


Emerging Innovations 
in Agile Software 
Development

Imran Ghani
Universiti Teknologi Malaysia, Malaysia

Dayang Norhayati Abang Jawawi
Universiti Teknologi Malaysia, Malaysia

Siva Dorairaj
Software Education, New Zealand

Ahmed Sidky
ICAgile, USA

A volume in the Advances in Systems Analysis, 
Software Engineering, and High Performance 
Computing (ASASEHPC) Book Series 



Published in the United States of America by 
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2016 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
   Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com. 

Names: Ghani, Imran, 1975- editor. | Jawawi, Dayang Norhayati Abang, 1972- 
   editor. | Dorairaj, Siva, 1972- editor. | Sidky, Ahmed editor.
Title: Emerging innovations in agile software development / Imran Ghani, 
   Dayang Norhayati Abang Jawawi, Siva Dorairaj, and Ahmed Sidky, editors.
Description: Hershey, PA : Information Science Reference, an imprint of IGI 
   Global, [2016] | Includes bibliographical references and index.
Identifiers: LCCN 2015046888| ISBN 9781466698581 (hardcover) | ISBN 
   9781466698598 (ebook)
Subjects:  LCSH: Agile software development--Technological innovations.
Classification: LCC QA76.76.D47 E465 2016 | DDC 005.1--dc23 LC record available at http://lccn.loc.gov/2015046888

 
This book is published in the IGI Global book series Advances in Systems Analysis, Software Engineering, and High Perfor-
mance Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-3461)



The Advances in Systems Analysis, Software Engineering, and High Performance Computing  (ASASEHPC) Book Series (ISSN 2327-3453) 
is published by IGI Global, 701 E. Chocolate Avenue, Hershey, PA 17033-1240, USA, www.igi-global.com. This series is composed of titles 
available for purchase individually; each title is edited to be contextually exclusive from any other title within the series. For pricing and ordering 
information please visit http://www.igi-global.com/book-series/advances-systems-analysis-software-engineering/73689. Postmaster: Send all 
address changes to above address. Copyright © 2016 IGI Global. All rights, including translation in other languages reserved by the publisher. 
No part of this series may be reproduced or used in any form or by any means – graphics, electronic, or mechanical, including photocopying, 
recording, taping, or information and retrieval systems – without written permission from the publisher, except for non commercial, educational 
use, including classroom teaching purposes. The views expressed in this series are those of the authors, but not necessarily of IGI Global.

IGI Global is currently accepting manuscripts 
for publication within this series. To submit a pro-
posal for a volume in this series, please contact our 
Acquisition Editors at Acquisitions@igi-global.com 
or visit: http://www.igi-global.com/publish/.

• Engineering Environments
• Storage Systems
• Computer System Analysis
• Performance Modelling
• Metadata and Semantic Web
• Distributed Cloud Computing
• Network Management
• Virtual Data Systems
• Human-Computer Interaction
• Parallel Architectures

Coverage

The theory and practice of computing applications and distributed systems has emerged as one of the 
key areas of research driving innovations in business, engineering, and science. The fields of software 
engineering, systems analysis, and high performance computing offer a wide range of applications and 
solutions in solving computational problems for any modern organization.

The Advances in Systems Analysis, Software Engineering, and High Performance Computing 
(ASASEHPC) Book Series brings together research in the areas of distributed computing, systems and 
software engineering, high performance computing, and service science. This collection of publications is 
useful for academics, researchers, and practitioners seeking the latest practices and knowledge in this field.

Mission

ISSN: 2327-3453 
 EISSN: 2327-3461

Vijayan Sugumaran
Oakland University, USA

Advances in Systems Analysis, 
Software Engineering, and 

High Performance Computing 
(ASASEHPC) Book Series



Titles in this Series
For a list of additional titles in this series, please visit: www.igi-global.com

Emerging Research Surrounding Power Consumption and Performance Issues in Utility Computing
Ganesh Chandra Deka (Regional Vocational Training Institute (RVTI) for Women, India) G.M. Siddesh (M S 
Ramaiah Institute of Technology, Bangalore, India) K. G. Srinivasa (M S Ramaiah Institute of Technology, Ban-
galore, India) and L.M. Patnaik (IISc, Bangalore, India) 
Information Science Reference • copyright 2016 • 460pp • H/C (ISBN: 9781466688537) • US $215.00 (our price)

Advanced Research on Cloud Computing Design and Applications
Shadi Aljawarneh (Jordan University of Science and Technology, Jordan) 
Information Science Reference • copyright 2015 • 388pp • H/C (ISBN: 9781466686762) • US $205.00 (our price)

Handbook of Research on Computational Simulation and Modeling in Engineering
Francisco Miranda (Instituto Politécnico de Viana do Castelo and CIDMA of University of Aveiro, Portugal) and 
Carlos Abreu (Instituto Politécnico de Viana do Castelo, Portugal) 
Engineering Science Reference • copyright 2016 • 824pp • H/C (ISBN: 9781466688230) • US $420.00 (our price)

Intelligent Applications for Heterogeneous System Modeling and Design
Kandarpa Kumar Sarma (Gauhati University, India) Manash Pratim Sarma (Gauhati University, India) and Mous-
mita Sarma (SpeecHWareNet (I) Pvt. Ltd, India) 
Information Science Reference • copyright 2015 • 407pp • H/C (ISBN: 9781466684935) • US $255.00 (our price)

Achieving Enterprise Agility through Innovative Software Development
Amitoj Singh (Chitkara University, Punjab, India) 
Information Science Reference • copyright 2015 • 349pp • H/C (ISBN: 9781466685109) • US $225.00 (our price)

Delivery and Adoption of Cloud Computing Services in Contemporary Organizations
Victor Chang (Computing, Creative Technologies and Engineering, Leeds Beckett University, UK) Robert John 
Walters (Electronics and Computer Science, University of Southampton, UK) and Gary Wills (Electronics and 
Computer Science, University of Southampton, UK) 
Information Science Reference • copyright 2015 • 519pp • H/C (ISBN: 9781466682108) • US $225.00 (our price)

Emerging Research in Cloud Distributed Computing Systems
Susmit Bagchi (Gyeongsang National University, South Korea) 
Information Science Reference • copyright 2015 • 446pp • H/C (ISBN: 9781466682139) • US $200.00 (our price)

701 E. Chocolate Ave., Hershey, PA 17033
Order online at www.igi-global.com or call 717-533-8845 x100

To place a standing order for titles released in this series, contact: cust@igi-global.com
Mon-Fri 8:00 am - 5:00 pm (est) or fax 24 hours a day 717-533-8661





Editorial Advisory Board
RodinaAhmad,University of Malaya, Malaysia
RashinaHoda,University of Auckland, New Zealand
MassilaBintiKamalrudin,Universiti Teknikal Melaka, Malaysia
SeungRyulJeong,Kookmin University, South Korea
RashidHafeezKhokhar,Charles Sturt University, Australia
RoyMorien,Naresuan University, Thailand
MazniBintiOmar,Universiti Utara, Malaysia
DianeStrode,Whitireia Institute, New Zealand





Table of Contents



Foreword............................................................................................................................................. xiv

Preface................................................................................................................................................. xvi

Chapter 1
ProductOwnershipIsaTeamSport....................................................................................................... 1

Shane Hastie, Software Education, New Zealand

Chapter 2
AgileCoachesandChampions:TwoHiddenFacilitatorsofAgileTransition..................................... 24

Taghi Javdani Gandomani, Islamic Azad University – Boroujen, Iran
Mina Ziaei Nafchi, Islamic Azad University – Boroujen, Iran

Chapter 3
ACanvasforCapturingContextofAgileAdoption............................................................................. 37

Pan-Wei Ng, Ivar Jacobson International, Singapore

Chapter 4
TenYearsofExperiencewithAgileandModel-DrivenSoftwareDevelopmentinaLegacy
Platform................................................................................................................................................. 51

Chung-Yeung Pang, Seveco AG, Switzerland

Chapter 5
RapidAgileTransformationataLargeITOrganization...................................................................... 85

Pan-Wei Ng, Ivar Jacobson International, Singapore

Chapter 6
ATransformationApproachforScalingandSustainingAgilityatanEnterpriseLevel:ACulture-
LedAgileTransformationApproach.................................................................................................. 103

Ahmed Sidky, ICAgile, USA

Chapter 7
DesignofaFrameworktoImplementAgilityatOrganizationalLevel.............................................. 127

Jagadeesh Balakrishnan, National University of Singapore, Singapore





Chapter 8
ASurveyofAgileTransitionModels................................................................................................. 141

Imran Ghani, Universiti Teknologi Malaysia, Malaysia
Dayang Abang Jawawi, Universiti Teknologi Malaysia, Malaysia
Naghmeh Niknejad, Universiti Teknologi Malaysia, Malaysia
Murad Khan, Universiti Teknologi Malaysia, Malaysia
Seung Ryul Jeong, Kookmin University, South Korea

Chapter 9
AgileAssessmentMethodsandApproaches...................................................................................... 165

Mina Ziaei Nafchi, Islamic Azad University – Boroujen, Iran
Taghi Javdani Gandomani, Islamic Azad University – Boroujen, Iran

Chapter 10
AgileSoftwareDevelopmentChallengesinImplementationandAdoption:FocusingonLarge
andDistributedSettings–PastExperiences,EmergentTopics......................................................... 175

Abbas Moshref Razavi, University of Malaya, Malaysia
Rodina Ahmad, University of Malaya, Malaysia

Chapter 11
UsabilityEngineeringinAgileSoftwareDevelopmentProcesses..................................................... 208

Muhammad Aminu Umar, Ahmadu Bello University Zaria, Nigeria
Sheidu Salami Tenuche, Ahmadu Bello University Zaria, Nigeria
Sahabi Ali Yusuf, Ahmadu Bello University Zaria, Nigeria
Aminu Onimisi Abdulsalami, Ahmadu Bello University Zaria, Nigeria
Aliyu Muhammad Kufena, Ahmadu Bello University Zaria, Nigeria

Chapter 12
FixedPricedProjectsinAgile:FixedProjectsinAgileSoftwareDevelopmentEnvironments........ 222

Anuradha Chaminda Gajanayaka, Exilesoft (Pvt) Limited, Sri Lanka

Chapter 13
Behavior-DrivenDevelopmentUsingSpecificationbyExample:AnApproachforDeliveringthe
RightSoftwareBuiltinRightWay..................................................................................................... 237

Praveen Ramachandra Menon, Independent Researcher, Singapore

Chapter 14
TheAgilityofAgileMethodologyforTeachingandLearningActivities......................................... 283

Deshinta Arrova Dewi Dewi, INTI International University, Malaysia
Mohana Muniandy, INTI International University, Malaysia

Compilation of References............................................................................................................... 293

About the Contributors.................................................................................................................... 317

Index................................................................................................................................................... 321





Detailed Table of Contents



Foreword............................................................................................................................................. xiv

Preface................................................................................................................................................. xvi

Chapter 1
ProductOwnershipIsaTeamSport....................................................................................................... 1

Shane Hastie, Software Education, New Zealand

A number of agile brands downplay the need for business analysis and requirements management
onagileprojects,puttinglargestoreintheroleoftheProductOwner.Thispapertacklessomeofthe
problemsthismisconceptioncanresultinandshowshoweffectiveproductownershipalmostalways
requiresateamwithavarietyofskillsandbackgroundstobeeffective.ProductOwnershiprequires
clarityofvision,alignmentwithorganizationalstrategy,understandingofthedevelopmentprocessand
theabilitytocommunicatewithawidevarietyofstakeholdersacrossalllevelsbothinsideandoutside
theorganization.Thecomplexityoftheroleismostoftenmorethanasinglepersoncan(orshould)
copewith–effectiveproductownershiprequiresateamworkapproachcoveringavarietyofskillsand
knowledge.

Chapter 2
AgileCoachesandChampions:TwoHiddenFacilitatorsofAgileTransition..................................... 24

Taghi Javdani Gandomani, Islamic Azad University – Boroujen, Iran
Mina Ziaei Nafchi, Islamic Azad University – Boroujen, Iran

PrevalenceofAgilemethods insoftwarecompanies is increasingdramatically.Softwarecompanies
andteamsneedtoemploythesemethodstoovercometheinherentchallengesoftraditionalmethods
insoftwaredevelopment.However,transitioningtoAgileapproachisatopicofdebate.Thisismainly
becausesoftwarecompaniesarefacingwithmanychallenges,obstacles,andhindranceswhenleaving
traditionalmethodsandmovingtoAgilemethods,asshowninpreviousresearchstudies.Conductinga
large-scaleresearchstudyshowedthatAgiletransformationneedtobesupportedbyseveralfacilitators
and identified itsmost important facilitators.Themainaimof thischapter is topresent twohidden
facilitatorsofAgiletransition,AgilecoachesandAgilechampions,whichrarelyhavebeentakeninto
consideration.Bothofthesefacilitatorsdirectlyimpressthepeopleinvolvedinthetransition.People-
intensivenatureofAgilemethodsandcriticalroleofthepeopleinthetransitionprocessreflectthe
importanceofthesefacilitatorswhenasoftwarecompanydoingitstransition.





Chapter 3
ACanvasforCapturingContextofAgileAdoption............................................................................. 37

Pan-Wei Ng, Ivar Jacobson International, Singapore

Althoughagiledevelopmentpromisesbettercustomerresponseandquality,notallwhoattemptagile
seemtogetsuchdesiredresults.Theissueiscontext–understandingthecontextinwhichagileisbeing
adoptedandchoosingtherightpractices.Ourresearchquestionishowagile-coachescanbestelicitand
communicatetheagileadoptioncontextwithdevelopmentteamsandorganizations.Inthispaper,we
proposecapturinganddescribingagileadoptioncontextvisuallyusingasetofarchitecturalviews.This
isanalogoustodescribingarchitectures,butnowappliedtothecontextofagileadoption.Wepropose
asetofviewsandapplieditintheagileadoptionofacompany’sinternalsocialnetworksystem(SNS).
Ourexperiencestaughtusthatcontextevolvesasagilecoachesinteractwithdevelopmentorganization
andteams,and thecontextdescriptionevolvesandconverges to the team’sdesiredwayofworking
aftertheagilecoachleavesthescene.Itisalsothebasisfordrawinguponpastexperiencesandbuilding
experiencesforthenextagileadoptionengagement.

Chapter 4
TenYearsofExperiencewithAgileandModel-DrivenSoftwareDevelopmentinaLegacy
Platform................................................................................................................................................. 51

Chung-Yeung Pang, Seveco AG, Switzerland

In this chapter, a report containing the author’smanyyearsof experience in softwaredevelopment
togetherwithadiscussionofsoftwareengineeringarepresented.Thereportbeginswiththesoftware
crisisandincludesdifferentprojectsfollowingthetraditionalwaterfallmodelwithheavydocuments.In
are-engineeringprojectofalegacyITsystembymodernizingCOBOLapplications,weestablishedan
agileandmodeldrivenapproachtosoftwaredevelopment.Thisapproachwhichhasbeensuccessfully
appliedin13projectssince2004ispresented.Thekeyfactorsrequiredforoursuccesswillalsobe
discussed.Boththegoodandbadexperiencesofthelasttenyearswillbesummarized.Thechapterwill
befinalizedwithavisionofanewarchitectureforagilesoftwaredevelopment.

Chapter 5
RapidAgileTransformationataLargeITOrganization...................................................................... 85

Pan-Wei Ng, Ivar Jacobson International, Singapore

ThischapterdescribestheagiletransformationofanITorganizationinChinawithabout4000people
includingcontractors.Inthespanofoneyear,47teamsand1700engineersmovedfromtraditionalto
agilewayofworking.Therewasa44%reductionindevelopmentlead-time,5%reductioninproduction
defectsand22%reductioninproductionincidents.Thisagiletransformationoccurredattwolevels.At
theorganizationlevel,adoptionspeedwascrucial,aswewantedtoreachcriticalmassinrapidtimewith
limitedcoachingresources.Thiswasverymuchanentrepreneurstartupproblem,wherecustomersinour
caseareteamsandmembersintheITorganization.Attheteamlevel,apracticearchitectureprovideda
roadmapforcontinuousimprovement.Atheory-based-software-engineeringapproachfacilitateddeeper
learning.Beyondtheusualfactorsforleadingsuccessfulchange,thistransformationexemplifiedthe
useofastartupmentality,socialnetworks,practicearchitecture,simulation,gamification,andmore
importantlyintegratingtheoryandpractice.





Chapter 6
ATransformationApproachforScalingandSustainingAgilityatanEnterpriseLevel:ACulture-
LedAgileTransformationApproach.................................................................................................. 103

Ahmed Sidky, ICAgile, USA

Thesustainabilityofagiletransformationsisdeeplylinkedtohowtheorganization“transforms”toagile.
Sustainable,effectiveagiletransformationsaffectalltheelementsofculturesuchas,leadershipstyle,
leadershipvalues,workstructures,rewardsystems,processes,andofcoursetheworkhabitsofpeople.
Howtoaffectthatcultureshiftisthekeyquestionwewillpresentinthischapter.Theauthorwillpresent
twodifferentcommontransformationapproaches(organizational-ledandprocess-led)andthendescribe
ahybridversioncalledculture-ledtransformationthatisdesignedtochangecriticalorganizationaland
personalhabitstoimproveandsustainorganizationalagility.

Chapter 7
DesignofaFrameworktoImplementAgilityatOrganizationalLevel.............................................. 127

Jagadeesh Balakrishnan, National University of Singapore, Singapore

WhilemanyexistingAgileproductdevelopmentmethodologieslikeSCRUM,ExtremeProgramming
(XP),DynamicSystemsDevelopmentMethod(DSDM),FeatureDrivenDevelopment(FDD)etc.cover
aspectsrelatedtodeveloping&deliveringaproductsolution,theyarenotmeanttoprovideanendtoend
frameworkforanorganizationtotransition/embraceandadoptagilewayofsoftwaredevelopment.For
anorganization’sagilejourneytobesuccessfulweshouldconsiderseveralorganizationalelementslike
howtodoabusinesscaseforagile,howtobuildagileleadershipqualitiesforstaffatalllevels(especially
Managers),howtosetup&governanagileorganization,howtoassessanagileorganizationetc.

Chapter 8
ASurveyofAgileTransitionModels................................................................................................. 141

Imran Ghani, Universiti Teknologi Malaysia, Malaysia
Dayang Abang Jawawi, Universiti Teknologi Malaysia, Malaysia
Naghmeh Niknejad, Universiti Teknologi Malaysia, Malaysia
Murad Khan, Universiti Teknologi Malaysia, Malaysia
Seung Ryul Jeong, Kookmin University, South Korea

Nowadays,sincebusinessenvironmentishighlydynamic,softwarenecessitiesarecontinuouslybeing
improvedinordertomeettheneedsofmodernindustrializedworld.Therefore,ITorganizationsseekfor
aquickwayofsoftwaredeliveryandforadaptingtothenecessarytechnologicalchanges.Fromthisideal
viewpoint,traditionalplan-drivendevelopmentslagbehindtoovercometheseconflicts.Thepurposeof
thischapteristopresenttheexistingmodelsandframeworkswhichguideorganizationstoadoptagile
methods.Thismayhelporganizationstofollowprofessionals’suggestionsduringtheirmigrationfrom
traditionalsystemstoagiledevelopment.





Chapter 9
AgileAssessmentMethodsandApproaches...................................................................................... 165

Mina Ziaei Nafchi, Islamic Azad University – Boroujen, Iran
Taghi Javdani Gandomani, Islamic Azad University – Boroujen, Iran

Agilemethodsarewidelyusedinsoftwarecompaniesinrecentyears.Manysoftwarecompaniesare
replacingtheirtraditionaldevelopmentmethodswithagilemethods.Nonetheless,measuringagilitythat
theyhaveachievedhasbeenatopicofdebate.Softwareteamsandcompaniesneedtoknowhowagile
theyareorhowmuchistheagilitydegreeoftheirorganization.Unliketraditionalmethodsinsoftware
development,thereisnostandardoruniversalmodel(likeCMM/CMMI)tomeasurematurityofagile
teamsandsoftwarecompanies.Sofar,onlyafewmethodsandtoolshavebeenproposedtomeasure
theagilityofsoftwarecompanies.Themainaimofthischapterisintroducingthestructureandmain
featuresoftheexistingagileassessmentmethodsandprovidingabriefdiscussionondrawbacksofthese
methods.Thischaptertriestoelucidatetheactualpositionofagilitymeasurementmethodsinmeasuring
agilitydegreeofcompanieswhoaretryingtoadapttoagilemethodsandpractices.

Chapter 10
AgileSoftwareDevelopmentChallengesinImplementationandAdoption:FocusingonLarge
andDistributedSettings–PastExperiences,EmergentTopics......................................................... 175

Abbas Moshref Razavi, University of Malaya, Malaysia
Rodina Ahmad, University of Malaya, Malaysia

ThefirstpartofthischapterpresentstheresultsofasystematicliteraturereviewonAgileSoftware
Development(ASD)challengesasarereportedinimplementationandadoptioncases.Thedataonly
considerstheconcreteevidencesofsurfacedproblemsmainlyaccordingtoworkexperienceandcase
studyarticles.Theresultsareanalyzedsothattypes,natureandintensityoftheproblemsaredetermined
and,comparedtoeachother,withinthreemajorclassificationsof“largeorganizations”,“distributed
settings”and“bothlargeanddistributedenvironments”.Theanalysisrevealsthat,inASD,common
organizationalandmanagerialissueshavebeenreplacedbycommunicationandcollaborationproblems.
Thesecondpartusestheresultsofthepartoneasaframeofanalysistorendermoreinterpretationse.g.
signifyingthatnon-agilitypreconceptionsaretherootofamajorityofproblematicprojects.Besides,
mediatingbetweenagileprojectsandtraditionalformsofmanagement,and,economicgovernanceare
twomajorrivalapproachesthatareemerginginresponsetothesechallenges.

Chapter 11
UsabilityEngineeringinAgileSoftwareDevelopmentProcesses..................................................... 208

Muhammad Aminu Umar, Ahmadu Bello University Zaria, Nigeria
Sheidu Salami Tenuche, Ahmadu Bello University Zaria, Nigeria
Sahabi Ali Yusuf, Ahmadu Bello University Zaria, Nigeria
Aminu Onimisi Abdulsalami, Ahmadu Bello University Zaria, Nigeria
Aliyu Muhammad Kufena, Ahmadu Bello University Zaria, Nigeria

As thepopularityandacceptanceofagile softwaredevelopmentmethodologies increases, theneed
tointegrateusabilityengineeringinthedesignanddevelopmentprocessesisimperative.While,agile
thefocusisontechnicalandfunctionalrequirementsnotonend-userinteraction,usabilityisusually





onlydealtwithontheside.Combiningthistwoinpracticewillgoalongwayindevelopmentofbetter
product.Sincethesuccessandacceptanceofsoftwareproductdependsnotonlyonthetechnologies
usedbuthowwellitintegratesuser-orientedmethods.Therefore,thischapterputstogetherworkson
howusabilityengineeringhasbeenintegratedwithagileprocesses.

Chapter 12
FixedPricedProjectsinAgile:FixedProjectsinAgileSoftwareDevelopmentEnvironments........ 222

Anuradha Chaminda Gajanayaka, Exilesoft (Pvt) Limited, Sri Lanka

Agilesoftwaredevelopmenthasestablishedasareliablealternativetowaterfallsoftwaredevelopment
model.Unfortunatelytheuseofagilesoftwaredevelopmenthasbeenlimitedtotimebasedcontracts
andnotfortimelimitedcontracts.Themainreasonforthislimitationisthe“Agilemanifesto”itself.
Theforthvalueofthemanifestostatesthatagilebelieversfindmorevaluein“Respondingtochange
overfollowingaplan”.Thisistheoneofthemainreasonswhyagilesoftwaredevelopmentmethods
arenotpreferredforafixedpricedcontractortimelimitedcontract.Thefollowingcasestudyprovides
anexampleonhowtheagilesoftwaredevelopmentcanbeusedforfixedpricedsoftwaredevelopment
contractsevenwhenoperatinginoffshorecontext.Theagilesoftwaredevelopmentconceptswereused
throughouttoplan,execute,monitor,report,etc.fortheprojectdocumentedinthiscasestudy.

Chapter 13
Behavior-DrivenDevelopmentUsingSpecificationbyExample:AnApproachforDeliveringthe
RightSoftwareBuiltinRightWay..................................................................................................... 237

Praveen Ramachandra Menon, Independent Researcher, Singapore

This chapter highlights a crucial problem seen often in software development that is bridging the
communicationgapbetweenbusinessandtechnicallanguageandthatitcanbeaddressedwith“Behavior
DrivenDevelopment”(BDD)methodologysupplementedwith“SpecificationByExample”approachof
deliveringtherightsoftwarethatmatters.Effectivecommunicationhasalwaysbeenachallengebetween
clients,businessstakeholders,projectmanagers,developers, testersandbusinessanalystsbecausea
“ubiquitous”languagethateveryonecaneasilyunderstandandusedoesnotexist.SpecificationBy
Exampleservesasthatubiquitouslanguageforall,helpsbuildrightsoftwarethatmattersthrougheffective
communication.SpecificationsarewritteninplainEnglishlanguageusingtheGherkinsyntaxtodescribe
variousbehaviorsofsoftware.BDDtoolshelpwritesoftwarespecificationusinggherkinlanguageand
alsocreatealivingdocumentationthatisautomaticallygeneratedbyprogramminglanguagereflecting
thecurrentstateofsoftwareatanygivenpointoftime.

Chapter 14
TheAgilityofAgileMethodologyforTeachingandLearningActivities......................................... 283

Deshinta Arrova Dewi Dewi, INTI International University, Malaysia
Mohana Muniandy, INTI International University, Malaysia

This paper presents the review of literatures that shows the contribution of the agile methodology
towardsteachingandlearningenvironmentatuniversitylevel.Teachingandlearningatuniversityhas
sincemigratedfromtraditionallearningtoactivelearningmethodologywherestudentsareexpected





tolearnbydoingratherthanlisteningpassivelytolecturesalone.Theagilemethodologynaturallyhas
promotedtheactiveparticipationofteammembersduringsystemdevelopmentphases.Someliterature
haveproposedwaysofadoptingagileintoactivelearningtoimproveteachingandlearningprocesses
andhavehighlightedthismethodasagreatsuccess.Wewouldliketohighlighthowefficienttheagile
conceptisintacklingseveralsituationsinacademiclearningasshownbyaninterestingmappingof
agileprinciplestotheclassroomenvironment.Wealsoofferoptionsfortheagileevaluationframework
toconsideracademicenvironmentasatooltoobtaintheagileperformancefeedback.

Compilation of References............................................................................................................... 293

About the Contributors.................................................................................................................... 317

Index................................................................................................................................................... 321





Foreword



Intoday’sdynamic,fast-paced,creativeeconomy,toseizenewandemergingmarketopportunitiesbefore
theircompetitorsdo,organizationsneedtohavebusinessandtechnicalagility.Toachievesustainable
businessandtechnicalagility,mostorganizationsareintheprocessofplanningorexecutingsomelevel
ofan“AgileTransformation”.

Thewords“Agile”and“transformation”areoftengreetedwithamixedbagofemotionsandcultural
implicationsacrossthesoftwareindustryandmoresointhebusinessworld.

ItisimportanttoclarifythatAgileisneitheraprocessnoramethodology;itisamindset.Many
peoplemaythinkthatAgileisjustanothersoftwaredevelopmentprocess.Althoughthatistruetoa
degree,thereisalotmoretoAgilethanjustaprocessorjustasetofpractices.Agile(oragility)isaway
ofthinkinggroundedintherealitiesoflearning,adapting,andcontinuousgrowththathappennaturally
withcreativeworkandcreativeworkers.Onceadopted,theAgilemindsetforcespeopletothinkina
value-drivenapproachaboutnumerousthingsintheirlives,includingofcoursetheirwork.Onthesame
note,thepurposeofanAgileTransformationistopositivelyinfluenceorganizationstowardsaculture
governedbytheAgilemindset.

This is an unprecedented time for businesses all around the world. Shifting their organizational
strategies,structures,processesandmoreimportantlytheirleadersandpeopletobeinlinewithwhat
isneededforacreativeeconomyisnotatrivialmatterbyanystretchoftheimagination.Thereforewe
arelivinginatimewhenlearningandsharinghoworganizationsaremakingtheseculturalchangesand
scalingAgileiscritical.

Thisbookprovidesagreatdealofinnovationsandinsightsabouthoworganizationsareassessing
theirreadinessforAgile,scalingAgileacrosstheirorganizations,designingAgiletransformationsand
reachingbusinessagility.

Thereareanumberofchaptersinthebookthatsharestoriesandexperiencesfromlarge-scaleAgile
transformations.WhenIleadAgiletransformationsforanumberofFortune100companies,stories
wereanimportanttoolforexecutivesandleadersoftheorganizationtoseewhatotherorganization
aredoingandtoreassurethemthatwhilethejourneymaybehardandlongitisworththeinvestment.

ThisbookalsodoesafantasticjobatexploringvariousAgiletransformationapproaches.Thisis
veryimportantsincemostorganizationsend-upcreatingacustomAgileapproachforthem.Learning
notone,bymanyapproaches,broadensanorganization’sunderstandingofwhatispossibleandasa
naturalconsequencehelpstheorganizationcraftanapproachthatismostsuitableforit.Ihaveconstantly
beenamazedwithhoworganizationscanlearnandextractthemostsuitableelementsfromeachAgile
approachtomakesomethingthatwillgivethemtheirutmostagility.

xiv



Foreword

TherearemanycomplexchallengesorganizationsfaceontheirAgilejourney.Someofthemare
relatedtoselectinganadoptionapproachesormethodology,otherchallengesstemfromhavingtheright
personneltoleadsuchatransformation.ManyorganizationsarealsoexploringhowAgilewillaffectother
partsofthebusinessthatarelesstechnicalinnaturelikeTalent,FinanceorLearningandDevelopment.

Ifyouarelookingforthelatestresearchorcomparativeanalysis,thisbookincludestheworkofgreat
academicians.Ifyouwanttoreadaboutcutting-edgeinnovationsgreatthought-leadersintheAgilespace
havesharedtheirinsightsinacoupleofdifferentchaptersthroughoutthisbook.Andifyouarelooking
forexperiencefromthetrenchesthebookhighlightstheworksofanumberofexpertpractitioners.This
bookisagreatcollectionandhassomethingforeveryone,whereveryouareonyourAgilejourney.Enjoy.

Ahmed Sidky 
ICAgile, USA

Ahmed Sidky is the founder of the International Consortium for Agile (ICAgile), and the author of the publication Becoming 
Agile in an Imperfect World.

xv





Preface



Agileisarelativelyrecentmethodologyusedinthedevelopmentprocessofaproject.Therefore,itis
importanttosharenewemergingknowledgewiththeaudiencesinterestedinadoptinganAgilemindset.
Theupcomingbook,EmergingInnovationsinAgileSoftwareDevelopment,focusesontheuseofagile
methodologiestomanage,design,develop,testandmaintainsoftwareprojects.Thisbookconsistsof
fourteenchapters.

In “Designof aFramework to ImplementAgility atOrganizationalLevel:OrganizationalAgile
Transformation”JagadeeshBalakrishnanhighlightscompatibilityproblemswithexistingagileproduct
developmentmethodologiesforcompanieslayingfootforthefirsttimeinagiledomain.Toassistin
suchsituation,Hehasprovidedguidelinesforeachphaseofagileadoptionrespectively.

In“RapidAgileTransformationataLargeITOrganization”Pan-WeiNgdescribesagiletransforma-
tionofanITorganizationinChinawith4000peopleincludingcontractors.Attheteamlevel,apractice
architectureprovidedaroadmapforcontinuousimprovement.Thistransformationhad44%reductionin
developmentlead-time,5%reductioninproductiondefectsand22%reductioninproductionincidents
andprovedtobeawin-winsituationforeveryone.

In“ACanvasforCapturingContextofAgileAdoption”Pan-WeiNgidentifiesthereasonsforwhich
companiesarenotabletogainbettercustomerresponseandqualityusingagilepractices.Toaddress
thisproblemtheyproposecapturinganddescribingagileadoptioncontextvisuallyusingasetofarchi-
tecturalviews.

In“AgileSoftwareDevelopmentChallengesinImplementationandAdoption:FocusingonLarge
andDistributedSettings-PastExperiences,EmergentTopics”AbbasMoshrefRazavi,RodinaAhmad
presenttheresultsofsystematicliteraturereviewonagilesoftwaredevelopmentchallengesandidentify
mediatingbetweenagileprojectsandtraditionalformsofmanagement,and,economicgovernanceas
majorrivalapproachesthatareemerginginresponsetothesechallenges.

In“FixedPricedProjectsinAgile:FixedProjectsinAgileSoftwareDevelopmentEnvironments”
AnuradhaChamindaGajanayakapointsoutthatwhyagilesoftwaredevelopmenthasbeenlimitedto
timebasedcontractsandnotfortimelimitedcontracts.Issueswerefurtherexplainedusingcasestudies
whichusedagilesoftwaredevelopmentconceptsthroughoutplanning,execution,monitoring,reporting,
etc.fortheprojectdocumentation.

xvi



Preface

In“ATransformationApproachforScalingandSustainingAgilityatanEnterprise-Level:ACulture-
LedAgileTransformationApproach”AhmedSidkyexplainhowSustainable,effectiveagiletransfor-
mationsaffectalltheelementsofcorporateculturesuchas,leadershipstyle,leadershipvalues,work
structures,rewardsystems,processes,andofcoursetheworkhabitsofpeople.

In“AgileAssessmentMethodsandApproaches”MinaZiaeiNafchi,TaghiJavdaniGandomaniin-
troducethestructureandmainfeaturesoftheexistingagileassessmentmethodsandprovidingabrief
discussionondrawbacksofthesemethods.

In“ASurveyofAgileTransitionModels”ImranGhani,DayangAbangJawawi,NaghmehNiknejad,
SeungRyulJeongandMuradKhanpresentasurveyonexistingmodelsandframeworksavailableto
guideorganizationsforagiletransition.Thesemodelsandframeworksmayhelptheorganizationstofol-
lowprofessionals’suggestionsduringtheirmigrationfromtraditionalenvironmenttoagileenvironment.

In“10YearsofExperiencewithAgileandModelDrivenSoftwareDevelopmentinaLegacyPlatform”
Chung-YeungPangdiscussanagileandmodeldrivenapproachtosoftwaredevelopmentestablished
whilere-engineeringprojectofalegacyITsystembymodernizingCOBOLapplication.Thisapproach
hasbeensuccessfullyappliedin13projectssince2004ispresented.

In“UsabilityEngineeringinAgileSoftwareDevelopmentProcesses”MuhammadAminuUmar,
SahabiAliYusuf,SalamiSheiduTenuche,AminuOnimisiAbdulsalami,AliyuMuhammadKufena
pointoutWhile,inagilethefocusisontechnicalandfunctionalrequirementsnotonend-userinterac-
tion,usabilityisusuallyonlydealtwithontheside.Combiningthistwoinpracticewillgoalongway
indevelopmentofbetterproduct.Hencechapterputstogetherworksonhowusabilityengineeringhas
beenintegratedwithagileprocesses.

In“AgileCoachesandChampions:TwoHiddenFacilitatorsofAgileTransition”TaghiJavdaniGan-
domani,MinaZiaeiNafchiConductedalarge-scaleresearchstudyshowingthatagiletransformation
needtobesupportedbyseveralfacilitatorsandidentifyitsmostimportantfacilitators.Hencetheypresent
twohiddenfacilitatorsofagiletransition,AgilecoachesandAgilechampions,whichrarelyhavebeen
takenintoconsideration.Bothofthesefacilitatorsdirectlyimpressthepeopleinvolvedinthetransition.

In“ProductOwnershipisaTeamSport”ShaneHastiedescribesthatproductownershiprequires
clarityofvision,alignmentwithorganizationalstrategy,understandingofthedevelopmentprocessand
theabilitytocommunicatewithawidevarietyofstakeholdersacrossalllevelsbothinsideandoutside
theorganization

In“Behavior-DrivenDevelopmentUsingSpecificationbyExample:AnApproachforDelivering
theRightSoftwareBuiltinRightWay”PraveenRamachandraMenonhighlightsacrucialproblemseen
ofteninsoftwaredevelopmentthatisbridgingthecommunicationgapbetweenbusinessandtechni-
callanguageandthatitcanbeaddressedwith“BehaviorDrivenDevelopment”(BDD)methodology
supplementedwith“SpecificationByExample”approachofdeliveringtherightsoftwarethatmatters.

In“TheAgilityofAgileMethodologyforTeachingandLearningActivities”DeshintaArrovaDewi
Dewi,MohanaMuniandypresentreviewofliteraturesthatshowsthecontributionoftheagilemeth-
odologytowardsteachingandlearningenvironmentatuniversitylevel.Latertheyofferoptionsforthe
agileevaluationframeworktoconsideracademicenvironmentasatooltoobtaintheagileperformance
feedbackinacademicenvironment.

xvii



Preface

Inthepreparationofthisbook,wereceivedmanyhighqualitycontributionsinresponsetoourcall
forchapters.Thenumberofcontributors indicates thatAgileSoftwareDevelopment isapromising
techniquetransformingsoftwareindustry.Weareverygratefulforthecontributionsandwouldliketo
thankalltheauthorsfortheirefforts.

Imran Ghani 
Universiti Teknologi Malaysia, Malaysia

Dayang Norhayati Abang Jawawi 
Universiti Teknologi Malaysia, Malaysia

Siva Dorairaj 
Software Education, New Zealand

Ahmed Sidky 
ICAgile, USA

xviii



1

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  1

DOI: 10.4018/978-1-4666-9858-1.ch001

ABSTRACT

A number of agile brands downplay the need for business analysis and requirements management on agile 
projects, putting large store in the role of the Product Owner. This paper tackles some of the problems 
this misconception can result in and shows how effective product ownership almost always requires a 
team with a variety of skills and backgrounds to be effective. Product Ownership requires clarity of vi-
sion, alignment with organizational strategy, understanding of the development process and the ability 
to communicate with a wide variety of stakeholders across all levels both inside and outside the orga-
nization. The complexity of the role is most often more than a single person can (or should) cope with 
– effective product ownership requires a teamwork approach covering a variety of skills and knowledge.

INTRODUCTION

A number of agile brands downplay the need for business analysis and requirements management on agile 
projects, putting large store in the role of the Product Owner. This paper tackles some of the problems 
this misconception can result in and shows how effective product ownership almost always requires a 
team with a variety of skills and backgrounds to be effective.

Product Ownership requires clarity of vision, alignment with organizational strategy, understanding 
of the development process (Methodology, 2014) and the ability to communicate with a wide variety 
of stakeholders across all levels both inside and outside the organization. The complexity of the role is 
most often more than a single person can (or should) cope with – effective product ownership requires 
a teamwork approach covering a variety of skills and knowledge (Andrea, 2005).

In this chapter we examine various aspects of Product Ownership, the characteristics needed in the 
team for successful product ownership, look at the capabilities needed in a product ownership team, 
examine the difference between value and velocity and provide some practical tools which can be used 
for product ownership in agile and non-agile projects (Currim, Mintz, & Siddarth, 2015).

Product Ownership 
Is a Team Sport

Shane Hastie
Software Education, New Zealand



2

Product Ownership Is a Team Sport
 

PRODUCT OWNERSHIP IN CONTEXT

The Product Owner Role

The Product Owner is one of the three roles defined in Scrum, and is referenced in many of the agile 
brands. The term Product Owner has become almost ubiquitous yet there is a lot of confusion and lots 
of misinformation about what the role is and what it actually entails.

The Scrum Guide defines the Product Owner role as follows:

The Product Owner is responsible for maximizing the value of the product and the work of the Devel-
opment Team. How this is done may vary widely across organizations, Scrum Teams, and individuals. 
(Education, 2014)

The Product Owner is the sole person responsible for managing the Product Backlog. Product Backlog 
management includes:

• Clearly expressing Product Backlog items;
• Ordering the items in the Product Backlog to best achieve goals and missions;
• Optimizing the value of the work the Development Team performs;
• Ensuring that the Product Backlog is visible, transparent, and clear to all, and shows what the 

Scrum Team will work on next; and,
• Ensuring the Development Team understands items in the Product Backlog to the level needed. 

(Schwaber, 2013)

Extreme Programming talks about needing the Customer onsite all the time:

One of the few requirements of extreme programming (XP) is to have the customer available. Not only to 
help the development team, but to be a part of it as well. All phases of an XP project require communica-
tion with the customer, preferably face to face, on site. It’s best to simply assign one or more customers 
to the development team. (Programming, 2014)

This puts a huge demand on the individual taking the Product Owner or Onsite Customer role, one 
which for the vast majority of real-world projects is beyond the skills and capabilities of any one individual.

Project Types

The nature of knowledge work is that it is inherently unpredictable, especially in complex environments 
such as software development projects. The typical software development project today requires inter-
facing with a number of existing systems both internal to and outside of the control of the organization 
building the product, solving problems for a variety of stakeholders from different business units or 
divisions spread across multiple locations in different time zones (Hastie, 2014).

Add to this complexity the nature of product development projects – often the problem to be solved 
is unclear and unknowable until the solution.



3

Product Ownership Is a Team Sport
 

The Cinderella Project

In September 2005, Jennitta Andrea (Andrea, 2005) described what she called the Cinderella Project, 
one for which the agile shoe fits perfectly. She described the characteristics of the Cinderella Project as:

• A team is small enough to fit within a collocated space—ideally less than ten people but no more 
than twenty.

• SMEs are a permanent part of the team.
• SMEs have a clear vision for the system requirements and can effectively communicate this to 

developers.
• SMEs can express the requirements in the form of functional tests.
• Either the problem domain has a short learning curve or the developers have deep experience in 

a more complex domain.

In that environment the Product Owner would be the SME (subject matter expert) able to provide 
the team with absolute clarity of direction and define clearly what success looks like for every aspect 
of the project.

Unfortunately this project doesn’t happen often today, and almost never in the large corporate envi-
ronment where agile practices are gaining greater and greater adoption.

Your Project

The reality of the project environment today is much more complex and uncertain.
Projects are defined with vague goals, where the problem itself is not clearly understood, the business 

domain is in a state of flux, the technology environment is rapidly evolving (think mobile devices and 
platforms), the stakeholders have competing needs and the team is distributed across many time zones.

In many organizations today team members are expected to work on multiple projects at the same time, 
architectures and interfaces are constrained and options restricted, timelines are unrealistic and inflexible 
and the product being worked on may have 20 years of accumulated technical debt (Education, 2014).

This is the modern reality of product development and project management. It helps to have a frame-
work to at least begin to understand what the elements of complexity are.

The Octopus Model

Philippe Kruchten (Kruchten, 2011) describes the eight aspects of context as follows (see Figure 1):

1.  Size: How big is the system to develop (in SLOC, function points, or person-months).
2.  Criticality: How many people die if the system fail, or how many billions of euros are lost.
3.  Age of the System: Greenfield development, brownfield, evolution of legacy system, maintenance
4.  Business Model: How is the project remunerated for its effort; in-house development, commercial 

product, software embedded in another product or system, open source development, research.
5.  Team Distribution: Collocated, geographical distributed (outsourcing, etc.).
6.  Volatility: Of the environment: how stable are the requirements and the surrounding business 

environment.



4

Product Ownership Is a Team Sport
 

7.  Stable Architecture: How much of a stable architecture exist at the start of the project.
8.  Governance: What are the external rules imposed to the project to control its trajectory and how 

formal are they.

He says that these elements impact on the approach that is needed to product delivery in roughly de-
scending order of importance, and that they are in addition to the overriding factors of business domain 
and organizational culture.

Given the very real complexity of the product development environments we work in today, the Product 
Owner simply can’t be the single voice defining value in what is to be built, it needs Product Ownership.

Product Ownership Requires a Broad Range of Skills and Knowledge

Product ownership encompasses a variety of areas of the organization and requires bringing together 
many voices including:

• Product Management
• Marketing
• Business Advocacy
• Customer Advocacy
• End User Advocacy
• Domain Subject Matter Knowledge

Figure 1. The Octopus Model



5

Product Ownership Is a Team Sport
 

• Business and Technical Analysis
• User Experience and Graphic Design
• Innovation
• Communications
• Legal and Compliance

No one individual can represent all these aspects, nor can they hold all these considerations in their 
mind – there is simply too much happening for one individual to provide the clarity of understanding 
and direction needed. It truly requires a team. This team is responsible for jointly identifying the ele-
ments of value, identifying the overall goals and objectives of the initiative being undertaken and for 
progressively elaborating the backlog to ensure the right product is built.

The Value Team is responsible for managing the backlog, under the direction and guidance of the 
Value Facilitator, acting as the team captain. The Value Facilitator acts as the team captain for the value 
team – they provide the overall guidance and keep the team focused on delivering the right value at the 
right time. As with a sports team, individual team members are expected to know what is needed to win 
their game and they do not defer to the captain for every decision, rather they understand the captain’s 
goals and work collaboratively to achieve these goals.

The Value Team

This image shows the likely knowledge and skills needed on a Value Team (see Figure 2).

Figure 2. Composition of an Agile Value Team



6

Product Ownership Is a Team Sport
 

• Value Facilitator: Someone who leads this team, engages with others to reach consensus and 
provides overall direction, stands up for value and the product vision.

• Project Management: Focused on time and money, understands the tradeoffs that need to be 
made to achieve the project’s goals within the constraints imposed.

• Governance: Focused on ensuring the right processes are followed and compliance needs are 
communicated to the team.

• Business Analysis and Subject Matter Expertise: Bring domain knowledge and an understand-
ing of who knows what, able to reach out to the wider stakeholder community to elicit needs and 
validate solutions, acting as the voice of the customer in specific areas.

• User Experience/Graphics: Where there is a high degree of interaction in the required product 
these skills are necessary to help make the product useful and useable for the target audience, and 
to ensure the right aesthetic values (such as corporate branding) are incorporated in the product.

• User Acceptance Test/I V&V: Able to check the delivered product against user needs and (if 
required) validate it against legal or other external criteria and show compliance.

• Delivery Team Facilitator: Brings the voice of the delivery team to the product conversations – 
ensuring the feasibility and sustainability of the delivered product, advocating for sustainable pace 
and technical qualities.

These are roles not job titles – in some environments there may be just one or two people playing 
these roles, in others there may be many divergent jobs represented on the team (Thomsett, 2001).

The key is that the team has everything they need to identify and prioritize business value increments, 
scope the smallest solution that might possibly deliver on the business value increment, to prepare the 
runway for the delivery teams by gathering all the details needed by the delivery team to deliver a feature/
story and .getting the backlog items to a READY state.

The Delivery Team

As with the Value Team, these are roles not job titles – it is feasible that one person will play multiple 
roles in the team. The delivery team has everything and everyone they need to deliver a working incre-
ment of tested, documented, deployable software (see Figure 3).

The typical roles in a delivery team encompass:

• Team Facilitation: The process conscience of the team, looking out for team health, process 
workability and usefulness and removing obstacles to the product delivery.

• Analysis: Bring domain knowledge and an understanding of who knows what, able to reach out 
to the wider stakeholder community to elicit needs and validate solutions, acting as the voice of 
the customer in specific areas.

• Testing: Helping to define and measure quality in the product, assessing and advocating for qual-
ity in the delivered product, examining and communicating the state of the various quality aspects 
in the product.

• Architecture: Providing advocacy, guidance and clarity of direction from a technical viewpoint, 
ensuring the product fits into the broader technical ecosystem of the organization.



7

Product Ownership Is a Team Sport
 

• Development: The team members with the skills needed to deliver the product backlog items to 
fully production-ready state.

The whole team are Generalizing Specialists someone who (Ambler, 2014):

1.  Has one or more technical specialties (e.g. Java programming, Project Management, Database 
Administration, ...)

2.  Has at least a general knowledge of software development
3.  Has at least a general knowledge of the business domain in which they work
4.  Actively seeks to gain new skills in both their existing specialties as well as in other areas, includ-

ing both technical and domain areas

The Delivery Team are responsible for taking the product backlog items which have been made 
READY and getting them to a fully deliverable, production-ready DONE state.

Depending on the complexity of the environment and the nature of the initiative being undertaken 
the Value Team and Delivery Team may be working tightly coupled and largely overlapping with the 
same cadence and very little visible differentiation between members of the two groups or they may be 
loosely coupled with aspects of their work offset by up to a whole iteration. It is strongly recommended 
that the maximum offset in the flow of work between the two groups is no more than one iteration, ide-
ally it is a matter of hours to days, with a Three Amigo’s workshop or equivalent being held to ensure 
the story is READY shortly before the delivery team members get it to DONE.

Figure 3. Composition of an Agile Delivery Team



8

Product Ownership Is a Team Sport
 

One Overlapping, Collaborative Team

The reality of this “two-team” view is that there is actually a high level of overlap and tight collaboration 
between the roles on the team, and the view is more like this image (see Figure 4).

Relating the Roles: Project Manager, Product Owner, and Scrum Master

It is frequently necessary to clarify the distinction in the leadership roles on agile teams. In the Cinderella 
Project referred to earlier there will likely be a high overlap in responsibilities with the boundaries of 
the various roles blurring and different team members taking on different activities as the needs arise. 
In more complicated environments there will normally be a need to clarify some of the responsibilities 
more explicitly.

Mature agile teams will have far more T-Shaped people who are able to tackle multiple different 
roles and there will be a natural diminishing in reliance on specific role titles as the team becomes more 
self-organising and self-directing (Education, 2014).

Early teams tend to need more clarity in role definition, and three roles which are often the subject 
of confusion are Project Manager, Scrum Master and Product Owner.

• Project Manager: This is an externally focused, highly collaborative, cross-team/cross-initiative 
role. Very small, stand-alone initiatives will most likely not need this role as the initiative is iso-

Figure 4. Whole team 



9

Product Ownership Is a Team Sport
 

lated from the larger organizational context. The Project Manager is shown in the diagrams above 
as a member of the Value Team – providing the interface to the larger organization, building 
relationships across many areas/departments and using their knowledge of organization struc-
tures, goals and strategy to influence the broader ecosystem and help the initiative be success-
ful. This role often “holds the purse-strings” and is acts as the time & money conscience for the 
initiative (Dillon, 2015). Project management in agile environments is substantially different to 
the traditional perception of the role as being one of task allocation and daily monitoring – self-
organization empowers the team members to take on those responsibilities themselves, freeing 
project managers to be impediment removers and diplomats acting on behalf of the initiative in 
the larger playing field.

• Product Owner: This is one title for the Value Facilitator in the Value Team. They play the role 
of Value Conscience for the initiative, ensuring the Value Team are focused on the right backlog 
items, keeping the flow of value through the pipeline is steady, making the hard decisions re-
garding the many tradeoffs that need to be made and leading the value definition activities. The 
Product Owner acts as the team captain for the value team – they provide the overall guidance 
and keep the team focused on delivering the right value at the right time. As with a sports team, 
individual team members are expected to know what is needed to win their game and they do not 
defer to the captain for every decision, rather they understand the captain’s goals and work col-
laboratively to achieve these goals.

• Scrum Master: This is one title for the delivery Team Facilitator described above. They act in 
the best interests of the team’s ongoing sustainability, monitor the health of the process, guide 
the team towards more and more self-organization, encourage the constant learning needed to 
improve their processes and generally act as the Process Conscience for the team (Hastie, 2014). 
This role is often shared across multiple team members as the team matures, although there is an 
argument for keeping the role a full-time responsibility.

These three roles are complimentary, with some activities overlapping but a general separation of 
concerns in the three areas is recommended – combining these roles leads to internal conflict as the 
same individual is asked to balance quite distinctly separate concerns. While it is possible to have one 
person play multiple roles it is not advised (Jacobson, 2014).

Putting Value Front and Centre

Product ownership requires that decisions are made with a value-based focus – what is the smallest piece 
of work we can do that will validate the assumptions being made, and deliver real useful value to our 
organization and delight our customers.

Value is not related to velocity – velocity is a measure of the cost of producing the product, not the 
value to the organization of having the backlog item built (see Figure 5).

The first few iterations the team will pull work from the backlog based on confirming or disproving 
some assumptions, addressing some of the important areas of uncertainty and risk and occasionally do-
ing small experiments and spike solutions to reduce uncertainty risk through the rapid feedback cycle 
that agile projects allow – the early delivery will enable the value manager to validate the concepts and 
confirm or deny the early assumptions made about the customer needs. There will be a lot of learning 
about the capability of the team, the uncertainty in the project, the way people work together and many 



10

Product Ownership Is a Team Sport
 

other aspects which need to be exposed early in a product lifecycle. There will definitely be velocity, but 
the delivered velocity will not be directly proportional to the value derived from the stories.

The likelihood is that these first few iterations will not produce enough of the product for it to be truly 
valuable in the marketplace until enough of the stories have been delivered to cross the MVP threshold – 
the Minimum VIABLE Product which can be utilized beyond a select and limited group of early-adopter 
or test customers, something that actually does start generating at least a subset of the planned benefits.

Once the MVP has been delivered there is often a sharp upturn in value delivered – as new stories 
are added to the product they make it more attractive to the customers. For a while this sharp increase 
in value continues as the most useful stories are delivered. The iterative feedback nature allows the team 
to learn what the customers REALLY want, and that is likely to be quite different to what was originally 
planned. As new stories are identified they need to be added to the backlog in value-based prioritized order.

At some point the rate of value delivery tapers off – the team has built the features and capabili-
ties which are of the most interest to the customers, and adding new capabilities does not significantly 
increase the usefulness of the product to the customers. This is the point where the value facilitator 
needs to be ruthless about cutting the remaining work – yes there are plenty of epics and stories left in 
the backlog, yes there is more budget money in the pot, yes some people want those stories too, but is 
adding additional capabilities to this product actually the best thing to do with the remaining funding?

Evidence from studies of products seems to indicate that stopping work early is a very good thing. 
Depending on which study you look at, somewhere between 50% and 70% of the features in a typical 
software product are never used. Now, a portion of those features are built in the hope that they will 

Figure 5. Value vs. velocity



11

Product Ownership Is a Team Sport
 

never be needed – these are often the disaster recovery and security protection features which hopefully 
won’t be exercised. However these do NOT account for half of the work in a typical product. Surely it 
will be better to stop work rather than build features which no one will ever use in the wild (see Figure 6).

The Shape of a Healthy Backlog

A Backlog should not just be a list of hundreds of user stories waiting to be delivered – that approach 
simply results in lengthy wait times for individual stories to be delivered, a large queue of work which 
becomes a bottleneck and source of waste.

Once an item has been added to a backlog there is tendency for it to take on a life of its own (no mat-
ter how small or large it is), someone who matters wants it to be included in the delivered product and 
they are prepared to argue for it whenever it gets looked at in a grooming or forward planning session. 
The “someone who matters” could be a value manager, product owner, a technical member of the team, 
a subject matter expert, or any other interested party.

We know that one of the benefits of using an Agile approach is the ability to move items in and out of 
the backlog easily which is a great capability, enabling us to ensure that the product we build meets the 
customers’ needs effectively through always focusing in the next most important piece of business value.

The normal, and generally correct, approach is for the value manager to work with the team to pro-
duce a prioritized backlog with clarity on the high priority items and accepted uncertainty in the items 
which are further away (see Figure 7).

The stories which come out of the bottom of the grinder are small enough for the team to deliver 
using their agile development practices (Adolph, 2014), progressively elaborated to a Ready state, able 
to be built and ideally they should be fully implementable (as per the agreed Definition of Done) in half 
an iteration or less – the smaller our stories when they are being implemented the better our ability to 
predict and plan work (Jacobson, 2014).

Figure 6. Knowing when to stop



12

Product Ownership Is a Team Sport
 

So far we have looked at product ownership in concept, in terms of the roles who contribute and the 
value-based focus which is needed. Next we explore some of the tools used for product ownership, with 
a particular focus on the activities undertaken when starting an initiative.

PRODUCT OWNERSHIP IN PRACTICE

One of the most important tasks of the Value Facilitator is to ensure that we build the right product, and 
this needs clarity of vision regarding the goals and outcomes desired from the initiative, the alignment 
with organizational strategy and a clear understanding of the value to be delivered (Construx, 2014).

What follows is a discussion of some of the tools which can be used to gain this clarity of vision. 
The tool is not the goal, but these tools can help in articulating the different aspects which are needed 
to convey the desired results. Generally these tools will be used in collaborative workshops which the 
Value Facilitator will facilitate and ensure the results are recorded in an appropriate format (with a bias 
towards low-tech and ease of access/use).

Value Stream Mapping

Value Stream Mapping (VSM) is a technique to help identify the steps in a process and to focus on solv-
ing the right problem. It looks at elements in a process to identify waste – anything that causes delay, 
requires double handling, results in rework, could result in mistakes being made or in any other way 
detracts from delivering value to the customer of the process (Ambler, 2014).

Figure 7. The shape of a healthy backlog



13

Product Ownership Is a Team Sport
 

VSM uses a fairly extreme definition of the word ‘waste’ and you might be surprised or shocked to 
learn how much of your daily work tasks are considered waste when looking at them through a VSM 
lens. Another way of looking at it is to ask the question ‘would the customer for this value stream be 
happy to pay for the work I’m currently doing?’ If you think the answer is yes (i.e. the customer can see 
how the work being done is valuable to them), then the work is probably a value add to the customer: 
otherwise, it’s waste (see Figure 8).

The whiteboard snapshot of the value stream map shown here is a great example of how simple and 
quick this process should be.

• Identify extra steps, duplicates, delays or waste.
• Revise the process to achieve the outcome with less delay or dependencies.
• Focus on outcome value not specific artefacts.
• Does this simplify the feature?
• Above all, think lo-tech and quick!

Purpose Alignment Model

This model provides a way to decide what approach to addressing a business need based around the level 
of importance to the business that the outcomes will have (see Figure 9).

Figure 8. A low-tech value stream map



14

Product Ownership Is a Team Sport
 

Kent McDonald presents a detailed discussion of when and how to use this model on his website: 
http://www.beyondrequirements.com/purpose-based-alignment-model/.

What It Is

The Purpose Based Alignment Model, created by Niel Nickolaisen (Pixton et al, 2009), is a method 
for aligning business decisions and process and feature designs around purpose. The purpose of some 
decisions and designs is to differentiate the organization in the market; the purpose of most other deci-
sions is to achieve and maintain parity with the market. Those activities that do not require operational 
excellence either necessitate finding a partner to achieve differentiation or do not deserve much attention.

In practice, purpose alignment generates immediately usable, pragmatic decision filters that you can 
cascade through the organization to improve decisions and designs.

The quadrants are explained in the following sections.

Differentiating

The purpose of the differentiating activities is to excel. Because you use these activities to gain market 
share and to create and maintain a sustainable competitive advantage in the marketplace, you want to 
perform these activities better than anyone else. For your organization, these activities are or should be 
its claim to fame. These activities link directly to your strategy. You should be careful to not under-invest 
in these activities, as that would weaken your market position. In fact, you should focus your creativity 
on these processes. What are the differentiating activities for your organization? It depends. It depends 
on the specific things you do to create sustainable competitive advantage.

Parity

The purpose of the parity activities is to achieve and maintain parity with the marketplace. Stated dif-
ferently, your organization does not generate any competitive advantage if it performs these activities 
better than its competitors. However, because these activities are mission critical, you must ensure that 

Figure 9. The Purpose alignment model



15

Product Ownership Is a Team Sport
 

you do not under-invest in or perform these activities poorly. These activities are ideal candidates for 
simplification and streamlining, because complexity implies that you are likely over-investing. While 
there might be value in performing the differentiating activities in a unique way, performing the parity 
activities in a unique way will not generate value and could actually decrease the organization’s value if 
your over-investment in parity processes limits the resources you can apply to differentiating processes.

Partner

Some activities are not mission critical (for your organization) but can nevertheless differentiate the 
organization in the marketplace. The way to exploit these activities—and generate increased market 
share—is to find a partner for whom those activities are differentiating and combine efforts to create 
this differentiation.

Who Cares

Finally, some business activities are neither mission critical nor market differentiating. The goal for 
these activities is to perform them as little as possible. We refer to these activities as the “who cares” 
processes. Because these activities are neither market differentiating nor mission critical, you should 
spend as little time and attention as possible on them. Who really cares?

Expressing Project Scope and Goals

The Focusing Question or Elevator Statement

A one or two sentence statement that conveys the goals and objectives of the project.
The “elevator statement” is something that will enable any team member to explain the purpose of 

the project in the time it takes to ride between floors in an elevator (imagine you get into the elevator 
with the CEO of your company and are asked to explain what the project is you are working on before 
the elevator gets to their floor).

During the workshop this is one of the first things that should be produced, and written up for all to 
read – it provides focus for the rest of the workshop activities.

One possible template for expressing the vision in a single statement is to use a structure such as the 
following:

For (customer), who (statement of need), the (product name) is a (product category) that (key benefit, 
compelling reason to buy). Unlike (primary competitor), our product (statement of primary differen-
tiation).

The Vision Box

A Vision Box presents the features and benefits of the project as a box of cereal – the front has a name 
and branding, along with a list of the key benefits the product will convey to its buyers (the custom-



16

Product Ownership Is a Team Sport
 

ers who will eventually use the product, be they internal to the organization or real paying customers) 
(Cockburn, 1999). The back of the box contains operating instructions (high level design decisions) and 
a list of the key features the product will have.

Building a vision box is a creative activity that helps the team articulate what they are thinking about. 
It can be useful to break into smaller groups and have the groups each build a vision box that they then 
“sell” to the remainder of the team. After the separate presentations a shared vision box should be pro-
duced that conveys the ideas of the whole team.

Business Benefits Matrix

A simple matrix which articulates the strategic value that the product is intended to provide. The matrix 
looks like the following table (see Table 1).

The goals of the project are expressed against the strategic drivers, there should only be one primary 
driver and there might be a number of secondary or tertiary goals. Where there is more than one goal in 
a column then they need to be ranked to avoid the “everything’s critical” conflict.

Preparing this as a group activity helps the team to understand the clear and explicit focus for the 
project.

Sliders

A tool for showing the priorities for the team across multiple dimensions.
The sliders range from Fully On to Fully Off – if an element is On then it will be the strongest fac-

tor that drives the decision making as the project continues. No two sliders can be set at the same level, 
and the more sliders there are on the “On” side of the grid the higher the risk of catastrophic failure 
this project accepts. Where there is little leeway in the project sliders then the choice becomes deliver 
everything or deliver nothing, whereas more leeway allows for partial delivery that contributes to the 
organizations goals (see Figure 10).

Rob Thomsett describes the Slider tool in his book Radical Project Management.

Table 1.  

Primary Secondary Tertiary

Increase Revenue (25% revenue increase within 12 
months of launch)

Reduce/Avoid Costs (n/a)

Improve Service (Increase customer satisfaction 
rating by 20% based on 
quarterly satisfaction survey 
results)

(Other) (Reduce staff turnover in call 
centre because of customer 
satisfaction)



17

Product Ownership Is a Team Sport
 

Scope Matrix

The “in/out list” is a simple tool that conveys clearly what will be done as part of this project, what will 
not be done and where there is uncertainty about deliverables (see table 2).

Where a topic is “in” the project team is responsible for delivery of this component. 
Where something is explicitly out of scope the team will not spend any time or effort on this compo-

nent. If an “out” topic is something that the broader program of work is dependent on then it is important 
that the responsibility for undertaking this work is clearly defined, the project stream and person taking 
responsibility for ensuring this is delivered.

Where there is uncertainty about a topic being in scope or not then it goes into the “Undecided” 
area. The team will not work on his piece and the product owner or project manager needs to investigate 
further to identify if the piece of work is in or out of scope.

This tool is also explained in Radical Project Management, by Rob Thomsett (Thomsett, 2001).

Cost/Benefit Matrix

This should convey the level of uncertainty surrounding the estimates of both cost and benefit the or-
ganization will get from the project. Early in the project the costs will have a large Cone of Uncertainty 
and as the project progresses this will get narrower and narrower. It is likely that the benefits also have 

Figure 10. Thomsett’s sliders



18

Product Ownership Is a Team Sport
 

a wide range of uncertainty. Uncertainty in both costs and benefits is not necessarily a problem on a 
project provided the range is correct. Both costs and benefits should be shown at three levels – optimistic, 
likely and pessimistic. For example see table 3.

This project should be considered high risk, as there is a distinct possibility that the organization will 
lose money on it. There might be other drivers which warrant the investment and the reward profile if 
things go well is significant.

Undertaking cost/benefit analysis on a project is primarily a management level responsibility, but the 
financial goals and drivers should be shared with the team.

Articulate the Vision

These tools can help teams gain a clear understanding of the goals and objectives that have driven the 
selection of this project to be worked on. Together they form a Project Charter or Vision Document 
which distils the why and what if the initiative being undertaken.

Preparing the product vision is a very important starting point for the project. This provides the focus 
for the work the team will undertake as the project continues. The wallware1 artefacts produced during 
the workshop(s) should form part of the team environment so anyone working on the project can see at 
a glance the project drivers and goals. It may also be valuable to produce a formal document that sum-
marizes the product vision. Remember that the value lies only partly in the document but in the shared 
understanding that the team has achieved in producing the vision.

Table 2. Scope in/out/undecided matrix

Topic In Out (Responsibility)

(Taking service calls) X

(Assigning service calls to support 
technicians)

X

(New product promotions via service 
centre)

X

(Debtor follow-up via service desk) X

Undecided

(Web-based self service capability)

Table 3. Cost/benefit matrix

Minimum Benefit Likely Benefit Maximum Benefit

$1M $5M $12M

Maximum Cost $2M -$1M $3m $10M

Likely Cost $1.5M -$0.5M $3.5M $10.5M

Minimum Cost $1M $0 $4M $11M

The figure in each cell is the net of benefit minus the cost.



19

Product Ownership Is a Team Sport
 

Having a clear statement of why and what we are aiming to build clearly visible and articulated in 
terms such as this give the team clarity on what and why they are working on, and provides a measuring 
rod for decisions later in the initiative – every activity can be measured against the goals and objectives 
and the optimum approach taken to maximize the value delivered.

If the team who will work on the product are distributed they should be brought together for the pro-
duction of the product vision – this will help to create a “one team” culture and help with the ongoing 
communication when they are dispersed.

Team members who join after the vision has been created need to be walked through the project 
charter by someone who was present at the workshop(s) to help them understand the drivers behind the 
work being undertaken.

If during the execution of the initiative the environment changes and the vision is no longer achiev-
able or the organization goals/drivers change such that the initiative no longer delivers on them then the 
initiative should be stopped and reassessed. Changes in the product vision are often evidence of massive 
change in the organization ecosystem.

Kano Analysis

The Kano model offers some insight into the product attributes which are perceived to be important 
to customers. The purpose of the tool is to support product specification and discussion through better 
development of team understanding (see Figure 11). Kano’s model focuses on differentiating product 
features, as opposed to focusing initially on customer needs.

Figure 11. The Kano Model



20

Product Ownership Is a Team Sport
 

According to the Kano Model (Cockburn, 1999), a product or service can have three types of at-
tribute (or property):

• Basic Needs: Which customers expect to be present in a product.
• Performance Attributes: Which are not absolutely necessary, but which are known about and 

increase the customer’s enjoyment of the product. Higher performance in these aspects tends to 
result in higher satisfaction, low performance can be a cause of dissatisfaction

• Delighters: Which customers don’t even know they want, but are delighted when they find them.

Basic Needs affect customers’ satisfaction with the product or service by their absence: If they’re 
not present, customers are dissatisfied. And even if they’re present, if no other attributes are present, 
customers aren’t particularly happy (you can see this as the bottom curve on the graph above).

To use Kano Model Analysis, follow these steps:

• Brainstorm all of the possible features and attributes of your product or service, and everything 
you can do to please your customers.

• Classify these as “Basic”, “Performance”, “Delighters” and “Not Relevant”.
• Make sure your product or service has all appropriate Basic Attributes. If necessary, cut out 

Performance Attributes so that you can get these – you’re going nowhere fast if these aren’t present.
• Where possible, cut out attributes that are “Not Relevant”.
• Look at the Delighters, and think how you can build some of these into your product or service. 

Again if necessary, cut some Performance Attributes, so that you can “afford” your Delighters.
• Select appropriate Performance Attributes so that you can deliver a product or service at a price 

the customer is prepared to pay, while still maintaining a good profit margin.

Other Tools

There are many other tools which are needed in the ongoing activities of progressively refining and 
elaborating the product backlog. These are beyond the scope of this chapter but include techniques such 
as Agile Modelling, Agile UX, Story Mapping, INVEST criteria, Behavior Driven Development and 
Specification by Example, to name but a few. The reader is encouraged to examine these techniques and 
explore how they may be useful in your own specific context.

Of Babies and Bathwater

Don’t Throw the Baby Out with the Bathwater

Another misconception that plagues agile projects is the idea that everything is new – we no longer 
use the analysis techniques and tools that have been used in the past because in some way they are “not 
agile”. This is often a result of misunderstanding the second Value statement from the Agile Manifesto:

• We value working software over comprehensive documentation.



21

Product Ownership Is a Team Sport
 

The language of the Manifesto was very carefully crafted, and the word in the middle of that phrase 
is “over” – not “instead of”!

We can and should still make use of those tools which will add clarity and value to uncovering the 
real business needs without adding waste to the process. Not everything old is bad. Some of the tools 
mentioned above are indeed new, but most are derived from ideas which have been around for many years.

CONCLUSION

This chapter has examined the role of the Product Owner and shown that while Product Ownership is a 
crucial and critical aspect of product delivery, the “single wringable neck” individual product owner who 
has all the skill and knowledge needed to make all the important decisions about priority and business 
value is not attainable except in a very small subset of project types.

The majority of projects undertaken today are complicated or complex, falling into areas where inno-
vation is needed, where the problem and the solution are both uncertain and in which a single individual 
cannot know everything, nor should they be expected to.

Product Ownership truly is a team sport – it requires a multi-skilled group who collaborate and work 
together to identify what constitutes value in each aspect of the initiative, and who then constantly re-
fine and adapt the product backlog based on the emergent learning and discovery that happens as work 
continues. This Value Team are collaboratively responsible for getting the product backlog items to a 
Ready state, following which the Delivery Team gets them to Done. The Value Team and Delivery Team 
are a tightly collaborative group working together closely with shared focus on maximising the value 
delivered to our organisation and delight to our customers. There is no “one-size-fits-all” approach, each 
initiative has a different context in which it is being undertaken, the business drivers, customer needs, 
local environment and team makeup are unique and need a unique approach to the delivery process.

Selecting the right initiative to fund, bringing the right people together, identifying and refining the 
product backlog require skills that draw on techniques which have been around for a long time in the 
creative industries, and also demand some new ways of thinking. Knowing when to stop is one of the 
hardest and most important aspects of truly maximising value delivery.

REFERENCES

Adolph, S. (2014). Agile BA in Practice: Using Cadence to Leave Things to the Last Responsible Moment. 
Retrieved from http://www.developmentknowledge.com/index.php/blog/141-agile-ba-in-practice-using-
cadence-to-leave-things-to-the-last-responsible-moment

Ambler, S. (2014). Generalizing Specialists: Improving Your IT Career Skills. Academic Press.

Andrea, J. (2005). If the Shoe Doesn’t Fit – Agile Requirements for Stepsister Projects. Better Software 
Magazine. Molecular Pharmacology. doi:10.1124/mol.105.020230

Cockburn, A. (1999). A Methodology per project. Academic Press.

Construx. (2014). The Cone of Uncertainty. Retrieved from http://www.construx.com/Thought_Leader-
ship/Books/The_Cone_of_Uncertainty/

http://www.developmentknowledge.com/index.php/blog/141-agile-ba-in-practice-using-cadence-to-leave-things-to-the-last-responsible-moment
http://www.developmentknowledge.com/index.php/blog/141-agile-ba-in-practice-using-cadence-to-leave-things-to-the-last-responsible-moment
http://dx.doi.org/10.1124/mol.105.020230
http://www.construx.com/Thought_Leadership/Books/The_Cone_of_Uncertainty/
http://www.construx.com/Thought_Leadership/Books/The_Cone_of_Uncertainty/


22

Product Ownership Is a Team Sport
 

Currim, I. S., Mintz, O., & Siddarth, S. (2015). Information Accessed or Information Available? The 
Impact on Consumer Preferences Inferred at a Durable Product E-commerce Website. Journal of Inter-
active Marketing, 29, 11–25. doi:10.1016/j.intmar.2014.09.003

Dillon, R. (2015). Ready. Singapore: Springer Singapore.

Hastie, S. (2014). Knowing When to Stop – trim that tail ruthlessly. Academic Press.

Jacobson, M. S. (2014). Scrum Master Allocation: The Case for a Dedicated Scrum Master. Academic 
Press.

Kruchten, P. (2011). The Frog and the Octopus – A Conceptual Model of Software Development. Aca-
demic Press.

Pixton, P., Nickolaisen, N., Little, T., & McDonald, K. (2009). Stand Back and Deliver, Accelerating 
Business Agility. Boston: Addison-Wesley.

Programming, E. (2014). Extreme Programming: A Gentle Introduction. Retrieved from http://www.
extremeprogramming.org

Schwaber, K., & Sutherland, J. (2013). The Scrum Guide. Academic Press.

Software Education. (2014). Agile Product Ownership course. Wellington, New Zealand: Author.

Thomsett, R. (2001). Radical Project Management. Upper Saddle River, NJ: Prentice Hall.

KEY TERMS AND DEFINITIONS

Agile Software Development: Agile software development is a group of software development 
methods in which requirements and solutions evolve through collaboration between self-organizing, 
cross-functional teams. It promotes adaptive planning, evolutionary development, early delivery, con-
tinuous improvement, and encourages rapid and flexible response to change.

Product Owner: In Scrum, the product owner is typically a project’s key stakeholder. Part of the 
product owner responsibilities is to have a vision of what he or she wishes to build, and convey that 
vision to the scrum team.

Software Component: A software unit of functionality that manages a single abstraction.
User Stories: User stories are part of an agile approach that helps shift the focus from writing about 

requirements to talking about them. All agile user stories include a written sentence or two and, more 
importantly, a series of conversations about the desired functionality.

User-Centered Design (UCD): User-centered design is a process (not restricted to interfaces or 
technologies) in which the needs, wants, and limitations of end users of a product, service or process are 
given extensive attention at each stage of the design process. User-centered design can be characterized 
as a multi-stage problem solving process that not only requires designers to analyse and foresee how 
users are likely to use a product, but also to test the validity of their assumptions with regard to user 
behaviour in real world tests with actual users. Such testing is necessary as it is often very difficult for 
the designers of a product to understand intuitively what a first-time user of their design experiences, 
and what each user’s learning curve may look like.

http://dx.doi.org/10.1016/j.intmar.2014.09.003
http://www.extremeprogramming.org
http://www.extremeprogramming.org


23

Product Ownership Is a Team Sport
 

Waterfall Model: A sequential design, used in software development processes, in which progress 
is seen as flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation, 
Analysis, Design, Construction, Testing, Deployment and Maintenance.

ENDNOTE

1  Wallware refers to flipcharts, graphs, story cards and other artifacts that are prominently displayed 
in and around the team space, they provide a visual record of the project, serving as reminders of 
key decisions and visible to anyone who has an interest in the project. Other commonly used terms 
are Information Radiators and Big Visible Charts.



24

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  2

DOI: 10.4018/978-1-4666-9858-1.ch002

ABSTRACT

Prevalence of Agile methods in software companies is increasing dramatically. Software companies and 
teams need to employ these methods to overcome the inherent challenges of traditional methods in soft-
ware development. However, transitioning to Agile approach is a topic of debate. This is mainly because 
software companies are facing with many challenges, obstacles, and hindrances when leaving traditional 
methods and moving to Agile methods, as shown in previous research studies. Conducting a large-scale 
research study showed that Agile transformation need to be supported by several facilitators and identi-
fied its most important facilitators. The main aim of this chapter is to present two hidden facilitators of 
Agile transition, Agile coaches and Agile champions, which rarely have been taken into consideration. 
Both of these facilitators directly impress the people involved in the transition. People-intensive nature 
of Agile methods and critical role of the people in the transition process reflect the importance of these 
facilitators when a software company doing its transition.

INTRODUCTION

Agile software development as a reaction to disciplined software development, known as traditional 
software development, has been introduced to software industry by creating Agile manifesto (Beck, 
Cockburn, Jeffries, & Highsmith, 2001). Agile methods in software development have focused on dif-
ferent values compared to the traditional methods, including early and frequent releases, light-weight 
documentation, higher quality, customer satisfaction, embracing changes in user requirement, low cer-
emonies and so forth (Cohen, Lindvall, & Costa, 2004).

Unlike traditional methods, Agile methods mainly focus on people and human interactions. People-
centric nature of these methods has led to some difficulties when software companies are changing their 

Agile Coaches and Champions:
Two Hidden Facilitators of Agile Transition

Taghi Javdani Gandomani
Islamic Azad University – Boroujen, Iran

Mina Ziaei Nafchi
Islamic Azad University – Boroujen, Iran



25

Agile Coaches and Champions
 

development style from traditional to Agile (Gandomani, Zulzalil, Ghani, Sultan, & Nafchi, 2013). Agile 
transition requires involvement and collaboration of all of the software practitioners such as developers, 
business experts, project and department managers, senior managers, customers, etc.

Various problems and challenges are faced by software companies during their Agile transition 
(Gandomani, Zulzalil, Ghani, Sultan, & Nafchi, 2013; Nerur, Mahapatra, & Mangalaraj, 2005). Most 
of the problems and challenges have roots in the people’s behaviours and mindsets as well as their roles 
in development process. Most often people prefer to do their roles as they are trained previously and 
adopted for a long time. So, most often resistance to change is a common challenge, as reported by many 
scholars. Clearly, changing traditional mindset of such people is not easy and needs enough time and ef-
fort (Cockburn & Highsmith, 2001; Conboy, Coyle, Wang, & Pikkarainen, 2011). Providing appropriate 
facilitators and supporters would help software companies and development teams to adapt to their new 
roles and responsibilities (Gandomani, Zulzalil, Abd Ghani, Sultan, & Sharif, 2014).

The previous studies identified several facilitators, enablers, and success factors to support Agile 
transition (Bayona, Calvo-Manzano, & San Feliu, 2012; Misra, Kumar, & Kumar, 2009; Pikkarainen, 
Salo, Kuusela, & Abrahamsson, 2012; Vijayasarathy & Turk, 2012). However, most the identified fa-
cilitators are straightforward and it seems that there are more serious facilitators which are not clearly 
identified yet. This chapter presents a small part of large-scale empirical study on Agile transformation. 
This research studied the whole process of Agile transformation and tried to explore its various aspects 
and dimensions and showed that although several supporters and change facilitators can be taken into 
consideration, Agile coaches and Agile champions as two hidden facilitators play a critical role in pushing 
the transition process forward. These facilitators directly impress the people involved the transformation 
and can highly support them when facing a challenge during the change process. This chapter solely 
describes the role of aforementioned facilitators in Agile transition and identify responsibilities of these 
roles in real environments.

Adopted research methodology advised the researcher against conducting an up-front major litera-
ture review (B. Glaser, 1992). This mainly helps to reduce the researchers’ biases in data collection and 
analysis. However, tying the results with literature review reflects the importance of the findings and 
brings more benefits for readers. To adhere to the applied research methodology, this chapter presents 
the literature after presenting the research results by providing a discussion on them.

AGILE TRANSITION CHALLENGES

Agile transition process is considered as an organizational mutation in which all aspects of the organi-
zation will be affected. Changing the software development style as expected by Agile approach, is a 
socio-technical change (Conboy et al., 2011). This fact makes the transition more difficult than expected. 
Software companies need to be aware of the transition challenges and provide appropriate strategies to 
cope with the challenges and barriers.

The main problems and challenges are related to the people involved in the transition. After several 
years using traditional methods, software practitioners are accustomed to disciplined methods and their 
processes. All the involved people really adapted to their roles and activities. Hence, they may resist 
against Agile transition. For instance, Agile methods emphasize on self-organizing teams and shared-



26

Agile Coaches and Champions
 

decision making, but ‘command and control’ approach has been used widely as management style in 
traditional methods. In this case, managers (such as senior managers and project manager) prefer to 
decide singly and at the same time, team members are not enough confident to collaborate in decision 
making (Moe, Aurum, & Dybå, 2012). Such problems act as vital barriers of the transition. It seems that 
while software practitioners are motivating to employ Agile methods, they prefer to retain their previous 
roles, responsibilities, and behaviours.

People and organizational culture are other problems in the transition process. People culture af-
fects the transition and makes it more difficult than expected. Also, strict organizational processes are 
inconsistent with Agile approach that gives the people enough authority in performing their jobs (Iivari 
& Iivari, 2011).

Technical problems are other transition challenges. However, they are not as critical as the others 
(Gandomani, Zulzalil, Ghani, Sultan, & Nafchi, 2013). Finally, customers in several case studies have 
been reported as the transition challenges (R. Hoda, Noble, & Marshall, 2011b; Angela Martin, Robert 
Biddle, & James Noble, 2009). Customer involvement is one of the underpinnings of Agile software 
development. Customer collaboration and participation are highly required by many Agile practices. 
For instance, Scrum and XP have several roles in which customers play a great role. Therefore, lack of 
customer collaboration is a serious risk for successful Agile transition and adoption (Misra et al., 2009; 
Tsirakidis, Köbler, & Krcmar, 2009).

Agile and disciplined methods are different in nature, so, those who have experience in disciplined 
methods, normally could not adapt themselves easily with Agile processes and practices. There are 
various human aspects to be considered in Agile transformation (Gandomani, Zulzalil, Abdul Ghani, 
Sultan, & Sharif, 2014). This fact makes the transition a multi-dimensional and complicated process 
which needs to be supported by appropriate and in-time facilitators.

To sum up, Agile transition is subject to the various problems and barriers, and software companies 
and teams strongly need to provide effective facilitators to deal with the possible challenges.

RESEARCH METHODOLOGY

Grounded Theory (GT) was employed to conduct a large-scale research study to explore various as-
pects of Agile transition process. GT proposes a systematic process to help the researchers to discover a 
grounded theory (the outcome of GT) using substantive data (B. Glaser, 2005). GT is a suitable research 
methodology to study people behaviours and human-related issues (B. Glaser, 1992). Hence, application 
of GT in a people-centric process like Agile transition process assists GT researchers to achieve valuable 
results. Furthermore, employing GT while there is no up-front hypothesis is really helpful (B. Glaser, 
1992). In this study, there was no preconceived problem or hypothesis too. Therefore, GT was a good 
choice for the researchers. Moreover, conducting several high quality research studies in context of Agile 
software development using GT, motivated the researchers to choose GT for this study (Adolph, Hall, 
& Kruchten, 2011; Coleman & O’Connor, 2007; Dorairaj, Noble, & Malik, 2012; R. Hoda, Noble, & 
Marshall, 2011a; A. Martin, R. Biddle, & J. Noble, 2009; Treccani & De Souza, 2011). The previous GT 
studies in context of Agile software development have led to valuable results. The authors have explained 
how well GT can assist researchers to study the context of Agile software development (Gandomani, 
Zulzalil, Ghani, Sultan, & Sharif, 2013).



27

Agile Coaches and Champions
 

Data Collection

This study was started with data collection as recommended by GT instructions (B. Glaser & Strauss, 
1967). The recruitment process was started by publishing several online invitations in Agile professional 
on-line communities over the internet. Those Agile experts who had experience in at least one Agile 
transition process were eligible to attend the study. Forty nine (49) Agile practitioners from different 
companies in 13 countries voluntarily participated in this study. The participants had various roles 
in their companies. About half of them, however, were Agile coaches and mentors who helped many 
companies to do their Agile transition. Also, most of the participants were from US and Europe and a 
few from Asia and Australia. Agile transition was an ongoing project in about half of them and it was 
a good opportunity for the researchers to collect fresh data. In this study, we addressed the participants 
by their number and role, if necessary.

Several interviews have been conducted using semi-structured and open-ended questions. Since most 
of the participants were out of the country, online media were used to conduct the interviews. The initial 
questions were about the participants’ backgrounds and general concepts of Agile transition. The next 
questions were about the challenges they faced with during the transition, their suggested solutions and 
strategies, steps of the transition, etc. Following GT guidelines, all the questions covered only general 
concepts and issues, and data collection was continued up to reaching data saturation which means no 
new concepts appear in the interviews (B. Glaser, 1992).

Due to space limitation, list of the participants has not been provided.

GT PROCEDURE

Typically, GT starts with data collection and ends with theory building (B. Glaser, 1998). Figure 1 
shows GT steps and artefacts. Once some data were collected, data analysis or data coding was started. 
The transcribed data were reviewed line by line and key points were extracted. Once a key point was 
extracted, a code, called open code was assigned to it. Then, immediately, the new code was compared 
to existing open codes in the same and previous transcribed. This process is known as constant com-
parison technique. Then, employing constant comparison method on all open codes led to emergence 
of concepts, a higher level abstraction in the coded data. Again, constant comparison method was run 
on the emerged concepts and led to emergence of categories. Finally, theoretical coding was employed 
to develop a grounded theory. In this study, Glaser’s Process coding family was used to describe the 
process of Agile transition and adoption.

The emergent theory reflects the main concerns of the Agile practitioners in real environment when 
moving to Agile software development. Such a theory is grounded in data which has been collected 
directly from the real environments. Data analysis discovered all aspects of Agile transition including 
its challenges, its facilitators, its prerequisites and so on.

Obviously, presenting all findings of such a large-scale study needs enough time and space. Indeed, 
the researchers need to report the emerging concepts, categories, grounded theory or some parts of it. 
This chapter solely presents two emergent concepts regarding to Agile transition facilitators. Further-
more, since commonly, GT papers often include quotes from interviews to highlight certain points; this 
chapter does provide a few verbatim quotes, primarily to support the findings of the study (see figure 1).



28

Agile Coaches and Champions
 

AGILE COACH AS A TRANSITION FACILITATOR

Agile coaches play a significant role in Agile transition process. The participants explained the role of 
Agile coaches as transition facilitators.

Our coach helped us to overcome lots of challenges during the transformation. Even now, after 6 months, 
I really believed that he should be with our team for the rest of our project [transformation]... (P25, 
Agile Developer)

After 10 months dealing with lots of challenges, an experienced Agile coach was added to our team. 
After that our progress increased significantly. He was a great Agile expert. ... Then, we adapted several 
Agile practices in a short while. (P29, Project Manager)

The role of an Agile coach is highlighted in various points as follows.

1.  Preparation Phase: Preparation phase is the initial step of the transition, when the company is 
providing the transition prerequisites and gets ready to start the transition.

Figure 1. GT steps and its artefacts



29

Agile Coaches and Champions
 

I’ve run Agile transformations for a number of companies since then [first transformation]. I would say 
that companies that are willing to embrace change and who have undergone good training and coach-
ing to understand the true impact of Agile, are best prepared for transformation (P6, Agile Consultant)

In this phase, Agile coach can help managers in the following items:

• Guiding the managers in defining the transition goals and success criteria.
• Guiding the managers in defining business goals.
• Guiding the managers in training needs analysis.
• Teaching Agile principles and expected values.
• Conducting a pre-start up assessment to check whether company is ready for the change or not.
• Motivating customers to involve and collaborate in the transition process.
• Preparing an action plan or framework for Agile transition.
• Identifying the potential risks of pilot project and raising them before starting the transition.
• Collaboration with HR department to select the most qualified team members for the initial 

adoption.
• Help in preparing a transition plan, from preparation phase to fully adoption.

Based on the above items, it seems that Agile coach should be hired before starting the transition to 
manage or handle the preparation phase.

2.  Adaptation Phase: While development team members, managers, and customers are adapting to 
their new roles and Agile practices, having enough access to an Agile coach is very helpful. The 
participants stressed on having an on-site full-time coach during the transition. Since most of the 
challenges stem from adapting people to new roles, such a supportive coach, can help them to 
change themselves with less effort and time.

[I] strongly advise you to hire a full-time coach. We were faced with many problems and no one was 
available to help us. Hiring a full time coach could help us, one who was able to feel our situation, 
look ahead, and help us. An experienced coach or trainer should be involved in transition process. (P7, 
Agile Developer)

Also, in this stage, an Agile coach can help the team members to be familiar with the Agile practices, 
in a practical manner.

An Agile coach must make sure that Agile transformation is on track. To do this, he/she can make 
sure that team members are following the desired Agile practices. He/she also should consider the ground 
conditions and make the winning strategy.

An Agile coach needs to answer the questions related to Agile approach, methods, or practices dur-
ing the transition. This is also another reason why a coach is better to be on the ground to answer the 
raised questions quickly.

Beside the above roles, Agile coach need to have a plan for gradual adaptation. In this case, the 
transformation will be easier and more effective. Encouraging people to the changes, especially when 
facing problems, is also another duty of the Agile coach that facilitates the transition.



30

Agile Coaches and Champions
 

An expert coach provides lots of valuable service during your project [transformation]. He may help 
with long-term strategy across the entire organization before the pilot project. Then, he can help peri-
odically check up on teams, help them stay on track with Agile techniques, and fine-tune behaviour as 
needed... (P39, Agile coach)

3.  Adjustment: During the transition or even after adoption, an adjustment phase or step can be 
defined, if necessary. In this step, Agile coach can suggest some adjustment activities in order to 
better adaptation to the Agile practices. Sometimes, the adjustment is necessary to cope with the 
company’s limitations or weaknesses. Handling the required adjustments is one of the Agile coach’s 
responsibilities.

An experienced Agile coach is able to provide objective guidance, the real thing that companies need 
during the transformation, without political or personal considerations. (P43, Agile Coach)

Sometime fully adoption is not possible. In this case, software companies need to do some develop-
ment tasks or activities in non-Agile ways. Although in such cases most often some parts of companies 
remain non-Agile, but they can do some modifications in Agile practices in order to employ them based 
on their limitations.

Beside the above roles and responsibilities, this study also discovered that an Agile coaches need 
to have some specific characteristics. Because of the critical role of an Agile coach, he/she needs to be 
patient when doing his job. Most often, an Agile coach needs to deal with many people with different 
culture, background, and mindset. Therefore, having such characteristic help him/her to effectively in-
teract with the transition participants.

In many organizations, sometimes coaches are also responsible for training; in this case, they should 
be patient and feel people’s problems. (P8, Project Manager)

AGILE CHAMPION AS A TRANSITION FACILITATOR

Agile champion was addressed as another facilitator that directly impresses the people involved in Agile 
transition. A champion in Agile transformation was referred to as a person who can adjust Agile practices 
to suit environment and also support other members in the change process.

The participants claimed that existence of champions in Agile teams can facilitate transformation and 
motivate the others to follow required changes as defined in the transition framework or plan.

In transition process, champions play a critical role. I totally agree with the idea that having at least to 
champions on the teams during Agile transformation gets people to herald its adoption. In my opinion, 
changes with more champions come to fruition easier. I believe that any successful Agile transformation 
has a champion, even he would not be known with that name. (P23, Agile Coach)

The participants declared that most often Agile champions are those with the most enthusiasm, while 
rest of team member are almost indifferent to Agile. Agile champion was referred to as ‘Agile hero’ too, 
who is exemplar for the other members. Such an expert can motivate others to go forward when they 
are exhausted or disappointed.



31

Agile Coaches and Champions
 

Companies should hire an expert; they should have their own champion. Champions can reduce side 
effects of change, lead and inspire the change and lead people to next level. (P16, Project Manager)

Agile champions can drive the internal changes, and expand or even break the borders that Agile 
practices face in their environment. The changes with more Agile champions come to fruition easier.

They [Agile champions] also try to find the better ways of working with the others around them. They 
really help organizations in transformation process. (P6, Agile Consultant)

Some of the participant addressed “dark champions” as those who “fight for status quo”. They be-
lieved that Agile coach should focus on dark champions more than indifferent members. They argued 
that most of the barriers and obstacles stem from “dark champions”. They continued that if the transition 
fails or faces with critical problems in initial stages, “dark champions” impress the indifferent members.

Agile champions are a member of an Agile team (pilot team), so, they are completely close to other 
members and feel the real challenges the pilot team is facing. Therefore, Agile champions are direct 
contributors to success to the success of pilot teams.

Some of the participants stated that Agile champions can overcome the “it won’t work here” symptom. 
As they expressed, Agile champions strongly can facilitate achieving initial successes and encouraging 
indifferent and opponent members.

Furthermore, Champions can reduce side effects of changes, lead and inspire the change and lead 
people to next levels. This is also very critical, especially to help other people in new technical tasks.

As participant expressed, an Agile champion can be a developer, project manager, Scrum master, etc. 
and it does not matter what is the technical role of an Agile champion.

DISCUSSION

After presenting the findings of the GT, reviewing the literature is helpful to strengthen the position of 
the research results.

Coaching in Agile methods is slightly different from coaching in traditional methods. Good coaching 
can bring leadership concept to Agile methods (Augustine, 2005). Augustine (Augustine, 2005) explained 
that such coaching is meant to demonstrate “light touch” leadership. Ganesh and Thangasamy (Ganesh 
& Thangasamy, 2012) described personal characteristics of an Agile coach by explaining importance 
role of Agile coaches and their effects on the transition.

Beck and Andres (Beck & Andres, 2004) suggested to hire experienced Scrum masters and Agile 
coaches to help team members for adapting to Scrum practices, especially those which have focused on 
individuals and interactions.

Poppendieck (Anderson et al., 2003) in a panel emphasized on the role of Agile leaders and coaches 
in Agile migration and expressed that for helping people in the transition, Agile coaches and leaders are 
required while managers are optional. Hoda (Rashina Hoda, 2011) described the role of Agile coach 
and mentor and focused on the role of coach on self-organizing team as one of the important Agile 
concepts. On the other hand, there are some reports on lack of effective and good coaching and its ef-
fects on Agile transformation (Hajjdiab & Taleb, 2011; Srinivasan & Lundqvist, 2010; Sureshchandra 
& Shrinivasavadhani, 2008).



32

Agile Coaches and Champions
 

The authors also in (Gandomani, Zulzalil, Abd Ghani, et al., 2014; Gandomani, Zulzalil, Ghani, 
Sultan, & Parizi, 2015) explained facilitators of Agile transition and explained how well a good coach-
ing and mentoring service can help Agile teams and organization to cope with problems during Agile 
transition. Role of the Agile coach in training also has been emphasized.

Some roles in Agile teams may impress other members significantly during the transition. Agile 
champions are those who play a hidden role to facilitate the changes and persuade others to change them-
selves. Hoda et al. (R. Hoda, Noble, & Marshall, 2010) explained the role of champions in self-organizing 
teams. They stressed on the role of champions in understanding business drivers and also their effects 
on other members. They also showed that champions are necessary for securing senior management 
support, propagating more teams, convincing top management, and establishing pilot team. However, 
they believed that sometime Agile coach or a developer play the role of champion.

Senapathi and Srinivasan (Senapathi & Srinivasan, 2012) discovered that champions and senior 
managers are the roles that have significant influence on usage and adoption of Agile practices. Earlier, 
Kum and Law (Kum & Law, 2006) discovered that Agile champion (a member or a team), is one of 
the success factors in Test Driven Development methodology. Also, the findings of the current study 
discovered that Agile champions make Agile transition easier and help other team members to adapt 
their new roles. Yet, it seems that it can be studied further.

Literature review supported the important role of the Agile coaches and Agile champions in facilitat-
ing of the transition. Both of the roles encourage the persons involved to adapt their activities to what 
Agile expects. Furthermore, this study showed the responsibilities of Agile coach and champion during 
Agile transformation.

This study has some implications and recommendations for theory and practice. The main implica-
tion of this study for theory is related to human-centric nature of Agile approach. While Agile manifesto 
simply explains Agile values, Agile adoption is not a straightforward and smooth process. This is mainly 
because successful Agile transition requires changing in people’s mindset. Accordingly, the change is not 
easy and needs considerable supports. For this purpose, considering some roles to direct and encourage 
pilot teams is extremely helpful. Agile coaches and champions are those who directly and indirectly 
impress other members during Agile transition and adoption.

The first recommendation for practice is that software company have to hire Agile coach(es) and 
Agile champion(s) before starting their transition. Managers should empower Agile coaches and Agile 
champions to really do their jobs as expected. Agile coaches can help company from preparation phase, 
when company is preparing to change its development process. Software companies need to consider 
Agile coach’s viewpoints in many stages of Agile transition such as hiring competent members, team 
set up, preparing an action plan, creating progress criteria, defining business goals, etc.

Also, this study recommends hiring a full-time on-site coach rather than an external coach. Since 
pilot teams most often are faced by various challenges, a full-time coach can help them in the right time. 
Such a coach can train team members can train team members and help them in case of problems.

Furthermore, hiring some Agile experts as Agile champions in various roles will facilitate the tran-
sition. Especially in software companies with many years’ experience in disciplined methods, Agile 
champions can strongly facilitate the change process. They can overcome the resistance against change 
and negative perceptions about Agile approach and its usefulness.



33

Agile Coaches and Champions
 

Moreover, Agile champions can facilitate some successes in early stages of the transition. Reach-
ing early success in Agile transformation process is a success key for fully adoption. Early successes 
can encourage indifferent team members or even Agile opponents to effectively collaborate with other 
members and follow the change process by following the Agile processes.

While there are many potential challenges and problems during Agile transformation, hiring competent 
Agile coaches and champions can reduce the challenges and increase the chance of success.

CONCLUSION

This chapter explained two critical roles in Agile transition process. Agile coaches and Agile champions 
are the transition facilitators which directly impress the people involved the change process. Agile coaches 
have a distinguished role in the transition in many stages. They can facilitate providing the prerequisites 
of the transition. Also, they can be helpful in direct coaching the people who involved in the transition 
by teaching them what they need to be familiar with their new roles and responsibilities. Also, they can 
facilitate the adaptation by proposing the required adjustments. Totally, they can help all the practitioners 
to overcome their problems during the transition process and facilitate the change process.

Agile champions like Agile coaches can significantly facilitate the transition. They can adjust Agile 
practices to suit environment. Also, they act as exemplar for other members, encourage them to accept 
their new roles, and adapt to Agile activities in a practical manner.

REFERENCES

Adolph, S., Hall, W., & Kruchten, P. (2011). Using grounded theory to study the experience of software 
development. Empirical Software Engineering, 16(4), 487–513. doi:10.1007/s10664-010-9152-6

Anderson, L., Alleman, G. B., Beck, K., Blotner, J., Cunningham, W., Poppendieck, M., & Wirfs-Brock, 
R. (2003). Agile management - an oxymoron?: who needs managers anyway? Paper presented at the 
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems, 
languages, and applications, Anaheim, CA. doi:10.1145/949344.949410

Augustine, S. (2005). Managing agile projects. Prentice Hall.

Bayona, S., Calvo-Manzano, J. A., & San Feliu, T. (2012). Critical success factors in software process 
improvement: A systematic review. In A. Mas, A. Mesquida, T. Rout, R. V. O’Connor, & A. Dorling 
(Eds.), Vol. SPICE 2012, CCIS 290 (pp. 1–12). Palma. doi:10.1007/978-3-642-30439-2_1

Beck, K., & Andres, C. (2004). Extreme Programming Explained: Embrace Change (2nd ed.). Boston, 
MA: Addison-Wesley Professional.

Beck, K., Cockburn, A., Jeffries, R., & Highsmith, J. (2001). Agile manifesto. Retrieved May 2014, from 
http://www.agilemanifesto.org

Cockburn, A., & Highsmith, J. (2001). Agile software development: The people factor. Computer, 34(11), 
131–133. doi:10.1109/2.963450

http://dx.doi.org/10.1007/s10664-010-9152-6
http://dx.doi.org/10.1145/949344.949410
http://dx.doi.org/10.1007/978-3-642-30439-2_1
http://www.agilemanifesto.org
http://dx.doi.org/10.1109/2.963450


34

Agile Coaches and Champions
 

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to Agile methods. Advances in Computers, 
62, 1-66. doi: 10.1016/S0065-2458(03)62001-2

Coleman, G., & O’Connor, R. (2007). Using grounded theory to understand software process improvement: 
A study of Irish software product companies. Information and Software Technology, 49(6), 654–667. 
doi:10.1016/j.infsof.2007.02.011

Conboy, K., Coyle, S., Wang, X., & Pikkarainen, M. (2011). People over process: Key challenges in 
agile development. IEEE Software, 28(4), 48–57. doi:10.1109/MS.2010.132

Dorairaj, S., Noble, J., & Malik, P. (2012, May 14-15). Understanding lack of trust in distributed agile 
teams: A grounded theory study. Paper presented at the 16th International Conference on Evaluation 
and Assessment in Software Engineering, EASE 2012, Ciudad Real, Spain. doi:10.1049/ic.2012.0011

Gandomani, T. J., Zulzalil, H., Ghani, A. A. A., Sultan, A. B. M., & Sharif, K. Y. (2013). How Grounded 
Theory can facilitate research studies in context of Agile software development. Science International-
Lahore, 25(4), 1131–1136.

Gandomani, T. J., Zulzalil, H., Abdul Ghani, A. A., Sultan, A. B. M., & Sharif, K. Y. (2014). How human 
aspects impress Agile software development transition and adoption. International Journal of Software 
Engineering and its Applications, 8(1), 129-148. doi: 10.14257/ijseia.2014.8.1.12

Gandomani, T. J., Zulzalil, H., & Ghani, A. (2013). Obstacles to moving to agile software development; 
at a glance. Journal of Computer Science, 9(5), 620–625. doi:10.3844/jcssp.2013.620.625

Gandomani, T. J., Zulzalil, H., & Ghani, Abdul, A. A., Sultan, A. B. M., & Sharif, K. Y. (2014). Explor-
ing Facilitators of Transition and Adoption to Agile Methods: A Grounded Theory Study. Journal of 
Software, 7(9), 1666–1678. doi:10.4304/jsw.9.7.1666-1678

Gandomani, T. J., Zulzalil, H., Ghani, A. A. A., & Sultan, A. B. M., & Parizi, R. M. (2015). The impact 
of inadequate and dysfunctional training on Agile transformation process: A Grounded Theory study. 
Information and Software Technology, 57, 295–309. doi:10.1016/j.infsof.2014.05.011

Ganesh, N., & Thangasamy, S. (2012). Lessons learned in transforming from traditional to agile devel-
opment. Journal of Computer Science, 8(3), 389–392. doi:10.3844/jcssp.2012.389.392

Glaser, B. (1992). Basics of Grounded Theory Analysis: Emergence Vs. Forcing. Mill Valley, CA: So-
ciology Press.

Glaser, B. (1998). Doing Grounded Theory: Issues and Discussions. Mill Valley, CA: Sociology Press.

Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. 
Chicago: Aldine Transaction.

Glaser, B. G. (2005). The Grounded Theory Perspective III: Theoretical Coding. Mill Valley, CA: So-
ciology Press.

Hajjdiab, H., & Taleb, A. S. (2011). Agile adoption experience: A case study in the U.A.E. Paper pre-
sented at the IEEE 2nd International Conference on Software Engineering and Service Science, ICSESS 
2011, Beijing, China. doi:10.1109/ICSESS.2011.5982247

http://dx.doi.org/10.1016/j.infsof.2007.02.011
http://dx.doi.org/10.1109/MS.2010.132
http://dx.doi.org/10.1049/ic.2012.0011
http://dx.doi.org/10.3844/jcssp.2013.620.625
http://dx.doi.org/10.4304/jsw.9.7.1666-1678
http://dx.doi.org/10.1016/j.infsof.2014.05.011
http://dx.doi.org/10.3844/jcssp.2012.389.392
http://dx.doi.org/10.1109/ICSESS.2011.5982247


35

Agile Coaches and Champions
 

Hoda, R. (2011). Self-Organizing Agile Teams: A Grounded Theory. (PhD Thesis). Victoria University 
of Wellington, New Zealand.

Hoda, R., Noble, J., & Marshall, S. (2010). Organizing self-organizing teams. Paper presented at the 
32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010, Cape Town, South 
Africa. doi:10.1145/1806799.1806843

Hoda, R., Noble, J., & Marshall, S. (2011a). Developing a grounded theory to explain the practices of 
self-organizing Agile teams. Empirical Software Engineering, 17(6), 609–639. doi:10.1007/s10664-
011-9161-0

Hoda, R., Noble, J., & Marshall, S. (2011b). The impact of inadequate customer collaboration on 
self-organizing Agile teams. Information and Software Technology, 53(5), 521–534. doi:10.1016/j.
infsof.2010.10.009

Iivari, J., & Iivari, N. (2011). The relationship between organizational culture and the deployment of 
agile methods. Information and Software Technology, 53(5), 509–520. doi:10.1016/j.infsof.2010.10.008

Kum, W., & Law, A. (2006). Learning effective test driven development: Software development proj-
ects in an energy company. Paper presented at the 1st International Conference on Software and Data 
Technologies, ICSOFT 2006, Setubal, Portugal.

Martin, A., Biddle, R., & Noble, J. (2009). XP customer practices: A grounded theory. Paper presented 
at the Agile 2009 Conference, Chicago, IL.

Martin, A., Biddle, R., & Noble, J. (2009). The XP Customer Team: A Grounded Theory. Paper presented 
at the 2009 Agile Conference. doi:10.1109/AGILE.2009.70

Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying some important success factors in adopting 
agile software development practices. Journal of Systems and Software, 82(11), 1869–1890. doi:10.1016/j.
jss.2009.05.052

Moe, N. B., Aurum, A., & Dybå, T. (2012). Challenges of shared decision-making: A multiple case study 
of agile software development. Information and Software Technology, 54(8), 853–865. doi:10.1016/j.
infsof.2011.11.006

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. 
Communications of the ACM, 48(5), 72–78. doi:10.1145/1060710.1060712

Pikkarainen, M., Salo, O., Kuusela, R., & Abrahamsson, P. (2012). Strengths and barriers behind the 
successful agile deployment-insights from the three software intensive companies in Finland. Empirical 
Software Engineering, 17(6), 675–702. doi:10.1007/s10664-011-9185-5

Senapathi, M., & Srinivasan, A. (2012). Understanding post-adoptive agile usage: An exploratory cross-
case analysis. Journal of Systems and Software, 85(6), 1255–1268. doi:10.1016/j.jss.2012.02.025

Srinivasan, J., & Lundqvist, K. (2010). Agile in India: Challenges and lessons learned. Paper presented at 
the 3rd India Software Engineering Conference, ISEC’10, Mysore, India. doi:10.1145/1730874.1730898

http://dx.doi.org/10.1145/1806799.1806843
http://dx.doi.org/10.1007/s10664-011-9161-0
http://dx.doi.org/10.1007/s10664-011-9161-0
http://dx.doi.org/10.1016/j.infsof.2010.10.009
http://dx.doi.org/10.1016/j.infsof.2010.10.009
http://dx.doi.org/10.1016/j.infsof.2010.10.008
http://dx.doi.org/10.1109/AGILE.2009.70
http://dx.doi.org/10.1016/j.jss.2009.05.052
http://dx.doi.org/10.1016/j.jss.2009.05.052
http://dx.doi.org/10.1016/j.infsof.2011.11.006
http://dx.doi.org/10.1016/j.infsof.2011.11.006
http://dx.doi.org/10.1145/1060710.1060712
http://dx.doi.org/10.1007/s10664-011-9185-5
http://dx.doi.org/10.1016/j.jss.2012.02.025
http://dx.doi.org/10.1145/1730874.1730898


36

Agile Coaches and Champions
 

Sureshchandra, K., & Shrinivasavadhani, J. (2008). Moving from waterfall to agile. Paper presented at 
the Agile 2008 Conference, Toronto, Canada.

Treccani, P. J. F., & De Souza, C. R. B. (2011). Collaborative refactoring: Results of an empirical study 
using grounded theory (Vol. 6969). Paraty: LNCS.

Tsirakidis, P., Köbler, F., & Krcmar, H. (2009). Identification of success and failure factors of two agile 
software development teams in an open source organization. Paper presented at the 4th IEEE Interna-
tional Conference on Global Software Engineering, ICGSE 2009, Limerick. doi:10.1109/ICGSE.2009.42

Vijayasarathy, L., & Turk, D. (2012). Drivers of agile software development use: Dialectic interplay 
between benefits and hindrances. Information and Software Technology, 54(2), 137–148. doi:10.1016/j.
infsof.2011.08.003

KEY TERMS AND DEFINITIONS

Scrum: Scrum is one of the popular agile methodologies which aims to address the challenges of 
projects involving complex scope of work using a simple process dependent on a small team who are 
motivated, collaborative and highly focused on producing working software every 2-4 weeks.

Feature Driven Development: Feature Driven Development (FDD) is an agile method that focuses 
on delivering working software in a timely manner by using simple, client focused and practical software 
process. This method works well without tailoring to both small (< 8 team size) and large teams (> 30 
team size).

Extreme Programming: Extreme Programming (XP) is an agile methodology that specifically 
emphasizes the use of agile technical practices (e.g. Test Driven Development) for the success of an 
agile project. Practical experience shows that XP complements Scrum well and both the methods work 
well together.

Refactoring: Refactoring aims to have a cleaner “code” by restructuring the code without changing 
its external behaviour. The idea is to improve the design of the code with the intention of making it easy 
to use.

Agile Software Development: A software management and development approach that helps to 
create software quickly while addressing the issue of requirement change.

http://dx.doi.org/10.1109/ICGSE.2009.42
http://dx.doi.org/10.1016/j.infsof.2011.08.003
http://dx.doi.org/10.1016/j.infsof.2011.08.003


37

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  3

DOI: 10.4018/978-1-4666-9858-1.ch003

ABSTRACT

Although agile development promises better customer response and quality, not all who attempt agile 
seem to get such desired results. The issue is context – understanding the context in which agile is being 
adopted and choosing the right practices. Our research question is how agile-coaches can best elicit and 
communicate the agile adoption context with development teams and organizations. In this paper, we 
propose capturing and describing agile adoption context visually using a set of architectural views. This 
is analogous to describing architectures, but now applied to the context of agile adoption. We propose 
a set of views and applied it in the agile adoption of a company’s internal social network system (SNS). 
Our experiences taught us that context evolves as agile coaches interact with development organization 
and teams, and the context description evolves and converges to the team’s desired way of working after 
the agile coach leaves the scene. It is also the basis for drawing upon past experiences and building 
experiences for the next agile adoption engagement.

1. INTRODUCTION

1.1 Context! Context! Context!

The fundamental challenge is that software development is complex and success depends on a large 
number of context factors. Dyba (T. Dybå, Dag IK Sjøberg, and Daniela S. Cruzes., 2012) pointed out the 
importance of context when it comes to empirical studies. Indeed, some development is very complex. 
Clarke and Connors (Clarke & O’Connor, 2012) found 8 classifications, 44 factors and 170 sub-factors. 
Jones (Kotter, 1995) identified 121 factors affecting quality alone. The large number of factors poses 
serious challenges to practitioners. Teams need to evaluate which factors are more important them and 
understand when certain factors be emphasized or downplayed.

A Canvas for Capturing 
Context of Agile Adoption

Pan-Wei Ng
Ivar Jacobson International, Singapore



38

A Canvas for Capturing Context of Agile Adoption
 

Before moving further, we want to clarify the context for our discussion in this paper. Indeed our 
discussion about context requires a context. The context of our discussion is about agile adoption, the 
transition from a less agile approach to a more agile one. Kruchten (P. Kruchten, 2007) highlighted that 
successful agile adoption depended on context.Hoda, Kruchten, Noble, and Marshall (Hoda, Kruchten, 
Noble, & Marshall, 2010) conducted a Grounded Theory study and argued that development methods 
and practices must be adapted to fit their contexts.For example, agile adoption in a highly regulated 
context would be different from a less regulated one as reported by Fitzgerald, Stol, O’Sullivan, and 
O’Brien(Fritscher & Pigneur, 2010). Chow and Cao (Chow & Cao, 2008)found 36 factors affecting the 
success of agile adoption.Today, empirical studies (Begel, 2007; T. Dybå & Dingsøyr, 2008; Li, 2010) on 
agile methods are plentiful and easily accessible by practitioners. However, there is still very little work 
to provide a systematic approach to describe the context in which agile methods and adoption took place.

1.2 Objective and Overview of Paper

The challenge for practitioners, especially agile coaches, ishow to get an accurate understanding of the 
agile adoption context comprehensively and quickly and from there, help teams choose the appropriate 
course of action.Note that while being able to consolidate empirical data and make generalizations is a 
useful by-product, our primary goal is to make concrete actionable recommendations and steer clear of 
potential pitfalls for the specific case we are involved in.

We propose using an architecture centric approach to capturing agile adoption context. Osterweil 
noted that software processes are software too(Osterweil, 1987). Accordingly, just as software architec-
ture descriptions help us understand the nature of complex software systems, software processes need 
architecture descriptions too. In software itself, architecture descriptions with agreed viewpoints are 
often used to communicate the complexities of a software system (Hofmeister et al., 2007). As pointed 
out by Ambler (Ambler, 2002), the use of architecture descriptions should be agile and lightweight. 
Lightweight models of businesses such as the business model canvas (Fritscher & Pigneur, 2010) used 
in Lean Startup (Blank, 2013) are gaining popularity. It follows naturally that some kind of lightweight 
informal architecture description with agreed viewpoints would be useful to describe and communicate 
agile adoption context, to identify potential improvements to current way of working, and where barriers 
and roadblocks to adoption might be.

Our proposed agile adoption canvas builds upon our earlier works on modeling analyzing process 
improvement context (Pan-Wei Ng, 2014; Ng, 2013; Pan-Wei. Ng, 2014). The agile adoption canvas 
answers three questions:

1.  How a team is developing and delivering software.
2.  What the team has tried.
3.  What the team should try next and why.

The agile adoption canvas comprises a number of viewpoints, namely: the timeline, value-stream-
activity, software system, stakeholder-and-team, work-management, and objectives-and-practices view-
points. We propose using an agile approach to capture these views through an informal canvas, which 
is a whiteboard that participants can doodle and comment on. As such we call this context description 
an agile adoption canvas.



39

A Canvas for Capturing Context of Agile Adoption
 

In this paper, we describe our experiences applying the agile adoption canvas to the agile adoption in 
a company’s internal social network service (SNS) product. Section 2 shows the kind of context infor-
mation each of the above-mentioned views captures. In Section 3, we give examples showing what each 
view contains by documenting our experiences in an industrial setting. Section 4 of this paper describes 
our lessons learnt. We recognize that capturing the context of agile adoption is not an easy task. It in-
volves communicating back to the team (adopting agile methods) and getting confirmation. It is at least 
a two-way street as an agile coach interacts with the team. Observations either validate or invalidate past 
observations and assumptions. Finally, in Section5, we discuss the generality of our proposed approach 
and draw conclusions and future work.

2. AGILE ADOPTION CANVAS

As agile development become main stream, its application has extended beyond small-scaled develop-
ment to larger-scale (more people), broader scope (involving more kinds of activities) and more novel 
situations. Our work with a large scale IT organization involving about 4000 developers and contractors 
was one such situation. The author was the lead-coach and advisor of this agile transformation. This IT 
organization had many product teams with staffing ranging from tens to hundreds. Agile adoption had to 
go beyond simple scrum and XP inspired practices like continuous integration and refactoring. It became 
necessary and even critical to understand the adoption context and how agile principles can address their 
challenges, as emergent and novel practices were needed. Moreover, this large-scale enterprise agile 
adoption endeavor involved 10 external and internal coaches with each coach was responsible for the 
agile adoption of separate product teams and some level of consistency amongst coaches was important.

Existing approaches like checklists, maturity models (McAvoy, 2009) and root-cause-analysis ap-
proaches (Lehtinen, 2011) needed pre-requisite steps to first understand what product teams are doing. 
This inspired the invention of the agile adoption canvas. Having agreed viewpoints help coaches be 
thorough and consistent when collecting and communicating contextual information about the product 
teams. It provided crucial inputs for recommending and tracking improvements.

The agile adoption canvas comprises a set of viewpoints that highlight elements about the way teams 
develop and deliver software and provides the inputs to discuss challenges faced and explore solutions.

We classify elements into context elements and adoption elements. Context elements describe how 
a team is currently developing and delivering software and adoption elements describe the challenges it 
faces and the new practices it should adopt. Context elements are further classified into time elements 
and structural elements. Time elements comprise major events that have impact on adoption. Structural 
elements are elements about the way the team conducts development.

Timeline Viewpoint: The timeline viewpoint provides shows significant time elements such as major 
events and lifecycle milestones that have impact on the way the team develops software or impact agile 
adoption (see Figure 2). It addresses our concern about when the team tried something, whether it worked 
and why. For example, a team might have tried using some agile practices without getting desired ben-
efits. In such as situation, an agile coach has to be sensitive to the challenges the team had faced, instead 
of proposing the same practices. The timeline view also highlights upcoming milestones and deadlines 
that a team has to keep up with. These milestones impose time limits and constraints as to the practices 
that can be introduced. For example, a team might have completed their traditional “requirements” face 



40

A Canvas for Capturing Context of Agile Adoption
 

and are now working towards an impending release. In such a case, it does not make sense suggesting 
the team to rewrite their requirements from a traditional approach to one that uses user stories. Instead, 
the focus should be on practices that help the team achieve their delivery.

Structural context viewpoints and elements describe the way a team develops and delivers software. 
Figure 3 shows the different types of structural elements and their containing. These structural context 
viewpoints serve as a background for product teams and coaches to identify challenges and practices to 
overcome them.

Value Stream Activity Viewpoint: The value-stream-activity viewpoint describes major activities 
and periodic activities of a software development endeavor. Development value streams often include 
stages like conceiving a requirement or a feature to its analysis, development, testing and release. More 
complicated value streams would include feedback and collaboration between teams and departments. 

Figure 1. Agile Adoption Canvas viewpoints and elements

Figure 2. Timeline context elements and viewpoint

Figure 3. Structural context elements and viewpoints



41

A Canvas for Capturing Context of Agile Adoption
 

This viewpoint is useful for understanding development lead-times, wastes and bottlenecks. Frequently, 
we find software development lifecycles in traditional organizations work with large batches that hinders 
early feedback. Agile and lean methods however, advocate having fixed cadence and managing scope to 
maximize value (Reinertsen, 2009).

Software System Viewpoint: The software system viewpoint describes the software system struc-
ture and highlight technical debts (P. Kruchten, 2007) that may hinder the adoption of agile methods. 
Kruchten’s 4+1 (P. B. Kruchten, 1995) is a popular approach for software development. However, we 
find logical views and implementation views most relevant when considering agile adoption. Logical 
views highlight component complexities and dependencies between components. Implementation views 
highlight branch-and-merge strategies. Both have significant impact on development velocity and quality.

Stakeholder and Team Viewpoint: The stakeholder and team viewpoint describes the participants of 
the development process, their relationships and where problems occur. Agile development emphasizes 
collaboration and engagement. This view helps us understand how well various parties collaborate and 
where collaborations breakdown and silos occur. This viewpoint also highlights the attitudes participants 
have towards agile principles and practices (Power, 2010).

Work Management Viewpoint: Large-scale and complex agile development requires some kind of 
tooling for teams to manage their work. The work management viewpoint describes the kind of work-
items and work-products that the teams are responsible for, how the teams track and manage these items. 
Poor work management, prioritization and alignment lead to unnecessary delays and bottlenecks.

Objectives and Practices Viewpoint: Teams who adopt agile approaches want to achieve some objec-
tives such as increased customer satisfaction, higher productivity, better staff engagement, better quality, 
or to overcome specific weaknesses in their development approach. The objectives-and-practices view-
point links the agreed objectives to the challenges and practices identified from earlier viewpoints. This 
viewpoint further highlights factors affecting the adoption of these practices. Examples of such factors 
include business orientation, organization culture, mindset, executive involvement, etc. as discussed by 
Dyba (Power, 2010) and Chow and Cao (Chow & Cao, 2008).

3. APPLYING THE AGILE ADOPTION CANVAS

This section describes our experiences applying the agile adoption canvas to above-mentioned com-
pany’s internal social network service (SNS) development team. Our purpose here is to exemplify the 
kind of contents that are communicated through the canvas. We use an informal free-form approach to 
describe each view to encourage creative and novel use of the canvas. We annotate negative (i.e. hinder-

Figure 4. Adoption elements



42

A Canvas for Capturing Context of Agile Adoption
 

ing agile) factors and challenges with an explosion icon and positive (i.e. supporting agile) factors with 
a star. Neutral facts had no adornment. Solid arrows show influence, while dashed arrows anchor text 
to diagram elements.

Timeline View: Three months before our engagement (see Figure 5), the SNS team experimented 
with agile approaches. As there was little executive support, little changed. One month before starting 
to engage with this team, there an organizational level agile adoption strategy was established. This in-
cluded agreeing a candidate set of practices to introduce, designating of internal and external coaches, 
coaching roles and responsibilities, targeting candidate product teams who would be the first batch of 
early adopters, executive expectations from these teams, agreed measurements and their baselines. The 
SNS team had to report their achievements 4 months later for executive review. This created a push to 
make agile adoption successful.

Value Stream and Activity View: Prior to agile adoption, SNS development cycles took on average 2.5 
months (see Figure 6). The time when an agreed requirement was received to the time it went to produc-
tion usually took 5 months. Moreover, large numbers of incidents frequently followed each production 
release. These problems were the motivation for the SNS product team to adopt agile methods. They 
wanted to move from a 2.5-month cadence to a 1-month cadence by adopting agile practices.

Software System View: The left hand side of Figure 7 shows the logical view of the SNS software 
system. The SNS product comprised several social network channels running on top of an SNS platform. 
The channels had integration with an external search engine and other products in the IT department. 
SNS codes were relatively well structured and did not pose any threat to agile adoption.

Figure 5. SNS: Timeline view

Figure 6. SNS: Value stream and activity view



43

A Canvas for Capturing Context of Agile Adoption
 

The right-hand-side of Figure 7 shows the implementation view of the SNS software system focusing 
on its branching strategy. Development teams work on different branches that are merged to the main 
branch on a weekly basis. This merging effort was not significant and did not pose any immediate threat 
to their agile adoption.

Stakeholder and Team View: The SNS core development team consists of a project manager, one 
business analyst, one software architect, five design engineers and one test manager. This core team was 
staffed by the companies IT department. Development teams carried out the actual development work. 
Each development teams were staffed from two separate contractor companies. Each had an on-site 
manager responsible for their staff. There was a total of about 50 contracted staff.

The relationships that the SNS team had with other stakeholders are rather complicated (see Figure 
8). Requirements originated from stakeholder representatives, one for each social network channel. 
Frequent requirement changes occurred with the sales channel representatives, which created much 
disturbance to the development teams, which were roughly aligned with the social network channels. In 
addition, there was heavy and complicated governance procedures to ensure quality before a release of 
the SNS was allowed to go “live”.

Furthermore, to prevent impact to users, any software deployment to production was only permitted 
during weekends (Saturday 10pm at the earliest). The SNS product had tight integration with a search 
engine developed by a separate product team. Fortunately, the latter was also adopting agile methods 
and was willing to abide by the SNS product team’s new cadence.

Work Management View: There were two main kinds of work-items for SNS development, namely: 
enhancements that were expressed in requirement documents and defects that were captured using an 
in-house defect-tracking tool (see Figure 9). No work-item tracking tool was used to track the progress 
of enhancements.

Majority of the enhancements could be implemented within 10 man-days. Enhancements were small 
and conformed to the INVEST (Independent, Negotiable, Valuable, Estimable, Small, Testable) criteria 
for user stories (Dyba, 2005).

Objectives and Practices View: The key challenges were due to a number of factors, such as poor 
collaboration between teams, poor collaboration between developers and testers and outdated processes 
and governance procedures (see Figure 10). The candidate practices that for the SNS product team to 
adopt are depicted as hexagons, the notation from the OMG Essence specification (Wake, 2003). Planning 
agile adoption involved prioritizing and introducing these practices. The different shades represented 

Figure 7. SNS: Software system view



44

A Canvas for Capturing Context of Agile Adoption
 

whether they are standard vanilla practices that could be acquired from books, or had to be adapted, 
or they were novel and had to be invented to meet the specific challenges at hand. The different types 
of practices highlighted the preparation work needed before the practice can be made fit-for-purpose.

The identified practices included scrum, lean-startup inspired requirements management, super-scrum 
(a simple large scale instantiation of scrum, incident analysis (finding root causes of incidents and de-
fects), acceptance test driven development (ATDD) (Rubin, 2012), automated testing, agile governance 
(Gärtner, 2012) and DevOps (Qumer, 2007).

Figure 8. SNS: Stakeholder and team view

Figure 9. SNS: Work management view



45

A Canvas for Capturing Context of Agile Adoption
 

4. EXPERIENCES WITH THE ADOPTION CANVAS

During the four months that we coach the SNS product team, the agile adoption canvas evolved and 
served as an input for determining actions and their priorities. It was a shared reference between external 
and internal coaches and the SNS project manager. Our experiences yield the following observations:

Write it down. The first rule-of-thumb is “write it down immediately and organize gradually”. We 
found that physical facts are quite easy to capture, but physiological and cultural facts were much harder 
to detect and document. For example, erroneous generalizations occurred frequently leading to capability 
traps and self-confirming attribution errors highlighted by Repenning, and Sterman (Gene Kim, 2013).

Context canvas evolves. It is not easy to capture all contextual information at once, but instead takes 
a while. Even then context evolves as the software development endeavor progress. Much of the context 
information about the SNS agile adoption was gathered over a period of time. For example, events like 
department restructuring was something we knew only 2 months into the adoption after investigating 
why it was difficult to arrange progress meetings. The impact of the business analyst’s strong personal-
ity was confirmed after a series of events. The product team’s heavy workload generated much inertia 
for introducing automated testing.

Context canvas requires and facilitates engagement. For the context canvas to work, participants 
need to actively provide information. This could be achieved by having regular retrospective meetings 
and it takes time and effort. However, we also found that making the contents of the canvas visible to 
participants of the agile adoption also served to get them engaged.

Context canvas is a training and facilitation tool. The context canvas serves as a useful two-way 
communication tool. It drives team members to highlight their existing challenges in a way understand-
able to an agile coach. It is also provides a way for an agile coach to describe how agile approaches are 
different from or similar to current approaches. For example, the development and delivery view gave 
us the opportunity to discuss the value of working in small batches and to explain how the SNS team 
could work in small batches.

Figure 10. SNS: Objectives and practices view



46

A Canvas for Capturing Context of Agile Adoption
 

Desired development approach emerges from the context canvas. As mentioned, the context canvas 
was always evolving. It began by describing the current development approach highlighting the prob-
lem areas. Each month of the adoption period, we update the context canvas with new information and 
changed work processes. As such, it was always describing the SNS’s specific development approach 
at the point in time, albeit at a high level. Moreover, the history view also captured what we tried and 
did not work and why, which set the stage for agile adoption for the next month. Gradually, the context 
description converges, the team’s desired agile way of working emerges, and the team now have an 
architecture centric description of their specific agile process.

Context canvas provides transparency. As mentioned, the SNS agile adoption was part of a much 
larger. There were about 4000 software engineers (in-house and contracted) in theIT organization that 
the SNS product belonged to. Five external coaches were engaged who worked closely with designated 
product teams. The context canvas provided a means to the organizational level agile adoption team a 
clear and transparent picture of what was going on in the field.

Context canvas requires effort and discipline. Keeping the context canvas updated required effort. 
We first used whiteboards for discussion, but this was quickly replaced by PowerPoint files to permit 
sharing electronically. We believe this effort was worthwhile because it provided inputs for reflection 
and analysis.

5. CONCLUSION AND FUTURE WORK

During the 4 calendar months of agile adoption, the SNS product team reduced their development and 
delivery cycle by 50%. There was significant decrease in defects reported. Business representatives 
collaborate with the SNS product team to prioritize their product backlog. Automated testing was in-
troduced. Such a positive report like the paragraph above would raise different response from different 
readers. Agile advocates would cite this as a confirmation of agile benefits. Skeptics would dismiss it 
as an exaggeration and say, “It will not work here.” Or at the very least, an expected response would be 
“Our situation is different.” The truth lay on an adequate understanding of the adoption context. In this 
paper, we had demonstrated the application of the agile adoption canvas on the SNS case. This demon-
stration also serves as an exemplary guide to describe the reader’s case.

Evaluation

At the beginning of this paper, we have mentioned that the goal of the canvas is to clarify the context for 
a specific case, i.e. the SNS. As coaches we needed to the due diligence for acquiring sufficient inputs 
to make choose the correct course of action and to recommend the right practices.

However, we have not evaluated the generality of our approach. We had not evaluated (1) if the list of 
views are complete, (2) whether the views are too few or many for small and large scale agile adoption, 
and, (3) the kind of pre-requisite knowledge to effectively make use of the context canvas.

Future Work

Clearly, more needs to be done. Empirical evaluation of the generality of the canvas is clearly needed, 
as are guidelines for using the canvas, especially the kind of context information for each view.



47

A Canvas for Capturing Context of Agile Adoption
 

Software development is challenging and making the right decision and taking the right course of 
decision requires consideration into the development context and goals. Adopting agile methods is also 
complex, and perhaps even more complex because it involved organizational changes. In their review 
of a decade of agile methods, Dingsøyr et al. (Repenning, 2002)recommended a more theory-based 
approach to research. Dyba˚ and Dingsøyr (T. Dybå & Dingsøyr, 2008) surveyed research for empiri-
cal evidence of agile software development and found that different reporting content hinders analysis. 
Jedlitschka, Ciolkowski, and Pfahl (Dingsøyr, Nerur, Balijepally, & Moe, 2012) also pointed out that a 
major problem for integrating software engineering research results into a common body of knowledge 
is the diversity of reporting styles. It is difficult to locate relevant information; and important informa-
tion is often missing. Petersen and Wohlin (Andreas Jedlitschka, 2008) found that studies investigating 
a similar object do not agree on which context facets are important to mention and provided a checklist 
that aims to help researchers make informed decisions on what to include and not to include. Clearly, 
an agreed approach or domain model to capture agile development context is important.

REFERENCES

Abrahamsson, P., Conboy, K., & Wang, X. (2009). ‘Lots done, more to do’: The current state of agile 
systems development research. European Journal of Information Systems, 18(4), 281–284. doi:10.1057/
ejis.2009.27

Ambler, S. (2002). Agile modeling: effective practices for extreme programming and the unified process. 
Academic Press.

Begel, A., & Nagappan, N. (2007). Usage and perceptions of agile software development in an industrial 
context: An exploratory study. In Empirical Software Engineering and Measurement, (pp. 255-264). 
doi: 10.1109/esem.2007.84

Blank, S. (2013). Why the lean start-up changes everything. Harvard Business Review, 91(5), 63–72. 
doi:10.4324/9780203104569

Brooks, F. (1995). The Mythical Man-Month. IEEE Software, 12(5), 57–60. doi:10.1109/MS.1995.10042

Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in agile software projects. 
Journal of Systems and Software, 81(6), 961–971. doi:10.1016/j.jss.2007.08.020

Clarke, P., & O’Connor, R. V. (2012). The situational factors that affect the software development process: 
Towards a comprehensive reference framework. Information and Software Technology, 54(5), 433–447. 
doi:10.1016/j.infsof.2011.12.003

Dingsøyr, T., Nerur, S., Balijepally, V. G., & Moe, N. B. (2012). A decade of agile methodologies: 
Towards explaining agile software development. Journal of Systems and Software, 85(6), 1213–1221. 
doi:10.1016/j.jss.2012.02.033

Dyba, T. (2005). An empirical investigation of the key factors for success in software process improve-
ment. IEEE Transactions on Software Engineering, 31(5), 410–424. doi:10.1109/TSE.2005.53

http://dx.doi.org/10.1057/ejis.2009.27
http://dx.doi.org/10.1057/ejis.2009.27
http://dx.doi.org/10.4324/9780203104569
http://dx.doi.org/10.1109/MS.1995.10042
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1016/j.infsof.2011.12.003
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1109/TSE.2005.53


48

A Canvas for Capturing Context of Agile Adoption
 

Dybå, T., Sjøberg, & Cruzes. (2012). What works for whom, where, when, and why?: on the role of 
context in empirical software engineering Paper presented at the ACM-IEEE international symposium 
on Empirical software engineering and measurement. doi:10.1145/2372251.2372256

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review. 
Information and Software Technology, 50(9-10), 833–859. doi:10.1016/j.infsof.2008.01.006

Fritscher, B., & Pigneur, Y. (2010). Supporting Business Model Modelling: A Compromise between 
Creativity and Constraints. Academic Press.

Gärtner, M. (2012). ATDD by example: a practical guide to acceptance test-driven development. 
Addison-Wesley.

Glass, R. L. (2004). Matching methodology to problem domain. Communications of the ACM, 47(5), 
19–21. doi:10.1145/986213.986228

Hoda, R., Kruchten, P., Noble, J., & Marshall, S. (2010). Agility in context. ACM SIGPLAN Notices, 
45(10), 74. doi:10.1145/1932682.1869467

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., & America, P. (2007). A general model 
of software architecture design derived from five industrial approaches. Journal of Systems and Software, 
80(1), 106–126. doi:10.1016/j.jss.2006.05.024

Jedlitschka, A., Ciolkowski, M., & Pfahl, D. (2008). Reporting experiments in software engineering. 
Guide to Advanced Empirical Software Engineering, 232(3), 201–228. doi:10.1007/978-1-84800-044-5_8

Kim, G., Behr, K., & Spafford, G. (2013). The Phoenix Project: A Novel about IT, DevOps, and Helping 
Your Business Win. IT Revolution Press. doi:10.1524/hzhz.2013.0149

Kotter, J. P. (1995). Leading change: Why transformation efforts fail. Harvard Business Review, 73(2), 
59–67.

Kruchten, P. (2007). Voyage in the agile memeplex. Queue, 5(5), 38. doi:10.1145/1281881.1281893

Kruchten, P. B. (1995). The 4+1 View Model of architecture. IEEE Software, 12(6), 42–50. 
doi:10.1109/52.469759

Lehtinen, T. O. A., Mäntylä, & Vanhanen. (2011). Development and evaluation of a lightweight root 
cause analysis method (ARCA method) – Field studies at four software companies. Information and 
Software Technology, 53(10), 1045–1061. doi: 10.1016/j.infsof.2011.05.005

Lethbridge, Diaz-Herrera, LeBlanc, & Thompson. (2007). Improving software practice through educa-
tion: Challenges and future trends. Future of Software Engineering, 12–28. doi: 10.1109/fose.2007.13

Li, J., Moe, N. B., & Dybå, T. (2010). Transition from a plan-driven process to Scrum: a longitudinal 
case study on software quality. In Proceedings of the 2010 ACM-IEEE international symposium on 
empirical software engineering and measurement. doi:10.1145/1852786.1852804

Maurer, F., & Melnik, G. (2007). Agile methods: Crossing the chasm. Paper presented at the Companion 
to the proceedings of the 29th International Conference on Software Engineering.

http://dx.doi.org/10.1145/2372251.2372256
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1145/986213.986228
http://dx.doi.org/10.1145/1932682.1869467
http://dx.doi.org/10.1016/j.jss.2006.05.024
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1524/hzhz.2013.0149
http://dx.doi.org/10.1145/1281881.1281893
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1145/1852786.1852804


49

A Canvas for Capturing Context of Agile Adoption
 

McAvoy, J., & Butler, T. (2009). A Failure to Learn in a Software Development Team: The Unsuccessful 
Introduction of an Agile Method. Information Systems Developmen, 5, 1–13. doi:10.1007/978-0-387-
68772-8_1

Ng, P.-W. (2014). Framework for Describing and Analyzing Context and Factors for Software Engi-
neering Research. Applying the SEMAT Kernel Lecture Notes on Software Engineering, 2(4), 179–196. 
doi:10.1007/978-1-62703-721-1_10

Ng, P.-W. (2014). Theory based software engineering with the SEMAT kernel: preliminary investiga-
tion and experiences. In Proceedings of the 3rd SEMAT Workshop on General Theories of Software 
Engineering. doi:10.1145/2593752.2593756

Ng, P-W., Huang, & Wu. (2013). On the value of essence to software engineering research: A preliminary 
study. Software Engineering, 10(3), 51-58. doi: 10.1002/rcs.1534

Osterweil, L. (1987). Software processes are software too Paper presented at the 9th international con-
ference on Software Engineering.

Power, K. (2010). Stakeholder identification in agile software product development organizations: A 
model for understanding who and what really count. Paper presented at the Agile conference. doi:10.1109/
AGILE.2010.17

Qumer, A. (2007). Defining an Integrated Agile Governance for Large Agile Software Development 
Environments. Defining an Integrated Agile Governance for Large Agile Software Development En-
vironments Agile Processes in Software Engineering and Extreme Programming, 4536, 157–160. 
doi:10.1007/978-3-540-73101-6_23

Reinertsen, D. G. (2009). The principles of product development flow. Second Generation Lean Product 
Development, 62. doi: 10.1787/dcr-2009-graph12-en

Repenning, N. P., & Sterman, J. D. (2002). Capability traps and self-confirming attribution errors in the 
dynamics of process improvement. Administrative Science Quarterly, 47(2), 265–295. doi:10.2307/3094806

Rubin, K. S. (2012). Essential Scrum: A practical guide to the most popular Agile process. Journal of 
Functional Programming, 22(03), 375–377. doi:10.1017/s0956796812000123

Vijayasarathy, L. E. O. R., & Turk. (2008). Agile Software Development: A survey of early adopters. 
Journal of Information Technology Management, 19(2), 1–8. doi:10.1080/1097198x.2008.10856469

Wake, W. C. (2003). INVEST in Good Stories, and SMART Tasks. Retrieved from www.xp123.com

KEY TERMS AND DEFINITIONS

Agile Software Architecture: A software architecture that lays out blue prints of the organization 
and structure of software components as well as well-defined mechanism on how components can be 
tested and integrated into the system that would sustain the agile approach throughout the software 
development life cycle.

http://dx.doi.org/10.1007/978-0-387-68772-8_1
http://dx.doi.org/10.1007/978-0-387-68772-8_1
http://dx.doi.org/10.1007/978-1-62703-721-1_10
http://dx.doi.org/10.1145/2593752.2593756
http://dx.doi.org/10.1109/AGILE.2010.17
http://dx.doi.org/10.1109/AGILE.2010.17
http://dx.doi.org/10.1007/978-3-540-73101-6_23
http://dx.doi.org/10.2307/3094806
http://dx.doi.org/10.1017/s0956796812000123
http://dx.doi.org/10.1080/1097198x.2008.10856469
http://www.xp123.com


50

A Canvas for Capturing Context of Agile Adoption
 

Agile Software Development Process: An evolutionary and iterative approach to software develop-
ment with focuses on adaptation to changes.

Continuous Integration: Continuous integration is a prescribed software engineering practice which 
advocates merging the developer working copies with a central, shared mainline several times a day.

Refactoring: Refactoring aims to have a cleaner “code” by restructuring the code without changing 
its external behaviour. The idea is to improve the design of the code with the intention of making it easy 
to use.

Waterfall Model: A sequential design, used in software development processes, in which progress 
is seen as flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation, 
Analysis, Design, Construction, Testing, Deployment and Maintenance.



51

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  4

DOI: 10.4018/978-1-4666-9858-1.ch004

ABSTRACT

In this chapter, a report containing the author’s many years of experience in software development 
together with a discussion of software engineering are presented. The report begins with the software 
crisis and includes different projects following the traditional waterfall model with heavy documents. 
In a re-engineering project of a legacy IT system by modernizing COBOL applications, we established 
an agile and model driven approach to software development. This approach which has been success-
fully applied in 13 projects since 2004 is presented. The key factors required for our success will also 
be discussed. Both the good and bad experiences of the last ten years will be summarized. The chapter 
will be finalized with a vision of a new architecture for agile software development.

INTRODUCTION

Computer technology has evolved at a rapid rate. It was inconceivable that my current notebook has more 
computer power than the huge IBM 370 machine that ran my first program in my university days. It is 
a real joke when someone still uses hardware components from the good old days for today’s business. 
On the other hand, what about software? Many COBOL programs developed in the 1970s are still in 
operation. In fact, enterprise IT systems usually undergo a long period of evolution. This decade long, 
the software projects evolved into some of the most complex software systems. For large corporations, 
mainframe applications programmed in COBOL often form the backbone of the IT structure. Despite 
their obsolescence, legacy systems continue to provide a competitive advantage through supporting 
unique business processes and containing invaluable knowledge and historical data.

Ten Years of Experience 
with Agile and Model-Driven 

Software Development 
in a Legacy Platform

Chung-Yeung Pang
Seveco AG, Switzerland



52

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Maintaining and upgrading legacy systems is one of the most difficult challenges many companies 
currently face. They struggle with the problem of modernizing these systems while keeping the day-to-
day operation intact. As reported later in this chapter, many large corporations have tried but failed to 
re-build their legacy systems using object-oriented language like Java or Smalltalk. At the same time, new 
applications developed in Java do not seem to provide significant advantages in terms of performance or 
enhancement in business agility. On the other hand, with a proper approach to software development, one 
can build flexible, maintainable, agile applications in a legacy platform with a language like COBOL. 
The approach was first reported in 2012 (Cockburn & Highsmith, 2001; Pang, 2012) and its solution 
framework includes the following features:

• Modular and pluggable for architecture business and system component integration.
• Reuse in terms of design and code patterns.
• Use model driven approach and code generation in the development process.
• Test infrastructure for unit testing, component integration testing and service testing.
• Adapt agile development process.

The development approach is based on practical experience from a re-engineering project of a legacy 
IT system in a large corporation. It was first applied in 2004. During the last 10 years, the approach 
has been applied in 13 projects. Although some projects were under significant pressure with time and 
budget constraints, all projects were completed on time and within budget.

In this chapter, I report my many years of experience in software development, particularly the last 
ten years of using the development approach. The chapter is organized as follows. In the background 
section, my experience of the software crisis, software development process based on the waterfall 
model, challenges and success of software projects are elaborated. In the next section I discuss the ag-
ile development process with the agile manifesto and its critiques. Software architecture, which in my 
experience is crucial to the agile process for enterprise application development is also elaborated. In 
the following section the history and evolution of the agile architecture for our development approach 
are presented. The architecture, model driven approach, tools and framework are discussed. Following 
that is a section on project experience. Then a section on the experience with developers, development 
teams and managers is presented. Following is a section about overall experience and lessons learnt. 
The acceptance, positive and negative experience as well as the findings are presented in this section. 
The chapter is finalized with future research directions and conclusions.

BACKGROUND

As background I present my personal experience with the software crisis, various software development 
processes, as well as challenges and successes of software projects.

Software Crisis

In the early days of software history, programmers tended to develop their programs in an ad hoc style 
with no documentation. A result of this was the software crisis of the 1960s, 1970s and 1980s. Typical 
phenomena of the software crisis are (Crisis, 2010):



53

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

• Many problems have arisen in software development.
• Software projects tend to run over budget and are late or completely fail to deliver.
• Mission critical programs become obsolete and not maintainable.
• Enterprise IT systems have become increasingly complex and they cannot easily be managed.

I gained personal experience of the software crisis in the mid-1980s when I started my career as a 
software developer. My first job involved maintaining and extending a software package developed by 
12 developers over a period of 5 years. All the developers had left the company. The only documents left 
behind were a few sketches on two scraps of paper. In this job, I had to go through thousands of lines 
of code written in different styles and structures and I tried to understand the algorithms of the whole 
software package. I fully understood the problems related to the software crisis after this experience. It 
also gave me a strong incentive to carry out research in software engineering. I would never support code 
centric approach to software development, although it is still common practice for most programmers.

Software Engnieering (Jackson, 2010) is a discipline that provides solutions to counter a software 
crisis. It defines standards, disciplines, methodologies and processes for software development. In the 
past decades, many new methodologies, standards, programming languages and paradigms have been 
developed. Programming styles like structural programming, object-oriented programming, etc. have 
been introduced. Programming languages such as ADA, C++, Smalltalk, Java, Prolog, etc. have been 
evolved to enable developers to program using better structures and to adapt to new programming styles 
like object-oriented programming as well as concepts of artificial intelligence and expert systems. Vari-
ous CASE tools have become available to assist software development through modeling. The Unified 
Modeling Language (UML) has also evolved. Developers can build different software artifacts in different 
phases of a software development process in the form of UML models. For the software development 
life cycle (SDLC), we have the waterfall model, spiral development model, rational unified process 
(RUP), agile development process, etc. Extreme programming, rapid application development (RAD) 
with prototyping and SCRUM, etc. provide different programming paradigms. There has been a great 
evolution of software technologies since the period of the software crisis.

Despite the advances in software technologies, the problems related to software crisis do not seem to 
have been solved. The Standish Group’s 2009 CHAOS report (Collier, 2009) shows only 32 percent of 
software projects are completed successfully. 44% are challenged which are late, over budget and/or have 
less than the required features and functions and 24% failed which are cancelled prior to completion or 
delivered and never used. “These numbers represent a downtick in the success rates from the previous 
study, as well as a significant increase in the number of failures”, says Jim Crear, Standish Group CIO, 
“They are a low point in the last five study periods. This year’s results represent the highest failure rate 
in over a decade”.

I have personally observed similar statistics as those provided by the CHAOS report. Ambler challenged 
the CHAOS report in a LinkedIn debate and argued that the agile approach to software development has 
a far more successful rate (S.W. Ambler, 2013). In a vote, many participants shared that their projects had 
been successful (Ambler, 2013). However, most of them faced great challenges in their projects. Recently 
a friend celebrated the success of a software project in his company. The project was originally planned 
for two years; however it took four years to complete and costed three times the original budget. To the 
team it was a success as they argued that the final product has many functionalities that are different 
to the original concept of the product. It is difficult to define success. However, software development 
remains a challenge to date. More examples will be provided in a later sub-section.



54

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Software Development Process

In 1970, (Royce, 1970) presented the first formal description of the waterfall model, although he did 
not use the term waterfall. The earliest use of the term “waterfall” may have been in a 1976 paper by 
Bell and Thayer (Bell & Thayer, 1976). As shown in Figure 1, the waterfall model provides a simple 
and logical structure of different activities involved with clear deliverables in a software development 
process. It is still popular today.

Despite its popularity, the linear sequential flow of activities in the waterfall model has many flaws. 
One major flaw relates to the concept that the requirements specification must be fully completed before 
the design and implementation activities start. This concept is in the mindset of many project managers, 
analysts and developers. “We can’t start the development unless we know exactly what we are going to 
develop”. One always hears such a sentence in a development project. Unless the project is very small, 
I personally have never come across the fact that any requirements specifications can be made up front 
and remain unchanged throughout the development life cycle. In the late 80s I went for a job interview. 
The project was to develop a new version of a radio phone system. The project was originally planned 
for two years. During my interview, I was told that they had been in the phase of specifying the re-
quirements for one and a half years. Development had not started yet. Later on I took a job to develop 
a mobile communication system. We spent three quarters of a year trying to come up with the system 
specification. I requested to develop some prototypes but was turned down by the project manager. We 
ended up spending too much of the budget with no signs of progress. The higher management did not 
agree to fund the project further and the project was ended. The final product of the project was a heap 
of documents that nobody would ever read.

There is a tendency to try to come up with a requirement specification for a perfect system that can 
solve all problems. This was the case for the two projects previously mentioned. In fact, in my drawer, 
there is still a set of CDs containing documents that had cost a financial institute many tens of millions 

Figure 1. Waterfall model for software development process



55

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

to develop in the late ‘90s. The documents contain the concepts and specifications of a dream financial 
system which was never completely developed. Those CDs have been in my drawer for over 15 years 
and I have not looked at them since.

In October 2007, we were going to develop a new version of our code generator. My original plan 
for the project was to have the first prototype in January and a new version in May 2008. A new project 
team took over the job. A couple of developers tried to come up with the requirement specification and 
we had meetings every two weeks to review this. There were many discussions on what the code gen-
erator should be able to do. In April 2008, we had still not completed the specification or got past the 
inception phase (the new term for the requirement specification phase). Then came the financial crisis 
and all projects were ended. Until now we have not had a new version of the code generator.

Requirement is often a moving target, as we see that most software packages have different versions. 
It is not a good idea to come up with a complete and thorough requirement before embarking on the next 
phase of development. It is the same as design. To complete a software design down to the final details 
before implementation starts is not advisable. Often we find that it is not feasible to implement the de-
tailed design. Design should be constantly verified with prototypes. In short, the life cycle of software 
development is usually an iterative and incremental process.

Despite its flaws, the waterfall model has laid out a foundation for the software development process. 
In the meantime, lots of new models based on the waterfall model have evolved. As software development 
is actually an iterative process, Boehm (B. Boehm, 1986; B. W. Boehm, 1988) came up with a spiral 
model. The prototyping model is another approach that emphasizes the development of prototypes to 
allow users of the software to evaluate developers’ proposals for the design of the eventual product by 
actually trying them out. Prototyping also serves the purpose of verifying the feasibility of implementa-
tion for architectural design. The incremental model is yet another model that applies the waterfall model 
incrementally. A recent approach is the agile software development methodology. This approach will be 
elaborated on in further detail in a later subsection. The different approaches of the software development 
life cycle (SDLC) have been well presented in many literatures (Johnson & Robinson, 2001).

Challenges in Software Projects

Advances in software technologies have made numerous promises. Back in the late ‘80s, software 
scientists claimed that OO languages were for programming on the whole (Wegner, 1989). The OO 
paradigm with polymorphism and inheritance was a solution to resolve and control the complexity of 
enterprise applications. Corporation executives have been led to believe that if they could port all their 
legacy applications to a new platform using programming languages such as Java and Smalltalk, they 
would have business agility and a great reduction in operating costs. In real practice, this often turns 
out to be an illusion.

A few years ago there was a project to port all the COBOL applications from the IBM z/OS system 
to the UNIX platform using Java as the main programming language. The project team had two and a 
half years time with substantial funding. The company executives were so committed to the project that 
they terminated all the software licenses of their legacy system at the time the project was scheduled 
to be completed. The project failed to complete and the company ran into so many problems that its 
survival was in question.



56

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Enterprise IT systems involve a complex interplay of people and processes. Technologies alone do 
not provide solutions for managing the complex IT landscape. Development style, budget pressures and 
project deliverables followed by the need to deliver short-term results in an over-constrained environ-
ment led to the rapid creation of huge amounts of proprietary code. Figure 2 shows a typical outline of 
Java packages’ inter-dependencies in a real enterprise project. Classes are developed as required. Cross 
references are made between objects when extensions of existing classes for new functionalities are re-
quired. This results in a “mountain-of-spaghetti” of Java code. The maintenance and operation of such 
a system represents a logistic nightmare just like COBOL based programs in legacy IT systems. The 
re-engineering of current IT systems turns into a process of continuous cycles.

Another example of failure was the development of a new general ledger system in a large corporation 
in the mid-90s. The system was based on a client server architecture. Smalltalk was the language for GUI 
development for the front end, while the existing mainframe back end system would act as a server to 

Figure 2. Illustration of Java packages’ inter-dependencies of an application



57

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

provide the data requested by the front end. Many hundreds of millions were invested in the project. The 
major problem with the project (in my opinion) was the implementation of the architecture. Populating a 
field would normally involve sending a query to the server. Eventually there were too many transactions 
involved in the mainframe system just to populate one screen. The system performance was absolutely 
not acceptable and operation costs would be too high. The last announcement by the management in 
that project was that they could not manage OO and client server technology. The project was ended.

A couple of years ago the Swiss government announced the complete failure of a software project for 
tax management after an investment of the equivalent to over one hundred million USD. In the press we 
were informed that the central office divided the whole project into the development of many software 
packages and subcontracted these packages to different contractors. These software packages did not 
work together.

For all the examples described so far, they show that software development is still a challenge 40 years 
after the start of the software crisis period. The causes of failure in software projects vary. They could 
be flaws in the development process such as consuming most of the budget in requirement specifica-
tions, flaws in architectural design and implementation like the project with the general ledger system, 
unable to handle the complexity of the software system, particularly when a huge system should be 
developed in one go, or poor project management and understanding of what is really required to man-
age a software project.

Success in Software Development

In 2006 the Standish Group put forward the following top ten success factors for IT projects (Hartmann 
Preuss, 2006; Krigsman, 2006).

1.  User involvement
2.  Executive management support
3.  Clear business objectives
4.  Optimizing scope
5.  Agile process
6.  Project management expertise
7.  Financial management
8.  Skilled resources
9.  Formal methodology
10.  Standard tools and infrastructure

In addition to the factors listed above, an additional key factor is the ability to resolve and control 
complexity. Staying focused on the essentials and proper architectural design are also important factors.

The above list provides a set of check points for IT projects. Descriptions of these factors can also 
be found in the 2001 online article by (Johnson & Robinson, 2001). It is interesting that the factor “firm 
basic requirements” in this article has been replaced by “agile process”.

In the late ‘80s, I was involved in a telecommunication project. In this project we had a framework 
written in Modula 2. The framework was based on architecture with a plug and play mechanism for the 
modules. The whole framework provided a frame for every application with an infrastructure for all the 
basic system functions in place. When new requirements came in, we carried out some analyses and 



58

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

quickly developed prototypes to verify the requirements as well as the design. The development process 
was evolutionary and iterative and we were able to estimate the effort required for each requirement. 
Applications were developed on time and within budget.

From the late ‘90s to the early 2000s, I experienced success in a number of projects that had solid 
architectures and used an iterative and incremental development process. The 13 projects of the last 10 
years that used the approach presented in this chapter are also examples of successful stories.

AGILE DEVELOPMENT PROCESS AND SOFTWARE ARCHITECTURE

In this section, I present the concept of agile development process together with its critics and problems. 
A subsection focused on the agile software architecture which I consider rather important to the success 
of software projects is also included

Agile Manifesto and Development Process

The agile software development process has become very popular in the software industry over the past 
few years. This process takes the evolutionary and iterative approach to software development (S.W. 
Ambler, 2010; Larman, 2003) and focuses on adaptation to changes. The concept fits well with any 
re-engineering project to improve business and IT agility. As previously mentioned the Standish Group 
removed “firm basic requirements” as a success factor and replaced it with “agile process”. To establish 
firm basic requirements requires a detailed analysis of the business process and how it should function 
at the start of the project. In the agile development process, on the other hand, concrete requirements 
are identified along with the development process through successive implementations of prototypes.

In an agile development process, requirements and solutions evolve through collaboration between 
self-organizing, cross-functional teams. It promotes adaptive planning, evolutionary development, early 
delivery, continuous improvement and encourages a rapid and flexible response to change. The Agile 
Manifesto, which first laid out the underlying concepts of Agile development, introduced the term in 
2001. The manifesto items within the agile software development context are:

• Individuals and interactions over processes and tools: In agile development, self-organization and 
motivation are important, as are interactions such as co-location and pair programming.

• Working software over comprehensive documentation: Working software will be more useful and 
welcome than just presenting documents to clients in meetings.

• Customer collaboration over contract negotiation: Requirements cannot be fully collected at the 
beginning of the software development cycle, therefore continuous customer or stakeholder in-
volvement is very important.

• Responding to change over following a plan: Agile development focuses on quick responses to 
change and continuous development.

The Agile Manifesto is based on 12 principles:

1.  Customer satisfaction through the rapid delivery of useful software.
2.  Welcomes changing requirements, even late in development.



59

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

3.  Working software is delivered frequently (weeks rather than months).
4.  Close, daily cooperation between business people and developers.
5.  Projects are built around motivated individuals, who should be trusted.
6.  Face-to-face conversation is the best form of communication (co-location).
7.  Working software is the principal measure of progress.
8.  Sustainable development, able to maintain a constant pace.
9.  Continuous attention to technical excellence and good design.
10.  Simplicity—the art of maximizing the amount of work not done—is essential.
11.  Self-organizing teams.
12.  Regular adaptation to changing circumstances.

There is extensive literature on the topic of the agile development process and practices(S.W. Ambler, 
2013; Larman, 2003; McGovern, 2003). Some of the most common practices include SCRUM, test-
driven development (TDD), the user story driven approach, agile modeling, etc. The Agile Alliance has 
provided a comprehensive online collection with a map guide to applying agile practices (S.W. Ambler, 
2010). We do not adhere to just a single practice published in literature. Rather we basically break tasks 
into small increments with minimal planning. Iterations have short time frames. An iteration can involve 
a team working through a full software development cycle, which includes planning, requirements 
analysis, design, coding, unit testing and acceptance testing when a working product is demonstrated to 
stakeholders. This helps to minimize overall risk and lets the project adapt to changes quickly.

Critics and Problems Related to Agile Development Process

The agile approach to software development eliminates the heavy documents that result from the waterfall 
model and hence reduces the significant effort invested in the requirements specification. The process 
also forces the development team to stop dwelling on the very high level concepts about what the sys-
tem should do by getting the development down to the ground with early prototyping. It has numerous 
advantages over the conventional waterfall model.

Despite its many advantages, there are also many critics against the agile approach (Bogard, 2012; 
Harlow, 2014). Rakitin, (2001) criticized the agile approach as an attempt to undermine the discipline of 
software engineering. The concept of “Working software over comprehensive document” leads to “We 
want to spend all our time coding. Remember, real programmers don’t write documentation.” In fact, 
most programmers do love the code centric style of development. I have come across development teams 
that carry out a purely code centric style of development while claiming that they use the agile approach.

A similar critique was raised by Gualtieri (Gualtieri, 2011). In his blog, Gualtieri found that “working 
software as the measure of progress” is narcissistic. Rushing to write code is oft the translation of this 
misguided principle. Another critique he put forward is related to “business people and developers work-
ing together daily”. He did not agree that meeting together with the business people every day would get 
the requirement right. Often business people are not the same as the users. The development team must 
understand the business and the users. Gualtieri commented that software is not code and development 
teams are not coders. Great developers must be design and domain experts. He also pointed out that 
design is essential. One gets what one designs, so one better get the design right.



60

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Moczar (Moczar, 2013) pointed out the following three flaws in agile methodology:

1.  “Delivery over quality” recasts the agile principle of “early and continuous delivery” of valuable 
software. Focusing on continuous delivery has the effect of creating an unmanageable defect 
backlog.

2.  “Development over planning” hits the agile principle of “responding to change over following a 
plan”. This principle encourages poor and irresponsible planning while hiding its effects.

3.  “Collaboration over management” with emphasis on self-organizing teams that do the right thing in 
some sort of group evolutionary manner. While self-organizing agile teams are also self-managing, 
they are not self-leading. An agile team needs the type of leadership that provides a vision to work 
towards and motivation for achieving that vision. A strong agile leader, often in the form of a 
product owner, knows how to motivate a team with a description of an extremely desirable product 
that is just beyond what the team may think it can do. Freed to pursue that goal and provided with 
ongoing guidance from a product owner, an agile team can become truly high performing.

Big projects using the agile approach like Universal Credit (Saravanan, 2013) and Surrey Police 
System (Murphy, 2014) have failed. Experts argued that the agile methodology was not properly adapted 
in these projects. This leads to the point that it is not at all easy to adapt the agile approach to software 
development for large projects in large organizations. Kiggundu (Kiggundu, 2014) presented a scenario 
that the user of an application from the National Health System in the USA is the entire population of 
the country. It is not possible to adapt to the principles of Agile when there are millions of stakeholders 
along with their complex interactions at individual, political and organization levels. In the various large 
organizations I have been involved in, the development teams are spread across different countries. It 
is not possible to have co-location of a development team in those organizations. In general, the larger 
the project and organization, the higher the complexity in both managerial and technical aspects. It is 
much harder for a large project to adapt a new technology than a smaller one. The failure rate is also 
higher. McKinsey (Blocher, 2012) reported that on average, large IT projects exceeding $15 million run 
45 percent over budget and 7 percent over time, while delivering 56 percent less value than predicted.

In the Agile Manifesto 10th Anniversary, Kruchten (Kruchten, 2011) made the following comment:

The agile movement is in some ways a bit like a teenager: very self-conscious, checking constantly its 
appearance in a mirror, accepting few criticisms, only interested in being with its peers, rejecting en 
bloc all wisdom from the past, just because it is from the past, adopting fads and new jargon, at times 
cocky and arrogant. But I have no doubts that it will mature further, become more open to the outside 
world, be more reflective, and also therefore more effective. I got a hint of what’s up for the future at the 
Snowbird meeting, which produced much more than our side meeting on elephants.

Throughout human history, whenever there was a complete turnover of government through a revolu-
tion, the state was in chaos afterwards. I feel that this applies to the software development process being 
carried out in large organizations. A complete turnover of an established process to software develop-
ment in a large organization and enforcing the agile approach can easily lead to chaos. I tend to agree 
with Moczar’s idea (Moczar, 2013) as he wrote:



61

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Think of agile as the ability to take the input of all the variable elements of the project—budget, time, 
design patterns, reusability, customer needs, corporate needs, precedents, standards, technology in-
novations and limitations—and come up with a pragmatic approach that solves the problem at hand in 
such a way that the product is delivered properly.

In adapting to the agile approach, we need to change the mindset of developers gradually and intro-
duce various techniques out of the agile methodology that would clearly bring benefits to the overall 
software development process. One must not undermine the software engineering principles that have 
evolved after so many years of experience.

Agile Software Architecture

In our modern days, nobody would gather carpenters, electricians, ironworkers, plumbers, masons, etc. 
and ask them to build a house without proper planning and architectural design. In software development, 
we still have this trend that programmers are gathered and start developing software without planning 
and design. A very experienced programmer once told me that they have never needed architecture. The 
architecture would appear after they build the software. Some developers using the agile approach would 
also argue that the software architecture would appear after the first few iterations. Software architecture 
design has been seen by many as a prime example of “big design up front” that is in contrast to general 
agile practices.

To program a single module for a set of independent functions is not a difficult task. In fact an experi-
ence programmer can write a lot of code within a short time. Problems arise when thousands of programs 
need to collaborate to perform the business functions. In a complex system (like the one illustrated in 
figure 2), it is almost impossible to keep an overall view of all the modules. Functions of an individual 
module and the parts it plays in the system are no longer transparent. At the start of the project, one may 
observe very fast progress. As the system grew, adding new modules into the system would increase its 
complexity and make the whole situation worse. Maintenance becomes a very difficult task.

Programming a single module for a set of independent functions is not a difficult task. In fact, an 
experienced programmer can write a lot of code within a short time. Problems arise when thousands 
of programs need to collaborate to perform the business functions. In a complex system (like the one 
illustrated in Figure 2), it is almost impossible to have an overall view of all the modules. The functions 
of an individual module and the part it plays in the system are no longer transparent. At the start of the 
project, one may observe very quick progress. As the system grows, adding new modules to the system will 
increase its complexity and make the whole situation worse. Maintenance becomes a very difficult task.

To provide business and IT agility, one must be able to resolve and control the overall complexity 
of the IT system. Proper software architecture is required (Ali Babar, 2014) . Netherwood states that 
architecture is important because it (Malan, 2010):

• Controls complexity.
• Enforces best practice.
• Gives consistency and uniformity.
• Communicates skill needs.
• Reduces risk.
• Enables re-use.



62

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Architecture is defined as the rules, heuristics and patterns governing:

• Partitioning the problem and the system to be built into discrete pieces.
• Techniques used to create interfaces between these pieces.
• Techniques to manage overall structure and flow.
• Techniques used to interface the system to its environment.
• Appropriate use of development and delivery approaches, techniques and tools.

Architecture includes the methods, standards, tools, frameworks, policies and management direc-
tives. A proper architectural design with its supporting infrastructure is critical to the success of an IT 
project. The architecture provides a blue print on how software components should be structured and 
developed as well as the way continuous integration should work. It ensures the agility of the overall 
system which allows the agile approach to development to be carried out throughout the whole software 
life cycle with no or few technical debts. It must reduce and not increase the complexity of the IT system. 
Software tools and standards must simplify the development process and not make it more complicated.

Using the infrastructure of a complex integrated technical architecture requires highly trained and 
experienced programmers. The Standish Group’s research shows that 70% of application code is infra-
structure (Johnson & Robinson, 2001). Applications are usually coded by programmers who have great 
knowledge of the technical structure. They are also responsible for programming the business rules and 
logic in the applications.

There should be a clear separation of the implementation of the business and technical aspects. Tech-
nical infrastructure is generally stable and the same for all applications. We can develop code segments 
and patterns that can be parameterized according to what is required. Application developers should just 
concentrate on the business related aspects and include the infrastructure code segments and patterns in 
their programs whenever needed. The application developers should not have to master the infrastructure. 
The effort of writing 70% of the infrastructure related application code can also be spared.

HISTORY AND EVOLUTION OF AGILE ARCHITECTURE

In this section, the history and evolution of our agile architecture are presented. The section starts with 
the history of a project to reengineer a legacy IT system. The agile and model driven development ap-
proach is presented in a following subsection.

Reengineering of a Legacy IT System

In 1998, I was engaged in the rebuilding of the legacy IT system of a large corporation. The system had 
evolved since the 1970s and contained thousands of COBOL programs. The new system should be based 
on an architecture with CORBA with front and back ends. Java was the programming language for the 
object oriented style of programming. We started off with some basic applications as prototypes, and 
programmed and deployed them in work stations. The final code should be ported and deployed in the 
mainframe host system.

Our prototypes were complicated enough to involve different development groups responsible 
for different components for both the front and back ends. During the development, we found it very 



63

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

troublesome to keep the interfaces for the remote procedure calls in CORBA in sync between different 
development groups. Hence we moved from a fixed record remote procedure call style to document 
style messaging with XML and took a step into component based service oriented architecture (SOA). 
Each component would extract the required data from the document model and put the output data in 
the document model when it has completed the processing. In this way, any changes in any component 
would only need to coordinate with those who are affected but not others, although they may share the 
same service interface. This was a kind of refactoring process of the architecture during prototyping.

In 2000 our prototypes were ready to be ported to the mainframe host system. The CORBA infra-
structure, on the other hand, was not ready. Despite the promises of the vender, we could not deploy 
our Java programs in the mainframe host system. In addition, we also saw that we could not replace the 
working system with a big bang. Whatever we developed needed to interoperate with the existing COBOL 
programs but we were not in a position to do this. The management finally decided that the front end 
applications with GUI could be used as they were but the back end applications should stay in COBOL.

The back end applications could not be programmed in Java but we wanted to keep our component 
based SOA architecture. Our first question was if we could use XML since no commercial XML parser 
was available in 2000. A few of us gathered and tried to develop an XML parser in COBOL. After a few 
weeks we managed to create our first prototype of an XML parser in COBOL. XML was parsed and 
transformed into a tree structure via link lists. Within months we managed to put the infrastructure in 
place so we could program our applications in COBOL in our SOA.

Towards Agile and Model Driven Approach

Despite the use of SOA, application development in COBOL remained a challenge. In late 2003 I was 
called in to look at the problems from a project. The development for this project had been carried out 
for one and three quarter years and most of the budget had been used up with no signs of completion. 
When I inspected the project, I found that there were many COBOL modules and they were all tightly 
coupled in a fashion, as illustrated in Figure 3. None of the modules could be unit tested on their own. The 
whole application was driven by a set of control flags. These control flags as well as the state data were 
passed from one module to another and updated in an uncontrolled way. Nobody had any architecture 
overview and any change could affect many modules. A developer showed me through the debugger how 
the state data were changed unexpectedly after calling another module that involved a chain of further 
actions. He was not able to program his module to produce the expected outcome.

At the beginning of 2004 I took up the technical lead of the project. The task was a real challenge. 
The goal was to complete the project within five months using the remaining budget. I had the option 
of fixing the current implementation and tried to make it work. If I made this choice, and even if I could 
succeed in getting the application to work, it would not be maintainable. Alternatively, I could re-design 
the whole architecture and start again. The pressure would be very high but I chose to start again.

One thing I realized was that in the COBOL program, a lot of code was just to handle the tree structure 
of the input and output messages. COBOL programmers did not like the tree structure. They were familiar 
with the COBOL data structure. My first effort was to come up with an infrastructure to carry out the 
mapping between the XML and COBOL records. At that time the service message interfaces were very 
well documented in UML class diagrams by a business analyst. The one responsible for the UML tool 
said that he could extract the meta data from the UML class diagrams. We made our first prototype of a 
code generator that was based on the meta data of the UML class diagrams, we generated the XML and 



64

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

DTD structures, the COBOL copy books which contain the COBOL data records, and the data object 
descriptors. A data object descriptor is basically a COBOL program that contains meta information for 
the mapping between the XML and COBOL record structure. A separate COBOL module was developed 
to carry out the mapping using this data object descriptor. An illustration of the UML class model and 
the generated software artefacts are shown in Figure 4. The whole set of prototypes were completed 
within three weeks. It reduced the effort made by all COBOL programmers to handle the incoming and 
outgoing service messages.

I have always been convinced of the agile approach with an iterative incremental process and 
continuous integration. The question was how I could put it in to action in the project. If the COBOL 
programmers were to start coding again the way they had done, we would just end up with the same 
state as before. We all realized that we must eliminate the strong coupling and interdependencies of the 
COBOL modules. I had a couple of discussions and brain storming sessions with the project architect 
and we made the following decisions:

• Process control must be centralized.
• COBOL modules must be independent autonomous units with well-defined contracts to fulfil.
• Apart from an invocation of external services offered by other business components, COBOL 

modules are not supposed to make direct calls to other COBOL modules.
• A plug and play architecture is required so that a COBOL module can be plugged in at any time 

for continuous integration.
• All state data will be held in a context container.
• State data in the COBOL structure can be deposited in the context container with a given logical 

name and it can be retrieved via the logical name.
• Each module will fetch the required state data from the context container and put new or updated 

state data in the context container.

Figure 3. Illustration of tightly coupled COBOL module



65

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

The same business analyst who modelled the service message interfaces in class diagrams also mod-
elled the process flow in UML state charts. We refined the state charts and made each action a COBOL 
module. We made some standard code patterns for COBOL modules on how to use the context container, 
standard error handling and an additional requirement that each module must deliver the outcome of its 
action with an event.

With the UML state charts, we extract the meta information and generate COBOL modules for 
centralized control of the process flows. These modules are called process controllers. The process 
controller is a finite state machine that calls a COBOL module based on an event. Figure 5 illustrates 
the state chart with a code segment of a process controller. In this figure, the process is a bit simple, as 
each action results in just one event. In normal cases, actions can result in a number of different events 
that would branch out into different process flows. A standard flow pattern is used for technical error 
handling which does not need to be included in the process flow model. If it is a technical error and not 
a business error, an exception will be raised and the process would terminate with error messages being 
sent back to the service consumer.

Figure 4. Class model and software artefacts generation



66

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Each module was programmed as an autonomous unit. It was activated by the process controller with 
the passing of the context container. It retrieved its required data from the context container without know-
ing where and how these data were made available. The output data would be deposited in the context 
container. An event would be generated by the module depending on the outcome of its action. In the 
modelling of the process flow we needed to ensure that each module would find its required data in the 
context container. For the testing of the flow we could plug in the dummy modules that just generated 
the events and updated the state data in the context container. These dummy modules could be replaced 
by real modules successively in our iterative process.

We managed to complete the infrastructure, code patterns and generators within the first month and a 
half. Application development turned out to be rather straight forward. The whole project was completed 
within five months using just the remaining budget.

After the success of the first project, we were allowed to use the same approach in a second project. 
We also extended our tools. First we developed a tool for the unit testing of the COBOL module. The 
tool contains a COBOL module with the following functions:

• Parses XML input and maps the data to the COBOL structure based on object descriptors.
• Creates the context container and puts the input data in context with a pre-defined logical name.
• Activates the module.
• Fetches the output data structure from the context container and generates XML output based on 

data object descriptors.

Figure 5. State model and code generation of a process controller



67

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

The design of a test tool is illustrated in Figure 6.
The business analysts used to specify each module in WinWord documents. I suggested that they 

specify the data with UML class diagrams and the flow with activity diagrams to avoid ambiguities. They 
followed my suggestion. We then found that if we put in enough meta information in these diagrams, we 
could generate the whole COBOL module. The next stage of our generator included the COBOL module 
generation based on class and activity diagrams. Figure 7 shows an example of the activity diagram and 
the generated code. The activity model has the following features:

• Program rules and logic can be modelled in the UML activity diagram.
• Each action in the model can contain code or a link to code pattern with parameters.

Figure 6. COBOL unit test tool architecture



68

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

• Different structures are used by the code generator for different actions with different stereotypes.
• Various code templates are also used for the generation of COBOL modules for different purposes.

We found that all usages of the infrastructure can be put into a set of code patterns that can be pa-
rameterized. Hence, developers can just use these patterns in the model and set the parameters without 
any concern about the code behind the infrastructure. There are also a lot a repeatable business patterns 
that can be built into reusable code patterns with parameters. Together with reusable code templates, 
we increased the amount of reuse tremendously. Reusable code segments are generally well tested. This 
reduced a lot of effort in bug fixing and testing. As mentioned before, 70% of code is usually infrastruc-
ture related. The effort expended to write this 70% of code can be reduced substantially when reusable 
code patterns are included in the model.

PROJECT EXPERIENCE

In this section, I present our first successful experience followed by more project experience.

First Successful Experience

Our first project in 2004 was a great success. Our development activities included the following:

Figure 7. Activity modeling of module logic and code generation



69

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

• Re-design of the processes.
• Specification of the activities to be realized in modules.
• Development of the context container, code templates and code generators.
• Programming of the modules.
• Final integration and testing.

The first release of the application, including the code generators, was within five months and only the 
remaining budget was used up. During our development process, we had daily morning coffee meetings 
that usually lasted around 15 to 20 minutes when we discussed our activities and the issues we faced within 
the whole team. On the other hand, only I, the project architect and the business analyst who did most 
of the UML modeling were involved in the design of the new architecture and infrastructures. We had 
pretty much the same team, except that the former project leader and the technical lead were dismissed.

The business requirement specification was reviewed, signed off and frozen long before I got involved 
in the project. After the first release and the business users started to experiment with the new applica-
tion, we had 800 change requests. All change requests were implemented in the same fashion iteratively 
with specifications and modeling. The application was only in production after all the change requests 
had been implemented. Again this confirmed that specification is a moving target and one cannot expect 
to get it all right at the beginning of the development phase.

In our second project, we had the same project architect and business analyst. In this project we 
extended the code generator to generate COBOL modules from class and activity diagrams. We moved 
more into modeling instead of coding. The business analyst was very enthusiastic about modeling and 
code generation. On the other hand, the COBOL programmers were not very excited about the idea. 
Most of the code they wrote was mainly for code segments in the models. Some were also engaged in 
creating code patterns and templates. The majority of them did not like the changes from conventional 
programming to modeling. The project was completed more successfully than the management expected.

Prior to using our development approach and infrastructure, we must allow at least two weeks for a 
COBOL programmer to complete a module. Programmers used to spend a lot of time figuring out how 
to do things and how things worked. Testing and debugging also required a lot of effort. With the model 
driven approach, a great deal of effort was eliminated. To give an example, I once observed that the 
IBAN (International Bank Account Number) was interpreted with different algorithms in two different 
modules within an application. The programmer would not have to know the structure of an IBAN when 
a code pattern to interpret the IBAN was available for modeling. With our approach and framework, a 
business analyst can work closely with a programmer to complete a module, including testing, within 
two to three days.

More Project Experience Examples

In one of our projects, there were special requirements on how to display and log errors. We could not 
use our standard error handling pattern. I joined the project in February and code freeze should have been 
at the end of June. There were seven different chains of business process flows. At the start we spent a 
lot of time designing and prototyping the error handling pattern. By the time the first and most simple 
chain was completed, it had taken almost two months. The majority of the project team claimed that we 
would take a lot longer to complete the project using our approaches. The project manager turned to me 
and asked what I thought. I simply said no problem and asked who would pay for the feast when we had 



70

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

finished. The project manager asked me to give him a detailed plan of the development and I simply 
replied “six chains in three months, one chain per half a month”. The project manager was not happy 
about this. We implemented all the chains by the end of June and the project was completed successfully. 
Ironically, the requirements specification was completed two weeks before code freeze.

In another project, there was a major change in the business requirement towards its end phase because 
the whole process flow must be modified with new business rules. We actually made the modifications 
in our autonomous modules and re-modeled the process descriptor. After we received the specification, 
we had a new version of the application ready for testing in two days. The agility and able to adapt 
changes came from our architecture. I do believe that an agile software architecture is important for the 
agile development process.

Since 2004, we have completed 13 projects using the approach and framework presented in this 
chapter. All projects were completed on time and within budget. In two projects I experienced we over-
ran the budget and time. Both projects rejected the agile approach to software development and insisted 
on using the waterfall model with heavy documentation.

DEVELOPERS, DEVELOPMENT TEAM, AND MANAGERS

In this section, I show the skill required for a developer using our development approach in the first 
subsection. In the following subsections I present my experience with development teams and managers.

A Skillful Developer

One of the success factors of the Standish Group is “skilled resources”. The question is what skills 
we need. We certainly need very skillful architects to design the architecture and framework. We also 
require skillful system programmers to implement the framework and infrastructure. They should build 
infrastructure related code patterns. However, they should support the application developers but they 
should not be the main application developers. The application developers are people who can analyze 
and model the business logic.

In 2005, a lady called Gaby joined our team as a business analyst. She had never written a program 
before. After a few months she was able to develop applications through modeling independently. In 
the meantime Gaby picked up some COBOL knowledge which allowed her to write the code segments 
required in the model and she followed the interactive debugger to debug the applications. After one 
year Gaby developed 80% of the required programs for a project that would normally need a team of 5 
to 6 developers. She usually engaged business analysts and users to go through her models. At one time 
a COBOL developer claimed that he could develop programs as fast as Gaby modeled them and have 
them generated. Gaby used her models to discuss with the business analysts and the end users. The pro-
grammer, on the other hand, could not show his code to the business analysts and end users in a meeting.

Gaby’s skills are:

• Logical thinking and able to analyze problems.
• Able to master abstractions and formulate them into rigorous models.
• Good communication skills and friendly manner.
• Responsible, works independently and committed to the projects.



71

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

“Gaby’s skill” covers five of the ten Standish Group success factors such as user involvement, agile 
process, skilled resources, formal methodology and standard tools and infrastructure. The paradigm puts 
emphasis on business modeling rather than coding. Gaby and her colleagues can test and demonstrate 
the usability of our architecture and framework.

The idea of Gaby, a non-COBOL developer who managed to develop 80% of all the COBOL pro-
grams has not been well accepted. Even an expert in model driven architecture commented that the idea 
of Gaby doing the job of an experienced COBOL programmer was not acceptable. If I say my son, who 
does not know anything about HTML and Java Script can develop flashy websites and blogs with Tumblr 
(2014), I wonder if this software expert would also dismiss the idea.

The mindsets of many software experts are that application development requires in depth knowledge 
of the system infrastructure and programming language. In the project to port all the COBOL applica-
tions from the IBM z/OS system to the UNIX platform I reported previously, they recruited application 
programmers who had in depth knowledge of Eclipse plugins. Does this mean that one needs to go deep 
into Eclipse plugins in order to program business logic?

It is still a common practice to mingle business logic with infrastructure related logic. Back in the 
late ‘90s, aspect-oriented programming (AOP) (Kiczales et al., 1997) was evolved to tackle this prob-
lem. AOP is a programming paradigm that aims to increase modularity by allowing the separation of 
cross-cutting concerns. It includes programming methods and tools that support the modularization of 
concerns at the level of the source code. The programming approach entails breaking down program 
logic into distinct parts, so-called concerns, which are cohesive areas of functionality. Some concerns 
“cut across” multiple parts in a program, and defy these forms of implementation. AOP implementations 
use cross-cutting expressions known as aspects that encapsulate each concern in one place. Tools are 
provided so that such expressions can be implemented in separate classes or modules. The technique 
allows us to separate business logic related code from infrastructure related code. Code that deals with 
infrastructure can be implemented as aspects to be included in the programs as expressions. In our 
modeling approach, the templates and patterns provide a mechanism similar to AOP. Patterns that can 
be parameterized are dragged into the application models. During code generation, the code segments 
of these patterns would be included in the final programs.

Social network platforms like (Ning, 2014) offer customers the ability to create a community website 
and blogs with a customized appearance and feel. In general users have no programming knowledge or 
experience. In most large corporations, application programming still adheres to the traditional approach 
with requirements specifications done by the analysts and implementation being done by program-
mers. There can be a lot of tools to support the different phases of SDLC such as those for requirement 
specifications and coding. Tools with very high levels of abstractions in any form that enable skillful 
analysts like Gaby to formulate the business logic and generate programs are usually not available. 
With our experience, we can build such tools. They can be very useful for fast prototyping in an agile 
development process. Developers in general are rather skeptical about such tools. General acceptance 
is rather difficult to achieve.

Development Team

In most large corporations, there are strong hierarchies among the employees according to their job 
functions. For application development, different groups are involved as shown in figure 8. The groups 
are described in the following list:



72

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

• Management Group: This group includes the different kinds of managers and administrative 
staffs. The responsibility of this group entails many of the basic management functions, like bud-
geting, staffing, change management, and organizing and controlling.

• Business Group: Proposals for new project or new features of existing applications are generally 
put forward by this group. They are also responsible for the functional specifications, final testing 
and acceptance of the applications. For some applications like E-Banking, end users are mostly 
clients of the corporation. End users for applications like the ones for teller in a bank are those who 
work in the counters. There are usually thousands of them. For these applications, developers do 
not have much direct interactions with the end users. Usually business solution managers or busi-
ness support staffs act as user representatives. They write the business specifications, interact with 
developers, test the end products and carry out the acceptance process. Business solution manag-
ers or solution domain managers are usually stakeholders of application development projects.

• System and Infrastructure Group: This group is responsible for IT infrastructure that includes 
the composite hardware, software, network resources and services required for the existence, op-
eration and management of the enterprise IT environment. To this group, system stability is one 

Figure 8. Example of groups involved in application development in a corporation



73

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

of the most important aspects. Thus any new and change requests to this group would take a long 
time to be put into place. If any new system setup is required in an application, the development 
team should make the request at the early stage of the development cycle.

• Testing Group: The testing group verifies that the software complies with the functional specifi-
cation. The group ensures that quality is built into the applications. Test engineers need to come 
up with test cases according to the business specification. In many companies, testing groups are 
parts of the development groups. In large corporations, testing groups are often separate groups. 
They work closely with the application developers. They should be involved in development proj-
ects at early stage.

• Development Group: The development group is responsible to the delivery of the applications. 
For a project, we usually have a project manager or project leader. Often there is also a technical 
project leader (also referred to as lead programmer). The technical project leader would mainly be 
responsible to the technology, development process, methodology, etc. to be used in the develop-
ment. Often the architect is also the technical project leader. Architect is also a kind of developer. 
Following the concept described in the previous subsection, I make a distinction between system 
programmer and application developer. System programmers are responsible for the implementa-
tion of the framework and infrastructure. Application developers are the ones who analyze, model 
and program the business logic.

My former manager used to say that I always chose the same people for the development team in 
my projects. Indeed I did not want to work with others when I could have my dream team to do the job. 
Our dream team was self-organized and extremely efficient. The development would make such fast 
progress that we could meet extremely tight time schedules. The problem was that I could not have my 
dream team all the time.

I was regularly called to help out with projects that were in trouble. There were projects that were way 
behind schedule and I was asked to help them deliver the product on time. One of these projects had the 
problem that a team had been working on the project for a year. The plan was to have code freeze and be 
ready for production testing within four months. The development team claimed that it was an impossible 
task. My manager asked me to take over the project leadership and to make it possible. What was the 
reaction of the team when a new project leader came with a new approach and tools for development? 
How would they respond when the new project leader tried to establish a goal that the rest of the team 
was convinced was not possible? In one of my first meetings with the team members, a tall lady yelled 
at me so loud that many people came in to the meeting room to see what was happening. They were 
afraid that the lady would throw me out of the window. It was hard. I faced resistance from almost every 
team member. I had to model with the analysts and programmed the various code segments and patterns 
with the programmers side by side. After a month we started to make rapid progress and most of the 
team members, but not all of them, were convinced about the approach. The lady who had yelled at me 
actually became a very good colleague and she was very efficient. The team started to organize itself.

On another occasion a colleague suggested I should take up the technical leadership of a project she 
was working on. The project had started two years prior and had not made much progress. I joined the 
project in January and the code freeze should have been in June. Our approach was made known to the 
team through my colleague. When I joined the project and insisted on the development approach, there 
was a split between the team members. Three of them were absolutely against it, they even insulted 
others who agreed with me. It was a terrible atmosphere with a constant escalation of the situation. One 



74

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

of them even went as far as to sabotage the project in order to prove that we were on the wrong track. 
Being supported by the higher management, we managed to get rid of two of them at a later stage. We 
were only able to work harmoniously for two months.

I joined a relatively big project in November 2006. The goal was to deliver the first version of the 
product in June 2007. In the first two months we had a meeting every two weeks to discuss what should 
be developed. In January 2007 I went to the project manager and told him that we could not carry on the 
way we were working. He said that I could not fit into the team and my reply was that he was correct. 
If I did fit in, all my projects would drag on and never meet their deadlines. He dismissed me from the 
project. The project did not meet the deadline and the first release was changed to May 2008. At the 
time when the project was about to complete the coding, the financial crisis arrived. The management 
ended all projects and changed the IT strategy over night. The project was never completed. During that 
time, I was lucky to be involved with another project that was completed just before the financial crisis.

Recently I had a conversation with a course leader of agile development and scrum. She emphasized 
that a self-organized team is essential to agile development. She told me that I should have tried to get 
the buy in from all team members regarding my approach before starting the project. When I had my 
dream team together, I did not have any problems with this. In many other projects, I do not think that 
I would get too far by trying to get buy in from all the team members. My experience was that some 
would start to get enthusiastic about the development approach. This happened with a number of analysts 
who realized that modeling was not a difficult task and that the implementations would come directly 
from models. Many of them would just get along as we proved that the technique worked. Some of these 
would still be convinced that the approach was not a proper development process, while others did not 
want to have anything to do with our approach at all.

Management

In 2004, we were given a chance to carry out our first project by the management under great pressure. 
After our first success we were allowed to continue with more projects. Between 2006 and 2008 we had 
very strong support from senior management. Some senior managers would like to make our approach a 
strategy for the whole corporation and support us to develop it further. In fact, if we had not received such 
strong support, some of our projects would never have worked out because of the resistance we faced.

Everything changed when the financial crisis arrived as many senior managers left the company. Also, 
numerous developers were laid off or they left the company themselves. There were only a couple of us 
left behind. Our approach was greatly criticized by some senior developers and software architects. They 
claimed that our architecture and tools were proprietary and home grown. The new management was 
not happy about the decisions that were made by the former senior managers. While 13 key applications 
are based on our architecture and modeling tools, we are still needed to maintain these projects. The 
current management is upset that our know-how is still needed. We can still use our approach for the 
extension and maintenance of our applications but our approach is forbidden for any new development. 
Proprietary and home grown tools are still developed in the company and they are geared towards the 
traditional style of SDLC.

In one of the business domains in the company, applications have all been developed using our ap-
proach and tools. A few of us are required to do the maintenance and provide user support for this busi-
ness domain. In another similar business domain with applications of the same nature and complexity 
developed with traditional SDLC, their group is three times as big. There was a time when we needed 



75

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

to make our applications available in a global international environment and the other group had to 
expand to 90 analysts and developers. There were huge problems which received lots of attention from 
the management. They received great complements and acknowledgement from the management when 
they solved the problems. In our group, we took up the job without too many problems. The job was 
done as usual and business ran the way it should. We did not receive any attention from the management 
nor was our effort acknowledged.

OVERALL EXPERIENCE AND LESSONS LEARNT

In this section, I present the acceptance, positive and negative experience of using our development ap-
proach. The section is completed with a subsection on lessons learnt.

Acceptance Experience

From our experience, we have the following statistics:

• Programmers:
 ◦ 70% rejected the development approach.
 ◦ 20% accepted the development approach.
 ◦ 10% are excited about the development approach.

• Business analysts:
 ◦ 40% learned the modelling techniques and have generated code with the help of program-

mers (number of analysts like Gaby who had no prior programming experience managed up 
to 70% of the development work on an application).

 ◦ 60% still prefer to write documents.
• Software architects:

 ◦ Those who had been involved are excited about the development approach and techniques.
 ◦ All architects from other projects resisted trying the development approach and techniques.

• Managers:
 ◦ Managers who experienced success in their projects would fully support the development 

approach.
 ◦ Managers who do not have personal experience usually do not support the development ap-

proach being used.

Positive Experience

The most positive experience we had was our technical achievement. This can be summarized in the 
following list:

• Provided an agile architecture with a plug and play mechanism for modules and continuous 
integration.

• Standardized code style and structure and enhanced code quality (e.g. standard error handling).
• Focused on business logic rather than infrastructure and the interactions of different modules.



76

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

• Maximized reuse with patterns, templates and modules.
• Architect and analyst driven instead of an ad hoc style of development.
• Models that reflect current implementation are used as documents as well as a means of 

communication.
• Reduced redundancies with an observable improvement in performance (e.g. resources are loaded 

into the context once and are used by multiple modules; a kind of caching).
• Reduced development effort by factors and enhanced software maintainability.
• Agile software development with rapid prototyping.

As presented in the above list, one of our achievements was the improvement in the performance of 
our applications. One would expect that programs with generated code are less efficient. Our experience 
has been that the generated code does not reduce performance by any noticeable figure. Our architec-
ture, on the other hand, has helped to improve performance. In one of the projects I was involved in, we 
needed to improve the performance of an existing application. The developers tried to optimize the SQL 
statements they used in the programs. When I looked at the performance figures, DB access only took 
10% of the overall transaction CPU time. Even if we reduce this time by 50%, the overall performance 
would only be improved by 5%. I found that the major issues of performance problems were the repeti-
tions of fetching resources and data during the transaction. When a module requires client information, 
financial instruments, etc., the module was programmed to activate the responsible components to fetch 
these data. With the introduction of the context container, we limited the activation of components for 
common resources to once. The performance was improved by 35%.

Negative Experience

The major critiques we have faced are as follows:

• Proprietary home grown modelling technique and code generators.
• Domain specific language (DSL) rather than universal standard approach.
• Special skills and mindsets required that do not fit the skill sets and experience of programmers.

There has been strong resistance to our approach from developers. Some senior developers consider 
that modeling with code generation is fundamentally a wrong approach. The architectural model with 
centralized process control and the separation of business rules from infrastructure has been considered 
unnatural to many developers. It is very difficult to convince the project team members to follow our 
approach. The “not invented here and not applicable in our projects” phenomenon stops the spreading of 
the development approach across IT groups. A common remark of developers is: “the paradigm works for 
their cases but not for our cases because our problems are far more complicated”. The question remains 
how they would tackle the complexity of their problems.

When the financial crisis arrived in 2008, many developers involved in the application development 
using our approach left the company. Since then a number of new developers have joined to maintain 
the applications. Most of them have no experience with the concepts of agile and MDSD (Model Driven 
Software Development). We observed that programmers made modifications directly in the code without 



77

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

updating the models. They also created nested modules without models or integration in the process 
controller. This started to get quite messy in a lot of applications. With the lack of management support, 
it is difficult to maintain the standard and rules of our development approach.

Our Findings

The best practices in our experience include the following:

• Autonomous components and modules are easy to develop and maintain.
• Architecture that allows the plug and play of components with continuous integration is essential 

to the agile development process for enterprise applications.
• Modelling with code generation provides great benefits in application development:

 ◦ Enhance communication and resolving of problems.
 ◦ Provide useful documents and enhance understanding of implementation.
 ◦ Maximize reuse.
 ◦ Reduce effort in development and maintenance.
 ◦ Improve code quality, adhesion to architecture and integration of standards.
 ◦ Use and reuse of patterns, templates, modules, models have a great impact on new applica-

tion development (e.g. reduce finding how-to processes).
• The agile development approach can eliminate lengthy requirements specification as well as speed 

up decision-making and requirement verification.
• The development approach must have management support and form part of the development 

strategy.

FUTURE RESEARCH DIRECTIONS

Although further development of our tools and modeling technique officially ended due to the financial 
crisis, I have continued with the research and prototyping of more advanced techniques. One thing I have 
observed is that the business processes of different business domains within a large corporation tend 
to have very similar patterns. For example, all payment and trading transactions in a financial institute 
require the retrieval of client and account information, availability and credit checks, the generation 
of client position movement, debit or/and credit of accounts, booking of the transaction in the general 
ledger, etc. There have been various activities to come up with standards for business applications by 
organizations such as OMG stated in Business Architecture, 2010. A research direction is to come up 
with standard model templates for the high level abstractions of business applications. They are used to 
construct rigorous business process model patterns. These model patterns can be tailored to different 
infrastructures and business components by providing the code segments and wrappers. Programs can 
then be generated from these models. Thus, we can have standard models for business processes that 
can be used for different business domains.

The business of an enterprise does not usually change. On the other hand, the applications must 
constantly be adjusted to the new regulations and products. Most of these changes are related to busi-
ness rules. A new product usually just resembles the characteristics of old products with new flows. I 
found that a good tool for the maintenance and extensions of applications is a rule based engine that 



78

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

collaborates with existing software components and low level modules. Another potential big change 
is to migrate legacy applications to a new platform. A big bang approach to migrate all legacy applica-
tions to a new platform in one go is rather risky. A graduate migration would require interoperations 
between software components in the new platform and software components in the legacy platform. 
Out of personal interest, I am building a framework with a cross platform architecture. The framework 
contains the following features:

• A cross platform architecture which utilizes SOA, enterprise service bus (ESB), agent technology, 
and service integration is being designed.

• Uses rule based engines in both decentralized and host systems to tackle the fast evolution and 
changes in business rules.

• Process flow is driven by a combination of business rules and the state data within the context 
controlled by the rule based engine.

• Allow dynamic business rules, services and process flows composition based on meta-data that 
can be interpreted by rule based engines.

The concept of the architectural framework utilizing an ESB for application integration is illustrated 
in Figure 9. It has the following characteristics:

• The service bus is used for the integration of different enterprise applications.
• The legacy host system can provide services for its existing applications.
• The Central Intelligent Agent controls the business process and distributes the data processing to 

different software components in different platforms.
• Integration of Web service, mobile systems, community and social network systems, host systems 

and external systems in the cloud.

I have also enhanced the modeling technique with the following features:

• Models for code generation are platform and language independent.
• Formalize domain specific models for business rules, process flow and services with the genera-

tion of meta-data to be interpreted by rule based engines.

Prototypes have been built for the rule based engines in Java and COBOL, as well as the code genera-
tor for Java. The activities are ongoing.

CONCLUSION

In this chapter I have reported my many years of experience in software development, particularly the 
last ten years of using the agile and model driven approach. My first project of maintaining a large 
package of code with no documentation gave me the experience of a software crisis. Later on I had the 
opposite experience, with heavy documents resulting in a traditional waterfall approach to software 
development. In my opinion, these approaches have major flaws. My best experience is with the agile 
and the model driven approach. Agile coupled with MDSD allows us to put forward an iterative and 



79

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

incremental development process with fast delivery of useful software and continuous integration. It 
eliminates the heavy documents but provides useful documentation through models. Programming can 
also start at the earlier stage parallel to requirements specification. The approach has been applied to 13 
projects that were all completed successfully, on time and within budget.

The software architecture and the modeling framework with code generation tools have been the 
main contributors to our success. In my opinion, particularly for enterprise applications, the design of 
the software architecture is crucial to ensure the agile approach can be applied throughout the whole 

Figure 9. Design of a cross platform architecture



80

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

development life cycle. The software architecture should provide a foundation for the fast development 
of individual software components and continuous integration. It should ensure changes and extensions 
can be made relatively easily. We designed a software architecture with a central process controller. 
Software components or modules are developed as autonomous units that can be unit tested. The archi-
tecture also provides a plug and play mechanism for components and modules. It makes changes and 
extensions rather straight forward tasks.

The agile manifesto recommends a self-organized and motivated team. A dream team can be very 
effective and efficient. The circumstances, on the other hand, may not permit this to happen. We can-
not rely on a dream team or even the buy in of the team members to our approach, as a pre-requisite. 
In some cases, we must persist with the way we work even though there is great resistance from other 
team members.

Despite the track records of projects using our approach, acceptance within our organization is only 
moderate. We face a lot of resistance from experienced architects and programmers. We had the support 
of management to start off; but as the management changed with time, the support disappeared.

Despite the lack of support from the management, I will continue to explore and improve our approach 
to software development. Currently I am building a prototype for a cross platform architecture which 
utilizes SOA, enterprise service bus (ESB), agent technology, service integration and a rule based engine. 
I am also trying to develop platform independent domain specific models with high level abstractions. 
Together they should provide a fast, effective and agile way towards enterprise application development.

REFERENCES

Ali Babar, M., Brown, A. W., & Mistrik, I. (2014). Agile Software Architecture. Communication Design 
Quarterly Review, 2(2), 43–47. doi:10.1145/2597469.2597477

Ambler, S. W. (2010). Agile Modeling. Ambisoft.

Ambler, S.W. (2013). What Was Final Status. Academic Press.

Bell, T. E., & Thayer, T. A. (1976). 2nd International Conference on Software Engineering. Computer, 
9(8), 9–12. doi:10.1109/C-M.1976.218669

Blocher, M., Blumberg, S., & Laartz, J. (2012). Delivering Large-Scale IT Projects on Time, on Budget. 
And on Value.

Boehm, B. (1986). A spiral model of software development and enhancement. ACM SIGSOFT Software 
Engineering Notes, ACM, 11(4), 22–42. doi:10.1145/12944.12948

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer, 21(5), 
61–72. doi:10.1109/2.59

Bogard, J. (2012). Why I’m done with Scrum. In Combining Kanban and Scrum -- Lessons from a Team 
of Sysadmins (pp. 99–102). LosTechieshoughtWorks.

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor. Computer, 34(11), 
131–133. doi:10.1109/2.963450

http://dx.doi.org/10.1145/2597469.2597477
http://dx.doi.org/10.1109/C-M.1976.218669
http://dx.doi.org/10.1145/12944.12948
http://dx.doi.org/10.1109/2.59
http://dx.doi.org/10.1109/2.963450


81

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Collier, M. J. (2009). CHAOS Summary 2009, The Standish Group. Negotiation and Conflict Manage-
ment Research, 2(3), 285–306. doi:10.1111/j.1750-4716.2009.00041.x

Gualtieri, M. (2011). Agile Software is A Cop-Out; Here’s What’s Next. Forrester, 36(6), 529–531. 
doi:10.1097/SHK.0b013e318239235a

Harlow, M. (2014). Molecular biology: RNA retrieved from intact tissue. Nature, 505(7483), 264. 
doi:10.1038/505264d

Hartmann Preuss, D. (2006). Interview: Jim Johnson of Standish Group. Info, Q(289), 253. 
doi:10.2307/20632978

Jackson, M. (2010). Engineering and Software Engineering. Academic Press.

Johnson, J., Boucher, K. D., Connors, K., & Robinson, J. (2001). Collaborating on Project Success. 
SOFTWAREMAG.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier, J., & Irwin, J. (1997). 
Aspect-Oriented Programming. Paper presented at the European Conference on Object-Oriented Pro-
gramming ECOOP’97, Berlin, Germany. doi:10.1007/BFb0053381

Kiggundu, A. (2014). Agile – Theory vs. Practice. ThoughtWorks. Nature, 505(7483), 264. 
doi:10.1038/505264d

Krigsman, M. (2006). Management of Critical Success Factors. ZDNet.

Kruchten, P. B. (2011). Agile’s Teenage Crisis. InfoQ, 10(4), 363–364. doi:10.1080/15332691.2011.6
13313

Larman, C. (2003). Agile and Iterative Development: A Manager’s Guide. Routledge.

Malan, R., & Bredemeyer, D. (2010). Software Architecture and Related Concerns. Resources for Soft-
ware Architects, 6285, 352–359.

McGovern, J., Ambler, S. W., Stevens, M. E., Linn, J., Sharan, V., & Jo, E. K. (2003). A Practical Guide 
To Enterprise Architecture. Upper Saddle River. Business Communication Quarterly, 66(1), 108–111. 
doi:10.1177/108056990306600116

Moczar, L. (2013). Why Agile Isn’t Working: Bringing Common Sense To Agile Principles. Academic 
Press.

Murphy, M. (2014). Agile Project Failure kills £15m Surrey Police System. Computerworld UK, 283. 
doi:10.1163/9789004266827_013

Ning. (2014). . BMJ (Clinical research ed.), 348, g1585. doi: 10.1136/bmj.g1585

Pang, C. Y. (2012). Improve Business Agility of Legacy IT System. Paper presented at the Information 
Systems Reengineering for Modern Business Systems: ERP, SCM, CRM, E-Commerce Management 
Solutions, Hershey, PA.

Rakitin, S. R. (2001). Manifesto Elicits Cynicism: Reader’s Letter to the Editor. Paper presented at the 
IEEE.

http://dx.doi.org/10.1111/j.1750-4716.2009.00041.x
http://dx.doi.org/10.1097/SHK.0b013e318239235a
http://dx.doi.org/10.1038/505264d
http://dx.doi.org/10.2307/20632978
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1038/505264d
http://dx.doi.org/10.1080/15332691.2011.613313
http://dx.doi.org/10.1080/15332691.2011.613313
http://dx.doi.org/10.1177/108056990306600116
http://dx.doi.org/10.1163/9789004266827_013


82

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Royce, W. (1970). Managing the Development of Large Software Systems. Paper presented at the IEEE 
WESON.

Saravanan, G. (2013). Why Software Engineering Fails! (Most of the Time). Software Engineering 
Notes, 38(6), 1–4. doi:10.1145/2532780.2532802

Software Crisis. (2010). In Wikipedia. Retrieved July 26, 2010, from http://en.wikipedia.org/wiki/Soft-
ware_crisis

Wegner, P. (1989). Concepts and Paradigms of Object-Oriented Programming. Academic Press.

ADDITIONAL READING

Agile Manifesto Group. (2001). Manifesto for Agile Software Development. Agile Manifesto. http://
agilemanifesto.org

Ali Babar, M., Brown, A. W., & Mistrik, I. (2014). Agile Software Architecture. Waltham, MA: Morgan 
Kaufmann.

Ambler, S. W. (2010). Agile Modeling. Ambysoft. Retrieved July 26, 2010, from http://www.agilemod-
eling.com/

Arlow, J., & Neustadt, I. (2004). Enterprise Patterns and MDA: Building Better Software with Archetype 
Patterns and UML. Reading, MA: Addison-Wesley.

Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice (2nd ed.). Reading, 
MA: Addison-Wesley.

Coplien, J., & Bjornvig, G. (2010). Lean Architecture for Agile Software Development. West Sussex, 
UK: John Wiley & Son.

Erl, T. (2008). SOA Principle of Service Design. Upper Saddle River, NJ: Prentice Hall PTR.

Erl, T. (2009). SOA Design Patterns. Upper Saddle River, NJ: Prentice Hall PTR.

Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Reading, MA: Addison-Wesley.

Fowler, M. (1997). Patterns of Enterprise Application Architecture. Reading, MA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, L. (1995). Design Patterns: Elements of Reusable 
Object-Oriented Software. Reading, MA: Addison-Wesley.

Garland, J., & Anthony, R. (2003). Large-Scale Software Architecture: A Practical Guide using UML. 
West Sussex, UK: John Wiley & Son.

Hohpe, G., & Woolfe, B. (2004). Enterprise Integration Patterns: Designing, Building, and Deploying 
Messaging Solutions. Reading, MA: Addison-Wesley.

Hunt, J. (2006). Agile Software Construct. London, UK: Springer.

http://dx.doi.org/10.1145/2532780.2532802
http://en.wikipedia.org/wiki/Software_crisis
http://en.wikipedia.org/wiki/Software_crisis
http://agilemanifesto.org
http://agilemanifesto.org
http://www.agilemodeling.com/
http://www.agilemodeling.com/


83

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Larman, C. (2003). Agile and Iterative Development: A Manager’s Guide. Reading, MA: Addison-Wesley.

McGovern, J., Ambler, S. W., Stevens, M. E., Linn, J., Sharan, V., & Jo, E. K. (2003). A Practical Guide 
To Enterprise Architecture. Upper Saddle River, NJ: Prentice Hall PTR.

Mellor, S. J., Scott, K., Uhl, A., & Weise, D. (2004). MDA Distilled: Principles of Model-Driven Archi-
tecture. Reading, MA: Addison-Wesley.

Reengineering Center. (1995). Perspectives on Legacy System Reengineering. Software Engineering 
Institute, Carnegie Mellon University.

Roshen, W. (2009). SOA-Based Enterprise Integration. New York, NY: McGraw-Hill.

SDLC. (2013). Software Development Life Cycle. SDLC. Retrieved December 11, 2014, from http://
www.sdlc.ws/

Systems Reengineering Patterns. (2000). Systems Reengineering Patterns. Heriot-Watt University. Re-
trieved July 26, 2010, from http://www.reengineering.ed.ac.uk/

KEY TERMS AND DEFINITIONS

Agile Software Architecture: A software architecture that lays out blue prints of the organization 
and structure of software components as well as well defined mechanism on how components can be 
tested and integrated into the system that would sustain the agile approach through out the software 
development life cycle.

Agile Software Development Process: An evolutionary and iterative approach to software develop-
ment with focuses on adaptation to changes.

COBOL: The programming language designed for commercial business data processing used for 
applications that often form the backbone of the IT structure in many corporations since 1960.

Domain Specific Language DSL: Extension of UML with additional properties according to the 
stereotypes assigned to modeling elements to capture semantics required for COBOL code generation.

Enterprise Service Bus (ESB): A software architecture model used for designing and implement-
ing the interaction and communication between mutually interacting software applications in service 
oriented architecture (SOA).

Intelligent Agent: An autonomous entity which acts upon the circumstances and direct its activities 
towards achieving goals.

Legacy Integration: The integration and Web extension of existing (legacy) systems, especially 
mission-critical mainframe systems, in order to leverage existing IT assets.

Mainframe: Mainframe computer systems like IBM z/OS.
Model Driven Software Development (MDSD): A model centric rather than a code centric approach 

to software development with code generated from models.
Re-Engineering Legacy Enterprise IT System: Integrating legacy enterprise IT system that is dif-

ficult to maintain and enhance into a new architecture which allows modification and evolution to meet 
new and constantly changing business requirements.

http://www.sdlc.ws/
http://www.sdlc.ws/
http://www.reengineering.ed.ac.uk/


84

Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
 

Service Oriented Architecture (SOA): A technical software architecture that allows client applica-
tions to request services from service provider type applications in a host system.

Software Component: A software unit of functionality that manages a single abstraction.
Software Crisis: A term used in the early days when software projects were notoriously behind 

schedule and over budget and maintenance costs were exploding.
Software Development Life Cycle (SDLC): The process, methods or a set of methodologies applied 

to create or alter software projects.
Waterfall Model: A sequential design, used in software development processes, in which progress 

is seen as flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation, 
Analysis, Design, Construction, Testing, Deployment and Maintenance.



85

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  5

DOI: 10.4018/978-1-4666-9858-1.ch005

ABSTRACT

This chapter describes the agile transformation of an IT organization in China with about 4000 people 
including contractors. In the span of one year, 47 teams and 1700 engineers moved from traditional to 
agile way of working. There was a 44% reduction in development lead-time, 5% reduction in production 
defects and 22% reduction in production incidents. This agile transformation occurred at two levels. At 
the organization level, adoption speed was crucial, as we wanted to reach critical mass in rapid time with 
limited coaching resources. This was very much an entrepreneur startup problem, where customers in our 
case are teams and members in the IT organization. At the team level, a practice architecture provided a 
roadmap for continuous improvement. A theory-based-software-engineering approach facilitated deeper 
learning. Beyond the usual factors for leading successful change, this transformation exemplified the 
use of a startup mentality, social networks, practice architecture, simulation, gamification, and more 
importantly integrating theory and practice.

1. INTRODUCTION

Today, agile development has “crossed the chasm” and became mainstream (Maurer & Melnik, 2007). 
Many organizations have adopted agile development (Vijayasarathy & Turk, 2008). However, failures 
to agile adoption are not uncommon and the ride towards agility can be bumpy (McAvoy & Butler, 
2009). Regardless, the industry is now seeking new frontiers towards agile development. For example, 
teams are extending agile principles to IT operations in the form of DevOps (Spinellis, 2012), and to 
novel product development in the form of Lean Startup(Ries, 2011). Still, there are others who want to 
be successful not only in small development, but also in large development, such as using Large Scale 
Scrum (LeSS)(Larman & Vodde, 2013), Scaled Agile Framework (SAFe) (Leffingwell, 2010)and Dis-
ciplined Agile Delivery (DAD)(Ambler & Lines, 2012). Many authors and organizations have shared 
their experiences in large-scale agile development. Babinet and Ramanathan shared their experiences 

Rapid Agile Transformation 
at a Large IT Organization

Pan-Wei Ng
Ivar Jacobson International, Singapore



86

Rapid Agile Transformation at a Large IT Organization
 

with dependency management in salesforce.com(Babinet & Ramanathan, 2008). Read and Briggs shared 
their experiences with large-scale agile design(Read & Briggs, 2012). Paasivaara and Lassenius shared 
experiences with scaling Scrum to large distributed development, with specific emphasis on the product 
owner role(Paasivaara & Lassenius, 2011). Fitzgerald et. al studied scaling agile methods to regulated 
environments in an industry setting(Fitzgerald, Stol, O’Sullivan, & O’Brien, 2013). However, there 
is little literature discuss how to effectively, systematically and rapidly enable a large organization to 
transform to an agile development, which is the emphasis of this chapter.

In this chapter, we highlight the enabling approaches that helped an IT organization of 4000 people 
including contractors transform from a traditional way of working into an agile one that is responsive 
to business needs. The author was the lead coach and advisor to this transformation. Our work with this 
IT organization occurred at two levels, organization and team.

At the organization level, it is really a change management process. A number of works exist on leading 
such changes including Kotter’s 8 step process for leading change(Kotter, 1995), Prochaska’s stages of 
change, (Prochaska et al., 1994) Lewin’s three steps to organization change (Lewin, 1989) and Gleicher’s 
formula for change(Dannemiller & Jacobs, 1992). However, our experience is that an organization was 
not a monolithic entity, but a complex network of social entities, where each entity can influence another. 
An agile transformation endeavor is then about systematically propagating change (i.e. the message 
and spirit of agility) across the organization to different entities (i.e. teams), often across organizational 
silos. Even though the IT organization in our case study had a top-down culture, a top-down directive 
would not work in the long run, but instead would kill the spirit of agility and innovation. Thus, agile 
transformation is about seeking out teams who would embark on the agile transformation journey with 
us and help us spread the message. This in effect is very much like a startup company. Blank (Blank, 
2013)stated that a startup is a company designed for rapid search to find a scalable and repeatable busi-
ness model. In the same way, we are rapidly searching for a way to scale the agile transformation across 
the organization to all teams. This involves not only organization changes such as removing silos, but 
also community activities to spread various teams’ successes.

At the team level, it is about how interested teams could become agile. The challenge here is about 
introducing the right set of practices to achieve quick wins given their context, their current limited 
lack of understanding of agile methods and their limited resource. These practices can be familiar ones 
like Scrum(Schwaber, 1997), continuous integration(Duvall, Matyas, & Glover, 2007), automated 
testing(Gamma & Beck, 2006), agile requirements(Leffingwell, 2010), etc. or something novel that 
emerged when engaging the teams in their daily work. Regardless, practices have to be contextualized 
and supported by sound theoretical and empirical basis. Our previous work on Theory Based Software 
Engineering (TBSE) (Jacobson, Ng, McMahon, Spence, & Lidman, 2013) plays an important role in 
linking context, practice and theory within a practice framework. This practice framework is crucial be-
cause it evolved into the organization’s knowledge of how to conduct software development in the future.

The goal of this chapter is to present our experiences, the lessons learnt and the strategy that emerged 
as we engaged with the leaders and teams of the IT organization. We organize this chapter as follows. 
Section 2 describes the agile transformation case study and the events that occurred as well as the results. 
Section 3 describes our approach and strategy at the organization level, which involved many aspects 
of change management such as executive support, changing internal processes, establishing communi-
ties, rewards, etc. We adopt and agile approach to agile transformation and created a minimum viable 
“product” to get quick wins and traction. Section 4 describes our approach and strategy at the team level. 
Central to our approach here was the use of TBSE to rapidly capture practices with supporting theories 



87

Rapid Agile Transformation at a Large IT Organization
 

to evolve a practice architecture, a knowledge-base per se. to harvest and spread the use of agile practices 
across different teams in the IT organization. Section 5 discusses the lessons learnt and evaluates the 
generality our approach. Finally Section 6 concludes our findings and future work.

2. THE AGILE TRANSFORMATION JOURNEY

Our case study involved a large IT organization of 4000 people, which served the in-house needs of its 
140,000 strong parent company, which we will henceforth call Company X. The IT organization develops 
products for internal use. Product development teams ranged from 5 to 200 people depending on the 
size and complexity of the products. There were many integration points between these products. Some 
were developed in-house, some evolved from off-the-shelf packaged software. There were web-based 
products, as well as mobile products. External contractors performed most of the actual development 
work. Contractor cohorts had a relatively high turnover rate, in extreme cases ranging about 30% per 
year. Project managers were relatively young but hardworking.

Company X was rapidly expanding into new markets and enlarging their product offerings. Naturally, 
their supporting IT systems were complex and development schedules were tight. Business users were not 
satisfied with the IT products. They were not easy to use. For example, some user-interface forms have 
had many inputs and were not responsive. Enhancements and changes took a long time to be delivered. 
Even though the IT organization delivered releases every 3 months, the development lead-time from 
requirements agreement with business users to delivery took about 5 months.

The adoption of agile methods is a kind of management innovation. Accordingly, we can attempt 
to understand the nature of the IT organization’s agile transformation journey through the innovation 
diffusion curve (P.-W. Ng, 2014) as shown see Figure 1.

In reality, the IT organization did progress through the phases in the innovation diffusion curve, 
which we describe below.

Phase 0: Pre-Agile Exploration. The IT organization executives were seeking a way to overcome their 
challenges and saw the benefits of agile development. However, not everyone was on board at the 
beginning. Several product teams explored using agile development such as using Scrum at a small 
scale on their own. Since the organization has a whole was still operating under legacy waterfall 
processes, team level improvements could not propagate beyond their limited realm and there was 
little positive impact.

Phase 1: Early Agile Adoption. Gradually, the IT organization executives recognized that they had to 
change their software development approach and decided to embark on agile transformation at 

Figure 1. Agile adoption innovation curve



88

Rapid Agile Transformation at a Large IT Organization
 

the organizational level. An agile working group was established to identify legacy processes and 
governance procedures that had to be changed, the new practices to be introduced, the coaching 
needed and the success measures. Several pilot product teams were chosen. After five months of 
introducing agile practices with the help of internal and external coaches, these pilot teams achieved 
the following results (see Table 1).

Table 1 is divided into 5 main columns, namely, product name, team size, development cycle-time 
(in months), production defect improvement rate, and whether the team started to invest in automated 
testing. For example, team A had 10 internal staff, 67 external contractors, thus a total of 77 persons 
in the development team. Before adopting agile practices, its development cycle time was 3 months. 
After adopting agile practices, it improved to a 1 month cycle time representing a 67% improvement. 
Its product defect rates saw a 94% improvement compared to the same period in the previous year. This 
comparison adjusted for seasonal fluctuations. This team also started to invest in automated testing.

Almost all products achieved a faster development cycle time. The exception was product B, which 
did not release any software at all during the 5-month agile adoption window. Most products achieved 
better quality with dramatic improvement in production defect rates. The exception was product E, 
which saw poorer quality. Product F being recently developed did not have data from the previous year 
for comparison.

Phase 2: Early Majority. The successes gave executives the boldness to spread the use of agile practices. 
Many product teams were eager to participate in the transformation as well. After another 6 months 
encouraging results were reported:
 ◦ 47 product teams and a total of 1700 persons adopted agile practices.
 ◦ 75% of the product teams gained the ability to delivery releases on a monthly basis (from a 

previous delivery cycle of about 3 months)
 ◦ End-to-end requirements realization from idea to delivery time was shortened by 44%. 

Product teams improved their response to business requirements better and faster
 ◦ Production defect density and production incident were reduced by 5.2% and 22.73% respec-

tively. This implied that we reduced lead-time and cycle-times significantly with no loss of 
quality, but increased quality.

Table 1. Pilot product team achievements



89

Rapid Agile Transformation at a Large IT Organization
 

 ◦ Of the 47 product teams that adopted agile practices, we received more than 10 letters of 
recommendation from their respective business departments.

The IT organization executives were satisfied with the results. There were other intangible benefits 
such as improved collaboration within teams (especially between business analysts, developers and 
testers), business and IT started to collaborate better, legacy processes were updated to reflect the new 
agile way of working.

3. ORGANIZATION TRANSFORMATION AS A STARTUP

Similar to any change initiative in this IT organization, an agile working group (AWG) was established 
to lead the agile transformation. The author worked as an advisor and architect within the AWG and also 
as an external coach to various departments and product teams. AWG’s initial concerns were as follows:

• What would their new operating model look like?
• How should they introduce changes to the teams?
• What teams should they introduce agile methods to first?

The AWG operated in a manner similar to typical change leadership approaches such as the agile 
office described in(Rogers, 2010). However, as initial successes were assured, their operating mode 
morphed to that of a startup, with a focus on finding a repeatable and scalable model to influence this 
transformation. While there was some level of executive support, the AWG had autonomy in strategiz-
ing the transformation. The AWG did not use a not a top-down, command and control approach, but 
exercised influence and attempting to make the changes contagious(Power, 2011).

3.1 Kick Starting the Transformation

Gleicher’s formula for change (Dannemiller & Jacobs, 1992) states that for change to happen: D x V x 
S > R, where:

D: dissatisfaction with current situation.
V: Vision for change.
S: Initial first steps understood.
R: resistance to change.

The dissatisfaction to change was clear in the IT organizations. Their business customers were com-
plaining about their software. Lead-times were long and protracted. The vision, i.e. the new operating 
model, was gradually made clear to them through the emerging practice architecture which we will 
describe in Section 3.2. There were product teams who had resistance and concerns with challenges 
like the lack of time and resources, how to work with smaller batches and shorter time scales, and so 
on. The strategy was to work on the path of least resistance, to get successful teams to help spread the 
message. Product teams joined the agile transformation on a purely voluntary basis. As a result, there 



90

Rapid Agile Transformation at a Large IT Organization
 

were some that dropped of, but majority stayed. Due to the scale of the transformation, there were suf-
ficient good messages to spread around. The AWG actively sought our barriers to working in an agile 
way and systematically influence participants to make necessary changes.

3.2 Emerging a Practice Architecture

One of the most important jobs of the AWG was to understand and explain how agile principles and 
practices could fit together and be adapted to different development scenarios and contexts such as 
small-scale development (10 people), large-scale development (200+ people), involving multiple busi-
ness units, legacy migration, COTS packages, in-house development, enhancements, business process 
re-engineering, new development, and so on. Moreover, product teams had different levels of maturity. 
Some had automated testing in place and were already delivering high quality software, while others had 
rather poor quality. As a result, they had different needs for and different paths towards a better way of 
working. Thus, mass customization of development processes was a necessity(Berger, 2013).

Moreover, it had been reported that being able to regularly reflect and continuously improve is a 
challenge in many organizations(Mathiassen & Sandberg, 2014). Product teams in this IT organization 
had the same challenge too. Early adopters who adopted Scrum just stopped at Scrum. The AWG had 
to provide a roadmap to motivate then to continually improve.

For the above reasons, the AWG drafted a practice architecture description (PAD) that evolved through-
out the transformation journey. Just as software architecture description (SAD) is presented through 
multiple views(Babb, Hoda, & Norbjerg, 2014), this practice architecture description had multiple views 
and different levels of abstraction. One of the most important views that emerged is the execution view 
that shows how different roles collaborate to deliver software (see Figure 2).

The execution view shows small teams with product owners and Scrum masters scale to form larger 
teams with “super product owners” and “Super-Scrum masters”. This Super-Scrum teams receives fea-
ture requests from business representatives through a product development flow (P. B. Kruchten, 1995). 
Moving towards the front-end on left-hand-side of Figure 2, feature requests originates from validated 
ideas based on lean startup(Reinertsen, 2009), design thinking (Maurya, 2012) and Cynefin’s sense-
making approach (Brown, 2009). Moving towards the back-end processes on the right-hand-side, working 
software is continuously integrated and tested into a pre-production environment and then continuously 
deployed to the production. Feedback from users goes back to the requirements processes in a DevOps 
manner (Kurtz & Snowden, 2003).

In addition to the execution view, the emerging PAD (see Figure 3) has views.
At the top of Figure 3, the financial budgeting and performance management view addresses concerns 

at the enterprise level. This level applies concepts from beyond budgeting (Bogsnes, 2008; Kim, Behr, 
& Spafford, 2014).

At the layer below, the process customization view addresses concerns regarding how practices are 
integrated and customized for classes of product teams. This mostly involves how roles and work products 
are mapped to specific product team structures.

On the left, the practice architecture view lists the available practices that product teams can consider 
for continuous improvement. This includes dependency relationships between practices.

On the right, the impacted entities view facilitates discussion on the impact to a product team’s cur-
rent organization, and their focal point of process improvement.



91

Rapid Agile Transformation at a Large IT Organization
 

Figure 2. AWG practice architecture (execution view)

Figure 3. AWG practice architecture



92

Rapid Agile Transformation at a Large IT Organization
 

At the bottom, the PAD highlights that practices are designed on top of a method kernel (Jacobson 
et al., 2013) and a theory kernel (Jacobson et al., 2013).

The PAD as used in the IT organization was useful for several purposes. It explained a potential 
new way or working. It helped pinpointing areas of improvement. Developers and leaders in product 
teams were able to find where they reside within the PAD and saw what they could do better. Beyond 
providing PAD as a picture, the PAD had documentation, guidelines and training materials tailored for 
the IT organization.

3.3 Unfreezing Traditional Processes

The AWG worked actively to remove organization process barriers that prevent product teams from 
working in an agile manner. The IT organization had established CMMI/IPD (Hope & Fraser, 2013) 
with KPI measures defined based on organizational boundaries. These KPIs such as reducing churn-rate 
had coerced workers into traditional silo mentality.

Kurt Lewin’s change theory involved unfreezing, change, and refreezing (Sheard, 2001). Unfreezing 
meant removing organizational constraints and archaic KPI performance requirements on would be agile 
adopters. It also involved putting traditionally opposing parties together, such as:

• Developers and testers.
• Developers and operations.
• Developers and business representatives.

As Edgar (Sheard, 2001) mentioned, while unfreezing motivates changing, it cannot control the direc-
tion of the change. The PAD was useful in the IT organization to point towards a new way of working. 
The AWG working had the responsibility for drafting the new way of working, which included the PAD. 
Unfortunately, for the IT organization, agile transformation was not the only change initiative. There were 
initiatives for new business engineering processes, etc. some of which were drafted by change agents that 
were not knowledgeable in agile approaches, or had not seen agile worked before. This posed significant 
challenge to the AWG. Fortunately, the success and the spread of agile adopters prompted these other 
change agents to re-consider their approaches. This challenge had not been fully eliminated within the 
IT organization at the time of writing.

3.4 Establishing a Coaching Network

Early in the agile transformation journey, the AWG established a coaching network involving external 
and internal coaches. Internal coaches included members of the process-engineering group, as well as 
development departments. These internal coaches team up with external coaches to learn and experience 
how to apply agile practices and teach others. The AWG distinguishes several kinds of internal coaches:

Assistant coaches paired with external coaches. These assistant coaches would subsequently help 
other teams adopt agile on their own.

Technical coaches introduced technical practices such as continuous integration and automated 
testing to teams. The IT organization had related tools available, but had not been able to roll them out 
successful prior to this agile transformation journey.



93

Rapid Agile Transformation at a Large IT Organization
 

Agile custodians were project managers/leaders in product teams that volunteered to adopt agile and 
ensure that agile practices continued after coaches departed.

Assistant coaches came largely from the process-engineering group and had very little development 
experience. It was almost impossible to find potential coaches who excel at both management and tech-
nical aspects, and thus the AWG segregated assistant coaches from technical coaches.

Teaming between internal assistant coaches and external coaches yielded many advantages. External 
coaches brought in the know-how to agile practices, whereas assistant coaches could explain changes to 
organization processes that were taking place. This greatly facilitated unfreezing mindsets.

3.5 Transformation Gamification

The IT organization had a reward policy and system in place for change initiatives. Managers had the 
authority to submit requests for rewards for good performance. Developers in the IT organization were 
relatively young and many were in the early 30s and late 20s. This provided conducive environments 
for gamification (Radoff, 2011; Schein, 1996).

Points were awarded for reaching specific targets.
Badges were given for adopting practices (from the practice architecture described in Section 3.2) 

within acceptable criteria
Leadership boards were used during progress meetings.
During progress meetings, product teams, specifically custodians would present their current state of 

agile adoption and what they were going to do next to department heads and department-level AWGs.

3.6 Community Networks

The AWG held regular community activities. This included:

• General sharing about what agile is about,
• Sharing about specific agile practices such as requirements management, automated testing,
• Publicizing success stories.

The IT organization had an internal social network platform (SNP) that hosted success story reports, 
presentation and training materials, internal blogs on applying agile practices. In addition, the AWG 
had budget to send staffs to attend agile conferences to broaden their horizons. These attendees had the 
responsibility to share what they have learnt to others. Internal coaches had the responsibility to share 
what they experience and learnt as well.

4. TEAM TRANSFORMATION THROUGH PRACTICAL THEORY BUILDING

Coaching teams, each comprising an external coach and an internal assistant coach facilitated agile 
adoption at the team level (teams ranged from 10 to 200+ persons). A technical coach sometimes joined 
coaching teams when internal tools were used. Due to the high volume of product teams adopting agile 
practices and the comparatively low number of coaching teams, facilitation had to be very focused. Most 



94

Rapid Agile Transformation at a Large IT Organization
 

coaching teams worked with product teams in three phases, namely, getting to know the product team, 
kick starting the product teams into agile practices, and letting product teams self-direct their next step 
towards improvement.

4.1 Theory Based Software Engineering

The AWG was keen to harvest success stories and highlights to share with would be agile adopters and 
senior management. AWG also wanted to gather lessons learnt, to understand what worked, what didn’t, 
what could work better and factors affecting success.

Coaching teams used a theory-based software-engineering (TBSE) approach (Jacobson et al., 2013) 
as depicted by Figure 4. Coaching teams worked together with the product agile custodian to understand 
current context, pain points and objectives of agile adoption before choosing appropriate practices from 
the practice architecture description (PAD).

Theories such as queuing theory, Little’s Law, Conway’s Law, etc. explained why practices work 
(Werbach & Hunter, 2012). Observations from introducing the practices validated and tuned the theories, 
as well as provided for enriching practices and their corresponding practice descriptions. Teams were 
encouraged to seek explanations and alternate explanations as to why practices produced the desired 
effects. This, we hoped to encourage deep learning.

4.2 Kick Starting

With an understanding of product team’s context, coaching teams kick started the teams into an agile 
way of working. This usually took about a day and involved the following:

• An introduction to agile and lean principles, such as work-in-process limits, and backlog 
prioritization.

• An overview of practices in the practice architecture description.
• A whole team training and simulation on Scrum and Super-Scrum (Dybå & Dingsøyr, 2008; Ng, 

2013) using the product team’s requirements.

Figure 4. Theory based software engineering



95

Rapid Agile Transformation at a Large IT Organization
 

Prior to the kick-start event, coaching teams clarified team roles and responsibilities under new way 
of working. Product teams were responsible for consolidating requirements to be delivered for the next 
iteration or release. This preparation time took between one to three weeks.

During the kick-start event, product custodians learnt how to conduct iteration planning and comply-
ing with work-in-process limits.

Within two weeks of the kick-start event, the product teams had to do a product demo to the coach-
ing team based on what they completed. Some teams would complete most of their requirements (either 
in the form of user stories or some other format), while others completed very little. The idea was not 
to get teams to complete all requirements, but to get the teams into a habit of iterating and the feel of a 
regular heartbeat and constant retrospective and learning.

There was a growing trend that the preparation times became shorter as internal coaches started to 
realize that long agile adoption preparation time was an old-styled “get-it-right-first-time” syndrome 
rather than continual learning and adapting. Moreover, there was no evidence that a longer preparation 
time ensured product teams would achieve iteration objectives 100% first time.

During the demo, product agile custodians learned from the coaching teams how to conduct demos 
and retrospectives. It was also during this time that team members determined how to tune and improve 
their practices or learn new ones. This was by reflecting at the factors that affect their behavior and 
seeking ways to adjust the factors through the TBSE approach. As such, team members reflected on 
both their theory and their practice at the same time.

4.3 Collecting Highlights and Lessons Learnt

Coaching teams were given the responsibility by the AWG to collect highlights of working in an agile 
manner. At the beginning of the adoption journey, teams applying Scrum and Super-Scrum (i.e. Scrum 
involving beyond 50 persons) practices were rather refreshing to the AWG and executives. But agile is 
not just Scrum and executives get tired of hearing the same practices. The value of external coaches laid 
in seeking novel practice areas and attacking complexity.

The AWG worked out a simple calculation to determine what product teams did could be deemed a 
highlight, i.e. a highlight index, which was a product of three parameters:

• Context complexity (depending on size of the team, the complexity of the product, number of 
external integration).

• Practice novelty (depending on whether the practice had been tried elsewhere in the IT organization).
• Contribution value (depending on the amount of guidance and content the product team could add 

to the practice architecture).

There were no explicit scales defined for these parameters, but the comparisons were performed on a 
relative manner. The highlight index gave an indication whether what product teams did was news worthy. 
This provided yet another kind of point system for coaching teams to gamify the agile transformation 
itself. The drive was to find novel practices, exemplify their usage and share such practices within the 
community. Examples of novelty included:

• Applying Super-Scrum on a large scale first in a 100 person team, to a 150 person team on differ-
ent sites, and later to a 200 person team;



96

Rapid Agile Transformation at a Large IT Organization
 

• Involving business representatives in small scale and later to large scale;
• Applying product development flow in the IT organization’s social network development and later 

to their partner relationship system;
• Applying a human sensor network (based on the Cynefin’s framework (Brown, 2009; Kurtz & 

Snowden, 2003)) to gather narratives about the agile adoption from different groups;
• Applying behavior driven development (BDD) to their search engine and later to their enterprise 

service bus (ESB).

Coaching teams were prized for reaching out to novel practices, and as a result spanned new practice 
areas in the practice architecture. Product teams on the other hand were prized for reducing development 
lead-times, and improving quality, which at the same time validated the practice architecture in the IT 
organization.

5. DISCUSSION AND EVALUATION

As highlighted by Dyba (P. Ng, 2014) and the Software Process Improvement (SPI) manifesto (Dybå, 
2005) agile transformation must focus on business objectives and involve and engage stakeholders at 
all levels. Our agile transformation journey did indeed confirm and validate these factors. Executives 
in this IT organization did indeed have a real business need and stakeholders at all levels were open to 
discussion. When seemingly disagreements occurred, it was found that stakeholders were seeking to 
understand. Therefore, in a way, this agile transformation journey was a replication of earlier studies on 
success criteria for effective organizational change.

The real question is what truly highlights the contribution of this agile adoption, and what makes it 
special as compared to other agile adoption journeys of similar scale. We believe the answers can be 
found in two areas, namely the technical aspects and the human social aspects

5.1 Integrating Theory and Practice

As Kurt Lewin said so eloquently, “There is nothing so practical as sound theory” (Beck, 2000). In the 
IT organization’s agile adoption journey, the integration of theory and practice manifested itself in the 
form of the AWG practice architecture (see Section 3.2) and the TBSE approach (see Section 4.1).

The AWG practice architecture depicted in Figure 3 is definitely not the first attempt in assembling 
practices into a unified framework. Before agile became mainstream, the Rational Unified Process 
(RUP) (Pries-Heje & Johansen, 2010)was one of the more prominent process frameworks. RUP then 
faced competition from extreme programming (XP) (P. Kruchten, 2004) and Scrum (Schwaber, 1997) as 
many felt that RUP was heavyweight. However, since both XP and Scrum were targeted at small teams, 
they did not get much attention from more traditional and larger organizations. Frameworks like LeSS 
(Larman & Vodde, 2013), SAFe (Leffingwell, 2010) and DAD (Ambler & Lines, 2012) attempted to 
address the challenges about scaling agile and are receiving much attention. At the surface, LeSS, SAFe 
and DAD look remarkably different, they have much in common, and as they evolve, they learn from one 
another and are based on similar themes such as lean thinking, fast feedback loops, being lightweight.



97

Rapid Agile Transformation at a Large IT Organization
 

It has been found that more than 70% of organizations that adopted agile approach do not just adopt 
prescribed methods as is, but mixed them with other agile approaches and even traditional approaches 1 
. For example, Ericsson combined elements of SAFe and LeSS in their continuous planning and devel-
opment approach (West, Grant, Gerush, & D’silva, 2010).

The AWG practice architecture borrowed and adapted practices from SAFe, LeSS, DAD and even 
specific instances like Ericsson to suit the IT organization’s product development context. For example, 
we incorporated the early phase manager used in Ericsson to manage the requirements input flow. We 
incorporated whole team release from SAFe, but our planning cycles was generally one month with weekly 
sprints instead of the 3 months planning cycle and 2-week sprints prescribed in SAFe. Planning meet-
ings usually took half a day instead of 2 full-days prescribed by SAFe. There was a 150-person product 
team who had multi-site iteration-planning meetings every two weeks. Thus, without any prompting by 
the coaching team, it operated in a manner more similar to LeSS than SAFe.

In addition, the AWG practice architecture description had several useful qualities.

• Affinity: One of SAFe’s novelties is its “big picture”, i.e. the entire framework in a single picture 
similar to Figure 3. Such a picture is useful to explain how the agile operating model works. The 
AWG practice architecture took this idea to the IT organization’s context. Members of the IT orga-
nization could generally find their role or what they need to do when introduced to Figure 3. This 
made it easier to explain how members can contribute to working an agile manner.

• Improvement Roadmap: As mentioned earlier, reports have shown that many organizations did 
not invest sufficiently in retrospectives and learning and therefore did not improve much. The 
AWG practice architecture, specifically the list of practices on the right, was that it showed prod-
uct teams potential areas of improvement. Each practice, represented as a hexagon, was a unit 
of improvement with associated guidelines and parameters, which team could contextualize and 
consume.

• Theoretical Basis: Each practice in the AWG practice architecture had a description explaining 
why the practice works, when it should be applied, they expected benefits and effort to apply the 
practice. This again helped teams consume practices and contribute to the experiences behind the 
practices.

5.2 Practice-Based Simulation and Gamification

From the very onset of the agile adoption journey, the AWG placed emphasis on the human-social aspects 
of the transformation, and in particular the use of simulation and gamification.

Figure 5 presets a graph that depicts the relationships between improvement targets (e.g. reducing 
lead-time), practices (e.g. product development flow, and Super-Scrum), simulation and gamification 
approaches.

Simulations kick-started product teams in applying practices like Scrum, Super-Scrum, product de-
velopment flow, etc. Coaching teams were encouraged to devise new simulations (including role-playing 
and games) to illustrate how practices work. The use of simulation was a key reason why product teams 
could transit from a traditional approach to an agile iterative approach. In a particular case, a 200-per-
son product team was taught Scrum and Super-Scrum in batches of 50, 50 and 100 persons over three 
days. This 200-person team started iterating and within a week, we had an integration demo. Whereas 
simulations kick started the process, demos got teams focused towards delivery.



98

Rapid Agile Transformation at a Large IT Organization
 

Demos frequently had gamification elements with points awarded to each 10-person sub-team for 
their work in each iteration. For example, if a 10-person sub-team completed all their agreed user sto-
ries to their product owner’s satisfaction, they would score 10 points. This motivates team members to 
achieve sprint objectives.

Figure 5 is just one of the many diagrams illustrating the dependencies, between process improvement 
targets, practices, simulation, gamification and process improvement actions. AWG’s practice architec-
ture had many such diagrams for different kinds of process improvement targets such as reducing defect 
rates, etc. The key was to make thought processes visible and motivate team members to think deeply 
how they could improve.

6. CONCLUSION

The agile manifesto (Lewin, 1951) began with a declaration that “We are uncovering better ways of 
developing software by doing it and helping others do it.” Perhaps this opening statement is the heart 
of what being agile is all about. Being agile is not just about valuing individuals and interactions over 
processes and tools, working software over comprehensive documentation, customer collaboration over 
contract negotiation, and responding to change over following a plan.

Agility requires the willingness and openness to experiment and improve on top of a practical and 
theoretical basis. The IT organization’s agile transformation journey was an example demonstrating 
how this could be achieved. Within a span of one year, we reached 47 teams and 1700 engineers. There 
was a 44% reduction in development lead-time, 5% reduction in production defects and 22% reduction 
in production incidents. Such remarkable success could be lauded, but one have to go beyond such suc-
cesses or even failures to understand what makes or breaks such journeys.

Kruchten (Heikkilä, Paasivaara, Lassenius, & Engblom, 2013) highlighted that successful agile 
adoption depended on context. Chow and Cao (Kruchten, 2007) found 36 factors affecting the success 
of agile adoption. Although empirical studies (Chow & Cao, 2008) (Endres & Rombach, 2003)on agile 
methods are plentiful today and easily accessible by practitioners, there is still little work on the appli-
cability of practices and factors affecting their introduction. In particular, the IT organization’s concern 

Figure 5. Practice based simulation and gamification



99

Rapid Agile Transformation at a Large IT Organization
 

was whether the success it had could be replicated, sustained, or even improved, with pitfalls avoided. 
Fortunately, this IT organization had already a good start by integrating theory and practice as discussed 
in Section 5. Nevertheless, much still needs to be done as this IT organization embarks on its second 
year into the agile transformation journey.

REFERENCES

Ambler, S. W., & Lines, M. (2012). Disciplined agile delivery: A practitioner’s guide to agile software 
delivery in the enterprise. IBM Press.

Babb, J., Hoda, R., & Norbjerg, J. (2014). Embedding reflection and learning into agile software devel-
opment. IEEE Software, 31(4), 51–57. doi:10.1109/MS.2014.54

Babinet, E., & Ramanathan, R. (2008). Dependency management in a large agile environment. Paper 
presented at the Agile 2008 Conference. doi:10.1109/Agile.2008.58

Beck, K. (2000). Extreme programming explained: embrace change. Addison-Wesley Professional.

Berger, J. (2013). Contagious: Why things catch on. Simon and Schuster.

Blank, S. (2013). The four steps to the epiphany. K&S Ranch.

Bogsnes, B. (2008). Implementing beyond budgeting: unlocking the performance potential. John Wiley 
& Sons.

Brown, T. (2009). Change by design: how design thinking transforms organizations and inspires innova-
tion. New York: HarperBusiness.

Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in agile software projects. 
Journal of Systems and Software, 81(6), 961–971. doi:10.1016/j.jss.2007.08.020

Dannemiller, K. D., & Jacobs, R. W. (1992). Changing the way organizations change: A revolution of com-
mon sense. The Journal of Applied Behavioral Science, 28(4), 480–498. doi:10.1177/0021886392284003

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous integration: improving software quality and 
reducing risk. Pearson Education.

Dybå, T. (2005). An empirical investigation of the key factors for success in software process improve-
ment. Software Engineering. IEEE Transactions on, 31(5), 410–424.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review. 
Information and Software Technology, 50(9), 833–859. doi:10.1016/j.infsof.2008.01.006

Endres, A., & Rombach, H. D. (2003). A handbook of software and systems engineering: Empirical 
observations, laws, and theories. Pearson Education.

Fitzgerald, B., Stol, K.-J., O’Sullivan, R., & O’Brien, D. (2013). Scaling agile methods to regulated 
environments: an industry case study. In Proceedings of the 2013 International Conference on Software 
Engineering. doi:10.1109/ICSE.2013.6606635

http://dx.doi.org/10.1109/MS.2014.54
http://dx.doi.org/10.1109/Agile.2008.58
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1177/0021886392284003
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1109/ICSE.2013.6606635


100

Rapid Agile Transformation at a Large IT Organization
 

Gamma, E., & Beck, K. (2006). JUnit. Academic Press.

Heikkilä, V. T., Paasivaara, M., Lassenius, C., & Engblom, C. (2013). Continuous release planning in a 
large-scale scrum development organization at Ericsson. Springer. doi:10.1007/978-3-642-38314-4_14

Hope, J., & Fraser, R. (2013). Beyond budgeting: how managers can break free from the annual perfor-
mance trap. Harvard Business Press.

Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., & Lidman, S. (2013). The essence of software 
Engineering: applying the SEMAT kernel. Addison-Wesley.

Kim, G., Behr, K., & Spafford, G. (2014). The phoenix project: A novel about IT, DevOps, and helping 
your business win. IT Revolution.

Kotter, J. P. (1995). Leading change: Why transformation efforts fail. Harvard Business Review, 73(2), 
59–67.

Kruchten, P. (2004). The rational unified process: an introduction. Addison-Wesley Professional.

Kruchten, P. (2007). Voyage in the agile memeplex. Queue, 5(5), 1. doi:10.1145/1281881.1281893

Kruchten, P. B. (1995). The 4+ 1 view model of architecture. Software, IEEE, 12(6), 42–50. 
doi:10.1109/52.469759

Kurtz, C. F., & Snowden, D. J. (2003). The new dynamics of strategy: Sense-making in a complex and 
complicated world. IBM Systems Journal, 42(3), 462–483. doi:10.1147/sj.423.0462

Larman, C., & Vodde, B. (2013). Scaling Agile Development. Crosstalk, 9.

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams, programs, 
and the enterprise. Addison-Wesley Professional.

Lewin, K. (1951). Field theory in social science: selected theoretical papers (D. Cartwright, Ed.). Aca-
demic Press.

Lewin, K. (1989). Changing as three steps: unfreezing, moving, and freezing of group standards. In 
Organizational Development. Theory, Practice, and Research (3rd ed.; p. 87). Irwin.

Mathiassen, L., & Sandberg, A. B. (2014). Process Mass Customization in a Global Software Firm. 
Software, IEEE, 31(6), 62–69. doi:10.1109/MS.2014.21

Maurer, F., & Melnik, G. (2007). Agile methods: Crossing the chasm. Paper presented at the Companion 
to the proceedings of the 29th International Conference on Software Engineering.

Maurya, A. (2012). Running lean: iterate from plan A to a plan that works. O’Reilly Media, Inc.

McAvoy, J., & Butler, T. (2009). A failure to learn in a software development team: the unsuccessful 
introduction of an agile method. In Information Systems Development (pp. 1–13). Springer.

Ng, P. (2014). Software Process Improvement and Gaming using Essence: An Industrial Experience. 
Journal of Industrial and Intelligent Information, 2(1), 45–50. doi:10.12720/jiii.2.1.45-50

http://dx.doi.org/10.1007/978-3-642-38314-4_14
http://dx.doi.org/10.1145/1281881.1281893
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1147/sj.423.0462
http://dx.doi.org/10.1109/MS.2014.21
http://dx.doi.org/10.12720/jiii.2.1.45-50


101

Rapid Agile Transformation at a Large IT Organization
 

Ng, P.-W. (2013). Making Software Engineering Education Structured, Relevant and Engaging through 
Gaming and Simulation. Journal of Communication and Computer, 10, 1365–1373.

Ng, P.-W. (2014). Theory based software engineering with the SEMAT kernel: preliminary investiga-
tion and experiences. In Proceedings of the 3rd SEMAT Workshop on General Theories of Software 
Engineering. doi:10.1145/2593752.2593756

Paasivaara, M., & Lassenius, C. (2011). Scaling scrum in a large distributed project. Paper presented 
at the Empirical Software Engineering and Measurement (ESEM), 2011 International Symposium on. 
doi:10.1109/ESEM.2011.49

Power, K. (2011). The Agile Office: Experience Report from Cisco’s Unified Communications Business 
Unit. Paper presented at the Agile Conference (AGILE). doi:10.1109/AGILE.2011.7

Pries-Heje, J., & Johansen, J. (2010). Spi manifesto. European System & Software Process Improvement 
and Innovation.

Prochaska, J. O., Velicer, W. F., Rossi, J. S., Goldstein, M. G., Marcus, B. H., Rakowski, W., & Rosen-
bloom, D. et  al. (1994). Stages of change and decisional balance for 12 problem behaviors. Health 
Psychology, 13(1), 39–46. doi:10.1037/0278-6133.13.1.39 PMID:8168470

Radoff, J. (2011). Game on: energize your business with social media games. John Wiley & Sons.

Read, A., & Briggs, R. O. (2012). The many lives of an agile story: Design processes, design products, 
and understandings in a large-scale agile development project. Paper presented at the System Science 
(HICSS), 2012 45th Hawaii International Conference on. doi:10.1109/HICSS.2012.684

Reinertsen, D. G. (2009). The principles of product development flow: second generation lean product 
development (Vol. 62). Celeritas Redondo Beach.

Ries, E. (2011). The lean startup: How today’s entrepreneurs use continuous innovation to create radi-
cally successful businesses. Crown Business.

Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.

Schein, E. H. (1996). Kurt Lewin’s change theory in the field and in the classroom: Notes toward a model 
of managed learning. Systems Practice, 9(1), 27–47. doi:10.1007/BF02173417

Schwaber, K. (1997). Scrum development process. In Business Object Design and Implementation (pp. 
117–134). Springer. doi:10.1007/978-1-4471-0947-1_11

Sheard, S. (2001). Evolution of the frameworks quagmire. Computer, 34(7), 96–98. doi:10.1109/2.933516

Spinellis, D. (2012). Don’t Install Software by Hand. Software, IEEE, 29(4), 86–87. doi:10.1109/
MS.2012.85

Vijayasarathy, L., & Turk, D. (2008). Agile software development: A survey of early adopters. Journal 
of Information Technology Management, 19(2), 1–8.

http://dx.doi.org/10.1145/2593752.2593756
http://dx.doi.org/10.1109/ESEM.2011.49
http://dx.doi.org/10.1109/AGILE.2011.7
http://dx.doi.org/10.1037/0278-6133.13.1.39
http://www.ncbi.nlm.nih.gov/pubmed/8168470
http://dx.doi.org/10.1109/HICSS.2012.684
http://dx.doi.org/10.1007/BF02173417
http://dx.doi.org/10.1007/978-1-4471-0947-1_11
http://dx.doi.org/10.1109/2.933516
http://dx.doi.org/10.1109/MS.2012.85
http://dx.doi.org/10.1109/MS.2012.85


102

Rapid Agile Transformation at a Large IT Organization
 

Werbach, K., & Hunter, D. (2012). For the win: How game thinking can revolutionize your business. 
Wharton Digital Press.

West, D., & Grant, T., Gerush, M., & D’silva, D. (2010). Agile development: Mainstream adoption has 
changed agility. Forrester Research, 2, 41.

KEY TERMS AND DEFINITIONS

Agile Software Architecture: A software architecture that lays out blue prints of the organization 
and structure of software components as well as well defined mechanism on how components can be 
tested and integrated into the system that would sustain the agile approach through out the software 
development life cycle.

Agile Software Development: Agile software development is a group of software development 
methods in which requirements and solutions evolve through collaboration between self-organizing, 
cross-functional teams. It promotes adaptive planning, evolutionary development, early delivery, con-
tinuous improvement, and encourages rapid and flexible response to change.

Feature Driven Development: Feature Driven Development (FDD) is an agile method that focuses 
on delivering working software in a timely manner by using simple, client focused and practical software 
process. This method works well without tailoring to both small (< 8 team size) and large teams (> 30 
team size).

Scrum: Scrum is one of the popular agile methodologies which aims to address the challenges of 
projects involving complex scope of work using a simple process dependent on a small team who are 
motivated, collaborative and highly focused on producing working software every 2-4 weeks.

Waterfall Model: A sequential design, used in software development processes, in which progress 
is seen as flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation, 
Analysis, Design, Construction, Testing, Deployment, and Maintenance.

ENDNOTE

1  http://agilemanifesto.org/



103

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  6

DOI: 10.4018/978-1-4666-9858-1.ch006

ABSTRACT

The sustainability of agile transformations is deeply linked to how the organization “transforms” to 
agile. Sustainable, effective agile transformations affect all the elements of culture such as, leadership 
style, leadership values, work structures, reward systems, processes, and of course the work habits of 
people. How to affect that culture shift is the key question we will present in this chapter. The author 
will present two different common transformation approaches (organizational-led and process-led) 
and then describe a hybrid version called culture-led transformation that is designed to change critical 
organizational and personal habits to improve and sustain organizational agility.

1. INTRODUCTION

Many leaders feel increasingly overwhelmed by the pace of change and are being constantly challenged 
to understand the causes of major disruptions in the marketplace and in their organizations. The rate of 
change will only increase as their organizations and their marketplaces become more networked and 
technology continues to advance. The ability of an organization, as a whole, to respond in a healthy 
and disciplined manner to these constant changes and disruptions is what we refer to as Organizational 
Agility (or Enterprise-level Agile).

The purpose of this chapter is to introduce a transformation approach for achieving sustainable or-
ganizational agility. In this chapter we present the organization ecosystem, which plays a key role in the 
culture of an organization and subsequently in its agility. Next we explore a couple of common agile 

A Transformation Approach 
for Scaling and Sustaining 

Agility at an Enterprise Level:
A Culture-Led Agile 

Transformation Approach

Ahmed Sidky
ICAgile, USA



104

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

transformation approaches while highlighting sustainability challenges with both. Next we present the 
Culture-led Transformation Approach, which focuses on changing organizational habits in staged ap-
proach leading to sustainable changes. Lastly, we will present how to design an Agile transformational 
roadmap for the Culture-led Approach. As we conclude we will briefly discuss how Culture-led Trans-
formation Approach relates to the Agile Adoption Framework (Sidky, Arthur, J. D., & Bohner, 2007).

2. ORGANIZATIONAL AGILITY

We define Organizational Agility as a culture (a) based on the values and principles of Agile, (b) supported 
by the organizational ecosystem (which we define as an organization’s leadership, strategy, structure, 
processes and people) and (c) manifested through personal and organizational habits (how work really 
gets done in the organization).

The first part of this definition is the notion of a culture based on the values and principles of Agile. 
When the word Agile is mentioned, many people immediately think of Scrum, eXtreme Programming 
or some other Agile methodology in the IT space. Agile, itself, is not a process, framework or any par-
ticular methodology; it is a mindset, a culture, a way of thinking. This mindset is all about learning and 
discovery. Agile is about a culture of continuous learning. The idea, therefore, is to frame Agile as the 
mindset, values and principles behind various methodologies, rather than as the practices associated 
with any methodology.

Understanding Agile as a mindset is foundational to discussing the transformational effort needed 
to achieve organizational agility. When organizations view Agile as just another process (even if it is 
viewed as an efficient process that enables a team to embrace change) then the transformation journey 
is simply about adopting a new process. But when agile is correctly viewed as a set of cultural habits, 
then the agile transformation now entails the change of the entire organizational culture.

2.1. Important Question: Agile Teams or Organizational Agility

The analogy for achieving organizational agility is that of creating strawberry jam. Think of one team 
doing agile as a single strawberry – where it is sweet and it has benefits, just like an agile team. However 
we can all agree that a single strawberry (one agile team) is obviously not strawberry jam (where jam 
represents organizational agility), however it is a clear ingredient of the jam.

The confusion and challenge arises when we want to “scale” agile. When an organizations sees suc-
cess with the one strawberry (one agile team) it develops a desire “scale agile” by starting-up more agile 
teams in the hope of achieving organizational agility. That is like adding more strawberries to a bowl and 
hoping that the result will be strawberry jam. The reality is that by starting more agile teams, you end 
up with agile teams within a non-agile organization. This is very different from bringing strawberries 
and going through a transformational process to change the strawberries to jam.

As depicted in Figure 1, there is a chasm between team-level agile (a bunch of strawberries) and 
enterprise-level agile or organizational agility (the jam). The chasm exists because usually team-level agile 
is achieved by a change of process and roles, and perhaps in some cases the “culture” and behaviors of 
the team members, but that is very different from changing the organizational culture. For organizational 
agility to happen, and be sustainable, it must entail a transformation of culture.



105

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

One of the first discussions that need to happen when an organization wants to “transition to Agile” or 
“Scale Agile” is to decide whether the goal is to establish multiple agile teams (just a bunch of strawber-
ries) or organizational agility (creating strawberry jam). One might argue that establishing multiple agile 
teams is a necessary step towards achieving organizational agility. While that is true to some degree, the 
scaling approach for agile, or in other words the transformation approach, will greatly depend on what 
you want as the end result; a change of culture or a change of process. Table 1 highlights briefly the 
difference between the approaches utilized for process changes verses cultural transformations.

The approach discussed in this chapter will serve those who desire to start a transformation that wants 
to truly change the culture and establish organizational agility. That brings up an important question, 
how can we transform culture? For the sake of simplicity we view culture as result of the organization’s 
ecosystem – its Leadership, People, Strategy, Processes, and Structures – and we will discuss this in 
the next section.

3. THE ORGANIZATIONAL ECOSYSTEM

Figure 2 illustrates the relationship between culture and the elements of the organizational ecosystem 
(Leadership, People, Strategy, Processes, and Structures). The culture of an organization is represented as 

Figure 1. Creating strawberry jam: An analogy for Scaling Agile Teams

Table 1. Difference between process changes and cultural transformations

Process Change / Incremental Change Organizational and Culture Transformation

Focus on Process and Technology Focus on People

Cascading Decisions Shared Vision

Training Educating

Communication Buy-in

Compliance Commitment



106

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

the red “bungee-cord” or “rubber-band” that is shaped as a result of all the elements of the ecosystem and 
at same time culture creates a “container” that holds all these elements in alignment with each other. Next 
we will explore each of the elements of the organizational ecosystem to see how they impact the culture. 

3.1. Leadership

When we refer to leadership, we are interested in various elements of leadership, starting with the overall 
style of leadership. Is it collaborative, or command-and-control, or something else like consensus-driven? 
We are also looking at the values that leadership holds. What are the things that leadership truly aspires 
towards every day in practice, not what is published in some brochure as the “values?” Do leaders really 
aspire towards transparency, creativity, sustainability, or do they aspire towards perfection, compliance 
and protection? Do they value effort or do they only value getting it right the first time? What are their 
habits when it comes to dealing with challenges or constraints? How do leaders react naturally (and 
automatically) when problems start to surface? Do they automatically coach and mentor or direct and 
command? All these elements of leadership play a critical role in shaping the culture of an organization.

3.2. Strategy

The second element we believe is important is the strategy of the organization. With strategy we are 
looking at how (not what) an organization sets it goals and how they achieve alignment to work together 
towards meeting those goals. What are their measures of success and do they ultimately drive behaviors 
that achieve those goals? What do people get rewarded for; do they get rewarded for successes only, or 

Figure 2. The elements of the organizational ecosystem and its relation to culture



107

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

also for learning? What is the decision making process in the organization? Are decisions made to be 
inclusive of all stakeholders, or are only specific stakeholders allowed to be part of decision making? 
Again all of these strategic-level elements have a substantial impact on the organization’s culture and 
also are greatly influenced by the culture.

3.3. Structure

Once the values of leadership become apparent, along with the manifestation of those values in terms 
of how the strategy is laid out, another element that shapes the culture of an organization is the orga-
nizational structures that exist. How are people organized to achieve the strategies that are laid out? 
Are they structured into isolated silos or overlapping teams? Are people working in silos encouraged 
to compete or collaborate with each other? Are teams only concerned with their own objectives or are 
they really concerned with the success of the entire organization? Is the organization keen on building 
networks or hierarchies? How are roles and responsibilities determined in the organization; task-based, 
outcome-based, or seniority-based? Are people given large spans of control to promote empowerment 
or narrow spans of control to ensure control? All of these elements related to how the organization is 
structured shape (and are shaped by) the culture of the organization.

3.4. Process

The next element that shapes the culture is the established business processes of the organization. A 
business process is a collection of related, structured activities or tasks that are performed by one or 
more roles to produce a specific service or product (ultimately serve a particular goal that is in line with 
the strategy). Within processes we are interested in the policies and procedures (written or implicit) 
that govern the operation of the organization. We look at the operational processes that constitute the 
core business and create the primary value stream. This element includes the processes that define how 
requirements are gathered, how design is created and reviewed, how software is developed, testing, and 
deployed. How are things procured and purchased when needed? How are customers engaged and how 
often? We are also looking at the supporting processes, like account management, technical support, 
and even reimbursement processes. Are they built on an assumption of trust or mistrust and abuse? The 
way processes are designed and implemented and governed shape (and are shaped) by the culture of 
the organization.

3.5. People

The remaining item in the organizational ecosystem is perhaps the most foundational, and that is the 
people themselves. People have beliefs, values, norms and habits that are all influenced by the culture 
of the organization and ultimately contribute to the culture of the organization as well. What do people 
believe their impact and contribution is to the company? Do they feel like assembly-line workers that 
are told what to do? If so, then sayings like “Just tell me what I need to do.” will be heard frequently, 
and will not be odd. Does the culture fear failure and therefore doesn’t attempt new creative and innova-
tive approaches? Do people value collaboration or competition? That value will have an impact of how 
people approach success in the organization.



108

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

Even beyond the values and beliefs people hold, there are habits that people have developed over 
the years that kick-in automatically when they want to succeed and get things done. Those habits are 
manifested in terms of how work really gets done in the organization. The power and danger of these 
habits is that habits are what people do “automatically” usually without much thought. People fall back 
on habits and do what they have tried before and succeeded “automatically” to get work done in the 
company. In other words, it is what they do to succeed WITHOUT thinking because it has proven to 
work time and time again.

For example, some people may have a habit of circumventing the process when they want to get things 
done. Why? Because they have done it repeatedly, or they have seen others do it, and it has worked, 
so it becomes an organizational habit to circumvent processes. Even people that are just joining the 
organization will look at what other people do to succeed and they start to develop those habits. Habits 
become an integral part of the “culture” of how things get done. Other organizations may have habits of 
collaboration. People have developed an organizational habit that makes them automatically and with-
out thinking reach out to others and work with them (even across organizational boundaries) because 
they have seen that work before. An effective agile transformation aims to change these “default” ways 
people work; essentially changing the personal and organizational habits, and changing the way people 
think about work and their norms.

4. SCALING AGILE TO REACH ORGANIZATIONAL AGILITY

The sum total of all the five elements presented in the previous section (Leadership, Strategy, Structure, 
Process and People) creates the culture of the organization and the culture keeps these five elements in 
alignment and harmony.

4.1. Importance of Maintaining Cultural Alignment at All Times

Research conducted by Jim Collins and Jerry Porras (in their book Built to Last: Successful Habits of 
Visionary Companies) (Collins, 2004) shows that the key distinguishing factor for high performing 
organization (see Figure 3) is the existence of a strong aligned culture. An aligned culture is where all 
elements of the organization work in concert together.

For example, if the leadership style is command-and-control and that is aligned with the strategy and 
measures of success, then the structures are designed to promote command and control. Additionally, 
the policies, procedures and processes are all in alignment with promoting and supporting the command 
and control culture. It is therefore not surprising that the people in the organization believe that com-
mand and control culture is best for the organization. At that point, when all the elements are in harmony 
together, then we have an aligned culture.

Whether the culture is command and control or collaborative does not matter as much as whether 
all the elements in the organization are aligned and consistent with the culture. A strained or unaligned 
culture occurs when one or more elements are not in harmony with the others.

When we look at a large sample of organizations trying to adopt agile, we see that due to their 
understanding of agile as a process, the change efforts focus on changing the process element of the 
organization (as depicted in Figure 4). As teams adopt agile they introduce more collaborative processes 
and practices (for instance, daily stand-ups, group estimation, collaborative planning, and team rooms). 



109

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

However by only changing the “process” element of the diagram they have thrown the organizational 
culture into a state of misalignment and unsustainability. The misalignment comes from the fact that now 
the processes are pushing towards a collaborative culture but the remaining elements of the culture are 
not in sync. For example, it is common to see that leaders’ values and habits have not changed to be more 
collaborative, nor have the reward systems changed to encourage the new collaborative processes. The 
misalignment then leads to lack of sustainability of the change because the culture will eventually “push 
back” on the processes element and try to align it with the rest of the elements making-up the culture.

If you change one or even two elements but keep the rest the same, the same results can be expected. 
For example, Scrum teams change the process element to introduce collaborative practices and also 
change the roles and responsibilities of a typical team by introducing two roles; the ScrumMaster and 
Product Owner. However, those changes may still be at odds with the rest of the organization if none 
of the other elements change. You can see this misalignment manifested in behaviors such as teams 
constantly complaining that they can’t get “buy-in” from leadership to dedicate people to certain roles 
and even the people in those roles may have habits and beliefs that don’t enable them to be effective in 
their role, and don’t help them facilitate collaboration between the team.

Another example. Many agile adoption efforts change process elements and introduce new processes 
and practices that encourage learning and discovery (e.g. early feedback and retrospectives) but again, 
are the rest of the organizational elements in alignment? Do the people value learning and discovery or 
do they see learning as indicator for the lack of competency. Does leadership encourage learning and 
reward it, or is there a culture of “get it right the first time” and learning is viewed as a lack of proper 
planning? Is learning and discovery included as part of goals, strategies and rewards?

Figure 3. Research by Jim Collins & Jerry Porras around alignment of culture and performance



110

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

These are the real challenges that confront agile adoption and transformation efforts that only (or 
primarily) focus on changing one or two of organizational ecosystem elements without truly focusing 
on changing the entire culture.

The other interesting phenomenon is that once the change agent or sponsor exerting the pressure to 
change the process element (depicted by the arrow in Figure 4) goes away, the culture (represented in the 
bungee cord or rubber band around the triangle) pushes the process element back into alignment with 
the rest of the organization and all that investment in “change” turns out to be not sustainable.

For transformations to be successful they must be sustainable and live on to become the new culture 
of the organization. For that to happen successfully the culture as a whole needs to transform by evolving 
and changing all of the elements of the ecosystem together as part of a shared journey.

4.2. Common Transformational Approaches

In the this section we will illustrate two common transform approaches – approach #1: process-led and 
approach #2: organization-led. While these are very common transformational approaches, they both 
cause the organizational culture to be misaligned during the transformation, thereby putting the trans-
formation effort at risk, and more importantly usually resulting in an unsustainable agile transformation.

As we present these two approaches, the diagram we use will show the different stages of the trans-
formation from the current state (represented by the blue triangle) to the end state (represented by the 
green triangle). The color red will be used to show how the culture becomes misaligned. After present-
ing the two common approaches for transformation, we will present a third approach (culture-led) that 
transforms the culture in a manner that keeps the alignment of culture intact (not red) as much as pos-
sible during the transformation.

Figure 4. Depicting an unaligned culture as a result of change efforts focused only on process



111

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

Approach 1: Process-Led Transformations

The term agile was coined and made popular through the software industry and, unfortunately, many 
people have boiled agile down to a set of practices and processes for developing software. Some have 
extended it beyond the software world and even then limited it to a management process or methodology. 
Therefore naturally the agile transformation will start with changing the process element of an organization.

Figure 5 shows that once you change the process element to support agility, and no other elements 
change (as in Stage 1 of Figure 5), the organization’s culture becomes misaligned. As soon as the change 
agent stops “pushing” the change goes away because the culture (the red bungee cord around the triangle) 
will push the Process element back into alignment with the structures, strategy, leadership style, and 
the people’s beliefs.

However the change agent may persist and push harder, thereby changing some of the peoples’ be-
liefs as well as some aspects of the structure and strategy (as in Stage 2 of Figure 5). It will take a lot of 
effort to keep pushing the change forward (as shown in Stages 3 and 4 of Figure 5) until gradually the 
remaining elements of the organization transform.

While this approach is not impossible, it is risky because throughout the entire transformation the 
organizational elements are not in alignment (the triangle is red) and the culture will keep trying to “push 

Figure 5. Process-led Agile Transformation Approach



112

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

back” all the changing elements to their original state of equilibrium. Organizations need to have strong 
change champions and lots of patience and perseverance to achieve sustainable organizational agility 
through this approach. I personally have not see this approach succeed in organizations.

Approach 2: Organization-Led Transformations

Another view for organizational transformation is what we call the organization-led transformation. In 
this approach we look at the entire organization as a bunch of smaller nested organizations as indicated 
in Figure 6.

Since agile started in the software industry, we usually see the IT organization as the only part of 
the organization that adopts the new way of thinking (as depicted in Stage 1 of Figure 6). This is as-
suming that they (the IT organization) embark upon a proper transformation, which includes moving 
all the elements of its triangle (leadership, strategy, structure, process and people). However, when we 
look at the big picture, which is the agility of the entire organization or enterprise, the question arises, 
how sustainable can the IT organization be with a culture that is not in alignment with the rest of the 
enterprise? Can they sustain the cultural tension between them and rest of the entities in the enterprise 
(represented in the red bungee cord) that are trying to pull them back)? As much as we tend to believe 
that parts of organizations operate in silos and can act as separate entities, the reality is for the enterprise 
as a whole to be high performing, its entire culture needs to be aligned.

Figure 6. Organizational-led Agile Transformation Approach



113

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

Sometimes the organization (whether IT or some other part component) pioneering the transforma-
tion is successful enough (and influential enough) that it becomes a beacon attracting other parts of the 
organization to transform (as depicted in Stage 2 of Figure 6). While it may promote transformations to 
happen across other parts of the organization, all those entities are still subject to the “pressure” of con-
forming to the rest of the organization. The overall organization will remain misaligned until it reaches a 
critical mass, such that enough entities in the organization start to transform to the new way of working 
and that becomes the new dominant culture (as depicted in Stage 4 of Figure 6).

5. CULTURE-LED TRANSFORMATION

After looking at the two common approaches to transformation (Process-led and Organizational-led), 
it becomes apparent that sustainable transformations may need to find a different approach to increase 
the probability of success for the transformation. This is how we combined the best of both approaches 
in what we are labeling “Culture-led transformation.”

Before we proceed it is important to note that both the process-led approach or the organizational-led 
approach are common approaches to transformation, even for organizations that know that the journey 
to agile is more than just process change or just changing one of its business units. The reason they 
pick a process-led approach or an organizational-led approach is that the organization is worried about 
changing too much too quickly – they are worried about the high risk of change and its impact on its 
performance. So they decide to change just the process aspect of the organization, or decide to change 
one sub-component within the larger organization or enterprise.

In a culture-led transformation we assume that the organization understands the reality of the 
transformation being about mindset and culture, and that they realize that to reap all of the benefits 
of organizational agility, the transformation needs to go beyond one part of the organization (usually 
IT) and span the entire organization. At the same time, the organization wants to reduce the risk of the 
transformation and minimize the impact on day-to-day operations. It is based on that mindset (reducing 
risk while striving for complete transformation) that we present the culture-led approach.

In culture-led transformation the organization designs a values-based roadmap that aims at transform-
ing the entire organization, together, in small increments (we will show how to design such a roadmap 
in 6 of this chapter). These increments focus on instilling specific agile behaviors, values and habits 
across the entire organization. The key is that these small increments of change span all the elements 
of the organizational ecosystem (its leadership, strategy, structure, process and people). In Figure 7 you 
can see how all the elements of the organizational ecosystem are changing together in small increments.

For example, think of a case where we are focusing the transform on one thing – embracing the agile 
value of collaboration and effective communication. We will not think about iterations or WIP limits. 
We will not think about Test-Driven Development or Continuous Delivery for now. We will simply try 
to create a new organizational culture that embraces and manifests higher levels of communication and 
collaboration. In this case, the roadmap for change will highlight the changes that need to happen to each 
element in the organizational ecosystem to promote and support this new habit and culture.

As seen in Stage 1 in the previous diagram, the entire “triangle” moves (transforms) together. You 
create a shared vision for the entire organization. You create a common journey. The transformation is 
not for some people and not others. You are enforcing an important concept; this affects all of us, and 
we are all in this together. Contrast this approach with what we commonly observe in organizations 



114

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

transforming to agile. They change the process to be more collaborative but the rewards system still 
promotes individual heroics. How sustainable it that? How long will it take before teams go back to their 
old habits – which are supported and enforced by the rest of the organizational elements?

The remaining sections in the chapter will show you how to create an agile transformation roadmap 
to achieve a culture-led transformation.

5.1. Important Considerations for the Culture-Led Transformation Approach

While the culture-led transformation approach described above has it obvious merits there are things 
that people need to be aware of to avoid some of its pitfalls.

Example Teams/Organizations

A key element of the Culture-led transformation is to establish what we call “Examples.” Examples can 
be teams, projects or organizations, but the key is that they go “all the way”. They show the organization 
what the end result could look like. They are the motivation for the organization to keep going through 
the long transformation journey.

Figure 7. Culture-led transformation



115

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

Because transformation journeys are long in duration, organizations try to “accelerate” them to see 
instant (or very quick) results. While we support the idea of quick wins and showing success early, 
we also want to emphasize that sustainable organizational transformation is not something that can be 
achieved overnight (because we are changing mindsets, habits and culture of the organization to make 
sure its sustainable). Therefore to balance between the need for quick wins that motivate us and show 
us the end result in a tangible way we can relate to and to give the organization the time and space it 
needs to truly transform, we see it as necessary to have Examples during what can seem like a rather 
slow organization transformation journey of the rest of the organization.

As you can see when comparing Figure 8 and Figure 6, a key difference between these Examples 
(Figure 8) and what we saw in the organizational-led transformation (Figure 6) approach is that Examples 
exist while the rest of the organization is also transforming. Everyone is changing but the Examples are 
modeling what the change will look like. We are also using the Examples to experiment and learn what 
will work and not in our organization.

It is important to keep in mind that Examples are not pilot projects or organizations that will start the 
journey first while the rest of the organization is “waiting” to see if they will work. It is also important 
to choose these Examples wisely so that they provide motivation and visibility to the end result across 
the entire enterprise, not just one part of the organization.

Figure 8. Culture-led transformation with example organizations



116

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

Executive Support

As you can see, the Culture-led approach requires a high degree of executive buy-in and commitment 
since they (the leadership element of the triangle) are involved in the transformation and they need to 
enable change that will span the entire organization.

While we recognize that getting executive support may be a constraint, our experience has been that 
is something that cannot be skipped or watered-down. If an organization wants sustainable organizational 
transformation, they need to recognize that they are changing all the elements of the organization and 
impacting the culture and mindset, and that is not something that can be done (from our experience) 
without a high degree of executive support. Without that degree of executive support teams can adopt 
agile on a team level, but that team or sub-system exists within a broader organization that has a differ-
ent culture and that will continue to “pull them back” to the old culture and current way of doing things 
(the organizational habits).

We are not saying this to demotivate or discourage people from adopting agile on a team or sub-
organizational level, we just want people to have realistic expectations. Team-level agile can be achieved 
with and without a high level of executive support, and while it may be hard to sustain, it is not impos-
sible. However, the journey for sustainable organizational agility and the transformation needed for 
that, based on our experience, cannot be achieved without a very high degree of ownership from the 
executives of the company.

5.2. Changing and Establishing Organizational Habits

Charles Duhigg in his book, The Power of Habit (Duhigg, 2012), suggests that habits are not conscious 
decisions, but instead are routines. Once we start the routine, we go on autopilot and simply go through 
the steps of the routine–we don’t even think about it.

In his book, Duhigg, explains that the basic elements of a habit are: Cue, Routine and Reward. The 
Cue triggers the routine – which is executed automatically – and then a reward is realized that reinforces 
the habit and makes the routine trigger again when the cue happens again.

For example, take the habit of brushing your teeth in the morning. The cue is waking up in the morn-
ing. The routine is brushing your teeth. The reward is the feeling of a clean mouth and fresh breath.

Just like people have personal habits that they do as “automatic routines” without much thought (e.g. 
brushing teeth, exercising, smoking, etc.) there are organizational habits. Organizational habits are what 
people do in their day-to-day work life “automatically” (without much thought) to get work done in the 
organization. These may be very different than the policies, procedures or established processes of the 
organization – organizational habits are how work “really gets done” in the organization.

For any change to be sustainable, the organizational habits need to change to empower and manifest 
agility. Habits are powerful, whether they are good habits or bad ones. Today, organizations may have 
dis-empowering habits that inhibit the organization’s agility. A successful transformation changes the 
personal and organizational habits to enable and empower agility.

While the ultimate goal is to change the personal and organizational habits, it is overwhelming to 
think of which habits to change; there are so many habits. This is where the concept of keystone habits 
started. Keystone habits are the answer to the question, which habit should we start changing?



117

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

Keystone habits are habits that have the power to start a chain reaction changing other habits across 
the organization. Keystone habits start a process that, over time, transforms everything.

For example, a non-keystone habit is turning the water off while you brush your teeth. While this is 
a great habit, there is little probability that this habit will change the rest of your life. On the other hand, 
Regular physical activity, is a keystone habit, because for many people it starts other habits like eating 
healthy, proper sleeping and so on. The key to a keystone habit is that it commonly has ripple effect 
beyond the original habit. The healthy eating and proper sleeping are not part of the original goal (the 
exercise); instead, these healthy changes are part of a chain reaction that happens when you incorporate 
the keystone habit.

6. CREATING AN AGILE TRANSFORMATION 
ROADMAP BASED ON KEYSTONE HABITS

To summarize thus far, culture-led agile transformation focuses on changing all the elements of the orga-
nizational ecosystem at the same time (Leadership, Strategy, Structure, Process and People) but in small 
manageable stages. Each of these stages will focus on introducing a keystone habit into the organization.

The design of the stages needed for the transformation is what we label as The Agile Transformation 
Roadmap. This roadmap helps provide the organization with the bigger picture of the Agile transformation. 
The way we design a Transformation Roadmap is by creating a 2 dimensional table. One dimension will 
be the elements of the organizational ecosystem (Leadership, Strategy, Structure, Process and People) 
and the other dimension will be the stages of the transformation. For each stage in our transformation, 
we will identify a Keystone habit for the organization to focus on (see Figure 9).

To fill out each row in the roadmap, the following questions need to be answered.

• What does Leadership need to know, or do to enable, support and promote this keystone habit?
• What needs to change for our Strategies to enable, support and promote this keystone habit?
• What needs to change for our Structure to enable, support and promote this keystone habit?
• What needs to change for our Processes to enable, support and promote this keystone habit?
• What do People in the organization need to know, or do to enable, support and promote this key-

stone habit?

Figure 9. Empty framework for an Agile Transformation Roadmap



118

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

Every organization needs to consider what changes need to happen within every element of the or-
ganization to promote the new culture and turn it into an organizational culture that causes people to do 
something automatically because it has proven to help them succeed at work. It is when people in the 
organization do not view these changes as “the new process” or the “flavor of the month” To keep going 
with this example, what needs to change about processes to promote communication and collaboration? 
What policies, and activities need to be changed or introduced to guarantee more communication and 
collaboration and engrain that habit into the culture? What needs to change with regard to peoples’ 
beliefs, values and personal habits to support the new behavior of communication and collaboration? 
All these questions need to be answered by the organization to successfully shift the organization to the 
next step towards organizational agility.

6.1. Suggested Stages and Keystone Habits for Agile Transformation Roadmap

A lot of agile experience, change management and organizational context is put into the design of the 
agile transformational roadmap and deciding what practices need to be introduced in each stage of the 
transformation to establish new organizational habits. From our experience and research we suggest that 
the first 4 Keystone Habits to be introduced are:

Stage 1: Establish a habit of communicating and collaborating.
Stage 2: Establish a habit of working and delivering in circular – evolutionary slices to realize early value.
Stage 3: Establish a habit of integrating all efforts – integrated work streams, integrated work team.
Stage 4: Establish a habit of gathering feedback from multiple levels – truly open to change and learning.

It has been our experience that these stages, done in this sequence, have yielded good results, how-
ever, during your agile transformation, these stages may be modified depending on what is deemed best 
fit for the organization. Figure 10 illustrates what an empty Agile Transformation Roadmap would look 
like populated with the 4 stages and keystone habits we recommend.

6.2. Transforming Leadership and People

It is critical for the organization to realize that sustainable culture-led transformations cannot be out-
sourced or bought from a consulting or coaching company. While agile consulting and coaching com-
panies can assist with the design of the transformation approach and roadmap, the major change has to 
come from within.

As illustrated in Figure 11, sustainable cultural transformation relies on transforming both the human 
elements (leadership and people) as well as the non-human elements (strategy, structure and process) of 
the organization. It is quite unfortunate that most (but not all) of the transformation efforts I have seen 
in the Agile industry have focused on transforming the non-human elements, even though I think most 
people would agree that true sustainable change happens when the human elements transform. Trans-
forming the human elements is done through learning, education, coaching and mentoring.



119

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

6.3. Sustainable Transformation through Learning and Education

Education is a critical component in a sustainable agile transformation. Sustainable agile is realized 
when people have truly change the way they think – and this requires education. If we truly understand 
that we need to change the mindset of everyone in the organization, including its leaders, then we need a 
combination of education and coaching and mentoring to successfully equip people with the knowledge 
and skills they need to develop and execute the agile habits we talked about earlier. If we think of agile 
as a process, not a mindset, then we default to training instead of education.

There is a clear difference between education and training - education is about the changing of the 
way people think about their day-to-day work – how to govern an agile project, while keeping flexibil-
ity, how to build code while reducing the cost of change, to undertake analysis by focusing on vertical 
slices of business value.

Training is about the mechanics of how practices are done, such as a template for writing a user story. 
Education will focus on changing the thought process to focus on value and enable the educated to think 
and decide what works for them and for their team.

Lots of agile teams have gone through Scrum training, or even better, Agile training. While we believe 
there is value in these trainings, what we are illustrating here is way beyond that. Most of these training 

Figure 10. Agile Transformation Roadmap with 4 recommended stages and keystone habits



120

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

sessions discuss the practices and ceremonies of the practices, like how to do release planning, how to 
write user stories or how to facilitate a daily stand-up. While this training is needed, this is not educa-
tion. Education goes beyond the practices and into the day-to-day, minute-by-minute thought process of 
people. Education will help people BE agile not just DO agile. Education illuminates their hearts and 
minds and helps them realize how an agilist acts and thinks in-between and beyond the daily meetings 
and work-sessions. It changes their beliefs, values and habits. That is truly when agility becomes sus-
tainable – when it is embodied in the DNA of the people running the organization (at both leadership 
and staff levels) (see Figure 12).

The International Consortium for Agile (ICAgile) has gathered experts from around the world to 
define a learning and educational roadmap for various disciplines needed by organizations aspiring for 
sustainable organizational agility. ICAgile has published a set of learning objectives that creates a clear 
learning roadmap for what people need to learn within each discipline (such as Development, Testing, 
Leadership, and Coaching) to become knowledgeable and capable to work in a way that enables, promotes 
and manifests the organizational agility towards which the organization is transforming.

6.4. Transforming Strategy, Structure, and Process

In the previous section we highlighted an important missing element, in most transformations, is the 
learning and education component. The journey for the leadership and individual contributors (people) 
is mostly an educational journey. People need to understand why they are doing the routine of the habit 
and what they are getting out of it.

Figure 11. Distinguishing between the human and non-human elements of an Agile Transformation 



121

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

As for the strategy, structure, and process components of the roadmap these elements will need to 
change to support the Keystone habits. This is where a lot of the agile practices can come in and also 
this the place that can accommodate scaling models like the Scaled Agile Framework and Disciplined 
Agile Delivery.

Consider this example. Suppose we are going to introduce the keystone habit of “Enhancing Com-
munication and Collaboration.” The entire organization will embark on a journey to change the ecosys-
tem (leadership, strategy, structure, processes and people) to establish the habit and realize the benefits 
associated with that keystone habit.

To support these changes the leadership will go through a learning program and possibly also some 
coaching and mentoring to learn what the Agile mindset is about as well as how to manage Knowledge 
Workers and how collaboration is not “touchy feel stuff” but truly the engine of an innovative, knowledge 
work, organization. Similarly the people need learn also what the Agile mindset is and why they should 
value collaboration (even if it takes longer). People need to belief that collaboration will yield better 
results and that it is worth the investment. This is how these new strategies, structures and processes 
can be supported. Then by having all the 5 elements of the organization promote collaboration it will 
become a habit in the organization. Figure 13 shows an example of how the roadmap may look like when 
starting with collaboration as the first Keystone habit.

Figure 12. Agile Transformation Roadmap emphasizing the roles of learning and education



122

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

6.5. Things to Keep in Mind about Your Roadmap

Since each organization is unique, each organization should have a different roadmap. The key to making 
sure that your roadmap is correct is to frequently inspect and adapt it. Just like in knowledge work you 
won’t know if you got it right till you do it, similarly, your first roadmap probably won’t be completely 
right and it is also probably the best starting point you have. The most important thing is to inspect and 
adapt and discuss what changes need to happen to the roadmap as execution begins. Don’t try to take a 
“checklist mentality” or “linear approach” to agile transformation – that would be pretty ironic.

Here are a couple of important things to key in mind:

1.  It’s going to be a fairly long journey. The strategy, structure and processes of companies are estab-
lished (and deeply rooted) elements in an organization. Sudden change to them may work in some 
cases, but in most cases it doesn’t. So just as the educational journey for leadership is multi-stage 
and probably multi-year, the transformational roadmap for the strategy, structure and process also 
will probably be multi-stage and multi-year – it actually should go hand-in-hand with the educa-
tional component of the roadmap.

Figure 13. Agile Transformation Roadmap with first stage populated with Agile Practices



123

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

2.  The transformational journey should span the entire organization. The entire organization is engaged 
in a common journey to reach a shared vision. By having one part of the organization change and 
not the other we are creating misalignment again within the overall culture. Due to the size of the 
change it is very tempting to “try it out” in a “small contained group” within the organization first 
to see if the new changes work first. Our advice in this situation is to make smaller changes – if 
needed - but keep everyone in the organization engaged – not just one “pilot” group.

7. MEASUREMENTS

The final component that needs to be addressed in a culture-led transformation is measurement. One 
of the main reasons we promote a culture-led transformation is that we want to ensure that the culture 
doesn’t get misaligned and strained during the transformation.

The measurement system is primarily established to:

• Validate quantitatively the progress of the transformation.
• Validate quantitatively the impact of the transformation.
• Validate quantitatively the alignment of the culture.

7.1. Progress of the Transformation

Any agile transformation, especially multi-year transformations like the one discussed in this chapter, 
need to show, via quantitative evidence, that the transformation people are investing time, energy, money, 
and other resources in is progressing. The team needs to define what progress means and establish a 
measurement system to show evidence of progress. While the impact of the transformation (as described 
in the next section) is really the more important measure from our perspective, measuring progress is 
still important, because for the impact to be substantial, it will take time, and if progress is not being 
tracked, funding for the transformation may get cut before the impact can be realized.

7.2. Impact of the Transformation

While measuring progress is important to justify the investment put into the transformation, the true 
measure of the transformation is its impact. Measures need to be defined upfront for what the anticipated 
impact from the transformation will be, and then measurement systems (how to measure) need to be 
established from day one to show the impact of the transformation – even if it is small. The challenge 
here is that defining the measurements and establishing a system to measure them is not easy, and so 
many transformation efforts skip doing it and just start the transformation. The power of starting the 
measurement of impact from day one is that first of all it forces the organization to think about what 
impact they expect the transformation to have, and more importantly how to measure that impact. Mea-
sures of impact provide a sense of accomplishment for the team and the organization along their journey, 
while at the same time they illustrate what the return on investment realized from the journey has been.



124

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

7.3. Alignment of the Culture

The last piece of the measurement system needs to be a mechanism to monitor the mindset and culture that 
are changing across the organization. Basically, the organization needs to be aware when the “triangle” is 
not moving together and when one element is causing the culture to be misaligned or strained. Today most 
organization don’t “measure” this but rather experience its symptoms every day of the transformation.

When organizations start to measure impediments associated with the transformation like the lack of 
buy-in and lack of commitment to initiatives, what they are really doing is subtly measuring the strain on 
the culture (the rubber band) and its alignment. If the elements of the organization (leadership, strategy, 
structure, processes and people) are all aligned, why would there be lack of buy-in or lack of commit-
ment? Lack of buy-in and commitment is an indicator that something is not yet aligned.

For example, if there is a complaint about buy-in, that could indicate that management is trying to 
do something and people are not aligned or vice versa. If “management” is not bought-in to something 
the team is doing then that is an indication that the elements of the “triangle” are not moving together. 
The lack of buy-in could be because the staff had started on the education journey but not the leader-
ship, or vice versa.

The point is that when there is misalignment in the culture, all sorts of challenges appear during the 
journey. The organization should identify how they will measure the alignment of culture during the 
transformation and put in place the measurement system to gather that quantitative data. That way, the 
organization will be aware (and address issues) that come up once the culture gets out of alignment. The 
team should develop a hypersensitivity to the alignment of culture, because it is the key to protecting 
the company from a drop in performance during the transformation.

8. THE AGILE ADOPTION FRAMEWORK

After presenting the Culture-led Agile Transformation approach in the chapter, it is important to link 
it to the Agile Adoption Framework (Sidky, 2008; Sidky, Arthur, J. D., & Bohner, 2007). Since 2007 
(A. A. Sidky, J. D., 2007), the framework has been applied at a number of organizations around the 
world. Due to confidentiality restrictions only some of that work has been published (Ahmed, 2009). 
The experiences acquired over those years have given the author important insights to enhance the Agile 
Adoption Framework.

The Culture-led Agile Transformation approach presented in the chapter and the Agile Adoption 
Framework share the same essence – they both present a staged agile transformation approach that is 
methodology agnostic and based on behaviors and values. They both share the same understanding that 
an organization must customize the practices they adopt based on their organizational readiness and 
the realities of their environment. One of the main components in Agile Adoption Framework was the 
Sidky Agile Measurement Index (SAMI). SAMI consists of 5 levels that provided organizations with 
guidance on the steps to focus on to become more agile. The same values explained in Stages 1-4 on the 
SAMI have become the basis for the 4 keystones habits highlighted in Culture-led Agile Transformation.

What has evolved since the Agile Adoption Framework is the idea of selecting a target agile level for 
a project and then reconciling it with the organization’s readiness. I have found that idea to be hinder-



125

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

ing. Projects and teams should evolve practices constantly as their environment changes. What is more 
important to me now is to focus on educating people in the organization and on teams to the essence of 
the Agile mindset and a deep understanding of the practices so that they are really empowered to BE 
agile not just execute on a predetermined set of Agile practices.

We still believe conducting an organizational readiness assessment for Agile is important and plays a 
critical part in the design of the Agile Transformation Roadmap highlighted in Section 6 of this chapter.

9. CONCLUSION

Organizational agility is not an end state, but rather a continuous journey. The key to sustainable agility 
is to ensure that the organizational culture is aligned throughout the journey; thereby ensuring that the 
culture of the organization is not fighting back against the changes the organization is experiencing.

The journey to transform an organization and increase it agility is not a quick one. Transformations 
need time to be properly absorbed by the organization and by its people. In this chapter we present the 
keys to sustainable organizational agility. The keys are centered on the concept of Culture-led trans-
formation where the goal is to transform all the elements that shape the culture (leadership, strategy, 
structure, process and people) together in a common journey so that the culture remains aligned through 
the transformation period.

The key to transforming the leadership and people aspect of the organization is to engage them in a 
common educational journey. The key to the strategy, structure, and process components is to establish 
a roadmap that spreads the transformation over a period of time suitable for the organization while 
highlighting key value-based milestones along the way. The last key to the transformation is to establish 
a strong measurement system that focuses on measuring the progress and impact of the transformation, 
and just as importantly, the alignment of the culture throughout the transformation.

By focusing on these three keys, we have seen organizations change the way they think and embody 
a culture that is aligned with the new way of thinking, thereby changing the organization itself, along 
with the habits of the people in the organization. Once the habits are changed, the new way of working 
becomes the normal way of working and that is how sustainable agility is achieved in organizations.

REFERENCES

Ahmed, E., & Sidky, A. (2009). 25 percent Ahead of Schedule and just at “Step 2” of the SAMI. In 
Proceedings of the 2009 Agile Conference. IEEE Computer Society. doi:10.1109/AGILE.2009.63

Collins, J., & Porras, J. (2004). Built to Last: Successful Habits of Visionary Companies. HarperBusi-
ness. doi: 10.1002/hrdq.1092

Duhigg, C. (2012). The Power of Habit: Why We Do What We Do in Life and Business, Random House. 
Journal of Child and Family Studies, 22(4), 582–584. doi:10.1007/s10826-012-9645-6

Sidky, A., & Arthur, J. D. (2007). A Structured Approach to Adopting Agile Practices: The Agile Adop-
tion Framework. (Ph. D. Dissertation). Virginia Tech. doi: 10.2481/dsj.6.S70

http://dx.doi.org/10.1109/AGILE.2009.63
http://dx.doi.org/10.1007/s10826-012-9645-6


126

A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
 

Sidky, A., & Arthur, J. D. (2008). Value-Driven Agile Adoption: Improving An Organization’s Software 
Development Approach. Paper presented at the New Trends in Software Methodologies, Tools and 
Techniques.

Sidky, A. S., Arthur, J. D., & Bohner, S. (2007). A Disciplined Approach to Adopting Agile Practices: 
The Agile Adoption Framework. Journal of Innovations in Systems and Software Engineering, 3. 
doi:10.1007/978-1-84628-821-0

KEY TERMS AND DEFINITIONS

Agile Software Development: Agile software development is a group of software development 
methods in which requirements and solutions evolve through collaboration between self-organizing, 
cross-functional teams. It promotes adaptive planning, evolutionary development, early delivery, con-
tinuous improvement, and encourages rapid and flexible response to change.

Extreme Programming: Extreme Programming (XP) is an agile methodology that specifically 
emphasizes the use of agile technical practices (e.g. Test Driven Development) for the success of an 
agile project. Practical experience shows that XP complements Scrum well and both the methods work 
well together.

Feature Driven Development: Feature Driven Development (FDD) is an agile method that focuses 
on delivering working software in a timely manner by using simple, client focused and practical software 
process. This method works well without tailoring to both small (< 8 team size) and large teams (> 30 
team size).

Refactoring: Refactoring aims to have a cleaner “code” by restructuring the code without changing 
its external behaviour. The idea is to improve the design of the code with the intention of making it easy 
to use.

Scrum: Scrum is one of the popular agile methodologies which aims to address the challenges of 
projects involving complex scope of work using a simple process dependent on a small team who are 
motivated, collaborative and highly focused on producing working software every 2-4 weeks.

http://dx.doi.org/10.1007/978-1-84628-821-0


127

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  7

DOI: 10.4018/978-1-4666-9858-1.ch007

ABSTRACT

While many existing Agile product development methodologies like SCRUM, Extreme Programming 
(XP), Dynamic Systems Development Method (DSDM), Feature Driven Development (FDD) etc. cover 
aspects related to developing & delivering a product solution, they are not meant to provide an end to 
end framework for an organization to transition / embrace and adopt agile way of software develop-
ment. For an organization’s agile journey to be successful we should consider several organizational 
elements like how to do a business case for agile, how to build agile leadership qualities for staff at 
all levels (especially Managers), how to setup & govern an agile organization, how to assess an agile 
organization etc.

1. INTRODUCTION

Agile methods have gained a lot of prominence in the industry as a development method of choice. While 
many existing Agile product development methodologies like SCRUM, Extreme Programming (XP), 
Dynamic Systems Development Method (DSDM), Feature Driven Development (FDD) etc. (Dingsøyr 
et al., 2012) cover aspects related to developing and delivering a product solution, they are not meant 
to provide an end to end framework for an organization to transition / embrace and adopt agile way of 
software development.

For an organization’s agile journey to be successful we should consider several organizational ele-
ments like how to do a business case for agile, how to build agile leadership qualities for staff at all levels 
(especially Managers), how to setup and govern an agile organization, how to assess an agile organization 
etc. Further the design of the agile framework should combine different agile methodologies SCRUM, 
DSDM, XP etc. (Qumer and Henderson-Sellers, 2008) and build a matrix of methodologies that could 
be applied to a specific project need. By building such an agile framework, organizations would benefit 
by referring to a holistic framework to manage their organizational agile initiatives.

Design of a Framework 
to Implement Agility at 
Organizational Level

Jagadeesh Balakrishnan
National University of Singapore, Singapore



128

Design of a Framework to Implement Agility at Organizational Level
 

2. WATERFALL VS. AGILE DELIVERY

Before looking at a framework design for Agile, let us try to organize some of the basic differences be-
tween waterfall and agile delivery from a people, process and customer perspective. This comparison is 
in no way intended to highlight that agile is better than a waterfall approach. The focus rather is on trying 
to appreciate the fundamental differences between the two approaches. There might be many situations 
where both approaches have an intersection point (e.g. Plans versus Goals. Both waterfall and agile ap-
proaches have plans and goals but waterfall prefers having a detailed plan approach while agile favors a 
more goal driven execution approach) (Chan & Thong, 2009) (see Tables 1, 2, and 3).

2.1. People Perspective

Underlying Agile Principle: “People are trusted to do the right things, at the right time, and in the right 
way”.

Table 1.  

Waterfall Focus Agile Focus

Hierarchy – Focus on command and control approach Synergy – Focus on cooperation of various people involved in the 
project

Seniority – Decisions are taken by the senior most resource Competence – Decisions are taken by the most competent team 
member for that task

Directed – Workers wait for instructions and are directed on 
what to do and how to do.

Autonomous –Workers are encouraged to choose what they want to 
work on and how they want to execute work.

Managers – Focus is on managing work Facilitation – Focus is on facilitation instead of management

Appraisal – Workers are evaluated by senior authority for 
performance and given feedback

Reflection – Team reflects collectively on improvements and takes 
the next step towards success together

Table 2.  

Waterfall Focus Agile Focus

Plans – Focus is on planning the work and working the plan! Tactics – Focus is on following a solution oriented approach. 
What works for a given situation is given priority over planned 
arrangements if needed.

Linear – Detailed step by step instructions to execute all parts of 
work.

Iterative – Work solution emerges iteratively.

Rule based – Everything that is done in a project is based on a 
set of agreed rules

Goal based – Everything that is done is based on the goals of the 
system or project.

Scheduled – Detailed scheduled for all activities are drawn out Time boxed – Specific activities are identified and are strictly time 
boxed

Quality Assured – A separate QA team reviews work all the 
time.

Peer Reviewed – Work is continually peer reviewed

Task based – Tasks drive allocation of work to team members Role based – Roles drive selection of tasks by team members



129

Design of a Framework to Implement Agility at Organizational Level
 

2.2. Process Perspective

Underlying Agile Principle: “In an Agile project, quality is not tested in, it is designed in”.

2.3. Customer Perspective

Underlying Agile Principle: “Things that do not deliver value to the customer probably need not exist”.
It is clear from the above differences that Agile focuses more than waterfall development on aspects 

like people empowerment, embracing change and delivering value.

3. AGILE ADOPTION TREND

The IT industry is replete with examples of many short term trends emerge and die very soon. Some 
protagonists do argue that Agile is also a buzz word and will have a limited lifespan. However, agile 
adoption is widespread as evidenced by latest Gartner hype cycles (2013, 2014) (Cohn, 2005) and adop-
tion levels of agile are increasing day by day consistently. A few samples of top organizations adopting 
agile are given below (DeMarco & Boehm, 2002).

A brief industry scan would show the deep adoption of agility in many organizations.

• The Accenture Agile Delivery Capability is a process that has been tailored to meet the needs of 
defense organizations (Accenture, 2009). This is a customer focused process that uses a disci-
plined and rigorous process as well as flexibility.

• At Cisco, the software engineers are using agile development principles into practice, and also 
work closely with the customers to produce software that meets the needs of the customers ().

• The Collaboration and Communications Group (CCG) at Cisco stated the use of agile methodolo-
gies in the company, although other teams have also adopted these techniques (Cisco Systems, 
2011). Cisco had used the waterfall method for a very long time, but it ended up adopting this 
method in 2008 (Cisco Systems, 2011).

• Dell also implemented the Dell Agile Working Solution Blueprint which helped in the end to end 
delivery with other befits related to cost cutting, productivity enhancements’ and improved per-
formance (Dell Corporation, 2008)

Table 3.  

Waterfall Focus Agile Focus

Requirements – Focus is on satisfying well written requirements Needs – Focus is on meeting the changing needs of the customer

Content – Focus is on written content in the form of 
requirements document

Context – Focus is on context and requirements can change 
dynamically if the context changes.

Deliverables – Focus is on completing agreed deliverables Value – Focused is always on delivering value to the customer

Critical path – Work is centered around critical path for the 
activities

Priority List – Work is always centered around the list of priorities 
for the current iteration

Baselined – Requirements and plans are baselined and put under 
change control.

Evolving – Requirements and plans are allowed to evolve 
dynamically (adapt to change than control change)



130

Design of a Framework to Implement Agility at Organizational Level
 

• Barry Boehm identified Agile as the important trend in 2000’s in his work (Boehm, 2006).
• Gartner has put Agile Development Methodology near the end of “Trough of Disillusionment” 

(Fenn & Linden, 2005). This Hype cycle shows that Agile is starting the journey in the “Slope of 
Enlightenment” right now. This means that stable adoption of Agile is predicted widely across the 
industry in the next 5 – 10 years.

The above industry data hints that organizations increasingly adopt agile methods to develop projects. 
While there are several agile models that address how an agile project needs to be executed, a unified 
framework that can be applied at the organizational level does not exist. So, it is critical to define an 
agile framework that addresses the organizational agile needs.

4. ORGANIZATIONAL AGILE FRAMEWORK

There are many agile methodologies currently existing in the industry. According to the IT Knowledge 
portal http://www.itinfo.am, some of the important agile methodologies are given below.

• Scrum (www.scrumalliance.org)
• Feature Driven Development (FDD) (http://en.wikipedia.org/wiki/Feature-driven_development)
• Dynamic Systems Development Method (DSDM) (http://www.dsdm.org)
• Agile Unified Process (AUP) (http://www.ambysoft.com/scottAmbler.html)
• Lean IT Methodology (Source: Wikipedia)
• Extreme Programming (XP) (Source: Wikipedia)
• Crystal family of standards (Source: Wikipedia)
• Evolutionary Development Model (EVO) (Source: Wikipedia)

An initial study and analysis of the agile models given above reveal that they contribute towards run-
ning a project the agile way and do not directly scale up to an organizational level to meet the needs of 
any project that is run the agile way. This “scaling” needed at organizational level underlines the purpose 
behind creating a separate organizational agile framework.

4.1. Building Organizational Agile Framework: Where to Start?

To build an organizational agile framework, every organization should first start by interpreting the four 
agile manifesto values and 12 agile principles to its own business context. While the agile principles 
look straightforward, its applicability to each organization will vary considerably as illustrated in the 
example below (see Table 4).

Let us consider the principle, “responding to change over following a plan”. If an organization aims 
to follow this value as it is without interpreting it to the specific context of its own projects then the or-
ganization is tossing itself for a colossal failure in implementing this Agile Value. Some of the pertinent 
Questions to ask while interpreting an agile principle are given below:

• Should our project welcome changes 100% and not follow the plan at all? The answer is mostly 
NO.

http://www.itinfo.am
http://www.scrumalliance.org
http://en.wikipedia.org/wiki/Feature-driven_development
http://www.dsdm.org
http://www.ambysoft.com/scottAmbler.html


131

Design of a Framework to Implement Agility at Organizational Level
 

• Should we follow the plan 100% and not entertain changes? This is a sure NO - NO.

It is obvious that there will never be straightforward silver bullet answers on how diligently a proj-
ect follows an Agile Value. However, even a simple group discussion / meeting involving important 
organizational stakeholders on interpreting these agile values / principles to organizational context and 
deciding “How much agility is good enough?” will go a long way in helping the organization steer its 
agile journey in a proper direction.

4.2. Agile Ecosystem versus Methodology Approach: 
The Amazon Rain Forest Example

Jim High smith advocates an “Ecosystem point of view” as opposed to the “methodology point of view” 
while handling organizational agility (Highsmith, 2002). A simple example to illustrate the importance 
of ecosystem view is given below.

Let us consider the Amazon Rain forests. Wikipedia shows that the Amazon rain forest is home to 
about 2.5 million insect species, tens of thousands of plants, and some 2,000 birds and mammals. To 
date, at least 40,000 plant species, 2,200 fishes, 1,294 birds, 427 mammals, 428 amphibians, and 378 
reptiles have been scientifically classified in the region.

Now, let us imagine that a “so called” Agile Coach is requested to take a cross section of mammals 
from the 427 different varieties of mammals. The superficial Agile Coach interprets a fundamental agile 
principle on “speed of delivery” as “deliver as fast as possible” and creates a rule “All mammals should 
run at a speed of at least 25 km / hour” because agility means better speed. We have to be at least run-
ning at the speed of 25 km / hour to satisfy our minimum agility goals.

What would ensue are chaos, failure and destruction because a single “Agile” expectation is set for 
all mammals. It is obvious that different mammals have different speeds and agility levels. A common 
agility expectation for every mammal is not only impractical but also senseless.

Now, imagine the case of an Agile Coach working in an IT organization. If this coach expects all 
projects (regardless of technology, customer segment, market needs) to produce working software every 
day or week, then will the projects be able to do so? Digital projects by its very nature are evolving and 
might hugely benefit by very frequent working software. A Banking product might have regulations, 
audits and also have a low risk appetite. Frequency of release of a banking product might be once every 
quarter while a mobile application might be looking at a release every week.

What is highlighted here is that we should not relegate agile projects to the status of a fixed process 
culture where every project is expected to deliver at a fixed speed or frequency. An ecosystem based 
approach where conscious acknowledgement that different projects have different delivery needs should 
be taken (Cohn, 2005).

Table 4. Consider the 4 agile manifesto values

- Individuals and interactions over processes and tools 
- Working software over comprehensive documentation 
- Customer collaboration over contract negotiation 
- Responding to change over following a plan



132

Design of a Framework to Implement Agility at Organizational Level
 

Interpretation of agile principles and taking an ecosystem view are two fundamental pillars on which 
a practical agile journey of every organization rests.

5. DESIGN OF ORGANIZATIONAL AGILE FRAMEWORK

The next step after interpreting the agile values is to build an organizational framework design that guides 
projects the agile way inside the organization.

There are several analytical tools and frameworks that could possibly be used to examine software 
development methods. However, the key advantage of 4-DAT (4 Dimensional Analysis Tool) is that it 
evaluates methods from the perspectives of agility, software process and lifecycle phases as well as how 
the methods do in practice (Qumer & Henderson-Sellers, 2006).

4-DAT specifically provides a mechanism to measure agility (degree of agility) of any method quan-
titatively at a specific level in a process and using specific practices. 4-DAT will help to examine agile 
methods from four perspectives given below:

• Method scope
• Agility characterization (based on the key attributes introduced for this case)
• Characterization of agile values (based on those proposed in the Agile Manifesto)
• Software process characterization

A detailed treatment of the different perspectives presented above can be referenced from “An evalua-
tion of the degree of agility in six agile methods and its applicability for method engineering by (Qumer 
and Henderson-Sellers, 2008).

Note – Our focus for this chapter is to use the 4-DAT approach to compare a few popular agile 
frameworks like Scrum, FDD and DSDM in a structured manner and identify the additional elements 
necessary to help implement these frameworks at Organizational level. The gaps identified in individual 
frameworks against the parameters evaluated would help to create an action item list that could be used 
to build a unified organizational agile framework which is the central purpose of this chapter.

5.1. Possible Challenges in Scaling Existing Agile 
Frameworks to Organizational Level

There are several types of challenges in scaling agile frameworks at organizational level like customer 
related, requirements related, team related and model related challenges (Adkins, 2010). Addressing 
customer related challenges are top priority because customer involvement is one of the fundamental 
principles of agile. Addressing Requirements challenges will also be a key factor because the ability to 
adapt to changing requirements is a central agile principle. Agile is ultimately about empowered and 
motivated teams and the doers of work are the “agile teams”, so the challenges the team faces will decide 
the success or failure of the agile initiative. Finally, the model specific challenges have to be carefully 
addressed at organizational level to ensure the model is adapted to the organizational needs and not 
looked at from an “ as is” silver bullet point of view.



133

Design of a Framework to Implement Agility at Organizational Level
 

Challenge 1: Customer-Related Challenges

Customer’s insufficient knowledge of the requirements due to the complexity and size of the system 
poses significant challenges ((Cao and Ramesh, 2008). These challenges are even more pronounced when 
customers are not available or not willing to commit to the project (Fitzgerald et al., 2006).

Challenge 2: Requirements Related Challenges

Frequently changing requirements poses a challenge to the team that is developing the software. Also 
the expectation that business will coordinate with developers closely is practically difficult to achieve.

Challenge 3: Team Related Challenges

When the teams are distributed, face to face interaction is difficult. Further when the team size grows, 
the ability to do face to face interaction decreases drastically.

Challenge 4: Model Challenges

The study elements for studying model specific challenges like team size, leadership approach, reward 
mechanism, engineering approach etc. are compared for the three selected models in the section below 
(see Table 5).

5.2. Addressing Challenges in Agile Frameworks

The summary of findings identified is in turn used as feeders to define design building blocks for an 
organizational agile framework below (see Table 6).

5.3. Organizational Agile Framework Design

The organizational agile framework that is defined below covers the designs blocks that are identified 
in the above section (see Figure 1).

5.3.1 Agile Models + Model Selection Criteria

This block provides the flexibility to choose different agile models (SCRUM, FDD, and DSDM) depend-
ing on specific project or client requirements (see Table 7).

5.3.2 Agile Rewards and Recognition System

• Many companies are shifting to Agile Software development. However, the companies continue 
to use their existing performance evaluation methods.

• Most companies are clueless on how to do appraisals in an agile environment. This creates a 
“chasm”.



134

Design of a Framework to Implement Agility at Organizational Level
 

• An Agile appraisal system is not a top down supervisor evaluation. In an Agile appraisal system, 
the focus is given to the following parameters
 ◦ Peer Review: Each team member rates himself and others in the team objectively
 ◦ Team rating: A portion of weightage is given for overall team instead of individual heroism

Table 5.  

Study Element Scrum FDD DSDM Summary of Findings

1. Team Size

• Single team size to be less 
than 8 -10. 
• Multiple teams of 8 -10 
members possible using 
Scrum of Scrum approach.

No limit for team size. 
Scalable from small to 
large teams

Minimum 2 and 
Maximum 6 (But 
multiple small teams 
can work)

If the development team size 
increases beyond 8 Scrum 
has to be broken down in to 
multiple scrum teams. 
- FDD does not have any 
restriction on team size. 
DSDM advocates team size 
of 2-6 per team. 
In the practical software 
development teams in 
industry a single team 
with 25 team members 
are common. So, this is an 
area which needs further 
consideration in framework 
definition.

2. Leadership 
Approach

Scrum advocated Adaptive 
leadership approach

Does not explicitly talk 
about any preferred 
leadership approach

DSDM advocates 
flexible approach to 
leadership

All the 3 models directly or 
indirectly advocate having 
adaptive leadership approach 
for projects but do not specify 
how leaders should function 
at an organizational / project 
level.

3. Reward 
Mechanism All 3 models do not deal with any ideas on how agile teams should be rewarded.

No mention on how teams 
should be rewarded in an 
agile projects in any of the 
models.

4. Maturity 
Assessment

No specific indicators identified for measuring higher or lower maturity in terms 
of agile practices prescribed by the model.

No mention on maturity 
assessment of agile projects 
in any of the models.

5. Engineering 
practices for Agile

Scrum does not cover 
any agile engineering 
techniques like Test Driven 
development, Refactoring 
etc.

FDD advocates strong 
testing, peer review 
and an object oriented 
approach to development

No specific 
engineering practices 
prescribed.

None of the 3 models focus 
on engineering practices 
specifically.

6. Metrics

Scrum speaks of “velocity” and burn down charts. However none of the 3 models 
deal with the significant metrics that are needed to successfully manage agile 
projects.

No mention on agile metrics 
in any of the models.

7. Customer 
Satisfaction

Adapting to changing customer needs is a fundamental philosophy for all the 
three models. However, there is no specific technique or mechanism suggested on 
how customer satisfaction should be looked at for an agile project.

No mention on measuring 
customer satisfaction in any 
of the models.

8. Tailoring Criteria 
for agile methods

All the three models are flexible and can be adapted. However, specific 
guidelines or practices on how to tailor the models to a specific project situation 
is not available.

No mention on tailoring 
criteria in any of the agile 
models.

9. Overall 
Governance

FDD covers a detailed project monitoring strategy. However, none of the three 
models provide a guidance on how an agile project should be governed.

No mention on Overall 
Governance of an agile 
project in any of the models.



135

Design of a Framework to Implement Agility at Organizational Level
 

Table 6.  

Design Building Block Identified List of Gaps Addressed in the Design Building Block

10. Agile Models + Model selection criteria

• Team Size 
• Customer related challenges 
• Requirements related challenges 
• Team related challenges 
• Tailoring criteria for agile models

11. Agile Rewards and Recognition System • Reward Mechanism

12. Business Culture
• Business Agility 
• Business Culture

13. Adaptive Agile Leadership
• Leadership Approach 
• Physical Environment

14. Agile Customer Satisfaction (ACS) • Customer satisfaction survey (End user, Product Owner, stakeholders)

15. Governance

• Organization structure 
• Cost, Standards 
• Metrics 
• Keeping the process cost effective

16. Development Pool • Developer pool, Team size (indirect)

17. Engineering Took Kit
• Engineering Practices for Agile 
• Configuration Control Process

18. Maturity Model
• 4-DAT Maturity Assessment 
• Process Management Processes

Figure 1. Organizational Agile Framework Design(Qumer and Henderson-Sellers, 2008)



136

Design of a Framework to Implement Agility at Organizational Level
 

 ◦ Product produced
 ◦ Overall adherence to agile process
 ◦ Leadership qualities
 ◦ Customer rating

• Agile appraisals generally follow a 360 degree approach
• Caution should be taken to avoid measuring following items in agile appraisals:

 ◦ Individual velocity
 ◦ Sum of all task hours for a person
 ◦ Number of tasks/person
 ◦ Accuracy of task estimates

5.3.3 Business Agility

• Most organizations use Agile as a project management strategy. On the contrary, Agility is also a 
business strategy that helps survive changing market demands. Salesforce.com successfully used 
Agile as a business strategy and succeeded in its business ventures.

• Business Agility is beyond the scope of this dissertation. Hence it is not addressed in detail but 
identified only as a gap in the existing agile models that scale at organizational level.

5.3.4 Adaptive Agile Leadership:

• There are many leadership challenges in an Agile Environment – traditional leadership styles may 
not work. Without using titles, power or influence, the leader has to get work done from team 
members

• Agile Leaders are leaders who possess the following characteristics:

Table 7.  

Model Selection Criteria

SCRUM      • Team size of 6-8. 
     • To achieve scalability, there can be multiple scrum teams of 6-8 team members operating under the 
Scrum of Scrum mode 
     • Collocated 
     • Customer closely interacting with project 
     • Frequent iterations (2 weeks -1 month) 
     • Requirements complex (neither very clear nor totally blurred)

FDD      • Use when large, distributed agile teams are a need for the project 
     • Team size can be of any order 
     • Requirements should be breakable in to features 
     • Favors object oriented approach to development

DSDM      • Use whenever feasibility and business study are necessary to ascertain whether the project has to be 
undertaken 
     • Should be able to create prototypes for the system during early stages of the project 
     • Minimum team size of 2 and maximum 6. 
     • To achieve scalability, there can be multiple team groups of 2-6 members within the same project

Combination mode      • Models could be combined depending on the project type. For example, DSDM phase feasibility 
study could be added to the SCRUM model (see paper framework designs in appendix for a few sample 
combination ideas)



137

Design of a Framework to Implement Agility at Organizational Level
 

i.  Flexible
ii.  Responsive to change
iii.  Willing to learn new ways
iv.  Willing to adopt new ways
v.  Lead effectively to survive successfully in the modern, complex, ever changing business 

environment
• Agile Leadership is the art of being flexible under the influence of rapidly changing internal /

external circumstances
• The ability to change or be changed is a crucial skill for Agile leaders

One of the popular leadership approaches for agile is the Servant Leadership Approach. The servant-leader 
is servant first. It begins with the natural feeling that one wants to serve, to serve first. Then conscious 
choice brings one to aspire to lead (Greenleaf, 1977).

5.3.5 Agile Customer Satisfaction (ACS)

Compared to traditional waterfall projects where customer satisfaction is measured at the end of the 
project, the agile customer satisfaction is more dynamic and it involves getting direct feedback from 
many stakeholders involved in the project.

A good agile customer measurement should have the following characteristics:

• “Barely sufficient”
• Easy to collect and/or coalesce (<5 minutes)
• Affirm the Agile principles
• Focused around delivering customer value
• Should not cause any “metrics dysfunction”

Feedbacks should be measured at various levels in an agile project as given below

• Direct end user
• Product Owner
• Relevant stakeholders involved in the project

5.3.6 Agile Organization Structure

Agile organization structure is different from traditional structure because there is no pyramidal structure 
in Agile Enterprise. Pyramids inevitably create decision-making bottlenecks as information gets passed 
up the chain of command. Agile organization structure is inspired by nature – Set of birds, swarm of 
bees, and an army of ants.

Agile organization work best in a network like structure where coordination is promoted over control. 
Senior management of an organization should make sure people are well trained, and then should trust 
these trained people to act without having to ask permission first.



138

Design of a Framework to Implement Agility at Organizational Level
 

5.3.7 Agile Metrics

Metrics collection should be less at an agile project level but it could be considered as a major activity 
at the governance level. It is advisable for the organization to decide what metrics should be collected 
at team level, project level and program level.

Good agile metrics are generally easy to collect and don’t become an impediment to the team’s work, 
measures business outcomes over activity (e.g. value delivered vs. number of tasks completed), looks at 
trends, not just a single point in time, encourages whole team results over individual results.

5.3.8 Development Pool

At an organization level, a process is necessary to recruit agile developers who are generalizing special-
ists and supply them to various projects. The development pool should also be maintained in an agile 
fashion with very less “bench” and very high active project experience for the developer pool. Trainings 
on motivation, team building, collaboration, agile values, user experience design etc. should be imparted 
to the developers along with the specific technology trainings. Developers who complete an agile project 
can return to the developer pool and get reassigned to another agile project. As much as possible, the 
selection of projects in which the developer works should be on a self-inspired, voluntary basis.

5.3.9 Engineering Tool Kit

• Agile models do not prescribe any specific engineering techniques to be followed directly during 
project development.

• It is essential to have an expandable engineering toolkit that can be referred by an agile project.
• Some of the mandatory agile engineering practices are Continuous Integration, Refactoring, Test 

Driven Development, Code Review and Pair Programming.
• overlooked in the initial development phase, improving both the overall quality

This organizational framework design covers only a minimal set of engineering practices.
It should be borne in mind that there could be several other agile engineering techniques that could 

be applied depending on the project context and client requirements.

6. SUMMARY

Having an organizational agile framework would help any organization succeed in its agile journey in 
a structured manner. The agile projects would also be comforted by the fact that there is organizational 
level “thinking” and guidance and support on how to execute the agile project. The organizational agile 
framework described in this chapter also has the following advantages.

• Flexibility: The design framework created is flexible. New agile models could be added inside 
this framework design without any impact to existing design blocks. This way, the organization 
adopting this framework has the flexibility to add /modify an agile model which is defined as part 
of the framework



139

Design of a Framework to Implement Agility at Organizational Level
 

• Expanding Team Sizes: The model defined can be applied for various team sizes. The project team 
has to pick an agile framework that is suitable for its project and use the framework.

• Scalability: This model is totally scalable. New engineering techniques and new agile models 
could be added to this framework easily

• Recommendations: The aim of designing this organizational agile framework is not to apply it “as 
such” without tailoring to various organizations. It is recommended that any organization using 
this framework “tailors” the model to suit its specific organization context before applying the 
model.

7. ADDITIONAL ELEMENTS FOR ORGANIZATIONAL AGILE FRAMEWORK

• Agile Maturity Model: There is very little work done in the area of agile maturity models. Any 
future work in the related area could focus on building an agile maturity model to assess agile 
project maturity

• Testing the model: The analysis of the results of applying this model to projects could serve as a 
feedback loop to improve this organizational agile design further.

REFERENCES

Adkins, L. (2010). Coaching agile teams: a companion for ScrumMasters, agile coaches, and project 
managers in transition. Addison-Wesley Professional.

Boehm, B. (2006). A view of 20th and 21st century software engineering. In Proceedings of the 28th 
international conference on Software engineering.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical study. Software, 
IEEE, 25(1), 60–67. doi:10.1109/MS.2008.1

Chan, F. K., & Thong, J. Y. (2009). Acceptance of agile methodologies: A critical review and conceptual 
framework. Decision Support Systems, 46(4), 803–814. doi:10.1016/j.dss.2008.11.009

Cohn, M. (2005). Agile estimating and planning. Pearson Education.

DeMarco, T., & Boehm, B. (2002). The agile methods fray. Computer, 35(6), 90–92. doi:10.1109/
MC.2002.1009175

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies: To-
wards explaining agile software development. Journal of Systems and Software, 85(6), 1213–1221. 
doi:10.1016/j.jss.2012.02.033

Fenn, J. & Linden, A. (2005). Gartner’s Hype Cycle Special Report for 2005. Gartner.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to software practices at Intel 
Shannon. European Journal of Information Systems, 15(2), 200–213. doi:10.1057/palgrave.ejis.3000605

Greenleaf, R. K. (1977). Servant leadership. New York: Paulist Press.

http://dx.doi.org/10.1109/MS.2008.1
http://dx.doi.org/10.1016/j.dss.2008.11.009
http://dx.doi.org/10.1109/MC.2002.1009175
http://dx.doi.org/10.1109/MC.2002.1009175
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1057/palgrave.ejis.3000605


140

Design of a Framework to Implement Agility at Organizational Level
 

Highsmith, J. A. (2002). Agile software development ecosystems 13. Addison-Wesley Professional.

Kettunen, P., & Laanti, M. (2008). Combining agile software projects and large‐scale organizational 
agility. Software Process Improvement and Practice, 13(2), 183–193. doi:10.1002/spip.354

Qumer, A., & Henderson-Sellers, B. (2006). Measuring agility and adoptability of agile methods: a 
4-dimensional analytical tool. In Procs. IADIS International Conference Applied Computing 2006, (pp. 
503-507). IADIS.

Qumer, A., & Henderson-Sellers, B. (2008). A framework to support the evaluation, adoption and improve-
ment of agile methods in practice. Journal of Systems and Software, 81(11), 1899–1919. doi:10.1016/j.
jss.2007.12.806

KEY TERMS AND DEFINITIONS

4-Dat: 4-DAT (4 Dimensional Analysis Tool) is an analysis tool that helps to measure agile methods 
from the perspectives of agility, software process followed and method application in practice.

Continuous Integration: Continuous integration is a prescribed software engineering practice which 
advocates merging the developer working copies with a central, shared mainline several times a day.

Dynamic Systems Development Method: Dynamic Systems Development Method (DSDM) is an 
agile project delivery framework that combines the best practices of development and business to yield 
a seamless delivery mechanism for both simple and complex projects (Kettunen and Laanti, 2008).

Extreme Programming: Extreme Programming (XP) is an agile methodology that specifically 
emphasizes the use of agile technical practices (e.g. Test Driven Development) for the success of an 
agile project. Practical experience shows that XP complements Scrum well and both the methods work 
well together.

Feature Driven Development: Feature Driven Development (FDD) is an agile method that focuses 
on delivering working software in a timely manner by using simple, client focused and practical software 
process. This method works well without tailoring to both small (< 8 team size) and large teams (> 30 
team size).

Refactoring: Refactoring aims to have a cleaner “code” by restructuring the code without changing 
its external behaviour. The idea is to improve the design of the code with the intention of making it easy 
to use.

Scrum: Scrum is one of the popular agile methodologies which aims to address the challenges of 
projects involving complex scope of work using a simple process dependent on a small team who are 
motivated, collaborative and highly focused on producing working software every 2-4 weeks.

TDD: Test Driven Development (TDD) is a development process which advocates the writing of 
automated test case that defines a new function, then producing the minimum amount of code to pass 
that test.

http://dx.doi.org/10.1002/spip.354
http://dx.doi.org/10.1016/j.jss.2007.12.806
http://dx.doi.org/10.1016/j.jss.2007.12.806


141

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  8

DOI: 10.4018/978-1-4666-9858-1.ch008

ABSTRACT

Nowadays, since business environment is highly dynamic, software necessities are continuously being 
improved in order to meet the needs of modern industrialized world. Therefore, IT organizations seek for 
a quick way of software delivery and for adapting to the necessary technological changes. From this ideal 
viewpoint, traditional plan-driven developments lag behind to overcome these conflicts. The purpose of 
this chapter is to present the existing models and frameworks which guide organizations to adopt agile 
methods. This may help organizations to follow professionals’ suggestions during their migration from 
traditional systems to agile development.

1 INTRODUCTION

Since the purpose of organizations are improving return on investment (ROI) and controlling the risk of 
projects failure effectively, Agile software development has become as the most debated solution in the 
last decade and many companies are transforming from traditional development to Agile developments 
methods like SCRUM(Druckman, 2011).

For the first time, the word agile was utilized incorporation with software process in 1998 (Aoyama, 
1998).The ability of sensing and rapidly responding to business scenarios in order to remain creative 
and aggressive in an unsteady and quickly changing business environment is agility(Highsmith, 2002). 
The agile attitude for developing is the agility of development teams, development process and their 
environment (Boehm & Turner, 2004). This approach integrates shared ideals of various stakeholders 

A Survey of Agile 
Transition Models

Imran Ghani
Universiti Teknologi Malaysia, Malaysia

Dayang Abang Jawawi
Universiti Teknologi Malaysia, Malaysia

Naghmeh Niknejad
Universiti Teknologi Malaysia, Malaysia

Murad Khan
Universiti Teknologi Malaysia, Malaysia

Seung Ryul Jeong
Kookmin University, South Korea



142

A Survey of Agile Transition Models
 

and a philosophy of regular providing the customers with product features in short time-frames (Moniru-
zzaman & Hossain, 2013; Southwell, 2002). This frequent and regular feature delivery is achieved by 
team based attitude (Coram & Bohner, 2005).

Beck et al. (Beck et al., 2001) expressed that customers are unable to define their requirements 
exactly due to the rapid change in the world of technology and companies which are used the new 
technologies in their products. Therefore, agile approaches are intended to cover the changing needs 
in software technology environment. In 2001(Ambler, 2002), a group of 17 software consultants with 
different backgrounds created the Agile Software Development Alliance to define a manifesto for agile 
software development principles. Agile methods stressed on the unexpectedness challenges in practice 
based on the communication among people and their innovation instead of processes. The main purpose 
of agile methods is to improve and increase the responses time to requirements, environmental changes 
and achieve the deadlines (Rao, Naidu, & Chakka, 2011). Beck et al. (Beck et al., 2001) expresses agile 
software development manifesto as the following:

1.  Individuals and interactions over processes and tools
2.  Working software over comprehensive documentation.
3.  Customer collaboration over contract negotiation.
4.  Responding to change over following a plan.

Agile software development methods illustrate a series of processes that have been produced by experts 
(Ågerfalk, Fitzgerald, & In, 2006).Dynamic Systems Development Method (DSDM) (Stapleton, 2003) 
is recognized as the first method for agile development by Larman and Basili(Larman & Basili, 2003). 
Other best known methods are Extreme Programming (XP) (Beck, 2000), Scrum (Takeuchi & Nonaka, 
1986), Crystal Methodologies Family (Cockburn, 2006), Agile Modeling (Ambler, 2002), Feature-Driven 
Development (FDD) (Anderson, 2004), and Adaptive Software Development (Highsmith, 2013).

Agile methods focus on producing the software early and avoiding to waste time in costly plans and 
delivering a valuable result to the customer in a limited time as soon as possible. To achieve this goal 
documentation has a lower priority during developing an agile project and it has to be provided while 
the project has finished and delivered to the customer (Van Vliet, 2007). Highsmith and Cockburn 
(Highsmith & Cockburn, 2001) declared that agile methods emphasis on the integrity of working code 
and the efficiency of people which are working together with courtesy. The authors believed that during 
project development, people would exchange their ideas by discussing face to face more quickly than 
by reading or writing documents.

According to Forrester report in 2006, almost 17% of companies adopted agile methods and more 
than 50% of the participated companies were involved to adopt them (Schwaber, Laganza, & D’Silva, 
2007). The percentage of this statistic increased in 2009 in a study that showed 76% of participated com-
panies initiated at least one or two agile projects (Ambler, 2009a). Today, many major companies have 
implemented agile in whole or some parts of their projects, namely: Yahoo!, Microsoft, AOL, Shopzilla, 
CNBC, Google, Siemens and Rockstar (Smith & Sidky, 2009). Scott Ambler conducted a survey during 
13 February till 24 March 2014(Ambler, 2014). In his research the challenges faced by organizations 
and the state of agile adoption in organizations were examined. Figure 1 shows the adoption of agile 
programs success rates in organizations. However, there are some failures (5%) in agile adoption but 
there are more successes in organizations.



143

A Survey of Agile Transition Models
 

Practically, a small number of organizations are capable of adopting agile development methods 
directly and successfully within a short period of time while a complete transition may often take a few 
several years (2 -3 years). Moreover, it may not be appropriate for organizations to be completely agile 
in every aspects of development. Perhaps it is better to keep famous and reliable components of a more 
traditional method inside an entire agile project (Qumer & Henderson-Sellers, 2008). In this chapter, 
almost all frameworks, models, roadmaps and guidelines have been collected to assist managers and 
agile experts to choose a proper way to transfer from traditional methodology to agile development 
confidently and more successfully. In addition, the differences between traditional development and 
agile development are also discussed.

2 Traditional Development vs. Agile Development

Agile Software Development Methods (ASDM) has many various differences with Traditional Software 
Development Methods (TSDM). According to Boehm (Boehm, 2002), there are nine discriminant ele-
ments between agile and traditional methodologies. Due to his study, the main purpose of ASDM is 
based on high rapid value in contrast with TSDM which is based on high assurance.

Moreover, organizations have found that agile project teams in contrast with traditional one provide 
higher quality, have greater level of success rates, deliver a greater degree of return on investment (ROI), 
enjoy higher level of stakeholder satisfaction, and provide system to market earlier(Brock & Puckle 
Hobbs, 2010).It is not reasonable to conclude based on the average of agile successfulness that all agile 
projects are successful or all organizations have obtained the possible benefits of agile in an equal man-
ner. Table 1 summarized some differences between traditional and agile development.

Figure 1. Success rates of organizations agile adoption programs (Ambler, 2014)



144

A Survey of Agile Transition Models
 

3 RESEARCH REVIEW

This section depicts the research method utilized in this review chapter. The aim of this work is to find 
out models, frameworks, roadmaps, and guidelines for transitioning and adopting agile from traditional 
software developments to agile software development from previous studies and to classify them for 
future works. To extract models suggested by previous researchers, this study conducted a vast search 
on electronics database as listed in Table 2. The corresponding research questions in this chapter are:

Q1: How companies can transfer from traditional methods to agile methodologies?
Q2: Which models and frameworks could be used for transitioning to agile software development?

Table 1. Differences between traditional development and agile development (Awad, 2005; Nerur, Ma-
hapatra, & Mangalaraj, 2005)

Traditional Development Agile Development

Fundamental Assumption Predictive High quality adaptive

Management Style Autocratic Decentralized

Knowledge Management Explicit Tacit

Communication Formal Informal

Perspective to change Change sustainability Change adaptability

Documentation Heavy Low

Development Model Mechanistic (bureaucratic with high 
formalization

Organic (flexible and participative 
encouraging cooperative social action)

Emphasis Process-Oriented People-Oriented

Cycles Limited Numerous

Domain Predictable Unpredictable, Exploratory

Upfront Planning Comprehensive Minimal

Return on Investment End of Project Early in Project

Team Size Large Small/Creative

Table 2. Search on electronic database

Source URL

ACM Digital Library http://dl.acm.org

IEEE Xplore http://ieeexplore.ieee.org

ScienceDirect http://www.springerlink.com

Springer http://www.springerlink.com

Google Scholar http://scholar.google.com

http://dl.acm.org
http://ieeexplore.ieee.org
http://www.springerlink.com
http://www.springerlink.com
http://scholar.google.com


145

A Survey of Agile Transition Models
 

4 AGILE TRANSITION MODELS, FRAMEWORKS

The most important issue in organizations is the way of doing the transition while a traditional model is 
the core of a company and all employees have the proficiency in that. It is certain that in the beginning 
steps, all things would seem to be complicated for everybody but agile can be performed successfully 
with proper and strong support of top management teams and agile coaches. In this section, almost all 
models and frameworks, considered as guides for organizations to transit from a traditional method to 
an agile method, are reviewed.

4.1 Agile Scaling Model

A contextual model is defined by Ambler (Ambler, 2009b) to describe a roadmap for adopting agile 
strategies more efficiently and meeting the unique challenges that encountered by system delivery teams. 
As is clearly shown in Figure 2, Agile Scaling Model is divided into three categories.

The First category optimized for small teams that improving fairly simple systems. It consists of core 
agile methods that are self-organizing, have a value-driven system development lifecycle, and refer to a 
part of the development lifecycle. The second group covers the whole software development lifecycle 
from the beginning of the project till transforming the system into the marketplace or production en-
vironment. The last division concentrates on well-ordered agile delivery where more than one scaling 

Figure 2. Agile scaling model (Ambler, 2009b)



146

A Survey of Agile Transition Models
 

factors are feasible. Ambler (Ambler, 2009b) mentioned eight factors as scaling factors, namely: team 
size, regulatory compliance, geographical distribution, technical complexity, organizational complex-
ity, enterprise discipline (like enterprise architecture, and governance), and organizational distribution.

4.2 A Mapping Model for Transform Traditional Method to Agile Method

Popli and Chauhan (Popli & Chauhan, 2013) proposed an agile model based on common life cycle 
method that is appropriate for various types of teams. They illustrated a mapping function to move from 
traditional method to agile method. Figure 3 presents the agile model proposed by Popli and Chauhan.

This model includes seven main components which are the basic components of an agile culture:

TFR: Team Formation by good Recruitment policy.
GBC: Goal Building Cycle with quality analyst, business analyst and customer.
EBE: Effort and Budget Estimation.
CTC: Coding and Testing activities with Communication.
DRF: Demonstrations in Review with Feedback.
REC: Risk Evaluation and Correction.
SFP: Satisfaction For all Parties.

Figure 4 shows the mapping function that take place in the current organization when transformation 
decision has been taken by the management. Formula (2) indicated the mapping function MF. The role of 

Figure 3. Agile Model Proposed by Popli and Chauhan (Popli & Chauhan, 2013)



147

A Survey of Agile Transition Models
 

this formula is to direct the big team to small one (T), large function to small scenarios, lengthy iteration 
to a short one (I), lengthy response cycle to a quick response one, tardily delivery to a quick small one 
(D), lengthy meeting todiurnal small meeting (M), tardily testing to a test-driven one (TG), two monitors 
into a terminal to do pair programming (Moniruzzaman & Hossain), assessment in lines of code to story 
points (E), and last but not the least project director into no manager view (B), co-ordination efficiency 
(CE). As shown in Formula (1), CE depends on implicit and explicit factors.

CE=Implicit factors+ Explicit factors (1)
MF = (T, J, I, F, D, M, TG, MO, E, B, CE) (2)

4.3 Scaled Agile Framework

Leffingwell (Leffingwell, 2010) developed an agile adoption framework called Scaled Agile Framework 
(SAFe), which is an approved knowledge based framework to implement agile practices in organizations. 
This model serves as both the organizational and process model for agile requirements practices. As is 
clearly shown in Figure 5, the principal user interface of this framework is a graphical big picture that 
represents three level of scale, namely: Portfolio, Program, and Team.

At the team level, around seven team members of agile describe, make, and test the scenarios of user 
in sequences of interactions. At the next level, program level, the development of larger-scale system 
functionalities are completed through various teams in a synchronised Agile Release Train (ART) (Lef-
fingwell, 2010). A long-lived team of an agile team is called ART which normally including50-125 
members (Leffingwell, 2013).The portfolio level is describing a combination of investment themes are 
utilized to drive the investment preferences for the organization.The patternwill be utilized to guarantee 
that the work being implemented is the one required for the organization to convey its selected business 
approach (Leffingwell, 2010).Well, SAFe is not a simple, one-size fits all approach. However, SAFe is 
a framework that offers complicated solutions as it deals with complicated problems.

4.4 Agile Adoption Framework

Sidky et al. (Sidky, Arthur, & Bohner, 2007) presented an agile adoption framework (Figure 6) that 
includes two parts to assist and to direct organizations towards adopting agility. The first component is 
an agile measurement index to evaluate agile potential and the second component is a four stage process 
that uses the agile measurement index to specify how, and to what extent, agility can be expanded in an 
organization. This framework has no dependence on the agile methodologies; there are no limitations on 
utilizing Scrum, FDD or XP or any other agile methods along with this framework. In this framework, 

Figure 4. Mapping Function



148

A Survey of Agile Transition Models
 

the coach utilizes the Sidky agile measurement index as a scale to assess the potential agility of a project 
or an enterprise. The four stage processes of the framework lead organizations to identify the best agile 
practices that fit with their environment and situation. The first stage identifies the terminating factors 
and discovers any limitation processes that prevent the success of agile adoption. The second stage uses 
the measurement index to specify the highest level of agility for each specific project. The third stage 
assesses the organizational readiness by using the measurement index. And the final stage specifies the 
last set of practices for agile adoption through adopting the target agile level from the second stage and 
the readiness of organization from the third stage.

However, the Agile Adoption Framework is only an essential element to adopt agility while an agile 
coach (who knows how to apply the framework) is also a crucial ingredient towards adopting agility.

4.5 Agile Adoption and Improvement Model

Qumer et al. (Qumer, Henderson-sellers, & Mcbride, 2007) presented a model to adopt, assess and 
improve agile software development process named Agile Adoption and Improvement Model (Figure 
7). This model can be utilized as a road map for an agile adoption strategy to achieve the proper and 
worthy level of agile during a period of time. Agile Adoption and Improvement Model consist of three 

Figure 5. Scaled Agile Framework (Leffingwell, 2010)



149

A Survey of Agile Transition Models
 

blocks and six agile steps. In addition, AAIM has an embedded agility measurement for quantitatively 
measuring the agility level. It is worth mentioning that each steps clearly describes the goals must be 
obtained to achieved a specific business [value via implementing an agile software development method. 
The following figure presents the Agile Adoption and Improvement Model.

4.6 Agile Software Solution Framework (ASSF)

Qumer and Henderson-Sellers (Qumer & Henderson-Sellers, 2008) have described a method to extend 
and customize the agile method into software development via an Agile Software Solution Framework 
(ASSF), concentrating on the Agile governance and Toolkit (Figure 8). Furthermore, these opinions 
have established practical application in the AAIM. The ASSF can be utilize to construct, adapt or cus-
tomize situation-specific agile software processes based on each of the various contemporary concept 
perspectives by utilizing a circumstantial method engineering methodology, feedback, and a standard 
meta-model. It is noteworthy that ASSF consists of various numbers of models and processes, namely: 
an agile adoption and improvement model and process, an agility measurement model and process, 
agile software solution framework based on knowledge engineering and management process, an Agile 
Toolkit, and an agile workspace(Qumer & Henderson-Sellers, 2008).

4.7 ADAPT (Mike Cohn Model)

Mike Cohn introduces ADAPT model, a five-stage, sustainable approach for getting better at agile. The 
stages of ADAPT are as follow:

Figure 6. Agile adoption framework overview (Sidky et al., 2007)



150

A Survey of Agile Transition Models
 

Figure 7. Agile adoption and improvement model (Qumer et al., 2007)

Figure 8. Agile software solution framework (Qumer & Henderson-Sellers, 2008)



151

A Survey of Agile Transition Models
 

• Take away clear guidance for creating Awareness and realizing that the current approach does not 
work.

• Increasing Desire to change.
• Developing Ability to work in an agile manner.
• Promoting early successes to build momentum and get others to follow.
• Transferring the implications of being agile throughout the organization.

In addition, leave knowing how ADAPT can help an organization not only turn gradually into agile, but 
also make a sturdy base to go on the industry wide journey to achieve the proper organizational success 
rate (Cohn, 2010a).Moreover, ADAPT is derived from ADKAR (Awareness, Desire, Knowledge, Ability, 
and Reinforcement) change management model (Hiatt, 2006)and is appropriate for the scenarios of agile 
adoption anywhere the change endeavors required for migrating to an agile approach is comparatively 
low(Cohn, 2010b). Figure 9 presents the iteration toward agility based on Scrum method. As is clearly 
shown in this figure, Enterprise Transition Community (ETC) is a small group created to make a culture 
and environment for those people who are enthusiastic more for the success of the organization and also 
for the place where success directs to more enthusiasm from more people.

4.8 Cynefin Model

Cynefin as a sense-making framework was first established by Dave Snowden based on knowledge 
management and organizational strategy in 1999. Cynefin identifies the informal distinctions between 
the various types of systems and proposes new approaches to make a decision in complicated social 
environments. Some researchers believed that Cynefin is a useful model for agile adoption while others 
believed that it is more beneficial to use it as an analysis model to discover the type of environment, thus 
the best and the most suitable method can be chosen. Moreover, the Cynefin model defines five various 

Figure 9. Iteration toward agility (Cohn, 2010b)



152

A Survey of Agile Transition Models
 

areas, namely: Simple, Complicated, Complex, Chaotic and Disorder. In addition, cause and effect are 
clearly related in a simple area, while in a Chaotic area there is no pattern and the connection between 
cause and effect are indirect and unclear. Figure 10 presents Cynefin framework.

4.9 Agile Culture Model

Michael Sahota (Sahota, 2012) has developed various practical models for working with organizations 
that are used agile and those that are tried to become agile. Sahota has represented that developing agile 
needs an alteration, which is more difficult than a simple adoption. Furthermore, Sahota introduced 
a model regarding to Schneider Culture Model (Schneider, 1994) that could be utilized to understand 
culture at the enterprise level. A culture model introduced the values and standards inside a group or 
company. It recognizes the significant matters about how people work with each other. The Schneider 
Culture Model described four clear and different cultures:

Collaboration culture is about working together
Control culture is about getting and keeping control
Competence culture is about being the best
Cultivation culture is about learning and growing with a sense of purpose

According to Culture Survey of Agile (Spayd, 2010) Sahota illustrated that the key elements of Agile 
Culture are Collaboration and Cultivation. The following diagram (Figure 11) represents results from 
the Agile Culture Survey consist of Scrum, XP and Lean-Kanban:

Moreover, Sahota explained the special cultures of Agile, Kanban, and Software Craftsmanship and 
provided a director to estimate how well a specific method adjusts with the culture of organization. 
Figure 12 shows the Agile Culture Model.

Figure 10. Cynefin framework (Snowden, 1999)



153

A Survey of Agile Transition Models
 

Figure 11. Agile culture survey (Spayd, 2010)

Figure 12. Agile culture model



154

A Survey of Agile Transition Models
 

4.10The Marshall Model of Organizational Evolution

Right shifting is a model that is presented by Bob Marshall (Marshall, 2010) and explains dynamic path 
for organizations at higher efficacy. It is worth mentioning that prevailing mindset characterizes this 
model. Marshall Model is presented at Figure 13.

The Marshall Model of Organizational Evolution is explained below and applies for many aims:

• To provide a vocabulary and shared rational model through which people associated in develop-
ment can better talk together about what’s happening, and what needs doing.

• Helping organizations see where they are on their improvement journey, and thereby better chose 
a suitable set of next steps.

• Reducing the risks associated with organizational change by describing the nature and scope of 
the challenge.

• Providing organizational change agents with a context within which to choose appropriate strate-
gies, methods and tools.

• Helping reduce the time taken to overcome organizational homeostasis and thereby preserving the 
momentum of change at major decision points.

4.11 Kotter Model for Organizational Changes

A lot of theories are existed about transforming an organization. The majority of these theories are ac-
cording to the leadership work and management change guru John P. Kotter (Kotter, 1996, 2013). Kotter 
who is a retired professor expanded his 8-step change model in a book named Leading Change back in 
1996. After that he has improved the model and it is used all over the world by a lot of consulting com-
panies. Figure 14 represents the Kotter Model. In continue Kotter Model’s steps are briefly explained.

Step 1: Create a Sense of Urgency- Help others see the need for change and they will be convinced of 
the importance of acting immediately.

Step 2: Create the Guiding Coalition- Assemble a group with enough power to lead the change effort, 
and encourage the group to work as a team.

Figure 13. The Marshall Model (Marshall, 2010)



155

A Survey of Agile Transition Models
 

Step 3: Create a vision for change- Create a vision to help direct the change effort, and develop strate-
gies for achieving that vision.

Step 4: Communicate the Vision- Make sure as many as possible understand and accept the vision and 
the strategy.

Step 5: Remove obstacles-Remove obstacles, change systems or structures that seriously undermine the 
vision, and encourage risk-taking and nontraditional ideas, activities, and actions.

Step 6: Create Short-term Wins- Plan for achievements that can easily be made visible, follow-through 
with those achievements and recognize and reward employees who were involved.

Step 7: Consolidate improvement- Use increased credibility to change systems, structures, and policies 
that don’t fit the vision, also hire, promote, and develop employees who can implement the vision, 
and finally reinvigorate the process with new projects, themes, and change agents.

Step 8: Anchor the Changes- Articulate the connections between the new behaviors and organizational 
success, and develop the means to ensure leadership development and succession.

Figure 14. Kotter’s 8- Step Change Model (Kotter, 1996, 2013)



156

A Survey of Agile Transition Models
 

4.12 CollabNet Agile Transformation Strategy

Angela Druckman who is a CollabNet’s Certified Scrum Trainer presented a path for Agility that charac-
terizes at a high level (Figure 15). It is a particular transition to Agile model in a white paper (Druckman, 
2011) according to CollabNet knowledge working with organization around the world. CollabNet tools 
and services protect the path to Agility. As an extensive approach this strategic and tactic suggestion is 
designed to help the organization go down the path to Agility efficiently.

4.13 Force Field Analysis

Kurt Lewin created Force Field Analysis in 1946 (Lewin, 1946), that is an essential tool for analyzing 
the elements found in sophisticate problems (Figure 16). It builds problems in terms of elements or pres-
sures that protect the status quo or restraining forces and the pressures that protect change in the wanted 
direction or driving forces. An element can be resources, people, tradition, attitudes, values, regulations, 
desires, needs and so forth. Force Field Analysis as a tool to manage change can help to recognize the 
factors that should be monitored and addressed if change is prosperous. The international expert Rachel 
Davies who participates in coaching teams of the efficacy application of Agile approaches utilized Force 
Field Analysis as a method to create an initiative Transition Backlog of job items protecting an agile 
transition that trainer and teams can work repeatedly.

Figure 15. CollabNet agile transformation strategy (Druckman, 2011)

Figure 16. Force field analysis (Lewin, 1946)



157

A Survey of Agile Transition Models
 

4.14 Fearless Change

Based on Rising and Manns (Rising & Manns, 2004)three elements one should consider when fostering 
change or innovation are the change agent, the organizational culture and the people who will participate 
in the change. All successful change agents have three things in common: a passionate belief in the idea 
they are advocating, a drive to see that idea be successful in the organization and some strategies to share 
the idea with others. The change agent is the most powerful and important element of change because 
without an individual who has a vision that things can be better, the whole process of change does not 
even begin. Every great social movement began with one person saying, “We can do this better and I 
have an idea on how to do it.”

Culture is also an important consideration when introducing a new idea to an organization or a Team. 
If the culture of the organization supports new ideas and innovations, then the idea will spread more 
rapidly. If the organization is generally conservative to new ideas and innovations, or “too busy” to sup-
port new ideas, then one must set their expectations appropriately, have a great deal of patience and take 
a long view with respect to change. Change will happen, but will take much longer. The image (Figure 
17) by MihaiIancu shows a variety of different patterns that can be applied to support the adoption of 
a new technology or idea.

Figure 17. Fearless Changes(Rising & Manns, 2004)



158

A Survey of Agile Transition Models
 

5 AGILE MATURITY MODELS

As it is considered before, the main purpose of this chapter is to presentthe existing models and frame-
works to guide organizations to adopt agile methods. In this section, some agile maturity models are 
also briefly described to share with the readers.

5.1 Roadmap for Agile Success

Roadmap for Agile Success is the first agile maturity model for industries. It was introduced in 2012 by 
Corporate Executive Board (CEB) and then developed by Emergn. This model designed for organizations 
to help them to reach agile success. Roadmap is more than assessing Scrum that some benchmark mod-
els covered it. It is an extensive model that discuss about varieties areas to convey legible and practical 
measurement of the supplier’s capabilities in agile. Roadmap for Agile Success evaluates your vendor’s 
team composition and leadership, vision and mindset, stakeholder engagement, cultural acceptance and 
an extensive set of engineering topics (Adamopoulos, 2012).

Emergn has cooperated with CEB and Colabpro to expand Vendor Agile Maturity Index (VAMI). 
Vendor Agile Maturity Index evaluates the maturity of a vendor’s agile in order to how they employ 
agile in client engagement. The clients put more pressure on their suppliers to apply agile and have a 
benchmark for how they use it effectively and it results in coming VAMI. VAMI lets both clients and 
vendors to work with each other and gain perception about the problems and the way to solve them. The 
final aim of this model is to make knowledge and create better relationships between vendors and clients 
and omit the ambiguities (Adamopoulos, 2012).

5.2 AGILE Maturity Map

Based on agile principles, Jay Packlick (Packlick, 2007) proposed an approach, named Agile Maturity 
Map (AMM), to improve the ability of teams to hasten change, increase their understanding, and raise 
their success in implementation (Figure 18). AMM could be viewed as an approach to think about the 
adoption of agile in the domain of goals over activities absorbing people and communication-oriented 
rather than process-oriented. The author classified the User Stories to five high level purposes name as 
AGILE:

• Acceptance Criteria: Expanding the quality and quantity of knowledge communicated to the 
developers in the right time to utilize the knowledge in development.

• Green-Bar Tests and Builds: Make development builds and tests automatically.
• Iterative Planning: Constantly planning.
• Learning and adapting: Concentrate on promoting learning and skills
• Engineering Excellence: Performing and enhancing practices to improve the quality of softwares.

Based on Packlick(Packlick, 2007) study, AGILE Maturity Model includes five maturity level as follow:

1.  Awareness: The team understands the goals, and understands the value of pursuing the goals and 
their acceptance criteria.

2.  Transformation: The team indicates responsibilities towards obtaining the goals.



159

A Survey of Agile Transition Models
 

3.  Breakthrough: The team now regularly utilizes agile practices that meet the goals.
4.  Optimizing: Enhancements are made continuously in the goal area.
5.  Mentoring: The team training and mentoring other teams in the goal area.

5.3 Agile Maturity Model

According to Scott Ambler (Ambler, 2010), the most important goal of a maturity model is to prepare 
a direction for a company to assist enhancing an aspect of its business. Therefore, a marketing maturity 
model should provide clear instruction to improve organizations approach to marketing. The Author 
has described the Agile Maturity Model (AMM) which has five-level model and develops guidance to 
enhance the efficiency of agile software development in organizations.

Level 1- The Rhetorical step: At this stage, agile professionals accept that developers have the ability 
to cope with tomorrow’s problems tomorrow.

Level 2- The Certified step: The aim of this stage is to ride on the coattails of endorsement programs 
execute through non-agile groups.

Level 3- The Plausible step: Organizations initiate to concentrate on agile approaches that may actually 
feasible inside the organizational context where they discover themselves.

Level 4- The Respectable step: The members of agile teams accept a complete delivery lifecycle and 
modify their strategy to deal with the special requests of the situation where they discover themselves.

Level 5- The Measured step: By this approach organization collect evidence from documented and 
unified tools to deliver organization with correct information in real time, allowing organization 
to guide the project according to real practical information.

Figure 18. AGILE Maturity Model (Packlick, 2007)



160

A Survey of Agile Transition Models
 

5.4 Agile Capability Maturity Model Integration

The Capability Maturity Model Integrated (CMMI) is proposed to institutionalize an aggregation of 
predefined conveyance practices and make sure about their steady implementation for increasing the 
possibility that a team or company can complete the projects successfully. “Successful” means complet-
ing projects on schedule and based on the defined budget(Humble & Russell, 2009). CMMI is contained 
a series of process domains, arranged into maturity levels. Moreover, each process domains includes 
various objectives. A company has to execute practices to meet the objectives of all process domains of 
a unique maturity level to assert its software development processes are at that maturity level. The docu-
ments of CMMI include sample practices for each objective. Since these practices are traditional plan-
based software they usually have conflict with the agile software development values (Leusink, 2012).

5.5 Aditi Agile Transformation Maturity Model

Ravi Krishnan (Krishnan, 2013) at Aditi Technology proposed a Aditi Agile Transformation Maturity 
Model to deliver a guideline for different teams and functional groups involved in transformation jour-
ney to agility. Figure 19 shows the Aditi Agile Transformation Maturity Model. The prominent points 
of this model consist of:

• Agile project planning and management maturity model deliver a guideline for teams involving to 
transfer from a managed team services model to a self-managing and self-directed teams services 
model.

• Collaboration maturity model presents a framework for teams to initialize collaborating better in 
a progressive manner.

• Agile Requirements Engineering Maturity Model provides the product and business ownership 
teams with a migration strategy from the traditional Business Requirements Document depended 
on requirements management approach to an Agile approach.

Figure 19. Aditi Agile Transformation Maturity Model (Krishnan, 2013)



161

A Survey of Agile Transition Models
 

• Engineering Maturity Model delivers teams a model around adoption beginning with partly basic 
principles like refactoring to adopt more promoted practices.

• Metrics- Based on the level of the maturity of the Agile adoption, Aditi has come up with pre-
scription around metrics the teams could adopt.

• Tooling- Aditi has come up with a well prescribed guideline for Agile teams in the adoption of 
tools across the lifecycle

• Organization readiness- An appropriate maturity model for transforming to agile enables organi-
zations to implement a more stage wise approach and assists the various business units to increase 
at a sustainable step.

CONCLUSION

In spite of the Agile adoption and transformation success stories of individual organizations in the trade 
press, it is rather complicated to get an exact and representative depiction of Agile adoption. Organizations 
should know that adopting Agile will take a long time as a journey, normally 2-3 years to truly adopt 
agile. This study collected almost all models and frameworks proposed so far to guide organizations 
which agile model is the best for assisting them to transit from an old methodology to Agile Methods.

REFERENCES

Adamopoulos, A. (2012). Roadmap for Agile Success. Retrieved from http://www.emergn.com/insights/
blogs/roadmap-for-agile-success/

Ågerfalk, J., Fitzgerald, B., & In, O. P. (2006). Flexible and distributed software processes: old petunias 
in new bowls. Paper presented at the Communications of the ACM.

Ambler, S. W. (2002). Agile modeling. In Effective Practices for Extreme Programming and the Unified 
Process. New York: Wiley & Sons.

Ambler, S. W. (2009a). Ambysoft. Retrieved 9 September, 2014, from http://www.ambysoft.com/surveys/
stateOfITUnion200907.html

Ambler, S. W. (2009b). The Agile Scaling Model (ASM). Adapting Agile Methods for Complex Envi-
ronments.

Ambler, S. W. (2010). The Agile Maturity Model (AMM). Retrieved from http://www.drdobbs.com/
architecture-and-design/the-agile-maturity-model-amm/224201005

Ambler, S. W. (2014). 2014 Agile Adoption Mini-Survey. AmbySoft.

Anderson, D. (2004). Feature-Driven Development: towards a TOC, Lean and Six Sigma solution for 
software engineering, Theory of Constraints. International Certification Organization, Microsoft.

Aoyama, M. (1998). Web-based Agile software development. IEEE Software, 15(6), 56–65. 
doi:10.1109/52.730844

http://www.emergn.com/insights/blogs/roadmap-for-agile-success/
http://www.emergn.com/insights/blogs/roadmap-for-agile-success/
http://www.ambysoft.com/surveys/stateOfITUnion200907.html
http://www.ambysoft.com/surveys/stateOfITUnion200907.html
http://www.drdobbs.com/architecture-and-design/the-agile-maturity-model-amm/224201005
http://www.drdobbs.com/architecture-and-design/the-agile-maturity-model-amm/224201005
http://dx.doi.org/10.1109/52.730844


162

A Survey of Agile Transition Models
 

Awad, M. A. (2005). A comparison between agile and traditional software development methodologies. 
University of Western Australia.

Beck, K. (2000). Extreme programming explained: embrace change. Addison-Wesley Professional.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., & Jeffries, R. 
(2001). Manifesto for agile software development. Retrieved from http://agilemanifesto.org/

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69. doi:10.1109/2.976920

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: Evaluating and integrating agile and 
plan-driven methods. Paper presented at the Software Engineering. doi:10.1109/ICSE.2004.1317503

Brock, J., & Hobbs, P. E. (2010). Agile Transformation – rethinking IT strategy in an uncertain world. 
Retrieved from https://www-304.ibm.com/easyaccess/fileserve?contentid=208473

Cockburn, A. (2006). Agile software development: the cooperative game. Pearson Education.

Cohn, M. (2010a). ADAPTing to Agile for Continued Success. Paper presented at the Agile 2010.

Cohn, M. (2010b). Succeeding with agile: software development using Scrum. Pearson Education.

Coram, M., & Bohner, S. (2005). The impact of agile methods on software project management. Paper 
presented at the Engineering of Computer-Based Systems, 2005. ECBS’05. 12th IEEE International 
Conference and Workshops on the. doi:10.1109/ECBS.2005.68

Druckman, A. (2011). Agile Transformation Strategy. White Paper.

Eoyang, G. H. (2001). Conditions for self-organizing in human systems. The Union Institute.

Hiatt, J. M. (2006). ADKAR: a model for change in business, government and our community. Prosci 
Learning Center.

Highsmith, J. (2002). Agile software development ecosystems. Addison-Wesley Longman Publishing 
Co., Inc.

Highsmith, J. (2013). Adaptive software development: a collaborative approach to managing complex 
systems. Addison-Wesley.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The business of innovation. Com-
puter, 34(9), 120–127. doi:10.1109/2.947100

Humble, J., & Russell, R. (2009). The agile maturity model applied to building and releasing software. 
ThoughtWorks White Paper, Web Publishing. Retrieved from http://www.thoughtworks-studios.com/
sites/default/files/resource/the_agile_maturity_model.pdf

Kotter, J. P. (1996). Leading change. Harvard Business Press.

Kotter, J. P. (2013). Leading Change, With a New Preface by the Author. Harvard Business Press.

Krishnan, R. (2013). Aditi Agile Transformation Maturity Model. Retrieved from http://confengine.com/
agile-india-2014/proposal/236/agile-transformation-maturity-model#comments

http://agilemanifesto.org/
http://dx.doi.org/10.1109/2.976920
http://dx.doi.org/10.1109/ICSE.2004.1317503
https://www-304.ibm.com/easyaccess/fileserve?contentid=208473
http://dx.doi.org/10.1109/ECBS.2005.68
http://dx.doi.org/10.1109/2.947100
http://confengine.com/agile-india-2014/proposal/236/agile-transformation-maturity-model#comments
http://confengine.com/agile-india-2014/proposal/236/agile-transformation-maturity-model#comments


163

A Survey of Agile Transition Models
 

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history. Computer, 
36(6), 47–56. doi:10.1109/MC.2003.1204375

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams, programs, 
and the enterprise. Addison-Wesley Professional.

Leffingwell, D. (2013). SAFe Glossary. Retrieved from http://scaledagileframework.com/glossary/

Leusink, B. (2012). Agile software development process improvement in large organizations. Academic 
Press.

Lewin, K. (1946). Force field analysis. In The 1973 Annual Handbook for Group Facilitators, (pp. 111-
113). Academic Press.

Marshall, B. (2010). The Marshall Model of Organisational Evolution (Dreyfus for the Organisation). 
Retrieved from http://fallingblossoms.com/opinion/content?id=1006

Moniruzzaman, A. B. M., & Hossain, S. A. (2013). Comparative Study on Agile software development 
methodologies. arXiv preprint arXiv:1307.3356

Nerur, S., Mahapatra, R. K., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. 
Communications of the ACM, 48(5), 72–78. doi:10.1145/1060710.1060712

Packlick, J. (2007). The agile maturity map a goal oriented approach to agile improvement. Paper pre-
sented at the Agile Conference (AGILE). doi:10.1109/AGILE.2007.55

Popli, R., & Chauhan, N. (2013). A mapping model for transforming traditional software development 
methods to agile methodology. International Journal of Software Engineering & Applications, 4(4), 
53–64. doi:10.5121/ijsea.2013.4405

Qumer, A., & Henderson-Sellers, B. (2008). A framework to support the evaluation, adoption and improve-
ment of agile methods in practice. Journal of Systems and Software, 81(11), 1899–1919. doi:10.1016/j.
jss.2007.12.806

Qumer, A., Henderson-sellers, B., & Mcbride, T. (2007). Agile adoption and improvement model. In 
Proceedings of European and Mediterranean Conference on Information Systems.

Rao, K. N., Naidu, G. K., & Chakka, P. (2011). A study of the agile software development methods, 
applicability and implications in industry. International Journal of Software Engineering and its Ap-
plications, 5(2), 35-45.

Rising, L., & Manns, M. L. (2004). Fearless change: patterns for introducing new ideas. Pearson Education.

Sahota, M. (2012). An Agile Adoption and Transformation Survival Guide: Working with Organizational 
Culture. InfoQ. Retrieved from http://www.infoq.com/minibooks/agile-adoption-transformation

Schneider, W. E. (1994). The reengineering alternative: A plan for making your current culture work. 
Richard D Irwin.

Schwaber, C, Laganza, G, & D’Silva, D. (2007). The truth about agile processes: frank answers to 
frequently asked questions. Forrester Report.

http://dx.doi.org/10.1109/MC.2003.1204375
http://scaledagileframework.com/glossary/
http://fallingblossoms.com/opinion/content?id=1006
http://dx.doi.org/10.1145/1060710.1060712
http://dx.doi.org/10.1109/AGILE.2007.55
http://dx.doi.org/10.5121/ijsea.2013.4405
http://dx.doi.org/10.1016/j.jss.2007.12.806
http://dx.doi.org/10.1016/j.jss.2007.12.806


164

A Survey of Agile Transition Models
 

Sidky, A., Arthur, J., & Bohner, S. (2007). A disciplined approach to adopting agile practices: The agile 
adoption framework. Innovations in Systems and Software Engineering, 3(3), 203–216. doi:10.1007/
s11334-007-0026-z

Smith, G., & Sidky, A. (2009). Becoming agile: in an imperfect world. Manning Publications.

Snowden, D. (1999). Cynefin framework. Retrieved from http://cognitive-edge.com/

Southwell, K. (2002). Agile process improvement. TickIT International Journal, 3-14.

Spayd, M. (2010). Agile & Culture. Retrieved from http://collectiveedgecoaching.com/2010/07/ag-
ile__culture/

Stapleton, J. (2003). DSDM: Business focused development. Pearson Education.

Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard Business Review, 
64(1), 137–146.

Van Vliet, H. (2007). Software engineering: Principles and practice. Wiley.

KEY TERMS AND DEFINITIONS

Agile Software Development: A software management and development approach that helps to 
create software quickly while addressing the issue of requirement change.

Scrum: This is an iterative, incremental software process, which is by far the most popular agile 
development process.

Waterfall Model: A sequential design, used in software development processes, in which progress 
is seen as flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation, 
Analysis, Design, Construction, Testing, Deployment, and Maintenance.

XP: This methodology consists of a variety of practices. These practices are used by developers in 
creating the required software.

http://dx.doi.org/10.1007/s11334-007-0026-z
http://dx.doi.org/10.1007/s11334-007-0026-z
http://cognitive-edge.com/
http://collectiveedgecoaching.com/2010/07/agile__culture/
http://collectiveedgecoaching.com/2010/07/agile__culture/


165

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  9

DOI: 10.4018/978-1-4666-9858-1.ch009

ABSTRACT

Agile methods are widely used in software companies in recent years. Many software companies are 
replacing their traditional development methods with agile methods. Nonetheless, measuring agility that 
they have achieved has been a topic of debate. Software teams and companies need to know how agile 
they are or how much is the agility degree of their organization. Unlike traditional methods in software 
development, there is no standard or universal model (like CMM/CMMI) to measure maturity of agile 
teams and software companies. So far, only a few methods and tools have been proposed to measure 
the agility of software companies. The main aim of this chapter is introducing the structure and main 
features of the existing agile assessment methods and providing a brief discussion on drawbacks of these 
methods. This chapter tries to elucidate the actual position of agility measurement methods in measuring 
agility degree of companies who are trying to adapt to agile methods and practices.

INTRODUCTION

Agile methodologies emerged in software development due to prevent the inherent challenges of tradi-
tional methods and to offer some new values for developing working software. These values cover all 
the aspects of software development lifecycle including project management and development process. 
Migration from traditional to agile methods, which takes a huge time and effort, needs to be considered 
as an important issue because it can cause wasting time and money in software companies. So, those 
companies that are transforming to agile need to be aware about their situation in this transformation and 
make sure that they are in the right direction. Therefore, measuring the progress of agile transformation 
and adoption is considered as a helpful strategy.

Agile Assessment Methods 
and Approaches

Mina Ziaei Nafchi
Islamic Azad University – Boroujen, Iran

Taghi Javdani Gandomani
Islamic Azad University – Boroujen, Iran



166

Agile Assessment Methods and Approaches
 

Measuring the agility of companies that is known as agile assessment has been a topic of debate in the 
literature. There are some studies that suggested some approaches to assess the agility level of software 
companies. Different scopes and techniques have been proposed to assess agility degree such as fuzzy 
approaches, multi-level structures, and some comparative approaches. However, there is no popular and 
standard assessment model regarding this issue. The aim of this chapter is to conduct a review on the 
existing assessment models and techniques and to show the advantages and weaknesses of them.

The rest of this chapter is organized as follows: Section 2 briefly describes agile transformation 
process. Section 3 presents a brief description of the agility assessment models. Section 4 provides a 
discussion on each method and mainly explains weaknesses of these models. Finally, Section 5 concludes 
the discussion and addresses a potential future work.

AGILE TRANSFORMATION PROCESS

After creating Agile manifesto (Beck et al., 2001), many software companies and engineers have been 
interested in adopting agile methods in their development process. Most of them found agile methods as 
a helpful solution to cope with the inherent problems of traditional methods including heavy documen-
tation, late release, customer dissatisfaction, difficulty in changing requirements, lack of transparency, 
and management bottlenecks (Cohen, Lindvall, & Costa, 2004). Indeed, they considered agile methods 
as a reaction to traditional methods (Boehm, 2002).

Although agile methods officially have been introduced in 2001, prevalence of them started after 2005, 
when some of the famous software companies started their transformation and reported their success 
stories (Chung & Drummond, 2009; Laanti, Salo, & Abrahamsson, 2011; Schatz & Abdelshafi, 2005). 
However, only a few of them changed their development style in all projects and teams.

An important issue is that transitioning to agile is not an easy and smooth project. Rather, it needs 
enough time and effort (Gandomani, Zulzalil, Ghani, & Sultan, 2013a, 2013b). There are many reports 
about introducing an agile method to a company in which the authors have explained the challenges, 
obstacles, hindrances, and problems they faced (Gandomani, Zulzalil, Ghani, Sultan, & Nafchi, 2013; 
Gandomani, Zulzalil, Ghani, Sultan, & Parizi, 2015). Based on these reports, most of the challenges are 
related to people and their role in agile methods (Conboy, Coyle, Wang, & Pikkarainen, 2011; Gando-
mani, Zulzalil, Abdul Ghani, Sultan, & Sharif, 2014). The rationale behind this is that, agile methods are 
totally different from traditional methods in terms of people and their roles in project management and 
software development (Cockburn & Highsmith, 2001). In this case, those who are adapted to traditional 
roles most often resist against new roles as agile methods expect (Gandomani, Zulzalil, Ghani, Sultan, 
et al., 2013; Nerur, Mahapatra, & Mangalaraj, 2005).

Beside people-related issues (Gandomani, Zulzalil, Abdul Ghani, et al., 2014), agile transformation 
is subject to other challenges including customer-related issues, tools and technology-related challenges, 
and so on (Gandomani, Zulzalil, Ghani, Sultan, et al., 2013; Gandomani, Zulzalil, & Nafchi, 2014; Nerur 
et al., 2005). Obviously, such a challenging process needs to be supported by appropriate enablers or 
facilitators (Gandomani, Zulzalil, Abd Ghani, Sultan, & Sharif, 2014).

Nonetheless, there are a few transformation models for moving to agile. However, none of them could 
not gain enough acceptance from industry and are subject to various challenges (Rohunen, Rodriguez, 



167

Agile Assessment Methods and Approaches
 

Kuvaja, Krzanik, & Markkula, 2010). They mainly have tried to propose a multi-stage procedure for 
transitioning to agile by defining multi-level agility level. At the same time, reaching to a specific level 
of adoption can be considered as an indicator of progress in agile transformation process.

Agility assessment or measurement has been a concern in agile transformation and adoption. A few 
models and measurement method have been proposed for assessing agility degree in companies who 
are using agile methods. However, it seems that most of them are exposed many serious problems and 
challenges (S. Soundararajan, J. D. Arthur, & O. Balci, 2012).

With the aim of better understanding agility assessment methods and their structures, the next section 
describes the most important agility assessment models and tools in brief.

AGILE ASSESSMENT MODELS

As mentioned before, so far, a few agility assessment models and tools have been proposed. These models 
or tools intend to measure to what extent a software company has succeeded to adapt to agile methods in 
its software development process. However, some of these models have been introduced when researchers 
were looking for finding an agile transformation framework. The most important ones are as follows.

Sidky-Agile Measurement Index (SAMI)

Sidky et al. (Sidky, Arthur, & Bohner, 2007) proposed “Sidky agile measurement index” (SAMI) based 
on four components including agile levels, agile principles, agile practices and concepts, and several 
indicators. They categorized the practices in several levels in such way that related practices, those can 
lead to considerable improvement in process of agile adoption, be in same category. They also used 
principles of agile approach as a guide to ensure realizing agile values. Finally, they applied indicators 
for assessing the agility to assess the level of agility that companies have been adopted. According to 
these components, SAMI considers five levels of agility. These levels that came from the values of agile 
are collaborative, evolutionary, effective, adaptive, and encompassing.

To assess the agility level of a company, Sidky et al. (Sidky et al., 2007) applied goal-question-indi-
cator-metric (GQIM) approach using principles as goals and indicated 300 indicators accompany with 
40 practices. As they explained each indicator has been designed to measure a particular organizational 
characteristic necessary for the successful adoption of the agile practice to which the indicator is related 
(Sidky et al., 2007). Obviously, considering a huge number of indicators makes measurement so difficult 
and a time consuming process. Another negative point is that SAMI model is following CMMI approach 
in its origin, since CMMI considers multi-level maturity in software development. This point is totally 
different from what agile offers and is in contrast with agile approach (Esfahani, 2012; Gandomani & 
Nafchi, 2014)

4-D Framework

Qumer et al. (Qumer & Henderson-Sellers, 2008) proposed a four dimensional framework based on the 
features of flexibility, speed, leanness, learning and responsiveness to assess the agility of agile methods. 
They presented a specific definition of agile method based on these factors. These four dimensions are 



168

Agile Assessment Methods and Approaches
 

scope, features, agile values, and process. First dimension is about general scope such as project size, 
team size, development and coding style and so on. The second dimension is based on the definition of 
agile concepts and its features. The third is to check the existence of agile values in agile methods, and 
the last one considers the process of development in terms of engineering and management perspective. 
This assessment model has been introduced as the core of an agile adoption framework, called “Agile 
Adoption and Improvement Model” (AAIM) (Qumer & Henderson-Sellers, 2008). This framework, like 
SAMI, is following the CMMI approach which as mentioned previously, is not compatible with agile 
approach and is exposed to many criticisms (Esfahani, 2012; Gandomani & Nafchi, 2014).

OOP Framework

Soundararajan et al. (Shvetha Soundararajan, James D Arthur, & Osman Balci, 2012) proposed a frame-
work to assess the “goodness” of agile methods under the name of OOP (objectives principles and prac-
tices). This framework assesses an agile method based on its adequacy, the capability of the organization 
to apply this method, and the effectiveness of the method in terms of meeting the expected outcomes. 
Based on agile manifesto and agile values they came with five objectives including objective of the agile 
philosophy, principles that supports the objectives, practices reflecting the principles, linkage among the 
principles, practices and objectives, and finally indicators to assess effectiveness of implementation of 
practices in a software company. OOP has mapped the addressed objectives with nine agile principles. 
Furthermore, OOP binds 27 agile practices to the principles. The researchers applied OOP on XP, FFD, 
and method A-a modified version of XP- and showed that XP is an agile method that most completely 
reflects that agile philosophy and is more adequate that FDD and method A.

Comparative Agility

A need to have a comparative approach which can compare the agility degree of companies seems to be 
necessary. The most well known approach for this goal is comparative agility (CA) proposed by Wil-
liams et al. (Williams, Rubin, & Cohn, 2010). CA is a tool to compare the agility level of individuals or 
organizations with other ones. The rationale behind this tool is that it may not be always necessary to 
know the agility degree of a software company, but it also a need to be aware about the position of the 
organization in comparison with other competitors. This tool that can be accessible through a website, 
consider seven dimensions to assess agility of a company. These dimensions are: Teamwork, Require-
ments, Planning, Technical Practices, Quality, Culture, and Knowledge Creating.

They defined some characteristics for each dimension and described them by 125 statements. Re-
spondent (software companies) are required to response each statement according to their situation in 
form of Likert scale.

Although this method can be used directly to measure agility degree, it is helpful to assess agility 
level of a company compared to other software companies which voluntarily have declared their posi-
tions regarding to predefined dimensions.



169

Agile Assessment Methods and Approaches
 

Thoughtworks’ Assessment Model

Thoughtworks as a leading company in Agile software development and consulting services developed 
an online survey to assess the agility degree of software companies who are employing agile methods 
in their projects (Thoughtworks, 2010). Software companies are assessed to check to what extent their 
teams are following agile best practices, to what extent they are enable to get to market fast, and finally, 
is their team set up to get software releases right the first time?

Software companies can get a report indicating their agility degree by filling out the proposed sur-
vey. This assessment tool comprises twenty questions about existence of agile practices in a company 
to indicate agility degree of the company.

Agile Maturity Model (AMM)

In another study (Patel & Ramachandran, 2009), a maturity model has been proposed to enhance and 
improve agile principles and objectives in software companies. This study proposed a five-level matu-
rity level namely initial, explored, defined, improved, and sustained. The authors defined several key 
process areas (KPA) in each maturity level. This study also proposed a process of suitability assessment, 
adaptability assessment, and improvement framework to assess and improve agile best practices. The 
main criticism exposed to this model is what previously addressed for the other similar model. Forcing 
companies to adapt to specific practices is not consistent with agile approach.

Agility Assessment Model (AAM)

This model has been proposed to measurement of agility degree in software companies (Gandomani 
& Nafchi, 2014). The underpinning of this model is agile practices and their importance in agility. The 
model has been proposed based on the survey had been done in (Williams, 2012). The importance of 
each agile practice has been calculated based on the opinion of 326 respondents. In this model, 44 agile 
practices have been considered. This model simply measures the agility degree of a company based on 
the adopted agile practices in a company. This model has not the drawbacks of the previous explained 
model. In this model, there is no force to adapt to any agile practice. Software companies can freely 
adopt any agile practices they need. Obviously, adopting all agile practices brings highest agility degree.

Other Assessment Models / Tools

Beside the above famous model or tools to measure the agility degree of software companies, there are a 
few other checklists for assessing agility degree. For instance, Atlassian Jira includes an Agile Maturity 
Matrix which is used to assess how an organization is agile (Atlassian, 2013). Another one is Borland 
agile assessment that comprises 12 questions (Borland, 2009). Joe’s Unofficial Scrum Checklist (Little, 
2014) is also a check list to assess how a company has succeed to implement and adopt Scrum practices 
in its software development process. Moreover, there are some other checklists and guidance to help 
software companies to assess their progress in agile transformation that can indirectly be used for agile 
assessment.



170

Agile Assessment Methods and Approaches
 

DISCUSSION

Some of the aforementioned assessment methods have relied on agile practices and some others on agil-
ity levels they have defined. Generally, it seems that agility assessment is not a straightforward process.

Agile practices are those practices suggested by agile methods to achieve their specific goals. Each 
agile method has its own practice. For instance, stand-up meeting, retrospective, and sprint review are 
some of the Scrum practices and pair programming, refactoring, and unit testing are some of the XP 
practices. A detailed list of agile practices has been provided in other publications (Gandomani & Nafchi, 
2014; Williams, 2012)

Among the addressed assessment models and tools, some of them are subject to serious challenges. 
Most of the challenges are about their compatibility with agile approach and their scopes, as follows.

SAMI model is an agile independent assessment model that defines five levels of agility. However, 
there are some drawbacks about it. First, there are some practices that companies are forced to adopt them 
to achieve related levels. These practices may not be compatible or necessary to the agile method the 
company has been adopted with (S. Soundararajan et al., 2012). Next, forcing companies to adapt to an 
agile method or some agile practices is not compatible with the flexibility promised by agile approach. 
So, using a set of pre defined practices is against the flexibility exists in the core of agility (Shvetha 
Soundararajan et al., 2012).

The above criticisms are also considered regarding to Agile maturity Model (AMM). It is completely 
contradictory with what agile approach promised.

Regarding 4-D framework, although the definition of agile and its key attributes are compatible with 
the reality of agile, this framework reduces the flexibility that is needed to be agile (Soundararajan et 
al., 2012). This is primarily because this model measures agility of a company by analyzing adoption 
of a set of practices. Like SAMI model, forcing companies to accept pre-defined sets of agile practices 
reduces the flexibility promised by agile. Furthermore, the defined agility level may not be “in-sync” 
with organizational objectives in a company (Soundararajan & Arthur, 2011). This framework mainly 
tries to localize agile rather than measuring agility degree of a company (Esfahani, 2012).

OOP framework is helpful for indicating goodness of each agile method comparing to other methods. 
But, it cannot be useful to measure progress of agile transformation because most often transitioning to 
agile does not mean adoption to a specific agile method. Indeed, most often software companies try to 
adapt to some agile practices rather than a whole particular agile method (Gandomani, Zulzalil, et al., 
2013b).

Comparative agility method has not the problems that are seen in the SAMI and 4-D framework. This 
method considers agile practices as the core of the assessment model. However, this method only can 
indicate agile rate of a company comparing to the others who have used this method previously. Indeed, 
expectation of an agility degree from this method is wrong. It should be noted that a positive point about 
this method is the scope of agile practices that have been considered in this method.

Thoughtworks’ model checks absence or presence of agile practices in a software company rather 
than assessing the degree to which those practices are used. This mainly because this model focuses on 
assessing the extent to which software company or team has been successful in agile transformation. 
However, this model covers only some of the agile practices and could be improved to cover a wider scope.



171

Agile Assessment Methods and Approaches
 

It seems that Agility assessment model is suitable in action. This is mainly because the importance 
(value) of each agile practice has been obtained from the opinion of many agile experts over the world. 
Also, this model covers almost all the most important agile practices.

Reviewing the above methods and tools reveal that agility assessment models is still a concern. 
While there is no standard model for assessing agility degree, most of the existing approaches suffer 
from some serious drawbacks. Obviously, each of them can be used only for the real purpose which has 
been considered when proposing that method. For instance, OOP is very good to assess goodness of 
any specific agile methods and CA is helpful to compare current agility degree of a company compared 
to its competitors.

The most important thing is that measuring agility is not easy, because it is a totally subjective. 
Nonetheless, employing Agile Assessment Model seems to be useful when a company or a team is 
continuously adapting to agile practices.

CONCLUSION AND FUTURE WORK

While prevalence of agile methods is increasing in software companies, there is still a gap to assess the 
agility degree of software companies. This review chapter showed that there are a few agility assessment 
methods to assess agility degree of software companies. However, they are subject to some serious chal-
lenges. In this chapter the most important assessment methods have been described and their positions 
in agility assessment have been explained. In general, there is no perfect assessment model which is 
both compatible to agile and comprehensive for assessing agility degree of software companies or teams 
who are adopting agile methods or practices. However, Agility Assessment Model can be considered 
as an appropriate model.

Considering the strengths and weaknesses of the current assessment model, a potential future work 
is providing a better assessment model which has not the drawbacks of the existing ones. Clearly, such 
a model is better to focus on the agile practices and their values in achieving agility in companies or 
teams. In this case, it can be an extension of Agility Assessment Model.

REFERENCES

Atlassian. (2013). Agile maturity – How agile is your organization? Retrieved Nov. 2013, from http://
blogs.atlassian.com/2013/11/agile-maturity-how-agile-is-your-organization/

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., . . . Sutherland, 
J. (2001). Agile Manifesto. Retrieved May 2014, from www.agilemanifesto.org

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69. doi:10.1109/2.976920

Borland. (2009). Borland agile assessment. Retrieved Dec. 2013, from http://borland.typepad.com/
agile_transformation/2009/03/borland-agile-assessment-2009.html

Chung, M. W., & Drummond, B. (2009). Agile @ yahoo! from the trenches. Paper presented at the Agile 
Conference (AGILE 2009), Chicago, IL. doi:10.1109/AGILE.2009.41

http://blogs.atlassian.com/2013/11/agile-maturity-how-agile-is-your-organization/
http://blogs.atlassian.com/2013/11/agile-maturity-how-agile-is-your-organization/
http://www.agilemanifesto.org
http://dx.doi.org/10.1109/2.976920
http://borland.typepad.com/agile_transformation/2009/03/borland-agile-assessment-2009.html
http://borland.typepad.com/agile_transformation/2009/03/borland-agile-assessment-2009.html
http://dx.doi.org/10.1109/AGILE.2009.41


172

Agile Assessment Methods and Approaches
 

Cockburn, A., & Highsmith, J. (2001). Agile software development: The people factor. Computer, 34(11), 
131–133. doi:10.1109/2.963450

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to Agile methods. Advances in Computers, 
62, 1-66. doi: 10.1016/S0065-2458(03)62001-2

Conboy, K., Coyle, S., Wang, X., & Pikkarainen, M. (2011). People over process: Key challenges in 
agile development. IEEE Software, 28(4), 48–57. doi:10.1109/MS.2010.132

Esfahani, H. C. (2012). Transitioning to Agile: A Framework for Pre-Adoption Analysis using Empirical 
Knowledge and Strategic Modeling. Canada: University of Toronto.

Gandomani, T. J., Zulzalil, H., Abdul Ghani, A. A., Sultan, A. B. M., & Sharif, K. Y. (2014). How human 
aspects impress Agile software development transition and adoption. International Journal of Software 
Engineering and its Applications, 8(1), 129-148. doi: 10.14257/ijseia.2014.8.1.12

Gandomani, T. J., & Nafchi, M. Z. (2014). Agility Assessment Model to Measure Agility Degree of 
Agile Software Companies. Indian Journal of Science and Technology, 7(7), 955–959.

Gandomani, T. J., Zulzalil, H., & Ghani, A. (2013). Obstacles to moving to agile software development; 
at a glance. Journal of Computer Science, 9(5), 620–625. doi:10.3844/jcssp.2013.620.625

Gandomani, T. J., Zulzalil, H., Abdul Ghani, A. A., Sultan, A. B. M., & Sharif, K. Y. (2014). Exploring 
Facilitators of Transition and Adoption to Agile Methods: a Grounded Theory Study. Journal of Software.

Gandomani, T. J., Zulzalil, H., Ghani, A. A. A., & Sultan, A. B. M. (2013a). Important considerations 
for agile software development methods governance. Journal of Theoretical and Applied Information 
Technology, 55(3), 345–351.

Gandomani, T. J., Zulzalil, H., Ghani, A. A. A., & Sultan, A. B. M. (2013b). Towards comprehensive 
and disciplined change management strategy in agile transformation process. Research Journal of Ap-
plied Sciences. Engineering and Technology, 6(13), 2345–2351.

Gandomani, T. J., Zulzalil, H., Ghani, A. A. A., & Sultan, A. B. M., & Parizi, R. M. (2015). The impact 
of inadequate and dysfunctional training on Agile transformation process: A Grounded Theory study. 
Information and Software Technology, 57, 295–309. doi:10.1016/j.infsof.2014.05.011

Gandomani, T. J., Zulzalil, H., & Nafchi, M. Z. (2014). Agile Transformation: What is it about? Paper 
presented at the 8th Malaysian Software Engineering Conference (MySEC), Langkawi, Malaysia.

Laanti, M., Salo, O., & Abrahamsson, P. (2011). Agile methods rapidly replacing traditional methods 
at Nokia: A survey of opinions on agile transformation. Information and Software Technology, 53(3), 
276–290. doi:10.1016/j.infsof.2010.11.010

Little, J. (2014). Joe’s Unofficial Scrum Checklist. Retrieved Dec. 2014, from http://agileconsortium.
pbworks.com/w/file/66642311/Joe%E2%80%99s%20Unofficial%20Scrum%20CheckList%20V13.pdf

http://dx.doi.org/10.1109/2.963450
http://dx.doi.org/10.1109/MS.2010.132
http://dx.doi.org/10.3844/jcssp.2013.620.625
http://dx.doi.org/10.1016/j.infsof.2014.05.011
http://dx.doi.org/10.1016/j.infsof.2010.11.010
http://agileconsortium.pbworks.com/w/file/66642311/Joe%E2%80%99s%20Unofficial%20Scrum%20CheckList%20V13.pdf
http://agileconsortium.pbworks.com/w/file/66642311/Joe%E2%80%99s%20Unofficial%20Scrum%20CheckList%20V13.pdf


173

Agile Assessment Methods and Approaches
 

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. 
Communications of the ACM, 48(5), 72–78. doi:10.1145/1060710.1060712

Patel, C., & Ramachandran, M. (2009). Agile Maturity Model (AMM): A Software Process Improvement 
framework for Agile Software Development Practices. International Journal of Software Engineering, 
2(1), 3–28.

Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six agile methods 
and its applicability for method engineering. Information and Software Technology, 50(4), 280–295. 
doi:10.1016/j.infsof.2007.02.002

Rohunen, A., Rodriguez, P., Kuvaja, P., Krzanik, L., & Markkula, J. (2010). Approaches to agile adop-
tion in large settings: a comparison of the results from a literature analysis and an industrial inventory. 
Paper presented at the 11th international conference on Product-Focused Software Process Improvement, 
Limerick, Ireland. doi:10.1007/978-3-642-13792-1_8

Schatz, B., & Abdelshafi, I. (2005). Primavera gets Agile: A successful transition to Agile development. 
IEEE Software, 22(3), 36–42. doi:10.1109/MS.2005.74

Sidky, A., Arthur, J., & Bohner, S. (2007). A disciplined approach to adopting agile practices: the agile 
adoption framework. Innovations in Systems and Software Engineering, 3(3), 203-216.

Soundararajan, S., & Arthur, J. D. (2011). A structured framework for assessing the “goodness” of agile 
methods. Paper presented at the 18th IEEE International Conference and Workshops on Engineering of 
Computer-Based Systems, ECBS 2011, Las Vegas, NV.

Soundararajan, S., Arthur, J. D., & Balci, O. (2012). A methodology for assessing agile software de-
velopment methods. Paper presented at the Agile Conference, Agile 2012, Dallas, TX. doi:10.1109/
Agile.2012.24

Soundararajan, S., Arthur, J. D., & Balci, O. (2012). A Methodology for Assessing Agile Software 
Development Methods. Paper presented at the Agile Conference (AGILE). doi:10.1109/Agile.2012.24

Thoughtworks. (2010). Agile assessments. Retrieved June 2014, from http://www.agileassessments.com/

Williams, L. (2012). What agile teams think of agile principles. Communications of the ACM, 55(4), 
71–76. doi:10.1145/2133806.2133823

Williams, L., Rubin, K., & Cohn, M. (2010). Driving Process Improvement via Comparative Agility 
Assessment. Paper presented at the Agile Conference (AGILE). doi:10.1109/AGILE.2010.12

KEY TERMS AND DEFINITIONS

Agile Software Architecture: A software architecture that lays out blue prints of the organization 
and structure of software components as well as well defined mechanism on how components can be 
tested and integrated into the system that would sustain the agile approach through out the software 
development life cycle.

http://dx.doi.org/10.1145/1060710.1060712
http://dx.doi.org/10.1016/j.infsof.2007.02.002
http://dx.doi.org/10.1007/978-3-642-13792-1_8
http://dx.doi.org/10.1109/MS.2005.74
http://dx.doi.org/10.1109/Agile.2012.24
http://dx.doi.org/10.1109/Agile.2012.24
http://dx.doi.org/10.1109/Agile.2012.24
http://www.agileassessments.com/
http://dx.doi.org/10.1145/2133806.2133823
http://dx.doi.org/10.1109/AGILE.2010.12


174

Agile Assessment Methods and Approaches
 

Agile Software Development: A software management and development approach that helps to 
create software quickly while addressing the issue of requirement change.

Extreme Programming: Extreme Programming (XP) is an agile methodology that specifically 
emphasizes the use of agile technical practices (e.g. Test Driven Development) for the success of an 
agile project. Practical experience shows that XP complements Scrum well and both the methods work 
well together.

Scrum: Scrum is one of the popular agile methodologies which aims to address the challenges of 
projects involving complex scope of work using a simple process dependent on a small team who are 
motivated, collaborative and highly focused on producing working software every 2-4 weeks.



175

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  10

DOI: 10.4018/978-1-4666-9858-1.ch010

ABSTRACT

The first part of this chapter presents the results of a systematic literature review on Agile Software 
Development (ASD) challenges as are reported in implementation and adoption cases. The data only 
considers the concrete evidences of surfaced problems mainly according to work experience and case 
study articles. The results are analyzed so that types, nature and intensity of the problems are determined 
and, compared to each other, within three major classifications of “large organizations”, “distributed 
settings” and “both large and distributed environments”. The analysis reveals that, in ASD, common 
organizational and managerial issues have been replaced by communication and collaboration problems. 
The second part uses the results of the part one as a frame of analysis to render more interpretations e.g. 
signifying that non-agility preconceptions are the root of a majority of problematic projects. Besides, 
mediating between agile projects and traditional forms of management, and, economic governance are 
two major rival approaches that are emerging in response to these challenges.

Agile Software Development 
Challenges in Implementation 

and Adoption:
Focusing on Large and Distributed 

Settings – Past Experiences, 
Emergent Topics

Abbas Moshref Razavi
University of Malaya, Malaysia

Rodina Ahmad
University of Malaya, Malaysia



176

Agile Software Development Challenges in Implementation and Adoption
 

INTRODUCTION

Today’s organizations are forced to survive in a very competitive world. They need to be agile. In the 
realm of software development, Agile Software Development (ASD) is a natural response to such need 
for agility. However, ASD has initially been proposed for small, collocated teams with the possibility of 
face-to-face communication. Therefore, large organizations, whether they are developer in terms of large 
software firms and/or, consumer who uses the developed software solutions, usually have challenges to 
employ ASD due to their size and possibly geographical distribution.

Such challenges first and foremost appear to be related to the organizations’ functional division of 
work (contrasting the work nature in agile teams) as well as their high volume of rules and regulations. 
Even if there are efforts to transform organizations into new, modern structures with agile processes, yet, 
their real complexities (that is mostly due to their size) still necessitate their large number of cumbersome 
rules. Moreover, organizations, usually still and very often, follow strategic plans which are inherently 
not agile. These plans are partly compulsory to conduct such organizations in long terms, though, partly 
may not be necessary and, are able to be shifted into more agile policy approaches and strategic planning 
(for instance, see Rodríguez, Partanen, Kuvaja, & Oivo, 2014; Parcell, & Holden, 2013). Nonetheless, 
in any event, there are resistances to agility whether because of the existing technical and knowledge 
barriers or organizational, social and cultural inertness.

Part I of this chapter examines and verifies the hypotheses of the previous paragraph in terms of 
whether such challenges do exist in adopting ASD, specifically in large organizations and/or distributed 
settings; and, if this is the case, what are their most frequent and prevailing ones. In Part II, through a 
thorough analysis, the current study attempts to understand the roots of these challenges and, conse-
quently, provides predictions for a close future with this regard.

PART I: CLASSIFICATION OF CHALLENGES

Due to common acceptance of ASD and, as was previously mentioned, indispensability of large organi-
zations to adopt ASD, this chapter intends to provide valuable information for adopters in terms of the 
challenges which would possibly be encountered in the course of implementation/adoption.

Therefore, the subsequent questions are attempted to be answered. First, what are the challenges of 
implementing or adopting ASD particularly for large and/or geographically distributed organizations/
software development teams? Second, what have been the major types and categories of these challenges 
relating to managerial, cultural and technical aspect? Third, what are the main roots that the challenges 
have been emerged form? And, fourth, what is the prediction of new types of challenges in ASD adop-
tion for a close future?

In this study, method implementation refers usually, not necessarily, to first-time-experience of an 
agile method for a specific project. On the other hand, method adoption normally signifies a long term 
report of transition to agile methods along with an essential organizational transformation in both mana-
gerial and cultural aspects. As such, this chapter strives to deal with both implementation and adoption 
based on the existing literature.

As was previously mentioned, here, the “large organization” scope of the study refers to large orga-
nizations that might be software firms (including very large ones e.g. Microsoft, Amazon, etc.) or large 



177

Agile Software Development Challenges in Implementation and Adoption
 

organizations who adopt ASD by their inner Software Development (SD) teams (e.g. BCI) or outsourc-
ing to the other software firms.

By referring to “distributed settings”, we have considered all the possibilities of distributed organiza-
tions and/or presence of off-shore (and near-shore; to clarify the concept see e.g. Vax, & Michaud, 2008; 
Zieris, & Salinger, 2013) teams, and likely, along with the concept of global software engineering. In this 
view, (spatial) distribution may happens in various forms, like in the cases of separated teams, separation 
between customer environment and development teams, out-sourced teams, global software engineering 
firms, and organizations which act as intermediators and brokers (between the client and developers).

Besides providing useful information about these challenges, this chapter proposes novel conceptu-
alizations about how a traditional organization and/or its culture (i.e. even, in the cases like people with 
traditional culture in a newly renovated organization or, new, agile adopted work culture in an old-fashioned 
organization regarding its management and ways of planning) might be in conflict with adopting ASD.

Even though this study does not aim to provide a list of the applied solutions as well, yet, it is expected 
that knowing such challenges in advance would be helpful for the adopters.

METHOD

Data

This study relies on the data of an enormous set of implementation and adoption cases in large and 
distributed settings and their reported problems, challenges, barriers, risks, etc. The source papers were 
originally retrieved through various extensive systematic literature reviews that whose results have been/
will be published elsewhere; yet, here and for this chapter, they (i.e. the papers) merely serve as raw data. 
As such, all the data extractions and coding works and, the subsequent resolutions and interpretations, 
have been solely accomplished for the purpose of the current study. The source of the papers is limited to 
IEEE publication. This is because, the authors had previously found out that at least half of all the existing 
publications in the area of ASD, have been taken place in IEEE (MoshrefRazavi, & Ahmad, 2014) and 
additionally, a majority of these publications are in terms of work experiences or case studies of actual 
workplaces. As a result, it is estimated that this set of studied literature covers more than two third of all 
implementation and adoption cases of ASD upon a long period of 12 years (2003 and onward - the last 
access and updated result has been on December, 2014 from IEEE Xplore search engine).

Subsequently, from a large set of the found research papers (624 out of 2856 different items) which 
had been recognized to be relevant to managerial, cultural and organizational aspects of ASD, 205 papers 
are considered to be relevant to large and distributed settings. Eventually, in a fourth phase, 102 papers 
were selected for this study because of containing concrete evidences of problems and challenges surfaced 
during ASD implementation and adoption. These papers are mostly in the forms of work experience 
and case study, though, also include very few surveys and other types of research providing that they 
explicitly produce, classify and present lists of challenges based on their own data.

Therefore, the data from the case studies, qualitative researches and work experiences are treated as 
first-hand data which are directly related to, and report, the problems and challenges surfaced throughout 
the implementation processes of an agile method for a specific project, or, adoption of a given method 
for an inclusive organization and in a long run. By first-hand, we mean that the data is used as is (de-
scribed) in simple words (and, if the description is too long, a conceptual label is applied to abstract it) 



178

Agile Software Development Challenges in Implementation and Adoption
 

disregarding other arguments and speculations of the correspondent authors. In other words, we collect 
data so as it is more relatable to, and generalizable regarding, the context of ASD as a whole, compared 
to that specific situation (of each given paper).

Based on the selection criteria, the selected papers (102) have been manually searched throughout 
the whole text for the statements of challenges and problems surfaced during their work practices. The 
search process usually examined work experience papers thoroughly whereas for the case studies, the 
focus has been on their “results” sections. For other types of research papers, including surveys, only 
the sections or tables columns under titles like problems, challenges, etc., have been sought.

Apart from work experiences and case studies, the data of surveys and other types of research are 
chosen only if, first, their raw collected data (i.e. the primary data of that survey, quantitative study, 
experiment, etc.) are about the problems and challenges in the given scope, and second, the authors 
systematically analyze, classify and report them under meaningful titles e.g. problems, challenges, risk, 
limitations, etc. Moreover, these kind of studies were selected for data extraction only if the authors 
provided extra information indicating that the problems and challenges are not mere conceptualization, 
classes or abstraction of the problems, but the factual, concrete, occurred problems in one or more 
implementation/adoption cases according to the respondents, interviewees and so on. By adopting this 
approach, we make sure that their reported data is of mere problems and, from valid and credible sources 
(e.g. developers, customers, etc.).

Methodical Discussion

The argument for this way of collecting data is that though the situational context and its conditions are 
of critical importance to understand the phenomenon and somehow to generalize it in the next step (by 
means of other appropriate methods which are not the case in the current study), yet, to theorize based 
on a large number of dispersed evidences, it is unavoidable to observe and recite the data in a relatively 
context-free form and, more in terms of universal facts (although here the word universal, as indicated 
in the previous subsection, is limited and, refers back, to the given context i.e. ASD implementation and 
adoption). Through this approach, the theorization is credited by means of a relatively high numbers of 
evidences in term of the extracted reported problems. Again, anyhow, to conclude based on a large set 
of evidences which are commonly accessible through literature, this approach is inevitable. Therefore, 
we attempt to produce a reference frame (within the ASD context) to assist new adopters. After all, any 
past experience would not be able to be used (whether theoretically or, even, practically) unless the ex-
perience can stand outside of its experienced setting so that could be used in a new one. And, since the 
intention here is to conclude on the basis of a large set of data, such a context in which these numerous 
explicit statements (of the surfaced problems) are meaningful and interpretable needs to be constructed. 
Another (alternative, expected) approach for generalization of such data, admittedly, is to build a com-
prehensive theory of all these proposed situational opinions and verify it by e.g. a quantitative method. 
Such approach also has its own limitations, which are the high number of authors’ opinions (that might 
be, particularly in work experience cases, in the forms like guidelines, recommendations, suggestions, 
lessons learned, etc.) as well as the lack of effective ways to combine these amount of opinions, theoreti-
cally and in a convincing manner.

Nevertheless, in the second part of this chapter, we attempt to use the results of this first part as a 
foundation or an inclusive frame in which singular works could be interpreted. Thus, having such theo-
retical foundation may not integrate all the authors’ opinions in a theoretical and unified way; however, 



179

Agile Software Development Challenges in Implementation and Adoption
 

it would make it possible to interpret notable opinions and postulations within this provided frame (i.e. 
the outcome of this, first, part of the chapter). In this sense, the alleged frame redefines the context (i.e. 
challenges in ASD implementation and adoption) and, provides means of understanding and analytical 
argument that will assist us to assess and position the works of single authors. The details are discussed in 
part II. It is added that, we believe that this way of work may develop a research methodology for studying 
literature in general, and, to utilize and interpret the results of systematic literature reviews particularly.

Meanwhile, to be more unbiased, to extract any evidence (i.e. surfaced problems), we have initially 
read the whole inclusive passage, along with noting the paper’s structure and whose sections’ titles at 
first. By following this approach, we have striven, as far as possible, not to have data in terms of the 
explicit, concrete phrases/sentences which contradict other contents of the same paper.

For dealing with surveys, this is important to consider the fact that their results are usually relative 
weighted lists of issues. Therefore, to include such data, it (i.e. the data) certainly needs more clarifica-
tion by the same commensurate researchers in terms of providing additional, supportive information and 
context. Otherwise, as was previously discussed, their data might not be taken into account as reported, 
surfaced problems according to agile implementers/adopter. Obviously, those survey studies which did 
not seek for problems in ASD implementation and adoption were excluded here too.

Analysis

For the purposes of extracting, classifying and analyzing the data, a coding approach is used that roughly 
correspond to grounded theory method’s coding techniques (Urquhart, 2013), although the whole study 
is not a grounded theory in terms of providing a theory based on the direct comments of individuals 
to pinpoint processes and actions of human behavior. Conversely, we argue that the main theme of the 
analysis approach, here, is “comparative analysis” as is the focal point in GT (Glaser & Strauss, 1967). 
Therefore, this study attempts to provide a useful classification of the reported problems and challenges 
by the following steps. Firstly, the phrases and sentences containing problems which concretely and 
certainly occurred in practice are chosen and listed along with some extra informative labels. These 
labels contain the types of reference to the problems e.g. problem, risk, challenge, barrier, impediment, 
etc. It also includes its origin as a general preconceived class (e.g. cultural, organizational, communica-
tion, planning, team formation, etc.) as well as a label that indicates a certain topic of ASD in which the 
problem occurred like time zone, cloud computing, tailoring the method, scrum master activities, metrics 
and so on. The second label (i.e. the class of the problem) is supposed to be well-known in the contexts 
of all papers, but the third one (i.e. ASD topic label) might be only the case in some papers. Both labels 
are supposed to assist later in classifying and presenting the reported problems.

The classification coding assists us to find out more about the data so that, not only produce a list 
of common challenges, but also provide a ground to find out relationships between these challenges 
and their possible roots e.g. whether those are because of complexity of organizational structure and 
processes, rules and regulations or cultural barriers.

The data is selected from the papers pertaining to large organizations and/or distributed settings. To 
provide a richer view on the results, the results are divided into three sets and classified separately. As 
such, readers have the chance to compare the frequencies and nature of the problems in three groups of 
large, distributed and large and distributed (both) respectively. From 103 papers which contain direct 
evidences about the surfaced problems and challenges, by using search keywords within the whole text 



180

Agile Software Development Challenges in Implementation and Adoption
 

(including “large”, “distributed/remote/dispersed/offshore teams”, “global software engineering”), 54 
papers are considered to be related to ASD in large environments, 32 to distribute and 16 to both large 
and distributed.

Reported problems in each group, as was previously mentioned, coded in terms of a few words, 
phrases, a sentence or occasionally more so that each one independently represent a problem during 
agile implementation or adoption. As such, work experiences are usually able to provide a longer list of 
problems. Conversely, some long case studies may not provide exact reference to the surface problems 
in practice. In the next step, the problems are classified into basic categories, such as team challenges, 
cultural issues, organizational problems and process related limitations. In the third step, based on the 
data gathered, the initial categories are revised by merging and adding new ones as well as proposing 
subcategories in one or two more levels. By this way, not only a balanced map of problems is produced, 
but also the stresses (in terms of descriptions and frequencies) of problems in any particular areas 
become evident. This approach of analysis nearly complies with the guidelines of GTM in that the 
classes and categories are needed to be grounded in data and be compared constantly (Urquhart, 2013). 
Consequently, the results are not only a list, but aggregations of the found problems as well, which are 
able to show the emphases in different areas. Moreover, considering the aggregations of the problems’ 
descriptions in various sources, the resulting knowledge is supposed to be relatively independent of the 
commensurate researchers’ views.

PROPOSED CLASSIFICATIONS

Continuous comparison is an inseparable part of coding in GTM. As mentioned, we use the coding pro-
cess generally based on those guidelines, however with this difference that it is used to analyze literature 
and by collecting explicit references to the surfaced problems. Shorter phrases or sentences were directly 
used as code (to refer to a certain set of problems) whereas the longer ones coded with meaningful labels. 
The codes are constantly compared and formed into new classes which are directly emerged from the 
data. To have a richer view on the data and, also have a better chance to pinpoint the surfaced problems, 
as indicated, three classifications are separately developed by associating the collected/coded problems 
to three groups of large, distributed or large and distributed (both). The first two groups i.e. large orga-
nizations/setting and distributed/off-shore development contain 54 papers, 216 coded phrases, and, 32 
papers, 126 codes phrases respectively. A mind-map organizer software tool was used to flexibly group 
and organize the coded phrases. In both classifications, phrases which are directly related to large or 
distributed settings/factors, respectively, classified under one extra category (i.e. one particular class of 
“large scale” under the classification of “large organizations” for those problems that have directly ref-
erenced to large settings within their description, and, another class of “distributed problems” under the 
classification of “distributed settings” for the exact references to distributed/distance related problems). 
Finally, for papers with the subject of “large and distributed, both” (16 papers, 68 coded phrases), the 
classification is simpler due to the lower number of total coded phrases. Details of results are discussed 
in the following sections.



181

Agile Software Development Challenges in Implementation and Adoption
 

Analysis Ground and Method

As intended, the results show a list of surfaced problems as are reported in literature (particularly in 
case studies and work experiences) as well as problematic areas of implementation and adoption based 
on the extracted clusters of problems and challenges. This is due to the study’s novel coding approach 
compared to usual systematic literature studies. Moreover, these clusters of problems or categories, which 
have been emerged by means of classification, are able to illustrate the problems in a higher level of 
abstraction (see abstracting and theorizing categories in Urquhart, 2013). Besides, contrasting to usual 
SLRs that are often able to pinpoint gaps of studies (e.g. Dybå & Dingsøyr, 2008; Hasnain, 2010; Kaisti 
et al., 2013; Xiaofeng, Lane, Conboy, & Pikkarainen, 2009), this study inherently may not induce that 
whether less reported problems in one certain area indicates less conducted studies, or, it is because 
of less problems. Even so, the latter proposition, i.e. having a less problematic area due to having less 
reported problems in that area, is still very probable.

As a result, the aggregated groups of problems may be regarded as varied stresses on problematic 
areas. In this way, besides striving to generalize certain, concrete problems that have been surfaced over 
the course of implementation/adoption, the primary emphasis is on grouping related problems. Note 
that, here the notion of related problems is very relative in the sense that they are more related to each 
other than others with respect to the classification intention and approach (i.e. continuous comparison), 
and, the number and types of found problems – that is why three sets of papers (i.e. large, distributed, 
large and distributed) have been noticeably occurred to be classified differently.

Concisely, the results are able to signify which areas are more stressful and problematic in the event 
of implementing/adopting agile methods if the setting is large or distributed.

Finally this method of analysis may assist to construct new concepts based the existing ones which 
is, in this case, nature and concept of problems in ASD implementation and adoption. The leverage is to 
construct concepts which are induced and formed based on a large set of the existing reported, concrete 
evidences. As a result, by this means of constructing abstract concepts, we may have valid theorized 
types of problems based on the real problems, instead of having preconceptions of problems and attempt 
to impose and justify them regarding any collected data set. However, it is evident that, this stage of 
theorization possibility is beyond the scope of this chapter. In other words, we do not intend to theorize 
and construct new classes of problems here, while it may be pursued in future.

Results

As was intended, the analysis results render a better insight on the context of ASD Implementation/
Adoption by providing organized lists of problems, which pinpoint the major challenging and stressful 
areas of implementation/adoption processes. Moreover, by means of a three-segmented classification of 
the problems organized in categories emerging through their relationships with each other and whose 
frequencies, this study provides a ground by which practitioners and scholars are assisted to understand 
how approaching towards large and/or distributed settings may trigger some sorts of problems and to 
what extent.

One extra benefit might be a preliminary analysis on how the factors of scale and (spatial) distribu-
tion in organizations may incorporate or contrast with each other and, as a result, possibly culminates 
the situation in terms of exacerbating the implementation/adoption challenges.



182

Agile Software Development Challenges in Implementation and Adoption
 

Anyhow, based on the aforementioned method of analysis in the previous subsection, the results are 
explained and concluded as follows.

“Large Organizations” Classification

As is expected, for large settings, there are clusters of problems on organizational and managerial as-
pects in general and, particularly in area of progress and planning and project management. In project 
management, specifically, there are serious problems that question how organizations may work with 
agile teams. In terms of project management, the question is how agile projects are managed and at the 
same time, aligned with traditional ways of (organizational) management.

Another case which is remarkably problematic and may easily related to the size of the organizations 
and their usually large and cumbersome set of rules and regulation is the (ASD) process itself. How 
to adopt agile methods in these large settings implies numerous details. Based on the data, we assert 
that the method itself is not that much problematic as the adaption to the details of regulated settings of 
large organizations. In other words, problems are more caused by the heavy efforts that are required to 
adapt AM to the existing, countless rules and regulations than the inherent difficulties of the methods 
themselves. Documentation is also much more under stress here (compared to the “distributed settings” 
classification) because of, again, the hefty set of rules and regulations and formal organizational ap-
proaches that cause the need for documents. These organizational regulations and formality also may 
be the initial root of problems associated with quality standards and assurance.

As was previously mentioned, the problems directly relative to large organizations (i.e. the problems 
which are explicitly associated to the relatively large size of the organizations/settings by the corresponding 
authors), are classified in a separate group (under “miscellaneous” category, see Figure 5). Considering 
the total number of the reported problems, there are relatively fewer problems explicitly attributed to the 
factor of size. It might be partly because of the ASD implementation/adoption problems commonalities 
between large and small/medium size settings. However, contrastingly, it also may be due to the fact 
that stakeholders are really “[in the jungle and] can’t see the wood for the trees”. Thus, the problems of 
“large organizations”, specifically those are associated with the (ASD) process, documentation, quality 
assurance, cultural/organizational resistance and, aligning with strategic planning and progress control 
(see the following paragraphs), are more attributable to the (larger) size (of the organizational settings) 
than be in common with the cases pertaining to small and medium enterprises.

Cultural problems here are more about cultural/organizational resistance (contrasting “distributed 
settings” classification in which cultural problems are mostly formed around the cultural differences). 
Team problems are more of team management and progress control (associable to the formality of large 
organizations) rather than team communication (see distributed settings classification). Team organi-
zation and training (both, again, associable to the formality) are also noticeable in this classification. 
Cross-team relationships is also important here, not only because of usually high number of teams, but 
also due to the fact that, large organizations, deliberately or unconsciously, assume that agile teams are 
working within (sometimes, invisible) boundaries of functional units (e.g. departments) of an existing 
hierarchical management structure.

Team culture, personal conflicts and issues are of significance too (i.e. at least, as much as they are 
in “distributed settings” classification), however their nature here is more of political origin rather than 
being of inter-team issues (for example, competition and conflict between agile and non-agile software 



183

Agile Software Development Challenges in Implementation and Adoption
 

development teams as well as confrontation of agile teams with the traditional culture of the existing 
stakeholders, e.g. users, product owners or customers).

Although customers are source of many challenges in any event, comparing to the “distributed set-
tings” classification, here their unavailability as well as the problems pertaining to long feedback loops 
are more frequently mentioned. These problems are attributable to the presence of a high number of 
customers (as is expected in large organizations) who are organized in several (mostly, formal) levels 
(see Figures 1-9).

Figure 1. Large Organizations

Figure 2. Large Organizations – Organizational and Managerial Challenges



184

Agile Software Development Challenges in Implementation and Adoption
 

Figure 3. Large Organizations – Process, General Problems, Adoption Processes

Figure 4. Large Organizations – Traditional Project Management Concerns



185

Agile Software Development Challenges in Implementation and Adoption
 

Figure 6. Large Organizations – Cultural, Human Issues

Figure 7. Large Organizations – Team Issues

Figure 5. Large Organizations – Miscellaneous Topics



186

Agile Software Development Challenges in Implementation and Adoption
 

“Distributed Settings” Classification

In the second classification, namely “distributed settings” and offshore teams, there are very few problems 
with organizational nature. This is might be because distributed teams usually work in those settings that 
of a high culture of (agile) software development and, consequently, with less challenges of making top 
management understand what ASD or distributed development is. In other words, very often organizations 
do not approach to this ways of development unless they are somehow ready, whether organizationally, 
technically or culturally. As was previously mentioned, distributed-related problems (i.e. the problems 
that in their descriptions explicit references exist to the distributed settings) are separately classified and 
presented. Among this type of problems, differences in culture and time zones and, problems caused by 
distance and communication are the most prevailing.

Figure 8. Large Organizations – Team/Work Management

Figure 9. Large Organizations – Customer Issues



187

Agile Software Development Challenges in Implementation and Adoption
 

Since the papers that are related to both large and distributed settings are considered for the third 
classification, here, the papers which contain references to being large (as for organizations or teams) 
are regarded to be inaccuracy in data (because these types of papers should only be appeared in the third 
classification). In fact, these cases are very few (only two, implicitly refer to largeness as a problem) 
indicating that the process of data collection have been reasonably precise and effective.

As was previously pointed, cultural problems in this classification are mostly rooted in differences 
between the teams distributed over the globe. However, the most salient problem in this category, which 
was not the case in large organizations, is trust. There are many references to trust as a problem within and 
across teams. Although this appears to be obvious in distributed settings; by making a comparison with 
“large organizations” classification, it also interestingly shows that the formality of large settings make 
“trust” not that much meaningful. Or, trust, or even seeking for trust, is a way of organizing (particularly, 
regarding self-organizing/managing nature of agile teams) thereby may replace - to some degrees - the 
formal ways of organization and management. This also suggests that to compose and construct large, 
organized structures for future firms, trust and means of self-management would possibly be a replace-
ment of formality. Here, we are referring to the notion of self-management/organization (based on trust) 
in an abstract level that is (conceptually) higher than what is used in usual (agile) teams, and, as a means 
of synthesizing and weaving a relatively large body of work from smaller units. This topic is discussed 
in more details in the second part of this chapter.

Customer relationships problems mostly refer to inaccessibility to the customer due to the physical 
distance and differences in culture, which is not unexpected.

Team issues, by focusing on communication, are the main challenge in this classification. It seems 
that such problems are not only the case because of physical distances, but also due to the fact that a set 
of interconnected teams forms the main concept of work-body here contrasting to the traditional notion 
of organization in large settings. In other words, it appears that organizational problems here are replaced 
by teams’ issues, because a set of teams factually replace the former concept of (formal) organization. 
As a result, instead of fitting the teams within a large frame i.e. organization, here, the work body con-
structed by autonomous, self-organized/managed teams. Therefore, this conclusion is drawn that for 
the projects which are primarily defined within the frame of an inclusive organization (including all 
the contractors, developers, executers, etc.) formality of that organization would potentially be the main 
theme of its problems (particularly, if the organization and its management is of traditional, hierarchical 
nature). On the other hand, if the project is initially more defined for a set of teams, the main challenges 
is communication, inside and cross teams.

As you may see, in this classification, among teams’ issues, team management comes after team 
communication. Quality assurance is not that much problematic in these settings, perhaps because of less 
formality. Problems associated to documentation, as was mentioned in the previous subsection, are more 
of communication nature (e.g. using documents to communicate and relate geographically distributed 
teams) and not that much under stressed. This (i.e. less stress on documentation) is in compliance with 
agile principles even if geographical distribution puts forth challenges of stable and effective commu-
nication in the state of no-formal-documents.

Interestingly, aligning to traditional project management methods and approaches is not a significant 
problem here. It implies that the concept of distributed teams and settings is a step beyond traditional 
ways of managing (SD) activities.

Regarding process oriented problems, due to smaller size and less formality in distributed settings, 
problems are more practical and more communication related (e.g. sharing design, deployment). More-



188

Agile Software Development Challenges in Implementation and Adoption
 

over, there is an emphasis on collecting and communicating requirements across physical distances. One 
notable issue may be seen as the lack of overall control on the whole process of development. Issues 
like less thorough examination of code (in testing activities), late deployment, lack of systematic and 
ordered daily procedures of integration and deployment, inappropriate level of granularity in (software) 
requirements and, more saliently, deciding on architectural issues, all, may slightly imply drawbacks of 
such decentralized control on the whole development process. It can be argued that, though agile means 
of control and management are basically effective and successful, still when specifically considering the 
issues from a (SD) process point of view, facing few problems may be attributable to a need for enforce-
ment of more strict (possibly, formal) controls. Adding to this, there are also several limitations which 
signifies that agile in its pure format and with the minimum formality may have its own problems (e.g. 
process fragility, lack of – guaranty – for process awareness, lack of common structure, excessively trial 
and error, too much overhead; see Figure 12 and Figure 15). Anyhow, this argument does not necessarily 
mean that such strictness will solve these problems and, will not bring about new ones (see Figures 10-15).

“Large and Distributed Environments” Classification

This classification, by definition, is an intersection between the two previous classifications. In practice, 
the reported, surfaced problems show some similarities as expected. However, as we argue in the fol-
lowing paragraphs, these similarities do not imply that this classification is nothing but a mere median 
of the previous two; and, depending on its various subclasses, may also show more inclination towards 
one of its two poles (i.e. large or distributed settings). As we discuss in details in Part II, this three-
segmented classification and particularly this third one provide some clues and ground to show how 
new (agile) forms of organizational structure as well as new means of control and management may 
make larger scales of work bodies viable while being beyond of traditional organizations in terms of 
form and means of control. The stress here is more on the structure/form and how the work bodies are 
organized compared to the traditional means of control and management. Thus, in this sense, large and 

Figure 10. Distributed Settings



189

Agile Software Development Challenges in Implementation and Adoption
 

Figure 11. Distributed Settings – Miscellaneous Topics; Customer Issues

Figure 12. Distributed Settings – Problems directly attributed to Distributed Settings



190

Agile Software Development Challenges in Implementation and Adoption
 

distributed environments may reveal principles for new (agile) large-scale organizations generally and, 
particularly, for SD firms/projects.

Anyhow, this subsection discusses the reported, surfaced problems in “large and distributed settings” 
regarding their emerged aggregation of categories in the following paragraphs.

Cultural issues in this classification are generally appears to be a summation of two previous clas-
sifications. As such, the list of cultural and human issues includes trust as a major issue (akin to similar 
ones of “distributed settings” classification), cultural barriers as well as political issues e.g. misunder-
standing agile in large environments that shows the combined nature of both previous classifications; 
refer to (Murphy et al., 2013) for a detailed discussion.

However, the inclination towards each of two directions (i.e. large or distributed) shows interesting 
facts. For instance, in “large and distributed settings”, though organizationally the environment is large, 

Figure 13. Distributed Settings – Cultural, Human Issues

Figure 14. Distributed Settings – Team Issues



191

Agile Software Development Challenges in Implementation and Adoption
 

there are slightly less difficulties with organizational and managerial issues (5 out of 68 reported issues 
here compared to 5 out of 126 in “distributed settings”; whereas the number is 26 out of 216 in “large 
organizations” classification; see Figures 17, 15 and 2, respectively).

Noticeably, for classifying issues pertaining to “general, process related problems”, we use the same 
emerged outline of the “large organization” classification for its second and third level of categoriza-
tion; because it fits better and shows that, here, the process oriented problems are basically similar and 
(relatively) more detailed (compared to “distributed settings” classification).

Conversely, team issues are more inclined to the “distributed settings” classification. This, to some 
extents, strengthens our previous speculation that agile implementation/adoption in large organiza-
tions more emphasizes on process and managerial aspects merely because communication and team 
collaboration as means of control is not the case there as is in distributed settings. Therefore, this (i.e. 
the relative resemblance of “large and distributed environments” regarding teams issues to “distributed 
settings” rather than “large organizations”) is not only because of the nature of work (i.e. geographical 
distribution) but also due to the fact that communication and team collaboration is a means of control, 
organization and management as such. It seems that this problem category (i.e. team issues) somehow 
replaces “organizational and managerial” category of “large organizations” classification. Overall, it 
means that large and distributed settings typically tend to be less traditional compared to large (and not 
distributed) organizations. As a result, it would be interesting to investigate that how large and distrib-
uted organizations may reconstruct and map their traditional, hierarchical structure of (SD) work and 
the means of command and control to agile ways of cooperation, communication, collaboration and 
coordination. Moreover, it might be conjectured that, for large organization, it should not be compul-
sory to be (geographically) distributed to move towards these non-traditional means of organization and 
control. Indeed, this appears to occur in large and distributed organizations first (according to our data) 
only because this type of organizations is more forced to abandon their traditional forms of existence 

Figure 15. Distributed Settings – Organizational/Managerial Challenges; Process, General Problems, 
Adoption Process; Team/Work Management



192

Agile Software Development Challenges in Implementation and Adoption
 

for the sake of being able to deal with distributed, possibly offshore agile teams. This conjecture may 
result in a prediction that, large organizations will likely adopt new forms of control and management 
in a holistic, organizational level after witnessing the success of the existing distributed projects and, 
assuring that the commensurate practices were adequately established and stabled.

On the same basis, here, the emphasis is relatively low on the category of team/work management 
(i.e. there are relatively less aggregated problem in this category – Figure 17). It may be justified so as 
agile teams are more about communication and self-management compared to (formal) managerial issues 
(e.g. preplanning and progress control and report). As noted, this was not the case in the first classifica-
tion (i.e. large organization) in which because of their prevailing traditional management and culture, 
emphases have been relatively more on management of agile teams (possibly and more likely, from a 
traditional project management perspective) e.g. through excessively stressing on progress and planning. 
It reinforces the previous proposed conjecture so that large organizations (as – relatively – opposed to 
“large and distributed settings”) are more trapped in traditional organizational cultures whether they are 
aware of it or not. Contrastingly and arguably, this point should also be taken into account that, the large 
organizations’ papers often refer to large and very large projects; whereas “large and distributed settings” 
classification’s project cases, of themselves, usually are not comparably that much large.

Finally, the customers-related problems are more inclined and akin to large settings’ ones, in terms 
of the number and complexity of customers’ roles in large environments (see Figure 16, 17, and 18).

Figure 16. Large and Distributed Environments – Cultural, Human Issues; Team Issues; Problems 
directly attributed to Large Organizations and/or Distributed Settings



193

Agile Software Development Challenges in Implementation and Adoption
 

PART II: DISCUSSION ON PAST EXPRIENCES AND 
SPACULATIONS ON ASD TRENDES

This section attempts to illustrate the present status of agile development challenges in implementation 
and adoption on the basis of the existing experiences. We use the results of the previous part of this 
chapter as an interpreting frame so that by referring to salient literature (mostly the ones used as the 
initial data set for the first part), their authors’ speculation will be analyzed. This section, and generally 
the current chapter, has a less emphasis on technical issues of ASD and, more focuses on its managerial, 
organizational and cultural aspects.

Thus, in this section we have a discussion on the authors’ reflections of the emergent trends based on 
the overall studied texts rather than solely referring to the explicit and concrete reported problems. As a 
result, the expression of our understating of the given set of literature (and cross check with other sources, 
if applicable) turns to insights that would go beyond the quotes and frequencies of the surfaced problems 
(as illustrated in Part I). Anyhow, as previously implied, to organize our speculations and make them 
meaningful, we use the analyses and results of the previous part of this chapter as an interpreting frame.

Figure 17. Large and Distributed Environments – Team/Work Management; Customer Issues; Organi-
zational/Managerial Challenges

Figure 18. Large and Distributed Environments – Miscellaneous



194

Agile Software Development Challenges in Implementation and Adoption
 

Moreover, to provide a richer overview of the emerging trends in ASD, besides the aforementioned 
classifications, the given literature is also examined with respect to another dimension which is the areas 
of application of ASD e.g. embedded systems, regulated environments, governmental settings, (digital, 
real time) control systems as well as the environments which are required to apply ASD together with 
quality assurance systems and/or CMMI, etc.

Contrasting to the first part, the main intention of this part is to provide interesting insights about 
why there are sharp opposite experiences of very successful, yet, much failed implementation/adoption 
of ASD, both in high frequencies.

Wide Range of Adoption

First and foremost, agile software development has been successfully adapted for almost all kinds of 
settings, even in very highly disciplined environments. These include embedded systems (Berger & 
Rumpe, 2010; Shatil, Hazzan, & Dubinsky, 2010; Salo & Abrahamsson, 2008; Cunningham, 2005), 
governmental environments (Scott, Johnson & McCullough, 2008; Fruhling, McDonald, & Dunbar, 
2008), industrial and regulated settings e.g. FDA regulated environments as are in (Weyrauch, K. 2006; 
Rasmussen, Hughes, Jenks, & Skach, 2009) and, even for very centralized, military environments with 
so many levels of direction and control (e.g. Aker et al., 2013) as well as controlling real-time systems 
(Ge, Paige, & McDermid, 2010). There are also experiences to align and adapt agile project manage-
ment practices with traditional ones with fixed (partial) plans (Rong, Shao, & Zhang, 2010; Fruhling, 
McDonald, & Dunbar, 2008). Factually, it appears that ASD unavoidably run to any aspect of software 
development.

However, interestingly the numbers of (very) successful, and at the same time, failed projects are 
high. In successful cases, the main theme is like this. People openly welcome agile culture, not only in 
the scale of teams (from inside) but also across teams and organizational environments. In these stories, 
even complicated issues, like aligning ASD with the existing organizational structure and management, 
are handled straightforwardly. One more interesting point is that problems pertaining to incompatibili-
ties between agile and non-agile methods/cultures do not surface at all, or if do, are timely addressed 
and resolved, often by means of innovative solutions. Such successful process of resolution usually is 
connected with a gradual gain of maturity in ASD and, through continuous teams’ collaboration and 
cooperation. This straightforward resolution is regarded to be very interesting specifically when imple-
menters/adopters come up with expectedly serious issues like cumbersome activities of project scoping, 
contracting and cost estimation, control and management, activity planning, progress evaluation and 
status reporting, which are very different between ASD and traditional, plan-based methods.

On the other hand, in problematic projects, all of these issues are often under full attention and stress. 
Particularly, alignment and cooperation with existing body of management and its culture is usually very 
problematic. This sharp contrast draws attention to how preparedness for agile development, whether 
technical, cultural or organizational, may prevent many problems in the course of implementation/adoption.

Through reading different stories, a source of challenge might be identified as follows. If an organization 
waits and expects agile teams align themselves with the existing pace of work, very likely everything in 
the implementation/adoption process would be jeopardized. Conversely, the organization’s management 
needs to be flexible and ready to think agile and find ways to modify the existing rules and regulations. 
This proactivity should assist to prevent various problems from the beginning.



195

Agile Software Development Challenges in Implementation and Adoption
 

Another assertion is that in successful experiences, people involved are apparently more optimistic 
about the transition to agile and/or more feel the transition is inevitable. As such, successful cases might 
be consequent of a very competitive environment, so that it is not an option for the adopting organiza-
tion to be ineffectual in this respect. For instance, organizations like Microsoft (Murphy et al., 2013), 
Yahoo! (Drummond & Unson, 2008; Cloke, 2007; Benefield, 2008), Amazon (Atlas, 2009), IBM (Cun-
ningham, 2005), etc. do not have any other choice other than being successful in ASD and, inevitably, 
being proactive and flexible.

In the event of unsuccessful cases, large organizations are more likely to believe that their past 
experiences worth to be kept as far as possible (contrasting the ideas of Thamhain, 2014). This belief 
inherently causes more inertia towards ASD, which differs from traditional methods in various aspects, 
and, subsequently, puts forward difficult challenges of how to merge these past experiences and new 
agile practices while keeping their (both) advantages. As is mentioned in (Thamhain, 2014), there are a 
considerable amount of experience that is difficult to lose. This is whereas, taking variable environmental 
conditions into account, there is no final verdict about whether losing the old knowledge, how-tos and 
work practices in the course of transitioning to ASD is a must and/or useful or neither. Besides, obvi-
ously, having more agile organizations (i.e. presence of agility in organizational level along with agile 
culture of work, and, not only for SD e.g. as is described by Parcell, & Holden, 2013) definitely results 
in more chances to adopt agile successfully.

Additionally, from the eyes of implementers and adopters, their preconceptions and how they adhere 
to the traditional ways of development, whether they are used to it (as old habits) or forced to do it (due to 
the management, customers’ requests or the existing rules and regulations), may show their future paths. 
In other words, the preoccupied minds of developers/adopters are regarded to be influential on future 
challenges in implementation/adoption. As a result, a forming conjecture is that transition to agile would 
be more viable if these preconceptions go away, yet, there is no certainty that if this (i.e. losing these 
old practices) is worthwhile, nor possible. Anyhow, by assuming the existence of such preconceptions 
(which is often the case), there is no more choice other than contemplating (to propose) reconciliation 
approaches and methods (i.e. reconciling between ASD and the existing rules, regulations and culture). 
After all, it is asserted that inasmuch as there is more dependency on old methods along with less fa-
miliarity with AM, there would surface more problems.

It is appear to be evident that there are two main approaches in resolving these aforementioned align-
ing/merging problems. One is an entire organizational transformation to agile, which is obviously not 
always possible. The other way is to find intermediating ways to control and govern agile teams from a 
(relatively) traditional body of management; see the discussion in (Thamhain, 2014) and, examples in 
(Siddique & Hussein, 2014): “introduction of a [management] layer at top”, (Sutherland, Schoonheim, 
Rustenburg, & Rijk, 2008): “adding a project manager [role]”, and, (Lyon & Evans, 2008): “Expressing 
[estimation data] in a Gantt chart view”. These intermediating methods have been, more or less, effective; 
however, their overhead costs should be taken into account. Additionally, one neglected issue for this 
kind of intermediating/aligning solutions is that these ways possibly cause a latency for organizations to 
avoid or defer an inevitable, future transformation to agility (i.e. being agile in an organizational level, 
not only in SD). In practice, these aligning methods create a safe zone in that organizations may persist 
to not move towards agility.



196

Agile Software Development Challenges in Implementation and Adoption
 

EMERGING CHALLENGES

Organizations are forced to adopt ASD even if it contradicts their traditional, hierarchical views of 
themselves. It is expected that establishing agility in organizational level will be the future trend as well 
as challenge that, of itself, facilitates ASD implementation/adoption too.

In distributed settings more methods and tools are expected to be developed to handle remote com-
munications and deal with face-to-face relationships (as is stressed by agile principles).

In large environments, it is required to propose and designate reliable methods for the sake of con-
structing larger bodies of work (e.g. in terms of organizational structures, departments, projects) by using 
(large) agile teams as building blocks. One associated challenge with this respect is that how organiza-
tions would be able to maintain their identity and integrity if their subunits are not connected and united 
through formal rules and means of command and control. This general (organizational) challenge is of 
special interest when the whole organization has to treat and interact with ASD teams in different aspects 
e.g. managing developers, collaborating with customers and dealing with management (support). As a 
result, for ASD projects, if not the organization as a whole, at least a larger part of that (compared to the 
ASD teams, themselves) is needed to be agile.

Another major trend, which put forward its own challenges, is how to discipline agile projects. This 
is specifically the case when we considering reconciling, aligning methods that supposed to intermedi-
ate a traditional body of management to its commensurate agile body of work i.e. ASD teams. To be 
fair, proposing (more) discipline for ASD may be partly due to the presence of a traditional culture in 
organizations, but also partly because it is sometimes argued that discipline is good for AM as such, 
either or both for the process or for the people who are involved in. Although, we are not in a position 
to judge such assertions, nonetheless, it is predicted that this prospect application of discipline in agile 
methods would be a source of new challenges in future. Imposition of more discipline, apart from its 
possible benefits e.g. more controllability, will perhaps also have negative impacts on performance and 
efficiency. It is reminded that, the extant ways of reconciliation and alignment, specifically for project 
management purposes and in large settings, have its own challenges now and, very likely in future too 
(refer to the previous section for the reference cases).

Finally, another source of challenge would be the approaches which attempt to govern agile proj-
ect through (economic) measurement (Cantor & Royce, 2013; Brown, Ambler, & Royce, 2013; Bass, 
2014). These approaches signifies that sort of control in that as long as the obtaining results (as is being 
measured) are in compliance with at-hand plans, objectives or criteria, then everything would be fine. 
These ways of governing agile projects implies the control from the inside of teams (as should be the 
case in self-organizing/managing teams) and, are in contrast with engineering governance (Ambler, & 
Royce, 2013) or, as we meant in the previous paragraph, governing by imposing (more) discipline that 
controls the process itself. Nevertheless, these methods are promising and, there are grounds to believe 
that they will reach to an acceptable level of reliability. Thus, without judging about their effectiveness 
and what they really want to and can measure, it is speculated that the mere application of such gov-
erning approaches is expected to have their own challenges, specifically considering the fact that these 
methods have not been matured yet.



197

Agile Software Development Challenges in Implementation and Adoption
 

CONCLUSION

ASD is a major breakthrough in software development. It has been successful and prevailing in all types 
of environments. Initially it worked in small, collocated teams with relatively loose settings in terms of 
rules and regulations. However, now, there are numerous reports stating that ASD has been successfully 
adopted in large (and very large) organizations, geographically distributed settings as well as highly 
regulated environments.

There are still numerous challenges. In the first part of this chapter, we have provided organized 
lists of problems to pinpoint stressful areas of ASD in the course of implementation/adoption. These 
problems are extracted from literature, mostly work experiences and case studies, providing that those 
(i.e. the problems) are based on exact and concrete evidences of difficulties, risks, challenges, etc. which 
surfaced throughout the course of implementation/adoption.

In the second part, a dichotomy has been depicted between very successful projects and very prob-
lematic ones. Our analysis shows that, in problematic cases, there are strong preconceptions about the 
necessities of maintaining existing (traditional) organizational structures and processes over the course 
of implementation/adoption of agile processes. Organizations usually hesitate to relinquish their existing 
body of knowledge and practices. Whether these necessities resulting from individuals’ old habits, or 
mandatory organizational strategies, rules and regulations, it results in a cumbersome and complicated 
contention of how to align, merge or at least intermediate between these two traditions i.e. the existing 
organizational structures, processes and culture from one side, and, ASD (implementation/adoption) 
processes and agile culture from the other side. This contention, which has usually been neglected or not 
adequately addressed, is believed to be the origin of various types of issues in those problematic cases.

Thus, adopters need to be serious about any reconciliation/alignment if it is inevitable. They are 
also required to consider efforts to combine, balance and coordinate between these two traditions’ 
managerial structures and practices. Additionally, there are always ambiguities about procedures and 
practices which have been used in the past (i.e. before introducing ASD) and, nonetheless, no exact agile 
counterparts or replacements for them may be found during the transition period. Sometimes, adopters 
simply do not know how to replace the existing practices even if they know the commensurate agile 
counterparts. Always, novelties and innovations are needed to deal with these reconciliation, alignment 
and intermediation issues.

However, the stress here is not on how to resolve these existing/possible inconsistencies and incom-
patibles between agile and non-agile methods; instead, it is recommended that for being agile better 
not to be non-agile as far as possible and from the beginning, mentally and practically, or, technically, 
organizationally and culturally.

Therefore, it is suggested to consider the agile development/implementation/adoption project as an 
initiation that unavoidably and eventually must be merged and absorbed into the existing organizational 
practices. Even better, organizations are advised to purposefully become agile (or at least, more agile) 
after accomplishing the project; something new that is expected to be the result of an inevitable (organi-
zational) transformation. This perspective would be more vital, at the same time difficult though, where 
the scale of the organization is relatively large.

Meanwhile, this chapter provides a methodical ground to conduct research on existing literature and 
conclude from the results, particularly by forming a frame in which the position of any sole author/study 
is interpretable.



198

Agile Software Development Challenges in Implementation and Adoption
 

FUTURE RESEARCH DIRECTIONS

This chapter strengthens the stance that means of communication and collaboration (as is the case in 
self-organizing/managing teams) would be a replacement for the hierarchical means of command and 
control. Disregarding technical, intra-team and cultural aspects, it is suggested to contemplate this pos-
sibility (i.e. of the replacement) as new ways of designing and organizing bodies of work in large and even 
very large scales. Body of work here refers to both transient entities, like project, as well as permanent 
ones e.g. organizational units and, even the whole organization, depending on the case and the level of 
abstraction and application. This postulation comes from the evidences that show, first, the communica-
tion and collaboration issues, as is the case in agile projects, replace the organizational problems to a 
large degree. And, second, the organizations that adopt agility in higher levels and more extensive areas, 
have generally been more successful to manage and accomplish their agile projects.

As such, it is expected that this perspective inspires and renders new abstract (agile) ways of organizing 
work-bodies suitable for large scale settings. Such prospect ways not only may be used to analyze and find 
possible flaws in an existing agile project/organization, and, assist organizations who are transitioning to 
AM, but also may provide a ground to better understand traditional organizations with regard to the issues 
like organizational behaviors and workarounds. The argument is if any work-body functions effectively, 
that is because it is somehow agile; specifically in those cases which, officially, we expect dysfunction. 
For instance, consider the presence of a workaround case (see Ferneley & Sobreperez, 2006, for the 
clarification of the concept i.e. workaround) where not only it does not lead to malfunction, conversely, 
even (often) yields a better performance. In such settings, through analyzing it in a hypothetical agile 
frame, a shadow agile pace of works may be revealed inside that traditional setting. As a result, this ap-
proach may resolve possible existing conflicts or improve the performance in such settings.

Methodically speaking, it is recommended to systematically analyze aggregated clusters of data, as 
are obtained in the way that this study did, in relation to each other and situationally. By this means, 
any cluster may expose a distinct phenomenon within the context under study. Nevertheless, the exact 
approach and the expected emerging phenomena verily depends on the data, how it is collected and for 
what purpose.

REFERENCES

Aker, S., Audin, C., Lindy, E., Marcelli, L., Massart, J. P., & Okur, Y. (2013). Lessons Learned and 
Challenges of Developing the NATO Air Command and Control Information Services. In Proceedings of 
International Systems Conference (SysCon 2013). Orlando, FL: IEEE. doi:10.1109/SysCon.2013.6549974

Andrzeevski, S. (2007). Experiencing Report ‘Offshore XP for PDA development’. In Proceedings of 
Agile Conference (Agile 2007). Washington, DC: IEEE

Atlas, A. (2009). Accidental Adoption: The Story of Scrum at Amazon.com. In Proceedings of Agile 
Conference (AGILE ‘09). Chicago, IL: IEEE. doi:10.1109/AGILE.2009.10

Babar, M. A. (2009). An Exploratory Study of Architectural Practices and Challenges inUsing Agile 
Software Development Approaches. In Proceedings of Software Architecture, 2009 & European Con-
ference on SoftwareArchitecture (WICSA/ECSA 2009). Joint Working IEEE/IFIP. Cambridge: IEEE.

http://dx.doi.org/10.1109/SysCon.2013.6549974
http://dx.doi.org/10.1109/AGILE.2009.10


199

Agile Software Development Challenges in Implementation and Adoption
 

Babinet, E., & Ramanathan, R. (2008). Dependency Management in a Large Agile Environment. In 
Proceedings of Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.58

Baker, S. W. (2005). Formalizing Agility: An Agile Organization’s Journey toward CMMI Accredita-
tion. In Proceedings of the Agile Development Conference (ADC’05). Denver, CO: IEEE. doi:10.1109/
ADC.2005.27

Bass, J. M. (2013). Agile Method Tailoring in Distributed Enterprises: Product Owner Teams. In Pro-
ceedings of 8th International Conference on Global Software Engineering (ICGSE 2013). Bari: IEEE. 
doi:10.1109/ICGSE.2013.27

Bass, J. M. (2014). Scrum Master Activities: Process Tailoring in Large Enterprise Projects. In Proceed-
ings of 9th International Conference on Global Software Engineering (ICGSE 2014). Shanghai: IEEE. 
doi:10.1109/ICGSE.2014.24

Begel, A., & Nagappan, N. (2007). Usage and Perceptions of Agile Software Development in an Industrial 
Context: An Exploratory Study. In Proceedings of First International Symposium on Empirical Software 
Engineering and Measurement (ESEM 2007). Madrid: IEEE. doi:10.1109/ESEM.2007.12

Benefield, G. (2008). Rolling out Agile in a Large Enterprise. In Proceedings of the 41st Hawaii Inter-
national Conference on System Sciences. Waikoloa, HI: IEEE. doi:10.1109/HICSS.2008.382

Berger, B., & Rumpe, B. (2010). Supporting Agile Change Management by Scenario-BasedRegression 
Simulation. IEEE Transactions on Intelligent Transportation Systems, 11(2), 504–509. doi:10.1109/
TITS.2010.2044571

Brown, A. W., Ambler, S., & Royce, W. (2013). Agility at scale: Economic governance, measured 
improvement, and disciplined delivery. In Proceedings 35th International Conference of Software En-
gineering (ICSE), San Francisco, CA: IEEE. doi:10.1109/ICSE.2013.6606636

Cantor, M., & Royce, W. (2013). Economic Governance of Software Delivery. IEEE Software, 31(1), 
54–61. doi:10.1109/MS.2013.102

Cao, L., Mohan, K., Xu, P., & Balasubramaniam, R. (2004). How Extreme does Extreme Programming 
Have to be? Adapting XP Practices to Large-scale Projects. In Proceedings of the 37th Hawaii Interna-
tional Conference on System Sciences, Waikoloa, HI: IEEE.

Cloke, G. (2007). GET YOUR AGILE FREAK ON! Agile Adoption at Yahoo! Music. In Proceedings 
of Agile Conference (Agile 2007), Washington, DC: IEEE. doi:10.1109/AGILE.2007.30

Cohen, B., & Thias, M. (2009). The Failure of the Off-shore Experiment: A Case for Collocated Agile 
Teams. In Proceedings of Agile 2009 Conference. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.8

Collins, E., Macedo, G., Maia, N., & Dias-Neto, A. (2012). An Industrial Experience on the Application 
of Distributed Testing in an Agile Software Development Environment. In Proceedings of Seventh Inter-
national Conference on Global Software Engineering. Porto Alegre: IEEE. doi:10.1109/ICGSE.2012.40

Cottmeyer, M. (2008). The Good and Bad of Agile Offshore Development. In Proceedings of Agile 2008 
Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.18

http://dx.doi.org/10.1109/Agile.2008.58
http://dx.doi.org/10.1109/ADC.2005.27
http://dx.doi.org/10.1109/ADC.2005.27
http://dx.doi.org/10.1109/ICGSE.2013.27
http://dx.doi.org/10.1109/ICGSE.2014.24
http://dx.doi.org/10.1109/ESEM.2007.12
http://dx.doi.org/10.1109/HICSS.2008.382
http://dx.doi.org/10.1109/TITS.2010.2044571
http://dx.doi.org/10.1109/TITS.2010.2044571
http://dx.doi.org/10.1109/ICSE.2013.6606636
http://dx.doi.org/10.1109/MS.2013.102
http://dx.doi.org/10.1109/AGILE.2007.30
http://dx.doi.org/10.1109/AGILE.2009.8
http://dx.doi.org/10.1109/ICGSE.2012.40
http://dx.doi.org/10.1109/Agile.2008.18


200

Agile Software Development Challenges in Implementation and Adoption
 

Cummins, D. (2004). Using Competition to Build a Stronger Team. In Proceedings of Agile Develop-
ment Conference, Salt Lake City, Utah: IEEE doi:10.1109/ADEVC.2004.25

Cunningham, J. (2005). Costs of Compliance: Agile in an Inelastic Organization. In Proceedings of the 
Agile Development Conference (ADC’05). 202-211. Denver, Colorado: IEEE. doi:10.1109/ADC.2005.18

Greening, D. R. (2010). Scaling Scrum to the Executive Level. In Proceedings of the 43rd Hawaii In-
ternational Conference on System Sciences. Honolulu, HI: IEEE.

Debois, P. (2008). Agile infrastructure and operations: how infra-gile are you? In Proceedings of Agile 
Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.42

Dorairaj, S., & Noble, J. (2013). Agile Software Development with Distributed Teams: Agility, Distribu-
tion and Trust. In Proceedings of 35th International Conference on Software Engineering (ICSE). San 
Francisco, CA: IEEE. doi:10.1109/AGILE.2013.7

Dorairaj, S., Noble, J., & Allan, G. (2013). Agile Software Development with Distributed Teams: Senior 
Management Support. In Proceedings of 8th International Conference on Global Software Engineering 
(ICGSE 2013). Bari: IEEE. doi:10.1109/ICGSE.2013.33

Doshi, C., & Doshi, D. (2009). A Peek into an Agile Infected Culture. In Proceedings of Agile 2009 
Conference. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.65

Drummond, B., & Unson, J. F. (2008). Yahoo! Distributed Agile: Notes from the World Over. In Pro-
ceedings of Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE.

Dybå, T., & Dingsøyr, T. (2008). Strength of evidence in systematic reviews in software engineering. In 
Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and 
measurement (ESEM ‘08), Kaiserslautern, Germany: ACM. doi:10.1145/1414004.1414034

Edwards, M. (2008). Overhauling a Failed Project Using Out of the Box Scrum. In Proceedings of Agile 
2008 Conference. Toronto: IEEE. doi:10.1109/Agile.2008.35

Faegri, T. E., & Hanssen, G. K. (2007). Collaboration, Process Control, and Fragility in Evolutionary 
Product Development. IEEE Software, 24(3), 96–104. doi:10.1109/MS.2007.68

Farmer, M. (2004). DecisionSpace Infrastructure: Agile Development in a Large, Distributed Team. In 
Proceedings of the Agile Development Conference (ADC’04). Salt Lake City, Utah: IEEE. doi:10.1109/
ADEVC.2004.11

Ferneley, E., & Sobreperez, P. (2006). Resist, comply or workaround? An examination of different 
facets of user engagement with information systems. European Journal of Information Systems, 15(4), 
345–356. doi:10.1057/palgrave.ejis.3000629

Fitzgerald, B., Stol, K. j., O’Sullivan, R., & O’Brien, D. (2013). Scaling Agile Methods to Regulated 
Environments: An Industry Case Study. In Proceedings of 35th International Conference on Software 
Engineering (ICSE). San Francisco, CA: IEEE. doi:10.1109/ICSE.2013.6606635

http://dx.doi.org/10.1109/ADEVC.2004.25
http://dx.doi.org/10.1109/ADC.2005.18
http://dx.doi.org/10.1109/Agile.2008.42
http://dx.doi.org/10.1109/AGILE.2013.7
http://dx.doi.org/10.1109/ICGSE.2013.33
http://dx.doi.org/10.1109/AGILE.2009.65
http://dx.doi.org/10.1145/1414004.1414034
http://dx.doi.org/10.1109/Agile.2008.35
http://dx.doi.org/10.1109/MS.2007.68
http://dx.doi.org/10.1109/ADEVC.2004.11
http://dx.doi.org/10.1109/ADEVC.2004.11
http://dx.doi.org/10.1057/palgrave.ejis.3000629
http://dx.doi.org/10.1109/ICSE.2013.6606635


201

Agile Software Development Challenges in Implementation and Adoption
 

Fruhling, A., McDonald, P., & Dunbar, C. (2008). A Case Study: Introducing eXtreme Programming 
in a US Government System Development Project. In Proceedings of the 41st Hawaii International 
Conference on System Sciences. Waikoloa, HI: IEEE. doi:10.1109/HICSS.2008.4

Gat, I. (2006). How BMC is Scaling Agile Development. In Proceedings of Agile Conference (AGILE’06). 
Minneapolis, MN: IEEE.

Ge, X., Paige, R., & McDermid, J. (2010). An Iterative Approach for Development of Safety-Critical-
Software and Safety Arguments. In Agile Conference (AGILE 2010). Orlando, FL: IEEE. doi:10.1109/
AGILE.2010.10

Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory, Strategies for Qualitative Research. 
London: Weidenfeld and Nicolson.

Goebel, C. J. (2009). How Being Agile Changed Our Human Resources Policies. In Proceedings of Agile 
2009 Conference. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.49

Grapenthin, S., Book, M., Poggel, S., & Gruhn, V. (2014). Facilitating Task Breakdown in Sprint Plan-
ning Meeting 2 with an Interaction Room: An Experience Report. In Proceeding of 40th Euromicro 
Conference Series on Software Engineering and Advanced Applications (SEAA 2014). Verona: IEEE. 
doi:10.1109/SEAA.2014.71

Gregorio, D. D. (2012). How the Business Analyst Supports and Encourages Collaboration on Agile 
Projects. In Proceedings of International System Conference (SysCon 2012). Vancouver, BC: IEEE. 
doi:10.1109/SysCon.2012.6189437

Gren, L., Torkar, R., & Feldt, R. (2014). Work Motivational Challenges Regarding the Interface Be-
tweenAgile Teams and a Non-Agile Surrounding Organization: A case study. In Proceedings of Agile 
Conference (AGILE 2014). Kissimmee, FL: IEEE. doi:10.1109/AGILE.2014.13

Hadar, I., Sherman, S., Hadar, E., & Harrison, J. J. (2013). Less is More: Architecture Documentation 
for Agile Development. In Proceedings of 6th International Workshop on Cooperative and Human As-
pects of Software Engineering (CHASE). San Francisco, CA: IEEE. doi:10.1109/CHASE.2013.6614746

Hansen, M. T., & Baggesen, H. (2009). From CMMI and isolation to Scrum, Agile, Lean and collabora-
tion. In Proceedings of Agile 2009 Conference. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.18

Hasnain, E. (2010). An overview of published agile studies: a systematic literature review. In Pro-
ceedings of the National Software Engineering Conference (NSEC ‘10). Rawalpindi, Pakistan: ACM. 
doi:10.1145/1890810.1890813

Heimgartner, S., & Locke, M. (2006). A Tale of Two Writing Teams. In Proceedings of Agile Confer-
ence (AGILE’06). Minneapolis, MN: IEEE.

Hogan, B. (2006). Lessons Learned from an eXtremely Distributed Project. In Proceedings of Agile 
Conference (AGILE’06). Minneapolis, MN: IEEE. doi:10.1109/AGILE.2006.37

Hui, A. (2013). Lean Change: Enabling Agile Transformation through Lean Startup, Kanban, and Kot-
ter: An Experience Report. In Proceedings of Agile Conference (AGILE 2013), Nashville, TN: IEEE. 
doi:10.1109/AGILE.2013.22

http://dx.doi.org/10.1109/HICSS.2008.4
http://dx.doi.org/10.1109/AGILE.2010.10
http://dx.doi.org/10.1109/AGILE.2010.10
http://dx.doi.org/10.1109/AGILE.2009.49
http://dx.doi.org/10.1109/SEAA.2014.71
http://dx.doi.org/10.1109/SysCon.2012.6189437
http://dx.doi.org/10.1109/AGILE.2014.13
http://dx.doi.org/10.1109/CHASE.2013.6614746
http://dx.doi.org/10.1109/AGILE.2009.18
http://dx.doi.org/10.1145/1890810.1890813
http://dx.doi.org/10.1109/AGILE.2006.37
http://dx.doi.org/10.1109/AGILE.2013.22


202

Agile Software Development Challenges in Implementation and Adoption
 

Jackson, A., Tsang, S. L., Gray, A., Driver, C., & Clarke, S. (2004). Behind the Rules: XP Experiences. 
In Proceedings of the Agile Development Conference (ADC’04). Salt Lake City, UT: IEEE. doi:10.1109/
ADEVC.2004.9

Jain, N. (2006). Offshore Agile Maintenance. In Proceedings of Agile Conference (AGILE’06). Min-
neapolis, MN: IEEE.

Jakobsen, C. R., & Sutherland, J. (2009). Scrum and CMMI – Going from Good to Great Are you ready-
ready to be done-done? In Proceedings of Agile 2009 Conference. Chicago, IL: IEEE. doi:10.1109/
AGILE.2009.31

Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T., & Lehtonen, T. (2013). 
Agile methods for embedded systems development - a literature review and a mapping study. EURASIP 
Journal on Embedded Systems, 2013(15).

Kalliney, M. (2009). Transitioning from Agile Development to Enterprise Product Management Agility. 
In Proceedings of Agile 2009 Conference. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.64

Kim, E., & Ryoo, S. (2012). Agile Adoption Story from NHN. In Proceedings of 36th International 
Conference on Computer Software and Applications. Izmir: IEEE.

Korkala, M., & Abrahamsson, P. (2007). Communication in Distributed Agile Development: A Case 
Study. In Proceedings of 33rd EUROMICRO Conference on Software Engineering and Advanced Ap-
plications (SEAA 2007). Lubeck: IEEE. doi:10.1109/EUROMICRO.2007.23

Kornstädt, A., & Sauer, J. (2007). Tackling Offshore Communication Challenges with Agile Architecture-
Centric Development. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture 
(WICSA’07). Mumbai: IEEE. doi:10.1109/WICSA.2007.39

Krebs, W., Kroll, P., & Richard, E. (2008). Growing and Sustaining an Offshore Scrum Engagement, In 
Proceedings of Agile 2008 Conference. Toronto: IEEE.

Laanti, M. (2008). Implementing Program Model with Agile Principles in a Large Software Development 
Organization. In Proceedings of 32nd Annual IEEE International Computer Software and Applications 
Conference (COMPSAC 2008). Turku: IEEE. doi:10.1109/COMPSAC.2008.116

Lawrence, R. (2007). XP and Junior Developers: 7 Mistakes (and how to avoid them). In Proceedings 
of Agile Conference (Agile 2007), Washington, DC: IEEE. doi:10.1109/AGILE.2007.67

Lee, E. C. (2008). Forming to Performing: Transitioning Large-Scale Project Into Agile. In Proceedings 
of Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.75

Lehto, I., & Rautiainen, K. (2009). Software Development Governance Challenges of a Middle-Sized 
Company in Agile Transition. In Proceedings of ICSE Workshop on Software Development Governance 
(SDG ‘09). Vancouver, BC: IEEE. doi:10.1109/SDG.2009.5071335

Leszek, A., & Courage, C. (2008). The Doctor is “In” – Using the Office Hours Concept to Make Lim-
ited Resources Most Effective. In Proceedings of Agile 2008 Conference (AGILE ‘08). Toronto, ON: 
IEEE. doi:10.1109/Agile.2008.46

http://dx.doi.org/10.1109/ADEVC.2004.9
http://dx.doi.org/10.1109/ADEVC.2004.9
http://dx.doi.org/10.1109/AGILE.2009.31
http://dx.doi.org/10.1109/AGILE.2009.31
http://dx.doi.org/10.1109/AGILE.2009.64
http://dx.doi.org/10.1109/EUROMICRO.2007.23
http://dx.doi.org/10.1109/WICSA.2007.39
http://dx.doi.org/10.1109/COMPSAC.2008.116
http://dx.doi.org/10.1109/AGILE.2007.67
http://dx.doi.org/10.1109/Agile.2008.75
http://dx.doi.org/10.1109/SDG.2009.5071335
http://dx.doi.org/10.1109/Agile.2008.46


203

Agile Software Development Challenges in Implementation and Adoption
 

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., & Kähkönen, T. et al. 
(2004). Agile Software Development in Large Organizations. Computer, 37(12), 26–34. doi:10.1109/
MC.2004.231

Lyon, R., & Evans, M. (2008). Scaling Up - pushing Scrum out of its Comfort Zone. In Proceedings of 
Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.19

Manuja, M., Manisha. (2014). Moving Agile based projects on Cloud. In Proceedings of International 
Advance Computing Conference (IACC). Gurgaon: IEEE.

Marchenko, A., & Abrahamsson, P. (2008). Scrum in a Multiproject Environment: An Ethnographically-
Inspired Case Study on the Adoption Challenges. In Proceedings of Agile 2008 Conference (AGILE ‘08). 
Toronto, ON: IEEE. doi:10.1109/Agile.2008.77

Martin, A., Biddle, R., & Noble, J. (2004). The XP Customer Role in Practice: Three Studies. In Pro-
ceedings of the Agile Development Conference (ADC’04). Salt Lake City, UT: IEEE. doi:10.1109/
ADEVC.2004.23

McHugh, O., Conboy, K., & Lang, M. (2012). Agile Practices: The Impact on Trust in Software Project 
Teams. IEEE Software, 29(3), 71–76. doi:10.1109/MS.2011.118

Mencke, R. (2008). Product Manager’s Guide to Surviving the Big Bang Approach to Agile Transitions. 
In Proceedings of Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.65

Middleton, P., & Joyce, D. (2012). Lean Software Management: BBC Worldwide Case Study. IEEE 
Transactions on Engineering Management, 59(1), 20–32. doi:10.1109/TEM.2010.2081675

Miller, A., & Carter, E. (2007). Agility and the Inconceivably Large. In Proceedings of Agile Conference 
(Agile 2007), Washington, DC: IEEE.

Moore, E., & Spens, J. (2008). Scaling Agile: Finding your Agile Tribe. In Proceedings of Agile 2008 
Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.43

Moshref Razavi, A., & Ahmad, R. (2014). Agile development in large and distributed environments: A 
systematic literature review on organizational, managerial and cultural aspects. In 8th Malaysian Software 
Engineering Conference (MySEC), Langkawi, Malaysia: IEEE.

Murphy, B., Bird, C., Zimmermann, T., Williams, L., Nagappan, N., & Begel, A. (2013). Have Agile 
Techniques been the Silver Bullet for Software Development at Microsoft? In Proceedings of Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM 2013). Baltimore, MD: 
ACM/IEEE. doi:10.1109/ESEM.2013.21

Ozawa, H., & Zhang, L. (2013). Adapting Agile Methodology to Overcome Social Differences in Proj-
ect Members. In Proceedings of Agile Conference (AGILE 2013). Nashville, TN: IEEE. doi:10.1109/
AGILE.2013.13

Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2008). Distributed Agile Development: Using Scrum 
in a Large Project. In Proceedings of International Conference on Global Software Engineering (ICGSE 
2008), Bangalore: IEEE. doi:10.1109/ICGSE.2008.38

http://dx.doi.org/10.1109/MC.2004.231
http://dx.doi.org/10.1109/MC.2004.231
http://dx.doi.org/10.1109/Agile.2008.19
http://dx.doi.org/10.1109/Agile.2008.77
http://dx.doi.org/10.1109/ADEVC.2004.23
http://dx.doi.org/10.1109/ADEVC.2004.23
http://dx.doi.org/10.1109/MS.2011.118
http://dx.doi.org/10.1109/Agile.2008.65
http://dx.doi.org/10.1109/TEM.2010.2081675
http://dx.doi.org/10.1109/Agile.2008.43
http://dx.doi.org/10.1109/ESEM.2013.21
http://dx.doi.org/10.1109/AGILE.2013.13
http://dx.doi.org/10.1109/AGILE.2013.13
http://dx.doi.org/10.1109/ICGSE.2008.38


204

Agile Software Development Challenges in Implementation and Adoption
 

Parcell, J., & Holden, S. H. (2013). Agile Policy Development for Digital Government: An Exploratory 
Case Study. In Proceedings of the 14th Annual International Conference on Digital Government Re-
search. Quebec City, Canada: ACM.

Parnell-Klabo, E. (2006). Introducing Lean Principles with Agile Practices at a Fortune 500 Company. 
In Proceedings of Agile Conference (AGILE’06). Minneapolis, MN: IEEE. doi:10.1109/AGILE.2006.35

Pichler, M., Rumetshofer, H., & Wahler, W. (2006). Agile Requirements Engineering for a Social Insurance 
for Occupational Risks Organization: A Case Study. In Proceedings of 14th International Requirements 
Engineering Conference (RE’06). Minneapolis/St. Paul, MN: IEEE. doi:10.1109/RE.2006.8

Power, K. (2010). Stakeholder Identification in Agile Software Product Development Organizations: 
A model for understanding who and what really counts. In Proceedings of Agile Conference (AGILE 
2010). Orlando, FL: IEEE. doi:10.1109/AGILE.2010.17

Rayhan, H., & Haque, N. (2008). Incremental Adoption of Scrum for Successful Delivery of an IT Project 
in a Remote Setup. In Proceedings of Agile 2008 Conference. Toronto: IEEE. doi:10.1109/Agile.2008.98

Robarts, J. M. (2008). Practical Considerations for Distributed Agile Projects. In Proceedings of Agile 
2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.57

Roche, G., & Vaquez-McCall, B. (2009). The Amazing Team Race - A Team Based Agile Adoption. In 
Proceedings of Agile 2009 Conference. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.67

Rodríguez, P., Partanen, J., Kuvaja, P., & Oivo, M. (2014). Combining Lean Thinking and Agile Meth-
ods for Software Development: A Case Study of a Finnish Provider of Wireless Embedded Systems. In 
Proceedings of 47th Hawaii International Conference on System Science (HICSS). Waikoloa, HI: IEEE

Rasmussen, R., Hughes, T., Jenks, J., & Skach, J. (2009). Adopting Agile in an FDA Regulated Environ-
ment. In Agile Conference (AGILE ‘09). Chicago, IL: IEEE. doi:10.1109/AGILE.2009.50

Rong, G., Shao, D., & Zhang, H. (2010). SCRUM-PSP: Embracing Process Agility and Discipline. In 
Proceedings 17th Asia Pacific Software Engineering Conference (APSEC), Sydney, NSW: IEEE.

Salo, O., & Abrahamsson, P. (2008). Agile methods in European embedded software developmentor-
ganisations: A survey on the actual use and usefulness of Extreme Programming and Scrum. Software, 
IET, 2(1), 58–64. doi:10.1049/iet-sen:20070038

Scott, J., Johnson, R., & McCullough, M. (2008). Executing Agile in a Structured Organization: Gov-
ernment. In Proceedings of Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/
Agile.2008.40

Seffernick, T. R. (2007). Enabling Agile in a Large Organization Our Journey Down the Yellow Brick Road. 
In Proceedings of Agile Conference (Agile 2007), Washington, DC: IEEE. doi:10.1109/AGILE.2007.23

Sepulveda, C. (2003). Agile Development and Remote Teams: Learning to Love the Phone. In Pro-
ceedings of the Agile Development Conference (ADC’03). Salt Lake City, Utah: IEEE. doi:10.1109/
ADC.2003.1231464

http://dx.doi.org/10.1109/AGILE.2006.35
http://dx.doi.org/10.1109/RE.2006.8
http://dx.doi.org/10.1109/AGILE.2010.17
http://dx.doi.org/10.1109/Agile.2008.98
http://dx.doi.org/10.1109/Agile.2008.57
http://dx.doi.org/10.1109/AGILE.2009.67
http://dx.doi.org/10.1109/AGILE.2009.50
http://dx.doi.org/10.1049/iet-sen:20070038
http://dx.doi.org/10.1109/Agile.2008.40
http://dx.doi.org/10.1109/Agile.2008.40
http://dx.doi.org/10.1109/AGILE.2007.23
http://dx.doi.org/10.1109/ADC.2003.1231464
http://dx.doi.org/10.1109/ADC.2003.1231464


205

Agile Software Development Challenges in Implementation and Adoption
 

Shah, V., & Nies, A. (2008). Agile with Fragile Large Legacy Applications. In Proceedings of Agile 
2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.86

Shatil, A., Hazzan, O., & Dubinsky, Y. (2010). Agility in a Large-Scale System Engineering Project: A 
Case-Study of an Advanced Communication System Project. In Proceedings of International Conference 
on Software Science, Technology & Engineering. Herzlia, Israel: IEEE. doi:10.1109/SwSTE.2010.18

Sheth, B. (2009). Scrum 911! Using Scrum to Overhaul a Support Organization. In Proceedings of Agile 
2009 Conference. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.23

Shrinivasavadhani, J. (2008). Remote Mentoring a Distributed Agile Team. In Proceedings of Agile 2008 
Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.89

Siddique, L., & Hussein, B. A. (2014). Practical insight about choice of methodology in large complex 
software projects in Norway. In Proceedings of International Technology Management Conference 
(ITMC). Chicago, IL: IEEE. doi:10.1109/ITMC.2014.6918615

Smith, C., & King, P. (2008). Agile Project Experiences – The Story of Three Little Pigs. In Proceedings 
of Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.76

Smits, H., & Pshigoda, G. (2007). Implementing Scrum in a Distributed Software Development Or-
ganization. In Proceedings of Agile Conference (Agile 2007), Washington, DC: IEEE. doi:10.1109/
AGILE.2007.34

Snapp, M. B., & Dagefoerde, D. (2008). The Accidental Agilists: One Team’s Journey from Waterfall 
to Agile. In Proceedings of Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/
Agile.2008.68

Stray, V. G., Lindsjørn, Y., & Sjøberg, D. I. K. (2013). Obstacles to Efficient Daily Meetings in Agile 
Development Projects: A Case Study. In Proceedings of International Symposium on Empirical Software 
Engineering and Measurement (ESEM 2013). Baltimore, MD: ACM/IEEE. doi:10.1109/ESEM.2013.30

Summers, M. (2008). Insights into an Agile Adventure with Offshore Partners. In Proceedings of Agile 
2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.37

Sutherland, J., Schoonheim, G., Kumar, N., Pandey, V., & Vishal, S. (2009). Fully Distributed Scrum: 
Linear Scalability of Production between San Francisco and India. In Proceedings of Agile 2009 Confer-
ence. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.27

Sutherland, J., Schoonheim, G., Rustenburg, E., & Rijk, M. (2008). Fully Distributed Scrum: The Secret 
Sauce for Hyperproductive Offshored Development Teams. In Proceedings of Agile 2008 Conference 
(AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.92

Takats, A., & Brewer, N. (2005). Improving Communication between Customers and Developers. In Pro-
ceedings of the Agile Development Conference (ADC’05). Denver, CO: IEEE. doi:10.1109/ADC.2005.30

Talby, D., & Dubinsky, Y. (2009). Governance of an Agile Software Project. In Proceedings of ICSE 
Workshop on Software Development Governance (SDG ‘09). Vancouver, BC: IEEE.

http://dx.doi.org/10.1109/Agile.2008.86
http://dx.doi.org/10.1109/SwSTE.2010.18
http://dx.doi.org/10.1109/AGILE.2009.23
http://dx.doi.org/10.1109/Agile.2008.89
http://dx.doi.org/10.1109/ITMC.2014.6918615
http://dx.doi.org/10.1109/Agile.2008.76
http://dx.doi.org/10.1109/AGILE.2007.34
http://dx.doi.org/10.1109/AGILE.2007.34
http://dx.doi.org/10.1109/Agile.2008.68
http://dx.doi.org/10.1109/Agile.2008.68
http://dx.doi.org/10.1109/ESEM.2013.30
http://dx.doi.org/10.1109/Agile.2008.37
http://dx.doi.org/10.1109/AGILE.2009.27
http://dx.doi.org/10.1109/Agile.2008.92
http://dx.doi.org/10.1109/ADC.2005.30


206

Agile Software Development Challenges in Implementation and Adoption
 

Tartaglia, C. M., & Ramnath, P. (2005). Using Open Spaces to Resolve Cross Team Issue. In Proceed-
ings of the Agile Development Conference (ADC’05). Denver, CO: IEEE. doi:10.1109/ADC.2005.49

Thamhain, H. J. (2014). Can We Manage Agile in Traditional Project Environments? In Proceeding of 
Portland International Conference on Management of Engineering & Technology (PICMET). Kanazawa: 
IEEE.

Therrien, I., & LeBel, E. (2009). From Anarchy to Sustainable Development: Scrum in Less Than Ideal 
Conditions. In Proceedings of Agile 2009 Conference. Chicago, IL: IEEE. doi:10.1109/AGILE.2009.73

Tudor, D., & Walter, G. A. (2006). Using an Agile Approach in a Large, Traditional Organization. In 
Proceedings of Agile Conference (AGILE’06). Minneapolis, MN: IEEE. doi:10.1109/AGILE.2006.60

Urquhart, C. (2013). Grounded Theory for Qualitative Research, A Practical Guide. London: Sage 
Publications.

Urdangarin, R., Fernandes, P., Avritzer, A., & Paulish, D. (2008). Experiences with Agile Practices in 
the Global Studio Project. In Proceedings of International Conference on Global Software Engineering 
(ICGSE 2008). Bangalore: IEEE. doi:10.1109/ICGSE.2008.11

Uy, E., & Ioannou, N. (2008). Growing and Sustaining an Offshore Scrum Engagement. In Proceedings 
of Agile Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.71

Valade, R. (2008). The Big Projects Always Fail: Taking an Enterprise Agile. In Proceedings of Agile 
Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.63

Vax, M., & Michaud, S. (2008). Distributed Agile: Growing a Practice Together. In Proceedings of Agile 
Conference (AGILE ‘08). Toronto, ON: IEEE.

Vriens, C., & Barto, R. (2008). 7 Years of Agile Management. In Proceedings of Agile 2008 Conference 
(AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.97

Weyrauch, K. (2006). What Are We Arguing About? A Framework for Defining Agile in our Organization. 
In Proceedings of Agile Conference (AGILE’06). Minneapolis, MN: IEEE. doi:10.1109/AGILE.2006.62

Williams, L., Rubin, K., & Cohn, M. (2010). Driving Process Improvement Via Comparative Agility As-
sessment. In Proceedings of 2010 Agile Conference. Orlando, Florida: IEEE. doi:10.1109/AGILE.2010.12

Williams, M., Packlick, J., Bellubbi, R., & Coburn, S. (2007). How We Made Onsite Customer Work - 
An Extreme Success Story. In Proceedings of Agile Conference (Agile 2007), Washington, DC: IEEE. 
doi:10.1109/AGILE.2007.33

Xiaofeng, W., Lane, M., Conboy, K., Pikkarainen, M. (2009). Where agile research goes: starting from 
a 7-year retrospective (report on agile research workshop at XP2009). SIGSOFT Software Engineering 
Notes Archive, 34(5), 28-30.

Yap, M. (2005).Follow the Sun: Distributed Extreme Programming Development. In Proceedings of the 
Agile Development Conference (ADC’05). Denver, CO: IEEE. doi:10.1109/ADC.2005.26

http://dx.doi.org/10.1109/ADC.2005.49
http://dx.doi.org/10.1109/AGILE.2009.73
http://dx.doi.org/10.1109/AGILE.2006.60
http://dx.doi.org/10.1109/ICGSE.2008.11
http://dx.doi.org/10.1109/Agile.2008.71
http://dx.doi.org/10.1109/Agile.2008.63
http://dx.doi.org/10.1109/Agile.2008.97
http://dx.doi.org/10.1109/AGILE.2006.62
http://dx.doi.org/10.1109/AGILE.2010.12
http://dx.doi.org/10.1109/AGILE.2007.33
http://dx.doi.org/10.1109/ADC.2005.26


207

Agile Software Development Challenges in Implementation and Adoption
 

Yi, L. (2011). Manager as Scrum Master, In Proceedings of Agile 2011 Conference. Salt Lake City, UT: 
IEEE. doi:10.1109/AGILE.2011.8

Young, C., & Terashima, H. (2008). How Did We Adapt Agile Processes to Our Distributed Development? 
In Proceedings of Agile 2008 Conference (AGILE ‘08). Toronto, ON: IEEE. doi:10.1109/Agile.2008.7

Zieris, F., & Salinger, S. (2013). Doing Scrum Rather Than Being Agile: A Case Study on Actual 
Nearshoring Practices. In Proceedings of 8th International Conference on Global Software Engineering 
(ICGSE 2013). Bari: IEEE. doi:10.1109/ICGSE.2013.26

KEY TERMS AND DEFINITIONS

Agile Software Development: Agile software development is a group of software development 
methods in which requirements and solutions evolve through collaboration between self-organizing, 
cross-functional teams. It promotes adaptive planning, evolutionary development, early delivery, con-
tinuous improvement, and encourages rapid and flexible response to change.

Distributed Workforce: A distributed workforce is a workforce that reaches beyond the restrictions 
of a traditional office environment. A distributed workforce is disbursed geographically over a wide area 
– domestically or internationally. By installing key technologies, distributed companies enable employees 
located anywhere to access all of the company’s resources and software such as applications, data and 
e-mail without working within the confines of a physical company-operated facility.

Scrum: This is an iterative, incremental software process, which is by far the most popular agile 
development process.

Software Component: A software unit of functionality that manages a single abstraction.
XP: This methodology consists of a variety of practices. These practices are used by developers in 

creating the required software.

http://dx.doi.org/10.1109/AGILE.2011.8
http://dx.doi.org/10.1109/Agile.2008.7
http://dx.doi.org/10.1109/ICGSE.2013.26


208

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  11

DOI: 10.4018/978-1-4666-9858-1.ch011

ABSTRACT

As the popularity and acceptance of agile software development methodologies increases, the need 
to integrate usability engineering in the design and development processes is imperative. While, agile 
the focus is on technical and functional requirements not on end-user interaction, usability is usually 
only dealt with on the side. Combining this two in practice will go a long way in development of better 
product. Since the success and acceptance of software product depends not only on the technologies 
used but how well it integrates user-oriented methods. Therefore, this chapter puts together works on 
how usability engineering has been integrated with agile processes.

INTRODUCTION

Software plays a significant role in the lives of individuals and companies. Software engineering has 
been the major driving force for the conceptualization, design and development of software products. 
Several models for streamlining the development process have evolved and promoted over the years from 
the traditional waterfall model to more iterative and incremental development processes and recently to 
agile development methodology.

Agile software development process often refers to as “Agile” like any other process targets at final 
product from requirement engineering. This process has been promoted by software developers particularly 
the practitioners in the industry (Bhalerao, Puntambekar, & Ingle, 2009). Agile methods were established 

Usability Engineering 
in Agile Software 

Development Processes
Muhammad Aminu Umar

Ahmadu Bello University Zaria, Nigeria

Sheidu Salami Tenuche
Ahmadu Bello University Zaria, Nigeria

Sahabi Ali Yusuf
Ahmadu Bello University Zaria, Nigeria

Aminu Onimisi Abdulsalami
Ahmadu Bello University Zaria, Nigeria

Aliyu Muhammad Kufena
Ahmadu Bello University Zaria, Nigeria



209

Usability Engineering in Agile Software Development Processes
 

to develop systems more quickly by spending the shortest possible time on analysis and design (Sohaib & 
Khan, 2010). More importantly agile methods are iterative, which mainly focus on teamwork, collabora-
tion between customers and developer, while constant/frequent feedback from customers throughout the 
lifecycle of the software project and support early product delivery (Koskela, 2003).

Therefore, it will right to say that agile methodologies focuses more on the technical aspect of the 
development of the software product which did not focus on the system non-functional aspects such as 
usability. As more organizations adopt agile development practices, usability practitioners want to ensure 
that the resulting products are still design with users in mind (Sy, 2007). In Agilepractice, customer is 
considered as a business agent who understands the business value of end-user requirements.

Usability engineering is a science that studies how to understand and systematically address the us-
ability demand of a customer (Lee & McCrickard, 2007). Usability engineering processes are important 
in that they focus on developing systems that are tailored for end users (Lee & McCrickard, 2007). On 
the other hand, software usability is defined as the capability of the software product to be understood, 
learned, operated, attractive to the user, and compliant to standards/guidelines, when used under specific 
conditions (“Software product evaluation—quality characteristics and guidelines for the user,” 2001). 
Usability is considered as one of the most important quality factors in the design and development of 
an interactive software application (Fernandez, Insfran, & Abrahao, 2011). Hence, its processes focus 
on developing systems that are adapted for end-users (Sohaib & Khan, 2010).

Therefore, it’s not enough to have a system with sound technical and functional output but a system 
that is design and develop with the end-user in mind (i.e. user-centered design concepts). Even though, 
it is reported that the use of agile methods can result in improved usability (McInerney & Maurer, 2005). 
This is due to the fact that the customer is involved throughout the development process. It should be 
noted however, that agile development processes involve a customer as a business representative who is 
responsible to specify the business value of user requirements, but this customer needs not necessarily 
tobe a real end-user (Hussain et al., 2008).

Consequently, this chapter discusses the place of usability engineering in the agile development 
processes put together from existing literatures on integrating agile methods and user-centered design 
approaches.

BACKGROUND

Agile Software Development

Agile software development is characterized by quick development of software product with limited 
time spent on analysis and design. This is to avoid failure caused as result of extended period of time 
during development. Agile methods are iterative, focus on teamwork, collaboration between customer 
and developer, feedback from customer throughout the lifecycle of the software project and support early 
product delivery (Sohaib & Khan, 2010). In ASD, design is considered to be a continuous process. This 
is done with the intention of best understanding user context and in the end deliver not only good product 
but also useable. As a result, the methods allowed for the delivery of high quality software sooner, and 
interaction concepts lent some degree of end-user understanding (Patton, 2002).

The benefits of agility among others include faster time to market, better responsiveness to changing 
customer requirements, and higher application quality, are undeniable to those who have mastered these 



210

Usability Engineering in Agile Software Development Processes
 

practices. However, agile development in practice depends on many factors, including the particular skills 
of the development team, the particular project that it is being applied to, and the needs of the client 
(Eklund & Levingston, 2008). Therefore, in order to have a successful outcome in agile development, 
the clients need to be onside and committed. This is in line with the four key values of agile software 
development which constitute the agile manifesto, 2014.

1.  Individuals and interactions over processes and tools
2.  Working software over comprehensive documentation
3.  Customer collaboration over contract negotiation
4.  Responding to change over following a plan

Traditional software development approaches are not flexible and suitable in today’s rapidly changing 
environment (Sohaib & Khan, 2010). In waterfall model for example, process activities are performed in 
a sequence of separate steps where preferably each step is finished before the next one begins. A main 
characteristic of this approach is that the software is detailed up-front. The requirements are defined, the 
design of e.g. the user interface is documented and passed on to development followed by implementa-
tion, integration and delivery. This up-front style results in the need for a lot of documentation since each 
project phase must be signed-off before proceeding to the next phase (Lee & McCrickard, 2007). An 
alternative to the sequential approach to software development is the iterative and incremental model. 
Iterative development is an approach to software development in which the project is composed of several 
iterations in sequence. Each iteration being a self-contained mini project composed of all work activities 
(requirements analysis, design, programming and test). The goal for iteration is to release an integrated, 
tested and partially completed but working system. Usually the partial system grows incrementally with 
new features iteration by iteration (Lee & McCrickard, 2007).

Agile methods do have practices that have quality assurance abilities, some of them are inside the 
development phase and some others can separated out as supporting practices (Sohaib & Khan, 2010).

Agile Methodologies and Life Cycle

Agile methodologies share many common practices like iterative and evolutionary development and 
delivery, adaptive planning and emphasis open face-to-face communication and people before docu-
mentation, processes and tools (Larman, 2003). They all embrace change by adapting to the situation 
rather than doing detailed predictive planning and locking down requirements.

Agile Methods have been adopted by many IT organizations and have generated many quality prod-
ucts of software industry (Bhalerao et al., 2009). These methods have gained higher edge on traditional 
software development by accommodating frequently changing requirements in high tight schedules 
(Bhalerao et al., 2009). Due to its iterative and evolutionary nature, the methods have promised higher 
customer satisfaction, low defect rates, higher usability and a solution to higher changing requirements. 
Agile teams include an on-site customer representative that works with the team daily to give feedback 
and define requirements for the software. This close collaboration allows the team to develop the soft-
ware without needing a detailed written documentation up-front. Figure 1 shows a typical agile software 
development process.

Agile Methods include mainly; Extreme Programming (XP), Scrum, Feature Driven Development 
(FDD), Crystal methodology, Dynamic System Driven Development (DSDM), Adaptive Software De-



211

Usability Engineering in Agile Software Development Processes
 

velopment (ASD), Open Source (OS), Agile Modeling (AM), and Pragmatic Programming (PP) . It has 
been observed that all aforementioned methods are based on agile manifesto and have their own software 
development life cycle for improving productivity and quality of software (Bhalerao et al., 2009).

Agile methodologies follow an iterative and incremental life-cycle. The process is composed of itera-
tions, which can be described as self-contained mini project, and releases. The project is divided into 
multiple releases that each have their own scope and schedule. Each mini-release, with a subset of the 
features for the whole release, has its own requirements analysis, design, implementation, and quality 
assurance phases, and is called a working version (Sy, 2007). Each working version must be complete and 
stable, which makes it possible for the product release date to coincide with that of any working version.

All planning is done in collaboration by the whole team but it is the customer who decides what is 
included in the iteration based on the estimates of and the discussion with the developers (Lee & Mc-
Crickard, 2007). Iterations include work in all of the activities necessary for software development. The 
team works with requirements, design, code and test every day to keep their software ready to deploy at 
the end of any iteration (Bhalerao et al., 2009).

Agile Software Development Life Cycle is comprised of six phases: Concept, Inception, Construc-
tion, Transition, Production, and Retirement. (See Figure 2). Although many agile developers may balk 

Figure 1. Agile Software Development. Source (Ntier Training, 2014)



212

Usability Engineering in Agile Software Development Processes
 

at the idea of phases, the fact is that it has been recognized that processes such as Extreme Programming 
(XP) and Disciplined Agile Delivery (DAD) do in fact have phases.

1.  Concept: The initial idea/concept for the product or project is typically identified as part of your 
organizations product management process.

2.  Inception: The first week or so of an agile project is often referred to as “Iteration 0” or “Cycle 0”. 
The goal during this period is to initiate the project by gathering initial support and funding for the 
project; actively working with stakeholders to initially envision the requirements of the system at 
a high-level; starting to build the team; modeling an initial architecture for the system; and setting 
up the environment.

3.  Construction Phase: During development iterations agilists incrementally deliver high-quality 
working software which meets the changing needs of stakeholders.

4.  Transition phase: During the release iterations agile practitioners transition the system into 
production.

5.  Production: The goal of this phase is to keep systems useful and productive after they have been 
deployed to the user community. The fundamental goal is to keep the system running and help 
users to use it.

6.  Retirement: Eventually your solution may be removed from production, perhaps because it sup-
ports a line of business your organization has exited or because it has been replaced by a more 
effective solution.

On the surface, the agile SDLC of Figure 2 looks very much like a traditional SDLC, but when you 
dive deeper we will quickly discover that is not the case. Because the agile SDLC is highly collaborative, 
iterative, and incremental the roles which people take are much more robust than on traditional projects.

USABILITY ENGINEERING

Usability is generally regarded as ensuring that interactive products are easy to learn, effective to use, 
and enjoyable from the user’s perspective. It involves optimizing the interactions people have with in-

Figure 2. The Agile SDLC (Ambler, 2015)



213

Usability Engineering in Agile Software Development Processes
 

teractive products to enable them to carry out their activities at work, school, and in their everyday life. 
The main reason for applying usability techniques when developing a software system is to increase 
user efficiency and satisfaction and, consequently, productivity. More specifically, usability is broken 
down into the following goals:

• effective to use (effectiveness)
• efficient to use (efficiency)
• safe to use (safety)
• have good utility (utility)
• easy to learn (learnability)
• easy to remember how to use (memorability)

The Need for Usability

Usability engineering is a set of behavioral research methods and techniques that can be applied at 
every stage of the software development lifecycle, to improve the usability of the developed product 
by conducting usability studies that analyze users’ needs or evaluate the product’s usability. Usability 
engineering is a field that is concerned generally with human-computer interaction and specifically with 
making human-computer interfaces that have high usability or user friendliness. It provides structured 
methods for achieving efficiency and elegance in interface design. According to (Nielsen, 1992) Usability 
engineering deals with issues such should be user centered in order to develop an effective and efficient 
product. as system learnability, efficiency, memorability, errors and user satisfaction. Therefore, all designs

A key methodology for carrying out usability is called User-Centered Design (UCD). According to, 
UCD is an approach to designing ease of use into the total user experience with products and systems. 
It involves two fundamental elements; multidisciplinary teamwork and a set of specialized methods of 
acquiring user input and converting it into design. The following are the six core UCD principles, which 
correspond to the heart of UCD and provide as the structure for individual methods and procedures 
(Vredenberg, Isensee, & Righi, 2001). Set business goals, Understand users, Design the total customer 
experience, Evaluate designs, Assess competitiveness and Manage for users.

Scenario-Based Design (SBD) is one of the established usability engineering approach, a design-
representation based process that uses scenarios-narratives describing users engaging in some task, in 
conjunction with design knowledge components called claims, which encapsulate the positive and nega-
tive effects of specific design features as a basis for creating interactive systems (Lee & McCrickard, 
2007). SBD design practices allow usability engineers to design an interaction architecture that supports 
the users’ tasks in an efficient and organized manner.

USABILITY ISSUES IN TRADITIONAL SOFTWARE 
PROCESS (WATERFALL MODEL)

The growing importance of computing systems in everyone’s daily lives has made software development 
an inherently multidisciplinary endeavor (Norman, 2005; Olsen, 2005). This raises the question of how 
to develop systems in ways that can best leverage the perspectives, practices and knowledge bases of 
these different areas. Software engineers, who focus more on the design andImplementa6tion of software 



214

Usability Engineering in Agile Software Development Processes
 

systems, and usability engineers who focus more on the interface design for end-users, are two areas of 
design that have not traditionally worked well together (Lee & McCrickard, 2007).

In this section we look at the traditional (Waterfall) software development lifecycle in relation to 
Usability engineering which is concerned with developing interfaces that people can use efficiently and 
effectively.

Waterfall Model

The waterfall development model originates in the manufacturing and construction industries; highly 
structured physical environments in which after-the-fact changes are prohibitively costly, if not impos-
sible. Since no formal software development methodologies existed at the time, this hardware-oriented 
model was simply adapted for software development (Benington, 1983).This model is the earliest Soft-
ware Development Life Cycle (SDLC) approach that was used for software development. The waterfall 
Model illustrates the software development process in a linear sequential flow; hence it is also referred 
to as a linear-sequential life cycle model. This means that any phase in the development process begins 
only if the previous phase is complete. In waterfall model phases do not overlap. Figure 3 shows the 
diagrammatic representation of different phases of waterfall model.

The general believe in any design process always goes with the slogan “Know Thy User” but in the 
waterfall model the slogan is “Know Thy Phases”. The model follow the generic engineering paradigm 
of requirements, design, implement, verify and maintain. The model depend on building a detailed 
specification on which design is based. In other words, it is documentation driven, heavyweight and big 
design upfront.

Figure 3. Phases of Software Development. Source (Wikipedia, 2014)



215

Usability Engineering in Agile Software Development Processes
 

Advantages of Waterfall Model

• This model is easy and simple to understand.
• It is easy to manage due to the rigidity of the model-each phase has specific deliverables and a 

review process.
• In this model, phases are processed and completed one at a time. Phases do not overlap.
• Waterfall model works well for smaller projects where requirements are very well understood.

Disadvantage of Waterfall Model

• Once an application is in the testing stage, it is very difficult to go back and change something that 
was not well-thought out in the concept stage.

• No working software is produced until late during the life cycle.
• High amount of risk and uncertainty.
• Not a good model for complex and object oriented project.
• Not suitable for the projects where requirements are at a moderate to high risk of changing.

The Waterfall model is basically used for the project which is small and there are no uncertain require-
ments. At the end of each phase, a review takes place to determine if the project is on the right path and 
whether or not to continue or discard the project. In this model the testing starts only after the develop-
ment is complete. In the waterfall model phases do not overlap (ISTQB, 2014). This is a serious constrain 
to the traditional development lifecycle as projects are generally large and requirements are subject to 
change which implies there is a high tendency of uncertainty in requirements analysis. For example, 
in internet and mobile technology, frequent changes in requirements, technology and staff have been 
observed (Bhalerao et al., 2009)Thus, software development process has become more cumbersome in 
such environment. Traditional Software Development Methods (TSDMs) are proven to be unsuccess-
ful and software success rate of TSDMs is less than 40% in such environments (Cohn & Ford, 2003).

Also, very less customer action is involved during the development of the products. Once the product 
is ready, only then it can be demoed to the end users. Once the product is developed and if any failure 
occurs then the cost of fixing such issues are very high, because we need to update everywhere from 
document till the logic (ISTQB, 2014). It is either you discard the whole project and start all over or the 
client will have to compromise on the new features to be added to the requirement lists.

But the most important factor for the success of a software application is user acceptance (Hussain 
et al., 2008).An inherently usable and technically elegant application cannot be considered a success if 
it does not satisfy the end-users’ needs. End-users are often left out of the development process.

USABILITY IN AGILE

Usability has been important factor in the design and development of a software product. Its processes 
focus on systems that are adapted for end user (Sohaib & Khan, 2010). Hence, its underlying practices 
and theories can give insights into user motivations, characteristics and work environments and draw on 
many different areas including psychology, sociology, physiology and human factors (Lee & McCrickard, 



216

Usability Engineering in Agile Software Development Processes
 

2007). Furthermore, usability measures the quality of users’ experience when interacting with a product 
or system while, user-centered design is an approach for employing usability (Hussain et al., 2008).

Agile methods have been adopted by many IT organizations and have generated many quality products 
of software industry (Bhalerao et al., 2009). Similarly, usability evaluation have helped in the production 
of highly useable and user friendly product. Hence, agile practitioners have begun to explore ways of 
incorporating usability into agile methods (Lee & McCrickard, 2007). Agile been an iterative develop-
ment methodology, it provides an opportunity for review of customer requirements towards producing 
the final product. Effort have been made to propose approaches of integrating agile methodologies and 
usability engineering vis-à-vis UCD (Ambler, 2008; da Silva, Martin, Maurer, & Silveira, 2011 ; Hussain 
et al., 2008; Sohaib & Khan, 2010). Usability engineering provides structured methods for achieving 
usability in the system development process.

Integrating usability engineering into agile software engineering will help reduce the risk of running 
into wrong design decisions by asking real end-users about their need and activities (Hussain et al., 2008). 
Considering the fact that both usability and agile focus on users, it makes it possible to integrate them. 
Both agile methods and usability practices follow cyclical development cycle, are human-centered and 
both emphasis team coordination and communication (Lee & McCrickard, 2007).

Interaction Design

Interaction Design is a methodology where the goal is to provide end-user with functions that are both 
desirable and useful. Following the fundamental tenets of user-centered design, the practice of interaction 
design is grounded in an understanding of real users, their goals, tasks, experiences, needs, and wants 
(Maier, 2015). Approaching design from a user-centered perspective, while endeavoring to balance us-
ers’ needs with business goals and technological capabilities, interaction designers provide solutions to 
complex design challenges, and define new and evolving interactive products and services. In interaction 
design, interaction designers focus on what is desirable, while engineers focus on what they are capable 
of building, and business stakeholders focus on what is viable (Ambler, 2008).

Interaction designers otherwise known as user experience practitioners are very instrumental to the 
success of a software product. According to (Cooper, 2009) Interaction designers imagine the end-state 
so they can determine what actual business case the product will address and also establish a perfor-
mance metric of the necessary trade-offs that development demands. They concern them- selves with 
is strategic vision and product conceptualization. Interaction designers are typically concerned with the 
interaction between users and computers, this is referred to as human-computer interaction. While the 
elements of usability engineering model according to Nielson (Nielsen, 1992) is early focus on users, 
user participation in the design, coordination of the different parts of the user interface, empirical user 
testing, and iterative revision of designs based on the test results. Agile methods also share some of this 
aims with usability. In practice, agile team also consists of an outsource usability practitioner or interac-
tion designer who provides an independent analysis of designs and makes structured recommendations 
based on user responses and against best practice and usability standards (Eklund & Levingston, 2008). 
It has been suggested by Miller that interaction designers who are willing to understand and accept 
Agile development concepts are well-suited to take on the Agile customer role. Accordingly, (Cooper, 
2009)concluded that interaction designers, at their strategic best, are superbly equipped to play the role 
of product owner effectively, efficiently, and collaboratively. Hence, they speak tech to the developers, 



217

Usability Engineering in Agile Software Development Processes
 

speak business case to the managers, speak user personas to the marketers, and – being responsible 
craftsmen – are beholden only to the success of the project.

An interaction designer play a key role throughout the entire development process of any software. 
They perform the following activities as part of a project team (Maier, 2015):

1.  Form/inform a design strategy: Although the boundaries here are fuzzy, it is certain that an inter-
action designer will need to know who he/she is designing for and what their goals are. A design 
strategy will help team members have a common understanding of what interactions need to take 
place to facilitate user goals.

2.  Identify and wireframe key interactions: After the interaction designer has a good idea of the 
strategy motivating the design, he/she can begin to sketch the interfaces that will facilitate the 
necessary interactions. Some professionals will literally sketch these interactions on a note pad/
dry-erase board while others will use software application (s) to aid them in the process; some will 
create these interfaces collaboratively while others will create them alone. It all depends on the 
interaction designer and their particular workflow.

3.  Prototype Interactions: This depends on the project, the next logical step for an interaction de-
signer might involve the creation of prototypes. There are a number of different ways in which a 
team might prototype an interaction, some of these include: XHTML/CSS prototypes and paper 
prototypes.

4.  Stay Current: One of the hardest parts about being a practicing Interaction Designer is the speed 
of change in the industry. Every day, new designers are taking the medium in a different direction. 
Consequently, users are expecting these new kinds of interactions to appear on your website. The 
prudent interaction designer responds to this evolution by constantly exploring the web for new 
interactions, taking advantage of new technologies, and pushing the medium forward themselves.

Therefore, considering the fact that ASD practices favour high level of collaboration, UEX practi-
tioners will conveniently fit into the team. Thereby, producing high-level and very broad modelling to 
address the majority of usability and user interface issues facing the team.

IMPACT OF USABILITY ON AGILE PROCESSES

As in other software development methodologies, usability has a great deal of impact on the final soft-
ware product. Development processes from both areas such as XP and SBD share many of the same 
foundational concepts including iterative development and a focus on users and communication (Lee 
& McCrickard, 2007). However, according to these same authors, a joint approach is difficult because 
agile methods, which are incremental and iterative in nature, do not support any kind of comprehensive 
overview of the entire interface architecture which is an important part of making consistent and usable 
interfaces. Another major challenge of incorporating usability into agile development processes is the 
fact that development companies are having difficulty fitting external testing into projects and budgets 
rather they are more comfortable incorporating usability into normal development methods (Eklund & 
Levingston, 2008).

One of the problems of integrating these two methodologies is that traditionally they use different 
approaches on how resources are allocated in a project (da Silva et al., 2011). Agile methods strive to 



218

Usability Engineering in Agile Software Development Processes
 

deliver small sets of software features to customers as quickly as possible in short iterations. On the 
other hand, UCD spend a considerable effort on research and analysis before development begins. While, 
(Ambler, 2008) believes that user experience addresses several issues that are critical to the success of 
agile software development teams.

Therefore, the need to fully integrate usability into agile development methodologies/processes cannot 
be overemphasized. In order to address this issue, authors, researchers and practitioners have proffered 
a number of solutions and suggestions. These ranges from; combination of usability and ASD process 
that begins with interface design and then continue with existing ASD processes (Constantine, 2001); 
employ a methodology where software development and usability engineering proceeds in parallel (Pat-
ton, 2002); invite usability analyst at the initial design and development stages to advice on principles 
and standards on current and best practices (Eklund & Levingston, 2008); the focus on integrating agile 
methods and UCD should be on design as well as on usability evaluation (da Silva et al., 2011).

The aforementioned suggestions are all geared toward achieving software products that are not only 
technically good but also highly useable. In order for ASD methods and usability engineering practices 
to work together effectively, the following are imperative (Lee & McCrickard, 2007):

• Developers design consistent and coherent interface architectures within an incremental agile 
development framework.

• Usability evaluations be streamlined so they better fit in accelerated development cycles while still 
providing useful results.

• Project members support communication and cooperation between designers, customers, users 
and other stakeholders who have different backgrounds and expertise. Even though, customer is 
involved throughout the project life cycle to provide inputs, usability practitioners want the final 
product should be usable. Traditionally, the project manager overseas the designer’s work and is 
responsible for relationship with the client. In contrast, agile development has client closer work-
ing relationship with the designer, and the project manager overseas the process, less directly 
involved in design details (See Figure 4).

Figure 4. New team dynamics specified by Agile (Eklund & Levingston, 2008)



219

Usability Engineering in Agile Software Development Processes
 

Therefore, it is not enough for agile development process to involve real end-user but also a usability 
expert; since, usability testing is not all about what users say and do, there is a significant component 
of expert analysis, particularly when it comes to making recommendations. The usability analyst will 
have undertaken many usability studies and be aware of best practice and well as guiding principles 
relating to consistency, feedback and other principles. Issues are identified and analyzed against a set 
of criteria, described in standard terminology such as navigation, page layout, aesthetic design and so 
forth. It is knowledge and understanding of these heuristics by the outsource usability analyst which 
highlights their value.

CONCLUSION

This chapter discussed usability engineering in agile software development processes. In order to take 
full advantage of the promises of agile methodologies, usability need to be taken seriously. As more 
organizations adopt agile as their standard methodology to produce software products that are techni-
cally sound, usability practitioners are concerned with the final product. Therefore, both communities 
need to work together to be able to achieve highly quality usable software.

As it is now, usability fits in well with ASD. However, gathering requirement from the actual end-
user instead of the project customer/client will go a long way in improving the integration of the two. 
Therefore, usability and agile are well compatible and they can work together.

REFERENCES

Agile Manifesto. (2014, December 12). Retrieved from http://www.agilemanifesto.org

Ambler, S. W. (2008). Tailoring Usability into Agile Software Developement Projects. In E. Law, E. 
Hvannberg, & G. Cocklon (Eds.), Measuring Usability (pp. 75-95). London: Springer-Verlag.

Ambler, S. W. (2015, March 21). Introduction to Agile Usability: User Experience (UX) Activities on 
Agile Development Projects. Retrieved from Agile Modeling: http://agilemodeling.com/essays/agileUs-
ability.htm

Benington, H. D. (1983). Production of Large Computer Programs. IEEE Annals of the History of Com-
puting, 5 (4), 350–361. doi:10.1109/MAHC.1983.10102

Bhalerao, S., & Ingle, M. (2007). Mapping SDLC phase with Various Agile Methods. International 
conference on Advances in Computer Vision and information Technology, (pp. 318-325). Aurangabad.

Bhalerao, S., Puntambekar, D., & Ingle, M. (2009). Generalizing Agile Software Development Life 
Cycle. International Journal on Computer Science and Engineering, 1 (3), 222–226.

Cohn, M., & Ford, D. (2003). Introducing an Agile Process to an Organization. IEEE Computer Society, 
74-78.

Constantine, L. L. (2001). Process Agility and Software Usability: Toward Lightweight Usage-Centered 
Design. Information Age, 8 (2).

http://www.agilemanifesto.org
http://agilemodeling.com/essays/agileUsability.htm
http://agilemodeling.com/essays/agileUsability.htm
http://dx.doi.org/10.1109/MAHC.1983.10102


220

Usability Engineering in Agile Software Development Processes
 

Cooper, A. (2009). An Insurgency of Quality. Retrieved March 11, 2015, from http://www.cooper.com/
journal/insurgency-of-quality.pdf

da Silva, T., Martin, A., Maurer, F., & Silveira, M. (2011). User-centered design and Agile methods: a 
systematic review. International Conference on Agile Methods in Software Development AGILE 2011. 
doi:10.1109/AGILE.2011.24

Eklund, J., & Levingston, C. (2008). Usability in Agile development. UX Research, 1-7.

Exam Certification, I. S. T. Q. B. (2014, December 12). What is waterfall model - advantages, dis-
advantages. Retrieved from http://istqbexamcertification.com/what-is-waterfall-model-advantages-
disadvantages-and-when-to-use-it/

Fernandez, A., Insfran, E., & Abrahao, S. (2011). Usability evaluation methods for the web: A systematic 
mapping study. Information and Software Technology, 53 (8), 789–817. doi:10.1016/j.infsof.2011.02.007

Hussain, Z., Lechner, M., Milchrahm, H., Shahzad, S., Slany, W., Umgeher, M., & Wolkerstorfer, P. 
(2008). Agile User-Centered Design Applied to a Mobile Multimedia Streaming Application (A. Holz-
inger, Ed.). Berlin: Springer-Verlag. doi:10.1007/978-3-540-89350-9_22

ISO. IEC 9126. (2001). Software product evaluation—quality characteristics and guidelines for the user. 
Geneva: International Organization for Standardization.

Koskela, J. (2003). Software configuration management in agile methods. ESPOO, 514, 1–54.

Larman, C. (2003). Agile and Iterative Development: A Manager’s Guide. Addison-Wesley.

Lee, J. C., & McCrickard, D. S. (2007). Towards Extreme (ly) Usable Software: Exploring Tensions 
Between Usability and Agile Software Development. IEEE Computer Society.

Maier, A. (2015, March 21). Complete Beginner’s Guide to Interaction Design. Retrieved from UX 
Booth: http://www.uxbooth.com/articles/complete-beginners-guide-to-interaction-design/

McInerney, P., & Maurer, F. (2005). UCD in Agile Projects: Dream Team or Odd Couple? Interaction, 
12 (6), 19–23. doi:10.1145/1096554.1096556

Miller, L. (2006). Interaction Designers and Agile Development: A Partnership. UPA.

Nielson, J. (1992). Usability Engineering Life Cycle. IEEE Computer, 25 (3), 12–22. doi:10.1109/2.121503

Nielson, J. (2012). Introduction to Usability engineering. RMIT University.

Norman, D. A. (2005). Do companies fail because their technology is unusable? Interaction, 12 (4), 69. 
doi:10.1145/1070960.1070998

Ntier Training. (2014, December 10). Agile Software Development. Retrieved from http://www.ntier-
customsolutions.com/training-courses/agile-software-development/

Olsen, G. (2005). The emperor has no lab coat. Interaction, 9 (4), 13–17.

Patton, J. (2002). Hitting the target: adding interaction design to agile software development. OOPSLA ’02.

http://www.cooper.com/journal/insurgency-of-quality.pdf
http://www.cooper.com/journal/insurgency-of-quality.pdf
http://dx.doi.org/10.1109/AGILE.2011.24
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://dx.doi.org/10.1016/j.infsof.2011.02.007
http://dx.doi.org/10.1007/978-3-540-89350-9_22
http://www.uxbooth.com/articles/complete-beginners-guide-to-interaction-design/
http://dx.doi.org/10.1145/1096554.1096556
http://dx.doi.org/10.1109/2.121503
http://dx.doi.org/10.1145/1070960.1070998
http://www.ntiercustomsolutions.com/training-courses/agile-software-development/
http://www.ntiercustomsolutions.com/training-courses/agile-software-development/


221

Usability Engineering in Agile Software Development Processes
 

Sohaib, O., & Khan, K. (2010). Integrating Usability Engineering and Agile Software Development: A 
Litereture Review. International Conference On Computer Design And Appliations (ICCDA 2010) (pp. 
V2-32). IEEE. doi:10.1109/ICCDA.2010.5540916

Sy, D. (2007). Adapting Usability Investigations for Agile User-centered Design. Journal of Usability 
Studies, 2 (3), 112–132.

Vredenburg, K. S. I., & Righi. (2002). User-centered design: An integrated approach. Prentice Hall PTR.

Wikipedia. (2014). Software Development Process. Retrieved December 12, 2014, from http://en.wikipedia.
org/wiki/Software_development_process

KEY TERMS AND DEFINITIONS

Agile: Software development approach that is characterize with quick development of software with 
minimal time spent on analysis and design.

Agile Methods: They are iterative procedures of software development that focus on timely delivery 
of software products.

Interaction Design: A methodology of providing end-users with desirable and useful functions.
Iterative Development: A strategy of breaking down the software development into smaller units, 

tested in a repeated cycles.
Usability: Ease of use of a software product.
Usability Engineering: The systematic study of the usability demand of software product user.
User-Centered Design: A methodology of carrying out usability.

http://dx.doi.org/10.1109/ICCDA.2010.5540916
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process


222

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  12

DOI: 10.4018/978-1-4666-9858-1.ch012

ABSTRACT

Agile software development has established as a reliable alternative to waterfall software development 
model. Unfortunately the use of agile software development has been limited to time based contracts 
and not for time limited contracts. The main reason for this limitation is the “Agile manifesto” itself. 
The forth value of the manifesto states that agile believers find more value in “Responding to change 
over following a plan”. This is the one of the main reasons why agile software development methods 
are not preferred for a fixed priced contract or time limited contract. The following case study provides 
an example on how the agile software development can be used for fixed priced software development 
contracts even when operating in offshore context. The agile software development concepts were used 
throughout to plan, execute, monitor, report, etc. for the project documented in this case study.

INTRODUCTION

Fixed Projects in Agile Software Development Environments

A fixed priced software development contract requires fixing all project parameters before the start of 
the project. There are three main project parameters referred as triple constraints (Zhang, 2008). They 
are (a) scope, (b) cost, and (c) schedule. There is a considerable upfront effort to fix the triple constraints 
and the outcome of this effort is the “project plan”.

The main rational behind fixing the parameters upfront is to transfer the risk of scope/cost/sched-
ule overruns to supplier. This approach has been criticized by many leading agile practitioners. (S. W. 
Ambler, 2003) argues that “Risk should be borne by the party best able to manage it” (p.158). There 
are many disagreements between how the agile thinkers want to run a project and what a fixed priced 
contracts demands.

Fixed Priced Projects in Agile:
Fixed Projects in Agile Software 

Development Environments

Anuradha Chaminda Gajanayaka
Exilesoft (Pvt) Limited, Sri Lanka



223

Fixed Priced Projects in Agile
 

The first major conflict can be found in the agile manifesto itself. The fourth value of the manifesto 
states agile believers fine more value in “Responding to change over following a plan”. Further, the 
second principle of the manifesto states that agile believers welcome changing requirements, even late 
in development. Agile processes harness change for the customer’s competitive advantage. This is in 
direct conflict of fixing triple constraints before the start of the project.

The second important conflict is that agile believers do not encourage big upfront planning effort 
to fix the project parameters. Agile thinkers believe this upfront effort is a waste. Mike Cohn (2011) 
explains how Scrum is not fighting the so called cone of uncertainty (p. 3). Agile followers believe in 
small planning step at the start and then iteratively improve the plan when the project moves forward. 
(Cohn, 2006) mentions: what is important is the “planning not the plan” (p. 9)

The result of these conflicts is creation of the common notion that agile software development is not 
suitable for fixed priced contracts. Fixed priced contracts are being managed using waterfall software 
development model(Schwaber, 2004) argues that scrum is not a silver bullet (Hoda, Noble, & Marshall, 
2009). The downside of this has been fixed priced contracts do not get the benefits which agile software 
development offers.

It is not always possible for an agile software development organization to turn down all the fixed 
priced projects. Situations such as government contracts, tenders, etc. require fixing the triple constraints 
before the start of the project.

But certain sections of agile community are being in favor of using agile software development in 
fixed contracts. In one example, (Fowler, 2003) argues that is it is possible to use agile methods in fixed 
price contracts.

“There are two major challenges when applying agile methodologies in to a fixed price contract. One 
is how to fix the three parameters at the beginning and the second challenge is how to manage the fixed 
project while not violating agile values and principles. The second reason is how to manage the project 
once the parameters are fixed.” (Fowler, 2003).

Any of these discussions has matured to result in a meaningful framework on how to apply agile 
software development in fixed priced contracts. This case study demonstrates how the project team 
managed to use agile software development concepts in a fixed priced contract. Team had to face many 
additional complexities than fixing triple constraints.

• The scope was to re-write a legacy system which was in production for number of years. The data 
migration & new system transition have to happen without affecting a single user

• Team had only seven working days to provide the project proposal
• Team and the client were geographically separated by 8000 kilometers and they didn’t know each 

other before
• The time difference between the client and the supplier was 4.5 hours

The team involved in the project had 3 software developers, one project manager and one consultant 
architect. The consultant architect was able to locate himself at the client’s site during the 7 days period 
where the proposal was made (Agile Methodology in Fixed Price projects. Global Advanced Research 
Journal of Engineering, 2013).

This was an offshore software development project using agile software development practices to 
manage & successfully deliver a fixed price contract.



224

Fixed Priced Projects in Agile
 

PLANNING THE PROJECT

Difficulties in Planning

It was a special project for the organization in many different aspects. There were many unfamiliar fac-
tors for the team to face.

• The previous experiences of fixed priced development were not positive for the organization (D., 
Chiosi, Paltiel, Sax, & Walensky, 2011).

• There was only 7 working days available to submit the project proposal
• This was the first engagement with the client and parties were not known to each other

The team had to find a new approach for the project considering the above challenges. However the 
team was determined to carry out the project within the boundaries of agile manifesto. What they real-
ized was that the known agile methodologies do not provide a good framework to manage such fixed 
priced projects (Lycett, 2001).

For example agile teams forecast the completion date is using backlog size and the velocity. Backlog 
size is estimated in story points using relative estimation technique. The velocity is how many story 
points the team can complete in a sprint. The velocity can only be found after completing few sprints. 
(Cohn, 2006). Therefore it is not possible to find a reliable project completion date at the beginning of 
the project. Also the project completion date gets affected by the fluctuations of velocity over the period 
of time. So these accepted agile practices do not give a meaningful way to plan, execute and monitor a 
fixed priced project.

Therefore the team decided to create their own tools and techniques for the project. Also they were 
to pick whatever the applicable practices from standard agile methodologies such as Scrum, XP, etc. 
They (Miyazaki & Suenaga, 2015) decided that four values and twelve principles of the agile software 
manifesto would act as the lodestar for the project.

Fixing the triple constraints

Team has to do the followings activities in the mentioned sequential order to provide a fixed price for 
the project.

1.  Fix the scope
2.  Fix the team size
3.  Fix the effort
4.  Derive the cost and schedule
5.  Submit the project proposal

Team had to use the available seven days period carefully to submit the proposal. Team created two 
sub phases for the planning period. The first phase was reserved to domain study. The second phase was 
reserved to create the proposal for the project.



225

Fixed Priced Projects in Agile
 

Domain Study

In the first phase, team planned to study the domain for three days. Client’s product manager was avail-
able to interact with the team during the first phase. Team carried out an online workshop to explore 
the domain. Only four and half hours of overlapping time were available due to the time difference 
(Poppendieck, 2003).

Consultant architect, client’s product manager and client’s technical architect were connected from 
one end. Three developers and the project manager were connected from the other end. All the video 
conferencing and screen sharing were done through Skype. The below mentioned activities were carried 
out during the online workshop (Stropek, 2014).

Defining the product vision

The first activity of the online workshop was to define the “Vision of the product”. Two groups were 
created with a mix of onsite members and offshore members. The offshore members had very little 
knowledge and the whole product knowledge was with the onsite team. The consultant architect was 
the facilitator (Strydom, 2006).

The product vision activity turned to be a Q&A session which all the questions came from offshore 
members and the onsite member had to provide the answer. The following format was used to define 
the product vision.

• For (target customer)
• Who (statement of the need or opportunity)
• The (product name) is a (product category)
• That (key benefit, compelling reason to buy)
• Unlike (primary competitive alternative)
• Our product (statement of primary differentiation) (Poppendieck, 2003)

Two groups created two separate product visions and thereafter they consolidated their findings to 
create single vision for the product. The created vision was not perfect but there were two objectives of 
this exercise.

First objective was to create a placeholder phrase which can be used to cross check the software 
which team will create later in the project. The most important purpose was to break the ice between 
the members and to facilitate effective collaboration as the members were not known before. The main 
pillar of agile software development is the “individuals and interactions” (van Cauwenberghe, 2015).

Product stakeholder behavior analysis

The next activity was to analyze the behavior of the product stakeholders. The following table was used 
to analyze the behavior of the product stakeholders (see Table 1).

Team again divided in to two groups and performed the analysis independently. It again turned out 
to be a Q&A session as where the domain knowledge flows from onsite members to offshore members 
(Yaju, Kataoka, Eto, Horiuchi, & Mori, 2013).



226

Fixed Priced Projects in Agile
 

After the consolidation of the individual working, team ended up with having a better idea about the 
product stakeholders. Number of product stakeholders identified were more than ten.

Product Usage Flow

The major exercise of the domain workshop was the creation of the product usage flow. Product usage 
flow is a high-level description of product stakeholders’ action in to the system. The usage flow format 
was adopted from usage scenario from Agile Modeling (S. W. Ambler, 2002).

Team had to engage in multiple discussions to understand each stakeholder’s actions in the system. 
The product manager conducted detail demonstrations of the existing product. Team also had the ac-
cess to existing test system where they gathered first-hand knowledge on the existing system (Zeng, 
Rainforth, & Cook, 2015).

Team enforced a self-limitation to number of points in the usage flow not to exceed 30 points. The 
main reason for this was not to lose in the minor product details and discussion as the usage flow still 
acted as a high-level description of the product.

But it was utmost important for the team to understand the details of the product as they were to 
forecast the project parameters. The details were to come from the product backlog and it was the next 
activity which the team took upon (Zhang, 2008).

Defining the Backlog

It was decided early in to planning that the team would use the product backlog at the estimation basis. 
Therefore team had to write the product backlog carefully. They engaged in multiple round of refinement 
to come up with the final backlog.

The starting point for the backlog was the usage flow. Each point in the usage flow acted as a “theme” 
for the backlog in scrum terminology (Cohn, 2006). Team discussed each point of the product usage 
flow in detail and defined the associated requirements, conditions, constraints, etc. Team had to engage 
additional discussions with onsite members as well as to go through the test system again & again. Team 
created the associated stories for each theme based on the understanding they gained through these ad-
ditional activities. This was a typical user story creation workshop adapted from scrum methodology.

After working on this for two days, team was able to come up with a backlog around one hundred 
and fifty user stories. Team believed that the current backlog had enough clarity for the initial estimate. 

Table 1. Stakeholder analysis example for a warehouse management system

Stakeholder Main Feature(s) Being 
Used

Purpose of Using the 
System

Number of 
Users

Usage Medium

Warehouse clerk Issue goods, receive 
goods

To issue and receive goods 
from the warehouse

50+ Personal computer 
connected to WWW

Procurement manager Stock replenishment 
report

Identify what stocks to 
replenishment

1 Laptop/Tablet connected 
to WWW

Warehouse controller Stock summary report Keep a track of stock 
movement

3 Laptop connected to 
WWW



227

Fixed Priced Projects in Agile
 

They concluded that they have reached the point of diminishing return of accuracy of the requirements 
compared to the effort they have to put in.

Note: Team moved away from the popular user story template of, As a … I want to … So that …
Team used a free flowing pattern for the user stories such as “Create warehouse”, “Issue Good re-

ceiving notes”, etc. The main reason for this is that the “As a …” format forces to focus on too much 
detail than required at this stage.

CREATING THE PROJECT PROPOSAL

The second phase of the planning activity to create the project proposal as team now had good under-
standing in to the domain of the system.

Sizing the Backlog

The next step in the planning process was to come up with the effort estimate. Team did not use the story 
point estimate technique as they are not able to derive a reliable velocity since the project is not started yet. 
The second major drawback of the relative estimation technique is that all the stories have to be scanned 
to find the correct relative size of a story. For example to estimate the 20th story, one need to compare it 
against all the 19 stories which were estimated earlier (Cohn, 2006). Getting this consistency across one 
hundred and fifty stories would require lot of effort and time which team did not have at this moment.

Team decided to re-arrange the user stories in a way such that each story would take one week for a 
developer to complete. This is typically known as equal sizing. The main advantage of this is that team 
does not require the velocity in order to come up with the completion date.

The backlog at this point of time had stories with difference sizes. Therefore team broke the larger 
stories and combine the smaller stories to make them equal. The larger stories were broken adding a 
pre-fix to the story. For example, the initial data migration story was broken as “Experimental” data 
migration, “Basic” data migration, “Final” data migration, etc. The smaller stories were combined 
together by using the word “management”. For example, “user list”, “user create”, “user edit” stories 
were combined to single story named “user management” story.

The “one week” developer effort was an important calibrator as it was natural for a developer to 
forecast what he can complete within a week. The range of one week was not too short to be stuck in 
dependencies as well as not too long to go in to fuzzy zone of estimation.

Team realized that they have to count the effort on certain non-functional tasks such as setting up 
project & deployment environments, etc. to make the final estimate more reliable. Also they had to de-
fine some common functionality such as “Email service”, “Document attachment service”, etc. which 
they labeled as project infrastructure stories. Some of those tasks required effort of more than one week. 
They broke down those tasks further to create one week stores. For example, team ended up with stories 
such as “Experimental” deployment, “Basic” deployment, etc.

The next step was how to plan for testing & milestone preparation. Again team created stories worth 
of one week such as “Brower testing – Google Chrome + Safari”, “Milestone 1 – preparation”, etc. 
Milestone preparation stories were used to cover effort of releasing, demo preparation, etc.

After the backlog was completed then team had to simple count of number of stories in order arrive 
at the effort in man weeks.



228

Fixed Priced Projects in Agile
 

Note: The theory behind the equal sizing estimates is the probability theory of Law of large number 
(LLN). This law states that “the average of the results obtained from a large number of trials should be 
close to the expected value, and will tend to become closer as more trials are performed.” The expected 
value of each story is one week and as there were around one hundred and twenty stories in the back-
log, the average results would close to the expected value. (This will not be available with story point 
estimates as each story size differ from each other)

Defining Milestones

Team decided to set down some milestones in backlog to make the planning more visible. These mile-
stones are to be probable releases if customer is satisfied with the working software at that point. Team 
used the first principle in agile manifesto in order to derive the milestone. The first principle states “our 
highest priority is to satisfy the customer through early and continuous delivery of valuable software”.

Team created meaningful milestones focusing on delivering most valuable features first. Some of 
these features would not be possible to use in isolation at the beginning but it provided ample time for 
customer to give feedback. Therefore most valuable features are harden most when the first release is 
in production.

The first milestone was “Basic demo of the core functionality of the system”. The second milestone 
was “Advanced demo of the core functionality”. The third milestone was the “Basic version of the sys-
tem”. Team defined 7 such milestones.

Then team identified the stories that required to go in to each milestone block. While doing this 
team had to re-design some of the existing stories so that they would fit in to the milestone. Team used 
Google spreadsheet to do this activity.

Through this team adhered to first principle of agile manifesto and planned to deliver valuable soft-
ware to the customer early as possible.

Arriving at the Schedule

The schedule was a simple summary of milestones as team had the milestone embedded into the backlog. 
Team had three developers and therefore they would be able to burn three stories each week. Therefore 
if first milestone had 15 stories, team would be able to deliver it by end of 5th week. By doing this team 
marked what stories would be delivered in 1st week, 2nd week, etc. Therefore they knew what week the 
each story would be delivered. The following table illustrate how the schedule plan was made (see table 2).

Team continued using the Google spreadsheet which gave them enough flexibility with the formulas.
Here the team kept the schedule planning simple as they were expecting changes to the plan during 

the project execution. Team was planning to adhere to the last value of the agile manifesto “Responding 
to change over following a plan”.

Project Proposal

Creating the project proposal was a simple activity now as team created all the required documents by 
now. What was required was to compile their working documents in to one single proposal and fine tune 
the work they already completed.



229

Fixed Priced Projects in Agile
 

The project proposal had a summary of the scope, schedule, cost and a description about how the 
project estimation was done. The backlog, technical diagrams and the contract were the major appendices 
for the project proposal.

Conclusion of the Project Planning

After the submission of the project proposal, the team completed the initial stage for the project. It was 
then up for customer decide the whether they would like to go ahead with the project or not.

Team was confident that they gave a realistic proposal with the approach they adopted to plan this 
fixed price project. They were happy that they went beyond the traditional planning of a typical fixed 
priced project and used agile values and principles for the planning process. They were further confident 
that they will be able to execute and manage the project by adhering to the values and principle of agile 
manifesto.

What is remarkable is that the team was able to come up with a confident proposal in seven days with 
all the challenges and limitations they had to face.

Development Start

Team got the positive news of customer accepting the proposal after few weeks from the proposal sub-
mission. The team was ready to start on development as soon as the contract was signed.

Team had very little to plan further as most of the planning happened at the proposal submission. The 
main thing they had to do additionally was to agree on the times for meetings such as iteration planning, 
demos, daily sync up, etc.

The project started with a quick round up meeting and the first iteration planning meeting. Everybody 
agreed to go along with iterations with two weeks of calendar time.

Table 2. Project schedule and milestone plan

# Week # Milestone Story Status Notes

1 Week 1 Milestone 1 Story zxc Planned

2 Week 1 Milestone 1 Story vbn Planned

3 Week 1 Milestone 1 Story mlk Planned

4 Week 2 Milestone 1 Story jhg Planned

5 Week 2 Milestone 1 Story fds Planned

6 Week 2 Milestone 1 Story aqw Planned

7 Week 3 Milestone 1 Story ert Planned

… … … … …

15 Week 5 Milestone 1 Completion of milestone Planned

… … … … …



230

Fixed Priced Projects in Agile
 

Execution, Monitoring and Control

The monitoring of the project was very simple as the expected velocity was clear from the day one. The 
iteration was two weeks long and with three developers, the expected velocity was six stories per itera-
tion. Team broke an iteration in to two equal parts thus giving them a target of three stories per week. 
So the simple target for each developer was to complete a single story for a week.

The sizing of one story per week gave just the right amount of time for a developer to be creative 
when implementing the story. This was due to the fact that developers were not focusing on small daily 
tasks but border one week stories. (Team was focusing on the story not the sub-tasks of the story. Team 
created the sub-tasks only when really necessary). This allowed them to be innovative and adaptive to 
deliver things which would be valuable to customer rather than just following a pre-defined script. This 
was one of the major innovative achievements which team was able to be creative and adoptive but still 
achieving the initially defined fixed targets.

While the team progressed over the time, team gained valuable knowledge in to the project and the 
product. Team realized their estimation errors when they got more and more knowledge. Therefore team 
knew what were the stories they under-estimated and what were over-estimated after few initial iterations.

Team used this knowledge to their advantage rather than to their dis-advantage. Team balanced the 
two weeks of the iteration with over-estimated stories and under-estimated stories. This was by taking 
3 stories which were under estimated and 3 stories which were overestimated for one iteration. So team 
kept the velocity in control.

One disadvantage this balancing was that team had to re-shuffle the initial project schedule & the 
milestone plan. This was due to the fact that team was picking stories from here and there to balance 
the iteration. But they ensured that the defined milestones are not disturbed by re-shuffling the stories 
within a milestone.

Note: It was important to keep the milestone intact to keep a check on the uncontrollable scope creep. 
There was a risk of adding more and more new things in to the plan as team re-shuffled the stories. The 
milestones clearly marked the boundaries of the available space to change.

But the plan was further changed over the period of time based on two major factors.

1. Team Adhered to the Time Boxing Not to the Scope

What happened here is that team always used one week to complete the story, irrespective whether they 
were able to complete the defined functionality in less time (the definitions were not strict either as team 
didn’t have any requirement specifications). Team was developing the basic versions of the features at 
the initial period. So at the initial period, team had enough additional functionality of the same feature 
to continue development for the week even though defined work is completed before week ended.

(The main focus on these kind of situations was to balance this kind of over-estimated story with an 
under-estimated story for the iterations as mentioned above. But it was not always possible to achieve 
as team had to adhere to the milestones.)

The result of this was that team had already implemented some of the stories that were in the bot-
tom of the backlog. For example, if there were four stories were planned for a feature, by the time team 
completed 3rd story, there were not much left to do with the 4th story and it was not required.



231

Fixed Priced Projects in Agile
 

2. Changes

As in any software development project, certain changes were introduced during the development pro-
cess. The main sources for changes were

1.  Missed functionality at the planning
2.  Improvements
3.  Wrongly implemented functionality
4.  Additional features that was added to existing system after the planning point
5.  Bugs

The final result of these factors was that the initial plan got outdated after certain period of the time 
in to the development. The team proposed the “re-planning” to customer and he accepted it. This is 
adhering to the fourth value of agile manifesto “Responding to change over following a plan”.

Re-Planning

Team conducted a re-planning effort at the middle of the project as the initial plan got outdated. Cus-
tomer agreed to accept the new plan within the initially defined cost & schedule. The factors that were 
to consider in re-planning were;

• There were around fifteen stories which were not needed as team covered the features of those 
stories from already completed stories

• There were around five stories which became obsolete as those features were not required any 
longer

• Altogether there were twenty stories which were not required at the point of re-planning
• There were around twenty five new stories which was required to be factored in to as changes
• So the net impact to the plan in terms of schedule, cost and effort was that five additional stories 

has to be completed to finish off the project
• As an additional point, the team was having an average velocity of nearly seven stories per itera-

tion (target was six stories).
• Once this was factored in to the picture, the forecasted completion date was in the range of what 

was planned originally even with additional stories.

After the re-planned was completed, the team came up with the new plan and reminder of the project 
was executed based on the new plan. This was again re-iterated the agile value of “Responding to change 
over following a plan”.

Quality Assurance

It was critical to ensure that team produce valuable working software from the day one. Therefore team 
had to ensure that no defects were accumulated at the end. Team engaged in many activities to ensure this.

One of the major factors was to use the continuous delivery from the start. Team used a cloud deploy-
ment environment called apphabour to set up automated deployment at the initial stage. This was due to 



232

Fixed Priced Projects in Agile
 

the reason that customer couldn’t provide the proper deployment environment at the start. Team pushed 
the working software at each commit and customer and stakeholders provided the immediate feedback. 
This early feedback ensured that team has less defects as well as cost of fixing a defect was less.

Another important aspect for the development was to use SonarQube as a code analysis tool in col-
laboration with continuous integration. Team was able to control the code quality through SonarQube. 
Each developer spent first fifteen minutes of every morning to improve and keep an eye on the code 
quality through SonarQube in additional to normal routines. This ensured no technical debt was accu-
mulated at the end of the project.

Team had to rely on themselves on manual testing as they did not have an external tester available for 
them. Team used Kanban board to keep a track on the daily tasks. Instead of traditional three column 
Kanban board (To do, in progress and done), they created an additional “Test” column. Team had a rou-
tine where once a story is completed by a developer, he moved it to “Test” column. Separate developer 
picked the story from the teat column and perform manual testing on the story. If the testing developer 
is satisfied he moved to “Done” column. Otherwise the stories went back to the “in progress” column 
to fix the identified bugs. Through this the team was able to keep a good hold of the functional quality.

Reporting

The project reporting was performed at the each iteration. The main matrix was the forecasted project 
completion date. This was arrived at the following simple equation (see Figure 1).

Consider the following example;

• Project started on 2014 May 12th and reporting date is 2015 November 28th

• By the reporting date, there are fifty six stories to complete and team had an average velocity of 
6.1 stories per sprint so far.

• The Figure 2 explains how the equation is used in this situation.

Further team visualize the completion of the backlog through “Feature completion harness”. It is a 
combined bar chart which shows the status of each feature. Feature is a collection of stories which has 
a direct reference to the line in the usage flow (see Figure 3).

Team used horizontal bars to represent the features (collection of user stories) and different colors in 
the bar to represent the status of individual stories. The last bar shown in the example has four different 
colors in the bar. Blue shows stories which are in the “Completed” status. The dark green shows the 
stories that are in “Done” status. The black color represent the stories in “Removed” status and red color 
represent the stories that are in “To do” status. In this project, the statuses “Completed” and “Done” 
represent stories which have been finished and accepted. The “Removed” status means those stories are 
no longer required to be developed and “To Do” status means those stories are to be developed. The last 
status is “In Progress” which represents the stories which are currently under development at the point 
of report generation.

The usage of color codes gave the reader an instant overview of the current status of development. 
If everything is green in a bar, it means that feature is completed. In vice versa, everything is brown, it 
means everything has to be started of that feature.



233

Fixed Priced Projects in Agile
 

Figure 1. Report equation

Figure 2. Example on how to apply report equation

Figure 3. Report example



234

Fixed Priced Projects in Agile
 

Team engaged further in the standard scrum practices such as iteration planning, daily scrum, itera-
tion demos, retro, etc. as these practices are independent on billing model. These were again acted as 
reporting points.

Risk Management

The risk management for a software project is inevitable, irrespective of the process being used. The 
agile software development provides a different view how the risks should be managed. The CMMI©, 
ISO, etc. requires to manage risk as a separate activity whereas agile software development experts 
advise to manage risks within the stories.

In any case, it was critical to manage the risks for the project on real time to achieve the initially 
set targets of the scope, cost and schedule. Even a slight delay somewhere can accumulate further and 
expand in to uncontrollable level. Therefore it was very important to have monitor the progress strictly 
and take necessary corrections spontaneously. The following mechanisms were put in place to ensure 
that risks are identified and addressed without delays.

1.  Weekly reporting and progress points so the maximum waste is minimized
2.  Monthly sync up meetings with customer and team so that each other discuss and forecast where 

things can go wrong and address them
3.  The size of the project provided some cushion to play around. In one situation the existing system’s 

data dump got delayed for a considerable time resulting the stories for data migration got delayed. 
Still the team was able to find other work to complete and take data migration stories in a point 
where they don’t have to alter the new data structures.

4.  Focus on quality from the beginning. Team used a combination of TDD, UI automation, rotational 
testing, pair programming, etc. to ensure that team did not accumulate bugs at the end. Also through 
Sonar team ensured that code quality is at its best thus high readability and maintainability ensured 
less time required to fix a bug.

CONCLUSION

There was only 2.5% cost overrun & 7% schedule overrun for the project. These single digit overrun 
figures speaks themselves regarding the success of the project. Team demonstrated that it is possible to 
use agile software development concepts to successfully deliver an offshore fixed priced software de-
velopment project. The project was planned, executed and delivered without breaking any of the values 
and principles of agile software development manifesto.

The success was primarily due to the fact that team was able to use their thinking & creativity to 
discover, alter and invent certain practices within the boundary of agile software development manifesto. 
This indeed validates the first value of the agile manifesto “Individual and interactions over processed 
and tools” once more. The other main factor for the success was that customer was willing to operate 
the project using agile values and principles. It finally benefitted him more than any other but it was a 
significant factor.

Agile methods provide one additional advantage for a fixed priced project. Agile methods focus on 
getting rapid feedback whereas in waterfall model feedback is only possible at the end. This provides 



235

Fixed Priced Projects in Agile
 

an opportunity for correction at every two weeks’ time. It keeps the project in check and the maximum 
waste is limited to two weeks. This makes the cost and schedule to be kept in check continuously.

The highlights of this case study were;

• Online workshop & product usage flow
• Equal sizing estimation technique
• Milestone based delivery schedule
• Re-planning
• Code quality analysis and continuous delivery

With these highlights, team created a framework within agile software development which can be 
used to successfully deliver fixed priced software development project. Further team demonstrated how 
this framework can be used.

REFERENCES

Agile Methodology in Fixed Price projects. Global Advanced Research Journal of Engineering, Technol-
ogy and Innovation. (2013). Systemic Foresight Methodology, 2, 243-249.

Ambler, S. (2002). Agile modeling: effective practices for extreme programming and the unified process. 
Academic Press.

Ambler, S. W. (2003). Usage Scenarios. An Agile Introduction, 2753, 208.

Cohn, M. (2006). The Purpose of Planning. Journal of Planning Education and Research, 25(4), 446–448. 
doi:10.1177/0739456x0602500412

Fowler, M. (2003). Bliki: FixedPrice. Geochemistry, Geophysics, Geosystems, 4(11). doi: 
10.1029/2003gc000608

Hoda, R., Noble, J., & Marshall, S. (2009). Negotiating contracts for agile projects: A practical perspec-
tive. In Agile Processes in Software Engineering and Extreme Programming (pp. 186–191). Springer. 
doi:10.1007/978-3-642-01853-4_25

Lycett, M. (2001). Understanding ‘variation’ in component-based development: Case findings from 
practice. Information and Software Technology, 43(3), 203–213. doi:10.1016/S0950-5849(00)00159-2

Michael, Chiosi, Paltiel, David, Sax, & Walensky. (2011). State of agile survey 2011. Journal of General 
Internal Medicine, 26(6), 661–667. doi: 10.1007/s11606-011-1637-5

Miyazaki, K., & Suenaga, H. (2015). Extradiol Dioxygenases. Metagenome.

Poppendieck, M., & Poppendieck, T. (2003). ixed-Price Contracts. In Lean software development: An 
agile toolkit. Software Engineering Notes, 28(6), 30. doi:10.1145/966221.966665

Schwaber, K. (2004). Fixed-rice, Fixed-Date Contracts. In Agile project management with Scrum. 
Academic Press.

http://dx.doi.org/10.1177/0739456x0602500412
http://dx.doi.org/10.1007/978-3-642-01853-4_25
http://dx.doi.org/10.1016/S0950-5849(00)00159-2
http://dx.doi.org/10.1145/966221.966665


236

Fixed Priced Projects in Agile
 

Stropek, R. (2014). Molecular biology: RNA retrieved from intact tissue. Nature, 505(7483), 264. 
doi:10.1038/505264d

Strydom, R. (2006). Time is money - agile fixed price. Academic Press.

van Cauwenberghe, P. (2015). Agile Fixed Price Projects part 1: “The Price Is Right”. Academic Press.

Yaju, Y., Kataoka, Y., Eto, H., Horiuchi, S., & Mori, R. (2013). Prophylactic interventions after delivery 
of placenta for reducing bleeding during the postnatal period. Cochrane Database of Systematic Reviews, 
11, CD009328. doi:10.1002/14651858.CD009328.pub2 PMID:24277681

Zeng, P., Rainforth, W. M., & Cook, R. B. (2015). Characterisation of the oxide film on the taper interface 
from retrieved large diameter metal on polymer modular total hip replacements. Tribology International, 
89, 86–96. doi:10.1016/j.triboint.2014.12.012

Zhang, J.-G. (2008). What is project management. Method Study of Software Project Schedule Estima-
tion Guide.

KEY TERMS AND DEFINITIONS

Agile Software Development: Agile software development is a group of software development 
methods in which requirements and solutions evolve through collaboration between self-organizing, 
cross-functional teams. It promotes adaptive planning, evolutionary development, early delivery, con-
tinuous improvement, and encourages rapid and flexible response to change.

Offshoring: Offshoring is the relocation, by a company, of a business process from one country 
to another—typically an operational process, such as manufacturing, or supporting processes, such as 
accounting. Even state governments employ offshoring. More recently, offshoring has been associated 
primarily with the outsourcing of technical and administrative services supporting domestic and global 
operations from outside the home country (“offshore outsourcing”), by means of internal (captive) or 
external (outsourcing) delivery models.

Refactoring: Refactoring aims to have a cleaner “code” by restructuring the code without changing 
its external behaviour. The idea is to improve the design of the code with the intention of making it easy 
to use.

Scrum: This is an iterative, incremental software process, which is by far the most popular agile 
development process.

XP: This methodology consists of a variety of practices. These practices are used by developers in 
creating the required software.

http://dx.doi.org/10.1038/505264d
http://dx.doi.org/10.1002/14651858.CD009328.pub2
http://www.ncbi.nlm.nih.gov/pubmed/24277681
http://dx.doi.org/10.1016/j.triboint.2014.12.012


237

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  13

DOI: 10.4018/978-1-4666-9858-1.ch013

ABSTRACT

This chapter highlights a crucial problem seen often in software development that is bridging the com-
munication gap between business and technical language and that it can be addressed with “Behavior 
Driven Development” (BDD) methodology supplemented with “Specification By Example” approach of 
delivering the right software that matters. Effective communication has always been a challenge between 
clients, business stakeholders, project managers, developers, testers and business analysts because a 
“ubiquitous” language that every one can easily understand and use does not exist. Specification By 
Example serves as that ubiquitous language for all, helps build right software that matters through ef-
fective communication. Specifications are written in plain English language using the Gherkin syntax 
to describe various behaviors of software. BDD tools help write software specification using gherkin 
language and also create a living documentation that is automatically generated by programming lan-
guage reflecting the current state of software at any given point of time.

INTRODUCTION

Behavior Driven Development (BDD) is an emerging practice in agile software development (North, 
2006). BDD combines the general techniques and principles of Test Driven Development (TDD), Ac-
ceptance Test Driven Development (ATDD), Domain-Driven Design and object-oriented design. It 
provides software development and management teams an easy way to collaborate and create a shared 
understanding of system by building a domain vocabulary in English language that all the team members 
from various backgrounds can easily understand and use for communication with each other.

Behavior-Driven Development 
Using Specification by Example:

An Approach for Delivering the 
Right Software Built in Right Way

Praveen Ramachandra Menon
Independent Researcher, Singapore



238

Behavior-Driven Development Using Specification by Example
 

This chapter will highlight the key concepts involved from inception to completion, while building 
software using BDD technique in conjunction with specification by examples approach. The chapter 
will take the readers step by step through a real time example of building the vending machine software 
implemented in java. The chapter presents an immense opportunity to learn about agile practices involv-
ing BDD and TDD, which are some of the latest emerging trends. The whole BDD life cycle that also 
includes TDD implementation internally would be explained in detail using various diagrams and code 
snippets. This chapter starts with some background on history and evolution of the software development 
from early 1990s, definition and simplification of concept, author’s hypothesis on BDD implementa-
tion, some controversies, myths, benefits and key challenges involved with BDD implementation and 
concludes with a real time example of building the software in a BDD way.

BDD when used in conjunction with specification by example approach helps reflect on some of the 
lean principles in software development by avoiding wasteful over-specification. BDD avoids spend-
ing time on details of requirements that keep on changing before even being developed. BDD gives an 
efficient way to perform end user perspective regression checks on the system and validates frequently 
whether actual behavior is as per specification with help of automated continuous code integration, build 
and deployment process. BDD provides most recent (almost instant) and reliable living documentation 
with minimal maintenance costs that truly reflects the current state of software being developed. When 
the specification is described with concrete examples, it becomes very easy to develop and test system 
and uncover ambiguities in behavior. Once this specification is automated it becomes an executable ac-
ceptance test. BDD practice can be easily fit into either short agile iterations or flow-based process, so 
that information on upcoming work is produced just in time (Adzic, 2009).

In BDD, ideally everyone in the team discusses and writes the specification with concrete examples. 
A team typically has developers, testers, business analysts etc. In agile teams at the least, product owner 
write the specification so that team will have clarity on what they need to develop. In BDD the acceptance 
tests focus on various behavior of system and will initially fail, as features are not yet implemented. As a 
sprint progress, the developers will implement the features just enough to make test cases merely pass. 
Different kinds of test code such as unit, integration and system or user acceptance tests are plugged in to 
automation framework that will internally pull down the inputs from specification. It validates expected 
output data from spec against the actual output obtained from system under test. Once the test cases 
pass, feature is marked complete. Later all the code are optimized and refactored for maintainability, 
efficiency and reusability.

This approach ensures higher product quality, setting clear expectations for all and the validation 
process becomes more efficient. This approach also leads to less rework as team collaboratively ensure 
a shared common understanding among all and thereby allowing better alignment of activities among 
different kinds of roles on a given project resulting into a flawless delivery.

BACKGROUND

In order to have a clear understanding on today’s context of software development, it would be helpful to 
glance through the history and evolution of software development over past decades. From time to time 
the software development community has attempted to solve the classic problems emerged in industry.



239

Behavior-Driven Development Using Specification by Example
 

History and Evolution of Software Development

Early 1990s

Two major influences, object-oriented programming replacing the procedural programming and the 
rise of Internet and dot-com boom shaped software development in 1990s. These emphasized speed to 
market and company growth as competitive business factors. Rapidly changing requirements demanded 
shorter product life cycles and hence were often incompatible with traditional methods of software de-
velopment. Kent Beck introduced Extreme programming (XP) through his work on Chrysler Compre-
hensive Compensation System (C3) payroll project. XP generated significant interest among software 
communities in late 1990s.

Kent Beck (AS-22, 1968) discovered TDD in 1993. TDD cycle follows a simple mantra of “Red – 
Green – Refactor”, which means first a developer writes an (initially failing) automated test case that 
represents an improvement or new functionality in software, then write enough code to pass these fail-
ing unit tests and finally refactor the code base arrived to acceptable standards. TDD is also very much 
related to test-first programming concepts of extreme programming that began around 1999 (Dinwiddie, 
2011). TDD life cycle is illustrated in Figure 1.

Early 2000s

Now taking a closer look through evolution in software development for past fifteen years starting from 
early 2000s, agile took its birth when the agile manifesto was written in February 2001 by seventeen 
software developers at Utah in USA. Martin Fowler (McCall Smith, 2002) coined the name specifica-
tion by example in 2002. Specification by example is an evolution of Customer Test practice of XP and 
Ubiquitous Language idea from domain-driven design. In 2003, TDD technique was rediscovered while 
it is related to test-first programming concepts from XP that began in 1999. Around the same time frame 
in 2003, Dan North coined the term BDD and claimed it to be different from TDD. Since then there has 
been lot of confusion around TDD and BDD concepts. This chapter makes a humble attempt in clarify-
ing how BDD is certainly different from TDD, while the readers need to keep in mind that things are 

Figure 1. Test driven development (TDD)



240

Behavior-Driven Development Using Specification by Example
 

being still debated by the industrial gurus of both the practices on the constantly changing vocabularies 
and phraseologies from time to time.

On a higher level the TDD focuses on “how” software is developed while BDD focuses on “why” 
the software is developed. In other words TDD is more about “Is the product built right?” while BDD 
is more about “Building the right product”.

Test Driven Development is more of a “Design” process rather than a “Testing” process itself. An 
advanced technique where automated unit tests are used to drive and design the software by enforcing 
loosely coupled and cohesive code base with decoupled dependencies. The unit tests get executed in 
seconds and provide an immediate feedback to developer and also provide a safety net to give confidence 
in making changes to working software without changing its core behavior. This advanced technique is 
of immense benefit in any type of software development (Unni, 2015).

BDD is more of Conversational building of software that matters to business rather than being auto-
mated acceptance tests verifying the product is built right. An approach for building a shared understand-
ing on what software should do by specifying concrete examples. Work from outside –in to implement 
those behaviors using examples to validate what is being built. These examples are often automated as 
tests and become executable specification generating living documentation for the working and validated 
software. BDD originated by practitioners of XP who were looking for a way to involve all perspectives 
(Developer, QA, BA) in conversations about what software to build.

Dan North (North, 2006) is credited for developing the BDD technique in 2003. Dan soon realized 
a need to differentiate TDD implemented in different context or ecosystem. As per Dan, BDD is very 
much a TDD in an ecosystem or context where the entire team members are programmers including 
all the stakeholders, with a single subject matter expert embedded in the team. While in the context of 
broader audience that involves clients, testers, business analysts, programmers, project and program 
managers, and multiple subject matter experts covering multiple interrelated domains, the BDD becomes 
different and bigger thing than TDD. BDD then becomes a TDD++ as it serves as the communication 
language across all of the project stakeholders to create a single coherent vision and deliver the right 
software that matters.

In BDD, an outside-in approach is followed, which means from the User interface or scenarios to code 
development. So teams collectively create positive and negative scenarios for features to be developed. 
Scenarios with examples elaborate each feature and failing unit tests are written that pulls the data down 
from each of scenarios once the tests are hooked to features. Specification by example approach in BDD 
works best with short iterative or agile development methodologies like Scrum, Extreme Programming 
(XP) and Kanban.

BDD is a second-generation, outside-in, pull-based, multiple- stakeholder, multiple-scale, high- auto-
mation and agile methodology. It describes a cycle of interactions with well-defined outputs, resulting 
in the delivery of working, tested software. - Dan North

Gojki Adzic (Adzic, 2011) is well known for his brilliant book on “Specification by example”. 
According to him the Specification by example is set of key process patterns that facilitate change in 
software products to ensure that right product is delivered efficiently. These processes are patterns as 
they occur in several different contexts and produce similar results. It involves deriving scope from 
the goals, specifying collaboratively, illustrating specifications using examples, constantly refining the 
specifications, constantly automating validation without changing the specifications, validating the 



241

Behavior-Driven Development Using Specification by Example
 

system frequently, and evolving the living documentation that reflects the true state of working software 
that matters (Dinwiddie, 2011). Living documentation is the ongoing updated working executable of 
software specification. When retrofitting executable specification into already existing suite of products, 
teams often have to make system and architecture more testable, which requires more senior people to 
plan and implement design changes.

MAIN FOCUS OF THE CHAPTER

This chapter mainly focuses on delivering the key concepts involved in BDD. Before getting started with 
example, it is required to understand the BDD loops – the inner and outer loop as shown in Figure 2.

The outer loop talks about building the right product that actually matters to customer. The inner loops 
talks about building the product in a right way using the TDD technique where tests drive the design and 
development of the product. Both the loops follow the cycle of red-green-refactor. The outer loop begins 
with first step “red”, that is writing a failing acceptance test also known as scenarios for a feature. Then 
the second step “green” happens, that is creating just enough production code or features to pass those 
scenarios failing. Then finally comes the third step “refactor”, which is refactoring the product require-
ments or features for maximizing the business vale to customers (McCall Smith, 2002). The inner loop 
(TDD) starts with first step “red” that is writing a failing unit test while the production code doesn’t 
even exist. Then the second step “green” happens, that is creating just enough production code to make 
those failing unit tests pass. Then finally comes the third step “refactor”, which is refactoring the code 
base for readability, optimization, efficiency, re-usability and maintainability.

Figure 2. BDD loops



242

Behavior-Driven Development Using Specification by Example
 

Author’s Hypothesis on BDD Life Cycle

Theoretically, BDD can be done in two loops as described above but then there is a big assumption that 
each of team member already have cross-functional skills that includes but not limited to development, 
testing, automation skills to create entire regression suite of unit, integration, system or user acceptance 
tests, requirement analysis etc.

However, in reality it takes allot of practice, skills, enormous amount of effort and time to get every 
team member groomed to reach that state. Ideal path to follow would be a collaborative approach with 
continuous inspection, learning, adaptation and improvisation (Thomas, 2013). The author is suggesting 
a minor change in two-loop approach as described earlier for BDD (North, 2006). Suggested change is 
splitting the inner loop into two- one loop is TDD done by developers while second loop is ATDD or 
Behavior Driven Testing done by testers with automation skills. BDD life cycle now becomes three loop 
process – the outer Loop is the collaborative “value” delivery loop resulting in to Software that actually 
matters, one inner loop is TDD done by developers, other inner loop is about ATDD done by those with 
automation testing skills on the team. The BDD life cycle is shown in Figure 3.

The outer loop is a joined venture by three Amigos where in requirements are rigorously conversed 
and elicited bringing in the clarity and reducing wastage by eliminating the misunderstood or ambiguous 
requirements and rigorously running the software for continuous feedback there by learning, adapting 
and refining the product to maximize the business value and deliver the business goal. The inner loop 
is about TDD that is driven by developer who takes test first approach to arrive into a good design that 
makes the code base highly cohesive and loosely coupled and thereby making it extensible, flexible, 
testable and receptive to feedback. The other inner loop is about Automated End to End System Accep-
tance Testing driven by automation engineers that influences internally the TDD loop and outer loop 
and also reflect the true progress of feature being developed. The BDD mantra that team should follow 
while implementing BDD way of software development is displayed in Figure 4.

Figure 3. BDD life cycle



243

Behavior-Driven Development Using Specification by Example
 

Issues, Controversies, Myths

Though BDD may look simple and obvious from a macroscopic level, there are some key challenges 
involved in this approach.

Key Challenges / Issues

1.  Team Collaboration: The hardest part in software development is the collaboration missing between 
business and technology teams and BDD only provides a way to bridge this gap by introducing a 
ubiquitous language (gherkin syntax) but end of the day these teams still have to put in the manual 
effort for actually collaborating and having as many conversations as possible.

2.  Scenario Ownership: Mostly the tendency is to have developers write the scenarios that would be 
noticeably different from client writing the same or different kinds of scenarios. And many teams 
still don’t recognize the need of involving the end users or customers in writing the scenarios as 
they view this as the automated acceptance tests. These have to be viewed as the deliverable artifact 
to customers.

3.  Scenario Abstraction: With a typical developer mindset the scenarios written would end up more 
fine-grained than the possible customer description with a level of abstraction missing. There is 
a tendency of ending up with a tight coupling between business and technical implementation for 
same reason. This particularly takes of the flexibility of implementation considerations while de-
signing the application. Another challenge seen in writing these scenarios is to remain consistent 
with the language across all the tests.

4.  Scenario Maintenance: While there have been several options to reduce redundancy in scenario 
writing using gherkin, the developer mindset mostly still consider gherkin’s capabilities to reduce 
redundancy as limited to begin with. There is a strong urge to see DSL as a proper programming 
language. But in case of BDD as intent is to understand the behavior of product by customer, the 

Figure 4. BDD mantra



244

Behavior-Driven Development Using Specification by Example
 

sophisticated usage of reusable capabilities within DSL adds bit of complexity that may actually 
hinder the understanding capability of customer. Another aspect is making changes to functional-
ities without re-factoring the acceptance tests due to fact that team members don’t properly liaise 
given the time lines and small iterations.

5.  Cost effectiveness: It is a given fact that automated acceptance tests are considered to be the most 
expensive in the pyramid of testing as compared to unit and integration level of testing and that 
they are most time consuming in terms of getting a feedback as well. Unit testing is believed to be 
the most immediate feedback loop due to the programmatic possibilities like mocking and depen-
dency injection capabilities that enable tests to bypass the real time interaction of system that are 
very time consuming otherwise.

6.  Complexity Added: There is a high need of a sophisticated complex Infrastructure to have such 
expensive automated acceptance tests or behavior end to end tests up and running all the time for 
a continuous feedback. While setting up these infrastructure is certainly feasible but will not be 
easy for an initial stage. There is also a complexity added by lots of moving pieces in this whole 
ecosystem that makes the test suites a bit of fragile to certain extent. So more technology would 
be needed to investigate to overcome those kinds of issues.

7.  Synergy Needed: There has to be a lot of synergy between resources that write feature file and 
resources that actually implement those steps or keywords and challenge would be to keep them 
optimal, efficient and reusable as much as possible and this demands some cross functional train-
ing and synergy between teams for delivering efficiently. An agile mindset is needed for learning 
and adapting, so that BDD can truly evolve in its own pace.

Controversies

Some of the interesting controversies about BDD out there in market are as follows:

1.  BDD is nothing but TDD: BDD is stolen from TDD conceptually with communication aspect 
added. TDD community has an argument that they do seem to test the behavior aspects and do not 
see any changes in both the mechanics.

2.  BDD is TDD++: BDD is TDD done the right way and with some extra capabilities.
3.  BDD is same as Specification By Example: BDD is all about writing specification using (Given 

–When –Then) Gherkin syntax and creating feature files with plenty of examples and writing almost 
every combination of them.

4.  BDD creates more harmony between Scrum and XP: User story practices from scrum and test-
driven development practices from XP, complement each other even better with help of BDD.

5.  BDD is BDD and nothing else: As it supports not only unit design but also supports shared lan-
guage understanding and design, the test design and more focused user experience design.

Myths vs. Reality

Some of the interesting myths about BDD out there in market as follows:

1.  Myth: BDD is a Testing approach.
Reality: BDD is more of a development focusing on behavior approach than testing.



245

Behavior-Driven Development Using Specification by Example
 

2.  Myth: BDD can be applied only for Web based or GUI applications.
Reality: BDD is a development approach that can be taken for almost anything – web applications, 

middleware, windows API, web services, desktop applications etc.
3.  Myth: Only Product Owners / BA should write feature files in isolation.

Reality: BDD is an intensive collaboration of entire team members from the beginning till the end 
of entire product development life cycle.

4.  Myth: BDD solves communication problem.
Reality: No tool can fix any existing people or discipline issues. Deploying BDD and tools may 

facilitate more conversations in a focused manner but can’t guarantee to eliminate the under-
lying issue that might have always existed such as lack of mindset or open communication 
within the team members. Each team member has to still put in personal effort to improve 
communication with each other.

5.  Myth: Regression testing is the only long-term benefit from practicing BDD.
Reality: Automated regression testing is just a by-product of the practice. Also less percentage of 

defects are found over a period of time in regression testing. BDD’s real value is exploration 
of requirements ambiguity with concrete examples and getting everybody to same page using 
a common vocabulary for the domain. Also creating living documentation in a lean way that 
reflects the state of software and demonstrates progress of feature development (Unni, 2015).

Author has created a mind map for explaining BDD to readers summarizing various aspects involved 
in Figure 5.

Figure 5. BDD mind map



246

Behavior-Driven Development Using Specification by Example
 

BDD EXAMPLE WALKTHROUGH

The Author has framed up some sample requirements for a commonly used product such as vending 
machine, which is encountered by almost everyone in a day-to-day life to keep it simple. Author will walk 
step by step in building the software for vending machine in a BDD approach using java as programming 
language, cucumber as gherkin tool, JUnit as unit test framework, spring framework, HSQLDB for in 
memory database, Maven as a build tool (Thomas, 2013).

Business Context

A client wants to develop software for vending machine they manufacture that focuses on selling variety of 
drinks. A drink has price, name and description associated with it as described in table listed in Figure 6.

Vending Machine Software Requirements

1.  Customer should be able to purchase any valid drink present in the inventory.
2.  Machine only accepts the exact price of drink as displayed from the user.
3.  Machine should have the capability to monitor the drink stocks at any point of time.
4.  Once a valid purchase happens, the stock count should be auto decremented for the appropriate 

drink.
5.  Machine should have the capability to alert the customer in case of insufficient funds supplied by 

customer while buying a valid drink.
6.  Machine should have the capability to alert the customer in case of an attempt made to purchase 

an invalid drink.

The three Amigos meet up and have plenty of conversations to clarify the ambiguities that exist in the 
requirements gathered by recursively asking three questions such as why, how and what. Then collab-
oratively coming up with features to implement by writing specification with concrete examples. The 
author intends to focus only on key concepts and illustrate how the software development could go 
using BDD approach with simple examples to demonstrate without getting into too much of technical 

Figure 6. Stock details table



247

Behavior-Driven Development Using Specification by Example
 

details or other non-relevant stuff for instance about the language (java) specifics or the vending machine 
software features itself.

Technology Assumptions

Vending Machine Software is written in Java programming language and maven is used as the build tool. 
The BDD tool used in example is cucumber for writing the Gherkin syntax feature files.

Using Eclipse or any other IDE for java of choice create a java project “VendingMachine”. Convert 
the project into a maven project to manage the dependencies. Project outline view should be as listed 
in Figure 7.

The project outline illustrates the maven dependencies managed for the project (Yadgar, Grumberg, & 
Schuster, 2009). The main dependencies as can be seen are JUnit, cucumber, spring framework, hsqldb 
and easy testing (fest-assert). With help of maven directory standard layout the Vending Machine project 
would have the project structure as listed out in Figure 8.

Figure 7. Project outline



248

Behavior-Driven Development Using Specification by Example
 

Follow the BDD Mantra

Step 1: First step is to write the Feature File (specifying behavior) using cucumber tool capture all the 
required scenarios using gherkin syntax.

It is good practice to start with a happy case end-to-end scenario that can deliver a unit of potentially 
shippable increment of software with minimum capabilities as a walking skeleton of software being de-
signed. In this example the author considers a straight forward flow of buying a drink say “water” from 
vending machine for exact price “$1” using a and the drink gets delivered to the customer.

Feature File –“VendingMachine. Feature”

Feature: Buying a drink from Vending Machine
In order to buy a drink 

As a Vending Machine user 

I want to pay the exact price listed 

 

@BuyAnyValidDrinkFromVendingMachine @positive 

Scenario: Buy a valid drink for the exact price displayed on vending machine
Given stock for drink “water” exist
When User puts in exact change for the price and selects the drink
Then Vending Machine delivers the “water” drink

In order to run the above feature file, a TestRunner.java needs to be created under “src/test-user/java” 
within the package “bddInAction.VendingMachine.UserAcceptanceTest” as referred in Table 1.

Figure 8. Project skeleton



249

Behavior-Driven Development Using Specification by Example
 

TestRunner.Java

Execute the test runner class using JUnit and console output window should display below:

Feature: Buying a drink from Vending Machine 

In order to buy a drink 

As a Vending Machine user 

I want to pay the exact price listed 

 

@BuyAnyValidDrinkFromVendingMachine 

Scenario: Buy a valid drink for the exact price displayed on vending machine 

_[90m# src/test-user/resources/bddInAction/VendingMachine/UserAcceptanceTest/

VendingMachineold.feature:8_[0m 

       _[33mGiven _[0m_[33mstock for drink “water” exist_[0m 

       _[33mWhen _[0m_[33mUser puts in exact change for the price and selects 

the drink_[0m 

       _[33mThen _[0m_[33mVending Machine delivers the “water” drink_[0m 

       _[33mAnd _[0m_[33mthe stock for the drink must be auto decremented by 

one_[0m 

 

1 Scenarios (_[33m1 undefined_[0m) 

4 Steps (_[33m4 undefined_[0m) 

0m0.000s

You can implement missing steps with the snippets below:

@Given(“^stock for drink \”(.*?)\” exist$”) 

public void stock_for_drink_exist(String arg1) throws Throwable { 

      // Write code here that turns the phrase above into concrete actions 

      throw new PendingException(); 

} 

 

@When(“^User puts in exact change for the price and selects the drink$”) 

public void user_puts_in_exact_change_for_the_price_and_selects_the_drink() 

Table 1. Test Runner

package bddInAction.VendingMachine.UserAcceptanceTest; 
import cucumber.api.CucumberOptions; 
import cucumber.api.JUnit.Cucumber; 
import org.JUnit.runner.RunWith; 
@RunWith(Cucumber.class)
@CucumberOptions(
format = {”pretty”, “html:target/cucumber-html-report”, “json:target/cucumber-json-report.json”}, 
features ={”src/test-user/resources/bddInAction/VendingMachine/UserAcceptanceTest/”}) 
public class TestRunner {}



250

Behavior-Driven Development Using Specification by Example
 

throws Throwable { 

      // Write code here that turns the phrase above into concrete actions 

      throw new PendingException(); 

} 

 

@Then(“^Vending Machine delivers the \”(.*?)\” drink$”) 

public void vending_Machine_delivers_the_drink(String drinkName) throws Throw-

able { 

      // Write code here that turns the phrase above into concrete actions 

      throw new PendingException(); 

}

Cucumber prints in console output all the missing steps that need to be implemented as shown above. 
Typically feature files can be run in multiple ways. The cucumber JUnit runner executes all the feature 
files present under the specified folder path. If a specific feature file needs to be executed then it can be 
explicitly called out as below:

features ={”src/test-user/resources/bddInAction/VendingMachine/UserAcceptance-

Test/VendingMachine.feature”},

Another way is to specify inside @CucumberOptions(), the scenario tags that need to be run along 
with the glue code to be used for the feature file as below:

tags = {”@BuyValidDrinkFromVendingMachine”}, 

glue = {”bddInAction.VendingMachine.UserAcceptanceTest.GlueCode”}

Execute the VendingMachine.feature using “TestRunner” class, run as a JUnit test and the console 
output will highlight the missing steps with code snippets to be implemented. The auto generated cu-
cumber code snippets can be used right away in step definition file like a template.

format = {”pretty”, “html:target/cucumber-html-report”, “json:target/cucumber-

json-report.json”},

With above line of code in Test Runner class, cucumber will neatly captured pretty html page as 
displayed in the screenshot displayed in Figure 9. Cucumber also creates a json format report than can 
be potentially used for other reporting purpose under target folder.

Figure 9. Cucumber HTML Report



251

Behavior-Driven Development Using Specification by Example
 

In html report, the yellow highlight over step indicates that the step is undefined, green highlight 
indicates that step passed when run, cyan color indicates the step got skipped while execution and red 
represents failure with error stack trace. Typically the feature files go yellow at start of the iteration and 
later on as the iteration progress it turns accordingly in to red or green based on failure or success. In this 
way the progress on features being worked on within the iteration by the team is constantly visible at any 
given snapshot of time. Missing steps highlighted in yellow need to be implemented in order to convert 
the specification to an executable specification. Create Step Definition class file “VendingMachineSteps” 
by copying the cucumber output from console for missing steps into this class as displayed in Table 2.

VendingMachineSteps.java

Re-run the test runner class and console would give a different output. Only mentioning the essence of 
output as below:

1 Scenarios (_[33m1 undefined_[0m) 

4 Steps (_[33m1 pending_[0m, _[33m3 undefined_[0m) 

0m0.081s 

 

cucumber.api.PendingException: TODO: implement me at bddInAction.Vend-

ingMachine.UserAcceptanceTest.VendingMachineStepsOld.stock_for_drink_

exist(VendingMachineStepsOld.java:108)

Cucumber matches every step written in feature file with methods defined in step definition class 
using regular expressions. Cucumber has keywords like Given, When, Then and these are tagged on to 
the methods defined in step definition layer.

A closer look on the console output as mentioned below:

@Given(“^stock for \”(.*?)\” drink exist$”) 

public void stock_for_drink_exist(String arg1) throws Throwable {}

In above code snippet the regular expression \”(.*?)\” would match the “water” that was specified as 
a parameter for the drink name in feature file and it is passed to the adjoining tagged method “stock_
for_drink_exist()” as a string argument.

Table 2. VendingMachineSteps.Java

package bddInAction.VendingMachine.UserAcceptanceTest; 
import cucumber.api.PendingException; 
import cucumber.api.java.en.Given; 
public class VendingMachineStepsOld { 
@Given(“^stock for \”(.*?)\” drink exist$”) 
public void stock_for_drink_exist(String arg1) throws Throwable { 
// Write code here that turns the phrase above into concrete actions 
throw new PendingException(); 
} 
}



252

Behavior-Driven Development Using Specification by Example
 

In the scenario, hypothetically speaking there has to be a class “VendingMachine” that would have 
methods like initializeStock(), checkStock(), buyDrink() at the minimum in order to implement the 
feature being discussed.

As per BDD mantra explained earlier, the first step is to write a failing acceptance test (scenarios in 
feature file). Then run the feature file using Test Runner class and result would be pending exception. 
At this point no further progress can be made until production code for feature is implemented.

Step 2: As per BDD mantra, developer begins the TDD loop by writing a failing unit test. Take simplest 
possible test such as validate the stock for drink “water” whether it matches the quantity (20) as 
per specification. Create the class for unit test case “VendingMachineTest” with code snippet as 
displayed in Table 3.

VendingMachineTest.Java

Running the “VendingMachineTest” as a JUnit test would produce a compilation error output as below:

java.lang.NoClassDefFoundError: VendingMachine

This is expected, as the class doesn’t exist. Implement production code that resolves the compilation 
error by adding a new class “VendingMachine” with just enough code as displayed in Table 4.

VendingMachine.java

Re-run the unit test again “VendingMachineTest”, test case should fail instead of getting compilation 
error. The console output should be:

org.JUnit.ComparisonFailure: expected:<[2]0> but was:<[]0>

The first milestone of TDD cycle is achieved as the failing unit test case was written first.

Step 3: As per BDD mantra, implement code just enough in an attempt to pass the failing unit test as 
displayed in Table 5.

Tip: While adding new piece of production code always follow principles like ‘keep it simple and stupid’ 
- KISS and follow the notion that ‘you aren’t going to need it’ –YAGNI.

Table 4. Vending Machine –Create Skeleton class 
with stub method

public class VendingMachine{ 
public int checkStock(String string){ 
//Auto-generated method stub 
return 0; 
} 
}

Table 3. VendingMachineTest.Java

public class VendingMachineTest{ 
VendingMachine vendingMachineUnderTest = new 
VendingMachine(); 
@Test 
public void checkThatWaterDrinkHasAStockOf20() throws 
Exception{ 
int Quantity = vendingMachineUnderTest.
checkStock(“water”); 
assertThat(Quantity).isEqualTo(20); 
} 
}



253

Behavior-Driven Development Using Specification by Example
 

Hardcode the return value for now with the specification value (20) for water drink. Re-run the unit 
test again and test case should pass.

Step 4: As per BDD mantra, code needs to be inspected for refactoring opportunities. In refactoring 
always look for code smells – duplicate code, methods too big, code never used, class complexity, 
separation of concerns, bad naming conventions etc. Looking at code snippet in Table 5, the pa-
rameter passed to “checkStock” method can be renamed from ‘string’ to a more appropriate name 
such as ‘drinkName’. Thinking about requirements in bigger picture, before a vending machine can 
actually check for stock, it needs to initialize the settings. So “initiliazeStock” method needs to be 
implemented returning a boolean value. The refactored class is shown in Table 6.

Re-run the unit test “VendingMachineTest” to make sure nothing broke and test cases should pass. 
Continue adding more unit tests one by one for example checking the stock of other drinks like soft 
drink and juice as shown in Table 7.

Re-run the unit test again “VendingMachineTest” and test case should fail as the current code doesn’t 
handle the logic for checking stock of multiple drinks. The console output should be:

org.JUnit.ComparisonFailure: expected:<[15]> but was:<[20]>

At this point again the TDD loop is repeated, write enough code to fix the failing unit test cases as 
shown in Table 8.

Table 5. Vending Machine –Implement Code

public class VendingMachine{ 
public int checkStock(String string){ 
return Integer.parseInt(“20”); 
} 
}

Table 6. Vending Machine Class – added initial-
izeStock method

public class VendingMachine { 
public boolean initializeStock() {
return true;} 
public int checkStock(String drinkName) {
return Integer.parseInt(“20”); 
} 
}

Table 7. Vending Machine Test - add two more tests

@Test 
public void checkThatSoftDrinkHasAStockOf10() throws 
Exception { 
int stock = vendingMachine.checkStock(“softdrink”); 
assertThat(stock).isEqualTo(10); 
} 
@Test 
public void checkThatJuiceDrinkHasAStockOf15() throws 
Exception { 
int stock = vendingMachine.checkStock(“juice”); 
assertThat(stock).isEqualTo(15); 
}

Table 8. Vending machine class: Added logic to 
handle “checkStock” method for multiple drinks

public class VendingMachine { 
public int checkStock(String drinkName { 
if(drinkName.toLowerCase().contentEquals(“water”)) 
return Integer.parseInt(“20”); 
else if(drinkName.toLowerCase().contentEquals(“softdrink”)) 
return Integer.parseInt(“10”); 
else if(drinkName.toLowerCase().contentEquals(“juice”)) 
return Integer.parseInt(“15”); 
return 0; 
} 
}



254

Behavior-Driven Development Using Specification by Example
 

Re-run the unit test cases and they would all pass. After implementing code just enough to pass test 
cases, refactoring need to be performed. Currently a hard coded value is returned by method “check-
Stock”. The method “initiliazeStock” is returning true like a hardcoded value without doing much. Add-
ing more test cases for validating the stock for other type of drinks would definitely fail on execution, 
as currently the method “checkStock” doesn’t have the logic to handle different types of drink. Both 
methods can be refactored into something more meaningful as displayed in “VendingMachine.java” as 
displayed in Table 9.

So method “initializeStock” now loads all drinks to the specified quantities, then return value as true. 
Method “checkStock” returns the dynamic value associated with each drink. Re-run the unit test and 
console should give following output:

java.lang.NullPointerException at bddInAction.VendingMachine.VendingMachine.

checkStock(VendingMachine.java:25)

Null pointer is caused because the stock (Type as Map) within the “VendingMachine” class was 
never initialized. So constructor of the class needs to call the method “initializestock”. Implement code 
change and re-run the unit test case, it would pass.

Continue to write another failing unit test to buy the drink “water” now that the vending machine has 
capability to initialize and check the stocks. Functionalities like “buy” and the “auto stock decrement” 
also needs to be implemented to mark it as a complete end-to-end successful transaction. Write failing 
test as displayed in Table 10.

The above code won’t execute as “buyDrink” method doesn’t exist in “VendingMachine” class yet. 
Go a head and generate stub method as shown in Table 11.

Table 9. Vending machine refactored

public class VendingMachine{ 
private Map<String, AtomicInteger> stock = new HashMap<String, AtomicInteger>(); 
public VendingMachine(){} 
public boolean initializeStock(){ 
stock.put(“water”, new AtomicInteger(20)); 
stock.put(“softdrink”, new AtomicInteger(10)); 
stock.put(“juice”, new AtomicInteger(15)); 
return true; 
} 
public int checkStock(String drinkName){ 
return stock.get(drinkName).intValue(); 
} 
public void buyDrink(String drinkName){} 
}

Table 10. Vending Machine Test – added test for 
buy method.

@Test 
public void BuyAWaterDrinkSuccessfully(){
int stock = 20; //as per spec 
vendingMachineUnderTest.buyDrink(“water”); 
int quantity = vendingMachineUnderTest.checkStock(“water”); 
assertThat(quantity).isEqualTo(stock -1);}

Table 11. Vending Machine Class – added stub 
buyDrink method

public void buyDrink(String string){
//TODO Auto-generated method stub 
}



255

Behavior-Driven Development Using Specification by Example
 

Now re-running the unit test cases will gives the below error:

org.JUnit.ComparisonFailure: expected:<[19]> but was:<[20]>

This is because the auto decrement capability is not yet added, so implement the code to handle this 
case as displayed in Table 12.

Step 5: As per BDD mantra, re-run all the unit tests. “BuyAWaterDrinkSuccessfully” and rest of the 
test cases would pass.

Everything looks good so far, but the behavior of the product associated with buy functionality is not 
yet entirely implemented. As per spec other pieces are still missing like validating the money paid by 
the user for the selected drink, alert the customer if insufficient or surplus payment is made, the actual 
delivery of the drink as part of a successful transaction.

Assume that requirements are not yet clear, from where the stock details should be retrieved. It could 
be in a database or possibly a rest call to fetch the price of the selected drink or some other approach. 
Thought process for a developer should be to come up with a good flexible design that can have imple-
mentation code independent of business requirement. Thus the requirement would never be tightly coupled 
with implementation details. Coding to interfaces from SOLID principles would be a good fit here.

Writing a “Drink Service” Interface may solve this problem and a concrete class at later point of time 
would implement the interface. Create “DrinkService” Interface as displayed in Table 13.

DrinkService.java

The interface defines a contract with two methods that need to be implemented for sure such as fetch 
price and initialize stock. The method “buyDrink” can be implemented for condition like insufficient 
fund purchase and more stuff can be done around the interface like creating a stub class for price data to 
be fetched for buy method until a real implementation of database or other alternative is achieved. Also 
the interface approach can immensely benefit the testing because it can be easily mocked or stubbed. 
This can be achieved by passing the interface reference object to the Vending Machine class constructor 
as argument. Finally after the changes, Vending Machine Class looks as displayed in Table 14.

Table 12. Vending Machine Class modified

public void buyDrink(String drinkName){ 
stock.get(drinkName).decrementAndGet();}

Table 13. Drink service interface

package bddInAction.VendingMachine; 
import java.math.BigDecimal; 
import java.util.List; 
public interface DrinkService{ 
List<BigDecimal> fetchPrice(String name); 
boolean initializeStock(); 
}



256

Behavior-Driven Development Using Specification by Example
 

VendingMachine.java

Modifying the “buyDrink” method in vending machine class will now surely break the unit test case 
“BuyAWaterDrinkSuccessfully” that was written earlier as method signature has been altered. So the 
unit test case needs to be refactored as displayed in Table 15 in order to work.

Note the price value “0.50” is used being incorrect value as the intention is to write failing unit test 
for the “buy” method. But this unit test case won’t run successfully, as it would give the compilation 
error for the constructor modification of vending machine class. So the way vending machine object is 
instantiated has to be refactored in the unit test case as well. Seems like now is the right time to create 
a stub that implements the interface Drink Service until a decision is made on how to implement the 
concrete class. Following is the code snippet for implementing the stub “DrinkServiceStub” class under 
“src/test-user/java” inside package “bddInAction.VendingMachine.UserAcceptanceTest.GlueCode” as 
displayed in Table 16.

Table 14. Vending machine class modified

package bddInAction.VendingMachine; 
import java.math.BigDecimal; 
import java.util.HashMap; 
import java.util.List; 
import java.util.Map; 
import java.util.concurrent.atomic.AtomicInteger 
public class VendingMachine{
private final DrinkService drinkService; 
private Map<String, AtomicInteger> stock = new HashMap<String, AtomicInteger>(); 
public VendingMachine(DrinkService drinkService){
this.drinkService = drinkService; 
initializeStock();} 
public boolean initializeStock(){
stock.put(“water”, new AtomicInteger(20)); 
stock.put(“softdrink”, new AtomicInteger(10)); 
stock.put(“juice”, new AtomicInteger(15)); 
return true;} 
public int checkStock(String drinkName){
return stock.get(drinkName).intValue();} 
public void buyDrink(BigDecimal decimal, String drinkName){
if(drinkName == “water” andand decimal.equals(drinkService.fetchPrice(drinkName).get(0))) 
{ 
stock.get(drinkName).decrementAndGet(); 
}}

Table 15. Vending machine test refactored

@Test 
public void BuyAWaterDrinkSuccessfully(){ 
int stock = 20; 
vendingMachineUnderTest.buyDrink(new 
BigDecimal(0.50),”water”); 
int quantity = vendingMachineUnderTest.
checkStock(“water”); 
assertThat(quantity).isEqualTo(stock -1);}

Table 16. Drink service stub

package bddInAction.VendingMachine.UserAcceptanceTest.
GlueCode; 
import java.util.ArrayList; 
import java.util.List; 
import java.math.BigDecimal; 
import bddInAction.VendingMachine.DrinkService; 
public class DrinkServiceStub implements DrinkService{ 
@Override 
public List<BigDecimal> fetchPrice(String name){ 
List<BigDecimal> drinks = new ArrayList<BigDecimal>(); 
drinks.add(new BigDecimal(1.0)); 
return drinks;}}



257

Behavior-Driven Development Using Specification by Example
 

DrinkServiceStub.java

After re-running the unit test case console should display the below and mark test case failed:

org.JUnit.ComparisonFailure: expected:<[19]> but was:<[20]>

Note the value asserted in test case was “0.50” while as per requirement the price of Water drink is 
“1.0”. So correct the expected value to be asserted is “1.0” in the test case and that would make it pass.

To implement the condition where user pays different than the exact price for the drink, write a fail-
ing unit test using the test data input as “1.50” or any amount greater than “1.0” which is the expected 
price of water. The system would again error out with above generic kind of error message which is 
misleading, instead system should specify that money paid by user is not matching to exact price or was 
higher or lower than expected price.

Condition for insufficient or surplus funds paid rather than the actual price listed also needs to be 
validated. Code for is as displayed in Table 17, in Vending Machine class for “buyDrink” method:

Re-run the unit test case for each of the price input data “0.50” and “1.50” separately and both tests 
would pass as now the code logic handles both the conditions.

Few more unit tests can be written as mentioned below to validate the requirements:

• “checkThatWaterDrinkHasAStockOf20” - checking whether the Stock for a drink was initialized 
correctly as per requirements which is 20 items.

• “checkWaterDrinkStockAfterOnePurchase” - checking whether the customer can do purchase of 
One drink use case end to end successfully.

• “checkWaterDrinkStockAfterThreePurchase” - checking whether the customer can perform mul-
tiple purchase of a drink successfully and the inventory of vending machine for that drink gets 
decremented accordingly.

Refer Appendix 1 for “VendingMachineTest file” that has the code snippet of entire unit test cases 
including the above-mentioned scenarios for more details.

Console window would show that all unit test cases pass as displayed in Figure 10.
“VendingMachine” class looks stable in functionality perspective for now, so focus should be shifted 

back on the BDD step definition that was paused in Step 2 in BDD life cycle as ‘system under test’ was 

Table 17. Buy Drink Method Modified

public void buyDrink(BigDecimal decimal, String drinkName){ 
List<BigDecimal> drinks = drinkService.fetchPrice(drinkName); 
if(decimal.subtract(new BigDecimal(drinks.get(0).doubleValue())).doubleValue() < 0){ 
throw new IllegalStateException(“Transaction Failed: not enough funds”); 
}else if(decimal.subtract(new BigDecimal(drinks.get(0).doubleValue())).doubleValue() > 0){ 
throw new IllegalStateException(“Transaction Failed: please put in exact amount”);} 
if(drinkName == “water” andand decimal.equals(drinkService.fetchPrice(drinkName).get(0))) 
stock.get(drinkName).decrementAndGet(); 
}



258

Behavior-Driven Development Using Specification by Example
 

not implemented. At this point developer exits TDD loop and goes back to the outer loop as explained 
in BDD Loops Figure 4 earlier.

Step 6: As per BDD mantra, implement the Step definition & Glue code (code that hooks step defini-
tion to system under test) as displayed in Table 18. Start with first step definition – “Given stock 
for water drink exist”.

VendingMachineSteps.java

Note that the new instance of “DrinkServiceStub” class is passed to constructor for instantiating the 
vending machine class. Run the feature file and user acceptance test cases would fail as shown in figure 
11. Test case was asserted for “0” count for drink Water while the quantity initialized by vending ma-
chine is “20” as per requirement.

Change the assertion expected value as per the requirement (20) and re-run the test case and first step 
definition as shown below would pass.

Rest of step definitions would be still throwing pending exception. Implement the next failing step 
definition - as displayed in Table 19.

Test case is expected to fail because the price of water drink per spec is “1.00” and “IllegalStateEx-
ception” error is expected as shown in Figure 12.

Fix the assertion expected value (1.00) as per requirement and re-run Test Runner, this time second 
step as would pass. Write the third failing step definition as displayed in Table 20.

Re-run the test runner to see the scenario fail at third step as shown in figure 13.

Figure 10. Console output window for unit test execution

Table 18. Vending Machine Steps refactored

public class VendingMachineSteps { 
@Given(“^stock for \”(.*?)\” drink exist$”) 
public void stock_for_drink_exist(String drinkName) throws 
Throwable { 
VendingMachine vendingMachine = new 
VendingMachine(new DrinkServiceStub()); 
boolean initialized = vendingMachine.initializeStock(); 
assertThat(initialized).isTrue(); 
int quantity = vendingMachine.checkStock(drinkName); 
assertThat(quantity).isEqualTo(0);}

Table 19. Vending Machine second step added

@When(“^User puts in exact change for the price and selects 
the drink$”) 
public void user_puts_in_exact_change_for_the_price_of_
drink() throws Throwable { 
VendingMachine vendingMachine = new 
VendingMachine(new DrinkServiceStub()); 
vendingMachine.buyDrink(new BigDecimal(3.00), “water”); 
}



259

Behavior-Driven Development Using Specification by Example
 

Figure 11. Feature execution HTML Report showing step 1 in VendingMachineSteps as a failing test

Figure 12. Feature execution HTML Report showing step 2 in VendingMachineSteps as a failing test

Table 20. Vending Machine third step added

@Then(“^Vending Machine delivers the \”(.*?)\” drink$”) 
public void vending_Machine_delivers_the_drink(String drinkName) throws Throwable { 
int stock = 20; 
VendingMachine vendingMachine = new VendingMachine(new DrinkServiceStub()); 
assertTrue(vendingMachine.buyDrink(new BigDecimal(1.0), “water”)); 
int quantity = vendingMachine.checkStock(drinkName); 
assertThat(quantity).isNotEqualTo(stock-1); 
}

Figure 13. Feature execution HTML Report showing step 3 in VendingMachineSteps as a failing test



260

Behavior-Driven Development Using Specification by Example
 

Fix the assert condition to “isEqualTo” as per requirement and re-run Test Runner again and this 
time all the steps pass as shown in figure 14.

Write the remaining step definitions in order to complete the other scenarios listed in feature file as 
displayed in Table 21.

Finally the entire user acceptance test cases pass as the step definition file was implemented with 
valid steps. As per BDD mantra the next step would be to refactoring.

Step 7: As per BDD mantra, begin with step definition layer “VendingMachineSteps” class refactoring for 
optimization to handle multiple drinks as current feature only works for one type of drink (water).

After re-factoring the step definition file would look as displayed in Table 22.
Re-run the Test Runner class and feature execution report would be green as shown in Figure 15.
The Console output should now look all green in the IDE and the entire scenario gets passed for 

all the drinks and conditions to be asserted per requirements. This is another mile stone completion of 
the BDD cycle. A snapshot of eclipse IDE and project after feature execution is captured in Figure 16.

Figure 14. Feature execution HTML Report showing all steps passed

Table 21. Vending Machine rest of step added

@When(“^User puts in lesser amount than the price and selects the Drink$”) 
public void user_puts_in_lesser_amount_than_the_price_and_selects_the_Drink() throws Throwable { 
try{ 
VendingMachine vendingMachine = new VendingMachine(new DrinkServiceStub()); 
purchased = vendingMachine.buyDrink(new BigDecimal(0.50), “water”); 
}catch(RuntimeException e){ 
errorMsg = e.getMessage().toString(); 
System.out.println(“Transaction Failed: not enough funds for water”); 
}} 
@Then(“^Vending Machine should alert the user with exception insufficient funds$”) 
public void vending_Machine_should_alert_the_user_with_exception_insufficient_funds() throws Throwable { 
assertEquals(errorMsg, “Transaction Failed: not enough funds”); 
}

@When(“^User puts in greater amount than the price and selects the Drink$”) 
public void user_puts_in_greater_amount_than_the_price_and_selects_the_Drink() throws Throwable { 
try{ 
VendingMachine vendingMachine = new VendingMachine(new DrinkServiceStub()); 
purchased = vendingMachine.buyDrink(new BigDecimal(1.50), “water”); 
}catch(RuntimeException e){ 
errorMsg = e.getMessage().toString(); 
System.out.println(“Transaction Failed: please put in exact amount for water”); 
}} 
@Then(“^Vending Machine should alert the user with exception exact funds needed$”) 
public void vending_Machine_should_alert_the_user_with_exception_exact_funds_needed() throws Throwable { 
assertEquals(errorMsg, “Transaction Failed: please put in exact amount”);}}



261

Behavior-Driven Development Using Specification by Example
 

Table 22. Vending Machine Step definition refactored

public class VendingMachineSteps { 
VendingMachine vendingMachine = new VendingMachine(new DrinkServiceStub()); 
boolean initialized = vendingMachine.initializeStock(); 
private int stock; 
private int quantity; 
private Drink drink; 
private boolean purchased = false; 
@Given(“^stock for \”(.*?)\” drink exist$”) 
public void stock_for_drink_exist(String drinkName) throws Throwable { 
assertThat(initialized).isTrue(); 
int quantity = vendingMachine.checkStock(drinkName); 
switch (quantity) { 
case 10: 
assertThat(drinkName).isEqualTo(“softdrink”); 
drink = Drink.softdrink; 
break; 
case 15: 
assertThat(drinkName).isEqualTo(“juice”); 
drink = Drink.juice; 
break; 
case 20: 
assertThat(drinkName).isEqualTo(“water”); 
drink = Drink.water; 
break; 
default: 
System.out.println(“No drinks available”); 
drink = Drink.unknown; 
break; 
} 
}

@When (“^User puts in exact change for the price of drink$”) 
public void User_puts_in_exact_change_for_the_price_of_drink() throws Throwable { 
switch(drink) { 
case water: 
purchased = vendingMachine.buyDrink(new BigDecimal(1.00), “water”); 
break; 
case softdrink: 
purchased = vendingMachine.buyDrink(new BigDecimal(1.25), “softdrink”); 
break; 
case juice: 
purchased = vendingMachine.buyDrink(new BigDecimal(1.50), “juice”); 
break; 
default: 
System.out.println(“Non supported Drink and cannot be purchased”); 
purchased = false; 
break; 
} 
}

@Then(“^Vending Machine delivers the \”(.*?)\” drink$”) 
public void vending_Machine_delivers_the_drink(String drinkName) throws Throwable { 
switch(drink) { 
case water: 
stock = 20; 
quantity = vendingMachine.checkStock(drinkName); 
assertThat(quantity).isEqualTo(stock -1); 
assertTrue(purchased); 
break; 
case juice: 
stock = 15; 
quantity = vendingMachine.checkStock(drinkName); 
assertThat(quantity).isEqualTo(stock -1); 
assertTrue(purchased); 
break; 
case softdrink: 
stock = 10; 
quantity = vendingMachine.checkStock(drinkName); 
assertThat(quantity).isEqualTo(stock -1); 
assertTrue(purchased); 
break; 
default: 
System.out.println(“Non supported Drink and can not be delivered”); 
assertFalse(purchased); 
break;}}}



262

Behavior-Driven Development Using Specification by Example
 

After refactoring step definition layer, next would be to optimize the feature file treating it like a code 
and add more test data for the scenarios in feature file. This gives flexibility for business stakeholders to 
play with the stock inventory by changing the data input and there won’t be any dependency as nowhere 
data is hardcoded inside the system. Feature file can be refactored as displayed in Table 23.

Figure 15. Feature execution HTML Report for all scenarios with passing steps

Figure 16. Eclipse IDE view with output console window



263

Behavior-Driven Development Using Specification by Example
 

Step 8: As per BDD mantra, now re-run the feature file using “TestRunner” class and now everything 
should pass including unit and user acceptance test cases. This completes the final step of BDD 
mantra and also the outer loop of BDD life cycle. Please refer the Appendix 1 for final refactored 
step definition file “VendingMachineSteps”.

The feature file executes for all the drink types in the vending machine. It not only details the speci-
fication with the concrete examples but also validates all the scenarios executed correctly in terms of 
expected initialized stock details, lesser or greater amount paid by user than actual price for drink, dif-
ferent error messages thrown by system.

Few things to be highlighted, which was done as part of feature file refactoring is:

1.  Background: Cucumber provides this keyword so that common set of steps being repeated for all 
scenarios can be moved to Background section. These steps would be run before every scenario 
gets executed.

2.  Same step definition can be shared among scenarios as exception messages are parameterized.

Then Vending Machine should alert the user with exception “insufficient funds”
Then Vending Machine should alert the user with exception “exact funds needed”

Table 23. Vending Machine feature file refactored

Feature: Buying a drink from Vending Machine
In order to buy a drink 
As a Vending Machine user 
I want to pay the exact price listed 
Background:
Given stock for <Drink> exist 
| Drink | Stock | Price | 
| water | 20 | 1.0 | 
| softdrink | 10 | 1.25 | 
| juice | 15 | 1.50 | 
@BuyAnyValidDrinkFromVendingMachine 
Scenario: Buy any valid drink for the exact price displayed on vending machine
And User puts in exact change for the price and selects the drink 
Then Vending Machine should deliver the requested drink 
And the stock for the drink must be auto decremented 
@BuyAValidDrinkForLessAmountThanPrice 
Scenario: Buy a valid drink for lesser amount than the expected price
And User puts in “lesser amount” than the price and selects the <Drink> 
|Drink | Stock | Price | 
|water | 20 | 0.50 | 
|softdrink | 10 | 1.00 | 
|juice | 15 | 1.25 | 
Then Vending Machine should alert the user with exception “insufficient funds” 
@BuyAValidDrinkForMoreAmountThanPrice 
Scenario: Buy a valid drink for more amount than the expected price
And User puts in “greater amount” than the price and selects the <Drink> 
|Drink | Stock | Price | 
|water | 20 | 1.25 | 
|softdrink | 10 | 1.75 | 
|juice | 15 | 2.25 | 
Then Vending Machine should alert the user with exception “exact funds needed”



264

Behavior-Driven Development Using Specification by Example
 

The exception message is passed as argument to the step definition layer methods so that correspond-
ing glue code can be hooked and same step can be used for all the types of exception in the feature file.

3.  Concept of Data Table in cucumber was used to load a bunch of data set for scenario verification 
purpose; in this case the expected stock details are defined in specification within a fixture table 
as <Drink>.

Running the BDD feature file again would give the below HTML report and all user acceptance tests 
now pass and are marked green as shown below in Figure 17.

To demonstrate how Integration Testing fits within the BDD cycle, consider the database imple-
mentation of vending machine stock details that was earlier achieved by “DrinkServiceStub” class. As 
discussed earlier in BDD mantra, write the failing integration test first – “DrinkServiceImplTest” as 
displayed in Table 24.

Figure 17. Feature execution HTML Report for refactored feature file with passing scenarios



265

Behavior-Driven Development Using Specification by Example
 

DrinkServiceImplTest.java

This would give compilation error, as the “DrinkServiceImpl” class does not exist yet.

java.lang.NoClassDefFoundError: DrinkServiceImpl

Implement the code for class as displayed in Table 25.

DrinkServiceImpl.java

Run the Integration Test case as a JUnit test case and it would fail as below:

org.JUnit.ComparisonFailure: expected:<[0.5]> but was:<[1]>

That’s great! Failing integration test milestone is achieved which is the first step of TDD. Now imple-
ment the “fetchPrice” method that actually interacts with a real database. For purpose of demo, project 
uses in memory HSQL DB with spring framework instead of traditional (on-disk) database systems.

Following configuration setup is needed for spinning up the Database. Create a “database-integration-
context.xml” file under “src/test-integration/resources” folder with the xml content as displayed in Table 26.

Table 24. Drink Service Impl Test

@RunWith(SpringJUnit4ClassRunner.class) 
@ContextConfiguration(locations = {”classpath:database-integration-context.xml”}) 
public class DrinkServiceImplTest{ 
@Autowired 
private DataSource dataSource; 
@Test
public void checkPriceOfDrinkWater()
{ 
DrinkService drinkService = new DrinkServiceImpl(dataSource); 
List<BigDecimal> drinks = drinkService.fetchPrice(“water”); 
BigDecimal price = drinks.get(0); 
assertThat(price).isEqualTo(new BigDecimal(0.50));}}

Table 25. Drink Service Impl class

public class DrinkServiceImpl implements DrinkService{ 
private List<BigDecimal> price = new ArrayList<BigDecimal>(); 
public DrinkServiceImpl(DataSource dataSource){} 
@Override 
public List<BigDecimal> fetchPrice(String drinkName) { 
price.add(new BigDecimal(1.0)); 
return price;} 
@Override 
public boolean initializeStock() { 
return false;}}



266

Behavior-Driven Development Using Specification by Example
 

This confugres the hsqldb using spring framework. Information to run the server instance and create 
database, table and data needed are mentioned in Table 27.

Follow the configuration setup as per screenshot captured in Figure 18.

Table 26. database-integration-context.xml file

<?xml version=”1.0” encoding=”UTF-8”?> 
<beans xmlns=”http://www.springframework.org/schema/beans” 
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” 
xmlns:tx=”http://www.springframework.org/schema/tx” 
xsi:schemaLocation=”http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-
3.2.xsd 
http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.2.xsd”> 
<bean name=”dataSource” class=”org.apache.commons.dbcp.BasicDataSource” destroy-method=”close”> 
<property name=”driverClassName” value=”org.hsqldb.jdbcDriver”/> 
<property name=”url” value=”jdbc:hsqldb:file://Users/praveen/Desktop/hsqldb-2.3.2/hsqldb/bin/vendingmachine;shutdown=true”/> 
<property name=”username” value=”SA”/> 
<property name=”password” value=””/> 
</bean> 
<bean id=”transactionManager” class=”org.springframework.jdbc.datasource.DataSourceTransactionManager”> 
<property name=”dataSource” ref=”dataSource”/> 
</bean> 
<tx:annotation-driven transaction-manager=”transactionManager”/> 
</beans>

Figure 18. hsqldb database manager swing interface

Table 27. hsqldb database manager swing command

Extract the hsqlDB ver 2.3.2 zip file to some path location …/VendingMachine/hsqldb-2.3.2/hsqldb/bin 
##Run the dbmanager swing to create table and insert data## 
cd …/hsqldb-2.3.2/hsqldb/lib 
$ java -cp ../lib/hsqldb.jar org.hsqldb.util.DatabaseManagerSwing

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.2.xsd


267

Behavior-Driven Development Using Specification by Example
 

This would connect to database instance. Now run the SQL statements one by one as displayed below 
in Table 28.

Finally the stock details can be seen in database output window when running the SQL query as 
shown in Figure 19.

Modify the “DrinkServiceImpl” class to interact with database instance and replace the hardcoded 
price returned by “fetchPrice” method with inline query as displayed in Table 29.

DrinkServiceImpl.java

Now bring up the hsqldb server using below command from the lib directory where hsqldb is installed 
by using the commands displayed in Table 30.

Re-run the Integration Test case and the console window should get back the below error message 
as earlier:

org.JUnit.ComparisonFailure: expected:<[0.5]> but was:<[1]>

Table 28. SQL scripts to inject data for Stock

CREATE TABLE STOCK ( 
DRINK VARCHAR(10), 
PRICE DECIMAL(6,2), 
DESCRIPTION VARCHAR(50), 
QTY INT); 
INSERT INTO STOCK VALUES(‘water’, 1.00, ‘Refreshing’, 20); 
INSERT INTO STOCK VALUES(‘softdrink’, 1.25, ‘Tempting’, 10); 
INSERT INTO STOCK VALUES(‘juice’, 1.50, ‘Healthy’, 15); 
SELECT * FROM STOCK;

Figure 19. hsqldb- stock table query result view



268

Behavior-Driven Development Using Specification by Example
 

Test case fails because price of water is asserted for wrong expected value “0.5” while it should be 
actually” 1.0” per requirement so making this minor change will pass the test case.

This finally completes the cycle of BDD. But the Vending Machine software can be still enhanced as 
needed. For instance another interface could be created for Vending Machine itself for future flexibility 
in change of implementation. So rename the existing the file “VendingMachine” to “VendingMachin-
eImpl” and make it a concrete class implementation of new interface created as displayed in Table 31.

VendingMachine.java

Refactor the entire code base to reflect this change of the class name and make sure no unresolved type 
compilation error exist in the project.

Final project structure after all changes is displayed in Figure 20.

Table 29. Drink Service Impl modified

package bddInAction.VendingMachine; 
import org.springframework.jdbc.core.JdbcTemplate; 
import org.springframework.jdbc.core.SingleColumnRowMapper; 
import javax.sql.DataSource; 
import java.math.BigDecimal; 
import java.util.List; 
public class DrinkServiceImpl implements DrinkService{ 
private final JdbcTemplate jdbcTemplate; 
public DrinkServiceImpl(DataSource dataSource){ 
this.jdbcTemplate = new JdbcTemplate(dataSource);} 
@Override 
public List<BigDecimal> fetchPrice(String drinkName) { 
String query = “SELECT PRICE FROM STOCK WHERE DRINK = ?”; 
Object[] params = {drinkName}; 
return jdbcTemplate.query(query, params, new SingleColumnRowMapper<BigDecimal>());} 
@Override 
public boolean initializeStock() { 
return false;}}

Table 30. hsqldb server start command

##Run standalone hsqldb server## 
cd …/hsqldb-2.3.2/hsqldb/lib 
$ java -cp hsqldb.jar org.hsqldb.server.Server --database.0 file:testdb --dbname.0 vendingmachine

Table 31. Vending Machine modified

package bddInAction.VendingMachine; 
import java.math.BigDecimal; 
public interface VendingMachine{ 
boolean initializeStock(); 
int checkStock(String drinkName); 
boolean buyDrink(BigDecimal decimal, String drinkName); 
}



269

Behavior-Driven Development Using Specification by Example
 

FUTURE RESEARCH DIRECTIONS

The key take away from BDD software development approach is the collaborative conversations that go 
endlessly in loops (inner –TDD, outer –Behavior) which truly helps the software to evolve as a quality 
product confirming to all specified requirements and thereby ensuring customer satisfaction. Also the 
resultant product is always lean, built in the right way collaboratively by the team.

Mind mapping is a power technique to capture requirements and flows during the joined application 
development (JAD) technical sessions done by the entire team. Tests are as good as production code and 
should be treated similarly. They are like “fixed deposit” in bank and they more you deposit the more 
interest you earn on the same. Upfront investment is necessary to get lifelong dividends.

Identify the “right candidates” for each bucket of testing – Unit tests, Component tests, Integration 
tests, System / User acceptance tests. Always try to maximize the investment in Unit tests, as they are 
the most shortest feedback loop giving the maximum ROI (return on investment) for automation as they 
typically run in few milliseconds. Integration tests should be in a healthier proportion but lesser than unit 

Figure 20. Final Project skeleton



270

Behavior-Driven Development Using Specification by Example
 

tests as they are slow running tests. System tests should be strategically invested, as they are the longest 
feedback loop and most brittle in nature.

Taking the BDD to next level would be by achieving the true “cross-functional” capability within 
the team where every resource is eventually capable to articulate and refine requirements better, design 
solution better, test and develop the product better keep the building process lean. For example, in an 
ideal agile team, future state of BDD implementation could be like - Business takes care of writing 
feature files and checking them in to code base regularly for product backlog. Testing centric skilled 
resources begin with taking care of System and Integration tests and as time permits help the developers 
in writing unit tests, influencing the architecture and design to make it loosely coupled and more test-
able. Testers can also help developers build a robust, efficient and flexible design, adding more value 
in terms of quality engineering in every phase of software development life cycle (SDLC). Entire team 
can further concentrate on grooming their ‘DevOps’ (operational capabilities) skills that include – build 
script maintenance, continuous integration of code, automated build and deployment, execution of test 
suites, database management etc. DevOps integration targets product delivery, quality testing, feature 
development, and maintenance releases in order to improve reliability and security and provide faster 
development and deployment cycles. DevOps aids in software application release management for an 
organization by standardizing development environments. Events can be more easily tracked as well as 
resolving documented process control and granular reporting issues. This approach grants developers 
more control of the environment and also giving the infrastructure more application-centric understanding.

CONCLUSION

BDD life cycle has two inner loops within one outer loop that represents entire product development. One 
inner loop talks about designing the product by “behavior test first” approach often referred to as ATDD. 
Other inner loop talks about designing by “code test first” approach, often referred to as TDD. Both the 
loops run inside the bigger loop of product life cycle following a fail fast and learn fast approach. Entire 
team including business executes the outer loop, while technical team executes inner loop. The common 
aspect of all the three loops executed by the three Amigos in high collaboration is that they entirely fol-
low the “TDD mantra” of “Red –Green –Refactor” on Requirements, Production Code and Test code.

BDD is actually the TDD with a shift of focus from code to the behavior and is more of a mindset 
rather than a set of tools. BDD also brings in a mindset of exploring the behavior of application by us-
ing scenario structure and having plenty of conversation around it between all the stakeholders. This 
helps in hashing out requirement ambiguity very early in game, focusing different aspects like feature 
injection, deliberate discover, real options, context questioning and outcome questioning thereby helping 
the teams to understand the risk in their projects and address them early on without a single test being 
written. It brings together the entire team with help of ubiquitous language and does take a lot in terms 
of patience, time and practice to reap the full benefits of this approach.

Finally, Specification by Example is just an approach used in conjunction with BDD that lays empha-
sis on having more specificity in requirements by giving concrete examples. This kind of specification 
facilitates lot of conversations among all the team members despite of their diverse background rather 
than just being automation approach in itself. Realistic examples help team to spot inconsistencies and 
functional gaps much faster than validating them through implementation in future.



271

Behavior-Driven Development Using Specification by Example
 

REFERENCES

Adzic, G. (2009). Bridging the Communication Gap- Specification By Example and Agile Acceptance 
Testing. Academic Press.

Adzic, G. (2011). Specification by Example: How successful teams deliver the right software. Childhood 
Education, 87(4), 302–303. doi:10.1080/00094056.2011.10523198

AS-22 BNL. (1968). Brookhaven National Laboratory. BNL 50106 (AS-22). T. Brookhaven National 
Laboratory.

Dinwiddie, G. (2011). The three amigos. StickyMinds Magazine.

McCall Smith, A. (2002). The No. 1 Ladies’ Detective Agency. New York: Anchor Books.

North, D. (2006). Introducing BDD. Advances in Space Research, 37(5), 958–962. doi:10.1016/j.
asr.2005.12.009

Thomas, S. (2013). Specification by Example versus Behavior Driven Development. Academic Press.

Unni, E. J., & Farris, K. B. (2015). Development of a new scale to measure self-reported medica-
tion nonadherence. Research in Social & Administrative Pharmacy, 11(3), e133-143. doi: 10.1016/j.
sapharm.2009.06.005

Yadgar, A., Grumberg, O., & Schuster, A. (2009). Hybrid BDD and All-SAT Method for Model Check-
ing. Academic Press.

KEY TERMS AND DEFINITIONS

AGILE: Agile is a group of software development methods in which requirements and solutions 
evolve through collaboration between the self-organizing, cross-functional teams. It also promotes the 
adaptive planning, evolutionary development, early delivery, continuous improvement and encourages 
rapid and flexible response to change.

ATDD: Acceptance Test Driven Development is a practice in which the whole team collaboratively 
discusses acceptance criteria, with examples, and then distills them into a set of concrete acceptance tests 
before development begins. There are a variety of test automation frameworks that support defining the 
tests in advance of the implementation including FIT, Fitnesse and Robot Framework.

BDD: Behavior-driven development combines the general techniques and principles of TDD with 
ideas from the domain-driven design, object-oriented analysis and design to provide software development 
and management teams with a domain vocabulary using English language, shared tools and processes 
to collaborate on software development.

GHERKIN: Gherkin is the format for Cucumber Specifications. Technically speaking it is a small 
computer language with a well-defined syntax, but it’s so simple that you don’t have to know how to 
program in order to use it. It provides keywords like Feature, Scenario, Given, When, Then, And, But 
to write specification in readable English language.

http://dx.doi.org/10.1080/00094056.2011.10523198
http://dx.doi.org/10.1016/j.asr.2005.12.009
http://dx.doi.org/10.1016/j.asr.2005.12.009


272

Behavior-Driven Development Using Specification by Example
 

KANBAN: Kanban is a new technique for managing a software development process in a highly ef-
ficient way. An example would be Toyota’s “just-in-time” (JIT) production system. Although producing 
software is a creative activity and therefore different to mass-producing cars, the underlying mechanism 
for managing the production line can still be applied.

TDD: Test-driven development is a software development process that relies on the repetition of a 
very short development cycle: first the developer writes an (initially failing) automated test case that 
defines a desired improvement or new function, then produces the minimum amount of code to pass 
that test, and finally refactors the new code to acceptable standards.

XP: Extreme Programming is a software development methodology that is intended to improve 
software quality and responsiveness to changing customer requirements. As a type of agile software 
development, it advocates frequent “releases” in short development cycles, which is intended to improve 
productivity and introduce checkpoints at which new customer requirements can be adopted.



Behavior-Driven Development Using Specification by Example

273

APPENDIX: USEFUL CODE SNIPPETS OF VENDING MACHINE SOFTWARE

Feature file written by all the three amigos covering entire scenarios they came up in discussion:

Feature File: “VendingMachine. Feature”

Feature: Buying a drink from Vending Machine
In order to buy a drink 

As a Vending Machine user 

I want to pay the exact price listed 

@BuyAnyValidDrinkFromVendingMachine @positive 

Scenario: Buy a valid drink for the exact price displayed on vending machine
Given stock for drink water exist 

When User puts in exact change for the price and selects the drink 

Then Vending Machine should deliver the requested drink 

@BuyAValidDrinkForLessAmountThanPrice @negative 

Scenario: Buy a valid drink for lesser amount than the expected price
Given stock for drink water exist 

When User puts in lesser amount than the price and selects the Drink 

Then Vending Machine should alert the user with exception insufficient funds 

@BuyAValidDrinkForMoreAmountThanPrice @negative 

Scenario: Buy a valid drink for more amount than the expected price
Given stock for drink water exist 

When User puts in greater amount than the price and selects the Drink 

Then Vending Machine should alert the user with exception exact funds needed

The final version of Unit Test Cases in “VendingMachineTest” file is displayed next.

VendingMachineTest.java

Vending Machine Test final version:

package bddInAction.VendingMachine.UnitTest; 

import org.JUnit.Before; 

import org.JUnit.Ignore; 

import org.JUnit.Rule; 

import org.JUnit.Test; 

import org.JUnit.rules.ExpectedException; 

import bddInAction.VendingMachine.DrinkService; 

import bddInAction.VendingMachine.VendingMachine; 

import bddInAction.VendingMachine.UserAcceptanceTest.GlueCode.DrinkServiceS-

tub; 



Behavior-Driven Development Using Specification by Example

274

import java.math.BigDecimal; 

import static org.fest.assertions.Assertions.assertThat; 

 

public class VendingMachineTest{
     private VendingMachine vendingMachineUnderTest; 

 

@Rule
public ExpectedException expectedEx = ExpectedException.none(); 

 

@Before
public void setup(){ 

     vendingMachineUnderTest = new VendingMachine(new DrinkServiceStub());} 

 

@Test 

public void checkThatWaterDrinkHasAStockOf20() throws Exception{
     int Quantity = vendingMachineUnderTest.checkStock(“water”); 

     assertThat(Quantity).isEqualTo(20);} 

 

@Test 

public void BuyAWaterDrinkSuccessfully(){
     int stock = 20; 

     vendingMachineUnderTest.buy(new BigDecimal(1.00), “water”); 

     int quantity = vendingMachineUnderTest.checkStock(“water”); 

     assertThat(quantity).isEqualTo(stock -1);} 

 

@Test 

public void checkWaterDrinkStockAfterOnePurchase(){
     vendingMachineUnderTest.buy(new BigDecimal(1.0), “water”); 

     int quantity = vendingMachineUnderTest.checkStock(“water”); 

     assertThat(quantity).isEqualTo(19);} 

 

@Test 

public void checkWaterDrinkStockAfterThreePurchase(){
     int stock = 20; 

     for(int i=1;i<4;i++){ 

     vendingMachineUnderTest.buy(new BigDecimal(1.0), “water”); 

     int quantity = vendingMachineUnderTest.checkStock(“water”); 

     assertThat(quantity).isEqualTo(stock - i);}} 

 

@Test 

public void checkThatCustomerCantBuyWithInsufficientFunds(){
     expectedEx.expect(IllegalStateException.class); 

     expectedEx.expectMessage(“Transaction Failed: not enough funds”); 



Behavior-Driven Development Using Specification by Example

275

     vendingMachineUnderTest.buy(new BigDecimal(0.50), “water”);} 

 

@Test 

public void checkThatCustomerCantBuyWithMoreFunds(){
     expectedEx.expect(IllegalStateException.class); 

     expectedEx.expectMessage(“Transaction Failed: please put in exact 

amount”); 

     vendingMachineUnderTest.buy(new BigDecimal(1.50), “water”);} 

}

The final refactored step definition file “VendingMachineSteps” is displayed next.

VendingMachineSteps.Java

Vending Machine step definition finally refactored

package bddInAction.VendingMachine.UserAcceptanceTest; 

 

import static org.JUnit.Assert.*; 

import static org.fest.assertions.Assertions.assertThat; 

import java.math.BigDecimal; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.List; 

import java.util.Map; 

import static org.hamcrest.CoreMatchers.*; 

import bddInAction.VendingMachine.Drink; 

import bddInAction.VendingMachine.DrinkInventory; 

import bddInAction.VendingMachine.VendingMachineImpl; 

import bddInAction.VendingMachine.UserAcceptanceTest.GlueCode.DrinkServiceS-

tub; 

import cucumber.api.DataTable; 

import cucumber.api.java.en.Given; 

import cucumber.api.java.en.Then; 

 

public class VendingMachineSteps { 

     VendingMachine vendingMachine = new VendingMachine(new DrinkServiceS-

tub()); 

 

     private int stock; 

     private int quantity; 

     Drink drink; 



Behavior-Driven Development Using Specification by Example

276

     String drinkName = null; 

     private boolean purchased = false; 

 

List<DrinkInventory> stocksSpecifiedBySpec = new ArrayList<DrinkInventory>(); 

Map<String, Integer> stockMap = new HashMap<String,Integer>(); 

Map<String, String> errorMap = new HashMap<String,String>(); 

List<String> waterComments = new ArrayList<String>(); 

List<String> softdrinkComments = new ArrayList<String>(); 

List<String> juiceComments = new ArrayList<String>(); 

 

@Given(“^stock for <Drink> exist$”) 

public void stock_for_Drink_exist(DataTable cukeTable) throws Throwable{ 

     boolean initialized = vendingMachine.initializeStock(); 

     assertThat(initialized).isTrue(); 

     stocksSpecifiedBySpec = cukeTable.asList(DrinkInventory.class); 

 

for(DrinkInventory drinkInventory: stocksSpecifiedBySpec){ 

          drinkName =drinkInventory.getDrink(); 

          int quantity = vendingMachine.checkStock(drinkName); 

     switch (quantity) { 

          case 10: 

               assertThat(drinkName).isEqualTo(“softdrink”); 

               drink = Drink.softdrink; 

               waterComments.add(“User wants to buy softdrink!”); 

               waterComments.add(“Stock initialized for softdrink 

“); 

          break; 

          case 15: 

               assertThat(drinkName).isEqualTo(“juice”); 

               drink = Drink.juice; 

               waterComments.add(“User wants to buy juice!”); 

               waterComments.add(“Stock initialized for juice”); 

          break; 

          case 20: 

               assertThat(drinkName).isEqualTo(“water”); 

               drink = Drink.water; 

               waterComments.add(“User wants to buy water!”); 

               waterComments.add(“Stock initialized for water”); 

          break; 

          default: 

               System.out.println(“ Drink not supported to be ini-

tialized”); 

               drink = Drink.unknown; 



Behavior-Driven Development Using Specification by Example

277

          break; 

          } 

     } 

} 

 

@When(“^User puts in exact change for the price and selects the drink$”) 

public void User_puts_in_exact_change_for_the_price_and_selects_the_drink() 

throws Throwable { 

for(DrinkInventory drinkInventory: stocksSpecifiedBySpec){ 

     BigDecimal price = drinkInventory.getPrice(); 

     String name = drinkInventory.getDrink(); 

     drink = Drink.valueOf(name); 

     switch(drink) { 

          case water: 

               new DrinkServiceStub(); 

               purchased = vendingMachine.buyDrink(new BigDeci-

mal(1.00), drink); 

               waterComments.add(“Accepted $ “+price.setScale(2)+” 

for “+drink); 

          break; 

          case softdrink: 

               new DrinkServiceStub(); 

               purchased = vendingMachine.buyDrink(new BigDeci-

mal(1.25), drink); 

               softdrinkComments.add(“Accepted $ “+price.

setScale(2)+” for “+drink); 

          break; 

          case juice: 

               new DrinkServiceStub(); 

               purchased = vendingMachine.buyDrink(new BigDeci-

mal(1.50), drink); 

               juiceComments.add(“Accepted $ “+price.setScale(2)+” 

for “+drink); 

          break; 

          default: 

               System.out.println(“ Non supported Drink can’t be 

purchased”); 

               purchased = false; 

          break; 

          } 

     } 

} 

 



Behavior-Driven Development Using Specification by Example

278

@Then(“^Vending Machine should deliver the requested drink$”) 

public void vending_Machine_should_deliver_the_requested_drink() throws Throw-

able { 

 

for(DrinkInventory drinkInventory: stocksSpecifiedBySpec){ 

     String name = drinkInventory.getDrink(); 

     drinkName = Drink.valueOf(name); 

     switch(drinkName) { 

          case water: 

               stock = 20; 

               quantity = vendingMachine.checkStock(drinkName); 

               assertThat(quantity).isEqualTo(stock -1); 

               stockMap.put(drinkName, (stock -1)); 

               assertTrue(purchased); 

               waterComments.add(drinkName +” drink is delivered”); 

               waterComments.add(“”); 

          break; 

          case juice: 

               stock = 15; 

               quantity = vendingMachine.checkStock(drinkName); 

               assertThat(quantity).isEqualTo(stock -1); 

               stockMap.put(drinkName, (stock -1)); 

               assertTrue(purchased); 

               juiceComments.add(drinkName+” Drink is delivered”); 

               juiceComments.add(“”); 

          break; 

          case softdrink: 

               stock = 10; 

               quantity = vendingMachine.checkStock(drinkName); 

               assertThat(quantity).isEqualTo(stock -1); 

               stockMap.put(drinkName, (stock -1)); 

               assertTrue(purchased); 

               softdrinkComments.add(drinkName+” Drink is deliv-

ered”); 

               softwaredrinkComments.add(“”); 

          break; 

          default: 

          System.out.println(“Non supported Drink and can not be deliv-

ered”); 

          assertFalse(purchased); 

          break; 

          } 

     } 



Behavior-Driven Development Using Specification by Example

279

     Iterator<String> water = waterComments.iterator(); 

     while(water.hasNext()) { 

          Object element = water.next(); 

          System.out.println(element + ” “); 

          } 

     Iterator<String> softdrink = softdrinkComments.iterator(); 

     while(softdrink.hasNext()) { 

          Object element = softdrink.next(); 

          System.out.println(element + ” “); 

          } 

     Iterator<String> juice = juiceComments.iterator(); 

     while(juiceComments.hasNext()) { 

          Object element = juice.next(); 

          System.out.println(element + ” “); 

          } 

     } 

 

@Then(“^the stock for the drink must be auto decremented$”) 

public void the_stock_for_the_drink_must_be_auto_decremented() throws Throw-

able { 

     assertSame(Integer.valueOf(stockMap.get(“water”)),Integer.value-

Of(19)); 

assertSame(Integer.valueOf(stockMap.get(“softdrink”)),Integer.valueOf(9)); 

     assertSame(Integer.valueOf(stockMap.get(“juice”)),Integer.value-

Of(14)); 

} 

 

@When(“^User puts in \”(.*?)\” than the price and selects the <Drink>$”) 

public void user_puts_in_than_the_price_and_selects_the_Drink(String scenario, 

DataTable specTable) throws Throwable { 

     stocksSpecifiedBySpec = specTable.asList(DrinkInventory.class); 

     Integer count = null; 

     if(scenario.equalsIgnoreCase(“lesser amount”)){ 

          count = 0; 

     }else if(scenario.equalsIgnoreCase(“greater amount”)){ 

          count = 1; 

     } 

 

switch(count){ 

     case 0: 

          for(DrinkInventory drinkInventory: stocksSpecifiedBySpec){ 

               String name = drinkInventory.getDrink(); 

               drinkName = Drink.valueOf(name); 



Behavior-Driven Development Using Specification by Example

280

          switch(drinkName) { 

               case water: 

               try{ 

                    new DrinkServiceStub(); 

                    purchased = vendingMachine.

buyDrink(stocksSpecifiedBySpec.get(0).getPrice(),drinkName); 

                    }catch(RuntimeException e){ 

                    assertThat(e.getMessage().toString(), 

is(“Transaction Failed: not enough funds”)); 

                    errorMap.put(drinkName, e.getMessage()); 

                    System.out.println(“Transaction Failed: not 

enough funds for “+ drinkName); 

} 

          break; 

          case softdrink: 

          try{ 

               new DrinkServiceStub(); 

               purchased = vendingMachine.

buyDrink(stocksSpecifiedBySpec.get(1).getPrice(),drinkName); 

               }catch(RuntimeException e){ assertThat(e.getMessage().

toString(), is(“Transaction Failed: not enough funds”)); 

                    errorMap.put(drinkName, e.getMessage()); 

                    System.out.println(“Transaction Failed: not 

enough funds for “+ drinkName); 

} 

          break; 

          case juice: 

               try{ 

                    new DrinkServiceStub(); 

                    purchased = vendingMachine.

buyDrink(stocksSpecifiedBySpec.get(2).getPrice(), drinkName); 

                    }catch(RuntimeException e){ 

                         assertThat(e.getMessage().toString(), 

is(“Transaction Failed: not enough funds”)); 

                         errorMap.put(drinkName, e.getMes-

sage()); 

                         System.out.println(“Transaction 

Failed: not enough funds for “+ drinkName); 

} 

          break; 

          default: 

               System.out.println(“ Non supported Drink can’t be 

purchased”); 



Behavior-Driven Development Using Specification by Example

281

               purchased = false; 

          break;}} 

 

break; 

 

case 1: 

                    for(DrinkInventory drinkInventory: stocks-

SpecifiedBySpec){ 

                         String name = drinkInventory.get-

Drink(); 

                         drink = Drink.valueOf(name); 

                         switch(drink) { 

                              case water: 

                                   try{ 

                                        new Drink-

ServiceStub(); 

                                        purchased = 

vendingMachine.buyDrink(stocksSpecifiedBySpec.get(0).getPrice(),drink); 

                                        }

catch(RuntimeException e){ 

                                             ass

ertThat(e.getMessage().toString(), is(“Transaction Failed: please put in exact 

amount”)); errorMap.put(“water”, e.getMessage()); 

                                             Sys-

tem.out.println(“Transaction Failed: please put in exact amount for “+ drink); 

} 

                         break; 

                         case softdrink: 

                              try{ 

                                   new DrinkServiceS-

tub(); 

                                   purchased = vending-

Machine.buyDrink(stocksSpecifiedBySpec.get(1).getPrice(),drink); 

                                   }

catch(RuntimeException e){ 

                                        assertThat(

e.getMessage().toString(), is(“Transaction Failed: please put in exact 

amount”)); 

                                        errorMap.

put(drink, e.getMessage()); 

System.out.println(“Transaction Failed: please put in exact amount for “+ 

drink); 

                              } 



Behavior-Driven Development Using Specification by Example

282

                         break; 

                         case juice: 

                              try{ 

                                   new DrinkServiceS-

tub(); 

                                   purchased = vending-

Machine.buyDrink(stocksSpecifiedBySpec.get(2).getPrice(),drink); 

                                   }

catch(RuntimeException e){ 

                                        assertThat(

e.getMessage().toString(), is(“Transaction Failed: please put in exact 

amount”)); 

                                        errorMap.

put(drink, e.getMessage()); 

                                        System.out.

println(“Transaction Failed: please put in exact amount for “+ drink); 

                                   } 

                         break; 

                         default: 

                                   System.out.println(“ 

Non supported Drink can’t be purchased”); 

                                   purchased = false; 

                         break; 

                         } 

                    } 

               break; 

               } 

          } 

}



283

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  14

DOI: 10.4018/978-1-4666-9858-1.ch014

ABSTRACT

This paper presents the review of literatures that shows the contribution of the agile methodology to-
wards teaching and learning environment at university level. Teaching and learning at university has 
since migrated from traditional learning to active learning methodology where students are expected 
to learn by doing rather than listening passively to lectures alone. The agile methodology naturally has 
promoted the active participation of team members during system development phases. Some literature 
have proposed ways of adopting agile into active learning to improve teaching and learning processes 
and have highlighted this method as a great success. We would like to highlight how efficient the agile 
concept is in tackling several situations in academic learning as shown by an interesting mapping of 
agile principles to the classroom environment. We also offer options for the agile evaluation framework 
to consider academic environment as a tool to obtain the agile performance feedback.

1. INTRODUCTION

Traditional teaching and learning have most often than not neglected the concept of active teaching and 
learning in academic environment. For decades, the academic community has been conducting researches 
and experiments in order to increase students’ participation during their learning in the classroom (Cubric, 
2013). Recent studies show the usage of technology, team discussion and sharing knowledge session have 
become favorite options to promote this active learning concept. Where the lecturer is the immediate 
source of the knowledge in the traditional learning, the active learning concept encourages lecturer to 
become the facilitator between the students and the knowledge itself. Active learning requires students 

The Agility of Agile 
Methodology for Teaching 

and Learning Activities
Deshinta Arrova Dewi Dewi

INTI International University, Malaysia

Mohana Muniandy
INTI International University, Malaysia



284

The Agility of Agile Methodology for Teaching and Learning Activities
 

to be independent in getting the basic knowledge by searching the resources online or offline and doing 
discussion with classmates (Dillard., 2012; Hagan, 2012; Michael., 2007; Solomon., 2013). Lecturers 
provide clarification on what the students have learnt and emphasize more on providing higher level of 
thinking and challenges. The relationship of lecturer, knowledge and student is reflected in Figure 1.

The agile methodology has been introduced in the academic environment as a topic or subject for 
computer science students to learn about developing good software in a timely manner to satisfy client’s 
requirement. The agile methodology underlines direct and frequent communication between client and 
developer through its incremental processes. The proposed solutions are evolved through communication 
and collaboration of organizations and teams. Therefore, the key success of agile methodology relies on 
communication among team members and the ability to adapt to rapid changes (A.H.W. Chun, 2004; D. 
Monett, 2013; J. C. Stewart, C. S. DeCusatis, K. Kidder, & and K.M. Anne, 2009) .

As teaching agile is part of the curriculum in many computing classes, some educational practi-
tioners have started research on the efficient techniques to teach any subjects to students using agile 
methodology. By embracing a variety of tools and techniques, teaching using agile method has become 
an interesting topic of discussion among lecturers and instructors. Some lecturers and instructors have 
begun conducting experiments in teaching by adopting the agile concept itself.

2. RESEARCH QUESTIONS

The present research aims to collect previous works that have examined the use of agile methodology to 
improve the teaching and learning delivery. The following research questions (RQ) are raised therefore:

RQ1. What are the main goals of the previous researches?

Figure 1. Traditional Learning

Figure 2. Active Learning



285

The Agility of Agile Methodology for Teaching and Learning Activities
 

RQ2. What are suggested approaches and methods used?
RQ3. How the previous research is being conducted?
RQ4. What are case studies or datasets are used?
RQ5. Would it be possible to carry forward the previous research into a new method in teaching and 

learning?

3. AGILE PRINCIPLES AND CLASSROOM ENVIRONMENT

John C. Stewart is the main author of a paper (J. C. Stewart et al., 2009) that exposed his study regard-
ing evaluating agile principle in active and cooperative learning environment. This is a big effort that 
may offer the agile evaluation framework in an actual classroom environment and may reflect the same 
concept of what is known as agile principle. Starting from extracted values available in the Agile Mani-
festo, the study proposes the new values of agile pedagogy that constitute modern teaching and learning 
methodology.

The values of the agile pedagogy extracted from the values of agile manifesto are:

1.  Students over traditional processes and tools. (Agile manifesto value: Individuals and interactions 
over processes and tools).

2.  Working project over comprehensive documentation (Agile manifesto value: Working software 
over comprehensive documentation)

3.  Student and instructor collaboration over rigid course syllabi. (Agile manifesto value: customer 
collaboration over contract negotiation)

4.  Responding to feedback rather than following a plan. (Agile manifesto value: Responding to change 
over following a plan).

There are 12 items of agile principles that is found to be well-suited and adoptable towards classroom 
environment. The mapping is shown below, in table 1.

This mapping has given the idea on the compatibility of agile manifesto in a pedagogy environment. 
From here, the study suggests framework of practices that promote teaching and learning to become more 
agile since it effectively focuses on student-centric approach. Besides that, the similarities of software 
development methodology and educational methodology are effortlessly seen in Table 1.

4. AGILE METHODOLOGY TOWARDS TEACHING 
AND LEARNING TECHNIQUES

Mario Vacca (D. Lembo & M. Vacca, 2012) from Italy proposed Extreme Programming instructional 
design that combines good practices formulated from project based learning and agile instructional 
design. This research design accommodates the inadequacy of current instructional design to face 
challenges of 21st century way of teaching and learning. Not only as an instructional design, but this 
research has also attempted the agile management and learning project. At this point, the agile and 
extreme programming principles are adapted to the instructional design context and the problem based 



286

The Agility of Agile Methodology for Teaching and Learning Activities
 

learning. The instructional design process is therefore viewed as constituted by roles (students, teachers 
and headmaster, parents, consultants, etc.) each of them performing some activities (lecturing, check-
ing, solving problems, discussions, exercises, personal study, presentation production, etc.). The result 
was reported as successful in introducing new concepts such as collective instructional design, active 
transparency and active role of students and their parents.

Alvaro Soria (A. Soria, M. R. Campo, & G. Rodriguez, 2012)from Argentina proposed technique to 
improve the delivery of Software Engineering subject in university by using agile management. This study 
was intended to address the problem and bridge the gap between academic and professional context. The 
widespread of agile approaches such as Scrum and Agile Coaching are become teaching models able 
to cover the other model such as RUP (rational unified process). By using CMMI (Capability Maturity 

Table 1. Mapping of agile manifesto to pedagogical environment adopted from (J. C. Stewart et al., 2009)

Principles of the Agile Manifesto Corollary to the Pedagogical Environment

Our highest priority is to satisfy the customer through early and 
continuous delivery of valuable software.

Our highest priority is to prepare the student to contribute to an 
organization through continuous delivery of course components that 
reflects competence.

Welcome changing requirements, even late in development. 
Agile processes harness change for the customer’s competitive 
advantage.

The instructor and students welcome and adapt to changes even late 
in the semester. Agile pedagogical methods use problems and change 
as an opportunity to facilitate learning and better develop marketable 
skills in the students.

Deliver working software frequently, from a couple of weeks to 
a couple of months, with a preference to the shorter timescale.

Requiring working deliverables from the students over short time 
periods allowing for frequent feedback and guided problem solving 
and experimentation.

Business people and developers must work together daily 
throughout the project.

There is iterative interaction between the instructor and students (or 
student groups) throughout the course.

Build projects around motivated individuals. Give them the 
environment and support they need, and trust them to get the 
job done.

Trust that most students are motivated. Give them the environment 
and support necessary for them to be successful.

The most efficient and effective method of conveying 
information to and within a development team is face-to-face 
conversation.

To the extent possible, allow for direct face-to-face interaction with 
students or student groups.

Working software is the primary measure of progress. Working deliverables (i.e. models, software, project deliverables, 
presentations, etc.) are the primary measure of student progress (not 
necessarily midterm & final exams that require rote learning and 
memorization).

Agile processes promote sustainable development. The 
sponsors, developers, and users should be able to maintain a 
constant pace indefinitely.

The cooperative learning environment where students actively seek 
guidance and tools to solve problems is the basis for teaching the 
skills needed for life-long learning.

Continuous attention to technical excellence and good design 
enhances agility.

Continuous attention to technical excellence and good design 
enhances learning.

Simplicity--the art of maximizing the amount of work not done-
-is essential.

While in education there is some value in exploring subjects in-depth 
just because there is student interest, however, understanding the 
problem and solving it simply and clearly is essential

The best architectures, requirements, and designs emerge from 
self-organizing teams.

Student groups and teams should self-organize, but all should 
participate equally in the effort of learning.

At regular intervals, the team reflects on how to become more 
effective, then tunes and adjusts its behavior accordingly.

At regular intervals, the students and instructor reflect and offer 
feedback on how to be more effective. All stakeholders then adjust 
accordingly with the goal of being more effective.



287

The Agility of Agile Methodology for Teaching and Learning Activities
 

Model Integration) as assessment reference, this evolutionary process accomplished high level of CMMI 
maturity for students in developing software.

Dagmar Monet (D. Monett, 2013) from Germany introduced agile project-based teaching and learn-
ing where the experiences were reportedly undertaken for 4 years. The project-based approach allows 
students to work with realistic project through which they learn agile concepts more efficiently by doing 
collaborative and self-organizing team.

John C. Stewart et al (J. C. Stewart et al., 2009) states that Jigsaw method can be likened to cooperative 
learning. Using Jigsaw method, students work in small groups that primarily do some acquisition and 
presentation of new materials, review or participate in informed debate. Stewart et al shows that Jigsaw 
has major correspondence with XP and Scrum in agile concept. Group members depend on their own 
collaboration to accomplish tasks. Stewart et al mentioned that the effective group members naturally 
assemble different strength and expertise, experience and knowledge, perspective and personalities. The 
role of lecturer has changed dramatically from source of knowledge to facilitator that discusses alterna-
tives when groups are unhappy with their original plan, for example. Leading the class to summarize 
their discussion, making sure all group members participate and concluding the learning points are other 
roles of the lecturer.

Astonishingly, the agile concept has been adopted in e-learning environment as well. Michael Tesar 
is the main author and Stefani Sieber the co-author of (M. Tesar, 2010). Tesar and Sieber utilized agile 
e-learning environment to achieve high quality blended learning scenarios. The agile manifesto turns out 
to be a guideline for the agile e-learning scenario. The comparison of traditional project management, 
agile manifesto and the inferred principles for agile e-learning development is presented in Table 2.

On the other hand, the ATLM (The Agile Teaching and Learning Methodology) has been designed 
and used in the City University of Hong Kong (A.H.W. Chun, 2004). This paper explains the process 
architecture and objectives of the ATLM that emphasizes on agility, communication and learning pro-
cesses. The e-learning platform and the technologies used provide great support on modern collaboration 
and knowledge sharing technologies. Some popular applications are introduced on the agile e-learning 
concept such as blogging, instant messaging, discussion forum, video conferencing, wiki and XML RSS.

Teaching cycle and learning cycle are the main concepts of ATLM that consists of iterative processes 
as shown below in Figure 3. Teaching cycle is about adjusting and monitoring lecture activities and 
tutorials, while the learning cycle is about sharing, practicing what has been learnt in assignments and 
independent studying. Adjusting and monitoring is actually the lecturers’ effort to monitor students’ 
progress and provide/obtain feedback as the main input for the next teaching cycle. The sharing, practices 
and independent study is students’ effort to acquire knowledge, skill and enhance the learning experi-
ence. The ATLM is definitely student centric with the lecturer as facilitator.

Table 2. The agile e-learning development adopted by (M. Tesar, 2010)

Traditional Project Management 
(Agile Manifesto,2010)

Manifesto for Agile Software Development 
(Agile Manifesto, 2010)

Agile E-Learning Development

Process and Tools Individuals and Interactions Personalized Learning Processes

Comprehensive Documentation Working Software Usability of Learning Utilities

Contract Negotiation Customer Collaboration Learner Centered Design

Following a Plan Responding to Change Flexible Course Concept



288

The Agility of Agile Methodology for Teaching and Learning Activities
 

This paper has also stressed the teaching and learning best practices that consist of learning by shar-
ing, teaching how to learn and using feedback to make necessary changes in ATLM when required. 
Feedback actually makes the ATLM more agile.

Table 3 depicts information about the overall literatures upon research questions 1,2 and 3. Majority 
they aim improvement for teaching excellent while (Hagan, 2012) provide insights about the current 
practice of the agile performance review and proposed solutions to achieve a better review.

Various approaches and methods have been employed for many types of learning and it promises 
successful results. Most previous works use mapping concept of agile methodology and learning ac-
tivities to ensure the proposed framework is applicable. Literature (D. Lembo & M. Vacca, 2012) even 

Table 3. The previous works towards the research questions 1-2-3

References RQ1 
Improve Teaching & 

Learning

RQ2 
Approaches/ Methods 

RQ3 
Data Sets or Case Studies

(J. C. Stewart et al., 2009) √ Cooperative Learning with Jigsaw Methods for the Pace University students 
populations

(A.H.W. Chun, 2004) √ E-learning as platform of implementing ATLM for computer science courses

(D. Lembo and M. Vacca, 
2012)

√ New agile instructional design methodology by combining agile methodologies 
and some features of XP

(M. Tesar, 2010) √ Using agile concept for blended learning scenario with the adoption of 
e-learning scenario

(A. Soria et al., 2012) √ Teaching students effectively with the Scrum and agile coaching principles

(D. Monett, 2013) √ Agile-based project in courses for the students in Berlin School of Economics 
and Law

(Cubric, 2013) √ A new method for teaching agile 
project management and similar subjects in higher education.

(Solomon., 2013) √ An innovative method of teaching agile by using agile principles

(Michael., 2007) √ Agile approaches as alternative on learning

(Hagan, 2012) Improving current 
performance review in a 
company

Reflections and new solution of doing things right for agile performance 
review.

(Dillard., 2012) √ Flipped classroom with agile methodologies to promote problem solving in 
class.

Figure 3. Iterative Processes for ATLM adopted from (A.H.W. Chun, 2004)



289

The Agility of Agile Methodology for Teaching and Learning Activities
 

came out with new systematic instructional design that is essential for teachers/lecturers to carry out 
their topic of the day.

The other research questions are addressed by literatures (J. C. Stewart et al., 2009) to (Cubric, 2013). 
The summary is presented in Table 4.

Our institution INTI International University has rolled out student centred learning in May 2010. 
Centre for Instructional and Technology Support (CITS) has conducted trainings to support lecturers 
in implementing student centred learning teaching strategies. Listed below are some of the strategies 
introduced to the lecturers.

1.  Small Group Discussion
2.  Problem-based Learning
3.  Blended Learning
4.  Cooperative Learning
5.  Online Forum Discussion
6.  Debate
7.  Drama and Project
8.  Field Trip
9.  Role Playing
10.  Peer Collaboration Learning
11.  Reciprocal Peer Tutoring
12.  Podcast
13.  Lecture and Tutorial

The adoption of agile methodology by previous works proves to be in line with the strategies and 
justifies the flexibility of agile methodology to be adopted in the universities.

The mapping of literatures towards student centred learning strategies is shown in Table 5.

Table 4. The previous works towards present research questions

References Addressing Research Questions

(J. C. Stewart et al., 2009) RQ-1, RQ-2, RQ-3, RQ-4, RQ-5

(A.H.W. Chun, 2004) RQ-1, RQ-2, RQ-3, RQ-4, RQ-5

(D. Lembo and M. Vacca, 2012) RQ-1, RQ-2, RQ-3, RQ-4, RQ-5

(M. Tesar, 2010) RQ-1, RQ-2, RQ-3, RQ-4, RQ-5

(A. Soria et al., 2012) RQ-1, RQ-2, RQ-3, RQ-4, RQ-5

(D. Monett, 2013) RQ-1, RQ-2, RQ-3, RQ-4, RQ-5

(Cubric, 2013) RQ-1, RQ-2, RQ-3, RQ-4, RQ-5

(Solomon., 2013) RQ-1, RQ-2, RQ-4, RQ-5

(Michael., 2007) RQ-1, RQ-2, RQ-4, RQ-5

(Hagan, 2012) RQ-1, RQ-2, RQ-4, RQ-5

(Dillard., 2012) RQ-1, RQ-2, RQ-4, RQ-5



290

The Agility of Agile Methodology for Teaching and Learning Activities
 

5. CONCLUSION

From the above discussion, we can see how the agile manifesto and its values have greatly influenced 
and improved the variety of teaching and learning in university that promotes active learning. Conse-
quently, those experiences have offered some points on how to exploit the opportunity to use learning 
environment to evaluate agile principles since both of software development and teaching and learning 
share almost similar values in its operation.

Research in this paper is generally conducted as motivation for our university research to explore the 
alternative teaching and learning model to support active learning environment by adopting agile concept.

At the moment, our university looks into the concept of flipped classroom and according to our 
preliminary research flipped classroom is also related with agile processes with regards to daily scrum 
meeting, sprint planning meeting, sprint and sprint review and lastly sprint retrospective meeting. This 
future work is similar with an article written by Sarah Dillard (Dillard., 2012). Our future research will 
look into this direction as part of teaching and learning improvement in the context of flipped classroom.

REFERENCES

Chun, A. H. W. (2004). The Agile Teaching / Learning Methodology and its e-Learning Platform. In 
Lecture Notes in Computer Science-Advances in Web-Based Learning (Vol. 3143, pp. 11–18). Springer-
Verlag Heidelberg.

Table 5. The student centred strategies towards agile based teaching and learning

Student Centred Strategies References

14. Small Group Discussion (A. Soria et al., 2012; A.H.W. Chun, 2004; Cubric, 2013; D. Lembo and M. Vacca, 2012; D. 
Monett, 2013; Dillard., 2012; Hagan, 2012; Hagan., 2012; J. C. Stewart et al., 2009; M. Tesar, 
2010; Michael., 2007; Solomon., 2013)

15. Problem-based Learning (A. Soria et al., 2012; A.H.W. Chun, 2004; Cubric, 2013; D. Lembo and M. Vacca, 2012; D. 
Monett, 2013; J. C. Stewart et al., 2009; M. Tesar, 2010)

16. Blended Learning (M. Tesar, 2010)

17. Cooperative Learning (J. C. Stewart et al., 2009)

18. Online Forum Discussion (A.H.W. Chun, 2004; M. Tesar, 2010)

19. Debate -

20. Drama and Project -

21. Field Trip -

22. Role Playing -

23. Peer Collaboration Learning (A. Soria et al., 2012; A.H.W. Chun, 2004; Cubric, 2013; D. Lembo and M. Vacca, 2012; D. 
Monett, 2013; Dillard., 2012; Hagan, 2012; Hagan., 2012; J. C. Stewart et al., 2009; M. Tesar, 
2010; Michael., 2007; Solomon., 2013)

24. Reciprocal Peer Tutoring -

25. Podcast -

26. Lecture and Tutorial (A. Soria et al., 2012; A.H.W. Chun, 2004; Cubric, 2013; D. Lembo and M. Vacca, 2012; D. 
Monett, 2013; Dillard., 2012; Hagan, 2012; Hagan., 2012; J. C. Stewart et al., 2009; M. Tesar, 
2010; Michael., 2007; Solomon., 2013)



291

The Agility of Agile Methodology for Teaching and Learning Activities
 

Cubric, M. (2013). An agile method for teaching agile in business schools. The International Journal 
of Management Education, 11(3), 119–131. doi:10.1016/j.ijme.2013.10.001

Dillard., S. (2012). Lean but agile: rethink workforce planning and gain a true competitive edge. Choice 
Reviews Online, 49(12). doi: 10.5860/choice.49-6982

Hagan, R. (2012). Agile Performance Reviews. Academic Press.

Hagan, R. (2012). Agile Performance Review. Microform & Digitization Review, 41(3-4). doi:10.1515/
mir-2012-0026

Lembo, D., & Vacca, M. (2012). Project Based Learning + Agile Instructional Design = Extreme 
Programming based Instructional Design Methodology for Collaborative Learning. Acta Informatica 
Medica, Depardemento di Informatica, Sapienza, Universita di Roma, Tech. Rep.N.8, 20(1), 15. doi: 
10.5455/aim.2012.20.15-17

Michael. (2007). Agile Learning – an alternative model. Academic Press.

Monett, D. (2013). Agile Project-Based Teaching and Learning. Paper presented at the 11th International 
Conference on Software Engineering Research and Practice.

Solomon, C. F. (2013). Teaching in an Agile Manner. Bloomsbury Academic.

Soria, A., Campo, M. R., & Rodriguez, G. (2012). Improving Software Engineering Teaching by Intro-
ducing Agile Management. Paper presented at the INCOSE International Symposium, 13th Argentine 
Symposium on Software Engineering, La Plata, Argentina.

Stewart, J. C., DeCusatis, C. S., Kidder, K., Massi, J. R., & Anne, K. M. (2009). Evaluating Agile 
Principles in Active and Cooperative Learning. Toxicology Letters, 191(2-3), 231–235. doi:10.1016/j.
toxlet.2009.09.003 PMID:19748556

Tesar, M., & Sieber, S. (2010). Managing Blended Learning Scenarios by Using Agile e-Learning Devel-
opment. International Association for the Development of the Information Society, Freiburg, Germany, 
26(2), 124–129. doi:10.1177/0266666910368123

KEY TERMS AND DEFINITIONS

Acceptance Test-Driven Development: Acceptance Test-Driven Development (ATDD) is a devel-
opment methodology based on communication between the business customers, the developers, and the 
testers. ATDD encompasses many of the same practices as Specification by Example, Behavior Driven 
Development (BDD), Example-Driven Development (EDD), and Story Test-Driven Development (SDD). 
All these processes aid developers and testers in understanding the customer’s needs prior to implemen-
tation and allow customers to be able to converse in their own domain language.

Extreme Programming: Extreme Programming (XP) is an agile methodology that specifically 
emphasizes the use of agile technical practices (e.g. Test Driven Development) for the success of an 
agile project. Practical experience shows that XP complements Scrum well and both the methods work 
well together.

http://dx.doi.org/10.1016/j.ijme.2013.10.001
http://dx.doi.org/10.1515/mir-2012-0026
http://dx.doi.org/10.1515/mir-2012-0026
http://dx.doi.org/10.1016/j.toxlet.2009.09.003
http://dx.doi.org/10.1016/j.toxlet.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19748556
http://dx.doi.org/10.1177/0266666910368123


292

The Agility of Agile Methodology for Teaching and Learning Activities
 

User Stories: User stories are part of an agile approach that helps shift the focus from writing about 
requirements to talking about them. All agile user stories include a written sentence or two and, more 
importantly, a series of conversations about the desired functionality.

User-Centered Design (UCD): User-centered design is a process (not restricted to interfaces or 
technologies) in which the needs, wants, and limitations of end users of a product, service or process are 
given extensive attention at each stage of the design process. User-centered design can be characterized 
as a multi-stage problem solving process that not only requires designers to analyse and foresee how 
users are likely to use a product, but also to test the validity of their assumptions with regard to user 
behaviour in real world tests with actual users. Such testing is necessary as it is often very difficult for 
the designers of a product to understand intuitively what a first-time user of their design experiences, 
and what each user’s learning curve may look like.

Waterfall Model: A sequential design, used in software development processes, in which progress 
is seen as flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation, 
Analysis, Design, Construction, Testing, Deployment, and Maintenance.





Compilation of References



Abrahamsson,P.,Conboy,K.,&Wang,X.(2009).‘Lotsdone,moretodo’:Thecurrentstateofagilesystemsdevelop-
mentresearch.European Journal of Information Systems,18(4),281–284.doi:10.1057/ejis.2009.27

Adamopoulos,A.(2012).Roadmap for Agile Success.Retrievedfromhttp://www.emergn.com/insights/blogs/roadmap-
for-agile-success/

Adkins,L. (2010).Coaching agile teams: a companion for ScrumMasters, agile coaches, and project managers in 
transition.Addison-WesleyProfessional.

Adolph,S.(2014).Agile BA in Practice: Using Cadence to Leave Things to the Last Responsible Moment.Retrieved
from http://www.developmentknowledge.com/index.php/blog/141-agile-ba-in-practice-using-cadence-to-leave-things-
to-the-last-responsible-moment

Adolph,S.,Hall,W.,&Kruchten,P.(2011).Usinggroundedtheorytostudytheexperienceofsoftwaredevelopment.
Empirical Software Engineering,16(4),487–513.doi:10.1007/s10664-010-9152-6

Adzic,G.(2009).Bridging the Communication Gap- Specification By Example and Agile Acceptance Testing.Academic
Press.

Adzic,G.(2011).SpecificationbyExample:Howsuccessfulteamsdelivertherightsoftware.Childhood Education,
87(4),302–303.doi:10.1080/00094056.2011.10523198

Ågerfalk,J.,Fitzgerald,B.,&In,O.P.(2006).Flexible and distributed software processes: old petunias in new bowls.
PaperpresentedattheCommunicationsoftheACM.

Agile Manifesto.(2014,December12).Retrievedfromhttp://www.agilemanifesto.org

AgileMethodologyinFixedPriceprojects.GlobalAdvancedResearchJournalofEngineering,TechnologyandInnova-
tion.(2013).Systemic Foresight Methodology, 2,243-249.

Ahmed,E.,&Sidky,A.(2009).25percentAheadofScheduleandjustat“Step2”oftheSAMI.InProceedings of the 
2009 Agile Conference.IEEEComputerSociety.doi:10.1109/AGILE.2009.63

Aker,S.,Audin,C.,Lindy,E.,Marcelli,L.,Massart,J.P.,&Okur,Y.(2013).LessonsLearnedandChallengesofDevel-
opingtheNATOAirCommandandControlInformationServices.InProceedings of International Systems Conference 
(SysCon 2013).Orlando,FL:IEEE.doi:10.1109/SysCon.2013.6549974

AliBabar,M.,Brown,A.W.,&Mistrik, I. (2014).AgileSoftwareArchitecture.Communication Design Quarterly 
Review,2(2),43–47.doi:10.1145/2597469.2597477

Ambler,S.(2002).Agilemodeling:effectivepracticesforextremeprogrammingandtheunifiedprocess.AcademicPress.

293

http://dx.doi.org/10.1057/ejis.2009.27
http://www.emergn.com/insights/blogs/roadmap-for-agile-success/
http://www.emergn.com/insights/blogs/roadmap-for-agile-success/
http://www.developmentknowledge.com/index.php/blog/141-agile-ba-in-practice-using-cadence-to-leave-things-to-the-last-responsible-moment
http://www.developmentknowledge.com/index.php/blog/141-agile-ba-in-practice-using-cadence-to-leave-things-to-the-last-responsible-moment
http://dx.doi.org/10.1007/s10664-010-9152-6
http://dx.doi.org/10.1080/00094056.2011.10523198
http://www.agilemanifesto.org
http://dx.doi.org/10.1109/AGILE.2009.63
http://dx.doi.org/10.1109/SysCon.2013.6549974
http://dx.doi.org/10.1145/2597469.2597477


Compilation of References

Ambler,S.(2014).Generalizing Specialists: Improving Your IT Career Skills.AcademicPress.

Ambler,S.W.(2008).TailoringUsabilityintoAgileSoftwareDevelopementProjects.InE.Law,E.Hvannberg,&G.
Cocklon(Eds.),MeasuringUsability(pp.75-95).London:Springer-Verlag.

Ambler, S. W. (2009a). Ambysoft. Retrieved 9 September, 2014, from http://www.ambysoft.com/surveys/stateOfI-
TUnion200907.html

Ambler,S.W.(2010).The Agile Maturity Model (AMM).Retrievedfromhttp://www.drdobbs.com/architecture-and-
design/the-agile-maturity-model-amm/224201005

Ambler,S.W.(2015,March21).Introduction to Agile Usability: User Experience (UX) Activities on Agile Development 
Projects.RetrievedfromAgileModeling:http://agilemodeling.com/essays/agileUsability.htm

Ambler,S.W.(2013).What Was Final Status.AcademicPress.

Ambler,S.W.(2002).Agile modeling. In Effective Practices for Extreme Programming and the Unified Process.New
York:Wiley&Sons.

Ambler,S.W.(2003).UsageScenarios.An Agile Introduction,2753,208.

Ambler,S.W.(2009b).The Agile Scaling Model (ASM).AdaptingAgileMethodsforComplexEnvironments.

Ambler,S.W.(2010).Agile Modeling.Ambisoft.

Ambler,S.W.(2014).2014 Agile Adoption Mini-Survey.AmbySoft.

Ambler,S.W.,&Lines,M.(2012).Disciplined agile delivery: A practitioner’s guide to agile software delivery in the 
enterprise.IBMPress.

Anderson,D.(2004).Feature-Driven Development: towards a TOC, Lean and Six Sigma solution for software engineer-
ing, Theory of Constraints.InternationalCertificationOrganization,Microsoft.

Anderson,L.,Alleman,G.B.,Beck,K.,Blotner,J.,Cunningham,W.,Poppendieck,M.,&Wirfs-Brock,R.(2003).
Agile management - an oxymoron?: who needs managers anyway?PaperpresentedattheCompanionofthe18than-
nualACMSIGPLANconferenceonObject-orientedprogramming,systems, languages,andapplications,Anaheim,
CA.doi:10.1145/949344.949410

Andrea, J. (2005). If theShoeDoesn’tFit–AgileRequirements forStepsisterProjects.BetterSoftwareMagazine.
Molecular Pharmacology.doi:10.1124/mol.105.020230

Andrzeevski,S.(2007).ExperiencingReport‘OffshoreXPforPDAdevelopment’.InProceedings of Agile Conference 
(Agile 2007).Washington,DC:IEEE

Aoyama,M.(1998).Web-basedAgilesoftwaredevelopment.IEEE Software,15(6),56–65.doi:10.1109/52.730844

AS-22BNL.(1968).Brookhaven National Laboratory.BNL50106(AS-22).T.BrookhavenNationalLaboratory.

Atlas,A.(2009).AccidentalAdoption:TheStoryofScrumatAmazon.com.InProceedings of Agile Conference (AGILE 
‘09).Chicago,IL:IEEE.doi:10.1109/AGILE.2009.10

Atlassian.(2013).Agile maturity – How agile is your organization?RetrievedNov.2013,fromhttp://blogs.atlassian.
com/2013/11/agile-maturity-how-agile-is-your-organization/

Augustine,S.(2005).Managingagileprojects.PrenticeHall.

294

http://www.ambysoft.com/surveys/stateOfITUnion200907.html
http://www.ambysoft.com/surveys/stateOfITUnion200907.html
http://www.drdobbs.com/architecture-and-design/the-agile-maturity-model-amm/224201005
http://www.drdobbs.com/architecture-and-design/the-agile-maturity-model-amm/224201005
http://agilemodeling.com/essays/agileUsability.htm
http://dx.doi.org/10.1145/949344.949410
http://dx.doi.org/10.1124/mol.105.020230
http://dx.doi.org/10.1109/52.730844
http://dx.doi.org/10.1109/AGILE.2009.10
http://blogs.atlassian.com/2013/11/agile-maturity-how-agile-is-your-organization/
http://blogs.atlassian.com/2013/11/agile-maturity-how-agile-is-your-organization/


Compilation of References

Awad,M.A.(2005).A comparison between agile and traditional software development methodologies.Universityof
WesternAustralia.

Babar,M.A.(2009).AnExploratoryStudyofArchitecturalPracticesandChallengesinUsingAgileSoftwareDevel-
opmentApproaches.InProceedings of Software Architecture, 2009 & European Conference on SoftwareArchitecture 
(WICSA/ECSA 2009). Joint Working IEEE/IFIP.Cambridge:IEEE.

Babb,J.,Hoda,R.,&Norbjerg,J.(2014).Embeddingreflectionandlearningintoagilesoftwaredevelopment.IEEE 
Software,31(4),51–57.doi:10.1109/MS.2014.54

Babinet,E.,&Ramanathan,R.(2008).Dependency management in a large agile environment.Paperpresentedatthe
Agile2008Conference.doi:10.1109/Agile.2008.58

Baker,S.W.(2005).FormalizingAgility:AnAgileOrganization’sJourneytowardCMMIAccreditation.InProceedings 
of the Agile Development Conference (ADC’05).Denver,CO:IEEE.doi:10.1109/ADC.2005.27

Bass,J.M.(2013).AgileMethodTailoringinDistributedEnterprises:ProductOwnerTeams.InProceedings of 8th 
International Conference on Global Software Engineering (ICGSE 2013).Bari:IEEE.doi:10.1109/ICGSE.2013.27

Bass,J.M.(2014).ScrumMasterActivities:ProcessTailoringinLargeEnterpriseProjects.InProceedings of 9th In-
ternational Conference on Global Software Engineering (ICGSE 2014).Shanghai:IEEE.doi:10.1109/ICGSE.2014.24

Bayona,S.,Calvo-Manzano,J.A.,&SanFeliu,T.(2012).Criticalsuccessfactorsinsoftwareprocessimprovement:A
systematicreview.InA.Mas,A.Mesquida,T.Rout,R.V.O’Connor,&A.Dorling(Eds.),Vol. SPICE 2012, CCIS 290
(pp.1–12).Palma.doi:10.1007/978-3-642-30439-2_1

Beck,K.,Beedle,M.,VanBennekum,A.,Cockburn,A.,Cunningham,W.,Fowler,M.,&Jeffries,R.(2001).Manifesto 
for agile software development.Retrievedfromhttp://agilemanifesto.org/

Beck,K.,Beedle,M.,vanBennekum,A.,Cockburn,A.,Cunningham,W.,Fowler,M.,...Sutherland,J.(2001).Agile 
Manifesto.RetrievedMay2014,fromwww.agilemanifesto.org

Beck,K.,Cockburn,A.,Jeffries,R.,&Highsmith,J.(2001).Agile manifesto.RetrievedMay2014,fromhttp://www.
agilemanifesto.org

Beck,K.(2000).Extreme programming explained: embrace change.Addison-WesleyProfessional.

Beck,K.,&Andres,C.(2004).Extreme Programming Explained: Embrace Change(2nded.).Boston,MA:Addison-
WesleyProfessional.

Begel,A.,&Nagappan,N.(2007).Usageandperceptionsofagilesoftwaredevelopmentinanindustrialcontext:An
exploratorystudy.InEmpirical Software Engineering and Measurement,(pp.255-264).doi:10.1109/esem.2007.84

Begel,A.,&Nagappan,N.(2007).UsageandPerceptionsofAgileSoftwareDevelopmentinanIndustrialContext:An
ExploratoryStudy.InProceedings of First International Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2007).Madrid:IEEE.doi:10.1109/ESEM.2007.12

Bell,T.E.,&Thayer,T.A. (1976).2nd InternationalConferenceonSoftwareEngineering.Computer,9(8),9–12.
doi:10.1109/C-M.1976.218669

Benefield,G.(2008).RollingoutAgileinaLargeEnterprise.InProceedings of the 41st Hawaii International Confer-
ence on System Sciences.Waikoloa,HI:IEEE.doi:10.1109/HICSS.2008.382

Benington,H.D.(1983).ProductionofLargeComputerPrograms.IEEE Annals of the History of Computing,5(4),
350–361.doi:10.1109/MAHC.1983.10102

295

http://dx.doi.org/10.1109/MS.2014.54
http://dx.doi.org/10.1109/Agile.2008.58
http://dx.doi.org/10.1109/ADC.2005.27
http://dx.doi.org/10.1109/ICGSE.2013.27
http://dx.doi.org/10.1109/ICGSE.2014.24
http://dx.doi.org/10.1007/978-3-642-30439-2_1
http://agilemanifesto.org/
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://dx.doi.org/10.1109/ESEM.2007.12
http://dx.doi.org/10.1109/C-M.1976.218669
http://dx.doi.org/10.1109/HICSS.2008.382
http://dx.doi.org/10.1109/MAHC.1983.10102


Compilation of References

Berger,B.,&Rumpe,B.(2010).SupportingAgileChangeManagementbyScenario-BasedRegressionSimulation.IEEE 
Transactions on Intelligent Transportation Systems,11(2),504–509.doi:10.1109/TITS.2010.2044571

Berger,J.(2013).Contagious: Why things catch on.SimonandSchuster.

Bhalerao,S.,& Ingle,M. (2007).MappingSDLCphasewithVariousAgileMethods. International conference on 
Advances in Computer Vision and information Technology,(pp.318-325).Aurangabad.

Bhalerao,S.,Puntambekar,D.,&Ingle,M.(2009).GeneralizingAgileSoftwareDevelopmentLifeCycle.International 
Journal on Computer Science and Engineering,1(3),222–226.

Blank,S.(2013).The four steps to the epiphany.K&SRanch.

Blank, S. (2013). Why the lean start-up changes everything. Harvard Business Review, 91(5), 63–72.
doi:10.4324/9780203104569

Blocher,M.,Blumberg,S.,&Laartz,J.(2012).Delivering Large-Scale IT Projects on Time, on Budget.AndonValue.

Boehm,B.(2006).Aviewof20thand21stcenturysoftwareengineering.InProceedings of the 28th international 
conference on Software engineering.

Boehm,B.,&Turner,R.(2004).Balancing agility and discipline: Evaluating and integrating agile and plan-driven 
methods.PaperpresentedattheSoftwareEngineering.doi:10.1109/ICSE.2004.1317503

Boehm,B.(1986).Aspiralmodelofsoftwaredevelopmentandenhancement.ACM SIGSOFT Software Engineering 
Notes, ACM,11(4),22–42.doi:10.1145/12944.12948

Boehm,B.(2002).Getreadyforagilemethods,withcare.Computer,35(1),64–69.doi:10.1109/2.976920

Boehm,B.W.(1988).Aspiralmodelofsoftwaredevelopmentandenhancement.Computer,21(5),61–72.doi:10.1109/2.59

Bogard,J.(2012).WhyI’mdonewithScrum.InCombiningKanbanandScrum--LessonsfromaTeamofSysadmins
(pp.99–102).LosTechieshoughtWorks.

Bogsnes,B.(2008).Implementing beyond budgeting: unlocking the performance potential.JohnWiley&Sons.

Borland.(2009).Borland agile assessment.RetrievedDec.2013,fromhttp://borland.typepad.com/agile_transforma-
tion/2009/03/borland-agile-assessment-2009.html

Brock,J.,&Hobbs,P.E.(2010).Agile Transformation – rethinking IT strategy in an uncertain world.Retrievedfrom
https://www-304.ibm.com/easyaccess/fileserve?contentid=208473

Brooks,F.(1995).TheMythicalMan-Month.IEEE Software,12(5),57–60.doi:10.1109/MS.1995.10042

Brown,A.W.,Ambler,S.,&Royce,W.(2013).Agilityatscale:Economicgovernance,measuredimprovement,and
disciplineddelivery.InProceedings 35th International Conference of Software Engineering (ICSE),SanFrancisco,CA:
IEEE.doi:10.1109/ICSE.2013.6606636

Brown,T.(2009).Change by design: how design thinking transforms organizations and inspires innovation.NewYork:
HarperBusiness.

Cantor,M.,&Royce,W.(2013).EconomicGovernanceofSoftwareDelivery.IEEE Software,31(1),54–61.doi:10.1109/
MS.2013.102

296

http://dx.doi.org/10.1109/TITS.2010.2044571
http://dx.doi.org/10.4324/9780203104569
http://dx.doi.org/10.1109/ICSE.2004.1317503
http://dx.doi.org/10.1145/12944.12948
http://dx.doi.org/10.1109/2.976920
http://dx.doi.org/10.1109/2.59
http://borland.typepad.com/agile_transformation/2009/03/borland-agile-assessment-2009.html
http://borland.typepad.com/agile_transformation/2009/03/borland-agile-assessment-2009.html
https://www-304.ibm.com/easyaccess/fileserve?contentid=208473
http://dx.doi.org/10.1109/MS.1995.10042
http://dx.doi.org/10.1109/ICSE.2013.6606636
http://dx.doi.org/10.1109/MS.2013.102
http://dx.doi.org/10.1109/MS.2013.102


Compilation of References

Cao,L.,Mohan,K.,Xu,P.,&Balasubramaniam,R.(2004).HowExtremedoesExtremeProgrammingHavetobe?
AdaptingXPPracticestoLarge-scaleProjects.InProceedings of the 37th Hawaii International Conference on System 
Sciences,Waikoloa,HI:IEEE.

Cao,L.,&Ramesh,B.(2008).Agilerequirementsengineeringpractices:Anempiricalstudy.Software, IEEE,25(1),
60–67.doi:10.1109/MS.2008.1

Chan,F.K.,&Thong,J.Y.(2009).Acceptanceofagilemethodologies:Acriticalreviewandconceptualframework.
Decision Support Systems,46(4),803–814.doi:10.1016/j.dss.2008.11.009

Chow,T.,&Cao,D.-B.(2008).Asurveystudyofcriticalsuccessfactorsinagilesoftwareprojects.Journal of Systems 
and Software,81(6),961–971.doi:10.1016/j.jss.2007.08.020

Chun,A.H.W.(2004).The Agile Teaching / Learning Methodology and its e-Learning Platform. In Lecture Notes in 
Computer Science-Advances in Web-Based Learning(Vol.3143,pp.11–18).Springer-VerlagHeidelberg.

Chung,M.W.,&Drummond,B.(2009).Agile @ yahoo! from the trenches.PaperpresentedattheAgileConference
(AGILE2009),Chicago,IL.doi:10.1109/AGILE.2009.41

Clarke,P.,&O’Connor,R.V.(2012).Thesituationalfactorsthataffectthesoftwaredevelopmentprocess:Towardsacom-
prehensivereferenceframework.Information and Software Technology,54(5),433–447.doi:10.1016/j.infsof.2011.12.003

Cloke,G.(2007).GETYOURAGILEFREAKON!AgileAdoptionatYahoo!Music.InProceedings of Agile Confer-
ence (Agile 2007),Washington,DC:IEEE.doi:10.1109/AGILE.2007.30

Cockburn,A.(1999).AMethodologyperproject.AcademicPress.

Cockburn,A.(2006).Agile software development: the cooperative game.PearsonEducation.

Cockburn,A.,&Highsmith,J.(2001).Agilesoftwaredevelopment:Thepeoplefactor.Computer,34(11),131–133.
doi:10.1109/2.963450

Cohen,D.,Lindvall,M.,&Costa,P.(2004).AnintroductiontoAgilemethods.Advances in Computers, 62,1-66.doi:
10.1016/S0065-2458(03)62001-2

Cohen,B.,&Thias,M.(2009).TheFailureoftheOff-shoreExperiment:ACaseforCollocatedAgileTeams.InProceed-
ings of Agile 2009 Conference.Chicago,IL:IEEE.doi:10.1109/AGILE.2009.8

Cohn, M. (2006). The Purpose of Planning. Journal of Planning Education and Research, 25(4), 446–448.
doi:10.1177/0739456x0602500412

Cohn,M.(2010a).ADAPTing to Agile for Continued Success.PaperpresentedattheAgile2010.

Cohn,M.,&Ford,D.(2003).IntroducinganAgileProcesstoanOrganization.IEEEComputerSociety,74-78.

Cohn,M.(2005).Agile estimating and planning.PearsonEducation.

Cohn,M.(2010b).Succeeding with agile: software development using Scrum.PearsonEducation.

Coleman,G.,&O’Connor,R.(2007).Usinggroundedtheorytounderstandsoftwareprocessimprovement:Astudyof
Irishsoftwareproductcompanies.Information and Software Technology,49(6),654–667.doi:10.1016/j.infsof.2007.02.011

Collier,M.J.(2009).CHAOSSummary2009,TheStandishGroup.Negotiation and Conflict Management Research,
2(3),285–306.doi:10.1111/j.1750-4716.2009.00041.x

297

http://dx.doi.org/10.1109/MS.2008.1
http://dx.doi.org/10.1016/j.dss.2008.11.009
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1109/AGILE.2009.41
http://dx.doi.org/10.1016/j.infsof.2011.12.003
http://dx.doi.org/10.1109/AGILE.2007.30
http://dx.doi.org/10.1109/2.963450
http://dx.doi.org/10.1109/AGILE.2009.8
http://dx.doi.org/10.1177/0739456x0602500412
http://dx.doi.org/10.1016/j.infsof.2007.02.011
http://dx.doi.org/10.1111/j.1750-4716.2009.00041.x


Compilation of References

Collins,J.,&Porras,J.(2004).Built to Last: Successful Habits of Visionary Companies.HarperBusiness.doi:10.1002/
hrdq.1092

Collins,E.,Macedo,G.,Maia,N.,&Dias-Neto,A.(2012).AnIndustrialExperienceontheApplicationofDistributed
TestinginanAgileSoftwareDevelopmentEnvironment.InProceedings of Seventh International Conference on Global 
Software Engineering.PortoAlegre:IEEE.doi:10.1109/ICGSE.2012.40

Conboy,K.,Coyle,S.,Wang,X.,&Pikkarainen,M.(2011).Peopleoverprocess:Keychallengesinagiledevelopment.
IEEE Software,28(4),48–57.doi:10.1109/MS.2010.132

Constantine,L.L.(2001).ProcessAgilityandSoftwareUsability:TowardLightweightUsage-CenteredDesign.Infor-
mation Age, 8(2).

Construx. (2014). The Cone of Uncertainty. Retrieved from http://www.construx.com/Thought_Leadership/Books/
The_Cone_of_Uncertainty/

Cooper,A.(2009).An Insurgency of Quality.RetrievedMarch11,2015,fromhttp://www.cooper.com/journal/insurgency-
of-quality.pdf

Coram,M.,&Bohner,S.(2005).The impact of agile methods on software project management.Paperpresentedatthe
EngineeringofComputer-BasedSystems,2005.ECBS’05.12thIEEEInternationalConferenceandWorkshopsonthe.
doi:10.1109/ECBS.2005.68

Cottmeyer,M.(2008).TheGoodandBadofAgileOffshoreDevelopment.InProceedings of Agile 2008 Conference 
(AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.18

Cubric,M.(2013).Anagilemethodforteachingagileinbusinessschools.The International Journal of Management 
Education,11(3),119–131.doi:10.1016/j.ijme.2013.10.001

Cummins,D.(2004).UsingCompetitiontoBuildaStrongerTeam.InProceedings of Agile Development Conference,
SaltLakeCity,Utah:IEEEdoi:10.1109/ADEVC.2004.25

Cunningham,J.(2005).CostsofCompliance:AgileinanInelasticOrganization.InProceedings of the Agile Develop-
ment Conference (ADC’05).202-211.Denver,Colorado:IEEE.doi:10.1109/ADC.2005.18

Currim,I.S.,Mintz,O.,&Siddarth,S.(2015).InformationAccessedorInformationAvailable?TheImpactonCon-
sumerPreferencesInferredataDurableProductE-commerceWebsite.Journal of Interactive Marketing,29,11–25.
doi:10.1016/j.intmar.2014.09.003

daSilva,T.,Martin,A.,Maurer,F.,&Silveira,M.(2011).User-centereddesignandAgilemethods:asystematicreview.
International Conference on Agile Methods in Software Development AGILE 2011.doi:10.1109/AGILE.2011.24

Dannemiller,K.D.,&Jacobs,R.W.(1992).Changingthewayorganizationschange:Arevolutionofcommonsense.
The Journal of Applied Behavioral Science,28(4),480–498.doi:10.1177/0021886392284003

Debois,P. (2008).Agile infrastructureandoperations:how infra-gileareyou? InProceedings of Agile Conference 
(AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.42

DeMarco,T.,&Boehm,B.(2002).Theagilemethodsfray.Computer,35(6),90–92.doi:10.1109/MC.2002.1009175

Dillard.,S.(2012).Leanbutagile:rethinkworkforceplanningandgainatruecompetitiveedge.Choice Reviews Online, 
49(12).doi:10.5860/choice.49-6982

Dillon,R.(2015).Ready.Singapore:SpringerSingapore.

298

http://dx.doi.org/10.1109/ICGSE.2012.40
http://dx.doi.org/10.1109/MS.2010.132
http://www.construx.com/Thought_Leadership/Books/The_Cone_of_Uncertainty/
http://www.construx.com/Thought_Leadership/Books/The_Cone_of_Uncertainty/
http://www.cooper.com/journal/insurgency-of-quality.pdf
http://www.cooper.com/journal/insurgency-of-quality.pdf
http://dx.doi.org/10.1109/ECBS.2005.68
http://dx.doi.org/10.1109/Agile.2008.18
http://dx.doi.org/10.1016/j.ijme.2013.10.001
http://dx.doi.org/10.1109/ADEVC.2004.25
http://dx.doi.org/10.1109/ADC.2005.18
http://dx.doi.org/10.1016/j.intmar.2014.09.003
http://dx.doi.org/10.1109/AGILE.2011.24
http://dx.doi.org/10.1177/0021886392284003
http://dx.doi.org/10.1109/Agile.2008.42
http://dx.doi.org/10.1109/MC.2002.1009175


Compilation of References

Dingsøyr,T.,Nerur,S.,Balijepally,V.G.,&Moe,N.B.(2012).Adecadeofagilemethodologies:Towardsexplaining
agilesoftwaredevelopment.Journal of Systems and Software,85(6),1213–1221.doi:10.1016/j.jss.2012.02.033

Dinwiddie,G.(2011).Thethreeamigos.StickyMinds Magazine.

Dorairaj,S.,Noble,J.,&Malik,P.(2012,May14-15).Understanding lack of trust in distributed agile teams: A grounded 
theory study.Paperpresentedatthe16thInternationalConferenceonEvaluationandAssessmentinSoftwareEngineer-
ing,EASE2012,CiudadReal,Spain.doi:10.1049/ic.2012.0011

Dorairaj,S.,&Noble,J.(2013).AgileSoftwareDevelopmentwithDistributedTeams:Agility,DistributionandTrust.In
Proceedings of 35th International Conference on Software Engineering (ICSE).SanFrancisco,CA:IEEE.doi:10.1109/
AGILE.2013.7

Dorairaj,S.,Noble,J.,&Allan,G.(2013).AgileSoftwareDevelopmentwithDistributedTeams:SeniorManagement
Support.InProceedings of 8th International Conference on Global Software Engineering (ICGSE 2013).Bari:IEEE.
doi:10.1109/ICGSE.2013.33

Doshi,C.,&Doshi,D.(2009).APeekintoanAgileInfectedCulture.InProceedings of Agile 2009 Conference.Chicago,
IL:IEEE.doi:10.1109/AGILE.2009.65

Druckman,A.(2011).Agile Transformation Strategy.WhitePaper.

Drummond,B.,&Unson,J.F.(2008).Yahoo!DistributedAgile:NotesfromtheWorldOver.InProceedings of Agile 
2008 Conference (AGILE ‘08).Toronto,ON:IEEE.

Duhigg,C.(2012).ThePowerofHabit:WhyWeDoWhatWeDoinLifeandBusiness,RandomHouse.Journal of 
Child and Family Studies,22(4),582–584.doi:10.1007/s10826-012-9645-6

Duvall,P.M.,Matyas,S.,&Glover,A.(2007).Continuous integration: improving software quality and reducing risk.
PearsonEducation.

Dybå,T.,Sjøberg,&Cruzes.(2012).What works for whom, where, when, and why?: on the role of context in empirical 
software engineeringPaperpresentedattheACM-IEEEinternationalsymposiumonEmpiricalsoftwareengineering
andmeasurement.doi:10.1145/2372251.2372256

Dybå,T.(2005).Anempiricalinvestigationofthekeyfactorsforsuccessinsoftwareprocessimprovement.Software 
Engineering.IEEE Transactions on,31(5),410–424.

Dyba,T.(2005).Anempiricalinvestigationofthekeyfactorsforsuccessinsoftwareprocessimprovement.IEEE Trans-
actions on Software Engineering,31(5),410–424.doi:10.1109/TSE.2005.53

Dybå,T.,&Dingsøyr,T.(2008).Empiricalstudiesofagilesoftwaredevelopment:Asystematicreview.Information 
and Software Technology,50(9-10),833–859.doi:10.1016/j.infsof.2008.01.006

Dybå,T.,&Dingsøyr,T.(2008).Strengthofevidenceinsystematicreviewsinsoftwareengineering.InProceedings 
of the Second ACM-IEEE international symposium on Empirical software engineering and measurement (ESEM ‘08),
Kaiserslautern,Germany:ACM.doi:10.1145/1414004.1414034

Edwards,M.(2008).OverhaulingaFailedProjectUsingOutoftheBoxScrum.InProceedings of Agile 2008 Confer-
ence.Toronto:IEEE.doi:10.1109/Agile.2008.35

Eklund,J.,&Levingston,C.(2008).UsabilityinAgiledevelopment.UX Research,1-7.

Endres,A.,&Rombach,H.D.(2003).A handbook of software and systems engineering: Empirical observations, laws, 
and theories.PearsonEducation.

299

http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1049/ic.2012.0011
http://dx.doi.org/10.1109/AGILE.2013.7
http://dx.doi.org/10.1109/AGILE.2013.7
http://dx.doi.org/10.1109/ICGSE.2013.33
http://dx.doi.org/10.1109/AGILE.2009.65
http://dx.doi.org/10.1007/s10826-012-9645-6
http://dx.doi.org/10.1145/2372251.2372256
http://dx.doi.org/10.1109/TSE.2005.53
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1145/1414004.1414034
http://dx.doi.org/10.1109/Agile.2008.35


Compilation of References

Eoyang,G.H.(2001).Conditions for self-organizing in human systems.TheUnionInstitute.

Esfahani,H.C.(2012).Transitioning to Agile: A Framework for Pre-Adoption Analysis using Empirical Knowledge and 
Strategic Modeling. Canada:UniversityofToronto.

ExamCertification,I.S.T.Q.B.(2014,December12).What is waterfall model - advantages, disadvantages.Retrieved
fromhttp://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/

Faegri,T.E.,&Hanssen,G.K.(2007).Collaboration,ProcessControl,andFragilityinEvolutionaryProductDevelop-
ment.IEEE Software,24(3),96–104.doi:10.1109/MS.2007.68

Farmer,M.(2004).DecisionSpaceInfrastructure:AgileDevelopmentinaLarge,DistributedTeam.InProceedings of 
the Agile Development Conference (ADC’04).SaltLakeCity,Utah:IEEE.doi:10.1109/ADEVC.2004.11

Fenn,J.&Linden,A.(2005).Gartner’s Hype Cycle Special Report for 2005.Gartner.

Fernandez,A.,Insfran,E.,&Abrahao,S.(2011).Usabilityevaluationmethodsfortheweb:Asystematicmappingstudy.
Information and Software Technology,53(8),789–817.doi:10.1016/j.infsof.2011.02.007

Ferneley,E.,&Sobreperez,P.(2006).Resist,complyorworkaround?Anexaminationofdifferentfacetsofuserengagement
withinformationsystems.European Journal of Information Systems,15(4),345–356.doi:10.1057/palgrave.ejis.3000629

Fitzgerald,B.,Hartnett,G.,&Conboy,K.(2006).CustomisingagilemethodstosoftwarepracticesatIntelShannon.
European Journal of Information Systems,15(2),200–213.doi:10.1057/palgrave.ejis.3000605

Fitzgerald,B.,Stol,K.-J.,O’Sullivan,R.,&O’Brien,D. (2013).Scalingagilemethods to regulatedenvironments:
anindustrycasestudy.InProceedings of the 2013 International Conference on Software Engineering.doi:10.1109/
ICSE.2013.6606635

Fowler,M.(2003).Bliki:FixedPrice.Geochemistry, Geophysics, Geosystems, 4(11).doi:10.1029/2003gc000608

Fritscher,B.,&Pigneur,Y. (2010).Supporting Business Model Modelling: A Compromise between Creativity and 
Constraints.AcademicPress.

Fruhling,A.,McDonald,P.,&Dunbar,C.(2008).ACaseStudy:IntroducingeXtremeProgramminginaUSGovern-
mentSystemDevelopmentProject.InProceedings of the 41st Hawaii International Conference on System Sciences.
Waikoloa,HI:IEEE.doi:10.1109/HICSS.2008.4

Gamma,E.,&Beck,K.(2006).JUnit.AcademicPress.

Gandomani,T.J.,Zulzalil,H.,&Nafchi,M.Z.(2014).Agile Transformation: What is it about?Paperpresentedatthe
8thMalaysianSoftwareEngineeringConference(MySEC),Langkawi,Malaysia.

Gandomani,T.J.,Zulzalil,H.,AbdulGhani,A.A.,Sultan,A.B.M.,&Sharif,K.Y.(2014).ExploringFacilitatorsof
TransitionandAdoptiontoAgileMethods:aGroundedTheoryStudy.Journal of Software.

Gandomani,T.J.,Zulzalil,H.,AbdulGhani,A.A.,Sultan,A.B.M.,&Sharif,K.Y.(2014).Howhumanaspectsimpress
Agilesoftwaredevelopmenttransitionandadoption.International Journal of Software Engineering and its Applications, 
8(1),129-148.doi:10.14257/ijseia.2014.8.1.12

Gandomani,T.J.,Zulzalil,H.,Ghani,A.A.A.,Sultan,A.B.M.,&Sharif,K.Y.(2013).HowGroundedTheorycan
facilitateresearchstudiesincontextofAgilesoftwaredevelopment.Science International-Lahore,25(4),1131–1136.

Gandomani,T.J.,&Nafchi,M.Z.(2014).AgilityAssessmentModeltoMeasureAgilityDegreeofAgileSoftware
Companies.Indian Journal of Science and Technology,7(7),955–959.

300

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://dx.doi.org/10.1109/MS.2007.68
http://dx.doi.org/10.1109/ADEVC.2004.11
http://dx.doi.org/10.1016/j.infsof.2011.02.007
http://dx.doi.org/10.1057/palgrave.ejis.3000629
http://dx.doi.org/10.1057/palgrave.ejis.3000605
http://dx.doi.org/10.1109/ICSE.2013.6606635
http://dx.doi.org/10.1109/ICSE.2013.6606635
http://dx.doi.org/10.1109/HICSS.2008.4


Compilation of References

Gandomani,T.J.,Zulzalil,H.,&Ghani,A.(2013).Obstaclestomovingtoagilesoftwaredevelopment;ataglance.
Journal of Computer Science,9(5),620–625.doi:10.3844/jcssp.2013.620.625

Gandomani,T.J.,Zulzalil,H.,Ghani,A.A.A.,&Sultan,A.B.M.(2013a).Importantconsiderationsforagilesoftware
developmentmethodsgovernance.Journal of Theoretical and Applied Information Technology,55(3),345–351.

Gandomani,T.J.,Zulzalil,H.,Ghani,A.A.A.,&Sultan,A.B.M.(2013b).Towardscomprehensiveanddisciplined
changemanagementstrategyinagiletransformationprocess.Research Journal of Applied Sciences.Engineering and 
Technology,6(13),2345–2351.

Gandomani,T.J.,Zulzalil,H.,Ghani,A.A.A.,&Sultan,A.B.M.,&Parizi,R.M.(2015).Theimpactofinadequate
anddysfunctionaltrainingonAgiletransformationprocess:AGroundedTheorystudy.Information and Software Tech-
nology,57,295–309.doi:10.1016/j.infsof.2014.05.011

Gandomani,T.J.,Zulzalil,H.,&Ghani,Abdul,A.A.,Sultan,A.B.M.,&Sharif,K.Y.(2014).ExploringFacilita-
torsofTransitionandAdoptiontoAgileMethods:AGroundedTheoryStudy.Journal of Software,7(9),1666–1678.
doi:10.4304/jsw.9.7.1666-1678

Ganesh,N.,&Thangasamy,S.(2012).Lessonslearnedintransformingfromtraditionaltoagiledevelopment.Journal 
of Computer Science,8(3),389–392.doi:10.3844/jcssp.2012.389.392

Gärtner,M.(2012).ATDD by example: a practical guide to acceptance test-driven development.Addison-Wesley.

Gat,I.(2006).HowBMCisScalingAgileDevelopment.InProceedings of Agile Conference (AGILE’06).Minneapolis,
MN:IEEE.

Ge,X.,Paige,R.,&McDermid,J.(2010).AnIterativeApproachforDevelopmentofSafety-CriticalSoftwareandSafety
Arguments.InAgile Conference (AGILE 2010).Orlando,FL:IEEE.doi:10.1109/AGILE.2010.10

Glaser,B.(1992).Basics of Grounded Theory Analysis: Emergence Vs. Forcing.MillValley,CA:SociologyPress.

Glaser,B.(1998).Doing Grounded Theory: Issues and Discussions.MillValley,CA:SociologyPress.

Glaser,B.G.(2005).The Grounded Theory Perspective III: Theoretical Coding.MillValley,CA:SociologyPress.

Glaser,B.,&Strauss,A. (1967).The Discovery of Grounded Theory, Strategies for Qualitative Research.London:
WeidenfeldandNicolson.

Glaser,B.,&Strauss,A.(1967).The Discovery of Grounded Theory: Strategies for Qualitative Research.Chicago:
AldineTransaction.

Glass, R. L. (2004). Matching methodology to problem domain. Communications of the ACM, 47(5), 19–21.
doi:10.1145/986213.986228

Goebel,C.J.(2009).HowBeingAgileChangedOurHumanResourcesPolicies.InProceedings of Agile 2009 Confer-
ence.Chicago,IL:IEEE.doi:10.1109/AGILE.2009.49

Grapenthin,S.,Book,M.,Poggel,S.,&Gruhn,V.(2014).FacilitatingTaskBreakdowninSprintPlanningMeeting
2withanInteractionRoom:AnExperienceReport.InProceeding of 40th Euromicro Conference Series on Software 
Engineering and Advanced Applications (SEAA 2014).Verona:IEEE.doi:10.1109/SEAA.2014.71

Greening,D.R.(2010).ScalingScrumtotheExecutiveLevel.InProceedings of the 43rd Hawaii International Confer-
ence on System Sciences.Honolulu,HI:IEEE.

Greenleaf,R.K.(1977).Servant leadership.NewYork:PaulistPress.

301

http://dx.doi.org/10.3844/jcssp.2013.620.625
http://dx.doi.org/10.1016/j.infsof.2014.05.011
http://dx.doi.org/10.4304/jsw.9.7.1666-1678
http://dx.doi.org/10.3844/jcssp.2012.389.392
http://dx.doi.org/10.1109/AGILE.2010.10
http://dx.doi.org/10.1145/986213.986228
http://dx.doi.org/10.1109/AGILE.2009.49
http://dx.doi.org/10.1109/SEAA.2014.71


Compilation of References

Gregorio,D.D.(2012).HowtheBusinessAnalystSupportsandEncouragesCollaborationonAgileProjects.InPro-
ceedings of International System Conference (SysCon 2012).Vancouver,BC:IEEE.doi:10.1109/SysCon.2012.6189437

Gren,L.,Torkar,R.,&Feldt,R.(2014).WorkMotivationalChallengesRegardingtheInterfaceBetweenAgileTeams
andaNon-AgileSurroundingOrganization:Acasestudy.InProceedings of Agile Conference (AGILE 2014).Kissim-
mee,FL:IEEE.doi:10.1109/AGILE.2014.13

Gualtieri, M. (2011). Agile Software is A Cop-Out; Here’s What’s Next. Forrester, 36(6), 529–531. doi:10.1097/
SHK.0b013e318239235a

Hadar,I.,Sherman,S.,Hadar,E.,&Harrison,J.J.(2013).LessisMore:ArchitectureDocumentationforAgileDevel-
opment.InProceedings of 6th International Workshop on Cooperative and Human Aspects of Software Engineering 
(CHASE).SanFrancisco,CA:IEEE.doi:10.1109/CHASE.2013.6614746

Hagan,R.(2012).Agile Performance Reviews.AcademicPress.

Hagan,R.(2012).AgilePerformanceReview.Microform & Digitization Review,41(3-4).doi:10.1515/mir-2012-0026

Hajjdiab,H.,&Taleb,A.S.(2011).Agile adoption experience: A case study in the U.A.E.PaperpresentedattheIEEE
2ndInternationalConferenceonSoftwareEngineeringandServiceScience,ICSESS2011,Beijing,China.doi:10.1109/
ICSESS.2011.5982247

Hansen,M.T.,&Baggesen,H.(2009).FromCMMIandisolationtoScrum,Agile,Leanandcollaboration.InProceed-
ings of Agile 2009 Conference.Chicago,IL:IEEE.doi:10.1109/AGILE.2009.18

Harlow,M.(2014).Molecularbiology:RNAretrievedfromintacttissue.Nature,505(7483),264.doi:10.1038/505264d

HartmannPreuss,D.(2006).Interview:JimJohnsonofStandishGroup.Info,Q(289),253.doi:10.2307/20632978

Hasnain,E.(2010).Anoverviewofpublishedagilestudies:asystematicliteraturereview.InProceedings of the National 
Software Engineering Conference (NSEC ‘10).Rawalpindi,Pakistan:ACM.doi:10.1145/1890810.1890813

Hastie,S.(2014).Knowing When to Stop – trim that tail ruthlessly.AcademicPress.

Heikkilä,V.T.,Paasivaara,M.,Lassenius,C.,&Engblom,C.(2013).Continuous release planning in a large-scale 
scrum development organization at Ericsson.Springer.doi:10.1007/978-3-642-38314-4_14

Heimgartner,S.,&Locke,M.(2006).ATaleofTwoWritingTeams.InProceedings of Agile Conference (AGILE’06).
Minneapolis,MN:IEEE.

Hiatt,J.M.(2006).ADKAR: a model for change in business, government and our community.ProsciLearningCenter.

Highsmith,J.(2002).Agile software development ecosystems.Addison-WesleyLongmanPublishingCo.,Inc.

Highsmith,J.(2013).Adaptive software development: a collaborative approach to managing complex systems.Addison-
Wesley.

Highsmith,J.A.(2002).Agile software development ecosystems 13.Addison-WesleyProfessional.

Highsmith, J.,&Cockburn,A. (2001).Agile softwaredevelopment:Thebusinessof innovation.Computer,34(9),
120–127.doi:10.1109/2.947100

Hoda,R.(2011).Self-Organizing Agile Teams: A Grounded Theory.(PhDThesis).VictoriaUniversityofWellington,
NewZealand.

302

http://dx.doi.org/10.1109/SysCon.2012.6189437
http://dx.doi.org/10.1109/AGILE.2014.13
http://dx.doi.org/10.1097/SHK.0b013e318239235a
http://dx.doi.org/10.1097/SHK.0b013e318239235a
http://dx.doi.org/10.1109/CHASE.2013.6614746
http://dx.doi.org/10.1515/mir-2012-0026
http://dx.doi.org/10.1109/ICSESS.2011.5982247
http://dx.doi.org/10.1109/ICSESS.2011.5982247
http://dx.doi.org/10.1109/AGILE.2009.18
http://dx.doi.org/10.1038/505264d
http://dx.doi.org/10.2307/20632978
http://dx.doi.org/10.1145/1890810.1890813
http://dx.doi.org/10.1007/978-3-642-38314-4_14
http://dx.doi.org/10.1109/2.947100


Compilation of References

Hoda,R.,Noble,J.,&Marshall,S.(2010).Organizing self-organizing teams.Paperpresentedatthe32ndACM/IEEE
InternationalConferenceonSoftwareEngineering,ICSE2010,CapeTown,SouthAfrica.doi:10.1145/1806799.1806843

Hoda, R., Kruchten, P., Noble, J., & Marshall, S. (2010). Agility in context. ACM SIGPLAN Notices, 45(10), 74.
doi:10.1145/1932682.1869467

Hoda,R.,Noble,J.,&Marshall,S.(2009).Negotiating contracts for agile projects: A practical perspective. In Agile Pro-
cesses in Software Engineering and Extreme Programming(pp.186–191).Springer.doi:10.1007/978-3-642-01853-4_25

Hoda,R.,Noble,J.,&Marshall,S.(2011a).Developingagroundedtheorytoexplainthepracticesofself-organizing
Agileteams.Empirical Software Engineering,17(6),609–639.doi:10.1007/s10664-011-9161-0

Hoda,R.,Noble,J.,&Marshall,S.(2011b).Theimpactofinadequatecustomercollaborationonself-organizingAgile
teams.Information and Software Technology,53(5),521–534.doi:10.1016/j.infsof.2010.10.009

Hofmeister,C.,Kruchten,P.,Nord,R.L.,Obbink,H.,Ran,A.,&America,P.(2007).Ageneralmodelofsoftwarearchi-
tecturedesignderivedfromfiveindustrialapproaches.Journal of Systems and Software,80(1),106–126.doi:10.1016/j.
jss.2006.05.024

Hogan,B.(2006).LessonsLearnedfromaneXtremelyDistributedProject.InProceedings of Agile Conference (AG-
ILE’06).Minneapolis,MN:IEEE.doi:10.1109/AGILE.2006.37

Hope,J.,&Fraser,R.(2013).Beyond budgeting: how managers can break free from the annual performance trap.
HarvardBusinessPress.

Hui,A.(2013).LeanChange:EnablingAgileTransformationthroughLeanStartup,Kanban,andKotter:AnExperi-
enceReport.InProceedings of Agile Conference (AGILE 2013),Nashville,TN:IEEE.doi:10.1109/AGILE.2013.22

Humble,J.,&Russell,R.(2009).The agile maturity model applied to building and releasing software.ThoughtWorks
WhitePaper,WebPublishing.Retrievedfromhttp://www.thoughtworks-studios.com/sites/default/files/resource/the_ag-
ile_maturity_model.pdf

Hussain,Z.,Lechner,M.,Milchrahm,H.,Shahzad,S.,Slany,W.,Umgeher,M.,&Wolkerstorfer,P.(2008).Agile User-
Centered Design Applied to a Mobile Multimedia Streaming Application(A.Holzinger,Ed.).Berlin:Springer-Verlag.
doi:10.1007/978-3-540-89350-9_22

Iivari,J.,&Iivari,N.(2011).Therelationshipbetweenorganizationalcultureandthedeploymentofagilemethods.
Information and Software Technology,53(5),509–520.doi:10.1016/j.infsof.2010.10.008

ISO.IEC9126.(2001).Softwareproductevaluation—qualitycharacteristicsandguidelinesfortheuser.Geneva:Inter-
nationalOrganizationforStandardization.

Jackson,M.(2010).EngineeringandSoftwareEngineering.AcademicPress.

Jackson,A.,Tsang,S.L.,Gray,A.,Driver,C.,&Clarke,S.(2004).BehindtheRules:XPExperiences.InProceedings 
of the Agile Development Conference (ADC’04).SaltLakeCity,UT:IEEE.doi:10.1109/ADEVC.2004.9

Jacobson,M.S.(2014).ScrumMasterAllocation:TheCaseforaDedicatedScrumMaster.AcademicPress.

Jacobson,I.,Ng,P.-W.,McMahon,P.E.,Spence,I.,&Lidman,S.(2013).The essence of software Engineering: apply-
ing the SEMAT kernel.Addison-Wesley.

Jain,N.(2006).OffshoreAgileMaintenance.InProceedings of Agile Conference (AGILE’06).Minneapolis,MN:IEEE.

303

http://dx.doi.org/10.1145/1806799.1806843
http://dx.doi.org/10.1145/1932682.1869467
http://dx.doi.org/10.1007/978-3-642-01853-4_25
http://dx.doi.org/10.1007/s10664-011-9161-0
http://dx.doi.org/10.1016/j.infsof.2010.10.009
http://dx.doi.org/10.1016/j.jss.2006.05.024
http://dx.doi.org/10.1016/j.jss.2006.05.024
http://dx.doi.org/10.1109/AGILE.2006.37
http://dx.doi.org/10.1109/AGILE.2013.22
http://dx.doi.org/10.1007/978-3-540-89350-9_22
http://dx.doi.org/10.1016/j.infsof.2010.10.008
http://dx.doi.org/10.1109/ADEVC.2004.9


Compilation of References

Jakobsen,C.R.,&Sutherland,J.(2009).ScrumandCMMI–GoingfromGoodtoGreatAreyouready-readytobe
done-done?InProceedings of Agile 2009 Conference.Chicago,IL:IEEE.doi:10.1109/AGILE.2009.31

Jedlitschka,A.,Ciolkowski,M.,&Pfahl,D.(2008).Reportingexperimentsinsoftwareengineering.Guide to Advanced 
Empirical Software Engineering,232(3),201–228.doi:10.1007/978-1-84800-044-5_8

Johnson,J.,Boucher,K.D.,Connors,K.,&Robinson,J.(2001).Collaborating on Project Success.SOFTWAREMAG.

Kaisti,M.,Rantala,V.,Mujunen,T.,Hyrynsalmi,S.,Könnölä,K.,Mäkilä,T.,&Lehtonen,T.(2013).Agilemethods
forembeddedsystemsdevelopment-aliteraturereviewandamappingstudy.EURASIP Journal on Embedded Systems,
2013(15).

Kalliney,M.(2009).TransitioningfromAgileDevelopmenttoEnterpriseProductManagementAgility.InProceedings 
of Agile 2009 Conference.Chicago,IL:IEEE.doi:10.1109/AGILE.2009.64

Kettunen,P.,&Laanti,M.(2008).Combiningagilesoftwareprojectsandlarge‐scaleorganizationalagility.Software 
Process Improvement and Practice,13(2),183–193.doi:10.1002/spip.354

Kiczales,G.,Lamping, J.,Mendhekar,A.,Maeda,C.,VideiraLopes,C.,Loingtier, J.,& Irwin, J. (1997).Aspect-
Oriented Programming.Paperpresentedat theEuropeanConferenceonObject-OrientedProgrammingECOOP’97,
Berlin,Germany.doi:10.1007/BFb0053381

Kim,G.,Behr,K.,&Spafford,G.(2013).ThePhoenixProject:ANovelaboutIT,DevOps,andHelpingYourBusiness
Win.ITRevolutionPress.doi:10.1524/hzhz.2013.0149

Kim,E.,&Ryoo,S.(2012).AgileAdoptionStoryfromNHN.InProceedings of 36th International Conference on 
Computer Software and Applications.Izmir:IEEE.

Kim,G.,Behr,K.,&Spafford,G.(2014).The phoenix project: A novel about IT, DevOps, and helping your business 
win.ITRevolution.

Korkala,M.,&Abrahamsson,P.(2007).CommunicationinDistributedAgileDevelopment:ACaseStudy.InProceed-
ings of 33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007).Lubeck:
IEEE.doi:10.1109/EUROMICRO.2007.23

Kornstädt, A., & Sauer, J. (2007). Tackling Offshore Communication Challenges with Agile Architecture-Centric
Development.InProceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA’07).Mumbai:
IEEE.doi:10.1109/WICSA.2007.39

Koskela,J.(2003).Softwareconfigurationmanagementinagilemethods.ESPOO,514,1–54.

Kotter,J.P.(1995).Leadingchange:Whytransformationeffortsfail.Harvard Business Review,73(2),59–67.

Kotter,J.P.(1996).Leading change.HarvardBusinessPress.

Kotter,J.P.(2013).Leading Change, With a New Preface by the Author.HarvardBusinessPress.

Krebs,W.,Kroll,P.,&Richard,E.(2008).GrowingandSustaininganOffshoreScrumEngagement,InProceedings of 
Agile 2008 Conference.Toronto:IEEE.

Krigsman,M.(2006).Management of Critical Success Factors.ZDNet.

Krishnan,R.(2013).Aditi Agile Transformation Maturity Model.Retrievedfromhttp://confengine.com/agile-india-2014/
proposal/236/agile-transformation-maturity-model#comments

Kruchten,P.(2011).TheFrogandtheOctopus–AConceptualModelofSoftwareDevelopment.AcademicPress.

304

http://dx.doi.org/10.1109/AGILE.2009.31
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1109/AGILE.2009.64
http://dx.doi.org/10.1002/spip.354
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1524/hzhz.2013.0149
http://dx.doi.org/10.1109/EUROMICRO.2007.23
http://dx.doi.org/10.1109/WICSA.2007.39
http://confengine.com/agile-india-2014/proposal/236/agile-transformation-maturity-model#comments
http://confengine.com/agile-india-2014/proposal/236/agile-transformation-maturity-model#comments


Compilation of References

Kruchten,P.(2004).The rational unified process: an introduction.Addison-WesleyProfessional.

Kruchten,P.(2007).Voyageintheagilememeplex.Queue,5(5),38.doi:10.1145/1281881.1281893

Kruchten,P.B.(1995).The4+1ViewModelofarchitecture.IEEE Software,12(6),42–50.doi:10.1109/52.469759

Kruchten,P.B.(2011).Agile’sTeenageCrisis.InfoQ,10(4),363–364.doi:10.1080/15332691.2011.613313

Kum,W.,&Law,A.(2006).Learning effective test driven development: Software development projects in an energy 
company.Paperpresentedatthe1stInternationalConferenceonSoftwareandDataTechnologies,ICSOFT2006,Se-
tubal,Portugal.

Kurtz,C.F.,&Snowden,D.J.(2003).Thenewdynamicsofstrategy:Sense-makinginacomplexandcomplicated
world.IBM Systems Journal,42(3),462–483.doi:10.1147/sj.423.0462

Laanti,M.(2008).ImplementingProgramModelwithAgilePrinciplesinaLargeSoftwareDevelopmentOrganization.
InProceedings of 32nd Annual IEEE International Computer Software and Applications Conference (COMPSAC 2008).
Turku:IEEE.doi:10.1109/COMPSAC.2008.116

Laanti,M.,Salo,O.,&Abrahamsson,P.(2011).AgilemethodsrapidlyreplacingtraditionalmethodsatNokia:Asurveyof
opinionsonagiletransformation.Information and Software Technology,53(3),276–290.doi:10.1016/j.infsof.2010.11.010

Larman,C.(2003).Agile and Iterative Development: A Manager’s Guide.Addison-Wesley.

Larman,C.(2003).Agile and Iterative Development: A Manager’s Guide.Routledge.

Larman,C.,&Basili,V.R.(2003).Iterativeandincrementaldevelopment:Abriefhistory.Computer,36(6),47–56.
doi:10.1109/MC.2003.1204375

Larman,C.,&Vodde,B.(2013).ScalingAgileDevelopment.Crosstalk,9.

Lawrence,R.(2007).XPandJuniorDevelopers:7Mistakes(andhowtoavoidthem).InProceedings of Agile Confer-
ence (Agile 2007),Washington,DC:IEEE.doi:10.1109/AGILE.2007.67

Lee,E.C.(2008).FormingtoPerforming:TransitioningLarge-ScaleProjectIntoAgile.InProceedings of Agile 2008 
Conference (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.75

Lee,J.C.,&McCrickard,D.S.(2007).Towards Extreme (ly) Usable Software: Exploring Tensions Between Usability 
and Agile Software Development.IEEEComputerSociety.

Leffingwell,D.(2013).SAFe Glossary.Retrievedfromhttp://scaledagileframework.com/glossary/

Leffingwell,D.(2010).Agile software requirements: lean requirements practices for teams, programs, and the enterprise.
Addison-WesleyProfessional.

Lehtinen,T.O.A.,Mäntylä,&Vanhanen.(2011).Developmentandevaluationofalightweightrootcauseanalysis
method(ARCAmethod)–Fieldstudiesat foursoftwarecompanies.Information and Software Technology, 53(10),
1045–1061.doi:10.1016/j.infsof.2011.05.005

Lehto,I.,&Rautiainen,K.(2009).SoftwareDevelopmentGovernanceChallengesofaMiddle-SizedCompanyinAgile
Transition.InProceedings of ICSE Workshop on Software Development Governance (SDG ‘09).Vancouver,BC:IEEE.
doi:10.1109/SDG.2009.5071335

Lembo,D.,&Vacca,M.(2012).ProjectBasedLearning+AgileInstructionalDesign=ExtremeProgrammingbased
InstructionalDesignMethodologyforCollaborativeLearning.Acta Informatica Medica, Depardemento di Informatica, 
Sapienza, Universita di Roma, Tech. Rep.N.8, 20(1),15.doi:10.5455/aim.2012.20.15-17

305

http://dx.doi.org/10.1145/1281881.1281893
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1080/15332691.2011.613313
http://dx.doi.org/10.1147/sj.423.0462
http://dx.doi.org/10.1109/COMPSAC.2008.116
http://dx.doi.org/10.1016/j.infsof.2010.11.010
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1109/AGILE.2007.67
http://dx.doi.org/10.1109/Agile.2008.75
http://scaledagileframework.com/glossary/
http://dx.doi.org/10.1109/SDG.2009.5071335


Compilation of References

Leszek,A.,&Courage,C.(2008).TheDoctoris“In”–UsingtheOfficeHoursConcepttoMakeLimitedResources
MostEffective.InProceedings of Agile 2008 Conference (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.46

Lethbridge,Diaz-Herrera,LeBlanc,&Thompson.(2007).Improvingsoftwarepracticethrougheducation:Challenges
andfuturetrends.Future of Software Engineering,12–28.doi:10.1109/fose.2007.13

Leusink,B.(2012).Agile software development process improvement in large organizations.AcademicPress.

Lewin,K.(1946).Forcefieldanalysis.InThe 1973 Annual Handbook for Group Facilitators,(pp.111-113).Academic
Press.

Lewin,K.(1951).Fieldtheoryinsocialscience:selectedtheoreticalpapers(D.Cartwright,Ed.).AcademicPress.

Lewin,K.(1989).Changing as three steps: unfreezing, moving, and freezing of group standards. In Organizational 
Development. Theory, Practice, and Research(3rded.;p.87).Irwin.

Li,J.,Moe,N.B.,&Dybå,T.(2010).Transitionfromaplan-drivenprocesstoScrum:alongitudinalcasestudyon
softwarequality.InProceedings of the 2010 ACM-IEEE international symposium on empirical software engineering 
and measurement.doi:10.1145/1852786.1852804

Lindvall,M.,Muthig,D.,Dagnino,A.,Wallin,C.,Stupperich,M.,Kiefer,D.,&Kähkönen,T.et al.(2004).AgileSoft-
wareDevelopmentinLargeOrganizations.Computer,37(12),26–34.doi:10.1109/MC.2004.231

Little,J.(2014).Joe’s Unofficial Scrum Checklist.RetrievedDec.2014,fromhttp://agileconsortium.pbworks.com/w/
file/66642311/Joe%E2%80%99s%20Unofficial%20Scrum%20CheckList%20V13.pdf

Lycett,M.(2001).Understanding‘variation’incomponent-baseddevelopment:Casefindingsfrompractice.Information 
and Software Technology,43(3),203–213.doi:10.1016/S0950-5849(00)00159-2

Lyon,R.,&Evans,M.(2008).ScalingUp-pushingScrumoutofitsComfortZone.InProceedings of Agile 2008 Con-
ference (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.19

Maier,A.(2015,March21).Complete Beginner’s Guide to Interaction Design.RetrievedfromUXBooth:http://www.
uxbooth.com/articles/complete-beginners-guide-to-interaction-design/

Malan,R.,&Bredemeyer,D.(2010).SoftwareArchitectureandRelatedConcerns.Resources for Software Architects,
6285,352–359.

Manuja,M.,Manisha.(2014).MovingAgilebasedprojectsonCloud.InProceedings of International Advance Comput-
ing Conference (IACC).Gurgaon:IEEE.

Marchenko, A., & Abrahamsson, P. (2008). Scrum in a Multiproject Environment: An Ethnographically-Inspired
CaseStudyontheAdoptionChallenges.InProceedings of Agile 2008 Conference (AGILE ‘08).Toronto,ON:IEEE.
doi:10.1109/Agile.2008.77

Marshall,B.(2010).The Marshall Model of Organisational Evolution (Dreyfus for the Organisation).Retrievedfrom
http://fallingblossoms.com/opinion/content?id=1006

Martin,A.,Biddle,R.,&Noble,J.(2009).The XP Customer Team: A Grounded Theory.Paperpresentedatthe2009
AgileConference.doi:10.1109/AGILE.2009.70

Martin,A.,Biddle,R.,&Noble,J.(2009).XP customer practices: A grounded theory.PaperpresentedattheAgile
2009Conference,Chicago,IL.

306

http://dx.doi.org/10.1109/Agile.2008.46
http://dx.doi.org/10.1145/1852786.1852804
http://dx.doi.org/10.1109/MC.2004.231
http://agileconsortium.pbworks.com/w/file/66642311/Joe%E2%80%99s%20Unofficial%20Scrum%20CheckList%20V13.pdf
http://agileconsortium.pbworks.com/w/file/66642311/Joe%E2%80%99s%20Unofficial%20Scrum%20CheckList%20V13.pdf
http://dx.doi.org/10.1016/S0950-5849(00)00159-2
http://dx.doi.org/10.1109/Agile.2008.19
http://www.uxbooth.com/articles/complete-beginners-guide-to-interaction-design/
http://www.uxbooth.com/articles/complete-beginners-guide-to-interaction-design/
http://dx.doi.org/10.1109/Agile.2008.77
http://fallingblossoms.com/opinion/content?id=1006
http://dx.doi.org/10.1109/AGILE.2009.70


Compilation of References

Martin,A.,Biddle,R.,&Noble,J.(2004).TheXPCustomerRoleinPractice:ThreeStudies.InProceedings of the Agile 
Development Conference (ADC’04).SaltLakeCity,UT:IEEE.doi:10.1109/ADEVC.2004.23

Mathiassen,L.,&Sandberg,A.B.(2014).ProcessMassCustomizationinaGlobalSoftwareFirm.Software, IEEE,
31(6),62–69.doi:10.1109/MS.2014.21

Maurer,F.,&Melnik,G.(2007).Agile methods: Crossing the chasm.PaperpresentedattheCompaniontotheproceed-
ingsofthe29thInternationalConferenceonSoftwareEngineering.

Maurya,A.(2012).Running lean: iterate from plan A to a plan that works.O’ReillyMedia,Inc.

McAvoy,J.,&Butler,T.(2009).A failure to learn in a software development team: the unsuccessful introduction of an 
agile method. In Information Systems Development(pp.1–13).Springer.

McAvoy,J.,&Butler,T.(2009).AFailuretoLearninaSoftwareDevelopmentTeam:TheUnsuccessfulIntroduction
ofanAgileMethod.Information Systems Developmen,5,1–13.doi:10.1007/978-0-387-68772-8_1

McCallSmith,A.(2002).TheNo.1Ladies’DetectiveAgency.NewYork:AnchorBooks.

McGovern,J.,Ambler,S.W.,Stevens,M.E.,Linn,J.,Sharan,V.,&Jo,E.K.(2003).APracticalGuideToEnterprise
Architecture.UpperSaddleRiver.Business Communication Quarterly,66(1),108–111.doi:10.1177/108056990306600116

McHugh,O.,Conboy,K.,&Lang,M.(2012).AgilePractices:TheImpactonTrustinSoftwareProjectTeams.IEEE 
Software,29(3),71–76.doi:10.1109/MS.2011.118

McInerney,P.,&Maurer,F.(2005).UCDinAgileProjects:DreamTeamorOddCouple?Interaction,12(6),19–23.
doi:10.1145/1096554.1096556

Mencke,R.(2008).ProductManager’sGuidetoSurvivingtheBigBangApproachtoAgileTransitions.InProceedings 
of Agile 2008 Conference (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.65

Michael,Chiosi,Paltiel,David,Sax,&Walensky.(2011).Stateofagilesurvey2011.Journal of General Internal Medi-
cine, 26(6),661–667.doi:10.1007/s11606-011-1637-5

Michael.(2007).Agile Learning – an alternative model.AcademicPress.

Middleton,P.,&Joyce,D.(2012).LeanSoftwareManagement:BBCWorldwideCaseStudy.IEEE Transactions on 
Engineering Management,59(1),20–32.doi:10.1109/TEM.2010.2081675

Miller,A.,&Carter,E.(2007).AgilityandtheInconceivablyLarge.InProceedings of Agile Conference (Agile 2007),
Washington,DC:IEEE.

Miller,L.(2006).Interaction Designers and Agile Development: A Partnership.UPA.

Misra,S.C.,Kumar,V.,&Kumar,U.(2009).Identifyingsomeimportantsuccessfactorsinadoptingagilesoftware
developmentpractices.Journal of Systems and Software,82(11),1869–1890.doi:10.1016/j.jss.2009.05.052

Miyazaki,K.,&Suenaga,H.(2015).Extradiol Dioxygenases.Metagenome.

Moczar,L.(2013).Why Agile Isn’t Working: Bringing Common Sense To Agile Principles.AcademicPress.

Moe,N.B.,Aurum,A.,&Dybå,T.(2012).Challengesofshareddecision-making:Amultiplecasestudyofagilesoftware
development.Information and Software Technology,54(8),853–865.doi:10.1016/j.infsof.2011.11.006

Monett,D.(2013).Agile Project-Based Teaching and Learning.Paperpresentedatthe11thInternationalConference
onSoftwareEngineeringResearchandPractice.

307

http://dx.doi.org/10.1109/ADEVC.2004.23
http://dx.doi.org/10.1109/MS.2014.21
http://dx.doi.org/10.1007/978-0-387-68772-8_1
http://dx.doi.org/10.1177/108056990306600116
http://dx.doi.org/10.1109/MS.2011.118
http://dx.doi.org/10.1145/1096554.1096556
http://dx.doi.org/10.1109/Agile.2008.65
http://dx.doi.org/10.1109/TEM.2010.2081675
http://dx.doi.org/10.1016/j.jss.2009.05.052
http://dx.doi.org/10.1016/j.infsof.2011.11.006


Compilation of References

Moniruzzaman,A.B.M.,&Hossain,S.A.(2013).Comparative Study on Agile software development methodologies.
arXivpreprintarXiv:1307.3356

Moore,E.,&Spens,J.(2008).ScalingAgile:FindingyourAgileTribe.InProceedings of Agile 2008 Conference (AGILE 
‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.43

MoshrefRazavi,A.,&Ahmad,R.(2014).Agiledevelopmentinlargeanddistributedenvironments:Asystematiclit-
eraturereviewonorganizational,managerialandculturalaspects.In8th Malaysian Software Engineering Conference 
(MySEC),Langkawi,Malaysia:IEEE.

Murphy,B.,Bird,C.,Zimmermann,T.,Williams,L.,Nagappan,N.,&Begel,A.(2013).HaveAgileTechniquesbeenthe
SilverBulletforSoftwareDevelopmentatMicrosoft?InProceedings of International Symposium on Empirical Software 
Engineering and Measurement (ESEM 2013).Baltimore,MD:ACM/IEEE.doi:10.1109/ESEM.2013.21

Murphy, M. (2014). Agile Project Failure kills £15m Surrey Police System. Computerworld UK, 283.
doi:10.1163/9789004266827_013

Nerur,S.,Mahapatra,R.,&Mangalaraj,G.(2005).Challengesofmigratingtoagilemethodologies.Communications 
of the ACM,48(5),72–78.doi:10.1145/1060710.1060712

Ng,P-W.,Huang,&Wu.(2013).Onthevalueofessencetosoftwareengineeringresearch:Apreliminarystudy.Software 
Engineering, 10(3),51-58.doi:10.1002/rcs.1534

Ng,P.(2014).SoftwareProcessImprovementandGamingusingEssence:AnIndustrialExperience.Journal of Industrial 
and Intelligent Information,2(1),45–50.doi:10.12720/jiii.2.1.45-50

Ng,P.-W.(2013).MakingSoftwareEngineeringEducationStructured,RelevantandEngagingthroughGamingand
Simulation.Journal of Communication and Computer,10,1365–1373.

Ng,P.-W.(2014).FrameworkforDescribingandAnalyzingContextandFactorsforSoftwareEngineeringResearch.
Applying the SEMAT Kernel Lecture Notes on Software Engineering,2(4),179–196.doi:10.1007/978-1-62703-721-1_10

Ng,P.-W.(2014).TheorybasedsoftwareengineeringwiththeSEMATkernel:preliminaryinvestigationandexperiences.
InProceedings of the 3rd SEMAT Workshop on General Theories of Software Engineering.doi:10.1145/2593752.2593756

Nielson,J.(1992).UsabilityEngineeringLifeCycle.IEEE Computer,25(3),12–22.doi:10.1109/2.121503

Nielson,J.(2012).Introduction to Usability engineering.RMITUniversity.

Ning.(2014)..BMJ (Clinical research ed.), 348,g1585.doi:10.1136/bmj.g1585

Norman, D. A. (2005). Do companies fail because their technology is unusable? Interaction, 12 (4), 69.
doi:10.1145/1070960.1070998

North,D.(2006).IntroducingBDD.Advances in Space Research,37(5),958–962.doi:10.1016/j.asr.2005.12.009

NtierTraining.(2014,December10).Agile Software Development.Retrievedfromhttp://www.ntiercustomsolutions.
com/training-courses/agile-software-development/

Olsen,G.(2005).Theemperorhasnolabcoat.Interaction,9(4),13–17.

Osterweil,L.(1987).Software processes are software tooPaperpresentedatthe9thinternationalconferenceonSoft-
wareEngineering.

Ozawa,H.,&Zhang,L.(2013).AdaptingAgileMethodologytoOvercomeSocialDifferencesinProjectMembers.In
Proceedings of Agile Conference (AGILE 2013).Nashville,TN:IEEE.doi:10.1109/AGILE.2013.13

308

http://dx.doi.org/10.1109/Agile.2008.43
http://dx.doi.org/10.1109/ESEM.2013.21
http://dx.doi.org/10.1163/9789004266827_013
http://dx.doi.org/10.1145/1060710.1060712
http://dx.doi.org/10.12720/jiii.2.1.45-50
http://dx.doi.org/10.1007/978-1-62703-721-1_10
http://dx.doi.org/10.1145/2593752.2593756
http://dx.doi.org/10.1109/2.121503
http://dx.doi.org/10.1145/1070960.1070998
http://dx.doi.org/10.1016/j.asr.2005.12.009
http://www.ntiercustomsolutions.com/training-courses/agile-software-development/
http://www.ntiercustomsolutions.com/training-courses/agile-software-development/
http://dx.doi.org/10.1109/AGILE.2013.13


Compilation of References

Paasivaara,M.,&Lassenius,C.(2011).Scaling scrum in a large distributed project.PaperpresentedattheEmpirical
SoftwareEngineeringandMeasurement(ESEM),2011InternationalSymposiumon.doi:10.1109/ESEM.2011.49

Paasivaara,M.,Durasiewicz,S.,&Lassenius,C. (2008).DistributedAgileDevelopment:UsingScrum inaLarge
Project.InProceedings of International Conference on Global Software Engineering (ICGSE 2008),Bangalore:IEEE.
doi:10.1109/ICGSE.2008.38

Packlick,J.(2007).The agile maturity map a goal oriented approach to agile improvement.PaperpresentedattheAgile
Conference(AGILE).doi:10.1109/AGILE.2007.55

Pang,C.Y.(2012).Improve Business Agility of Legacy IT System.PaperpresentedattheInformationSystemsReengi-
neeringforModernBusinessSystems:ERP,SCM,CRM,E-CommerceManagementSolutions,Hershey,PA.

Parcell,J.,&Holden,S.H.(2013).AgilePolicyDevelopmentforDigitalGovernment:AnExploratoryCaseStudy.In
Proceedings of the 14th Annual International Conference on Digital Government Research.QuebecCity,Canada:ACM.

Parnell-Klabo,E.(2006).IntroducingLeanPrincipleswithAgilePracticesataFortune500Company.InProceedings 
of Agile Conference (AGILE’06).Minneapolis,MN:IEEE.doi:10.1109/AGILE.2006.35

Patel,C.,&Ramachandran,M.(2009).AgileMaturityModel(AMM):ASoftwareProcessImprovementframeworkfor
AgileSoftwareDevelopmentPractices.International Journal of Software Engineering,2(1),3–28.

Patton,J.(2002).Hittingthetarget:addinginteractiondesigntoagilesoftwaredevelopment.OOPSLA ’02.

Pichler,M.,Rumetshofer,H.,&Wahler,W.(2006).AgileRequirementsEngineeringforaSocialInsuranceforOccu-
pationalRisksOrganization:ACaseStudy.InProceedings of 14th International Requirements Engineering Conference 
(RE’06).Minneapolis/St.Paul,MN:IEEE.doi:10.1109/RE.2006.8

Pikkarainen,M.,Salo,O.,Kuusela,R.,&Abrahamsson,P.(2012).Strengthsandbarriersbehindthesuccessfulagile
deployment-insightsfromthethreesoftwareintensivecompaniesinFinland.Empirical Software Engineering,17(6),
675–702.doi:10.1007/s10664-011-9185-5

Pixton,P.,Nickolaisen,N.,Little,T.,&McDonald,K.(2009).Stand Back and Deliver, Accelerating Business Agility.
Boston:Addison-Wesley.

Popli,R.,&Chauhan,N.(2013).Amappingmodelfortransformingtraditionalsoftwaredevelopmentmethodstoagile
methodology.International Journal of Software Engineering & Applications,4(4),53–64.doi:10.5121/ijsea.2013.4405

Poppendieck,M.,&Poppendieck,T.(2003). ixed-PriceContracts. InLeansoftwaredevelopment:Anagile toolkit.
Software Engineering Notes,28(6),30.doi:10.1145/966221.966665

Power,K.(2010).Stakeholder identification in agile software product development organizations: A model for under-
standing who and what really count.PaperpresentedattheAgileconference.doi:10.1109/AGILE.2010.17

Power,K.(2011).The Agile Office: Experience Report from Cisco’s Unified Communications Business Unit.Paper
presentedattheAgileConference(AGILE).doi:10.1109/AGILE.2011.7

Pries-Heje,J.,&Johansen,J.(2010).Spi manifesto.EuropeanSystem&SoftwareProcessImprovementandInnovation.

Prochaska, J. O., Velicer, W. F., Rossi, J. S., Goldstein, M. G., Marcus, B. H., Rakowski, W., & Rosenbloom, D.
et al. (1994).Stagesofchangeanddecisionalbalance for12problembehaviors.Health Psychology,13(1),39–46.
doi:10.1037/0278-6133.13.1.39PMID:8168470

Programming,E.(2014).Extreme Programming: A Gentle Introduction.Retrievedfromhttp://www.extremeprogram-
ming.org

309

http://dx.doi.org/10.1109/ESEM.2011.49
http://dx.doi.org/10.1109/ICGSE.2008.38
http://dx.doi.org/10.1109/AGILE.2007.55
http://dx.doi.org/10.1109/AGILE.2006.35
http://dx.doi.org/10.1109/RE.2006.8
http://dx.doi.org/10.1007/s10664-011-9185-5
http://dx.doi.org/10.5121/ijsea.2013.4405
http://dx.doi.org/10.1145/966221.966665
http://dx.doi.org/10.1109/AGILE.2010.17
http://dx.doi.org/10.1109/AGILE.2011.7
http://dx.doi.org/10.1037/0278-6133.13.1.39
http://www.ncbi.nlm.nih.gov/pubmed/8168470
http://www.extremeprogramming.org
http://www.extremeprogramming.org


Compilation of References

Qumer,A.,&Henderson-Sellers,B.(2006).Measuringagilityandadoptabilityofagilemethods:a4-dimensionalana-
lyticaltool.InProcs. IADIS International Conference Applied Computing 2006,(pp.503-507).IADIS.

Qumer,A.(2007).DefininganIntegratedAgileGovernanceforLargeAgileSoftwareDevelopmentEnvironments.De-
fining an Integrated Agile Governance for Large Agile Software Development Environments Agile Processes in Software 
Engineering and Extreme Programming,4536,157–160.doi:10.1007/978-3-540-73101-6_23

Qumer,A.,&Henderson-Sellers,B.(2008).Aframeworktosupporttheevaluation,adoptionandimprovementofagile
methodsinpractice.Journal of Systems and Software,81(11),1899–1919.doi:10.1016/j.jss.2007.12.806

Qumer,A.,&Henderson-Sellers,B.(2008).Anevaluationofthedegreeofagilityinsixagilemethodsanditsapplica-
bilityformethodengineering.Information and Software Technology,50(4),280–295.doi:10.1016/j.infsof.2007.02.002

Qumer,A.,Henderson-sellers,B.,&Mcbride,T.(2007).Agileadoptionandimprovementmodel.InProceedings of 
European and Mediterranean Conference on Information Systems.

Radoff,J.(2011).Game on: energize your business with social media games.JohnWiley&Sons.

Rakitin,S.R.(2001).Manifesto Elicits Cynicism: Reader’s Letter to the Editor.PaperpresentedattheIEEE.

Rao,K.N.,Naidu,G.K.,&Chakka,P.(2011).Astudyoftheagilesoftwaredevelopmentmethods,applicabilityand
implicationsinindustry.International Journal of Software Engineering and its Applications, 5(2),35-45.

Rasmussen,R.,Hughes,T.,Jenks,J.,&Skach,J.(2009).AdoptingAgileinanFDARegulatedEnvironment.InAgile 
Conference (AGILE ‘09).Chicago,IL:IEEE.doi:10.1109/AGILE.2009.50

Rayhan,H.,&Haque,N.(2008).IncrementalAdoptionofScrumforSuccessfulDeliveryofanITProjectinaRemote
Setup.InProceedings of Agile 2008 Conference.Toronto:IEEE.doi:10.1109/Agile.2008.98

Read,A.,&Briggs,R.O.(2012).The many lives of an agile story: Design processes, design products, and understand-
ings in a large-scale agile development project.Paperpresentedat theSystemScience(HICSS),201245thHawaii
InternationalConferenceon.doi:10.1109/HICSS.2012.684

Reinertsen,D.G.(2009).Theprinciplesofproductdevelopmentflow.Second Generation Lean Product Development, 
62.doi:10.1787/dcr-2009-graph12-en

Reinertsen,D.G.(2009).The principles of product development flow: second generation lean product development
(Vol.62).CeleritasRedondoBeach.

Repenning,N.P.,&Sterman,J.D.(2002).Capabilitytrapsandself-confirmingattributionerrorsinthedynamicsof
processimprovement.Administrative Science Quarterly,47(2),265–295.doi:10.2307/3094806

Ries,E.(2011).The lean startup: How today’s entrepreneurs use continuous innovation to create radically successful 
businesses.CrownBusiness.

Rising,L.,&Manns,M.L.(2004).Fearless change: patterns for introducing new ideas.PearsonEducation.

Robarts,J.M.(2008).PracticalConsiderationsforDistributedAgileProjects.InProceedings of Agile 2008 Conference 
(AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.57

Roche,G.,&Vaquez-McCall,B.(2009).TheAmazingTeamRace-ATeamBasedAgileAdoption.InProceedings of 
Agile 2009 Conference.Chicago,IL:IEEE.doi:10.1109/AGILE.2009.67

310

http://dx.doi.org/10.1007/978-3-540-73101-6_23
http://dx.doi.org/10.1016/j.jss.2007.12.806
http://dx.doi.org/10.1016/j.infsof.2007.02.002
http://dx.doi.org/10.1109/AGILE.2009.50
http://dx.doi.org/10.1109/Agile.2008.98
http://dx.doi.org/10.1109/HICSS.2012.684
http://dx.doi.org/10.2307/3094806
http://dx.doi.org/10.1109/Agile.2008.57
http://dx.doi.org/10.1109/AGILE.2009.67


Compilation of References

Rodríguez,P.,Partanen,J.,Kuvaja,P.,&Oivo,M.(2014).CombiningLeanThinkingandAgileMethodsforSoftware
Development:ACaseStudyofaFinnishProviderofWirelessEmbeddedSystems. InProceedings of 47th Hawaii 
International Conference on System Science (HICSS).Waikoloa,HI:IEEE

Rogers,E.M.(2010).Diffusion of innovations.SimonandSchuster.

Rohunen,A.,Rodriguez,P.,Kuvaja,P.,Krzanik,L.,&Markkula,J.(2010).Approaches to agile adoption in large settings: 
a comparison of the results from a literature analysis and an industrial inventory.Paperpresentedatthe11thinternational
conferenceonProduct-FocusedSoftwareProcessImprovement,Limerick,Ireland.doi:10.1007/978-3-642-13792-1_8

Rong,G.,Shao,D.,&Zhang,H.(2010).SCRUM-PSP:EmbracingProcessAgilityandDiscipline.InProceedings 17th 
Asia Pacific Software Engineering Conference (APSEC),Sydney,NSW:IEEE.

Royce,W.(1970).Managing the Development of Large Software Systems.PaperpresentedattheIEEEWESON.

Rubin,K.S.(2012).EssentialScrum:ApracticalguidetothemostpopularAgileprocess.Journal of Functional Pro-
gramming,22(03),375–377.doi:10.1017/s0956796812000123

Sahota,M.(2012).AnAgileAdoptionandTransformationSurvivalGuide:WorkingwithOrganizationalCulture.InfoQ.
Retrievedfromhttp://www.infoq.com/minibooks/agile-adoption-transformation

Salo,O.,&Abrahamsson,P. (2008).Agilemethods inEuropeanembedded softwaredevelopmentorganisations:A
surveyontheactualuseandusefulnessofExtremeProgrammingandScrum.Software, IET,2(1),58–64.doi:10.1049/
iet-sen:20070038

Saravanan,G.(2013).WhySoftwareEngineeringFails!(MostoftheTime).Software Engineering Notes,38(6),1–4.
doi:10.1145/2532780.2532802

Schatz,B.,&Abdelshafi,I.(2005).PrimaveragetsAgile:AsuccessfultransitiontoAgiledevelopment.IEEE Software,
22(3),36–42.doi:10.1109/MS.2005.74

Schein,E.H.(1996).KurtLewin’schangetheoryinthefieldandintheclassroom:Notestowardamodelofmanaged
learning.Systems Practice,9(1),27–47.doi:10.1007/BF02173417

Schneider,W.E.(1994).The reengineering alternative: A plan for making your current culture work.RichardDIrwin.

Schwaber,C,Laganza,G,&D’Silva,D.(2007).The truth about agile processes: frank answers to frequently asked 
questions.ForresterReport.

Schwaber,K.(2004).Fixed-rice,Fixed-DateContracts.InAgileprojectmanagementwithScrum.AcademicPress.

Schwaber,K.,&Sutherland,J.(2013).TheScrumGuide.AcademicPress.

Schwaber, K. (1997). Scrum development process. In Business Object Design and Implementation (pp. 117–134).
Springer.doi:10.1007/978-1-4471-0947-1_11

Scott,J.,Johnson,R.,&McCullough,M.(2008).ExecutingAgileinaStructuredOrganization:Government.InPro-
ceedings of Agile 2008 Conference (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.40

Seffernick,T.R.(2007).EnablingAgileinaLargeOrganizationOurJourneyDowntheYellowBrickRoad.InProceed-
ings of Agile Conference (Agile 2007),Washington,DC:IEEE.doi:10.1109/AGILE.2007.23

Senapathi,M.,&Srinivasan,A.(2012).Understandingpost-adoptiveagileusage:Anexploratorycross-caseanalysis.
Journal of Systems and Software,85(6),1255–1268.doi:10.1016/j.jss.2012.02.025

311

http://dx.doi.org/10.1007/978-3-642-13792-1_8
http://dx.doi.org/10.1017/s0956796812000123
http://dx.doi.org/10.1049/iet-sen:20070038
http://dx.doi.org/10.1049/iet-sen:20070038
http://dx.doi.org/10.1145/2532780.2532802
http://dx.doi.org/10.1109/MS.2005.74
http://dx.doi.org/10.1007/BF02173417
http://dx.doi.org/10.1007/978-1-4471-0947-1_11
http://dx.doi.org/10.1109/Agile.2008.40
http://dx.doi.org/10.1109/AGILE.2007.23
http://dx.doi.org/10.1016/j.jss.2012.02.025


Compilation of References

Sepulveda,C.(2003).AgileDevelopmentandRemoteTeams:LearningtoLovethePhone.InProceedings of the Agile 
Development Conference (ADC’03).SaltLakeCity,Utah:IEEE.doi:10.1109/ADC.2003.1231464

Shah,V.,&Nies,A.(2008).AgilewithFragileLargeLegacyApplications.InProceedings of Agile 2008 Conference 
(AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.86

Shatil,A.,Hazzan,O.,&Dubinsky,Y.(2010).AgilityinaLarge-ScaleSystemEngineeringProject:ACase-Studyofan
AdvancedCommunicationSystemProject.InProceedings of International Conference on Software Science, Technology 
& Engineering.Herzlia,Israel:IEEE.doi:10.1109/SwSTE.2010.18

Sheard,S.(2001).Evolutionoftheframeworksquagmire.Computer,34(7),96–98.doi:10.1109/2.933516

Sheth,B.(2009).Scrum911!UsingScrumtoOverhaulaSupportOrganization.InProceedings of Agile 2009 Confer-
ence.Chicago,IL:IEEE.doi:10.1109/AGILE.2009.23

Shrinivasavadhani,J.(2008).RemoteMentoringaDistributedAgileTeam.InProceedings of Agile 2008 Conference 
(AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.89

Siddique,L.,&Hussein,B.A.(2014).Practicalinsightaboutchoiceofmethodologyinlargecomplexsoftwareprojectsin
Norway.InProceedings of International Technology Management Conference (ITMC).Chicago,IL:IEEE.doi:10.1109/
ITMC.2014.6918615

Sidky,A.,&Arthur,J.D.(2007).A Structured Approach to Adopting Agile Practices: The Agile Adoption Framework.
(Ph.D.Dissertation).VirginiaTech.doi:10.2481/dsj.6.S70

Sidky,A.,&Arthur,J.D.(2008).Value-Driven Agile Adoption: Improving An Organization’s Software Development 
Approach.PaperpresentedattheNewTrendsinSoftwareMethodologies,ToolsandTechniques.

Sidky,A.,Arthur,J.,&Bohner,S.(2007).Adisciplinedapproachtoadoptingagilepractices:theagileadoptionframe-
work.Innovations in Systems and Software Engineering, 3(3),203-216.

Sidky,A.S.,Arthur,J.D.,&Bohner,S.(2007).ADisciplinedApproachtoAdoptingAgilePractices:TheAgileAdop-
tionFramework.Journal of Innovations in Systems and Software Engineering,3.doi:10.1007/978-1-84628-821-0

Sidky,A.,Arthur,J.,&Bohner,S.(2007).Adisciplinedapproachtoadoptingagilepractices:Theagileadoptionframe-
work.Innovations in Systems and Software Engineering,3(3),203–216.doi:10.1007/s11334-007-0026-z

Smith,C.,&King,P.(2008).AgileProjectExperiences–TheStoryofThreeLittlePigs.InProceedings of Agile 2008 
Conference (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.76

Smith,G.,&Sidky,A.(2009).Becoming agile: in an imperfect world.ManningPublications.

Smits,H.,&Pshigoda,G.(2007).ImplementingScruminaDistributedSoftwareDevelopmentOrganization.InPro-
ceedings of Agile Conference (Agile 2007),Washington,DC:IEEE.doi:10.1109/AGILE.2007.34

Snapp,M.B.,&Dagefoerde,D.(2008).TheAccidentalAgilists:OneTeam’sJourneyfromWaterfalltoAgile.InPro-
ceedings of Agile 2008 Conference (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.68

Snowden,D.(1999).Cynefin framework.Retrievedfromhttp://cognitive-edge.com/

SoftwareCrisis.(2010).InWikipedia.RetrievedJuly26,2010,fromhttp://en.wikipedia.org/wiki/Software_crisis

SoftwareEducation.(2014).Agile Product Ownership course.Wellington,NewZealand:Author.

312

http://dx.doi.org/10.1109/ADC.2003.1231464
http://dx.doi.org/10.1109/Agile.2008.86
http://dx.doi.org/10.1109/SwSTE.2010.18
http://dx.doi.org/10.1109/2.933516
http://dx.doi.org/10.1109/AGILE.2009.23
http://dx.doi.org/10.1109/Agile.2008.89
http://dx.doi.org/10.1109/ITMC.2014.6918615
http://dx.doi.org/10.1109/ITMC.2014.6918615
http://dx.doi.org/10.1007/978-1-84628-821-0
http://dx.doi.org/10.1007/s11334-007-0026-z
http://dx.doi.org/10.1109/Agile.2008.76
http://dx.doi.org/10.1109/AGILE.2007.34
http://dx.doi.org/10.1109/Agile.2008.68
http://cognitive-edge.com/
http://en.wikipedia.org/wiki/Software_crisis


Compilation of References

Sohaib,O.,&Khan,K.(2010).IntegratingUsabilityEngineeringandAgileSoftwareDevelopment:ALiteretureRe-
view.International Conference On Computer Design And Appliations (ICCDA 2010)(pp.V2-32).IEEE.doi:10.1109/
ICCDA.2010.5540916

Solomon,C.F.(2013).Teaching in an Agile Manner.BloomsburyAcademic.

Soria,A.,Campo,M.R.,&Rodriguez,G. (2012). Improving Software Engineering Teaching by Introducing Agile 
Management.PaperpresentedattheINCOSEInternationalSymposium,13thArgentineSymposiumonSoftwareEn-
gineering,LaPlata,Argentina.

Soundararajan,S.,&Arthur,J.D.(2011).A structured framework for assessing the “goodness” of agile methods.Paper
presentedatthe18thIEEEInternationalConferenceandWorkshopsonEngineeringofComputer-BasedSystems,ECBS
2011,LasVegas,NV.

Soundararajan,S.,Arthur,J.D.,&Balci,O.(2012).A methodology for assessing agile software development methods.
PaperpresentedattheAgileConference,Agile2012,Dallas,TX.doi:10.1109/Agile.2012.24

Southwell,K.(2002).Agileprocessimprovement.TickIT International Journal,3-14.

Spayd,M.(2010).Agile & Culture.Retrievedfromhttp://collectiveedgecoaching.com/2010/07/agile__culture/

Spinellis,D.(2012).Don’tInstallSoftwarebyHand.Software, IEEE,29(4),86–87.doi:10.1109/MS.2012.85

Srinivasan,J.,&Lundqvist,K.(2010).Agile in India: Challenges and lessons learned.Paperpresentedatthe3rdIndia
SoftwareEngineeringConference,ISEC’10,Mysore,India.doi:10.1145/1730874.1730898

Stapleton,J.(2003).DSDM: Business focused development.PearsonEducation.

Stewart,J.C.,DeCusatis,C.S.,Kidder,K.,Massi,J.R.,&Anne,K.M.(2009).EvaluatingAgilePrinciplesinActive
andCooperativeLearning.Toxicology Letters,191(2-3),231–235.doi:10.1016/j.toxlet.2009.09.003PMID:19748556

Stray,V.G.,Lindsjørn,Y.,&Sjøberg,D.I.K.(2013).ObstaclestoEfficientDailyMeetingsinAgileDevelopment
Projects:ACaseStudy.InProceedings of International Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2013).Baltimore,MD:ACM/IEEE.doi:10.1109/ESEM.2013.30

Strydom,R.(2006).Timeismoney-agilefixedprice.AcademicPress.

Summers,M.(2008).InsightsintoanAgileAdventurewithOffshorePartners.InProceedings of Agile 2008 Conference 
(AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.37

Sureshchandra,K.,&Shrinivasavadhani,J.(2008).Moving from waterfall to agile.PaperpresentedattheAgile2008
Conference,Toronto,Canada.

Sutherland,J.,Schoonheim,G.,Kumar,N.,Pandey,V.,&Vishal,S. (2009).FullyDistributedScrum:LinearScal-
abilityofProductionbetweenSanFranciscoandIndia.InProceedings of Agile 2009 Conference.Chicago,IL:IEEE.
doi:10.1109/AGILE.2009.27

Sutherland, J.,Schoonheim,G.,Rustenburg,E.,&Rijk,M. (2008).FullyDistributedScrum:TheSecretSauce for
HyperproductiveOffshoredDevelopmentTeams.InProceedings of Agile 2008 Conference (AGILE ‘08).Toronto,ON:
IEEE.doi:10.1109/Agile.2008.92

Sy,D.(2007).AdaptingUsabilityInvestigationsforAgileUser-centeredDesign.Journal of Usability Studies,2(3),
112–132.

313

http://dx.doi.org/10.1109/ICCDA.2010.5540916
http://dx.doi.org/10.1109/ICCDA.2010.5540916
http://dx.doi.org/10.1109/Agile.2012.24
http://collectiveedgecoaching.com/2010/07/agile__culture/
http://dx.doi.org/10.1109/MS.2012.85
http://dx.doi.org/10.1145/1730874.1730898
http://dx.doi.org/10.1016/j.toxlet.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19748556
http://dx.doi.org/10.1109/ESEM.2013.30
http://dx.doi.org/10.1109/Agile.2008.37
http://dx.doi.org/10.1109/AGILE.2009.27
http://dx.doi.org/10.1109/Agile.2008.92


Compilation of References

Takats,A.,&Brewer,N.(2005).ImprovingCommunicationbetweenCustomersandDevelopers.InProceedings of the 
Agile Development Conference (ADC’05).Denver,CO:IEEE.doi:10.1109/ADC.2005.30

Takeuchi,H.,&Nonaka,I.(1986).Thenewnewproductdevelopmentgame.Harvard Business Review,64(1),137–146.

Talby,D.,&Dubinsky,Y.(2009).GovernanceofanAgileSoftwareProject. InProceedings of ICSE Workshop on 
Software Development Governance (SDG ‘09).Vancouver,BC:IEEE.

Tartaglia,C.M.,&Ramnath,P.(2005).UsingOpenSpacestoResolveCrossTeamIssue.InProceedings of the Agile 
Development Conference (ADC’05).Denver,CO:IEEE.doi:10.1109/ADC.2005.49

Tesar, M., & Sieber, S. (2010). Managing Blended Learning Scenarios by Using Agile e-Learning Development.
International Association for the Development of the Information Society, Freiburg, Germany, 26(2), 124–129.
doi:10.1177/0266666910368123

Thamhain,H.J.(2014).CanWeManageAgileinTraditionalProjectEnvironments?InProceeding of Portland Inter-
national Conference on Management of Engineering & Technology (PICMET).Kanazawa:IEEE.

Therrien,I.,&LeBel,E.(2009).FromAnarchytoSustainableDevelopment:ScruminLessThanIdealConditions.In
Proceedings of Agile 2009 Conference.Chicago,IL:IEEE.doi:10.1109/AGILE.2009.73

Thomas,S.(2013).SpecificationbyExampleversusBehaviorDrivenDevelopment.AcademicPress.

Thomsett,R.(2001).Radical Project Management.UpperSaddleRiver,NJ:PrenticeHall.

Thoughtworks.(2010).Agile assessments.RetrievedJune2014,fromhttp://www.agileassessments.com/

Treccani,P.J.F.,&DeSouza,C.R.B.(2011).Collaborative refactoring: Results of an empirical study using grounded 
theory(Vol.6969).Paraty:LNCS.

Tsirakidis,P.,Köbler,F.,&Krcmar,H.(2009).Identification of success and failure factors of two agile software de-
velopment teams in an open source organization.Paperpresentedatthe4thIEEEInternationalConferenceonGlobal
SoftwareEngineering,ICGSE2009,Limerick.doi:10.1109/ICGSE.2009.42

Tudor,D.,&Walter,G.A.(2006).UsinganAgileApproachinaLarge,TraditionalOrganization.InProceedings of 
Agile Conference (AGILE’06).Minneapolis,MN:IEEE.doi:10.1109/AGILE.2006.60

Unni,E.J.,&Farris,K.B.(2015).Developmentofanewscaletomeasureself-reportedmedicationnonadherence.
Research in Social & Administrative Pharmacy, 11(3),e133-143.doi:10.1016/j.sapharm.2009.06.005

Urdangarin,R.,Fernandes,P.,Avritzer,A.,&Paulish,D.(2008).ExperienceswithAgilePracticesintheGlobalStudio
Project.InProceedings of International Conference on Global Software Engineering (ICGSE 2008).Bangalore:IEEE.
doi:10.1109/ICGSE.2008.11

Urquhart,C.(2013).Grounded Theory for Qualitative Research, A Practical Guide.London:SagePublications.

Uy,E.,&Ioannou,N.(2008).GrowingandSustaininganOffshoreScrumEngagement.InProceedings of Agile Confer-
ence (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.71

Valade,R.(2008).TheBigProjectsAlwaysFail:TakinganEnterpriseAgile.InProceedings of Agile Conference (AGILE 
‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.63

vanCauwenberghe,P.(2015).Agile Fixed Price Projects part 1: “The Price Is Right”.AcademicPress.

VanVliet,H.(2007).Software engineering: Principles and practice.Wiley.

314

http://dx.doi.org/10.1109/ADC.2005.30
http://dx.doi.org/10.1109/ADC.2005.49
http://dx.doi.org/10.1177/0266666910368123
http://dx.doi.org/10.1109/AGILE.2009.73
http://www.agileassessments.com/
http://dx.doi.org/10.1109/ICGSE.2009.42
http://dx.doi.org/10.1109/AGILE.2006.60
http://dx.doi.org/10.1109/ICGSE.2008.11
http://dx.doi.org/10.1109/Agile.2008.71
http://dx.doi.org/10.1109/Agile.2008.63


Compilation of References

Vax,M.,&Michaud,S.(2008).DistributedAgile:GrowingaPracticeTogether.InProceedings of Agile Conference 
(AGILE ‘08).Toronto,ON:IEEE.

Vijayasarathy,L.E.O.R.,&Turk.(2008).AgileSoftwareDevelopment:Asurveyofearlyadopters.Journal of Infor-
mation Technology Management,19(2),1–8.doi:10.1080/1097198x.2008.10856469

Vijayasarathy,L.,&Turk,D.(2008).Agilesoftwaredevelopment:Asurveyofearlyadopters.Journal of Information 
Technology Management,19(2),1–8.

Vijayasarathy,L.,&Turk,D.(2012).Driversofagilesoftwaredevelopmentuse:Dialecticinterplaybetweenbenefits
andhindrances.Information and Software Technology,54(2),137–148.doi:10.1016/j.infsof.2011.08.003

Vredenburg,K.S.I.,&Righi.(2002).User-centereddesign:Anintegratedapproach.PrenticeHallPTR.

Vriens,C.,&Barto,R.(2008).7YearsofAgileManagement.InProceedings of Agile 2008 Conference (AGILE ‘08).
Toronto,ON:IEEE.doi:10.1109/Agile.2008.97

Wake,W.C.(2003).INVEST in Good Stories, and SMART Tasks.Retrievedfromwww.xp123.com

Wegner,P.(1989).ConceptsandParadigmsofObject-OrientedProgramming.AcademicPress.

Werbach,K.,&Hunter,D.(2012).For the win: How game thinking can revolutionize your business.WhartonDigitalPress.

West,D.,&Grant,T.,Gerush,M.,&D’silva,D.(2010).Agiledevelopment:Mainstreamadoptionhaschangedagility.
Forrester Research,2,41.

Weyrauch,K.(2006).WhatAreWeArguingAbout?AFrameworkforDefiningAgileinourOrganization.InProceed-
ings of Agile Conference (AGILE’06).Minneapolis,MN:IEEE.doi:10.1109/AGILE.2006.62

Wikipedia.(2014).Software Development Process.RetrievedDecember12,2014,fromhttp://en.wikipedia.org/wiki/
Software_development_process

Williams,L.,Rubin,K.,&Cohn,M.(2010).Driving Process Improvement via Comparative Agility Assessment.Paper
presentedattheAgileConference(AGILE).doi:10.1109/AGILE.2010.12

Williams, L. (2012). What agile teams think of agile principles. Communications of the ACM, 55(4), 71–76.
doi:10.1145/2133806.2133823

Williams,M.,Packlick,J.,Bellubbi,R.,&Coburn,S.(2007).HowWeMadeOnsiteCustomerWork-AnExtreme
SuccessStory.InProceedings of Agile Conference (Agile 2007),Washington,DC:IEEE.doi:10.1109/AGILE.2007.33

Xiaofeng,W.,Lane,M.,Conboy,K.,Pikkarainen,M.(2009).Whereagileresearchgoes:startingfroma7-yearretro-
spective(reportonagileresearchworkshopatXP2009).SIGSOFT Software Engineering Notes Archive, 34(5),28-30.

Yadgar,A.,Grumberg,O.,&Schuster,A.(2009).Hybrid BDD and All-SAT Method for Model Checking.AcademicPress.

Yaju, Y., Kataoka, Y., Eto, H., Horiuchi, S., & Mori, R. (2013). Prophylactic interventions after delivery of pla-
centaforreducingbleedingduringthepostnatalperiod.Cochrane Database of Systematic Reviews,11,CD009328.
doi:10.1002/14651858.CD009328.pub2PMID:24277681

Yap,M.(2005).FollowtheSun:DistributedExtremeProgrammingDevelopment.InProceedings of the Agile Develop-
ment Conference (ADC’05).Denver,CO:IEEE.doi:10.1109/ADC.2005.26

Yi,L.(2011).ManagerasScrumMaster,InProceedings of Agile 2011 Conference.SaltLakeCity,UT:IEEE.doi:10.1109/
AGILE.2011.8

315

http://dx.doi.org/10.1080/1097198x.2008.10856469
http://dx.doi.org/10.1016/j.infsof.2011.08.003
http://dx.doi.org/10.1109/Agile.2008.97
http://www.xp123.com
http://dx.doi.org/10.1109/AGILE.2006.62
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://dx.doi.org/10.1109/AGILE.2010.12
http://dx.doi.org/10.1145/2133806.2133823
http://dx.doi.org/10.1109/AGILE.2007.33
http://dx.doi.org/10.1002/14651858.CD009328.pub2
http://www.ncbi.nlm.nih.gov/pubmed/24277681
http://dx.doi.org/10.1109/ADC.2005.26
http://dx.doi.org/10.1109/AGILE.2011.8
http://dx.doi.org/10.1109/AGILE.2011.8


Compilation of References

Young,C.,&Terashima,H.(2008).HowDidWeAdaptAgileProcessestoOurDistributedDevelopment?InProceed-
ings of Agile 2008 Conference (AGILE ‘08).Toronto,ON:IEEE.doi:10.1109/Agile.2008.7

Zeng,P.,Rainforth,W.M.,&Cook,R.B.(2015).Characterisationoftheoxidefilmonthetaperinterfacefromretrieved
largediametermetalonpolymermodular totalhipreplacements.Tribology International,89,86–96.doi:10.1016/j.
triboint.2014.12.012

Zhang,J.-G.(2008).What is project management.MethodStudyofSoftwareProjectScheduleEstimationGuide.

Zieris,F.,&Salinger,S.(2013).DoingScrumRatherThanBeingAgile:ACaseStudyonActualNearshoringPractices.
InProceedings of 8th International Conference on Global Software Engineering (ICGSE 2013).Bari:IEEE.doi:10.1109/
ICGSE.2013.26

316

http://dx.doi.org/10.1109/Agile.2008.7
http://dx.doi.org/10.1016/j.triboint.2014.12.012
http://dx.doi.org/10.1016/j.triboint.2014.12.012
http://dx.doi.org/10.1109/ICGSE.2013.26
http://dx.doi.org/10.1109/ICGSE.2013.26




About the Contributors



Imran GhaniisaSeniorLectureratFacultyofComputing,UniversitiTeknologiMalaysia(UTM),
JohorCampus.HereceivedhisMasterofInformationTechnologyDegreefromUAAR(Pakistan),M.Sc.
ComputerSciencefromUTM(Malaysia)andPh.D.fromKookminUniversity(SouthKorea).Hisresearch
focusincludesagilesoftwaredevelopmentmethodsandpractices,semanticstechniques,securesoftware
developmentlifecycle,webservices,softwaretesting,enterprisearchitectureandsoftwarearchitecture.

Dayang Norhayati Abang JawawiisanAssociateProfessorinDepartmentofSoftwareEngineer-
ing,FacultyofComputing,UniversitiTeknologiMalaysia(UTM).ShereceivedherPh.D.inthefieldof
SoftwareEngineeringfromUniversitiTeknologiMalaysia.ShehasbeenanacademicstaffatSoftware
EngineeringDepartmentsince1997andshehasservedastheHeadofDepartmentfromNovember2009
tillJanuary2015.SheisamemberoftheSoftwareEngineeringResearchGroup(SERG),K-Economy
ResearchAlliance,UTM.

Siva DorairajhasavastexperienceincoachingAgileteamsandteachingAgilecoursestoprac-
titioners.SivahasalsotaughtsoftwareengineeringcoursesatreputableuniversitiesinMalaysiaand
NewZealand.InhisPhDresearch,SivainvestigatedalargenumberofAgileteamsintheUSA,India
andAustralia,andproposed“TheTheoryofOneTeam”whichexplainshowadistributedteaminAgile
softwaredevelopmentadoptsexplicitstrategiesforbridgingspatial,temporal,andsocio-culturaldis-
tances,whilefacingcriticalimpactfactors,inordertobecomeoneteam.SivahasgiventalksatAgile
conferencesintheUSA,Norway,Sweden,Italy,SpainandAustralia.HealsoservesasaProgramCom-
mitteeMember(Reviewer)forinternationalconferencessuchasAGILE,XPandICGSE,andjournals
suchastheJournalofSystemsandSoftware(JSS),theInformationandSoftwareTechnology(IST)and
theScientificWorld.

Ahmed Sidky,alsoknownasDoctorAgile,isawell-knownthought-leaderintheAgilecommunity.
Ahmedcombinesoverfifteenyearsofsoftwaredevelopmentexperience,withresearchfromhisPh.D.in
Agiletransformationandagilityassessmenttohelpleadersandknowledgeworkersachievemeasurable
andsustainableorganizationalagilitybybeingAgilenotjustdoingAgile.Ahmedistheco-authorof
atop-ratedAgileadoptionbook“BecomingAgileinanImperfectWorld,”andtheExecutiveDirector
andco-founderoftheInternationalConsortiumforAgile.Ahmedwasselectedtobeonthesteering
committeeofthePMI-ACP®CertificationandtheprogramchairfortheAgile2009conference.Hehas
beenaninvitedspeakeratnumerousAgileConferencesaroundtheworldanddivideshistimebetween
consulting,teaching,andwriting.YoucanconnectwithAhmedviahiswebsiteAhmedSidky.com.

317



About the Contributors

***

Aminu Onimisi Abdulsalami, isaGraduateAssistantintheDepartmentofMathematicsatAhmadu
BelloUniversityandamemberoftheUniversitySoftwareDevelopmentCommittee.Heispresently
undergoingM.Sc.degreeinComputerScienceandalsoreceivedaB.Sc.degreeinComputerSciencein
2011atA.B.U,Zaria-Nigeria.Hisresearchinterestslieintheareaofwebdevelopment,withamajor
focusonimprovingtheWorldWideWebingeneral.Asasoftwaredeveloperwitha4yearsexperience
hehasparticipatedinseveralsoftwareprojectsintheuniversity.Hehasemployedtheagiletechnique
inrapidlydevelopingsoftwareprojectsandhasrecordedenormoussuccess.

Rodina AhmadisanAssociateProfessorinSoftwareEngineeringDepartment,FacultyofCom-
puterScienceandInformationTechnology,UniversityofMalaya.Shehasbeenactivelyteachingand
conductingresearchforthelasttwentyyearsintheareaofinformationsystemmanagement,software
requirementsengineeringandsoftwareprocessimprovement.

Jagadeesh Balakrishnanhasaround15yearsofexperienceinsoftwaredevelopmentwithapassion
forOrganizationalAgileTransformation,AgileDelivery,AdaptiveLeadership,OrganizationalProcess
ImprovementandChangeManagementinitiatives.HeisahandsonAgilecoachwhohasexecutedseveral
projectsasaScrumMasterwithadditionalimplementationexperienceinFeatureDrivenDevelopment
(FDD),Kanban,DSDM,LeanIT,etc.TeachingandConsultinginAgileandSoftwareEngineeringare
hisequalpassionsapartfromAgileDelivery.

Deshinta Arrova Dewi DewiisanactiveresearcherandPhDcadidatewhoproducesmorethan10
internationalconferencepapers,twointernationaljournalarticle(JDCTA)andScienceInternational
Lahore(ISIIndexed),andtraining/seminararticlessinceyear2005.Practitionerindynamiclearning
environmentforHigherEducationLearningInstitutionformorethan10yearsofservicesinMalaysia
andIndonesia,providingthebestlearningexperiencestothelearnersincludinginnovativemethodsof
teachingandlearning.

Anuradha Chaminda Gajanayaka is a graduate in production engineering and has 12+ years
experienceinsoftwareprojectmanagementandimplementation.Hismainexpertiseisonmanaging
Agileoffshoreprojectswherehehasengagedinmanagementofagileoffshoreprojectsforlast9years.

Taghi Javdani Gandomani receivedhisPhDinSoftwareEngineeringfromUniversityofPutra
Malaysia,Malaysia.HisresearchinterestsinsoftwareengineeringareAgilesoftwaredevelopment,de-
velopmentmethodologiesandempiricalstudies.HeisanAssistantProfessorinIslamicAzadUniversity,
Iranandhasmorethan15yearsindustryexperienceinsoftwaredevelopment.

Shane Hastie,MIM,CBAP,ICE-VM,hasover30yearsofexperienceinsoftwaredevelopmentacross
awiderangeofrolesfromprogrammertoseniorexecutive,andnowhastheroleofChiefKnowledge
EngineerforSoftEd(www.softed.com),aNewZealandbasedtraining,coaching,andconsultingfirm
deliveringclassesaroundtheworld.HehasaMasterofInformationManagementdegreefromVictoria
UniversityofWellington,NewZealand(2008).HeisaCertifiedBusinessAnalysisProfessional,and
iscertifiedasanICAgileExpertinBusinessValueManagement.Shanehasbeenactivelyinvolvedin

318

http://www.softed.com


About the Contributors

theglobalBusinessAnalysisandAgilecommunitiessince2008.HetookaleadroleinthejointAgile
AllianceandIIBA™(InternationalInstituteforBusinessAnalysis)programthatproducedtheAgile
ExtensiontotheBusinessAnalysisBodyofKnowledge™(BANOK™)andwasamemberoftheCore
TeamthatledtheproductionofVersion3oftheBABOK™(publishedinApril2015).In2011,Shane
waselectedtotheBoardofDirectorsoftheAgileAlliance,andre-electedforafurthertermin2013.
HeistheleadeditorforallAgiletopiconInfoQ.com.

Seung Ryul JeongisaProfessorintheGraduateSchoolofBusinessITatKookminUniversity,Korea.
HeholdsaB.A.inEconomicsfromSogangUniversity,Korea,anM.S.inMISfromtheUniversityof
Wisconsin,andaPh.D.inMISfromtheUniversityofSouthCarolina.ProfessorJeonghaspublished
extensively in the information systems field,withover60publications in refereed journals suchas
JournalofMIS,CommunicationsoftheACM,InformationandManagement,JournalofSystemsand
Software,amongothers.Dr.JeonghasbeentherecipientofnumerousawardssuchastheMeritAward
forNationalInformatizationfromthePrimeMinister’sOffice.

Murad KhanreceivedHisM.Sc.InformationsecurityfromUniversitiTeknologiMalaysia(UTM).
HeisnowdoingPh.D.atfacultyofcomputing,UniversitiTeknologiMalaysia(UTM).Hisresearch
interestincluderecommendersystems,service-orientedarchitecture(SOA),cloudcomputingandagile
processes.

Aliyu Muhammad Kufena,ispresentlyaMastergraduatestudentincomputerscienceandholdsa
Bachelordegreeincomputersciencein2010allinAhmaduBelloUniversity,Zaria,Nigeria.Heiscur-
rentlyaGraduateAssistantinthedepartmentofMathematics,AhmaduBelloUniversityandamember
ofthesoftwaredevelopmentcommitteeoftheUniversitysince2010.HehasahighaffinitytoSoftware
EngineeringandDatabases.

Praveen Ramachandra MenonholdsaMBAdegreeinInformationSystemsfromDelawareState
University,USAandBachelorsinComputerScienceEngineeringfromMaduraiKamarajUniversity,
India.Praveenhasmorethan13yearsofexperienceinSoftwareDevelopmentwithapassionforOrga-
nizationalAgileTransformation,AgileEnterpriseFrameworkModels(SAFe/LeSS/DAD),AgileTest-
ing,QualityEngineering,DevOps.HehaswornmultiplehatsandexecutedseveralprojectsasScrum
Developer,ScrumMaster&ProductOwnerroleswithadditionalimplementationexperienceinBehavior
DrivenDevelopment(BDD)&TestDrivenDevelopment(TDD).HeisverypassionateaboutTesting
AutomationFrameworks,SoftwareEngineeringbestpractices,CodeQuality,OpenSourceTechnolo-
gies,ContinuousBuildIntegrationandDeployment.

Mina Ziaei NafchireceivedtheMSinSoftwareEngineeringfromUniversityofPutraMalaysia.
Currently,sheisaPhDcandidateinSoftwareEngineeringatUniversityofPutraMalaysia.Herresearch
areaisAgileSoftwareDevelopment.

Pan-Wei NgholdsaPh.D.fromNanyangTechnologicalUniversity.Hehasover20yearsworking
experienceinthesoftwareindustry.Heistheauthorof“AspectOrientedSoftwareDevelopmentwith
UseCases”and“EssenceofSoftwareEngineering:ApplyingtheSEMATKernel”togetherwithIvar
Jacobson.Since2000,DrNghasbeencoachingsoftwareteamsaroundtheworldincludingSingapore

319



About the Contributors

Airlines,Sony,Samsung,HuaweiTechnologiesinareassuchasproductlineengineering,requirements,
test,architecture,management,DevOps,gamification,agileandlean.DrNgiscurrentlyaleanandagile
transformationcoachwithIvarJacobsonInternational.

Naghmeh Niknejad received her M.Sc. Computer Science from Universiti Teknologi Malaysia
(UTM).SheisnowdoingherPh.D.atfacultyofcomputing,UniversitiTeknologiMalaysia(UTM).
Herresearchinterestincludeservice-orientedarchitecture(SOA),cloudcomputingandagileprocesses.

Chung-Yeung PangreceivedhisPh.D.degreefromCambridgeUniversity,England.Hehasover
25yearsexperienceinsoftwaredevelopmentinvariousareas,rangingfromdevicedrivertolargeen-
terpriseITsystems.Hehasexperienceinmanyprogramminglanguagesincludinglowlevellanguages
likeassemblerandC,highlevellanguageslikeCOBOL,JavaandAda,andAIlanguagessuchasLISP
andProlog.Forthepast20years,hehasbeenworkingasaconsultantindifferententerprisesoftware
projects.Hehasbeenengagedinarchitecturedesign,development,coachingandmanagingITprojects.
Atonetime,hewasoneoftheleadarchitectsinaprojectwithabudgetforover1billionUSD.Inthe
lastyears,hehasledmanyprojectstocompletionwithintimeandbudgetsdespitethelimitedresources
andhighpressureinsomeoftheprojects.

Abbas Moshref RazaviisaresearcheratFSKTM,UniversityofMalaya.

Sheidu Salami Tenuche,hasBachelorandMasterofSciencedegreesinComputerSciencesandcur-
rentlyundergoinghisPhDprogrammeincomputerscienceatAhmaduBelloUniversity,ZariaNigeria.
HeLecturesattheMathematicsDepartment,ComputerScienceUnit,andanExtensionspecialistand
memberofICTUnitatNationalAgriculturalExtensionResearchandLiaisonServices(NAERLS),Ah-
maduBelloUniversityZaria,Nigeriafrom2011tilldate.HisresearchinterestincludesExpertsystems,
DatabasesandCloudComputing.

Muhammad Aminu UmarholdsaBachelorofSciencedegreeandMasterdegreebothinComputer
SciencefromAhmaduBelloUniversity,ZariaNigeriaandUniversitiTeknologiMalaysia,Johorrespec-
tively.HepresentlyworkswithAhmaduBelloUniversityasanAssistantLecturerteachingComputer
Science.Hisresearchinterestinclude:SoftwareEngineering,Human-ComputerInteraction,Usability
Engineering,InformationRetrievalandICTinAgriculture.

Sahabi Ali YusufholdsaMasterdegreein2013andBachelordegreein2008bothinComputerSci-
encefromAfricanUniversityofScienceandTechnology,Abuja,NigeriaandAhmaduBelloUniversity,
ZariaNigeriarespectively.HecurrentlylecturesatDepartmentofMathematics,ComputerScienceunit
ofAhmaduBelloUniversity,Zaria,NigeriaasanAssistantLecturer.Hisresearchinterestinclude:e-
LearningandSoftwareEngineering.

320



  321

Index

4-DAT 132, 140

A
active learning 283-284, 290
agile adoption 32, 37-43, 45-46, 85, 87-88, 93-98, 

104, 109-110, 124, 129, 142-143, 147-151, 
161, 167-168

Agile Adoption Framework 104, 124, 147-149, 168
agile assessment 165-167, 169, 171
AGILE ASSESSMENT MODELS 167
Agile champions 24-25, 30-33
Agile coaches 24-25, 27-28, 30-33, 37-38, 145
agile e-learning 287
agile methods 24-26, 31, 38-39, 41-43, 47, 86-87, 

98, 127, 130, 132, 140-142, 145, 147, 158, 161, 
165-171, 176, 181-182, 196, 208-210, 216-218, 
221, 223, 234

Agile Software Architecture 49, 58, 61, 70, 83, 102, 
173

agile software development 22, 24, 26-27, 36, 47, 
50-51, 55, 58, 83, 102, 126, 141-144, 148-149, 
159-160, 164, 169, 174-176, 194, 207-211, 
218-219, 222-223, 225, 234-237, 272

agile software development process 50, 58, 83, 148, 
208, 210

agile transformation 24-26, 29-33, 39, 85-87, 89, 
92, 95-96, 98-99, 103-104, 108, 110-112, 114, 
117-125, 156, 160, 165-167, 169-170

Agile transition 24-28, 30, 32-33, 141, 145, 156
Agile transition and adoption 26-27, 32
agility assessment 166-167, 169-171
agility measurement 149, 165
analysis 1, 18-20, 23, 25, 27, 40, 44, 46-47, 50, 

58-59, 84, 102, 119, 130, 132, 140, 151, 156, 
164, 175-176, 179-182, 197, 209-211, 215-216, 
218-219, 221, 225, 232, 242, 271, 292

B
backlog 2, 5-7, 9-12, 20-21, 46, 156, 224, 226-230, 

232, 270

C
canvas 37-41, 45-46
COBOL 51-52, 55-56, 62-67, 69-71, 78, 83
complexity 1-4, 7, 15, 55, 57, 60-62, 74, 76, 87, 95, 

133, 146, 179, 192
context 2-3, 20-21, 26, 37-40, 45-47, 58, 65-66, 76, 

86, 94, 97-98, 118, 130-131, 138, 178-179, 
181, 198, 209, 222, 238, 240, 246, 270, 285-
286, 290

continuous integration 39, 50, 62, 64, 79-80, 86, 92, 
140, 232, 270

culture-led transformation 103-104, 113-115, 123, 
125

customer representative 210

D
distributed settings 175-177, 179-183, 186-192, 

196-197
distributed teams 186-187
distributed workforce 207
Domain Specific Language DSL 83
Dynamic Systems Development Method 127, 140, 

142

E
Extreme Programming 2, 36, 53, 96, 104, 126-127, 

140, 142, 174, 210, 212, 239-240, 272, 285, 
291



322  

Index

F
Feature Driven Development 36, 102, 126-127, 140, 

210
fixed priced 222-224, 229, 234-235

G
gamification 85, 93, 97-98
Gherkin 237, 246-247, 271
global software engineering 177, 180
grounded theory 26-27, 38, 179

I
Intelligent Agent 83
Interaction Design 216, 221
iterative development 210, 216-217, 221

K
Kanban 152, 232, 240, 272

L
large organizations 60, 175-176, 179-180, 182-187, 

191-192, 195
legacy 51-52, 55-56, 62, 78, 83, 89-90
Legacy Integration 83

M
mainframe 51, 56-57, 62-63, 83
method implementation 176
methods 22, 24-26, 29, 31-32, 36, 38-39, 41-43, 47, 

62, 71, 84, 86-87, 97-98, 102, 126-127, 130, 
132, 140-143, 145, 147, 158, 161, 165-171, 
174, 176, 178, 181-182, 187, 194-197, 207-
211, 213, 215-218, 221-223, 234, 236, 239, 
251-252, 254-255, 264, 271, 288, 291

O
offshore 180, 186, 192, 222-223, 225, 234, 236
offshoring 236
organizational agility 103-105, 108, 112-113, 116, 

118, 120, 125, 131

P
practice architecture 85, 87, 89-91, 93-94, 96-98
practices 3, 11, 26, 28-33, 36-46, 59, 61, 77, 86-88, 

90, 92-98, 104, 108-109, 111, 118-122, 124-
126, 132, 138, 140, 147-148, 160, 164-165, 
167-171, 174, 178, 192, 194-195, 197, 207, 
209-210, 213, 215-218, 223-224, 234, 236, 
238, 240, 285, 287-288, 291

principles 39, 41, 58, 60-61, 85, 90, 104, 130-132, 
142, 158, 167-169, 187, 190, 196, 213, 218-
219, 223-224, 229, 234, 237-238, 255, 271, 
283, 285, 287, 290

Product Owner 1-4, 8, 11, 17, 21-22, 86, 98, 109, 
216, 238

R
Re-Engineering Legacy Enterprise IT System 83
Refactoring 36, 39, 50, 63, 126, 140, 170, 236, 241, 

254, 260, 262-263

S
Scrum 2, 8, 22, 26, 31, 36, 39, 44, 53, 59, 74, 85-86, 

90, 95-97, 102, 104, 109, 119, 126-127, 132-
133, 140-142, 147, 151-152, 156, 158, 164, 
169-170, 174, 179, 207, 210, 223-224, 226, 
234, 236, 240, 286-287, 290-291

simulation 85, 97-98
software architecture 38, 49, 52, 58, 61, 70, 79-80, 

83-84, 90, 102, 173
Software Component 22, 84, 207
software crisis 51-53, 57, 78, 84
software development 2, 22-27, 36-37, 40-41, 45, 

47, 49-55, 57-61, 70, 76, 78, 80, 83-84, 86, 
102, 126-127, 132, 141-145, 148-149, 159-160, 
164-167, 169, 173-177, 182, 186, 194, 197, 
207-211, 213-215, 217-219, 221-223, 225, 231, 
234-240, 242, 246, 269-272, 285, 290, 292

software engineering 47, 50-51, 53, 59, 61, 86, 94, 
140, 177, 180, 208, 216, 286

Software Process Improvement 96



  323

Index

T
teaching and learning 283-285, 287-288, 290

U
usability 71, 208-210, 212-219, 221
usability engineering 208-209, 212-214, 216, 218-

219, 221
user stories 11, 22, 40, 43, 95, 98, 120, 158, 226-

227, 232, 292

W
waterfall model 23, 50-55, 59, 70, 84, 102, 164, 208, 

210, 213-215, 234, 292

X
XP 2, 26, 36, 39, 96, 126-127, 140, 142, 147, 152, 

164, 168, 170, 174, 207, 210, 212, 217, 224, 
236, 239-240, 272, 287, 291




	Cover
	Title Page
	Copyright Page
	Book Series
	Editorial Advisory Board
	Table of Contents
	Detailed Table of Contents
	Foreword
	Preface
	Chapter 1: Product Ownership Is a Team Sport
	Chapter 2: Agile Coaches and Champions
	Chapter 3: A Canvas for Capturing Context of Agile Adoption
	Chapter 4: Ten Years of Experience with Agile and Model-Driven Software Development in a Legacy Platform
	Chapter 5: Rapid Agile Transformation at a Large IT Organization
	Chapter 6: A Transformation Approach for Scaling and Sustaining Agility at an Enterprise Level
	Chapter 7: Design of a Framework to Implement Agility at Organizational Level
	Chapter 8: A Survey of Agile Transition Models
	Chapter 9: Agile Assessment Methods and Approaches
	Chapter 10: Agile Software Development Challenges in Implementation and Adoption
	Chapter 11: Usability Engineering in Agile Software Development Processes
	Chapter 12: Fixed Priced Projects in Agile
	Chapter 13: Behavior-Driven Development Using Specification by Example
	Chapter 14: The Agility of Agile Methodology for Teaching and Learning Activities
	Compilation of References
	About the Contributors
	Index
	Optional Back Ad

