important things. It’s much easier to add to a document, incrementally,
throughout the year.

Even if you’re not asked for such a list, it will still be valuable. Someone’s going
to be figuring out what you did, and if you can easily spot omissions, it only
makes your overall case stronger.

What if your company doesn’t even do regular reviews? (This is a bit of a
warning sign about your company, in many cases, but would understandable
in early-stage startups.) Well, there’s still probably going to come a time when
you would like a raise, promotion, or freedom to work on new projects.
You’re going to be able to make a stronger case for yourself, in any discussion,
by having a comprehensive document of your accomplishments handy.

Finally, this list gives you the chance to create a positive impression. In all of
the preceding cases, I’ll bet that whomever you’re speaking with (manager,
colleague, interviewer) is unaware of many of the things on your list, which
means you’re going to surprise them to the upside. You get to overdeliver,
which is a great way to get someone feeling good about you.

It doesn’t have to be fancy. Open a document in Google Docs, Microsoft
Word, or your favorite text editor, and just start typing. You’ll be glad you did.

http://www.it-ebooks.info/

Appendix A | Career Advice for Software Engineers 142

The Most Important Quality for Software
Candidates: Teachability
In discussing and preparing for software interviews, people typically focus on
the technical aspects: algorithm design, data structure selection, performance
and complexity analysis, and so on. As our interview process has evolved and
matured at Course Hero, however, the factor that probably rules out more
candidates than any other, is this: teachability.

Everyone is going to learn and grow into a new position. Nobody is a perfect
fit when you first meet them. The question, therefore is, How much of an
investment do we need to make in this person, and how much will it pay off?

Junior candidates will require more mentorship than senior ones, but in
both cases, some will be required. Even for people who already are skilled
programmers, they need to learn our process, code base, and conventions.
In our interview process, we’re looking for signs that this mentorship will be
productive. It really boils down to two questions:

•	 Is this person interested in learning?

•	 Is this person capable of learning?

There are a few ways to demonstrate that you are teachable in an interview
setting:

•	 Receive and incorporate feedback from your interviewer.
If they suggest a way to approach a problem, listen.
They’re not trying to trick you. (If they are, I suggest
you interview somewhere else.) Respond to that feed-
back and try to incorporate it into your work. You might
know a better approach, but if you decide to say so, you
need to be right.

•	 Apply things discussed earlier in the interview to sub-
sequent questions or problems. This is a great way to
demonstrate that you’ve learned something.

•	 Communicate and have an active dialogue as you work
through things. Good communication is an indication
that people will be able to have productive work sessions
with you.

•	 Talk about projects where you’ve tried to learn things,
beyond strictly what was asked. Show that you’re self-
motivated to learn, improve, and share knowledge with
others.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 143

Presenting yourself as a teachable team member can really set you apart — in
your next interview and throughout your career as well. By nature, being
teachable means that you are receptive to testing and trying new approaches.
Your mentors and colleagues will be eager to share their unique perspec-
tives, and you’ll learn how to attack projects from a variety of angles. This
experience — and your willingness to learn — will be invaluable at your current
position and beyond.

The Most Common Mistake in Startup Job
Applications
As someone who has managed technical teams for several years, at large and
small companies, I’ve received and read hundreds, maybe thousands, of e-mails
from applicants. You certainly learn some heuristics to help identify the good
ones quickly, but you also spot frustratingly common mistakes. In my experi-
ence, the most common mistake for people applying to startups, the one that
has undermined the chances of some otherwise qualified candidates at my
company, and certainly others as well, is as follows:

You didn’t tell us why you want the job. This job.

If you haven’t spent any time learning about us and what we need, why should
we do the same for you?

Every candidate that gets to the interview stage requires us to do hours of
preparation, interviews, and discussion. If your introduction is generic, I’m led
to believe that you’ve contacted dozens of other companies as well. If we’re
going to invest our time in getting to know you, we’d like to know you’re
serious about us.

It’s different for bigger companies, which have hiring processes that involve
more people and put your information through some normalization (a huge
hiring database) anyway. But at a startup, every hiring decision is so important
that it takes careful consideration.

Here are some specific manifestations of this problem, which you should avoid
in your own communications.

Don’t:

•	 Send an introduction or letter that has no information
specific to the company or position

•	 Write “let me know if you have any good opportunities
for me” — you should be explaining that to us

•	 Apply for a position that clearly does not match your
background, without any explanation why

http://www.it-ebooks.info/

Appendix A | Career Advice for Software Engineers 144

By contrast, here’s how you can stand out.

Do:

•	 Tell us why you want this job, specifically

•	 Demonstrate that you’re interested in our company and
products

•	 Explain how you would be able to do the job, to the best
of your ability

•	 Describe examples of past work that would apply

And always include an up-to-date resume. It may seem quaint, but a resume
is still one of the most concise, portable summaries of a person’s skills and
experience you can find.

The Most Common Mistake in Startup Job
Interviews
This happens way too often:

Q: “Tell me about this recent project on your resume. What was your role,
and what did you contribute?”

A: “Well, we built a tool to…”

Whoa, stop right there.

Any interview response that includes we is not useful. We’re not interviewing
your whole team. We’re interviewing you. Tell us what you did.

Be egotistical! Be self-obsessed! (But don’t lie.)

If you’re able to talk only about what we did, it unfortunately sounds like you
didn’t do anything. For example:

Bad: “Our team refactored the order-processing system to improve
performance.”

Good: “I reimplemented an existing Python library for order processing in
C++ and added multithreading to improve performance.”

Great! You’ve just given me a half dozen things to ask about and dive into. The
more detail, the better. Don’t be too modest — this is your time to show off.
Since you’re here in our office, you’ve convinced us you want the job; now
convince us you can do it.

http://www.it-ebooks.info/

Building Great Software Engineering Teams 145

Four Ways to Improve Your Next Job
Interview
Job interviews can be stressful, confusing experiences. Here are four simple
tips to increase your chances for success and enjoyment of the process.

Learn About Your Interviewers
The team interviewing you has almost certainly looked you up on Google,
LinkedIn, and probably Facebook and Twitter too. You can do the same. For
example, search their company on LinkedIn for the type of role for which
you’re interviewing. Even if you can’t find people specifically, you can get an
idea of the culture and skills that are important.

Come with Suggestions
During the interview, show that you’re really interested in this opportunity.
They’re investing time in you, so demonstrate that you’ve done the same.
Show that you’ve thought about why this job in particular is so important.
Show that you’ve taken the time to research what they do and try to under-
stand it.

One of the best ways to prove your interest is to offer suggestions on how to
improve their product, process, or some other part of the company. They may
disagree with your idea, but they’ll appreciate that you took the time to try.

Don’t Call It Resume.pdf
Properly naming a resume file is evidently still a widespread problem.
I currently have 14 files called Resume.pdf in my default download folder
alone. Put your name and something descriptive in the file name, so it’s easier
to find and remember.

For example: josh_tyler_resume_sw_engineer.pdf

Five Minutes Early Is Much Better Than Five Minutes
Late
Obviously, it’s better to be early than late, right? But let me explain some
reasons why, that you might not have thought of.

http://www.it-ebooks.info/

Appendix A | Career Advice for Software Engineers 146

First, it might come across as rude. You’re taking this seriously, right?

Second, if you arrive early, your interviewers might not be fully prepared.
This gives you a tiny psychological edge.

Finally, if you’re late, you’re possibly shortening the time available to impress
the team with your skills. If you’re fortunate, your interviewers will have extra
time to run late. But they might not.

Remember, your interviewers have to start by assuming you’re not going to
get an offer. The interview is your time to prove you should. Don’t short-
change yourself.

Deep-Link to GitHub: Make Your Resume
Stand Out
Many software engineering resumes, cover letters, and job applications now
include links to personal repositories on GitHub, the popular code hosting site,
which is great. For software developers, this is your portfolio. Unfortunately,
though, it’s hard to find the important information there — most projects
have layers of directories, boilerplate code, and lots of stuff written by other
people. It’s not useful, for example, to see that you were able to generate the
default scaffolding code for a Rails app.

There has to be a better way!

I have a suggestion: deep-link to a few highlights inside your GitHub repo — files
or changesets that show off some of your best code or design work. Take the
reader right to the good stuff.

To show an example from my own (admittedly sparse, out-of-date) GitHub…

This is OK:

https://github.com/jtyler

But this is better:

https://github.com/jtyler/jquery_coordinates/blob/master/jquery.
coordinates.js

Choose carefully to show off your best work!

https://github.com/jtyler
https://github.com/jtyler/jquery_coordinates/blob/master/jquery.coordinates.js
https://github.com/jtyler/jquery_coordinates/blob/master/jquery.coordinates.js
http://www.it-ebooks.info/

I

A, B
AngelList

“Willing to Work in a Distributed
Team”, 37–38

“Will Move To” input, 36

C
Co-operative education programs

(co-ops), 53

Core company principle
activities, 17
influence individual decision-making, 17

D
Django web framework, 7

E, F
Effective managers

behavior correction, 94–95
career development

attentiveness, 94
experience, 94
listening, 93

confidence
assistance and guidance/opinion, 103
communication chain, 103
one-on-one and staff meetings, 101
problem solving, 102
staff meetings, 102
team interaction, 101
Zvents, 100

delegation effect, 95
experience, 97–98
interruptions and context shifts, 92

personal conflict or bureaucratic
process question, 92

recruiting and hiring, 92
responsibility, 91
technical management, 91

Engineering managers
big projects prevention, 123
Course Hero product teams, 133
DRY principle, 134
experience, 125
market research and writing

requirements, 134
pair programming, 135
performance, 118–119
product management

teams, 127–128
product requirements, 122
promotions, 120
rewards and compensation, 123
robotics systems and videoconferencing

software, 126
Scrum methodology, 122
senior management or executives, 120
team growth, 121
toggle/gatekeeper, 124
trusting relationship, 121
unpredictable and complex

challenges, 115
vice president (VP), 115, 117–118
workflow development

architecture review, 131
code review, 131–132
design in progress phase, 130
ideation phase, 129
quality assurance, 132
technical implementation, 131

Index

http://www.it-ebooks.info/

148 Index

Engineering team building, challenges
growing and dying company, 1
high-risk and high-reward nature, 2
hiring decisions, 5–6
identifying top performers

behavioral interviews, 5
courtship process, 4
interview techniques, 5
poor predictive quality,

interviews, 5
management

Django web framework, 7
long-term success, 6
neglected, 7
overlooked opportunity, 6
Python, 7

multidimensional, 2
tech culture

10x programmer, 3
bachelor’s degree, 3
coder/software engineer, 3
documented experience, 4
engineering shortage, 3
music and entertainment icons, 4
rock-star coder/front-end ninja, 4
VC, 4
working experience, 3

teching talent, 2

Enlightened approach
building expertise, 15
business priority, 14
company culture, 15
contingent recruiting, 14
core company principle, 17–18
cynicism, 16
directly/indirectly attraction, 15
engineering terms, 16
first-order company, 14
frustrating system, 14, 16
hiring managers, 14
internally/externally recruitrs, 17
recruiter’s search, 13
reward individual contributions, 15
spray and pray approach, 13
startup founders, 14
value, 15

G
Green Card holder

costs, 47
employer sponsorship, 45
immigrant petition (I-140), 46
long-term employee retention, 45
PERM, 46
short-term retention tool, 45

H
Hiring decision, checklist

airport test, 74
ceiling person, 72
characteristics, 71
employee potential, 73
on-the-job technical training, 73
self-awareness and emotional

intelligence, 74
team improvement, 73
working with projects, 74

Hiring process
algorithms, 58
bad decision and dealing, 59
big picture consideration, 59
candidates time, 60
computer science

fundamentals, 58
cynicism detection, 59
database design and practical skills, 58
incentive, 60
informal activity, 63
interview strategy, 57
limitation, 62
negotiation effect, 61–62
preventing discussions, 59
product management interview, 58
regrets, 62
start preparing, 64

I, J, K, L, M
Immigrant petition (I-140) approval

advanced degrees, 46
court decisions/executive actions, 46
employment-based immigration, 46

http://www.it-ebooks.info/

149Index

Interview process
bottom-up approach, 79
decision-making, 80
emotional intelligence, 81
employment offer, 78
engineers, interview, 80
enjoyable candidate, 76
enthusiasm candidates, 81
high-caliber candidates, 80
high-potential candidates, 78
high-quality candidate, 77
Java

C++, 87
coding interviews, 83
coding skills, 88
data-driven decision, 84
familiar techniques, candidates, 85
Node.js, AngularJS and jQuery, 85
PHP, 85
Python and Ruby, 85–86
side projects, 85
web development, 85

success rate, 78
technical and analytical skill, 81
typical executive interview, 79

N
Ninja rockstar developer

behavior types, 67
LinkedIn Jobs, 66
“python ninja”, 66
“ruby ninja”, 66
software developers

mobile developer, 69
UX/UI designer, 69

O
Optional practical training (OPT), 44, 48

P, Q
Program electronic review

management (PERM)
audit/additional processing, 46
date priority, 46
labor certification application, 46

R
Recruitment success

arduous/repetitive tasks, 28
candidates qustionnaire, 31–32
company profiles, 34
CS degree, 34
hiring costs, 29
long-term solutions

community involvement, 54
co-ops, 53
internships, 52
open source projects, 53–54

personality/skillset, 30
quantitative and qualitative analysts, 30
quantitative goals, 28
remote locations

co-located team, 35
contract/in-house recruiter, 37
“Willing to Work in a Distributed

Team”, 37–38
“Will Move To” input, 36

second tier
engineering students recruiting, 38
job fair, 39–40
US News & World Report rankings, 39

teachability
important questions, 31
interest and aptitude, 31
learning and growing, 31
skilled programmers, 31

training program, 49–50
visa (see Visas developement strategy)
web site, 32

Rock-star coder/front-end ninja, 4

S
Slack and HipCha, 25

Spray and pray approach, 13

T, U
Technical recruitment

algorithmic knowledge
hiring meeting, 21
Mythical Man-Month, 22
technical test /puzzle, 21

http://www.it-ebooks.info/

150 Index

communication skills, 25
distributed team

primary advantage, 24
secondary advantages, 24
Slack and HipChat chat apps, 25

finding candidates, 19
Google, 24
individual productivity, 24
local people, 23
networking skills, 25
onboarding program development, 23
pair programming, 23
product timeline, 23
visas process, 20
Yahoo, 24

Technical vs. management tracks
Beam robotics, 105
career development, 106
chief technical officer (CTO), 108
engineering manager responsibility, 110
executive potential and

bright futures, 111
growth paths, engineers, 106
leadership positions, 111

management path, 110
medium-sized technology company, 108
primary path, 110
similarities and differences, 107
transitioning engineers, 112
vice president (VP), 108

V, W, X, Y, Z
Venture capital (VC), 4

Visas developement strategy
costs, 47
E-3 holder, 44
F-1, 44, 48
green card, 45
green card (permanent

residence), 46–47
H-1B, 41–42, 47–48
hiring discussions, 42
immigration attorney, 40
J-1, 45, 48
OPT, 44
registration and legal fees, 40
STEM, 44
TN status, 43–44

Technical recruitment (cont.)

http://www.it-ebooks.info/

Building Great
Software

Engineering Teams

Recruiting, Hiring, and Managing
Your Team from Startup to Success

Josh Tyler

http://www.it-ebooks.info/

Building Great Software Engineering Teams: Recruiting, Hiring, and Managing Your
Team from Startup to Success

Copyright © 2015 by Joshua Tyler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1134-2

ISBN-13 (electronic): 978-1-4842-1133-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Robert Hutchinson
Developmental Editor: Douglas Pundick
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James
Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben
Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Rita Fernando
Copy Editors: Kezia Endsley, Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Cover Designer: Friedhelm Steinen-Broo

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc.
(SSBM Finance Inc.). SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

Apress Business:  The Unbiased Source of Business
Information

Apress business books provide essential information and practical advice,
each written for practitioners by recognized experts. Busy managers and
professionals in all areas of the business world—and at all levels of technical
sophistication—look to our books for the actionable ideas and tools they
need to solve problems, update and enhance their professional skills, make
their work lives easier, and capitalize on opportunity.

Whatever the topic on the business spectrum—entrepreneurship, finance,
sales, marketing, management, regulation, information technology, among
others—Apress has been praised for providing the objective information
and unbiased advice you need to excel in your daily work life. Our authors
have no axes to grind; they understand they have one job only—to deliver
up-to-date, accurate information simply, concisely, and with deep insight that
addresses the real needs of our readers.

It is increasingly hard to find information—whether in the news media,
on the Internet, and now all too often in books—that is even-handed and
has your best interests at heart. We therefore hope that you enjoy this
book, which has been carefully crafted to meet our standards of quality and
unbiased coverage.

We are always interested in your feedback or ideas for new titles. Perhaps
you’d even like to write a book yourself. Whatever the case, reach out to us
at editorial@apress.com and an editor will respond swiftly. Incidentally, at
the back of this book, you will find a list of useful related titles. Please visit
us at www.apress.com to sign up for newsletters and discounts on future
purchases.

The Apress Business Team

http://editorial@apress.com
http://www.apress.com
http://www.it-ebooks.info/

To my teams—past, present, and future

http://www.it-ebooks.info/

About the Author
Josh Tyler is vice president of engineering and
design at Course Hero, an education technology
company. He was previously director of software
engineering at Suitable Technologies and worked
in the field of human-computer interaction as
a user experience architect, software developer,
and researcher at Willow Garage, Zvents,
Hewlett-Packard, and Xerox PARC. Tyler holds
a BS in computer science from Washington
University and an MS in computer science from
Stanford University.

http://www.it-ebooks.info/

Acknowledgments
So many people have helped me get where I am today that I don’t know where
to begin.

Actually, I do. Angelina Calderon, our lead recruiter at The Sourcery, has been
so much more than I expected when we began working together. Her ideas,
feedback, and intuition have shaped a lot of what you see in this book. Thank
you so much, Angelina and team.

There are many other people I wish to thank as well: Andrew Grauer, CEO
of Course Hero, for giving me the opportunity and support to build a great
team; the rest of the team at Course Hero, especially the senior engineers,
for the parts you play in our process; Scott Hassan, who gave me a unique
opportunity to lead development on some really cool robots; Robert Krohn,
for giving me my first crack at management; Steve Cousins, for mentorship
throughout my career; Kelly Wachs, for patiently explaining many details of
employment-based immigration law; James A. Bach, author of How to Secure
Your H-1B Visa, for his help reviewing my writing; my old friends Gordon Rios,
Ethan Stock, Stephen Sorkin, Jeff Gray, and Cole Goeppinger, to whom I turn
when I have management challenges; Dionne McCray, for her tough love and
pushing me to be more than I thought I could; and Amit Nithianandan, for
reviewing my writing along the way.

From Apress, I wish to thank Robert Hutchinson, for believing in me from the
beginning; Rita Fernando, for helping me through the process as a first-time
author; and Douglas Pundick, for cleaning up all my prose.

And finally, I wish to thank my family—my wonderful and brilliant wife, Gesara,
who continues to be my most trusted advisor on all matters, professional
and personal; my kids, for having the patience to let me finish this project; my
parents, for their support and encouragement; and everyone else in my family,
just for being who they are.

Thanks, everyone.

http://www.it-ebooks.info/

Other Apress Business Titles You Will Find Useful

From Techie to Boss

Cromar

978-1-4302-5932-9

How to Recruit and Hire

Great Software Engineers

McCuller

978-1-4302-4917-7

Managing Humans,

2nd Edition

Lopp

978-1-4302-4314-4

Managing Projects in

the Real World

McBride

978-1-4302-6511-5

No Drama Project

Management

Gerardi

978-1-4302-3990-1

Preventing Good People

from Doing Bad Things

Anderson / Mutch

978-1-4302-3921-5

Technical Support

Essentials

Sanchez

978-1-4302-2547-8

How to Secure Your

H-1B Visa

Bach / Werner

978-1-4302-4728-9

Tech Job Hunt

Handbook

Grossman

978-1-4302-4548-3

Available at www.apress.com

http://www.apress.com/9781430259329
http://www.apress.com/9781430259329
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430249177
http://www.apress.com/9781430249177
http://www.apress.com/9781430249177
http://www.apress.com/9781430249177
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430243144
http://www.apress.com/9781430243144
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430265115
http://www.apress.com/9781430265115
http://www.apress.com/9781430265115
http://www.apress.com/9781430265115
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239901
http://www.apress.com/9781430239901
http://www.apress.com/9781430239901
http://www.apress.com/9781430239901
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430239215
http://www.apress.com/9781430239215
http://www.apress.com/9781430239215
http://www.apress.com/9781430239215
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430225478
http://www.apress.com/9781430225478
http://www.apress.com/9781430225478
http://www.apress.com/9781430225478
http://www.apress.com/9781430225478
http://www.apress.com/9781430247289
http://www.apress.com/9781430247289
http://www.apress.com/9781430247289
http://www.apress.com/9781430247289
http://www.apress.com/9781430247289
http://www.apress.com/9781430247289
http://www.apress.com/9781430245483
http://www.apress.com/9781430245483
http://www.apress.com/9781430245483
http://www.apress.com/9781430245483
http://www.apress.com/9781430245483
http://www.apress.com/9781430245483
http://www.apress.com/
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.apress.com/9781430259329
http://www.apress.com/9781430249177
http://www.apress.com/9781430243144
http://www.apress.com/9781430265115
http://www.apress.com/9781430239901
http://www.apress.com/9781430239215
http://www.apress.com/9781430225478
http://www.apress.com/9781430245483
http://www.it-ebooks.info/

	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter
1: The Challenge of Building an Engineering Team
	 Why Is It So Hard to Build an Engineering Team?
	 Tech Talent Is in Short Supply
	 Tech Culture Exaggerates the Problem
	 Identifying Top Performers Is Difficult
	 Hiring Is Hard

	 Management: The Overlooked Opportunity
	 What’s in This Book
	 About Me: Why I Wrote This Book

	Part I:
Recruiting
	Chapter
2: An Enlightened Approach to Recruiting
	 What Is Recruiting Enlightenment?
	 Get Your Hands Dirty
	 Recruiting as a Core Company Principle
	 Summary

	Chapter
3: Six Destructive Myths About Technical Recruiting
	 Myth 1: You Need to Find More Candidates
	 Myth 2: Dealing with Visas Is Too Hard
	 Myth 3: Algorithmic Knowledge Trumps Everything
	 Myth 4: You Need to Find People with Experience
	 Myth 5: You Need to Find Local People
	 Why You Should Build a Local Team
	 Why You Should Build a Distributed Team

	 Myth 6: You Should Avoid Recruiters
	 Summary

	Chapter
4: Nine Steps to Recruiting Success
	 Step #1: Prepare Yourself for The Grind
	 Step #2: Prepare to Spend
	 Step #3: Identify the Top Qualities to Look For
	 Teachability

	 Step #4: Make Your Company Attractive
	 Your Web Site
	 Profiles on Other Sites

	 Step #5: Learn Where to Look for Engineers
	 Recruiting Remotely
	 The “Second Tier”

	 Step #6: Develop a Strategy for Visas
	 H-1B
	Hiring Discussions

	 TN
	 E- 3
	 F-1 /OPT/ STEM
	 J-1
	 Green Card (Permanent Residence)
	The Process
	Labor Certification (PERM)
	 Immigrant Petition (I-140)

	 Costs
	H-1B Ramifications

	 Successful Strategies
	Cover the Costs
	Converting Graduates from F-1 to H-1B
	J-1 Work Exchange Programs
	Canadians Have an Advantage

	 Summary of Visa Strategies

	 Step #7: Develop Your Training Program
	 Step #8: Find a Recruiter
	 Roll Up Your Sleeves
	 Stay Involved
	 Characteristics of Great Recruiters
	 How to Find a Recruiter

	 Step #9: Establish Long-Term Solutions
	 Internships
	 Co-Ops
	 Open Source Projects
	 Community Involvement

	 Summary

	Part II:
Hiring
	Chapter
5: Hiring Is Hard
	 Agreeing on a Strategy
	 Getting to “Yes”
	 Candidates Are Crafty
	 Keep Moving Fast
	 How Tight Should Your Deadline Be?
	 Negotiate Effectively
	 Have No Regrets
	 Hire at the Limit

	 Your Job Doesn’t End with the Offer
	 Build a Connection
	 Connect with Students
	 Start Preparing

	 Summary

	Chapter
6: The Myth of the Ninja Rockstar Developer
	 Where Did All These Ninjas and Rockstars Come From?
	 What’s the Big Deal?
	 Better Terminology for Software Developers
	 Summary

	Chapter
7: The Hiring Decision Checklist
	 What Is this Person’s Ceiling?
	 How Does this Person Make Us Better?
	 Is this Person Teachable?
	 What Will this Person Work On?
	 Will We Like Being Around this Person?
	 Summary

	Chapter
8: Making Interviews Fun for Your Team
	 The Importance of Fun Interviews
	 Fun for the Candidate
	 Fun for Your Team
	Quality Candidates
	An Example from Course Hero: Conduct Interviews in Reverse

	Owning the Process

	 How to Make Interviews Fun: Screen Out All But the Best Candidates
	 Who Makes a Good Interviewer?
	 Technical and Analytical Skill
	 Empathy for Others
	 Enthusiasm for Their Work

	 Summary

	Chapter
9: Why We Don’t Allow Java in Job Interviews
	 No Java
	 What’s Wrong with Java?
	 Java for Web Apps
	 Java Is Just One of Many Tools
	 Side Projects
	 People Start with Java

	 Results: Has this Policy Worked?
	 Interviews Are More Focused
	 Sometimes We Give In
	 Personality Screening
	 It’s Awkward

	 Summary

	Part III: Managing
	Chapter
10: Do I Want to Be a Manager?
	 You Work for Them
	 Your Time Is Less Important Than Theirs
	 Example: Hiring

	 You Care About Helping People with Their Careers
	 Listening
	 Experience
	 Attentiveness

	 You’re Not Afraid to Correct Behavior
	 You Can Trust Others
	 You Like to Garden
	 You Obsess Over Details
	 You Care About Accomplishments More Than Friendships
	 Personal Experience: First-Time Manager
	 Summary

	Chapter
11: A Manager’s Most Important Deliverable
	 Confidence
	 Testing for Confidence
	 Warning Signs of Losing the Confidence of Others
	 People Try to Solve Problems Without You
	 People Go Around You
	 People Complain a Lot
	 People Stop Seeking You Out for Help
	 Your Perception Doesn’t Square with Others
	 Your Manager Tells You

	 Summary: The Value of Confidence

	Chapter
12: Technical vs. Management Tracks: Helping Your People Grow
	 Growth Paths for Engineers
	 Technical Leadership Paths
	 Managerial Leadership Paths
	 Combining Technical and Managerial Leadership
	 Transitioning New Leaders
	 Summary

	Chapter
13: Tricks of the Trade for Engineering Managers
	 What Does a Vice President of Engineering Do All Day?
	 Levels of Engineer Performance
	 A Word About Promotions

	 Upside-down Engineering Management
	 Let People on Your Team Grow
	 Grow Yourself
	 Fight for Your Team
	 Be Proactive About Rewards

	 Preventing Big Projects from Becoming Big Headaches
	 Break Things Down
	 Ship Constantly
	 Use Feature Toggles
	 Keep Everyone Working on Only This Project

	 Managing People with More Experience Than You
	 Leading a Team Without Deep Domain Knowledge
	 Lessons from a Case Study of Engineering Process
	 Product Teams
	 Development Workflow
	Ideation
	Requirements
	Scope Meeting
	Design Ready
	Design in Progress
	Technical Architecture Review
	Development Ready
	Development in Progress
	 Code Review
	Quality Assurance
	Launch

	 Course Hero’s Engineering Principles
	Ship Early and Often
	Only One Project at a Time
	Testing Is a First-Class Problem
	Communicate Openly and Frequently
	Always Be Recruiting

	 Pair Programming

	 Summary

	Appendix
A: Career Advice for Software
	 Career Paths: Silicon Valley vs. Traditional Technology Companies
	 How to Find the Best People to Work With: Be One
	 Be Good at What You Do
	 Know What You Do
	 Stay in Touch

	 How to Get Ahead: Document Everything
	 The Most Important Quality for Software Candidates: Teachability
	 The Most Common Mistake in Startup Job Applications
	 The Most Common Mistake in Startup Job Interviews
	 Four Ways to Improve Your Next Job Interview
	 Learn About Your Interviewers
	 Come with Suggestions
	 Don’t Call It Resume.pdf
	 Five Minutes Early Is Much Better Than Five Minutes Late

	 Deep-Link to GitHub: Make Your Resume Stand Out

	Index
	Other Apress Business Titles You Will Find Useful

