

Frameworks,
Methodologies, and
Tools for Developing Rich
Internet Applications

Giner Alor-Hernández
Instituto Tecnológico de Orizaba, Mexico

Viviana Yarel Rosales-Morales
Instituto Tecnológico de Orizaba, Mexico

Luis Omar Colombo-Mendoza
Instituto Tecnológico de Orizaba, Mexico

A volume in the Advances in Web Technologies
and Engineering (AWTE) Book Series

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2015 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

 Library of Congress Cataloging-in-Publication Data

Alor-Hernandez, Giner, 1977-
 Frameworks, methodologies, and tools for developing rich Internet applications / by Giner Alor-Hernandez, Viviana Yarel
Rosales-Morales, and Luis Omar Colombo-Mendoza.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-4666-6437-1 (hardcover) -- ISBN 978-1-4666-6438-8 (ebook) -- ISBN 978-1-4666-6440-1 (print & per-
petual access) 1. Internet programming. 2. Web applications. 3. Web site development. 4. JavaScript (Computer program
language) 5. Application software--Development. 6. Software frameworks. I. Rosales-Morales, Viviana Yarel, 1986- II.
Colombo-Mendoza,
Luis Omar, 1987- III. Title.
 QA76.625.A44 2015
 006.7--dc23
 2014026479

This book is published in the IGI Global book series Advances in Web Technologies and Engineering (AWTE) (ISSN:
Pending; eISSN: pending)

Managing Director:
Acquisitions Editor:
Production Editor:
Development Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Kayla Wolfe
Christina Henning
Haley Kang
Michael Brehm
Jason Mull

The Advances in Web Technologies and Engineering (AWTE) Book Series (ISSN Pending) is published by IGI Global, 701 E. Chocolate
Avenue, Hershey, PA 17033-1240, USA, www.igi-global.com. This series is composed of titles available for purchase individually; each title
is edited to be contextually exclusive from any other title within the series. For pricing and ordering information please visit http://www.igi-
global.com/book-series/advances-web-technologies-engineering/37158. Postmaster: Send all address changes to above address. Copyright ©
2015 IGI Global. All rights, including translation in other languages reserved by the publisher. No part of this series may be reproduced or
used in any form or by any means – graphics, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval
systems – without written permission from the publisher, except for non commercial, educational use, including classroom teaching purposes.
The views expressed in this series are those of the authors, but not necessarily of IGI Global.

IGI Global is currently accepting manuscripts
for publication within this series. To submit a pro-
posal for a volume in this series, please contact our
Acquisition Editors at Acquisitions@igi-global.com
or visit: http://www.igi-global.com/publish/.

• Knowledge Structure, Classification, and Search Algorithms or
Engines

• Quality Of Service and Service Level Agreement Issues Among
Integrated Systems

• Integrated User Profile, Provisioning, and Context-Based
Processing

• Radio Frequency Identification (RFID) Research and Applications
in Web Engineered Systems

• Data and Knowledge Capture and Quality Issues
• IT Readiness and Technology Transfer Studies
• Case Studies Validating Web-Based IT Solutions
• Virtual Teams and Virtual Enterprises: Communication, Policies,

Operation, Creativity, and Innovation
• Data Analytics for Business and Government Organizations
• Human Factors and Cultural Impact of IT-Based Systems

Coverage

The Advances in Web Technologies and Engineering (AWTE) Book Series aims to provide a platform
for research in the area of Information Technology (IT) concepts, tools, methodologies, and ethnography,
in the contexts of global communication systems and Web engineered applications. Organizations are
continuously overwhelmed by a variety of new information technologies, many are Web based. These
new technologies are capitalizing on the widespread use of network and communication technologies
for seamless integration of various issues in information and knowledge sharing within and among
organizations. This emphasis on integrated approaches is unique to this book series and dictates cross
platform and multidisciplinary strategy to research and practice.

The Advances in Web Technologies and Engineering (AWTE) Book Series seeks to create a stage
where comprehensive publications are distributed for the objective of bettering and expanding the field of
web systems, knowledge capture, and communication technologies. The series will provide researchers
and practitioners with solutions for improving how technology is utilized for the purpose of a growing
awareness of the importance of web applications and engineering.

Mission

ISSN: Pending
 EISSN: Pending

Ghazi I. Alkhatib
Princess Sumaya University for Technology, Jordan

David C. Rine
George Mason University, USA

Advances in Web Technologies
and Engineering (AWTE) Book

Series

Titles in this Series
For a list of additional titles in this series, please visit: www.igi-global.com

Handbook of Research on Demand-Driven Web Services Theory, Technologies, and Applications
Zhaohao Sun (University of Ballarat, Australia & Hebei Normal University, China) and John Yearwood (Federa-
tion University, Australia)
Information Science Reference • copyright 2014 • 474pp • H/C (ISBN: 9781466658844) • US $325.00 (our price)

Evaluating Websites and Web Services Interdisciplinary Perspectives on User Satisfaction
Denis Yannacopoulos (Technological Educational Institute of Piraeus, Greece) Panagiotis Manolitzas (Technical
University of Crete, Greece) Nikolaos Matsatsinis (Technical University of Crete, Greece) and Evangelos Grigor-
oudis (Technical University of Crete, Greece)
Information Science Reference • copyright 2014 • 354pp • H/C (ISBN: 9781466651296) • US $215.00 (our price)

Solutions for Sustaining Scalability in Internet Growth
Mohamed Boucadair (France Telecom-Orange Labs, France) and David Binet (France Telecom, France)
Information Science Reference • copyright 2014 • 288pp • H/C (ISBN: 9781466643055) • US $190.00 (our price)

Adaptive Web Services for Modular and Reusable Software Development Tactics and Solutions
Guadalupe Ortiz (University of Cádiz, Spain) and Javier Cubo (University of Málaga, Spain)
Information Science Reference • copyright 2013 • 415pp • H/C (ISBN: 9781466620896) • US $195.00 (our price)

Public Service, Governance and Web 2.0 Technologies Future Trends in Social Media
Ed Downey (State University of New York, College at Brockport, USA) and Matthew A. Jones (Portland State
University, USA)
Information Science Reference • copyright 2012 • 369pp • H/C (ISBN: 9781466600713) • US $190.00 (our price)

Performance and Dependability in Service Computing Concepts, Techniques and Research Directions
Valeria Cardellini (Universita di Roma, Italy) Emiliano Casalicchio (Universita di Roma, Italy) Kalinka Regina
Lucas Jaquie Castelo Branco (Universidade de São Paulo, Brazil) Júlio Cezar Estrella (Universidade de São Paulo,
Brazil) and Francisco José Monaco (Universidade de São Paulo, Brazil)
Information Science Reference • copyright 2012 • 477pp • H/C (ISBN: 9781609607944) • US $195.00 (our price)

E-Activity and Intelligent Web Construction Effects of Social Design
Tokuro Matsuo (Yamagata University, Japan) and Takayuki Fujimoto (Toyo University, Japan)
Information Science Reference • copyright 2011 • 284pp • H/C (ISBN: 9781615208715) • US $180.00 (our price)

701 E. Chocolate Ave., Hershey, PA 17033
Order online at www.igi-global.com or call 717-533-8845 x100

To place a standing order for titles released in this series, contact: cust@igi-global.com
Mon-Fri 8:00 am - 5:00 pm (est) or fax 24 hours a day 717-533-8661

Table of Contents

Preface.. ix

Acknowledgment...xviii

Chapter 1
Basic.Concepts.on.RIAs.. 1

1..INTRODUCTION..1
2..BASIC.CONCEPTS..2
3..MAIN.CROSS-DOMAINS.BENEFITS.OF.RIAS..5
4..SUCCESSFUL.STORIES.ON.RIAS.DEVELOPMENT...9
5..CONCLUSION...14

Chapter 2
Frameworks.for.RIAs.Development.. 17

1..INTRODUCTION..17
2..FRAMEWORKS.FOR.RIAS.DEVELOPMENT...17
3..CONCLUSION...33

Chapter 3
Software.Development.Methodologies.for.Traditional.Web.Applications.and.RIAs............................ 36

1..INTRODUCTION..36
2..SOFTWARE.DEVELOPMENT.METHODOLOGIES.FOR.TRADITIONAL.WEB.APPLICATIONS....................37
3..SOFTWARE.DEVELOPMENT.METHODOLOGIES.FOR.RIAS...44
4..CONCLUSION...55

Chapter 4
Important.Factors.on.RIAs.Development.. 59

1..INTRODUCTION..59
2..MULTIMEDIA.SUPPORT.ON.RIAS..60
3..ASPECT-ORIENTED.PROGRAMMING.(AOP).SUPPORT.ON.RIAS..64
4..DESIGN.PATTERNS.SUPPORT.ON.RIAS..67
5..USER.INTERFACE.DESIGN.PATTERN.(UI.PATTERN).SUPPORT.ON.RIAS..69
6..CONCLUSION...72

Chapter 5
Multimedia.Support.for.Native/Embedded.Video.Playback.on.Frameworks.for.RIAs..
Development.. 76

1..INTRODUCTION..76
2..MULTIMEDIA.SUPPORT.INTO.JAVASCRIPT-BASED.FRAMEWORKS...77
3..MULTIMEDIA.SUPPORT.INTO.NON-JAVASCRIPT-BASED.FRAMEWORKS...89
4..CONCLUSION...99

Chapter 6
Aspect-Oriented.Programming.(AOP).Support.on.RIAs.Development.. 102

1..INTRODUCTION..102
2..RESEARCH.WORKS.ON.WEB.ENGINEERING.WITH.AOP.SUPPORT...104
3..AOP.SUPPORT.ON.JAVASCRIPT-BASED.FRAMEWORKS..108
4..AOP.SUPPORT.ON.NON-JAVASCRIPT-BASED.FRAMEWORKS..114
5..CONCLUSION...115

Chapter 7
Design.Patterns.Support.for.RIAs.Development... 118

1..INTRODUCTION..118
2..DESIGN.PATTERNS...119
3..DESIGN.PATTERNS.SUPPORT.INTO.JAVASCRIPT-BASED.FRAMEWORKS...129
4..DESIGN.PATTERNS.SUPPORT.INTO.NON-JAVASCRIPT-BASED.FRAMEWORKS.......................................136
5..CONCLUSION...138

Chapter 8
UI.Patterns.Support.on.RIAs.Development... 140

1..INTRODUCTION..140
2..UI.PATTERNS.SUPPORT.INTO.JAVASCRIPT-BASED.FRAMEWORKS...142
3..UI.PATTERNS.SUPPORT.INTO.NON-JAVASCRIPT-BASED.FRAMEWORKS...164
4..CONCLUSION...187

Chapter 9
Case.Studies.Using.JavaScript-Based.Frameworks... 189

1..INTRODUCTION..189
2..DEVELOPING.SOAP.WEB.SERVICES-BASED.APPLICATIONS...190
3..DEVELOPING.A.WORLD.ATLAS..193
4..DEVELOPING.A.DOCUMENT.INDEXING.SYSTEM...197
5..DEVELOPING.AN.E-PROCUREMENT.SYSTEM.OF.MEDICAL.SUPPLIES...201
6..DEVELOPING.A.MASHUP:.A.META-SEARCH.ENGINE..203
7..CONCLUSION...208

Chapter 10
Case.Studies.Using.Adobe™.Flex... 210

1..INTRODUCTION..210
2..DEVELOPING.REST.WEB.SERVICES-BASED.APPLICATIONS..211
3..CASE.STUDIES...212
4..CONCLUSION...224

Chapter 11
Case.Studies.Using.JavaFX™.. 227

1..INTRODUCTION..227
2..JAVAFX™.ARCHITECTURE...228
3..BENEFITS.OF.USING.JAVAFX™...230
4..DEVELOPING.A.PHOTO.ALBUM.BY.USING.FLICKR™...233
5..DEVELOPING.A.PHOTO.ALBUM.BY.USING.PICASA™...237
6..DEVELOPING.A.PHOTO.ALBUM.BY.USING.PHOTOBUCKET™..240
7..DEVELOPING.A.ROTTEN.TOMATOES™-BASED.SEARCH.ENGINE.FOR.MOVIES....................................243
8..CONCLUSION...247

Chapter 12
Multi-Device.RIAs.Development.. 249

1..INTRODUCTION..249
2..MULTI-DEVICE.RIAS..250
3..MULTI-DEVICE.DEVELOPMENT.FRAMEWORKS..252
4..COMPARISON...266
5..CONCLUSION...267

Chapter 13
An.Overview.of.RIAs.Development.Tools.. 269

1..INTRODUCTION..269
2..TOOLS.FOR.FRAMEWORK-BASED.RIAS.DEVELOPMENT...270
3..MDD.TOOLS.FOR.RIAS.DEVELOPMENT..293
4..RAD.TOOLS.FOR.RIAS.DEVELOPMENT...299
5..CONCLUSION...300

Chapter 14
AlexandRIA:.A.Visual.Tool.for.Generating.Multi-Device.RIAs.. 303

1..INTRODUCTION..303
2..ALEXANDRIA:.A.UI.PATTERN-BASED.APPROACH.FOR.GENERATING.MULTI-DEVICE.RIAS..............304
3..CLOUD.APIS...305
4..INTERACTION.DESIGN.PATERNS..311
5..CASE.STUDIES...312
6..CONCLUSION...320

Chapter 15
New.Trends.on.RIAs.Development... 323

1..INTRODUCTION..323
2..RIAS.AND.CLOUD.COMPUTING..324
3..RIAS.AND.MASHUPS..327
4..RIAS.AND.WEB.3.0..329
5..RIAS.AND.WEB.4.0..331
6..CONCLUSION...333

Compilation of References.. 337

About the Authors.. 347

Index.. 348

ix

Preface

WEB DEVELOPMENT EVOLUTION: FROM STATIC WEB
PAGES TO RICH INTERNET APPLICATIONS

The Web has become one of the most important platforms for quickly and effectively transmitting in-
formation to people. In 1990, the Web started with HTML technology, which was originally devised to
represent static information through a Web browser. The data flow was in a unidirectional way, from
server-side to client-side. However, there was no personalization; most Websites did not authenticate
users because there was no need.

Over time, Web applications took advantage for business purposes, showing dynamic content to
users by enhancing client-side information technologies with JavaScript and bringing components like
Applets and ActiveX, or plugins such as AdobeTM FlashTM. On the server-side, there were information
technologies that provided dynamism to the Web content. One of the first technologies for this purpose
was CGI, which in 1993 represented a standard interface for passing dynamic content from server-side
to client-side. Three years later, Java Applet emerged besides consolidated technologies such as PHP
and MicrosoftTM ASP. At that time, Web applications used the .Net as a platform for business, rendering
dynamic content to users based on back-end business logic and database content. Developers enhanced
the Internet’s capabilities to meet the demands of business applications by including scripts—JavaScript
and VBScript—and components, such as Applet and ActiveXTM, to the client (user) computer. While
this user experience was to some extent enhanced, the fundamental “document-driven” synchronous
approach of traditional Internet applications remained the same. As user experience requirements grew
in complexity, this approach proved to be a handicap for complex business applications. Though there
had been significant progress in server-side implementations, the means of rendering information to the
end-user remained the same. As a result, the need to incorporate the rich, interactive, and responsive
features of desktop applications was increasingly felt.

At that time, there was also a necessity of incorporating the main features of desktop applications:
responsiveness and interactivity. A deterrent to fulfill this necessity was the difficulty of handling multi-
transaction business workflows. The one-way nature of traditional Internet applications represented
continuous Web page refreshing, making it difficult to represent large amounts of complex data and
denying rich user experiences.

The last phase in this Web development evolution is RIA (Rich Internet Application) starting with
technologies such as AdobeTM Flex, JavaFXTM, or Ajax. Ajax incorporates standards-based presenta-
tion using XHTML and CSS, dynamic display, and interaction using the Document Object Model, data
interchange, and manipulation using XML and XSLT, as well as asynchronous data retrieval using

x

XMLHttpRequest and JavaScript binding everything together. AdobeTM AIRTM lets developers use Flex
technology to build RIAs that deploy on a wide range of devices such as smartphones, tablets, televisions,
desktops, and netbooks. AIRTM applications run across operating systems, and they are easily delivered
by using a single installer file. With AIRTM, Flex developers can use their existing skills, tools, and code
to build highly engaging and visually rich applications that combine the power of local resources and
data with the reach of the Web.

WHAT THIS BOOK IS ABOUT

This book is about the last phase in the Web development evolution (i.e., RIAs). In order to cover this
topic, the following elements are identified and addressed: 1) development methodologies, 2) develop-
ment dimensions, 3) application frameworks, and 4) development tools. In addition, some case studies
aimed at implementing these concepts are discussed in this book. Therefore, this book is intended to
provide a comprehensive view of current practices on RIAs development. RIAs are a new generation of
Internet applications that combine behaviors and features of Web and desktop applications such as: 1)
client-server architecture, 2) data-intensive handling and business logic execution both on the client-side
and the server-side, which results in advanced mechanisms of client-server communication, and 3) highly
interactive multimedia content. Therefore, this kind of Web applications allows users to do interactive
data explorations through attractive visual interfaces, increasing usability and performance (Martínez-
Nieves, Hernández-Carrillo, & Alor-Hernández, 2010). RIAs are the future of today’s enterprise Web
applications: they enhance the user experience, deliver functionality of desktop applications, and provide
the portability and data reach that enterprise Web applications provide. A RIA changes the way the client
Web application interacts with the server, removing or minimizing frequent server transactions from the
user experience. RIAs offer the best of both worlds: the rich client and the reach of the enterprise. “Rich”
is a term to describe how engaging and interactive a user interface is at the presentation tier. “Reach”
describes the connectivity to the other tiers of the application. RIAs promise a presentation tier that all
users see in the same way regardless of the platform, coupled with the powerful data-rich environment
that enterprise Web applications can deliver.

In Web development, there are three fundamental factors to be considered: 1) Web development
methodologies, 2) Web frameworks, and 3) toolkits. Web development methodologies can be catego-
rized into two groups: 1) Software Development Methodologies for Traditional Web Applications and
2) Software Development Methodologies for RIAs. The methodologies of the first group pose some
problems accommodating Web-specific aspects in terms of their methods and implementation; however,
they were the pioneer for the development of new methodologies or extensions of existing methodolo-
gies. Some of these methodologies are WSDM, SOHDM, OOHDM, and UWE. The methodologies
of the second group were developed by taking into account existing methodologies in order to satisfy
the needs and features of RIAs development. Some examples are RUX Method, OOH4RIA, OOHDM
Extension, and UWE-R.

In the case of Web frameworks, the options for developing RIAs can be grouped into three categories:
1) JavaScript-based frameworks, 2) non-JavaScript-based frameworks, and 3) multi-device frameworks.
The JavaScript-based frameworks are open source containing a set of pre-written JavaScript code, which
help facilitating the development of the JavaScript-based applications. This allows the development
of applications by using the same code written in these JavaScript frameworks instead of writing the

 xi

same line of code each time individually, which becomes more difficult and time consuming. Some
examples of these JavaScript-based frameworks are Dojo, jQuery, Prototype, and Sencha ExtJS. The
non-JavaScript-based frameworks are based on proprietary programming languages, and these frame-
works are typically used under paid licenses. Some examples are Adobe Flex, JavaFX, Silverlight, and
OpenLaszlo, to mention but a few. Multi-device frameworks cover two kinds of applications for mobile
devices: 1) native applications that are applications written for a specific device’s hardware and operat-
ing system, 2) Web-based applications, and 3) hybrid applications, which are applications built using
Web technologies and wrapped in device-specific native application containers. These frameworks have
the ability to support multiple mobile platforms such as iOSTM and AndroidTM at the same time. Some
examples of these multi-device frameworks are PhoneGap, iUi, ipFaces, and Sencha Touch.

In the case of Toolkits, there are different Integrated Development Environments (IDEs) for RIAs
development. According to its architecture, these IDEs can be classified into the following two major
groups: 1) standalone applications and 2) plug-in applications. Some examples of standalone applications
for RIAs development are Adobe Flash Builder, NetBeans, and Microsoft Visual Studio, among others.
As plug-in applications are SapphireSteel Amethyst plugin for Visual Studio™, E(fx)clipse plugin for
Eclipse™, and Eclipse4SL plugin for Eclipse™.

Figure 1 presents a general perspective about the aforementioned factors.
In this book, a novel view of RIAs development is proposed; it considers some issues relevant not

only to rich UI design purposes but to software quality purposes. Thereby, the topics related to RIAs
development that are covered in this book are multimedia support, AOP (Aspect-Oriented Programming)
support, the use of design patterns, and the use of UI patterns, as depicted in Figure 1.

Figure 1. A general perspective about the RIA development stack

xii

Multimedia content is crucial for RIAs. It provides richest content to Web applications by present-
ing information more dynamically and entertainingly. As examples of multimedia contents are videos
and image galleries. The use of image galleries enhances the ability to customize views on the fly and
provides real-time visual representations of a selected item. The possibility to represent graphics, audio,
and video is considered an inherent ability of RIAs (Rich Internet Applications). In fact, along with UI
transformations, visual continuity and temporal are factors affecting one of the distinguishing features
of RIAs: the enhanced UI.

AOP allows adding new features to Web applications without changing the original source code.
For instance, when a legacy application requires of an authentication method, it is possible to develop
a separate method using AOP and without changing the original structure of the application. This is
especially relevant for adapting legacy Web 1.0 application UIs to RIA UIs as a common practice in the
development of RIAs. Some of the software quality factors that can be achieved in the development of
RIAs by using AOP are: 1) Maintainability, 2) Extensibility, and 3) Reusability. Maintainability is very
important for RIAs development, since it enables one to make changes as effectively and efficiently as
possible. Moreover, the AOP provides a high level for maintainability. Extensibility is another crucial
aspect in the RIAs development, because the new functionality sometimes needs to be added to an
application that is in operation, and it is necessary to ensure that the application does not fail. Finally,
Reusability is important not only in software development but also in the AOP. In fact, Reusability
encapsulates the functionality required to be able to reuse it on subsequent occasions. This reduces
development time and improves productivity. In the cases of both RIAs and software development, the
development time is very expensive.

Design patterns are important in software development, as well as in the development of both tradi-
tional Web applications and RIAs. One of the main uses of the design patterns is for reusability purposes
(i.e., for simplifying the work) and, thus, offering a solution that had been previously tested and which
was successfully applied to a problem that manifests repeatedly. In fact, RIA technologies are based on
the software reusability principle in the sense that UIs are built starting from reusable widgets or UI
controls organized in component hierarchies. This is more evident in the case of the non-JavaScript-
based RIA frameworks because of the declarative UI definition model based on UI markup languages
such as MXML, FXML, and XAML. A well-known Design Pattern on Web applications development
is MVC (Model-View-Controller). The MVC pattern separates the domain modeling, the presentation,
and the actions into three classes and based on the user input: 1) Model, 2) View, and 3) Controller.
MVC pattern is a fundamental Design Pattern for the separation of user interface logic from business
logic. Fortunately, the emergence of Web applications has helped resolve some of the ambiguity, since
the separation between the view and the controller is apparent.

RIAs design involves two main stages: 1) application structure design and 2) UIs design. This book
focuses on the second stage of RIAs design. Rich UIs design typically involves the use of UI patterns to
ease the interaction between users and applications. UI patterns enable more intuitive and responsive user
experiences (i.e., rich user experiences). Indeed, they allow developers to encourage users to engage with
applications. Most of the RIA frameworks offer simple UI controls that natively implement UI patterns
(e.g., progress bar [progress indicator pattern] and accordion [expand/collapse pattern] in Adobe™ Flex
or JavaFX™). However, some UI patterns require more developmental time and effort in order to be
implemented. Therefore, it is not easy to understand the differences between UI controls and UI patterns.

Nowadays, RIAs development demands design principles of Web and desktop applications, which
are implemented by the so-called interaction design patterns. Furthermore, mobile devices, such as

 xiii

smartphones and tablet computers, have also been involved in RIAs development due to the ubiquitous
requirements of Web 2.0 applications (Finkelstein, Savigni, Kimmerstorfer, & Pröll, 2002). In this sense,
RIAs are known as multi-device RIAs. This term covers RIAs that run as cross-browser Web applica-
tions, cross-platform desktop applications, and mobile applications. A Web browser-based RIA is a
Web 2.0 application that integrates desktop-like features. A desktop-based RIA is a kind of application
that is able to run off-Web browsers. A mobile RIA is a native mobile application with an improved UI.

The new trends in the development of RIAs can be identified by analyzing the steps on the Web evo-
lution, from Web 2.0 to Web 4.0, passing through cloud computing as a trend on the Web 2.0 evolution.
Cloud computing could be the best example of where the RIAs development is going both in commercial
and academic fields. A new kind of RIA known as semantic RIA has recently emerged in the context
of Web 3.0. Semantic RIAs try to solve the issues related to interoperability between systems by using
ontologies and linked data principles. In the case of Web 4.0, the necessity of a ubiquitous Web has led
to the emergence of context-aware Web applications by taking advantage of RIA technologies in order
to offer rich user experiences.

Figure 2 depicts the conceptual map that illustrates the structure of this book.

Figure 2. Conceptual map of the general structure of the book

xiv

Hence, this book is structured as follows:
Chapter 1, titled “Basic Concepts on RIAs,” presents an overview of RIA features, and it explains

the most important concepts for RIAs development, as well as their benefits and importance in sev-
eral domains. In this chapter, a standard architecture for RIAs is described. This architecture has three
well-defined layers: 1) the client-side that renders the rich user interface, 2) a controller layer where the
business logic is executed, and 3) a data transactions manager. Important domains of Web development
are presented, and in each one of them, the importance of RIAs is explained emphasizing particular
features of each domain. Finally, experiences and successful stories of using RIAs in B2C e-commerce
domain are presented. Some of these successful cases mentioned are Kodak EasyShare, MINI USA,
FootJoy™, The Broadmoor Hotel™ and BlueGreen Vacation Rentals™, Verizon Wireless™, Yankee
Candle Company, and Charles Schwab.

Chapter 2, titled “Frameworks for RIAs Development,” describes the most popular options for RIAs
development. For practical purposes, these options are classified into two categories: 1) JavaScript-
based frameworks and 2) non-JavaScript-based frameworks; even though there are other classifications
reported in the literature, this classification is used in this chapter and throughout the book. In fact, this
classification allows for a quick understanding of the technologies for RIAs development by abstracting
technical details about intended software architectures.

Chapter 3, titled “Software Development Methodologies for Traditional Web Applications and RIAs,”
presents a review of the state-of-the-art on methodologies for RIAs development. For this purpose,
methodologies for traditional Web applications development are firstly presented, since, in some cases,
methodologies for RIAs development are either extensions of existing Web (and hypermedia) method-
ologies or new UI design methods used on top of already existing Web methodologies. New approaches
covering the RIAs features without relying on legacy Web models are also discussed in this chapter.

Chapter 4, titled “Important Factors on RIAs Development,” discusses some software quality metrics
such as usability, scalability, and reusability of RIAs development. The chapter describes the importance
of using multimedia content and UI (User Interface) patterns not only for improving the appearance
of RIAs but also for delivering rich user experiences. Likewise, this chapter depicts the importance of
leveraging AOP (Aspect-Oriented Programming) capabilities and implementing design patterns to ease
the RIAs maintenance and enable RIAs reusability.

Chapter 5, titled “Multimedia Support for Native/Embedded Video Playback on Frameworks for
RIAs Development,” discusses the capabilities of RIA frameworks in the context of multimedia content
support. For this purpose, several alternatives for implementing video playback functionality are pre-
sented by using both JavaScript-based RIA frameworks to and non-JavaScript-based RIA frameworks.
Examples of JavaScript-based RIA frameworks having multimedia content support are Dojo, jQuery,
Prototype, and Mootools. Examples of non-JavaScript-based RIA frameworks are Adobe Flex™, Ja-
vaFX™, Silverlight™, and OpenLaszlo. For each case study the mandatory files are mentioned. The
chapter also shows a screenshot where video player is displayed and code snippets that were used are
presented. Finally, a comparative analysis of video playback support for each framework is presented in
terms of video container formats and encoding types.

Chapter 6, titled “Aspect-Oriented Programming (AOP) Support on RIAs Development,” emphasizes
the importance of employing Aspect-Oriented Programming (AOP) on software development, especially
in software engineering. Some advantages in the development of RIAs by using AOP are Maintain-
ability, Extensibility, and Reusability. This chapter presents a review of several success stories of AOP
implementation in real world development projects and discusses the lessons learned in these projects.

 xv

The works analyzed in the state-of-the-art are classified by Web development, Usability Engineering,
and other related perspectives. Finally, the chapter also addresses AOP support between JavaScript-based
RIA frameworks and non-JavaScript-based RIA frameworks providing either native or third-party AOP
facilities. Some code snippets depicting the use of these facilities for implementing AOP concepts are
also presented.

Chapter 7, titled “Design Patterns Support for RIAs Development,” presents a review of Design Pat-
terns proposed by GOF classification is presented. GOF classifies Design Patterns in Creational Patterns,
Structural Patterns, and Behavioral Patterns. Some implementation examples of GoF Design Patterns
are presented by using both JavaScript-based frameworks and non-JavaScript-based frameworks for
RIAs development. Additionally, the chapter also presents a comparative analysis that summarizes the
review of the capabilities of the RIA frameworks in the context of GoF Design Patterns support between
JavaScript-based RIA frameworks and non-JavaScript-based RIA frameworks. Finally, this chapter also
mentions how to solve different programming problems by using Design Patterns.

Chapter 8, titled “UI Patterns Support on RIAs Development,” a review of UI patterns supported
by using non-JavaScript-based frameworks and JavaScript-based frameworks for RIAs development is
presented. For this purpose, the UI Patterns are classified in Transitional Patterns, Lookup Patterns, and
Feedback Patterns. Additionally, this chapter presents a series of applications samples depicting the use
of not only UI controls but also non-visual functions or classes (as applicable) for implementing the
supported UI patterns. These applications are intended to clarify the differences and similarities between
UI controls and UI patterns. Finally, the chapter presents a comparative analysis that summarizes the
review of the capabilities of the RIA frameworks in the context of rich UI design.

Chapter 9, “Case Studies Using JavaScript-Based Frameworks,” discusses the development of four
different SOAP Web services-based thin-client applications using jQuery, Prototype, Dojo, and JSP. The
chapter, indeed, addresses the development of a world atlas application, a document indexing a search
system, an e-procurement system for the healthcare domain, and a meta-search engine for eBay and
Amazon products. These case studies, as well as case studies presented in subsequent chapters, exem-
plify the use of some UI patterns for accomplishing rich design principles such as stay on the page and
use transitions. Similarly, reviews of some similar real world implementations publicly available on the
Internet are provided for each case study presented in this chapter. Finally, the chapter presents a review
of the support for invoking SOAP-based Web services using Java. This is intended to be a preamble for
the case studies and the use and application of SOAP-based Web services.

Chapter 10, titled “Case Studies Using Adobe Flex™,” presents two case studies about the develop-
ment of REST (Representational State Transfer) Web services-based RIAs using Adobe Flex™ along
with HTML and JavaScript. The chapter addresses the development of a meta-search engine for YouTube
and Vimeo videos, as well as the development of a forecast weather system based on Yahoo! Weather.
In addition, the chapter also offers a review of the support for consuming RESTful Web services in
Adobe™ Flex™ as a preamble to these case studies.

Chapter 11, titled “Case Studies Using JavaFX™,” presents four case studies on the development of
JavaFX™-based RIAs built on top of popular social networking Websites. The chapter addresses the
development of three photo album applications based on Flickr™, Picasa™, and Photobucket™ Websites,
respectively. In addition, the development of a search engine for movies based on Rotten Tomatoes™
Website is finally presented. For each case study, the chapter provides a review of some similar real
world implementations publicly available on the Internet.

xvi

Chapter 12, “Multi-Device RIAs Development,” introduces the concept of multi-device RIA to de-
scribe a kind of RIA that can run on a variety of devices starting from the same code base. This includes
not only cross-browser Web applications but also out-of-browser applications, namely cross-platform
desktop and mobile applications. Thereafter, the chapter presents an overview of multi-device develop-
ment frameworks. The supported platforms and the main capabilities are described for each framework
mentioned. Furthermore, this section includes both a brief description of the most popular mobile
operating systems for mobile devices and a comparison table for summarizing the main features of the
multiplatform development frameworks.

Chapter 13, titled “An Overview of RIAs Development Tools,” provides a review of RIAs develop-
ment tools, including both official and third-party tools. For this purpose, the two major approaches for
RIAs development already identified in the literature were considered: 1) framework-based development
approaches and 2) MDD approaches. However, this classification was extended by introducing a third
category: RAD approaches. Thereby, the chapter reviews not only IDEs for RIA frameworks-based
developments but also addresses other support tools for RAD such as code generation tools. Likewise,
based on their architecture, IDEs for RIAs development are reviewed and classified into the follow-
ing two major groups: 1) standalone applications and 2) plugin applications. Some development tools
presented are AdobeTM Flash BuilderTM, NetBeans IDE™, Microsoft™ Visual StudioTM, WebRatioTM,
RUX-Tool™, and AlexandRIA.

Chapter 14, titled “AlexandRIA: A Visual Tool for Generating Multi-Device RIAs,” explains the use
of AlexandRIA for developing cloud services-based RIAs by implementing UI patterns. Unlike other
RIA development tools described in Chapter 13, AlexandRIA is entirely focused on the fully automatic
source and native code generation of RIAs, and it entirely addresses multi-device RIAs development.
In this chapter, the use of the UI design process behind AlexandRIA is also demonstrated by means of a
sample development scenario addressing the development of a cloud services APIs-based cross-platform
mobile RIA. This scenario is further revisited in a case study that addresses the automatic generation of an
equivalent application using AlexandRIA. In addition, this section of the book provides a review of both
the UI patterns and the cloud services APIs supported by AlexandRIA as a preamble to the case study.

Chapter 15, titled “New Trends on RIAs Development,” presents the new trends on RIAs development
by considering the steps on the Web evolution, from Web 2.0 to Web 4.0, passing through cloud-based
RIAs development and mashups-rich UIs development as two easily visible trends related to Web 2.0.
Semantic RIAs, RMAs (Rich Mobile Applications), context-aware RIAs, and ubiquitous Web appli-
cations are some of the academic proposals related to Web 3.0 and Web 4.0 that are discussed in this
chapter. Similarly, some commercial efforts from companies such as IBM™, TopQuadrant™ Inc., and
Salesforce.com Inc. are also discussed in this chapter.

TARGET AUDIENCE

This book is targeted at professional developers and students wishing to improve their knowledge of Web
engineering and of the way it can be applied to the RIAs development. Some of the concepts covered
(methodologies, frameworks, tools) will assume a basic level of prior knowledge and understanding.
If the reader requires any further reading related to these topics, the authors provide a list of suggested
titles at the end of each chapter. If the reader wishes to learn how to develop RIAs, as well as about all
the features of this kind of application, this is undoubtedly the book for them.

 xvii

CREDITS

Whilst some of the topics covered in this book were implemented based on the authors’ personal ex-
periences, many of them have been previously identified and explained by other people. This work is
an effort of the combined experience from the authors and other researchers, whose studies are fully
covered in the references sections.

Giner Alor-Hernández
Instituto Tecnológico de Orizaba, Mexico

Viviana Yarel Rosales-Morales
Instituto Tecnológico de Orizaba, Mexico

Luis Omar Colombo-Mendoza
Instituto Tecnológico de Orizaba, Mexico

REFERENCES

Finkelstein, A. C. W., Savigni, A., Kimmerstorfer, E., & Pröll, B. (2002). Ubiquitous web application
development - A framework for understanding. In Proceedings of 6th Systemics, Cybernetics, and In-
formatics Conference (pp. 431–438). Academic Press.

Martínez-Nieves, L. A., Hernández-Carrillo, V. M., & Alor-Hernández, G. (2010). An ADV-UWE based
phases process for rich internet applications development. In Proceedings of IEEE Electronics, Robotics
and Automotive Mechanics Conference, (pp. 45 –50). IEEE.

xviii

Acknowledgment

Authors are always be grateful for the talented technical reviewers who help review and improve their
books. The knowledge and enthusiasm they brought to this project was simply amazing.

Thus, authors would like to thank: Ulises Juárez-Martínez, PhD, for his support, especially in Chapters
4 and 6, in the AOP subject; Desdemona Almazan-Morales, BSc, and Luis A. Barroso, PhD, from the
Instituto Tecnólogico de Estudios Superiores de Monterrey Campus Central de Veracruz for their support
in the English review process in some sections of the book; Gabriela Cabrera-Zepeda, MSc, Chief of
the Division of Research and Postgraduate Studies of the Instituto Tecnológico de Orizaba for her help
and support in this project; Maria Fernanda Villafuerte-Bianchi, BA, for her support in the proofreading
process; and all our colleagues and friends from the Instituto Tecnológico de Orizaba for all their support.

Giner Alor-Hernández
Instituto Tecnológico de Orizaba, Mexico

Viviana Yarel Rosales-Morales
Instituto Tecnológico de Orizaba, Mexico

Luis Omar Colombo-Mendoza
Instituto Tecnológico de Orizaba, Mexico

1

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-4666-6437-1.ch001

Basic Concepts on RIAs

ABSTRACT

Chapter 1 presents an overview of RIA features, and it explains the most important concepts for RIAs
development, as well as their benefits and importance in several domains. In this chapter, a standard
architecture for RIAs is described. This architecture has three well-defined layers: 1) the client-side that
renders the rich user interface, 2) a controller layer where the business logic is executed, and 3) a data
transactions manager. Important domains of Web development are presented, and in each one of them,
the importance of RIAs is explained emphasizing particular features of each domain. Finally, experi-
ences and successful stories of using RIAs in B2C e-commerce domain are presented.

1. INTRODUCTION

The Web or WWW (World Wide Web) is an
information distribution system comprised of
interlinked hypertext or hypermedia accessed by
using the Internet. To access these media, a Web
browser is required. The user is able to view dif-
ferent websites, which are composed of web pages
that can contain text, images, videos or multimedia
content. The user can browse the web pages that
make up the website, through hyperlinks which
cause a great amount of traffic between the cli-
ent and the server as every time the user clicks
on one of the hyperlinks. So, the whole page is
loaded when the user requires some data or some
interaction, this task implies to make another re-
quest from the server which causes the data can
be slowly displayed. This slowness is increased
as the amount of data requested is increased. The

Web was created in 1989 by the Englishman Tim
Berners-Lee and the Belgian Robert Cailliau,
while they were working at CERN (CERN means
European Organization for Nuclear Research) in
Geneva, Switzerland and it was published in 1992.
Since then, Berners-Lee has played an active role
in guiding the development of Web standards and
over the last few years he has focused his vision
on the Semantic Web.

In recent years, the term Web 2.0 has emerged.
This term is associated with Web applications
that make them easier to share information,
interoperability, user-centered design and the
collaboration with the World Wide Web. Some
examples of Web 2.0 applications are Web com-
munities, Web services, social networks, web
sites that host videos, wikis, blogs, mashups and
folksonomies, to mention but a few. The term is
strongly associated with Tim O’Reilly, due to this

2

Basic Concepts on RIAs

term was coined at the conference about Web 2.0
from O´Reilly Media in 2004 (O’Reilly, 2004).
Although the term suggests a new version of the
World Wide Web, it does not refer to an update
process of technical specifications over the Web,
but rather it refers more to cumulative changes in
the way in which the Web is used by designers
and final users.

Among the characteristics of web applications,
there are some advantages over desktop applica-
tions. Some of these advantages are: 1) it is not
necessary to carry out installations and updates on
every computer where the application is running,
these can now be carried out on the server-side
and 2) they can run on different operating systems,
which are well-known as platform-independent,
cross-platform or multi-platform. However, there
are also some disadvantages for these types of
applications: 1) there is no immediate response to
the acts, actions or events carried out by the user
on graphical interfaces and 2) it is not possible
to drag and drop documents, texts, images or any
multimedia content.

RIAs (Rich Internet Applications) become a
necessary way of increasing the advantages and
avoiding the disadvantages of traditional Web ap-
plications. RIAs are similar to Web applications
but they also share the majority of the character-
istics of desktop applications. These applications
use a standardized Web browser to be run and
via add-ons and through a virtual machine the
additional characteristics are added. RIAs are
applications that combine the advantages of both
Web applications and traditional applications,
and they seek to improve the user experience.
Rich Internet Applications combine features and
functionality of desktop applications, but they are
delivered over the Web.

Commonly when the user clicks on a hyper-
link, there is a constant refreshing of Web pages
on traditional Web applications. This situation
produces a high amount of traffic between the
client and the server, resulting in the same web
page being refreshed with a minimal change. By

using RIAs, this process does not require a refresh
process on each Web page, but the whole appli-
cation is loaded from the beginning and it only
produces a communication with the server when
external data are required such as communica-
tion with databases or with some external files.
RIAs have a particular way to handle and process
information which is another difference. Today
traditional desktop applications exclusively rely
on client-side processing. When a task is initi-
ated, the local system’s resources are leveraged to
process the request. In contrast, a Web application
exclusively relies on the server-side technology
to process a request. With the use of RIAs, the
load is shared by both client-side and server-side
technology. RIAs represent the next transition in
the evolution of Web applications; they promise
the richness, interactivity and usability lacking in
many of today’s web applications.

2. BASIC CONCEPTS

RIAs constitute a new paradigm on Web devel-
opment, which are currently being released with
great success in the world of IT (Information
Technology) and business. The best way of under-
standing what RIAs are, is by placing them within
the context of other related technologies such as
ASP (Active Server Pages) or JSP (Java Server
Pages). In order to have a better understanding
about the concept, it is necessary to think about
technological solutions in terms of two character-
istics: reach and richness. “Richness is the ability
of incorporating intuitive interactivity and user
interfaces on the client-side, and reach is the abil-
ity of the application to be available to any user”
(Namscimbene, 2005). In 2004, a Macromedia
study1 compared a traditional Web application
built with JSP technology with an identical ap-
plication built with Macromedia Flex. The study
revealed that both server requests and CPU usage
were dramatically decreased in a Flex-based Ap-
plication. The Flex-based applications used .8%

3

Basic Concepts on RIAs

average server CPU utilization under heavy load
with minimal peaks of 50% while the JSP-based
interface under the same load used 21.2% server
CPU utilization with peaks up to 100%.

RIAs work in an asynchronous fashion which
enables them to be more dynamic than traditional
Web applications. Therefore, they reduce the
difference between Web-based applications and
desktop applications. Some advantages that RIAs
represent when are compared with traditional Web
applications are presented below:

• Immediate Access: At any moment, the
user does not lose control of the web page
that he is visiting due to the access times
are very short.

• Graphical Interface Features: The RIAs
technologies enable functions such as the
drag & drop from one part of the screen to
another.

• Responsiveness and Interactivity: RIA
carries out the data processing on the
client-side. This situation results in a re-
duced network traffic and faster response
as the application leverages the client CPU
(Central Processing Unit). Also, when
a button or a URL (Uniform Resource
Locator) is clicked, the corresponding
section of the web page is only asynchro-
nously reloaded, and not the whole page.
This action provides continuous visual ref-
erence to users, so they are not distracted
by interface changes.

• Real-Time Communication: It enables
users to collaborate and share information
on the Internet through real-time commu-
nication channels like instant messenger,
video on demand, audio/video conference,
among others.

• Ease of Maintenance: For example, by
modifying and/or deleting items with-
out needing of refreshing the current web
page, either to improve performance or to
fix bugs (Veit, 2008).

“RIAs are a type of application that offers
various advantages over traditional Web ap-
plications. RIAs function as a combination of
the advantages of both Web applications and
traditional applications” (Viveros García &
García Godoy, 2009). RIAs have arisen from
the needs of both Web applications, as well as
desktop applications, achieving a combination of
the advantages of both of them: i.e. a RIA is an
intermediate between traditional Web applications
(thin-client) and desktop applications (fat-client)
(Rivero et al., 2007).

Nowadays, there are several concepts and defi-
nitions about RIAs. The RIA term was firstly used
in March 2002 by Macromedia. RIA was defined
as a new model for developing Web Applications
that separates data server services from the rich
user interface, which is presented through a plugin
that is executed at runtime on a Web browser.

Some concepts only compare RIAs to desktop
applications in a general way ignoring important
features like server-side processing and asyn-
chronous data loading. For instance, Wikipedia
(Wikipedia, 2011) defines RIA as follow: “A
rich internet application is a web application
that has many of the characteristics of desktop
applications, typically delivered either by way
of a site-specific browser, via a browser plug-in,
independent sandboxes, or virtual machines…”.

This concept has changed due RIAs are not
only implemented on Web browsers, thanks to the
emergence of new Web development platforms;
they perfectly run on desktop and mobile devices.
The following extract highlights offline and online
functionality, local data storage and client-side
processing capabilities as emphasized by Linaje
(Linaje et. al., 2008): “Some of the novel features
of RIAs affect the UI (User Interface) and the in-
teraction paradigm; others extend to architectural
issues, such as, the client-server communication
and the distribution of the data and business
logic. They support online and offline usage,
sophisticated UIs, data storage and processing
capabilities directly at the client side, powerful

4

Basic Concepts on RIAs

interaction tools leading to better usability and
personalization, lower bandwith consumption
and better separation between presentation and
content”.

Brambilla (Brambilla et. al., 2008) defines RIA
as: “Web applications that exploit the power of
Web clients for increasing the responsiveness and
usability of the web UI, by offering functionalities
similar to the ones of desktop applications. RIAs
follow the client/server paradigm, but opposite
to traditional web applications, RIAs are able to
transfer the processing of UI, business logic and
data management to the client, possibly using
asynchronous communications”. This concept
refers to the capability of returning processing to
client-side and taking advantage of the constant
improvements of the hardware configurations.

Likewise, Bozzon (Bozzon et. al., 2006) dis-
cusses the role that the client-server architecture
takes and its asynchronous workflow, defining a
RIA as follow: “They are a variant of Web-based
systems providing sophisticated interfaces for
representing complex processes and data, mini-
mizing client-server data transferring and moving
the interaction and presentation layers from the
server to the client. Typically, a RIA is loaded by
the client along with some initial data; then, it
manages data rendering and event processing,
communicating with the server when the user
requires further information or must submit data”.

As conclusion, the following concept can be
inferred emphasizing the main differences among
traditional Web applications: “RIAs are applica-
tions typically executed by any RIA-capable device
that renders a Rich User Interface and they use
data that can be processed both by the server-side
and the client-side.”

By RIA-capable device, any electronic device
that executes JavaScript-based and third-party
technologies (JavaFX, Silverlight and Adobe
Flex, to mention a few) for RIA development is
considered. One of the main principles of RIAs
development is the asynchronous data loading
which means that they are able to obtain chunks

of data without refreshing the entire Web site. The
concept of richness, involved in the RIA definition,
is due to its ability of improving the traditional
Web Application features in five basic aspects:

1. The application uses the client-side memory
in which the data is locally manipulated and
stored. Once the entire task is done, it is sent
back to the server-side.

2. The RIAs use the client’s processing capabil-
ity. It enables both the server-side and the
client.side to carry out complex operations,
resulting in a different navigation struc-
ture in comparison with traditional Web
applications.

3. RIAs allow both synchronous and asyn-
chronous communications. The data distri-
bution between client and server expands
the produced event features, since they are
originated, detected, advised and processed
in different ways.

4. The presentation and complex interaction
given to the user are augmented. RIAs show
themselves as single Web page avoiding un-
necessary loading and allowing data to be
displayed in progressive way or when it is
needed.

5. RIAs combine the flexibility of Web user
interfaces with the processing power of
desktop applications.

In synthesis, RIAs are systems that allocate
most of the load processing of the user graphic
interface to the client-side while the predominant
part of control processing and data management
remains on server-side. From this perspective,
a standard architecture for RIA development is
represented in Figure 1. In Figure 1, three layers
for a typical RIA development are defined: 1) the
client-side rendering the rich user interface, 2) a
controller layer which executes business logic, 3)
a data transactions manager.

In Figure 1, the architecture has three main
properties:

5

Basic Concepts on RIAs

1. Data Management: In traditional Web ap-
plications, data resides on the server-side. In
a RIA, application data can be distributed be-
tween server-side and client-side. Therefore,
a RIA can use the client’s persistent and
volatile content. Data can be manipulated
on the client-side, and finally sends them to
the server-side once the operation has been
completed.

2. Both-Sides Controllers: In traditional
Web applications, there is only one control-
ler at the server-side that orchestrates the
computation of the Web page. At each user
interaction, the whole Web page is computed
and reloaded. At the client-side, a second
controller is introduced in a RIA, which is
responsible of computing and refreshing
a section of a Web page. Data processing
can be executed both at client-side and
server-side. RIAs have a different navigation
structure from Web 1.0 applications, due to
the augmented processing capability of the
client. In RIAs, both the client-side and the
server-side can carry out complex operations.

3. Client/Server-Side Communication: In
RIAs, mechanisms to minimize data transfers

are introduced which move interaction and
presentation layers from the server-side to
client-side. Conversely to Web applications,
RIAs use both synchronous and asynchro-
nous communications. Pull and push com-
munication capabilities are available. Data
distribution and functionality across client
and server broadens the features of the
produced events as they can be originated,
detected, notified, and processed in a variety
of ways.

These properties represent the core of RIAs,
since all RIA implement at least one of them.

3. MAIN CROSS-DOMAINS
BENEFITS OF RIAS

RIAs solve problems of traditional Web applica-
tions. The main problems in traditional Web ap-
plication occur when the navigation is necessary
in order to:

• Represent workflows.
• Browse structured information.

Figure 1. A standard architecture for RIAs

6

Basic Concepts on RIAs

• Implement complex user interfaces.

These aspects can cause:

• Increased traffic between client and server.
• An increased workload on the server-side.
• A decreased client response time (Rivero

et al., 2007).

RIAs are accessed from the Internet. RIAs
solve the accessibility and mobility problems of
desktop applications. In next section, the impact
and importance of RIAs on different domains
are discussed.

3.1. The Importance of
RIAs in E-Commerce

ITs are frequently changing because there are new
user needs. It is important to take into account the
emergent ITs because they offer several benefits
to the people involved such as more powerful de-
velopment, fast execution and integration among
applications. E-commerce is one of the main
usages of the Internet where its application has
been increased with the development of Web ap-
plications. RIAs provide more benefits to business
entities, shoppers and developers in e-commerce
domain. The main benefits for business entities
in e-commerce are listed below:

1. Products are showed anywhere and any-
time: Through RIAs, the business entities
can show their products to their customer
regardless where they are and when they
access. The customer can buy without hav-
ing to be into a store.

2. The shopping process is easy: RIAs build
interactive, intuitive, animated and easy
applications. Therefore, they allow users
to explore products in an easier and faster
approach.

3. A better shopping experience is achieved:
The shopping experience allows customer

to visit and buy more frequently. This situ-
ation is achieved by providing interactions
between the user and the application. For
example, it allows searching, retrieving,
showing, comparing, selecting and buying
products in the same Web page.

4. The product demand is increased: When
the detailed information of products is
presented through rich user interfaces, the
user’s interest for purchasing is increased.

5. More information of products is exposed:
The procurement process of the available
products is described to customers in a more
detailed way for using at their own benefit.

6. Complexity is reduced: It is necessary to
represent product information in a simple
way and to guide the customer in selecting
his products. When the user watches a single
Web page, the user does not need to select
all products’ features and send information
to build a new Web page. RIAs allow select-
ing all features and updating products into
a same Web page.

7. Fewer returns: When the customer knows
all about a product, the customer does not
have any doubt of buying the product. It al-
lows customer satisfaction and reduces the
indices of purchase returns.

8. Less investment in development: There
are a lot of open source Web frameworks
for designing, creating and building RIAs.
Therefore, the business entities can use e-
commerce to show their products or services
with less investment.

9. Video integration: Video integration offers
new ways to display products information.
For example, through video, guidance or
instructions about application, services or
products can be provided. It also makes
more attractive the Web application.

10. The shopping time is reduced: Because
shopping time is less, the customer does not
leave the application, increasing the products
sold.

7

Basic Concepts on RIAs

The main benefits for shoppers in e-commerce
are listed below:

1. Products can be customized: These ap-
plications allow easily customizing products
such as sneakers, clothing, bags to mention
but a few. It offers new ways for shopping
because the RIAs allow selecting features
of products and at the same time they are
always configured in a single Web page.

2. The user shopping experience is better:
With a single Web page, the user shopping
experience is fast, continuous, and interesting
because the Web page refresh is not required.
Therefore, customers perceive a Web site
that provides a better response time.

3. More product information is provided:
RIAs provide several components such as
video, image and effects that show all product
information needed to know the product or
service in less time. This makes the shopping
process easier.

4. Fast response to the user’s needs: When
the user needs a product or service, the user
only needs to visit the application. The user
does not need to leave his home or his office.

The main benefits for developers in e-com-
merce are listed below:

1. The RIAs promote the use of SOA (Service
Oriented Architecture): With both RIA
and SOA, rich application development is
easier and faster. The integration of both
technologies allows increasing the shared
information through scalable applications.

2. There are several design tool, IDE
(Integrated Development Environment)
and open source frameworks: These tools
allow the RIA development in an easier way
since they provide a set of components,
events; effects and libraries where developers
only needs to configure them.

3. RIAs have an advanced user capability
and interactive user interfaces for build-
ing custom rich interfaces to customers:
It also provides an easier way for integrating
both designer and developer tasks.

The e-commerce systems are very important
for business entities because they attract potential
customers, and they expose the products anywhere
and anytime. These benefits show how RIAs can
bring improvement to e-commerce domain thanks
to a new generation of internet applications pro-
viding interactive, intuitive and dynamic ways to
explore the products and services information.

3.2. The Importance of
RIAs in E-Learning

Over the last few years, great efforts have been
made to offer e-learning systems, however the
high percentage of failure in e-learning courses
has been attributed to the poor design of the
online experience which does not motivate the
students to achieve a better learning process since
they only offers repetitive, boring tasks and some
other frustrations.

In order to improve these systems, the learning
software should also contain multimedia elements
such as simulations, explorations, drag and drop
exercises, among others. E-learning systems
should be active and they should offer a teaching-
learning process in a dynamic and interactive way.

Nowadays, the developers of e-learning
systems can use RIAs technologies in order to
combine a variety of multimedia contens and
external applications for building enriched content
and improving the experience of learning online.

RIAs technologies are characterized by
enabling a higher quality and improving the ex-
perience of online interaction. RIAs offer some
benefits on e-learning domain which are listed
below:

8

Basic Concepts on RIAs

1. The student can access information and
courses from any location. This helps to
maximize the reach of the audience.

2. RIAs can run without modifications, over
the Internet from multiple platforms. With
this advantage, the student can receive in-
formation from wherever he is and without
needing previous software installations.

3. Attractive user interfaces can be provided,
with a high level of interactivity. Ease of use
and the capacity of attracting the student’s
attention are essential in the success of e-
learning systems. By building courses more
attractive to the student, retention is achieved
and with this the courses are successfully
completed by the student.

4. Audio, video, images and texts can be used
in order to improve the contents of e-learning
applications; it improves the student’s experi-
ence. RIAs provide many facilities to include
any type of multimedia content which is of
great help and it is beneficial to students.

5. RIAs are compatible with mobile workflow,
enabling users to work both online and of-
fline. RIAs offer advantages over traditional
Web applications because they can be used
for the design of courses or contents for e-
learning systems.

RIAs offer better features than traditional Web
applications by providing the feature of including
multimedia content and the user interfaces design
with a greater of interactivity level. Therefore, the
designer of these learning experiences can signifi-
cantly improve the motivation and the experiences
of the user, which in this case is the student.

3.3. The Importance of RIAs
in E-Entertainment

Today, e-Entertainment is very popular, attribut-
ing to a huge number of commercial game titles,

while only in US having an annual turnover far
exceeding the American Box Office. Additionally,
there is a wide spread total of specialized game
consoles, with a total number being larger than
the amount of home personal computers.

By using RIAs, it is possible to design inter-
active interfaces including video games for the
Web or to develop Web applications for watching
movies on the Internet without having to leave
the home.

RIAs offer some benefits on e-entertainment
domain which are listed below:

1. The user can access video games online, with-
out needing to buy consoles or accessories.

2. It is possible to add a high level of interac-
tivity with user interfaces to make the use
of applications and content more attractive.
These user interfaces can help to the admin-
istrators to control the content, enabling
actions such as drag and drop, and the abil-
ity to practically paginate the contents thus
avoiding the refreshing of web pages.

3. It is possible to add video players or multi-
media content with personal controls. This
offers a greater control as much for the
administrator as for the consumer.

RIAs combine avant-garde technology with
innovative business practices to provide cost-
effective business solutions for small and medium
businesses, large corporations and governmental
organizations.

As it can be seen in this section, RIAs can
be implemented in diverse domains. RIAs can
be implemented in e-government or in e-health;
whenever the application requires it. There are
also some successful case studies on RIA devel-
opment; in the following sections some of these
are described.

9

Basic Concepts on RIAs

4. SUCCESSFUL STORIES
ON RIAS DEVELOPMENT

Experiences and Successful
Stories of Using RIAs in B2C
E-Commerce Domain

Many years ago, Web pages were based in HTML-
based technology. These HTML-based Web pages
contained text, images, and form elements like text
boxes, lists, combo boxes and hyperlinks. When a
user clicked a hyperlink the Web browser loaded
another Web page where all the content had to
be replaced by a new HTML-based document
and the previous content was disappeared. If the
user returned to reload the previous content, the
information often was lost. This interaction did
not allow rich user experience.

Unlike Web applications designed with tradi-
tional HTML, a RIA enrich the user experience
by combining the strengths of desktop and Web
applications increasing and improving the options
and capabilities of them. Among the new experi-
ences that RIAs give to a user are:

1. Provide a rich user interface similar to
the “look and feel” present in desktop
applications.

2. Applications developed with these technolo-
gies use user interface controls with higher
performances and functionalities. Examples
of them are horizontal or vertical menus,
navigation tree menus, tabbed panels, vid-
eos, and controls for capturing data, among
others.

3. Users interact with the application to get an
immediate response to this, it is not necessary
to redraw the Web page when new data are
loaded.

4. The applications enable users to perform
common operations that were only available
on desktop applications and they were not
possible to perform in traditional HTML-

based Web pages: drag&drop, resize, among
others.

5. There is not need for complex setup process
to access Web sites or applications (in some
cases only requires a plug-in).

6. RIAs receive immediate response. It is not
necessary waiting for a connection to and
from the server-side to get a result.

An important improvement offered by RIAs
is the development of interactive Web sites. Now,
customers have the chance to see online the prod-
ucts and even they change and customize them
according to their needs. A RIA well-designed
site offers to consumers a complete shopping
experience: the customer is visually guided step
by step through the process, since selecting the
products catalog until the payment. Some success
stories where RIAs have been applied in order to
improve the productivity are described below.

Kodak EasyShare (www.
kodakgallery.com)

It is a subsidiary of Eastman Kodak Company™
that offers online services for handling of digital
images to millions of customers around the world.
Some services are storing, displaying, sharing
photos and ordering prints. The company devel-
oped a Web-based platform to handle millions
of digital photographs, digital-quality printed
albums, photo sharing among users. Furthermore,
the company needed to be capable of expand-
ing the functionality to add new products in the
future and not limited only to the manipulation
of images, plus offer the user a great experience
when using a fully interactive platform. To carry
out the above, Kodak EasyShare launched Photo
Books in 2004 that allowed to users to create their
own photo books by a striking interface where
they could drag and drop images on the pages of
a book, change the page, change the background,
among other options. In Photo Books, users could

10

Basic Concepts on RIAs

also view the content without loss of time and
avoiding reloading the entire Web page to update
only the book page.

Among the benefits gained by using Photo
Books include:

• Innovation of providing the photo album
service to its customers.

• Increasing sales by offering the option of
printing the album created by the customer
or individual photos.

• Attracting a greater number of customers
by providing compatibility between the
Kodak EasyShare software for PC and on-
line version.

• Providing more products over the Internet.
• Developing a platform capable of being ex-

panded in terms of functionality

MINI USA (www.miniusa.com)

MINI USA is a division of BMW™ North Amer-
ica. MINI USA is responsible of producing MINI
cars in the U.S. market; the goal of developing
a RIA was to promote the brand with a unique
brand of car customization. With the implementa-
tion of a RIA, users had a new experience of the
Web site management. The main feature was the
customization of Web pages allowing users to
manufacture his own MINI car through a simple
process that adds nonlinear elements either inside
or outside the car; the navigation ensured that all
options of exchange were available in a part of
the Web page. Users could see the exact car that
they were getting and could understand the price
implications of their configuration choices at each
step of the purchasing process.

With this new development, it allowed people
to customize their own personal MINI through a
simple, non-linear five-step process that included
the ability to add aftersales MINI Motoring
Accessories such as custom roof graphics and
wheels. The navigation assured that everything
aws viewable on one web page. This rules-based

architecture assured that it only allowed the abil-
ity of configuring a vehicle that could actually be
purchased, and it allowed MINI to easily maintain
the rules, as the vehicle specifications change from
model year to model year. When users finished
the configuration process of a car, they could give
it a name, save it, calculate payments for it and
easily send their configuration to a MINI dealer
or a friend. MINI encouraged them to configure
and save as many customized MINIs as they like.
The customization feature offered the following
benefits:

• An increasing in registered customers.
• The majority of registered clients config-

ured a MINI.
• Customers were attracted by the way they

could customize a MINI car to their needs.
• Customization was done in an easy way;

all information was always available on
screen.

• The information was directly sent to a
MINI dealer, giving greater confidence to
the customer.

FootJoy™ (www.footjoy.com)

As one of the major brands in the Acushnet
Company™, FootJoy is a main manufacturer and
distributor of golf shoe and golf glove products in
the world. They are estimated to own 55%-60%
of each of those markets. Other products include
socks, outerwear and accessories. The company
distinguished itself in two ways: by the quality
of its products and service, and by its reputation
for innovation in golf shoe and glove technology.
They believe they have a very good feel for the
consumer, his or her needs and how to serve them.
They faced several challenges:

• Improve the usability of the site. They
wanted to provide a two-way interactive
experience with a look and feel better rep-
resenting the brand. They wanted the abil-

http://www.miniusa.com
http://www.footjoy.com

11

Basic Concepts on RIAs

ity to support the customer and better spot-
light or merchandize information such as
new products, news, among others.

• Enable the customer to develop a relation-
ship with the company by mirroring on
the website the kind of expertise and guid-
ance the customer would get in person in
a FootJoy store. Specifically, they wanted
to develop the Product Finder based on
product knowledge captured from FootJoy
experts, to allow visitors to quickly iden-
tify themselves and their needs, and to map
these needs to an appropriate product.

• Put a strategic technology foundation in
place, including content management, and
ties into their legacy product system, that
would serve as a base for future website
development.

• Bring organization to the catalog content
to allow them to update on-line catalogs
more rapidly by themselves, without in-
volving expensive and over-booked techni-
cal resources.

• Create a participatory site fostering com-
munity, by soliciting user feedback through
on-line polls, and by providing information
about products, golf courses, tips, expert
interviews and weather reports.

In order to retain their substantial market share,
FootJoy developed a RIA called Product Finder in
order to present a series of questions that guide the
visitor through a product selection process, similar
to how an expert might engage the customer in
the store. Content such as pictures of golf shoes or
gloves and brief textual product descriptions are
pulled from the content management system. In
early September 2003, FootJoy launched myjoys.
com, a RIA to revolutionize the way Golf Shoes
were purchased online. Through this application,
customers could access an elegant shoe creation
interface that allowed them to see exactly what
their shoe will look like as they design and change
it (MyJoys offered the user 2 base and 14 saddle

colors option as well as the chance to personal-
ize the shoe with up to 3 letters and/or numbers).
Leather stocks were checked in real-time, via Flash
Remoting, notifying the customer if their leather
selection is unavailable and emailing them when it
was back in stock. The application included a fully
integrated shopping cart and check-out process,
including encryption (via Verisgn SSL), anti-fraud
credit card checking and real-time address check-
ing and tax calculation to ensure an accurate and
secure check-out experience. The “My FootJoy”
area allowed users to save custom shoes to their
wish list and track their orders. Customized shoe
orders were directly sent to China where the shoes
were manufactured and shipped to the customer
within 3 weeks.

FootJoy exceeded the usage expectations by
over 200%. At an average of $150 per shoe order,
this unexpected increase had a substantial increase
on revenue for FootJoy, and it observed a substan-
tial increase the ROI on the MyJoys application.

The Broadmoor Hotel™ and BlueGreen
Vacation Rentals™ (www.broadmoor.
com, www.bluegreenrentals.com)

The online travel reservations have become a fairly
common occurrence. But it is often frustrating.
Frequently, users traverse through several web
pages of search and result screens, selecting ho-
tels, dates and room types, then by only checking
availability to discover that there is not room at the
inn, or the unaffordable room rate is not revealed
until the very end, forcing the user to repeat the
process again. At the same time, the Web is the
cheapest sales channel for hotels. By using a travel
agent can cost a hotel 15%-30% of the revenue in
commissions, and many large hotels and chains
must pay to use a global distribution system (GDS)
to electronically distribute their inventory. If the
hotels can move more reservations to the Web,
they can save substantial money. But the main
issue is that they need to be assured that they are
not going to move people to the Web only to have

12

Basic Concepts on RIAs

them unable to complete a reservation. If a better
experience leads to more completed reservations
and thus increased revenues, then a Web site that
provides a better experience becomes an impera-
tive for the hotels.

Webvertising, a firm in Houston Texas, mar-
kets a suite of products and services for hotels,
including OneScreen, an innovative, easy-to-use,
single screen interface for on-line reservations.
Over 800 independent hotels, hotel companies
and destination marketing organizations now
use Webvertising’s solutions to manage room
inventory and electronic distribution over the
Web. OneScreen allowed over 200 hotels, like
the Broadmoor, a Mobil 5-star luxury hotel, and
time-share organizations, like Bluegreen Vacation
Rentals, offer a better reservation experience to
travelers to an increased number of reservations
and room nights booked. Today most hotels use a
traditional multi-step, multi-page reservation ap-
proach for online reservations. The challenge for
the Broadmoor was to fundamentally change the
user’s reservation experience such that the simplic-
ity, clarity and ease of use of the experience led to
a more satisfied customer and increased bookings.
The key factor was reducing the number of steps
involved in making the registration process.

The impact of the OneScreen RIA on the
hotels was stunning. Webvertising’s hotel cus-
tomers reported online reservations in general
increasing 46% over the previous year, due to
the natural growth in the use of the Web to make
reservations. However, hotels that moved from
an HTML-based interface to the OneScreen
interface observed an additional increase of 89%
in reservations. Furthermore while the average
conversion rate (from visitor to buyer) for hotels
using the HTML-only interface was 2.3%, it was
almost double that with the OneScreen interfaces.
In one instance, the Greenbrier Hotel observed a
dramatic 8-fold increase in conversions from 2.7%
for their HTML-based interface to 22% when
they used OneScreen. For most hotels, even a 1%

increase could be worth hundreds of thousands
of dollars a year.

Verizon Wireless™ (www.
verizonwireless.com)

Verizon Wireless is the largest operator of mo-
bile telephony in the U.S. with 80 million active
customers. In order to publicize its products and
services to a wider audience, Verizon developed
an online store which offered ringtones, ringback
tones and more. The main objective of the shop
was to support millions of subscribers and high
transaction volumes, also providing a lightweight
application for customers to easily download
MP3 files. The platform was developed by using
Adobe Flash providing to customers a flexible
experience offering several benefits for both the
company and the customers:

• Increase online incomings related to ring-
tones and ringbacks tones to be available
whenever on the store.

• Provides access to an extensive library of
MP3 files to registered customers.

• The platform is scalable to provide more
products.

Yankee Candle Company

The Yankee Candle Company is another strong ex-
ample of how a RIA-based configurator impacted
a company. It is a designer, manufacturer, retailer
and wholesaler of premium, scented candles in
the U.S. They directly sell through their stores,
catalogs and on-line Web site, as well as through
partners. They had strong growth plans, and wanted
to create a better e-commerce environment than
their current website offered. They faced the chal-
lenge of increasing buyer confidence to improve
sales of custom candles on-line. Customers buy
custom candles for very important events such as
weddings or corporate events, and they typically

http://www.verizonwireless.com
http://www.verizonwireless.com

13

Basic Concepts on RIAs

buy them in bulk. The problem was that buyers
had difficultly visualizing what the custom candle
would look like once they had made all the selec-
tions. The initial version of the Web site’s custom
candle section used HTML-based pages and re-
quired that users check boxes to select the candle
color and fill out a form with the text for the candle
label message. Once the color was selected, they
could never see what this configuration actually
looked like before being asked to buy the candle
in bulk and on faith. It was no wonder because
people would abandon their shopping cart or call
customer service for reassurance that the candle
would look like what they imagined.

Yankee Candle felt that this section of the web-
site was ineffective. This was corroborated by data
indicating that the average purchase was smaller
on-line than through other channels. This was also
an indication that they were doing an inadequate
job of up selling and cross selling on-line.

Technically the problem was that using HTML-
based technology they could not represent what
the final product would look like.

The Yankee Candle chose to develop a
Flash-based user interface for the custom candle
configurator for several reasons. First, it allowed
them to dynamically render a picture of the candle,
based on the user’s selections. It also allowed
them to create a better Web customer experience
that would behave consistently across platforms,
a benefit of the broad reach and cross-platform
support. Second, they could develop the applica-
tion more quickly and thus less expensively than
with alternative technologies. This was due in
part to the development tools, which provided
out-of-the-box user interface components such as
drop down menu boxes, and because they were
able to integrate the presentation layer into their
existing backend system, which consisted of an
Oracle product database and BroadVision eCom-
merce system.

While the majority of the site was HTML-based
technology, the custom candle configurator is a
single screen Flash-based interface that utilizes

their existing e-commerce infrastructure. It ob-
tained data and imagery from the product database
and ecommerce system. As users selected the label
and fragrance and enter the label’s text message,
they immediately observed a realistic picture of
the custom candle as it did appear when complete.
Users were encouraged to select optional finishing
touches such as wrapping the candle in fabric or
adding a ribbon or a flower, creating the oppor-
tunity for Yankee Candle to upsell the customer.
The user could construct “what-if” scenarios at
any point to see what it did look like and what it
did cost for both the basic candle as well as the
additional options.

The end result was that this real-time visual-
ization of their custom candle gave consumers a
higher level of confidence, and they bought more
candles. Yankee Candle observed a 25% increase
in both product revenue and average order size,
exceeding their expectations. In addition, they had
a 70% drop off in calls to their call center for the
custom candle line, and they received multiple
customer testimonials with positive feedback on
the website. There was an additional surprising
result: their own call center representatives started
going to the website and using the configurator
when fielding customer calls.

Charles Schwab

Charles Schwab’s marketing planning calendar
provides an excellent example of an application
for cross-departmental data visualization. The
Charles Schwab Corporation is a provider of se-
curities brokerage and related financial services,
including retail, telephone and Internet-based
brokerage operations. Schwab’s marketing depart-
ment needed to centralize the planning, tracking
and analysis of all marketing initiatives and make
the information visible and accessible to both
executives and marketing project coordinators.
They needed to build a highly complex enterprise
reporting application. They were faced with many
challenges. They needed to:

14

Basic Concepts on RIAs

• Address multiple types of users with dif-
ferent information needs and visualization
requirements

• Present deep, multi-dimensional data
sets (e.g., how much money was spent on
which projects over what time) in an intui-
tive, logical and visual way

• Provide sophisticated yet easy-to-use re-
porting tools usable by both executives and
project planners

• Deliver responsive and interactive tools
that allowed the user to be in control

They chose to develop a custom data visualiza-
tion solution to be able to dynamically communi-
cate to different constituents. The sophistication
of the data visualization required a wholly new
approach and exceeded what was realistic using
HTML-based technology or any out-of-the-box
or web-based calendaring tools. They wanted, for
example, a drilldown Gantt chart in which they
could see the spending details of a particular proj-
ect. It was not possible to do that in HTML-based
technology. To meet two different and distinct
user needs they developed two views: timeline
and analysis.

The timeline view presented information in
the form of a dynamic Gantt-style calendar and it
was targeted at project coordinators. By using this
view, project managers could quickly and easily
visualize the overall time-based status of multiple
projects. Drill down capabilities allowed the
project manager to click to see individual project
details within a program, such as budget data, or to
manipulate projects, such as plan advertising for
a different media channel. The tool gave them a
framework to visualize and manipulate the detailed
marketing planning information.

The analysis view presented an aggregated
holistic view that allowed Schwab marketing
executives to answer bigger questions, like “How
am I spending money in the first quarter?” With
this dynamic visual tool, Schwab executives could
rapidly analyze marketing expenses across initia-

tives and time, and realize a more efficient use
of the marketing budget. They could change the
selected characteristics to pose different questions
and get a different view on the data. By using this
tool, they could slice and dice and then visual-
ize the information in useful ways that were not
possible before.

These use experiences presented in different
domains give samples of the range and kind of
business benefits afforded by using RIAs. RIAs
transformed the applications configuration, espe-
cially when they required enhanced visualization.
RIAs allowed to buyers purchase products off
a single screen and see the product that it was
the result of their selections improving the user
experience.

5. CONCLUSION

In this chapter, a general overview of Web ap-
plications and how they emerged has been pro-
vided in order to place the reader in the context
of the RIAs development. Also the most relevant
information about RIAs was discussed. The case
studies presented give a sample of the range and
kind of business benefits afforded by Rich Inter-
net Applications. These case studies show how
RIAs have the ability to handle various kinds
of complexities and enable wholly new kinds
of Web applications. While some results were
visibly more dramatic or compelling, taken as a
whole they begun to have an alternative picture
of how Web applications can be, and how they
can in many instances, fundamentally change a
company’s business or the nature of the game
with their competitors.

In e-business applications, RIAs allowed ho-
tels to dramatically increase their reservations,
revenues and room nights booked by simplifying
the workflow complexity of making a reservation.
RIAs transformed configuration applications,
especially when they required enhanced visualiza-
tion. For both MINI USA and The Yankee Candle

15

Basic Concepts on RIAs

Company, the ability of a Rich Internet Applica-
tion to let buyers purchase products off a single
screen and see the product that was the result of
their selections transformed the user experience.
Finally, Schwab demonstrated that RIAs could
have a strong impact on internal corporate ap-
plications, by facilitating data visualization and
reporting across different groups of users.

REFERENCES

Bozzon, A., Comai, S., Fraternali, P., & Carugui,
G. T. (2006). Capturing RIA concepts in a web
modeling language. In Proceedings of the 15th
international Conference on World Wide Web
WWW 06, (pp. 907-908). ACM. Retrieved from
http://discovery.ucl.ac.uk/1320284/

Brambilla, M., Preciado, J. C., Linaje, M., & San-
chez Figueroa, F. (2008). Business Process-based
Conceptual Design of Rich Internet Applications.
In Proceedings of Eighth International Confer-
ence on Web Engineering, (pp. 155-156). IEEE.
Retrieved from http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4577879

Linaje, M., Preciado, J.C., Morales-Chaparro, R.,
& Sanchez-Figueroa, F. (2008). On the Imple-
mentation of Multiplatform RIA User Interface
Components. In Proceedings of ICWE 2008
Workshops, 7th Int. Workshop on Web-Oriented
Software Technologies, (pp. 44-49). ICWE. Re-
trieved from http://icwe2008.webengineering.org/
Program/Workshops/ISBN978-80-227-2899-7/
icwe2008ws-CD/individual-files/02icwe2008ws-
iwwost08-linaje.pdf

Namscimbene, C. (2005). Adobe & Macromedia
Sales Engineer en el distribuidor ALAB S.A. Re-
trieved 6 July 2011 from http://www.canal-ar.com.
ar/noticias/noticiamuestra.asp?Id=2639

O’Reilly, T. (2005). What is Web 2.0. Design
Patterns and Bussiness Models for the Next
Generation of Software. Design, 65(65), 17-37.
Retrieved from http://papers.ssrn.com/sol3/pa-
pers.cfm?abstract_id=1008839

Rivero, J. M., & Buzzo, M. H. (2007). Definición
de Rich Internet Applications a través de Modelos
de Dominio Específico. Retrieved from: http://
revista.info.unlp.edu.ar/tesinas/tesis51.pdf

Veit, F. (2008). Introducción a Tecnologías En-
riquecidas para Internet. (Unpublished thesis).
Facultad de Ingeniería, Universidad ORT Uru-
guay, Uruguay.

Viveros García, M. C., & García Godoy, D. (2009).
Elaboración de una guía para el desarrollo de
aplicaciones en extjs. (Unpublished thesis). In-
stituto Tecnológico de Orizaba.

Wikipedia. (2011). Rich Internet Application.
Retrieved 02 Feb 2011, from http://en.wikipedia.
org/wiki/Rich_Internet_application

ADDITIONAL READING

Fraternali, P., Rossi, G., & Sánchez-Figueroa, S.
(2010). Rich Internet Applications. IEEE Internet
Computing, 14(3), 9-12. Citeseer. Retrieved from
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5481362

Shahrooz Feizabadi. (n.d.). History of the World
Wide Web. Retrieved from http://ei.cs.vt.edu/book/
chap1/htx_hist.html

uclm.es. (n.d.). A CERN invention you are familiar
with: The World Wide Web. Retrieved from http://
www.uclm.es/profesorado/ricardo/CursoHTML/
Presentacion/CERN/web.html

w3.org. (n.d.a). A Little History of the World Wide
Web, from 1945 to 1995. Retrieved from http://
www.w3.org/History.html

http://discovery.ucl.ac.uk/1320284/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577879
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577879
http://icwe2008.webengineering.org/Program/Workshops/ISBN978-80-227-2899-7/icwe2008ws-CD/individual-files/02icwe2008ws-iwwost08-linaje.pdf
http://icwe2008.webengineering.org/Program/Workshops/ISBN978-80-227-2899-7/icwe2008ws-CD/individual-files/02icwe2008ws-iwwost08-linaje.pdf
http://icwe2008.webengineering.org/Program/Workshops/ISBN978-80-227-2899-7/icwe2008ws-CD/individual-files/02icwe2008ws-iwwost08-linaje.pdf
http://icwe2008.webengineering.org/Program/Workshops/ISBN978-80-227-2899-7/icwe2008ws-CD/individual-files/02icwe2008ws-iwwost08-linaje.pdf
http://www.canal-ar.com.ar/noticias/noticiamuestra.asp?Id=2639
http://www.canal-ar.com.ar/noticias/noticiamuestra.asp?Id=2639
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1008839
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1008839
http://revista.info.unlp.edu.ar/tesinas/tesis51.pdf
http://revista.info.unlp.edu.ar/tesinas/tesis51.pdf
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Rich_Internet_application
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5481362
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5481362
http://ei.cs.vt.edu/book/chap1/htx_hist.html
http://ei.cs.vt.edu/book/chap1/htx_hist.html
http://www.uclm.es/profesorado/ricardo/CursoHTML/Presentacion/CERN/web.html
http://www.uclm.es/profesorado/ricardo/CursoHTML/Presentacion/CERN/web.html
http://www.uclm.es/profesorado/ricardo/CursoHTML/Presentacion/CERN/web.html
http://www.w3.org/History.html
http://www.w3.org/History.html

16

Basic Concepts on RIAs

w3.org. (n.d.b). Some early ideas of HTML.
Retrieved from http://www.w3.org/MarkUp/
historical

w3.org. (n.d.c). The World Wide Web - past, pres-
ent and future. Retrieved from http://www.w3.org/
People/Berners-Lee/1996/ppf.html

KEY TERMS AND DEFINITIONS

Business to Customer (B2C): Some strategies
of commercial enterprises to get directly to the
customer or end user.

E-Commerce: The marketing of products or
services through electronic media and especially
via Internet.

E-Entertainment: The way of providing
entertainment through electronic media and es-
pecially via Internet.

E-Learning: The way the impartation of
knowledge and education through electronic media
and especially via Internet.

Rich Internet Applications: Applications that
are deployed over the Web, this type of applica-
tions combines features and functionality of Web
applications and desktop applications.

Web 2.0: Web applications that allow for
easier-to-share information, interoperability,
user-centered design, and collaboration with the
World Wide Web.

World Wide Web (WWW): An information
distribution system comprised of interlinked
hypertext or hypermedia accessed by using the
Internet.

ENDNOTES

1 “Flex Performance Brief: A Comparison of
Flex and JavaServer Pages Applications”,
Macromedia white paper, May 2004.

http://www.w3.org/MarkUp/historical
http://www.w3.org/MarkUp/historical
http://www.w3.org/People/Berners-Lee/1996/ppf.html
http://www.w3.org/People/Berners-Lee/1996/ppf.html

17

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-4666-6437-1.ch002

Frameworks for RIAs
Development

ABSTRACT

Chapter 2 describes the most popular options for RIAs development. For practical purposes, these op-
tions are classified into two categories: 1) JavaScript-based frameworks and 2) non-JavaScript-based
frameworks; even though there are other classifications reported in the literature, this classification is
used in this chapter and throughout the book. In fact, this classification allows for a quick understand-
ing of the technologies for RIAs development by abstracting technical details about intended software
architectures. In the case of JavaScript-based framework, some frameworks were selected and analyzed
such as Dojo, jQuery, Mootools, and Prototype. In the case of non-JavaScript-based frameworks, frame-
works selected and analyzed were Adobe Flex™, JavaFX™, Silverlight™, and OpenLaszlo™. For each
framework, the architecture, functionality, and properties are described.

1. INTRODUCTION

There are many options for developing RIAs
(Rich Internet Application). RIA frameworks have
become popular in recent years. “A framework
is a defined support structure in which another
software project is organized and developed.
Commonly, a RIA includes support for programs,
libraries, and an interpreted language in order to
help develop different components of a project”
(Viveros García & García Godoy, 2009).

According to their license type, RIA frame-
works can be classified into open source frame-
works – such as jQuery – and commercial frame-
works – such as Adobe Flex™. The most popular

options for RIAs development are described in this
chapter in order to help developers and designers
in the decision making process about the RIA
technology to be used considering which best
suits the features of the project to be carried out.
This chapter discusses the different technologies
for RIAs development.

2. FRAMEWORKS FOR
RIAS DEVELOPMENT

In recent years, several classifications for RIAs
have been proposed. These classifications address
different aspects of RIAs, such as functional-

18

Frameworks for RIAs Development

ity, target runtime environment and, other more
complex issues, such as the software development
technology (Toffetti, Comai, Preciado, & Linaje,
2011). Some of these classifications of RIAs are
presented below.

Four main aspects of the application develop-
ment are considered basing on the user’s experi-
ence:

• Rich Presentation: RIAs offer client-
side event-handling and widgets similar
to desktop-based UIs. This permits partial
page updates, support interaction with vi-
sual data representations, and multimedia
content (e.g., audio, video).

• Client Data Storage: It is possible to store
data on the client-side with different levels
of persistence (in a temporal way while the
application is running).

• Client (and Distributed) Business Logic:
It is possible to carry out complex opera-
tions directly on the client-side, such as
data navigation/filtering/sorting with mul-
tiple criteria, domain-specific operations,
and local validation of data. It is also pos-
sible to distribute the Business Logic be-
tween the client and the server-side, (e.g.,
to validate some form fields on the client
and others on the server-side).

• Client-Server Communication: RIAs
support synchronous communication be-
tween client and server-side to distribute
domain objects, data, computation, and
provide server-push (e.g., in collaborative/
monitoring applications) (Toffetti et al.,
2011).

Depending on each of the application’s func-
tionalities, the features above can be combined
to obtain standalone applications, collaborative
applications, or simply more appealing UIs (UI
stands for User Interface) for existing Web applica-
tions. In terms of growing number of features and
development complexity, a RIA’s may typically

falls into one of the following types of applica-
tion (that they can be possibly combined to obtain
complex RIAs):

• Traditional Web applications with RIA-
makeover: Where simple isolated RIA ca-
pabilities (usually for partial page updates)
are added to a traditional Web application
(e.g., Facebook™).

• Rich UIs: Web applications with widget-
based UIs, where the client-side logic is an
extension layer over the browser, supersed-
ing core browser responsibilities, such as
handling events and managing states and
the rich user interfaces components work
in a coordinate way (e.g., Gmail™).

• Standalone RIAs: Web applications ca-
pable of running both inside and/or outside
the browser in a connected and/or discon-
nected fashion (e.g., SlideRocket™).

• Distributed RIAs: Where the application
data and logic are (sometimes dynamical-
ly) distributed across client and server-side.
Moreover, on-line collaboration is sup-
ported and client-server communication
is used to fill the gap between objects and
events living across the application compo-
nents (e.g., Google Docs™) (Toffetti et al.,
2011).

Currently, RIAs capabilities can be imple-
mented in a number of different client-side
technologies. These technologies can be broadly
classified into three categories according to the
runtime environment:

• JavaScript-Based: The client-side busi-
ness logic is implemented using the
JavaScript scripting language (the approach
is also known as “AJAX”, which stands
for Asynchronous JavaScript and XML).
Moreover, UIs are based on a combination
of HTML (HyperText Markup Language)
and CSS (Cascading Style Sheets). The

19

Frameworks for RIAs Development

main advantage of this approach is that it
relies on both built-in browser JavaScript
support and W3C (World Wide Web
Consortium) standards.

• Plug-in-Based: Advanced rendering and
event processing are granted by brows-
er’s plug-ins interpreting specific script-
ing languages, XML (Extensible Markup
Language), or media files (e.g., Adobe
Flex™, JavaFX™, Silverlight™).

• Runtime Environments: Applications are
downloaded from the Web but they are ex-
ecuted outside the browser using a desk-
top runtime environment (e.g., Java Web
Start, Adobe AIR™). These solutions offer
client-side capabilities and off-line usage
with full access to the underlying operat-
ing system. Many RIA technologies can
be used to develop applications for these
runtimes (e.g., development technologies
can be used for Adobe AIR™, Javascript-
based and/or Flash-based) (Toffetti et al.,
2011).

In order to address the multiple options for
developing RIAs, this chapter presents a classi-
fication schema of RIAs. This classification was
made according to the development technology.
Figure 1 shows this classification schema, which
is simpler than other proposals. More specifically,
the shcema consists of two categories: the first
groups JavaScript-based frameworks and the
second groups non-JavaScript-based frameworks.

2.1. Non-JavaScript-
Based Frameworks

The first set for developing RIAs is non-JavaScript-
based frameworks. Merely the most popular and
therefore most used frameworks on the market
were considered.

2.1.1. Adobe Flex™

Flex is an open source framework for developing
mobile applications for Apple iOS™, Android™
and BlackBerry™ Tablet OS. It is also used for
traditional Web and desktop applications that are

Figure 1. Classification schema for RIAs development

20

Frameworks for RIAs Development

deployed in the major Web browsers and operating
systems using the same code-base (Adobe, 2011).

Moreover, Flex provides a programming
language and a programming model based on
standards supported by common design patterns
(Adobe, 2011).

Finally, along with the Flash Player and Adobe
AIR runtime environments, Flex also belongs
to the so-called Adobe Flash Platform, and it
comprises different components/modules. These
components/modules are described below:

1. MXML and ActionScript Languages:
MXML is a declarative XML-based lan-
guage that permits describing the distribu-
tion, appearance and behavior of the ap-
plication’s user interface. ActionScript 3.0
is an ECMAScript-based object-oriented
language which anables to define the ap-
plication’s business logic. The MXML
(Macromedia eXtensible Markup Language)
and ActionScript source code are compiled
together into a single SWF file, which com-
prises the Flex-based application.

2. The Flex Framework SDK Components:
The Flex SDK (Software Development Kit)
is a set of user interface components, such as
lists, buttons, and graphics, among others. It
includes the Adobe Flex™ framework (com-
ponent class library) and the Flex compiler.
Flex compiler enables to freely develop and
deploy Flex-based applications.

3. The Flash Builder IDE (Integrated
Development Environment): An Eclipse™-
based IDE for Adobe Flex™-based applica-
tion development. Flash Builder™ provides
support for building Adobe Flex™-based
and ActionScript-based applications for
Android™, BlackBerry™ Tablet OS and
Apple™ iOS™.

4. The Runtime Environment for Web
Browser, Adobe Flash Player™: Adobe
Flash Player™ is a multiplatform runtime
environment for Web browsers-based appli-
cations. It permits deploying Adobe Flex™-
based applications in a Web browser using
a plugin (McCune & Subramaniam, 2008).

Figure 2. Main Adobe Flex™ components

21

Frameworks for RIAs Development

Figure 2 depicts the interaction among the
components/modules involved in Adobe Flex™.

Adobe Flex™ provides a standards-based
middle tier presentation server specifically de-
signed for construction of server-based RIAs.
Adobe developed Flex with the aim of improving
the user’s experience in creating rich dynamic
Internet applications and to help developers ac-
complish more with fewer resources.

The advantages of using Adobe Flex™-based
technology are listed below.

• The Web browser-based applications
run within a controlled environment, the
Adobe Flash player™ plugin. Therefore,
it is not necessary to consider the Web
browser features. According to Adobe,
Adobe Flash Player™ is currently installed
on over one billion of desktop computers
across Web browsers and operating sys-
tems (Flash Player, 2012),.

• Adobe Flex™ is a mature technology.
• IDE support comes not only from Adobe

with FlashBuilder but also from Jetbrains
with IntelliJ IDE.

• Adobe Flex™, especially since the release
of Adobe AIR™, represents a powerful
option for RIAs development (Smeets,
Boness, & Bankras, 2008).

The most important Adobe Flex™ properties
are presented in Table 1.

Some success stories of using Adobe Flex™
on the development of well-known Web sites are
described in Table 2.

The Adobe AIR™ runtime environment
enables developers to use HTML, JavaScript™,
Adobe Flash™, and ActionScript™ in order to
build Web applications that run as stand-alone
client applications without the Web browser
constraints. In fact, it is a consistent and flexible
runtime environment that allows deploying Adobe
Flex™-based applications as desktop and native
mobile applications. (Adobe AIR™, 2011).

Table 1. Adobe Flex™ properties

Developers Adobe™

Features Deployment platforms.
Adobe Flash Player™:
Windows™, Mac OS™, Linux™, Solaris™,
Android™ and BlackBerry Tablet OS™
+*0
Adobe AIR™:
Windows™, Mac OS™, Android™ and Apple
iOS™

Development platforms
Windows™, Mac OS™, Ubuntu™ and
Fedora™ (Adobe Flex™ SDK 4.6)

Version Current release
4.6

License Proprietary (Free Adobe Flex™ SDK) and
Mozilla™ Public License (MPL) 1.1 (Open
Source Adobe Flex™ SDK)

Table 2. Success stories of Adobe Flex™

Website Description

Honda™, www.buildyourhonda.
eu

This website allows users to customize their motorcycles, while they can visualize the results. This
application was built using the Adobe Creative Suite™, Adobe Flash Player™, Adobe Flex™,
Adobe Flash Builder™, and Adobe Photoshop™.

Standard Chartered Bank™,
standardchartered.com

In order to enable rich user experiences through an interactive and visually attractive website, the
banking firm Standard Chartered Bank™ developed the user interface of its website using Adobe
Flex™.

New York Times™, timesreader.
nytimes.com / webapp /
TimesReader.do

The dynamic digital reader of the New York Times™, called Times Reader 2.0, was developed
using Adobe Flex™ and Adobe AIR™.

Philips Lighting™, www.lighting.
philips.com

This RIA enables users to dynamically manage and manipulate large amounts of real-time
information (e.g., sales figures, costs models, order histories) trough an interface developed with
Adobe Flex™.

22

Frameworks for RIAs Development

2.1.2. JavaFX™

JavaFX™ is an application platform for develop-
ing and deploying RIAs that runs on a variety of
devices. It is fully integrated with the JRE (Java
Runtime Environment), and it leverages the per-
formance and ubiquity of the Java-based platform.
JavaFX-based applications run on any desktop
and Web browser running the JRE, they can eas-
ily integrate them to JME (Java Platform Micro
Edition). JavaFX™ allows opening possibilities
of applications development for mobile phones,
TVs and other devices. Noteworthy that only the
pre-2.0 versions have mobile devices-support.

The JavaFX™ platform includes the following
components:

• The FXML Language: A scriptable,
XML-based, markup language for building
Java object graphs.

• The JavaFX SDK: Which includes:
 ◦ The runtime environment of

JavaFX™ Desktop (Desktop
JavaFX™ Runtime).

 ◦ APIs (APIs stands for Application
Programming Interfaces) for
JavaFX™.

 ◦ The JavaFX™ compiler.
• The NetBeans™ IDE for JavaFX™:

JavaFX™ technologies are integrated with
the NetBeans™ IDE, a mature and pow-
erful development environment, which al-
lows developing, previewing, and debug-
ging JavaFX™ applications more easily.

• Java FX™ Scene Builder: JavaFX™
Scene Builder is a commercial free software
tool for visually designing JavaFX™ appli-
cation GUIs (Graphical User Interface) in
FXML. It is a component of the JavaFX™
platform which was initially developed
by Sun microsystems™ and it is actually
maintained by Oracle™ Corporation.

The most important JavaFX™ properties are
presented in Table 3.

The advantages of using JavaFX™-based
technology are listed below:

• Java™ programmers use standard Java™-
based libraries in JavaFX™ applications.

• The JavaFX™ platform includes developer
tools: the NetBeans™ IDE for JavaFX™
and the JavaFX™ plugin for NetBeans™,
both as freeware. It also provides design
tools: the JavaFX™ plugin for Adobe
Photoshop™ and Adobe Illustrator™, as
freeware (Oracle Corporation, 2011).

The disadvantages of using a JavaFX™-based
technology are listed below:

• It is stacked on top of the JRE. The JRE
is available on every major platform (and
many minor ones). However, it is not
ubiquitously installed. The same is true of
Adobe Flex™/AIR™ and Silverlight™, of
course, but Flash is a lighter-weight solu-
tion than the whole JRE+JavaFX™ and
the latter is basically a default on the target
platform anyway (Smeets et al., 2008).

• JavaFX™ is an immature technology in
a field that has several more mature com-
petitors such as Adobe Flex™/AIR™ and
Silverlight™.

Table 3. JavaFX™ properties

Developers Oracle™ Corporation

Features Deployment platforms
Any operating system using JVM (Java Virtual
Machine)

Development platforms
Any operating system (JDK 1.7)

Version Current release
2.2

License BCL (Binary Code License)

23

Frameworks for RIAs Development

Table 4 describes some success stories of us-
ing JavaFX™ on the development of well-known
out-of-browser RIAs.

2.1.3. Silverlight™

Silverlight is a powerful development tool for
creating engaging and interactive user experiences
for Web and mobile applications. Silverlight™ is
a free plug-in powered by the .NET framework
and compatible with multiple browsers, devices
and operating systems. It brings a new level of
interactivity wherever the Web works (Microsoft,
2011a). Silverlight™ introduces support for
running Silverlight™ applications with desktop

features in the browser, video quality and perfor-
mance improvements, and features that improve
developer productivity. Microsoft Silverlight™
platform consists of two main frameworks, and
an installation and updating component. These
features are described in Table 5.

For further details, the elements of the .NET
framework for Microsoft Silverlight™ are de-
scribed in Table 6.

The advantages of using Microsoft Silverlight
are listed below:

• It allows accessing to the .NET framework
programming model in order to develop
Silverlight™-based applications using dy-

Table 4. Success stories of JavaFX™

Website Description

Ubivent™, http://www.ubivent.com/en/start Ubivent™ is a Europe’s virtual event specialist offering a virtual event
platform. The platform allows online communication between thousands of
participants, providing a real event feeling. This platform is built on JSE (JSE
stands for Java Standard Edition) 7 taking advantage of the Java Web Start
technology.

Celer Technologies™, http://celer-tech.com/products/
framework/

Celer Technologies™ is a global financial software company with knowledge
on the financial technology sector. It offers an end-to-end financial trading
framework featuring rich GUIs developed in JavaFX™ v. 2.2.

DooApp™, http://www.dooapp.com/index.php/fr/
produits

DooApp™ is a software company headquartered in France. It specializes on
the development of tools addressing the needs of green building professionals.
It also offers a platform called Infiltrea™ for measuring airtightness.
Infiltrea™ is built on JSE 6 making extensive use of JavaFX™.

Table 5. Microsoft Silverlight™ Features

Feature Description

Basic Presentation
Framework

Components and services related to the design of user interfaces and user interaction. This includes data
provided by the user, user interface controls, multimedia playback, digital rights management, data links, and
presentation features such as vector graphics, text, animations and images. It includes XAML (eXtensible
Application Markup Language) language for the design of user interfaces.

.NET Framework for
Silverlight™

The .NET framework contains components and libraries that provide data integration facilities, extensible
Windows™ controls, networking, distribution (RSS / Atom) facilities, XML serialization, and garbage
collection facilities.
Moreover, it includes the LINQ (Language-Integrated Query) query language, the CLR (Common Language
Runtime) and DLR (Dynamic Language Runtime) runtime environments.

Installation and Upgrade
Component

Control installation and upgrade that simplifies the installation process of applying for new users.
Subsequently, it provides low-impact automatic updates (Microsoft™, 2011a).

24

Frameworks for RIAs Development

namic languages, such as IronPython and
IronRuby, or compiled languages like C #
and Visual Basic™ (Microsoft™, 2011b).

• Microsoft ™ Corporation provides two
different IDEs: Microsoft Expression
Studio™ for designers and Microsoft
Visual Studio™ for developers; the latter
is provided as freeware.

The disadvantages of using Microsoft Silver-
light™ are listed below:

• Microsoft Silverlight™ does not have sup-
port for the Linux operating system; never-
theless, there is an open source implemen-
tation called Moonlight (version 2.0) for
Linux™ and other operating systems based
on Unix/X11 (Moonlight, 2011).

• The Microsoft Silverlight™ plugin has
a lower market penetration for Flash
Player™, and even lower than the JRE.
However, Microsoft has distributed a plu-
gin for Silverlight™ with the latest ver-

sion of its operating system, Windows™
7. According to the British Computer
Society, Windows 7 is now installed on
over 20% of personal computers connected
to the Internet (bcs, 2011).

The most important Silverlight™ properties
are presented in Table 7.

Table 8 presents some success stories of well-
known websites developed using Silverlight™.

Table 6. .NET framework components for Microsoft Silverlight™

Element Description

Data It supports features of LINQ and LINQ for XML (XLinq) query languages, which facilitate the process of
integrating data from disparate sources. It also supports the use of classes for XML-based serialization and
data management.

Base Class Libraries
(BCL)

The .NET framework provides a set of base class libraries which provide functions and features that can be
used with any .NET framework-supported programming language, such as Visual Basic, C#, Visual C++,
among others. The base class library contains standard programming features such as collections, XML
parsing, data type definitions, I/O facilities (for reading and writing to files), reflection and globalization, to
mention but a few. Furthermore, it contains some non-standard features, such as the LINQ query language,
the ADO.NET class library (for database interactions), drawing capabilities, as well as forms and Web
support.

Windows
Communication
Foundation (WCF)

Windows Communication Foundation provides a unified programming model for rapidly building service-
oriented applications that communicate across the Web and the enterprise. It provides features to simplify the
access to remote data and services. It includes support for cross-domain HTTP (Hypertext Transfer Protocol)
requests, RSS (Really Simple Syndication) / Atom content syndication and JSON (JavaScript Object
Notation), POX (Plain Old XML) and SOAP (Simple Object Access Protocol) formats.

Windows Presentation
Foundation (WPF)

It provides a rich set of controls, such as a button, a calendar, check box, data grid, date picker, hyperlink
button, list box, radio button, and ascroll viewer, among others.

Dynamic Language
Runtime (DLR)

It supports dynamic compilation and execution of scripting languages, such as JavaScript and IronPython
for scheduling applications based on Silverlight™. DLR also includes a model of compatibility with other
languages to be used with Microsoft Silverlight™ (Microsoft, 2011b).

Table 7. Silverlight™ properties

Developers Microsoft™ Corporation

Features Deployment platforms
Windows™, Mac OS™ and Windows
Phone™

Development platforms
Windows™ and Mac OS™ (Silverlight™
SDK 5)

Version Current release
5

License Proprietary

25

Frameworks for RIAs Development

2.1.4. OpenLaszlo™

OpenLaszlo™ is an open source platform for
developing and delivering Web applications
with usable user interfaces. The OpenLaszlo™
platform enables developers to develop applica-
tions with typical rich user interface capabilities
of desktop client software taking advantage of
the no-download Web deployment model. These
applications run on all leading Web browsers on
all leading desktop operating systems using XML-
based code. OpenLaszlo™ is a product developed
by Laszlo Systems and it was published under
the Common Public License (CPL) (Smeets et
al., 2008).

OpenLaszlo™ uses a proprietary program-
ming language called LZX to define application
user interfaces. LZX is an XML-based markup
language that embeds JavaScript-based business
logic (Smeets et al., 2008).

OpenLaszlo supports LZX code compilation
into executable binaries for DHTML (DHTML
stands for Dynamic HyperText Markup Language)
and Flash execution environments (Laszlo Sys-
tems, Inc, 2013c).

The OpenLaszlo™ SDK consists of: 1) a built-
in Java compiler, 2) a JavaScript-based library
runtime, and 3) a Java-based servlet that provides
additional services to running applications (Laszlo
Systems, Inc, 2013c). These components are
described in Table 9.

OpenLaszlo™ uses existing technological
infrastructure and standards as shown in Fig-
ure 3. Two application deployment models are
thouroughly described below:

• Mediated by the OpenLaszlo Server: the
OpenLaszlo™ server is always running. It
compiles the source code as needed, and it
sends the resulting file (SWF or JavaScript)
to the client in order to execute the ap-

Table 8. Success stories of Silverlight™

Website Description

Siemens™, siemensplmcampus.com The website features a virtual exhibition of the Siemens™ PLM Software
campus. Siemens™ PLM Software is a software development company
specialized in Product Lifecycle Management. Users can know how the
business works by interacting with the virtual buildings provided.

Mazda™, mazda.co.uk / car-configurator This website shows a Mazda™ brand car customizer. It incorporates high-
resolution images and external features, such as 360-degree views and zoomed
interior views (Silverlight™ showcase, 2011).

Digital Mixup™, mixupdigital.com Mixup™ is an online digital music and video store. The website aims to provide
a rich user experience for seeking, purchasing, and downloading songs and
albums.

Table 9. OpenLaszlo™ platform components

Component Description

OpenLaszlo™ Compiler It compiles LZX files into executable binaries for specific environments. OpenLaszlo™ currently
covers Flash (SWF format) versions 8.9 and 10, as well as DHTML.

OpenLaszlo™ Servlet It intercepts application requests for traditional media types and for SOAP and XML-RPC Web
services.

Laszlo™ Foundation Class
(LFC)

It is a runtime library that includes user interface components rich, data binding facilities, and
network services, among other features (Laszlo Systems, Inc, 2013a).

26

Frameworks for RIAs Development

plication either using the Flash Player™
plugin or directly in a Web browser. The
OpenLaszlo™ server intercepts applica-
tion requests through the use of a variety
of protocols.

• SOLO (stands for Standalone OpenLaszlo
Output): the LZX source code is pre-com-
piled into either a stand-alone SWF file that
can be placed within an HTTP Web server,
or into a JavaScript-based file. Therefore,
OpenLaszlo™-based applications can di-
rectly communicate with other servers us-
ing the SOLO deployment model. (Laszlo
Systems, Inc, 2013a).

The advantages of using OpenLaszlo™ are
listed below:

• OpenLaszlo™ is an open source platform.
• The OpenLaszlo™ architecture enables

different deployment models depend-
ing on the applications requirements
(Theserverlabs, 2011).

Figure 3. Deployment model for OpenLaszlo™ platform

Table 10. OpenLaszlo™ properties

Developers Laszlo Systems™

Features Deployment platforms
Any operating system

Development platforms
Any operating system

Version Current release
4.9.0

License Common Public License

27

Frameworks for RIAs Development

The main disadvantage of using OpenLaszlo™
is that the OpenLaszlo™-based applications
performance can be affected when SOLO deploy-
ment model is used (Laszlo Systems, Inc, 2013a).
The most important OpenLaszlo properties are
presented in Table 10.

Table 11 describes several success stories
of well-known websites developed using Open-
Laszlo™.

2.2. JavaScript-Based Frameworks

JavaScript is an object-oriented scripting language
used for defining Web browser-based applications
client-side. JavaScript enables Web developers to
programmatically create objects on a Web page.
It provides a platform for manipulating these
objects on-the-fly. Since the introduction of the
Asynchronous JavaScript and XML technology
(AJAX), JavaScript has evolved to become far
more useful. It currently brings a whole new level
of interactivity to Web-based programming. In
fact, prior to Ajax, any server-side processing
or database access required the entire page to be
refreshed or a new page to be rendered by the
Web browser.

Ajax stands for Asynchronous JavaScript and
XML, although the reference to XML is no lon-
ger valid as Ajax requests can return responses
in other several formats, such as JSON. Ajax
enables JavaScript to asynchronously submit an
HTTP request to the Web server, and render the

response without refreshing or rendering a new
page. Furthemore, the developer can use the DOM
(Document Object Model) to modify part of the
Web page in order to display the changes or data
returned as part of the HTTP response.

A JavaScript-based framework or library is
a set of utilities and functions that make it much
easier to produce cross-browser compatible JavaS-
cript code. Each library can be extensively tested
across different versions of existing Web browsers
in order to ensure that a JavaScript-based RIA
is similarly executed across different platforms
(RibosoMatic, 2013).

According to the authors’ point of view, the
eight most popular JavaScript-based frameworks
for RIAs development are presented below.

2.2.1. Dojo

Dojo is a framework that contains APIs and
widgets (controls) to facilitate Web applications
development using AJAX-based technology. Dojo
contains an intelligent packaging system, UI ef-
fects, function libraries to drag and drop widgets
APIs, event abstraction, storage APIs on the client,
and interaction with AJAX-based APIs. Dojo also
solves common usability issues, such as navigation
and browser detection, URL withstands changes
in the address bar (bookmarking), and the ability
to lay down when AJAX / JavaScript is not sup-
ported on the client-side (RibosoMatic, 2013).
Dojo is much more than a framework. Its creators

Table 11. Success stories of OpenLaszlo™

Website Description

Walmart™, walmart.com The Walmart™ multinational used this open source technology to redesign its website, adding rich
functionality (Laszlo Systems, Inc, 2013b).

Gliffy™, gliffy.com It is a Web-based and free CASE (Computer Aided Software Engineering) tool offered as an alternative
to commercial CASE tools, such as Microsoft Visio™. This application was entirely developed using
OpenLaszlo™. This provides rich capabilities such as drag and drop (Laszlo Systems, Inc, 2013b).

Fnac™, fnac.com Fnac™ is an international company headquartered in France, and it is specialized in electronics and
entertainment software sales. Fnac™ is an online shopping cart developed in OpenLaszlo™ allows users to
easily compare deals and options before making a buy decision (Laszlo Systems, Inc, 2013b).

28

Frameworks for RIAs Development

refer to it as the JavaScript toolset (“toolkit”) that
allows professionals to develop Web applications
easily and quickly. Furthermore, Dojo has a free-
software license type (Eguíluz Pérez, 2008). Dojo
saves time and offers a powerful performance and
scale in its development process. (Dojotoolkit,
2014). The most important Dojo properties are
presented in Table 12.

By using Dojo, developers can build web pages
more usable. This might manifest itself in a variety
of ways. The web page should be faster. It should
be better looking. It should be easier to operate by
the user. It should help the user properly enter the
required information, and the web page should be
easier to navigate. Dojo provides enhancements
in usability such as HTML form elements that
provide additional functionality. These enhance-
ments should make the current form elements
behave in more useful ways. Performance can be
improved either by making things run faster or
by making things appear to run faster. The ideal
way to make a process appear faster is to have the
process run while the user is doing something else

rather than just having him wait for the process
to complete. Ajax provides the ideal mechanism
to support this technique. Dojo in conjunction
with Ajax allow to a web page to asynchronously
make data requests of the server while the user is
continuing to work. The web page appears to the
user to be faster and more responsive. Data valida-
tion can be improved by bringing the validation
of data closer to the entry of data. Dojo supports
the ability to send small validation requests to
the server without requiring an entire form to be
submitted. (Harmon, 2008).

2.2.2. jQuery

jQuery is a concise JavaScript library that simpli-
fies HTML document traversing, event handling,
animation, and Ajax interactions for rapid Web de-
velopment. In fact, the jQuery compressed version
is only 20 KB. Moreover, jQuery and Prototype
share many ideas; they also have function names
in common. However, their internals have some
drastic differences. JQuery simplifies JavaScript

Table 12. Dojo properties

Developers Alex Russell, 2004; David Schontzler, and Dylan Schiemann. It is equally important to mention support provided by the
Dojo Foundation.

Sponsors IBM™, Google™, AOL™ and Nexaweb™.

Features Dojo supplements are prepackaged components consisting of JavaScript, HTML, and CSS assets, which can be used to
develop RIAs.
 • Menus, tabs, and tooltips
 • Sortable tables, dynamic graphics, and 2D vector drawing
 • Animation effects and the possibility of creating personalized animations
 • Support for drag and drop
 • Forms and validation routines for parameters
 • Calendar, time and clock selector
 • Online rich text editor
 • Core components (dijit) accessible from earlier versions and screen reader

Browser support
Internet Explorer™ 6-9
Mozilla Firefox™ 3.6+
Safari™ 5+
Opera™ 10.5-12
Chrome™ 13+

Version Stable release 1.8,
October 10, 2012

License Berkeley Software Distribution (BSD) y Academic Free License (AFL)

29

Frameworks for RIAs Development

programming - including AJAX calls and DOM
manipulation -, while the jQuery documentation
is very complete and includes many examples
(Eguíluz Pérez, 2008). The most important jQuery
properties are presented in Table 13.

jQuery has been considered as the best option
for the web development community. This has been
reflejected in the developmet of well-known ma-
jor websites such as MSNBC, and well-regarded
open source projects including SourceForge, Trac,
and Drupal.

In comparison with other toolkits that are
focused on JavaScript techniques jQuery aims to
change the way that web developers think about
creating rich functionality in their web pages.
Rather than spending time juggling the com-
plexities of advanced JavaScript, designers can
leverage their existing knowledge of Cascading
Style Sheets (CSS), Extensible Hypertext Markup
Language (XHTML), and good old straightfor-
ward JavaScript to manipulate web page elements

directly, making more rapid development a reality
(Bibeault & Katz, 2008).

2.2.3. MooTools

MooTools is a compact and modular Object-
Oriented JavaScript framework designed for
intermediate and advanced JavaScript develop-
ers. It permits writing powerful, flexible, and
cross-browser code with itswell-documented
and coherent API (Mootools, 2012). MooTools
is released under the Open Source MIT software
license, which provides de oportunity to use it
and modify it in every circumstance. The most
important MooTools properties are presented in
Table 14.

Some frameworks are focused on re-creating
a somewhat traditional inheritance model and
MooTools is focused on this and highly encour-
ages code reuse and develop modular designs.
JavaScript has a prototypal inheritance model, and

Table 13. jQuery properties

Developers John Resig, 2006.

Sponsors Microsoft™ and Nokia™ companies announced that this library would be included in their platforms. Microsoft™ would
add it in the Visual Studio™ version 3 IDE, enabling ASP.NET and ASP.NET MVC-based development. On tbe other
hand, Nokia would integrate the library within the Web Run-Time platform.

Features • Selecting DOM elements
 • Interactivity and DOM tree changes, including support for CSS 1-3 and basic XPath plugin
 • Events
 • Handling the CSS style sheet
 • Effects and animations
 • Custom Animations
 • AJAX
 • Supports extensions
 • Various Utilities as browser information, operating with objects and vector functions for common routines, etc.
(jQuery, 2012)

Browser support
Internet Explorer™ 6+
Mozilla Firefox™ 2.0+
Safari™ 3+
Opera™ 10.6+
Chrome™ 8+

Version Stable release 1.8.3,
November 13, 2012

License General Public License (GPL) y Massachusetts Institute of Technology License (MIT)

30

Frameworks for RIAs Development

MooTools creates a structure to take advantage of
this model in a way that is more familiar to Java
developers (Newton, 2008).

2.2.4. Prototype

Prototype takes the complexity out of client-side
Web programming. It was built to solve real-world
problems. It also adds useful extensions to the Web
browser-scripting environment and provides Ajax
and DOM APIs. Prototype is a JavaScript-based
framework that aims to ease development of dy-
namic Web applications. It offers a familiar class-
style object-oriented framework, extensive Ajax
support, higher-order programming constructs,
and easy DOM manipulation. It was created by
Sam Stephenson in February 2005 as part of the
foundation for Ajax support in Ruby on Rails.
Prototype is implemented as a single JavaScript
file, usually named prototype.js. Prototype is also
distributed as part of larger projects, such as Ruby
on Rails, script.aculo.us and Rico. Nowadays, it is

Table 14. Mootools properties

Developers The MooTools Dev Team

Sponsors Unknown

Features MooTools includes many components. A remarkable one is the download application available on MooTools website
that allows users to download only the parts of the library that they plan to use, including dependencies. Users can also
choose to download the compression level of the file. Some of the component categories of … are outlined below:
 • Core: it is a collection of support functions that makes use of the other components.
 • Class: it is the base library for MooTools object instantiation
 • Natives: it is a collection of improvements to native JavaScript object by adding I functionality, compatibility, and
new methods that simplify the code.
 • Element: it has many improvements and compatibility to the HTML object.
 • Effects: Advanced API to encourage Elements
 • Remote: it provides an interface for XHR requests, and tools for JSON Cookie.
 • Window: it provides an interface, valid for any browser, for customer information, such as window size.

Browser support
Internet Explorer™ 6+
Mozilla Firefox™ 2+
Safari™ 3+
Opera™ 9+
Chrome™ 4+

Version Stable release 1.4.1
October 6, 2011

License MIT

Table 15. Prototype properties

Developers Sam Stephenson and Prototype Core Team

Sponsors Unknown

Features Prototype enables to deal with Ajax calls
in a very easy, fun, and especially safe way
(cross-browser). In addition to simple requests,
this module also deals smartly with JavaScript
code returned from a server and provides
helper classes for polling.
Ajax functionality is contained in the global
Ajax object. The transport for Ajax requests
is XmlHttpRequest, with browser differences
safely abstracted from the user. Actual requests
are made by creating instances of the Ajax.
Request object.

Browser support
Internet Explorer™ 6+
Mozilla Firefox™ 1.5+
Safari™ 2.0.4+
Opera™ 9+
Chrome™ 2+

Version Stable release 1.7.1
June 5, 2012

License MIT

31

Frameworks for RIAs Development

used by 3.9% of all websites, which makes it one of
the most popular JavaScript libraries (Prototypejs,
2014). The most important Prototype properties
are presented in Table 15.

It might seem odd to state that a JavaScript
library can extend the language in which it was
written, but that is exactly what Prototype does.
JavaScript provides a mechanism known as
prototype-based inheritance (from which this
library derived its name). In fact, several scripting
languages provide features for extending the base
objects of the language. Ruby does it, and many of
the extensions provided by Prototype are borrowed
from Ruby. Once could describe Prototype’s goal
as making JavaScript feel more like Ruby (Crane,
Bibeault & Locke, 2007).

2.2.5. Qooxdoo

Qooxdoo is a JavaScript library that offers many
facilities for developing advanced JavaScript-
based interfaces, including a debug console, event
management, and source control, among others.
It is supported by the most current versions of
popular Web browsers, and it is released under a
GNU Lesser General Public License (LGPL) free

software license (RibosoMatic, 2013). Qooxdoo
is a comprehensive and innovative framework for
RIAs development. Furthermore, Qooxdoo is an
object-oriented and JavaScript-based program-
ming language for developing cross-browser ap-
plications where any expertise in HTML, CSS, or
DOM is not required. It includes a set of develop-
ment tools, a platform-independent GUI toolkit
and an advanced client-server communication
(Qooxdoo, 2014). The most important Qooxdoo
properties are presented in Table 16.

Qooxdoo is a universal JavaScript framework
with a coherent set of individual components and
a powerful toolchain. It is open source under lib-
eral licenses, and supported by one of the world’s
leading web hosts, 1&1(Qooxdoo, 2014).

2.2.6. Rico

Rico is a functions library for creating Javascript-
based RIAs. It is object-oriented, which makes it
easy to refactor Web application user interfaces
to rich user interfaces (Openrico, 2014). Rico
provides responsive animations for smooth effects
and transitions that can communicate user interface
changes more interactively than traditional Web
applications. Furthermore, this JavaScript library
provides a very simple interface in order to register
Ajax request handlers as well as HTML elements
or JavaScript objects as Ajax response objects.
From this perspective, multiple elements and/or
objects may be updated as the result of one Ajax
request (RibosoMatic, 2013). Rico is based on
Prototype, and it includes networking facilities,
complex user interface controls - such as calen-
dars and trees -, drag and drop functionality, and
user interface effects. Moreover, Rico is released
freely and as an open-source under the Apache
2.0 software license for either personal or com-
mercial use. The most important Rico properties
are presented in Table 17.

Table 16. Qooxdoo properties

Developers qx community

Sponsors Unknown

Features • It allows developers to abstract HTML,
CSS, and DOM-based applications.
 • Object Oriented Programming
 • Cross-browser
 • AJAX
 • Native desktop look and feel

Browser support
Internet Explorer™ 6+
Mozilla Firefox™ 2+
Safari™ 3.0+
Opera™ 9+
Chrome™ 2+

Version Stable release 1.0.1
January 27, 2010

License LGPL and Eclipse Public License (EPL)

32

Frameworks for RIAs Development

2.2.7. Sencha ExtJS

It is another popular JavaScript-based framework.
It began as an addition to the Yahoo!™ YUI™
library. In addition to its common utilities, Sencha
ExtJS includes a number of ready-to-use user inter-
face components. Sencha is released under either
as free software under the General Public License
(GNU GPL) or as commercial software aimed at
providing technical support (Eguíluz Pérez, 2008).
Sencha is a lightweight cross-browser JavaScript

library that promotes high performance and al-
lows developers to develop dynamic Web pages
and rich user interfaces (Sencha, 2011). It was
formerly called Ext JS before it was acquired by
Sencha™ Inc. Therefore, it is still possible to find
Ext JS reference on the Web, as well as informa-

Table 17. Rico properties

Developers Richard Cowin and OpenRico.org

Sponsors Open Rico.org and Sabre Airline Solutions

Features Components
Rico 2.0 extends the component set from
the previous versions. For instance, The
live grid component has been expanded to
include filtering, column resizing, and several
more features. The core of Rico 2.0 has been
designed to enable custom components to be
more easily built.
Animation Effects
Rico 2.0 provides responsive animation
for smooth effects and transitions that can
communicate user interface changes more
interactively than traditional Web applications.
Unlike most effects, Rico 2.0 animation can
be interrupted, paused, resumed, or have other
effects applied to it in order to enable quick
responsive interaction, which otherwise, the
user would not have time to wait for.
Behaviors
Rico can be used to create components that
behave similarly to those found in Adobe
Flex™ and OpenLaszlo™.
Styling
Rico provides several cinematic effects, as well
as some simple visual style effects in a very
simple interface.

Browser support
Internet Explorer™ 5.5+
Mozilla Firefox™ 1.5+
Safari™ 2.0.3+
Opera™ 9+
Chrome™ 2+
The Drag and Drop is not supported on
Safari™.

Version Stable release 3.0.9
June 4, 2012

License Apache 2.0

Table 18. Sencha ExtJS properties

Developers Jack Slocum, Brian Moeskau, Aaron Conran
and Rich Waters, created as Ext JS

Sponsors On June 15, 2010 it was announced that Ext
JS, jQTouch and Raphaël would be merged in
order to give rise to a new organization called
Sencha.
Ext JS is still available separately at the new
website along with Sencha, Sencha Touch, Ext
GWT, Ext Designer, Animator and Sencha
Ext Core.

Features There is a set of components (widgets) to be
included within a Web application. Some of
these components are listed below:
 • Tables and text areas
 • Fields for dates
 • Numeric fields
 • Combos
 • Radiobuttons and checkboxes
 • HTML Editor
 • Data elements (with read-only modes,
sortable data, columns that can be blocked and
dragged, among other features)
 • Data Tree
 • Tabs
 • Toolbar
 • Windows-style menus
 • Panels divisible into sections
 • Sliders
 • Graphics
Several of these components are able to
communicate with the server-side using AJAX.
Sencha ExtJS also contains features that allow
adding interactivity to HTML-based web
pages, some examples are:
 • Dialogs
 • QuickTips show validation messages and
information on individual fields.

Browser support
Internet Explorer™ 6+
Mozilla Firefox™ 3.6+
Safari™ 4+
Opera™ 11+
Chrome™ 10+

Version Stable release 4
April 4, 2011

License GNU GPL version 3, comercial

33

Frameworks for RIAs Development

tion that can cause misinterpretation mistaking a
framework which is actually still the same. The
most important Sencha ExtJS properties are pre-
sented in Table 18.

Sencha Ext JS is one of the industry’s most
powerful desktop application development plat-
forms with unparalleled cross-browser compat-
ibility, advanced MVC architecture, plugin-free
charting, and modern UI widgets (Sencha, 2014).

2.2.8. X-Library

It is a collection of loosely-bound, cross-browser,
Javascript functions and objects. (RibosoMatic,

2013).It contains core DOM/Style functions,
unobtrusive enhancements, utility functions, and
objects such as menus and tab panels. It also con-
tains some some experimental stuff. X-Library has
been extensively tested on a wide range of operat-
ing systems and browsers. X-Library is distributed
as free software under the GNU Lesser General
Public License (LGPL) software license, even for
commercial projects. However, there are some
limitations and requirements (Cross-browser,
2014). Table 19 presents the most important X-
Library properties.

3. CONCLUSION

It important to notice that the purpose of this sec-
tion was not to determine which of the frameworks
presented is better or worse. Instead, the goal of
this chapter was to outline the main characteristics
of each framework. This will help developers make
the right decision about the RIA framework that
best suits the features of the project they will carry
out including budget, calendar as well as functional
and non-functional requirements.

Therefore, since new functionalities are con-
stantly added to the frameworks herepresentedit
is recommended that developpers constantly
check and update the frameworks to obtain the
new versions.

Moreover, some of the JavaScript-based frame-
works are able to work together and they comple-
ment each other; however, this is not possible
with other frameworks and it is almost impossible
to consider in the case of non-JavaScript-based
frameworks.

Regarding these non-JavaScript-based frame-
works, it is imperative to consider the type of
application to be developed, i.e., the application
architecture, because these frameworks are tar-
geted at different functionalities, from standalone
applications to traditional Web applications with
RIA-makeover. Furthermore, the intended runtime
environment must also be considered, since these
frameworks commonly require Web browser plug-

Table 19. X-Library properties

Developers Michael Foster and Cross-Browser

Sponsors cross-browser.com

Features The many X Demos demonstrate how to
use X in a variety of Javascript applications
- from simple to complex. Javascript-based
unobstrusive codes can be found in some
features, such as menus, event-handling demos,
form enhancements, debugging tools, dynamic
layouts, and much more. There are several
animation demos illustrating several different
animation techniques.
X Documentation
The X Viewer provides comprehensive
documentation for all X functions and objects -
source, syntax, arguments, dependencies, links
to demos, and more. X does not implement its
own object or event models.
X Tools
XAG is a library file aggregator. XAG scans
application files and creates a custom X library
file, which contains only those X variables,
functions, and objects (X symbols) used in an
application.
XPP is a simple text preprocessor. It supports
conditional output and text replacement. These
features enable to perform obfuscation and
conditional compilation.

Browser support
Internet Explorer™ 7-9
Mozilla Firefox™ 3.5+
Safari™ 4.0+
Opera™ 10.6+
Chrome™ 4+

Version Stable release 4.23
May 14, 2011

License GNU LGPL

34

Frameworks for RIAs Development

ins or a desktop runtime environment depending
on the application type. Finally, in the specific
case of Web-browser based RIAs development,
the framework capabilities and limitations related
to both the database storage distribution and the
business logic distribution are key issues.

REFERENCES

Adobe AIR. (2011). Adobe AIR. Retrieved January
30, 2011, from http://www.adobe.com/products/
air/

Adobe. (2011). Flex overview. Retrieved January
29, 2011, from http://www.adobe.com/products/
flex/overview

BCS. (2011). Windows 7 market share excedes
20% mark. Retrieved February 6, 2011, from
http://www.bcs.org/content/conWebDoc/38577

Bibeault, B., & Katz, Y. (2008). jQuery in Action.
Greenwich, CT: Manning Publications Co.

Crane, D., Bibeault, B., & Locke, T. (2007). Pro-
totype and Scriptaculous in Action. Greenwich,
CT: Manning Publications Co.

Cross-Browser. (2014). X-library. Retrieved Janu-
ary, 2014, from http://www.cross-browser.com/

Dojotoolkit. (2014). Dojotoolkit. Retrieved Febru-
ary, 2014, from http://www.dojotoolkit.org/

Eguíluz Pérez. J. (2008). Introducción a AJAX.
Librosweb. Retrieved February, 2014, from http://
librosweb.es/ajax/

Flash Player. (2012). Statistics. Retrieved Decem-
ber 18, 2012, from: http://www.adobe.com/mx/
products/flashruntimes/statistics.html

Harmon, J. E. (2008). Dojo: Using the Dojo
JavaScript Library to Build Ajax Applications.
Addison Wesley Professional.

JQUERY. (2012). Documentation. Retrieved
September, 2012, from http://docs.jquery.com/

Laszlo Systems, Inc. (2013a). Architecture.
Retrieved January 29, 2013, from: http://www.
openlaszlo.org/architecture

Laszlo Systems, Inc. (2013b). OpenLaszlo Archi-
tecture. Retrieved February 6, 2011, from: http://
www.openlaszlo.org/lps4.9/docs/developers/
architecture.html

Laszlo Systems, Inc. (2013c). OpenLaszlo Show-
case. Retrieved February 6, 2011, from: http://
www.openlaszlo.org/showcase

McCune, D., & Subramaniam, D. (2008). Getting
to Know Flex. In Adobe Flex 3.0 for Dummies (pp.
9–16). Indianapolis, IN: Wiley Publishing, Inc.

Microsoft. (2011a). Arquitectura de Silverlight.
Retrieved January 30, 2011, from: http://msdn.mi-
crosoft.com/es-es/library/bb404713(v=VS.95).
aspx

Microsoft. (2011b). Información general so-
bre Silverlight. Retrieved January 30, 2011,
from: http://msdn.microsoft.com/es-es/library/
bb404700(v=VS.95).aspx

Moonlight. (2011). Moonlight. Retrieved January
30, 2011, from: http://www.mono-project.com/
Moonlight

Mootools. (2012). Mootools. Retrieved August,
2012, from: http://mootools.net/

Newton, A. (2008). MooTools Essentials: The
Official MooTools Reference for JavaScript and
Ajax Development. Berkely, CA: Apress.

Openrico. (2014). Openrico. Retrieved August,
2014, from: http://openrico.org/

Oracle Corporation. (2011). Develop Expressive
Content with the JavaFX Platform. Retrieved
January 29, 2011, from: http://javafx.com/about/
overview/index.jsp

Prototypejs. (2014). Prototypejs. Retrieved Janu-
ary, 2014, from: http://www.prototypejs.org/

http://www.adobe.com/products/air/
http://www.adobe.com/products/air/
http://www.adobe.com/products/flex/overview
http://www.adobe.com/products/flex/overview
http://www.bcs.org/content/conWebDoc/38577
http://www.cross-browser.com/
http://www.dojotoolkit.org/
http://librosweb.es/ajax/
http://librosweb.es/ajax/
http://www.adobe.com/mx/products/flashruntimes/statistics.html
http://www.adobe.com/mx/products/flashruntimes/statistics.html
http://docs.jquery.com/
http://www.openlaszlo.org/architecture
http://www.openlaszlo.org/architecture
http://www.openlaszlo.org/lps4.9/docs/developers/architecture.html
http://www.openlaszlo.org/lps4.9/docs/developers/architecture.html
http://www.openlaszlo.org/lps4.9/docs/developers/architecture.html
http://www.openlaszlo.org/showcase
http://www.openlaszlo.org/showcase
http://msdn.microsoft.com/es-es/library/bb404713(v=VS.95).aspx
http://msdn.microsoft.com/es-es/library/bb404713(v=VS.95).aspx
http://msdn.microsoft.com/es-es/library/bb404713(v=VS.95).aspx
http://msdn.microsoft.com/es-es/library/bb404700(v=VS.95).aspx
http://msdn.microsoft.com/es-es/library/bb404700(v=VS.95).aspx
http://www.mono-project.com/Moonlight
http://www.mono-project.com/Moonlight
http://mootools.net/
http://openrico.org/
http://javafx.com/about/overview/index.jsp
http://javafx.com/about/overview/index.jsp
http://www.prototypejs.org/

35

Frameworks for RIAs Development

Qooxdoo. (2014). Qooxdoo. Retrieved April,
2014, from: http://qooxdoo.org/

RibosoMatic. (2013). Listado de librerías, frame-
works y herramientas para AJAX, DHTML y
JavaScript. Retrieved August, 2013, from: http://
www.ribosomatic.com/articulos/top-librerias-
ajax-dhtml-y-javascript/

Sencha. (2014). Sencha ExtJS. Retrieved April,
2014, from: http://www.sencha.com/products/
extjs/

Smeets, B., Boness, U., & Bankras, R. (2008).
Introducing Rich Internet Applications (RIAs).
In Beginning Google Web Toolkit: From Novice
to Professional (pp. 1–19). New York: Apress.

Theserverlabs. (2011). Rich Internet Applications,
Frameworks evaluation. Retrieved February
6, 2011, from: http://www.theserverlabs.com/
brochures/RIA_Frameworks-TSL-evaluation.pdf

Toffetti, G., Comai, S., Preciado, J. C., & Linaje,
M. (2011). State-of-the Art and trends in the Sys-
tematic Development of Rich Internet Applica-
tions. Journal of Web Engineering, 10(1), 70–86.

Viveros García, M. C., & García Godoy, D. (2009).
Elaboración de una guía para el desarrollo de
aplicaciones en extjs. (Unpublished thesis). In-
stituto Tecnológico de Orizaba.

ADDITIONAL READING

Adobe. (2012). Flex, What is Flex? Retrieved
September, 2012, from http://www.adobe.com/
es/products/flex.html

Microsoft. (2012). Silverlight 5. Retrieved Sep-
tember, 2012, from http://www.microsoft.com/
silverlight/

Oracle Corporation. (2012). JavaFX. Retrieved
September, 2012, from http://www.oracle.com/
technetwork/java/javafx/overview/index.html

KEY TERMS AND DEFINITIONS

Framework: A software-defined structure
on which other software project is designed and
developed.

HyperText Markup Language (HTML):
Markup language for developing Web pages. It
is a standard that serves as a reference for the de-
velopment of Web pages in different versions, it
defines a basic structure and a code (HTML code).

JavaScript-Based Frameworks: Frameworks
which were developed in the JavaScript-based
programming language such as Dojo, Prototype,
and Mootools.

Non-JavaScript-Based Frameworks: Frame-
works which were developed in its own program-
ming language such as AbobeFlex™, JavaFX,
and Silverlight™.

RIA Framework: These are frameworks for
Rich Internet Applications development.

Standalone RIAs: They are RIAs that can be
deployed inside or outside of a Web browser and
can be executed on/offline.

Traditional Web Applications: These are
software applications which are displayed in a
Web browser, and in which each user interaction
with the application means fully recharge the
application to display the updated information.

http://qooxdoo.org/
http://www.ribosomatic.com/articulos/top-librerias-
http://www.ribosomatic.com/articulos/top-librerias-
http://www.sencha.com/products/extjs/
http://www.sencha.com/products/extjs/
http://www.theserverlabs.com/brochures/RIA_Frameworks-TSL-evaluation.pdf
http://www.theserverlabs.com/brochures/RIA_Frameworks-TSL-evaluation.pdf
http://www.adobe.com/es/products/flex.html
http://www.adobe.com/es/products/flex.html
http://www.microsoft.com/silverlight/
http://www.microsoft.com/silverlight/
http://www.oracle.com/technetwork/java/javafx/overview/index.html
http://www.oracle.com/technetwork/java/javafx/overview/index.html

36

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

Software Development
Methodologies for Traditional

Web Applications and RIAs

ABSTRACT

Chapter 3 presents a review of the state-of-the-art on methodologies for RIAs development. For this
purpose, methodologies for traditional Web applications development are firstly presented, since, in
some cases, methodologies for RIAs development are either extensions of existing Web (and hyper-
media) methodologies or new UI design methods used on top of already existing Web methodologies.
New approaches covering the RIAs features without relying on legacy Web models are also discussed.
Some examples of Web development are UWE (UML-Based Web Engineering), which became UWE-R
(UWE for RIAs), and WebML Extension, which is an extension of WebML (Web Modeling Language).
These methodologies had to be modified in order to add new features to support the needs of RIAs de-
velopment. Some other methodologies for RIAs development are RUX Method, OOH4RIA, OOHDM
Extension, and PPRD.

1. INTRODUCTION

Software Engineering is the study and application
of engineering to the design, development, and
maintenance of software. The main issues of Soft-
ware Engineering are design patterns, architectural
styles, and software development methodologies.
Hence, the importance of studying the different
software development methodologies proposed
in the literature for traditional Web applications
and RIAs. According to the Oxford dictionary a
methodology is “a system of methods used in a

special area of study or activity” and in this case
it is about software development.

In the one hand, there are software development
methodologies for traditional software develop-
ment such as RUP (Rational Unified Process),
Scrum and XP (eXtreme Programming). In the
other hand, there are also software development
methodologies for Web development such as
UWE (UML-based web engineering), WebML
(Web Modeling Language) and OOHDM (Object-
Oriented Hypermedia Design Method), among
others. However, the aforementioned software de-

DOI: 10.4018/978-1-4666-6437-1.ch003

37

Software Development Methodologies for Traditional Web Applications and RIAs

velopment methodologies for Web development do
not consider the RIAs (Rich Internet Applications)
features, i.e. they do not cover the development as-
pects of this application kind as they are only used
on traditional Web applications, omitting aspects
of RIAs. Preciado et al. (Preciado et al., 2005)
discussed about the quantity and type of software
development methodologies and tools that have
been proposed for the design and development
of Web applications. However, traditional Web
applications continue to be insufficient to support
the interaction and presentation of the features
demanded by the user. Recently, RIAs provided
a solution to these problems as they provide new
levels of interactivity and presentation. The use
of RIAs is exponentially growing; however there
is a serious problem: lack of complete software
development methodologies for this type of ap-
plication. Preciado et al. (Preciado et al., 2005)
described the main characteristics needed to model
RIAs and an assessment process was proposed in
order to obtain a suitable methodology to be able
for achieving this goal. This process was used
to evaluate how suitable some of the existing
methodologies are and to demonstrate that each
one has very few RIA characteristics. From this
perspective, a new methodology is necessary or
an extension of an existing one. Preciado et al.
(Preciado et al., 2005) determined that none of
the methodologies in these areas were suitable for
modeling RIAs. RIAs offer new multimedia and
interactivity features. Preciado et al. (Preciado et
al., 2005) discussed that multimedia as much as
hypermedia constitutes fields that are required to
help in the identification of new software develop-
ment methodologies for RIAs. RIAs have been of
great importance on web development over the
last few years. For this reason, diverse studies
have proposed new development methodologies
and/or extensions of existing methodologies for
RIAs development.

In this chapter, a set of application development
methodologies is presented. These methodologies
are divided into two main groups, the first group

is a set of methodologies used for traditional Web
applications, and at the second group the meth-
odologies for RIAs development are presented.
In this second group is easy to identify that most
methodologies are extensions of methodologies
used in traditional Web applications to which had to
make adjustments for supporting features of RIAs.

2. SOFTWARE DEVELOPMENT
METHODOLOGIES FOR
TRADITIONAL WEB APPLICATIONS

Firstly, the traditional methodologies for Web
development are presented since they were the
pioneers for the creation of new methodologies or
extensions of existing methodologies to meet the
needs for RIA development. Escalona and Koch
(Escalona & Koch, 2004) carried out a review of
methodologies for Web development, an improved
extension of this review is presented below.

2.1. WSDM: Web Site Design Method

WSDM is a user-centered approach for the devel-
opment of Web sites that models the application
based on the information requirements of the
users’ groups (Detroyer & Leune, 1998). The
development process is divided into four phases.
WSDM phases are presented in Figure 1 and they
are described below:

• User modeling, where users are classified
and grouped in order to study system re-
quirements according to each user group,

• Conceptual design, where a UML class
diagram is designed to represent the static
model of the system and a navigational
model is designed to represent the possi-
bilities of navigation,

• Implementation design, where models of
the conceptual design are easily translated
into an abstract language to be understood
by the computer, and

38

Software Development Methodologies for Traditional Web Applications and RIAs

• Implementation, where the implementa-
tion design result is written in a specific
computer programming language.

The most important phase is user modeling. It
aims on the identification of the different users’
roles by performing the following two tasks:

• Users’ classification is the identification
of the potentials users/visitors of the web-
site and their classification according to
their interests and navigation preferences.
WSDM proposes to analyze the organiza-
tion environment where the application
will be used, and it focuses the attention on
the stakeholders of the business processes
supported by the application. In WSDM,
the relationships between stakeholders
and business process activities performed
are graphically represented by conceptual
maps of roles and activities.

• Users’ group description is the detailed
description of the users’ groups identi-
fied in the previous task. The information
requirements, functional requirements
and security requirements for each user’s
group are described with the help of a data
dictionary.

The remaining phases in the WSDM process
are based on the users’ classification of this first
phase.

2.2. SOHDM: Scenario-Based
Object-Oriented Hypermedia
Design Methodology

The SOHDM approach was the first approach
emphasizing the importance of a process that
allows capturing and defining the applications
requirements to the analysts (Lee et al., 1998).
SOHDM has similarities with OOHDM (Schwabe
& Rossi, 1998), but it proposes a requirement
specification based on scenarios.The SOHDM
architecture is presented in Figure 2.

The following six tasks are performed during
the SOHDM life cycle; for practical purposes,
only the first one is relevant:

1. Analysis, where requirements are described
by using scenarios;

2. Object model realization, where a UML class
diagram is built in order to present the static
structure of the system;

3. View design, which expresses how the system
will be presented to the user;

Figure 1. Overview of the WSDM phases

39

Software Development Methodologies for Traditional Web Applications and RIAs

4. Navigational design, where a navigational
class model is developed in order to express
the possibilities of navigation in the system;

5. Realization of the implementation, where
web pages, the interface and the database
are developed; and, finally,

6. Construction of the system, where the system
is built.

The requirements definition starts on designing
a context diagram, similar to the DFD (Data Flow
Diagrams) defined by Yourdon (Yourdon, 1989).
To build this context diagram, the analyst has to
identify the external entities that communicate
with the application, and the events that trigger
the communication between these entities and
the application. The set of events is specified as
a table showing the entities that participate in an
event. SOHDM proposes associating a scenario
with each event. Scenarios are graphically repre-
sented by using a proprietary notation called SAC
(Scenario Activity Chart). A scenario describes
the interaction process between the user and the
application, when an event triggers an activity. It

specifies the activity flow, objects involved and
transactions performed.

SOHDM proposes a process to get the con-
ceptual model of the application out of these
scenarios. The proposed conceptual model is
represented by a UML class diagram. The next
step in the SOHDM development process is the
regrouping of these classes with the objective of
obtaining a navigational class diagram.

2.3. RNA: Relationship-
Navegational Analysis

RNA is a methodology that offers a sequence of
steps for developing Web applications mainly
focusing on analysis (Bieber et al., 1998). The
RNA phases are:

• Phase 1 – Environment Analysis: The
objective is to analyze the audience’s char-
acteristics. Stakeholders of the application
are identified and classified in different
groups according to their roles (similar to

Figure 2. Overview of the SOHDM architecture

40

Software Development Methodologies for Traditional Web Applications and RIAs

the user modeling phase of WSDM pre-
sented in Figure 1).

• Phase 2 – Element Analysis: In this phase
all elements of interest to the application
are identified, e.g. documents, forms, in-
formation, mock-ups, among others.

• Phase 3 – Meta-Knowledge Analysis: It
achieves to build a schema of the applica-
tion. RNA proposes to identify objectives,
processes and operations related to the ap-
plication, and to describe the relationships
among those elements.

• Phase 4 – Navigation Analysis: In this
phase, the schema of the previous one is
enlarged with navigation features.

• Phase 5 – Implementation Analysis:
Consists of the identification of how the
models described in phase 4 will be pro-
duced in a computable language (Bieber et
al., 1998).

RNA only provides some guidelines of the ac-
tions to be performed in each phase. Neither mod-
eling concepts nor a notation is proposed, but the
RNA approach is one of the methodologies focused
on the importance of requirements specification
in the development process of Web applications.
It emphasizes the need of the separation between
the analysis of conceptual requirements and the
analysis of navigational requirements.

2.4. HFPM: Hypermedia
Flexible Process Modeling

The HFPM presented by Olsina (Olsina, 1998) is a
wide engineering-based approach, which includes
analysis-oriented descriptive and prescriptive
process modeling strategies. It includes technical,
management, cognitive and participatory tasks.
Therefore, HFPM provides guidelines for the plan-
ning and managing of a Web project covering the
whole life cycle of a software project. It consists of
thirteen phases where each phase HFPM defines a
set of tasks. For practical purposes, Requirements

Model is the most relevant phase whose related
tasks are defined as follows:

• Problem Description: HFPM does not
prescribe a concrete technique to perform
the problem description, e.g. natural lan-
guage can be used.

• Description of Functional Requirements:
It is covered by using use cases.

• Data Modeling for the Identified Use
Cases: It proposes the design of a UML
class diagram.

• User Interface Modeling: It implements
sketches and prototypes to be used in the
presentation of drafts to the customer.

• Non-Functional Requirements Descrip-
tion: such as security, performance, among
others.

HFPM proposes on the one hand a detailed
process to handle requirements. On the other hand,
it does not prescribe specific techniques, which
can be freely chosen by analysts and developers.

2.5. OOHDM: Object Oriented
Hypermedia Design Model

OOHDM is a widely accepted method for Web
applications development (Schwabe & Rossi,
1998), whose first versions were focused on the
design phase and they did not include requirements
engineering. The OOHDM phases are presented
in Figure 3.

The processes in OOHDM are divided in four
phases producing the following results:

1. The conceptual model, represented as a class
model, is built in order to show the static
aspect of the system.

2. The navigational model consists of a naviga-
tion class diagram and a navigation structure
diagram. The first one represents the static
possibilities of navigation in the system.
The second one extends the navigation class

41

Software Development Methodologies for Traditional Web Applications and RIAs

diagram by including access structures and
navigation contexts.

3. The abstract interface model was developed
by using a special technique named ADVs
(Abstract Data Views) (Schwabe & Rossi,
1998).

4. The implementation consists in the imple-
mented code and it is based on the previous
models.

The capture and definition of requirements
were introduced later in OOHDM by Vilain,
Schwabe and Sieckenius (Vilain et al., 2000)
who proposed the use of UIDs (User Interaction
Diagrams). UIDs are based on the well-known
technique of use cases. Use cases are used to
capture the requirements but are considered in
OOHDM as ambiguous and insufficient for the
definition of the requirements of Web applications,
use cases are mainly related to the interaction be-

tween the user and the system. Therefore, for the
specification of the requirements, this approach
suggests the refinement of use cases for building
UIDs, which are used to graphically model the
interaction between users and system without
considering specific aspects of the interface. The
process to get an UID from a use case is described
very carefully in the approach.

2.6. UWE: UML-Based
Web Engineering

UWE is a methodological approach for the devel-
opment of Web applications based on the Unified
Process (Jacobson et al., 1999) and (Booch et al.,
1999). It is mainly based on the most relevant
concepts provided by other methods, but a UML
notation is defined (UML profile), that defines
a systematic and semi-automatic design process
(Hennicker & Koch, 2000).

UWE covers the whole life cycle of Web ap-
plications and focuses on adaptive applications. It
includes a specific requirements engineering phase
where requirements elicitation, specification and
validation are handled as separate activities of the
process. The final result of the capture phase of
requierements in UWE is a use case model com-
pleted with documentation describing the users of
the application, the adaptation rules, the interfaces
and the details of the use case relevant for the use
case implementation. The latter can be textually
described or modeled by UML activity diagrams.

UWE classifies requirements into two groups:
functional and non-functional. Functional require-
ments in UWE are:

• Content requirements.
• Structure requirements.
• Presentation requirements.
• Adaptation requirements.
• User model requirements.

Moreover, UWE proposes interviews, ques-
tionnaires and checklists as appropriated tech-

Figure 3. Overview of the OOHDM phases

42

Software Development Methodologies for Traditional Web Applications and RIAs

niques for the requirements capture, and use cases,
scenarios and glossaries for the requirements
specification. To validate them, UWE proposes
walk-through, audits and prototypes (Koch &
Wirsing, 2001).

2.7. W2000

W2000 (Baresi et al., 2001) is an approach that
also extends UML notation to model multimedia
elements. These multimedia elements are inherited
from HDM (Hypermedia Design Model) (Garzotto
et al., 1993). The development process of W2000
is divided into three phases: requirements analysis,

hypermedia design and functional design. For
practical purposes, the first one is described below.

The requirements analysis in W2000 is divided
into two sub-activities: functional requirements
analysis and navigational requirements analysis.
The requirements elicitation starts with an analysis
of the different user roles, i.e. the actors which will
interact with the application. Every identified actor
has his own navigation and functional requirements
model. The latter model is represented by a UML
use case model. The navigational requirements are
modeled in another use case diagram represent-
ing the navigation possibilities of the actors. The
graphic notation is defined as a UML extension.
The W2000 model is presented in Figure 4.

Figure 4. W2000 model

43

Software Development Methodologies for Traditional Web Applications and RIAs

2.8. WebML: Web
Modeling Language

The WebML is a high-level specification language
for hypermedia applications. WebML follows
the style of both, Entity-Relationship and UML
offering a proprietary notation and a graphical
representation by using the UML syntax. This
notation is complemented with a set of activities
to be performed for the development of Web ap-
plications, such as requirements specification, data
design and hypertext design (Ceri et al., 2002).

The methodology is focused on requirements
collection and requirements specification. It pro-
poses the use of techniques, such as interviewing
and analysis of documentation, but retrains from
the use of prescriptive checklists for requirements
capture. Requirements collection starts with
user identification and personalization needs.
In addition data requirements and functional as
well non-functional requirements are gathered.
The navigation or specific hypertext structuring
requirements are not separately treated. Require-
ments specification (called requirements analysis)
consists in a classical use case specification supple-
mented with a semi-structured textual description.
The use of activity diagrams is proposed by this
method to express the workflow of complex use
cases. A template-based description and mock-
ups (sketches) are suggested for the specification
of the site view and the style guidelines. Finally,
acceptance tests are mainly proposed to check
non-functional requirements.

2.9. NDT: Navigational
Development Techniques

NDT is a technique to specify and analyze the
navigation aspects in Web applications. NDT is
focused on the elicitation and specification tech-
niques selected by NDT for the capture and defini-
tion of requirements. The requirements analysis
workflow in NDT starts capturing requirements
and studying the environment applying interviews,

brainstorming and JAD (Joint Application Devel-
opment) techniques. In a second step, the system
objectives are captured and described. Based on
these objectives, the system requirements are
identified; NDT classifies them into (Escalona
et al., 2002):

• Storage information requirements.
• Actor requirements.
• Functional requirements.
• Interaction requirements.
• Non-functional requirements.

Interaction requirements are represented by
phrases and visualization prototypes. Phrases show
how the information of the system is retrieved
and are represented by a special language named
BNL (Bounded Natural Language) (Brisaboa et
al., 2002). Visualization prototypes are used to
represent the system navigation, data visualization
and user’s interaction.

The whole process to elicit and specify objec-
tives and requirements proposed by NDT is mainly
based on templates or patterns. In addition, it uses
other requirements definition techniques like use
cases and glossaries. The NDT approach proposes
a different template for each kind of requirement,
so requirements and objectives are described in
a structured way. Some fields in the templates
only accept specific values allowing a systematic
process. The requirements specification workflow
finishes with the revision of the requirements cata-
logue and the development of a trazability matrix
which allows knowing whether the specification
covers all the possible requirements.

In the context of the NDT project a case tool,
called NDT-Tool, was developed. This tool sup-
ports the filling of the templates and automatic
extraction of the design results out of the templates.

The NDT development process is a process
that could be described as bottom-up. The NDT
process is focused on a detailed engineering phase
of requirements-driven objectives, which includes

44

Software Development Methodologies for Traditional Web Applications and RIAs

both the capture, as the definition and verification
of requirements.

The process begins by defining the objectives.
Based on these objectives, a process is described
in order to capture and define different system
requirements. These objetives are classified and
treated depending on the type to which they belong.
NDT divides requirements:

• Storage Requirements: Define what in-
formation, will be manage the system and
how they relate to each other. NDT can
also define natures of new data which will
be used in the system.

• Requirements of Stakeholders: Define
the roles that can interact in system and the
relationships that may occur between them.

• Functional Requirements: Allow defin-
ing the system functionality.

• Requirements of Interaction: Define how
information is displayed, how they can
navigate the system and recovery criteria
that are offered.

• Non-Functional Requirements: Include
other system requirements (Escalona et al.,
2002).

2.10. Design-Driven
Requirements Elicitation

The Design-driven Requirements Elicitation is
a part of the design-driven process proposed by
Lowe and Eklund (Lowe & Eklund, 2002) in order
to develop Web applications. It consists in captur-
ing, defining and validating requirements during
the design process, i.e. the design activities should
be carried out in such a way that the requirements
could be handled and managed at the same time.
The process is based on prototyping in order to
explore possible solutions and problems to be
solved. Users and customers define the require-
ments based on the study of these prototypes. It
is an iterative process, which consists in reducing

customers and clients’ doubts. The cycle has three
phases: evaluation, specification and construction.

This design-driven process was defined based
on an exhaustive analysis of “best practices” in
the development of Web commercial application.
It treats all the requirements in the same manner.
The requirements are: content, interface protocol,
navigational structure, look and feel, data internal
representation, versions, change control, security,
content management, control access, efficiency,
user monitoring, functionality support, system
adaptation, user identification, among others.

3. SOFTWARE DEVELOPMENT
METHODOLOGIES FOR RIAS

In the literature, some works have been reported in
order to propose software development methodolo-
gies for RIAs. From this perspective, Busch and
Koch (Busch & Koch, 2009) carried out a literature
review of methodologies for RIA development.
An extended version of this literature review is
presented and discussed in order to establish
software development methodologies for RIAs.

3.1. RUX Method

Preciado et al. (Preciado et al., 2007) discussed
the difficulty of implementing a methodology of
Engineering Software in RIA development. RIAs
are obtaining great acceptance thanks to the fa-
cilities they provide to develop Web applications
with multimedia, high levels of interactivity, col-
laborative work, and/or homogeneous presentation
requirements at the client-side. Preciado et al.
(Preciado et al., 2007) proposed an integrated Web
Engineering approach based on WebML and the
RUX-Model conceptual models for supporting a
high-level design of these applications and their
automatic code generation. The RUX method
combines modeling of the presentational aspects
of RIAs with an existing method for designing
Web applications. UWE is complemented with

45

Software Development Methodologies for Traditional Web Applications and RIAs

the RUX method for the UI design. The approach
consists of the transformation of UWE presenta-
tion model to a RUX abstract interface model
(AIM), which is afterwards enriched with typical
RIA user interface actions. In this approach, RIA
features are introduced into models at a lower level
of abstraction than in the current approach. The
authors planned extend their research in two ways;
the first one is by combining RUXModel with other
models apart from WebML and the second one
is to extend WebML and/or RUXModel to cover
the entirety of the basic concepts of the different
models identified on RIAs.

Preciado et al. (Preciado et al., 2008) proposed
an approach based on RIA development through
the combination of UWE, a method to model
data and business logic, with RUX-Method for
the modeling of the User Interfaces of the RIAs.
The authors presented an approach based on the
model for RIA development by combining UWE
and RUX-Method. UWE is more suitable for
model features i.e. data and business logic for
Web applications and RUX-Method was applied
to the design of the user interfaces of RIAs. This

approach provides a simple way to enrich Web
1.0 applications that resembles Web 2.0. The ap-
proach considers the static and dynamic navigation
in business processes. The future work includes
an improvement of this approach through the
inclusion of specific operations of RIAs, such
as completing the data entry in text fields on the
client-side, which it is still not possible with Web
1.0. The authors planned to extend the elements of
the model for RUX-Method, for example present-
ing the client with the delivery of requests to the
background server or to perform an operation and
extend the UWE model elements to represent the
corresponding data to server operations. Also, an
expansion of the UWE description techniques is
considered in order to include the requirements
of RIA characteristics, such as animation, asyn-
chronous communication between the client and
the server. The general schema of RUX Method
is shown in Figure 5.

Brambilla et al. (Brambilla et al., 2008) pre-
sented the methodology and the combination of
conceptual models to cover the design and develop-
ment of Web applications with the support of rich

Figure 5. Overview on the RUX method

46

Software Development Methodologies for Traditional Web Applications and RIAs

interfaces. To specify the design of high-level user
tasks, the research used model business processes,
which become data and the navigation model of
a Web application, and a presentation model was
applied to obtain a RIA. It used a standard model-
ing language to describe business workflows that
are translated into WebML, a specification of a
Web application implemented in accordance with
the paradigm of a single typical page of RIAs.
Finally, the characteristics of RUX-Method are
integrated, refining the design of the rich interface.
A methodology and a set of conceptual models to
cover the design and development of RIAs were
provided to achieve a high level in the design of the
view that business process models use. A BPMN
(Business Process Modeling Notation) language
was translated into a WebML language to therefore
integrate the characteristics of RUX-Method and
this demonstrated how to refine rich interfaces.
The combination of the proposed models enabled
a fine design and a rich interaction. Due to the
generality of this approach, the design of business
based processes was applied to other hypertext
browsing models and other presentation models. It
is only necessary to specify the new assignments.

3.2. OOH4RIA

OOH4RIA extends the OOH method (Object-
Oriented Hypermedia) introducing many new
model elements for two additional models: the
presentation and the orchestration models of
RIAs, which complement the OO-H models for
the domain and the navigation of a RIA. The
presentation model captures the different widgets
used for the user interface. The orchestration
model represents the interaction between the
widgets and the rest of the system. Meliá et al.
(Meliá et al., 2008) used a new approach called
OOH4RIA due to the fact that Web applications
have had great limitations on their user interfaces.
To overcome these limitations, Meliá et al. (Meliá
et al., 2008) proposed richer and more efficient

graphics that are similar to those of desktop ap-
plications. However RIAs are complex and their
development requires design and implementation.
Moreover, RIAs development is a great challenge
of the Web engineering as it requires modification
and the introduction of new aspects. OOH4RIA
uses a development process based on the model
and that extends the OOH methodology. The OOH
development process is described in Figure 6.

This introduces new structures and behavior
models to constitute a complete RIA and to apply
transformations that reduce the effort and accel-
erate the Web development. This approach was
implemented in the GWT (Google Web Toolkit)
framework. The approach generates Java-based
code for the server-side application and, HTML
and JavaScript for the client-side code. The
OOHRIA models to OO-H models are similarly
specified by using UML syntax by means of MOF
(Meta-Object Facility) meta-models.

3.3. Object Oriented Hypermedia
Design Method (OOHDM) Extension

Urbieta et al. (Urbieta et al., 2007) presented a
new approach in the design of interfaces for RIAs.
The approach used the ADV design model which
enables to express a high level of abstraction from
the structure and behavior of the User Interface.
Furthermore, the use of advanced techniques for
the separation of requirements enables to create
complex interfaces with a simple composition.
The authors presented the foundations of this ap-
proach, the fundamental steps and the integration
of OOHDM. The OOHDM extension is presented
in Figure 7.

Urbieta et al. (Urbieta et al., 2007) focused
on OOHDM and on the ADV framework model
designed to specify the structure and the behavior
of RIA user interfaces. Urbieta et al. (Urbieta et
al., 2007) demonstrated this with simple examples
such as designing the type of typical interfaces of
RIAs by using ADVcharts. The authors did this to

47

Software Development Methodologies for Traditional Web Applications and RIAs

achieve the goal that their objects are shown or are
hidden in the interface, i.e. how the information
expands or contracts on the screen.

3.4. UWE-R

UWE-R (Machado et al., 2009) is a light-weighted
extension of UWE for RIAs, covering navigation,
process and presentation aspects. Hence, new mod-
eling elements are defined that inherit structure
and behavior from UWE elements. In contrast to
many studies, UWE-R uses stereotypes for many of
the extensions instead of meta-attributes. UWE-R
is shown in Figure 8.

3.5. WebML Extension

With regard to extensions of existing methods,
Bozzon et al. proposed in (Bozzon et al., 2006)
the modeling of distributed data and events in
data-intensive RIAs focusing on client or server
side actions. WebML distinguishes between data
distributed on client-side and server-site as well
as persistent and temporary objects. In particular,
WebML was extended by enriching data specifica-
tions with two dimensions: (1) data location and
(2) data duration. WebML extension´s process is
described in Figure 9.

Location can be either server-side or client-
side; duration can be persistent or temporary.
WebML introduces new modeling elements for
the modeling of hypertext for the computation
on the client-side. The authors showed how the

Figure 6. OOH4RIA development process

48

Software Development Methodologies for Traditional Web Applications and RIAs

Figure 7. OOHDM extension, design framework for RIA

Figure 8. UWE-R navigation’s extensions

49

Software Development Methodologies for Traditional Web Applications and RIAs

events can be explicitly described and together
with the other concepts of a Web ML, with the
aim of specifying the collaborative aspect of RIAs.

3.6. Object Oriented Web Solution
(OOWS) and Interaction Patterns

In order to define the interaction model, the inter-
action pattern concept is used to describe a solu-
tion for a common user-system interaction. These
interactions patterns are presented as guidelines
for producing the RIA interface code based on a
set of transformation rules. OOWS´s interaction
model is presented in Figure 10.

Such interaction pattern models the structural
aspects of the pattern; the behavioral aspects are
only textually described. No details are given on
the transformation rules in (Valverde & Pastor,
2008). OOWS method proposes to create an in-
teraction model to address RIA features (Valverde
& Pastor, 2008).

3.7. ADRIA Approach

Dolog and Stage (Dolog & Stage, 2007) also pro-
posed a new method called ADRIA (A Method for
Abstract Design of Rich Internet Applications),
which employs interaction spaces, tasks models
and state machines. This method is focused on the
design of events triggered by user interactions.
ADRIA’ activities are described in Figure 11.

The main disadvantage of this new method
is the reengineering of legacy Web applications
which requires modeling from scratch.

3.8. Model-Driven Approach
Proposed by Martinez-Ruiz et al.

Martinez-Ruiz et al. (Martinez-Ruiz et al., 2006)
explained the problem of the development of
graphical user interfaces on RIAs development
and the social environment in which can be imple-
mented, i.e., the education of the user, the social

Figure 9. WebML Extension. The WebML process

50

Software Development Methodologies for Traditional Web Applications and RIAs

Figure 10. OOWS: Interaction model

Figure 11. Activities in ADRIA

51

Software Development Methodologies for Traditional Web Applications and RIAs

background, the knowledge that this person has,
to mention but a few. Therefore it is necessary to
conduct an analysis of these requirements and to
propose a solution to solve these problems. The de-
signed interfaces have to be platform-independent
and vendor-independent. Therefore, the authors
proposed a method for designing these types of
user interfaces. The proposal was a design based
on the model and it applies a series of XSLT (Ex-
tensible Stylesheet Language Transformations)
model transformations to transform an abstract
interface model into a final user interface that is
coded on a specific platform. UsiXML was used
to model all the levels. A method for designing
Graphical RIAUIs is presented in Figure 12.

Different technologies based on this model
were proposed. Furthermore, this approach at-
omizes the translation of user interfaces defined

in UsiXML into documents with XAML XSL.
These are transformations that are carried out in
a preliminary evaluation. The authors are com-
piling a repository of all the components defined
in XAML in order to complete the translation of
XSLT in a Java-based implementation prototype
called RIAZML but this is in an early stage of
development.

3.9. Pattern Libraries

The pattern library is based on the work from
the internal pattern library with a number of new
patterns created to express the rich interaction of
Ajax style applications (Scott, 2009). The anatomy
of a RIA pattern is shown in Figure 13.

Patterns described in the book of Mahemoff
(Mahemoff, 2006) are just a concise way to rep-

Figure 12. Method for designing graphical RIAUIs

52

Software Development Methodologies for Traditional Web Applications and RIAs

resent the knowledge embodied in Ajax-based
applications. The point is to discover best practices
by investigating how developers have successfully
traded off conflicting design principles. Ajax is
all about usability, so the patterns are particularly
focused on delivering usability in the face of
constraints, most notably: user capabilities and
expectations, bandwidth limits, the stateless nature
of HTTP, the complexity of JavaScript.

3.10. UWE Patterns

Desing Patterns have been proved for efficient RIA
programming (Mahemoff, 2006). UWE propose
to apply desing patterns at a higher abstraction
level, i.e. modeling, to achieve the objectives of
minimizing the design efforts and maximizing
the expressiveness of the models used on RIAs
development. The attention is focused on the use
of state machines for the representation of the
patterns – a widely used modeling technique.
UWE patterns are used to describe the behavior
of the RIA features; in contrast to the interaction
patterns introduced in (Valverde & Pastor, 2008)
that only model the structure of the pattern. The
models of the RIA patterns can be integrated in
almost all existing software development method-
ologies. In this sense, it is a general approach for
all UML methods. The use of these RIA patterns
only requires the definition of extension points in
the methodology, and afterwards the specification
of how to integrate them in a language such as
UWE, which makes them easily reusable (Preciado
et al., 2008).

3.11. PPRD: Phases Process for
RIAs Design and Development

Alor-Hernandez et al. (Alor-Hernandez et al.,
2012) proposed a Phases Process RIAs Devel-
opment called PPRD. PPRD is a development
process to build RIAs that it allows only focusing
in main activities to transform user requirements
into a software product through six phases which
are shown below.

1. Requirements Identification: This phase
involves gathering requirements and it is
expressed by the user to obtain a document
with a set of user requirements.

2. Requirements Analysis: The objective of
this phase is finding and representing the
real requirements a through UML use case
diagrams and UML activities diagrams to
the people involved in the development such
as users, customers and developers.

3. Application Architecture Definition: It is
important to define the platform on which
the application will run in order to obtain
a set of information technologies through
which the development will be done.

4. Conceptual Model: This phase identifies
the objects involved among users and the ap-
plication objects that jointly execute various
features. In order to obtain the conceptual
model is necessary to analyze the result of the
last phases to generate UML class diagrams
that represent the objects, their properties
and attributes, as well as associations among
classes.

Figure 13. Anatomy of a RIA pattern

53

Software Development Methodologies for Traditional Web Applications and RIAs

5. Navigation Model: Navigational model is
represented by UML class diagrams showing
the nodes and existing links in the naviga-
tion structure. A node represents a view, a
component or element of presentation; the
association represents a link between nodes,
to display or to process information.

6. Presentation Model: This phase is intended
to express, through the use of ADVs, in-
terfaces that allow interaction between the
user and application. When this phase has
finished, a set of ADVs is obtained. An ADV
indicates the necessary objects in an inter-
face, its states, behaviors and interactions
with other objects (Rossi et al., 2008). The
particularity of this phase lies in the way of
designing an ADV.

The order of presentation of the previous phases
indicate the optimal order of the activities to be
performed in the initial design and development
of RIAs, but as an incremental and iterative de-
velopment process, it is possible to return to any
stage at any given time. PPRD process is described
in Figure 14.

An extension to the PPRD called PPMRD for
source code generation of multi-device RIAs is
proposed in (Colombo-Mendoza et al., 2011). As
a salient contribution, the proposal covers multi-
device applications in comparison with other
approaches where they are focused on software
modeling allowing the code generation in a semi-
automatically way. PPMRD extension process is
described in Figure 15.

The phases of PPMRD are described below.

Figure 14. Integration of the implementation phases in PPRD for source code generation of multi-device
RIAs

54

Software Development Methodologies for Traditional Web Applications and RIAs

1. Identifying the application type: In this
phase, the required type of multi-device RIA
is determined. Here, one of the following
kinds of RIAs is selected: Web browser-based
application, desktop application or applica-
tion for mobile devices. In the latter case,
also the target platform must be determined.
A Web browser-based RIA is a Web 2.0 ap-
plication that integrates desktop-like features
and it can be simply based on HTML and
JavaScript or on a RIA technology. A desk-
top RIA is a traditional desktop application
with an improved (enriched) GUI. A RIA for
mobile devices is a native mobile application
with an improved GUI. The architecture of
these applications commonly has a services
back-end which represents the business logic;
in fact, the use of cloud services is increas-
ingly common in the development of Web
2.0 applications.

2. Defining the required set of cloud services
APIs: The demand for RIA technologies is
driven by the increase in the development of
cloud services-based applications; therefore

cloud services APIs required to develop a
RIA are identified in this phase. It is pos-
sible to include 2 or more cloud services
APIs in the same RIA. Functions obtained
from cloud services APIs are independent
of each other. In this sense, each function
can be displayed as a widget. Widgets are
interactive elements that are created and
controlled through scripting.

3. Setting the application configuration: This
phase demands more effort from developer
for developing both desktop applications
and applications for mobile devices.

4. Creating the application folder structure:
In this phase, the application folder structure
is created and also the source code files are
generated. The use of a software components
repository is necessary in order to provide
source code files which can be reused ac-
cording to the application type identified
and the cloud APIs required.

5. Compiling the application: If applicable,
in this phase the application’s source code
shall be compiled into an executable code.

Figure 15. a) Integration of PPMRD in PPRD b) Phases of PPMRD

55

Software Development Methodologies for Traditional Web Applications and RIAs

For example, for compiling MXML files,
the AdobeTM Flex SDK application compiler
must be used in order to obtain the corre-
sponding SWF files. This compiler is invoked
using the mxmlc command-line tool. The
compilation syntax must contain the name
of the main MXML file and optionally can
contain a space-separated list of parameters,
like the library-path parameter which indi-
cates the path of the required SWC files. As
result of the application compilation, the
executable code files such as SWF files are
generated. SWF files run in a different way
depending on the type of application.

6. Running the application: In this phase,
the native code is generated and finally the
application is deployed on the target device.
To deploy Web-browser based applications,
application wrappers must be created if com-
piled files are SWF files, for example. An
application wrapper is a simple HTML or a
server-side Web page that embeds SWF files.
Once the wrapper was created, it is possible
to display the Web browser-based application
on any Web browser that integrates the re-
quired plugin like the Adobe Flash Player™
plugin. To deploy both desktop applications
and applications for mobile devices, an in-
stallation file must be created. Installation
files for mobile devices are commonly signed
using digital signing certificates either self-
signed certificates or certificates issued by
Certification Authorities (CAs).

4. CONCLUSION

There are many different software development
methodologies for RIA development, and given
the need of developing a methodology that would
cover all the needs of this type of application,
many researchers have worked on this topic, re-
sulting in a large number of proposals, some of
which have been very successful. Like with the

software development methodologies, there is also
a need to create CASE tools that permit the easy
development of RIAs, i.e., the development of
software development methodologies are the first
steps leading to the development of CASE tools.
These are very useful in software development as
they help to reduce both time and financial costs
and they facilitate software development. CASE
tools are aided in the development process, for
example in semi-automatic code generation, in
UML editors, or in version controls just to name a
few. Even though there is still much to be achieved
on RIAs development, some researchers are pre-
senting very interesting proposals to develop this
type of application.

REFERENCES

Alor-Hernandez, G., Hernandez-Carrillo, V. M.,
Ambros-Antemate, J. F., & Martinez-Nieves, L.
A. (2012). Improving the Shopping Experience
in B2C E-Commerce Systems using Rich Internet
Applications. In K. Rezaul (Ed.), Strategic and
Pragmatic E-Business: Implications for Future
Business Practices (pp. 72–99). Academic Press.
doi:10.4018/978-1-4666-1619-6.ch004

Baresi, L., Garzotto, F., & Paolini, P. (2001). Ex-
tending UML for Modeling Web Applications. In
Proceedings of the 34th Annual Hawaii Interna-
tional Conference on System Sciences. IEEE Com-
put. Soc. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=926350

Bieber, M., Galnares, R., & Lu, Q. (1998). Web
Engineering and Flexible Hypermedia. In P.
Brusilovksy & P. De Bra (Eds.), Proceedings of
the 2nd Workshop on Adaptive Hypertext and
Hypermedia Hypertext 98. Retrieved from http://
wwwis.win.tue.nl/ah98/Bieber.html

Booch, G., Rumbaugh, J., & Jacobson, I. (1999).
The Unified Modeling Language User Guide.
Addison-Wesley.

http://dx.doi.org/10.4018/978-1-4666-1619-6.ch004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=926350
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=926350
http://wwwis.win.tue.nl/ah98/Bieber.html
http://wwwis.win.tue.nl/ah98/Bieber.html

56

Software Development Methodologies for Traditional Web Applications and RIAs

Bozzon, A., Comai, S., Fraternali, P., & Carughi,
G. (2006). Conceptual modeling and code genera-
tion for rich internet applications. In Proceedings
of the 6th International Conference on Web Engi-
neering. ACM. Retrieved from http://discovery.
ucl.ac.uk/1334175/

Brambilla, M., Preciado, J. C., Linaje, M., & San-
chez-Figueroa, F. (2008). Business Process-Based
Conceptual Design of Rich Internet Applications.
In Proceedings of 2008 Eighth International
Conference on Web Engineering (pp. 155-161).
IEEE. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4577879

Brisaboa, N. R., Penabad, M. R., Places, A. S., &
Rodriguez, F. J. (2002). A documental database
query language. Advances in Databases, 2405,
242–245.

Busch, M., & Koch, M. (2009). State of the art.
Rich Internet Applications (Technical Report
0902). Academic Press.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M.,
Comai, S., & Matera, M. (2002). Designing Data-
Intensive Web Applications. Database. Morgan
Kaufmann Publishers Inc. Retrieved from http://
www.amazon.com/dp/1558608435

Colombo-Mendoza, L. O., Alor-Hernandez, G., &
Rodríguez-González, A. (2011). An Extension to
PPRD for Source Code Generation of Multi-device
RIAs. Paper presented at the International Confer-
ence on Computers and Advanced Technology in
Education. New York, NY.

Detroyer, O., & Leune, C. (1998). WSDM: A user
centered design method for Web sites. Computer
Networks and ISDN Systems, 30(1-7), 85-94.
Retrieved from http://linkinghub.elsevier.com/
retrieve/pii/S0169755298000427

Dolog, P., & Stage, J. (2007). Designing In-
teraction Spaces for Rich Internet Applica-
tions with UML. Techniques, 4607, 358-363.
Retrieved from http://www.springerlink.com/
index/10.1007/978-3-540-73597-7

Escalona, M., & Koch, N. (2004). Requirements
Engineering for Web Applications – A Compara-
tive Study. Journal of Web Engineering, 2(3), 193-
212. Citeseer. Retrieved from http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.153.597
4&rep=rep1&type=pdf

Escalona, M. J., Torres, J., & Mejías, M. (2002).
Requirements Capture Workflow in Global
Information Systems. In Proceedings of OOIS.
Springer-Verlag. doi:10.1007/3-540-46102-7_31

Garzotto, F., Paolini, P., & Schwabe, D.
(1993). HDM - A model-based approach to
hypermedia applications design. ACM Trans-
actions on Information Systems, 11(1), 1–23.
doi:10.1145/151480.151483

Hennicker, R., & Koch, N. (2000). A UML-based
methodology for hypermedia design. In Proceed-
ings of the 3rd international conference on The
unified modeling language advancing the stan-
dard (Vol. 1939, pp. 410-424). Springer-Verlag.
Retrieved from http://portal.acm.org/citation.cfm
?id=1765218&dl=GUIDE&coll=GUIDE

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The Unified Software Development Process.
Addison-Wesley.

Koch, N., & Wirsing, M. (2001). Software engi-
neering for adaptive hypermedia applications. Ph
Thesis FAST Reihe Softwaretechnik, 12. Retrieved
from http://citeseerx.ist.psu.edu/viewdoc/downl
oad?doi=10.1.1.24.4017&rep=rep1&type=pdf

http://discovery.ucl.ac.uk/1334175/
http://discovery.ucl.ac.uk/1334175/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577879
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577879
http://www.amazon.com/dp/1558608435
http://www.amazon.com/dp/1558608435
http://linkinghub.elsevier.com/retrieve/pii/S0169755298000427
http://linkinghub.elsevier.com/retrieve/pii/S0169755298000427
http://www.springerlink.com/index/10.1007/978-3-540-73597-7
http://www.springerlink.com/index/10.1007/978-3-540-73597-7
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.5974&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.5974&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.5974&rep=rep1&type=pdf
http://dx.doi.org/10.1007/3-540-46102-7_31
http://dx.doi.org/10.1145/151480.151483
http://portal.acm.org/citation.cfm?id=1765218&dl=GUIDE&coll=GUIDE
http://portal.acm.org/citation.cfm?id=1765218&dl=GUIDE&coll=GUIDE
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4017&rep=rep1&type=pdf

57

Software Development Methodologies for Traditional Web Applications and RIAs

Lee, H., Lee, C., & Yoo, C. (1998). A scenario-
based object-oriented methodology for developing
hypermedia information systems. In Proceedings
of the ThirtyFirst Hawaii International Conference
on System Sciences, (pp. 47-56). IEEE Comput.
Soc. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=651682

Lowe, D., & Eklund, J. (2002). Client Needs
and the Design Process in Web Projects. Paper
presented at the Web Engineering Track of the
WWW2002 Conference. New York, NY.

Machado, L., Filho, O., & Ribeiro, J. (2009). UWE-
R: An extension to a web engineering methodology
for rich internet applications. WSEAS Transactions
on Information Science and Applications, 6(4), 9.

Mahemoff, M. (2006). Ajax Design Patterns.
O’Reilly.

Martinez-ruiz, F., Arteaga, J., Vanderdonckt, J.,
Gonzalez-calleros, J., & Mendoza, R. (2006). A
first draft of a Model-driven Method for Design-
ing Graphical User Interfaces of Rich Internet
Applications. In Proceedings of 2006 Fourth
Latin American Web Congress, (pp. 32-38). IEEE.
Retrieved from http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4022089

Meliá, S., Gómez, J., Pérez, S., & Díaz, O. (2008).
A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In
Proceedings of 2008 Eighth International Con-
ference on Web Engineering, (pp. 13-23). IEEE.
Retrieved from http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4577865

Olsina, L. (1998). Building a Web-based Infor-
mation System applying the Hypermedia Flexible
ProcessModeling Strategy. Paper presented at
the 1st International Workshop on Hypermedia
Development, Hypertext´98. Pittsburgh, PA.

Preciado, J. C., Linaje, M., Comai, S., & Sanchez-
Figueroa, F. (2007). Designing Rich Internet Ap-
plications with Web Engineering Methodologies.
In Proceedings of 2007 9th IEEE International
Workshop on Web Site Evolution, (pp. 23-30).
IEEE. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4380240

Preciado, J. C., Linaje, M., Morales-Chaparro,
R., Sanchez-Figueroa, F., Zhang, G., Kroiß, C.,
& Koch, N. (2008). Designing Rich Internet Ap-
plications Combining UWE and RUX-Method.
In Proceedings of 2008 Eighth International
Conference on Web Engineering, (pp. 148-154).
IEEE. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4577878

Preciado, J. C., Linaje, M., Sanchez, F., & Comai,
S. (2005). Necessity of methodologies to model
Rich Internet Applications. In Proceedings of
Seventh IEEE International Symposium on Web
Site Evolution, (pp. 7-13). IEEE. Retrieved from
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1517975

Rossi, G., Urbieta, M., Ginzburg, J., Distante, D.,
& Garrido, A. (2008). Refactoring to Rich Internet
Applications. A Model-Driven Approach. In Pro-
ceedings of 2008 Eighth International Conference
on Web Engineering, (pp. 1-12). IEEE. Retrieved
from http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4577864

Schwabe, D., & Rossi, G. (1998). Developing Hy-
permedia Applications using OOHDM. Methodol-
ogy, 98, 1-20. Retrieved from http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.40.4780

Scott, B. (2009). RIA Patterns. Best Practices
for Common Patterns of Rich Interaction. Re-
trieved from http://www.uxmatters.com/mt/
archives/2007/03/

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=651682
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=651682
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4022089
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4022089
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577865
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577865
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4380240
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4380240
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1517975
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1517975
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577864
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577864
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.4780
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.4780
http://www.uxmatters.com/mt/archives/2007/03/
http://www.uxmatters.com/mt/archives/2007/03/

58

Software Development Methodologies for Traditional Web Applications and RIAs

Urbieta, M., Rossi, G., Ginzburg, J., & Schwabe,
D. (2007). Designing the Interface of Rich Internet
Applications. In Proceedings of 2007 Latin Ameri-
can Web Conference LAWEB 2007, (pp. 144-153).
IEEE. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4383169

Valverde, F., & Pastor, O. (2008). Applying
Interaction Patterns: Towards a Model-Driven
Approach for Rich Internet Applications De-
velopment Francisco Valverde, Oscar Pastor. In
Proceedings of IWWOST (pp. 13-18). Retrieved
from http://icwe2008.webengineering.org/
program/workshops/isbn978-80-227-2899-7/
icwe2008ws-cd/individual-files/02icwe2008ws-
iwwost02-valverde.pdf

Vilain, P., Schwabe, D., & Souza, C. S. D.
(2000). A Diagrammatic Tool for Representing
User Interaction in UML. Lecture, 133-147. Re-
trieved from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.32.4062

Yourdon, E. (1989). Modern Structured Analysis.
Prentice-Hall.

ADDITIONAL READING

Homeria Open Solutions. (n.d.a). RUX-Tool. Re-
trieved from http://www.homeria.com/#!/page16.
do?kcond367.att3=33&kcond25.att3=33

Homeria Open Solutions. (n.d.b). Homeria
Open Solutions S.L. Retrieved from http://www.
homeria.com/

Homeria Open Solutions. (n.d.c). WebRatio. Re-
trieved from http://www.homeria.com/#!/page16.
do?kcond367.att3=32&kcond25.att3=32

WebRatio. (n.d.). WebRatio. Retrieved from
http://www.webratio.com/portal/content/es/hom
e;jsessionid=3FC6937BF069B713FC8400F3E
B6C7FC0

KEY TERMS AND DEFINITIONS

Methodology: A set of methods to be used for
a particular purpose to conduct a study or activity.

Software Development Methodologies:
Methodologies that are used to structure, plan,
and control the process of software development.

Software Development Methodologies for
RIAs: Methodologies that are used in the RIAs
development such as RUX Method, OOH4RIA,
and UWE-R.

Software Development Methodologies for
Traditional Web Applications: Methodologies
that are used in the traditional Web applications
development such as UWE, WebML, and OOHDM.

Software Engineering: The study and applica-
tion of engineering to the design, development,
and maintenance of software.

Traditional Methodologies: Methodologies
that are used in the traditional software develop-
ment such as RUP, Scrum, and XP.

Traditional Web Applications: These are
software applications which are displayed in a
Web browser, and in which each user interaction
with the application means fully recharge the
application to display the updated information.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4383169
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4383169
http://icwe2008.webengineering.org/program/workshops/isbn978-80-227-2899-7/icwe2008ws-cd/individual-files/02icwe2008ws-iwwost02-valverde.pdf
http://icwe2008.webengineering.org/program/workshops/isbn978-80-227-2899-7/icwe2008ws-cd/individual-files/02icwe2008ws-iwwost02-valverde.pdf
http://icwe2008.webengineering.org/program/workshops/isbn978-80-227-2899-7/icwe2008ws-cd/individual-files/02icwe2008ws-iwwost02-valverde.pdf
http://icwe2008.webengineering.org/program/workshops/isbn978-80-227-2899-7/icwe2008ws-cd/individual-files/02icwe2008ws-iwwost02-valverde.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.4062
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.4062
http://www.homeria.com/#!/page16.do?kcond367.att3=33&kcond25.att3=33
http://www.homeria.com/#!/page16.do?kcond367.att3=33&kcond25.att3=33
http://www.homeria.com/
http://www.homeria.com/
http://www.homeria.com/#!/page16.do?kcond367.att3=32&kcond25.att3=32
http://www.homeria.com/#!/page16.do?kcond367.att3=32&kcond25.att3=32
http://www.webratio.com/portal/content/es/home;jsessionid=3FC6937BF069B713FC8400F3EB6C7FC0
http://www.webratio.com/portal/content/es/home;jsessionid=3FC6937BF069B713FC8400F3EB6C7FC0
http://www.webratio.com/portal/content/es/home;jsessionid=3FC6937BF069B713FC8400F3EB6C7FC0

59

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

DOI: 10.4018/978-1-4666-6437-1.ch004

Important Factors on
RIAs Development

ABSTRACT

Chapter 4 discusses some software quality metrics such as usability, scalability, and reusability of RIAs
development. The chapter describes the importance of using multimedia content and UI (User Interface)
patterns not only for improving the appearance of RIAs but also for delivering rich user experiences.
Likewise, this chapter depicts the importance of leveraging AOP (Aspect-Oriented Programming) ca-
pabilities and implementing design patterns to ease the RIAs maintenance and enable RIAs reusability.
In this chapter, four concepts about Web development and RIAs development were selected. These con-
cepts are Multimedia Support, AOP Support, Design Patterns Support, and UI Pattern Support and are
described in detail in this chapter.

1. INTRODUCTION

Clearly, the use of RIAs (Rich Internet Applica-
tion) provides several advantages. Users’ experi-
ence in the use of applications is improved since
RIAs applications are very easy to use. Moreover,
Rich Internet Applications also offer ameliorations
in terms of connectivity, instant display of the
applications, and access speed. However, one of
the most remarkable characteristics of RIAs is the
fact that installation is not required. RIAs merely
require refreshing the browser so that applications
are automatically updated to new versions. In
comparison with the use of executable programs,
this characteristic greatly diminishes the risk in
computers of being infected by viruses. Finally,

RIAs also cater for a better capacity of response,
since users are able to interact with the information
without reloading the website. Currently, several
companies – such as FlickrTM or GmailTM –are
focusing on RIAs development.

There exist four highly important aspects of
RIAS. These aspects are:

• Scalability: Scalability is a complex con-
cept to define in the field of computer
systems. It basically refers to a system’s
ability to grow and be adapted to changes.
Nowadays, it is important to consider the
scalability of systems. This would permit
to forsee and be prepared for any eventu-
al change in any system. The use of AOP

60

Important Factors on RIAs Development

(Aspect-Oriented Programming) provides
remarkable benefits in terms of scalability,
since AOP is a type of programming which
facilitates the introduction of new func-
tionalities and modifications into already-
developed systems.

• Usability: In terms of computing, usabil-
ity refers to the ease with which people are
able to interact with software systems; it in-
volves concepts of HCI (Human-Computer
Interaction). In order to achieve usability,
the systems designed must facilitate the ex-
change of information between machines
and people. One way of promoting this
kind of information exchange is through
efficient and easy-to-use User Interfaces
(UIs). These types of interfaces are devel-
oped using User Interfaces Patterns (UI-
Patterns) that favor friendly UIs and, there-
fore, improve the usability of both software
systems and RIAs.

• Support for Different Types of Contents:
The content of a RIA refers to informa-
tion that is directly provided to the user
and contains the message to be transmit-
ted. Therefore, support for different kind
of contents is of great importance in RIAs
development. Contents can range from
text, images, videos, or animations, among
others. Multimedia contents are so impor-
tant today that several websites exclusively
dedicate to the transmission of this kind of
content. For instance, Youtube™ focuses
on video transmission, while Flickr™ is
a website for image hosting, sharing, and
posting. Although multimedia content may
be varied, videos remain the most popular
since they can include images, text, audio,
and animations, which are also other forms
of multimedia content.

• Reusability: As it name suggests, the con-
cept refers to the ability to reutilize one part
of a software system in order to use it dif-
ferently within the same system, or build a

new system. A quite straightforward way to
implement reusability in RIAs is through
the use of design patterns. In fact, some de-
sign patterns rely on reusability by default.
For instance, Façade is a pattern whereby
information can be differently presented
merely by switching the interfaces and re-
using functionalities. This is particularly
useful in graphic design.

These four aspects are remarkably important
for RIA’s development. They provide RIAs a
better appearance and offer new functionalities,
such as a more efficient capacity of response and
interactivity.

The present chapter describes each of the four
concepts abovementioned; both their importance
and usage are explained.

2. MULTIMEDIA SUPPORT ON RIAS

Integration of multimedia content is currently a
key issue in the development of traditional Web
applications, and consequently in Rich Internet
Applications development. Multimedia refers to
the “diffusion of information in more than one
way, including the use of text, audio, graphics,
animated graphics, and video” (Freedman, 1999).
According to this definition, multimedia involves
different types of information; however, videos are
the most used type of content since it can include
other types of information such as images, audio,
and text.

Etymologically, the word multimedia means
“multiple media,” and in terms of of information
technology, it refers to the existence of “multiple
intermediaries between the source and the destina-
tion of the information, that is, that various means
are used to store, transmit, display or receive infor-
mation”. In other words, multimedia refers to any
combination of text, audio, and images. From this
perspective, a television or a newspaper would be
considered a multimedia device. However, in the

61

Important Factors on RIAs Development

case of RIAs, the appropriate term for multimedia
is digital multimedia, which can be defined as
“the digital integration of text, graphics, images,
video, animation, audio and any other means into
a computer system”. The common support for
this type of media is the electronic type, where
a computer system is responsible of generating
the presentation of the information in a correct

Multimedia content is very important for RIAs.
It provides richest content to Web applications by
presenting information in a more dynamic and
entertaining way. Some examples pf multimedia
contents are videos and image galleries, to men-
tion a few. The use of image galleries enhances
the ability to customize views on the fly, and it
provides real-time visual representations of a
selected item. An image gallery on a website is
a collection of images or photos uploaded to a
website and available for website visitors to view.
This term originally emerged from the term “gal-
lery” which first referred to a narrow passageway
on a ship joining rooms similar to corridors. In
an image gallery, this passageway is provided
by using buttons, lists, and comboBoxes, among
others; although the most popular are the buttons.
The Forward and Back buttons in a gallery manu-
ally allow the passageway of the images. Also,
other functionalities such as start, stop, close or
hide can be provided by using buttons. In some
cases, it is possible to enlarge the image by us-
ing a lightbox component. This component helps

not to lose the focus of application’s main page.
Therefore, when users desire to access the image
gallery, the lightbox component is deployed. On
the other hand, when users desire to quit the im-
age gallery, the lightbox component is closed and
users are returned to the page on which they were
previously. An example of this kind of gallery is
presented in Figure 1.

The image file format support in a photo/image
gallery is an important aspect to be considered.
Some of the most popular image file formats are
described in Table 1

Video playback is another very important and
oustanding multimedia content in RIAs develop-
ment. It is imperative to mention that video formats
involve two different technology concepts: con-
tainers (sometimes called wrappers) and codecs
(short for coder/decoder). Codecs are used inside
a container and for this reason video formats can
be mistaken. The container describes the file
structure: where the various pieces are stored,
the way they are interleaved, and which codecs
are used by which pieces. It may specify an audio
codec as well as video. It is used to package the
video and its components (audio/metadata) and
is identified (usually) by a file extension such as
.AVI, .MP4 or .MOV, among some others. A codec
(short for “coder/decoder”) is a way of encoding
audio or video into a stream of bytes. It is the
method used to encode the video. It can also be

Figure 1. Image gallery example

62

Important Factors on RIAs Development

said that the container is the file itself, while the
codec is the content.

It is worth mentioning that the video file
format (codecs and containers) support in a Web
component is an important aspect to be consid-
ered. Some of the most popular containers are
described in Table 2.

Some of the most popular codecs are described
in Table 3.

Videos are the most used type of content in
RIAs development, since it can cover other types
of information such as images, audio, and text.
For this reason, it is noteworthy to mention the

Table 1. Compressed Image file formats (Miano, 1999)

Format Description

BMP (BMP means Bitmap
file format)

Windows BMP is the native image format in Microsof™t Windows™ operating systems. It supports
images with 1, 4, 8, 16, 24, and 32 bits per pixel; although BMP files using 16 and 32 bits per pixel are
rare. BMP also supports simple run-length compression for 4 and 8 bits per pixel.

JPEG (JPEG stands
for Joint Photographic
Experts Group)

JPEG has become the most commonly used format for storing photographic images. The power of
the JPEG format is that, for photographic images, it provides the greatest compression of any bitmap
format in common use. A photograph that takes 1 MB to store in a Windows BMP file can usually be
compressed down to 50 KB with JPEG. Although JPEG is computationally intensive, its outstanding
compression generally outweighs the processing required.

GIF (GIF stands for
Graphics Interchange
Format)

The main features of GIF are:
• Up to 256 colors using 1 to 8 bits per pixel
• Multiple images per file
Due to its better compression and greater color depth, JPEG has generally replaced GIF for photographic
images. Yet, GIF is used for other applications; but legal entanglements have certainly condemned it to
obsolescence.
A GIF file consists of a fixed area at the start of the file followed by a variable number of blocks and
ending with an image trailer.

PNG (PNG stands
for Portable Network
Graphics)

The PNG format uses a lossless compression process and supports:
• Up to 48 bits per pixel in color images
• 1-, 2-, 4-, 8-, and 16-bit sample precision
• Alpha channel for full control of transparency
• Sophisticated color matching
Due to the use of the legal issues surrounding the use of GIF, PNG is now used instead of GIF in those
applications where GIF is not a suitable alternative.

Table 2. Most Common Containers for Video (Buchanan, 2013)

Format Description

AVI (AVI stands for Audio
Video Interleave)

A Windows standard multimedia container

MPEG‐4 Part 14
(known as .mp4)

It is the standardized container for MPEG--‐4.

FLV (FLV stands for Flash
Video)

It refers to the format used to deliver MPEG video through Flash Player.

MOV Apple’s QuickTime container format

VOB (VOB means DVD
Video Object)

It is DVD’s standard container.

ASF (ASF stands for
Advanced Systems
Format)

A Microsoft format designed for WMV and WMA.

63

Important Factors on RIAs Development

video file formats that exist, as well as the way
they can be used on Web applications.

Videos are used in well-known video playback
websites. One of the most important websites
for video playback is YouTube™. YouTube™
is a website where users can upload and share
videos, and its popularity has considerably
grown during the last years. It is known by a lot
of people around the world. The YouTube™’s
success is based on three factors: 1) it is free, 2)
it is easy to handle, and 3) it is social. With these
three premises, YouTube™ has become the most
visited website for video playback around the
world. Vimeo™ is another website that clearly
exemplifies the success of sharing multimedia
content over the Web. It is an online community
that permits sharing videos worldwide. From
this perspective, Vimeo™ is very similar to You-
Tube™; however, unlike YouTube™, Vimeo™
provides option for downloading videos to the
user’s computer. One disadvantage of Vimeo™
is that some videos can be merely played using
the most recent version of the QuickTime™ video
player. Furthermore, Vimeo™ does not permit the

use of the RSS syndication format for retrieving
new video entries. Another website for video
playback is VideoEgg™. VideoEgg™ is a video
publishing system which translates any media file
into a single format of compression and playback.
The main advantage of VideoEgg™ is that it
makes all formats compatible. Therefore, users
do not need to download various video players
to watch the videos, or worry about the various
file formats in which these videos were recorded.
Yashi™ and VSocial™ are two examples of new
websites to host videos. These websites accept
more compression formats than other websites
for video playback.

Another website for video playback is Netf-
lix™. It is a video platform that offers a completely
legal exchange in streaming movies and TV shows
for a monthly subscription fee. Nowadays, NetFlix
has around 15 million subscribers offline and
online in U.S. and Canada. To understand the size
of Netflix™, statistics of Internet traffic in U.S.
in 2011 indicated that around 21% of download
traffic (from the suppliers to the final customer)
was consumed by Netflix™ protocols. Only the

Table 3. Most Common Codecs for Video (Buchanan, 2013)

Format Description

MPEG (MPEG stands for
Moving Pictures Expert
Group)

Three video formats, MPEG 1, 2, and 4.
• MPEG-1: Old, supported by everything (at least up to 352x240), and reasonably efficient.
• MPEG-2: A version of MPEG--‐1, with better compression. 720x480. It is Used in HDTV (High-
definition television), DVD, and SVCD (Super Video Compact Disc).
• MPEG-4: A family of codecs, some of which are open source, others Microsoft™ proprietary.

H.264 Most commonly used codecs for videos uploaded to the web. It is part of the MPEG--‐4 codec.

MJPEG
(MPEG stands for Motion
JPEG)

This codec consists of a stream of JPEG images. It is common in video files from digital cameras and it is
a reasonable format for editing videos. However, it does not compress well, which is why it is not suitable
for Web distribution.

DV (DV stands for Digital
Video)

It is usually used for video grabbed via firewire off a video camera. It is fixed at 720x480 @ 29.97FPS, or
720x576 @ 25 FPS. It is not very highly compressed.

WMV (WMV stands for
Windows Media Video)

A collection of Microsoft proprietary video codecs. Since version 7, WMV has used a special version of
MPEG4.

RM (RM stands for Real
Media)

A closed codec developed by Real Networks for streaming video and audio

DivX In early versions, essentially an ASF (incomplete early MPEG--‐4) codec inside an AVI container; DivX
4 and later are a fuller MPEG--‐4 codec…no resolution limit.

Quicktime™ 6 Apple’s implementation of an MPEG4 codec.

64

Important Factors on RIAs Development

HTTP protocol in U.S. was able to overcome the
download traffic of Netflix™. In 2012 Netflix™
video streaming was the single largest source of
peak downstream Internet traffic in the U.S., ac-
cording to a new report by Sandvine. The stream-
ing video service now accounts for 29.7% of peak
downstream traffic, up from 21 percent in 2011
(Sandvine, 2012).

The aforementioned websites clearly depict the
importance of multimedia content in Web applica-
tions, particularly on Rich Internet Applications.
Nowadays, not only the websites dedicated to video
playback use video players on their Web pages,
but also many developers integrate video players
or multimedia content into their applications with
the purpose of attracting users and making these
Web applications more interactive.

3. ASPECT-ORIENTED
PROGRAMMING (AOP)
SUPPORT ON RIAS

Object-Oriented Programming (OOP) proved to
be a well-established and modern technology to
model real domain problems. Some problems de-
mand difficult design decisions as their nature do
not fit well the OOP approach. The programming
technique of Aspect-Oriented Programming sup-
ports the problem nature of cross-cutting concerns
as an extension to OOP. The AOP describes a
development methodology for separating cross-
cutting concerns during software development
(Kiczales, Lamping, Mendhekar, Maeda, Lopes,
Loingtier & Irwin, 1997). In contrast to Object-
oriented programming, where the common func-
tionality is pushed up in the hierarchy tree, AOP
separately defines such aspects and uses an AOP
environment to manage the correct composition
to a single executable program (Elrad, Filman &
Bader, 2001).

Diverse works have been proposed to give
support to this paradigm in combination with

other features of software engineering. Some of
the most important works are mentioned below.

In (Heo & Choi, 2006) Aspect-Oriented Pro-
gramming has been introduced as the method
to improve the assembling process in software
product line. The method that assembles core
asset and variabilities was described by grammar
elements such as Join point, pointcut, and advice
without code-change. In other work (Kwanwoo,
Botterweck & Thiel, 2009), authors mentioned that
Aspect-Oriented Programming provides effective
means for modularizing feature implementation.
Furthermore, current AOP tools were discussed
in order to provide a mechanism for switching
aspect modules on and off to configure a product.
The conclusion was this becomes infeasible in the
context of large-scale product lines with thousands
of variations. In (Tahir & Ahmad, 2010) the authors
analyzed that the AOP is a promising technology
that is used today to add cross-cutting concerns to
software applications. AOP can be used to trans-
parently instrument the code at compile-time. This
research suggests AOP as a new technique that
can be used for collecting software maintainability
dynamic metrics data. Therefore, an AOP-based
framework for collecting dynamic metrics has
been designed and implemented, and finally, it
has been evaluated. The evaluation results showed
that the framework is a reasonable approach for
collecting a maintainability dynamic metrics. In
(Zhou, Ji, Zhao & Liu, 2010) authors proposed
an AOP approach to ensure that the interactions
among components are strictly conformed to the
sated API usage policies of the components. Also,
by using AOP can separate the constraints viola-
tion checking code from the normal functional
code via the so called aspects, thus improving
the software quality by separation of concern.
Experiments showed that using AspectJ as the
AOP implementation technique, the performance
is comparable to the non-embedded code. In other
work (Chen, Lin & Cheng, 2012) the authors
described COCA (COCA stands for Computa-
tion Offload to Clouds using AOP). COCA is a

65

Important Factors on RIAs Development

programming framework that allows smart phones
applications developers to easily offload part of the
computation to servers in the cloud. COCA works
at the source level. By harnessing the power of
AOP, COCA inserts appropriate offloading code
into the source code of the target application based
on the result of static and dynamic profiling. As
a proof of concept, the authors integrated COCA
into the Android development environment and
fully automate the new build process, making ap-
plication programming and software maintenance
easier. With COCA, mobile applications can now
automatically offload part of the computation
to the cloud, achieving better performance and
longer battery life.

The AOP has been few used in Web engineer-
ing; however, in recent years, a few frameworks
have been extended in several ways in order to
provide the necessary support to implement this
new paradigm. The AOP is a “method of imple-
mentation in which programs are organized into
components, features, and specifications of quan-
tification to permit the realization of the system”
(Juárez Martínez, 2008).

The AOP allows the implementation of certain
concepts relevant to the performance of a system.
The methodology of the AOP for the development
of aspect-oriented systems is performed similarly
to other methodologies (Czarnecki, 1999) (Lad-
dad, 2003). The principal purpose is to satisfy
system requirements or, more generally, concerns.
A concern is something of interest to those involved
in a software project, considering more than a
requirement, some piece of code or some concept
(Clarke & Baniassad, 2005) (Jacobson & Ng,
2005). To better understand the main functionality
of AOP, this programming paradigm is explained
in terms of performance. From this perspective,
when a program source code is modified in order
to enable certain functionality, a high risk of failure
arises. In the worst of the cases, the program will
stop working. Applying the AOP ensures that the
source code remains intact and does not lose its
core functionality. Therefore, new functionality

is added, while the functionality that is already
working is not changed.

In synthesis, the AOP allows to add new func-
tionalities to applications. In the case of RIAs, AOP
allows adding new features to Web applications
without changing the original source code. For
instance, when a legacy application requires of an
authentication method, it is possible to develop a
separate method using AOP and without changing
the original structure of the application. Another
example of the use of AOP is when an applica-
tion requires additional modules, such as reports
generation and information to be displayed in a
graphical way. In this case, let us suppose that
the legacy application does not include these
modules. For this reason, the modules need to be
separately developed and then some AOP tech-
niques can be introduced in order to incorporate
these capabilities.

Usability is most often defined as the ease of
use and acceptability of a system for a particular
class of users carrying out specific tasks in a spe-
cific environment. Whereas ease of use affects the
end users’ performance and satisfaction, accept-
ability affects whether the product is used or not.
One of the basic lessons in HCI is that usability
must be considered before prototyping take place.
The earlier critical design flaws are detected, the
more likely they can be corrected. Thus, User
Interface design should more properly be called
User Interface development, analogous to software
development, since design usually focuses on the
synthesis stages, and user interface components
include metaphors, mental models, navigation,
interaction, appearance, and usability (Holzinger,
2005). Still, the process of usability engineering
and its iterative approach is often costly and time
consuming. Hence, using automation to decrease
time and costs of usability evaluations directly
impacts on the economic success of products. The
process of usability evaluation can described by
the following activities: (1) Capture: collecting
usability data, (2) Analysis: interpreting usability
data; and (3) Critique: suggesting solutions. Using

66

Important Factors on RIAs Development

AOP the “capture” phase is directly influenced
as the effort to collect information can be drasti-
cally reduced, while the quality of usability data
can be increased and easily customized (Ivory &
Hearst, 2001).

Authorization, Caching, Communication,
Configuration Management, Exceptions Manage-
ment, State Management, and Validation represent
some other examples of how the AOP is useful
for RIAs development in order to introduce new
capabilities to RIAs and Web applications.

AOP extends the traditional Object Oriented
Programming model to improve code reuse across
different object hierarchies. The basic concept in
AOP is a concern, which is a common behavior
typically scattered across methods, classes, object
hierarchies, or even entire object models (jboss,
2013). AOP provides a solution for abstracting
crosscutting code that spans object hierarchies
without functional relevance to the code it spans.
Instead of embedding cross-cutting code in classes,
AOP allows to abstract the crosscutting code into
a separate module (known as an aspect) and then
apply the code dynamically where it is needed. A
dynamic application of the crosscutting code is
achieved by defining specific places (known as
pointcuts) in the object model where crosscutting
code should be applied. At runtime or compile time
– depending of an AOP framework – crosscutting
code is injected at the specified pointcuts. Essen-
tially, AOP permits introducing new functional-
ity into objects without the objects’ needing any
knowledge on that introduction (Ekabua, 2012).

AOP introduces some concepts. These con-
cepts are presented below (Laddad, 2003):

3.1. Crosscutting

The implementation of the weaving rules by the
compiler is called crosscutting. The weaving rules
cut across multiple modules in a systematic way
in order to modularize the crosscutting concerns.
There exist two types of crosscutting defined as
static and dynamic crosscutting.

1. Dynamic Crosscutting: Dynamic cross-
cutting is the weaving of new behavior
into the execution of a program. Dynamic
crosscutting augments or even replaces the
core program execution flow in a way that
crosscutting modulesmodifies the system’s
behavior.

2. Static Crosscutting: Static crosscutting
is the weaving of modifications into the
static structure—the classes, interfaces, and
aspects—of the system. Static crosscutting
by itself does not modify the execution
behavior of the system. The most common
function of static crosscutting is to support
the implementation of dynamic crosscutting.
For instance, add new data and methods
to classes and interfaces can be carried
out in order to define class-specific states
and behaviors that can be used in dynamic
crosscutting actions. Another use of static
crosscutting is to declare compile-time warn-
ings and errors across multiple modules.

3.1.1. Dynamic Crosscutting Elements

The elements involved in the dynamic Crosscut-
ting are three: join points, pointcuts, and advices.

1. Join Point: A join point is an identifiable
point in the execution of a program. It could
be a call to a method or an assignment to a
member of an object.

2. Pointcut: A pointcut is a program construct
that selects join points and collects context
at those points. For example, a pointcut can
select a join point that is a call to a method.
It could also capture the method’s context,
such as the target object on which the method
was called and the method’s arguments.

3. Advice: Advice is the code to be executed at
a join point that has been previously selected
by a pointcut. Advice can execute before,
after, or around the join point. Around advice
can modify the execution of the code that is

67

Important Factors on RIAs Development

at the join point; it can replace it, or it can
even bypass it. Using an advice a message
can be logged before executing the code at
certain join points that are spread across
several modules.

3.1.2. Static Crosscutting Elements

The elements of static crosscutting are introduc-
tions and compile- time declarations.

1. Introduction: The introduction is a static
crosscutting instruction that introduces
changes to the classes, interfaces, and aspects
of the system. It makes static changes to
the modules that do not directly affect their
behavior. For example, a method or field to
a class can be added.

2. Compile-Time Declarations: The compile-
time declaration is a static crosscutting
instruction that allows adding compile-time
warnings and errors upon detecting certain
usage patterns.

The aforementioned concepts are depicted in
Figure 2.

Figure 2 is a graphic representation of what
happens with the application code. It depicts

where the crosscuttings are located and how the
join points are identified. It also identifies what
modules are introduced, which are reusable and
which can be used in more than one place in the
same application.

To an extent, it is easy to implement new
fucntionalities or correct errors in applications
using AOP. Figure 2 represents an application in
which reusable modules can be identified. These
modules posses a specific/certain functionality and
can be integrated into a part of the application by
merely introducing it through a Join Point and a
Crosscutting.

4. DESIGN PATTERNS
SUPPORT ON RIAS

Design Patterns are widely used in software devel-
opment, as well as in Web applications develop-
ment. In this case, a design pattern facilitates the
solution to recurring problems, applying effective
solutions that were tested before.

A design pattern systematically names, motivates,
and explains a general design that addresses a
recurring problem in the design of object-oriented
systems. It describes the problem, the solution, in

Figure 2. AOP Representation

68

Important Factors on RIAs Development

the moment of applying the solution and its con-
sequences. The solution is a general agreement
of the objects and classes that solve the problem.
The solution is customized to solve the problem
in a particular context (Gamma, Helm, Johnson
& Vlissides, 1994).

Each pattern describes a problem that occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
so that you can use this solution a million times
more, without having to do it the same way twice
(Alexander, Ishikawa & Silverstein, 1977).

A well-known design pattern on Web appli-
cations development is the MVC (MVC Model-
View-Controller). The MVC pattern separates
the domain modeling, the presentation and the
actions based on the user input into three classes:
1) Model manages the behavior and data of the
application domain, responding to both requests
for information about its state (usually from the
view) and instructions to change state (usually from
the controller), 2) View manages the display of
information, 3) Controller interprets the mouse and
keyboard inputs from the user, informing the model
and/or the view to change as it is appropriate. It is
important to notice that both View and Controller
depend on Model. However, Model depends on
neither View nor Controller. This separation al-
lows Model to be built and tested independently
from the visual presentation. The separation be-
tween View and Controller is secondary in many
rich-client applications, and, in fact, many User
Interface frameworks implement the roles as one
object. In Web applications, on the other hand,
the separation between View (the browser) and
Controller (the server-side components handling
the HTTP request) is very well defined.

Model-View-Controller is a fundamental de-
sign pattern for the separation of user interface
logic from business logic. Unfortunately, the
popularity of the pattern has resulted in a num-
ber of faulty descriptions. Particularly, the term

“controller” has been used to stand for different
things in different contexts. Fortunately, the advent
of Web applications has helped resolve some of
the ambiguities, since the separation between the
view and the controller is so apparent.

The use of design patterns in software de-
velopment in remarkably important. There exist
several classifications of design patterns made by
different authors; however, all of them agree in the
importance of design patterns for the improvement
of the structure of the code that is being written.

Design patterns can be used in order to solve
different issues and they propose different objec-
tives. Some of these objectives are:

• Provide catalogs of reusable elements in
software development by taking into ac-
count that reusability is a higly important
aspect in the development of both software
and RIAs.

• Avoid reiteration when finding solutions to
already-known problems which have been
previously solved.

• Standardize the method for designing soft-
ware systems.

• Facilitating learning of new generations
of software designers by pre-existing
knowledge.

Similarly, design patterns do not attempt to:

• Impose some given desing alternatives
above others.

• Eliminate inherent creativity in the design
process of a software system.

It is not mandatory to use design patterns in
the design of software systems. Nevertheless, this
is a highly recommended option in cases where
the problem has not been solved yet, or when the
present problem is similar to another which has
already been solved by using design patterns.

In Software engineering, the design patterns
were classified by the GoF1 into three types:

69

Important Factors on RIAs Development

1) Creational patterns, 2) Structural patterns,
3) Behavioral patterns. The Table 4 provides a
high-level description of the twenty-three design
patterns described by the GoF.

Design patterns are important in software de-
velopment, as well as in the development of both
Web applications and RIAs. Design patterns are
applied in many ways in and in different aspects
of RIAs. A very clear example is the visualization
of information. For instance, let us assume that
that there is some information that needs to be
displayed on a RIA. Originally, this information
is shown on a tabular way; however, it is required
to show the same information differently. This is a
constant problem problem for which it is possible
to use a common solution. The best solution is
to apply design patterns to the same information
through different interfaces. In this particular
case, the Facade pattern can be used, and thus a
number of different interfaces without changing
the programming logic can be applied. This makes
possible to display some kind of information, such
as a pie chart or a bar chart, among others. In this
case, the behavior patterns are also an essential
part of RIAs, since these patterns focus on the
events, and RIAs are event-driven applications.

As it was previously mentioned, design patterns
are critical in RIAs development. One of the main
uses of the design patterns is to simplify the work
and, thus, offer a solution that had been previ-
ously tested and whichwas successfully applied
to a problem that manifests repeatedly In RIAs
development, various elements and components
are in common use. For instance, lighboxes and
progress bars, among other GUI (GUI stands for
Graphic User Interface) components are used
for solving problems in the same way that arise
every time. Therefore, if the design patterns are
implemented as functional solutions allow reduc-
ing both time and development costs, they also
simplify the developer’s work.

5. USER INTERFACE DESIGN
PATTERN (UI PATTERN)
SUPPORT ON RIAS

There is a need for better understanding and
improving the method for designing RIAs. The
appearance of Web applications is almost as
important as their functionalities. RIAs are a par-
ticular case since one of their main features is the
improved user experience. In this case, problems
of user interface design are common and repeat-
able in RIAs development, which is why interface
design patterns have been established.

The Interface Design Patterns are recurring solu-
tions to solve common design problems. Design
patterns are standard reference points of the
experience of the designer of the user interface
(Scott & Neil, 2009).

About User Interface Design Patterns, several
works have been proposed on different topics,
some of the most important are mentioned below.

First, an analysis to identify UI design patterns
in mobile devices - more specifically interaction
patterns - was presented by (Raj & Komaragiri,
2009). This analysis demonstrated that a proto-

Table 4. Classification of Design Patterns pro-
posed by GoF

Creational
Patterns

Structural
Patterns

Behavioral
Patterns

Abstract Factory Adapter Chain of
Responsibility

Builder Bridge Command

Factory Method Composite Interpreter

Prototype Decorator Iterator

Singleton Facade Memento

Flyweight Observer

Proxy State

Strategy

Template Method

Visitor

Mediator

70

Important Factors on RIAs Development

typing tool is useful in solving the constraints of
usability and consistency, as well as in reducing
the time taken to develop a mobile application.
Moreover, a structured collection of user inter-
face design patterns for mobile applications was
presented (Nilsson, 2009). The paper described
the use of these patterns to solve six identified
problems in mobile application development.
The collection of user interface design patterns
has different levels of abstraction and shows how
patterns may be used to present problems and
solutions at different levels of detail. Similarly,
another work (Richard, Robert, Malo & Migneault,
2011) explained that failing to use UI design pat-
terns when developing a system interface entails
an important loss of productivity and quality.
The authors identified 30 UI patterns that were
made available in a library and compared them in
four modes of presentation: pattern thumbnails,
application types, decision trees and alphabeti-
cal mode. Another proposal (Korozi, Leonidis,
Margetis & Stephanidis, 2009) presented a new
design framework called MAID that helps design-
ers easily create user interfaces. Tho this design
framework, a widgents library was supplemented.
This library could be used in different applica-
tion panels or for entirely different applications.
The MAID tool development process could be
decomposed in the following four phases: 1) UI
Definition, 2) Application Data Integration, 3) UI
Adaptation and 4) Deployment. Another approach
(Seffah, Forbrig & Javahery, 2004) highlighted
the problems in developing User Interfaces for
multiple devices, such as computers, laptops or
mobile telephones. Authors presented about a
research on the Multiple User Interface (MUI)
and the most important problems surrounding
MUI development models. Finally, a set of HCI
patterns was presented and the types of cross-
platforms recommended for each pattern were
discussed. In (Javahery, Sinnig, Seffah, Forbrig
& Radhakrishnan, 2007) a pattern-based UI
design process consisting of a set of input vari-
ables was proposed. These variables encapsulate

user requirements and context information. The
output process is a set of patterns, which can be
combined in a conceptual design or used as a user
interface prototype.

In (Tidwell, 2011), the author categorized a
set of patterns according to different facets of UI
design. The categories include Content Organi-
zation, Navigation, Page Layout, and Actions/
Commands. These kinds of patterns have been
used to develop more effective UI for desktop
applications, websites, web applications and
mobile devices. Similarly, another research work
(Seffah & Taleb, 2012) discussed how they way
patterns could be used as a central artifact in the
process of deriving a design from user experi-
ences and requirements. The research presented
a review of the evolution of pattern usages in UI
design. Finally, the authors presented a study
on pattern-based design where they discussed
how user experiences could be incorporated into
the pattern selection process through the use of
user variables, pattern attributes, and associated
relationships.

Finally, in (Scott & Neil, 2009) the Interface
Design Patterns were basically divided into three
categories: 1) Transitional Patterns, 2) Search
or Lookup patterns, and 3) Feedback Patterns.
This classification will be used since the authors’
point of view is the most complete and easy to
understand. These Interface Design Patterns are
described in the next subsections.

5.1. Transitional Patterns

These types of patterns are used to change the
aspect of a user interface. They are special effects
that occur during a certain period of time and
which, principal aim is to capture the user’s atten-
tion. Each transitional pattern is described below:

• Brighten and Dim: This pattern is used
to focus the user’s attention on a particu-
lar component, either a dialog box or a
lightbox component, among others. This

71

Important Factors on RIAs Development

pattern can be seen, for example, when a
dialog in a lightbox-like element is opened,
and then the focus is transferred to the dia-
log, dimming the rest of the screen.

• Expand/Collapse: This pattern is used
when there is a great amount of informa-
tion to show and there is also a possibility
of showing the information partially. This
means that the information can be divided
and displayed in parts. The most used user
interface component for implementing this
pattern is the accordion. A common use for
the accordion is a website menu where the
options are expanded when the cursor is
pressed and are contracted to free up space
when the cursor is moved away.

• Animation: This pattern is used to provide
the user an attractive view of the applica-
tion. The user interface components used
to exemplify this pattern are the slides, the
drag & drop component, and animations
with images. For instance the use of drag
and drop is highly useful when the applica-
tion has several components in a specific
order and at one point the order can be
changed. In this case, the user merely has
to take the item and drag it to the new po-
sition in the same window. This provides
easy user interactionwith the application.
There are many uses for animations; in
fact, animation is one of the most common
and practical user interface components
of RIAs. It is important to notice that this
behavior was previously available only for
desktop applications. .

• Spotlight: This pattern is used to indicate
that something in the user interface has
changed. This indication happens either by
changing the spotlight of place or simply
highlighting or underlining the changed
element. As an example, the Hotmail™
home page highlights the email address
field when the user is writing on this field;
then, when the user changes the spotlight

to the password field this is the field that
now appears highlighted.

5.2. Search or Lookup Patterns

These types of user interface design patterns were
developed to provide assistance in the execution of
searches. The main objective of Lookup Patterns is
to facilitate to the search for information for users
since the patterns react to data entry in real time:

• AutoComplete: It is a pattern designed to
ease the user experience; it provides sug-
gestions, as well as the possibility to auto
complete the text that tp be written, for ex-
ampleinto a text box or a combo box. The
best-known autocomplete example is the
Google™ search engine. Once the search
entry is being written, the suggestions re-
lated are displayed; then, when one of the
suggestions is selected, the words in the
text box are completed.

• Live Suggest: This pattern is very similar
to the AutoComplete pattern. The differ-
ence relies on the fact that Live Suggest
patterns provide real-time suggestions for
creating searches. The aforementioned ex-
ample about Google™ also serves to ex-
emplify this pattern; however, there are
many other search engines that use Live
Suggest such as the YouTube™ website
and the Yahoo!™ search engine.

• Live Search: This pattern is very similar
to the previous two. Nevertheless, it pro-
vides greater advantages by displaying re-
al-time results once a search entry is being
written. Moreover, this pattern is consid-
ered an evolution of the AutoComplete and
Live Suggest patterns. In fact, it has been
implemented in most of the websites that
have used the other two aforementioned
patterns. For instance, the Google™ search
engine uses this pattern.

72

Important Factors on RIAs Development

• Refining Search: This type of pattenrs is
another variation of the AutoComplete and
Live Suggest patterns. The difference is
that Refining Search patterns provide fil-
ters to refine searches. This offers the most
adequate results in the shortest time pos-
sible. The Amazon™ website has a search
engine based on this user interface pattern.
In addition to completing and suggesting
an entry for creating a search, Amazon™’s
search engine provides a list to filter what
is required to search.

5.3. Feedback Patterns

These patterns allow acting in real time, and they
are useful to keep the user informed of what is
happening in a Web application:

• Live Preview: This pattern was designed
for preventing errors. It is used to inform
the user how the application will inter-
pret the data entered. For example, when
a Google™ account is created, the user’s
name is requested, also the example of the
data format required is shown in the text
box below.

• Progressive Disclosure: This pattern was
designed to show information to the user
only when necessary, and this avoids over-
loading the user interface of the applica-
tion. In order to create a Google™ account,
the Google™ accounts website displays a
message in red letters when an invalid user
name is entered. This is a clear example of
the progressive disclosure user interface
pattern.

• Progress Indicator: This pattern was de-
signed to indicate the progress of a com-
plex task within an application. The most
common user interface component imple-
menting this pattern is the progress bar. It
is used when the user should be informed
about the progress of the requested action.

For instance, the Facebook™ website uses
this pattern in order to show a progress
bar which informs the user that a task is
in progress while the interface content is
being loaded.

• Periodic Refresh: This pattern is used to
show new content in an application. The
content is updated starting from user in-
teractions or interactions with third-party
applications, such as news channels. An
example of this pattern is the Twitter™’s
website timeline, which requires constant
user interaction to keep itself update.

The usage of the user interface patterns outlined
depends on the usability requirements. In this case,
for each usability criterion, the need and impact
should be adjusted on the user interface, since the
patterns should be useful to the user and not harm
its interaction with the application.

6. CONCLUSION

This chapter discusses four of the most important
aspects to considerfor RIAs development based on
the other four key features for RIA’s development
and which were mentioned in the introduction of
this book. From the author’s perspective, the four
aspects presented in this chapter can help improve
the appearance of RIAs and offer new capabilities,
such as responsiveness and interactivity. Multi-
media support provides richer content to Web
applications by presenting information more dy-
namically and attractively. Moreover, AOP allows
incorporating new functionalities and scalability
to Web applications in a non-invasive way. Design
patterns offer possibilities of reusing well-known
solutions to recurring problems. Finally, User
Interface Design Patterns offer solutions to well-
identified design problems on user interfaces and
facilitate usability in software systems.

Nowadays, both the client and the software
developer seek efficient, rapid, and agile develop-

73

Important Factors on RIAs Development

ments. However, in this case it is also crucial to
consider the final user of the software/application.
Although the functioning of the software system
is indeed very important, developers must not put
aside the appearece of the system. Therefore, it
can be stated that both functionality and appear-
ance should go together in the development of
software systems.

Also, programming languages themselves have
today been implementing Design Patterns within
their codes in order to support good programming
practices. This is highly important for two reasons.
First, desing patterns help the developer make not
only functional but also efficient codes, and sec-
ond, they provide elements to promote reusability
in the systems. Another remarkable aspect is the
AOP, which has been gently introducing itself in
the development of software systems, and which
is of great help in scalability and maintainance.

Several studies concerning UI Patterns have
been carried out in order to define and classify
them. For this reason, the need for developing
ready-to-use interfaces for final users has arised,
as well as the need for improving these users’ in-
teraction with the systems. Similarly, multimedia
contents help improve and make more appealing
the appeareance of the interfaces. The main ob-
jective of this is to ameliorate the content of the
software systems, particularly of RIAs.

As a final conclusion it can be stated that the
aspects exposed all along this chapter will enable
programmers to develop efficient, well-structured,
and better-looking applications. Moreover, all the
elements mentioned in the chapter were presented
so they can be implemented in RIAs, which results
in a great advantage with respect to the use of
traditional Web applications.

REFERENCES

Alexander, C., Ishikawa, S., & Silverstein, M.
(1977). A Pattern Language: Towns, Buildings,
Construction. Oxford University Press.

Buchanan, M. (2013). A Guide to Understanding
Video Containers & Codecs. Retrieved January,
2013, from http://library.rice.edu/services/dmc/
guides/video/VideoFormatsGuide.pdf

Chen, H. Y., Lin, Y. H., & Cheng, C. M. (2012).
COCA: Computation Offload to Clouds Using
AOP. In Proceedings of the 12th IEEE/ACM
International Symposium on Cluster, Cloud
and Grid Computing (CCGrid 2012) (pp. 466-
473). Washington, DC: IEEE Computer Society.
doi:10.1109/CCGrid.2012.98

Clarke, S., & Baniassad, E. (2005). Aspect-Ori-
ented Analysis and Design - The Theme Approach.
Addison-Wesley Professional.

Czarnecki, K. (1999). Generative Program-
ming: Principles and Techniques of Software
Engineering Based on Automated Configuration
and Fragment-Based Component Models. (PhD
thesis). German: Technische Universitat Ilmenau.

Ekabua, O. (2012). Using Aspect Oriented
Techniques to Build-in Software Quality. Inter-
national Journal of Computer Science Issues,
9(4), 250–255.

Elrad, T., Filman, R. E., & Bader, A. (2001).
Aspect oriented programming: Introduction.
Communications of the ACM, 44(10), 28–32.
doi:10.1145/383845.383853

Freedman, A. (1999). Diccionario bilingüe de
computación. Mc Graw Hill.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1994). Design Patterns: Elements of reusable
Object-Oriented Software. Boston, MA: Addison-
Wesley Longman Publishing Co., Inc.

Heo, S. H., & Choi, E. M. (2006). Representation
of Variability in Software Product Line Using
Aspect-Oriented Programming. In Proceedings of
the Fourth International Conference on Software
Engineering Research, Management and Applica-
tions (SERA ‘06) (pp. 66-73). Washington, DC:
IEEE Computer Society.

http://library.rice.edu/services/dmc/guides/video/VideoFormatsGuide.pdf
http://library.rice.edu/services/dmc/guides/video/VideoFormatsGuide.pdf
http://dx.doi.org/10.1109/CCGrid.2012.98
http://dx.doi.org/10.1145/383845.383853

74

Important Factors on RIAs Development

Holzinger, A. (2005). Usability engineer-
ing methods for software developers. Com-
munications of the ACM, 48(1), 71–74.
doi:10.1145/1039539.1039541

Ivory, M. Y., & Hearst, M. A. (2001). The state
of the art in automating usability evaluation of
user interfaces. ACM Computing Surveys, 33(4),
470–516. doi:10.1145/503112.503114

Jacobson, I., & Ng, P. W. (2005). Aspect-Oriented
Software Development with Use Cases. Addison
Wesley Professional.

Javahery, H., Sinnig, D., Seffah, A., Forbrig,
P., & Radhakrishnan, T. (2007). Pattern-based
UI design: adding rigor with user and context
variables. In Proceedings of the 5th international
conference on Task models and diagrams for us-
ers interface design (TAMODIA’06) (pp. 97-108).
Berlin: Springer-Verlag. doi:10.1007/978-3-540-
70816-2_8

Jboss. (2013). Aspect Oriented Programming
(AOP) Support. Retrieved January, 2013, from
http://docs.jboss.org/jbossas/jboss4guide/r2/
html/aop.chapt.html

Juárez Martínez, U. (2008). Énfasis: Program-
ación Orientada a Aspectos de Grano Fino. (PhD
thesis). Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Lopes, C., Loingtier, J. M., & Irwin, J. (1997).
Aspect-oriented programming. In M. Aksit, & S.
Matsuoka (Eds.), Ecoop’97: Object-Oriented Pro-
gramming (pp. 220–242). Berlin: Springer-Verlag.

Korozi, M., Leonidis, S., Margetis, G., & Stepha-
nidis, C. (2009). MAID: a Multi-platform Acces-
sible Interface Design Framework. In Proceedings
of the 5th International Conference on Universal
Access in Human-Computer Interaction. Part III:
Applications and Services (UAHCI ‘09) (pp. 725-
734). Berlin: Springer-Verlag. doi:10.1007/978-
3-642-02713-0_77

Kwanwoo, L., Botterweck, G., & Thiel, S. (2009).
Feature-Modeling and Aspect-Oriented Program-
ming: Integration and Automation. In Proceedings
of the 2009 10th ACIS International Conference
on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing
(SNPD ‘09) (pp. 186-191). Washington, DC: IEEE
Computer Society.

Laddad, R. (2003). AspectJ in Action: Practical
Aspect-Oriented Programming. Greenwich, CT:
Manning Publications Co.

Miano, J. (1999). Compressed Image File Formats:
Jpeg, Png, Gif, Xbm, Bmp. New York, NY: ACM
Press/Addison-Wesley Publ. Co.

Nilsson, E. G. (2009). Design patterns for user
interface for mobile applications. Advances
in Engineering Software, 40(12), 1318–1328.
doi:10.1016/j.advengsoft.2009.01.017

Raj, A., & Komaragiri, V. (2009). RUCID: Rapid
Usable Consistent Interaction Design Patterns-
Based Mobile Phone UI Design Library. In Pro-
ceedings of the 13th International Conference
on Human-Computer Interaction. Part I: New
Trends (pp. 677-686). Berlin: Springer-Verlag.
doi:10.1007/978-3-642-02574-7_76

Richard, J., Robert, J.-M., Malo, S., & Migneault,
J. (2011). Giving UI Developers the Power of
UI Design Patterns. In Proceedings of the 2011
international conference on Human interface and
the management of information - Volume Part
I (HI’11) (pp. 40-47). Berlin: Springer-Verlag.
doi:10.1007/978-3-642-21793-7_5

Sandvine. (2012). Global Internet Phenomena
Report: 2H 2012. Retrieved January, 2013, from
www.sandvine.com/news/global_broadband_
trends.asp

Scott, B., & Neil, T. (2009). Designing Web Inter-
faces: Principles and Patterns for Rich Interac-
tions (1st ed.). O’Reilly Media, Inc.

http://dx.doi.org/10.1145/1039539.1039541
http://dx.doi.org/10.1145/503112.503114
http://dx.doi.org/10.1007/978-3-540-70816-2_8
http://dx.doi.org/10.1007/978-3-540-70816-2_8
http://docs.jboss.org/jbossas/jboss4guide/r2/html/aop.chapt.html
http://docs.jboss.org/jbossas/jboss4guide/r2/html/aop.chapt.html
http://dx.doi.org/10.1007/978-3-642-02713-0_77
http://dx.doi.org/10.1007/978-3-642-02713-0_77
http://dx.doi.org/10.1016/j.advengsoft.2009.01.017
http://dx.doi.org/10.1007/978-3-642-02574-7_76
http://dx.doi.org/10.1007/978-3-642-21793-7_5
http://www.sandvine.com/news/global_broadband_trends.asp
http://www.sandvine.com/news/global_broadband_trends.asp

75

Important Factors on RIAs Development

Seffah, A., Forbrig, P., & Javahery, H. (2004).
Multi-devices “Multiple” user interfaces: De-
velopment models and research opportunities.
Journal of Systems and Software, 73(2), 287–300.
doi:10.1016/j.jss.2003.09.017

Seffah, A., & Taleb, M. (2012). Tracing the evolu-
tion of HCI patterns as an interaction design tool.
Innovations in Systems and Software Engineering,
8(2), 93–109. doi:10.1007/s11334-011-0178-8

Tahir, A., & Ahmad, R. (2010). An AOP-Based
Approach for Collecting Software Maintainability
Dynamic Metrics. In Proceedings of the 2010
Second International Conference on Computer
Research and Development (ICCRD ‘10) (pp.168-
172). Washington, DC: IEEE Computer Society.
doi:10.1109/ICCRD.2010.26

Tidwell, J. (2011). Designing Interfaces (2nd ed.).
Sebastopol, CA: O’Reilly Media, Inc.

Zhou, J., Ji, Y., Zhao, D., & Liu, J. (2010). Us-
ing AOP to ensure component interactions in
component-based software. In Computer and
Automation Engineering (ICCAE), 2010 the 2nd
International Conference on (Vol. 3, pp. 518-523).
Singapore: IEEE Computer Society.

ADDITIONAL READING

Flickr. (2012). Retrieved November, 2012, from
www.flickr.com

Gmail. (2012). Retrieved November, 2012, from
mail.google.com

Netflix. (2012). Retrieved November, 2012, from
www.netflix.com/

Vimeo (2012). Retrieved November, 2012, from
www.vimeo.com

YouTube. (2012). Retrieved November, 2012, from
www.youtube.com

KEY TERMS AND DEFINITIONS

Aspect-Oriented Programming: It is a new
programming paradigm that describes a develop-
ment methodology for separating crosscutting
concerns during the software development.

Design Patterns: It is a proven solution a
common and recurring problem, this solution is
designed for a particular context.

Multimedia: It is the representation of infor-
mation through different means of distributions
such as audio, text and images, but mainly video.

Reusability: It is the ability to develop a new
software system reusing components or code
fragments, from other or others software systems.

Rich Internet Applications: Rich Internet
Applications are applications that are deployed
over the Web, this type of applications combines
features and functionality of Web applications
and desktop applications.

Scalability: A characteristic of a system,
model or function that describes its capability to
cope and perform under an increased or expand-
ing workload.

Usability: It is the ease with which people
can use something in particular, and in this case
a software system.

User Interface Design Pattern: UI design
patterns are solutions to common user interface
problems.

ENDNOTES

1 GoF stands for Gang of Four that are the
authors of the book, “Design Patterns:
Elements of Reusable Object-Oriented
Software”. This important book describes
various development techniques and pitfalls
in addition to providing twenty-three object-
oriented programming design patterns. The
four authors were Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides.

http://dx.doi.org/10.1016/j.jss.2003.09.017
http://dx.doi.org/10.1007/s11334-011-0178-8
http://dx.doi.org/10.1109/ICCRD.2010.26
http://www.flickr.com
http://mail.google.com
http://www.netflix.com/
http://www.vimeo.com
http://www.youtube.com

76

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

Multimedia Support for
Native/Embedded Video
Playback on Frameworks

for RIAs Development

ABSTRACT

Chapter 5 discusses the capabilities of RIA frameworks in the context of multimedia content support.
For this purpose, several alternatives for implementing video playback functionality are presented by
using both JavaScript-based RIA frameworks to and non-JavaScript-based RIA frameworks. Examples
of JavaScript-based RIA frameworks having multimedia content support are Dojo, jQuery, Prototype,
and Mootools. Examples of non-JavaScript-based RIA frameworks are Adobe Flex™, JavaFX™,
Silverlight™, and OpenLaszlo. For each case study the mandatory files are mentioned. The chapter also
shows a screenshot where video player is displayed and code snippets that were used are presented.
Finally, a comparative analysis of video playback support for each framework is presented in terms of
video container formats and encoding types.

1. INTRODUCTION

The possibility to represent graphics, audio and
video is considered an inherent ability of RIAs
(Rich Internet Applications). In fact, along with
GUI (Graphic User Interface) transformations,
visual continuity and temporal behavior, it is a
factor affecting one of the distinguishing features
of RIAs: the enhanced GUI (Preciado et al., 2005).
Hence the importance of evaluating and knowing

what frameworks for RIAs development natively
support these features.

The present chapter primarily focuses on re-
viewing the support for video playback on both
JavaScript-based and non-JavaScript-based frame-
works, because the support for the other types of
media, i.e., audio and graphics, is a pre-requisite
to support video playback.

As is explained in this chapter, most of the
non-JavaScript-based frameworks for RIAs de-
velopment provide support for all the media types

DOI: 10.4018/978-1-4666-6437-1.ch005

77

Multimedia Support for Native/Embedded Video Playback on Frameworks

in a unified way and in terms of GUI controls.
However;, non-JavaScript-based RIA frame-
works provide support for media content in three
different ways: 1) by using embedded standard
(default) media players, 2) by using own GUI
controls and 3) by using <audio> and <video>
HTML5-based tags.

From this perspective, this chapter is intended
to review the first two aforementioned approaches
under the concept that JavaScript-based RIA
frameworks do not commonly have video playback
support as part of its core. Instead, they provide
mechanisms for extending that core (by means
of plug-ins or add-ons), so that there be different
third-party implementations for video playback
support. Therefore, we have considered the third-
party plug-ins outlined in (Rosales-Morales et
al., 2011).

2. MULTIMEDIA SUPPORT INTO
JAVASCRIPT-BASED FRAMEWORKS

Various files formats are used for video play-
back. Each one of these formats provides certain
features. Both the formats and their features are
described below:

• FLV (Flash Video) is a container file for-
mat used to deliver video over the Internet
using Adobe Flash Player™ versions 6-10.
Flash Video content may also be embed-
ded within SWF (Shockwave Flash) files.
There are two different video file formats
known as Flash Video: FLV and F4V. The
audio and video data within FLV files are
encoded in the same way as they are within
SWF files. The format has quickly estab-
lished itself as the format of choice for
embedded video on the web. YouTube™,
Hulu™, Google Video™, Yahoo Video™,
Metacafe™, Reuters™, and many other
news providers are examples of websites
using Flash video format.

• MPEG (Moving Picture Experts Group)
is a working group of experts formed
by ISO (International Organization for
Standarization) and IEC (International
Electrotechnical Commission) to set stan-
dards for audio and video compression
and transmission. MPEG algorithms com-
press data to form small bits that can be
easily transmitted and then decompressed.
MPEG achieves its high compression rate
by storing only the changes from one frame
to another, instead of storing each entire
frame. The video information is then en-
coded using a technique called Discrete
Cosine Transform (DCT).

• RMVB (Real Media Variable Bitrate)
is a variable bitrate extension of the
RealMedia™ multimedia compression for-
mat developed by RealNetworks™. As op-
posed to the more common RealMedia™
container – which holds streaming media
encoded at a constant bit rate – RMVB file
extension, compared with DVDRIP, is typ-
ically used for multimedia content locally
stored.

• WMV (Windows Media Video) is a sub-
set of Microsoft™’s Advanced Systems
Format (ASF) container format. WMV
files can be played by video players
such as MPlayer or Windows™ Media
Player™, the latter being only available for
Microsoft™ Windows™ and Macintosh™
(Mac™) systems. WMV is a closed
source, propriety codec that cannot be
manipulated.

In the following sections, the support for video
playback for RIAs development is discussed.

2.1. Video Playback
Support Using Dojo

Dojo supports video playback by means of the
DojoX package. Beyond that, DojoX is a module

78

Multimedia Support for Native/Embedded Video Playback on Frameworks

for the development of extensions to the Dojo
toolkit; it is a repository for more stable and ma-
ture extensions and it also acts as an incubator for
experimental code, a testbed for additions to the
main toolkit. Also, the DojoX package provides
native controls to manipulate videos as part of
its “av” module. DojoX uses the Adobe Flash
Player™ plug-in to play FLV videos and it also
requires a Web server.

In order to show this support, a PHP-based Web
application which uses XAMPP was developed.
XAMPP is a solution stack package mainly con-
sisting of Apache HTTP Server, MySQL database
management system (DBMS) and PHP-based
and Perl-based interpreters. The implementation
of this sample application is depicted in Figure
1, where a screenshot of the full video player is
presented. This video player implements the Play
and Pause controls.

A snippet of the Dojo-based source code is
depicted in Figure 2. The figure presents important
aspects of the video player provided by Dojo. The
controls for volume, play time, and bar progress
of the video player are implemented in this code
fragment. The description of the video to be played
is described in line 11 of the code fragment.

The HTML-based source code for implement-
ing a video player for the FLV videos is depicted

in Figure 3, which includes the playback controls
provided by the Dojox widget class.

Table 1 summarizes the features of the DojoX
classes related to multimedia support.

2.2. Video Playback
Support Using jQuery

jQuery supports embedded video playback of
diverse video container formats, such as MPEG-
4, FLV, and AVI (Audio Video Interleave), to
mention but a few. It also supports both local and
remote video files, as well as live and recorded
media. This is achieved by means of different
jQuery plug-ins, i.e., extensions to the jQuery’s
prototype object.

In the context of JavaScript-based RIAs devel-
opment, the embedded video playback support is
commonly incorporated by using pop-up dialog
boxes. In jQuery, it is addressed by the jQuery
ThickBox plugin. This is explained in Table 2.

Furthermore, by using the jQuery framework
plugin, the jQuery Multimedia Portfolio can be
used in order to play FLV video files. The plugin
displays diverse kinds of media content by means
of a gallery. Figure 4 depicts the use of the jQuery
Multimedia Portfolio plugin to embed a local FLV
video file into a jQuery-based RIA. In addition,

Figure 1. Video playback using Dojo

79

Multimedia Support for Native/Embedded Video Playback on Frameworks

Figure 2. Snippet of Dojo-based source code used for implementing video playback

Figure 3. Snippet of HTML-based source code used for implementing video playback in Dojo

Table 1. Summary of DojoX classes related to media support (dojox.av module)

Class/Component Description Approach Container Formats Supported

FLVideo (dojox.av) It is a full-featured class that
provides the ability to play
FLV videos within the Dojo
environment. It provides the
typical play (), pause(), seek()
and volume() playback functions1.
It offers two defining methods:
a declarative (markup-based)
approach and a programmatic
approach.

Native FLV and MP4 with H.264 video
compression.

widget (dojox.av) It provides base player control
widgets for building a media
player, including a play button, a
volume button, a progress slider,
a status container, and the player
container2.

- -

80

Multimedia Support for Native/Embedded Video Playback on Frameworks

Table 2. Summary of JavaScript files related to jQuery-based video playback support

Script/Component Description Approach Container Formats Supported

jquery-multimedia-portfolio.
js

It is a carousel that
automatically detects the file
extension of each media added
to it and applies an adapted
media player. It supports
images, audio, and video3.

Embedded FLV with H.264 video
compression.

Slider In its basic form, it is a
horizontal slider with a single
handle, which can be moved by
using the mouse or the arrow
keys.

- -

thickbox.js It is a dialog widget written on
top of the jQuery library. It is
intended to show images, inline
content, iframe content, or
content served through AJAX in
a hybrid modal4.

Embedded None (possible via the
<iframe> tag)

Figure 4. Video playback using jQuery

Figure 5. Snippet of the jQuery-based source code used for implementing video playback

81

Multimedia Support for Native/Embedded Video Playback on Frameworks

Figures 5 and 6 present snippets of the correspond-
ing source code. These snippets involve the use
of several files, such as:

• jquery.js
• jquery.dimensions.js
• ui.mouse.js
• ui.slider.js
• jquery-multimedia-portfolio.js

Because the video playback is implemented as
part of a media gallery, it is possible to add more
videos or images. Figure 4 illustrates a gallery
implemented using jQuery Multimedia Portfolio.
The figure shows a video inside the gallery as
well as the progress bar for the video playback.
With this component, it is possible to 1) add more
videos or images into the gallery and 2) navigate
among the different contents.

Figure 5 depicts the code fragment which
includes all the necessary files for the implementa-
tion of the gallery, as well as a function to install
jQuery Multimedia Portfolio.

Figure 6 depicts the HTML-based fragment
code for the implementation of the gallery. The
ongoing integration of the video into the gallery
can be observed in line 7.

Table 1 summarizes the features of the jQuery
classes related to multimedia support.

2.3. Video Playback Support
Using Mootools

MooTools does not provide video playback support
as part of its core. Therefore, third-party extensions
must be used to achieve this purpose. In fact, there
is an official repository for MooTools plug-ins
hosted at http://mootools.net/forge/. These plugins
support local and remote recorded video based on
QuickTime File Format (QTFF), SWF, and Ogg
video container formats, among others.

In this sense, a popular plug-in called Videobox
can be used in order to embed diverse kinds of
video file formats into MooTools-based RIAs as
it is outlined in Table 3. It is important to remark
that the MooTools Videobox plug-in uses the
SWFObject JavaScript library in order to embed
Adobe Flash™-based media content.

Figure 7 depicts the use of the MooTools Vid-
eobox plug-in for implementing playback support
for YouTube™ videos (SWF video files). In ad-
dition, snippets of the corresponding source code
are presented in Figures 8 and 9. These snippets
involve the use of several files such as:

• mootools.js
• swfobject.js
• videobox.js
• videobox.css

Figure 6. Snippet of the HTML-based source code used for implementing video playback in jQuery

82

Multimedia Support for Native/Embedded Video Playback on Frameworks

Figure 7. Video playback using Mootools

Figure 8. Snippet of the MooTools-based source code used for implementing video playback

Table 3. Summary of JavaScript files related to MooTools-based video playback support

Script/Component Description Approach Container Formats Supported

videobox.js It provides a means to show
videos by using overlays; it is
in a lightbox for videos. The
videobox.js file is an add-on to
the Motools library5.

Embedded SWF (YouTube, Metacafe and
Google videos), QuickTime

File Format (QTFF): MOV file
format, ASF: WMV file format

and FLV: FLV file format.

swfobject.js It is a JavaScript library used to
embed Adobe Flash™ content
into a Web page. It offers two
embed methods: a markup-
based approach and a method
relying on JavaScript6.

Embedded SWF

83

Multimedia Support for Native/Embedded Video Playback on Frameworks

Figure 7 illustrates video playback using
Mootools. The picture contains a video hosted in
the well-known video website YouTube™. The
element used for video playback is a Viedeobox
element, which permits the activation or deactiva-
tion tasks of the video playback. There is a link
with the directions needed for the activation and a
button to close the component for the deactivation.

Figure 8 depicts a code fragment including the
link of the video hosted on YouTube™ as well as
the link that activates the VideoBox component.

Figure 9 illustrates the code fragment contain-
ing the inclusion of the necessary files in order to
implement the video player.

In Table 3 summarizes the features of the
Mootools classes related to multimedia support,
particularly the VideoBox plugin.

2.4. Video Playback Support
Using Prototype

Prototype supports embedded video playback of
all major video container formats, such as AVI,
FLV, and ASF, among others, although this is
not part of Prototype’s basic functionality, but of
third-party plug-ins. The Prototype media plug-
ins publicly available over Internet like – such as
those available at http://www.prototype-plugins.
com/ – provide support for local and remote re-
corded video.

Similarly, another example of plug-ins for
Prototype is Light Window. Light Window is a
fully featured and well-documented media plug-in
built on top of Prototype. It allows for virtually
emebedding any media format into Prototype-
based RIAs. This is explained in Table 4.

Figure 9. Snippet of the HTML-based source code used for implementing video playback in MooTools

Table 4. Summary of JavaScript files related to Prototype-based video playback support

Script/Component Description Approach Container Formats Supported

lightwindow.js It is a modal window for
many media types, including
images, videos, Adobe Flash™
content, and PDF files. It is
also a modal windos for other
types of content, such as inline
content and external pages. It
is built on top of the Prototype
framework7.

Embedded AVI, SWF (custom Adobe
Flash™ content), QuickTime

File Format (QTFF) and
ASF, MPEG-2, among other

container formats. Virtually any
file format (via configuration).

scriptaculous.js It is a collection of JavaScript
GUI libraries. It provides a
visual effects engine, a drag-
and-drop library, as well as a set
of GUI controls, among other
elements. It is an add-on to the
Prototype framework8.

- -

84

Multimedia Support for Native/Embedded Video Playback on Frameworks

The use of the Prototype LightWindow plug-in
for implementing playback support for YouTube
videos (SWF files) is depicted in Figure 10. In
addition, a snippet of the corresponding source
code is presented in Figure 11. This implementa-
tion involves the use of several files such as:

• prototype.js
• scriptaculous.js
• lightwindow.js
• lightwindow.css

The Script.aculo.us JavaScript library is typi-
cally used to provide visual effects to Prototype-
based RIAs. It is thus a dependency of the Proto-
type LightWindow plug-in.

Figure 10 illustrates a video player imple-
mented by using Prototype; the video appears
within a window. In addition to the close buttom,
this window contains certain other configurable
parameters, such as the size of the window, among
others.

Figure 11 represents a code fragment. The link
of the video that is being played and the configu-
rable parameters of the window in which the video
is embedded can be found in line 4.

2.5. Video Playback Support
Using Qooxdoo

Qooxdoo only has the ability to embed remote
video into containers. In fact, Qooxdoo does not

Figure 10. Video playback using Prototype and Script.aculo.us

Figure 11. Snippet of the source code using Prototype for video playback

85

Multimedia Support for Native/Embedded Video Playback on Frameworks

have its own video player component; hence, the
video playback is achieved by means of a Qooxdoo
utility or helper class. In fact, the helper.js file
is the only requirement for incorporating video
playback support into Qooxdoo-based RIAs.

The use of the Qooxdoo JavaScript framework
for implementing playback support for YouTube™
videos (SWF files) is depicted in Figure 12. In
addition, a snippet of the corresponding source
code is presented in Figure 13.

Figure 12 illustrates the video player imple-
mented with Qooxdoo; both, the video and
the scrolls can be observed in the image. The
component in which the video was embedded is
configurable. This means that features of width,
height, and whether the component should sup-

port scrolls can be indicated. If the video is of
bigger size than the component, it will then ap-
pear incomplete.

In Figure 13, the link of the video that is being
played is found in line 14. Similarly, the component
configuration used to implement the player can
be found in the same line.

2.6. Video Playback
Support Using Rico

Rico is able to embed remote recorded video into
JavaScript-based RIAs by using a native panel
container. In this case,, the rico.js file is the only
requirement, sicne the file is in charge of creating
the main Rico object. Additional JavaScript files

Figure 12. Video playback using Qooxdoo

Figure 13. Snippet of the HTML-based source code used for implementing video playback in Qooxdoo

86

Multimedia Support for Native/Embedded Video Playback on Frameworks

can be required depending on the functions to be
implemented, because Rico is built on top of the
Prototype framework and also includes support
for jQuery, MooTools, Dojo, and Sencha Ext JS
frameworks.

Figure 14 illustrates a video player implement-
ed by using the Rico framework. It is important to
mention that the video player here was developed
under a tabs component. For the purpose of this
research, only one tab was implemented; however,
additional tabs can be implemented in cases where
more videos or functionalities are required.

Figure 15 depicts a code fragment of the video
player on Rico. Both the link of the video that is
being played and the component configuration
appear in line 10.

2.7. Video Playback Support
Using Sencha ExtJS

Sencha Ext JS requires an extension for video
playback. There is an official repository for third-
party extensions for Sencha products which is

called Sencha market and it is available at https://
market.sencha.com/. The range of video container
formats supported by these extensions includes:
MPEG-4, QuickTime File Format (QTFF), and
RealMedia video container formats.

In this case, a popular Sencha Ext JS media
extension called Ext.ux.YoutubePlayer allows
for embedding videos hosted on the YouTube™
website along with common playback controls
into JavaScript-based RIAs using native Ext JS
GUI controls. According to the above, the format
supported by this extension is only SWF, as it is
explained in Table 5.

The use of the Sencha Ext JS YoutubePlayer
plug-in is depicted in Figure 16. Additionally,
a snippet of the corresponding source code is
depicted in Figure 17.

Figure 16 shows the video player implemented
in Sencha Ext JS. This video player contains the
basic controls for playback, such as play, stop,
forwarding, and volume, among others.

Figure 17 shows a code fragment in which
the main characteristics of the video player are

Figure 14. Video playback using Rico

87

Multimedia Support for Native/Embedded Video Playback on Frameworks

Figure 15. Snippet of the HTML-based source code used for implementing for video playback in Rico

Table 5. Summary of JavaScript files related to Sencha Ext JS-based video playback support

Class/Component Description Approach Container Formats
Supported

Ext.ux.YouTubePlayer It is a component utilizing the
YouTube chromeless player API.

Embedded SWF (YouTube videos)

Ext.ux.YouTubePlayer.Control It provides a functionality for
loading YouTube videos, as
well as for the typical playback
controls - such as playing and
pausing videos, muting and
unmuting videos, and setting the
volume, among others9.

Native -

Figure 16. Video playback using Sencha Ext JS

88

Multimedia Support for Native/Embedded Video Playback on Frameworks

Figure 17. Snippet of the Ext JS-based source code used for implementing video playback

Figure 18. Video playback using X-Library

89

Multimedia Support for Native/Embedded Video Playback on Frameworks

implemented. Examples of such characteristics
are color and other functionalities of the player.

2.8. Video Playback Support
Using X-Library

Like Rico, X-Library supports embedded video
playback as part of its core. In detail, it permits
embedding remote recorded video into JavaScript-
based RIAs by using typical containers, such as
tab panels and accordions, since it does not have
native video playback controls.

Moreover, the use of the X-Library framework
for implementing playback support for YouTube™
videos (SWF files) is depicted in Figure 18. In ad-
dition, a snippet of the corresponding source code
is presented in Figure 19. This implementation
involves the use of the files listed below which
are described in Table 6.

• offline.js
• v3.css
• tpg_def.css
• x.js
• xtabpanelgroup.js

Figure 18 presents the video player imple-
mented in the X-Library. In this case the video
is embedded into any component which will
support it.

Figure 19 shows a code fragment correspond-
ing to the implementation of the video player
through the use of X-Library.

In Table 6 summarizes the features of the
X-Library classes related to multimedia support.

2.9. Comparison

Table 7 summarizes an overview of the video
playback capabilities provided by the JavaScript-
based RIA frameworks analyzed in this chapter.
As it can be inferred from this analysis, most of
the frameworks do not have native controls re-
lated to media playback. In fact, they only allow
for video embedding (video player Web browser
plug-ins) within native containers. Furthermore, it
is important to notice that most of the frameworks
providing customized video playback support
require third-party extensions.

3. MULTIMEDIA SUPPORT
INTO NON-JAVASCRIPT-
BASED FRAMEWORKS

The RIA technology must offer a rich set of media
APIs or tags (in the specific case of markup lan-
guages, such as HTML5) that exploit client-side
graphics, hardware acceleration capabilities, and
ensure consistently deployment across diverse
platforms in order to deliver high-performance

Figure 19. Snippet of the source code using X-Library for video playback

90

Multimedia Support for Native/Embedded Video Playback on Frameworks

Table 6. Summary of JavaScript files related to X-Library-based video playback support

Script/Component Description Approach Container Formats
Supported

x.js It represents the X-Library entry point.
In fact, it defines the main X-Library
object.

- -

xtabpanelgroup.js It provides a downgradable tab
panel container, i.e., a tab panel that
is downgraded when JavaScript is
disabled.

Embedded Unknown

Table 7. Summary of video playback capabilities among the JavaScript-based RIA frameworks analyzed
in this chapter

Framework Video files formats supported and mandatory files Component in which the video is
displayed

Mootools It supports video and audio in a remote way. It supports popular video file
formats such as AVI, WMV and SWF.
Mandatory files:
mootool.js, swfobject.js, videobox.js, videobox.css

It plays the video in a component
called VideoBox.

Prototype It supports video and audio in a remote way. The video file formats
supported are AVI, FLV, among others.
Mandatory Files: prototype.js, scriptaculous.js, lightwindow.js,
lightwindow.css

The video is played embedded in a
container component that provides
the framework using functions of the
Scriptaculous framewok

JQuery It supports video playback in FLV file format and also remote video
playback in the most used formats, such as MPEG and AVI, among others.
Mandatory Files:
thickbox-compressed.js, jquery.dimensions.js, ui.mouse.js, ui.slider.js,
jquery.multimedia-portfolio.js, thickbox.css, multimedia-portfolio.css,
jquery.js

In the first case, it uses a gallery for
video playback and in the second case
it uses a container component.

Dojo It only supports FLV video files format
Mandatory Files:
DojoX

For video playback, it uses a DojoX
video player requiring Flash.

Qooxdoo It supports video and audio in a remote way. The video files supported are
AVI, FLV to name a few.
Mandatory Files:
helper.js.

The video is played in a container
component.

Rico It supports video and audio in a remote way. The video files supported are
AVI and FLV, among others.
Mandatory Files:
rico.js

The video is played in an embedded
way in a container component.

Sencha
Ext JS

It supports video and audio in a remote way coming from the YouTube
website. The video files supported are FLV, AVI, MPEG, and WMV,
among others.
It uses a ExtJS plugin called Ext.ux.YoutubePlayer

The video is played in the video
player provided by the plugin.

X-Library It supports video and audio in a remote way. The video files supported are
AVI, FLV, to mention a few.
Mandatory Files: offline.js, v3.css, tpg_def.css, x.js, xtabpanelgroup.js.

The video is played in a container
component.

91

Multimedia Support for Native/Embedded Video Playback on Frameworks

portable RIAs. This criterion is assessed with
respect to the variety of media file formats that
are natively supported by the RIA technology for
video playback only.

3.1. Video Playback Support
Using Adobe Flex™

The Adobe Flex™ Spark skinning and components
architecture consists of four main parts: a layout
engine, an effects (animation) engine, a graphics
library, and a components library. As part of the
Spark components library, some GUI controls and
classes related to media processing are provided
as it is summarized in Table 8. In addition, other
relevant ActionScript classes related to network
management on working with remote video are
summarized in Table 9 (Subramaniam, 2010).

As it can be inferred from the summarized
analysis above, in the context of developing

Adobe Flex™-based applications, some multime-
dia functionalities can be achieved by means of
ActionScript™ classes from the Flash platform,
particularly from the Flash media framework
which includes classes such as Sound, Camera,
and Microphone, besides the Video class.

As it can be inferred from the analysis presented
above, the use of the Video class in conjunction
with the NetStream and NetConnection classes
may result in advanced media applications, such
as video sharing applications for user communities
where live video recorded by a user is sent to a
server and then it is broadcasted from the server
to other users.

Furthermore, it is important to notice that the
Video class is not a GUI control like VideoDis-
play and VideoPlayer controls; nevertheless, it is
a display object that represents the visual space
in which the video runs in the GUI and it can
be manipulated like any display object by using

Table 8. Summary of ActionScript™ classes related to media support

Class Description Package File Formats
Supported (Video)

Supported
Delivery

Technologies

Type of Media
Supported

VideoPlayer It is a skinnable video
player which has a
fully-featured GUI in
order to control video
playback10.

spark.
components

FLV and
MPEG-4-based
containers such
as F4V and MP4
(“Understanding
video formats,”
n.d.).

Local, progressively
downloaded,
streaming (over
RTMP (Real
Time Messaging
Protocol) protocol)
and dynamic
streaming media
(over RTMP and
HTTP protocols).

Live or
recorded media.

VideoDisplay It is the chromeless
version of the
VideoPlayer control,
which does not support
skinning11.

spark.
components
mx.components

StreamingVideoSource It represents a
streaming video
source. The
VideoPlayer
control can take a
StreamingVideoSource
instance as its source
property12.

spark.
components.
mediaClasses

Video It permits displaying
videos in Flash-based
applications without
embedding the videos
in the SWF files13.

flash.media

92

Multimedia Support for Native/Embedded Video Playback on Frameworks

positioning, transformations, filters and other
capabilities.

Figure 20 depicts the usage of the Adobe Flex
VideoPlayer™ control in the development of a
Web browser-based RIA embedding a video player.
This sample application plays the MP4 (H.264)
video available at http://clips.vorwaerts-gmbh.de/
VfE_html5.mp4. The Adobe Flex VideoPlayer™

control defines a skin part for each player area;
therefore, it defines a videoDisplay skin part and
a playerControls skin part. The playerControls
part has in turn a play/pause button, a scrub bar
(timeline), a current time display, a duration dis-
play, a volume bar, and a fullscreen button.

A snippet of the corresponding source code is
presented in Figure 21. This snippet only excludes

Table 9. Summary of ActionScript™ classes related to network management

Class Description Package Server Compatibility

NetStream In the context of video files loading by means
of the Video class, it represents the source
of the video content. It opens a one-way
streaming channel over a NetConnection
object14.

flash.net -

NetConnection In the context of video files loading by means
of the Video class, it represents the connection
to the video file. It creates a two-way
connection between a client and a server15.

Flash Media Server (RTMP
protocol) or an application
server running Flash
Remoting MX or the Adobe
Cirrus service16 (RTMFP
protocol).

Figure 20. Adobe Flex VideoPlayer™ control

93

Multimedia Support for Native/Embedded Video Playback on Frameworks

the definition of the application container, which
is the first element in a MXML application.

3.2. Video Playback Support
Using JavaFX™

The JavaFX™ media framework provides well-
tested media functionality across all platforms
where JavaFX™ is supported. Some of the func-
tions supported by the JavaFX™ media stack
include the following elements: FLV container,
MP3 audio, MPEG-4 container, HTTP and FILE
protocol support, progressive download, seeking,

buffer progress, and playback functions. All this
is summarized in Table 10 (Castillo, n.d.).

Unlike the Adobe Flex VideoPlayer™ control,
the JavaFX MediaPlayer™ control does not have
built-in player controls, it merely provides the
typical player functions, such as play(), pause()
and stop(). Additionaly, JavaFX MediaPlayer™has
properties such as, mute and volume, which apply
to all media types (audio and video). Furthermore,
the media concept in JavaFX™ is based on all
the classes contained within the javafx.scene.
media package. Thus, these classes must be used
in combination to create media players, either
audio or video players.

Figure 21. Snippet of the Adobe Flex™-based source code

Table 10. Summary of JavaFX™ classes related to media support

Class Description Package Container Formats
Supported (Video)

Supported
Delivery

Technologies

Type of Media
Supported

Media It represents a
media resource
that contains
information, such as
the source URI as
well as the metadata
contained in the
media source17.

javafx.scene.
media

FLV and MPEG-4-based
containers with H.264/
AVC video compression
(“Package javafx.scene.
media,” n.d.).

Local, progressive
download and
media streaming
over HTTP
protocol.

Live or
recorded media.

MediaPlayer It provides the
controls for playing
media. It does not
contain any visual
element; thefore, it
must be used with
the MediaView
class18.

MediaView It represents a
JavaFX™ Node that
provides a view of
media being played
by a MediaPlayer
instance. It supports
animation and
effects19.

94

Multimedia Support for Native/Embedded Video Playback on Frameworks

Figure 22 depicts the enhanced version of
the sample video player available at http://docs.
oracle.com/javafx/2/media/playercontrol.htm.
This version adds the fullscreen functionality by
means of the JavaFX™ ToggleButton control, a
type of button with the ability to be selected. In
detail, the fullscreen functionality is achieved by
simply calling the Stage setFullScreen() function
over the primary stage of the application, which
causes the stage attempts to enter fullscreen mode
using an undecorated window. As can be inferred,
the JavaFX™ Stage class is the top-level container
of any JavaFX™ application.

Furthermore, it is important to remark that this
video player integrates a time display. This time
display is implemented by using a JavaFX™ Label
control and the JavaFX™ Duration class, a class
that defines a duration of time and it provides util-
ity methods like, for example, methods that return
the number of milliseconds, seconds, minutes
and hours in a specified period of time. The time
display shows the ratio of the video playback time
with respect to the duration of the video that is
being loaded. Therefore, it is properly settled by

using the MediaPlayer getCurrentTime() method
and the Media getDuration() method. It is worth
mentioning that the getDuration() method returns
an “UNKNOWN” value if the media opened does
not have a known duration, such as live streaming.

In fact, this enhanced video player is a Ja-
vaFX™ custom control integrating playback
functions similar to the built-in functions of the
Adobe Flex VideoPlayer™ control. Figure 23
depicts a snippet of the source code defining part
of the custom playback controls implemented for
this sample application.

3.3. Video Playback Support
Using Silverlight™

The Silverlight™ platform as a whole consists of
two major parts: the Core Presentation Framework
and the .NET Framework for Silverlight™. The
whole media functionality provided by Silver-
light™ is integrated into the former component
and it features playback and management of di-
verse types of audio and video file formats such
as WMV and MP3.

Figure 22. JavaFX™-based video player (desktop RIA)

95

Multimedia Support for Native/Embedded Video Playback on Frameworks

Table 11 summarizes the features of the
Silverlight™ classes related to media support
(“Silverlight Architecture,” n.d.).

Similar to the JavaFX MediaPlayer™ control,
the Silverlight™ MediaElement control does not
integrate built-in player controls and it exposes
similar playback functions instead. Therefore,
these playback functions must be associated to GUI
event handlers over GUI controls (typically but-
tons and sliders) manually added by the developer.
However, unlike JavaFX™, Silverlight™ abstracts
all the media functions and properties in only one
class. This can result in time and effort saving in
the development of media-intensive applications.

Figure 24 depicts the Silverlight™-based ver-
sion of the video player developed in previous
section of this chapter (Video playback support
using JavaFX™). The fullscreen functionality is

also added by means of a toggle button (a Silver-
light™ ToggleButton control). Nevertheless, in
this case, the fullscreen functionality is based on
the Silverlight™ Content class, which exposes
APIs that relate to the Silverlight™ content area,
i.e., the area that is declared by the width and
height properties in the application initializa-
tion. In detail, the IsFullScreen property of the
Content instance hosting the application is settled
to true when the user selects the toggle button.
This makes the Silverlight™ plug-in display as a
fullscreen plug-in.

Furthermore, the time display area of the video
player is implemented by using the Silverlight™
Label control as it is depicted in the source code
snippet presented below. In addition, the .NET
Framework DispatcherTimer class is used. This
class represents a timer integrated into the queue

Figure 23. Snippet of the JavaFX™-based source code

Table 11. Summary of Silverlight™ classes related to media support

Class Description Package Container Formats
Supported (Video)

Supported
Delivery

Technologies

Type of Media
Supported

MediaElement It represents an object
containing audio, video or
both. In this case, it is a
rectangular area that can
display video or play audio
on its surface20.

System.
Windows.
Controls

ASF with WMV and
VC-1 video compression,
MP4 with H.264 video
compression as well
as 3GP and 3G2 with
H.264 and H.263 video
compression (“Supported
Media Formats, Protocols,
and Log Fields,” n.d.).

Local, progressive
download, and
media streaming
(Windows Media
Streaming Media
over HTTP
protocol).

Live or recorded

96

Multimedia Support for Native/Embedded Video Playback on Frameworks

of work items for a thread. The timer interval is
settled to 1000 milliseconds (one second), so that
the video playback time is updated to the value
returned by the Position property of the Medi-
aElement control each time the timer interval has
elapsed (every second). On the other hand, the
video duration is obtained by means of the Me-
diaElement NaturalDuration.TimeSpan property,
which is able to obtain the duration of the media
file currently opened. It is worth mentioning that
the NaturalDuration property returns an “Auto-
matic” value when the media opened does not
have a known duration, such as live streaming. It
is important to notice that the source code snippet
depicted in Figure 25 merely includes part of the
definition of the custom playback controls.

3.4. Video Playback Support
Using OpenLaszlo™

OpenLazlo™ applications can be deployed either
as proxied by the OpenLaszlo™ server or as
standalone applications (“SOLO” deployment
mode). Therefore, media loaded at runtime by
OpenLaszlo™ applications can either be proxied
through the OpenLaszlo™ server or be directly
loaded. In any case, they can have either of two
runtime targets: Adobe Flash Player™ or AJAX,
i.e., they can be compiled to SWF files.

According to the above, video in OpenLaszlo™
is handled by the underlying platform runtime, the
Adobe Flash Player™; in fact, the OpenLaszlo™
video APIs described in this chapter work only in
OpenLaszlo™ applications compiled for the Flash

Figure 24. Silverlight™-based video player (Web browser-based RIA)

97

Multimedia Support for Native/Embedded Video Playback on Frameworks

runtime target. In detail, OpenLaszlo™ video APIs
give developers access to the full functionality of
media players, such as the Adobe Flash™ Media
Server and the Red5 Media Server, which is an
open source implementation of the Adobe Flash™
Media Server supporting the RTMP protocol
(“Media Support,” n.d.).

The set of classes described in Table 12 contains
two kinds of elements: 1) basic classes acting as
extensions that wrap Adobe Flash Player™ APIs
and 2) higher level GUI components entirely writ-
ten in LZX (OpenLaszlo™’s markup language). In
this case, similar video playback capabilities can
be achieved by using either the VideoView class in
conjunction with standard GUI controls – such as
buttons and sliders aimed at controlling playback
functions – or the VideoPlayer component, which
has built-in playback controls, like the Adobe Flex
VideoPlayer™ component.

Figure 26 depicts the usage of the OpenLazlo™
VideoPlayer component in the development of a
RIA embedding a native video player. This sample
application plays the FLV (VP6) video also used
by the JavaFX™-based video player (see section
5.3.2 of this chapter). The video is available at
http://download.oracle.com/otndocs/products/
javafx/oow2010-2.flv.

It is important to notice that this sample ap-
plication uses the default look and feel of the GUI
components involved. As it is depicted in Figure
26, the OpenLaszlo VideoPlayer™ component
does not integrate the fullscreen functionality,
which is the contrary in the case of the Adobe
Flex VideoPlayer™ component.

In addition, the source code implemented for
this sample application which consists only of
three lines of source code is depicted in Figure 27.

3.5. Comparison

On the understanding that a media type is the
combination of a container format and one or
more encoding types, Table 13 summarizes a
comparison of the support for media types among
the non-JavaScript-based RIA frameworks ana-
lyzed in this chapter. This comparative analysis
considers the container formats outlined at the
beginning of this chapter. Fromr this perspective,
due to its popularity, some MP4-based container
formats (F4V and 3GP) are included in addition
to the MP4 container format itself.

Finally, it is important to notice that a media
type involves not only video compression formats
but also audio compression formats. However,

Figure 25. Snippet of the Silverlight™-based source code

98

Multimedia Support for Native/Embedded Video Playback on Frameworks

Table 12. Summary of OpenLaszlo™ classes related to media support

Class Description Package Container Formats
Supported (Video)

Supported
Delivery

Technologies

Type of Media
Supported

VideoView It is a visual object used to
show video from a video
server. It is an extension of
the View class, which is the
most basic visual element,
and it is optimized for video
streaming21.

lps.
components.
extensions.av

FLV with VP6 and
Sorenson Spark video
compression.

Local, progressive
download and
media streaming
(Flash Media
Server or Red5
Media Server over
HTTP and RTMP
protocols).

Live or recorded

MediaStream It opens a connection in
order to receive streaming
media. It permits controlling
the stream created by the
VideoView class, i.e., it is
used in conjunction with a
VideoView instance22.

VideoPlayer It is a higher level component
providing essential GUI
controls for handling
audio and video (playback
controls)23.

lps.
components.
av

Figure 26. OpenLaszlo™-based video player

Figure 27. OpenLazlo™-based source code

99

Multimedia Support for Native/Embedded Video Playback on Frameworks

for the purposes of this chapter, Table 13 merely
summarizes the second type of compression..

4. CONCLUSION

In the case of JavaScript-based RIAs frameworks,
the plug-ins analyzed in this chapter are not the only
options for integrating native/embedded video
playback support into JavaScript-based RIAs. In
fact, the range of video containers and compres-
sion formats supported by a JavaScript-based RIA
framework may significantly vary depending on
the plug-ins selected. Moreover, the publication
of the fifth revision of the HTML standard opens
up new possibilities for rich media support due
to the inclusion of the <audio>, <video> and
<canvas> tags. These new features are intended
to facilitate the integration of multimedia and
graphical content on the Web without depending
on proprietary Web browser plug-ins and APIs.
However, these new features are not completely
supported by all Web browsers yet. Because
HTML5 is a W3C candidate recommendation to
date, so that this video playback support approach
is not addressed in this chapter.

On the other hand, although the decoding of
some audio and video compression formats relies

on operating system-specific media engines, the
support for video playback into non-JavaScript-
based RIA frameworks is commonly conditioned
by the video container and compression formats
natively supported by the involved Web browser
plug-ins and runtime environments. Thus, in the
case of Adobe Flex™, Adobe Flash Player™, and
Adobe AIR™, they provide support for the FLV
and F4V container formats, which are currently
considered the fact standard for online video. How-
ever, in the case of Silverlight™, the Silverlight™
plug-in provides support for the ASF container
format that is related to several proprietary codecs
developed by Microsoft™.

According to what has been mentioned above,
the selection of a technology for developing mul-
timedia-interactive RIAs may depend on the video
file formats involved, as well as on the amount of
development effort necessary to incorporate the
functionalities intended. In fact, as it was explained
throughout this chapter, some non-JavaScript-
based frameworks do not provide built-in support
for video playback. This can result in an increase
in development time and effort. As a summary, not
only the capabilities of the frameworks represent
a determining factor in this evaluation, but also
the extent to which the capabilities are exposed
as developer-friendly APIs.

Table 13. Summary of support for media types among non-JavaScript-based frameworks for RIAs de-
velopment

Video Container
Formats

Framework

Adobe Flex™ JavaFX™ Silverlight™ OpenLaszlo™

FLV Yes (VP6 and Sorenson Spark) Yes (VP6) No Yes (VP6 and
Sorenson Spark)

MP4 Yes (H.264/AVC) Yes (H.264/AVC) Yes (H.264/AVC) No

F4V Yes (H.264/AVC) No No No

3GP Yes (H.264/AVC) No Yes (H.264/AVC and H.263) No

ASF No No Yes (WMV and VC-1) No

100

Multimedia Support for Native/Embedded Video Playback on Frameworks

REFERENCES

Architecture, S. (n.d.). MSDN. Retrieved May
10, 2013, from http://msdn.microsoft.com/en-us/
library/bb404713(v=vs.95).aspx

Castillo, C. (n.d.). 1 Introduction to JavaFX Media.
JavaFX Documentation. Retrieved May 9, 2013,
from http://docs.oracle.com/javafx/2/media/over-
view.htm#CJAHFAHJ

Package javafx.scene.media. (n.d.). JavaFX 2.2.
Retrieved May 9, 2013, from http://docs.oracle.
com/javafx/2/api/javafx/scene/media/package-
summary.html

Preciado, J. C., Linaje, M., Sanchez, F., & Comai,
S. (2005). Necessity of methodologies to model
Rich Internet Applications. In Proceedings of the
Seventh IEEE International Symposium on Web
Site Evolution (pp. 7–13). Washington, DC: IEEE
Computer Society. doi:10.1109/WSE.2005.10

Rosales-Morales, V. Y., Alor-Hernández, G.,
& Juárez-Martínez, U. (2011). An overview
of multimedia support into JavaScript-based
Frameworks for developing RIAs. In Proceed-
ings of 2011 21st International Conference on
Electrical Communications and Computers
(CONIELECOMP) (pp. 66–70). doi:10.1109/
CONIELECOMP.2011.5749341

Subramaniam, D. (2010, March 8). A brief over-
view of the Spark architecture and component set.
Retrieved May 9, 2013, from http://www.adobe.
com/devnet/flex/articles/flex4_sparkintro.html

Support, M. (n.d.). OpenLaszlo wiki. Retrieved
May 22, 2013, from http://wiki.openlaszlo.org/
MediaSupport

Supported Media Formats, P., & Fields, L. (n.d.).
MSDN. Retrieved May 9, 2013, from http://msdn.
microsoft.com/en-us/library/cc189080(v=vs.95).
aspx

Understanding Video Formats. (n.d.). Adobe Flash
Platform. Retrieved May 9, 2013, from http://help.
adobe.com/en_US/as3/dev/WS5b3ccc516d4fb-
f351e63e3d118a9b90204-7d46.html

ADDITIONAL READING

Basics of Video. (n.d.). Adobe Flash™ Plat-
form. Retrieved May 9, 2013, from http://help.
adobe.com/en_US/as3/dev/WS5b3ccc516d4fb-
f351e63e3d118a9b90204-7d50.html

Designing Rich Internet Applications. (n.d.).
MSDN. Retrieved May 10, 2013, from http://msdn.
microsoft.com/en-us/library/ee658083.aspx

Spark VideoPlayer and VideoDisplay Con-
trols. (n.d.). Adobe Flex 4.6. Retrieved
May 9, 2013, from http://help.adobe.com/
en_US/flex/using/WSc78f87379113c38b-
669905c51221a3b97af-8000.html

KEY TERMS AND DEFINITIONS

Bit Rate: The number of bits that are conveyed
or processed per unit of time. It is quantified by
using the bits per second (bit/s or bps) unit.

Container Type: It specifies the file format
used to store the encoded audio, video and other
media data.

Encoding Type: It specifies how sampled au-
dio or video data are stored and it usually implies
a particular compression algorithm.

Graphic User Interface: It is a part of the
system software that acts as a user interface, i.e.
it provides a mechanism for the user to interact
with a software, these mechanisms can be text,
images and other graphics.

Media Players: These are players for multi-
media content, especially video content, which
can support various formats.

http://msdn.microsoft.com/en-us/library/bb404713(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/bb404713(v=vs.95).aspx
http://docs.oracle.com/javafx/2/media/overview.htm#CJAHFAHJ
http://docs.oracle.com/javafx/2/media/overview.htm#CJAHFAHJ
http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html
http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html
http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html
http://dx.doi.org/10.1109/WSE.2005.10
http://dx.doi.org/10.1109/CONIELECOMP.2011.5749341
http://dx.doi.org/10.1109/CONIELECOMP.2011.5749341
http://www.adobe.com/devnet/flex/articles/flex4_sparkintro.html
http://www.adobe.com/devnet/flex/articles/flex4_sparkintro.html
http://wiki.openlaszlo.org/MediaSupport
http://wiki.openlaszlo.org/MediaSupport
http://msdn.microsoft.com/en-us/library/cc189080(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/cc189080(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/cc189080(v=vs.95).aspx
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d46.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d46.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d46.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d50.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d50.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d50.html
http://msdn.microsoft.com/en-us/library/ee658083.aspx
http://msdn.microsoft.com/en-us/library/ee658083.aspx
http://help.adobe.com/en_US/flex/using/WSc78f87379113c38b-669905c51221a3b97af-8000.html
http://help.adobe.com/en_US/flex/using/WSc78f87379113c38b-669905c51221a3b97af-8000.html
http://help.adobe.com/en_US/flex/using/WSc78f87379113c38b-669905c51221a3b97af-8000.html

101

Multimedia Support for Native/Embedded Video Playback on Frameworks

Progressive Download: The process of load
the video data in sequence when a video is deliv-
ered from a standard Web server.

Streaming: Technique alternative to progres-
sive download where the client computer never
downloads the entire video at one time.

ENDNOTES

1 http://dojotoolkit.org/reference-guide/1.9/
dojox/av/FLVideo.html#dojox-av-flvideo

2 http://dojotoolkit.org/reference-guide/1.9/
dojox/av/widget.html#dojox-av-widget

3 http://www.openstudio.fr/jQuery-Multime-
dia-Portfolio.html?lang=fr

4 http://thickbox.net/
5 http://videobox-lb.sourceforge.net/
6 https://code.google.com/p/swfobject/
7 http://www.p51labs.com/lightwindow/
8 http://script.aculo.us/
9 https://code.google.com/p/ext-ux-youtube-

player/
10 http://help.adobe.com/en_US/FlashPlat-

form/reference/actionscript/3/spark/com-
ponents/VideoPlayer.html

11 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/mx/controls/
VideoDisplay.html

12 http://help.adobe.com/ru_RU/FlashPlat-
form/reference/actionscript/3/spark/com-
ponents/mediaClasses/StreamingVideo-
Source.html

13 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/flash/media/
Video.html

14 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/flash/net/
NetStream.html

15 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/flash/net/
NetConnection.html

16 http://labs.adobe.com/technologies/cirrus/
17 http://docs.oracle.com/javafx/2/api/javafx/

scene/media/Media.html
18 http://docs.oracle.com/javafx/2/api/javafx/

scene/media/MediaPlayer.html
19 http://docs.oracle.com/javafx/2/api/javafx/

scene/media/MediaView.html
20 http://msdn.microsoft.com/en-us/li-

brary/system.windows.controls.
mediaelement(v=vs.95).aspx

21 http://www.openlaszlo.org/lps3.4/docs/
reference/index.html?videoview.html

22 http://www.openlaszlo.org/lps3.4/docs/
reference/index.html?mediastream.html

23 http://www.openlaszlo.org/lps4.9/docs/
reference/lz.videoplayer.html

102

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

Aspect-Oriented
Programming (AOP) Support

on RIAs Development

ABSTRACT

Chapter 6 emphasizes the importance of employing Aspect-Oriented Programming (AOP) on software
development, especially in software engineering. Some advantages in the development of RIAs by using
AOP are Maintainability, Extensibility, and Reusability. This chapter presents a review of several success
stories of AOP implementation in real world development projects and discusses the lessons learned in
these projects. The works analyzed in the state-of-the-art are classified by Web development, Usability
Engineering, and other related perspectives. Finally, the chapter also addresses AOP support between
JavaScript-based RIA frameworks and non-JavaScript-based RIA frameworks providing either native
or third-party AOP facilities. Some code snippets depicting the use of these facilities for implementing
AOP concepts are also presented.

1. INTRODUCTION

Nowadays, AOP (Aspect-Oriented Programming)
is one of the concepts on computer programming
primarily used in research and industry. Its use
is an evolutionary way of developing software
that improves upon OOP (Object-Oriented Pro-
gramming), in the same way that OOP improved
upon procedural programming. OOP introduced
the concepts of encapsulation, inheritance, and
polymorphism for creating a hierarchy of objects
that model a common set of behaviors. Although
OOP has become relevant, it has failed in handling

common behaviors that extend across unrelated
objects. This means that OOP enhances vertical
relationships but not horizontal relationships. As
an example, logging code is often horizontally scat-
tered across object hierarchies, but it has nothing
to do with core functions of the objects scattered
across. This situation occurs with other types of
code, such as security and exception handling AOP
provides a solution for abstracting crosscutting
code that spans object hierarchies without func-
tional relevance to the code it spans. AOP is a tool
that enables to abstract the crosscutting code into
a separate module, known as an aspect, rather than

DOI: 10.4018/978-1-4666-6437-1.ch006

103

Aspect-Oriented Programming (AOP) Support on RIAs Development

embedding crosscutting code in classes and then
dynamically applying the code where it is needed.
The application of the crosscutting code is achieved
by defining specific places, known as pointcuts,
in the object model where the crosscutting code
should be applied (Ekabua, 2012). Depending on
the intended AOP framework, crosscutting code
is injected at the specified pointcuts at runtime
or compile-time. Ideally, AOP introduces a very
powerful concept, which allows the introduction of
new functionalities into objects without the objects
needing to have any knowledge of that introduc-
tion (Holmes, 2012). Defects and deterioration of
software are caused by changes in source code,
and a lot of these changes cannot be avoided;
however, they can be minimized. In most cases,
when changes are made to software, the entire
program is reengineered (Fayad & Adam, 2001).

Changes are inseparable part of software evolu-
tion. Changes take place in the process of devel-
opment as well as during software maintenance.
Huge costs and low speed of implementation are
characteristic to change implementation. Often,
change implementation implies a redesign of the
whole application. The necessity of improving the
software adaptability is fairly evident. Changes
are usually specified as alterations of the base
application behavior. Sometimes, it is needed to
revert a change, which would be best done if it
were expressed in a pluggable way. Another benefit
of change pluggability is apparent if the change
has to be reapplied. However, it is impossible to
have a change implemented to fit any context,
but it would be sufficiently helpful if a change
could be extracted and applied to another version
of the same base application. Such a pluggability
can be achieved by representing changes as as-
pects (Dolog, Vrani´c & Bielikov´a, 2001). Some
changes appear as real crosscutting concerns in
the sense of affecting many places in the code,
which is yet another reason for expressing them
as aspects. This would be especially useful in the
customization of web applications.

Typically, a general Web application is adapted
to a certain context by a series of changes. With
the arrival of a new version of the base applica-
tion, all these changes have to be applied to it.
In many occasions, the difference between the
new and the old application does not affect the
structure of changes.

A successful application of AOP requires a
structured base application. Well-structured Web
applications are usually based on the MVC (Model-
View-Controller) pattern with three distinguish-
able layers: model layer, presentation layer, and
persistence layer (Bebjak, Vranic & Dolog, 2007).

AOP can be implemented in RIAs. This kind of
programming is capable of providing many ben-
efits to RIAs, such as adding new levels of security
and functionality without modifying the original
code application. As it was mentioned above the
advantages of applying AOP development of RIAs
are varied and very important. Some of the most
important advantages in the development of RIAs
by using AOP are mentioned below:

• Maintainability is very important for
RIAs development, since it enables to
make changes as effectively and efficiently
as it is possible. Moreover, the AOP pro-
vides a high level for maintainability.

• Extensibility is other important aspect in
the RIAs development because sometimes
the new functionality needs to be added
to an application that is in operation, and
is necessary to ensure that the application
does not fail.

• Reusability is an important point not only
in software development but also in the
AOP. In fact, Reusability encapsulates the
functionality required for reuse on subse-
quent occasions. This reduces develop-
ment time and improves productivity. In
the cases of both RIAs t and software de-
velopment the development time is very
expensive.

104

Aspect-Oriented Programming (AOP) Support on RIAs Development

In this chapter, the use of AOP on software
development, particularly on software engineer-
ing, is addressed. It must be mentioned that several
technologies have adopted the use of AOP; there-
fore, there is an extensive variety of programming
languages used for the implementation of AOP.
Two of these programming languages are AspectJ
and CaesarJ, among others. However, the prupose
of this chapter is not to detail programming lan-
guages. Instead,

The following section addresses several works
on web engineering with AOP support. These
works have been grouped into three topics: Web
development, Usability Enginerring and other
perspectives with AOP support.

2. RESEARCH WORKS ON WEB
ENGINEERING WITH AOP SUPPORT

AOP is an important programming paradigm and,
recently, it has been used many times by develop-
ers, including Web developers. This is why it is
important to emphasize on AOP in this chapter.
Diverse works have been proposed to give support
to AOP in combination with others features of
Web engineering. Web Engineering covers various
issues, and some of the most important are Case
Tools for Web development, code generation,
collaborative Web development, development and
deployment of Web services, and the usability of
Web applications. From these issues, the most
important were selected based on the objectives
of AOP. Some of the most important works are
mentioned below, and they were grouped into three
themes, Web development, usability engineering,
and other perspectives with AOP support.

2.1. Web Development
with AOP Support

In (Resendiz & Aguirre, 2005) the authors de-
scribed that with the appearance and adoption of
new Web services standards and technologies, de-

veloping and maintaining distributed applications
is becoming a complex task. Unfortunately, most
of the known approaches to develop applications
embrace problems about physical distribution
since the early phases of design. Thus, in order
to reduce the complexity in the development of
Web-based applications, authors proposed an ap-
proach emphasizing on locality transparency in
the application design; thus, they left the physi-
cal distribution concerns in a later phase of the
development process.

In order to address this modularization con-
cerns, AOP was adopted as a programming model
that provides the means to integrate the distribution
aspects in an application whenever it is needed.
The AOP paradigm allowed the system designer
to obtain a distributed version of the application
by integrating a Web services communication and
coordination infrastructure. The main contribu-
tion of this work consisted in simplifying the
development process of Web-based applications.
This reduced the costs of production and mainte-
nance of the applications and, at the same time, it
provided a considerable increase in applications’
flexibility and dynamism.

Similarly, (Hmida, Tomaz & Monfort, 2005)
explained that Web service is the fitted technical
solution that provides the required loose coupling
in order to achieve SOA. In previous works, the
authors proposed an approach using the AOP para-
digm to increase the adaptability of Web services.
This approach suffers from some deficiencies as a
dependency for both the programming language
(Java) and the SOAP engine (AXIS). Therefore,
authors proposed to increase the adaptability of
Web services by using the main AOP agreed
semantics - advices, pointcuts and joinpoint – in
order to change the original Web service behavior.
Authors proposed to use an XML language for
describing pointcuts, joinpoint and to referencing
advices. The invocation of advices (Web services)
was accomplished by an XQuery engine to assure
SOAP engine independency and advices are imple-

105

Aspect-Oriented Programming (AOP) Support on RIAs Development

mented as Web services to promote programming
language independency.

(Verheecke, Vanderperren & Jonckers, 2006)
presented an innovative technique based on the fact
that Service-oriented architectures are designed
to support loose coupling between interacting
software applications. Using Web services tech-
nology, SOAs (Service-Oriented Architecture)
support the creation of distributed applications
in a heterogeneous environment. The ultimate
SOA goal is to let developers write applications
that are independent of the specific services they
use - applications that select and integrate services
on the fly. Currently, service developers use the
Web services description language to describe
their services and publish the documentation in
a registry. Service clients can browse these reg-
istries to find a service that matches their need
and to determine how to communicate with it. By
analyzing the WSDL documentation, the client
can integrate the service and invoke it through
XML-based SOAP communication. The Web
Services Management Layer provides adaptive
middleware that used AOP dynamic to solve
several crosscutting concerns in service-oriented
architectures.

In addition (Xu, Tang, Tang, Xu & Xiao, 2007)
explained that although there can be some value in
accessing a single Web service, the greater value
was derived from assembling Web services into
more powerful composite Web services. Web
service flows are composite Web services based
on process. The authors applied AOP concepts to
support the dynamic adaptation of Web service
flows. They also provided the approach for de-
scribing aspect as extension to BPEL, considering
how to reuse the definition of an advice that may
have different types at different pointcuts. They
presented an approach for verifying the correct-
ness of the web service flows weaved with aspects
before they were deployed.

Moreover in (Ponnalagu, Narendra, Krish-
namurthy & Ramkumar, 2007) the authors
provided a novel approach for specifying and

relating non-functional properties for distributed
component Web services that can be used to adapt
a composite Web service. This approach used a
distributed AOP technology to model an adaptive
architecture for composition and execution of
Web services. Existing Web service adaptation
mechanisms are limited only to the process of
Web service choreography in terms of Web ser-
vice selection/invocation vis-a-vis pre-specifled
(Service Level Agreement) SLA constraints. This
system extended this idea by representing the
non-functional properties of each Web service
- composite and component - via AOP. Hence,
the system modeled a relation function between
the aspects of the composite Web service and
the individual aspects of the component Web
service. This enabled mid-flight adaptation of the
composite Web service - in response to changes
in non-functional requirements - via suitable
modifications in the individual aspects of the
component Web service. From the end users’
viewpoint, such upfront aspect-oriented modeling
of non-functional properties enables on-demand
composite Web service adaptation with minimal
disruption in quality of service.

(Patel & Pandey, 2009) described sensor net-
work applications that are executed in diverse sce-
narios, different platforms, and in an uncontrolled
environment. Both data aggregation and data
handling at the middleware demand an approach to
integrate functionalities of various interests from
diverse network clusters. Therefore, instead of a
proprietary solution for individual problems, it is
desirable to have a platform that is independent
from the service-oriented architecture. SOA is
composed of interactive Web services called by
client applications. Secured access and use of Web
services is a primary requirement in these applica-
tions. From software engineering point of view,
authentication and logging are the crosscutting
concerns for the Web services. Instead of using
a conventional object-oriented approach for han-
dling concerns in every class or method, authors

106

Aspect-Oriented Programming (AOP) Support on RIAs Development

proposed to use of AOP paradigm to reduce the
code overhead of the system.

In (Zhang, Meng & Liu, 2009), authors pro-
posed that nowadays Web services are the best
way to solve cross-platform, cross-language,
and loosely coupled distributed systems in Web
environment. However, because of some crosscut-
ting concerns in web services – such as logging,
authorization, and transaction, among others – the
systems that were constructed by integrating web
services have some problems caused by the code-
tangling and code-scattering. In order to solve the
aforementioned problems, AOP was introduced
into web services. The crosscutting concerns
were separated and performed individually as
aspectual services and a weaver weaves them
when the system runs. And after researching SOA
and multi-tier architecture, a system architecture
based on aspectual services and web services
was proposed.

After the analysis of different works about
the Web development, particularly about the
adoption of AOP in both the development and
deployment of Web services, it is easy to idenitfy
the advantages that AOP offers to developers. In
fact, some of the most common issues in this area
can be solved with the use of this new program-
ming paradigm (AOP). As it can be observed in
the works presented above, issues such as how to
increase resilience and reusability of Web services
can be relatively resolved with ease by using AOP.

2.2. Usability Engineering
by Using AOP

In (Lippert & Lopes, 2000), the authors described
that AOP is intended to ease situations that in-
volve many kinds of code tangling. The reserach
reported on a study to investigate AOP’s ability
to ease tangling related to exception detection and
handling. Authors took an existing framework
written in Java ™, the JWAM framework, and
partially reengineered its exception detection
and handling aspects using AspectJ™, which

is an aspect-oriented programming extension to
Java. The authors found that AspectJ™ supported
implementations that drastically reduced the por-
tion of the code related to exception detection and
handling. In one scenario, was authors were able to
reduce the code by a factor of 4. They also found
that, with respect to the original implementation
in plain Java, AspectJ provided better support for
different configurations of exceptional behaviors,
more tolerance for changes in the specifications
of exceptional behaviors, better support for in-
cremental development, better reuse, automatic
enforcement of contracts in applications that use
the framework, and cleaner program texts.

Likewise, in (Tarta & Moldovan, 2006) Us-
ability is explained as one of the most important
qualities of a software system. Designing for
usability is a complex task and sometimes it is
expensive. Automatic usability evaluation can
ease the evaluation process. The authors tried to
analyze where and how AOP can be used in order
to develop modules to support automatic usability
evaluation. A small family budget application was
used to test the module designed and implemented
by using AOP.

In (Ruengmee, Silva, Bajracharya, Redmiles
& Lopes, 2008) it is described that in spite of
the modularization benefits supported by the
AOP paradigm, different usability issues have
hindered its adoption. The decoupling between
aspect definitions and base code, and the compile-
time weaving mechanism adopted by different
AOP languages, require developers to manage
the consistency between base code and aspect
code themselves. These mechanisms create op-
portunities for errors related to aspect weaving
invisibility and non-local control characteristics
of AOP languages. The authors described XE
(Extreme Editor), an IDE that supports developers
in managing these issues in the functional aspect-
oriented programming domain.

In the work of (Barbosa, Honorio, Leite da Silva
& Lopes, 2009), optimization of complex systems
was analyzed because this demands advanced

107

Aspect-Oriented Programming (AOP) Support on RIAs Development

methods that are implemented in specialized
software. Multiple combinations of optimization
methods, objective functions, and constraints
further complicate the problem of developing this
software, making it hard to create, maintain, and
evolve. To overcome this problem, the research
presented a new development methodology based
on ideas of AOP applied to optimal power flow
problems. This new methodology supported a
clean separation of concerns, and mantained
dependencies to a minimum level. The optimi-
zation method is self-contained and completely
independent from the rest of the system; for each
optimization scenario, the solution binded the
optimization with the concrete problem at run-
time. This approach improved the ability to deal
with several different objective functions and
constraints. Thus, is also provided flexibility,
maintainability, and usability to the development
and evolution effort without degradation of the
computational time. In order to evaluate it, the
model was compared with the traditional OOP
paradigm by using several software metrics.

Moreover in (Holzinger, Brugger & Slany,
2011) the authors explained that Usability En-
gineering can be seen as a crosscutting concern
within the software development process. On
the other hand, AOP is a technology to support
separation of concerns in software engineering.
Therefore, it seems reasonable to support usability
engineering by applying a technology designed
to handle distinct concerns in one single applica-
tion. Remote usability testing has been proven to
deliver good results, and AOP is the technology
that can be used to streamline the process of test-
ing various software products without mixing
concerns by separating the generation of test data
from program execution. The authors presented
a sample application, discussed their practical
experiences with this approach, and provided
recommendations for further development.

Usability is one of the most important aspects
of both software systems and RIAs. Also, as it can
be observed, AOP is of great help for problem

solving concerning usability engineering, espe-
cially since one of the most common problems
in Usability Engineering is modularization. In
this case, AOP provides facilities for applying
modularization easily.

2.3. Other Perspectives
with AOP Support

In the work (Kulesza, Sant’Anna, Garcia, Coelho,
Von Staa & Lucena, 2006) one of the main prom-
ises of AOP is to promote improved modulariza-
tion of crosscutting concerns, thereby enhancing
the software stability in the presence of changes.
The reserach presented a quantitative study that
assesses the positive and negative effects of AOP
on typical maintenance activities of a Web infor-
mation system. The study consisted of a systematic
comparison between the object-oriented and the
aspect-oriented versions of the same application
in order to assess to what extent each solution pro-
vided maintainable software decompositions. This
analysis was driven by fundamental modularity
attributes, such as coupling, cohesion, conciseness,
and separation of concerns. Authors found that
the aspect-oriented design had exhibited superior
stability and reusability through the changes, as
it had resulted in fewer lines of code, improved
separation of concerns, weaker coupling, and
lower intra-component complexity.

Moreover in (Ortiz, Bordbar & Hernandez,
2008) the MDA (Model-driven architecture) was
introduced to shorten the software development
time, produce better quality of code, and promote
the reuse of software artifacts. On the other hand,
AOP was motivated by the need to create de-
coupled systems, which were easier to maintain.
As a result, it ccould be argued that adopting AOP
and MDA side-by-side will provide advantages
from both sets of techniques. However, adapting a
new technology often entails extra cost and effort,
including cost associated with training and sup-
port for the software tool. Therefore, it is crucial
to evaluate the usefulness of applying both tech-

108

Aspect-Oriented Programming (AOP) Support on RIAs Development

niques dependently. The research also presented a
quantitative approach to evaluate the use of MDA
and AOP in service-oriented environments.

Another work (Xu & Huang, 2009) discussed
that AOP is an emerging programming paradigm.
Now the concept of aspect-orientation stretches
over other development phases and other domains.
A great amount of research has focused on aspect-
oriented Web service composition domain. How-
ever, none of them offers a formal foundation for
the aspect-oriented service composition. However,
in (Xu & Huang, 2009), authors proposed a Petri
net-based algebra for aspect-oriented Web service
composition. In this model, Web service composi-
tion was modeled as a basic composition net and
aspect nets, and then a weaving mechanism was
provided in order to compose the basic net and
aspect nets. The formal semantics of the compo-
sition operation was expressed in terms of Petri
nets. Thus, the properties of woven composite
service could be verified and analyzed based on
the underlying Petri net.

In addition (Li, Zhang & Wang, 2010), authors
described why the AOP is good at solving the
difficulty in OOP of crosscutting concerns, and
loosens the system from higher standpoints. Based
on the characteristics of web application system,
the paper introduced the AOP idea, and designed
a kind of multi-player architecture based on MVC.
It also emphasized on the analysis of crosscutting
concerns in web system, including authorization,
exception, logging, and time handler. Additionally,
using AspectJ language, authors designed imple-
mentations to solve these crosscutting concerns to
distributed enterprise web-based systems based
on J2EE platform. At the end, comparing with
OOP, the research presented a summary of the
advantaged of the AOP usage.

This section presented a set of related works
on diverse topics about Web Engineering. All of
them agree in the advantages of AOP implemen-
tation in order to solve diverse problems in Web
development. As it could be observed, several

issues about the reusability of codes and even of
complete modules can be solved with the imple-
mentation of this new programming paradigm.

Moreover, as it could be observed along the
previous works analyzed, AOP has been used in
several contexts of Web Engineering due to its
many capabilities and benefits. It must be men-
tioned that developers are considering including
AOP within their developments because of the
popularity that it has gained through recent years.
In fact, AOP has demonstrated its usefulness in
different areas of software development.

3. AOP SUPPORT ON JAVASCRIPT-
BASED FRAMEWORKS

There are several JavaScript-based frameworks
for RIAs development such as Dojo, jQuery,
Mootools, Qooxdoo, Prototype, Rico, Sencha
ExtJS, X-Library, GWT, Cappuccino, SproutCore,
Spry, midori and YUI Library to mention a few.

However, this chapter merely analyzes eight of
these JavaScript-based frameworks: Dojo, jQuery,
Mootools, Qooxdoo, Prototype, Rico, Sencha
ExtJS and X-Library. These frameworks have
been divided into two groups: 1) JavaScript-based
frameworks with AOP support and; 2) JavaScript-
based frameworks without AOP support. The
following subsections thoroughly explain the
scope of the AOP support provided by each one
of these frameworks.

3.1. JavaScript-Based Frameworks
for RIAs Development
with AOP Support

It must be mentioned that AOP support on JavaS-
cript-based frameworks is limited, and it is not
possible to apply and identify each one of the AOP
concepts, since not all concepts are implemented in
the frameworks. The JavaScript-based frameworks
with AOP support are presented below.

109

Aspect-Oriented Programming (AOP) Support on RIAs Development

3.1.1. AOP Support in Dojo

Dojo (version 1.5) has AOP support. Dojo sup-
ports Dynamic Crosscutting, and the elements
supported are presented in Table 1.

The function that provides AOP support in
Dojo is:

dojo.connect (object, method, handlerobject,
handlermethod)

This function adds an advice before of invoking
a method. Advices represent the implementation
of the Aspects; this means that they contain the
code implementation of the new functionality.
The advices are inserted into the Join Point, and,
to do this, advices must be previously defined
in Pointcuts. However, in this case, is clear to
observe the Pointcut and Join Point are implicit
in the method used.

Advices are useful in the development of RIAs
and their main use is to modify any behavior of
an application previously developed in order to
provide new functionalities. An advice into the
RIAs can be used in different cases, for example:
1) add authentication methods for users, 2) add
methods to accept use terms, and 3) add steps in
a purchase process, among others.

This function associates an event handler with
the execution of a method. The parameters to this
function are presented in Table 2 (Harmon, 2008).

The following example is a code fragment
used to write a message on standard output (con-
sole). The message is just to exemplify, but the
function could do anything else. For doing this,

the foo and bar functions are provided and are
presented below:

1 function foo() {

2 console.log(“Running foo”);

3 }

4 function bar() {

5 console.log(“Running bar”);

6 }

Now, once the foo function is executed, bar
function is also executed. In order to understand
better the procedure, the traditional way of solving
the problem is shown below. To do this, a code
line in the foo method is added in order to execute
the bar method.

1 function foo() {

2 console.log(“Running foo”);

3 bar();

4 }

Although the proposed solution works, the
codification is static. To achieve this in a dynamic
way, Dojo provides a solution.

By using Dojo, it is possible to consider the
execution of a function as an event in which an-
other function is associated as a control of events,

Table 1. Elements for AOP support in Dojo (Har-
mon, 2008)

AOP Elements Supported

• Join Point
• Pointcut
• Advice (before)

Table 2. Parameters of dojo.connect function

Object
Parameter

This parameter represents an object
containing the method whose execution
will be treated as an event. This property
contains a reference to the object.

Method
Parameter

Method whose execution is treated as an
event. The method name is a string.

HandlerObject
Parameter

It represents an object containing the
method that will act as the event handler.
This property contains a reference to the
object.

handlerMethod
Parameter

It indicates a method that will act as the
event handler. The method name is a
string.

110

Aspect-Oriented Programming (AOP) Support on RIAs Development

dojo.connect function provides this association,
and the example is presented below:

1 dojo.connect(null, “foo”, null,

“bar”);

The Dojo.connect function provides the
functionality that the AOP specifies, such as the
management of events, i.e., the pointcut, the join
point, and the advice are implicitly established
through in the Dojo.connect function, the advice
is sent before the execution continues its normal
way. Once the foo function is executed, the bar
function is automatically executed.

It is a simple example of AOP support, but it
demonstrates the functionality of the Dojo.con-
nect function.The standard use of this approach
enables to dynamically add the features to be ap-
plied into many types of objects. For example, if
new functionalities are required in some methods,
then these functionalities can be carried out after
that the function was written. To do this, a new
function must be added, this function must con-
tain the new functionality that is required in the
application; next the assignment of a registration
method will be required for each function that
needs this new functionality; thus, the AOP will
be put into practice within the application and this
avoid adding the new code for each function where
new functionality is manually required. The AOP
approach is better since it does not directly codify
in the method and it is not needed to modify the
functions. According to industry references, each
time the code is altered, there is high probability
that something stops functioning. Thus, if it is
possible to avoid changing the methods, it is bet-
ter (Harmon, 2008).

In the cases of RIAs, this example can be ap-
plied in several cases, e.g. to add functionality
before executing a specific action. A practical
example would display a warning message before
doing an action or show a contract before final-
izing a transaction. This would happen in order

to carry out other actions before the final one
without losing focus of the main application. This
situation is presented in Figure 1.

In Figure 1, dojo.connect function was used and
added to a Web application or a RIA in order to
display a warning message before an action takes
place. With AOP support, this functionality can
be added in cases where the legacy application
was not included. In the legacy application, once
the carousel image finder is oppressed, a search is
performed and the information to the user is pre-
sented. However it is important to verify whether
the user is an adult and if he or she is aware of
the terms of use. For this, a function must be
added which is called every time that the search
function is invoked. Then, the new function is
executed before the search function sends a mes-
sage to the user. Next, the user requires pressing
the OK button to continue. Once this was done,
the information is displayed to the user, and with
just a few changes, functionality can be added
to a Web application without compromising a
proper operation.

3.1.2. AOP Support in jQuery

JQuery version 1.4 is able to support Aspect-
Oriented Programming through a plugin called
JQuery AOP.

Moreover, JQuery AOP version 1.3 is a small
JQuery plugin that adds AOP features to JavaScript
and is integrated within jQuery. jQuery AOP per-
mits adding Advice (Before, After, After Throw,
After Finally, Around and Introduction) in some
instances of the objects; it also enables to define
crosscutting using regular expressions, it works
with global functions and methods; also, it is pos-
sible to remove advices after being used, and it
is very compact. The use of jQuery AOP is very
simple. It is only required to include a .js file in
the source code (jquery-aop, 2014).

In RIAs, the application of this AOP function-
ality is very practical, since it is very common to

111

Aspect-Oriented Programming (AOP) Support on RIAs Development

need and add a new functionality into the applica-
tion. JQuery is a very useful tool since it provides
several functions that can be useful many times, For
instance, where new sections need to be added into
the application, or new features must be included
into a specific section of the application, so the
function of jQuery is to decide which section or
feature is the most appropriate to use.

jQuery supports Dynamic Crosscutting and
Static Crosscutting. The elements supported are
presented in Table 3.

In this case, an advice after a method will
be exemplified. An advice into the RIAs can be
used in various cases, especially after invoking

a method. Some scenarios for using advices into
RIAs are: 1) add methods to retrieve information
previously entered by a user, 2) add methods to
recurrently store information in a database man-
agement system, 3) add calls to a Web server to
retrieve information, to mention but a few.

Add an Advice after a Method

after(Map pointcut, Function advice) returns
Array<Function>

This function creates an advice after the defined
pointcut. The advice will be executed after the
pointcut method has successfully completed the
execution, and it will receive one parameter with
the result of the execution. This function returns
an array of weaved aspects (Function). Parameters
to this function are presented in Table 4 (jquery-
aop, 2014).

The next example shows two different ways
of adding an advice after a method are described:

Figure 1. A Dojo-based RIA by using AOP support

Table 3. Elements for AOP support in jQuery
(jquery-aop, 2014)

AOP Elements Supported

• Join Point
• Pointcut
• Advice (before, after, around)
• Introduction

112

Aspect-Oriented Programming (AOP) Support on RIAs Development

1 //example 1

2 jQuery.aop.after({target: window,

method: ‘MyGlobalMethod’},

3 function(result) {

4

alert(‘Returned: ‘ + result);

5 return result;

6 }

7);

8 //example 2

9 jQuery.aop.after({target: String,

method: ‘indexOf’},

10 function(index) {

11 alert(‘Result

found at: ‘ + index + ‘ on:’ + this);

12 return index;

13 }

14);

jQuery-AOP provides many options in terms of
functions. These functions can be used when nec-
essary within the RIAs development. jQuery-AOP
has features that are capable of providing extra
functionality. For instance, these features 1) are
able to add a new functionality to an application,
2) are able to solve problems of development or
design, 3) can modify the RIA behavior or even
4) can disable the RIA operation, adding only a
few functions and without modifying the original
source code.

To better understand the functionality of an
advice after the method, let us suppose an ap-
plication with user data, such as address, phone
numbers, and more. Let us assume also that the
registration form requires a large amount of data

that must be manually entered by the user. The
problem is when the user changes some data and
the Done button is not clicked, because if a failure
occurs, the information will be lost and the user
would have to rewrite the data. To avoid this, it
is possible to use an advice after the method, this
way, it is possible to add the functionality to save
the information each time a field in the form is
changed by the user. Also, the application can
send a message to inform the user that the data
has been modified. With this, it is possible to
prevent the loss of information and time. This is
just one example that depicts the possible uses of
AOP support in RIAs, particularly in the use of
advices after the method.

3.1.3. AOP Support in Qooxdoo

Qooxdo version 1.1 has a static class named
Aspect (qx.core.Aspect) which is the only class
that provides the AOP support. This class shows a
very basic AOP support, the class permits joining
functions before or after each call to a function.
This class includes two static methods; the first
is for the advice and the second for the wrap
(qooxdoo.org, 2014).

Classes, which define own aspects must add
an explicit require/requirement (require() is used
to load files) to this class in the header comment
using the following code:

#require(qx.core.Aspect)

#ignore(auto-require)

Qooxdoo supports Dynamic Crosscutting, and
the elements supported are presented in Table 5.

Table 4. Parameters of after function

Map Pointcut
Parameter

Definition of the pointcut to apply the advice. A pointcut is the definition of the object/s and method/s to be weaved.
 • Target: it is the object to be weaved.
 • Method: it is the name of the function to be weaved

Function Advice
Parameter

Function containing the code that will be called after the execution of the pointcut. It receives one parameter with the
result of the pointcut’s execution. The function can choose to return this same value or provide a different one.

113

Aspect-Oriented Programming (AOP) Support on RIAs Development

Adding an advice after or before a method

addAdvice (Function fcn, String position?, String
type?, (String | RegExp) name?)

This function registers a function to be called
just before or after each time one of the selected
functions is called. Parameters to this function are
presented in Table 6 (qooxdoo.org, 2014).

In this case, the Aspect class provides the ability
to add advices, which may be executed before or
after the method as it is needed. For Qooxdoo, the
AOP functionality is of great help, since the same
function provides the ability to use an advice after
or before a method. By using this functionality,
Qooxdoo can solve many problems that require
the execution of a function, either before or after
another specific function. This other function must
be previously specified in the advice parameters.

3.2. JavaScript-Based Frameworks
for RIAs Development
without AOP Support

Out of the eight JavaScript based frameworks
analyzed in this book, merely three of them
account for AOP support. This means that the

remaingin five do not have AOP support. These
five frameworks, as well as their versions, are
presented below.

3.2.1. AOP Support in Mootools

Mootools (version 1.3) has no AOP support,
and in contrast to another framework, it does not
have an extension or plugin to give AOP support.
However, some efforts and developments are be-
ing done, although but they still lack of maturity
to be released or published.

3.2.2. AOP Support in Prototype

Prototype (version 1.7) neither has AOP sup-
port, nor includes extensions or some plugin to
give AOP support. However, some researches
and developments are carried out to solve this.
However, they still lack of the maturity in order
to be released or published.

3.2.3. AOP Support in Sencha ExtJS

Sencha ExtJS (version 3.3) has no AOP support,
and no extension or plugin have been developed
yet to give AOP support.

3.2.4. AOP Support in Rico

Rico (version 2.0) has neither AOP support nor
an extension or plugin to provide AOP support.

Table 5. Elements for AOP support in Qooxdoo
(qooxdoo.org, 2014)

AOP Elements Supported

• Join Point
• Pointcut
• Advice (before and after)

Table 6. Parameters of addAdvice function

Function fcn parameter It is a function to be called right before or after any of the selected functions is called.

position (default: “after”) parameter Before or after, it defines whether the function is called before or after the main function.

type (default: null) parameter It refers to the type of function. Only one of the following values is allowed: “member”,
“static”, “constructor”, “destructor”, “property” or “”, null is handled identical to “”.

name (default: null) parameter It refers to a pattern to match names. It is not necessary to have the same name, it can also be
but only a part that coincides with it.

114

Aspect-Oriented Programming (AOP) Support on RIAs Development

3.2.5. AOP Support in X-Library

X-Library (version 4.2) has no AOP support or
any extension or a plugin to give AOP support.

It is important to mention the framework ver-
sion reviewed, because the possibility that in future
versions of these frameworks AOP capabilities
can be added is not discarded.

4. AOP SUPPORT ON NON-
JAVASCRIPT-BASED FRAMEWORKS

In the case of non-JavaScript-based frameworks
for developing RIAs, there are four important
frameworks, which are AdobeFlex™, JavaFX™,
Silverlight™ and OpenLaszlo™. For each frame-
work, the AOP support is presented below.

4.1. AOP Support in Adobe Flex™

Adobe Flex™ (Flex™ 4) has not AOP support
but there are some alternatives regarding Adobe
Flex™ development. For instance, a framework
called Swiz can be used when specific AOP
techniques are required.

Swiz (version 1.4) is a framework for Adobe
Flex™, Adobe AIR™, and Adobe Flash™ that
aims to bring complete simplicity to RIA develop-
ment. Swiz provides:

• Inversion of Control / Dependency
Injection

• Event handling
• A simple life cycle for asynchronous re-

mote method invocations
• A framework that is decoupled from an ap-

plication code.
• Compatibility with both Flex™ and non-

Flex™ AS3 projects

Swiz represents best practices learned from the
top RIA developers in some of the best consulting

firms in the industry. Therefore, Swiz is simple,
lightweight, and extremely productive.

The popular Swiz framework provides the new
AOP support, as well as a new way of greately
reducing barriers by simplifying AOP. Swiz AOP
gives the powerful ability to easily configure a
new functionality into an existing code, instead of
muddying up fundamental business logic. It is an
extremely powerful methodology that Swiz makes
very easy to work with (Swiz Framework, 2014).

Although it is important to mention that this
Swiz project is currently being developed to pro-
vide AOP support for Flex, it is also important
to mention that it still exists in a beta version,
and it is developed by third-parties and not by
Adobe™ itself.

4.2. AOP Support in JavaFX™

JavaFX™ (version 2.1) has not AOP support;
nevertheless, independent projects have been
carried out in order to provide that support. An
example of these ongoing projects is the Spring™
Framework.

The Spring™ Framework (version 3.2) is a
lightweight solution and a potential one-stop-
shop for building enterprise-ready applications.
However, Spring™ is modular, and this enables to
use only those parts to be needed, without having
to bring in the rest. The Spring Framework sup-
ports declarative transaction management, remote
access to the logic through RMI (Remote Method
Invocation) or web services, and various options
for data persistence. It offers a full-featured MVC
framework, and enables to integrate AOP transpar-
ently into the software. Spring’s AOP module pro-
vides an AOP Alliance-compliant aspect-oriented
programming implementation, which permits
defining, for example, method-interceptors and
pointcuts to cleanly decouple the code that imple-
ments functionality to be separated. Behavioral
information can be incorporated into the code by
using source level metadata functionality. Una
funcionalidad de metadatos a nivel de código

115

Aspect-Oriented Programming (AOP) Support on RIAs Development

In the same case of Adobe Flex™, this frame-
work is developed by third-parties and their capa-
bilities mentioned are not included in JavaFX™
by default, and the AOP support for JavaFX™ is
only provided by Spring™ framework (Spring-
source.org, 2014).

4.3. AOP Support in Silverlight™

Silverlight™ (version 5.1.) has not AOP support,
and there are no frameworks or plugins to give
AOP support yet. It is important to remark that
some research and developments are being done,
although they still lack of support and maturity
to be published or released.

4.4. AOP Support in OpenLaszlo™

OpenLaszlo™ (version 4.9) has not AOP support,
and no framework or plug-in to give AOP support
has been provided yet. As it is the case of some
of the aforementioned frameworks, research and
developments are being performed to solve this
issue, but they still of readiness to be published
or released.

5. CONCLUSION

Most of the AOP-based research and develop-
ments have been carried out by using specialized
programming languages. Most of these languages
have been used for developing desktop applica-
tions. So far, few contributions have been done
in Web applications development. But in recent
years, developers needed to add AOP support for
Web programming languages, which is why some
contributions have been proposed. An example of
this is the recent inclusion of AOP features into
frameworks for developing RIAs.

Another important aspect is the contribution
of other works to supplement frameworks through
the use of plugins. Two specific cases are Adobe
Flex™ and JavaFX™. Although the AOP features

are limited, contributions to offer AOP support
on new programming languages are increasing.
For this reason, we believe that programming
languages for Web development could implement
AOP features. The AOP support on RIAs provides
benefits such as: 1) reducing development time
and costs, 2) extending the functionality of the
applications and 3) preventing errors and failures
due to modifications in the original code.

Finally, it is known that Reusability is crucial in
any software development, including Web devel-
opment, since it saves a great amount of develop-
ment time and avoids possible errors and mishaps.
Therefore, the implementation of AOP in software
development is an excellent bonus since AOP is
greatly useful in cases of reusability. Moreover,
it is possible to improve both maintenance and
extensibility of systems and, of course, of RIAs.
This will reduce development time and will also
improve the systems developed.

REFERENCES

Barbosa, D. A., Honório, L. M., Leite da Silva,
A. M., & Lopes, C. (2009). Concepts of Aspect-
Oriented Modeling Applied to Optimal Power
Flow Problems. In Proceedings of Intelligent
System Applications to Power Systems, (pp. 1-6).
IEEE. doi:10.1109/ISAP.2009.5352929

Bebjak, M., Vranic, V., & Dolog, P. (2007). Evo-
lution of Web Applications with Aspect-Oriented
Design Patterns. In Proceedings of AEWSE.
AEWSE.

Dolog, P., Vrani’c, V., & Bielikov’a, M. (2001).
Representing change by aspect. ACM SIGPLAN No-
tices, 36(12), 77–83. doi:10.1145/583960.583970

Ekabua, O. O. (2012). Using Aspect Oriented
Techniques to Build-in Software Quality. Interna-
tional Journal of Computer Science Issues, 9(4).

http://dx.doi.org/10.1109/ISAP.2009.5352929
http://Bebjak
http://Dolog
http://AEWSE.
http://dx.doi.org/10.1145/583960.583970

116

Aspect-Oriented Programming (AOP) Support on RIAs Development

Fayad, M. E., & Adam, A. (2001). Thinking
objectively: An Introduction to Software Stabil-
ity. Communications of the ACM, 44(9), 95–98.
doi:10.1145/383694.383713

Harmon, J. E. (2008). Dojo: Using the Dojo
JavaScript Library to Build Ajax Applications.
Addison-Wesley Professional.

Hmida, M. M. B., Tomaz, R. F., & Monfort, V.
(2005). Applying AOP concepts to increase Web
services flexibility. In Proceedings of Next Gen-
eration Web Services Practices. IEEE.

Holmes, J. (2012). Taking Abstraction a step fur-
ther. Retrieved April, 2014, from https://weblogs.
java.net/blog/2004/09/29/taking-abstraction-one-
step-further

Holzinger, A., Brugger, M., & Slany, W. (2011).
Applying aspect oriented programming in us-
ability engineering processes: On the example of
tracking usage information for remote usability
testing, In Proceedings of the International Con-
ference on e-Business (ICE-B 2011) (pp. 1-4).
Seville, Spain: IEEE.

jquery-aop. (2014). API Reference. Retrieved
April, 2014, from http://code.google.com/p/
jquery-aop/wiki/Reference

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R.,
Von Staa, A., & Lucena, C. (2006). Quantifying
the Effects of Aspect-Oriented Programming: A
Maintenance Study. In Proceedings of Software
Maintenance, (pp. 223-233). IEEE.

Li, H., Zhang, J., & Wang, L. (2010). The research
and application of web-based system with Aspect-
Oriented features. In Proceedings of Computer
Engineering and Technology (ICCET), (pp. V4-
480). IEEE.

Lippert, M., & Lopes, C. V. (2000). A study on
exception detection and handling using aspect-
oriented programming. In Proceedings of the 2000
International Conference on Software Engineering
(pp. 418-427). IEEE.

Ortiz, G., Bordbar, B., & Hernandez, J. (2008).
Evaluating the Use of AOP and MDA in Web
Service Development. In Proceedings of Internet
and Web Applications and Services, (pp. 78-83).
IEEE. doi:10.1109/ICIW.2008.24

Patel, S. V., & Pandey, K. (2009). SOA Using
AOP for Sensor Web Architecture. In Proceed-
ings of Computer Engineering and Technology,
(vol. 2, pp. 503-507). IEEE. doi:10.1109/IC-
CET.2009.152

Ponnalagu, K., Narendra, N. C., Krishnamurthy,
J., & Ramkumar, R. (2007). Aspect-oriented
Approach for Non-functional Adaptation of
Composite Web Services. In Proceedings of
Services, (pp. 284-291). IEEE. doi:10.1109/
SERVICES.2007.18

qooxdoo.org. (2014). API Documentation. Re-
trieved April, 2014, from http://demo.qooxdoo.
org/current/apiviewer/#qx.core.Aspect

Resendiz, M. P., & Aguirre, J. O. O. (2005).
Dynamic invocation of Web services by using
aspect-oriented programming. In Proceedings
of Electrical and Electronics Engineering, (pp.
48-51). IEEE.

Ruengmee, W., Silva, R. S., Bajracharya, S. K.,
Redmiles, D. F., & Lopes, C. V. (2008). XE
(eXtreme editor) -bridging the aspect-oriented
programming usability gap. In Proceedings of
the 2008 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering (pp.
435-438). IEEE Computer Society. doi:10.1109/
ASE.2008.67

http://dx.doi.org/10.1145/383694.383713
https://weblogs.java.net/blog/2004/09/29/taking-abstraction-one-step-further
https://weblogs.java.net/blog/2004/09/29/taking-abstraction-one-step-further
https://weblogs.java.net/blog/2004/09/29/taking-abstraction-one-step-further
http://code.google.com/p/jquery-aop/wiki/Reference
http://code.google.com/p/jquery-aop/wiki/Reference
http://dx.doi.org/10.1109/ICIW.2008.24
http://dx.doi.org/10.1109/ICCET.2009.152
http://dx.doi.org/10.1109/ICCET.2009.152
http://dx.doi.org/10.1109/SERVICES.2007.18
http://dx.doi.org/10.1109/SERVICES.2007.18
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Aspect
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Aspect
http://dx.doi.org/10.1109/ASE.2008.67
http://dx.doi.org/10.1109/ASE.2008.67

117

Aspect-Oriented Programming (AOP) Support on RIAs Development

Springsource.org. (2014). Spring Framework
Reference Documentation. Retrieved April,
2014, from http://static.springsource.org/spring/
docs/3.2.x/spring-framework-reference/pdf/
spring-framework-reference.pdf

Swiz Framework. (2014). Getting Started with
Swiz AOP. Retrieved April, 2014, from http://
swizframework.org/post.cfm/getting-started-
with-swiz-aop

Tarta, A. M., & Moldovan, G. S. (2006). Auto-
matic Usability Evaluation Using AOP. In IEEE
International Conference on Automation, Quality
and Testing. IEEE Robotics, 2, 84–89.

Verheecke, B., Vanderperren, W., & Jonckers,
V. (2006). Unraveiliny crossoutting concerns in
Web services middleware. Software, IEEE, 23(1),
42–50. doi:10.1109/MS.2006.31

Xu, Y., & Huang, H. (2009). A Petri Net-Based
Model for Aspect-Oriented Web Service Com-
position. In Proceedings of Management and
Service Science, (pp. 1-4). IEEE. doi:10.1109/
ICMSS.2009.5305764

Xu, Y., Tang, S., Tang, Z., Xu, Y., & Xiao, R.
(2007). Constructing Web Service Flows with
Reusable Aspects. In Proceedings of Internet
and Web Applications and Services, (pp. 21-21).
IEEE. doi:10.1109/ICIW.2007.27

Zhang, J., Meng, F., & Liu, G. (2009). Research
on Multi-tier Distributed Systems Based on AOP
and Web Services. In Proceedings of Education
Technology and Computer Science, (Vol. 2, pp.
203-207). IEEE. doi:10.1109/ETCS.2009.307

ADDITIONAL READING

Alexander, R. (2003). The Real Cost of Aspect
Oriented Programming. Software, IEEE, 20(6),
91–93. doi:10.1109/MS.2003.1241373

Holzinger, A. (2005). Usability engineer-
ing methods for software developers. Com-
munications of the ACM, 48(1), 71–74.
doi:10.1145/1039539.1039541

Jacobson, I., & Ng, P.-W. (2005). Aspect-Oriented
Software Development with Use Cases. Addison-
Wesley Professional.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Lopes, C., Loingtier, J. M., & Irwin, J. (1997).
Aspect-oriented programming. In Ecoop’97:
Object-Oriented Programming (pp. 220-242).
Berlin: Springer-Verlag.

Laddad, R. (2003). AspectJ in Action: Practi-
cal Aspect-Oriented Programming. Manning
Publications.

KEY TERMS AND DEFINITIONS

Advice: The code to be executed at a join point
that has been previously selected by a pointcut.
Advice can execute before, after, or around the
join point.

Aspect-Oriented Programming: A new pro-
gramming paradigm that describes a development
methodology for separating crosscutting concerns
during the software development.

Crosscutting: The implementation of the
weaving rules by the compiler is called crosscut-
ting. There exist two types of crosscutting defined
as static and dynamic crosscutting.

Join Point: It is an identifiable point in the
execution of a program. It could be a call to a
method or an assignment to a member of an object.

Model-Driven Architecture: It is a software
development architecture.

Pointcut: It is a program construct that selects
join points and collects context at those points.

Usability Engineering: It is an engineering
field that refers the interaction between a person
and a computer, and the development of interfaces
that allow this interaction.

http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://swizframework.org/post.cfm/getting-started-with-swiz-aop
http://swizframework.org/post.cfm/getting-started-with-swiz-aop
http://swizframework.org/post.cfm/getting-started-with-swiz-aop
http://dx.doi.org/10.1109/MS.2006.31
http://dx.doi.org/10.1109/ICMSS.2009.5305764
http://dx.doi.org/10.1109/ICMSS.2009.5305764
http://dx.doi.org/10.1109/ICIW.2007.27
http://dx.doi.org/10.1109/ETCS.2009.307
http://dx.doi.org/10.1109/MS.2003.1241373
http://dx.doi.org/10.1145/1039539.1039541

118

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

Design Patterns Support
for RIAs Development

ABSTRACT

In Chapter 7, a review of Design Patterns proposed by GOF classification is presented. GOF classifies
Design Patterns in Creational Patterns, Structural Patterns, and Behavioral Patterns. Some implemen-
tation examples of GoF Design Patterns are presented by using both JavaScript-based frameworks
and non-JavaScript-based frameworks for RIAs development. Additionally, the chapter also presents a
comparative analysis that summarizes the review of the capabilities of the RIA frameworks in the context
of GoF Design Patterns support between JavaScript-based RIA frameworks and non-JavaScript-based
RIA frameworks. Finally, this chapter also mentions how to solve different programming problems by
using Design Patterns. Throughout the chapter, GOF Design Patterns and their classification are used.

1. INTRODUCTION

Design Patterns generally arise by the need of
solving problems of software development in
a systematic way. A Design Pattern is a formal
description of a problem and its solution. Design
Patterns must have a simple and descriptive name
that can be readily used when referring to the pat-
tern. A pattern should document the problem, its
solution and the consequences of using it. Design
Patterns can be used to assist in solving related
problems to software development. From this
perspective, a Design Pattern is a reusable solu-
tion that can be applied to common problems in
software design.

A Design Pattern systematically names, motivates,
and explains a general design that addresses a
recurring problem in the design of object-oriented
systems. It describes the problem, the solution, in
the moment of applying the solution and its con-
sequences. The solution is a general agreement
of the objects and classes that solve the problem.
The solution is customized to solve the problem in
a particular context. (Gamma et al., 1994)

A well-known Design Pattern on Web appli-
cations development is MVC (Model-View-Con-
troller). The MVC pattern separates the domain
modeling, the presentation and the actions based
on the user input into three classes: 1) Model, 2)
View and 3) Controller. MVC pattern is a funda-

DOI: 10.4018/978-1-4666-6437-1.ch007

119

Design Patterns Support for RIAs Development

mental Design Pattern for the separation of user
interface logic from business logic. Fortunately,
the emergence of Web applications has helped to
solve some of the ambiguity because the separation
between the view and the controller is apparent.

In Software Engineering field, the Design Pat-
terns were classified by the GoF in three types:
1) Creational patterns, 2) Structural patterns, 3)
Behavioral patterns.

Creational Design Patterns are Design Pat-
terns that deal with object creation mechanisms,
trying to create objects in a manner suitable to
the situation. All the creational patterns define
the best possible way in which an object can
be created considering reuse and changeability.
These describe the best way to handle instantiation
(Christiansson et al., 2008).

Structural Design Patterns are Design Patterns
that ease the design by identifying a simple way
to realize relationships among entities. These
patterns describe how objects and classes can
be combined to form structures. It is important
to distinguish between object patterns and class
patterns. The difference is that class patterns de-
scribe relationships and structures with the help
of inheritance. While object patterns describe how
objects can be associated and aggregated to form
larger, more complex structures (Christiansson
et al., 2008).

Behavioral Design Patterns are Design Patterns
that identify common communication patterns
between objects and realize these patterns. These
patterns are focused on the interactions among
cooperating objects. The interactions between
cooperating objects should be such that they
are communicating while maintaining as loose
coupling as possible. The loose coupling is the
key to n-tier architectures. From this context, the
implementation and the client should be loosely
coupled in order to avoid hard-coding and depen-
dencies (Christiansson et al., 2008).

The Design Patterns are very important on
RIAs (Rich Internet Applications) development.
In particular, Design Patterns are employed on

frameworks for RIA development. In this chapter,
a review and analysis about the Design Patterns
support on JavaScript-based frameworks and
non-JavaScript-based frameworks for RIAs de-
velopment are presented. It should be noted that
the GoF classification was used for this review
and analysis.

2. DESIGN PATTERNS

Design Patterns are classified into 3 categories
according to GoF, Creational, Structural and
Behavioral Patterns. In the following subsec-
tions, the description and the UML class diagram
representing the structure of each Design Pattern
are presented.

2.1. Creational Patterns

Examples of Design Patterns located in this
category are Abstract Factory, Builder, Factory
Method, Prototype and Singleton patterns. These
design patterns are described below in detail.

Abstract Factory

The abstract factory pattern is a software Design
Pattern that provides a way to encapsulate a group
of individual factories that have a common theme.
This pattern separates the details of implementa-
tion of a set of objects from their general usage.
Factories and products are the key elements into
Abstract Factory pattern. This pattern captures
how to create families of related objects without
carry out the instantiation process of classes. It
is most appropriate when the number and gen-
eral kinds of product objects stay constant, and
there are differences in specific product families
(Gamma et al., 1994).

A factory is the location or a concrete class
in the code at which objects are constructed. The
intent in employing the pattern is to insulate the
creation of objects from their usage. This allows

120

Design Patterns Support for RIAs Development

for new derived types to be introduced with no
change to the code that uses the base class. Use
of this pattern makes it possible to interchange
concrete implementations without changing the
code that uses them, even at runtime. However,
employment of this pattern, as with similar Design
Patterns, may result in unnecessary complexity
and extra work in the initial writing of code.

In Figure 1, the UML class diagram represent-
ing the behavior of the Abstract Factory pattern
is presented. This UML class diagram comes
from the book entitle Design Patterns (Gamma
et al., 1994).

Builder

The Builder pattern is an object creation software
Design Pattern. Unlike the Abstract Factory pattern
and the Factory Method pattern whose intention
is to enable polymorphism, the intention of the
Builder pattern is to find a solution to the tele-
scoping constructor anti-pattern. The telescoping
constructor anti-pattern occurs when the increase
of object constructor parameter combination leads
to an exponential list of constructors. Instead of
using numerous constructors, the Builder pattern

uses another object, a Builder object that receives
each initialization parameter step by step and then
it returns the resulting constructed object at once
(Gamma et al., 1994).

The intention is to abstract steps of construc-
tion of objects so that different implementations of
these steps can construct different representations
of objects. Often, the Builder pattern is used to
build products in accordance with the Composite
pattern.

In Figure 2, the UML class diagram represent-
ing the behavior of the Builder Pattern is depicted.
In this figure, the elements that participate in this
pattern can be identified.

Prototype

The Prototype pattern is used in software de-
velopment when the type of objects to create is
determined by a prototypical instance, which is
cloned to produce new objects. Prototype pattern
is used when a system should be independent
of how its products are created, composed, and
represented; and

Figure 1. UML class diagram for Abstract Factory pattern

121

Design Patterns Support for RIAs Development

• When the classes, to be instantiated, are
specified at run-time, for example, by dy-
namic loading; or

• To avoid building a class hierarchy of fac-
tories that parallels the class hierarchy of
products; or

• When instances of a class can have one
of only a few different combinations of
state. It may be more convenient to install
a corresponding number of prototypes and
clone them rather than instantiating the

class manually, each time with the appro-
priate state (Gamma et al., 1994).

The Prototype pattern specifies the kind of
objects to create using a prototypical instance.
Prototypes of new products are often built prior
to full production (Gamma et al., 1994).

In Figure 3, the UML class diagram repre-
senting the behavior of the Prototype pattern is
presented.

Figure 2. UML class diagram for Builder pattern

Figure 3. UML class diagram for Prototype pattern

122

Design Patterns Support for RIAs Development

Singleton

Singleton pattern is a Design Pattern that restricts
the instantiation process of a class to one object.
This is useful when exactly one object is needed to
coordinate actions across the system. The concept
is sometimes generalized to systems that operate
more efficiently when only one object exists, or
that restrict the instantiation to a certain number
of objects. The term comes from the mathemati-
cal concept of a singleton (Gamma et al., 1994).

The implementation process of a Singleton
pattern must satisfy the single instance and global
access principles. It requires a mechanism to ac-
cess the singleton class member without creating a
class object and a mechanism to persist the value of
class members among class objects. The Singleton
pattern is implemented by creating a class with a
method that creates a new instance of the class if
one does not exist. If an instance already exists,
it simply returns a reference to that object.

In Figure 4, the UML class diagram represent-
ing the behavior of the Singleton pattern structure
is depicted.

2.2. Structural Patterns

Some examples of Structural Design Patterns are
Adapter, Bridge, Composite, Decorator, Facade,

Flyweight and Proxy patterns. For practical
purposes, the most representative patterns are
described.

Composite

Composite pattern is a partitioning Design Pattern.
The composite pattern describes that a group of
objects are to be treated in the same way as a single
instance of an object. The intent of a composite
is to “compose” objects into tree structures to
represent part-whole hierarchies. Implementing
the composite pattern lets clients treat individual
objects and compositions uniformly (Gamma et
al., 1994).

Composite pattern can be used when clients
should ignore the difference between composi-
tions of objects and individual objects (Gamma
et al., 1994). If programmers find that they are
using multiple objects in the same way, and often
have nearly identical code to handle each of them,
then Composite pattern is a good choice; it is less
complex in this situation to treat primitives and
composites as homogeneous.

In Figure 5 the Composite Pattern is repre-
sented through a UML class diagram where its
components can be observed.

Figure 4. UML class diagram for Singleton pattern

123

Design Patterns Support for RIAs Development

Façade

The Facade pattern (or façade pattern) is a soft-
ware Design Pattern commonly used with object-
oriented programming. The name is by analogy to
an architectural facade. A facade is an object that
provides a simplified interface to a larger body of
code, such as a class library. A facade can:

• Make a software library easier to use, un-
derstand and test, since the facade has con-
venient methods for common tasks;

• Make the library more readable, for the
same reason;

• Reduce dependencies of outside code on
the inner workings of a library, since most
code uses the facade, thus allowing more
flexibility in developing the system;

• Wrap a poorly-designed collection of APIs
with a single well-designed API (as per
task needs).

The Façade pattern provides a unified interface
to a set of interfaces in a subsystem. Façade pat-

tern defines a higher-level interface that makes
the subsystem easier to use.

This Design Patterns allow structuring a system
into subsystems, this situation helps to reduce
complexity in software design. A common de-
sign goal is to minimize the communication and
dependencies between subsystems. One way to
achieve this goal is to introduce a facade object
that provides a single, simplified interface to the
more general facilities of a subsystem (Gamma
et al., 1994).

In Figure 6, the behaviour of the Facade pattern
is depicted by a UML class diagram.

Flyweight

A flyweight is an object that minimizes memory
use by sharing as much data as possible with other
similar objects. It is a way to use objects in large
numbers when a simple repeated representation
would use an unacceptable amount of memory.
Often some parts of the object state can be shared,
and it is common practice to hold them in external
data structures and pass them to the flyweight

Figure 5. UML class diagram for Composite pattern

124

Design Patterns Support for RIAs Development

objects temporarily when they are used (Gamma
et al., 1994).

A classic example usage of the Flyweight
pattern is the data structures for graphical rep-
resentation of characters in a word processor. It
might be desirable to have, for each character in
a document, a glyph object containing its font

outline, font metrics, and other formatting data,
but this would amount to hundreds or thousands
of bytes for each character. Instead, for every
character there might be a reference to a flyweight
glyph object shared by every instance of the same
character in the document; only the position of
each character (in the document and/or the page)

Figure 6. UML class diagram for Facade pattern

Figure 7. UML class diagram for Flyweight pattern

125

Design Patterns Support for RIAs Development

would need to be stored internally. In other con-
texts the idea of sharing identical data structures
is called hash consing.

In Figure 7, the UML class diagram for the
Flyweight Pattern is presented. In this UML class
diagram, all clases involved in the the structure
of this pattern can be observed.

Proxy

A proxy is a class functioning as an interface
to something else. The proxy could interface
to anything: a network connection, a large ob-
ject in memory, a file, or some other resource
that is expensive or impossible to duplicate. A
well-known example of the Proxy pattern is a
reference counting pointer object (Gamma et
al., 1994). In situations where multiple copies of
a complex object must exist, the Proxy pattern
can be adapted to incorporate the Flyweight pat-
tern in order to reduce the application’s memory
footprint. Typically, one instance of the complex
object and multiple proxy objects are created, all
of which contain a reference to the single original
complex object. Any operations performed on
the proxies are forwarded to the original object.

Once all instances of the proxy are out of scope,
the complex object’s memory may be deallocated.

In Figure 8, the UML class diagram for Proxy
Pattern is depicted.

2.3. Behavioral Patterns

Some examples of Behavioral Design Patterns are
Chain of Responsibility, Command, Interpreter,
Iterator, Memento, Observer, State, Strategy,
Template Method, Visitor and Mediator patterns.
For practical purposes, the most representative
patterns are presented.

Iterator

The Iterator pattern is a Design Pattern in which an
iterator is used to traverse a container and access
the container’s elements. The Iterator pattern de-
couples algorithms from containers; in some cases,
algorithms are necessarily container-specific and
thus cannot be decoupled. The essence of the
Iterator Pattern is to “provide a way to access
the elements of an aggregate object sequentially
without exposing its underlying representation”
(Gamma et al., 1994).

Figure 8. UML class diagram for Proxy pattern

126

Design Patterns Support for RIAs Development

For a better understanding, the UML class
diagram about the structure of the Iterator pattern
is depicted in Figure 9.

Observer

The observer pattern is a software Design Pattern
in which an object, called the subject, maintains a
list of its dependents, called observers, and notifies
them automatically of any state changes, usually
by calling one of their methods. It is mainly used
to implement distributed event handling systems.
The Observer pattern is also a key part in the

familiar model–view–controller (MVC) archi-
tectural pattern. In fact the Observer pattern was
firstly implemented in Smalltalk’s MVC based
user interface framework. The Observer pattern is
implemented in numerous programming libraries
and systems, including almost all GUI toolkits
(Gamma et al., 1994).

The essence of the Observer Pattern is to “de-
fine a one-to-many dependency between objects
so that when one object changes state, all its de-
pendents are notified and updated automatically”
(Gamma et al., 1994).

Figure 9. UML class diagram for Iterator pattern

Figure 10. UML class diagram for Observer pattern

127

Design Patterns Support for RIAs Development

In Figure 10, the UML class diagram repre-
senting the behavior of the Observer pattern is
depicted.

State

The State pattern, which closely resembles Strat-
egy Pattern, is a behavioral software Design Pat-
tern, also known as the objects for states pattern.
This pattern is used in computer programming to
encapsulate varying behavior for the same routine
based on an object’s state object. This can be a
cleaner way for an object to change its behavior
at runtime without resorting to large monolithic
conditional statements (Gamma et al., 1994).

An example of this pattern is a drawing pro-
gram. The program has a mouse cursor, which at
any point in time can act as one of several tools.
Instead of switching between multiple cursor
objects, the cursor maintains an internal state
representing the tool currently in use. When a
tool-dependent method is called (say, as a result
of a mouse click), the method call is passed on to
the cursor’s state. Each tool corresponds to a state.

As can be seen in Figure 11, the UML class
diagram for State Pattern is depicted. This figure
describes the main structure for this pattern.

Strategy

The Strategy pattern (also known as the Policy
pattern) is a software Design Pattern that enables
an algorithm’s behavior to be selected at runtime.
The Strategy pattern defines a family of algo-
rithms, encapsulates each algorithm, and makes
the algorithms interchangeable within that family
(Gamma et al., 1994). For instance, a class that
performs validation on incoming data may use a
strategy pattern to select a validation algorithm
based on the type of data, the source of the data,
user choice, and/or other discriminating factors.
These factors are not known for each case until
run-time, and may require radically different
validation to be performed. The validation strate-
gies, encapsulated separately from the validating
object, may be used by other validating objects
in different areas of the system (or even different
systems) without code duplication. The essential
requirement in the programming language is the
ability to store a reference to some code in a data
structure and retrieve it.

The UML class diagram for Strategy Pattern
is depicted in Figure 12.

Figure 11. UML class diagram for State pattern

128

Design Patterns Support for RIAs Development

Mediator

The Mediator pattern defines an object that en-
capsulates how a set of objects can interact. This
pattern is considered to be a Behavioral Design
Pattern due to it can alter the behavior of the
program is running (Gamma et al., 1994).

Usually a program is made up of a number
of classes. So the logic and computation are dis-
tributed among these classes. However, as more
classes are developed in a program, especially dur-
ing maintenance and/or refactoring, the problem of
communication between these classes may become
more complex. This makes the program harder to
read and maintain. Furthermore, it can become
difficult to change the program, since any change

may affect code in several other classes. By using
Mediator pattern, communication between objects
is encapsulated with a mediator object. Objects no
longer communicate directly with each other, but
instead communicate through the mediator. This
reduces the dependencies between communicating
objects, thereby lowering the coupling.

The essence of the Mediator Pattern is to
“define an object that encapsulates how a set of
objects interact. Mediator promotes loose coupling
by keeping objects from referring to each other
explicitly, and it lets you vary their interaction
independently” (Gamma et al., 1994).

In Figure 13, the UML class diagram for Me-
diator Pattern is depicted.

Figure 12. UML class diagram for Strategy pattern

Figure 13. UML class diagram for Mediator pattern

129

Design Patterns Support for RIAs Development

3. DESIGN PATTERNS
SUPPORT INTO JAVASCRIPT-
BASED FRAMEWORKS

Design patterns are effective solutions to reduce
time development problems and to improve the
effectiveness solutions indices. It is important to
remark that not all programming languages and
RIAs frameworks are able for Design Patterns
support. Today, developers are more concerned
about these issues, and they have developed new
features that offer the support for the Design Pat-
terns implementation in different frameworks such
as JavaScript-based Frameworks. There are several
JavaScript-based frameworks for RIAs develop-
ment such as Dojo, jQuery, Mootools, Qooxdoo,
Prototype, Rico, Sencha ExtJS, X-Library, GWT,
Cappuccino, SproutCore, Spry, midori and YUI
Library to mention but a few. In this chapter, only
eight JavaScript-based frameworks are analyzed,
Dojo, jQuery, Mootools, Qooxdoo, Prototype,
Rico, Sencha ExtJS and X-Library. The follow-
ing subsections explain in detail the scope of the
Design Patterns support provided by each one of
these frameworks.

3.1. Design Patterns Support in Dojo

Dojo is a powerful JavaScript-based framework
included in Dojo Toolkit. Table 1 shows the Design
Patterns supported in Dojo.

In Table 2, an analysis of Design Patterns
supported by the Dojo framework is presented.

A representative example of one of the Design
Patterns supported by Dojo is presented below.

Observer Pattern

An observer is a structural pattern that enables
publish/subscribe functionality. This is accom-
plished by an autonomous object, publisher that
allows other objects to attach or detach their
subscription as they like. The pattern does not
impose any limit to the number of observers that
can attach, or subscribe themselves for notifica-
tion on future changes in the publisher’s state.
This pattern can be used when an object wants
to publish information and many objects will
need to receive that information. The benefits are
makes for a loose coupling between publisher and
subscriber as the publisher does not need to know
who or how many subscribers there will be. The
consequences about this pattern are, for example,
in a complex scenario there may be problems to
determine whether the update to the publisher is of

Table 1. Design Patterns supported in Dojo
(Harmon, 2008)

Creational
Patterns

Structural
Patterns

Behavioral
Patterns

Singleton Not reported Observer

Table 2. Analysis of the Design Patterns supported by Dojo framework (Harmon, 2008)

Design Patterns

Creational Patterns

Singleton The singleton pattern is supported in the constructors of the type:
dojo.declare(className: String, superclass: Function|Function[], props: Object);

Behavioral Patterns

Observer The observer Design Pattern within the Dojo framework is evident in the Listeners classes/methods, listeners are event
provided by the programming language, a representative example would be the use of the connect() function.
dojo.connect (null, “function1”, null, “function2”);
This function has a listener by using the Observer Design Pattern, and which remains alert at all time and when it detects
that function1 was executed, the function2 is immediately executed.

130

Design Patterns Support for RIAs Development

relevance to all subscribers or just some of them.
Sending an update signal to all subscribers might
impose a communication overhead of information
not needed (Christiansson et al., 2008).

To better depict the use of the Observer De-
sign Pattern, the following practical example is
presented. Let us suppose there are several Web
applications or RIAs from different domains that
they are managed by the same company. In ad-
dition, these applications are used for publishing
news coming from the same source. The problem
is that RIAs administrators would have to post the
news on each one of the different applications. This
situation causes loss of time and therefore loss
of money, plus the possibility to generate varia-
tions or mistakes. One solution to this problem
is the use of the Observer Design Pattern, this
Design Pattern works with a structure publish /
subscribe, in this case the main source of news is
the Publisher or main subject and every website
that require publishing the news are subscribers
or observers. When the subject changes must be
notified this change to the observers so that they
can change in turn.

3.2. Design Patterns
Support in jQuery

jQuery is a JavaScript-based library used by de-
velopers. The use of Design Patterns in jQuery
has been increased according to the needs of Web
development. jQuery has support for different
Design Patterns. Table 3 shows the Design Pat-
terns supported in jQuery.

In Table 4, an analysis of the Design Patterns
supported by jQuery is presented.

A representative example of one of the Design
Patterns supported by jQuery is presented below.

Facade Pattern

This Design Pattern provides a unified interface
to a set of interfaces in a subsystem. It defines a
higher-level interface that makes the subsystem
easier to use. The Facade pattern design can be
used to make a software library easier to use
and understand, since the Facade has convenient
methods for common tasks. For the same reason, it
can make code that uses the library more readable.
A final usage scenario is where several poorly-
designed APIs can be wrapped with a single well-
designed API. The main benefit with the Facade
pattern is that very complex method calls and code
blocks can be combined into a single method that
performs a complex and recurring task. Besides
making code easier to use and understand, it
reduces code dependencies between libraries or
packages, making programmers more apt to con-
sideration before writing new code that exposes
the inner workings of a library or a package. Also,
since the Facade makes a weak coupling between
the client code and other packages or libraries it
allows vary the internal components since the
client does not call them directly. One drawback
is that there are much less control of what goes
on beyond the surface. Also, when some classes
require small variations to the implementation
of Facade methods, this might end up in a mess
(Christiansson et al., 2008).

A representative example of the Facade Design
Pattern is all function libraries or frameworks like
jQuery itself, which are very useful because they
are not required to know how to work internally
the API functions provided just enough to know
call that function and see how it works in gen-
eral. In the same way developers use the Facade
Design Pattern to develop their own APIs, i.e. an
experienced developer who works with Web ap-

Table 3. Design Patterns supported in jQuery
(Osmani, 2010)

Creational
Patterns

Structural
Patterns

Behavioral
Patterns

Builder
Prototype

Composite
Facade

Flyweight
Proxy

Iterator
Observer
Strategy

131

Design Patterns Support for RIAs Development

continued on following page

Table 4. Analysis of the Design Patterns supported in jQuery (Osmani, 2010)

Design Patterns

Creational Patterns

Builder The Builder Pattern abstracts the steps involved in creating objects, so different implementations of these steps have the
ability to construct different representations of objects. An example of how jQuery utilizes this pattern is presented below.
This example allow showing an element which can be append to the document body in order to be constructed by using a
string definition.
1 $(‘< div class= “foo”> bar < /div>’);

Prototype The Prototype Pattern is used when the objects that need to be created are determined by a prototypal instance that is
cloned to produce the new objects. Essentially this pattern is used to avoid creating a new object in a standard manner
when this process may be expensive or overly complex. In the following code sample which extends the jQuery.fn object
for a minimal plugin, underlying prototypal code makes this possible:
1 $.fn.plugin = function(){}
2 $(‘#container’).plugin();

Structural Patterns

Composite The Composite Pattern describes a group of objects that can be treated in the same way by a single instance such as
only one object. By implementing this pattern, both individual objects and compositions are treated in a uniform way. In
jQuery, when actions are being accessed or performed on a single DOM element or a group of DOM elements, they can
be treated in a uniform manner. This is demonstrated by the following sample below:
1 $(‘#someDiv’).addClass(‘active’); // a single element
2 $(‘div’).addClass(‘active’); // a collection of elements

Facade The Facade Pattern is quite commonly used with OOP (Object-oriented programming) where a facade is an object which
provides a simpler interface to a larger piece of code, by example for using a function of a class library. Facades can be
frequently found across the jQuery library and make the methods easier to use and understand, but also more readable.
The following functions are facades for jQuery’s $.ajax():
1 $.get();
2 $.post();
3 $.getJSON();
4 $.getScript();

Flyweight The Flyweight Pattern is a Design Pattern where an object attempts to minimize the amount of memory used by sharing
as much information as possible with other objects that are similar in nature. It is a way to utilize objects in large numbers
when a simple repeated representation may use an amount of memory deemed unacceptable. There are often aspects of an
object state that can be shared and it is commonplace that these are stored in external data structures that are passed to the
flyweight objects temporarily when needed.
In this function the userConfig is shared. This example uses inheritance to define the object containing all info about user
Config. This makes easier to save memory.
1 $.fn.plugin = function(userConfig){
2 userConfig = $.extend({
3 content: ‘Hello user!’
4 }, userConfig);
5 return this.html(useConfig.content);
6 });

Proxy The Proxy Pattern - a proxy is basically a class that functions as an interface to something else. The proxy can be an
interface for anything: a file, a resource, an object in memory, something else that is difficult to duplicate. jQuery .proxy()
function takes as input a function and returns a new one that will always have a particular context.
This is similar to the idea of providing an interface such as the Proxy pattern.
1 $.proxy(function(){}, obj);

Behavioral Patterns

Iterator The Iterator Pattern is a Design Pattern where iterators (objects that allow traversing through all the elements of a
collection) sequentially access the elements of an aggregate object without needing to expose its underlying form.
Iterators encapsulate the internal structure of how that particular iteration occurs, in the case of jQuery is .each() iterator,
that is actually able to use the underlying code behind .each() to iterate through a collection, without needing to see or
understand the code working behind the scenes that is providing this capability.
1 //Here jQuery makes use of it is event system on top of DOM events
2 $(‘.button’).click(function(){})
3 $(‘.button’).trigger(‘click’, function(){})

132

Design Patterns Support for RIAs Development

plications of the same type, for example, need to
perform the same functions on a recurring basis,
causing loss of time, money and possible errors
in the source code. However if all these functions
are grouped into a library or API, these functions
can be used without worrying about developing
them whenever the need just using the function
invocation These resources are used in the RIAs
development. Another important application of
Facade Design Pattern in RIAs development
arises from the need to manage a complex sys-
tem comprised of a series of subsystems and to
the possibility of independently accessing these
subsystems, because this way the Design Pat-
tern should be able to implement an efficient
communication mechanism between the various
subsystems that compose the complex system and
in turn provide communication with one or more
of the subsystems, thus achieving a system more
independent, portable and reusable

3.3. Design Patterns
Support in Mootools

Mootools is a compact JavaScript-based frame-
work designed for the intermediate to advanced
JavaScript developers Table 5 shows the Design
Patterns supported in Mootools.

In Table 6, an analysis of the Design Patterns
supported by the Mootools framework is presented.

A representative example of one of the Design
Patterns supported by Mootools is presented
below.

Singleton Pattern

The Singleton pattern provides the possibility to
control the number of instances (mostly one) that
are allowed. This pattern can be used when only one
instance or a specific number of instances of a class
are allowed. Facade objects are often Singletons
because only one Facade object is required. The
benefits of this pattern are for example, controlled
access to unique instance, reduced name space,
allows refinement of operations and representa-
tions, among others. The Drawback of Singleton
pattern is also considered an anti-pattern by some
people, who feel that it is overused, introducing

Table 5. Design Patterns supported in Mootools
(mootools.net, 2013)

Creational
Patterns

Structural
Patterns

Behavioral
Patterns

Singleton Not reported Not reported

Design Patterns

Observer The Observer pattern is where a subject (the object) keeps a list of its dependents, which are known as observers, and
notifies them automatically of any changes in state. This is commonly done by calling one of their methods. The Observer
pattern can be considered a subset of PubSub (publish/subscribe pattern).
jQuery uses its event system on top of DOM events, as can be seen in the following function.
1 $(‘.button’).click(function(){})
2 $(‘.button’).trigger(‘click’, function(){})

Strategy The Strategy Pattern is a pattern where a script may select a particular algorithm at runtime. The purpose of this pattern is
that it is able to provide a way to clearly define families of algorithms, encapsulate each as an object and make them easily
interchangeable.
The biggest benefit this pattern offers is that it allows algorithms to vary independent of the clients that utilize them. An
example of this is toggle() that allows to bind two or more handlers to the matched elements, to be executed on alternate
clicks.
The strategy pattern allows for alternative algorithms to be used independent of the client internal to the function.
1 $(‘#container’).toggle(function(){}, function(){});

Table 4. Continued

133

Design Patterns Support for RIAs Development

unnecessary limitations in situations where a
sole instance of a class is not actually required
(Christiansson et al., 2008).

An example of the Singleton Design Pattern
could be when the access to a Web application or
RIA is allowed in a limited way, i.e., test applica-
tion which allows users to access only once or a
limited number of times, It is useful this pattern
because once the user has accessed or the user has
exhausted the allowed accesses should be denied
access to the application. It is possible to do with
the Singleton pattern. It is noteworthy that this
pattern has other applications with the same or
greater benefit than described above.

3.4. Design Patterns
Support in Prototype

Prototype is a popular JavaScript-based framework
and one of the most used by developers. Table 7
shows the Design Patterns supported by Protype.

Table 8 presents an analysis of the Design
Patterns supported by Prototype.

A representative example of one of the Design
Patterns supported by Prototype is presented
below.

Builder Pattern

The Builder pattern can be used to ease the con-
struction of a complex object from simple objects.
The Builder pattern also separates the construction
of a complex object from its representation so
that the same construction process can be used to
create another composition of objects. This pat-
tern is used: 1) when the algorithm for creating
a complex object should be independent of the
parts that make up the object and how they are
assembled, 2) when the construction process must
allow different representations for the object that
is constructed, 3) when clients need to be insulated
from the knowledge of the actual creation process
and/or resulting product. The benefits about use
of this pattern is that the built object is shielded
from the details of its construction, code for con-
struction is isolated from code for representation
and both are easy to replace without affecting the
other, it gives control over the construction process
and it gives the possibility to reuse and/or change
the process and/or product independently. The

Table 6. Analysis of the Design patterns supported by the Mootools framework (mootools.net, 2013)

Design Patterns

Creational Patterns

Singleton Mootools has a Singleton class which performs the function of the Singleton Design Pattern. An example of
the use of the Singleton pattern is depicted:
1 var MySingleton = new Class.Singleton({
2 initialize: function(){
3 // code here
4 },
5 method1: function(){
6 // code here
7 },
8 method2: function(){
9 // code here
10 }
11 });

Table 7. Design Patterns supported in Prototype
(prototypejs.org., 2013)

Creational
Patterns

Structural
Patterns

Behavioral
Patterns

Singleton Builder Not Reported Observer

134

Design Patterns Support for RIAs Development

drawback is the need flexibility in creating vari-
ous complex objects (Christiansson et al., 2008).

An example of the Builder Design Pattern
would be the construction of a house where the
onstruction process has the following order: the
floor, walls and ceiling, assume that the client
requests to the builder two houses: wood house
and brick house. Although the materials are dif-
ferent, the construction process is exactly done in
the same way, firstly the floor, then the walls and
finally the ceiling. So the construction is isolated
from any other factor. This design pattern is useful
on RIAs development where is necessary to build
applications with the same structure but with dif-
ferent elements. A specific example of the Builder
Design Pattern on RIAs development could be
the automatic development of Websites. For do-
ing this, the structure of Websites only should be
defined, for example all Websites will be composed
of a header, a body divided into two columns and
a footer, and then the Builder will be responsible
for automatically developing Websites without
giving much importance to the contents of each
one of the sections of the Websites developed.

3.5. Design Patterns
Support in Qooxdoo

Qooxdoo is a powerful JavaScript-based frame-
work for developing advanced JavaScript applica-
tions. Table 9 shows the Design Patterns supported
in Qooxdoo.

In Table 10 presents an analysis of the the
Design Patterns supported in Qooxdoo.

The Singleton Design Pattern has already been
defined and discussed above; it is a pattern that
is widely used in all kinds of applications. This
pattern fulfills important tasks and very helpful
in RIAs development.

3.6. Design Patterns Support in Rico

The Rico framework does not report Design Pat-
terns support (version 2.0).

Table 9. Design Patterns supported in Qooxdoo
(qooxdoo.org, 2013)

Creational
Patterns

Structural
Patterns

Behavioral
Patterns

Singleton Not reported Not reported

Table 8. Analysis of the Design patterns supported by the Prototype framework (prototypejs.org., 2013)

Design Patterns

Creational Patterns

Singleton An example of the use of the Singleton pattern in Prototype is through the SlideShow object, since the SlideShow object is
created as a Singleton.

Builder The createSlide() function works as a constructor, since each time the Builder.node function is invoked, a new element is
created.
1 var newSlide=Builder.node(“div”, { className: “slide”
2 });
Also, Prototype has functions of a Proxy element and has the possibility to define an Iterator element, i.e. it also uses these
two design patterns.

Behavioral Patterns

Observer The Snippet element acts as an Observer, according to the following source code:
1 new Form.Element.Observer(“favColor”,2,function(el,value){
2 show($F(“name”)+” likes...”,value);
3 });

135

Design Patterns Support for RIAs Development

3.7. Design Patterns Support
in Sencha ExtJS

Sencha ExtJS is a powerful JavaScript-based
framework for developing Rich Internet Ap-
plications. Table 11 shows the Design Patterns
supported in Sencha ExtJS.

The Table 12 presents an analysis of the Design
Patterns supported by Sencha ExtJS.

A representative example of one of the Design
Patterns supported by Sencha ExtJS is presented
below.

State Pattern

The State pattern allows an object to alter its be-
havior when its internal state changes. By using
inheritance and letting subclasses represent differ-
ent states and functionality that can be switched
during runtime. This is a way for an object to
partially change its type at runtime. This pattern
can be used, 1) when a “context” class is needed
to be defined in order to present a single interface
to the outside world. By defining a State abstract
base class and 2) when different “states” of a state

Table 10. Analysis of the Design patterns supported by the Qooxdoo framework (qooxdoo.org, 2013)

Design Patterns

Creational Patterns

Singleton Qooxdoo uses the class define () to create a Singleton type instance, the following source code exemplifies the use of the
Singleton pattern.
1 qx.Class.define(“qx.test.Cat”, {
2 type: “singleton”
3 ...
4 });

Table 11. Design Patterns support in Sencha ExtJS
(sencha.com., 2013)

Creational
Patterns

Structural
Patterns

Behavioral
Patterns

Singleton Not reported Observer State

Table 12. Analysis of the Design patterns supported by Sencha ExtJS framework (sencha.com., 2013)

Design Patterns

Creational Patterns

Singleton The Singleton pattern is supported in Sencha ExtJS through a ToolTip type called QuickTip. To use a QuickTip, it is
necessary to activate it by using a QuickTip instance.
1 <div id=”tip4” class=”tip-target” ext:qtitle=”Informacion” ext:qtip=”Este es un
2 ejemplo de QuickTip”>QuickTip</div>
To enable a QuickTip, the following statement is used: Ext.QuickTips.init ()

Behavioral Patterns

Observer By using Sencha ExtJS, there are multiple methods of Listener types, these methods have their specific function and they
are known as observers. This is an application of the Observer design pattern, the following source code is a small example:
1 this.addListener(‘render’,this.onRender,this,{ct:this.ct,position:this.position});

State The State Design Pattern is very used and it also appears in Sencha ExtJS. It is used to save the state of a component and to
switch among states.
The following source code is an example of the use of the State Design Pattern:
1 Ext.state.Manager.setProvider(new Ext.state.CookieProvider());
In this example, a Manager state is created; through the setProvider method a new CookieProvider object is created. This
means that the application state is saved in a cookie on the client-side, which in turn is read to enable the actual state of the
component.

136

Design Patterns Support for RIAs Development

machine as derived classes of the State base class
need to be presented. The benefits about use of
this pattern are 1) cleaner code when each state
is a class instead, and 2) use a class to represent a
state, not a constant, among others. The Drawbacks
are: generates a number of small class objects,
but in the process, simplifies and clarifies the
program, and eliminates the necessity for a set of
long, look-alike conditional statements scattered
throughout the code (Christiansson et al., 2008).

An example of this pattern can be the change
of the language of a Web application. Let us sup-
pose a RIA in two or more langauge in which the
user can choose what language to use. For each
language, a state is defined and the state of ap-
plication is changing from one state to another
according to the langauge selected.

3.8. Design Patterns
Support in X-Library

The X-Library framework does not report Design
Patterns support (version 4.2).

3.9. Summary of Design Patterns
Support into JavaScript-
Based Frameworks

Every day the JavaScript-based frameworks have
more Design patterns implemented in their source
code. This is because Design Patterns help to
developers to solve different problems in a rela-
tively simple way in order to obtain most effective
solutions achieving better software development
in less time. Table 13 provides an overview of
Design Patterns supported by each one of the
JavaScript-based frameworks analyzed.

4. DESIGN PATTERNS SUPPORT
INTO NON-JAVASCRIPT-
BASED FRAMEWORKS

Design Patterns are also of great help and impor-
tance for Web frameworks for non-JavaScript-
based frameworks. This section presents a review
of the Desing Pattern support of the following
non-JavaScript-based frameworks: AdobeFlex™,
JavaFX™, Silverlight™ and OpenLaszlo™. The
Design Patterns support for each one of these
frameworks is presented below.

Table 13. Design Patterns involved on JavaScript-based frameworks

Framework Creational Patterns Structural
Patterns

Behavioral Patterns

Dojo Singleton Not reported Observer

jQuery Builder
Prototype

Composite Facade
Flyweight Proxy

Iterator
Observer
Strategy

Mootools Singleton Not reported Not reported

Prototype Singleton
Builder

Not reported Observer

Qooxdoo Singleton Not reported Not reported

Rico Not reported Not reported Not reported

Sencha Ext JS Singleton Not reported Observer
State

X-Library Not reported Not reported Not reported

137

Design Patterns Support for RIAs Development

4.1. Design Patterns in Adobe Flex™

Adobe Flex™ is a productive framework for Rich
Internet Applications. Table 14 shows the Design
Patterns supported in Adobe Flex™.

The table 15 presents an analysis of the Design
Patterns supported by Adobe Flex™.

It is noteworthy that Adobe Flex™ has support
for other Design Patterns that do not belong to the
GoF classification and thus are not described in this
chapter. These Design Patterns are: Data Transfer
Object, Asynchronous Token and Class Factory.

A representative example of one of the Design
Patterns supported by Adobe Flex™ is presented
below.

Proxy Pattern

A Proxy is a structural pattern that provides a
stand-in for another object in order to control ac-
cess to it. This pattern can be used, 1) when the
creation of one object is relatively expensive it
can be a good idea to replace it with a proxy that
can make sure that instantiation of the expensive
object is kept to a minimum, 2) when Proxy pat-
tern implementation allows for login and author-
ity checking before one reaches the actual object
that is requested and, 3) when can provide a local
representation for an object in a remote location.
One of the Proxy benefits is that this pattern gives
the ability to control access to an object, whether
it is because of a costly creation process of that
object or security issues. The Proxy drawbacks
are that introduces another abstraction level for an
object, if some objects accesses the target object
directly and another via the proxy there is a chance
that they get different behavior this may or may
not be the intention of the creator (Christiansson
et al., 2008).

Table 14. Design patterns supported by Adobe
Flex™ (Fain et al, 2010)

Creational
Patterns

Structural
Patterns

Behavioral
Patterns

Singleton Proxy Mediator

Table 15. Analysis of the Design Patterns supported by Adobe Flex™ (Fain et al, 2010)

Design Patterns

Creational Patterns

Singleton The singleton Design Pattern can be represented as follows:
var model: AppModelLocator.getInstance AppModelLocator = ();
Flex provides an element called Cairngorm singleton that can communicate with the server and ensure a single instance, it
is represented by the following code:
service = ServiceLocator.getInstance () getHTTPService (‘loadEmployeesService.’)
Flex provides the ability to implement the Singleton Design Pattern, also provides elements already included in the source
code that fulfill the same function and have already been tested.

Structural Patterns

Proxy In ActionScript can be wrapped the class XYZ in mx.util.ObjectProxy, which will be a proxy that controls access to XYZ
properties.
import mx.utils.ObjectProxy
var person:Person = new Person;
var personProxy:ObjectProxy = new ObjectProxy(person);
There is one line in PersonProxy.mxml that wraps up the instance of the class Person into an ObjectProxy.

Behavioral Patterns

Mediator Mediator Design Pattern is one of the most useful for any programming environment due to it includes special components
for communication in event-driven environment such as Flex. In Flex, Mediator Design Pattern is implemented in
components classified as Layouts and Navigators. For example, in a Flex-based application where a Panel component has
a TabNavigator component and the TabNavigator component has TextInput and Button components. The TahNavigator
component acts as a mediator among Panel component and the TextInput and Button components. In most cases, Mediator
Design Pattern is represented by a container-type component.

138

Design Patterns Support for RIAs Development

One of the most common uses of the Proxy
pattern is the proxy security. This proxy is used
to add security access to an existing object, and
in this case the proxy will determine whether the
client can access the object of interest. The Proxy
pattern is widely used in RIAs and Web applica-
tions to provide security for applications. Also, it
is widely used in Flex and ActionScript through to
the mx.util.ObjectProxy class. Another example
for the Proxy pattern is, let us suppose that an ap-
plication must be quickly deployed but it contains
large images which makes the download process
to be very slow, then it requires the implementa-
tion of the Proxy pattern because with this pattern
is possible to present to the user an interface in
which images are deployed on demand when the
user chooses and only if the user is agreed, the
images will be downloaded. Even in some cases,
the user can have the option to choose whether
downloading all images or one by one.

4.2. Design Patterns in JavaFX™

The Design Patterns support of the GoF classifica-
tion in JavFXTM is not reported. However, there
is the possibility of manually implementing these
patterns, i.e. the developer has the possibility of
implementing these patterns by codifying them.
This can be done by developing functions with
the Design Patterns architectures, i.e. Design
Patterns architectures can be implemented if the
developer requires it through the programming
language that they are using. It is also well known
that JavaFX™ uses the MVC Design Pattern
(Model-View-Controller) o MVP Design Pattern
(Model-View-Presenter); however these Design
Patterns are not explained in this chapter because
they do not belong to the GoF classification.

4.3. Design Patterns in Silverlight™

Silverlight™ does not report the Design Patterns
support of the GoF classification. However,
Silverlight™ uses the MVC Design Pattern and

the MVVM Design Pattern (Model-View-View
Model).

4.4. Design Patterns in OpenLaszlo™

It is important to notice that OpenLaszlo™ does
not report Design Patterns support for GoF clas-
sification.

5. CONCLUSION

Design patterns are very important and helpful
for developers. Well-implemented Design Pat-
terns can help the developer to: 1) solve complex
problems with simple solutions, 2) Reuse ideas,
3) Reduce development time 4) Reduce produc-
tion costs, 5) Apply best practices development,
among other benefits.

As can be noticed, not all frameworks have
an extensive Design Patterns support; however
development companies as well as the develop-
ers are working on the implementation of Design
Patterns in the most used frameworks in order to
achieve a more efficient programming.

It can be observed; JavaScript-based frame-
works have a greater implementation of Design
Patterns. This situation is due to several reasons, in-
cluding: 1) the level of maturity of the frameworks,
2) programming language, and 3) development
communities. The JavaScript-based frameworks
have a high level of maturity by using JavaScript
as a programming language so the learning
curve is reduced. Furthermore, JavaScript-based
frameworks have a great number of developer
communities continuously working in adding new
features on these frameworks. Non-JavaScript-
based frameworks have some limitations such as
the use of proprietary programming languages
and paid licenses. Another important detail is the
constant evolution in programming languages such
as the case JavaFX™ where from one version to
another, there are too many changes on syntax and
components, making them incompatible among

139

Design Patterns Support for RIAs Development

versions. These factors make that developers
have to learn new features. Another factor is that
JavaScript-based frameworks are mainly focused
on business logic where information is exchanged
between a database and a user interface. The
non-JavaScript-based frameworks are based on
the presentation for developing graphical user
interfaces in terms of page layout, page transitions
and page control elements.

REFERENCES

Christiansson, B., Forss, M., Hagen, I., Hansson,
K., Jonasson, J., & Jonasson, M. et al. (2008). GoF
Design Patterns - with examples using Java and
UML2. Logica Java Architects Training Crew.
Authors.

Fain, Y., Rasputnis, V., & Tartakovsky, A. (2010).
Enterprise Development with Flex (p. 688).
O’Reilly Media.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1994). Design Patterns. In Elements of reus-
able Object-Oriented Software. Addison Wesley.

Harmon, J. E. (2008). Dojo: Using the Dojo
JavaScript Library to Build Ajax Applications.
Addison-Wesley Professional.

Mootools.net. (2013). API Documentation. Re-
trieved January, 2013, from http://mootools.net/
docs/core

Osmani, A. (2010). Essential JavaScript & jQuery
Design Patterns For Beginners. Addy Osmani.

prototypejs.org. (2013). API Documentation.
Retrieved January, 2013, from http://prototypejs.
org/learn

qooxdoo.org. (2013). API Documentation. Re-
trieved January, 2013, from http://demo.qooxdoo.
org/current/apiviewer/#qx.core.Aspect

sencha.com. (2013). API Documentation. Re-
trieved January, 2013, from http://docs.sencha.
com/extjs/4.1.3/

ADDITIONAL READING

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1994). Design Patterns. In Elements of reus-
able Object-Oriented Software. Addison Wesley.

KEY TERMS AND DEFINITIONS

Behavioral Patterns: Design Patterns that
identify common communication patterns be-
tween objects and realize these patterns. These
patterns are focused on the interactions among
cooperating objects.

Class Diagram: A type of UML diagram, and
a type of static structure diagram that describes
the structure of a system by showing its classes,
their attributes, operations (or methods), and the
relationships among objects.

Creational Patterns: Design Patterns that
deal with object creation mechanisms, trying to
create objects in a manner suitable to the situation.

Design Patterns: A proven solution a common
and recurring problem, this solution is designed
for a particular context.

MVC: A software architectural pattern. The
MVC pattern separates the domain modeling, the
presentation and the actions based on the user input
into three classes, Model, View and Controller.

Structural Patterns: Design Patterns that
ease the design by identifying a simple way to
realize relationships among entities, and describe
how objects and classes can be combined to form
structures.

UML: A general-purpose modeling language
in the software engineering field; UML is designed
to provide a standard way to visualize the design
of a system, and is supported by the OMG (Object
Management Group).

http://mootools.net/docs/core
http://mootools.net/docs/core
http://prototypejs.org/learn
http://prototypejs.org/learn
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Aspect
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Aspect
http://docs.sencha.com/extjs/4.1.3/
http://docs.sencha.com/extjs/4.1.3/

140

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

UI Patterns Support on
RIAs Development

ABSTRACT

In Chapter 8, a review of UI patterns supported by using non-JavaScript-based frameworks and JavaScript-
based frameworks for RIAs development is presented. For this purpose, the UI Patterns are classified
in Transitional Patterns, Lookup Patterns, and Feedback Patterns. Additionally, this chapter presents a
series of applications samples depicting the use of not only UI controls but also non-visual functions or
classes (as applicable) for implementing the supported UI patterns. These applications are intended to
clarify the differences and similarities between UI controls and UI patterns. Finally, the chapter pres-
ents a comparative analysis that summarizes the review of the capabilities of the RIA frameworks in the
context of rich UI design both for JavaScript-based frameworks and non-JavaScript-based frameworks.

1. INTRODUCTION

RIAs (Rich Internet Applications) design involves
two main stages: 1) application structure design
and 2) GUIs (Graphic User Interfaces) design
which, in turn, is composed of three subtasks:
a) layouts design, b) GUI controls design and c)
interactions design (Neil, 2009).

Layouts design covers the arrangement of
visual elements, i.e., GUI controls across the
screen. In this sense, there are common ways to
arrange the RIAs’ GUI controls, namely canvas,
vertical and horizontal layouts. In fact, most of the
RIA frameworks consider these standard layouts;
thereby, Web 2.0 community has outlined a set of
screen patterns that can be used at this design level,

and they can be implemented as a combination
of GUI controls containers such as panels, forms
and the aforementioned layouts.

GUI controls design covers the design of the
GUI controls that allows applications to commu-
nicate the required user interactions. Typically,
RIA frameworks offer both a set of simple GUI
controls acting as application building blocks and
a set of look and feel customization mechanisms.
However, most of the RIA frameworks also offer
the possibility of adding custom GUI controls
built from simple controls.

In another hand, interactions design implies the
usage of patterns aimed at achieving effective user
experiences, i.e., rich interactions. In this sense,
most of the RIA frameworks offer simple GUI

DOI: 10.4018/978-1-4666-6437-1.ch008

141

UI Patterns Support on RIAs Development

controls that natively implement interaction pat-
terns, e.g., progress bar (progress indicator pattern)
and accordion (expand/collapse pattern) in Adobe
Flex™ or JavaFX™. However, some interaction
patterns require more development time and ef-
fort in order to be implemented. Therefore, it is
not easy to understand the differences between
GUI controls and interaction patterns. Interaction
design patterns are commonly used to ease the
interaction between users and Web 2.0 applica-
tions by bringing more intuitive and responsive
user experiences, i.e., rich user experiences; in
short, they allow developers to encourage users
to engage with applications. The most popular
interaction patterns from the point of view of the
authors are described below.

• Brighten and Dim: it is actually consid-
ered a pair of interaction design patterns
intended to focus user attention on an area
of the GUI by brightening there at the same
time that the rest of the GUI is dimmed to
indicate that is not in use. The most com-
mon technique to achieve this consists on
displaying a non-dimmed overlay over a
dimmed background which is called light-
box effect.

• Expand/Collapse: it allows keeping addi-
tional contents hidden until the user needs
them; it is also useful in cases where the
content length exceeds the length of the
area of the GUI intended to display them.

• Animation: it is a means for clarifying
user interactions by mimicking object tran-
sitions from the real world. This pattern is
closely related to the drag and drop interac-
tion pattern because it is commonly used
to clarify where objects came from and are
going.

• Spotlight: it is one of the major mecha-
nisms for notifying users about changes oc-
curred on applications. It consists on tem-
porarily focus the user attention on changes

in the GUI even when these changes are
explicitly triggered by users.

• Auto Complete: it allows users to save
time on filling out forms which is over-
used among Internet search engines such
as Google™, Bing™ and Yahoo! ™ with
the aim of optimizing searches by provid-
ing real-time term suggestions for creating
searches starting from previous entries.
At this point, this pattern is known as live
suggest.

• Live Preview: in the context of form sub-
mission, it is used to prevent mistakes by
providing real-time feedback about form
inputs. It can also be used in the context
of e-commerce as a means for showcasing
customizable products such as clothes and
cars.

• Progress Indication: it is a means for
keeping the user informed about the prog-
ress of a lengthy operation running in
background; it is also used to simply indi-
cate the user that must wait for an opera-
tion to be completed; i.e., as an indication
of a busy application.

• Periodic Refresh: it is useful to maintain
the content of an application up-to-date; in
this sense, the new content can be loaded
either automatically or on demand as is
broadly used by some microblogging web-
sites such as Twitter™ and Facebook™.

According to the above, this chapter is aimed
at reviewing the support for implementing the
interaction design patterns outlined above among
popular non-JavaScript-based and JavaScript-
based RIA frameworks not only in terms of GUI
controls but also in terms of non-visual classes.
This systematic review is finally summarized in a
comparative analysis of the capabilities of the RIA
frameworks in the context of rich GUI design. In
addition, the differences and similarities between
GUI controls and interaction design patterns are
intended to be explained by using sample appli-

142

UI Patterns Support on RIAs Development

cations. For practical purposes, the source code
used for implement these sample applications
is not presented in its entirety. In fact, only two
implementations for each RIA framework are
included in this chapter. Despite this issue, all
the interaction design patterns above described
are covered in terms of sample implementations.

2. UI PATTERNS SUPPORT INTO
JAVASCRIPT-BASED FRAMEWORKS

Because most of the JavaScript-based RIA frame-
works are available under open source software
licenses; they take advantage of the developer
communities contributing to implement the fea-
tures that are absent. From this prespective, some
of the interaction design patterns analyzed in this
chapter that are not closely related to standard
GUI controls are fully implemented by third-party
plug-ins by using HTML controls and the CSS
style sheet language, hence the importance to
cover these third-party extensions. This is because
interaction patterns are actually a set of design
principles and best practices for delivering rich
user experiences.

It is important to notice that the sample imple-
mentations presented in this chapter are based on
demo applications provided as part of the official
documentation of the related JavaScript-based
RIA frameworks.

2.1. UI Patterns in Dojo

Brighten and Dim

Dojo provides a lightbox component as part of the
Dojox package. This component inherits properties
and methods from the Digit Dialog class which
is a modal pop-up dialog box. As can be inferred,
Digit is the Dojo’s GUI library. In its basics, the
Dojox Lightbox widget allows converting links
containing title and href attributes into widgets;
in fact, it can be used either programmatically or
inline. Figure 1 depicts the usage of the Dojox
Lightbox and ThumbnaillPicker widgets on de-
veloping an image gallery. ThumbnailPicker is
actually a layout that displays a series of images
either horizontally or vertically and it provides
controls to page through the images.

Figure 1. Implementing the brighten and dim interaction design pattern by using the Dojox Lightbox
and ThumbnailPicker widgets

143

UI Patterns Support on RIAs Development

Expand/Collapse

Dojo has a layout container called Accordion-
Container which implements the expand/collapse
interaction design pattern. In fact, Dojo provides a
complete set of layouts as part of the Digit pack-
age. For instance, the AccordionContainer layout
holds a set of panes where each pane is in turn
an instance of the ContentPane layout which is
the most basic Dojo layout and it contains a title
area. Furthermore, like the Dojo TabContainer and
StackContainer layouts, the AccordionContainer
layout displays only one pane at a time. Figure 2
depicts the usage of the Dojo AccordionContainer
layout.

Animation

In its basics, the animation interaction design
pattern can be used as means to incorporate ef-
fects to RIAs, i.e., visual or audible changes that
occur over a period of time. In this sense, Dojo
has a subpackage called Fx which provides ef-
fects targeting DOM nodes; these effects include
fade, slide and wipe effects. As part of the Dojox
package, Dojo also has a subpackage providing
additional effects such as highlights and resizes.
Every Dojo effect is built on top of the base effect
functionality provided by the _base/fx subpackage
which comprises the animateProperty() func-
tion, a function that allows animating changes
of CSS properties. Figure 3 depicts the usage of
the Dojo animateProperty(), slideTo(), fadeIn()
and fadeOut() functions on animating text and
image nodes.

Figure 2. Implementing the accordion interaction design pattern by using the Dojo AccordionContainer
layout

144

UI Patterns Support on RIAs Development

Spotlight

The spotlight interaction design pattern is com-
monly used to simply highlight an area of a GUI
in order to temporarily focus the user attention on
it. In this context, this pattern is closely related to
the animation pattern. In fact, the functionalities
provided by the Dojo effects engine can be used
to animate the properties of a layout container in
order to highlight certain areas on a GUI. Figure
4 depicts the usage of the Dojo animateProperty()
function on animating the border color and size
of a Dojo ContentPane layout.

Auto Complete

As part of the Dijit package, Dojo has a widget
called ComboBox which is a hybrid between the
HTML select and input controls. Despite its name,
the Dojo ComboBox widget displays partially
matched values for an entry in a pop-up below a

text box as the user types. As usual on instantiating
Dijit widgets, the ComboBox widget can be used
either programmatically or declaratively; the latter
approach implies the usage of the HTML select
and option tags. Figure 5 depicts the usage of the
Dojo ComboBox widget on suggesting matches
for user entries related to states names.

Live Preview

Dojo provides form validation facilities by means
of the Form class as part of the Digit package. In
fact, it has a set of form controls with built-in sup-
port for client-side form validation. For instance,
the DateTextBox widget is a date entry widget that
allows either typing or choosing a date from a cal-
endar. It automatically validates the typed entries
against locale-specific internationalization (i18n)
rules; additionally, it allows validating entries
against developer-provided constraints like min
and max values. As can be inferred, these form

Figure 3. Implementing the animation interaction design pattern by using the Dojo Fx engine

145

UI Patterns Support on RIAs Development

widgets are typically used in conjunction with
the Digit Form class which is the equivalent of
the HTML form tag and it provides the isValid()
and validate() methods to prevent invalid form
from submitting. Figure 6 depicts the usage of the
Dojo DateTextBox widget in the context of a Dojo
Form. In addition, a snippet of the corresponding
source code is depicted in Figure 7.

Progress Indication

Dojo provides both a widget called BusyBut-
ton which implements the simplest form of the

progress indication pattern and a widget called
ProgressBar which implements the most complex
form of the progress indication pattern. In detail,
the BusyButton widget is part of the Dojox pack-
age and it is intended to be used in the context of
form submission; it allows displaying a custom
label during a configurable timeout. On the other
hand, the ProgressBar widget is part of the Digit
package and it allows giving dynamic feedback
on the progress of long-running JavaScript op-
erations. Figure 8 depicts the usage of the Dojo
BussyButton widget. In addition, a snippet of the
corresponding source code is depicted in Figure 9.

Figure 4. Implementing the spotlight interaction design pattern by using the Dojo animateProperty()
function

Figure 5. Implementing the auto complete interaction design pattern by using the Dojo ComboBox widget

146

UI Patterns Support on RIAs Development

Figure 6. Implementing the live preview interaction design pattern by using the Dojo DateTextBox widget

Figure 7. Snippet of the Dojo-based source code used for implementing the live preview interaction
design pattern

147

UI Patterns Support on RIAs Development

2.2. UI Patterns in jQuery

Brighten and Dim

jQuery UI is a GUI framework built on top of
jQuery, which defines a level of interaction design
patterns as part of its components architecture.
In fact, it is a set of GUI interactions, effects,
widgets and themes. However, it does not include

the brighten and dim pattern so that a plug-in
providing this functionality must be used. Figure
10 depicts the usage of the version 5 of the jQuery
lightbox plug-in available at http://leandrovieira.
com/projects/jquery/lightbox/ on developing an
image gallery. In addition, a screenshot of this
application is depicted in Figure 10. In addition,
a snippet of the corresponding source code is
depicted in Figure 11.

Figure 8. Implementing the progress indication interaction design pattern by using the Dojo BusyBut-
ton widget

Figure 9. Snippet of the Dojo-based source code used for implementing the progress indication interac-
tion design pattern

148

UI Patterns Support on RIAs Development

Auto Complete

The jQuery UI framework has a native GUI
widget called autocomplete which uses a simple
JavaScript-based array provided by means of the

source option as data source. Figure 12 depicts
the usage of the jQuery autocomplete widget.
Here the suggestions are tags for cities names. In
addition, a snippet of the corresponding source
code is depicted in Figure 13.

Figure 10. Implementing the brighten and dim interaction design pattern by using the jQuery lightbox
plug-in

Figure 11. Snippet of the jQuery-based source code used for implementing the brighten and dim inter-
action design pattern

149

UI Patterns Support on RIAs Development

2.3. UI Patterns in Mootools

Brighten and Dim

MooTools is a JavaScript-based framework pri-
marily addressing Ajax manipulation and visual
effects. In fact, the MooTools animation engine
which relies on the classes of the Fx package is a
major component of MooTools. According to the

above, MooTools does not have native widgets.
However there are several third-party MooTools
plugins available on Internet. For instance, the of-
ficial MooTools website lists different categories
of third-party plug-ins, including widgets. In this
sense, there is a variety of plug-ins implementing
the brighten and dim interaction design pattern
mainly by means of the lightbox effect technique.
A popular plug-in called Videobox provides a

Figure 12. Implementing the auto complete interaction design pattern by using the jQuery autocomplete
widget

Figure 13. Snippet of the jQuery-based source code used for implementing the auto complete interac-
tion design pattern

150

UI Patterns Support on RIAs Development

means to show videos by using overlays; it is a
lightbox for videos. Figure 14 depicts the usage of
the MooTools Videobox plugin on implementing
the brighten and dim interaction design pattern.
In addition, a snippet of the corresponding source
code is depicted in Figure 15.

Animation

Outside the context of implementing drag-and-
drop gestures, the animation interaction design
pattern can be used on a variety of scenarios
mimicking object transitions from the real world.
In this sense, animating the value of a single CSS
property is the most basic kind of animation in
JavaScript-based RIA frameworks. As part of the

Figure 14. Implementing the brighten and dim interaction design pattern by using the MooTools Vid-
eobox plug-in

Figure 15. Snippet of the MooTools-based source code used for implementing the brighten and dim
interaction design pattern

151

UI Patterns Support on RIAs Development

MooTools Fx package, there are a set of classes
providing support for simple and complex CSS-
based animations, including the Tween and Morph
classes. The hierarchy of Fx classes starts with a
class called Fx which defines methods for start-
ing, pausing and canceling effects. In detail, the
Tween class is used to transition any CSS property

from one value to another, i.e., to implement a
tween effect. Furthermore, the Morph class is
used to animate multiple CSS properties at once.
For animating a single CSS property by using the
MooTools Tween class, the name of the property
to be animated as well as the starting and target
values must be passed to the start() method. Figure

Figure 16. Implementing the animation interaction design pattern by using the MooTools Tween class

Figure 17. Snippet of the MooTools-based source code used for implementing the drop animation in-
teraction design pattern

152

UI Patterns Support on RIAs Development

16 depicts the usage of the MooTools Tween class
on implementing the animation interaction design
pattern. In addition, a snippet of the corresponding
source code is depicted in Figure 17.

2.4. UI Patterns in Prototype

Brighten and Dim

Prototype and Script.aculo.us do not provide native
support for pop-up dialog windows or boxes as
the primary mean for achieving the brighten and
dim interaction design pattern. However, there
are several Prototype plug-ins implementing the
brighten and dim interaction pattern by means
of the so-called lightbox effect technique. For
instance, the Lightbox Slideshow plug-in is a script
used to overlay images on the current Web page
and it is available at http://www.justinbarkhuff.
com/lab/lightbox_slideshow/. As usual among
other lightbox plug-ins, the Lightbox Slideshow
plug-in implements an animation aimed at resizing
the pop-up window from a point to full-size when
the initialize() method is called. The initialize()
method can receive an object specifying optional
configuration options such as the duration of the
resize animation and the speed of the image re-
sizing. Finally, it is important to notice that this
plug-in can also be used to navigate and display
groups of images. Figure 18 depicts the usage
of the Prototype Lightbox Slideshow plug-in on
implementing the brighten and dim interaction
design pattern. In addition, a snippet of the cor-
responding source code is depicted in Figure 19.

Expand/Collapse

Because Prototype primarily addresses Ajax and
DOM manipulation it does not include GUI com-
ponents as part of its core (Raymond & Pereira,
2006). In fact; it is commonly used in conjunc-
tion with Script.aculo.us, a JavaScript-based
library built on top of Prototype, which adds GUI

components, visual effects and behavior classes.
As can be inferred, the Script.aculo.us behavior
classes are equivalent to the jQuery UI interac-
tion classes and they can be directly mapped to
the interaction design patterns level of rich GUI
design. Nevertheless, Script.aculo.us does not have
a GUI control or layout container implementing the
expand/collapse interaction design pattern to date;
hence, a third-party plug-in must be used. In this
sense, there is a lot of Prototype plug-ins publicly
available over Internet. For instance, the plug-in
repository available at http://www.prototype-
plugins.com/ lists a plug-in called e24TabMenu
which implements a tab navigator container able
to expand and collapse. Figure 20 depicts the us-
age of the Script.aculo.us e24TabMenu plug-in
on implementing the expand/collapse interaction
design pattern. In addition, a snippet of the cor-
responding source code is depicted in Figure 21.

Animation

Script.aculo.us provides a set of classes that al-
lows adding rich behaviors to Web applications;
these classes called behavior classes include the
Draggable and Droppables classes. It also has
a Sortable class which adds additional built in
support for drag-and-drop operations to layout
containers. The Draggable class is used to enable
a DOM element to be dragged; for that purpose, a
new instance of the Draggable class must be cre-
ated. The Droppables class is a static class used to
enable a DOM element to react when a draggable
element is dropped onto it; for that purpose, the
Droppables.add() method must be used. Although
the usage of the Script.aculo.us Draggable and
Droppables classes does not require handling
mouse events, they accept callback functions as-
sociated to typical drag-and-drop mouse events
as part of their configuration options. Finally, it
is important to notice that the Draggable class
implements a drag animation consisting in chang-
ing the opacity of the element is being dragged.

153

UI Patterns Support on RIAs Development

Figure 18. Implementing the brighten and dim interaction design pattern by using the Prototype Lightbox
Slideshow plug-in

Figure 19. Snippet of the Prototype-based source code used for implementing the brighten and dim
interaction design pattern

Figure 20. Implementing the expand/collapse interaction design pattern by using the Script.aculo.us
e24TabMenu plug-in

154

UI Patterns Support on RIAs Development

Figure 21. Snippet of the Prototype-based source code used for implementing the expand/collapse in-
teraction design pattern

Figure 22. Implementing the drop animation interaction design pattern by using the Script.aculo.us
Draggable and Droppable classes

155

UI Patterns Support on RIAs Development

Figure 22 depicts the usage of the Script.aculo.us
Draggable and Droppable classes on implement-
ing a drop animation.

2.5. UI Patterns in Qooxdoo

Animation

Qooxdoo provides support for drag-and-drop
operations as part of its event-driven program-
ming model. Thus, any Qooxdoo widget can be
configured to be used as a sender (drag source),
receiver (drop target) or both. For that purpose,
the draggable and droppable properties must be
enabled on the target widget. In addition to the
typical mouse event handling, the supported drag
operations must be specified on a drag source by
means of the addAction() method inherited from
the DragDrop event handler class. In this sense,
the supported drag operations are copy, move and
alias. This configuration automatically enables a

drop animation based on a custom mouse cursor
represented by the DragDropCursor widget. In
addition to this feedback mechanism, Qooxdoo
automatically displays a snapshot of the item
is being dragged. Figure 23 depicts a sample
Qooxdoo-based RIA implementing the drag-and-
drop gesture over a List widget.

Progress Indication

Under the category of indication widgets, Qo-
oxdooo provides a simple progress bar widget.
This widget called ProgressBar is designed to
display the current percentage of completion of
a lengthy JavaScript operation so that it is a kind
of determinating progress bar. It only exposes two
setter methods: one method that sets the maxi-
mum value of the progress bar and one method
that sets the current value of the progress bar. It
is important to notice that, unlike other progress
bar implementations, the Qooxdoo ProgressBar

Figure 23. Implementing the drop animation interaction design pattern by using a Qooxdoo List widget

156

UI Patterns Support on RIAs Development

widget does not allow to display a label besides the
progress value. Figure 24 depicts the usage of the
Qooxdoo ProgressBar widget on implementing
the progress indication interaction design pattern.

2.6. UI Patterns in Rico

Expand/Collapse

Unlike the other JavaScript-based RIA frame-
works providing support for the expand/collapse
interaction design pattern, Rico does not have a
native accordion control or layout container; the
Rico.Accordion class is actually a simple script
used to transform a set of HTML <div> tags into
an accordion GUI control. In detail, the Rico.Ac-
cordion class allows adding the event handlers
necessary to manage the expand and collapse
behaviors to the corresponding div elements. In
this sense, each one of the accordion panes must
be represented by using a pair of div elements: one
representing the pane header and one representing
the pane content. Figure 25 depicts the usage of
the Rico.Accordion class on implementing the
expand/collapse interaction design pattern. In
addition, a snippet of the corresponding source
code is depicted in Figure 26.

Animation

Rico provides a set of classes that allows RIAs to
support drag-and-drop operations. In detail, these
classes include a predefined object called dnd-
Manager which allows easily defining draggable
(drag source) objects as well as objects acting as
drop zones (drop targets) by using the register-
Draggable() and registerDropZone() methods,
respectively. For that purpose, Rico provides the
Rico.Draggable and Rico.DropZone classes. It
is important to notice that, unlike most of the
JavaScript-based RIA frameworks, Rico does not
require handling the mouse events involved on a
drag-and-drop gesture. In addition, Rico imple-
ments a drop animation consisting in changing the
look and feel of the drop zone while a draggable
object is being dragged. Figure 27 depicts the
usage of the Rico.Draggable and Rico.DropZone
classes on implementing a drop animation. In
addition, a snippet of the corresponding source
code is depicted in Figure 28.

Figure 24. Implementing the progress indication interaction design pattern by using the Qooxdoo Pro-
gressBar widget

157

UI Patterns Support on RIAs Development

Figure 25. Implementing the expand/collapse interaction design pattern by using the Rico.Accordion class

Figure 26. Snippet of the Rico-based source code used for implementing the expand/collapse interaction
design pattern

158

UI Patterns Support on RIAs Development

2.7. UI Patterns in Sencha Ext JS

Brighten and Dim

Sencha Ext JS provides support for implementing

pop-up dialog boxes mainly by means of a utility
class called MessageBox which allows creating
different kinds of pop-up dialog boxes includ-
ing confirmation, alert as well as indefinite and
definite progress dialog boxes. All these dialog

Figure 27. Implementing the drop animation interaction design pattern by using the Rico.Draggable
and Rico.DropZone classes

Figure 28. Snippet of the Rico-based source code used for implementing the drop animation interaction
design pattern

159

UI Patterns Support on RIAs Development

boxes are created as modal by default; optionally,
they can be created as non-modal by properly
setting the modal property of the object passed
to the MessageBox show() method. Furthermore,
an Ext JS MessageBox-based dialog box can be
displayed either as fully-decorated or as non-
decorated dialog box by properly settling the title
and closeable properties. In addition, the Ext JS
MessageBox class fully implements the brighten
and dim interaction design pattern because it au-

tomatically dims the entire GUI before a dialog
box is displayed. Figure 29 depicts the usage of
the Ext JS MessageBox class on creating a simple
confirmation dialog box.

Expand/Collapse

Like Dojo, Sencha Ext JS has a layout container
implementing the expand and collapse interaction
design pattern. This container called Accordion

Figure 29. Implementing the brighten and dim interaction design pattern by using the Ext JS Message-
Box class

Figure 30. Implementing the expand/collapse interaction design pattern by using the Ext JS Accordion
class

160

UI Patterns Support on RIAs Development

layout is a set of panes using an expandable
accordion style; it is based on a stacked layout
because it allows expanding only one pane at a
time. Nevertheless, unlike the Dojo Accordion
container, the Ext JS Accordion container can be
configured to allow expanding multiple panes at
once; for that purpose, the multi property must be
properly settled. Moreover, as usual among other
implementations of the accordion container, the
Ext JS Accordion container only accepts one kind
of component as direct child: the Ext JS Panel
container which is composed of header and body
sections and it has built-in support for the expand
and collapse effects. Figure 30 depicts the usage
of the Ext JS Accordion class. In addition, a snip-
pet of the corresponding source code is depicted
in Figure 31.

Animation

Sencha Ext JS has an extensive classes hierarchy
abstracting all the concepts involved on a drag-
and-drop operation. These classes are organized
into a package called DD and they all stem from
an interface called DragDrop which defines base
functionality of items that can be drag sources or

drop targets. In detail, the DragDrop interface has
event handlers for all the mouse events typically
involved on a drag-and-drop gesture, including
start drag, on drag, on drag over and on drag out.
It should be noticed that any item intended to be
dragged must be allowed to be dragged by settling
the draggable property. Furthermore, both the
Ext JS grid and tree GUI components incorporate
built-in support for the drag-and-drop operation
by means of a plugin providing functionality for
View-based classes. In this sense, the Ext JS View
class provides a mechanism for displaying data
using custom layout templates and formatting.
Figure 32 depicts the usage of the Ext JS grid.
DragDrop plug-in on implementing the drop
animation interaction design pattern.

Spotlight

Sencha Ext JS can implement the spotlight inter-
action design pattern by means of a native GUI
component. In fact, it has a GUI component called
Spotlight as part of the UX package. In detail, the
Ext JS Spotlight component is used to restrict user
input to a particular GUI section by dimming all
other application content. Although this behav-

Figure 31. Snippet of the Ext JS-based source code used for implementing the expand/collapse interac-
tion design patter

161

UI Patterns Support on RIAs Development

Figure 32. Implementing the drop animation interaction design pattern by using the Ext JS grid.Drag-
Drop plug-in and the Ext JS grid widget

Figure 33. Implementing the spotlight interaction design pattern by using the Ext JS Spotlight widget

162

UI Patterns Support on RIAs Development

ior is similar to the brighten and dim interaction
pattern, the Ext JS Spotlight component is most
suitable for situations where the user is not able
to interact with a certain GUI section before a
change in another section is committed. In addi-
tion, the dimming effect can be configured during
a specified period of time by properly settling the
duration property. Figure 33 depicts the usage of
the Ext JS Spotlight GUI component on imple-
menting the spotlight interaction design pattern.
In addition, a snippet of the corresponding source
code is depicted in Figure 34.

Progress Indication

Since version 2.3.0 of Sencha Ext JS, there is a
component called ProgressBar which supports
both the determinate and indeterminate modes.
In determinate mode, a bar that fills based on a
value is used whereas in indeterminate mode, a
bar that displays a repeating pattern is used. The

determinate mode is manual which means that
the progress value must be manually updated via
the updateProgress() method. As can be inferred,
an Ext JS-based indeterminate progress bar is
automatic and it runs indefinitely by simply call-
ing the wait() method; optionally, it can run for
a specified period of time by properly setting the
duration and interval parameters of the object
passed to the wait() method. Figure 35 depicts a
sample application displaying a set of indetermi-
nate and determinate progress bars by using the
Ext JS ProgressBar class.

2.8. UI Patterns in X-Library

Animation

X-Library defines a function called xEnableDrag()
which allows adding the dragging behavior to any
DOM element. It also defines a function called
xEnableDrop() which is used to enable DOM ele-

Figure 34. Snippet of the Ext JS-based source code used for implementing the spotlight interaction
design pattern

163

UI Patterns Support on RIAs Development

Figure 35. Implementing the progress indication interaction design pattern by using the Ext JS Pro-
gressBar class

Figure 36. Implementing the drop animation interaction design pattern by using the X-Library xEnable-
Drag() and xEnableDrop() functions

164

UI Patterns Support on RIAs Development

ments to receive drop events from drag-enabled
objects. In detail, the xEnableDrag() function must
receive a reference to the object to be dragged and
it optionally receive the functions to handle the
mouse events underlying to the drag start, on start
and drag end events. According to the above, the
xEnableDrag() function implements basic drag
functionality, i.e., the functionality to position the
object is being dragged by capturing the position of
the mouse in terms of the x and y coordinates. Like
the xEnableDrag() function, the xEnableDrop()
function implements basic drop functionality
so that any drop animation must be manually
implemented. Figure 36 depicts the usage of the
X-Library xEnableDrag() and xEnableDrop()
functions on implementing a drop animation. In
addition, a snippet of the corresponding source
code is depicted in Figure 37.

2.9 Comparison

Table 1 summarizes the analysis of support for
implementing interaction design patterns among
JavaScript-based RIA frameworks, which is per-
formed in this chapter. It covers the eight most

popular patterns (see section 1) as well as the
Dojo, jQuery, MooTools, Prototype, Qooxdoo,
Rico, Sencha Ext JS and X-Library frameworks.

This comparison is intended to determine
which JavaScript-based RIA framework pro-
vides the broadest support for implementing
interaction design patterns, taking as sample
the eight most popular patterns (see section
8.1). Nevertheless, the selection of one of these
framework relies also on features internal to the
development project to be carried out such as the
problem domain, the calendar and the budget,
i.e., the results of this comparative analysis are
not decisive on selecting a JavaScript-based
RIA framework.

3. UI PATTERNS SUPPORT
INTO NON-JAVASCRIPT-
BASED FRAMEWORKS

Interaction design patterns are not part of the
components architecture of the RIA frameworks
neither JavaScript-based nor non-JavaScript-
based. Therefore, the rich design levels de-

Figure 37. Snippet of the X-Library-based source code used for implementing the drop animation in-
teraction design pattern

165

UI Patterns Support on RIAs Development

scribed at the beginning of this chapter can be
partially mapped to the components architecture
of the non-JavaScript-based RIA technologies’.
For instance, the Adobe™ Flex’s official Inte-
grated Development Environment (IDE) groups
components according to category in: 1) GUI
controls, 2) layouts, 3) navigators and 4) charts.
In this case, a navigator is a special type of GUI
controls container, which can take other contain-
ers as children. A chart, on the other hand, is a
special type of simple GUI control representing
a way to deliver rich data visualizations, and
they enable quick and efficient data analysis.

This section treats a set of sample RIAs that
allows contextualizing the usage of the interac-
tion design patterns analyzed in this chapter to
common scenarios involving data from cloud
services APIs of popular Web 2.0 websites,
namely YouTube™, Twitter™ and last.fm™.

3.1. UI Patterns in Adobe™ Flex

Brighten and Dim

The Flex Alert control, which is similar to the
JavaScript Alert control, represents the easiest
way to achieve the brighten and dim interaction
pattern; it displays a modal pop-up dialog box that
can contain a title, a message, an icon and a pair
of buttons. In fact, this control implements the
“brighten and dim” interaction pattern by dimming
down the Web page or window (background) and
showing a non-dimmed pop-up dialog box over the
background. However, Flex provides developers
with other mechanisms for building custom pop-up
windows, namely the SkinnablePopUpContainer
and TitleWindow layout containers. In any case,
these containers appear as pop-up windows on
top of their parent containers; therefore, they are
not defined as part of the MXML code of their
parents, but rather as custom MXML components,
possibly in external MXML files. In detail, the
TitleWindow container consists of a title bar, a cap-
tion and status area in the title bar, a content area,

Table 1. UI Patterns Support on JavaScript-based Frameworks

Framework Transitional Patterns Lookup Patterns Feedback Patterns

Sencha Brighten and Dim
Expand/Collapse

Animation
Spotlight

Not reported Progress Indicator

Prototype Brighten and Dim
Expand/Collapse

Animation

Not reported Not reported

Dojo Brighten and Dim
Expand/Collapse

Animation
Spotlight

Auto Complete Live Preview
Progress Indicator
Periodic Refresh

jQuery Brighten and Dim Auto Complete Not reported

MooTools Brighten and Dim
Animation

Not reported Not reported

Qooxdoo Animation Not reported Progress Indicator

Rico Expand/Collapse
Animation

Not reported Not reported

X-Library Animation Not reported Not reported

166

UI Patterns Support on RIAs Development

a border and an optional close button, whereas the
SkinnablePopUpContainer is a lightway container
used for simple pop-ups. Furthermore, although
both containers can be modal or non-modal, only
the TitleWindow container supports dragging. In
any case, the parent container is automatically
dimmed when the pop-up window is defined as
modal. Figure 38 depicts the implementation of
the brighten and dim interaction pattern by means
of the SkinnablePopUpContainer.

Expand/Collapse

The expand/collapse interaction pattern, which
is a means for keeping additional content hidden
until the user needs them, is one example of in-
teraction pattern closely linked to a specific GUI
control in many RIA frameworks. For instance,
Flex includes the Accordion navigator container,
which defines a sequence of child panels and
displays only one panel at a time. Each panel
defines, in turn, a navigation button that allows
users to navigate it. Because the Flex Accordion is
a navigator container, it is not possible to directly

nest controls within it. In detail, it is part of the
Flex MX components architecture; therefore, its
direct children must be MX containers although
it also accepts one Spark container, namely the
NavigatorContent container. In general, accordi-
ons are useful for working with large forms. In
this sense, figure 8.39 depicts the use of the Flex
Accordion navigator container for implementing
an on-line curriculum vitae application, which
comprises five different kinds of information by
means of five separate forms.

Animation

Flex list-based controls such as DataGrid and
List controls include built-in support for the drag-
and-drop interaction pattern. In addition, these
controls include support for the drop animation
interaction pattern. Furthermore, manual support
for drag and drop operations can be added to any
Flex non-list-based control by: 1) handling the
involved events such as dragEnter and dragDrop
and 2) using specific ActionScript classes like
the DragSource, which contains the data being

Figure 38. Implementing the brighten and dim interaction pattern by using the ActionScript Skinnable-
PopUpContainer class

167

UI Patterns Support on RIAs Development

dragged. In the case of the drag and drop built-
in support, drag and drop operations need to be
properly enabled by using the dragEnabled and
dropEnabled properties of the involved list-based
controls. Furthermore, for dragging and dropping

data between different list-based controls the only
requirement is that the structure of the data pro-
viders matches. The dropEnabled property also
activates a default drop animation which indicates
that the intended drop target is a valid drop target

Figure 39. Implementing the expand/collapse interaction pattern by using the Adobe™ Flex Accordion
navigator container

Figure 40. Implementing the drag-and-drop and drop animation interaction patterns by using the Adobe
Flex™ List control

168

UI Patterns Support on RIAs Development

by changing the border color of the list-based con-
trol and using a custom mouse cursor. The figure
8.40 depicts a screenshot of a Flex application that
allows dragging and dropping YouTube™ video
results between two List controls.

Auto Complete

The auto complete interaction pattern defines a
way of displaying matching values for a user input
as the input is typed. Commonly, this behavior
is implemented by using a text box control for
user input in conjunction with a drop-down list
control that contains possible matches based on
the current user input. There is not a native GUI
control implementing this behavior among the
non-JavaScript-based RIA frameworks although
there are few approaches. For instance, Flex in-
cludes a ComboBox control and a DropDownList
control, which basically let the user select an item
from a predefined set of items. The ComboBox
control, in detail, contains a prompt area that lets
the user types input in order to either select a
predefined item or enter a new item. Thus, Flex
developers can implement the auto complete

interaction pattern either by building a custom
MXML or ActionScript control or by taking
advantage of third-party controls. In fact, the use
of a third-party auto complete control based on
the Flex TextInput and List controls is depicted in
Figure 41. It is important to notice that, this is a
custom ActionScript control based neither on the
ComboBox control nor the DropDownList control
but on the List control, which is not a control
that drop-downs; therefore, it also uses the Flex
PopUpAnchor control for displaying the list of
matching values as a pop-up below the text box.

Live Preview

Form validation can be considered the primary
use for the live preview interaction pattern, which
allows users to known beforehand how appropriate
are their entries. In this sense, unlike traditional
Web applications, RIAs can provide immediate
feedback to users as they modify their entries
on the client instead of until they submit their
entries to the server. Flex includes both an event
dispatcher base class called Validator, which can
be extended to build custom validators, and a set

Figure 41. Implementing the auto complete interaction pattern by using a third-party ActionScript control

169

UI Patterns Support on RIAs Development

of predefined validator controls for ensuring that
typical data such as credit card numbers, zip codes
and phone numbers represent valid patterns. In
general, Flex validators can be additionally used
to make a field required by using the required
property. In the case of custom Flex validators,
the Validator doValidation() method must be
overridden to include custom validation logic,
possibly to match regular expressions against
entries. In any case, it is necessary to set: 1) the
source property of the validator to the name of
the control where the user input will occur and
2) the property property of the validator to the
name of the property that the validator should
check. In addition, a custom error message to be
displayed if the validation fails must be settled to
the errorMessage property of the control where
the user input will occur; otherwise, a default
error message will be displayed. By default, the
border color of the involved control is changed
to red and a warning icon is displayed beside the
error message. It is important to notice that there
are two main approaches to trigger validations in
Flex: 1) as result of a change in the control where
the user input will occur or 2) as result of a change

in a third control, e.g., a “submit” button. Figure
42 depicts the use of the Flex number validator for
implementing the live preview interaction pattern.
In addition, a snippet of the corresponding source
code is depicted in Figure 43.

Periodic Refresh

The periodic refresh interaction pattern is an
example of interaction pattern not related to a
particular GUI control. It is a means for bringing
fresh content (content possibly produced by a com-
munity of users) to an application without direct
user request. It can be used in conjunction with
an interaction pattern related to the displaying of
additional content. Typically, the behavior behind
the periodic refresh interaction pattern is related to
a scheduled task, i.e., a task that is executed every
certain time mainly as a background process. In this
sense, there is an ActionScript Timer class acting
as an interface to the timers, which let applications
run code on a specified time sequence. It exposes
common timer functions such as start(), stop()
and reset() as well as common timer properties
like delay, i.e., the period of time between execu-

Figure 42. Implementing the live preview interaction pattern by using the Flex number validator

170

UI Patterns Support on RIAs Development

tions. Figure 44 depicts the implementation of the
periodic refresh interaction pattern in conjunction
with the more content invitation pattern in a Flex

application. This application is inspired by the
Twitter™’s look and feel, and behavior. In fact,
it uses the ActionScript Timer class to search for

Figure 43. Snippet of the Flex-based source code used for implementing the live preview interaction
design pattern

Figure 44. Implementing the periodic refresh interaction pattern by using the ActionScript Timer class

171

UI Patterns Support on RIAs Development

new tweets in the timeline of a user logged into
Twitter™ every 30 seconds; it also uses a Flex
List control to display the timeline and a Flex
Label control to inlay an invitation message on
top of the GUI to discover new tweets when they
arrive. In addition, a snippet of the corresponding
source code is depicted in Figure 45.

3.2. UI Patterns in JavaFX™

Expand/Collapse

Besides the implementation of complex forms,
another typical usage of the expand/collapse
interaction pattern is the implementation of ap-
plications containing different kinds of informa-
tion to be displayed, e.g. product catalogs, which
commonly display one kind of product at a time.
The JavaFX™ application depicted in Figure 46
is an example of a RIA that provides static content
through an accordion control. As Flex, JavaFX™
includes a native accordion control, which is
actually a group of TitledPane controls. As can
be inferred, unlike the Flex Accordion control,
the JavaFX™ Accordion control must contain
one specific type of control as direct child. The
TitledPane control is a panel with a title that can
be opened and closed, and it can encapsulate any

node either a control or a layout container. The
title of a TitledPane control is settled by using the
setText() method whereas the content is added by
using the setContent() method. Furthermore, a
titled pane can be used as standalone control, i.e.,
they can be used outside of an accordion.

Progress Indication

The progress indication interaction pattern is an-
other example of interaction pattern implemented
by most non-JavaScript RIA frameworks in a
native way. It allows keeping the user informed
about the progress of a lengthy process such as an
upload, a searching or a loading operation. In its
simplest form, this pattern is used to inform that
an application is currently busy with a lengthy pro-
cess; hence that there is a busy control among the
non-JavaScript-based RIA frameworks, namely,
the Flex Busy control, which is limited to be used
in mobile applications. It is important to notice
that this section is only focused on the simplest
form of the progress indicator interaction pattern.
JavaFX™ 2.2 includes a ProgressIndicator class
and a ProgressBar subclass. Whereas the Progress-
Bar class visualizes the progress as a completion
bar, the ProgressIndicator class visualizes the
progress as a pie chart. Both controls provide

Figure 45. Snippet of the Flex-based source code used for implementing the periodic refresh interaction
design pattern

172

UI Patterns Support on RIAs Development

the capabilities to indicate that a particular task
is processing and to detect how much of the task
has been already done. In this sense, the percent-
age of the progress is indicated by setting a value
between 0 and 1 to the progress variable through
the setProgress() method. A negative value for the
progress variable indicates that the progress is in an
indeterminate mode. In that case, controls remain
in indeterminate mode until the length of the task
is determined, i.e., they indicate that an operation is
in progress without specifying the current percent-
age of progress. As can be inferred, this approach
can be used to display JavaFX™ ProgressBar
and ProgressIndicator controls as busy indicator
controls. Figure 47 depicts the implementation
of the progress indicator interaction pattern by
using the JavaFX™ ProgressIndicator control. In
addition, a snippet of the corresponding source
code is depicted in Figure 48.

Brighten and Dim

Unlike Flex and Silverlight™, JavaFX™ 2.2 has
no common support for alert-like dialog boxes; this
feature is currently under development, and it is on
the JavaFX™ 3.0 roadmap. Therefore, developers
may create their own implementations, possibly by
using or extending the JavaFX™ Stage class. The
Stage class is the top level JavaFX™ container,
and it inherits from the JavaFX™ Window class
which is also the parent of other classes like the
PopupWindow class. The PopupWindow class is,
in turn, the parent of the Popup and PopupControl
classes which are special window-like containers
for scene graphs, and they are typically used for
tooltip-like notifications and drop down boxes.
Although the PopupWindow class seems to be the
best choice for implementing pop-up dialog boxes,
a PopupWindow window has no decorations, i.e.,
it does not include a title bar. Therefore, in cases

Figure 46 Implementing the expand/collapse interaction pattern by using the JavaFX™ Accordion control

173

UI Patterns Support on RIAs Development

where a title bar is required, to style a JavaFX™
PopupWindow window in order to add a title bar
can be a time-consuming task. On the other hand,

a Stage window has decorations by default; it can
be defined as a modal or non-modal window.
The image 49 depicts a JavaFX™ application

Figure 47. Implementing the progress indication interaction pattern by using the JavaFX™ ProgressIn-
dicator control

Figure 48. Snippet of the JavaFX™-based source code used for implementing the progress indication
interaction design pattern

174

UI Patterns Support on RIAs Development

that uses the Stage class for displaying a modal
pop-up dialog box including a full-size image of
the thumbnail selected from a list. It is important
to notice that, unlike the Flex SkinablePopUp-
Container container, the JavaFX™ Stage class
does not have the functionality to automatically
dim the parent container (background) of a Stage
window. For that purpose, the sample application
uses a JavaFX™ ColorAdjust effect to adjust the
saturation of the background.

Spotlight

A spotlight provides a means to subtly notify the
user of a change in a GUI. Because this interac-
tion pattern can be applied to different kinds of
objects, notification can be accomplished in many
ways. Therefore, there is not a GUI control closely
linked to the spotlight interaction pattern among

the non-JavaScript-based RIA frameworks. A
common approach is to display status messages
over the area of the GUI that has changed and
gradually fade out them as the time passes. For
that purpose, it is not necessary to implement a
mechanism to pop up a “window” with the noti-
fication message. This task can be simply accom-
plished by using a label control and positioning
it over the GUI employing absolute positioning,
i.e., explicitly setting the values for its x and y
coordinates. The JavaFX™ application depicted
in figure 50 uses a JavaFX™ HBox layout to
build a custom notification message comprising
a text message and an image. This application
allows users to search for YouTube™ videos; it
displays video results by pages of five results and
allows adding up to five videos to a video playl-
ist. Each time a video is added to the playlist, a
notification message is displayed at the top right

Figure 49. Implementing the brighten and dim interaction pattern by using the JavaFX™ Stage class

175

UI Patterns Support on RIAs Development

of the GUI. Notification messages are removed
after five seconds; however, they are faded away
every second in order to distinguish between new
and old messages. The aforementioned behavior
is implemented by using the JavaFX™ Timeline
class and the inherited setOpacity() method of the
HBox class, which specifies how solid or trans-
parent a node appears by using a value between 0
and 1. In addition, a snippet of the corresponding
source code is depicted in Figure 51.

Animation

Unlike Flex, JavaFX™ does not include controls
with built-in support for the drag-and-drop gesture.
Thus, JavaFX™ developers must implement the
drag-and-drop gesture by hand. This task involves
not only the handling of the events related but also
the implementation of the drop animation, i.e., the
change in the appearance of the target control to
provide a hint to the user where the data can be
dropped. In this sense, the source control must at

least implement a handler for the MouseEvent.
DRAG_DETECTED event in order to start the
drag-and-drop gesture by calling to the startDra-
gAndDrop() method inherited from the Node class.
A handler for the DragEvent.DRAG_OVER event
must be implemented to specify which control
accepts the data, because after the drag-and-drop
operation is started, any control that the mouse is
dragged over is a potential target to drop the data.
In addition, the target control must implement a
handler for the DragEvent.DRAG_DROPPED
event, which is triggered when the mouse button
is released on the gesture target; this handler must
complete the drag-and-drop gesture by calling the
setDropCompleted() method. Figure 52 depicts
the implementation of the drag-and-drop gesture
in a sample application that allows users to drag
and drop YouTube™ video items between two
video lists. Each video item comprises a JavaFX™
ImageView control showing a thumbnail of the
video. The video lists are implemented by using
the JavaFX™ TableView control. The sample ap-

Figure 50. Implementing the spotlight interaction pattern by using the JavaFX™ Timeline class

176

UI Patterns Support on RIAs Development

Figure 51. Snippet of the JavaFX™-based source code used for implementing the spotlight interaction
design pattern

Figure 52. Implementing the drop animation interaction pattern in a JavaFX™ TableView control

177

UI Patterns Support on RIAs Development

plication implements a drop animation by changing
the border color of the target table and moving
over the GUI a snapshot of the video thumbnail
is being dragged. The snapshot is positioned
over the GUI by using the x and y properties of
the DragEvent class as the ImageView control is
dragged. It is important to notice that, JavaFX™
2.2 has no support for custom drag and drop cur-
sors on Windows.

3.3. UI Patterns in Silverlight™

Expand/Collapse

Unlike Flex and JavaFX™, Silverlight™ has no
native support for the expand/collapse interaction
pattern, i.e., it has no a native accordion control.
Nevertheless, there is an accordion control as
part of the Silverlight™ Standard Development
Kit (SDK), which is released by the Silverlight™
Toolkit open source project. This Accordion class
inherits from the Windows™ ItemsControl class;
therefore, it can be used to present a collection of
items. In fact, the Silverlight™ Toolkit Accordion
control consists of a set of collapsible panels where
each panel is actually an AccordionItem control.
The title of each AccordionItem control is settled
through the Header property whereas the content
is settled by using the Content property. The ele-
ments to be displayed in an accordion panel can
either be added as direct children or be added by
using templates. In this sense, the Silverlight™
Toolkit Accordion control exposes a HeaderTem-
plate property and a ContentTemplate property,
which are commonly used when a data binding
operation is involved, and they allows setting the
AccordionItem Header and Content properties,
respectively. Unlike Flex and JavaFX™ Accordion
controls, if the items added to a Silverlight™
Toolkit Accordion control are not of type Accor-
dionItem, they are wrapped inside AccordionItem
controls at runtime. Furthermore, the Silverlight™
Toolkit Accordion control allows expanding more
than one panel at a time by properly setting the Se-

lectionMode property; this non-standard behavior
can be useful in specific cases. In addition, this
control can display its panels using a horizontal
layout besides the typical vertical layout. Figure
53 depicts the use of the Silverlight™ Toolkit
Accordion control in the implementation of the
expand/collapse interaction pattern.

Progress Indication

A Silverlight™ application can implement the
progress indicator interaction pattern either by
using the Silverlight™ native ProgressBar control
or by using the Silverlight™ Toolkit BusyIndica-
tor control. As Flex and JavaFX™ ProgressBar
controls, the Silverlight™ ProgressBar control
can be used as a bar that fills based on a value
(determinate) or as a bar that displays a repeating
pattern (indeterminate) by setting a value to the
IsInDeterminate property. The indeterminate style
is useful as a replacement of the busy indicator
control, which is the control used in this chapter
as a means to implement the progress indicator
interaction pattern. The BusyIndicator control, on
the other hand, is used as a wrapper control for
the content that causes the application enters a
busy state. By doing this, the content is disabled
while the busy indicator is shown; a visual effect
aimed at completing the feedback to be provided
to users is also applied to the disabled content.
The implementation of the progress indicator in-
teraction pattern by using the Silverlight™ Toolkit
BusyIndicator control is depicted in Figure 54.

Brighten and Dim

Besides the support for JavaScript alert pop-up
boxes, Silverlight™ provides two different na-
tive controls that developers can use in order to
implement custom pop-up boxes: PopUp and
ChildWindow controls. The Silverlight™ PopUp
control is commonly used to temporary display
additional content like help information; it is
positioned on top of an existing Silverlight™

178

UI Patterns Support on RIAs Development

control, i.e., within the bounds of another control.
The content of the Silverlight™ PopUp control
is settled using its Child property; it can accept
a set of controls grouped in a container like a
Silverlight™ Group control. The Silverlight™
ChildWindow control, on the other hand, provides
a window that is displayed over a parent window
as a modal pop-up, i.e., a child window that blocks
interaction with the parent window. This control
does not only dim the parent window like the
Flex SkinnablePopUpContainer container, but
actually comprises a dimmed overlay that cov-
ers the parent window. Furthermore, unlike the
Silverlight™ PopUp control, the Silverlight™
ChildWindow control comprises decorations, i.e.,
a title bar including a close button. Therefore, in
cases where the implementation of a modal pop-up
box is required, the ChildWindow control seems
to be the most suitable choice. In addition, this
control let developers implement the brighten and
dim interaction pattern saving time and effort as
is depicted in Figure 55.

Animation

Silverlight™ has no native controls with built-in
support for the drag-and-drop gesture. Never-
theless, there is a series of Silverlight™ Toolkit
wrapper controls that add default drag-and-drop
functionality to the controls nested inside of them:
TreeViewDragDropTarget, ListBoxDragDropTar-
get and DataGridDragDropTarget. In fact, there
is almost one Silverlight™ Toolkit DragDropTar-
get control for each Silverlight™ native control
aimed at displaying data. A Silverlight™ Toolkit
DragDropTarget control automatically initiates a
drag-and-drop operation when an item is dragged
over it. Furthermore, when an item is dropped onto
a Silverlight™ Toolkit DragDropTarget control,
it is automatically added to the control nested
inside of the DragDropTarget control. Although
a Silverlight™ Toolkit DragDropTarget control
automatically displays a snapshot of the item
while is being dragged, a custom drop animation
can be implemented by hand. In this sense, with

Figure 53. Implementing the expand/collapse interaction pattern by using the Silverlight™ Toolkit Ac-
cordion control

179

UI Patterns Support on RIAs Development

Figure 54. Implementing the progress indicator interaction pattern by using the Silverlight™ Toolkit
BusyIndicator control

Figure 55. Implementing the brighten and dim interaction pattern by using the Silverlight™ ChildWin-
dow control

180

UI Patterns Support on RIAs Development

the aim of indicating that a control can or cannot
accept a drop operation, its AllowDrop property
must be properly settled. Figure 8.56 depicts the
implementation of the drag-and-drop gesture in the
sample application that allows users to drag and
drop YouTube™ video items between two video
lists. Each video list is implemented by using a
Silverlight™ DataGrid control wrapped inside a
Silverlight™ Toolkit DataGridDragDropTarget
control. This sample application complements
the drop animation provided by the Silverlight™
Toolkit DataGridDragDropTarget control by
changing the border color of the target Silver-
light™ DataGrid control. In addition, a snippet
of the corresponding source code is depicted in
Figure 57.

Auto Complete

The auto complete interaction pattern is probably
the most largely used interaction pattern. Search
engines like Google™ and Bing™ use this interac-
tion pattern to provide lists of suggestions users can

choose from without having to finish typing search
keywords. The Silverlight™ SDK has an Auto-
CompleteBox control that uses an items collection
to generate a list of suggestions to be displayed in
a drop-down list. Unlike other similar controls like
the combo box, the auto-complete box filters the
list of suggestions on the fly as the user types into
its text box area. In this sense, the Silverlight™
Toolkit AutoCompleteBox uses a “starts with”
filter pattern by default; however, it defines other
alternative patterns such as “contains” or “equals”.
The filter function to be used is settled through
the FilterMode property. Furthermore, this control
exposes an IsTextCompletionEnabled property,
which allows the control to automatically display in
the text box the first possible match as is achieved
by the Google™ auto-complete box. Finally, the
Silverlight™ Toolkit AutoCompleteBox control
can display not only text strings as suggestions but
also complex items composed of images and text
strings, for example. For that purpose, the Item-
Template property must be settled to a container
like the Silverlight™ StackPanel control. Figure

Figure 56. Implementing the drop animation interaction pattern by using the Silverlight™ Toolkit Da-
taGridDragDropTarget control

181

UI Patterns Support on RIAs Development

Figure 57. Snippet of the Silverlight™-based source code used for implementing the drop animation
interaction design pattern

Figure 58. Implementing the auto complete interaction pattern by using the Silverlight™ Toolkit Auto-
CompleteBox control

182

UI Patterns Support on RIAs Development

58 depicts the use of the Silverlight™ Toolkit
AutoCompleteBox control in the implementation
of a Last.fm™-based search engine. In addition,
a snippet of the corresponding source code is
depicted in Figure 59.

3.4. UI Patterns in OpenLaszlo™

Expand/Collapse

OpenLaszlo has a GUI component called tabslider
which implements the expand/collapse interac-
tion pattern; it is actually a container because it
is used to arrange child components as sequences
of tab panes.

These tab panes are defined by using the tabele-
ment class, a kind of view that can be opened and
closed under the coordination of a parent tabslider
and it comprises basically a content area and a title
area. The tabslider component allows customizing
the sliding animation implemented by default in
terms of the desired duration; for that purpose,
the slideduration property inherited from the
basetabslider class must be properly settled. The
title of a tabelement object is settled by using the
text property inherited from the basecomponent
class. Finally, it is important to notice that the
OpenLaszlo tabslider component is similar to
the JavaFX™ Accordion component in the sense
that both accept only one kind of object as direct
child. Figure 60 depicts the use of the OpenLaszlo
tabslider container on implementing the on-line

curriculum vitae application previously addressed
in this chapter. In addition, a snippet of the cor-
responding source code is depicted in Figure 61.

Brighten and Dim

OpenLaszlo has an extensive window classes hier-
archy starting with a base class which is extended
by a class called windowpanel that provides com-
mon behavior for various window-like classes and
it represents a fully-decorated (title bar and close
button) draggable panel. At the third hierarchy
level, the functionality provided by the window-
panel class is extended by a class called window
specifically by means of the resizable capability; in
addition, there is a class called modaldialog which
includes built-in support for modal pop-up win-
dows. At the end of the window classes hierarchy,
the functionality provided by the modaldialog class
is extended by a class called alert which allows
displaying modal alert dialog boxes, i.e., modal
pop-up dialog boxes displaying text messages
(alert messages) and confirmation buttons only.
According to the above, the modaldialog class
seems to be the most suitable way to implement
custom modal pop-ups. In this sense, unlike the
Flex SkinnablePopUpContainer container, the
OpenLaszlo modaldialog class can be declared
as part of the code of its parent container; in fact,
it is typically instantiated inside the top-most
view in an OpenLaszlo application, the canvas
container. Additionally, it is important to notice

Figure 59. Snippet of the Silverlight™-based source code used for implementing the auto complete
interaction design pattern

183

UI Patterns Support on RIAs Development

that, unlike the Flex SkinablePopUpContainer
container and the Silverlight™ ChildWindow
component, the OpenLaszlo modaldialog class
does not have the functionality to automatically

dim the parent container (background) of a modal
pop-up window. Therefore, the bgcolor (back-
ground color) and opacity properties inherited
from the OpenLaszlo view class can be used

Figure 60. Implementing the expand/collapse interaction pattern by using the OpenLaszlo tabslider
container

Figure 61. Snippet of the OpenLaszlo-based source code used for implementing the expand/collapse
interaction design pattern

184

UI Patterns Support on RIAs Development

for this purpose. In this sense, the OpenLaszlo
view class is the base class for anything that is
displayed on the canvas container. Figure 62 de-
picts a screenshot of an OpenLaszlo application
that uses the modaldialog class for displaying a
modal pop-up dialog box including a full-size
image of the thumbnail selected from a grid. In
addition, a snippet of the corresponding source
code is depicted in Figure 8.63.

Animation

As usual among non-JavaScript based RIA frame-
works, OpenLaszlo has no native controls with
built-in support for the drag-and-drop gesture.
However, it provides a utility class called drag-
state which extends the state class and it is similar
to the Silverlight™ Toolkit XDragDropTarget
controls in the sense that it can be used to make

Figure 62. Implementing the brighten and dim interaction pattern by using the OpenLaszlo modaldialog
class

Figure 63. Snippet of the OpenLaszlo-based source code used for implementing the brighten and dim
interaction design pattern

185

UI Patterns Support on RIAs Development

the view where it is nested draggable. In fact, the
dragstate class is used to add standard dragging
behavior to any view; this requires the handle of
the mousedown and mouseup mouse events over
the element is being dragged (the parent view) in
order to activate and deactivate the dragging state.
Nevertheless, this standard functionality does not
involve the definition of both a drag source and a
drop target as opposed to the implementation of
manual support for the drag-and-drop operation
in Adobe™ Flex. A complex scenario requiring
the abstraction of drag sources and drop targets
on an OpenLaszlo application may suppose more
development time and effort especially if the
elements to be manipulated are customized GUI
controls such as the rows of a grid control which
can contain virtually any other GUI control. In this
sense, there are some third-party libraries built
on top of the dragstate class, which are available
at the official OpenLaszlo forum (http://forum.
openlaszlo.org) and they support different GUI
controls such as lists and grids. In this chapter,
a library extending the grid calss is used to de-
velop a sample application that allows dragging
rows comprising text and images between two
different grids; this library is available at http://
forum.openlaszlo.org/showthread.php?t=5707.
The aforementioned library allows displaying
a snapshot of the grid row is being dragged; in
fact, it creates a copy of each of the elements
composing the row and it properly positions them
over the parent view by capturing the position of
the mouse in terms of the x and y coordinates.
Nevertheless, it only supports text so that the
functionality aimed at rendering images must
be manually added. Finally, it should be noticed
that this library implements the drop animation
interaction pattern by using icons indicating that
the intended drop target is an invalid drop target.
Figure 64 depicts the implementation of the drag-
and-drop gesture in the sample application that
allows users to drag and drop YouTube™ video
items between two video grids.

Live Preview

In the context of client-side form validation,
the live preview interaction pattern represents
a distinctive feature of RIAs because it involves
client-side data computation which is commonly
considered one of the four standard features of
RIAs (Toffetti et al., 2011). In this sense, Open-
Laszlo does not have validation components as
part of its core but as part of the incubator classes
package, i.e., a set of classes that have been not
fully integrated into the product although they
have been contributed to the OpenLaszlo project.
In fact, as part of the distribution of OpenLaszlo
version 4.9.0, a set of validation classes are in-
cluded within the incubator directory. In detail,
the OpenLaszlo validation classes include four
predefined validators: string validator, number
validator, e-mail validator and date validator as
well as a base validation class that can be extended
in order to implement customized validators by
means of the iserror and errorstring properties. In
their basic form, the OpenLaszlo validators can be
used to make fields required by using the required
and requiredErrorstring properties inherited
from the basevalidator class. Furthermore, the
numbervalidator class, for instance, can be used
to enforce a value type either integer or real as
well as a minimum and a maximum value; in this
sense, it exposes a domain, minvalue and maxvalue
properties as well as four error message properties.
It is important to notice that only the minvalue
and maxvalue properties must be properly settled
in order to use this number validator because the
other properties have default values. Finally, it
should be noticed that all the OpenLaszlo valida-
tors display error and success icons in addition to
the aforementioned error messages; both feedback
indicators can be customized. Figure 65 depicts the
use of the OpenLaszlo numbervalidator class on
implementing the live preview interaction pattern
in the context of ZIP code validation.

186

UI Patterns Support on RIAs Development

Figure 64. Implementing the drop animation interaction pattern by using a third-party library built on
top of the OpenLaszlo dragstate class

Figure 65. Implementing the live preview interaction pattern by using the OpenLaszlo numbervalidator
class

187

UI Patterns Support on RIAs Development

3.5. Comparison

Table 2 summarizes a comparison of the support
for implementing interaction patterns among non-
JavaScript-based RIA frameworks. It is important
to notice that this comparison is based on the
analysis performed in this chapter; therefore, it
only covers the Flex, JavaFX™ and Silverlight™
frameworks as well as the eight interaction patterns
outlined at the beginning of this chapter.

It is important to notice that some interaction
patterns, namely spotlight, live preview and pe-
riodic refresh, are not related to a specific GUI
control, i.e., they can be implemented in a variety
of ways. Therefore, the support for these interaction
patterns does not depend on a particular framework
capability. Moreover, there are other interaction
patterns, namely animation and auto-complete,
that can be implemented more easily by using
non-native controls instead of native controls.
This is the reason behind the decision to analyze
non-native controls.

4. CONCLUSION

As it was explained thought this chapter, for the
interaction design patterns that are not closely
related to a particular GUI control or set of GUI
controls, there is no only one way to implement
them. In fact, the design patterns analyzed in
this chapter provide generic solutions to com-
mon interaction problems in the context of user
tasks where the solutions provided are high-level
abstractions, i.e., solutions not at design level but
at implementation level.

According to the above, the implementations
addressed in this chapter are the most suitable
implementations for practical purposes and they
are certainly neither the only ones nor the most
optimal. At the same time, these implementations
are intended to serve as a comparative analysis of
the capabilities of the RIA frameworks covered
in this chapter mainly in terms of the GUI com-
ponents and containers provided.

Due to the nature of JavaScript-based RIA
frameworks, many different third-party implemen-
tations for a feature that is not natively included

Table 2. Support for interaction patterns into non-JavaScript-based RIA frameworks

Framework Transitional Patterns Lookup Patterns Feedback Patterns

Flex Brighten and Dim
Expand/Collapse
Animation
Spotlight

Auto Complete (no native) Live Preview
Progress Indicator
Periodic Refresh

JavaFX™ Brighten and Dim
Expand/Collapse
Animation
Spotlight

Unknown Live Preview
Progress Indicator
Periodic Refresh

Silverlight™ Brighten and Dim
Expand/Collapse (no native)
Animation (no native)
Spotlight

Auto Complete (no native) Live Preview
Progress Indicator
Periodic Refresh

OpenLaszlo Brighten and Dim
Expand/Collapse
Animation
Spotlight

Auto Complete (incubator
classes)

Live Preview (incubator
classes)
Periodic Refresh

188

UI Patterns Support on RIAs Development

into its core can be found over Internet. This also
applies to design principles and best practices like
interaction design patterns; therefore, the sample
applications presented throughout the first part of
this chapter are primarily intended to exemplify
the wide range of possibilities in this regard.

In the specific case of the non-JavaScript-based
RIA frameworks, the interaction patterns analyzed
in this chapter are implemented as part of common
Web 2.0 scenarios; this contextualization allows
developers to understand the associations between
the three stages of the RIAs design task, which are
outlined at the beginning of this chapter.

REFERENCES

Neil, T. (2009). Designing Rich Applications.
Slideshare Website. Retrieved May 28, 2012, from
http://www.slideshare.net/theresaneil/designing-
rich-applications

Raymond, S., & Pereira, S. (2006). Prototype
Quick Reference. O’Reilly Media, Inc.

Toffetti, G., Comai, S., Preciado, J. C., & Linaje,
M. (2011). State-of-the Art and trends in the Sys-
tematic Development of Rich Internet Applica-
tions. Journal of Web Engineering, 10(1), 70–86.

ADDITIONAL READING

A Pattern Library for Interaction Design. (n.d.).
Patterns in Interaction Design. Retrieved May
25, 2013, from http://www.welie.com/patterns/
index.php

Mahemoff, M. (2006). Ajax Design Patterns.
O’Reilly Media.

Neil, T. (n.d.). RIA Screen Layouts. Technology.
Retrieved from http://www.slideshare.net/there-
saneil/ria-screen-layouts

Tidwell, J. (2011). Designing Interfaces (2nd ed.).
O’Reilly Media.

User Interface Design Patterns. (n.d.). UI Patterns
Library. Retrieved May 25, 2013, from http://
ui-patterns.com/

Yahoo Design Pattern Library. (n.d.). Yahoo! De-
veloper Network. Retrieved May 25, 2013, from
http://developer.yahoo.com/ypatterns/

KEY TERMS AND DEFINITIONS

Cascading Style Sheet (CSS): A style sheet
language used for describing the look and format-
ting of a document written in a markup language.
While most often used to style web pages and in-
terfaces which are written in HTML and XHTML,
the language can be applied to any kind of XML
document, including plain XML, SVG and XUL.

Graphic User Interface (GUI): A part of the
system software that acts as a user interface, i.e.
it provides a mechanism for the user to interact
with a software, these mechanisms can be text,
images and other graphics.

Hypertext Markup Language (HTML):
Markup language for developing Web pages. It is a
standard that is the reference for the development
of Web pages in different versions, it defines a
basic structure and a code (HTML code).

Image Gallery: A representation of images,
which can present in various formats and styles,
in this case is handled in the context of Web ap-
plications development.

Lightbox: A UI Pattern, and is a technique that
shows a modal dialog and allows to focus on the
dialogue itself as the most representative feature
is that obscure the rest of screen and being able
to focus the user’s attention on a particular task.

User Interface Design Pattern: UI design
patterns are solutions to common user interface
problems.

Web 2.0: Web applications that allow to share
information, interoperability, user-centered design
and the collaboration with the World Wide Web.

http://www.slideshare.net/theresaneil/designing-rich-applications
http://www.slideshare.net/theresaneil/designing-rich-applications
http://www.welie.com/patterns/index.php
http://www.welie.com/patterns/index.php
http://www.slideshare.net/theresaneil/ria-screen-layouts
http://www.slideshare.net/theresaneil/ria-screen-layouts
http://ui-patterns.com/
http://ui-patterns.com/
http://developer.yahoo.com/ypatterns/

189

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-4666-6437-1.ch009

Case Studies Using JavaScript-
Based Frameworks

ABSTRACT

In development of thin-client applications, it is a common practice to use server-side technologies in order
to create data and business logic back-ends and client side-technologies to create lightweight HyperText
Markup Language (HTML)-based front-ends. In the development of Web 2.0 applications, the data and
business logic back-ends are typically built on top of third-party Web services. In this context, Simple
Object Access Protocol (SOAP) has been traditionally used as the standard communication protocol for
eXtensible Markup Language (XML)-based Web services. This chapter presents a review of the support
for invoking SOAP-based Web services using Java; then, it discusses the development, using jQuery,
Prototype, Dojo, and Java Server Pages (JSP), of different thin-client applications based on third-party
SOAP Web services by means of a series of case studies to exemplify the use of some User Interface (UI)
patterns for accomplishing rich design principles such as stay on the page and use transitions.

1. INTRODUCTION

Case studies are very important to present real
and practical applications about a particular topic.
RIAs (Rich Internet Applications) are taking a
more important role on Web development, since
enterprises are concerned about improving their
Web applications to be accessible and have a good
presentation. There are several technologies for
developing RIAs, such as AdobeTM FlexTM or Mi-
crosoftTM SilverlightTM to mention but a few, but
they represent a high cost of development by having
to pay expensive development licenses or purchas-
ing their expensive development suites. Usually,

users cannot afford these high costs; because the
best option is to use open source alternatives,
and, in the RIAs development, JavaScript-based
frameworks are the best solution.

It is very important for a developer to increase
the development options; and JavaScript could be
a formidable option, since it reduces both costs
and learning curve. There are different JavaScript-
based frameworks such as Dojo, jQuery, Mootools,
Qooxdoo, Prototype, Rico, SenchaTM ExtJSTM, X-
Library, GWT (Google Web Toolkit™), Cappuc-
cino, SproutCore, Spry, midori and YUI Library,
among others. This chapter presents four different
applications developed by using JavaScript-based

190

Case Studies Using JavaScript-Based Frameworks

technology. The JavaScript-based frameworks
used for the development of these applications are
jQuery, Prototype and Dojo. These frameworks
were selected according to 1) their usefulness
for developing JavaScript-based applications in
particular and 2) the ability to use two frameworks
at once without causing development problems
between them. The case studies using JavaScript-
based frameworks include different important fac-
tors about RIAs development, such as multimedia
support, AOP (Aspect Oriented Programming)
support, design patterns support, and UI (User
Interface) patterns support.

Applications developed in this chapter were
chosen because they enable to easily illustrate the
use and features of the JavaScript-based frame-
works, as well as the characteristics of RIAs, such
as avoiding page changes and keeping the focus
on the main screen, among some others.

The RIAs developed were:

1. A world atlas that is a system for displaying
information about all countries in the world.
This application uses multimedia support
for displaying related videos and improving
the user experience. It also permits loading
information on the same Web page. This ap-
plication exemplifies the use of UI patterns,
specifically interaction patterns, through the
use of elements such as progress indicator.

2. A document indexing system enabling to
search and display results in just one inter-
face. This application provides information
about indexed files showing elements such as
a tag cloud and a reputation system in order
to exemplify the UI patterns implementation.

3. An e-procurement system of medical sup-
plies implemented in a hospital. This applica-
tion searches for medical supplies of different
US (United States) providers. For doing
this task, the main interface was designed
to show results within a LightBox element
in order to avoid page changes and keep the
user’s attention on the same interface. Also,

auto complete and accordion elements were
included to show the UI patterns support.

4. A meta-search engine that represents a
search engine showing results in the same
input interface. The carrousel element was
used to exemplify the implementation of
UI patterns and an example of the use and
implementation of AOP support is presented.

The chapter presents a brief state-of-the-art
analysis of each sample application. The analysis
is aimed at emphasizing the distinguishing features
of the applications developed.

2. DEVELOPING SOAP WEB
SERVICES-BASED APPLICATIONS

SOAP (Simple Object Access Protocol) is a simple
and lightweight mechanism for exchanging struc-
tured and typed information between peers in a
decentralized and distributed environment using
XML (eXtensible Markup Language). It consists
of three parts:

1. The SOAP envelope construct defines an
overall framework for expressing what is in
a message, who should deal with the mes-
sage, and weather the message is optional
or mandatory.

2. The SOAP encoding rules define a serializa-
tion mechanism that can be used to exchange
instances of application-defined data types.

3. The SOAP RPC (Remote Procedure Call)
representation defines a convention that can
be used to represent remote procedure calls
and responses.

SOAP messages are fundamentally one-way
transmissions from a sender to a receiver; however,
they are often combined in order to implement
patterns such as request/response. According to
the above, SOAP messages can take advantage of
the well-known connection model and message

191

Case Studies Using JavaScript-Based Frameworks

exchange pattern defined by HTTP in such a way
that a correlation between a SOAP message sent
in the body of an HTTP request message and a
SOAP message returned in the corresponding
HTTP response can be inferred.

A SOAP message is an XML-based document
that consists of a mandatory SOAP envelope, an
optional SOAP header, and a mandatory SOAP
body. The header is a generic mechanism for add-
ing features to a SOAP message in a decentralized
manner without prior agreement between the
communicating parts. The body is a container for
mandatory information intended for the ultimate
recipient of the message.

Thus, the information that can be added to
the body of a SOAP message is regulated by
another kind of XML-based document: a WSDL
(Web Services Description Language) document.
WSDL is an XML-based format specifying a
grammar for describing services as a set of net-
work endpoints operating on messages containing
either document-oriented or procedure-oriented
information. A WSDL document defines services
as collections of network endpoints known as
ports; a single port is defined as the combination
of a network address and a concrete protocol and
data format specification for a particular port
type; a porttype is defined as an abstract set of
operations supported by one or more end points;
an operation is defined as an abstract description
of a an action supported by the service in terms of
messages; and a message is defined as an abstract
definition of the data being communicated. The
aforementioned concepts actually correspond to
elements in a WSDL document.

In the context of developing SOAP Web
services-based applications, it is a mandatory
requirement to resolve the URL of the WSDL
document describing the intended Web service.
Once the URL is resolved, the operations of
interest can be determined. Then, the input and
output parameters can be identified by means of
their names and data types. Basically, these are

the early steps in developing SOAP Web services-
based applications.

2.1. Invoking SOAP-Based Web
Services Using JavaScript-
Based RIA Frameworks

In the development of thin-client applications, it is
a common practice to use server-side technologies,
such as PHP (PHP Hypertext Preprocessor), JSP
(Java Server Pages) and ASP.NETTM, in order to
create data and business logic back-end and client
side-technologies like JavaScript to create light-
weight HTML-based front-ends. In this chapter,
three case studies addressing the development of
thin client applications based on JSP, HTML and
JavaScript are presented. These applications take
advantage of public SOAP-based Web services;
thereby, they can be viewed as SOAP-based Web
service clients.

Since the applications discussed in this chapter
are thin client applications, Web services invoca-
tions should occur at server-side. Table 1 summa-
rizes different options for developing SOAP-based
Web service clients in Java. These options include
both high-level solutions – such as built-in APIs
and third-party frameworks implementing these
APIs – and low-level solutions, such as Java core
networking classes. It is important to notice that,
this chapter does not consider another approach
related to the use of command line tools for au-
tomatically generating Web services client stubs.

In the case of thick-client applications com-
prising HTML/JavaScript-based front-ends,
SOAP-based Web services can be called by us-
ing the JavaScript XMLHttpRequest object. This
means that Web services invocations are treated
as asynchronous HTTP requests, which rules
out the possibility that other transport protocol,
such as SMTP (Simple Mail Transfer Protocol)
and XMPP (eXtensible Messaging and Presence
Protocol) could be used. In fact, the JavaScript
XMLHttpRequest object is used to send HTTP and

192

Case Studies Using JavaScript-Based Frameworks

Table 1. Options for developing SOAP-based Web service clients in Java

API/Framework/Class Description Packages Transport Protocol SOAP Version

JAX-WS It is a technology
for building Web
services and clients
that communicate
using XML. JAX-WS
implements support for
both message-oriented
and RPC-oriented Web
services. It is part of the
Java EE (Java Platform
Enterprise Edition)
platform.

javax.xml.ws
javax.xml.ws.handler
javax.xml.ws.handler.
soap
javax.xml.ws.http
javax.xml.ws.soap
javax.xml.ws.spi
javax.xml.ws.spi.http
javax.xml.
ws.wsaddressing

HTTP, JMS (Java
Message Service), IN-
VM (Virtual Machine),
TCP (Transmission
Control Protocol) and
other via the JAX-
WS commons project
(SMTP, Grizzly and
custom).

1.1 and 1.2

JAX-RS It is a Java API
(Application
Programming Interface)
that provides support for
creating Web services
according to the REST
(Representational State
Transfer) architectural
style. JAX-RS
implements support
for Java annotations,
and this makes it easy
for developers to build
RESTful Web services.
JAX-RS is part of the
Java EE platform.

javax.ws.rs
javax.ws.rs.client
javax-ws.rs.container
javax.ws.rs.core
javax.ws.rs.ext

HTTP -

Apache Axis2/Java It is the Java
implementation of
the Apache Axis2™
Web services/SOAP/
WSDL engine. It allows
developers to create,
deploy, and run Web
services.

See API documentation
online

HTTP and others via
Axis2 Transports: JMS,
SMTP, POP3 (Post
Office Protocol 3), TCP,
SMS (Short Message
Service), UDP (User
Datagram Protocol),
XMPP

1.1 and 1.2

Apache CXF™ It is an open-source Web
services framework that
allows developers to
build and develop Web
services using a variety
of message protocols,
such as SOAP, XML/
HTTP, RESTful HTTP,
and CORBA (Common
Object Request Broker
Architecture).

See API documentation
online

HTTP, JMS, IN-VM
(local), UDP, custom
and others via Camel
transport for CXF
(SMTP/POP3, TCP and
XMPP)

1.1 and 1.2

HttpURLConnection It represents a
communication
link between a Java
application and a URL
with support for HTTP-
specific features.

java.net - -

193

Case Studies Using JavaScript-Based Frameworks

HTTPS (HyperText Transport Protocol Secure)
requests to Web servers behind the scenes. In the
context of JavaScript-based frameworks, this task
can be done by using functions that encapsulate
the XMLHttpRequest such as the ajax() function
in the case of jQuery, the Ajax.Request object in
the case of Prototype and the dojo/request/xhr
function in the case of Dojo.

The JAX-WS API, as a part of the Java EE SDK
(Software Development Kit), does not provide
support for the extra transport protocols mentioned
in Table 1. In fact, the implementations for these
transport protocols are part of an open source
services stack called Metro. More specifically,
they are part of the JAX-WS commons project.
Metro is part of the Glassfish project; neverthe-
less, it can be used with other application servers
or servlet containers such as Apache Tomcat™.

Apache Axis2/Java is an implementation of
the JAX-WS API, whereas Apache CXF™ is an
implementation of both the JAX-WS and JAX-
RS APIs. Hence, SOAP-based Web services can
be created by adopting any of these high-level
approaches. This also applies for RESTful Web
services because of the WSDL 2.0 HTTP Binding
specification. WSDL 2.0 HTTP Binding defines
a way to implement REST with Web services and
it is implemented by Apache Axis2/Java.

An own implementation based on core net-
working classes – such as the HTTPURLCon-
nection class and other classes related to system

input and output through data streams – involves
creating the entire SOAP messages, either as hand-
coded string variables or by using an API for XML
parsing and validation such as JAXP (Java API for
XML Processing) and JDOM. The use of an API
for XML parsing must be also required in order
to process the responses from the Web services.

3. DEVELOPING A WORLD ATLAS

A world atlas is a great collection of maps, and as
an application, it is a useful tool which displays
information from different countries. A world
atlas can display information ranging from same
maps, currency, language, and even flags. It can
also include additional information such as videos.

Figures 1 and 2 describe the main user inter-
faces of the world atlas developed in this case
study. Unlike other world atlas applications
publicly available on the Internet, the application
developed in this case study integrates videos as
additional media resources. The videos contain
valuable information about locations visualized
on maps. Free video searches are also possible
because the application provides independent
video search functionality.

There are some similar applications to the
world atlas developed in this chapter. Similar
applications include websites and mobile applica-
tions available on online digital application stores

Figure 1. Initial user interface to world atlas application

194

Case Studies Using JavaScript-Based Frameworks

such as Google Play™ store, iTunes StoreTM and
WindowsTM MarketPlace. Table 2 summarizes
the features of the most representative applica-
tions according to ratings given by users in the
aforementioned application stores.

In Figure 1, the two first squares contain
information while the rest of interface is empty.
It is only filled out when the information to be
displayed is required.

This application is structured as follows:

1. Section 1 represents the option to select a
continent. The values allowed are: Africa,
Antarctica, Asia, Europe, Oceania, and The
Americas. These values are retrieved from the
Web Service CountryInfoService (Country
Info Service, 2013) available at http://web-
services.oorsprong.org/websamples.coun-

tryinfo/CountryInfoService.wso?WSDL by
using the property ListOfContinentsByName.
This section provides a list of continents and
the periodic refresh interaction pattern is
used as a means for updating the information
requested. Once a change in the input infor-
mation has happened, an automatic update
is done in the list of countries of section 2
with the information coming from section
1.

2. Section 2 contains a list of countries that ap-
pears after choosing the continent in section
1. If a country is selected, then the relevant
information about that country is displayed
on sections 3, 4, and 5 as shown in Figure 2.
If a change in the countries list in section 2
has occurred, automatic updates are carried
out in sections 3, 4 and 5.

Figure 2. General user interface for displaying information, which presents the maps and the multimedia
support, to mention a few

http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL

195

Case Studies Using JavaScript-Based Frameworks

3. Section 3 displays information related to the
selected country of section 2. This informa-
tion includes flag, language, currency, and
the capital city of the country.

4. Section 4 shows the map of the selected
country (however, these maps are different
versions provided by Google Maps™ API
(Application Programming Interface) such
as hybrid and satellite, to mention but a few
(Google Developers–GoogleMaps, 2013)).

5. Section 5 presents a list of related videos for
a selected country obtained from YouTubeTM
(Google Developers–Youtube, 2013). In this
section, the expand/collapse interaction pat-
tern is implemented, since the video player is
displayed when a particular video is selected.
Additionally, the user has the ability to hide
the full video section.

All sections of the application have taken
advantage from the progress indicator interac-
tion pattern by using a progress bar element. It
must be noticed that sometimes the behavior of
the progress bar element cannot be detected due
to the loading speed of the application. For this
reason, Figure 3 depicts the behavior of the prog-
ress indicator pattern in the context of the world
atlas application.

To achieve this functionality, Web services
such as JAX-WS (Java API for XML Web Ser-
vices) are used. In this case JAX-WS version 2.2
was used. JAX-WS is included in any version of
the NetBeans™ IDE. The Web service used for
this application is CountryInfoService and it is
available at http://webservices.oorsprong.org/
websamples.countryinfo/CountryInfoService.
wso?WSDL. This Web service has methods that

Table 2. State-of-the-art analysis of World Atlas applications

Name Application Type Description Features

World Atlas
Atlas of the
World

Web application It is an educational resource
for world maps, atlases, and in-
depth geographical information.

It has a rich user interface that permits selecting the
continent to be explored directly from a world map. All
maps are based on a platform called Graphic Maps and
they are partially available to be used by third-party
applications. Among the geographical information
provided by World Atlas, there are facts, flags,
geographical statistics, travel information, weather, time
zones and geographic information such as landforms and
waterbodies.

World Atlas Native mobile
application
(AndroidTM)

It is a free and fully featured
atlas application developed
by MindbeachTM. It integrates
information from diverse
sources such as WikipediaTM,
Wikitravel™, Google Maps™,
Weather UndergoundTM, the
CIA’s (Central Intelligence
Agency’s) World Factbook, and
others.

It displays a country flag gallery organized continents
and it permits selecting the flag of the country to be
explored in a map. World Atlas provides country and
capital political maps based on the Google Maps™
mapping service. Besides geographic information, it
provides Olympics data and a quiz application. It must
be mentioned that this application is considered to be a
hybrid mobile application, since the information from
sources such as WikipediaTM and Wikitravel™ is displayed
by embedding the corresponding Web pages from these
Websites into a native mobile container.

National
Geographic
Word Atlas

Native mobile
application (AppleTM
iOS)

It is a high-resolution atlas
application developed by
National Geographic Society.
National GeographicTM World
Atlas is optimized for Retina
Display-based iPhoneTM and
iPadTM devices.

It displays an interactive 3-D globe that permits selecting
the country to be explored. Maps provided by National
GeographicTM’s World Atlas are based on the MicrosoftTM
Bing™ Maps platform. Unlike other world atlas
applications, this application integrates distance and travel
time measurement tools. Moreover, it provides a drag-
and-drop pin functionality that enables users to place spot
markers and save them in the cloud.

http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL

196

Case Studies Using JavaScript-Based Frameworks

Figure 3. User interface displaying a progress bar element when a list of countries is displayed by
selecting a continent

Table 3. Web Service description of CountryInfoService

Operation Description

ListOfContinentsByName Returns a list of continents ordered by name

ListOfContinentsByCode Returns a list of continents ordered by code

ListOfCurrenciesByName Returns a list of currencies ordered by name

ListOfCurrenciesByCode Returns a list of currencies ordered by code

CurrencyName Returns the name of the currency

ListOfCountryNamesByCode Returns a list of all stored countries ordered by ISO (International Organization for
Standarization) code

ListOfCountryNamesByName Returns a list of all stored countries ordered by country name

ListOfCountryNamesGroupedByContinent Returns a list of all stored countries grouped per continent

CountryName Searches the country on the database by passing the ISO country code

CountryISOCode This function tries to found a country based on the passed country name

CapitalCity Returns the name of the capital city given a country code

CountryCurrency Returns the currency ISO code and name given the country ISO code

CountryFlag Returns a link to a picture of the country flag

CountryIntPhoneCode Returns the international phone code for the past ISO country code

FullCountryInfo Returns a structure with all the stored country information given the ISO country code

FullCountryInfoAllCountries Returns an array with all countries and all the language information stored

CountriesUsingCurrency Returns a list of all countries that use the same currency code. Pass a ISO currency code

ListOfLanguagesByName Returns an array of languages ordered by name

ListOfLanguagesByCode Returns an array of languages ordered by code

LanguageName Finds a language name based on the ISO language code

LanguageISOCode Finds a language ISO code based on the language name

197

Case Studies Using JavaScript-Based Frameworks

permit performing specific functions as shown in
Table 3. Only two methods are not used in this
application. These methods are: CountryISOCode
and FullCountryInfo.

In order to use Web services, the developer
should review each operation available. This al-
lows him or her to choose the operation that best
suits the needs of the project. It must also meet
required parameters since sometimes it depends
on the choice of operation used.

This application was developed by using JSP
(Java Server Pages) and Web services. AJAX
(Asynchronous JavaScript And XML) and Proto-
type framework were used for implementing the
periodic refresh and progress indicator interac-
tion patterns. Web services were used to present
the information when necessary, since storing
the information is not required. However, the
inaccessibility of Web services may cause some
drawbacks, such as the application interruption.
A possible solution to this is the use of databases,
which store all necessary information to avoid
connection errors with Web services. A recom-
mended use of this application is the implementa-
tion of markers on the maps provided by Google
MapsTM. This increases the functionality of the
world atlas by displaying relevant information
when the marker is clicked.

4. DEVELOPING A DOCUMENT
INDEXING SYSTEM

Today search engines have become more popular
and crucial when a user is browsing the Internet.
A variety of search engines are readily available.
However, the most popular search engine is
GoogleTM, owned by Google Inc.

There are different ways of developing a
search engine system. An API that can be used
for full-text indexing and searching is Apache™
Lucene™. Lucene™ is a high-performance, full-
featured text search engine library written entirely
in Java. It is a technology suitable for nearly any

application that requires full-text search, espe-
cially cross-platform. (lucene, 2013). Lucene™
is complemented with Apache™ TIKA™, which
is a toolkit for detecting and extracting metadata
and structured text from various documents using
existing parsing libraries. The document types
supported include: HTML (HyperText Markup
Language), XML (eXtensible Markup Language),
DOC, XLS, PPT (Microsoft™ Office formats),
and PDF (Portable Document Format), among
others (Apache Tika, 2013).

Document indexing is the process by which
data stored in a document and data about the docu-
ment itself is captured with the aim of making
it searchable. There are two ways in which data
from a document is made searchable. The first is
by using full text indexing while the other way
concerns entering “data about the data” – such data
is called ‘metadata’. The first method uses OCR
(Optical Character Recognition) or text extraction
to capture text from within the document. The
second method of indexing captures details about
the document under various fields and stores this
data to help locate the document when needed.
This is done by the document indexing software
itself (sohodox.com, 2013).

The RIAs presented in this chapter integrate
a variety of elements that exemplify the use and
implementation of UI patterns. For instance, the
application developed in this case study is a docu-
ment indexing and search system that supports
DOCX, XLSX, PPTX, TXT, HTML, and PDF
file extensions. It also integrates a rating system
aimed at enabling users to indicate the usefulness
of the documents retrieved by assigning ratings.
Likewise, tag-based search functionality is also
integrated into this application so that documents
can be tagged.

Due to security and privacy concerns, file
indexing and search systems for local usage are
not available as online public Web applications
but as desktop applications. Nevertheless, there
are some online public services providing index-
ing and search functionalities for files publicly

198

Case Studies Using JavaScript-Based Frameworks

available on the Internet. The features of some
well-known file indexing and search systems,
whether Web applications or desktop applications,
are summarized in Table 4.

The user interface shown in Figure 4 is used
to find indexed files in a specific location. The
search can be performed in two different ways:
1) by entering a keyword in a text box or 2) by
clicking a concept of the word cloud. To initiate
a search, the user must index the documents by
clicking the “Indexing” option in order to index
and store documents in a folder. The user can
return to the initial interface by clicking in “OK”
button in the dialog box as shown in Figure 5.

Searches are only performed on documents
that were indexed, i.e., the index is built with
information from the documents in the indexed
folder. Figure 6 shows an interface where some
results were displayed by entering the keyword
“chapter”.

The interface presented in Figure 6 is structured
in three sections:

1. This section shows the files found from a
search. These files are presented with a file
type’s icon. When the “see” option is clicked
in a document, a lightbox-type element is
displayed with the file description. For doing
this action, a jQuery fancy box element is
used and, in this element, the information of
the selected file is displayed. To implement
this element the style sheet jquery.fancybox-
1.3.1.css is used and JavaScript files jquery.
easing and jquery.fancybox-1.3.1.pack.
js-1.3.pack.js are also used. This is shown
in Figure 7.

2. This section defines the search parameters,
in this case, the file types to be searched.

3. This section displays a cloud tag which is
implemented by using style sheets and da-

Table 4. File indexing and search systems state-of-the-art analysis

Name Application
Type

Description Supported File
Extensions

Features

DocFetcher Desktop
application

It is a free open-source
desktop search engine.
It is a multiplatform
application that runs on
WindowsTM, Linux™ and
Mac OSTM X

MicrosoftTM Office
formats, OpenOffice.org
formats PDF, TXT, RTF
(Rich Text Format), MP3,
JPG, PST and others.

DocFetcher allows for searching
documents using a Query Syntax that
supports phrase search, wildcards, fuzzy
search, and proximity search, among
other features. It also supports regex-
based expressions for indexing exclusion.
Search results can be filtered by file size,
location, and file type.

FindThatDoc Web
application

It is a free service for
searching files from the
Internet. It was developed
by Find That File LLC
(Limited Liability
Company).

47 file types and more
than 558 file extensions.
See detailed information
online.

FindThatDoc supports video, audio,
document, fonts, compressed, bittorrent,
and software file categories. In
FindThatDoc search results can be
filtered by file extension and source type,
including Web, FTP (File Transport
Protocol), direct connect, USENET, and
eMule. FindThatFile has a database of
over 300 million files.

Docjax Web
application

It is a free search engine
for documents and
e-books available on the
Internet. It was developed
by IJAX LC (Limited
Company)

PDF, DOC, XLS and PPT. Docjax allows for searching for
documents by keyword. Search results
can be filtered by file extension;
documents can be previewed and
downloaded. The preview mode is based
on a lightbox-type control. Docjax
provides top-n lists including most
viewed and most downloaded file lists.

199

Case Studies Using JavaScript-Based Frameworks

tabase to store the labels assigned to each
one of the files. Section 2 and 3 are imple-
mented within an accordion-like element by
using jQuery functions located in jquery.
ui.accordion.js style sheet.

The interface for displaying information rep-
resented in Figure 7 is structured in four sections:

1. In this section the name and icon of the
selected file are presented.

2. In this section, the file information, such as
size and name is displayed. The section also
provides a link to download the file.

3. This section is used to add tags to the file
and also displays the labels previously added.
The labels added to the files are listed in
section 3 of Figure 6.

4. This section is a ranking system where a file
is evaluated by using a star ranking question
element as a means to implement the ani-
mation interaction pattern. The star ranking
question element allows the respondent to
interactively rate criteria based on different
categories defined by the row and column
headers. Each star represents the equivalent
numeric value for that rating. To imple-
ment the star ranking question element, it
is necessary to include the following style
sheets: crystal-stars.css?v =2.0.3b38 and
jquery.ui.stars.js?v=3.0.0b38. It must be
mentioned that the star-ranking element uses
a database to store votes and rate each one
of the indexed files.

Figure 5. Message of indexing process

Figure 4. Main user interface of the information search engine

200

Case Studies Using JavaScript-Based Frameworks

Figure 7. User interface displaying information of a selected file

Figure 6. User interface where the results found are displayed

201

Case Studies Using JavaScript-Based Frameworks

Section 2 and 3 are implemented in an accor-
dion element representing the expand/collapse
interaction pattern by using jQuery functions
located in jquery.ui.accordion.js style sheet. The
application was developed under JSP technology.
The indexing system was performed by using Lu-
cene™ and TIKA™. AJAX and jQuery framework
were also used. Each section of this application
was developed with jQuery functions.

5. DEVELOPING AN
E-PROCUREMENT SYSTEM
OF MEDICAL SUPPLIES

The application developed in this case study is an
e-procurement application that helps hospitals,
clinicians, and doctors in the process of upgrad-
ing their medical equipment. The application, in
fact, displays a list of potential medical suppliers

given a name state and a ZIP code. This appli-
cation only displays on US suppliers that offer
several medical equipment and supplies. To find
potential suppliers, the application provides a set
of user interfaces and automatic queries to search
for the available suppliers in the US. Queries were
performed by using Web services and the support
of a database compliant.

There are some solutions for supply chain
management as part of complete application
suites providing business intelligence facilities.
Nevertheless, for the purposes of the state-of-
the-art analysis summarized in Table 4, authors
of this book merely considered some public on-
line services that provided functionality similar
to the functionality provided by the application
developed in this section.

The user interface shown in Figure 8 is struc-
tured in three sections:

Table 5. Healthcare e-procurement applications state-of-the-art analysis

Name Application
Type

Description Features

Medicare.gov’s
Quality Care Finder

Web
application

As part of the official Website for the US
social insurance program called Medicare,
the Quality Care Finder application allows
for searching and comparing hospitals,
doctors, nursing homes, supplies providers,
home health services, facility providers,
and other health providers in U.S.

Medicare.gov’s Quality Care Finder allows for
searching for healthcare providers by location.
For this purpose, a city name, state name or
ZIP code must be entered regardless of the type
of provider being searched. However, different
search functionality is provided for each type of
provider supported by Medicare.gov’s, because
search results can be filtered by using a set of
filters that are displayed according to the type
of provider. For instance, in the case of hospital
searches, results can be filtered by hospital’s
name and type. In addition to the typical list
view, search results can also be displayed using
a map view that relies on Google Maps™’s
maps.

Blue Shield of
California’s Find a
Provider application

Web
application

The Blue Shield of California’s Find a
Provider application is a B2C (Business-
to-consumer) e-procurement solution
in the healthcare industry. It is intended
to provide Californians with access to
healthcare plans based on healthcare
providers, such as doctors, dentists, vision
care professionals, facility providers,
pharmacies, and equipment and supplies
providers.

In Blue Shield of California’s Find a Provider,
healthcare providers can be searched by location
by entering a city name or ZIP code. For this
purpose, the desired supplier category must
be previously indicated; otherwise, a category
is selected by default. Additionally, advanced
searches can be performed according to the
selected category. For instance, in the case of
the doctor category, doctors can be searched by
name, specialty, genre, and language.

202

Case Studies Using JavaScript-Based Frameworks

1. In this section, the selection of the US state
name is required in order to execute a search.
An AutoComplete element of the Dojo frame-
work is used to perform this task. Also, it is
required to include style sheets tundra.css
and dojo.css, as well as the JavaScript files
testCommon.js and dojo.js. Once the Select
element is changed, then call to the function
is invoked.

2. This section shows the ZIP codes available for
the selected state in Section 1. The “Search”
button should be clicked. Next, the “View
Results” button should be also clicked. The
Periodic Refresh and Progress Indicator ele-
ments were implemented to perform this task.
The elements were implemented by using
the Prototype framework. This section uses
a ZIP codes database of each one of states
of the US. When “View Results” option is
clicked, a lightwindow element is opened as
it is shown in figure 9. The JavaScript files
prototype.js, scriptaculous.js?load=effects,
and lightwindow.js were required and light-
window.css style sheet is used to implement
the lightwindow element.

3. This section shows a series of tabs with in-
formation about each one of the US states.
This section uses a tabs element by using
Prototype framework. Style sheets and
fabtabulous.js JavaScript file were required
for implementing this element. After click-

ing the “View Results” button in Figure 8,
the information is presented as shown in
Figure 9. This interface shows all available
providers given a US ZIP code. If this user
interface is closed, the focus is returned to
the main user interface.

4. In this section, an accordion element was
used. This element was intended to imple-
ment the Expand/Collapse interaction pat-
tern and it was inserted into a lightwindow
element that is used to implement the
Brighten and Dim Interaction pattern. This
section also uses a progress indicator ele-
ment to show the progress of data loading.
For doing this, Prototype framework and
Scriptaculous were used. Also, some files
were required, such as accordion_glam.css
style sheet and prototype.js, accordion.js
and scriptaculous.js JavaScript files.

JSP and Web services technologies were
used for this application. The medicareSupplier
Web service was implemented in order to obtain
information about medical supplies, (Medicare
Supplier, 2013). This Web service is located
inhttp://www.webservicex.net/medicareSupplier.
asmx?WSDL, and it has various operations as
described in Table 6. The GetSupplierByZipCode
method was the only method not used in this
application.

Figure 8. User interface of the e-procurement system of medical supplies

203

Case Studies Using JavaScript-Based Frameworks

6. DEVELOPING A MASHUP:
A META-SEARCH ENGINE

A mashup is a technique for building applications
that combines data from multiple sources to create
an integrated experience. Many mashups available
are hosted as websites on the Internet, providing

visual representations of publically available data
(Holmes, 2013).

The application developed in this case study
is a mashup that incorporates a search engine for
using Web services provided by AmazonTM and
eBay™. It was designed to perform a search on
the same interface in two different Web sites i.e.,
it is capable of searching products in two of the

Figure 9. User Interface displaying results of medical supplies located in a ZIP code selected

Table 6. Description of the medicareSupplier Web service

Operation Description

GetSupplierByZipCode Gets Supplier details given a ZIP code

GetSupplierByCity Gets Supplier details given a city

GetSupplierBySupplyType Gets Supplier details given a supply type

204

Case Studies Using JavaScript-Based Frameworks

largest online sales websites, such as eBay™ and
AmazonTM through the same interface.

There are some publicly available Websites
providing functionality similar to the functionality
provided by the mashup developed in this chapter.
Table 7 summarizes the features of some Websites
integrating Amazon™ and eBay™ Web services.

Figure 10 shows the main user interface.
A product/service category can be selected by
clicking an icon in the carousel element; next, a
keyword must be entered in a text box. Finally,
the user must select the website where he/she
wants to find products or services. In Figure
10, Section 1 displays a Carousel element that
is used to implement the animation interaction
pattern. The Carousel element was implemented
by using jQuery framework. The JavaScript files:
jquery-1.2.3.min.js, jquery.simplemodal.js, cloud-
carousel.1.0.5.js and clod-carousel.1.0.5.min.js

were used to perform this task. When an option
from the carousel element is chosen, information
is displayed as shown in Figure 11.

In Figure 11, if a product is selected, it is
possible to see the details as shown in Figure 12.
A lightbox-type element is used for this feature.

To deploy the lightbox element (in this case a
pop-up window by using jQuery functions), the
following files are required separately: popup.
css and styles.css style sheets; and simplemodal.
js jQuery file. The contents of the window are
obtained from invoking Web services provided
by AmazonTM and eBay™.

To illustrate the implementation of the AOP
support, an example was implemented in this
application. The AOP support can be used, for
instance, to add a login method or to modify
the logic business in an application previously
designed. In these cases, case the AOP support

Table 7. AmazonTM/eBay™ mashups state-of-the-art analysis

Name Description Features

WishMindr™ It is a free online service developed by
WRIGHTLABS, LLC. It allows for creating and
sending universal gift wish lists for any occasion.
WishMindr relies on ShopStyle™, eBay™
Finding, eBay™ Shopping, and AmazonTM
Product Advertising APIs.

WishMindr™ not only allows for searching for products on
ShopStyle™, eBay™, and AmazonTM at the same time, it also
permits adding products to wish lists regardless of their source.
These wish lists can be further sent via e-mail by creating
Yahoo! TM and Gmail™ contact lists and setting up automatic
reminder e-mails.

Oskope It is a free visual search engine that allows for
browsing and organizing items from AmazonTM,
eBay™, Flickr™, Fotolia, and YouTube™
services intuitively.

To start a search with Oskpe, it is necessary to select a service.
This means that searches are not performed on all services at
the same time. Search results are images and can be displayed
using five different layouts: pile, stack, grid, list, and graph.
Thereby, images need to be clicked in order to obtain detailed
information about results. Detailed information is displayed
using a lightbox-type control. Additionally, search results can be
filtered by category, subcategory and keyword. In fact, random
search results are displayed at the beginning.

5th village It is a free Pinterest-like visual search engine
for AmazonTM, eBay™, and Shopstyle™ online
shopping services. It is also an Instagram client.

At the beginning, 5th village displays random clothing search
results from ShopStyle™. In order to search for products on
eBay™ and Amazon™, it is necessary to click the proper link
from a navigation bar. In both cases, daily deals are showed as
response. In the case of eBay™, search results can be refined
by category and subcategory only; they can also be sorted by
price, date and popularity. In the case of AmazonTM, search
results can be refined by category and keyword; price filters can
also be added to result lists. In any case, search results primarily
consist of images, and they can be loaded on demand. Finally, if
an image is clicked, a redirect to the corresponding Website is
performed.

205

Case Studies Using JavaScript-Based Frameworks

is used to modify the search process in the ap-
plication, and it is implemented to verify that
the user knows what category is conducting the
search. This prevents from avoid showing incor-
rect results. The implementation of AOP support
is explained below.

For this example, dojo.connect function is used
at the source code as shown:

dojo.connect(null,”funcion”,null,”get

Categories”)

Figure 10. User interface for searching products and services in Amazon™ and eBay™

Figure 11. User Interface displaying a list of products found on eBay™

206

Case Studies Using JavaScript-Based Frameworks

This snippet allows modifying the search
process for toys. In this case, a dialog box is
introduced as shown in Figure 13.

This application is a PHP Web-based system
where Web services provided by AmazonTM and
eBay™ were also used. Carrousel and lightbox

elements were implemented by using the jQuery
framework. AOP support was implemented by
using Dojo functions. In this particular case,
Web services cannot be changed instead of us-
ing a database because the information must be
obtained from Amazon™ and eBay™ directly.

Figure 13. AOP support to modify the search process

Figure 12. Information details of a selected product

207

Case Studies Using JavaScript-Based Frameworks

Table 8. Web Service description of AWSECommerceService (common request parameters)

Operation Description

AssociateTag It is an alphanumeric token that uniquely identifies an associate. By using this token, AmazonTM identifies the
associate to have privilege for a sale.
Valid values: An alphanumeric token distributed by AmazonTM that uniquely identifies an associate.

AWSAccessKeyId It is an alphanumeric token that uniquely identifies a seller. Valid value: Access Key ID distributed by
AmazonTM.

ContentType It specifies the response format of the content. For example, to transform a Product Advertising API response
into HTML, ContentType must be set to text/html.

MarketplaceDomain It specifies the marketplace domain where the request will be directed.

MerchantId An optional parameter that can be used to filter search results and offer listings to only include items sold by
AmazonTM. By default, the API will return items sold by various merchants including AmazonTM.

Operation It specifies the Product Advertising API operation to be executed.
Valid value: A Product Advertising API operation, for example, ItemLookup.

Service It specifies the Product Advertising API service. Valid value: AWSECommerceService

Validate It prevents that an operation to be executed. If the Validate parameter is set to true, the request can be tested
without actually executing it. Default: false. Valid Values: true, false

Version The version of the Product Advertising API software and WSDL (Web Services Description Language) to be
used. By default, the 2011-08-01 version is used. Default: 2011-08-01. Valid values: Valid WSDL version date,
for example, 2011-08-01.

XMLEscaping It specifies whether responses are XML-encoded in a single pass or in a double pass. By default, XMLEscaping
is single, and Product Advertising API responses are encoded only once in XML. Default: single. Valid values:
single, double

Table 9. eBay API description (principal all-specific input fields for FindProducts method)

Operation Description

AvailableItemsOnly If true, the operation only retrieves data for products that have been used to pre-fill active listings on the
specified eBay site. If false, it retrieves all products matching the query. Default: false.

CategoryID It includes an identifier in the request to restrict the query to a specific category. The request requires a single
one of these three elements: QueryKeywords, ProductID, or CategoryID, and can only include one of the
three. Max length: 10.

DomainName A domain to search in. This is similar to searching for a section of a catalog. If not specified, the product
search is conducted across all domains.

HideDuplicateItems It specifies whether or not to remove duplicate items from search results. When it is set to true, and there
are duplicate items for an item in the search results, the subsequent duplicates will not appear in the results.
Default: false.

MaxEntries It specifies the maximum number of products to be returned per page in a single call. Min: 1. Max: 20.
Default: 1.

PageNumber It specifies what page of data will be returned in the call. Min: 1. Max: 2000. Default: 1.

ProductID It is used to retrieve product details for one specific product. The identifier as a string is specified, and the type
attribute is used to indicate the nature of the identifier. Max length: 4000.

QueryKeywords One or more keywords to search for. When a keyword search is used, eBay searches the product catalogs
for matching words in the product title, description, and/or item specifics, and it returns a list of matching
products. Max length: 350.

208

Case Studies Using JavaScript-Based Frameworks

The AmazonTM Web service used is AWSECom-
merceService (Amazon Web Services, 2013)
and is described in Table 8. The eBay API (Ebay
developers program, 2013) is available at http://
svcs.ebay.com/services/search/FindingService/
v1. The principal all-specific input fields for
FindProducts method are described in Table 9.

7. CONCLUSION

The JavaScript-based frameworks are of great
importance in Web applications development,
particularly in RIAs development. These frame-
works permit easily incorporating different RIAs
features. RIAs seek to improve both user experi-
ence and productivity, and for this to be done, it
is necessary to incorporate different features such
as avoiding reloading pages continuously and the
indiscriminate use of links in the Web applications
to communicate with the server. In those cases,
RIAs work in a particular way, i.e. a RIA downloads
all available information in a single call to the
server, but this information is presented to the user
until it is needed. The applications developed in
this chapter incorporated some important features
with the aim of presenting the typical interaction
mechanisms of RIAs, and making it clear to the
user. However, other features were also incorpo-
rated into the applications, reducing limitations
of traditional Web applications. Therefore, both
user experience and productivity were improved.
The JavaScript-based frameworks allow for inte-
gration with other technologies such as AJAX,
Web services, and databases, among others. They
also allow for the development of mashup-style
applications, which permits the enrichment of
user interfaces in a more dynamic way by inte-
grating information from different data sources.
These Web applications are easy to use and they
avoid that the applications were developed with
different programming languages and different
JavaScript-based frameworks (even a combina-
tion of them) in order to enrich the information
navigating among Web pages, also information

is quickly and cleanly displayed through the use
of AJAX technology.

REFERENCES

Amazon Web Services. (2013). Amazon Web
Services. Retrieved March, 2013, from http://aws.
amazon.com/es/

Apache Tika. (2013). A content analysis toolkit.
Retrieved March, 2013, from http://tika.apache.
org/

Country Info Service. (2013). Country Info Ser-
vice. Retrieved March, 2013, from http://web-
services.oorsprong.org/websamples.countryinfo/
CountryInfoService.wso

Ebay Developers Program. (2013). Ebay API.
Retrieved March, 2013, from http://developer.
ebay.com/common/api/

Google Developers – GoogleMaps. (2013). API
Google Maps. Retrieved March, 2013, from https://
developers.google.com/maps/?hl=es

Google Developers – Youtube. (2013). Youtube
API Resources. Retrieved March, 2013, from
https://developers.google.com/youtube/

Holmes, J. (2013). Enterprise Mashups. MSDN
Architecture Journal. MSDN Architecture Center.
Retrieved March 2013, from http://msdn.micro-
soft.com/en-us/architecture/bb906060.aspx

Lucene (2013). Apache Lucene Core. Retrieved
March, 2013, from http://lucene.apache.org/core/

Medicare Supplier. (2013). MediCareSupplier.
Retrieved March, 2013, from http://www.web-
servicex.net/medicareSupplier.asmx

sohodox.com. (2013). Document Indexing: The
Key to Finding Documents Quickly. Retrieved
May, 2013, from http://www.sohodox.com/
articles/document-indexing-the-key-to-finding-
documents-quickly#sthash.CdBNBeue.dpuf

http://svcs.ebay.com/services/search/FindingService/v1
http://svcs.ebay.com/services/search/FindingService/v1
http://svcs.ebay.com/services/search/FindingService/v1
http://aws.amazon.com/es/
http://aws.amazon.com/es/
http://tika.apache.org/
http://tika.apache.org/
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso
http://developer.ebay.com/common/api/
http://developer.ebay.com/common/api/
https://developers.google.com/maps/?hl=es
https://developers.google.com/maps/?hl=es
https://developers.google.com/youtube/
http://msdn.microsoft.com/en-us/architecture/bb906060.aspx
http://msdn.microsoft.com/en-us/architecture/bb906060.aspx
http://lucene.apache.org/core/
http://www.webservicex.net/medicareSupplier.asmx
http://www.webservicex.net/medicareSupplier.asmx
http://www.sohodox.com/articles/document-indexing-the-key-to-finding-documents-quickly#sthash.CdBNBeue.dpuf
http://www.sohodox.com/articles/document-indexing-the-key-to-finding-documents-quickly#sthash.CdBNBeue.dpuf
http://www.sohodox.com/articles/document-indexing-the-key-to-finding-documents-quickly#sthash.CdBNBeue.dpuf

209

Case Studies Using JavaScript-Based Frameworks

ADDITIONAL READING

Atlases. (2013). Geography and maps. Library of
congress and illustrated guide. Retrieved March,
2013, from http://www.loc.gov/rr/geogmap/guide/
gmillatl.html

KEY TERMS AND DEFINITIONS

Aspect Oriented Programming: A new pro-
gramming paradigm that describes a development
methodology for separating crosscutting concerns
during the software development.

Document Indexing System: A document
indexing system is a software tool that enables
data stored in documents and data about docu-
ments themselves to be captured with the aim of
making them searchable.

E-Procurement System: A software tool for
B2B, B2C or B2G purchase and sale of supplies
and services through the Internet.

Interaction Design Pattern: A kind of user
interface pattern aimed at achieving effective user
experiences, i.e., rich interactions.

Mashup: A mashup is a Web application that
integrates data from multiple sources to provide
a unique service.

Rich Internet Application (RIA): Applica-
tions that are deployed over the Web; this type of
applications combines features and functionality
of Web applications and desktop applications.

Thin Client Application: An application
that relies on a client/server architecture, and it
executes most of its business logic operation on
the server-side.

210

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

Case Studies Using
Adobe™ Flex

ABSTRACT

REpresentational State Transfer (REST) is an architectural style that has recently emerged as a new
approach to develop and deliver Web services. In fact, a great number of companies, such as eBay™,
Twitter™, and Amazon.com™, have adopted REST to deliver Web services and Web feeds. This chapter
offers a review of the support for consuming RESTful Web services in Adobe™ Flex™; then, it presents two
case studies about the development of third-party RESTful Web services-based Rich Internet Applications
(RIAs) using Adobe Flex™ along with HyperText Markup Languages (HTML) and JavaScript. The case
studies presented in this chapter are intended to explain the common prerequisites for using RESTful Web
services Application Programming Interfaces (APIs) as well as the particular implementation details,
including the challenges and alternatives facing the capabilities and limitations of the target technolo-
gies. In addition, they exemplify the use of some User Interface (UI) patterns.

1. INTRODUCTION

Adobe™ Flex is a free and open source application
framework for building Web and desktop Rich
Internet Application (RIAs) as well as RIAs for
diverse mobile devices by using a common code
base1. Adobe™ Flex includes the Macromedia
FleX Markup Language (MXML) and Action-
Script programming languages. MXML is an
XML-based language used for the design of ap-
plication GUIs. ActionScript is an object-oriented
language used for the definition of client-side
application logic. MXML and ActionScript are
compiled together into a single SWF file. Flex-

based Web application runs in a Web browser
through the Adobe™ Flash™ Player plugin. On
the other hand, AIR™ is a cross-operating sys-
tem runtime that allows building and deploying
ActionScript or JavaScript-based RIAs outside
the browser and on mobile devices.

According to Adobe™, Flash™ Player is ap-
proximately installed on 1.3 billion of desktop
computers across Web browsers and operating
systems. This fact represents the largest market
share in the RIA market. In addition, Flex is a
mature technology, and it has a huge developer
community officially supported by Adobe™2 as
well as an open source community as part of the

DOI: 10.4018/978-1-4666-6437-1.ch010

211

Case Studies Using Adobe™ Flex

Apache Incubator™ project3. Besides the capabili-
ties and limitations inherent to the technologies,
the above factors must be considered in order to
adequately select a technology for developing
RIAs. From this perspective, Flex can be a great
option against other non-JavaScript-based ap-
plication frameworks.

Considering that Web services have become
a means to allow third-party developers to build
on top of the infrastructure of Internet-connected
companies, this chapter presents two case stud-
ies of the development of Representational State
Transfer (REST) Web services-based RIAs by us-
ing Flex along with HTML and JavaScript. REST
is an architectural style that has recently emerged
as a new approach to develop and deliver Web
services. In fact, a great number of companies
such as eBay™, Twitter™ and Amazon.com™
have adopted REST to deliver Web services, as
well as Web feeds.

Other application samples, case studies and
showcase applications in diverse domains can be
found online at http://www.adobe.com/devnet/
flex/samples.html. In addition, the Tour de Flex
desktop application available at http://www.adobe.
com/devnet/flex/tourdeflex.html provides over
200 running samples, each one includes source
code, links to documentation, resources and other
details.

2. DEVELOPING REST WEB
SERVICES-BASED APPLICATIONS

Representational State Transfer (REST) is a hy-
brid architectural style derived from several of
network-based architecture styles and combined
with additional constraints that defines a uniform
connector interface. REST was stemmed from a
PhD dissertation by Roy Fielding in 2000 (Field-
ing, 2000). Basically, it refers to a stateless client/
server architecture where Web services and any
other kind of reachable object such as document
or image files are viewed as resources. Resources

are identified by their Uniform Resource Identi-
fiers (URIs) and they can be accessed through a
standard transfer protocol such as the HyperText
Transfer Protocol (HTTP) by using the GET,
POST, PUT, and DELETE methods. In fact, re-
quests and responses to actions over resources are
based on transferring representations to capture the
current or intended state of the resources (“REST
application programming,” 2010).

A REST-based (Application Programming
Interface) API is a URI or a collection of URIs
that can manage create, read, update and delete
(CRUD) operations. Typically, a REST-based API
exposes a base URI which is a URI common to
all resources and serves as the entry point to the
API. Moreover, REST-based APIs are program-
ming language independent because they are
accessible from any language that has an HTTP
client library, including ActionScript, Java and
PHP (“REST application programming,” 2010).

Two of the most important issues to consider
for developing REST Web services-based applica-
tions are: 1) the HTTP methods supported by the
target API and 2) the available response formats.
The second aspect affects the way of processing the
response in order to display data to the user. Many
REST-based APIs support JSON, RSS or Atom-
formatted responses besides the XML-based
responses which unlike the aforementioned do not
imply the necessity of third-party libraries to be
processed. Furthermore, RSS and Atom-formatted
responses can be manipulated without requiring
much effort by using standard XML-based cli-
ent libraries because RSS and Atom syndication
formats are XML-based dialects.

2.1. Invoking Rest-Based Web
Services by Using Flex™

Conceptually, since REST-based Web services
can be accessed through standard HTTP methods,
any class that wraps HTTP requests can be used
to consume REST-based Web services. The main
features of the ActionScript classes that allow

212

Case Studies Using Adobe™ Flex

developers to achieve the aforementioned purpose
are described in Table 10.1. These classes are
available as part of the Flex Standard Development
Kit (SDK). Basically, there are two options: 1) the
HTTPService class and 2) the URLRequest class.

On the one hand, the HTTPService class
can be also used in MXML because there is an
HTTPService component as part of the mx.rpc.
http.mxml package. When the HTTPService
component is used, all the parameters to be sent
to the destination URL must be specified under
a unique mx:request tag under the corresponding
mx:HTTPService tag. In any case, the resultant
data can be accessed through the lastResult
property according to the data type specified
by the resultantFormat property. Moreover, this
class allows programming at a higher level of
abstraction than the URLRequest + URLLoader
approach. Therefore, it can represent the best op-
tion for non-expert developers. On the other hand,
there is not an equivalent MXML component for
the URLRequest class. Furthermore, it must be
used in conjunction with an ActionScript class
responsible of sending the HTTP request, handling
the corresponding HTTP response and providing
developer-friendly access to the received data. For
instance, when the URLRequest class is used in
conjunction with the URLLoader class, the data
to be transmitted with the destination URL must
be assigned to the URLRequest’s data property
whereas the data received in the response can be
accessed through the URLLoader’s data property.
Furthermore, the HTTP method to be used for
sending the request must be specified through the
URLRequest’s method property which, unlike the
HTTPService’s method property, only supports
the GET and POST HTTP methods.

3. CASE STUDIES

The following two sections explain both: 1) the
prerequisites related to the use of the REST-based
APIs involved and 2) the implementation details,

including challenges and alternatives facing the
capabilities and limitations of the technology as
well as the best practices and design patterns to
be used in the development of a Vimeo™ and
YouTube™-based meta-search engine for videos
and a Yahoo! ™-based forecast system, respective-
ly. These applications were developed by using the
Flex 4.5 application framework available at http://
www.adobe.com/devnet/flex/flex-sdk-download.
html and the Flash™ Builder 4.6 Standard devel-
opment tool available at http://www.adobe.com/
products/flash-builder-standard.html.

The weather forecast system is a desktop ap-
plication that lets users both search for locations
such as countries, states and towns by name as
well as get Yahoo!™-based weather information
for a selected location including current condi-
tions and two-day forecast. The matches are paged
displaying up to ten results per page. Additionally,
by using Google Maps™ a map is displayed in
order to complement the weather information of
the selected location.

These applications implement different in-
teraction design patterns proposed by Bill Scot
and Theresa Neil (Scott & Neil, 2009), namely
the inline paging, progress indicator and dialog
overlay (lightbox effect) interaction patterns. This
kind of GUI design pattern enables traditional
Web applications to incorporate rich interactions
aimed at improving user experiences.

3.1. Developing a Meta-
Search Engine for Videos

A meta-search engine involves scanning informa-
tion from two or more available sources simul-
taneously. This kind of search engine can cope
with the common drawbacks of the traditional
search tools such as the lack of accuracy in search
results as well as the rapid and continuous growth
of information resources. A meta-search can also
be considered as a mashup involving two or more
different types of search tools (“Search engine

213

Case Studies Using Adobe™ Flex

Table 1. ActionScript classes useful for invoking REST-based Web services

Class Description and Uses Package Result Format Parameter
Format

HTTP Method

HTTPService It represents an HTTP
request-response
transaction. It allows
calling HTTP-based Web
services and accessing
information retrieved from
server-side scripts4.

mx.rpc.http Object, Array object,
xml (XMLNode object),
flashvars (name-value
pairs into an Object), text
(String object) and e4X
(XML object).

Name-value pairs
(Object)

GET, POST,
HEAD,
OPTIONS, PUT,
TRACE and
DELETE.

URLRequest It captures all the
information required to set
up an HTTP request. URL
request objects are used in
conjunction with Loader,
URLLoader, URLStream
or FileReference objects to
manage HTTP responses5.

flash.net - Raw binary
data (ByteArray
object), URL-
encoded variables
(URLVariables
object) and text
(String object).

GET and POST.

Loader It loads local and external
SWF files or image (JPG,
PNG, or GIF) files6.

flash.display The contents of the
loaded file are made
available as raw binary
data (ByteArray object).

- -

SWFLoader It loads and displays local
and external SWF files. It
allows loading one Flex
application into a host Flex
application7.

mx.controls.
SWFLoader

- - -

URLLoader Like HTTPService class,
it allows sending requests
to server-side scripts and
accessing the information
returned. It also lets
loading data from local and
external XML documents
or text files8.

flash.net Text (String object), raw
binary data (ByteArray
object) and URL-encoded
variables (URLVariables
object).

- -

URLStream It provides low-level access
for downloading data as
the data arrives, instead
of waiting until the entire
file is completed as with
URLLoader class9.

flash.net The contents of the
downloaded file are made
available as raw binary
data (ByteArray object).

- -

FileReference It provides a means for
downloading and uploading
files between a user’s
computer and a server. It
allows opening operating
system dialog boxes that
prompt the users to select
either a location for saving
or a file for uploading,
accordingly10.

flash.net - - -

214

Case Studies Using Adobe™ Flex

mashup,” 2007). Websites such as Dogpile, Kayak
and Ixquick are well-known meta-search tools.

3.1.1. Description of the
REST-Based APIs Used

According to ProgrammableWeb.com website,
the two most popular APIs for video-sharing are
Vimeo™ and YouTube™ APIs11. These APIs also
offer video-searching facilities. Therefore, in this
case study, a meta-search engine for YouTube™
and Vimeo™ videos was developed. Both, You-
Tube™ and Vimeo™ are video-sharing websites
where users can upload, share, search and view
videos. These websites are also considered video-
centered social networking websites because of
the rating and commenting facilities. Moreover,
according to the Alexa rank, these websites are the
third12 and the one hundred and twentieth13 most
popular websites on the world, respectively. The
main features of the APIs used in this case study
are described in Table 2.

Regarding to the requirements of using the
above data APIs, it is important to notice that every
call made to the Vimeo™ Advanced API must be
authorized by using the version 1.0 of the OAuth
protocol because this API comprises methods
that require read/write access over private data,
which implies Vimeo™ users to be authenticated
in order to grant these permissions to external
applications. In addition, Vimeo™ offers another
data API called Simple API which is read-only
and lets getting public information about users,
videos, user groups, channels and other kind of data
entities without requiring external applications to
be authorized. On the other hand, the YouTube™
Data API requires users to be authenticated by us-
ing the version 2.0 of the OAuth protocol to only
perform actions affecting information related to
YouTube™ accounts.

With the aim of simplifying the OAuth authori-
zation process, both the Vimeo™ and YouTube™
websites offer demo OAuth access tokens and
secrets for every application registered. This is

the approach used in this case study because the
explanation of the OAuth flows is out of the scope
of this chapter.

Therefore, the only requirement of using the
Vimeo™ Advanced API is to obtain the OAuth
access token and secret by registering some in-
formation about the application to be developed
on the Vimeo™ website. Regarding to the result
formats supported by the above APIs, it is im-
portant to notice that, the YouTube™ Data API
is part of the Google™ Data APIs protocol which
is a standard way of reading and writing data on
the Web, and it is based on the Atom 1.0 and RSS
2.0 syndication formats. Therefore, the data from
the YouTube™ Data API can be mainly retrieved
as Atom or RSS feeds.

In fact, this API is conceived as a set of several
types of feeds such as video, channel and playlist
feeds rather than as a set of API methods or ser-
vices. On the other hand, the Vimeo™ Advanced
API provides simple XML-based responses by
default, which can be easily processed without
requiring third-party client libraries.

Regarding to the player APIs, both Vimeo™
and YouTube™ websites offer a JavaScript
Player API besides an ActionScript player API;
however, this API also involves embedding the
Flash™ object enscapsulated on a SWF file, in
an HTML Web page. The only difference is that
the functions are made available via JavaScript
or ActionScript by adding a version parameter
indicating the required version of the API to a
common URI. The chromeless version of the
YouTube™ player requires more development
effort compared with the embedded version of the
YouTube™ player as well as with the Vimeo™
player because the chromeless YouTube™ player
does not include playback controls. Thus, custom
controls must be developed by using either JavaS-
cript or ActionScript, which implies calling the
functions of the corresponding API in order to
set up the standard playback functions, namely
play, pause and stop. In short, a video player with
built-in controls can be the best option for non-

215

Case Studies Using Adobe™ Flex

skilled developers. Moreover, it is important to
notice that the Vimeo™ ActionScript Player API
actually is a client library composed of a unique
class. Although a URI is not explicitly exposed,
internally the Vimeo™ ActionScript Player API

uses the http://api.vimeo.com/moogaloop_api.
swf URI for loading the player by using the Ac-
tionScript Loader class.

Table 2. REST-based APIs used for developing a meta-search engine for videos

API Description Base URI Supported
Result
Format

Supported
HTTP

Methods

Official
Libraries

Vimeo™
Advanced
API

It allows applications to perform actions
normally executed on the Vimeo website,
including to search for videos and users, to
retrieve information about videos and users,
to delete existing videos and upload new
videos, to manage comments on videos,
to create and delete albums and channels
of videos, to add and remove videos from
albums, to subscribe and unsubscribe users
from channels, to allow users to join and
leave groups of users, among others actions.
All the requests sent to this API must be
authorized14.

http://vimeo.com/api/rest/
v2?method=METHOD
Target method: vimeo.
videos.search

XML, JSON,
JSOP and
PHP

GET and
POST

PHP

Vimeo™
ActionScript
Player
API (client
library)

It lets developers to control the Vimeo™
video player through ActionScript functions
by loading it into Flash™/Flex applications.
This version of the Vimeo™ player API is
called Moogaloop and consists of a single
ActionScript class that allows easily adding
video support to Flash™/Flex applications.
The functions available via the Moogaloop
API are: to set the color and dimensions of
the player, besides the common playback
functions15.

- - - -

YouTube™
Data API
2.0

It allows applications to carry out the actions
that a user can directly carry out on the
YouTube™ website, including to search for
videos, to retrieve video feeds, comments,
playlists, subscriptions and user profiles,
and to upload or update existing videos. In
addition, this API lets applications to create
playlists, subscriptions and other account-
specific entities by sending authorized
requests16.

https://gdata.youtube.
com/feeds/api/FEED
Target feed:
videos

JSON,
JSON-IN.
SCRIPT,
JSONC, RSS
and Atom

GET,
POST,
PUT and
DELETE

Java, .NET,
PHP, Python,
Objective-C,
JavaScript
(Google™
APIs)

YouTube™
ActionScript
3.0 Player
API (SWF
player)

It lets developers to control the YouTube™
video players by loading them into Flash™/
Flex applications and making calls to their
ActionScript functions. There are two
versions of the YouTube™ player: 1) a
player that has standard built-in controls and
2) a player that does not display any control.
The former is known as embedded player
whereas the latter is known as chromeless
player. Besides the common playback
functions, this API allows playing videos in
playlists and retrieving playlist information17.

http://www.youtube.com/
apiplayer?version=3
(chromeless player)
http://www.youtube.
com/v/VIDEO_
ID?version=3 (embedded
player)

- - -

216

Case Studies Using Adobe™ Flex

3.1.2. Implementation Details

The first aspect to be evaluated in the development
of applications based on Web services APIs that
require applications to be authorized for making
calls is the necessary type of application. This
aspect determines the method to be used in order
to authorize applications. In the case of Web ap-
plications authorization by using OAuth, a callback
URI is used that enables servers to redirect users
to their applications once the credentials have been
successfully interchanged. On the other hand, in the
case of native desktop and mobile applications, a
pin is used that is retrieved from the server and it
is displayed as HTML content once the credentials
have been successfully interchanged. Typically,
this pin is manually entered by the user in the
application, and it is added to each of the calls
made to the API as an access token.

This case study covers the development of
a Web meta-search engine that scans data from
two different data sources: the YouTube™ Data
API and the Vimeo™ Advanced API. Behind
this desired functioning there is a key principle:
concurrency, i.e. the capability of simultaneously
executing multiple sets of code instructions. This
capability is related to a typical feature of RIAs,
which enables applications to make parallel re-
quests to different sources both in a synchronous
and in an asynchronous way (Preciado et al.,
2005). In ActionScript, each function that loads
data into a SWF file such as the URLLoader’s load
function and the HTTPService’s send function is
asynchronous. It means that the results of this kind
of actions are returned at an indeterminate time. In
addition, the ActionScript Worker class provides
a means for executing the application’s code in
multiple linear blocks of execution steps known
as execution threads. In this sense, a worker object
represents a virtual instance of the application
runtime usually intended to execute code in the
background at the same time that other operations
are running in the main application thread which
implicitly is a worker object usually responsible

for updating the screen. However, this execution
model is not completely accurate for the desired
functioning of the meta-search-engine. Thus, the
asynchronous execution of the calls made to the
REST-based APIs is only considered here.

In order to select a component for displaying
the results returned by the YouTube™ Data API
and the Vimeo™ Advanced API, the Flex List
and DataGrid components are analyzed below.
The former displays a scrollable list of data items.
The latter can be considered as a scrollable list
that can display more than one column of data
with an extra row of column headings above the
list. It represents the primary way to display data
in Flex-based applications, and it is easy of us-
ing because allows arranging large amounts of
data without a lot of code. It also provides useful
features such as column sorting and cell editing.
Adobe™ discourages using the DataGrid com-
ponent on mobile devices. It is a best practice to
write much code compatible across Web, desktop
and mobile platforms as possible in order to reduce
the effort necessary to perform future migrations.
In this sense, although the meta-search engine
developed in this case study is a Web tool, the
List control is used with the aim of maintain-
ing compatibility across the AIR™ platforms.
In this sense, considering that all the list-based
components use an item renderer to control the
display of the data items in the list, a custom item
renderer that enables the List to display a group
of data items in a single cell must be defined. In
detail, these data items are the title, upload date
and thumbnail of each video entity returned by
the REST-based Web services used.

In order to display HTML-based content in a
Flex-based AIR™ application, the HTML com-
ponent or the HTMLLoader class can be used.
The former, which is part of the MX component
architecture, is not available for developing Web
and mobile applications. On the other hand, the
latter is part of the AIR™ SDK, and it defines
a type of display object that is a container for
HTML-based content giving close integration

217

Case Studies Using Adobe™ Flex

and script bridging between ActionScript and
JavaScript. Nevertheless, the features of the HT-
MLLoader class are only supported by desktop
operating systems; thereby, this class cannot be
used for developing mobile applications. There
is another class called StageWebView which
provides a simple means to display HTML-based
content on devices where the HTMLLoader class
is not supported. However, this class is not a dis-
play object and cannot be added to any Flash™
display object; therefore, the size and position
of the rendering area defined by this class must
be manually controlled which can require more
development effort. In fact, there are third-party
client libraries over Internet intended to provide
a developer-friendly way to integrate this class
in any Flex application18,19. Moreover, regardless
of the application type, it is possible to display
HTML content directly in a Web browser by us-
ing the navigateToURL ActionScript function.

One of the features that distinguish RIAs from
traditional Web applications is the possibility of
avoiding screen refreshments and blink experi-
ences, which is well-known as visual continuity
(Preciado et al., 2005). In this sense, RIAs change
the content and appearance of their GUIs based

on the user interaction without affecting the visual
continuity. Or instance, Flex-based applications
can define view states, i.e. particular views of
their components by using the State class. Each
custom view state can modify the default view
state by adding or removing child components,
by setting style and property values or by defining
state-specific event handlers. In this case study,
several custom view states representing the stages
in the execution of the application are defined: 1)
when the data are being retrieved from the Web
services, 2) when the data have been displayed,
3) when the video players are being loaded and
4) when the video players have been loaded. In
addition, because the user can select one of the two
available sources, namely the Vimeo™ Advanced
API and the YouTube™ Data API in order to
search for videos, the aforementioned view states
are specialized to support this behavior. In detail,
the default view state of the meta-search engine
only comprises a search box, a button and both
check boxes. The custom view states representing
the stages where the data have been loaded, add a
busy indicator to the default view state for indicat-
ing that a long-running operation is in progress.
This component implements a type of feedback

Figure 1. Search results from YouTube™ displayed

218

Case Studies Using Adobe™ Flex

pattern known as progress indicator which pro-
vides a means to design reactive GUIs. Although
Flex provides a BusyIndicator component as part
of the Spark components architecture, it can only
be used in AIR™ mobile applications.

Therefore, in this case study, an animated GIF
file containing a rotating spinner is used. Figure
1 depicts the stage where the search results are
displayed from only one source. Figure 2 depicts
the stage where the search results from both sources
are being retrieved.

Finally, in order to embed the YouTube™ and
Vimeo™ players into the Flex-based applica-
tion, the SWFLoader and SpriteVisualElement
components are respectively used. Although the
Vimeo™ Player class internally loads a SWF file,
it inherits properties and functions from the Sprite
class which is a basic display list building block
appropriate for Graphical User Interface (GUI)
objects that do not require timelines. Therefore, the
SpriteVisualElement component must be used to
add the Vimeo™ player class to the tree of MXML
components. Figure 3 depicts the stage where the
YouTube™ video player is being loaded. Figure

4 depicts the stage where both video players have
been loaded.

3.2. Developing a Weather
Forecast System

Weather forecasting is the application of science
and technology to predict the state of the atmo-
sphere for a given location. Web services have
becoming more and more necessary in the área
of meteorology because they allows gathering all
the information from sensors and other measur-
ing instruments about current weather conditions
and bringing the weather forecasts to the people
through the Web (Rambadt, 2009). Websites such
as The Weather Channel’s weather.com, National
Weather Service’s weather.gov, and AccuWeather.
com are popular weather forecast websites.

3.2.1. Description of the
REST-Based APIs Used

According to ProgrammableWeb.com website,
the Weather Channel™’s Weather API and the
National Weather Service’s National Digital

Figure 2. Loading search results from both Vimeo™ and YouTube™

219

Case Studies Using Adobe™ Flex

Forecast Database SOAP Web service are the two
most popular weather APIs. Nevertheless, for the
purpose of this case study and with the aim of
providing not only weather information but also
geographical information about a given location,
the Yahoo! GeoPlanet™ API and the Yahoo!™
Weather RSS Feed were considered. In fact, the

former provides an open infrastructure for geo-
referencing data on Internet. On the other hand,
the latter, is the fifth most popular weather API
according to ProgrammableWeb.com20. Finally, in
order to complement the geographical information
provided, the Google Maps™ API was used for
embedding the maps of the given locations. The

Figure 3. Loading the YouTube™ video player

Figure 4. Video players loaded

220

Case Studies Using Adobe™ Flex

main features of the APIs used in this case study
are described in Table 3.

Regarding to the requirements of using the Ya-
hoo!™ APIs, an application ID must be obtained
by registering some information about both the
application to be developed and the developer
at the Yahoo!™ Developer Network website. In
this sense, it is necessary to use a Yahoo!™ ID to
sign into Yahoo!™; a Facebook™ or Google™
account can be alternatively used. The Yahoo!
GeoPlanet™ Web service is in accordance with
the REST architectural elements; therefore, it
comprises collections of resources such as places,
continents, oceans, seas and countries. Subsets of
these collections can be retrieved by using filter
parameters. For instance, the places collection,
which is the collection used in this case study, can
be filtered by using the name, WOEID and type
filters. Additionally, other name-value pair pa-

rameters related to paging and required languages
and result formats can be specified. In fact, the
application ID must be added to the base URI of
the Yahoo! GeoPlanet ™ Web service as a manda-
tory name-value pair parameter, filter parameters
can be additionally added to the base URI. In the
case of the Yahoo!™ Weather RSS Feed, instead
of the application ID, the WOEID of the location
for which the weather forecast is required must be
added to the base URI as a mandatory parameter.
In the case of Google Maps™, an API for Flash™
is offered; however, it is officially deprecated in
favor of the JavaScript API. Actually, the API for
Flash™ has a client library composed of two SWC
files: an SWC file for using within a Flex appli-
cation and an SWC file for use within a Flash™
CS3 application. This client library requires the
usage of an API key which had to be specified
as a property of a Map MXML component. The

Table 3. REST-based APIs used for developing a weather forecast system

API Description Base URI Supported
Result
Format

Supported
HTTP

Methods

Official
Libraries

Yahoo!
GeoPlanet™

It is a resource for managing all
geo-permanent named places on
earth. It enables getting collections
of resources such as continents,
oceans, seas and countries as well
as places matching a query string. It
also allows getting a place resource
starting from a Where On Earth ID
(WOEID)21.

http://where.yahooapis.com/
v1

XML, JSON
and GeoJSON

GET -

Yahoo! ™
Weather RSS
Feed

It enables getting up-to-date
weather information about wind,
atmospheric conditions and
astronomical conditions for specific
locations starting from their
WOEID22.

http://weather.yahooapis.com/
forecastrss

RSS GET -

Google Maps™
JavaScript
API v3

It lets embedding Google Maps™
in any Web page. It is applicable
to application for both desktop and
mobile devices. This API provides
diverse utilities for manipulating
maps just like on the Google
Maps™ website, and it also lets
adding content such as zoom
controls, position markers and
polylines to the maps through a
variety of services23.

http://maps.google.com/maps/
api/js

- - -

221

Case Studies Using Adobe™ Flex

JavaScript API also requires the usage of an API
key which can be obtained in the Google™ APIs
Console accessing with a Google™ account.

Regarding to the result formats supported by
the above APIs, the Yahoo! GeoPlanet™ Web
service has support for three different formats:
XML, JSON and GeoJSON. The latter is a dialect
of JSON that can be used to represent geographical
features. On the other hand, the Yahoo!™ Weather
RSS Feed returns RSS 2.0 feeds in response to
requests.

3.2.2. Implementation Details

A feed from Yahoo!™ Weather RSS Feed has an
element containing current conditions data and
an element containing two-day forecast data for
a given location. These data are also provided
together as HTML-based content ready to be
displayed. The HTML-based content can be the
easiest way to display the weather information in
a Flex-based application; however, because this
information comprises images for depicting the
textual descriptions of conditions, the HTML-
based content cannot be properly displayed in
MXML components such as the HTML compo-
nent. In this sense, the simple data is used in this
case study to build textual HTML strings to be
displayed by using the MXML Text component.
The Text component is part of the Flex MX
components architecture, and it allows displaying
multiline noneditable text which can be formatted
by using HTML tags. The images, in turn, are
displayed by using the Image MXML component
which allows importing local or remote images
files at runtime. In addition, the units used for
measuring the temperature can be changed at
runtime from Fahrenheit to Celsius or vice versa
by using the Flex CheckBox component. When
the degrees units are specified also all other units
such as speed units in the case of wind velocity
are properly changed from English units to metric
units and vice versa.

In order to retrieve data from external sources
by using the HTTPService class, result and fault
event listeners must be settled up. A result event
is a type of event represent by the ResultEvent
class, which indicates an RPC operation has suc-
cessfully returned a result whereas a fault event
is a type of event represented by the FaultEvent
class, which is dispatched when a RPC call has
a fault. From a usability perspective, error mes-
sages are the means of informing to users about
unexpected conditions. In this sense, the Flex
Alert component represents the primary way to
keep the user informed about what is going on.
The Alert component is a modal pop-up dialog
box that can contain a title, a message, an icon
and buttons. In fact, this component implements
the dialog overlay interaction design pattern which
is a replacement of the old style Web browser
pop up (Scott & Neil, 2009). In this case study,
the Alert component is used for displaying error
messages related to the faults occurring when the
REST-based Web services are called. In addition
to the error messages, the Alert component is
used to display information messages related to
the searches that do not return matches. Figures
5-6 depict the use of the dialog overlay interaction
pattern for displaying error messages.

Typically, when a collection of resources is
requested to a REST-based API, the response
contains an element describing the amount of
results returned by the query. These data can be
retrieved in order to calculate the amount of re-
sult pages to be offered to the user. Nevertheless,
some APIs calculate the amount of available result
pages starting from a parameter that indicates the
amount of results required in the response. This
parameter must be added to the base URI along
with the parameter that indicates the amount of
results to be skipped, i.e. the index of the first
matching result that must be included in the re-
sponse. Nevertheless, some APIs calculate the start
index by themselves. In these cases, a parameter
indicating the result page to be returned by the
API must be added to the base URI. In this case

222

Case Studies Using Adobe™ Flex

study, once the amount of available result pages
has been calculated, a pagination bar that allows
navigating through the result pages is displayed.
This pagination bar is based on the Flex Button-
Bar component which defines a horizontal row of
related buttons with a common appearance, and
it implements the inline paging interaction pat-

tern proposed by Bill Scot and Theresa Neil. An
inline paging experience can be created by only
switching the area of search results and leaving
the rest of the application stable. Figure 7 depicts
the use of the inline paging interaction pattern to
let users navigate through the results returned by
the Yahoo! GeoPlanet™ Web service.

Figure 5. “No matching places found” error message

Figure 6. “No weather information available for this location” error message

223

Case Studies Using Adobe™ Flex

Finally, in order to embed the maps of the
given locations into the weather forecast system,
a container for HTML-based content must be
used. For this purpose the HTML component, the
HTMLLoader class and the StageWebView class
are available because the weather forecast system
is a Flex desktop application. In this case study,

the HTMLLoader class was used with the aim of
enabling a script bridge between the JavaScript
definitions in the Google Maps™ JavaScript
API and the ActionScript definitions in the Flex-
based application. In detail, the Google Maps™
JavaScript API is loaded into a local HTML Web
page by specifying the http://maps.google.com/

Figure 7. Using the inline paging interaction pattern

Figure 8. Weather information displayed

224

Case Studies Using Adobe™ Flex

maps/api/js URI in the src attribute of the HTML
script element. Then, the HTML Web page is
loaded into an HTMLLoader object by passing a
URLRequest object to the load function which not
only displays the HTML-based content but it also
loads all the JavaScript definitions contained. The
maps are loaded by calling a JavaScript function
through the HTMLLoader’s window property
which represents a global JavaScript object for
the content loaded into the HTMLLoader object.
This JavaScript function receives the latitude
and longitude coordinates of the location to be
displayed on the map. These coordinates are
returned as part of the Yahoo! GeoPlanet™ Web
service responses. Figure 8 depicts a screenshot
of the weather forecast system displaying the
weather information and Google Maps™ map
for a given location.

4. CONCLUSION

Flex uses the Remote Procedure Call (RPC) pro-
tocol to provide great integration with server-side
technologies like PHP, Microsoft ASP.NET and
Java. These technologies can be used in conjunc-
tion with SQL databases to develop data-intensive
RIAs. Moreover, ActionScript classes such as
URLRequest and URLLoader and MXML com-
ponents such as HTTPService also can be used to
access REST-based Web services. These Action-
Script classes allow formatting the data returned
in the Web services responses according to the
formats specified in the requests. For this purpose,
ActionScript XML, XMLNode and Object classes
can be used. In addition, there is an ActionScript
JSON built-in parser as part of the Flash™ Player
11 API. Atom and RSS-formatted responses can
be manipulated by using the ActionScript XML
or XMLNode classes because these syndica-
tion formats are XML dialects. Moreover, the
ActionScript Array class can be used to format
responses with the aim of binding the data to
MXML components such as the DataGrid and

List components. In fact, these components use an
Array wrapper object such as an ArrayCollection
or ArrayList object as data provider.

The AIR™ API provides great integration with
other client-side technologies such as HTML and
JavaScript. Regarding to the HTML support there
are different MXML components that allows eas-
ily displaying HTML-formatted strings like the
HTML, Text, Label and TextArea components
of the MX components architecture. However,
the last two components are deprecated in favor
of the corresponding Spark Label and TextArea
components which require more effort in order
to display the HTML content, namely the use
of TextFlow objects. In fact, the ActionScript
TextFlow class is responsible for managing all
the text added to the text-based components sup-
porting the Adobe™’s Text Layout Framework
text engine. ActionScript classes such as HTML-
Loader and StageWebView, on the other hand,
allows both loading HTML-formatted strings
as well as loading local and remote HTML Web
pages. In addition, these classes load the JavaS-
cript definitions within the HTML Web pages,
and they allow both calling JavaScript functions
and passing values between ActionScript and
JavaScript. Moreover, unlike the HTMLLoader
class, the StageWebView class is supported on
mobile devices besides desktop operating systems.
Nevertheless, unlike the HTMLLoader class, the
StageWebView class requires more effort in order
to display the HTML-based content because it is
not a display object. Therefore, the size and po-
sition of the rendering area defined by this class
must be manually controlled. It is important to
notice that, neither the HTMLLoader class nor the
StageWebView class can be used for developing
Web applications. Therefore, the script bridging
between ActionScript and JavaScript must me
enabled by adding the JavaScript definitions to the
HTML wrapper used for displaying the Flex Web
application and accessing it via the ActionScript
ExternalInterface class.

225

Case Studies Using Adobe™ Flex

REFERENCES

Fielding, R. T. (2000). Architectural styles and the
design of network-based software architectures.
(PhD dissertation). University of California,
Irvine, CA.

Preciado, J. C., Linaje, M., Sanchez, F., & Comai,
S. (2005). Necessity of methodologies to model
Rich Internet Applications. In Proceedings of the
Seventh IEEE International Symposium on Web
Site Evolution (pp. 7–13). Washington, DC: IEEE
Computer Society. doi:10.1109/WSE.2005.10

Rambadt, M. (2009). Monitoring of Web Services
Using UNICORE 6 as an Example. (MS thesis).
Aachen University of Applied Sciences, Aachen,
Germany. Retrieved November 30, 2012, from
http://www.ibm.com/developerworks/aix/library/
au-aem_rest/

Scott, B., & Neil, T. (2009). Designing Web
Interfaces: Principles and Patterns for Rich In-
teractions. O’Reilly Media.

Search Engine Mashup. (2007, July 6). EurekAlert.
org. Retrieved November 16, 2012, from http://
www.eurekalert.org/pub_releases/2007-07/ip-
sem070407.php

ADDITIONAL READING

Accesing JavaScript Functions. (n.d.). Adobe™
help. Retrieved November 23, 2012, from
http://help.adobe.com/en_US/flex/using/WS2d-
b454920e96a9e51e63e3d11c0bf626ae-7fe8.html

Neil, T. (2009). Designing Rich Applications.
Slideshare™ Website. Retrieved May 28, 2012,
from http://www.slideshare.net/theresaneil/
designing-rich-applications

Noble, J., Anderson, T., Braithwaite, G., Casa-
rio, M., & Tretola, R. (2010). Flex 4 Cookbook.
O’Reilly Media.

Richardson, L., & Ruby, S. (2007). Restful Web
Services. O’Reilly Media.

Tomayko, R. (2004). How I Explained REST
to My Wife. Ryan Tomayko website. Retrieved
November 23, 2012, from http://tomayko.com/
writings/rest-to-my-wife

Using WebService Components. (n.d.). Adobe™
help. Retrieved November 23, 2012, from http://
help.adobe.com/en_US/Flex/4.0/AccessingData/
WS2db454920e96a9e51e63e3d11c0bf69084-
7fdb.html

KEY TERMS AND DEFINITIONS

Application Programming Interface Client
Library: A wrapper for a RESTful API; it is writ-
ten in a specific programming language.

Desktop RIA: A kind of out-of-browser RIA
that can consistently run on multiple operating
systems.

Interaction Design Pattern: A kind of user
interface pattern aimed at achieving effective user
experiences, i.e., rich interactions.

Meta-Search Engine: A type of search engine
that relies on other search engines so that the
result of a query is the result of aggregating the
responses from the underlying search engines.

Representational State Transfer-Based Web
Service: A Web service that adheres to the Rep-
resentational State Transfer (REST) constraints.
REST is a hybrid architectural style derived from
several network-based architecture styles and
combined with additional constraints that defines
a uniform connector interface. It is a new approach
to develop and deliver Web services.

Rich Internet Application: Applications that
are deployed over the Web; this type of applica-
tions combines features and functionality of Web
applications and desktop applications.

Web Feed: A document that contains content
items and the links to the sources of the items on

http://dx.doi.org/10.1109/WSE.2005.10
http://www.ibm.com/developerworks/aix/library/au-aem_rest/
http://www.ibm.com/developerworks/aix/library/au-aem_rest/
http://www.eurekalert.org/pub_releases/2007-07/ip-sem070407.php
http://www.eurekalert.org/pub_releases/2007-07/ip-sem070407.php
http://www.eurekalert.org/pub_releases/2007-07/ip-sem070407.php
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf626ae-7fe8.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf626ae-7fe8.html
http://www.slideshare.net/theresaneil/designing-rich-applications
http://www.slideshare.net/theresaneil/designing-rich-applications
http://tomayko.com/writings/rest-to-my-wife
http://tomayko.com/writings/rest-to-my-wife
http://help.adobe.com/en_US/Flex/4.0/AccessingData/WS2db454920e96a9e51e63e3d11c0bf69084-7fdb.html
http://help.adobe.com/en_US/Flex/4.0/AccessingData/WS2db454920e96a9e51e63e3d11c0bf69084-7fdb.html
http://help.adobe.com/en_US/Flex/4.0/AccessingData/WS2db454920e96a9e51e63e3d11c0bf69084-7fdb.html
http://help.adobe.com/en_US/Flex/4.0/AccessingData/WS2db454920e96a9e51e63e3d11c0bf69084-7fdb.html

226

Case Studies Using Adobe™ Flex

the Web. It is used to deliver frequently updated
content from RESTful APIs to developers. The
two major Web feed formats are RSS and Atom.

ENDNOTES

1 http://www.adobe.com/products/flex.html
2 http://www.adobe.com/devnet/flex.html
3 http://incubator.apache.org/flex/index.html
4 http://help.adobe.com/en_US/FlashPlat-

form/reference/actionscript/3/mx/rpc/http/
HTTPService.html

5 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/flash/net/
URLRequest.html

6 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/flash/display/
Loader.html

7 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/mx/controls/
SWFLoader.html

8 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/flash/net/
URLLoader.html

9 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/flash/net/
URLStream.html

10 http://help.adobe.com/en_US/FlashPlat-
form/reference/actionscript/3/flash/net/
FileReference.html

11 http://www.programmableweb.com/apis/
directory/1?apicat=Video

12 http://www.alexa.com/siteinfo/youtube.com
13 http://www.alexa.com/siteinfo/Vimeo.com
14 https://developer.vimeo.com/apis/advanced
15 https://developer.vimeo.com/player/as-api
16 https://developers.google.com/youtube/2.0/

developers_guide_protocol_audience
17 https://developers.google.com/youtube/

flash_api_reference
18 http://soenkerohde.com/2010/11/air-mo-

bile-stagewebview-uicomponent/
19 http://www.judahfrangipane.com/

blog/2011/01/16/stagewebview-uicompo-
nent/

20 http://www.programmableweb.com/apis/
directory/1?apicat=Weather

21 http://developer.yahoo.com/geo/geoplanet/
guide/

22 http://developer.yahoo.com/weather/
23 https://developers.google.com/maps/docu-

mentation/javascript/tutorial

227

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

DOI: 10.4018/978-1-4666-6437-1.ch011

Case Studies Using JavaFX™

ABSTRACT

JavaFX™ 2.0 is the evolution of the Java programming language as a rich client platform. JavaFX™
platform provides multiple advantages to Java developers and companies that are part of the Java eco-
system, including the ability to leverage existing Java skills and development tools, as well as extending
Swing applications, thus providing a migration path towards more modern and flexible User Interface
(UI) technologies. This chapter first goes in depth on the JavaFX architecture and describes the benefits
of using JavaFX to develop highly interactive Web applications; then, it presents four case studies on
the development of JavaFX™-based Rich Internet Applications (RIAs) built on top of popular social
networking services. For each case study, reviews of some similar real world implementations publicly
available on the Internet are provided.

1. INTRODUCTION

JavaFX™ 2.0 is the evolution of the Java pro-
gramming language as a rich client platform. It
was designed to provide a modern Java-based
environment that shortens the development time
and eases the deployment of data driven business
and enterprise client applications. The JavaFX™
platform enables application developers to easily
create and deploy Rich Internet Applications (RIA)
that behave consistently across multiple platforms.
Built on Java-based technology, the JavaFX™
platform provides a rich set of graphics and media
API with high performance hardware-accelerated
graphics and media engines that simplify the
development of data-driven enterprise client ap-
plications. JavaFX™ platform provides multiple

advantages to Java developers and companies that
are part of the Java ecosystem, including the ability
to leverage existing Java skills and development
tools, as well as extending Swing applications,
thus providing a migration path towards more
modern and flexible UI technologies.

The JavaFX™ API enables developers to create
UIs that seamlessly work across different devices.
The common profile of the JavaFX™ API includes
classes that function on both the desktop and
mobile devices. However, additional classes and
packages can be used from the desktop profile to
take advantage of specific functionality that can
enhance desktop applications.

JavaFX™ was announced on May 2007 at the
“World Wide JavaOne Developer” conference
by Sun Microsystems in order to help content

228

Case Studies Using JavaFX™

developers and application developers to build
Rich Internet Applications on mobile devices,
desktops, televisions and other consumer devices.
At December 4, 2007 was launched the first ver-
sion of this technology that initially consisted of
JavaFX™ Mobile platform and JavaFX™ Script
language. JavaFX™ 2.0 has new features which
its predecessor lacked; the main features are listed
below:

• Java APIs for JavaFX™: The APIs set
are designed to be friendly with differ-
ent Java Virtual Machine-based program-
ming languages such as JRuby and Scala.
Due to JavaFX™ capabilities are avail-
able through Java APIs, tools such as IDE,
code refactoring, debuggers and analyzers
can be used to develop JavaFX™-based
applications.

• A New Graphics Engine: It handles mod-
ern graphics processing units (GPU). The
basis of this new engine is a hardware ac-
celerated graphics pipeline, called Prism,
which is coupled with a windowing toolkit,
called Glass. The graphics engine is the ba-
sis for current and future developments for
rich graphics in a simple and fast way.

• A New Multimedia Engine: It supports
playback of multimedia content on the
Web. It provides a stable and low latency
that is based on the GStreamer multimedia.

• A Web Component: It provides the ability
to embed HTML-based content within a
JavaFX™ application by using the WebKit
HTML rendering technology. The view of
hardware acceleration is available by using
Prism.

• An Updated Browser Plugin: It allows
loading JavaFX™ applets based on Prism.

• Miscellaneous Components: A wide vari-
ety of integrated controls for user interfac-
es, including graphics, tables, menus and
panels. Furthermore, it provides an API to
allow others to contribute their own user

interface controls for the user community
can use them.

In the following section, the main components
of the JavaFX architecture are described. This
chapter presents four case studies of the develop-
ment of JavaFX-based RIAs built on top of popular
social networking websites. In detail, this chapter
addresses the development of three photo albums
based on Flickr™, Picasa™ and Photobucket™
websites, respectively. In addition, the develop-
ment of a search engine for movies based on
Rotten Tomatoes™ website is finally addressed.

2. JAVAFX™ ARCHITECTURE

The JavaFX™ platform is a rich client platform
(RCP) built on Java-based technology and de-
signed to allow developers to easily build and
deploy Rich Internet Applications having a con-
sistently behavior across platforms.

The Figure 1 presents the architectural compo-
nents of the JavaFX™ platform which describes
each component and how they are interrelated
(Debnath, 2012).

JavaFX™ 2.0 is comprised of several subcom-
ponents, including a high-performance graphics
engine named Prism. Prism is the byproduct of
the Mozilla Labs experiments to bridge the gap
in user experience between Web and desktop
applications. JavaFX™ also includes the Glass
window toolkit, a media engine and a Web engine.
It is responsible for showing windows (including
Stage, Popup, among others), managing the event
queue, passing events up to JavaFX™, and setting
up timers.

• The JavaFX™ public API provides free-
dom and flexibility in creating rich client
applications. Since JavaFX™ 2.0 includes
the capabilities of Java platform; it can le-
verage the power of Java features such as
annotations, multi-threading, generics, and

229

Case Studies Using JavaFX™

the extended Java collection library. Most
of the API and programming model have
been directly ported as a lineage of its pre-
decessor, while some APIs such as Layout
and Media have been optimized and sim-
plified in response to the feedback from
previous users.

• Scene graph is the starting point of
JavaFX™ 2.0 application. It is responsible
for rendering user interfaces and handling
user input through various visual elements
represented as hierarchical tree of nodes.
Each item in the scene graph is called a
node and has one parent and zero or more
children. The javafx.scene API simplifies
working with rich UIs.

• The Quantum Toolkit connects Prism and
Glass Windowing Toolkit together to make
them available to the JavaFX™ layer above
them in the stack and it also manages the
threading rules related to rendering versus
events handling.

• Prism is responsible for rasterization and
rendering of JavaFX scenes and processes
rendering jobs. It can run on both hardware
and software renderers, including 3-D.

• Glass Windowing Toolkit’s main responsi-
bility is to provide native operating servic-

es, such as managing the windows, timers
and surfaces. It serves as the platform-de-
pendent layer that connects the JavaFX™
platform to the native operating system.
The Glass toolkit is also responsible for
managing the event queue.

• The Media Engine component has been
completely designed for JavaFX™ 2.0 to
increase stability, improve performance
and provide consistent behavior across
platforms.

• The Web Engine component is based on
Web Kit, an open source Web brows-
er engine that supports HTML5, CSS,
JavaScript, DOM and SVG. It enables
developers to implement features such as
rendering HTML content, support his-
tory, back and forward navigation, execute
JavaScript command and event handling in
their Java applications.

The JavaFX™ tools suite offers creative solu-
tions for both developers and designers. There is
a JavaFX™ Script plugin with language support
for NetBeans™ IDE. The plugin enables de-
velopment of JavaFX™ applications within the
cross-platform NetBeans™ tools suite. In addi-
tion, Project Nile is a set of easy-to-use plugins

Figure 1. The architectural components of JavaFX™

230

Case Studies Using JavaFX™

for Adobe™ Photoshop and Adobe™ Illustrator
that allow designers to export graphical assets to
JavaFX™ applications. This tool simplifies the
designer/developer workflow, enabling better
collaboration between designers and developers.

The processing and networking capabilities in
today’s mobile handsets have the potential to de-
liver a new class of rich, Internet-enabled content.
To allow content creators to tap into this power,
Sun Microsystems is bringing JavaFX™ technol-
ogy to mobile devices. JavaFX™ Mobile builds
on top of the market-leading Java ME platform
to take advantage of its powerful, device-level
capabilities. With the Java ME platform already
running on over 2 billion handsets, Sun is well
positioned to establish JavaFX™ Mobile as the
leading technology for rich Internet applications
(RIAs) on mobile devices. The content created for
JavaFX™ technology is capable of running on all
the screens of different devices. This means people
building content based on JavaFX™ technology
for desktop, mobile phone, or other consumer
devices will be able to deploy their content more
broadly than with any other platform.

There are a large number of requirements for
RIAs that are not met by any platform, and Sun is
positioned to address these challenges. JavaFX™
technology offers a number of unprecedented
advantages (Features of JavaFX):

• Built on Java: JavaFX™ is not starting
from scratch; it is built on the Java plat-
form (Java SE and Java ME) and leverages
all the power and capabilities of the Java
platform.

• Across Devices and Screens: JavaFX™
applications run across multiple devices
and screens, including browser, desktop,
mobile, TV, and more. The same JavaFX™
Script applications that run in the browser
can also be deployed unmodified on the
desktop.

• Open Source: JavaFX™ is the only non-
proprietary rich client environment with

many components of the technology al-
ready available in open source.

• Designer/Developer Workflow: There re-
mains a distinct need to close the gap be-
tween a designer’s vision and a program-
mer’s skills with an easy-to-use, visually
accurate, high-performance suite of tools.
JavaFX™ technology and tools suite em-
power designers to collaborate with de-
velopers working in Java-based technol-
ogy. Project Nile simplifies the designer/
developer workflow by allowing designers
to export graphical assets from leading de-
signer tools to JavaFX™ applications. A
JavaFX™ Designer tool is planned for re-
lease in the future. The JavaFX™ Designer
tool will provide a comprehensive visual
design environment to allow designers to
author rich, Internet-enabled content and
applications without necessarily knowing
the underlying JavaFX™ Script language
or the specifics of the Java platform.

3. BENEFITS OF USING JAVAFX™

While Rich Internet Applications apply across a
broad lattice of industries and uses, one of their
primary virtues is to allow a company to reduce
the complexity that stands between where they
are today with their traditional Web applications
and where they want to be. RIAs are consistently
bringing companies closer to their vision of their
application, closer to their customers, and closer
to the business impact they believed the Internet
could actually have on their overall business. This
is expressed most clearly in what RIAs have al-
lowed or enabled companies to do (Duhl, 2003).
Companies have considered and chosen JavaFX
because they believe they could:

• Develop new kinds of applications with
features or capabilities that would be ex-
tremely difficult or impossible for a de-

231

Case Studies Using JavaFX™

veloper to create using traditional Web
technologies.

• Engage, guide and listen to their customers
on-line more intimately or more closely to
how they would do it in person to increase
loyalty, improve service, deepen the cus-
tomer relationship, distinguish the com-
pany, or guide product development.

• Create compelling, attractive Web sites
using audio, video, text and graphics that
generate leads, increase sales, simplify
communication and create a unique online
experience worth returning to.

• Simplify typically complex processes like
registration, configuration or purchasing
leading to increased leads, sales, bookings,
time on the site and repeat visits.

• Present information to their employees,
management and partners in clear, innova-
tive, intuitive and effective ways to increase
productivity, information sharing, deci-
sion-making and competitive advantage.

• Provide an engaging, highly interac-
tive presentation layer to underlying Web
Services.

• Reduce bandwidth costs associated with
frequent page refresh for high traffic sites.

• Dramatically increase sales of their prod-
ucts and services through their Internet
channel.

• Build an engaging, highly interactive
Web site or application at a reduced
cost compared to using alternative Web
technologies.

At a high level, RIAs can improve the overall
client experience and provide the continuity that is
lacking in many of today’s websites. When a user
arrives at a website and he is faced with the task
of finding a product/service, there are really two
ways this can be accomplished, by browsing or
searching. If the site has a relatively small or highly
focused product/service offering, then browsing
can be an effective way to navigate. However, if

the retailer offers a wide variety of products, par-
ticularly ones with very different characteristics,
then searching may be a more effective option.
For example, in a typical HTML-based website,
if a consumer searches for a product, the rigid
page-by-page model means that he/she will be
delivered to a new page where the search results
are displayed. If he/she clicks on a specific product,
then a second page is launched with the product
detail. Getting back to the original search results
generally means hammering on the browser’s
back button or re-submitting the search. With
an RIA, the search function can launch results
on the same page and then use modal window to
display detailed product information. This keeps
the context of the search visible and allows the
consumer to adjust criteria on the fly and update
his/her search (Simmons, 2007).

In addition, specific RIA-driven tools can be
used to enhance the user experience on websites,
these include (Simmons, 2007):

• Product Selectors: If a retailer only offers
a handful of products, the location process
is easy. However, when websites offer hun-
dreds or thousands of different options,
drilling down to find a specific item, in a
specific color or size can be challenging.
Product selectors help users sift through
large volumes of data and easily narrow
results down to just their area of focus. By
using sliders, check boxes, color swatches,
product comparisons and other customiza-
tions, users can search for products and
then selectively narrow results to exactly
find the right fit. The enhanced ability to
customize views on-the-fly and provide re-
al-time visual representations of the select-
ed products also significantly enhances the
user’s shopping experience. An example of
this feature is presented by using the slid-
ers in the “Find a Diamond” application on
the Amazon.com™ website.

232

Case Studies Using JavaFX™

• Configurators: As retailers provide cus-
tomers with more personalized options,
the complexity of buying an item increases
significantly. Configurators allow users to
build and configure their own products and
to immediately visualize the customiza-
tions that they have made. Since RIAs al-
low page updates, they are perfect for this
type of implementation as they allow imag-
es to change on-the-fly to reflect additions
and updates. Configurators are very use-
ful for complex products that offer many
options and exceptions. They can be used
to strategically show accessory dependen-
cies and to up-sell additional features to
clients. Product configurators can lead to
both better conversion ratios and larger or-
der sizes (thanks to the concept of bundles
and add-ons that users can easily add with
a few clicks). An example of this feature is
presented by using sports uniform creator
from Teamwork™ website.

• Integrated Video: Another way that re-
tailers can enhance their website with rich
media is through the addition of integrated
video. Many fashion retailers are explor-
ing adding captured video from fashion
shows to their sites for consumers to view
at their leisure. This presentation of com-
plete looks, often with overlays that pro-
vide detailed product info and a “buy it
now” option, encourages the purchase of
multiple items at once. In addition to fash-
ion, integrated video can also be used to:
1) leverage advertising footage, 2) blend in
lifestyle elements (such as sports footage)
to make the website more sticky, 3) pro-
vide guidance, how-to’s or instructions for
the products. An example of this feature is
presented by using the RL Style Guide that
is a mini application that is embedded into
the Ralph Lauren™ website.

• Visualization: Similar to the above exam-
ples, visualization tools allow users to re-

ally see what they are buying. For example,
if a retailer sells rugs and flooring, it may
be challenging to drive buyers through the
purchase process without seeing a sample
and showing them how the floor will look in
their home. Visualization tools allow users
to choose a room that is similar to theirs, or
even upload a photo of their own room, and
virtually apply the floor to exactly see how
the room will look. Tools such as this not
only get the consumer more involved with
a brand, and therefore more committed to
the sale; they also increase conversion and
reduce returns. An example of this feature
is presented by browsing the Shaw Floors
Idea™ Gallery website.

• Add-Ons: These add-ons can complement
a retail strategy by adding more touch
points and providing dedicated custom-
ers with the opportunity to further engage
with a brand. From notifying users when
new products are added to the site, to push-
ing out special offers or even collecting
client information, these desktop widgets
can provide a new level of interaction and
relationship building. An example of this
feature is presented by installing eBay™
Desktop that runs off the user’s desktop
and updates whenever an internet connec-
tion is available.

• Full Site Revamp: A final option for add-
ing richness for a website in order to en-
hance the user experience comes with a
full site revamp. If a retailer has a propri-
etary solution in place that does not have
an open architecture, it may be challeng-
ing to embrace some of the other options
presented.

These features were taken into account in order
to develop a set of Web-based applications by us-
ing the JavaFX™ programming language. In the
following sections, different case studies of using

233

Case Studies Using JavaFX™

JavaFX™ as a way of building highly interactive
Web applications are presented.

4. DEVELOPING A PHOTO
ALBUM BY USING FLICKR™

Flickr™ is an image hosting and video hosting
website, web services suite, and online com-
munity that was created by Ludicorp™ in 2004
and acquired by Yahoo! ™ in 2005. Flickr™ is a
great website for hosting family photos, vacation
photographs, weddings photos, or any image col-
lection intended to be shared with friends or family.
Flickr™ popularity is largely due to its ability to
manage images using tools that allow authors to
label their pictures and explore and comment on
other users’ images. The Flickr™ API is available
for non-commercial use by outside developers.
Commercial use is possible by a prior arrangement
(USF College of Education, n.d.).

The Flickr™ API is available in three request
formats: 1) REST, 2) XML-RPC and 3) SOAP.
In addition, the Flickr™ API has support for five
different response formats: 1) REST, 2) XML-
RPC, 3) SOAP, 4) JSON and 5) PHP.

To perform an action by using the Flickr™
API, a request must be built and sent it to an entry
point. This request includes some parameters and
methods to be invoked. The invocation result is
a formatted response. All the requests include
some parameters; some examples of them are
listed below.

• method: This mandatory parameter is
used to specify the method call.

• api_key: This mandatory parameter is
used to specify the API key to be used.

• format: This optional parameter is used to
specify a response format.

A usage example is presented in the follow-
ing URL:

http://api.flickr.com/ser-

vices/rest/?method=search&api_

key=A3344DSLÑSDS&format=JSON

The parameters, format responses and er-
ror codes for each method are listed in the API
documentation available at the Flickr™ website.
Furthermore, there are some Flickr™ APIs de-
veloped by third parties, however Flickr™ is not
responsible of their operation. Some of these APIs
are listed in Table 1.

For developing a JavaFX™-based photo album,
the flickr.photo.search method is required. This
method returns a list of photos matching some
criteria. Only photos visible to the calling user
are returned. To return private or semi-private
photos, the caller must be authenticated with
‘read’ permissions, and have permission to view
the photos. Unauthenticated calls will only return
public photos. Some parameters for this method
are listed in table 2.

A usage example is presented in the follow-
ing URL:

http://api.flickr.com/servic-

es/rest/?method=flickr.photos.

search&api_key=c953fff5d22c9cd6f

57d7501d04d1921&text=Giner&per_

page=10&page=3

Table 1. Third-party Flickr APIs

Actionscript C Java PHP Ruby

Flasrh
AS3 Flickr Lib

Flickrcurl Flickrj
Flickr-jAndroid

Jickr

phpFlickr
Phlickr

PEAR::Flickr_API

Flickraw
Flickr.rb
RFlickr

234

Case Studies Using JavaFX™

Regarding to implementation details, all the
sample applications developed in this chapter
implement some interaction design patterns (see
chapter 8). For instance, they implement the
brighten and dim interaction design pattern by
means of the so-called lightbox effect technique.
The lightbox effect is used to focus the user’s atten-
tion on a pop-up dialog box (a dialog overlay) by
dimming down the parent window (background).
At the same time, it allows reinforcing modality;
in fact, it is commonly used with modal pop-up
boxes, i.e., pop-up dialog boxes that do not en-
able users to interact with their parent windows.
In addition, the sample applications developed
throughout this chapter also implement the inline
paging interaction design pattern because they
show a set of search results (a page of results)
at a time, i.e., they allow switching between sets

of search results while keeping the remain of the
application (search panel) stable.

In addition, these sample applications exempli-
fy other factors affecting three of the distinguishing
features of RIAs, namely, enhanced GUI, client
and server-side business logic and sophisticated
mechanisms for client-server communication
(Toffetti et al., 2011). In fact, taking advantage
of the JavaFX™ support for client-side business
logic and the Java SE support for asynchronous
HTTP requests, these sample RIAs implement a
single-page navigation model in order to preserve
the visual continuity of their GUIs.

In detail, the photo albums developed in this
chapter are composed of three main components:
1) a search panel, 2) a results panel and 3) a modal
pop-up box by using the lightbox technique. The
pop-up dialog box is a JavaFX™ VBox layout

Table 2. Parameters for the Flickr API fllickr.photo.search method

Parameter Mandatory Default value Description

api_key Yes None Application key assigned in the registration
process

user_id No None If this parameter is specified, then the application
searches photos by this user

Tags No None It returns photos that match the tags delimited by
commas

text Yes None It allows searching text on the photos located in
the title, description and tags

min/max_upload_date No None It specifies time periods in which the pictures
were uploaded

licence No All It specifies the license type

sort Yes date-posted-asc It specifies the list order to be returned. It can
be date-posted, date-taken, interestingness and
relevance

privacy_filter No 1 It returns photos that match a desired level of
privacy applied when the user was authenticated

bbox No None It is used to define geo-tag photos as coordinates

safe_search No 3 Safe Search, 1 for safe, 2 for moderate

media Yes All Filter by media type. The allowed values are all,
photos and videos

per_page Yes 100 Number of photos to be returned per page.
Maximum value is 500

page Yes 1 The results page to be returned

235

Case Studies Using JavaFX™

which actually has the same size that the top level
container of the application, the Stage container.
In this case, the modality is not an issue because
it is achieved by overlaying a pop-up dialog box
that actually has the same size than the parent
window so that the user can not interact with
the parent window until the pop-up dialog box
is removed. In detail, the pop-up dialog box dis-
plays a centered full-size image of the thumbnail
selected from the results panel. This full-size im-
age is based on the JavaFX™ ImageView control.
In addition, the background color of the pop-up
dialog box is settled to black and, at the same
time, the opacity is adjusted to 0.5 by using the
opacity property inherited from the JavaFX™
Node class in order to make the pop-up dialog
box translucent. The results panel is composed
of a JavaFX™ TilePane layout arranging results
(thumbnails) in eight columns and five rows where
each cell contains an ImageView control displaying
the corresponding thumbnail. The results panel
also contains a JavaFX™ HBox layout which in
turn contains the typical paging controls (next
and previous controls); these paging controls
are actually JavaFX™ Button controls. It should
be noticed that, although JavaFX™ provides a
Navigation control which has built-in functions
for navigating through multiple pages of content,
the sample applications developed in this chapter
use a custom navigation control representing a
lightweight version of the JavaFX™ Navigation
control. In fact, the JavaFX™ Navigation control
comprises both a content area and a navigation
area; the navigation area contains in turn a next
page button, a previous page button, a selected
page label as well as a configurable set of page
indicator buttons which directly allows navigating
to a particular page of content.

The functionality of the photo albums devel-
oped in this chapter describes a workflow where
the functions are executed in a sequential way
as follows: 1) a keyword is entered into the text
field and the search button is clicked, 2) the cor-
responding URI is generated and the request is

sent to the underlying Web service engine, 3) the
document containing the corresponding results
is loaded and it is properly processed in order to
retrieve the data to be presented to the user; the
relevant data (thumbnails) are displayed on the
results panel, 4) the user selects a result from the
results panel and a modal pop-up box containing
more detailed information (a full-size image) about
the result is automatically displayed.

It is important to notice that all the sample
applications preferably use the XML-based result
format to retrieve data from the underlying Web
services engine. Finally, it should be noticed that,
unlike JavaFX™ version 1.x, JavaFX™ version
2.x does not have special support for synchronous
and asynchronous HTTP requests as a means to
invoke REST-based Web services. At this point,
standard Java features must be used for this pur-
pose. In this sense, the analysis of the Java APIs
related to HTTP request/response handling is out
of the scope of this chapter and it is not subse-
quently addressed.

In the specific case of the Flickr™-based photo
album developed in this section, it allows users to
search for images hosted on Flickr™ and it displays
both a thumbnail and a full-size image for each
result retrieved. The initial state of the GUI of the
Flickr™-based photo album developed by using
JavaFX™ is depicted in Figure 2. This GUI is
composed of the aforementioned search and results
panels. In addition, unlike the other photo albums
developed in this chapter, the search panel of the
Flickr™-based photo album includes a set of sort
fields that allows retrieving search results sorted
by date, relevancy and interestingness. Figure
3 depicts the usage of the Flickr™-based photo
album on searching dog images by entering the
“mastin napolitano” keyword. Finally, the usage
of the Flickr™-based photo album on displaying
the full-size image of a thumbnail (image entitled
“Mi nena”) selected from the results panel is de-
picted in Figure 4. This functionality represents
the second state of the GUI of the Flickr™-based
photo album.

236

Case Studies Using JavaFX™

Figure 3. Searching dogs images on Flickr™ by using the photo album developed entering the “mastin
napolitano” keyword

Figure 2. Main GUI of the photo album developed for Flickr™

237

Case Studies Using JavaFX™

Some examples of other similar Flickr™-based
Tools are listed below:

• Flickr’s Badge Maker (http://flickr.com/
badge_new.gne): It allows creating either
an HTML-based or Flash™-based badge
for a website.

• fd’s Flickr Toys (http://bighugelabs.com/
flickr/): This website has a great collection
of different tools that can be used with a
Flickr™ account. It allows creating mo-
tivational posters, a magazine cover, and
more.

• Preloadr (http://preloadr.com/): An image
editing tool for Flickr™ images. Preloadr
allows adjusting the brightness, color bal-
ance, sharpness, and more. It can also
be used to crop images. Preloadr uses a
Flickr™ account.

5. DEVELOPING A PHOTO
ALBUM BY USING PICASA™

Picasa™ is an image organizer and image viewer
for organizing and editing digital photos, plus an

integrated photo-sharing website, originally cre-
ated by a company named Lifescape™. Since 2004,
this web application was owned by Google™.
The Picasa™ Web Albums Data API allows for
websites and programs to integrate with Picasa™
Web Albums, enabling users to create albums,
upload and retrieve photos, comment on photos,
and more. Some developers have done some ac-
tions with the API which are listed below:

• Created applications to easily upload pho-
tos from devices, desktop applications, and
other web services.

• Created full-featured mobile clients for
browsing and uploading to Picasa™ Web
Album.

• Integrated Picasa™ Web Album with blog-
ging software to easily show Picasa™ Web
Album albums and photos.

• Used Picasa™ Web Album to power digi-
tal photo frames.

Picasa™ offers two APIs (Indiana University,
2009):

Figure 4. Preview of an image hosted on Flickr™ by using the photo album developed

238

Case Studies Using JavaFX™

• Picasa Button API: This API allows add-
ing own button to Picasa™ and enables
end users to export images from Picasa™
into another application or service with
one click. The Picasa™ user interface (UI)
includes custom buttons which can open
image files in local applications and upload
the selected image files to the web by using
the Picasa™ Web Uploader.

• Picasa Web Uploader API: In combina-
tion with the Picasa™ Button API, this
API allows users to upload photos to a
web service after seeing a webpage pre-
view of the images they have chosen to
upload. Uploader API. The Picasa™ Web
Uploader (PWU) enables end users to up-
load photos from Picasa™ to online ser-
vices such as web-based email, blogging,
gallery display, and photo printing servic-
es. With PWU, end users can interact with
a dynamic web UI and preview images be-
fore sending photo data. PWU is a stateless
API, which gives the developers and IT
administrators the ability to control what
images are uploaded (and at what sizes)
via server settings. This API has support
for uploading video files.

In order to exemplify the capabilities of Ja-
vaFX™, a sample RIA by using the Picasa™
Web albums API was developed in this section.
This application allows users to search for im-
ages hosted on Picasa™ and it displays both a
thumbnail and a full-size image for each result
retrieved. As all the photo albums developed in
this chapter, this application has the structure and
functionality previously described in section 11.4.
Table 3 summarizes the parameters for the search
method of the Picasa™ Web albums API.

Figure 5 depicts the usage of the Picasa™-
based photo album on searching images by enter-
ing the “pico de orizaba” keyword. In addition,
the usage of the Picasa™-based photo album on
displaying the full-size image of a thumbnail (im-
age entitled “Pico de Orizaba 154”) selected from
the results panel is depicted in Figure 6. As for
the other photo albums developed in this chapter,
this functionality represents the second state of the
GUI of the Picasa™-based photo album.

Some examples of other similar Flickr™-based
Tools are listed below:

• PicPush: (http://blog.350nice.com/wp/
products/picpush) A multimedia syn-
dication application for Android. It au-

Table 3. Parameters for the Picasa™ Web albums API search method

Parameter Mandatory Default value Description

Access Yes Public This represents the element visibility

Alt No Atom This allows a kind of alternative representation

Bbox No None This returns results for a geographic zone of geo-tagged photos

Fields No None It filters some features to be displayed in the response

Imgmax No Variable It specifies the photo maximum size

Kind Yes All It specifies the elements to be searched

L No None It specifies the place where photos can be found .

max-results Yes 100 Maximum number of result to be displayed

start-index Yes 0 It represents the index of the first result to be displayed

Tag No Variable It allows filtering photos according to a specific tag

Thumbsize No None It specifies the thumbnail size

http://blog.350nice.com/wp/products/picpush
http://blog.350nice.com/wp/products/picpush

239

Case Studies Using JavaFX™

Figure 5. Searching images on Picasa™ by entering “Pico de Orizaba” keyword

Figure 6. Preview of an image hosted on Picasa™ by using the photo album developed

240

Case Studies Using JavaFX™

tomatically shares pictures and vid-
eos to Shutterfly™, PhotoBucket™,
SmugMug™, Facebook™, Gallery™,
Picasa™ and Flickr™.

• Picasa Mobile: (http://imprologic.com/
picasa/android/) A mobile application
for Android-based devices, which allows
browsing and managing Picasa™ Web al-
bums and photos. It also allows browsing
and uploading local photos directly from
the mobile device’s camera as well as from
the SD card.

• Web Albums: (http://www.webalbum-
sapp.com/) A Picasa™ Web albums and
photos viewer and manager application for
iOS-based devices. It also allows upload-
ing not only photos but also videos both
locally stored and captured by using the
built-in camera feature. It supports offline
browsing and it is Google+-compatible.

• Picasa Tool: (https://play.google.
com/store/apps/details?id=larry.zou.
colorfullife&hl=en) A multi-platform mo-
bile application (Android and BlackBerry
Tablet OS) for browsing and managing
Picasa™ Web albums and photos as well
as Google+™ photos either online or of-
fline. It has photo editor capabilities in-
cluding image size alteration and special
effects.

6. DEVELOPING A PHOTO ALBUM
BY USING PHOTOBUCKET™

Photobucket™ is an image hosting, video hosting,
slideshow creation and photo sharing website. It
was founded in 2003 by Alex Welch and Dar-
ren Crystal and received funding from Trinity
Ventures™. It was acquired by Fox Interactive
Media™ in 2007. In December 2009, Fox’s par-
ent company, News Corp sold Photobucket™ to
Seattle mobile imaging startup Ontela™. Ontela™

then renamed itself Photobucket Inc. and continues
to operate as Photobucket™.

Photobucke™t provides multiple options for
connecting applications or websitse to media on
Photobucket™. Photobucket™ API provides API
calls to connect applications to Photobucket™. It
is useful when an application that requires Photo-
bucket™ is not displayed on the Photobucket™
interface.

Furthermore, there are some Photobucket™
APIs developed by third parties, however Photo-
bucket is not responsible for their operation. Some
of these APIs are listed in Table 4.

The Photobucket™ API allows a set of opera-
tions for:

• Uploading images.
• Uploading video.
• Getting all recent media (videos and im-

ages) for:
 ◦ A specific user.
 ◦ All users.
 ◦ Group albums.

• Searching media matching a specific term
or terms in:
 ◦ One user’s account.
 ◦ All user accounts.
 ◦ Group albums.

Table 4. Third-party Photobucket™ APIs

Programming
Language

API

C# * Photobucket C#.NET
* PhotobucketNet
* Silverlight 2

PHP * Zend_Service_Photobucket library
* PHP5 Fluent library

Actionscript * Actionscript 3 Photobucket API Library

Java * Photobucket Java API

Pyhon * Photobucket Python API

Javascript * OAuth for WebOS

Ruby * BitBucket Ruby

Objective-C * BitBucket Objective-C

http://imprologic.com/picasa/android/
http://imprologic.com/picasa/android/
http://www.webalbumsapp.com/
http://www.webalbumsapp.com/
https://play.google.com/store/apps/details?id=larry.zou.colorfullife&hl=en
https://play.google.com/store/apps/details?id=larry.zou.colorfullife&hl=en
https://play.google.com/store/apps/details?id=larry.zou.colorfullife&hl=en

241

Case Studies Using JavaFX™

• Getting all details associated with one
piece of media, such as:
 ◦ Link URLs.
 ◦ Thumbnail URL.

• Updating titles, descriptions, and tags.

The Photobucket™ API uses REST (Rep-
resentational State Transfer) for requests and
responses, so that domain-specific data can be
transferred over HTTP without an additional
messaging layer such as SOAP or session tracking
via HTTP cookies. The REST Request Format is
a simple HTTP GET, POST, PUT, or DELETE
action. Any object that is associated with a user
must use the URL provided by Photobucket™,
via the login process or via the Get User URL
method. Any object not associated with a user
can use an anonymous request, sent to http://api.
photobucket.com. The REST response format is a
simple XML-based block that includes the action
in a <method> tag: HTTP GET, POST, PUT, or
DELETE. The response format can be specified
in the request. The default response format is
XML. All responses are wrapped in a “response
envelope” that contains:

• “status” The response status.
• “format” The current format.
• “method” The method that was used to

request.
• “timestamp” The timestamp of the request.
• “content” - The contents of the response.

The Search method is one of the main methods
of the Photobucket™ API. This method provides
a set of operations which are listed below:

• Search Images: It allows searching for
images.

• Search Videos: It allows searching for
videos.

• Search Group Albums: It allows search-
ing group albums for images and videos.

• Get Featured Home Page Categories: It
gets categories featured on the home page
by Photobucket™.

• Get Featured Group Albums: It gets a
list of featured group albums.

• Get Find Stuff Category Names: It gets
the category names for the Find Stuff page.

• Get Find Stuff Category Media: It gets
media in a specific category or featured
media for all categories.

• Follow a Search Term: It allows search-
ing for a term and follow the results.

• Stop Following a Search Term: It stops
following a search term.

• Get Search Term Following Status: It de-
termines if a user is following a particular
search term.

These operations involved on the Search
method contain parameters in order to customize
a particular search. Some of these parameters are
listed in Table 5.

In order to exemplify the capabilities of JavaFX,
a sample RIA by using the Photobucket™ API was
developed in this section. This application allows
users to search for images hosted on Photobucket™
and it displays both a thumbnail and a full-size
image for each result retrieved. As all the photo
albums developed in this chapter, this application
has the structure and functionality previously de-
scribed in section 11.4; nevertheless, it includes a
sorting field that allows retrieving results sorted
by date, restricting the results to the last 7 days.

Figure 7 depicts the usage of the Photobucket™-
based photo album on searching images by entering
the “gatitos” keyword. In addition, the usage of
the Photobucket™-based photo album on display-
ing the full-size image of a thumbnail (image
entitled “Gatitos”) selected from the results panel
is depicted in Figure 8. As for the other photo
albums developed in this chapter, this functional-
ity represents the second state of the GUI of the
Photobucket™-based photo album.

242

Case Studies Using JavaFX™

Some examples of other similar Photobucket™-
based tools are listed below:

• FotoFlexer: (http://fotoflexer.com/) A web
application (and Facebook™ application)
that lets making high quality, near-Pho-
toshop quality alterations to photos. The
website evolved as a place for MySpace™
users to store and share photos.

• Photobucket Mobile: (http://photobucket.
com/mobile) The official Photobucket™
mobile application. Thus, it lets perform-
ing most of the tasks a user can perform
directly on the Photobucket™ website. In
fact, it allows managing Photobucket™ ac-
counts for locally uploading stored photos
and videos, downloading photos from al-
bums and so on.

Figure 7. Searching images on PhotoBucket™ by entering the “gatitos” keyword

Table 5. Parameters for the Photobucket™ API search method

Parameter Mandatory Default value Description

Identifier No None Search term. If a search term is not entered, or is “-”, recent images are returned

Num No 20 Number of results to be returned (recent). Maximum of 100

Perpage No 20 Number of results to be returned for main search type. Maximum of 100

Page No 1 Page number to be displayed (1 indexed)

Offset No (page-1)*-
Perpage

Beginning offset of results

Secondaryperpage No 5 Number of images to be showed, per page, for secondary search type

Recentfirst No False It shows images from the last seven days

243

Case Studies Using JavaFX™

• Snapbucket: (http://photobucket.com/
mobile) A photo editing multi-platform
(Android and iOS-based mobile de-
vices) mobile application developed by
Photobucket.com, Inc. It is not only a pho-
to editing tool; it also lets sharing the snaps
by using Twitter™, Facebook™, e-mail,
SMS and Photobucket™.

• JustPictures!: (https://play.google.
c o m / s t o r e / a p p s / d e t a i l s ? i d = c o m .
justpictures&hl=en) A multi-platform
photo viewer application for Android-
based mobile devices. It allows brows-
ing and synchronizing photo albums
from Picasa™, Flickr™, Smugmug™,
Photobucket™, Tumblr™ and other Web
2.0 websites; it also supports locally stored
photos.

7. DEVELOPING A ROTTEN
TOMATOES™-BASED SEARCH
ENGINE FOR MOVIES

Rotten Tomatoes™ is a website devoted to reviews,
information, and news of films, widely known as
a film review aggregator. The API gives access to
Rotten Tomatoes’ wealth of movie information,
allowing anyone to build applications and widgets
enriched with Rotten Tomatoes™ data. Using the
API, users can, for example:

• Search for movies and retrieve detailed
movie information, like cast, directors, and
movie posters

• Access to the Rotten Tomatoes ™Score
(aggregation of critic’s scores) and the
Audience Score

• Get the current box office movies, new re-
leases, and upcoming movies

The Rotten Tomatoes™ API is RESTful web
service that was designed to be easy to explore
and use. The base URI to access all resources is

Figure 8. Preview of an image hosted in PhotoBucket™ by using the photo album developed

244

Case Studies Using JavaFX™

http://api.rottentomatoes.com/api/public/v1.0.
By using the base URI, a developer will be able
to reach and manipulate without reading through
multiple pages of documentation. This is accom-
plished by linking related resources and providing
instructions on how to use each representation
(link templates) in the response itself

The main operations of the Rotten Tomatoes™
API are listed in Table 6.

In order to exemplify the capabilities of
JavaFX™, a sample RIA by using the Rotten
Tomatoes™ API was developed. This application
allows users to search for movies listed on Rotten
Tomatoes™ and it displays detailed information
about a particular movie including the poster and
the similar movies. In detail, it is composed of four
main components: 1) a search panel, 2) a results
panel, 3) a details panel and 4) a modal pop-up

box by using the lightbox technique. Unlike the
pop-up dialog box developed for the photo albums
analyzed in previous sections of this chapter, the
pop-up dialog box developed for this sample RIA
displays a list of other movies related to the movie
is being displayed on the details panel. Both the
pop-up dialog box and the results panel are based
on the JavaFX™ VBox layout and they arrange
both the movie poster and the movie title in a
single column per each result. The movie titles
are based on the JavaFX™ Label control whereas
the movie posters are based on the JavaFX™
ImageView control. On the other hand, the details
panel uses a JavaFX™ HBox layout to horizontally
arrange the full-size movie poster and the detailed
movie information which includes the release date,
the film rating (Motion Picture Association of
America’s rating system) and the synopsis. The

Table 6. Operations of the Rotten Tomatoes™ API

Operator Description

Movies Search The movies search endpoint for plain text queries. It allows searching for movies

Lists Directory It displays the top level lists available in the API. There are movie lists and DVD lists available

Movie Lists Directory It shows the movie lists available

Box Office Movies It displays top box office earning movies, sorted by most recent weekend gross ticket sales

In Theaters Movies It retrieves movies currently available in theaters

Opening Movies It retrieves current opening movies

Upcoming Movies It retrieves upcoming movies. The results are paginated if they go past the specified page limit

DVD Lists Directory It shows the DVD lists available

Top Rentals It retrieves the current top DVD rentals

Current Release DVDs It retrieves current release DVDs. The results are paginated if they go past the specified page limit

New Release DVDs It retrieves new release DVDs. The results are paginated if they go past the specified page limit

Upcoming DVDs It retrieves new release DVDs. The results are paginated if they go past the specified page limit

Movie Info It provides detailed information on a specific movie specified by Id. The movies search endpoint
can be used or peruse the lists of movies/DVDs to get the urls to movies

Movie Cast It pulls the complete movie cast for a movie

Movie Clips It provides related movie clips and trailers for a movie

Movie Reviews It retrieves the reviews for a movie. The results are paginated if they go past the specified page limit

Movie Similar It shows similar movies for a movie

Movie Alias It provides a movie lookup by an id from a different vendor. It only supports IMDb™ lookup at this
time

245

Case Studies Using JavaFX™

movie information is displayed using simple label
controls. It is important to notice that, unlike other
GUI controls used to display non-editable text such
as the Adobe™ Flex Label, the JavaFX™ Label
can be used to display multiline text labels. For
this purpose, the setWrapText() method which is
directly inherited from the Labeled class must be
used. The details panel also contains a JavaFX™
Button control which is in charge of displaying the
modal pop-up box showing the movies related to
the movie selected from the results panel.

The functionality of the search engine for vid-
eos developed in this section describes a workflow
where the functions are executed in a sequential
way as follows: 1) a keyword is entered into the
text field and the search button is clicked, 2) the
corresponding URI is generated and the request is
sent to the underlying Rotten Tomatoes™ engine,
3) the document containing the corresponding
results is loaded and it is properly processed in
order to retrieve the data to be presented to the
user, 4) the relevant data (thumbnail of movie
posters and movie titles) are displayed on the
results panel, 5) the user selects a result from
the results panel and the corresponding detailed
information is displayed on the details panel (a

full-size movie poster, the release date, the film
rating and the synopsis) and 6) the “show similar
movies” button on the details panel is clicked and
a modal pop-up box is displayed listing movies
similar to the movie is being reviewed.

The initial state of the GUI of the Rotten
Tomatoes™-based search engine developed by
using JavaFX™ is depicted in Figure 9. This GUI
is composed of the aforementioned search, results
and details panels. Figure 10 depicts the usage of
the Rotten Tomatoes™-based search engine on
searching movies by entering the “the avengers”
keyword. In addition, the usage of this sample
application on displaying detailed information
related to a previewed movie (“Marvel’s The
Avengers”) is depicted in Figure 11. Finally, the
usage of the Rotten Tomatoes™-based search
engine on displaying the list of movies related to
a particular movie (“Marvel’s The Avengers”) is
depicted in Figure 12. Unlike the photo albums
developed in previous sections, the second state of
the GUI of the Rotten Tomatoes™-based search
engine is represented by this latter functionality.

Some examples of other similar Rotten
Tomatoes™-based tools are listed below:

Figure 9. Main GUI of the search engine for movies based on Rotten Tomatoes™

246

Case Studies Using JavaFX™

Figure 11. Displaying detailed information about the “Marvel™’s The Avengers” movie by using the
search engine developed

Figure 10. Searching movies on Rotten Tomatoes™ by using the search engine developed, entering the
“the avengers” keyword

247

Case Studies Using JavaFX™

• Flixster Mobile: (http://community.flix-
ster.com/wap/apps) A multi-platform mo-
bile application for streaming and down-
loading full-length movies. It also allows
watching trailers of movies coming soon as
well as getting critic reviews from Rotten
Tomatoes™. In addition, it lets users
browse showtimes and buy tickets at speci-
fied theatres.

• Worth Watching: (https://play.google.
com/store/apps/details?id=com.moubry.
worthwatching&hl=en) A mobile applica-
tion for Android-based devices. It allows
searching for movies and getting lists of
now playing movies, opening soon movies
and new DVD releases. It retrieves critic
and audience scores as well as critic con-
sensus from Rotten Tomatoes™.

• TomatoFlix: (http://rive.rs/projects/toma-
toflix) A Google ™Chrome extension that
lets getting Rotten Tomatoes™ critic and
audience scores for Netflix™ movies while
navigating the Netflix™ website.

• On Demand Movie Reviews: (http://
www.ondemandmoviereviews.com/) A
XFINITY On Demand/Rotten Tomatoes™
mash-up. It allows viewing Rotten
Tomatoe™s critic and audience scores for
XFINITY On Demand movies. It allows
filtering reviews by movie genre, year of
publication and film rating; it also lets sort-
ing reviews by using diverse criterion in-
cluding Rotten Tomatoes™ scores.

8. CONCLUSION

RIA represents the transition of web applications
from the simple, thin client model to a model that
provides the user experience of a desktop client/
server application while leveraging the ubiquity of
the Internet. Most of the standard features of RIAs
can be implemented by using the capabilities of
popular non-JavaScript-based RIA frameworks.
For instance, the JavaFX™ framework offers: 1)
a set of GUI controls intended to improve user
interactions, 2) a multimedia engine supporting

Figure 12. Displaying the list of movies related to the “Marvel™’s The Avengers” movie by using the
search engine developed

248

Case Studies Using JavaFX™

some container and compression formats, deliv-
ery technologies and media types, 3) a graphics
engine supporting both 2-D and 3-D scene graphs
and hardware acceleration and 4) a Web engine
based on the Webkit Web browser engine, which
provides great integration with Web technologies
such as HTML5, CSS and JavaScript.

As it can be inferred from the case studies ad-
dressed throughout this chapter, it is possible to
take advantage of the aforementioned capabilities
in order to implement most of the distinguishing
features of RIAs, especially the features related to
the relevant factors on RIAs development outlined
in chapter 4, namely, GUI patterns support, design
patterns support and multimedia support. In ad-
dition, under the understanding that the typical
architecture of RIAs has a service back-end as
part of its business logic layer, the case studies
addressed in this chapter exemplify the support
for REST-based Web services as a new mean of
delivering Web services and feeds.

REFERENCES

Debnath, M. (2012, May 3). JavaFX 2.0: A Plat-
form for Rich Enterprise Client Apps. Retrieved
November 26, 2012, http://www.devx.com/Java/
Article/48067

Duhl, J. (2003). Rich Internet Applications. Fram-
ingham, MA: IDC, Inc.

Indiana University. (2009).Google Picasa 3: The
Basics. Retrieved from http://ittraining.iu.edu/
free/picba.pdf

Simmons, A. (2007). Enhancing eCommerce
ROI through Rich Internet Applications (RIAs).
Montreal, Canada: Integration New Media, Inc.

Toffetti, G., Comai, S., Preciado, J. C., & Linaje,
M. (2011). State-of-the Art and trends in the Sys-
tematic Development of Rich Internet Applica-
tions. Journal of Web Engineering, 10(1), 70–86.

USF College of Education. (n.d.). Online Photo
Sharing with Flickr. Retrieved from http://fcit.
usf.edu/laptop

ADDITIONAL READING

Dea, C. (2011). JavaFX 2.0: Introduction by
Example. Fremont, CA: Nielsen Norman Group.

Weaver, J., Gao, W., Chin, S., Iverson, D., &
Vos, J. (2012). Pro JavaFX 2: A Definitive Guide
to Rich Clients with Java Technology. Apress.
doi:10.1007/978-1-4302-6873-4

KEY TERMS AND DEFINITIONS

Application Programming Interface Client
Library: A wrapper for a RESTful API; it is writ-
ten in a specific programming language.

Enterprise Rich Client Application: A type
of rich client application specifically designed to
provide business value in the context of an orga-
nization rather than a single end user.

Interaction Design Pattern: A kind of user
interface pattern aimed at achieving effective user
experiences, i.e., rich interactions.

Rich Client Application: An application that
relies on a client/server architecture, and it executes
most of its business logic operation on the client-
side. For that reason, rich client applications are
commonly delivered as desktop-like applications.

Rich Internet Application: Applications that
are deployed over the Web; this type of applica-
tions combines features and functionality of Web
applications and desktop applications.

Search Engine: A software tool designed
to search for information and files. It is usually
available on the Internet.

User Experience: The quality of the interac-
tion between a user and a software application.

http://www.devx.com/Java/Article/48067
http://www.devx.com/Java/Article/48067
http://ittraining.iu.edu/free/picba.pdf
http://ittraining.iu.edu/free/picba.pdf
http://fcit.usf.edu/laptop
http://fcit.usf.edu/laptop
http://dx.doi.org/10.1007/978-1-4302-6873-4

249

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

DOI: 10.4018/978-1-4666-6437-1.ch012

Multi-Device RIAs Development

ABSTRACT

Web 2.0 applications are becoming ubiquitous applications (i.e., applications that can be accessed by
anyone, anywhere, anytime, using any device). A key element of these ubiquitous applications is mobile
devices. In fact, the involvement of mobile devices such as smartphones and tablet computers in the
development of Web 2.0 applications has resulted in a new kind of Rich Internet Application (RIA) that
can run on a variety of devices starting from the same code base, and it is known as multi-device RIA.
The term multi-device RIA embraces not only mobile applications but also other kinds of out-of-browser
applications such as cross-platform desktop applications as well as the traditional cross-browser Web
applications. This chapter formalizes the concept of multi-device RIA, and then it presents an overview
of the capabilities of several multi-device development frameworks. This review is finally summarized
in a comparative analysis.

1. INTRODUCTION

In recent years, Web applications are becoming
a common usage thanks to the great variety that
they have. The new trends on RIAs development
are basically divided into two aspects: 1) the cloud
computing which enables the applications to be
distributed and; 2) incursion of RIAs on mobile
devices. The second aspect has the greatest interest
in this chapter due to the large number of mobile
device users and because users have greater ac-
cess to mobile devices than an Internet-connected
personal computer.

A mobile device is a small and hand-held
computing device. Cell phones, smartphones,
tablet computers and PDAs are examples of mobile

devices, which can differ in the quality and range
of features. For classification purposes, these
devices are categorized by levels of functionality
made by T38 DuPont Global Mobility Innovation
Team in 2005. Under this classification, three types
are well-known: 1) Limited Data Mobile Device,
2) Basic Data Mobile Device and 3) Enhanced
Data Mobile Device. A mobile device with an
operating system embedded almost as powerful
as one of a desktop computer is included in the
third category. In fact, modern mobile operating
systems integrate the features of a desktop oper-
ating system with the support for touchscreen,
Bluetooth, GPS, video camera, audio recorder,
music player, among others.

250

Multi-Device RIAs Development

Therefore, there are mobile devices with dif-
ferent operating systems and hardware features
for all needs and budgets. This chapter presents
a systematic review of multi-device RIAs devel-
opment.

2. MULTI-DEVICE RIAS

Mobile devices such as smartphones and tablet
computers have recently been involved in RIAs
development because of the ubiquitous require-
ments of Web 2.0 applications (Kappel et al.,
2003). In this sense, RIAs are known as multi-
device RIAs. This term covers RIAs that run as
cross-browser Web applications, cross-platform
desktop applications and applications for diverse
mobile devices.

The operating systems on mobile devices have
increased in number of ways in the last couple
of years. These devices are becoming more in-
tegrated with the same functionalities of a small
computer. Among the variety of operating systems
for mobile devices are: Android™ developed by
Google™ Inc.; iOS™ developed by Apple™
Inc.; and Windows™ Phone developed by Micro-
soft™ to mention but a few. A brief description
of the most popular mobile operating systems is
presented below.

• Android™ is a mobile operating system
based on a modified Linux kernel. It was
initially developed by Android™ Inc, which
was purchased by Google™ in August
2005. Android™ is currently developed
by a consortium of diverse hardware, soft-
ware and telecommunication companies
such as the Open Handset Alliance, which
is led by Google™. Google™ released the
Android™ source code as open source, un-
der the Apache License V. 2. Nowadays,
Android™ has the major smartphone mar-
ket share worldwide, it also runs in tablet
computers. Applications for Android™-

based devices are usually developed in the
Java programing language by using the
Android™ SDK.

• Apple™ iOS, formerly called iPhone™
OS, is a mobile operating system devel-
oped and distributed by Apple™ Inc. It is
based on the XNU hybrid kernel which is
used by the Mac OS X operating system,
also property of Apple™ Inc. iOS was
released under a proprietary software li-
cense, which restricts the installation to
Apple™ hardware devices such as iPod
Touch, iPhone, iPad and Apple™ TV.
Apple™ Inc. allows third-party develop-
ers building Objective-C applications for
iOS and Mac OS X operating systems by
using the Xcode Integrated Development
Environment (IDE) which can be only in-
stalled on Mac OS X desktop computers.
However, deploying third-party applica-
tions on Apple™ devices is only possible
after of paying an Apple™ developer pro-
gram fee.

• Windows™ Phone is a mobile operating
system developed by Microsoft™. It is
the successor of the Windows™ Mobile
platform, which was primarily aimed at
the enterprise market. The latest version
is called Windows™ Phone 8, which is
based on the Windows™ NT hybrid ker-
nel. Windows™ Phone was released un-
der a proprietary software license and it
is used by multiple manufacturers such as
HTC Corporation, Samsung Electronics
and Nokia Corporation in multiple smart-
phones. Moreover, Microsoft™ provides
two frameworks for developing applica-
tions for Windows™ Phone-based devices:
the Silverlight™ framework, which allows
developing XAML-based RIAs and the
XNA framework, which allows building
video games for all Microsoft™ gaming
platforms.

251

Multi-Device RIAs Development

• Symbian™ is a mobile operating system
based on a real-time kernel. It is the succes-
sor of the Symbian™ OS mobile operating
system developed by Symbian Ltd, which
was acquired by Nokia™ Corporation.
Symbian™ was created by integrating
software assets such as Symbian™ OS as
its core and the S60 platform for mobile
phones contributed by Nokia™. Although
the Symbian™ OS source code was pub-
lished under an Eclipse Public License
(EPL) in February 2010, it is currently re-
leased under a proprietary software license.
Symbian™ remains a core part of Nokia’s
phone portfolio even though Nokia™ is
transitioning to Windows™ Phone mobile
operating system.

• BlackBerry™ OS is a mobile operat-
ing system developed by Research In
Motion (RIM) Company. It has a kernel
based on the Java Virtual Machine (JVM).
BlackBerry™ OS is aimed to be run in
smartphones of the RIM’s BlackBerry™
line. Unlike the BlackBerry™ OS, which
was released under a proprietary software
license, RIM launches a series of open
SDKs for developing BlackBerry™ OS
applications, such as a native SDK for C/
C++, an SDK for Java, an SDK for HTML5/
JavaScript and an SDK for Adobe™ AIR.
This platform also supports the develop-
ment of applications for the BlackBerry™
PlayBook tablet, which run another operat-
ing system called BlackBerry™ Tablet OS.

• Bada™ is a mobile operating system de-
veloped by Samsung™ Electronics. It is
based on a configurable kernel architec-
ture, which allows the use of either the
Linux kernel or the real-time operating
system kernel. Bada™ is extensively used
in the Samsung™’s Wave line of smart-
phones. Samsung launched Bada™ un-
der a proprietary software license. It also
provides an open SDK for developing C/

C++-based, Flash™-based and HTML/
JavaScript-based applications for Bada™-
based devices.

• MeeGo™ is a free and open source operat-
ing system based on the Linux kernel, which
merges the efforts of Intel™’s Moblin
and Nokia™’s Maemo former operating
systems and it is sponsored by the Linux
Foundation. MeeGo™ was released under
a GNU General Public License (GPL) V.
2. It was presented as an operating system
ready to be run on netbooks, handsets, In-
Vehicle Infotainment (IVI) systems, smart
TVs and media phones. The main feature
of MeeGo™ is the support of the x86 mi-
croprocessor instruction set architectures.
In September 2011, the Linux Foundation
announced that MeeGo was canceled in fa-
vor of a new project called Tizen.

• HP™ webOS™ is a mobile operating
system based on the Linux kernel initially
developed by Palm™ Inc., which was ac-
quired by Hewlett-Packard™ (HP™) in
April 2010. It was released under both a
proprietary software license and an Apache
License V. 2. HP™ webOS™ is used on
HP™’s smartphones such as the HP™
Pre 3 and the HP™ Veer, as well as on the
HP™ TouchPad tablet. HP™ provides an
SDK for developing HP™ webOS™ ap-
plications. It includes a framework called
Enyo for developing HTML/JavaScript-
based applications; also it includes libraries
for developing C/C++-based applications.

RIAs for mobile devices have the same features
and they are basically similar as those developed
for desktop computers with the difference that
RIAs for mobile devices must be properly seen
on mobile Web browsers. Today, mobile applica-
tions have a wide market since the user wants to
perform more activities from his or her mobile
device and from anywhere he or she is. A mobile
application is a software application written for

252

Multi-Device RIAs Development

a mobile device that performs a specific task,
e.g. a calendar viewer, a contact list manager, a
music player, among others. These applications
commonly come preinstalled on devices; also they
are publicly distributed and can be downloaded
by users from application stores on Internet.
There are basically two kinds of applications for
mobile devices; (1.) native applications that are
applications written for a specific device’s hard-
ware and operating system and (2.) Web-based
applications. Firstly, all mobile applications were
almost developed in a native way but nowadays
Web-based applications are more commonly de-
veloped due to the extensive use and because it is
not required to modify the source code on which
they run. RIAs are also part of these Web-based
applications which do not require a Web browser.

3. MULTI-DEVICE DEVELOPMENT
FRAMEWORKS

Today, there are various frameworks for mobile
applications, these frameworks are software plat-
forms designed to support the development of
mobile applications that are written as embedded
dynamic Web sites and they can take advantage of
the native capabilities of the device like geographi-
cal data or contact list. The following sections
describe some of these frameworks.

3.1. PhoneGap™

It is a free framework for developing mobile ap-
plications, and it was contributed to the Apache
Software Foundation (ASF) under a project called
Apache Cordova; therefore, it was released as open
source under the Apache License v. 2. The main
objective of PhoneGap™ is the development of
embedded applications. Nitobi was the original
creator of PhoneGap™, and it is one of the main
contributors in the development of this framework;
however, there is a global community that also
contributes to the project, including IBM™, Mi-

crosoft™ and RIM™ companies. In October 2011,
Adobe™ acquired Nitobi enabling the team to be
exclusively focused on the PhoneGap™ project.

The ease of use is one of the advantages of this
framework because it does not require learning new
programming languages, and it uses more known
Web development technologies such as HTML and
JavaScript. In terms of IDEs, the DreamWeaver™
CS 5.5 tool which is also owned by Adobe™ can
be integrated with PhoneGap™. Similarly, other
IDEs for device-specific programming languages
such as XCode and Eclipse Classic can be used.

PhoneGap™ is one of the most popular frame-
works for cross-platform development. In fact, it
has been recently used by companies such as Pana-
sonic™ Corporation, Wikipedia Foundation, Inc.
and British Broadcasting Corporation (BBC™).

Moreover, there are some books published
about PhoneGap™, for instance, a book entitled
PhoneGap Mobile Application Development
Cookbook written by Matt Gifford; a book entitled
Beginning PhoneGap written by Rohit Ghatol and
Yogesh Patel; and a book entitled PhoneGap Be-
ginner’s Guide written by Andrew Lunny, member
of the PhoneGap development team.

The main capabilities as well as the platforms
supported by this framework are presented in
Tables 1 and 2, respectively. In addition, more
information such as user manuals and technical
documentation can be found at phonegap.com
website.

3.2. Application Craft™

Application Craft™ is a cloud-based cross-
platform framework for developing desktop and
mobile applications. It was created by a United
Kingdom company founded by Freddy May, by
using pure Web technologies. Similarly, applica-
tions built on top of this framework can use the
same Web standards, namely JavaScript, HTML5
and CSS3.

Application Craft™ consists of a unique Web
browser-based visual IDE integrating a drag &

253

Multi-Device RIAs Development

drop GUI designer, a code editor and a building
tool for compiling HTML/JavaScript source code
into mobile binaries. The building tool relies on
a cloud service called AC Mobile Build which is
based on the open source Apache Cordova project.

Regarding licensing, Application Craft™
is available as a 14-day unrestricted free trial,
which can be upgraded to a lifetime edition for
a per month charge. It is also released under an
enterprise edition which enables developers to host
the framework on the enterprises’ servers. This
framework is most notably used by Coca-Cola™
Enterprises and New Dimension Technology,
(NDTec™) Ltd. that is a software provider for
construction professionals based in South Africa.

So far, the existence of books published about
this framework is unknown, however on the official
website can be downloaded the manuals and the
user guides needed to understand the functioning
of Application Craft™.

The main capabilities as well as the platforms
supported by this framework are presented in
Tables 3 and 4, respectively. In addition, more
detailed information can be found at application-
craft.com website.

3.3. iUI™

IUI™ is a framework for developing mobile appli-
cations. This framework is free, and it is distributed
under an open source MIT license. It was initially
released by Joe Hewitt whit the aim of providing a
GUI library for iPhone development. Nevertheless,
it has support for almost all mobile platforms, the
Kernel code of the framework is very light, and
it has a lot of extensions and themes.

Table 1. Platforms for mobile applications supported by PhoneGap™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Yes Yes Yes Yes -

Table 2. Main capabilities of PhoneGap™

Enterprise data synchronization No

Multi-Threaded Applications No

File uploading Yes

Image Library Browsing Unknown

In Application Email Unknown

Application distribution support No

Self-contained, no web required Yes

Web Services Unknown

Mobile APIs support Unknown

Able to access the web for data Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes (BlackBerry
requires OS 4.7)

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support Yes

File system IO support Yes

Gesture / Multi-touch support Yes

Native date/time picker support Unknown

SMS support Yes

Telephone support Yes

Maps support Yes

Orientation change support Yes

Contact support Yes

SQLite support Yes (not possible
on BlackBerry)

Native Language Application
Development support

No

Graph Library Support Unknown

254

Multi-Device RIAs Development

The main purpose of iUI™ is to minimize the
need for manual code entry providing the user with
all the basics for creating Web-based applications
by using the JavaScript, HTML and CSS3 Web
standards. In this sense, it is possible to use an
already available HTML editor to create most
of iUI-based applications. Furthermore, unlike
other frameworks for cross-platform development,
the source code of IUi-based applications is not
altered or translated.

Both the Bank of America and the Adelphi
University are examples of success stories of
using iUI.

There is not reported development environ-
ments specially designed for developing iUI-based
applications. Moreover, there is a book entitled
iPhone JavaScript Cookbook written by Arturo
Fernández-Montoro, outlining the features of
diverse frameworks for iPhone development such
as iUI, PhoneGap and Sencha Touch.

Finally, the main capabilities as well as the plat-
forms supported by this framework are presented
in Tables 5 and 6, respectively; more detailed
information can be found at iui-js.org website.

3.4. IBM WorkLight™

WorklLight™ is a mobile application framework
for developing pure HTML5, hybrid and native
applications. It is aimed at the development of
enterprise applications. In detail, hybrid applica-
tions can be developed either as traditionally, i.e.,
by using Web technologies or by using a mixing of
Web and native source code. In fact, the required
development skills range from Web technologies
to native programming languages

Table 4. Main capabilities of Craft™

Enterprise data synchronization Yes

Multi-Threaded Applications Unknown

File uploading Yes

Image Library Browsing Yes

In Application Email Yes

Application distribution support Yes

Self-contained, no web required Yes

Web Services Unknown

Mobile APIs support Yes

Able to access the web for data Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support Yes

File system IO support Yes

Gesture / Multi-touch support Yes

Native date/time picker support Unknown

SMS support Yes

Telephone support Yes

Maps support Yes

Orientation change support Yes

Contact support Yes

SQLite support Yes (not possible
on BlackBerry)

Native Language Application
Development support No

Graph Library Support Yes

Table 3. Platforms for mobile applications supported by Craft™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Yes Yes Yes Yes
Tablet, desktop

and Web
environments

255

Multi-Device RIAs Development

Worklight™ is property of IBM™; in fact, it
is part of the IBM™ Mobile Foundation, family
of products that provides the essential elements
needed for complete mobile development, deploy-
ment and management within a business. This
framework has different products: 1) Worklight™
Studio: an Eclipse-based IDE, 2) Worklight™
Server: a Java-based server acting as a gateway
between applications, external services and the
enterprise back-end infrastructure, and 3) Work-
light™ Device Runtime: client-side runtime code
that embeds server functionality within the target-
environment of deployed applications.

Worklight™ is not free, and it is available
under two different paid editions; however, it is
possible to obtain a free developer edition on its
website, which consists of a single plugin for the
Eclipse IDE packaging Worklight™ Studio and
Worklight™ Server. Worklight™ is most notably
used by TBC Corporation, a marketer of tires for
the automotive replacement market and Lotte Card
Co., Ltd., a Korean credit card company.

The main capabilities as well as the platforms
supported by this framework are outlined in Tables
7 and 8, respectively. In addition, more informa-
tion can be found in a more detailed way visiting
the worklight.com website.

3.5. Rhodes™

It is a Ruby-based framework for rapidly devel-
oping mobile applications whose main purpose
is to develop embedded applications. Unlike
other frameworks for cross-platform development,

Table 5. Platforms for mobile applications supported by iUI™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Limited models Yes Unknown Yes
Tablet, desktop

and Web
environments

Table 6. Main capabilities of iUI™

Enterprise data synchronization No

Multi-Threaded Applications No

File uploading Unknown

Image Library Browsing Unknown

In Application Email Unknown

Application distribution support No

Self-contained, no web required No

Web Services Yes

Mobile APIs support Unknown

Able to access the web for data Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Unknown

Camera support Unknown

XMPP support Unknown

File system IO support Unknown

Gesture / Multi-touch support Yes

Native date/time picker support Unknown

SMS support Yes

Telephone support Yes

Maps support Yes

Orientation change support Yes

Contact support Yes

SQLite support Unknown

Native Language Application
Development support No

Graph Library Support Unknown

256

Multi-Device RIAs Development

Rhodes™ only generates native applications, not
Web-based (hybrid) applications, where views are
written in HTML (including HTML5) whereas
controls are written in Ruby.

Rhodes™ is property of Motorola™ Solutions,
Inc., and it is free and open source under the MIT
license; however, it is also available under a paid
edition for organizations requiring high level of
commercial grade support. HTML, JavaScript and
Ruby are the programming languages needed to
develop applications on top of this framework.

Rhodes™ is part of the so-called Rhomo-
bile™ Suite, an HTML5 development platform
comprised of RhoConnect: a back-end data con-
nections manager, RhoStudio: an Eclipse plugin
allowing the development, debugging and testing
of RhoElements-based applications and RhoEle-
ments: an HTML5 development framework cover-
ing popular mobile operating systems. RhoStudio
must be only installed with the aim of automatically
obtaining all RhoMobile products.

Regarding technical documentation, a book
entitled RhoMobile beginner’s guide written by
Abhishek Nalwaya about Rhodes can be found.
There is also a book entitled Pro Smartphone
Cross-platform Development written by Sarah
Allen Vidal Graupera and Lee Lundrigan, covering
diverse cross-platform toolkits such as Rhodes,
PhoneGap and Appcelerator Titanium.

The main capabilities as well as the platforms
supported by this framework are outlined in Tables
9 and 10, respectively; more information can be
found at rhomobile.com website.

Table 7. Platforms for mobile applications supported by Worklight™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Yes For Web apps For Web apps Yes

Table 8. Main capabilities of Worklight™

Enterprise data synchronization Yes

Multi-Threaded Applications Unknown

File uploading Yes

Image Library Browsing Yes

In Application Email Yes

Application distribution support Yes

Self-contained, no web required Yes

Web Services Yes

Mobile APIs support Yes

Able to access the web for data Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support Yes

File system IO support Yes

Gesture / Multi-touch support Yes

Native date/time picker support Yes

SMS support Yes

Telephone support Yes

Maps support Yes

Orientation change support Yes

Contact support Yes

SQLite support Yes

Native Language Application
Development support Yes

Graph Library Support Yes

257

Multi-Device RIAs Development

3.6. Appcelerator Titanium™

It is a cross-platform mobile development platform
for building Android™ and Apple™ iOS native,
hybrid and Web-based applications whose main
purpose is to develop embedded applications.

Appcelerator Titanium™ has a wide range
of products, including Titanium SDK which is
a JavaScript-based SDK leveraging device and
mobile operating system APIs, Titanium Studio
which is an Eclipse-based IDE to develop, test
and deploy mobile applications and Appcelerator
Cloud Services which is a Mobile Back-end as a
Service (MBaaS) providing public libraries of
cloud application services like social integration
or push notification as well as custom back-end
services integration.

Appcelerator Titanium™ is available as part
of the Appcelerator Titanium™ Mobile open
source project under the Apache Public License
v. 2; however, it is also released under three dif-
ferent paid editions covering enterprise extensions
and under a limited free edition. All commercial
editions include Titanium SDK and Titanium
Studio products. Regarding development environ-
ments, the company recently acquired Aptana™
which built its own IDE called Titanium Studio.
Appcelerator Titanium™ supports the following
programming languages: HTML, Javascript, as
well as PHP, Ruby and Python for the develop-
ment of desktop applications.

Regarding Appcelerator Titanium™’s success
stories, Blockbuster™, Inc., NBCUniversal Me-
dia™, LLC and Koninklijke Philips™ Electronics

Table 9. Platforms for mobile applications supported by Rhodes™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Yes No Yes Yes
Tablet and

desktop
(Windows™)

Table 10. Main capabilities of Rhodes™

Enterprise data synchronization Yes (via
RhoConnect)

Multi-Threaded Applications Yes (via Ruby)

File uploading Yes

Image Library Browsing Yes

In Application Email Unknown

Application distribution support Yes (via
RhoGallery)

Self-contained, no web required Yes

Web Services Unknown

Mobile APIs support Unknown

Able to access the web for data Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Unknown

Camera support Yes

XMPP support Unknown

File system IO support Yes

Gesture / Multi-touch support Yes

Native date/time picker support Yes

SMS support Yes

Telephone support Yes

Maps support Yes

Orientation change support Yes

Contact support Yes

SQLite support Yes

Native Language Application
Development support

Yes (via Rhodes
extensions)

Graph Library Support Yes (via HTML5
Canvas or SVG)

258

Multi-Device RIAs Development

N.V. are greater examples of companies using
this framework.

Moreover, there are some books about Ap-
pcelerator Titanium. For instance, a book entitled
Appcelerator Titanium Smartphone App Develop-
ment Cookbook written by Boydlee Pollentine;
Appcelerator Titanium: Patterns and best practices
written by Boydlee Pollentine and Trevor Ward;
and Appcelerator Up and Running written by
John Anderson.

Finally, the main capabilities as well as the
platforms supported by this framework are sum-
marized in Tables 11 and 12, respectively. In
addition, more detailed information can be found
at appcelerator.com website.

3.7. iPFaces™

IPFaces™ is a mobile application framework for
developing native form-oriented network appli-
cations by using PHP, ASP.NET and Java Web
development skills. IPFaces™ works through
function libraries, and it was created with the aim
of screening the developer completely out from
the mobile platforms itself. So far, no development
environments are known about this framework.

This solution consists of two components:
a device-specific client application and a set of
language-specific server packages managing the
entire application’s logic. Client engines are dis-
tributed as freeware and also under a commercial
license for supplying branded client applications
whereas server packages are freely available as
open source under the BSD license.

Table 11. Platforms for mobile applications supported by Appcelerator Titanium™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Beta versión Unknown Unknown Unknown

Desktop
(Windows™,

Linux and Mac
OS)

Table 12. Main capabilities of Appcelerator
Titanium™

Enterprise data synchronization No

Multi-Threaded Applications Unknown

File uploading Unknown

Image Library Browsing Unknown

In Application Email Unknown

Application distribution support Yes (via Cloud
services)

Self-contained, no web required Yes

Web Services Unknown

Mobile APIs support Unknown

Able to access the web for data Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support Yes (Via
JavaScript)

File system IO support Yes

Gesture / Multi-touch support Yes

Native date/time picker support Yes

SMS support Yes

Telephone support Unknown

Maps support Yes

Orientation change support Yes

Contact support Unknown

SQLite support Yes

Native Language Application
Development support Yes

Graph Library Support Unknown

259

Multi-Device RIAs Development

Regarding technical documentation, a book
entitled IPFaces Mobile Framework written by
Kn Tr Benoit can be found.

The main capabilities as well as the platforms
supported by this framework are summarized in
Tables 13 and 14, respectively; additional informa-
tion can be found at ipfaces.org website.

3.8. Sencha Touch™

Sencha Touch™ is an HTML5 mobile application
framework property of Sencha, Inc., and it is one
of the most popular frameworks for cross-platform
development. This framework works through
function libraries, and it supports programming
languages like HTML5, CSS3 and JavaScript,

Sencha Touch™ is part of the Sencha Complete
software suite comprised of Sencha Architect:
an HTML5 visual IDE enabling the design, de-
velopment and deployment of both Web-based
applications for desktop and mobile devices,
Sencha ExtJS™: a JavaScript-based framework for
developing cross-browser RIAs, Sencha GXT™:
an application framework for Google Web Toolkit
(GWT), among others solutions. Sencha Touch™
is licensed under a free commercial license, the
open source GNU GPL v. 3 license and a paid
commercial license for Original Equipment
Manufacturer (OEM) uses.

Among the success stories of using Sencha
Touch™, the DirecTV™, Vimeo™ and Intuit™
companies are clear examples.

Moreover, there are few books about Sencha
Touch development, for instance, a book entitled
Sencha Touch in Action written by Jesús García,
Anthony De Moss and Mitchell Simoens; a book
entitled Sencha Touch cookbook written by Ajit

Table 13. Platforms for mobile applications supported by iPFaces™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes On roadmap Beta versión Unknown Unknown On roadmap Java ME

Table 14. Main capabilities of iPFaces™

Enterprise data synchronization On roadmap

Multi-Threaded Applications Unknown

File uploading Unknown

Image Library Browsing Unknown

In Application Email Unknown

Application distribution support Yes (AppStore,
Cloud services)

Self-contained, no web required Yes

Web Services Unknown

Mobile APIs support Unknown

Able to access the web for data Yes

Geolocation support Yes

Vibration support Unknown

Accelerometer support Unknown

Sound (play) support Unknown

Sound (record) support Unknown

Camera support Yes

XMPP support Unknown

File system IO support Unknown

Gesture / Multi-touch support Unknown

Native date/time picker support Unknown

SMS support Unknown

Telephone support Unknown

Maps support Unknown

Orientation change support Yes

Contact support Unknown

SQLite support No

Native Language Application
Development support No

Graph Library Support Unknown

260

Multi-Device RIAs Development

Kumar. An eBook entitled Building a Sencha
Touch Application is also available.

The main capabilities as well as the platforms
supported by this framework are presented in
Tables 15 and 16, respectively. In addition, more
detailed information can be found at sencha.com
website.

3.9. Corona SDK™

Corona SDK™ is a software development kit
created by Walter Luh, co-founder of Ansca Mo-
bile. It allows software programmers to build and
deploy mobile applications for the iPhone, iPad,
and Android™ devices. Corona lets developers use
integrated Lua, layered on top of C++/OpenGL,
to build graphically rich applications that are
also lightweight in size and quick in development
time. This approach is commonly appropriate for
developing games for mobile devices. The SDK
is the core of the Corona platform which includes
support resources, development tools and cloud
services, and it has a subscription-based purchase
model that allows new features to be immediately
rolled out to users (Corona SDK™, n.d.).

Regarding licensing, Corona SDK™ is avail-
able under a free and unlimited trial as well as
under two different subscription editions which are
also available at a discounted price for educators
and students. Furthermore, there is an academic
site license for institutions. This framework has
been most notably used by companies such as
Universal Pictures; Governance Employees In-
surance Company (GEICO), an auto insurance

Table 15. Platforms for mobile applications supported by Sencha Touch™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Yes No No No

Webkit-
compliant

desktop browsers
(Google™

Chrome and
Apple™ Safari)

Table 16. Main capabilities of Sencha Touch™

Enterprise data synchronization Unknown

Multi-Threaded Applications Unknown

File uploading Unknown

Image Library Browsing Unknown

In Application Email Unknown

Application distribution support Unknown

Self-contained, no web required Yes (Offline
support)

Web Services Yes (JSONP,
JSON, GWT

RPC)

Mobile APIs support Unknown

Able to access the web for data Yes

Geolocation support Unknown

Vibration support Unknown

Accelerometer support Unknown

Sound (play) support Unknown

Sound (record) support Unknown

Camera support Unknown

XMPP support Unknown

File system IO support Unknown

Gesture / Multi-touch support Yes

Native date/time picker support Unknown

SMS support No

Telephone support No

Maps support No (On
roadmap)

Orientation change support No

Contact support Unknown

SQLite support Unknown

Native Language Application
Development support Unknown

Graph Library Support Unknown

261

Multi-Device RIAs Development

company providing services in all U.S. states; and
HIT Entertainment, a children’s entertainment
producer and rights owner based in London, to
mention but a few.

Regarding technical documentation, there is a
book entitled Corona SDK Mobile Game Develop-
ment Beginner´s Guide written by Michelle M.
Fernandez about the development of monetized
games for iOS and Android-based devices.

Finally, the main capabilities as well as the
platforms supported by this framework are pre-
sented in Tables 17 and 18, respectively. More
detailed information can be found at coronalabs.
com/products/corona-sdk/ website.

3.10. DragonRad™

DragonRad™ is a cross-platform mobile ap-
plication development tool created by Seregon
Solutions Inc. that allows developer to create,
manage and deploy mobile applications. This tool
has supports for the major mobile platforms such
as iPhone, Android™, BlackBerry™ and Win-
dows™ Mobile. The tool is focused on database
driven mobile enterprise applications with easy
and wide range of databases support. It provides
the drag and drop environment which helps de-
velopers to save time. DragonRad™ facilitates
the integration and synchronization of database
system with native functions like contacts, cal-
endar, payments, location-based services, maps,
camera and native devices (Palmieri et al., 2012).

Actually, DragonRAD™ is composed of three
components: 1) a visual drag & drop IDE with a
WYSWYG editor called DragonRAD™ designer,
2) a server host managing the synchronization
between the back-end databases and the mobile

Table 17. Platforms for mobile applications supported by Corona SDK™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes No No No No -

Table 18. Main capabilities of Corona SDK™

Enterprise data synchronization No

Multi-Threaded Applications No

File uploading Yes

Image Library Browsing Yes

In Application Email Yes

Application distribution support Yes

Self-contained, no web required Yes

Web Services Yes

Mobile APIs support Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support No

File system IO support Yes

Gesture / Multi-touch support Yes

Native date/time picker support Yes (General
picker control)

SMS support No

Telephone support Yes

Maps support Yes

Orientation change support Yes

Contact support No

SQLite support Yes

Native Language Application
Development support Yes

Graph Library Support Yes

262

Multi-Device RIAs Development

devices, and 3) a client engine that resides on the
mobile device and executes applications developed
using DragonRAD™ designer. DragonRAD™
designer is available under a full-featured 30-day
trial as well as under a paid subscription edition
including a single host license for free. Further-
more, standard mobile clients can be unlimitedly
deployed at no extra cost; however, branded ver-
sions are available for an additional extra charge.

DragonRad™ is most notably used by Para-
digm Housing Group, a housing and support
services company based in London; ScotiaBank™
and Intergraph™ Corporation, a global provider of
Spatial Information Management (SIM) software.

Moreover, there is a book entitled Dragon-
RAD™ written by Evander Luther.

The main capabilities as well as the platforms
supported by this framework are presented in
Tables 19 and 20, respectively. More detailed in-
formation can be found at dragonrad.com website.

3.11. Mosync™

Mosync™ is an open source solution developed
by Swedish company targeted to mobile market.
It is licensed under the GNU General Public Li-
cense (GPL) v. 2.0. Alternatively, it was released
under two different paid subscription editions for
commercial usage.

Mosync™ has fully fledged SDK which helps
developer to build and package all type of appli-
cations. Simple, advanced and complex applica-
tions can share the same code base. Mosync™
SDK is proving to be very powerful tool with
many components tightly coupled together like
Libraries, Runtimes, Device Profile Database and
Compilers and so on. It provides the full fledge

Table 19. Platforms for mobile applications supported by DragonRad™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Yes No No Yes -

Table 20. Main capabilities of DragonRad™

Enterprise data synchronization Yes

Multi-Threaded Applications No

File uploading No

Image Library Browsing No

In Application Email No

Application distribution support No

Self-contained, no web required Yes

Web Services Yes

Mobile APIs support Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support No

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support No

File system IO support No

Gesture / Multi-touch support No

Native date/time picker support Yes

SMS support No

Telephone support Yes

Maps support Yes

Orientation change support No

Contact support Yes

SQLite support Yes

Native Language Application
Development support Yes

Graph Library Support No

263

Multi-Device RIAs Development

Eclipse-based IDE and the use of standard C/
C++, easy to use and well-documented APIs.
The idea involved to support multiple mobile
OS’s is different from other tools and also in very
isolated way from other mobile operating code.
A Mosync-based application is built, targeting a
device profile by using GNU Compiler Collection
(gcc) and pipe-tool. Once the application has been
written, pipe-tool is used to compile the resources
involved in the application. Then GCC backend is
called and path to target device profile passed to
it. GCC uses it to produce Mosync™ intermedi-
ate language, which then fed in to pipe-tool. So,
pipetool behaves as a bridge between Mosync™
applications to target device profile. The profile
database helps the application in ensuring that it
has correctly adapted to the device. The runtimes
are libraries which are bound to provide support
related to all like regarding graphics, audio, com-
munications, input, uniform interface to low level
system APIs and other device features (Palmieri
et al, 2012).

Some success stories on the use of Mosync™
involve companies such as InMobi™, a mobile
advertising company with offices in several coun-
tries around the world; GB Glace™, the largest ice
cream company in Sweden; and Dalarns Tidningar,
a local daily in the mid-west of Sweden.

So far, no books published about MoSync™
are known. Therefore, the main capabilities as well
as the platforms supported by this framework are
outlined in Tables 21 and 22, respectively. More
detailed information can be found at mosync.
com website.

Table 21. Platforms for mobile applications supported by Mosync™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes Yes No Yes Yes -

Table 22. Main capabilities of Mosync™

Enterprise data synchronization No

Multi-Threaded Applications No

File uploading Yes

Image Library Browsing No

In Application Email Yes

Application distribution support No

Self-contained, no web required Yes

Web Services Yes

Mobile APIs support Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support No

File system IO support Yes

Gesture / Multi-touch support Yes

Native date/time picker support Yes

SMS support Yes

Telephone support Yes

Maps support Yes

Orientation change support Yes

Contact support Yes

SQLite support Yes

Native Language Application
Development support Yes

Graph Library Support Yes

264

Multi-Device RIAs Development

3.12. Qt™

Qt™ is a cross-platform application framework
launched by an open source project called Qt proj-
ect, which involves Nokia™ developers. In this
sense, Qt was released under the GNU General
Public License v. 3 and the GNU Lesser General
Public License v. 2.1. Alternatively, it is available
under a commercial license. This framework is
widely used for developing application software
with a graphical user interface (GUI), and it is
also used for developing non-GUI programs such
as command-line tools and consoles for servers.

Qt™, formally Qt™ SDK, mainly includes the
framework, which is a set of APIs for C++ and
JavaScript-like programming and the cross-plat-
form Qt™ Creator IDE which is freely available.
A GUI creation kit called Qt quick for the quick
development of rich and touch-enabled GUIs for
Symbian™ and MeeGo™-based mobile devices
is contained within the Qt framework.

Qt™ is most notably used in Skype™, VLC™
media player, VirtualBox™, among others well-
known software products. (Qt™ SDK, n.d.).

There are a lot of books about Qt programming.
For instance, Foundations of Qt Development
written by Johan Thelin, Beginning Nokia Apps
Development written by Dan Zucker and Ray
Rischapter and Programming with Qt written by
Matthias Kalle Dalheimer.

The main capabilities as well as the platforms
supported by this framework are outlined in Tables
23 and 24, respectively. Additional information
can be found at developer.nokia.com/Develop/
Qt/ website.

Table 23. Platforms for mobile applications supported by Qt™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

No No No No Yes No

Desktop
(Microsoft™

Windows, Mac
OS X and Linux)

Table 24. Main capabilities of Qt™

Enterprise data synchronization No

Multi-Threaded Applications Yes

File uploading Yes

Image Library Browsing No

In Application Email Yes

Application distribution support No

Self-contained, no web required Yes

Web Services Yes

Mobile APIs support Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support Yes

File system IO support Yes

Gesture / Multi-touch support Yes

Native date/time picker support Yes

SMS support Yes

Telephone support Yes

Maps support Yes

Orientation change support Yes

Contact support Yes

SQLite support Yes

Native Language Application
Development support Yes

Graph Library Support Yes

265

Multi-Device RIAs Development

3.13. AppMobi™

AppMobi™ XDK is an open source and cloud-
based mobile development environment created
by the AppMobi™ Company, which is a vendor
of HTML5 mobile development and deployment
tools and services. XDK stands for Cross Plat-
form Development Kit and uses standard Web
languages such as HTML5, CSS, and JavaScript
to develop mobile applications for smartphones
and tablets. Due to the cloud services infrastruc-
ture of the AppMobi™ XDK environment, it is
possible to develop, debug and build applications
in either Macintosh or PC architectures, using a
free HTML5-powered IDE as a Web application
for the Google Chrome Web browser or using an
already available IDE, e.g. XCode and Eclipse.
(AppMobi™ XDK, n.d.).

The products of the AppMobi™ platform has
been most notably used by AOL™, Fox™ News
Radio and Lancaster Day Care Center, a non-
profit childcare and early education center based
in Lancaster, Pennsylvania, USA.

Regarding bibliographical references, there
is a book entitled Beginning Mobile Application
Development in the Cloud written by Richard
Rodger which covers the use of the cloud services
provided by the AppMobi platform for developing
cloud-based mobile applications.

The main capabilities as well as the platforms
supported by this framework are outlined in
Tables 25 and 26, respectively. Additionally, more
detailed information can be found at appmobi.
com website.

Table 25. Platforms for mobile applications supported by AppMobi™

iOS™ Android™ BlackBerry™ Palm WebOS™ Symbian™
Windows™

Mobile Others

Yes Yes No No No No -

Table 26. Main capabilities of AppMobi™

Enterprise data synchronization No

Multi-Threaded Applications No

File uploading Yes

Image Library Browsing No

In Application Email Yes

Application distribution support Yes

Self-contained, no web required Yes

Web Services Yes

Mobile APIs support Yes

Geolocation support Yes

Vibration support Yes

Accelerometer support Yes

Sound (play) support Yes

Sound (record) support Yes

Camera support Yes

XMPP support No

File system IO support No

Gesture / Multi-touch support Yes

Native date/time picker support No

SMS support Yes

Telephone support No

Maps support No

Orientation change support Yes

Contact support Yes

SQLite support No

Native Language Application
Development support

No

Graph Library Support No

266

Multi-Device RIAs Development

4. COMPARISON

The process of choosing a development approach
for a native, Web or hybrid mobile application
entails many parameters including budget, proj-

ect time frame, target audience and application
functionality.

In order to allow developers to choose the
option that best fits the necessities and possibili-
ties, the Table 27 summarizes the main features
of the multiplatform development environments

Table 27. Comparison of cross-platform development frameworks

Feature/
Framework Language

Access
Native
Code IDE

Output
App

Open
Source License

Development
Platforms

PhoneGap™
HTML5,

CSS3,
JavaScript

Yes
Dreamweaver™ CS5,
Xcode, Eclipse 3.4,

Bada
Native Yes Apache License

V. 2

Microsoft™
Windows™, Mac

OS X, Linux

Application
Craft™

HTML5,
CSS3,

JavaScript
Yes Application Craft™

IDE (browser-based)
Native and

Web
Yes

(widgets) Unknown -

IUI™ HTML, CSS3,
JavaScript No - Web Yes MIT -

IBM™
Worklight™

HTML5,
CSS3,

JavaScript
Yes IBM™ WorkLight™

Studio
Native and

hybrid Yes Unknown
Microsoft™

Windows™, Mac
OS X, Linux

Rhodes™

HTML5,
CSS3,

JavaScript,
Ruby

Yes Rhostudio Native and
hybrid Yes MIT

Microsoft™
Windows™, Mac

OS X, Linux

Appcelerator
Titanium™

HTML5,
CSS3,

JavaScript
Yes Titanium Studio

Native,
Web and
hybrid
apps

No Commercial
Microsoft™

Windows™, Mac
OS X, Ubuntu

IPFaces™ ASP.Net, Java
or PHP - Visual Studio (ASP.

Net)
Web and
Native Yes BSD (server

packages) -

Sencha Touch™
HTML5,

CSS3,
JavaScript,

No Sencha Architect Web and
hybrid Yes GNU GPL V. 3

Microsoft™
Windows™, Mac

OS X, Linux

Corona SDK™ Lua Yes Corona Project
Manager Native No Comercial

Microsoft™
Windows™, Mac

OS X

DragonRAD™ Lua (Drag &
drop) No DragonRAD™

Designer Native No Comercial Microsoft™
Windows™

MoSync™

HTML5,
CSS3

JavaScript,
C++

Yes Based on Eclipse

Native,
Web and
hybrid
apps

Yes (SDK) GNU GPL V. 2
(SDK)

Microsoft™
Windows™, Mac

OS X, Linux

Qt™

HTML5,
CSS3,

JavaScript,
C++

Yes Qt Creator Native Yes GNU LGPL
V. 2.1

Microsoft™
Windows™, Mac
OS X, Linux/X11

AppMobi™ XDK
HTML5,

CSS3,
JavaScript

Yes AppMobi™ XDK

Native,
Web and
hybrid
apps

Yes MIT X11
Microsoft

Windows, Mac
OS X

267

Multi-Device RIAs Development

described in this chapter. This comparison consid-
ers features such as the underlying programming
language, the possibility of writing source code in
the device’s native language, the type of outcome
and the license used by the framework.

5. CONCLUSION

There are several frameworks for developing rich
applications for diverse mobile devices. This kind
of RIA is known as multi-device RIA. Neverthe-
less, this term can go beyond, covering the typical
cross-browser rich Web applications as well as
cross-platform desktop applications.

It is important to emphasize that the frame-
works outlined in this chapter are not the only
ones that exist. Currently, there is a great quantity
of options for mobile development depending on
what kind of application needs to be developed.
The frameworks’ creators know that there is a
strong tendency towards the development of these
types of applications; therefore, they endeavored
to continue adding features to their respective
developments in order to satisfy specific demands.
For that reason, the information presented in this
chapter is only a perspective on what the frame-
works for mobile development are, considering
that every day there is something new in this regard.

Moreover, although most of the mobile oper-
ating systems described at the beginning of this
chapter belong to a larger platform which inte-
grates: 1) libraries for native development based
on languages such as C, C++ and Objective C,
2) IDEs and development tools such as emulators
compilers and packagers 3) runtime environments
such as the .NET Framework and the Adobe™
AIR™ and 4) (less frequently) frameworks for
developing native applications starting from
Web applications based on HTML, CSS and Ja-
vaScript such as the HP™’s Enyo and the RIM’s
WebWorks™ frameworks; there are a lot of cross-
platform development frameworks which allows
building native or hybrid applications for multiple

mobile operating systems using: 1) the same code
base written in HTML, CSS and JavaScript or 2)
code written in non-native languages such as the
scripting language Lua. These frameworks allows
saving development time and effort since they
address more than one mobile operating system
at the same time and they leverage previous Web
programing skills without requiring native code
programing skills.

REFERENCES

AppMobi XDK. (n.d.). AppMobi website. Re-
trieved July 6, 2012, from http://www.appmobi.
com/?q=node/27

Corona, S. D. K. (n.d.). Corona Labs website. Re-
trieved July 6, 2012, from http://www.coronalabs.
com/products/corona-sdk/

Kappel, G., Proll, B., Retschitzegger, W., &
Schwinger, W. (2003). Customisation for Ubiq-
uitous Web Applications: a Comparison
of Approaches. Int. J. Web Eng. Technol., 1(1),
79–111. doi:10.1504/IJWET.2003.003322

Palmieri, M., Singh, I., & Cicchetti, A. (2012).
Comparison of cross-platform mobile develop-
ment tools. In Proceedings of 2012 16th In-
ternational Conference on Intelligence in Next
Generation Networks (ICIN) (pp. 179–186). IEEE.
doi:10.1109/ICIN.2012.6376023

Qt, S. D. K. (n.d.). Nokia products. Retrieved July
6, 2012, from http://qt.nokia.com/products

ADDITIONAL READING

Comparing Titanium and PhoneGap. (n.d.).
Kevin Whinnery. Retrieved July 2, 2012, from
http://kevinwhinnery.com/post/22764624253/
comparing-titanium-and-phonegap

http://www.appmobi.com/?q=node/27
http://www.appmobi.com/?q=node/27
http://www.coronalabs.com/products/corona-sdk/
http://www.coronalabs.com/products/corona-sdk/
http://dx.doi.org/10.1504/IJWET.2003.003322
http://dx.doi.org/10.1109/ICIN.2012.6376023
http://qt.nokia.com/products
http://kevinwhinnery.com/post/22764624253/comparing-titanium-and-phonegap
http://kevinwhinnery.com/post/22764624253/comparing-titanium-and-phonegap

268

Multi-Device RIAs Development

Comparison: App Inventor, DroidDraw, Rho-
mobile, PhoneGap, Appcelerator, WebView,
and AML. (n.d.). Application Markup Language
website. Retrieved July 6, 2012 from http://
www.amlcode.com/2010/07/16/comparison-
appinventor-rhomobile-phonegap-appcelerator-
webview-and-aml/

Mobile Frameworks Comparison Chart. (n.d.).
Markus Falk website. Retrieved July 6, 2012,
from http://www.markus-falk.com/mobile-
frameworks-comparison-chart/

KEY TERMS AND DEFINITIONS

Hybrid Mobile Application: Applications
built using Web technologies and wrapped in
device-specific native application containers.

Mobile Device: A small, hand-held computing
device. Cell phones, smartphones, tablet comput-
ers and PDAs are examples of mobile devices,
which can differ in the quality and range of features.

Mobile Web Application: A mobile applica-
tion written using Web standards and deployed as
a mobile Web browser-based application.

Multi-Device Development Framework: A
software platform designed to support the develop-
ment of mobile applications either as embedded
Web applications or as applications written in a
cross-platform programming language such as
Lua and Haxe.

Multi-Device Rich Internet Application: A
kind of RIA that can run on a variety of devices
starting from the same code base. This includes not
only cross-browser Web applications but also out-
of-browser applications, namely cross-platform
desktop and mobile applications.

Native Mobile Applications: Applications
written for a specific device’s hardware and op-
erating system.

Rich Internet Applications: Applications that
are deployed over the Web; this type of applica-
tions combines features and functionality of Web
applications and desktop applications.

http://www.amlcode.com/2010/07/16/comparison-appinventor-rhomobile-phonegap-appcelerator-webview-and-aml/
http://www.amlcode.com/2010/07/16/comparison-appinventor-rhomobile-phonegap-appcelerator-webview-and-aml/
http://www.amlcode.com/2010/07/16/comparison-appinventor-rhomobile-phonegap-appcelerator-webview-and-aml/
http://www.amlcode.com/2010/07/16/comparison-appinventor-rhomobile-phonegap-appcelerator-webview-and-aml/
http://www.markus-falk.com/mobile-frameworks-comparison-chart/
http://www.markus-falk.com/mobile-frameworks-comparison-chart/

269

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

DOI: 10.4018/978-1-4666-6437-1.ch013

An Overview of RIAs
Development Tools

ABSTRACT

Rich Internet Applications (RIAs) development has traditionally been addressed using framework-based
development approaches (i.e., using application frameworks), which usually comprise tools such as
Standard Development Kits (SDKs), class libraries, and Integrated Development Environments (IDEs).
Nevertheless, another development approach that relies on Model-Driven Development (MDD) method-
ologies and tools has recently emerged as a result of the academic and commercial effort for alleviating
the lack of development methodologies and support tools especially designed for the development of
RIAs. In this chapter, a new classification of RIAs development approaches is proposed by introducing
a third category: Rapid Application Development (RAD) approaches. Thereby, the chapter reviews not
only IDEs for frameworks-based RIA development; it also addresses other support tools for MDD and
RAD such as code generation tools. Additionally, the features, scope, and limitations of the analyzed
tools are discussed by means of a series of usage scenarios addressing the RIAs implementation.

1. INTRODUCTION

RIAs engineering is an emerging area of the
Software engineering which lacks of development
approaches and software tools in comparison with
Web engineering. Therefore, the development of
RIAs is mainly driven by a set of programming
languages such as ActionScript and JavaScript as
well as application frameworks such as AdobeTM
FlexTM and MicrosoftTM Silverlight™.

However, some proposals based on the MDD
(Model Driven Development) approach have
recently emerged with the aim of solving the

aforementioned requirements. In fact, according
to Toffeti, Comai, Preciado and Linaje (Toffeti
et al., 2011), RIAs development is currently ad-
dressed 1) by using application frameworks which
provide SDKs (Standard Development Kits),
class libraries, IDEs (Integrated Development
Environments), among other development tools,
2) by using MDD tools which generate executable
code starting from high-level software models.

The use of software tools based on the RAD
(Rapid Application Development) methodology
is a current trend on RIAs development. Thus, the
aforementioned classification has been extended

270

An Overview of RIAs Development Tools

by adding a category for clustering approaches
based on the RAD methodology. In this chapter,
the most representative software tools in each cat-
egory of the extended classification are described.

Additionally, the features, scope and limitations
of the tools are discussed by means of a series of
usage scenarios addressing the implementation of
RIAs. In detail, these usage scenarios face some
of the RIA development aspects identified by Tof-
fetti (Toffetti et al., 2011). It is important to notice
that, the usage scenarios are not achieved as use
cases but as technical discussions summarizing
the lessons learned in the development of sample
RIAs by using the tools described in this chapter;
therefore, technical details about implementation
are not included. In most cases, these usage sce-
narios involve not only coding but also building
activities, namely compiling and debugging, so
that they are not completely accurate neither for the
UI (User Interface) design tools nor for the RAD
and MDD tools but for the IDEs described in this
chapter. As far as possible, the execution of the
resulting applications in debug mode is depicted
by some screenshots throughout this chapter.

2. TOOLS FOR FRAMEWORK-
BASED RIAS DEVELOPMENT

This section presents the most popular software
tools available for developing RIAs based on the
four major technologies for RIAs development.
It is important to notice that most of the software
tools considered in this section are Integrated
Development Environments (IDEs). An IDE is a
software application that provides comprehensive
facilities to developers for software development
and ideally integrates source code editing, visual
designing, debugging and building capabilities.
These features are considered for describing some
IDEs in following subsections.

IDEs for RIAs development can be classified
into the following two major groups accordingly

to its architecture: 1) standalone applications and
2) plug-in applications. Besides, a standalone ap-
plication, a plug-in application is a set of software
components that adds specific functionalities to
a larger software application. From this perspec-
tive, it is important to notice that there are popu-
lar IDEs based on plug-in architectures such as
Eclipse™, which can be extended for supporting
many programming languages and frameworks
through plug-ins. Therefore, there are many IDEs
based on Eclipse™ available as both standalone
and plug-in applications. For practical purposes,
the aforementioned classification is used in this
section. Furthermore, it is important to notice
that besides the official development tools, i.e.,
the tools developed, supplied and maintained by
technology owners, there are third-party devel-
opment tools, i.e. tools developed, supplied and
maintained by third-party open source communi-
ties or external software companies.

2.1. Adobe™ Flex™-Based
RIAs Integrated Development
Environments

Adobe™ Flex™ includes MXML (Macromedia
FleX Markup Language) as well as Adobe™
Flash™ Player and Adobe™ AIR™ runtimes.
MXML is an XML-based language for the de-
sign of application UIs whereas ActionScript is
an object-oriented language for the definition
of client-side application logic. MXML and
ActionScript code are compiled together into a
single SWF (Small Web Format) file. Depending
on the application type, SWF files run either on
Adobe™ Flash™ Player or on Adobe™ AIR™.

The official IDE for Adobe™ Flex™-based
development is Adobe™ Flash Builder™, which
is a commercial software application. Although
Adobe™ launched Adobe™ Flash Builder™ also
under an education free license; there are many
open source options for Flex™ developers and
they are described in this section.

271

An Overview of RIAs Development Tools

The scope and limitations of these tools are
discussed by means of a usage scenario address-
ing the development of an Adobe™ Flex™-based
mobile RIA. In detail, this scenario aims at de-
veloping a RIA able to capture and display video
from Android™-based mobile devices cameras.
The application is a single-view application that
displays a 480x360 video at the top of the screen
when the view is loaded. For that purpose, the
Adobe™ Flex™ Camera and Video classes are
used. The former allows applications to connect
to client systems and mobile devices cameras
and broadcast the video either locally or remotely
whereas the latter is used to display the video
captured from cameras. At the same time, this
scenario is intended to complement the review of
the support for multimedia content (namely video
playback) on non-JavaScript-based frameworks for
RIAs development that is provided in chapter 5.

According to the classification of RIA features by
Toffetti et al. (Toffetti et al., 2011), this scenario
considers the rich presentation aspect of RIAs
development.

2.1.1. Adobe™ Flash Builder™

Adobe™ Flash Builder™ is an Eclipse™-based
IDE for building cross-browser Web applica-
tions and cross-platform desktop and mobile
applications with a common code base by using
the ActionScript™ programming language and
the Adobe™ Flex™ framework. Adobe™ Flash
Builder™ is available under two paid editions
as well as under an academic free edition. It is
also available as a standalone application and
as a plug-in for an already configured Eclipse™
environment. Besides the built-in code editors for
both ActionScript and MXML, Adobe™ Flash

Table 1. Overall features of Adobe™ Flash Builder™

General Features

License type Commercial

Developer Adobe™ Systems Incorporated

Website http://www.adobe.com/products/flash-builder-family.html

Latest stable release 4.7 (May, 2014)

Operating system Microsoft™ Windows™, Mac OS™

Screenshot

272

An Overview of RIAs Development Tools

Builder™ provides a WYSWYG (What You See
Is What You Get) editor for visually building UIs
based on MXML. It also offers wizards for pack-
aging and digitally signing mobile applications
for Android™, Apple™ iOS and BlackBerry™
Tablet OS platforms.

The overall features of Adobe™ Flash Build-
er™ are described in Table 1.

The main capabilities of Adobe™ Flash
Builder™ 4.5 are described in Table 2.

2.1.2. FlashDevelop

FlashDevelop is a free and open source IDE for
Adobe™ Flash™, Adobe™ Flex™ and Haxe ap-
plications development. Haxe is an open source

Table 2. Main capabilities of Adobe™ Flash Builder™

1. Source code editing

Scripting language support (MXML) Yes

Advanced code refactoring No (only rename capability)

Syntax coloring Yes

On-the-fly code analysis Yes

Built in code-completion Yes

Documentation comment tags Yes (AsDoc)

Source code generation tools Yes

2. Visual designing

Drag and drop design Yes

UML (Unified Modeling Language)-diagramming tools No

Cascading Style Sheets (CSS)-editing tools Yes

3. Debugging and compiling

Compiler error/warning messages Yes

Testing tools Yes (FlexUnit)

Conditional breakpoints Yes

On mobile device emulator emulating Yes

On locally connected mobile device debugging/running Yes (Android™ and BlackBerry™ Tablet OS-based mobile devices)

4. Building and publishing

Building wizard Yes

Signing wizard Yes (integration with BlackBerry™ Tablet SDK for Adobe™ AIR™)

5. Extra tools

Project file explorer Yes

Web services integration wizard Yes, SOAP (Simple Object Access Protocol) and REST
(Representational State Transfer)

Advanced import/export capabilities Yes

Application server integration wizard Yes (Java, PHP, ColdFusion™, ASP.NET™)

Web framework integration Yes (Zend™ Framework)

Update manager capability Yes

Version control tools Yes, CVS (Concurrent Versions System)

273

An Overview of RIAs Development Tools

high-level multi-platform programming language
targeting different source code languages such as
PHP, JavaScript and C#. FlashDevelop has text-
editing capabilities for handling XML and HTML
code; therefore, it can be used as a code editor for
Web development. FlashDevelop supports both 2.0
and 3.0 versions of ActionScript. In this sense, it
uses the free MTASC (Motion-Twin ActionScript
2 Compiler) compiler for building ActionScript
2.0 applications. It is a .NET™ framework-based
application; therefore, it is only available for
Microsoft™ Windows™ operating systems as a
standalone application.

The overall features of FlashDevelop are de-
scribed in Table 3.

The main capabilities of FlashDevelop 4.0.4
are described in Table 4.

2.1.3. Powerflasher FDT

Powerflasher FDT is a commercial IDE based on
Eclipse™ for building Adobe™ Flash, Adobe™
Flex and Haxe applications. It is developed by
PoweFlasher™ and it was released under a free
and limited edition and under a complete edition.
In addition, it is available as a standalone appli-
cation and as a plug-in for an already configured
Eclipse™ environment. Powerflasher FDT sup-
ports a complete mobile development workflow
for Android™, Apple™ iOS and BlackBerry™
Tablet OS applications based on Adobe™ AIR™.
It can be extended and customized by using a
plug-in called SWFBridge™. SWFBridge™ is
an open source platform that allows developers
to use ActionScript and Adobe™ Flex™ to cre-
ate new features such as views, plug-ins and tools
for supporting custom workflows. Powerflasher

Table 3. Overall features of FlashDevelop

General Features

License type Massachusetts Institute of Technology (MIT) license

Developer FlashDevelop

Website http://www.flashdevelop.org/

Latest stable release 4.6.1 (May, 2014)

Operating system Microsoft™ Windows™

Screenshot

274

An Overview of RIAs Development Tools

FDT exploits haxe capabilities in order to provide
HTML5 and WebGL development support.

The overall features of Powerflasher FDT are
described in Table 5.

The main capabilities of Powerflasher FDT
5.6.2 are described in Table 6.

2.1.4. CodeDrive™

CodeDrive™ is a commercial IDE for building Ac-
tionScript™ 3.0 applications using the Adobe™
Flex™ SDK. It is available as a Microsoft™ Visual
Studio™™ 2010 extension and as a standalone
application. CodeDrive™ allows developing
Adobe™ Flash™-based front-ends for .NET™

Table 4. Main capabilities of FlashDevelop

1. Source code editing

Scripting language support (MXML) Yes

Advanced code refactoring Yes

Syntax coloring Yes

On-the-fly code analysis No

Built in code-completion Yes

Documentation comment tags Yes (JavaDoc)

Source code generation tools Yes

2. Visual designing

Drag and drop design No

UML-diagramming tools No (only through plug-ins)

CSS-editing tools Yes

3. Debugging and compiling

Compiler error/warning messages Yes

Testing tools No

Conditional breakpoints No

On mobile device emulator emulating Yes

On locally connected mobile device debugging/running No

4. Building and publishing

Mobile Applications Packaging wizard No (it only has a standard building capability)

Mobile Applications Signing wizard No

5. Extra tools

Project file explorer Yes

Web services integration wizard tool No

Advanced import/export project capabilities No (it has integration with Adobe™ Flash™ Creative Suite™)

Application server integration wizard No (only manually)

Web framework integration No

Update manager capability Yes

Version control tools No (only through plug-ins)

275

An Overview of RIAs Development Tools

applications using the same IDE. CodeDrive™
is developed by iSpring Research and it was
released under a paid edition; a fully-functional
free trial version is also available. CodeDrive™
allows for joint debugging Adobe™ Flash™ and
Microsoft™ Visual Studio™ projects as well as
simultaneously debugging multiple Adobe™
Flash™ projects. The CodeDrive™ build engine
is based on the RIO™ compiler and the Adobe™
Flex™ application compiler. RIO™ is an SDK
supplied by iSpring Research for building RIAs
such as players, games and e-learning courses
based on Flash™ content.

The overall features of CodeDrive™ are de-
scribed in Table 7.

The main capabilities of CodeDrive™ 1.5 are
described in Table 8.

2.1.5. SapphireSteel Amethyst
Plugin for Visual Studio™

SapphireSteel Amethyst is a commercial IDE
based on Microsoft™ Visual Studio™ for develop-
ing Adobe™ Flash™ and Adobe™ Flex™-based
Web and desktop applications. It is a product of
SapphireSteel Software and it is released under
a free limited edition and under a paid complete
edition. SapphireSteel Amethyst 1.6 is supplied
in separate versions for Microsoft™ Visual Stu-
dio™ 2008 and Microsoft™ Visual Studio™
2010. It supports versions 3 and 4 of Adobe™
Flex™ as well as versions 9 and 10 of Adobe™
Flash™ Player. Like Adobe™ Flash Builder™,
SapphireSteel Amethyst provides a drag and drop
editor for visually building GUIs based on MXML.
In addition, it enables developers to share code
with Adobe™ Flash Creative Suite™ and Adobe™

Table 5. Overall features of Powerflasher FDT

General Features

License type Commercial

Developer Powerflasher

Website http://fdt.powerflasher.com/

Latest stable release 6 (May, 2014)

Operating system Microsoft™ Windows™, Mac OS™, Linux™

Screenshot

276

An Overview of RIAs Development Tools

Flash Builder™ to import and convert existing
projects. Optionally, SapphireSteel Amethyst can
be integrated with Midnight Coders’ WebORB
integration server, which allows creating Adobe™
Flex™ applications that communicate with ASP.
NET™ servers.

The overall features of SapphireSteel Amethyst
are described in Table 9.

The main capabilities of SapphireSteel 1.6 are
described in Table 13.10.

2.1.6. Discussion

Besides Adobe™ Flash™ Builder, SapphireSteel
Amethyst provides a visual UI editor for dragging
and dropping MXML components. Nevertheless,
unlike the other tools for Adobe™ Flex™-based

Table 6. Main capabilities of Powerflasher FDT

1. Source code editing

Scripting language support (MXML) Yes

Advanced code refactoring Yes

Syntax coloring Yes

On-the-fly code analysis Yes

Built in code-completion Yes

Documentation comment tags Yes (AsDoc)

Source code generation tools Yes

2. Visual designing

Drag and drop design No

UML-diagramming tools No

CSS-editing tools No

3. Debugging and compiling

Compiler error/warning messages Yes

Testing tools No

Conditional breakpoints Yes

On mobile device emulator emulating Yes

On locally connected mobile device emulating Yes

4. Building and publishing

Mobile Applications Packaging wizard Yes

Mobile Applications Signing wizard Yes (integration with BlackBerry™ Tablet SDK for Adobe™ AIR™)

5. Extra tools

Project file explorer Yes

Web services integration wizard No

Advanced import/export project capabilities Yes

Application server integration wizard Yes, HTTP servers)

Web framework integration No

Update manager capability Yes

Version control tools Yes (CVS)

277

An Overview of RIAs Development Tools

development described in this section, Amethyst
1.6 does not provide integration with the AIR
Debugger Launcher (ADL) tool -the emulator
for AIR™-based applications that is distributed
in the Adobe™ Flex™ SDK. Thereby, the An-
droid™ SDK emulator needs to be used to debug
AIR™-based applications in Amethyst so that
same configuration is required at both the Android
emulator-side and the Amethyst-side. In fact,
debugging in Amethyst requires applications to
be actually installed in the Android™ emulator;
therefore, they must be previously packaged and
signed by using digital certificates. This process
is covered by Amethyst; however, the configura-
tion at the Android™ emulator-side, e.g., creation
of Android Virtual Devices (AVDs) needs to be
done by hand. Because the Android™ emulator
is not the primary target of AIR™-based appli-
cation debugging task, the hardware capabilities

to be emulated need to be carefully considered.
For instance, the camera is not emulated in the
Android™ emulator before Android™ API level
14. API level is set during AVD creation. From
this perspective, for the usage scenario stated at
the beginning of this section, a lower level of the
Android™ API was selected; thereby, camera was
not emulated. Unlike the other tools for Adobe™
Flex™-based development that support ADL-
based debugging, flashdevelop 4.0.4 does not
provide a debug configuration wizard; therefore,
the ADL parameters such as the model of the
device to be emulated and the screen size need to
be directly configured in the batch file executing
the ADL tool.

Table 7. Overall features of CodeDrive™

General Features

License type Commercial

Developer iSpring Research

Website http://www.codedrive.com/

Latest stable release 1.5 (May, 2014)

Operating system Microsoft™ Windows™

Screenshot

278

An Overview of RIAs Development Tools

2.2. JavaFX™-Based RIAs Integrated
Development Environments

JavaFX™ is a free and open source application
framework for building Web browser-based and
out-of-browser RIAs as well as desktop applica-
tions. JavaFX™ uses FXML, which is an XML-
based user interface markup language. It also
uses JVM -based programming languages such

as Java and Groovy for defining business logic.
FXML and Java source code are compiled into
Java bytecode; therefore, JavaFX™ applications
can run on any desktop and Web browser that runs
the JRE (Java Runtime Environment).

NetBeans™ IDE is considered to be the of-
ficial IDE for JavaFX-based development. In
fact, it provides tight integration with the official
JavaFX™ UI design tool: JavaFX™ Scene Builder.

Table 8. Main capabilities of CodeDrive™

1. Source code editing

Scripting language support (MXML) No

Advanced code refactoring No (only rename capability)

Syntax and semantic coloring Yes

On-the-fly code analysis Yes

Built in code-completion Yes

Documentation comment tags Yes (AsDoc)

Source code generation tools Yes (No setters/getters generation)

2. Visual designing

Drag and drop design No

UML-diagramming tools No

CSS-editing tools Yes

3. Debugging and compiling

Compiler error/warning messages Yes

Testing tools No

Conditional breakpoints Yes

On mobile device emulator emulating No

On locally connected mobile device emulating No

4. Building and publishing

Mobile Applications Packaging wizard No (it only has a standard building capability)

Mobile Applications Signing wizard No

5. Extra tools

Project file explorer Yes

Web services integration wizard No

Advanced import/export project capabilities No

Application server integration wizard No (it only has a database server integration wizard)

Web framework integration No

Update manager capability Yes

Version control tools No

279

An Overview of RIAs Development Tools

Nevertheless, virtually any Java IDE may be used
to develop JavaFX™ applications by means of
some configuration. These options are described
in this section.

JavaFX™ does not currently support the de-
velopment of mobile applications (JavaFX 2.0).
In addition, due to the lack of support for Webcam
access on JavaFX-based desktop applications, the
usage scenario employed to discuss the features of
the tools for JavaFX-based development is aimed
at developing a Web browser-based RIA showing
advanced client-server communication mecha-
nisms. In fact, this scenario is intended to provide
an overview of the client-server communication
aspect of RIAs development (Toffetti et al., 2011),
namely the ability of retrieving data from two or
more simultaneous sources in asynchronous mode.
The impact of this aspect on RIA UIs implementa-
tion is actually addressed in chapter 8. In detail,
the application developed in the above described

usage scenario is a single-page application that
asynchronously loads four remote images, each
one from a different source. The application is
forced to load the images asynchronously by
setting to true the backgroundLoading property
of the JavaFX™ Image class. This causes the
image-loading operation to occur in a separate
execution thread to keep the UI responsiveness.
As can be inferred, the JavaFX™ Image class is
used for loading images from URLs (Uniform
Resource Locators). The images need to be further
displayed by using the ImageView class.

2.2.1. NetBeans™ IDE

NetBeans™ IDE is a free and open source IDE
developed by Oracle™ Corporation. It is built
on top of NetBeans™ Platform. NetBeans™
Platform is a Java-based framework for desktop
applications development. NetBeans™ Platform-

Table 9. Overall features of SapphireSteel Amethyst

General Features

License type Commercial

Developer SapphireSteel Software

Website http://www.sapphiresteel.com/Adobe-Flex-IDE-Amethyst-Beta-2

Latest stable release 2 (May, 2014)

Operating system Microsoft™ Windows™

Screenshot

280

An Overview of RIAs Development Tools

based applications such as NetBeans™ IDE
can be extended by using software components
called modules; here, modules are comparable
to plug-ins. NetBeans™ IDE officially supports
Java-based technology as well as Groovy, PHP,
JavaScript and C/C++ programming languages;
however, there are third-party modules for sup-
porting other languages such as Python and Scala.

The overall features of NetBeans™ IDE are
described in Table 11.

The main capabilities of NetBeans™ IDE 7.2
are described in Table 12.

Table 10. Main capabilities of SapphireSteel

1. Source code editing

Scripting language support (MXML) Yes

Advanced code refactoring Unknown

Syntax and semantic coloring Yes

On-the-fly code analysis Yes

Built in code-completion Yes

Documentation comment tags Yes (AsDoc)

Source code generation tools Yes

2. Visual designing

Drag and drop design Yes

UML-diagramming tools Yes

CSS-editing tools -

3. Debugging and compiling

Compiler error/warning messages Yes

Testing tools No

Conditional breakpoints Yes

On mobile device emulator emulating No

On locally connected mobile device emulating No

4. Building and publishing

Applications Packaging wizard No (it only has a standard building capability)

Applications Signing wizard No

5. Extra tools

Project file explorer Yes

Web services integration wizard No

Advanced import/export project capabilities No (it only allows importing and converting Adobe™ Flash
Builder™ projects)

Application server integration wizard No (it only has a database server integration wizard)

Web framework integration Yes (Midnight Coders’ WebORM)

Update manager capability Yes

Version control tools Yes, TFSV (Team Foundation Server Version Control)

281

An Overview of RIAs Development Tools

2.2.2. JavaFX™ Scene Builder™

JavaFX™ Scene Builder is a commercial free
software tool for visually designing JavaFX™ ap-
plications’ UIs in FXML. It is a component of the
JavaFX™ platform. It was initially developed by
Sun™ microsystems and it is actually maintained
by Oracle™ Corporation. Although JavaFX™
Scene Builder can be used in combination with
any Java IDE for writing JavaFX™ applications’
business logic, it provides tight integration with
NetBeans™ IDE. JavaFX™ Scene Builder offers
a drag and drop WYSWYG UI editor; this editor
supports CSS external files binding for look and
feel customization.

The overall features of JavaFX™ Scene Builder
are described in Table 13.

The main capabilities of JavaFX™ Scene
Builder 1.0 are described in Table 14.

2.2.3. E(fx)clipse Plugin for Eclipse™

E(fx)clipse is a free and open source Eclipse™-
based IDE for developing JavaFX™ 2.0 appli-
cations. It is developed by BestSolution.at and
it is available only as a plug-in for an already
configured Eclipse™ environment. E(fx)clipse
is also a runtime platform that enables develop-
ers to develop JavaFX™ applications on top of
Eclipse™ Equinox which is an implementation of
the OSGi technology. OSGi is a set of specifica-
tions that define a service platform and a dynamic
component model for Java. E(fx)eclipse provides a
DSL (Domain-Specific Language) called fxgraph
for the definition of a JSON (JavaScript Object

Table 11. Overall features of NetBeans™ IDE

General Features

License type Dual: CDDL (Common Development and Distribution License) and
GPL (GNU General Public License) v. 2.0

Developer Oracle™ Corporation

Website http://netbeans.org/

Latest stable release 8 (May, 2014)

Operating system Microsoft™ Windows™, Mac OS™, Linux™ and Solaris™

Screenshot

http://netbeans.org/

282

An Overview of RIAs Development Tools

Notation)-like object graph which is translated into
FXML code. It also provides a CSS editor that
recognizes the CSS properties used by JavaFX™
2.0 besides the properties commonly supported
by popular Web browsers.

The overall features of E(fx)clipse are de-
scribed in Table 15.

The main capabilities of E(fx)clipse 0.1.0 are
described in Table 16.

2.2.4. Discussion

NetBeans™ IDE 7.2 does not integrate a visual
UI editor for dragging and dropping FXML com-
ponents; thereby, an additional tool needs to be

Table 12. Main capabilities of NetBeans IDE

1. Source code editing

Scripting language support (FXML) Si

Advanced code refactoring Yes

Syntax and semantic coloring Yes

On-the-fly code analysis Yes

Built in code-completion Yes

Documentation comment tags Yes (JavaDoc)

Source code generation tools Yes

2. Visual designing

Drag and drop design No (only Swing controls)

UML-diagramming tools No (only through plug-ins)

CSS-editing tools Yes

3. Debugging and compiling

Compiler error/warning messages Yes

Testing tools Yes (JUnit)

Conditional breakpoints Yes

On mobile device emulator emulating -

On locally connected mobile device emulating -

4. Building and publishing

Applications Packaging wizard Yes, JAR (Java ARchive) and JNLP (Java Network Launching
Protocol) files

Applications Signing wizard Yes (JAR files)

5. Extra tools

Project file explorer Yes

Web services integration wizard Yes (SOAP and REST)

Advanced import/export project capabilities No (it only allows importing Eclipse™ projects)

Application server integration wizard Yes

Web framework integration Yes (Java frameworks)

Update manager capability Yes

Version control tools Yes (Git™, Mercurial, Subversion™ and CVS)

283

An Overview of RIAs Development Tools

used for visually designing JavaFX™-based UIs:
JavaFX™ Scene Builder. This allows for a separa-
tion of developer and designer roles so that one
specific tool can be provided to each role. In fact,
JavaFX™-based UIs can be programmatically de-
fined in NetBeans™ IDE (in “development mode”)
and further edited in JavaFX™ Scene Builder
(in “design mode”). Therefore, NetBeans™ IDE
provides tight integration with JavaFX™ Scene
Builder. This ensures the integration of the devel-
opers and designers works. Similarly, e(fx)clipse
0.1.0 does not provide a visual FXML editor. In
fact, this Eclipse™-based tool does not provide
a perspective for JavaFX™-based development;
thereby, JavaFX™-based applications are imple-
mented, debugged and executed as pure Java-based
applications. In Eclipse™, a perspective defines

the initial set and layout of views in a workbench
window. A workbench window is a collection of
one or more perspectives (“Eclipse documenta-
tion - Previous Release,” n.d.).

2.3. Microsoft™ Silverlight™-
Based RIAs Integrated
Development Environments

Microsoft™ Silverlight™ is a free application
framework for building both Web browser-based
and out-of-browser RIAs as well as applications
for Windows™ Phone devices. On the one hand,
Silverlight™ uses an XML-based user interface
markup language called XAML (eXtensible Ap-
plication Markup Language). On the other hand,
it uses .NET™ Framework-supported program-

Table 13. Overall features of JavaFX™ Scene Builder

General Features

License type Commercial

Developer Oracle™ Corporation

Website http://www.oracle.com/technetwork/java/javafx/tools/index.html

Latest stable release 1.1 (May, 2014)

Operating system Microsoft™ Windows™ and Mac OS™

Screenshot

284

An Overview of RIAs Development Tools

ming languages, including dynamic languages
such as IronPhyton and type-safe languages
such as Visual C#™, for application business
logic definition. The runtime for Silverlight™
applications is available as a plug-in for the most
popular Web-browsers.

Microsoft™ Visual Studio™ is considered to
be the official IDE for Microsoft™ Silverlight™.
As in the case of JavaFX, there is a UI design

tool for Microsoft™ Silverlight: Microsoft™
Expression Blend™. This tool provides tight
integration with Visual Studio™. In addition to
these official tools, there are other third-party
tools based on popular extensible plug-in systems
such as Eclipse™. These options are described
in this section.

As in the case of the tools for Adobe™ Flex™-
based development, the scope and limitations of

Table 14. Main capabilities of JavaFX™ Scene Builder 1.0

1. Source code editing

Scripting language support (FXML) Yes

Advanced code refactoring -

Syntax and semantic coloring -

On-the-fly code analysis -

Built in code-completion -

Documentation comment tags -

Source code generation tools Yes (FXML source code)

2. Visual designing

Drag and drop design Yes

UML-diagramming tools No

CSS-editing tools No (it only allows linking external CSS files)

3. Debugging and compiling

Compiler error/warning messages -

Testing tools -

Conditional breakpoints -

On mobile device emulator emulating -

On locally connected mobile device emulating -

4. Building and publishing

Applications Packaging wizard -

Applications Signing wizard -

5. Extra tools

Project file explorer No

Web services integration wizard -

Advanced import/export project capabilities Yes

Application server integration wizard -

Web framework integration -

Update manager capability No

Version control tools No

285

An Overview of RIAs Development Tools

the tools for Silverlight™-based development are
discussed by means of a usage scenario address-
ing the development of a mobile application able
to capture video from Windows™ Phone-based
mobile devices’ cameras. In detail, the application
is a single-page application that displays a 640x480
video at the top of the screen (below the default
title panel, which includes the application and page
names) when the page is loaded. For that purpose,
the Silverlight™ CaptureDeviceConfiguration
and CaptureSource classes are used. The former is
used to access to audio and video capture devices
such as webcams and mobile devices’ cameras
whereas the latter allows applications to capture
audio and video from these devices.

2.3.1. Microsoft™ Visual Studio™

Microsoft™ Visual Studio™ is a commercial IDE
supplied by Microsoft™ Corporation for devel-
oping XML Web services, console applications,
traditional Web applications, Windows™-based
desktop applications, RIAs and Windows™ Phone
applications. In fact, it supports .NET™ Frame-
work and Microsoft™ Silverlight™ platforms.
Visual Studio™ 2012 was released under three
different paid editions as well as under separate
free limited editions for Web development and
Windows™-based applications development. It
provides a set of visual designers, e.g. UML use
case and class diagram designers and a drag and
drop UI designer for the Windows™ Presentation
Foundation API which uses the XAML language.
The Visual Studio functionality can be extended

Table 15. Overall features of E(fx)clipse

General Features

License type EPL (Eclipse Public License)

Developer BestSolution.at

Website http://efxclipse.org/

Latest stable release 0.9.0 (May, 2014)

Operating system Microsoft Windows™, Mac OS™ and Linux™

Screenshot

286

An Overview of RIAs Development Tools

by using add-ins; add-ins are attached applications
that can be integrated into the IDE. Add-ins can
be implemented in any Component Object Model
(COM)-consuming programming language. In this
sense, the add-in called Microsoft™ Silverlight™
Tools for Visual Studio™ must be installed in
Visual Studio™ to provide support for the Sil-
verlight™ platform.

The overall features of Microsoft™ Visual
Studio are described in Table 17.

The main capabilities of Microsoft™ Visual
Studio™ 2012 are described in Table 18.

2.3.2. Microsoft™ Expression Blend™

Microsoft™ Expression Blend™ is a commercial
software tool for designing Windows Presentation

Table 16. Main capabilities of E(fx)clipse

1. Source code editing

Scripting language support (FXML) Yes

Advanced code refactoring Unknown

Syntax and semantic coloring Yes

On-the-fly code analysis Yes (Only available in the Java code editor)

Built in code-completion Yes

Documentation comment tags Yes (JavaDoc)

Source code generation tools Yes (Only available in the Java code editor)

2. Visual designing

Drag and drop design No

UML-diagramming tools No

CSS-editing tools Yes

3. Debugging and compiling

Compiler error/warning messages Yes

Testing tools Yes (JUnit)

Conditional breakpoints Yes

On mobile device emulator emulating -

On locally connected mobile device emulating -

4. Building and publishing

Applications Packaging wizard Yes (JAR and JNLP files)

Applications Signing wizard Yes (JAR files)

5. Extra tools

Project file explorer Yes

Web services integration wizard No

Advanced import/export project capabilities Yes

Application server integration wizard Unknown

Web framework integration No

Update manager capability Yes

Version control tools Yes (CVS)

287

An Overview of RIAs Development Tools

Foundation and Microsoft™ Silverlight™ ap-
plication UIs using XAML. It supports multiple
target platforms, including versions 3 and 4 of
Microsoft™ Silverlight™ and versions 3 and 4
of Microsoft™ .NET™ Framework. Microsoft™
Expression Blend™ is developed by Microsoft™
Corporation and it was released as a version for
Windows™ Phone applications development as
well as part of Microsoft™ Expression Studio™, a
complete suite of tools for designing Web browser-
based RIAs and Windows™-based applications.
Regarding to its main features, Microsoft™ Ex-
pression Blend™ includes both a WYSIWG editor
and a code editor with XAML, Visual C#™ and
Visual Basic .NET autocompletion. Furthermore,
it enables visual designers to import existing
Adobe™ Photoshop and Adobe™ Illustrator files
as design assets.

The overall features of Microsoft™ Expression
Blend™ are described in Table 19.

The main capabilities of Microsoft™ Expres-
sion Blend™ 4.0.20525.0 are described in Table
20.

2.3.3. Eclipse4SL Plugin for Eclipse™

Eclipse4SL is an Eclipse™-based free and open
source IDE developed by Soyatec for the develop-
ment of Microsoft™ Silverlight™ applications.
It is available only as a plug-in for the Eclipse™
IDE. Unlike Microsoft™ Visual Studio™,
Eclipse4SL is a multi-platform IDE because it
can be used in both Microsoft™ Windows™
and Mac OS™ operating systems. The latest
stable release of Eclipse4SL only supports ver-
sion 2 of Microsoft™ Silverlight™ platform. The
purpose of this open source project is to provide

Table 17. Overall features of Microsoft™ Visual Studio

General Features

License type Commercial

Developer Microsoft™ Corporation

Website http://www.microsoft.com/visualstudio/11/en-us

Latest stable release 12.0.30110.00 (Visual Studio™ 2013)

Operating system Microsoft™ Windows™

Screenshot

http://www.microsoft.com/visualstudio/11/en-us

288

An Overview of RIAs Development Tools

interoperability between Silverlight™ and Java by
involving Eclipse™ RCP (Rich Client Platform).
RCP is a platform for building and deploying
native rich UIs to a variety of desktop operating
systems. Eclipse4SL offers a WYSIWYG editor
and a XAML code editor as well as a Visual C#™
code editor for building the applications’ business
logic. Projects created by using Eclipse4SL are

compatible with Microsoft™ Visual Studio™ and
Expression Blend™ development tools.

The overall features of Eclipse4SL are de-
scribed in Table 21.

The main capabilities of Eclipse4SL 1.0.0 are
described in Table 22.

Table 18. Main capabilities of Microsoft™ Visual Studio™

1. Source code editing

Scripting language support (FXML) Yes

Advanced code refactoring Yes (Only available for Visual C#™ development)

Syntax and semantic coloring Yes

On-the-fly code analysis Yes

Built in code-completion Yes

Documentation comment tags Yes (XML Documentation Comments)

Source code generation tools Yes

2. Visual Designing

Drag and drop design Yes

UML-diagramming tools Yes

CSS-editing tools Yes

3. Debuging and Compiling

Compiler error/warning messages Yes

Testing tools Yes (Microsoft™ Unit Testing Framework)

Conditional breakpoints Yes

On mobile device emulator emulating No (Only available in Visual Studio 2010)

On locally connected mobile device emulating No (Only available in Visual Studio 2010)

4. Building and Publishing

Applications Packaging wizard Yes (Only in Visual Studio™ for Windows™ Phone)

Applications Signing wizard No (Signing is performed in the Windows™ Phone Dev Center)

5. Extra Tools

Project file explorer Yes

Web services integration wizard Yes (Only XML Web Services)

Advanced import/export project capabilities No (it only allows exporting project templates)

Application server integration wizard Yes

Web framework integration Unknown

Update manager capability Yes

Version control tools Yes, (TFSV)

289

An Overview of RIAs Development Tools

2.3.4. Discussion

Unlike Visual Studio™, eclipse4SL does not
support Windows™ Phone applications devel-
opment. Likewise, eclipse4SL does not provide
debugging facilities; therefore, applications
cannot be debugged but only executed using
eclipse4SL. In fact, Visual Studio™ provides
a built-in Windows™ Phone emulator for both
debugging and running (releasing) Windows™
Phone applications. However, this emulator is not
a fully-featured emulator. For instance, the camera
is not emulated before version 8 of Windows™
Phone. From this perspective, for the purposes of
the usage scenario stated in this section, version
7.1 of Windows™ Phone was used; as a result,
the camera was not emulated. Despite the afore-
mentioned drawbacks, eclipse4SL seems to be a
powerful tool for Silverlight™-based Web applica-

tion design and development because it integrates
a visual XAML editor. In fact, this Eclipse™-
based tool provides a perspective that integrates
a Silverlight™ component palette, a Silverlight™
project explorer, a C# editor, a XAML editor
and a WYSIWYG view. Finally, it is important
to notice that, in Visual Studio™, Silverlight™-
based Web applications are created as solutions
containing two projects: one for the Silverlight™
application itself and one for an ASP.NET™-based
Web application hosting the Silverlight™ code.
Similarly, in eclipse4SL, applications consist of
two separate projects. This can be confusing for
non-experienced Silverlight™ developers.

Table 19. Overall features of Microsoft™ Expression Blend™

General Features

License type Commercial

Developer Microsoft™ Corporation

Website http://www.microsoft.com/expression/products/Blend_Overview.aspx

Latest stable release 4.0.20525.0 (May, 2014)

Operating system Microsoft™ Windows™

Screenshot

http://www.microsoft.com/expression/products/Blend_Overview.aspx

290

An Overview of RIAs Development Tools

2.4. Multi-Target Integrated
Development Environments

In this section a standalone IDE called Intel-
liJ IDEA™ is analyzed. This tool targets both
JavaFX™ and Adobe™ Flex™-based RIAs de-
velopment. It can be viewed as a third-party IDE
for framework-based RIAs development in the
sense that it is not officially provided as part of

an application framework although it supports the
underlying programming languages and develop-
ment workflows. The usage scenario employed
to discuss the scope and limitations of IntelliJ
IDEA™ is the same usage scenario employed in
the case of the tools for Adobe™ Flex™-based
development. Therefore, the discussion is given
in the context of the other tools for Adobe™
Flex™-based development.

Table 20. Main capabilities of Microsoft™ Expression Blend™

1. Source Code Editing

Scripting language support (XAML) Yes

Advanced code refactoring No (Only rename capability)

Syntax and semantic coloring Yes

On-the-fly code analysis Yes

Built in code-completion Yes

Documentation comment tags No

Source code generation tools Yes

2. Visual Designing

Drag and drop design Yes

UML-diagramming tools No

CSS-editing tools No (Only in the Expression Blend™ 5 Dev Preview)

3. Debuging and Compiling

Compiler error/warning messages Yes

Testing tools No (Only in Visual Studio™)

Conditional breakpoints No (Only in Visual Studio™)

On mobile device emulator emulating Yes (Only in the Expression Blend™ for Windows™ Phone)

On locally connected mobile device emulating Yes

4. Building and Publishing

Applications Packaging wizard No (Only in Visual Studio™)

Applications Signing wizard No (Signing is performed in the Windows™ Phone Dev Center)

5. Extra Tools

Project file explorer Yes

Web services integration wizard No

Advanced import/export project capabilities Yes

Application server integration wizard No

Web framework integration No

Update manager capability No

Version control tools Yes, TFSV is integrated)

291

An Overview of RIAs Development Tools

2.4.1. IntelliJ IDEA™

IntelliJ IDEA™ is a commercial IDE built in top
of the open source IntelliJ™ platform. IntelliJ™
is a Java-based platform for building language-
aware IDEs that integrates components such as
text editors, UI frameworks and version control
tools. IntelliJ IDEA™ is developed by JetBrains
Software Company and it is released under a free
and open source limited edition as well as under
a complete edition. IntelliJ IDEA™ functionality
can be extended and customized trough plug-ins.
New programing and XML-based languages
support are an example of improvement added
by plug-ins. IntelliJ IDEA™ brings support for
polyglot development based on Java, Groovy, Py-
thon, Ruby, JavaScript, among other programming
languages. IntelliJ IDEA™ also provides support
for Web, mobile and enterprise frameworks, e.g.,

Spring, Adobe™ Flex™, Apache Struts™ and
persistence frameworks like Hibernate™. In ad-
dition, like Oracle™ JDeveloper and Microsoft™
Visual Studio™, IntelliJ IDEA™ offers an UML
diagramming tool for designing classes, packages
and database diagrams. Because IntelliJ IDEA™
is primarily a Java-based IDE, it can be manually
configured for developing JavaFX™ 2.0 applica-
tions. JavaFX™ 1.0 support is available via a
third-party plug-in.

The overall features of IntelliJ IDEA™ are
described in Table 23.

The main capabilities of IntelliJ IDEA™ 11.1.3
are described in Table 24.

2.4.2. Discussion

Unlike the other tools for Adobe™ Flex™-based
development, IntelliJ IDEA™ 11.1.3 does not

Table 21. Overall features of Eclipse4SL

General Features

License type EPL v. 1.0

Developer Soyatec

Website http://www.eclipse4sl.org/

Latest stable release 1.0.0 (May, 2014)

Operating system Microsoft™ Windows™ and Mac OS™

Screenshot

292

An Overview of RIAs Development Tools

provide a means for editing AIR descriptor files.
These configuration files are automatically gener-
ated by IntelliJ IDEA™ and they are not shown in
the folder structures of the AIR-based application
projects. In fact, neither the compiler output files
are shown in theses folder structures. However,
custom descriptor files can be created on demand

as part of the build configurations of the applica-
tions. For this purpose, a wizard is provided.

Table 22. Main capabilities of Eclipse4SL

1. Source Code Editing

Scripting language support (XAML) Yes

Advanced code refactoring No (Only rename capability)

Syntax and semantic coloring Yes

On-the-fly code analysis Yes

Built in code-completion No (Not live code-completion)

Documentation comment tags No

Source code generation tools Yes

2. Visual Designing

Drag and drop design Yes (Only in XAML code view)

UML-diagramming tools No

CSS-editing tools No

3. Debuging and Compiling

Compiler error/warning messages Yes

Testing tools No

Conditional breakpoints No

On mobile device emulator emulating No (It does not support Windows Phone™ development)

On locally connected mobile device emulating No (It does not support Windows Phone™ development)

4. Building and Publishing

Applications Packaging wizard No (It only has a standard building capability)

Applications Signing wizard No

5. Extra Tools

Project file explorer Yes

Web services integration wizard No (Web services clients implementation is possible by using
Windows Communication Foundation APIs)

Advanced import/export project capabilities Yes

Application server integration wizard Unknown

Web framework integration Unknown

Update manager capability Yes

Version control tools Yes (CVS)

293

An Overview of RIAs Development Tools

3. MDD TOOLS FOR RIAS
DEVELOPMENT

Another development approach for RIAs is based
on MDD methodologies and software tools from
both researchers and software vendors. MDD
methods employ high-level software models for
describing applications without specifying imple-
mentation issues. MDD tools ideally generate
executable code starting from software models.

Due to the lack of RIAs systematic development
approaches, some hypermedia, multimedia and
Web existing methodologies have been recently
extended adopting MDD as a development frame-
work for addressing RIAs development (Toffetti
et al., 2011). Thus, the type of development ap-
proach is used as a key attribute for describing
MDD tools for RIAs development.

Although the typical phases in MDD are re-
quirement analysis, design (at different abstraction
levels), implementation, testing and maintenance,
most of MDD approaches are focused on design,
especially on presentation design and they are
centered on user interactions. However, RIAs
design addresses data, business logic and com-
munication details besides presentation details.
Thereby, these aspects are considered in this sec-
tion for describing the main capabilities of MDD
tools for RIAs development.

3.1. WebRatio™

WebRatio™ is a MDD environment developed
by Homeria Open Solutions, which supports
planning, production and maintenance of custom-
ized Web applications. It is available either as a
standalone application or as a plug-in embeddable

Table 23. Overall features of IntelliJ IDEA™

General Features

License type Commercial

Developer JetBrains

Website http://www.jetbrains.com/idea/

Latest stable release 13.1

Operating system Microsoft Windows™, Mac OS™ and Linux™

Screenshot

294

An Overview of RIAs Development Tools

in an already configured Eclipse™ environment.
WebRatio™ offers a business logic model which
is expressed in the OMG’s BPMN (Business Pro-
cess Modeling Notation) as well as a technology-
independent application model which relies on the
WebML modeling language. The latter allows for
specifying all the functional requirements of an
application. Starting from both models WebRa-
tio™ is able to automatically generate functional

and ready-to-deploy Web applications (Acerbis et
al., 2007). Although WebRatio™ can be extended
by adding business logic components and custom
layout templates defined in a rendering language
such as HTML, CSS, JavaScript and AJAX
(Asynchronous JavaScript And XML), server-side
of generated applications is based on Java J2EE
technology. The Ajax support allows generating
Web browser-based RIAs with functionalities

Table 24. Main capabilities of IntelliJ IDEA™

1. Source Code Editing

Scripting language support (XAML) Yes

Advanced code refactoring Yes

Syntax and semantic coloring Yes

On-the-fly code analysis Yes

Built in code-completion Yes

Documentation comment tags Unknown

Source code generation tools Yes

2. Visual Designing

Drag and drop design Yes

UML-diagramming tools Yes

CSS-editing tools Yes

3. Debuging and Compiling

Compiler error/warning messages Yes

Testing tools Yes (FlexUnit)

Conditional breakpoints Yes

On mobile device emulator emulating Yes

On locally connected mobile device emulating Yes

4. Building and Publishing

Applications Packaging wizard Yes (Only Android™ and Apple™ iOS applications)

Applications Signing wizard Yes (Only Android™ and Apple™ iOS applications)

5. Extra Tools

Project file explorer Yes

Web services integration wizard Yes (SOAP and REST)

Advanced import/export project capabilities No (Only import/export settings capability)

Application server integration wizard Yes (HTTP servers)

Web framework integration Yes (Spring, Apache Struts™, Hibernate™ among others)

Update manager capability Yes

Version control tools Yes (Git and SVN)

295

An Overview of RIAs Development Tools

Table 25. Overall features of WebRatio™

Overall Features

Research Field Web Engineering - WebML extensions

Server-side Technology Java J2EE

Client-side Technology HTML + Ajax

Modeling Language WebML (data, hypertext and presentation design), BPMN (business logic design).

Model Scope Data computation, data storage and client-server communication aspects.

Application Type Web 2.0 applications

Screenshot

Table 26. Main capabilities of WebRatio™

1. Presentation

Partial page refreshing Yes

Client-side event-handling Yes

Desktop-like GUI controls No

Multimedia content No

2. Data computation

Client data validation Yes

Client data sorting Yes

Client data filtering Yes

3. Data storage

Client data storage No

4. Client-server communication

Asynchronous communication Yes

Data synchronization No

296

An Overview of RIAs Development Tools

Table 27. Overall features of RUX-Tool

Overall Features

Research Field HCI (Human Computer Interaction) - RUX-Method

Server-side Technology -

Client-side Technology HTML + Ajax

Modeling Language Visual DSL for abstract UI designing

Model Scope Presentation aspects

Application type RIAs

Screenshot

Table 28. Main capabilities of RUX-Tool

1. Presentation

Partial page refreshing Yes

Client-side event-handling Yes

Desktop-like GUI controls Yes

Multimedia content Yes

2. Data computation

Client data validation Yes

Client data sorting Unknown

Client data filtering Unknown

3. Data storage

Client data storage No

4. Client-server communication

Asynchronous communication Yes

Data synchronization No

297

An Overview of RIAs Development Tools

Table 29. Overall features of AlexandRIA

Overall Features

Research Field RIAs Engineering - PPMRD

Server-side Technology PHP and JSP

Client-side Technology Adobe™ Flex (MXML + ActionScript) and HTML + JavaScript.

High level Constructs Reusable business logic components (Cloud APIs-based), application templates and configuration files
templates.

Code Generation Scope Executable (native) code automatic generation

Application Type Cross-browser RIAs, cross-platform desktop and mobile applications (Android™, Apple™ iOS,
BlackBerry™ Tablet OS).

Screenshot

Table 30. Main capabilities of AlexandRIA

1. Presentation

Partial page refreshing Yes

Client-side event-handling Yes

Desktop-like GUI controls Yes

Multimedia content Yes

2. Data computation

Client data validation Yes

Client data sorting Yes

Client data filtering Yes

3. Data storage

Client data storage No

4. Client-server communication

Asynchronous communication Yes (cloud services back-end)

Data synchronization No

298

An Overview of RIAs Development Tools

Table 31. Overall features of Adobe™ AIR™ Launchpad

Overall Features

Research Field -

Server-side Technology -

Client-side Technology Adobe™ Flex™ (MXML + ActionScript)

High level Constructs Unknown

Code Generation Scope Source code automatic generation

Application Type Multi-platform desktop applications and native mobile applications (Android, Apple™ iOS and
BlackBerry™ Tablet OS).

Screenshot

Table 32. Main capabilities of Adobe™ AIR™ Launchpad

1. Presentation

Partial page refreshing Yes

Client-side event-handling Yes

Desktop-like GUI controls Yes

Multimedia content Yes

2. Data computation

Client data validation No

Client data sorting No

Client data filtering No

3. Data storage

Client data storage Yes

4. Client-server communication

Asynchronous communication No

Data synchronization No

299

An Overview of RIAs Development Tools

such as drag and drop, selective page refresh and
dynamic form events handling.

The overall features of WebRatio™ are de-
scribed in Table 25.

The main capabilities of the MDD tool are
described in Table 26.

3.2. RUX-Tool

RUX-Tool is an MDD tool developed by Homeria
Open Solutions, which implements RUX-Method
(Rich User eXperience Method). RUX-Method
addresses the design of multi-device Web browser-
based RIAs in three levels: 1) the abstract interface
design, which represents a high-level specification,
2) the concrete interface design, which is specific
to a device or group of devices but platform-inde-
pendent and 3) the final interface design, which
allows automatically obtaining the final UI code
targeting both an implementation platform and
a device or set of devices. RUX-Method defines
a rich UI control library and the transformation
rules between the aforementioned UI design levels
(Linaje et al., 2007). RUX-Tool, which is a RIA
itself, is available as a plug-in for WebRatio™. In
fact, RUX-Tool works together with WebRatio™
to obtain the content structure and the business
logic of legacy WebML-designed applications.
Conceptually, RUX-Method can be integrated
with any Web methodology for obtaining the data
and business logic whereas the final UI code is
automatically generated using RIA technologies
such as Ajax, Adobe™ Flex™ or OpenLaszlo™.

The overall features of RUX-Tool are described
in Table 27.

The main capabilities of the MDD tool are
described in Table 28.

4. RAD TOOLS FOR RIAS
DEVELOPMENT

RIAs development can be achieved by using RAD
approaches. RAD is a software development

methodology that suggests minimal software mod-
eling and exploits software prototyping (Martin,
1991). Therefore, the use of automation tools is
fundamental in RAD approaches. Prototyping
tools, diagramming tools and code generators
are three kinds of RAD tools that allow enabling
higher productivity and saving development time,
effort and budget (Linaje et al., 2007).

For practical purposes, in this section code
generators are only considered. From this con-
text, as a fundamental principle of RAD tools,
code generators must generate source code from
high-level constructs. In addition, code generators
must generate executable code at least in a semi-
automatic way. These aspects are considered for
describing the overall features of code generators
for RIAs development in following subsections.
Furthermore, because RIAs design addresses
data, business logic, presentation and communi-
cation issues, all these aspects for describing the
main capabilities of code generators for RIAs
development are considered. Main capabilities
besides overall features can be used as criteria for
performing evaluations and comparisons between
different code generators for RIAs development.

4.1. AlexandRIA

AlexandRIA is an academic code generation
tool that automates a UI pattern-based approach
for multi-device RIAs code generation BY using
Adobe™ Flex™ and PhoneGap™ as underly-
ing cross-platform development frameworks
(Colombo-Mendoza et al., 2013). AlexandRIA
uses predefined GUI/business logic components
as well as application and configuration file tem-
plates as high level constructs. In fact, the code
generation approach implemented by AlexandRIA
is a domain-specific approach focused on gen-
erating cloud services APIs-based multi-device
RIAs. Here, the term “multi-device RIA” clusters
Web browser-based RIAs, desktop RIAs as well
as RIAs for mobile devices. AlexandRIA allows
developers to generate source and native code

300

An Overview of RIAs Development Tools

of multi-device RIAs from a set of preferences
selected throughout a wizard. The source code
generated by AlexandRIA is ready-to-import in
Adobe™ Flash Builder™ 4.5. Similarly, the ap-
plication installers generated by AlexandRIA are
ready-to-deploy on target devices, if applicable.
AlexandRIA is a Web browser-based RIA itself
and it is available via Internet.

The overall features of AlexandRIA are de-
scribed in Table 29.

The main capabilities of the RAD tool are
described in Table 30.

4.2. Adobe™ AIR™ Launchpad

Adobe™ AIR™ Launchpad is a commercial
RAD tool developed by Adobe™ Labs, which
allows generating ready-to-compile source code
of Adobe™ AIR™-based applications, i.e.,
desktop applications and mobile applications
for Android™, Apple™ iOS and BlackBerry™
Tablet OS operating systems, which are deployed
on the Adobe™ AIR™ runtime. Basically,
Adobe™ AIR™ Launchpad is a code genera-
tor. The outputted applications are not intended
to be fully-functional applications but starting
projects that can be imported in Adobe™ Flash
Builder™. Adobe™ AIR™ Launchpad, which
is available as a standalone application, offers a
set of predefined capabilities that can be selected
throughout a wizard. In this sense, with the aim
of allowing developers to use the source code
as starting point for developing fully-functional
Adobe™ AIR™-based applications, the selected
capabilities are implemented in a way that can be
easily customized and extended.

The overall features of Adobe™ AIR™
Launchpad are described in Table 31.

The main capabilities of the RAD tool are
described in the Table 32.

5. CONCLUSION

RIAs development is a complex and time-consum-
ing task compared to traditional Web applications
(Web 1.0) development. In fact, RIAs are a new
generation of Web applications that have become
a solution to the drawbacks of Web 1.0 applica-
tions such as the entire pages reloading, the slow
response time and the lack of multimedia sup-
port. Nowadays, RIAs development is addressed
in three different ways: 1) by using application
frameworks, which provide SDKs, class libraries,
IDEs, among other development tools, 2) by us-
ing MDD tools, which generate executable code
starting from high-level software models and 3)
by using code generators, which are based on
RAD approaches and use underlying application
frameworks. Therefore, RIA developers must face
the challenge of selecting the option that best fits
the needs of their development project, including
calendar, budget and the problem domain. In this
sense, this chapter can be used as a starting guide
for selecting a RIAs development approach.

In the case of framework-based RIAs devel-
opment, application frameworks usually provide
official development tools together with the
development kits. Nevertheless, in some cases it
is possible to opt for other tools from third-party
vendors, including open-source projects, in or-
der to save projects’ budget, avoid high learning
curves, take advantage of current development
skills, and take advantage of current development
infrastructures, among other purposes. It is impor-
tant to notice that, in some cases, these alternative
development tools are non-fully-featured tools
due to the proprietary nature of the underlying
RIA technologies, e.g., Microsoft™ Silverlight™.

For selecting an MDD tool for RIAs devel-
opment, the complexity of the underlying MDD
approach needs to be evaluated. The accurate-
ness of the MDD approach for the analysis and
design phases of the development project needs
to be also assessed. This is because MDD tools
require a previous modeling effort in order to semi-

301

An Overview of RIAs Development Tools

automatically or automatically generate source
code in a particular implementation technology.
Moreover, this kind of development tools can be
leveraged in technology migration projects be-
cause the XSL transformations underlying MDD
tools can be adapted to virtually any XML-based
implementation technology. This means that a
single model can be used to generate code in dif-
ferent technologies.

Finally, the most critical factor in selecting
a code generation tool for RIAs development is
the scope of the functionality provided by these
tools because in most cases the functionality is
limited to specific domains or to finite sets of
sample code that can be continuously extended
in order to seem infinite. This may be more suit-
able for small projects or projects for educational
purposes. Likewise, the degree of automation of
the standard implementation tasks, namely cod-
ing, compiling, linking, debugging and testing is
another crucial factor in selecting a code generation
tool for RIAs development because in most cases
it is desirable to obtain not only source code but
also executable code.

REFERENCES

Acerbis, R., Bongio, A., Brambilla, M., & Butti,
S. (2007). WebRatio 5: an eclipse-based CASE
tool for engineering web applications. In Pro-
ceedings of the 7th international conference on
Web engineering (pp. 501–505). Berlin: Springer-
Verlag. Retrieved from http://dl.acm.org/citation.
cfm?id=1770588.1770642

Colombo-Mendoza, L. O., Alor-Hernández, G.,
Rodríguez-González, A., & Colomo-Palacios, R.
(2013). Alexandria: A Visual Tool for Generating
Multi-device Rich Internet Applications. Journal
of Web Engineering, 12(3-4), 317–359.

Eclipse documentation - Previous Re-
lease. (n.d.). Concepts. Retrieved May 11,
2014, from http://help.eclipse.org/juno/in-
dex.jsp?topic=%2Forg.eclipse.platform.doc.
user%2Fconcepts%2Fconcepts-4.htm

Linaje, M., Preciado, J. C., & Sánchez-Figueroa,
F. (2007). Engineering Rich Internet Application
User Interfaces over Legacy Web Models. IEEE
Internet Computing, 11(6), 53–59. doi:10.1109/
MIC.2007.123

Martin, J. (1991). Rapid Application Development.
New York: Macmillan USA.

Toffetti, G., Comai, S., Preciado, J. C., & Linaje,
M. (2011). State-of-the Art and trends in the Sys-
tematic Development of Rich Internet Applica-
tions. Journal of Web Engineering, 10(1), 70–86.

ADDITIONAL READING

Developing applications in MXML. (n.d.).
Adobe™ help. Retrieved May 11, 2014, from
http://help.adobe.com/en_US/flex/using/WS-
2db454920e96a9e51e63e3d11c0bf69084-79b5.
html

Introduction to FXML. (n.d.). Oracle™ docs.
Retrieved May 11, 2014, from http://docs.oracle.
com/javafx/2/api/javafx/fxml/doc-files/introduc-
tion_to_fxml.html4

Linaje, M., Preciado, J. C., Morales-Chaparro, R.,
Rodríguez-Echeverría, R., & Sánchez-Figueroa,
F. (2009). Automatic Generation of RIAs Using
RUX-Tool and Webratio. In Proceedings of the
9th International Conference on Web Engineer-
ing (pp. 501–504). Berlin: Springer-Verlag.
doi:10.1007/978-3-642-02818-2_48

Overview, X. A. M. L. (n.d.). Microsoft MSDN.
Retrieved May 11, 2014, from http://msdn.micro-
soft.com/en-us/library/ms752059.aspx

http://dl.acm.org/citation.cfm?id=1770588.1770642
http://dl.acm.org/citation.cfm?id=1770588.1770642
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-4.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-4.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-4.htm
http://dx.doi.org/10.1109/MIC.2007.123
http://dx.doi.org/10.1109/MIC.2007.123
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-79b5.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-79b5.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-79b5.html
http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html4
http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html4
http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html4
http://dx.doi.org/10.1007/978-3-642-02818-2_48
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://msdn.microsoft.com/en-us/library/ms752059.aspx

302

An Overview of RIAs Development Tools

Stearn, B. (2007). XULRunner: A New Approach
for Developing Rich Internet Applications. IEEE
Internet Computing, 11(3), 67–73. doi:10.1109/
MIC.2007.75

KEY TERMS AND DEFINITIONS

Framework-Based Development Approach:
The process of using application frameworks,
i.e., Standard Development Kits, class libraries,
Integrated Development Environments, among
other development tools to develop software ap-
plications.

Integrated Development Environment
(IDE): A software application that provides com-
prehensive facilities to developers for software
development and ideally integrates source code
editing, visual designing, debugging and building
capabilities.

Model-Driven Development: Any software
development methodology that uses domain mod-

els as the inputs to implementation generators so
that the primary artifacts are not the implementa-
tions (algorithms), i.e., the outputs, but the models.

Plug-In Application: A set of software compo-
nents that adds specific functionalities to a larger
software application. From this perspective, there
are popular IDEs based on plug-in architectures
such as Eclipse™, which can be extended for
supporting many programming languages and
frameworks through plug-ins.

Rapid Application Development: A soft-
ware development methodology that disregards
traditional requirements gathering techniques in
favor of software prototyping.

Rich Internet Application: Applications that
are deployed over the Web; this type of applica-
tions combines features and functionality of Web
applications and desktop applications.

Standalone Application: A software ap-
plication that runs in its own system process as
opposite to the application that runs as an add-on
of an existing system process.

http://dx.doi.org/10.1109/MIC.2007.75
http://dx.doi.org/10.1109/MIC.2007.75

303

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

DOI: 10.4018/978-1-4666-6437-1.ch014

AlexandRIA:
A Visual Tool for Generating

Multi-Device RIAs

ABSTRACT

Model-Driven Development (MDD) tools for Rich Internet Applications (RIAs) development are focused
on software modeling, and they leave automatic code generation in a second term. On the other hand,
Rapid Application Development (RAD) tools for RIAs development enable developers to save develop-
ment time and effort by leveraging reusable software components. AlexandRIA is a RAD tool that allows
developers to automatically generate both source and native code of multi-device RIAs from a set of
preferences selected throughout a wizard following the phases of a User Interface (UI) pattern-based
code generation approach for multi-device RIAs. In this chapter, the use of the UI design process behind
AlexandRIA is demonstrated by means of a sample development scenario addressing the development
of a cloud services Application Programming Interfaces (APIs)-based cross-platform mobile RIA. This
scenario is further revisited in a case study that addresses the automatic generation of an equivalent
application using AlexandRIA.

1. INTRODUCTION

Nowadays, developers have the need of specify-
ing the features and functionalities of RIAs (Rich
Internet Applications) with legacy requirements
to reduce development efforts and ensure less
error-prone applications. Here, the automation
tools for software development activities have
become a major feature of RIAs development
processes. From this perspective, most of the
automation tools for software development are
based on MDE (Model-driven Engineering) ap-

proaches such as RUX-Tool (Linaje et al., 2007),
which is a software tool that automates the Rich
User eXperience Method (RUX-Method) allow-
ing engineering the adaptation of legacy model-
based Web 1.0 applications to Web 2.0 GUIs.
In a nutshell, RUX-Tool is focused on software
modeling leaving the automatic code generation
in a second term.

Moreover, there is another approach which is
focused on automatic code generation through set-
tings establishment: AdobeTM AIRTM Launchpad.
It allows generating ready-to-compile source code

304

AlexandRIA

of AIRTM-based applications i.e. desktop applica-
tions and applications for AndroidTM, AppleTM iOS
and BlackBerryTM Tablet OS platforms deployed
on the Adobe™ AIRTM runtime. Nevertheless,
AdobeTM AIRTM Launchpad is not based on a RIAs
development process; besides, it does not entirely
cover the generation of multi-device RIAs because
it does not consider Web browser-based RIAs.

The aforementioned drawbacks are improved
by AlexandRIA. AlexandRIA is a code gen-
eration software tool that allows developers to
generate both source and native code of cloud
services APIs-based multi-device RIAs from a
set of preferences selected throughout a wizard
following the phases of a UI pattern-based code
generation approach for multi-device RIAs. This
code generation approach is mainly focused on
RIA’s UI (User Interface) details; nevertheless, it
incorporates high-level abstractions for distribut-
ing business logic operations between client and
server as well as for defining advanced client-
server communication mechanisms.

AlexandRIA agrees with the RAD (Rapid
Applications Development) tools philosophy in
the sense that it uses a set of reusable software
components (Fraternali, 1999). These components
encapsulate functionalities provided by several
cloud services APIs (Application Programming
Interfaces) such as TwitterTM REST, FlickrTM
and GoogleTM Custom Search APIs, to mention
but a few.

In addition, AlexandRIA is focused on gen-
erating multi-device RIAs. Here, the term multi-
device refers to the ability of RIAs to deploy
consistently on different Web browsers, desktop
operating systems and mobile platforms as Web,
desktop and mobile applications, respectively,
starting from the same code base. It is important
to notice that, this term is closely related to the
plugin-based RIAs such as the AdobeTM FlexTM
and MicrosoftTM SilverlightTM-based RIAs.

In this chapter, the use of the UI design process
proposed as part of the code generation approach
implemented by AlexandRIA is demonstrated

within the constraints of AlexandRIA by means
of a sample development scenario addressing
the development of a cloud services APIs-based
native mobile RIA for different mobile devices.
This scenario is further revisited in a case study
addressing the automatic generation of an equiva-
lent application by using AlexandRIA.

2. ALEXANDRIA: A UI PATTERN-
BASED APPROACH FOR
GENERATING MULTI-DEVICE RIAS

AlexandRIA automates a UI pattern-based code
generation approach for multi-device RIAs which
is intended to address the following drawbacks
of current proposals on RIAs engineering such
as RUX-Method (Linaje et al., 2007), PPRD
(Martínez-Nieves et al., 2010) and UWE-R
(Machado et al., 2009): they do not entirely ad-
dress multi-device RIAs; therefore, they do not
cover the development of multi-device RIAs in
an automatic or semi-automatic way.

As a proof of concept, AdobeTM FlexTM 4.5
and PhoneGapTM 1.0 were selected as the cross-
platform development frameworks for implement-
ing the aforementioned code generation approach.
Thereby, AlexandRIA is currently based on both
ActionScript and JavaScript technologies. Finally,
it is important to notice that the code generation
algorithm implemented by AlexandRIA is a
domain-specific approach focused on generating
cloud services APIs-based multi-device RIAs, i.e.,
the functionalities of the applications to be gener-
ated by AlexandRIA are implemented in terms of
data and operations from cloud services APIs as
is widely explained in section 14.3 of this chapter.

Although this code generation approach is
mainly focused on RIA’s UI details, it incorporates
high-level abstractions for distributing business
logic operations between client and server as
well as for defining advanced client-server com-
munication mechanisms. The cloud services APIs
operations are out of the scope of the business

305

AlexandRIA

logic distribution task, only the operations at
AlexandRIA-side, i.e., domain-independent op-
erations such as data validation and filtering are
considered to this aim. It is important to notice
that, the data storage distribution is out of the
scope of this code generation approach because
the data layer of the applications generated by
AlexandRIA is entirely represented by means of
cloud services APIs data.

In detail, the code generation approach imple-
mented by AlexandRIA comprises the following
phases:

1. Identify the type of multi-device RIA to be
generated as well as the target platform

2. Define the data and domain-specific business
logic operations by means of functionalities
provided by cloud services APIs.

3. Design the UI as an abstract composition of
interaction design patterns

4. Link UI events to business logic operations
at AlexandRIA-level in order to determine
the distribution of these business logic op-
erations between client and server.

5. Refine the abstract UI in order to obtain a
concrete UI

6. Establish the application configuration set-
tings according to the type of multi-device
RIA to be generated and the target platform.

7. Generate the source code starting from
reusable UI/business logic components
encapsulating cloud services APIs and
UI components implementing interaction
design patterns according to the concrete
GUI. In this phase, the generation of a folder
structure for locating the source code files
to be generated is a prerequisite. The folder
structure varies depending on the type of
multi-device RIA to be generated.

8. Compile the source code and generating
the executable code according to the target
platform, if applicable.

3. CLOUD APIS

The cloud services APIs considered by Alexan-
dRIA are: TwitterTM REST API, FlickrTM API,
Google™ Custom JSON/Atom Search API,
Google™ Maps JavaScript API, finding eBayTM
API, last.fmTM API, YouTube™ Player API,
YouTube™ Data API, Digg™ API, Yahoo! TM
Weather API and Delicious API. The main features
of these services APIs are described in Table 1.

Most of the aforementioned APIs are REST-
based APIs. However, there are a few APIs partially
based on both, the SOAP protocol and the REST
style. In all cases AlexandRIA uses the REST-
based style for interacting with these APIs. For
the APIs composed of only one method, the full
URL is included. It is important to notice that, in
some cases, there are not API methods but feeds
so that, the words included are not additional
parameters to be added to a base URL but part
of the call URL.

In AlexandRIA, the functionalities provided
by the above described cloud services APIs
are encapsulated by a set of reusable MXML/
ActionScript and HTML (HyperText Markup
Language)/JavaScript-based UI/business logic
components. Similarly, a set of reusable MXML/
ActionScript and HTML/JavaScript-based UI/
business logic components implementing some of
the interaction patterns proposed by Scott & Neil
(2009) are leveraged by AlexandRIA. These two
kinds of software components are the high level
constructs of the code generation engine. In fact,
starting from these simple components, composed
components implementing functionalities from
cloud services APIs by means of interaction de-
sign patterns are built on-the-fly. Hereafter, these
derived components are referred as composed
UI/business logic components. For performance
purposes, AlexandRIA has one pre-built composed
UI/business logic component for each cloud ser-
vices API. In any case, the applications generated
by AlexandRIA use composed UI/business logic
components as follows: if more than one cloud

306

AlexandRIA

Table 1. Cloud Services APIs used by AlexandRIA’s source code generation engine

Cloud Services
API

Description Request Formats Response Formats Used Operations

TwitterTM REST
API

The Twitter™ REST API methods lets developers
access core TwitterTM data, this includes: tweets
and timelines, user information, saved searches,
trending topics, among other data.

REST • REST
• JSON
• RSS
• Atom

statuses/home_
timeline.xml

FlickrTM API It lets developers interact with FlickrTM’s user
accounts, manage stored photos and photo
metadata, uploading new photos, manage photo
galleries, manage FlickTM user groups, among
other actions.

• REST
• SOAP
• XML-RPC

• REST
• JSON
• SOAP
• XML-RPC
• PHP

flckr.photos.search

Google™ JSON/
Atom Custom

Search API

It enables developers to retrieve either Web search
or image search results searching over a website
or a collection of websites by using a customized
search engine powered by Google™.

REST • JSON
• Atom

https://www.
googleapis.com/
customsearch/v1

Google™ Maps
JavaScript API

v. 2.0

It allows developers to embed Google™ maps
in desktop applications as well as in applications
for mobile devices. It allows manipulating maps
just like on the Google™ Maps website and
customizing them by adding specific content.

- - maps.google.com/
maps

Finding eBayTM
API

The finding eBayTM API allows developers to
search for items listed on the eBayTM website. It
offers both standard search and search refinement
capabilities.

• REST
• SOAP

• REST
• JSON
• SOAP

findItemsAdvanced

Last.fm™ API It allows developers to interact with Last.fmTM
core data i.e. artists, albums and tracks stored on
the Last.fmTM website. Also, it allows managing
user’s Last.fmTM libraries and retrieving Last.fmTM
user accounts and user groups data.

• REST
• XML-RPC

• REST
• XML-RPC

• artist.search
• artist.
gettopalbums

YouTube™ Data
API v. 2.0

The YouTube™ Data API allows applications to
carry out the actions that a user can carry out on
the YouTube™ website.

REST • JSON
• JSON-IN.
SCRIPT
• JSONC
• RSS
• Atom

videos

YouTube™
JavaScript Player

API

The YouTube™ JavaScript Player API lets
developers control the chromeless and embedded
YouTube™ players via JavaScript functions.

- - http://www.
youtube.com/v/
videoId

Digg™ API It lets developers programmatically interact with
Digg™ for retrieving information such as digg
counts and comments related to the news stories
and videos submitted to the Digg™ website.
Also, it allows managing Digg™ user accounts.

REST REST story.getPopular

Yahoo!TM Weather
API

It enables developers to get up-to-date weather
information about wind, atmospheric pressure,
humidity, visibility and astronomical conditions
for specific locations.

REST RSS • http://where.
yahooapis.com/v1/
places
• http://weather.
yahooapis.com/
forecastrss

Google™ Suggest
API

Although this is not an official API, there is a
public method exposed by Google™ that allows
obtaining real-time feedback of search criteria
similar to that a user enters during a search.

REST REST http://google.com/
complete/search

continued on following page

https://www.googleapis.com/customsearch/v1
https://www.googleapis.com/customsearch/v1
https://www.googleapis.com/customsearch/v1
http://www.youtube.com/v/videoId
http://www.youtube.com/v/videoId
http://www.youtube.com/v/videoId
http://where.yahooapis.com/v1/places
http://where.yahooapis.com/v1/places
http://where.yahooapis.com/v1/places

307

AlexandRIA

services API is required, then a tabbed application
or a view-based application in which each tab or
view links just one composed UI/business logic
component is generated. Otherwise, a single-view
application is generated. In any case, the resulting
applications are composed of either a set of full-
screen application views or a single full-screen
application view.

In detail, the UI design method proposed as
part of the code generation approach automated
by AlexandRIA, which hereafter is referred as
AGUIDM, is based on the ADV (Abstract Data
View) design model and it comprises two ab-
straction levels at two design levels as follows.
It is important to notice that this design method
follows a bottom-up approach.

1. Abstract UI at view level: Where the UI
of each application’s view is modeled as
a composed ADV made up of interaction
design patterns modeled in turn as simple
ADVs; here, the ADV design model is
extended in order to allow developers to
specify if the business logic operations are
at AlexandRIA-side, which are executed
in response to certain UI events must be
executed either as client-side or server-side
operations.

2. Abstract UI design at application level:
Where the application’s UI is modeled as a
composed ADV made up view GUIs mod-
eled in turn as composed ADVs.

3. Concrete UI design at view level: Which
is achieved by simply adding look and feel
details to each abstract view GUI, i.e., to
each ADV model representing the UI of
an application’s view. The resulting ADV
models are called CDVs (Concrete Data
Views).

Actually, there is another lower design level:
the interaction pattern level. However, no design
activity at this level is currently considered by
AGUIDM.

4. Concrete UI design at application level:
Which is achieved by simply adding look
and feel details to the application’s abstract
GUI, i.e., to the ADV representing the ap-
plication GUI. This also results in a CDV.

In the context of RIAs, the ADV design model
has been already used as a means for specifying
the structure and behavior of rich GUIs (Urbieta et
al., 2007; Rossi et al., 2008; Martínez-Nieves et al.,
2010). The AGUIDM proposal is explained below
by means of a practical sample that addresses the
generation by using AlexandRIA of a thin client
application for AndroidTM and AppleTM iOS-based
mobile devices. This application is intended to
allows users to search for music albums on the
eBayTM website. In this section, only the design
of the UI at view level is addressed. Nevertheless,
this sample is further revisited and refined in fol-
lowing sections of this chapter.

Table 1. Continued

Cloud Services
API

Description Request Formats Response Formats Used Operations

DeliciousTM Feeds
API

It allows developers to retrieve data feeds for public
and private bookmarks stored on the Delicious
website. In this sense, the DeliciousTM Feeds API
exposes URLs (Uniform Resource Locator) for
filtering bookmarks by tag and by user. It also
allows for retrieving data feeds for DeliciousTM
user accounts.

REST • JSON
• RSS

tag/{tag}

308

AlexandRIA

The simple UI/business logic component
encapsulating the finding eBayTM API uses the
method findItemsAdvanced to allow users to
search for items listed on the eBayTM website
and to refine the search results by entering both a
minimum and a maximum item price. By default,
this behavior is implemented by means of the re-
fining search pattern. Additionally, this behavior
is in part implemented by using the inline paging
interaction pattern because of the amount of items
that can be retrieved for a request. Thereby, a pre-
built UI/business logic component encapsulating
the finding eBayTM API and implementing the
aforementioned interaction patterns is provided
by AlexandRIA. The ADV of this pre-built com-
ponent (which is further viewed as an application
view) is an ADV composed of both an ADV
implementing the refining search pattern by means
of the AdobeTM FlexTM NumericStepper control or
the HTML5 input (type=numeric) element and an
ADV implementing the inline paging pattern by
means of the AdobeTM FlexTM Button control or
the HTML5 button element.

It is important to take into consideration that
the patterns to be implemented by an AlexandRIA-

based application can be varied during abstract UI
design at view level as explained in following sec-
tion of this chapter. Nevertheless, the predefined
structure of the ADVs at interaction pattern level
cannot be customized. In fact, the predefined struc-
ture of the ADVs cannot be customized neither at
view level nor at application level.

The ADV of the pre-built composed UI/busi-
ness logic component encapsulating the finding
eBayTM API is depicted in Figure 1.

In general, the ADVs of the pre-built composed
UI/business logic components represent the entry
point of AGUIDM because they are the result
of automating the abstract UI design phase (at
view level) of AGUIDM in the context of some
code generation use cases by using AlexandRIA.
Thereby, it is considered that they represent the
views of the applications to be generated.

AGUIDM extends the ADV design model in
the sense that details about implementation are
added to the UI model in order to identify the
intended RIA technology in early stages of the
code generation process. Namely, the elements
composing the UI are matched with the equiva-
lent UI controls in the intended RIA technology

Figure 1. ADV of the pre-built composed UI/business logic component encapsulating the finding eBayTM
API

309

AlexandRIA

by specifying the names of these UI controls.
Thereby, it can be inferred that the UI/business
logic component represented by the ADV depicted
in Figure 2 is not the HTML/JavaScript-based
eBayTM component but the MXML/ActionScript-
based eBayTM component.

Because the required application is a thin
client application, it is necessary to define all
the business logic operations of the composed
UI/business logic components linked to its only
view as server-side operations. For instance, the
specification of the business logic distribution
preferences for the pre-built composed UI/busi-
ness logic component encapsulating the finding
eBayTM API is addressed below. By default, the
business logic operations at AlexandRIA-side
are considered to be client-side operations so
that the opposite must be explicitly specified.
For this purpose, the UI elements that trigger
domain-independent business logic operations
must be marked with an “S” label as is depicted
in Figure 3. The ADV depicted in Figure 3 is the

result from carrying out the abstract UI design
phase at view level.

AGUIDM distinguishes three kinds of domain-
independent operations: input data validation, data
retrieving and output data filtering. The first one
is commonly related to text input controls such as
text boxes and text areas, the second one is typically
related to command controls such as buttons and
links; finally, the third one is commonly related
to data presentation controls such as data grids
and tables. It is important to notice that, at a lower
level of abstraction (implementation phase of the
code generation approach automated by Alex-
andRIA), data retrieving operations encapsulate
cloud services APIs operations (domain-specific
operations), e.g., the findItemsAdvanced method
in the case of the UI/business logic component
encapsulating the finding eBayTM API.

Based on AGUIDM, the look and feel of each
view of the application is specified as a result of
carrying out the concrete UI design phase at view
level. Although the structure of rich GUIs cannot

Figure 2. Specifying business logic distribution preferences for the pre-built composed UI/business logic
component encapsulating the finding eBayTM API

310

AlexandRIA

Figure 3. Specifying look and feel properties for the pre-built composed UI/business logic component
encapsulating the finding eBayTM API

Figure 4. Adding the brighten and dim interaction pattern to the pre-built composed UI/business logic
component encapsulating the eBayTM API

311

AlexandRIA

be specified by using AGUIDM, the modular na-
ture of the AGUIDM-based GUIs is leveraged by
AlexandRIA towards the specification of the look
and feel properties so that GUIs are considered to
be composed of the following regions: data input
region, data presentation region and pagination
region. Each of these regions is represented by
a control container in the ADV model. Because
AlexandRIA does not currently support the speci-
fication of the look and feel properties for each
individual UI control, the look and feel of a view
is specified for each of its regions independently.
Similarly, only the following categories of look
and feel properties are currently supported by
AlexandRIA: background-related properties, font-
related properties and border-related properties.
As can be inferred, no layout-related preferences
are currently supported by AlexandRIA. There-
fore, only these kinds of look and feel properties
are addressed in this chapter. Figure 4 depicts the
specification of the look and feel properties for the
pre-built composed UI/business logic component
encapsulating the finding eBayTM API. As can be
inferred, the notation used by AGUIDM is inspired
by the UML (Unified Modeling Language) Note
model element.

4. INTERACTION DESIGN PATERNS

Scott & Neil (2009) proposed a set of interaction
design patterns in the context of six principles
for designing rich user experiences; they also
provided a set of best practices for each interaction
pattern. These interaction patterns represent the
building blocks of AGUIDM and AlexandRIA
in the sense that the AGUIDM-based GUIs are
considered to be made up of a set of views and
each view is considered to be made up of a set of
interaction patterns represented as simple ADVs.
The interaction patterns currently implemented
by AlexandRIA are briefly described in Table 2.

Table 2 depicts the matching of each above
described interaction pattern with the Alexan-

dRIA’s simple UI/business logic component
implementing it by default, i.e., with a cloud
services API representing the domain in which
it is used. Nevertheless, thanks to the modular
nature of AGUIDM and taking into account that
design patterns can be reused irrespective of the
domain of the problem to be solved (in this case
in the context of designing rich user experiences),
interaction patterns can be freely replaced in
ADVs of these pre-built composed UI/business
logic components, resulting in other composed
UI/business logic components. It is important to
notice that each pre-built composed UI/business
logic component can encapsulate more than one
cloud services API at a time as depicted in Table 2.

Revisiting the sample introduced in previous
section of this chapter, let us suppose that the
application requires showing a full-size image
of the items retrieved from eBayTM. At this point
in the generation process, the easy way to do this
is by adding the brighten and dim pattern to the
ADV resulting from carrying out the abstract UI
design phase (at view level) of AGUIDM and
further replicate the change to the ADV resulting
from carrying out the concrete UI design phase
(at application level). With the aim of preserving
the continuity of the sample, Figure 2 depicts the
result of this change by means of the later ADV
model. It is important to notice that, the support of
this kind of requirements change is fully covered
by AlexandRIA.

As can be inferred from Figure 5, the brighten
and dim pattern is not applied to the input data
region of the UI as in the case of the refining
search component but to the data presentation
region. In fact, the refining search pattern is not
replaced by the brighten and dim pattern.This is
because the kinds of design problem solved by
these two patterns are different. In fact, the design
principles behind these two patterns are the fol-
lowing: stay on the page and react immediately,
respectively. Nevertheless, this does not mean
that the patterns implemented by AlexandRIA
are domain-specific patterns but that the patterns

312

AlexandRIA

are used in a specific context: data input, data
presentation and pagination. In fact, the domain
of the application remains stable.

5. CASE STUDIES

AlexandRIA, which is a Web browser-based RIA
itself, gives tool support to the UI pattern-based

code generation approach for multi-device RIAs
outlined in section 2 of this chapter. For that
purpose, AlexandRIA adopts a RAD philosophy.
Thereby, the fully-automatic generation of source
and native code of multi-device RIAs is covered
by AlexandRIA by means of a visual wizard
that guides developers through the phases of the
aforementioned code generation approach in a
step-by-step way.

Table 2. Interaction patterns implemented by AlexandRIA

Interaction
Pattern

Description External Use
Cases

AlexandRIA
Components

Inline Paging It allows refreshing just the search results area (e.g. data grid control)
while the rest of the UI controls remains stable. It is also known as
pages refreshing.

AdobeTM website
Alibaba.com

website

Almost all

Live Suggest It lets providing real-time search term suggestions for creating
searches. It is also knows as winnowing.

IMDB website
Pinterest website

Google™ JSON/
Atom Custom

Search API and
GoogleTM Suggest

API

Scrolled Paging It combines inline paging and virtual scrolling such that paging is
performed as normal while the content is scrolled into view.

DisneyTM website
AOLTM Radio

website

FlickrTM APÍ

Virtual Scrolling It allows loading additional content on demand, i.e. as is required by
the user. Instead of page refreshing, this approach gives the illusion of
a boundless virtual space.

LinkedInTM website
DZone (dzone.

com)

TwitterTM REST
API

Refining Search It provides a set of live filters that allow the search results to be tuned
in real time. It is also known as faceted browse.

BingTM

omio (omio.com)
Finding eBayTM

API

Virtual Panning It creates a virtual canvas by allowing users the freedom to roam in
two-dimensional (2D) spaces.

FoursquareTM
website

Yahoo! TM Maps

Google™ Maps
JavaScript API

Drag and Drop It enables selecting objects itself, i.e. without extra controls (e.g.
checkbox control) for dragging and dropping them into new locations
over the GUI.

OutlookTM

Academia.edu
Delicious API

Brighten and Dim It enables dimming the entire application window and showing and
overlay in the normal, non-dimmed state.

FacebookTM

KAYAK (kayak.
com)

Last.fmTM API

List Inlay It allows showing a list of items organized in rows and columns. The
details about the items are showed in place, i.e., within the list itself,
as requested.

AmazonTM’s
mobile website

Yahoo! TM Weather
API

Periodic Refresh It lets applications show fresh community content on a periodic basis
without direct interaction of a particular user.

iTunesTM

StackOverflow
website

Digg™ API

Progress
Indicator

It indicates the user that the application is currently busy with a time-
consuming operation, showing how much progress was made on the
task.

Internet Explorer™
Spotify™

YouTube™
Data API and
YouTube™

JavaScript Player
API

313

AlexandRIA

AlexandRIA allows developers to generate
both source and native code of: 1) Web browser-
based RIAs, 2) desktop RIAs and 3) mobile Web
browser-based RIAs and 4) native mobile RIAs.
Possible target platforms for native mobile RIAs
are AndroidTM, AppleTM iOS, BlackBerryTM Tablet
OS and WindowsTM Phone whereas desktop RIAs
are multi-platform and Web browser-based RIAs
are cross-browser, so that there are no options
related to target platforms for these two kinds of
multi-device RIAs.

In order to prove the suitability of AlexandRIA
for the development of cloud services APIs-based
multi-device RIAs, let us refined the sample
application scenario addressed throughout the
previous sections of this chapter into a case study
on generating a thin client mobile RIA based
on more than one cloud services API by using

AlexandRIA. Taking into account the domain
of the afore-mentioned application, i.e., music,
the functionality to be provided to users may be
extended by means of other cloud services APIs
already supported by AlexandRIA that are related
to the domain of music; namely, the Last.fmTM
API and the YouTubeTM APIs. They can comple-
ment the functionality provided by the finding
eBayTM API as follows. The former is leveraged
by AlexandRIA to allow searching for informa-
tion about artists and their albums on Last.fmTM
whereas the latter is leveraged by AlexandRIA
to allow for searching and playing back videos
on YouTubeTM. In a real case development sce-
nario, this requirement change may have serious
implications for the project’s budget and calendar
because requirements change management is an
effort and time-consuming task. In fact, effort and

Figure 5. Selecting the required cloud services APIs

314

AlexandRIA

time commonly impose constraints on software
development. Here, automation tools like Alex-
andRIA becomes relevant. In this sense, Alexan-
dRIA is a suitable solution for non-experienced
cloud-services APIs-based application developers
because it allows saving effort and time on ana-
lyzing cloud services APIs and determining the
operations that must be implemented.

AlexandRIA provides the following valuable
elements: 1) a set of reusable cloud services APIs-
based and interaction patterns-based multi-device
software components, 2) a set of device-specific
application templates and 3) a code generation
engine which allows generating source and native
code of cloud services APIs-based RIAs for dif-
ferent platforms and devices following the steps
described in the following case study.

5.1. Generating a Multi-Device
RIA for AndroidTM and AppleTM
iOS-Based Mobile Devices

1. The user accesses AlexandRIA via a Web
browser by using a URL.

2. Once AlexandRIA has been completely
rendered, the user can select the type of
multi-device RIA to be generated; one or
more target platforms can be selected, if ap-
plicable; this phase of the wizard corresponds
to the first phase of the code generation ap-
proach outlined in section 2 of this chapter.

3. The next phase of the wizard is the specifi-
cation of both the cloud services APIs to be
used and the interaction design patterns to be
implemented by means of an abstract GUI.
Sections 3 and 4 of this chapter respectively
provide a review of the cloud services APIs
and interaction design patterns currently
supported by AlexandRIA. Starting from
these high-level constructs, AlexandRIA
can build both a MXML/ActionScript-
based UI/business logic component and a
HTML/JavaScript-based UI/business logic
component for each combination of cloud

services API and interaction design pattern.
These components are reused irrespective
of the types of multi-device RIA offered
by AlexandRIA; i.e., they are multi-device
components. For this case study, not only the
finding eBayTM API is selected as is required
in the sample application scenario introduced
in section 3 of this chapter but also the Last.
fmTM API and the YouTubeTM APIs are se-
lected. From this perspective, when the user
selects a cloud services API, the ADV model
of the corresponding pre-built composed
UI/business logic component is displayed.
Each ADV model represents the UI of an
application’s view to be implemented and it
is composed of the ADV models representing
the interaction patterns to be implemented by
default. Here, the user can customize each
ADV model by selecting other interaction
design patterns from a palette including all
the available options. For this case study,
the interaction pattern to be implemented
by the view linking the pre-built composed
UI/business logic component encapsulating
the finding eBayTM API is changed from the
refining search pattern to the brighten and
dim pattern as is stated in section 4 of this
chapter. The distribution of the Business
logic operations behind the UI components
composing the resulting ADV model can
be specified by hovering over the regions
of the ADV model containing the intended
UI components and selecting either the
“server-side” or the “client-side” option from
a slider that is consequently revealed. As can
be inferred, AlexandRIA does not currently
support the specification of business logic
distribution preferences for each individual
UI control so that, these preferences are
specified for each UI region as in the case
of the look and feel preferences. It is worth
mentioning that the aforementioned behavior
is inspired by an interaction pattern not ad-
dressed in this chapter: hover-reveal tools.

315

AlexandRIA

For this case study, all the business logic
operations in all the application’s views are
marked as server-side operations because
the application required is intended to be a
thin client application. Finally, the abstract
UI at application level is specified at the end
of this phase of the wizard by selecting the
application template to be used for imple-
menting the application as a composition
of application views; namely, a view-based
application template or a tabbed application
template can be used. As can be inferred,
this phase of the wizard corresponds to the
abstract UI design phase (at both view and
application abstraction levels) of AGUIDM,
i.e., it corresponds to the first, second and
third phases of the code generation approach
automated by AlexandRIA. Figure 6 depicts
the set of cloud services APIs selected in this
case study. Figure 5 depicts the ADV model
for the pre-built composed UI/business
logic component encapsulating the finding
eBayTM API. Figure 7 depicts the resulting
ADV model for the composed UI/business
logic component encapsulating the finding
eBayTM API.

4. Once the required cloud services APIs and in-
teraction design patterns have been selected,
different parameters need to be configured
according to the type of RIA to be generated.
There are parameters applicable to all RIA
types, i.e., multi-device parameters such as 1)
the application name, 2) the application title,
3) the DPI (Dots Per Inch) measure, which
allows automatically scaling the application
for different screen densities; this feature
is a decisive factor in the development of
density-independent applications for mobile
devices, 4) the style of each of the views
composing the application and 5) the style
of the application as the composition of ap-
plication views. Here, style is the conjunction
of diverse look and feel properties such as
background and fonts colors. The look and

feel properties specified in section 4 of this
chapter by means of a CDV for a composed
UI/business logic component encapsulating
the finding eBayTM API are considered in this
case study for all the remaining application’s
views as well as for the application itself. In
the case of code generation of native mobile
RIAs, the parameters to be configured in
this phase are: 1) parameters applicable to
all offered mobile platforms, i.e., multi-
platform parameters such as the “launching
in a full-screen mode” and the “screen auto-
orienting” features and 2) properties only
applicable to the required target platforms
such as the iPhoneTM/iPadTM support in the
case of applications for AppleTM iOS-based
devices, or the application install location in
the case of applications for AndroidTM-based
devices. Finally, it is important to notice that,
the only required parameters are the applica-
tion name and title; the other parameters are
optional and they can take default values.
The settings established in this case study
for the multi-device parameters are depicted
in Figure 8. The resulting CDV model for
the composed UI/business logic component
that encapsulates the finding eBayTM API is
depicted in Figure 9. As can be inferred, this
phase of the wizard automates the concrete
UI design phase (at both view and applica-
tion abstraction levels) of AGUIDM, i.e., it
corresponds to the fifth and sixth phases of
the code generation approach automated by
AlexandRIA.

5. Once the application configuration has been
finished, AlexandRIA displays a summary
of the requirements specified by the user
throughout the previous phases of the wiz-
ard, and it allows generating the application
source code either as simple source code files
or AdobeTM Flash Builder 4.5 compatible
project files in the case of AdobeTM FlexTM-
based applications code generation. Here the
application’s folder structure is generated

316

AlexandRIA

and the source code generation process is
immediately triggered. This phase of the
wizard corresponds to the seventh phase of
the code generation approach implemented
by AlexandRIA.

6. The next phase of the wizard is the genera-
tion of the corresponding native code. In the
case of code generation of desktop RIAs and
native mobile RIAs, AlexandRIA asks for
the digital certificate files and correspond-
ing passwords needed to sign an installation
file for each required target platform. In the
specific case of code generation of applica-
tions for AppleTM iOS-based devices also
a provisioning profile must be provided.
AlexandRIA performs real-time validations
of digital certificates such as password
validations and expiration date validations.
Furthermore, AlexandRIA performs certi-
fication authority identity validations in the
specific case of code generation of native
mobile applications for AppleTM iOS-based
devices. In any case, once all required re-

sources have been provided and validated,
AlexandRIA displays the “generate native
code” option. Once this option has been se-
lected by the user, the native code generation
process is triggered. A series of information
messages is displayed while the native code
is being generated. This phase of the wiz-
ard corresponds to the eighth phase of the
code generation approach implemented by
AlexandRIA.

7. The last phase of the wizard is the generation
of a ZIP file that packages the previously
generated source and native code files. Once
the ZIP file is generated, a “download ZIP
file” option is displayed. The user downloads
the ZIP file by clicking this option. Here, the
AlexandRIA wizard is finished. The user
must unpack the ZIP file in order to obtain
a folder structure. The folder structure of
native mobile RIAs contains multi-device
source code files as well as installation files
depending on the selected target platforms;
these installation files located in the root

Figure 6. ADV model of the pre-built composed UI/business logic component encapsulating the finding
eBayTM API

317

AlexandRIA

folder. In this case study, an ipa file and an
apk file are provided because both AppleTM
iOS and AndroidTM were selected as target
platforms. Figure 10 depicts the native
mobile RIA running on a Nexus 7TM tablet
computer.

5.2. Generating a Web Browser-
Based Multi-Device RIA

As a complementary case study aimed at proving
the suitability of AlexandRIA for generating the
same RIA for different platforms and devices, i.e.,
for generating multi-device RIAs, the generation
of the Web browser-based version (desktop) of
the native mobile RIA addressed in the previous
section of this chapter is also addressed in this
section. For that purpose, only the differences
between these two cases for the phases of the
wizard are emphasized here.

In the first phase of the wizard, no target
platforms need to be selected because the type of
RIA to be generated is a Web browser-based RIA.

In the third phase of the wizard, besides the
parameters applicable to all RIA types, one addi-
tional parameter only applicable to Web browser-
based RIAs either mobile or desktop version needs
to be configured: the programming language to
be used for generating the server-side Web page
comprising the server-side business logic. In this
sense, AlexandRIA currently supports PHP and
JSP (Java Server Pages) server-side technologies.
Figure 11 depicts the settings defined in this case
study for the parameters only applicable to Web
browser-based RIAs.

Once the source code files have been gener-
ated, in the case of Web browser-based RIAs code
generation, an application wrapper (HTML-based
Web page) is generated in the fourth phase of
the wizard. This is because Web browser-based
RIAs generated by AlexandRIA actually are Flash
content. Flash content needs to be embedded as
multimedia content into HTML-based Web pages.

Figure 7. Resulting ADV model for the composed UI/business logic component encapsulating the find-
ing eBayTM API

318

AlexandRIA

Figure 8. Setting the configuration for the multi-device parameters

Figure 9. Resulting CDV model for the composed UI/business logic component encapsulating the find-
ing eBayTM API

319

AlexandRIA

Finally, as explained in the previous case study,
a ZIP file packaging a folder structure containing
the previously generated source and native code
files is generated in the last phase of the wizard.
In the case of Web browser-based RIAs, the folder
structure includes a deployable folder containing

both the application wrapper and a server-side Web
page implementing server-side business logic.
The latter represents a back-end for the applica-
tion. For this case study, a PHP-based Web page
is provided by AlexandRIA. As can be inferred,
Web-based RIAs generated by AlexandRIA must

Figure 10. Screenshot of the native mobile RIA running on a Nexus 7TM tablet computer

Figure 11. Setting the configuration for the parameters only applicable to Web browser-based RIAs

320

AlexandRIA

be executed by using an HTTP server like Apache
HTTP ServerTM or a servlet container like Apache
TomcatTM, in the case of PHP and JSP-based back-
ends, respectively.

Figure 12 depicts the execution of the Web
browser-based RIA generated in this case study
by using the FirefoxTM Web browser.

6. CONCLUSION

RIAs engineering is an emerging area of Software
Engineering that everyday defines new boundar-
ies. Nowadays, RIAs development involves Web,
desktop and applications for mobile devices
development. At this point, the UI pattern-based
code generation approach for RIAs automated by
AlexandRIA becomes relevant because it covers
multi-device RIAs code generation from concep-
tion to deployment.

AlexandRIA automates the aforementioned
code generation approach for RIAs under the
RAD philosophy enabling developers save de-

velopment time and effort and, at the same time,
ensuring less error-prone applications. As a proof
of concept, AlexandRIA is implemented by us-
ing both the AdobeTM Flex 4.5 and PhoneGapTM
frameworks; however, it can be easily adapted to
other cross-platform development frameworks.
Unlike other contributions that are mainly based
on MDE approaches and focused on improving
GUIs of legacy Web 1.0 applications, AlexandRIA
is focused on multi-device RIAs code generation
leaving the software modeling in a second term.

As a proof of concept, multi-device RIAs
generated by AlexandRIA are based on cloud
services APIs because the use of cloud services is
increasingly common in the development of Web
2.0 applications. Furthermore, in order to provide
rich user experiences, multi-device RIAs gener-
ated by AlexandRIA implement cloud services by
means of interaction patterns already proposed in
the Web Engineering literature. In fact, the interac-
tion patterns constitute the building blocks of the
UI design process proposed as part of the code
generation approach automated by AlexandRIA.

Figure 12. Screenshot of the Web browser-based RIA running on the FirefoxTM Web browser

321

AlexandRIA

REFERENCES

Fraternali, P. (1999). Tools and approaches for
developing data-intensive Web applications: A
survey. ACM Computing Surveys, 31(3), 227–263.
doi:10.1145/331499.331502

Linaje, M., Preciado, J. C., & Sánchez-Figueroa,
F. (2007). Engineering Rich Internet Application
User Interfaces over Legacy Web Models. IEEE
Internet Computing, 11(6), 53–59. doi:10.1109/
MIC.2007.123

Machado, L., Filho, O., & Ribeiro, J. (2009). UWE-
R: An extension to a web engineering methodology
for rich internet applications. WSEAS Trans. Info.
Sci. and App., 6(4), 601–610.

Martínez-Nieves, L. A., Hernández-Carrillo, V.
M., & Alor-Hernández, G. (2010). An ADV-UWE
Based Phases Process for Rich Internet Applica-
tions Development. In Proceedings of Electronics,
Robotics and Automotive Mechanics Conference
(CERMA), (pp. 45–50). CERMA. doi:10.1109/
CERMA.2010.16

Rossi, G., Urbieta, M., Ginzburg, J., Distante,
D., & Garrido, A. (2008). Refactoring to Rich
Internet Applications. A Model-Driven Approach.
In Proceedings of the 2008 Eighth International
Conference on Web Engineering (pp. 1–12). Wash-
ington, DC: IEEE Computer Society. doi:10.1109/
ICWE.2008.41

Scott, B., & Neil, T. (2009). Designing Web
Interfaces: Principles and Patterns for Rich In-
teractions. O’Reilly Media.

Urbieta, M., Rossi, G., Ginzburg, J., & Schwabe,
D. (2007). Designing the Interface of Rich Internet
Applications. In Proceedings of Web Conference,
(pp. 144 –153). doi:10.1109/LA-Web.2007.14

ADDITIONAL READING

Bozzon, A., Comai, S., Fraternali, P., & Ca-
rughi, G. T. (2006). Conceptual modeling and
code generation for rich internet applications. In
Proceedings of the 6th international conference
on Web engineering, (pp. 353–360). New York:
ACM. doi:10.1145/1145581.1145649

Busch, M., & Koch, N. (2009). Rich Internet
Applications. State-of-the-Art (Tech. Rep. No.
0902). München, Germany: Ludwig-Maximilians-
Universität München.

Finkelstein, A. C. W., Savigni, A., Kimmerstorfer,
E., & Pröll, B. (2002). Ubiquitous Web Application
Development - A Framework for Understanding.
In Proc. of SCI2002 (pp. 431–438). SCI.

Martinez-Ruiz, F. J., Arteaga, J. M., Vanderdonckt,
J., Gonzalez-Calleros, J. M., & Mendoza, R.
(2006). A first draft of a Model-driven Method
for Designing Graphical User Interfaces of Rich
Internet Applications. In Proceedings of Web Con-
gress, (pp. 32 –38). doi:10.1109/LA-WEB.2006.1

Melia, S., Gomez, J., Perez, S., & Diaz, O. (2008).
A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In
Proceedings of Eighth International Conference
on Web Engineering, 2008. ICWE ’08 (pp. 13
–23). doi:10.1109/ICWE.2008.36

Sorokin, L., Montero, F., & Märtin, C. (2007).
Flex RIA development and usability evalua-
tion. In Proceedings of the 2007 international
conference on Web information systems engi-
neering, (pp. 447–452). Berlin: Springer-Verlag.
Retrieved from http://dl.acm.org/citation.
cfm?id=1781503.1781552

Valverde, F., & Pastor, O. (2008). Applying
Interaction Patterns: Towards a Model-Driven
Approach for Rich Internet Applications De-
velopment. In Proceedings of 7th International
Workshop on Web-Oriented Software Technolo-
gies (pp. 13–18). Vydavateľstvo STU.

http://dx.doi.org/10.1145/331499.331502
http://dx.doi.org/10.1109/MIC.2007.123
http://dx.doi.org/10.1109/MIC.2007.123
http://dx.doi.org/10.1109/CERMA.2010.16
http://dx.doi.org/10.1109/CERMA.2010.16
http://dx.doi.org/10.1109/ICWE.2008.41
http://dx.doi.org/10.1109/ICWE.2008.41
http://dx.doi.org/10.1109/LA-Web.2007.14
http://dx.doi.org/10.1145/1145581.1145649
http://dx.doi.org/10.1109/LA-WEB.2006.1
http://dx.doi.org/10.1109/ICWE.2008.36
http://dl.acm.org/citation.cfm?id=1781503.1781552
http://dl.acm.org/citation.cfm?id=1781503.1781552

322

AlexandRIA

Valverde, F., & Pastor, O. (2009). Facing the
Technological Challenges of Web 2.0: A RIA
Model-Driven Engineering Approach. In Proceed-
ings of the 10th International Conference on Web
Information Systems Engineering, (pp. 131–144).
Berlin: Springer-Verlag. doi:10.1007/978-3-642-
04409-0_18

KEY TERMS AND DEFINITIONS

Abstract Data View: A design model adopted
by some Rich Internet Application development
approaches as a means to design rich user inter-
faces starting from the specification of the objects
composing the user interfaces and their relation-
ships with other software components.

Business Logic Distribution: The dimension
of the Rich Internet Applications development
process which is related to the specification of
the business logic operations either as client-side
or server-side operations.

Cloud Service: A Web service from a Web
2.0 website such as social networking services
and video sharing websites.

Concrete Data View: An extension of the
Abstract Data View design model that allows
adding concrete look and feel details to an abstract
User Interface model.

Interaction Design Pattern: A kind of user
interface patterns aimed at achieving effective
user experiences, i.e., rich interactions.

Multi-Device Rich Internet Application: A
kind of RIA that can run on a variety of devices
starting from the same code base. This includes not
only cross-browser Web applications but also out-
of-browser applications, namely cross-platform
desktop and mobile applications.

Rich Internet Application: Applications that
are deployed over the Web; this type of applica-
tions combines features and functionality of Web
applications and desktop applications.

http://dx.doi.org/10.1007/978-3-642-04409-0_18
http://dx.doi.org/10.1007/978-3-642-04409-0_18

323

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

DOI: 10.4018/978-1-4666-6437-1.ch015

New Trends on RIAs
Development

ABSTRACT

Rich Internet Applications (RIAs) are considered one kind of Web 2.0 application; however, they have
demonstrated to have the potential to transcend throughout the steps in the Web evolution, from Web 2.0
to Web 4.0. In some cases, RIAs can be leveraged to overcome the challenges in developing other kinds
of Web-based applications. In other cases, the challenges in the development of RIAs can be overcome
by using additional technologies from the Web technology stack. From this perspective, the new trends
in the development of RIAs can be identified by analyzing the steps in the Web evolution. This chapter
presents these trends, including cloud-based RIAs development and mashups-rich User Interfaces (UIs)
development as two easily visible trends related to Web 2.0. Similarly, semantic RIAs, RMAs (Rich Mobile
Applications), and context-aware RIAs are some of the academic proposals related to Web 3.0 and Web
4.0 that are discussed in this chapter.

1. INTRODUCTION

This chapter aims to outline the new trends in
the development of Rich Internet Applications
(RIAs). According to an exhaustive state-of-the-
art analysis and from the authors’ point of view,
these trends are defined in the context of the steps
on the Web evolution as is depicted in Figure 1,
from Web 2.0 to Web 4.0, passing through cloud
computing as a trend on the Web 2.0 evolution.

Cloud computing could be the best example
of where the RIAs development is going both in
commercial and academic fields. In this context,
RIAs enable cloud providers to mainly achieve the

SaaS (Software as a Service) cloud model thanks
to the desktop-like features and functionalities
of RIAs. Nevertheless, in the case of the PaaS
(Platform as a Service) cloud model, RIAs can
play a major role. In fact, a variant of the PaaS
model in which applications are intended to be
delivered as native-like mobile applications has
recently arisen.

In the case of Web 3.0, a new kind of RIA known
as semantic RIA has been recently proposed in the
literature. Semantic RIAs try to solve the issues
related to interoperability between systems by
using Semantic Web and Linked Data principles.
This is an example of how the RIA drawbacks can

324

New Trends on RIAs Development

be achieved by using Web semantic technologies.
At a lower level of abstraction, semantic Web tech-
nologies can be leveraged in the context of Web
2.0 applications development. In fact, an effort by
the W3C (World Wide Web Consortium) aimed
at encouraging developers to use knowledge rep-
resentation languages common to Semantic Web
in Systems and Software Engineering practices
was active until 2006.

Finally, in the case of Web 4.0, the necessity
of a ubiquitous Web has driven the emergence
of mobile Web applications distributing data and
business logic between mobile devices them-
selves and remote servers. These applications
take advantage of RIA technologies not only
to offer rich user experiences but also to enable
data and business logic distribution. Here, the
use of HTML5 (HyperText Markup Language
5) and JavaScript-based RIA frameworks at the
client-side seems to be the most natural solution
for technology heterogeneity purposes. At the
same time, the availability of the mobile devices’
hardware resources through JavaScript APIs (Ap-

plication Programming Interfaces) has enabled
the context-awareness capability in mobile Web
applications.

The aforementioned trends are widely de-
scribed in the following subsections. It is impor-
tant to notice that this chapter is not intended to
technically explain the concepts related to each
of the topics that converge on the current trends
on RIAs development but outline the importance
of these concepts for the development of RIAs.

2. RIAS AND CLOUD COMPUTING

Cloud computing is a style of computing in which
dynamically scalable and often virtualized re-
sources are provided as a service over the Internet.
Users do not need having knowledge of, expertise
in, or control over the underlying infrastructure
in the cloud that supports the services rendered
to them. Cloud computing refers to both the ap-
plications delivered as services over the Internet
and, the hardware and systems software in the data

Figure 1. The Web evolution

325

New Trends on RIAs Development

centers that provide those services. The services
themselves have been referred as SaaS whereas
the underlying high-level systems software and the
low-level hardware have been known as PaaS and
IaaS (Infrastructure as a Service), respectively.

According to the NIST (National Institute of
Standards and Technology) (Mell & Grance, 2011),
Cloud computing is composed of five essential
characteristics: 1) on-demand self-service which
is the consumer ability to unilaterally provision
computing capabilities as needed automatically
without requiring human interaction with each
service provider, 2) broad network access which
is the availability of computing capabilities over
the network through standards mechanisms that
promote use by heterogeneous client platforms, 3)
resource pooling which is the pooling of provider’s
computing resources to serve multiple consumers
by using a multi-tenant model, 4) rapid elasticity
which is the ability to elastically provision and
release computing capabilities, in some cases
automatically, in order to rapidly commensurate
with demand and 5) measured service which is the
system ability to control and optimize resource use
by leveraging a metering capability at some level
of abstraction appropriate to the type of service.

With the on-demand self-service characteristic
a new pay-per-use or pay-as-you-go deployment
mode have arisen besides the already existing
modes: 1) the traditional client/server style based
on in-house dedicated infrastructure, 2) the
outsourced style which relies on Intranet-based
clients and third-party operated and managed in-
frastructure and 3) the ASP (Application Service
Provider) style relying on Web-based clients and
cloud infrastructure.

From this perspective, RIA technology can
be used by vendors to deliver Interned-hosted
versions of their applications to be accessed
by remote customers and paid for on a per-use
subscription basis. Therefore, RIA technology
enables vendors to achieve the first cloud model,
i.e., SaaS. In terms of Deb, Bannur, & Bharti
(2007), RIA technologies are a strong enabler for

the SaaS model because of the rich functionality
that otherwise could only be achieved by using
desktop applications.

Nevertheless, RIA technologies can also play a
role in the second cloud model, i.e., PaaS. In this
context, a variation of the PaaS model in which
RIAs can be deployed on the cloud and can then
be accessed without worrying about deployment
and scalability was identified by Punjabi (2012)
based on the fact that moving offerings to the
cloud is an increasingly frequent strategy from
business intelligence vendors such as OracleTM1
and IBMTM (“IBM Cloud Computing,” 2014). It is
important to notice that, in these platforms, RIAs
are primarily leveraged to present final results to
end users through rich user interfaces.

Furthermore, the boom of the mobile market,
namely smartphones and tablet computers, has
resulted in a new trend in the RIA-empowered
cloud computing market: mobile PaaS. In general,
mobile cloud computing is defined as the avail-
ability of cloud computing services in a mobile
ecosystem (Cox, 2011). A mobile PaaS is expected
to integrate services for building, deploying,
integrating and managing mobile applications.
For development purposes, cloud vendors have
been taking advantage of the current skills and
knowledge of the Web developers, bringing Web
standards such as HTML, CSS (Cascading Style
Sheets) and JavaScript to the mobile development.
As a result, the so-called hybrid mobile applica-
tions have taken place; hybrid mobile applications
are built by using Web technologies and they are
then wrapped in device-specific native applica-
tion containers. In this context, JavaScript-based
mobile RIA frameworks such as jQuery Mobile
and SenchaTM Touch have been traditionally in-
tegrated into the development tool stacks of the
mobile PaaS as a means to enable hybrid mobile
applications to adopt RIA-type features related
not only to presentation concerns but also to other
aspects of RIA development such as definition of
client-side business logic and the use of client-side
data storage mechanisms. However, the necessity

326

New Trends on RIAs Development

of leveraging hardware capabilities such as accel-
erometers and cameras across mobile devices has
caused cloud vendors to provide support for native
mobile applications as well. Here, non-JavaScript-
based RIA frameworks such as AdobeTM FlexTM
and MicrosoftTM SilverlightTM have been primarily
used with presentation purposes.

According to the above, the applications can
be accessed by remote clients via heterogeneous
desktop and mobile devices of diverse “shapes
and sizes”. In addition, taking advantage of the
RIA capability to distribute processing and stor-
age between the client and server tiers, providers
can improve the application responsiveness by
distributing these aspects between the cloud and
the client device.

In fact, unlike traditional Web applications,
RIAs use client-side programming languages and
user interface markup languages that typically
require Web browser plug-ins (this is not truth in
the case of JavaScript-based RIA frameworks) or
desktop runtime environments to be installed on
the client device in order to download and execute
the application code. In the case of Web browser-
free RIAs, this prerequisite can allows applications
to take advantage of the client hardware to provide
higher performance and device native capabilities,
resembling traditional client-installed applications
or even distributed applications that refer to the
aforementioned traditional client/server delivering
model (Dunlop, Ettl, & Abani, 2010).

Other advantage of delivering cloud services
to remote devices by using RIA technologies are
the possibility of reducing load on the network and
on the cloud infrastructure because the applica-
tions are executed on the client-side. Furthermore,
thanks to the storage distribution capabilities of
some RIA technologies, providers can offer data
replication facilities that allow consumers to work
offline and in a synchronized way when they are
connected.

As an example of a cloud provider leverag-
ing RIA technologies, Salesforce.comTM, Inc.,
which was pioneered the delivery of sales force

automation and CRM (Customer Relationship
Management) software over Internet, uses the
AdobeTM FlexTM framework for enabling develop-
ers to add dynamic, interactive user experiences
to their force.com-based applications. In detail,
force.comTM, which is the Salesforce.comTM’s
PaaS, offers a non-general purpose programming
language called Apex, an XML-based UI (User
Interface) markup language called Visualforce™
and Web standards such as HTML5, CSS3 and
JavaScript for developing Web applications. Force.
comTM also offers a toolkit for “AdobeTM AIRTM
and FlexTM” aimed at the development of both
offline desktop applications and Web applications
wrapped using Visualforce™-based Web pages
(Deb et al., 2007).

Recently, Antenna™ Software has offered the
Antenna™ Mobility Platform AMPchroma™
which is an enterprise grade PaaS for native,
hybrid and Web-based mobile applications.
AMPchroma™ gives support to JavaScript-based
frameworks such as jQuery Mobile, Sencha Touch
and Dojo Mobile besides the Web standards like
HTML5 and CSS3, enabling developers to build
rich hybrid and Web-based mobile applications.
Besides, it supports native SDKs (Standard De-
velopment Kits) for AppleTM iOS, AndroidTM,
BlackBerryTM and WindowsTM Mobile platforms.
AMPchroma™-based hybrid and native applica-
tions use a runtime environment called AMP client
which provides real-time and offline facilities,
and it exposes device capabilities such as GPS
(Geo Positioning System) and camera (Antenna
Inc., 2010).

In the case of academic proposals, March et
al. from HPTM Laboratories Singapore (2011) pro-
posed a framework that merges mobile and cloud
computing concepts for the development of rich
mobile applications viewed as a new generation
of distributed mobile applications that provides
rich functionalities. This framework called μCloud
employs a software composition approach which
allows creating the applications by mashing-up
modular components. Indeed, the applications

327

New Trends on RIAs Development

are modeled as directed graphs in which nodes
represent cloud-side, device-side and hybrid
components. μCloud addresses design challenges
of cloud-enabled mobile applications, e.g., the
reliability under diverse network conditions, in-
cluding disconnection. It also addresses the typical
constraints of stand-alone mobile applications
such as the limitations of mobile devices resources
and energy which are overcomed by offloading
resource-intensive complex tasks to the Cloud. In
addition, the application portability is achieved by
implementing on the Cloud those tasks that do not
require device-specific capabilities.

As can be inferred from the aforementioned
case studies, the increase in cloud-based appli-
cation development and consumption is driving
up demand for RIA technologies, causing both
software vendors and developers move to the
RIA and cloud markets, specifically to PaaS and
SaaS models.

3. RIAS AND MASHUPS

The repurposing of information from data sources
such as Web Services and Atom/RSS (Really
Simple Syndication) feeds, with the aim of solv-
ing the needs of an individual or interested com-
munity is part of Web 2.0 trends. Due to this, a
new generation of Web 2.0 applications called
mashups has emerged. A mashup is a Web appli-
cation that integrates data from multiple sources
to provide a unique service (Tuchinda, Szekely,
& Knoblock, 2008).

Regarding the Web 2.0 trends, according to
Tim O’Reilly (O’Reilly, 2007), the delivery of
rich user experiences to traditional Web applica-
tions is considered a principle of Web 2.0 along
with others such as the understanding of Web as
a platform and the harnessing of collective intel-
ligence. The delivery of rich user experiences was
a challenge early achieved by MacromediaTM with
the introduction of the term “Rich Internet Ap-
plication” in 2002 (Allaire, 2002) to highlight the

capabilities of FlashTM in order to deliver not just
multimedia content but also UI-style application
experiences. The term “Rich Internet Applica-
tion” was later expanded with the introduction of
the term “AJAX” (Asynchronous JavaScript And
XML) by GoogleTM Inc. to name the collection
of technologies behind the Gmail™ and Google
Maps™ websites. According to this, RIAs can
also be considered a kind of Web 2.0 application.

Moreover, there are two main tasks in mashup
application development: 1) accessing data sources
which imply analyzing diverse APIs and consum-
ing required Web services or RSS/Atom feeds
and 2) building UIs, which implies presenting
the information from all the required sources in
one place.

Besides RSS/Atom feeds, Web services are a
common data source for mashups. Whether they
are WSDL (Web Services Description Language)-
based Web services or RESTfull Web services,
RIA technologies such as ActionScript as part of
AdobeTM FlexTM, or a JavaScript-based framework
wrapping the XMLHttpRequest object like jQuery
can be used to send asynchronous HTPP (Hyper-
Text Transfer Protocol) requests to them. This
kind of HTTP request allows updating parts of a
Web page without reloading the whole Web page,
which is one of the distinguishing characteristics
of RIAs known as visual continuity.

Nevertheless, is at the second task where RIAs
can play a major role, because it is not easy to merge
heterogeneous information from different sources
and adequately display the merged information
through a unique UI (Deb, Bannur, & Bharti,
2007). In fact, mashups can take advantage of
the single-page navigation model of RIAs which
help preventing the disturbance of the user mental
flow, providing containers such as tabs, accordions
and view stacks, as well as controls like pop-up
dialog boxes. In (Pietschmann, Voigt, Rümpel, &
Meißner, 2009) an approach for service-oriented
composition of Web application rich UIs was pro-
posed. This approach called CRUISe (Composi-
tion of Rich User Interface Services) was indented

328

New Trends on RIAs Development

to simplify the development and maintenance of
Web UIs by enabling the encapsulation and reus-
ing of rich UI components. As a result, UIs are
dynamically adapted by selecting, customizing and
exchanging UI parts at runtime. CRUISe-based
applications are built as mashup applications made
up of generic pure JavaScript-based components
from SOA (Service Oriented Architecture)-based
Web services. Because of the dynamics involved in
the service integration activity leveraging CRUISe,
UIs are initially designed as platform-independent
visual models, and they are further refined into
platform-specific mashup skeletons. Therefore,
other client-side development technologies, in-
cluding non-JavaScript-based RIA frameworks
such as AdobeTM FlexTM and JavaFXTM can be used
to empower the capabilities of the final applica-
tions allowing for a variety of target platforms.

Since its emergence, mashups have widely
covered the Internet market with consumer-
focused applications. In recent years, mashups
have gained popularity in the enterprise market.
Organizations are starting to realize that they can
put their well-defined services together with other
existing services, internal or external to the orga-
nization, to provide new and interesting views on
the data. As examples of Internet-based mashups,
the HousingmapsTM website combines property
listings from the Craigslists™ classified advertise-
ments website with map data from Google Maps™
in order to show the list of properties available
at a location selected on a map. The usage of
AJAX technologies enables HousingmapsTM to
update the property listings without reloading
the whole Web page, and therefore keeping the
location loaded on the map. Another example of
Internet-based mashup taking advantage of AJAX
technologies is the YelpTM website which provides
a search engine for restaurants, home services,
bars and other local services in conjunction with
user reviews and recommendations. YelpTM also
integrates Google Maps™ data in order to show
the location of each service.

Because data are the core element of mashups,
this kind of Web 2.0 applications can be easily
coupled to enterprises business process. In fact,
traditional software vendors are increasingly
offering mashup platforms targeting enterprises
(Clarkin & Holmes, 2007). As an example, IBMTM
offers the IBMTM Mashup Center which enables
the rapid creation, sharing and discovery of reus-
able application building blocks such as widgets
that can be easily assembled into new applica-
tions or leveraged within existing applications.
In detail, the IBMTM Mashup Center provides
many ready-to-use widgets for building mashup
applications. Additional widgets can be developed
using JavaScript-based frameworks such as Dojo,
non-JavaScript-based frameworks like AdobeTM
FlexTM and LotusTM Widget Factory which is a UI
tool for developing custom widgets without writ-
ing code (Leung, 2009). Likewise, IBMTM offers
EGL Rich UI. EGL is a higher-level programming
language for developing business applications and
services. EGL code compiles into COBOL, Java
and JavaScript. EGL Rich UI is a development
tool for EGL that uses UI widgets as application
building blocks; it is available in both IBMTM Ra-
tionalTM EGL Communication Edition and IBMTM
RationalTM Business Developer IDEs. EGL Rich
UI is intended to ease the way RIAs and mashups
are developed by simplifying the programming
model, hidden the complexities of JavaScript and
AJAX and enabling developers of all backgrounds
to quickly build Web 2.0 applications. EGL Rich
UI developers can write EGL applications using
external JavaScript libraries such as Dojo and
YUI. In addition, non-JavaScript-based RIA
frameworks such as McrosoftTM SilvelightTM and
AdobeTM FlexTM can also be used to extend the
widget set of EGL Rich UI (Barosa, 2010).

As can be inferred from the academic and
commercial proposals analyzed, mashup applica-
tions are increasingly taking advantage of RIA
technologies not only to address the challenges
related to UI designing but also to improve the
way of how data sources are accessed.

329

New Trends on RIAs Development

4. RIAS AND WEB 3.0

The Web 3.0 also known as Semantic Web is a
movement led by the W3C standards organiza-
tion. According to the W3C, it provides a com-
mon framework that allows data to be shared
and reused across application, enterprise, and
community boundaries. The term was coined by
Tim Berners Lee in 2001 (Berners-Lee, Hendler,
& Lassila, 2001). Five years after that, the term
was revisited; the semantic Web was defined as a
Web of actionable information derived from data
through a semantic theory for interpreting the
symbols. In this sense, the semantic theory pro-
vides an account of meaning in which the logical
connections of terms establishes interoperability
between systems.

According to some proposals (Hermida, Meliá,
Montoyo, & Gómez, 2011; Linaje et al., 2011),
one of the RIA drawbacks is the complicated
access to the data to some types of Web clients,
which results in limited interoperability between
systems. For instance, due to the lack of HTML
code in RIAs, the search engines are not capable
of correctly indexing the mentioned subset of
RIAs. In addition, unlike the HTML elements, the
RIA UI controls lack of tags and attributes that
allow developers to add the necessary semantics
for assistive technologies, enabling disabled us-
ers to perceive and interact with information.
The aforementioned drawbacks have recently
addressed by using semantic Web technologies
as is explained below.

In fact, there was an effort by the W3C’s Se-
mantic Web activity called Semantic Web Best
Practices & Deployment Working Group aimed
at providing hands-on support for developers of
Semantic Web applications. This W3C group
was closed in 2006 after achieving its mission.
Nevertheless, as part of the deliverables produced
by this group, a draft was published outlining
the benefits of applying knowledge representa-
tion languages common to Semantic Web, such
as RDF (Resource Description Framework) and

OWL (Web Ontology Language), in Systems
and Software Engineering practices. Although
this effort did not primarily target RIAs but
traditional Web applications, some architectural
elements common to both kinds of Web applica-
tions were identified in the characterization of
the Semantic Web as a set of formalized corpora
of interrelated, reusable contents, intended to be
rigorously described, identified, discovered and
shared among software systems and systems’
design teams both during design and at runtime.
For instance, in such characterization, functional
components including JavaScript-based scripts
are classified as active content in the sense that
they are referenced as fragments within flat docu-
ments such as HTML-based files; here, these flat
documents are known as passive content. Besides
JavaScript, non-JavaScript-based RIA technolo-
gies like Adobe was published Flex was published
can also be engaged in this characterization of the
Semantic Web because Adobe was published Flex
was published -based Web applications actually
are SWF files embedded in HTML files (in its
simplest form). From this prespective, SWF (Small
Web Format) files do not represent media content
but functional components.

As part of the work done by the W3C’s Seman-
tic Web Best Practices & Deployment Working
Group, a list of RDF and OWL tools for semantic
Web development called SemanticWebTools was
compiled and maintained until January 2010 so
that this list is currently conserved but it is no
longer maintained; although, many of the tools
included are currently available on Internet. The
SemanticWebTools list comprises several cat-
egories of development tools including develop-
ment environments; such category is refined by
programming language. For instance, Table 1
summarizes the features of some of the tools for
JavaScript-based development included in the
SemanticWebTools list.

The WAI (Web Accessibility Initiative) is a
W3C’s initiative developing strategies, guidelines
and resources to help make the Web accessible

330

New Trends on RIAs Development

to people with disabilities. It provides a suite of
technical documentation specifically addressing
Rich Internet Applications. This suite called
WAR-ARIA (Accessible Rich Internet Applica-
tions) defines a way to make dynamic content
and advanced UI controls developed with AJAX,
HTML and JavaScript more accessible to people
with disabilities. The WAI-ARIA 1.0 working
draft (W3C, 2014) provides an ontology of roles,
states and properties defining the attributes that
must contain the widgets introduced by RIA
technologies in order to be interpreted by assistive
technologies and accessibility APIs. With the aim
of giving support to WAI-ARIA, a semantic ap-
proach based on an extension to the RUX-Method,
a MDD (Model Driven Development) method
for designing RIA UIs, was proposed in (Linaje
et al., 2011). The cores of the proposal are two
components: 1) an ontology called ontoRUX that
extends the WAI-ARIA ontology by adding OWL

restrictions to this taxonomy to keep the semantic
consistency of the accessibility properties and
2) an editor tool called editRUX which is aimed
at enriching the components of the RUX-Tool
Component Library with accessibility attributes,
and it is integrated in RUX-Tool, the MDD tool
that implements RUX-Method.

Hermida, Meliá, Montoyo, & Gómez (2011)
proposed the concept of semantic RIA as an exten-
sion of traditional RIAs, which uses ontologies and
linked data principles for overcoming the issues of
RIAs related to interoperability between systems.
In order to address the design and development of
semantic RIAs, an MDD methodology designed
as an extension of the OOH4RIA methodology
(Melia, Gomez, Perez, & Diaz, 2008) was also
proposed. OOH4RIA specifies an almost complete
RIA through two server-side models and two RIA
presentation models. The proposed process called
Sm4RIA (Semantic Models for RIAs) extends the

Table 1. Tools for JavaScript-based development included in the SemanticWebTools

Tool Description Features

Hercules It is a free open source JavaScript-based framework for building semantic Web applications.
It was developed by Arielworks Hercules Team.

• RDF/XML
parser
• Turtle parser
• JavaScipt-
based SPARQL
(SPARQL Protocol
and RDF Query
Language) query
engine

AOT (OpenLink
AJAX Toolkit)

It is a JavaScript-based toolkit for RIAs development. It was developed by OpenLink Software.
It includes a collection of rich UI widgets, an event management system and a platform-
independent data access layer called AJAX Database Connectivity. These elements are the basis
of the ODE (OpenLink Data Explorer) Web browser extension. ODE is a RDF data browser; it
allows interacting with RDF-based Linked Data via a Web browser-based UI.

• RDF graph
visualizer widget
• RDF/XML
parser
• Client-side
RDF triple store
mechanism
• Fresnel Lens
RDF Processor

Rdfstore-js It is a pure JavaScript implementation of a RDF triple store mechanism supporting the SPARQL
query and data manipulation language. It is an open source project licensed under the GNU
(GNU’s Not Unix) LGPL-3.0 (Lesser General Public License, Version 3.0) software license.
Rdfstore-js can be directly executed in a Web browser or can be included as an external library
in a node.js-based application.

• Turtle/N3 parser
• RDF graph
events API
• W3C RDF
Interfaces API
• MongoDBTM-
based persistent
storage

331

New Trends on RIAs Development

OOH4RIA MOF (Meta Object Facility)-based
metamodel by means of: 1) a set of meta classes
which relates the RIA client and server concepts
to semantics concepts and 2) a set of model-to-
model transformations to automatically obtain
domain, navigation and presentation ontologies
from OOH4RIA models.

In (Balkić, Pešut, & Jović, 2007) a semantic
approach for modeling, deploying and integrating
RIAs was proposed. It is based on an ontology
bringing diverse knowledge items and processes
together to provide an integrated view of the
knowledge domain to application clients as well
as a platform for semantic data mining techniques.
It consists of a repository for storage and retrieval
of data and metadata, which is based on the JCR
(Java Content Repository) API, OWL and the
RDF model for data interchange on the Web. An
application framework defining five modular
components or domains of an ontology-based
system was also proposed. It covers application
data, document data, security constraints, busi-
ness process definitions and configuration data.

Moreover, as an example of software vendors
offering solutions integrating semantic Web and
RIA technologies, the TopQuadrant™ company
provides an application assembly toolkit for rap-
idly creating dynamic semantic Web applications
starting from ontologies and optionally RDF data.
This toolkit called TobBraid Ensemble™ includes
pre-packaged applications that can be customized
using an in-browser editor by adding, removing and
reconfiguring RIA components based on AdobeTM
FlexTM. Custom components can be developed us-
ing the so-called SDK for Ensemble™. TobBraid
Ensemble™ targets RIAs, from collaborative
systems to mashup applications.

As can be inferred from the academic and
commercial proposals analyzed, RIA developers
can take advantage of Web semantic technologies
to address some deficiencies of RIA and, at the
same time, semantic Web applications can take
advantage of RIA technologies, using rich UIs
as front-ends.

5. RIAS AND WEB 4.0

We 4.0 is still an underground idea in progress
and there is no exact definition of how it would
be; however, according to the trends in the de-
velopment of Web-based applications and the
boom of smart devices, it is widely accepted that
Ubiquitous Web is a next step in the evolution of
Web. Web 4.0 is about connecting intelligences in
a Ubiquitous Web where a new model of interac-
tion between humans and machines is delivered
(Aghaei et al., 2012; Davis, 2010).

In this sense, there is a W3C’s initiative called
Ubiquitous Web Domain which is a focusing on
technologies to enable Web access for anyone,
anywhere, anytime, using any device. This in-
cludes Web access from mobile phones as well
as emerging environments such as consumer
electronics, interactive television, and even auto-
mobiles. The Ubiquitous Web will provide people
with access whenever and wherever they find
themselves, with applications that dynamically
adapt to the user’s needs, device capabilities and
environmental conditions.

Nowadays, Web applications are becoming
ubiquitous applications, i.e., applications that are
accessible for anyone, anywhere, anytime, using
any device. In this area, ubiquity is based on the
existing technologies, and it is not a new idea.
Nevertheless, ubiquity offers new opportunities
for Web applications in terms of: time-awareness,
location-awareness, device-awareness, context-
awareness and personalized services.

As can be inferred, a key element of Ubiquitous
Web is mobile devices. In this context, mobile
Web applications represent the next step in Web
development. Here, the use of HTML5 and JavaS-
cript-based RIA frameworks seems to be the most
suitable solution because it eliminates the necessity
of installing additional runtime environments on
mobile devices so that compatibility issues with
mobile operating systems are avoided resulting in
a wider range of supported mobile devices. In fact,
according to the results of testing on real devices

332

New Trends on RIAs Development

that are summarized in the mobilehtml5 Website2
by Maximilano Firtman, most of the features
of HTML5 are currently available on the most
popular mobile Web browsers in the first quarter
of 2014 according to the netmarketshare Website,
namely, SafariTM, AndroidTM Browser, Chrome™
and Opera Mini™. HTML5 is the 5th major revi-
sion of the core language of the World Wide Web:
HTML. It introduces new features to help Web
developers; likewise, it defines new elements
based on research into prevailing development
practices; finally, it defines conformance criteria
for user agents in an effort to improve interoper-
ability. In detail, in the context of mobile Web
development, it provides four useful elements:
1) the Canvas element; it provides scripts with a
resolution-dependent bitmap canvas which can be
used for rendering graphs, game graphics, art or
other visual images on the fly without requiring
any additional plug-in, 2) touch events API; it is a
set of low-level events that represent one or more
points of contact with a touch-sensitive surface;
it allows for user experiences that seamless na-
tive mobile user experiences by revolutionizing
traditional Web navigation models, 3) application
cache API; it enables mobile Web applications to
be used in offline mode; by means of this API,
mobile Web applications can also improve respon-
siveness and reduce client-server communication
by accessing locally cached resources rather than
remote resources and 4) video and audio elements;
the video element allows for playing movies and
audio files with captions whereas the audio ele-
ment allows for playing sounds and audio streams
without requiring external plug-ins; in both cases,
typical playback controls can easily be integrated.

In the context of academic proposals addressing
ubiquitous mobile applications, Abolfazli, Sanaei,
Gani, Xia, & Yang, (2014) formally define RMAs
(Rich Mobile Applications) as online (Web-based)
mobile applications that are characterized by sev-
eral rich traits inherited from RIAs meant to deliver
rich user experiences to mobile users. These ap-
plications rely on a multi-tier architecture in which

functionality and data is distributed between the
mobile device and one or more remote servers,
allowing for anywhere anytime usage. From this
perspective, ubiquitously accessing functionality
and data under heterogeneous connectivity and
bandwidth conditions is identified as one of the
current trends in the development of RMAs that
demands for more technology and research efforts.

At a lower level of abstraction, in order to give
support to the development of ubiquitous Web
applications, several proposals have arisen. For
instance, the UWA (Ubiquitous Web Applications)
methodology defines four modeling activities: 1)
requirements elicitation, 2) hypermedia design
covering information, navigation and presentation
models, 3) transaction design and 4) customization
design. The latter allows developers to specify
how the application adapts itself to the context,
user, device, time, communication channels and
location. UWA can be seen as a framework that
integrates the metamodels defining the aforemen-
tioned activities and an IDE (Integrated Develop-
ment Environment) based on the IBMTM Rational
RoseTM product family (UWA Consortium, 2002).

Similarly, proposals aimed at giving support to
the development of context-aware RIAs, or from
another perspective, context-aware Web applica-
tions taking advantage of rich UIs have recently
emerged. In this sense, Cirilo, Prado, Souza, &
Zaina (2010) proposed an MDD process to de-
velop rich UIs for context-sensitive ubiquitous
applications. This process called RichUbi defines
activities and artifacts that aid the modeling and
the partial code generation of rich UIs for different
platforms. The process is performed in two main
steps: 1) domain engineering which comprises
the specification, design and implementation of
a rich UI domain metamodel aimed at modeling
rich UIs, the construction of a set of model-to-
model transformations for semi-automatic code
generation, as well as the construction of a set of
content adapters for performing the dynamic UI
adaptation and 2) application engineering which
focuses on building applications of a certain

333

New Trends on RIAs Development

problem domain, and it comprises analysis, de-
sign, implementation and testing disciplines. In
(Linaje-Trigueros, Preciado, & Sánchez-Figueroa,
2010) an MDD approach to obtain multi-device
context-aware RIAs was proposed. This ap-
proach combines the WebML (Web Modeling
Language) extension for context-awareness and
RUX-Method. The WebML extension addresses
context-aware features at data and hypertext levels
whereas RUX-Method was extended according
to its UI levels and transformations in order to
achieve context-awareness at presentation level.
In detail, device-aware presentation was solved
by using the so-called RUX Device Repository
(RUX-DR) which is a storage of device capabili-
ties. Location-aware presentation was solved by
exploiting the single-page navigation paradigm of
RIAs. Time-aware presentation and user person-
alization were simply solved by using dynamic
UI properties.

6. CONCLUSION

Although RIAs are considered one kind of Web
2.0 applications, they have shown the ability to
transcend through the steps in the Web evolu-
tion, from Web 2.0 to Web 4.0, and even beyond
the Web in the fields of desktop and mobile ap-
plications where smart devices play a major role
towards a ubiquitous Web. From this perspective,
it seems that Web development no longer refers
to traditional Web applications but to Web 2.0
applications, especially RIAs. It seems that the
potential of RIAs has not yet been fully exploited
to design new client-server architectures promot-
ing a ubiquitous Web.

In some cases, developers can take advantage
of RIAs to overcome the challenges in developing
other kinds of Web-based applications such as
cloud-based applications, namely maintenance
and deployment. In other cases, the challenges
in the development of RIAs such as availability
and data heterogeneity can be overcome by us-

ing further technologies such as ontologies and
linked data. In fact, RIAs are not the solution to
all the problems of Web development, and it is
not the purpose of this chapter to state the op-
posite but to outline the main research directions
for RIAs and guide forthcoming efforts on these
directions. In this context, for further information
about possible research directions related to the
necessity of development approaches for RIAs,
the work of Toffetti, Comai, Preciado, & Linaje
(2011) can be reviewed.

The fact that business intelligence companies
such as IBMTM and OracleTM are moving their
solutions to cloud taking advantage of RIA tech-
nologies is clear and it is the rudder that will guide
the future of RIAs.

Finally, it is important to notice that, in the
Web evolution, there are many ideas that are not
exactly defined, and they are works in progress.
However, current practices in the development of
Web applications and the boom of smart devices,
including interactive televisions and automobiles,
are showing where it is going the Web.

REFERENCES

Abolfazli, S., Sanaei, Z., Gani, A., Xia, F., &
Yang, L. T. (2014). Rich Mobile Applications:
Genesis, taxonomy, and open issues. Journal of
Network and Computer Applications, 40, 345–362.
doi:10.1016/j.jnca.2013.09.009

Aghaei, S., Nematbakhsh, M. A., & Farsani, H. K.
(2012). Evolution of the World Wide Web : From
Web 1.0 to Web 4.0. International Journal of Web
& Semantic Technology, 3(1), 1–10. doi:10.5121/
ijwest.2012.3101

Allaire, J. (2002). Macromedia Flash MX—A
next-generation rich client. San Francisco, CA:
Macromedia, Inc. Retrieved from http://down-
load.macromedia.com/pub/flash/whitepapers/
richclient.pdf

http://dx.doi.org/10.1016/j.jnca.2013.09.009
http://dx.doi.org/10.5121/ijwest.2012.3101
http://dx.doi.org/10.5121/ijwest.2012.3101
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf

334

New Trends on RIAs Development

Antenna Inc. (2010, January 11). Harnessing
the Power of the Mobile Cloud. Jersey City, NJ:
Antenna Inc. Retrieved from http://www.anten-
nasoftware.com/pdf/whitepaper_Antenna_Mo-
bile_Cloud.pdf

Balkić, Z., Pešut, M., & Jović, F. (2007). Seman-
tic Rich Internet Application (RIA) Modeling,
Deployment and Integration. Presented at the
International Conference on Advances in the In-
ternet, Processing, Systems and Interdisciplinary
Research. Opatija, Croatia.

Barosa, R. (2010). Build Web 2.0 applications
using EGL. IBM Boston. Retrieved from http://
public.dhe.ibm.com/software/dw/rational/emz/
Build_Web_2.0_application_using_EGL.pdf

Berners-Lee, T., Hendler, J., & Lassila, O. (2001).
The Semantic Web. Scientific American, 284(5),
34–43. doi:10.1038/scientificamerican0501-34
PMID:11396337

Cirilo, C. E., do Prado, A. F., de Souza, W. L., &
Zaina, L. A. M. (2010). Model Driven RichUbi
- A Model-Driven Process to Construct Rich
Interfaces for Context-Sensitive Ubiquitous Ap-
plications. In Proceedings of the 2010 26th Bra-
zilian Symposium on Software Engineering (pp.
100–109). Los Alamitos, CA: IEEE Computer
Society. doi:10.1109/SBES.2010.20

Clarkin, L., & Holmes, J. (2007, October). En-
terprise Mashups. Microsoft Developer Network.
Retrieved December 20, 2012, from http://msdn.
microsoft.com/en-us/library/bb906060.aspx

IBM Cloud Computing Platform as a Service
(PaaS) - United States. (2014, May 9). Retrieved
May 20, 2014, from http://www.ibm.com/cloud-
computing/us/en/paas.html

Consortium, U. W. A. (2002). Ubiquitous Web
Applications. Presented at the eBusiness and
eWork Conference 2002. Prague, Czech Republic.

Cox, P. A. (2011, March 11). Mobile cloud com-
puting. Retrieved October 22, 2012, from http://
www.ibm.com/developerworks/cloud/library/
cl-mobilecloudcomputing/

Davis, M. (2010, February 2). Web 3.0 And The
Next Internet: New Directions And Opportunities
For... Business & Mgmt. Retrieved from http://
www.slideshare.net/ajmalik/web-30-and-the-
next-internet-new-directions-and-opportunities-
for-scientific-technical-and-medical-publishing

Deb, B., Bannur, S., & Bharti, S. (2007). Rich
Internet Applications (RIA): Opportunities and
Challenges for Enterprises. Bangalore, India:
Infosys Technologies. Retrieved from http://www.
infosys.com/IT-services/application-services/
white-papers/Documents/rich-internet-applica-
tions.pdf

Dunlop, J., Ettl, R., & Abani, P. (2010). Cloud
computing: how client devices affect the user
experience. Intel. Retrieved from http://download.
intel.com/it/pdf/Cloud-Computing-How-Client-
Devices-Affect-User-Experience.pdf

Hermida, J. M., Meliá, S., Montoyo, A., & Gó-
mez, J. (2011). Developing semantic rich internet
applications using a model-driven approach. In
Proceedings of the 2010 international conference
on Web information systems engineering (pp. 198–
211). Berlin: Springer-Verlag. doi:10.1007/978-
3-642-24396-7_16

Leung, R. C. (2009, June 29). Integrating Flex
applications with IBM Mashup Center. Retrieved
December 22, 2012, from http://www.ibm.com/
developerworks/lotus/library/mashups-flex/

Linaje, M., Lozano-Tello, A., Perez-Toledano, M.
A., Preciado, J. C., Rodriguez-Echeverria, R., &
Sanchez-Figueroa, F. (2011). Providing RIA user
interfaces with accessibility properties. Jour-
nal of Symbolic Computation, 46(2), 207–217.
doi:10.1016/j.jsc.2010.08.008

http://www.antennasoftware.com/pdf/whitepaper_Antenna_Mobile_Cloud.pdf
http://www.antennasoftware.com/pdf/whitepaper_Antenna_Mobile_Cloud.pdf
http://www.antennasoftware.com/pdf/whitepaper_Antenna_Mobile_Cloud.pdf
http://public.dhe.ibm.com/software/dw/rational/emz/Build_Web_2.0_application_using_EGL.pdf
http://public.dhe.ibm.com/software/dw/rational/emz/Build_Web_2.0_application_using_EGL.pdf
http://public.dhe.ibm.com/software/dw/rational/emz/Build_Web_2.0_application_using_EGL.pdf
http://dx.doi.org/10.1038/scientificamerican0501-34
http://www.ncbi.nlm.nih.gov/pubmed/11396337
http://dx.doi.org/10.1109/SBES.2010.20
http://msdn.microsoft.com/en-us/library/bb906060.aspx
http://msdn.microsoft.com/en-us/library/bb906060.aspx
http://www.ibm.com/cloud-computing/us/en/paas.html
http://www.ibm.com/cloud-computing/us/en/paas.html
http://www.ibm.com/developerworks/cloud/library/cl-mobilecloudcomputing/
http://www.ibm.com/developerworks/cloud/library/cl-mobilecloudcomputing/
http://www.ibm.com/developerworks/cloud/library/cl-mobilecloudcomputing/
http://www.slideshare.net/ajmalik/web-30-and-the-next-internet-new-directions-and-opportunities-for-scientific-technical-and-medical-publishing
http://www.slideshare.net/ajmalik/web-30-and-the-next-internet-new-directions-and-opportunities-for-scientific-technical-and-medical-publishing
http://www.slideshare.net/ajmalik/web-30-and-the-next-internet-new-directions-and-opportunities-for-scientific-technical-and-medical-publishing
http://www.slideshare.net/ajmalik/web-30-and-the-next-internet-new-directions-and-opportunities-for-scientific-technical-and-medical-publishing
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://download.intel.com/it/pdf/Cloud-Computing-How-Client-Devices-Affect-User-Experience.pdf
http://download.intel.com/it/pdf/Cloud-Computing-How-Client-Devices-Affect-User-Experience.pdf
http://download.intel.com/it/pdf/Cloud-Computing-How-Client-Devices-Affect-User-Experience.pdf
http://dx.doi.org/10.1007/978-3-642-24396-7_16
http://dx.doi.org/10.1007/978-3-642-24396-7_16
http://www.ibm.com/developerworks/lotus/library/mashups-flex/
http://www.ibm.com/developerworks/lotus/library/mashups-flex/
http://dx.doi.org/10.1016/j.jsc.2010.08.008

335

New Trends on RIAs Development

Linaje-Trigueros, M., Preciado, J. C., & Sánchez-
Figueroa, F. (2010). Multi-Device Context-Aware
RIAs Using a Model-Driven Approach. Journal
of Universal Computer Science, 16, 2038–2059.

March, V., Gu, Y., Leonardi, E., Goh, G., Kirch-
berg, M., & Lee, B. S. (2011). μCloud: Towards
a New Paradigm of Rich Mobile Applications.
Procedia Computer Science, 5, 618–624.
doi:10.1016/j.procs.2011.07.080

Melia, S., Gomez, J., Perez, S., & Diaz, O. (2008).
A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In
Proceedings of the 2008 Eighth International
Conference on Web Engineering (pp. 13 –23).
Los Alamitos, CA: IEEE Computer Society.
doi:10.1109/ICWE.2008.36

Mell, P., & Grance, T. (2011). The NIST definition
of Cloud Computing (No. Tech. Rep. 800-145)
(p. 7). Gaithersburg, MD: National Institute of
Standards and Technology. Retrieved from http://
csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf

O’Reilly, T. (2007). What is Web 2.0: Design
Patterns and Business Models for the Next Genera-
tion of Software. Communications & Strategies,
1(65), 17–38.

Pietschmann, S., Voigt, M., Rümpel, A., & Mei-
ßner, K. (2009). CRUISe: Composition of Rich
User Interface Services. In Proceedings of the
2009 Ninth International Conference on Web En-
gineering (pp. 473–476). Berlin: Springer-Verlag.
doi:10.1007/978-3-642-02818-2_41

Punjabi, M. (2012). Evolutionary Trends in Rich
Internet Applications (No. 1). Infosys Labs Brief-
ings. Retrieved from http://www.infosys.com/
infosys-labs/publications/Documents/winning-it/
evolutionary-trends.pdf

Toffetti, G., Comai, S., Preciado, J. C., & Linaje,
M. (2011). State-of-the Art and trends in the Sys-
tematic Development of Rich Internet Applica-
tions. Journal of Web Engineering, 10(1), 70–86.

Tuchinda, R., Szekely, P., & Knoblock, C. A.
(2008). Building Mashups by example. In Pro-
ceedings of the 13th international conference on
Intelligent user interfaces (pp. 139–148). New
York, NY: ACM. doi:10.1145/1378773.1378792

W3C. (2014). Accessible Rich Internet Applica-
tions (WAI-ARIA) 1.0 (No. 1.0). Retrieved from
http://www.w3.org/TR/wai-aria/complete

ADDITIONAL READING

The Antenna Mobility Platform. AMPchroma™.
(n.d.). Antenna Software website. Retrieved De-
cember 22, 2012, from http://www.antennasoft-
ware.com/products/overview

TopBraid Ensemble™. (n.d.). TopQuadrant™
Website. Retrieved December 22, 2012, from
http://www.topquadrant.com/products/TB_En-
semble.html

Ubiquitous Web Domain. (n.d.). W3C Website.
Retrieved December 22, 2012, from http://www.
w3.org/UbiWeb/

W3C Data Activity. (n.d.). W3C Website. Retrieved
March 25, 2014, from http://www.w3.org/2013/
data/

Web Accessibility Initiative (WAI). (n.d.). W3C
Website. Retrieved December 22, 2012, from
http://www.w3.org/WAI/

What is force.com? (n.d.). Force.com website.
Retrieved December 22, 2012, from http://www.
salesforce.com/platform/what/

http://dx.doi.org/10.1016/j.procs.2011.07.080
http://dx.doi.org/10.1109/ICWE.2008.36
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1007/978-3-642-02818-2_41
http://www.infosys.com/infosys-labs/publications/Documents/winning-it/evolutionary-trends.pdf
http://www.infosys.com/infosys-labs/publications/Documents/winning-it/evolutionary-trends.pdf
http://www.infosys.com/infosys-labs/publications/Documents/winning-it/evolutionary-trends.pdf
http://dx.doi.org/10.1145/1378773.1378792
http://www.w3.org/TR/wai-aria/complete
http://www.antennasoftware.com/products/overview
http://www.antennasoftware.com/products/overview
http://www.topquadrant.com/products/TB_Ensemble.html
http://www.topquadrant.com/products/TB_Ensemble.html
http://www.w3.org/UbiWeb/
http://www.w3.org/UbiWeb/
http://www.w3.org/2013/data/
http://www.w3.org/2013/data/
http://www.w3.org/WAI/
http://www.salesforce.com/platform/what/
http://www.salesforce.com/platform/what/

336

New Trends on RIAs Development

KEY TERMS AND DEFINITIONS

Cloud Computing: A style of computing in
which dynamically scalable and often virtualized
resources are provided as a service over the Inter-
net. It refers to both the applications delivered as
services over the Internet and, the hardware and
systems software in the data centers that provide
those services.

Context-Aware Rich Internet Application: A
kind of RIA taking advantage of the information
about the context in which it is delivered such as
location and time in order to provide rich user
experiences.

Mashup: A Web application that integrates
data from multiple sources to provide a unique
service.

Rich Internet Application: Applications that
are deployed over the Web; this type of applica-
tions combines features and functionality of Web
applications and desktop applications.

Rich Mobile Application: An online (Web-
based) mobile application that is characterized
by several rich traits inherited from Rich Internet
Applications meant to deliver rich user experi-
ences to mobile users. It relies on a multi-tier
architecture in which functionality and data is
distributed between the mobile device and one
or more remote servers, allowing for anywhere
anytime usage.

Semantic Rich Internet Application: A kind
of Rich Internet Application that tries to solve
the issues related to interoperability between
systems by using Semantic Web and Linked Data
principles.

Web 2.0: A collection of several principles
such as the delivery of rich user experiences to
traditional Web applications, the understanding
of the Web as a platform and the harnessing of
collective intelligence.

Web 3.0: A movement, also known as the
Semantic Web, that is led by the W3C standards
organization. According to the W3C, it provides a
common framework that allows data to be shared
and reused across application, enterprise, and
community boundaries.

Web 4.0: The Ubiquitous Web, in which intel-
ligences are connected delivering a new model of
interaction between humans and machines.

ENDNOTES

1 https://www.oracle.com/cloud/paas.html
2 http://mobilehtml5.org/

https://www.oracle.com/cloud/paas.html
http://mobilehtml5.org/

337

Compilation of References

Abolfazli, S., Sanaei, Z., Gani, A., Xia, F., & Yang, L. T.
(2014). Rich Mobile Applications: Genesis, taxonomy,
and open issues. Journal of Network and Computer Ap-
plications, 40, 345–362. doi:10.1016/j.jnca.2013.09.009

Acerbis, R., Bongio, A., Brambilla, M., & Butti, S. (2007).
WebRatio 5: an eclipse-based CASE tool for engineering
web applications. In Proceedings of the 7th international
conference on Web engineering (pp. 501–505). Berlin:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.
cfm?id=1770588.1770642

Adobe AIR. (2011). Adobe AIR. Retrieved January 30,
2011, from http://www.adobe.com/products/air/

Adobe. (2011). Flex overview. Retrieved January 29, 2011,
from http://www.adobe.com/products/flex/overview

Aghaei, S., Nematbakhsh, M. A., & Farsani, H. K. (2012).
Evolution of the World Wide Web : From Web 1.0 to Web
4.0. International Journal of Web & Semantic Technology,
3(1), 1–10. doi:10.5121/ijwest.2012.3101

Alexander, C., Ishikawa, S., & Silverstein, M. (1977).
A Pattern Language: Towns, Buildings, Construction.
Oxford University Press.

Allaire, J. (2002). Macromedia Flash MX—A next-
generation rich client. San Francisco, CA: Macromedia,
Inc. Retrieved from http://download.macromedia.com/
pub/flash/whitepapers/richclient.pdf

Alor-Hernandez, G., Hernandez-Carrillo, V. M., Ambros-
Antemate, J. F., & Martinez-Nieves, L. A. (2012). Im-
proving the Shopping Experience in B2C E-Commerce
Systems using Rich Internet Applications. In K. Rezaul
(Ed.), Strategic and Pragmatic E-Business: Implications
for Future Business Practices (pp. 72–99). Academic
Press. doi:10.4018/978-1-4666-1619-6.ch004

Amazon Web Services. (2013). Amazon Web Services.
Retrieved March, 2013, from http://aws.amazon.com/es/

Antenna Inc. (2010, January 11). Harnessing the Power
of the Mobile Cloud. Jersey City, NJ: Antenna Inc.
Retrieved from http://www.antennasoftware.com/pdf/
whitepaper_Antenna_Mobile_Cloud.pdf

Apache Tika. (2013). A content analysis toolkit. Retrieved
March, 2013, from http://tika.apache.org/

AppMobi XDK. (n.d.). AppMobi website. Retrieved July
6, 2012, from http://www.appmobi.com/?q=node/27

Architecture, S. (n.d.). MSDN. Retrieved May 10,
2013, from http://msdn.microsoft.com/en-us/library/
bb404713(v=vs.95).aspx

Balkić, Z., Pešut, M., & Jović, F. (2007). Semantic Rich
Internet Application (RIA) Modeling, Deployment and
Integration. Presented at the International Conference
on Advances in the Internet, Processing, Systems and
Interdisciplinary Research. Opatija, Croatia.

Barbosa, D. A., Honório, L. M., Leite da Silva, A. M., &
Lopes, C. (2009). Concepts of Aspect-Oriented Modeling
Applied to Optimal Power Flow Problems. In Proceedings
of Intelligent System Applications to Power Systems, (pp.
1-6). IEEE. doi:10.1109/ISAP.2009.5352929

Baresi, L., Garzotto, F., & Paolini, P. (2001). Extending
UML for Modeling Web Applications. In Proceedings
of the 34th Annual Hawaii International Conference
on System Sciences. IEEE Comput. Soc. Retrieved
from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=926350

http://dx.doi.org/10.1016/j.jnca.2013.09.009
http://dl.acm.org/citation.cfm?id=1770588.1770642
http://dl.acm.org/citation.cfm?id=1770588.1770642
http://www.adobe.com/products/air/
http://www.adobe.com/products/flex/overview
http://dx.doi.org/10.5121/ijwest.2012.3101
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://dx.doi.org/10.4018/978-1-4666-1619-6.ch004
http://aws.amazon.com/es/
http://www.antennasoftware.com/pdf/whitepaper_Antenna_Mobile_Cloud.pdf
http://www.antennasoftware.com/pdf/whitepaper_Antenna_Mobile_Cloud.pdf
http://tika.apache.org/
http://www.appmobi.com/?q=node/27
http://msdn.microsoft.com/en-us/library/bb404713(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/bb404713(v=vs.95).aspx
http://dx.doi.org/10.1109/ISAP.2009.5352929
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=926350
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=926350

Compilation of References

338

Barosa, R. (2010). Build Web 2.0 applications using
EGL. IBM Boston. Retrieved from http://public.dhe.ibm.
com/software/dw/rational/emz/Build_Web_2.0_applica-
tion_using_EGL.pdf

BCS. (2011). Windows 7 market share excedes 20% mark.
Retrieved February 6, 2011, from http://www.bcs.org/
content/conWebDoc/38577

Bebjak, M., Vranic, V., & Dolog, P. (2007). Evolution of
Web Applications with Aspect-Oriented Design Patterns.
In Proceedings ofAEWSE. AEWSE.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The
Semantic Web. Scientific American, 284(5), 34–43.
doi:10.1038/scientificamerican0501-34 PMID:11396337

Bibeault, B., & Katz, Y. (2008). jQuery in Action. Green-
wich, CT: Manning Publications Co.

Bieber, M., Galnares, R., & Lu, Q. (1998). Web Engineer-
ing and Flexible Hypermedia. In P. Brusilovksy & P. De
Bra (Eds.), Proceedings of the 2nd Workshop on Adaptive
Hypertext and Hypermedia Hypertext 98. Retrieved from
http://wwwis.win.tue.nl/ah98/Bieber.html

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The
Unified Modeling Language User Guide. Addison-Wesley.

Bozzon, A., Comai, S., Fraternali, P., & Carugui, G.
T. (2006). Capturing RIA concepts in a web modeling
language. In Proceedings of the 15th international Con-
ference on World Wide Web WWW 06, (pp. 907-908).
ACM. Retrieved from http://discovery.ucl.ac.uk/1320284/

Brambilla, M., Preciado, J. C., Linaje, M., & Sanchez
Figueroa, F. (2008). Business Process-based Conceptual
Design of Rich Internet Applications. In Proceedings of
Eighth International Conference on Web Engineering,
(pp. 155-156). IEEE. Retrieved from http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577879

Brisaboa, N. R., Penabad, M. R., Places, A. S., & Rodri-
guez, F. J. (2002). A documental database query language.
Advances in Databases, 2405, 242–245.

Buchanan, M. (2013). A Guide to Understanding Video
Containers & Codecs. Retrieved January, 2013, from
http://library.rice.edu/services/dmc/guides/video/Vid-
eoFormatsGuide.pdf

Busch, M., & Koch, M. (2009). State of the art. Rich Inter-
net Applications (Technical Report 0902). Academic Press.

Castillo, C. (n.d.). 1 Introduction to JavaFX Media. JavaFX
Documentation. Retrieved May 9, 2013, from http://docs.
oracle.com/javafx/2/media/overview.htm#CJAHFAHJ

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Co-
mai, S., & Matera, M. (2002). Designing Data-Intensive
Web Applications. Database. Morgan Kaufmann Pub-
lishers Inc. Retrieved from http://www.amazon.com/
dp/1558608435

Chen, H. Y., Lin, Y. H., & Cheng, C. M. (2012). COCA:
Computation Offload to Clouds Using AOP. In Proceed-
ings of the 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2012) (pp.
466-473). Washington, DC: IEEE Computer Society.
doi:10.1109/CCGrid.2012.98

Christiansson, B., Forss, M., Hagen, I., Hansson, K.,
Jonasson, J., & Jonasson, M. et al. (2008). GoF Design
Patterns - with examples using Java and UML2. Logica
Java Architects Training Crew. Authors.

Cirilo, C. E., do Prado, A. F., de Souza, W. L., & Zaina, L.
A. M. (2010). Model Driven RichUbi - A Model-Driven
Process to Construct Rich Interfaces for Context-Sensitive
Ubiquitous Applications. In Proceedings of the 2010
26th Brazilian Symposium on Software Engineering (pp.
100–109). Los Alamitos, CA: IEEE Computer Society.
doi:10.1109/SBES.2010.20

Clarke, S., & Baniassad, E. (2005). Aspect-Oriented
Analysis and Design - The Theme Approach. Addison-
Wesley Professional.

Clarkin, L., & Holmes, J. (2007, October). Enterprise
Mashups. Microsoft Developer Network. Retrieved De-
cember 20, 2012, from http://msdn.microsoft.com/en-us/
library/bb906060.aspx

Colombo-Mendoza, L. O., Alor-Hernandez, G., &
Rodríguez-González, A. (2011). An Extension to PPRD
for Source Code Generation of Multi-device RIAs. Paper
presented at the International Conference on Computers
and Advanced Technology in Education. New York, NY.

http://public.dhe.ibm.com/software/dw/rational/emz/Build_Web_2.0_application_using_EGL.pdf
http://public.dhe.ibm.com/software/dw/rational/emz/Build_Web_2.0_application_using_EGL.pdf
http://public.dhe.ibm.com/software/dw/rational/emz/Build_Web_2.0_application_using_EGL.pdf
http://www.bcs.org/content/conWebDoc/38577
http://www.bcs.org/content/conWebDoc/38577
http://Bebjak
http://Dolog
http://AEWSE.
http://dx.doi.org/10.1038/scientificamerican0501-34
http://www.ncbi.nlm.nih.gov/pubmed/11396337
http://wwwis.win.tue.nl/ah98/Bieber.html
http://discovery.ucl.ac.uk/1320284/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577879
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577879
http://library.rice.edu/services/dmc/guides/video/VideoFormatsGuide.pdf
http://library.rice.edu/services/dmc/guides/video/VideoFormatsGuide.pdf
http://docs.oracle.com/javafx/2/media/overview.htm#CJAHFAHJ
http://docs.oracle.com/javafx/2/media/overview.htm#CJAHFAHJ
http://www.amazon.com/dp/1558608435
http://www.amazon.com/dp/1558608435
http://dx.doi.org/10.1109/CCGrid.2012.98
http://dx.doi.org/10.1109/SBES.2010.20
http://msdn.microsoft.com/en-us/library/bb906060.aspx
http://msdn.microsoft.com/en-us/library/bb906060.aspx

Compilation of References

339

Colombo-Mendoza, L. O., Alor-Hernández, G., Ro-
dríguez-González, A., & Colomo-Palacios, R. (2013).
Alexandria: A Visual Tool for Generating Multi-device
Rich Internet Applications. Journal of Web Engineering,
12(3-4), 317–359.

Consortium, U. W. A. (2002). Ubiquitous Web Applica-
tions. Presented at the eBusiness and eWork Conference
2002. Prague, Czech Republic.

Corona, S. D. K. (n.d.). Corona Labs website. Retrieved
July 6, 2012, from http://www.coronalabs.com/products/
corona-sdk/

Country Info Service. (2013). Country Info Service. Re-
trieved March, 2013, from http://webservices.oorsprong.
org/websamples.countryinfo/CountryInfoService.wso

Cox, P. A. (2011, March 11). Mobile cloud computing.
Retrieved October 22, 2012, from http://www.ibm.com/
developerworks/cloud/library/cl-mobilecloudcomputing/

Crane, D., Bibeault, B., & Locke, T. (2007). Prototype
and Scriptaculous in Action. Greenwich, CT: Manning
Publications Co.

Cross-Browser. (2014). X-library. Retrieved January,
2014, from http://www.cross-browser.com/

Czarnecki, K. (1999). Generative Programming: Prin-
ciples and Techniques of Software Engineering Based
on Automated Configuration and Fragment-Based
Component Models. (PhD thesis). German: Technische
Universitat Ilmenau.

Davis, M. (2010, February 2). Web 3.0 And The Next
Internet: New Directions And Opportunities For... Busi-
ness & Mgmt. Retrieved from http://www.slideshare.net/
ajmalik/web-30-and-the-next-internet-new-directions-
and-opportunities-for-scientific-technical-and-medical-
publishing

Deb, B., Bannur, S., & Bharti, S. (2007). Rich Internet
Applications (RIA): Opportunities and Challenges for
Enterprises. Bangalore, India: Infosys Technologies.
Retrieved from http://www.infosys.com/IT-services/
application-services/white-papers/Documents/rich-
internet-applications.pdf

Debnath, M. (2012, May 3). JavaFX 2.0: A Platform for
Rich Enterprise Client Apps. Retrieved November 26,
2012, http://www.devx.com/Java/Article/48067

Detroyer, O., & Leune, C. (1998). WSDM: A user centered
design method for Web sites. Computer Networks and
ISDN Systems, 30(1-7), 85-94. Retrieved from http://link-
inghub.elsevier.com/retrieve/pii/S0169755298000427

Dojotoolkit. (2014). Dojotoolkit. Retrieved February,
2014, from http://www.dojotoolkit.org/

Dolog, P., & Stage, J. (2007). Designing Interaction Spaces
for Rich Internet Applications with UML. Techniques,
4607, 358-363. Retrieved from http://www.springerlink.
com/index/10.1007/978-3-540-73597-7

Dolog, P., Vrani’c, V., & Bielikov’a, M. (2001). Represent-
ing change by aspect. ACM SIGPLAN Notices, 36(12),
77–83. doi:10.1145/583960.583970

Duhl, J. (2003). Rich Internet Applications. Framingham,
MA: IDC, Inc.

Dunlop, J., Ettl, R., & Abani, P. (2010). Cloud com-
puting: how client devices affect the user experience.
Intel. Retrieved from http://download.intel.com/it/pdf/
Cloud-Computing-How-Client-Devices-Affect-User-
Experience.pdf

Ebay Developers Program. (2013). Ebay API. Retrieved
March, 2013, from http://developer.ebay.com/common/
api/

Eclipse documentation - Previous Release. (n.d.). Con-
cepts. Retrieved May 11, 2014, from http://help.eclipse.
org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.
user%2Fconcepts%2Fconcepts-4.htm

Eguíluz Pérez. J. (2008). Introducción a AJAX. Librosweb.
Retrieved February, 2014, from http://librosweb.es/ajax/

Ekabua, O. (2012). Using Aspect Oriented Techniques
to Build-in Software Quality. International Journal of
Computer Science Issues, 9(4), 250–255.

Elrad, T., Filman, R. E., & Bader, A. (2001). Aspect
oriented programming: Introduction. Communications
of the ACM, 44(10), 28–32. doi:10.1145/383845.383853

http://www.coronalabs.com/products/corona-sdk/
http://www.coronalabs.com/products/corona-sdk/
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso
http://www.ibm.com/developerworks/cloud/library/cl-mobilecloudcomputing/
http://www.ibm.com/developerworks/cloud/library/cl-mobilecloudcomputing/
http://www.cross-browser.com/
http://www.slideshare.net/ajmalik/web-30-and-the-next-internet-new-directions-and-opportunities-for-scientific-technical-and-medical-publishing
http://www.slideshare.net/ajmalik/web-30-and-the-next-internet-new-directions-and-opportunities-for-scientific-technical-and-medical-publishing
http://www.slideshare.net/ajmalik/web-30-and-the-next-internet-new-directions-and-opportunities-for-scientific-technical-and-medical-publishing
http://www.slideshare.net/ajmalik/web-30-and-the-next-internet-new-directions-and-opportunities-for-scientific-technical-and-medical-publishing
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://www.devx.com/Java/Article/48067
http://linkinghub.elsevier.com/retrieve/pii/S0169755298000427
http://linkinghub.elsevier.com/retrieve/pii/S0169755298000427
http://www.dojotoolkit.org/
http://www.springerlink.com/index/10.1007/978-3-540-73597-7
http://www.springerlink.com/index/10.1007/978-3-540-73597-7
http://dx.doi.org/10.1145/583960.583970
http://download.intel.com/it/pdf/Cloud-Computing-How-Client-Devices-Affect-User-Experience.pdf
http://download.intel.com/it/pdf/Cloud-Computing-How-Client-Devices-Affect-User-Experience.pdf
http://download.intel.com/it/pdf/Cloud-Computing-How-Client-Devices-Affect-User-Experience.pdf
http://developer.ebay.com/common/api/
http://developer.ebay.com/common/api/
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-4.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-4.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-4.htm
http://librosweb.es/ajax/
http://dx.doi.org/10.1145/383845.383853

Compilation of References

340

Escalona, M., & Koch, N. (2004). Requirements Engineer-
ing for Web Applications – A Comparative Study. Journal
of Web Engineering, 2(3), 193-212. Citeseer. Retrieved
from http://citeseerx.ist.psu.edu/viewdoc/download?doi
=10.1.1.153.5974&rep=rep1&type=pdf

Escalona, M. J., Torres, J., & Mejías, M. (2002). Require-
ments Capture Workflow in Global Information Systems.
In Proceedings of OOIS. Springer-Verlag. doi:10.1007/3-
540-46102-7_31

Fain, Y., Rasputnis, V., & Tartakovsky, A. (2010). Enter-
prise Development with Flex (p. 688). O’Reilly Media.

Fayad, M. E., & Adam, A. (2001). Thinking objectively:
An Introduction to Software Stability. Communications
of the ACM, 44(9), 95–98. doi:10.1145/383694.383713

Fielding, R. T. (2000). Architectural styles and the design
of network-based software architectures. (PhD disserta-
tion). University of California, Irvine, CA.

Flash Player. (2012). Statistics. Retrieved December
18, 2012, from: http://www.adobe.com/mx/products/
flashruntimes/statistics.html

Fraternali, P. (1999). Tools and approaches for developing
data-intensive Web applications: A survey. ACM Comput-
ing Surveys, 31(3), 227–263. doi:10.1145/331499.331502

Freedman, A. (1999). Diccionario bilingüe de com-
putación. Mc Graw Hill.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).
Design Patterns: Elements of reusable Object-Oriented
Software. Boston, MA: Addison-Wesley Longman Pub-
lishing Co., Inc.

Garzotto, F., Paolini, P., & Schwabe, D. (1993). HDM - A
model-based approach to hypermedia applications design.
ACM Transactions on Information Systems, 11(1), 1–23.
doi:10.1145/151480.151483

Google Developers – GoogleMaps. (2013). API Google
Maps. Retrieved March, 2013, from https://developers.
google.com/maps/?hl=es

Google Developers – Youtube. (2013). Youtube API Re-
sources. Retrieved March, 2013, from https://developers.
google.com/youtube/

Harmon, J. E. (2008). Dojo: Using the Dojo JavaScript
Library to Build Ajax Applications. Addison-Wesley
Professional.

Hennicker, R., & Koch, N. (2000). A UML-based meth-
odology for hypermedia design. In Proceedings of the
3rd international conference on The unified modeling
language advancing the standard (Vol. 1939, pp. 410-424).
Springer-Verlag. Retrieved from http://portal.acm.org/
citation.cfm?id=1765218&dl=GUIDE&coll=GUIDE

Heo, S. H., & Choi, E. M. (2006). Representation of Vari-
ability in Software Product Line Using Aspect-Oriented
Programming. In Proceedings of the Fourth Interna-
tional Conference on Software Engineering Research,
Management and Applications (SERA ‘06) (pp. 66-73).
Washington, DC: IEEE Computer Society.

Hermida, J. M., Meliá, S., Montoyo, A., & Gómez, J.
(2011). Developing semantic rich internet applications
using a model-driven approach. In Proceedings of the
2010 international conference on Web information sys-
tems engineering (pp. 198–211). Berlin: Springer-Verlag.
doi:10.1007/978-3-642-24396-7_16

Hmida, M. M. B., Tomaz, R. F., & Monfort, V. (2005).
Applying AOP concepts to increase Web services flex-
ibility. In Proceedings of Next Generation Web Services
Practices. IEEE.

Holmes, J. (2012). Taking Abstraction a step further.
Retrieved April, 2014, from https://weblogs.java.net/
blog/2004/09/29/taking-abstraction-one-step-further

Holmes, J. (2013). Enterprise Mashups. MSDN Archi-
tecture Journal. MSDN Architecture Center. Retrieved
March 2013, from http://msdn.microsoft.com/en-us/
architecture/bb906060.aspx

Holzinger, A., Brugger, M., & Slany, W. (2011). Apply-
ing aspect oriented programming in usability engineering
processes: On the example of tracking usage information
for remote usability testing, In Proceedings of the Inter-
national Conference on e-Business (ICE-B 2011) (pp.
1-4). Seville, Spain: IEEE.

Holzinger, A. (2005). Usability engineering methods for
software developers. Communications of the ACM, 48(1),
71–74. doi:10.1145/1039539.1039541

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.5974&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.5974&rep=rep1&type=pdf
http://dx.doi.org/10.1007/3-540-46102-7_31
http://dx.doi.org/10.1007/3-540-46102-7_31
http://dx.doi.org/10.1145/383694.383713
http://www.adobe.com/mx/products/flashruntimes/statistics.html
http://www.adobe.com/mx/products/flashruntimes/statistics.html
http://dx.doi.org/10.1145/331499.331502
http://dx.doi.org/10.1145/151480.151483
https://developers.google.com/maps/?hl=es
https://developers.google.com/maps/?hl=es
https://developers.google.com/youtube/
https://developers.google.com/youtube/
http://portal.acm.org/citation.cfm?id=1765218&dl=GUIDE&coll=GUIDE
http://portal.acm.org/citation.cfm?id=1765218&dl=GUIDE&coll=GUIDE
http://dx.doi.org/10.1007/978-3-642-24396-7_16
https://weblogs.java.net/blog/2004/09/29/taking-abstraction-one-step-further
https://weblogs.java.net/blog/2004/09/29/taking-abstraction-one-step-further
http://msdn.microsoft.com/en-us/architecture/bb906060.aspx
http://msdn.microsoft.com/en-us/architecture/bb906060.aspx
http://dx.doi.org/10.1145/1039539.1039541

Compilation of References

341

IBM Cloud Computing Platform as a Service (PaaS) -
United States. (2014, May 9). Retrieved May 20, 2014,
from http://www.ibm.com/cloud-computing/us/en/paas.
html

Indiana University. (2009).Google Picasa 3: The Basics.
Retrieved from http://ittraining.iu.edu/free/picba.pdf

Ivory, M. Y., & Hearst, M. A. (2001). The state of
the art in automating usability evaluation of user in-
terfaces. ACM Computing Surveys, 33(4), 470–516.
doi:10.1145/503112.503114

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The
Unified Software Development Process. Addison-Wesley.

Jacobson, I., & Ng, P. W. (2005). Aspect-Oriented Soft-
ware Development with Use Cases. Addison Wesley
Professional.

Javahery, H., Sinnig, D., Seffah, A., Forbrig, P., & Rad-
hakrishnan, T. (2007). Pattern-based UI design: adding
rigor with user and context variables. In Proceedings
of the 5th international conference on Task models and
diagrams for users interface design (TAMODIA’06) (pp.
97-108). Berlin: Springer-Verlag. doi:10.1007/978-3-
540-70816-2_8

Jboss. (2013). Aspect Oriented Programming (AOP) Sup-
port. Retrieved January, 2013, from http://docs.jboss.org/
jbossas/jboss4guide/r2/html/aop.chapt.html

JQUERY. (2012). Documentation. Retrieved September,
2012, from http://docs.jquery.com/

jquery-aop. (2014). API Reference. Retrieved April,
2014, from http://code.google.com/p/jquery-aop/wiki/
Reference

Juárez Martínez, U. (2008). Énfasis: Programación Ori-
entada a Aspectos de Grano Fino. (PhD thesis). Centro
de Investigación y de Estudios Avanzados del Instituto
Politécnico Nacional.

Kappel, G., Proll, B., Retschitzegger, W., & Schwinger,
W. (2003). Customisation for Ubiquitous Web Applica-
tions: a Comparison of Approaches. Int. J. Web Eng.
Technol., 1(1), 79–111. doi:10.1504/IJWET.2003.003322

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. M., & Irwin, J. (1997). Aspect-
oriented programming. In M. Aksit, & S. Matsuoka (Eds.),
Ecoop’97: Object-Oriented Programming (pp. 220–242).
Berlin: Springer-Verlag.

Koch, N., & Wirsing, M. (2001). Software engineering for
adaptive hypermedia applications. Ph Thesis FAST Reihe
Softwaretechnik, 12. Retrieved from http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.24.4017&rep=
rep1&type=pdf

Korozi, M., Leonidis, S., Margetis, G., & Stephanidis,
C. (2009). MAID: a Multi-platform Accessible Interface
Design Framework. In Proceedings of the 5th International
Conference on Universal Access in Human-Computer In-
teraction. Part III: Applications and Services (UAHCI ‘09)
(pp. 725-734). Berlin: Springer-Verlag. doi:10.1007/978-
3-642-02713-0_77

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., Von
Staa, A., & Lucena, C. (2006). Quantifying the Effects
of Aspect-Oriented Programming: A Maintenance Study.
In Proceedings of Software Maintenance, (pp. 223-233).
IEEE.

Kwanwoo, L., Botterweck, G., & Thiel, S. (2009). Feature-
Modeling and Aspect-Oriented Programming: Integration
and Automation. In Proceedings of the 2009 10th ACIS
International Conference on Software Engineering, Arti-
ficial Intelligences, Networking and Parallel/Distributed
Computing (SNPD ‘09) (pp. 186-191). Washington, DC:
IEEE Computer Society.

Laddad, R. (2003). AspectJ in Action: Practical Aspect-
Oriented Programming. Greenwich, CT: Manning
Publications Co.

Laszlo Systems, Inc. (2013a). Architecture. Retrieved
January 29, 2013, from: http://www.openlaszlo.org/
architecture

Laszlo Systems, Inc. (2013b). OpenLaszlo Architecture.
Retrieved February 6, 2011, from: http://www.openlaszlo.
org/lps4.9/docs/developers/architecture.html

Laszlo Systems, Inc. (2013c). OpenLaszlo Showcase.
Retrieved February 6, 2011, from: http://www.openlaszlo.
org/showcase

http://www.ibm.com/cloud-computing/us/en/paas.html
http://www.ibm.com/cloud-computing/us/en/paas.html
http://ittraining.iu.edu/free/picba.pdf
http://dx.doi.org/10.1145/503112.503114
http://dx.doi.org/10.1007/978-3-540-70816-2_8
http://dx.doi.org/10.1007/978-3-540-70816-2_8
http://docs.jboss.org/jbossas/jboss4guide/r2/html/aop.chapt.html
http://docs.jboss.org/jbossas/jboss4guide/r2/html/aop.chapt.html
http://docs.jquery.com/
http://code.google.com/p/jquery-aop/wiki/Reference
http://code.google.com/p/jquery-aop/wiki/Reference
http://dx.doi.org/10.1504/IJWET.2003.003322
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4017&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-642-02713-0_77
http://dx.doi.org/10.1007/978-3-642-02713-0_77
http://www.openlaszlo.org/architecture
http://www.openlaszlo.org/architecture
http://www.openlaszlo.org/lps4.9/docs/developers/architecture.html
http://www.openlaszlo.org/lps4.9/docs/developers/architecture.html
http://www.openlaszlo.org/showcase
http://www.openlaszlo.org/showcase

Compilation of References

342

Lee, H., Lee, C., & Yoo, C. (1998). A scenario-based
object-oriented methodology for developing hypermedia
information systems. In Proceedings of the ThirtyFirst Ha-
waii International Conference on System Sciences, (pp. 47-
56). IEEE Comput. Soc. Retrieved from http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=651682

Leung, R. C. (2009, June 29). Integrating Flex applica-
tions with IBM Mashup Center. Retrieved December 22,
2012, from http://www.ibm.com/developerworks/lotus/
library/mashups-flex/

Li, H., Zhang, J., & Wang, L. (2010). The research and
application of web-based system with Aspect-Oriented
features. In Proceedings of Computer Engineering and
Technology (ICCET), (pp. V4-480). IEEE.

Linaje, M., Preciado, J.C., Morales-Chaparro, R., &
Sanchez-Figueroa, F. (2008). On the Implementation of
Multiplatform RIA User Interface Components. In Pro-
ceedings of ICWE 2008 Workshops, 7th Int. Workshop on
Web-Oriented Software Technologies, (pp. 44-49). ICWE.
Retrieved from http://icwe2008.webengineering.org/Pro-
gram/Workshops/ISBN978-80-227-2899-7/icwe2008ws-
CD/individual-files/02icwe2008ws-iwwost08-linaje.pdf

Linaje, M., Lozano-Tello, A., Perez-Toledano, M. A.,
Preciado, J. C., Rodriguez-Echeverria, R., & Sanchez-
Figueroa, F. (2011). Providing RIA user interfaces with
accessibility properties. Journal of Symbolic Computation,
46(2), 207–217. doi:10.1016/j.jsc.2010.08.008

Linaje-Trigueros, M., Preciado, J. C., & Sánchez-Figueroa,
F. (2010). Multi-Device Context-Aware RIAs Using a
Model-Driven Approach. Journal of Universal Computer
Science, 16, 2038–2059.

Lippert, M., & Lopes, C. V. (2000). A study on exception
detection and handling using aspect-oriented program-
ming. In Proceedings of the 2000 International Conference
on Software Engineering (pp. 418-427). IEEE.

Lowe, D., & Eklund, J. (2002). Client Needs and the
Design Process in Web Projects. Paper presented at the
Web Engineering Track of the WWW2002 Conference.
New York, NY.

Lucene (2013). Apache Lucene Core. Retrieved March,
2013, from http://lucene.apache.org/core/

Machado, L., Filho, O., & Ribeiro, J. (2009). UWE-R:
An extension to a web engineering methodology for rich
internet applications. WSEAS Trans. Info. Sci. and App.,
6(4), 601–610.

Mahemoff, M. (2006). Ajax Design Patterns. O’Reilly.

March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M.,
& Lee, B. S. (2011). μCloud: Towards a New Paradigm of
Rich Mobile Applications. Procedia Computer Science,
5, 618–624. doi:10.1016/j.procs.2011.07.080

Martínez-Nieves, L. A., Hernández-Carrillo, V. M., &
Alor-Hernández, G. (2010). An ADV-UWE Based Phases
Process for Rich Internet Applications Development. In
Proceedings of Electronics,Robotics and Automotive
Mechanics Conference (CERMA), (pp. 45–50). CERMA.
doi:10.1109/CERMA.2010.16

Martinez-ruiz, F., Arteaga, J., Vanderdonckt, J., Gonzalez-
calleros, J., & Mendoza, R. (2006). A first draft of a
Model-driven Method for Designing Graphical User
Interfaces of Rich Internet Applications. In Proceedings of
2006 Fourth Latin American Web Congress, (pp. 32-38).
IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4022089

Martin, J. (1991). Rapid Application Development. New
York: Macmillan USA.

McCune, D., & Subramaniam, D. (2008). Getting to
Know Flex. In Adobe Flex 3.0 for Dummies (pp. 9–16).
Indianapolis, IN: Wiley Publishing, Inc.

Medicare Supplier. (2013). MediCareSupplier. Retrieved
March, 2013, from http://www.webservicex.net/medi-
careSupplier.asmx

Meliá, S., Gómez, J., Pérez, S., & Díaz, O. (2008). A
Model-Driven Development for GWT-Based Rich Internet
Applications with OOH4RIA. In Proceedings of 2008
Eighth International Conference on Web Engineering,
(pp. 13-23). IEEE. Retrieved from http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4577865

Melia, S., Gomez, J., Perez, S., & Diaz, O. (2008). A
Model-Driven Development for GWT-Based Rich Internet
Applications with OOH4RIA. In Proceedings of the 2008
Eighth International Conference on Web Engineering
(pp. 13 –23). Los Alamitos, CA: IEEE Computer Society.
doi:10.1109/ICWE.2008.36

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=651682
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=651682
http://www.ibm.com/developerworks/lotus/library/mashups-flex/
http://www.ibm.com/developerworks/lotus/library/mashups-flex/
http://icwe2008.webengineering.org/Program/Workshops/ISBN978-80-227-2899-7/icwe2008ws-CD/individual-files/02icwe2008ws-iwwost08-linaje.pdf
http://icwe2008.webengineering.org/Program/Workshops/ISBN978-80-227-2899-7/icwe2008ws-CD/individual-files/02icwe2008ws-iwwost08-linaje.pdf
http://icwe2008.webengineering.org/Program/Workshops/ISBN978-80-227-2899-7/icwe2008ws-CD/individual-files/02icwe2008ws-iwwost08-linaje.pdf
http://dx.doi.org/10.1016/j.jsc.2010.08.008
http://lucene.apache.org/core/
http://dx.doi.org/10.1016/j.procs.2011.07.080
http://dx.doi.org/10.1109/CERMA.2010.16
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4022089
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4022089
http://www.webservicex.net/medicareSupplier.asmx
http://www.webservicex.net/medicareSupplier.asmx
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577865
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577865
http://dx.doi.org/10.1109/ICWE.2008.36

Compilation of References

343

Mell, P., & Grance, T. (2011). The NIST definition of
Cloud Computing (No. Tech. Rep. 800-145) (p. 7).
Gaithersburg, MD: National Institute of Standards and
Technology. Retrieved from http://csrc.nist.gov/publica-
tions/nistpubs/800-145/SP800-145.pdf

Miano, J. (1999). Compressed Image File Formats:
Jpeg, Png, Gif, Xbm, Bmp. New York, NY: ACM Press/
Addison-Wesley Publ. Co.

Microsoft. (2011a). Arquitectura de Silverlight. Retrieved
January 30, 2011, from: http://msdn.microsoft.com/es-es/
library/bb404713(v=VS.95).aspx

Microsoft. (2011b). Información general sobre Silverlight.
Retrieved January 30, 2011, from: http://msdn.microsoft.
com/es-es/library/bb404700(v=VS.95).aspx

Moonlight. (2011). Moonlight. Retrieved January 30,
2011, from: http://www.mono-project.com/Moonlight

Mootools. (2012). Mootools. Retrieved August, 2012,
from: http://mootools.net/

Mootools.net. (2013). API Documentation. Retrieved
January, 2013, from http://mootools.net/docs/core

Namscimbene, C. (2005). Adobe & Macromedia Sales
Engineer en el distribuidor ALAB S.A. Retrieved 6 July
2011 from http://www.canal-ar.com.ar/noticias/noti-
ciamuestra.asp?Id=2639

Neil, T. (2009). Designing Rich Applications. Slideshare
Website. Retrieved May 28, 2012, from http://www.
slideshare.net/theresaneil/designing-rich-applications

Newton, A. (2008). MooTools Essentials: The Official
MooTools Reference for JavaScript and Ajax Develop-
ment. Berkely, CA: Apress.

Nilsson, E. G. (2009). Design patterns for user inter-
face for mobile applications. Advances in Engineering
Software, 40(12), 1318–1328. doi:10.1016/j.adveng-
soft.2009.01.017

O’Reilly, T. (2005). What is Web 2.0. Design Patterns and
Bussiness Models for the Next Generation of Software.
Design, 65(65), 17-37. Retrieved from http://papers.ssrn.
com/sol3/papers.cfm?abstract_id=1008839

O’Reilly, T. (2007). What is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software.
Communications & Strategies, 1(65), 17–38.

Olsina, L. (1998). Building a Web-based Information
System applying the Hypermedia Flexible ProcessMo-
deling Strategy. Paper presented at the 1st International
Workshop on Hypermedia Development, Hypertext´98.
Pittsburgh, PA.

Openrico. (2014). Openrico. Retrieved August, 2014,
from: http://openrico.org/

Oracle Corporation. (2011). Develop Expressive Content
with the JavaFX Platform. Retrieved January 29, 2011,
from: http://javafx.com/about/overview/index.jsp

Ortiz, G., Bordbar, B., & Hernandez, J. (2008). Evaluating
the Use of AOP and MDA in Web Service Development.
In Proceedings of Internet and Web Applications and
Services, (pp. 78-83). IEEE. doi:10.1109/ICIW.2008.24

Osmani, A. (2010). Essential JavaScript & jQuery Design
Patterns For Beginners. Addy Osmani.

Package javafx.scene.media. (n.d.). JavaFX 2.2. Retrieved
May 9, 2013, from http://docs.oracle.com/javafx/2/api/
javafx/scene/media/package-summary.html

Palmieri, M., Singh, I., & Cicchetti, A. (2012). Com-
parison of cross-platform mobile development tools. In
Proceedings of 2012 16th International Conference on
Intelligence in Next Generation Networks (ICIN) (pp.
179–186). IEEE. doi:10.1109/ICIN.2012.6376023

Patel, S. V., & Pandey, K. (2009). SOA Using AOP for
Sensor Web Architecture. In Proceedings of Computer
Engineering and Technology, (vol. 2, pp. 503-507). IEEE.
doi:10.1109/ICCET.2009.152

Pietschmann, S., Voigt, M., Rümpel, A., & Meißner, K.
(2009). CRUISe: Composition of Rich User Interface
Services. In Proceedings of the 2009 Ninth International
Conference on Web Engineering (pp. 473–476). Berlin:
Springer-Verlag. doi:10.1007/978-3-642-02818-2_41

Ponnalagu, K., Narendra, N. C., Krishnamurthy, J., &
Ramkumar, R. (2007). Aspect-oriented Approach for
Non-functional Adaptation of Composite Web Ser-
vices. In Proceedings of Services, (pp. 284-291). IEEE.
doi:10.1109/SERVICES.2007.18

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://msdn.microsoft.com/es-es/library/bb404713(v=VS.95).aspx
http://msdn.microsoft.com/es-es/library/bb404713(v=VS.95).aspx
http://msdn.microsoft.com/es-es/library/bb404700(v=VS.95).aspx
http://msdn.microsoft.com/es-es/library/bb404700(v=VS.95).aspx
http://www.mono-project.com/Moonlight
http://mootools.net/
http://mootools.net/docs/core
http://www.canal-ar.com.ar/noticias/noticiamuestra.asp?Id=2639
http://www.canal-ar.com.ar/noticias/noticiamuestra.asp?Id=2639
http://www.slideshare.net/theresaneil/designing-rich-applications
http://www.slideshare.net/theresaneil/designing-rich-applications
http://dx.doi.org/10.1016/j.advengsoft.2009.01.017
http://dx.doi.org/10.1016/j.advengsoft.2009.01.017
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1008839
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1008839
http://openrico.org/
http://javafx.com/about/overview/index.jsp
http://dx.doi.org/10.1109/ICIW.2008.24
http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html
http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html
http://dx.doi.org/10.1109/ICIN.2012.6376023
http://dx.doi.org/10.1109/ICCET.2009.152
http://dx.doi.org/10.1007/978-3-642-02818-2_41
http://dx.doi.org/10.1109/SERVICES.2007.18

Compilation of References

344

Preciado, J. C., Linaje, M., Comai, S., & Sanchez-Figueroa,
F. (2007). Designing Rich Internet Applications with Web
Engineering Methodologies. In Proceedings of 2007 9th
IEEE International Workshop on Web Site Evolution, (pp.
23-30). IEEE. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4380240

Preciado, J. C., Linaje, M., Morales-Chaparro, R.,
Sanchez-Figueroa, F., Zhang, G., Kroiß, C., & Koch, N.
(2008). Designing Rich Internet Applications Combin-
ing UWE and RUX-Method. In Proceedings of 2008
Eighth International Conference on Web Engineering,
(pp. 148-154). IEEE. Retrieved from http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577878

Preciado, J. C., Linaje, M., Sanchez, F., & Comai, S.
(2005). Necessity of methodologies to model Rich
Internet Applications. In Proceedings of Seventh IEEE
International Symposium on Web Site Evolution, (pp.
7-13). IEEE. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1517975

Preciado, J. C., Linaje, M., Sanchez, F., & Comai, S.
(2005). Necessity of methodologies to model Rich Internet
Applications. In Proceedings of the Seventh IEEE Inter-
national Symposium on Web Site Evolution (pp. 7–13).
Washington, DC: IEEE Computer Society. doi:10.1109/
WSE.2005.10

Prototypejs. (2014). Prototypejs. Retrieved January, 2014,
from: http://www.prototypejs.org/

prototypejs.org. (2013). API Documentation. Retrieved
January, 2013, from http://prototypejs.org/learn

Punjabi, M. (2012). Evolutionary Trends in Rich Internet
Applications (No. 1). Infosys Labs Briefings. Retrieved
from http://www.infosys.com/infosys-labs/publications/
Documents/winning-it/evolutionary-trends.pdf

Qooxdoo. (2014). Qooxdoo. Retrieved April, 2014, from:
http://qooxdoo.org/

Qt, S. D. K. (n.d.). Nokia products. Retrieved July 6, 2012,
from http://qt.nokia.com/products

Raj, A., & Komaragiri, V. (2009). RUCID: Rapid Usable
Consistent Interaction Design Patterns-Based Mobile
Phone UI Design Library. In Proceedings of the 13th In-
ternational Conference on Human-Computer Interaction.
Part I: New Trends (pp. 677-686). Berlin: Springer-Verlag.
doi:10.1007/978-3-642-02574-7_76

Rambadt, M. (2009). Monitoring of Web Services Us-
ing UNICORE 6 as an Example. (MS thesis). Aachen
University of Applied Sciences, Aachen, Germany. Re-
trieved November 30, 2012, from http://www.ibm.com/
developerworks/aix/library/au-aem_rest/

Raymond, S., & Pereira, S. (2006). Prototype Quick
Reference. O’Reilly Media, Inc.

Resendiz, M. P., & Aguirre, J. O. O. (2005). Dynamic
invocation of Web services by using aspect-oriented pro-
gramming. In Proceedings of Electrical and Electronics
Engineering, (pp. 48-51). IEEE.

RibosoMatic. (2013). Listado de librerías, frameworks y
herramientas para AJAX, DHTML y JavaScript. Retrieved
August, 2013, from: http://www.ribosomatic.com/articu-
los/top-librerias-ajax-dhtml-y-javascript/

Richard, J., Robert, J.-M., Malo, S., & Migneault, J. (2011).
Giving UI Developers the Power of UI Design Patterns.
In Proceedings of the 2011 international conference on
Human interface and the management of information -
Volume Part I (HI’11) (pp. 40-47). Berlin: Springer-Verlag.
doi:10.1007/978-3-642-21793-7_5

Rivero, J. M., & Buzzo, M. H. (2007). Definición de Rich
Internet Applications a través de Modelos de Dominio
Específico. Retrieved from: http://revista.info.unlp.edu.
ar/tesinas/tesis51.pdf

Rosales-Morales, V. Y., Alor-Hernández, G., & Juárez-
Martínez, U. (2011). An overview of multimedia support
into JavaScript-based Frameworks for developing RIAs.
In Proceedings of 2011 21st International Conference
on Electrical Communications and Computers (CO-
NIELECOMP) (pp. 66–70). doi:10.1109/CONIELE-
COMP.2011.5749341

Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., & Gar-
rido, A. (2008). Refactoring to Rich Internet Applications.
A Model-Driven Approach. In Proceedings of 2008 Eighth
International Conference on Web Engineering, (pp. 1-12).
IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4577864

Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., & Gar-
rido, A. (2008). Refactoring to Rich Internet Applications.
A Model-Driven Approach. In Proceedings of the 2008
Eighth International Conference on Web Engineering
(pp. 1–12). Washington, DC: IEEE Computer Society.
doi:10.1109/ICWE.2008.41

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4380240
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4380240
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1517975
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1517975
http://dx.doi.org/10.1109/WSE.2005.10
http://dx.doi.org/10.1109/WSE.2005.10
http://www.prototypejs.org/
http://prototypejs.org/learn
http://www.infosys.com/infosys-labs/publications/Documents/winning-it/evolutionary-trends.pdf
http://www.infosys.com/infosys-labs/publications/Documents/winning-it/evolutionary-trends.pdf
http://qooxdoo.org/
http://qt.nokia.com/products
http://dx.doi.org/10.1007/978-3-642-02574-7_76
http://www.ibm.com/developerworks/aix/library/au-aem_rest/
http://www.ibm.com/developerworks/aix/library/au-aem_rest/
http://www.ribosomatic.com/articulos/top-librerias-
http://www.ribosomatic.com/articulos/top-librerias-
http://dx.doi.org/10.1007/978-3-642-21793-7_5
http://revista.info.unlp.edu.ar/tesinas/tesis51.pdf
http://revista.info.unlp.edu.ar/tesinas/tesis51.pdf
http://dx.doi.org/10.1109/CONIELECOMP.2011.5749341
http://dx.doi.org/10.1109/CONIELECOMP.2011.5749341
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577864
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577864
http://dx.doi.org/10.1109/ICWE.2008.41

Compilation of References

345

Ruengmee, W., Silva, R. S., Bajracharya, S. K., Redmiles,
D. F., & Lopes, C. V. (2008). XE (eXtreme editor) -bridg-
ing the aspect-oriented programming usability gap. In
Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering (pp. 435-
438). IEEE Computer Society. doi:10.1109/ASE.2008.67

Sandvine. (2012). Global Internet Phenomena Report:
2H 2012. Retrieved January, 2013, from www.sandvine.
com/news/global_broadband_trends.asp

Schwabe, D., & Rossi, G. (1998). Developing Hyper-
media Applications using OOHDM. Methodology, 98,
1-20. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.40.4780

Scott, B. (2009). RIA Patterns. Best Practices for Com-
mon Patterns of Rich Interaction. Retrieved from http://
www.uxmatters.com/mt/archives/2007/03/

Scott, B., & Neil, T. (2009). Designing Web Interfaces:
Principles and Patterns for Rich Interactions (1st ed.).
O’Reilly Media, Inc.

Search Engine Mashup. (2007, July 6). EurekAlert.
org. Retrieved November 16, 2012, from http://www.
eurekalert.org/pub_releases/2007-07/ip-sem070407.php

Seffah, A., Forbrig, P., & Javahery, H. (2004). Multi-
devices “Multiple” user interfaces: Development mod-
els and research opportunities. Journal of Systems and
Software, 73(2), 287–300. doi:10.1016/j.jss.2003.09.017

Seffah, A., & Taleb, M. (2012). Tracing the evolution of
HCI patterns as an interaction design tool. Innovations
in Systems and Software Engineering, 8(2), 93–109.
doi:10.1007/s11334-011-0178-8

Sencha. (2014). Sencha ExtJS. Retrieved April, 2014,
from: http://www.sencha.com/products/extjs/

sencha.com. (2013). API Documentation. Retrieved
January, 2013, from http://docs.sencha.com/extjs/4.1.3/

Simmons, A. (2007). Enhancing eCommerce ROI through
Rich Internet Applications (RIAs). Montreal, Canada:
Integration New Media, Inc.

Smeets, B., Boness, U., & Bankras, R. (2008). Introducing
Rich Internet Applications (RIAs). In Beginning Google
Web Toolkit: From Novice to Professional (pp. 1–19).
New York: Apress.

sohodox.com. (2013). Document Indexing: The Key to
Finding Documents Quickly. Retrieved May, 2013, from
http://www.sohodox.com/articles/document-indexing-
the-key-to-finding-documents-quickly#sthash.CdBN-
Beue.dpuf

Springsource.org. (2014). Spring Framework Reference
Documentation. Retrieved April, 2014, from http://static.
springsource.org/spring/docs/3.2.x/spring-framework-
reference/pdf/spring-framework-reference.pdf

Subramaniam, D. (2010, March 8). A brief overview of
the Spark architecture and component set. Retrieved May
9, 2013, from http://www.adobe.com/devnet/flex/articles/
flex4_sparkintro.html

Support, M. (n.d.). OpenLaszlo wiki. Retrieved May 22,
2013, from http://wiki.openlaszlo.org/MediaSupport

Supported Media Formats, P., & Fields, L. (n.d.). MSDN.
Retrieved May 9, 2013, from http://msdn.microsoft.com/
en-us/library/cc189080(v=vs.95).aspx

Swiz Framework. (2014). Getting Started with Swiz AOP.
Retrieved April, 2014, from http://swizframework.org/
post.cfm/getting-started-with-swiz-aop

Tahir, A., & Ahmad, R. (2010). An AOP-Based Approach
for Collecting Software Maintainability Dynamic Metrics.
In Proceedings of the 2010 Second International Confer-
ence on Computer Research and Development (ICCRD
‘10) (pp.168-172). Washington, DC: IEEE Computer
Society. doi:10.1109/ICCRD.2010.26

Tarta, A. M., & Moldovan, G. S. (2006). Automatic
Usability Evaluation Using AOP. In IEEE International
Conference on Automation, Quality and Testing. IEEERo-
botics, 2, 84–89.

Theserverlabs. (2011). Rich Internet Applications, Frame-
works evaluation. Retrieved February 6, 2011, from: http://
www.theserverlabs.com/brochures/RIA_Frameworks-
TSL-evaluation.pdf

Tidwell, J. (2011). Designing Interfaces (2nd ed.). Se-
bastopol, CA: O’Reilly Media, Inc.

Toffetti, G., Comai, S., Preciado, J. C., & Linaje, M.
(2011). State-of-the Art and trends in the Systematic
Development of Rich Internet Applications. Journal of
Web Engineering, 10(1), 70–86.

http://dx.doi.org/10.1109/ASE.2008.67
http://www.sandvine.com/news/global_broadband_trends.asp
http://www.sandvine.com/news/global_broadband_trends.asp
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.4780
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.4780
http://www.uxmatters.com/mt/archives/2007/03/
http://www.uxmatters.com/mt/archives/2007/03/
http://www.eurekalert.org/pub_releases/2007-07/ip-sem070407.php
http://www.eurekalert.org/pub_releases/2007-07/ip-sem070407.php
http://dx.doi.org/10.1016/j.jss.2003.09.017
http://dx.doi.org/10.1007/s11334-011-0178-8
http://www.sencha.com/products/extjs/
http://docs.sencha.com/extjs/4.1.3/
http://www.sohodox.com/articles/document-indexing-the-key-to-finding-documents-quickly#sthash.CdBNBeue.dpuf
http://www.sohodox.com/articles/document-indexing-the-key-to-finding-documents-quickly#sthash.CdBNBeue.dpuf
http://www.sohodox.com/articles/document-indexing-the-key-to-finding-documents-quickly#sthash.CdBNBeue.dpuf
http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://www.adobe.com/devnet/flex/articles/flex4_sparkintro.html
http://www.adobe.com/devnet/flex/articles/flex4_sparkintro.html
http://wiki.openlaszlo.org/MediaSupport
http://msdn.microsoft.com/en-us/library/cc189080(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/cc189080(v=vs.95).aspx
http://swizframework.org/post.cfm/getting-started-with-swiz-aop
http://swizframework.org/post.cfm/getting-started-with-swiz-aop
http://dx.doi.org/10.1109/ICCRD.2010.26
http://www.theserverlabs.com/brochures/RIA_Frameworks-TSL-evaluation.pdf
http://www.theserverlabs.com/brochures/RIA_Frameworks-TSL-evaluation.pdf
http://www.theserverlabs.com/brochures/RIA_Frameworks-TSL-evaluation.pdf

Compilation of References

346

Tuchinda, R., Szekely, P., & Knoblock, C. A. (2008).
Building Mashups by example. In Proceedings of
the 13th international conference on Intelligent user
interfaces (pp. 139–148). New York, NY: ACM.
doi:10.1145/1378773.1378792

Understanding Video Formats. (n.d.). Adobe Flash Plat-
form. Retrieved May 9, 2013, from http://help.adobe.
com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d-
118a9b90204-7d46.html

Urbieta, M., Rossi, G., Ginzburg, J., & Schwabe, D.
(2007). Designing the Interface of Rich Internet Ap-
plications. In Proceedings of 2007 Latin American Web
Conference LAWEB 2007, (pp. 144-153). IEEE. Retrieved
from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4383169

USF College of Education. (n.d.). Online Photo Sharing
with Flickr. Retrieved from http://fcit.usf.edu/laptop

Valverde, F., & Pastor, O. (2008). Applying Interaction Pat-
terns: Towards a Model-Driven Approach for Rich Internet
Applications Development Francisco Valverde, Oscar
Pastor. In Proceedings of IWWOST (pp. 13-18). Retrieved
from http://icwe2008.webengineering.org/program/
workshops/isbn978-80-227-2899-7/icwe2008ws-cd/
individual-files/02icwe2008ws-iwwost02-valverde.pdf

Veit, F. (2008). Introducción a Tecnologías Enriquecidas
para Internet. (Unpublished thesis). Facultad de Ingeni-
ería, Universidad ORT Uruguay, Uruguay.

Verheecke, B., Vanderperren, W., & Jonckers, V. (2006).
Unraveiliny crossoutting concerns in Web services
middleware. Software, IEEE, 23(1), 42–50. doi:10.1109/
MS.2006.31

Vilain, P., Schwabe, D., & Souza, C. S. D. (2000). A
Diagrammatic Tool for Representing User Interaction in
UML. Lecture, 133-147. Retrieved from http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.32.4062

Viveros García, M. C., & García Godoy, D. (2009).
Elaboración de una guía para el desarrollo de aplicacio-
nes en extjs. (Unpublished thesis). Instituto Tecnológico
de Orizaba.

W3C. (2014). Accessible Rich Internet Applications
(WAI-ARIA) 1.0 (No. 1.0). Retrieved from http://www.
w3.org/TR/wai-aria/complete

Wikipedia. (2011). Rich Internet Application. Retrieved
02 Feb 2011, from http://en.wikipedia.org/wiki/Rich_In-
ternet_application

Xu, Y., & Huang, H. (2009). A Petri Net-Based Model
for Aspect-Oriented Web Service Composition. In Pro-
ceedings of Management and Service Science, (pp. 1-4).
IEEE. doi:10.1109/ICMSS.2009.5305764

Xu, Y., Tang, S., Tang, Z., Xu, Y., & Xiao, R. (2007).
Constructing Web Service Flows with Reusable Aspects.
In Proceedings of Internet and Web Applications and
Services, (pp. 21-21). IEEE. doi:10.1109/ICIW.2007.27

Yourdon, E. (1989). Modern Structured Analysis.
Prentice-Hall.

Zhang, J., Meng, F., & Liu, G. (2009). Research on
Multi-tier Distributed Systems Based on AOP and Web
Services. In Proceedings of Education Technology
and Computer Science, (Vol. 2, pp. 203-207). IEEE.
doi:10.1109/ETCS.2009.307

Zhou, J., Ji, Y., Zhao, D., & Liu, J. (2010). Using AOP
to ensure component interactions in component-based
software. In Computer and Automation Engineering (IC-
CAE), 2010 the 2nd International Conference on (Vol. 3,
pp. 518-523). Singapore: IEEE Computer Society.

http://dx.doi.org/10.1145/1378773.1378792
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d46.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d46.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d46.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4383169
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4383169
http://fcit.usf.edu/laptop
http://icwe2008.webengineering.org/program/workshops/isbn978-80-227-2899-7/icwe2008ws-cd/individual-files/02icwe2008ws-iwwost02-valverde.pdf
http://icwe2008.webengineering.org/program/workshops/isbn978-80-227-2899-7/icwe2008ws-cd/individual-files/02icwe2008ws-iwwost02-valverde.pdf
http://icwe2008.webengineering.org/program/workshops/isbn978-80-227-2899-7/icwe2008ws-cd/individual-files/02icwe2008ws-iwwost02-valverde.pdf
http://dx.doi.org/10.1109/MS.2006.31
http://dx.doi.org/10.1109/MS.2006.31
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.4062
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.4062
http://www.w3.org/TR/wai-aria/complete
http://www.w3.org/TR/wai-aria/complete
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Rich_Internet_application
http://dx.doi.org/10.1109/ICMSS.2009.5305764
http://dx.doi.org/10.1109/ICIW.2007.27
http://dx.doi.org/10.1109/ETCS.2009.307

347

About the Authors

Giner Alor-Hernández is a full-time researcher of the Division of Research and Postgraduate Stud-
ies of the Instituto Tecnológico de Orizaba. He received a MSc and a PhD in Computer Science of the
Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico.
He has headed 10 Mexican research projects granted by CONACYT, DGEST, and PROMEP. He has
been committee program member of around 30 international conferences sponsored by IEEE, ACM,
and Springer Verlag. He is editorial board member of 5 indexed journals. He has been guest editor of
3 JCR-indexed journals. He is author/co-author around 100 papers in computer science published in
refereed journals and conferences. His research interests include Web services, e-commerce, Semantic
Web, Web 2.0, service-oriented and event-driven architectures, and enterprise application integration.
He is an IEEE and ACM Member. He is National Researcher recognized by the National Council of
Science and Technology of Mexico (CONACYT).

Viviana Yarel Rosales-Morales is a PhD student of the Division of Research and Postgraduate
Studies at Instituto Tecnológico de Orizaba, México. She received a MSc degree in Computer Systems
in 2011 at Instituto Tecnológico de Orizaba, México. She obtained a scholarship sponsored by the
National Council of Science and Technology (CONACYT) for PhD studies. She has been involved in
some Mexican research projects granted by CONACYT, DGEST, and PROMEP. Her research interests
include Web services, e-commerce, Web 2.0, rich Internet applications, JavaScript-based frameworks,
Aspect-Oriented Programming, Design Patterns, UI Patterns, user experience, and enterprise applica-
tion integration.

Luis Omar Colombo-Mendoza is a PhD student in the Informatics program at University of Murcia,
Spain. He received an MSc degree in Computer Systems in 2012 at Instituto Tecnológico de Orizaba,
México. He obtained a scholarship sponsored by the National Council of Science and Technology
(CONACYT) for PhD studies. He has been involved in some Mexican research projects granted by
CONACYT, DGEST, and PROMEP. His research interests include Web 2.0 and rich Internet applica-
tions, user experience, mobile computing, Semantic Web, recommender systems, context-aware systems,
and cloud computing.

348

Index

A
Abstract Data View 307, 322
Advice 64, 66-67, 105, 109-113, 117
Application Programming Interface Client Library

225, 248
Aspect-Oriented Programming 59-60, 64, 73-75,

102, 106, 110, 114, 116-117, 190, 209

B
Behavioral Patterns 69, 118-119, 125, 139
Bit Rate 77, 100
Business Logic Distribution 34, 309, 314, 322, 324
Business to Customer (B2C) 16

C
Cascading Style Sheet (CSS) 188
Class Diagram 37-40, 119-128, 139, 285
Cloud Computing 249, 323-326, 334-336
Cloud Service 253, 322
Concrete Data View 322
Container Type 100
Context-Aware Rich Internet Application 336
Creational Patterns 69, 118-119, 139
Crosscutting 64, 66-67, 75, 102-103, 105-112, 117,

209

D
Design Patterns 15, 20, 36, 57, 59-60, 67-75, 115,

118-120, 122-123, 125, 129-139, 141-142, 147,
152, 164-165, 187-188, 190, 212, 234, 248,
305, 307, 311, 314-315, 335

Desktop RIA 54, 94, 225
Document Indexing System 190, 197, 209

E
E-Commerce 1, 6-7, 9, 12-13, 16, 55, 141

E-Entertainment 8, 16
E-Learning 7-8, 16, 275
Encoding Type 100
Enterprise Rich Client Application 248
E-Procurement System 190, 201-202, 209

F
Framework 14, 17, 19-20, 23-24, 27, 29-35, 46, 48,

64-66, 70, 74, 76, 78, 85-86, 89, 91, 93-95, 99,
103, 106, 113-115, 117, 126, 129, 132-137,
142, 147-149, 164, 187, 190, 197, 201-202,
204, 206, 210, 212, 224, 247, 250-256, 258-
265, 267-268, 271, 278-279, 283, 285, 287,
290, 293, 321, 326-327, 329, 331-332, 336

Framework-Based Development Approach 302

G
Graphic User Interface (GUI) 69, 76, 100, 188

H
Hybrid Mobile Application 266, 268
HyperText Markup Language (HTML) 35, 188

I
Image Gallery 61, 142, 147, 188
Integrated Development Environment (IDE) 165,

250, 302
Interaction Design Pattern 142-164, 170-171, 173,

176, 181-184, 209, 221, 225, 234, 248, 314,
322

J
JavaScript-Based Frameworks 17, 19, 27, 33, 35,

77, 100, 108, 113, 118-119, 129, 136, 138-140,
142, 165, 189-190, 193, 208, 326, 328

Join Point 64, 67, 109-110, 117

 349

Index

L
Lightbox 61, 70, 141-142, 147-150, 152-153, 188,

190, 204, 206, 212, 234, 244

M
Mashup 203-204, 209, 214, 225, 327-328, 331, 334,

336
Media Players 77, 93, 97, 100
Meta-Search Engine 190, 203, 212, 214-217, 225
Methodology 36-39, 43-46, 52, 55-58, 64-65, 75,

107, 114, 117, 209, 269-270, 299, 302, 321,
330, 332

Mobile Device 240, 249, 252, 262, 268, 332, 336
Mobile Web Application 268
Model-Driven Architecture 107, 117
Model-Driven Development 57, 269, 302-303, 321,

335
Model-View-Controller (MVC) 33, 68, 103, 108,

114, 118, 126, 138-139
Multi-Device Development Framework 268
Multi-Device Rich Internet Application 268, 322
Multimedia 1-2, 7-8, 18, 37, 42, 44, 59-61, 63-64,

72-73, 75-78, 81, 83, 89, 91, 99-100, 190, 194,
228, 238, 247-248, 271, 293, 300, 317, 327

N
Native Mobile Applications 21, 268, 316, 326
Non-JavaScript-Based Frameworks 17, 19, 33, 35,

76, 89, 99, 114, 118-119, 136, 138-140, 164,
271, 328

P
Plug-In Application 270, 302
Pointcut 64, 66, 109-111, 117
Progressive Download 93, 101

R
Rapid Application Development 269, 301-303
Representational State Transfer-Based Web Service

225
Reusability 59-60, 68, 73, 75, 102-103, 106-108,

115
RIA Framework 33, 35, 99, 142, 164
Rich Client Application 248
Rich Internet Application (RIA) 2-3, 14-17, 35, 37,

49, 55-60, 64, 75-76, 100, 119, 135, 137, 140,
188-189, 209-210, 225, 227-228, 230, 248-249,
268-269, 301-303, 321-323, 327, 330, 334-336

Rich Mobile Application 336

S
Scalability 59-60, 72-73, 75, 325
Search Engine 71-72, 182, 190, 197, 199, 203, 212,

225, 228, 243, 245-248, 328
Semantic Rich Internet Application 334, 336
Software Development Methodologies 36-37, 44,

52, 55, 58
Software Development Methodologies for RIAs 37,

44, 58
Software Development Methodologies for Tradi-

tional Web Applications 36-37, 58
Software Engineering 36, 56, 58, 64, 68, 73-75, 102,

104-105, 107, 116, 119, 139, 269, 320, 324,
329, 334

Standalone Application 270-271, 273-274, 293, 300,
302

Standalone RIAs 18, 35
Streaming 63-64, 77, 94, 96, 101, 247
Structural patterns 69, 118-119, 122, 139

T
Thin Client Application 209, 307, 309, 315
Traditional Methodologies 37, 58
Traditional Web Applications 2-5, 8, 18, 31, 33,

35-37, 58, 60, 73, 168, 208, 212, 217, 230, 285,
300, 326-327, 329, 333, 336

U
Unified Modeling Language (UML) 37-43, 46, 52-

53, 55-56, 58, 119-128, 139, 285, 291, 311
Usability 2, 4, 10, 27-28, 52, 59-60, 65-66, 70, 72,

74-75, 102, 104, 106-107, 116-117, 221, 321
Usability Engineering 65, 74, 102, 104, 106-107,

116-117
User Experience 2, 9, 14-15, 69, 71, 190, 208, 228,

231-232, 247-248, 299, 303, 334
User Interface Design Pattern 69, 75, 188

W
Web 2.0 1-2, 15-16, 45, 54, 140-141, 165, 188-189,

243, 249-250, 303, 320, 322-324, 327-328,
333-336

Web 3.0 323, 329, 334, 336
Web 4.0 323-324, 331, 333, 336
Web Feed 225-226
World Wide Web (WWW) 16

	Cover Image
	Title Page
	Copyright Page
	Advances in Web Technologies and Engineering (AWTE) Book Series
	Table of Contents
	Preface
	Acknowledgment
	Chapter 1: Basic Concepts on RIAs
	Chapter 2: Frameworks for RIAs Development
	Chapter 3: Software Development Methodologies for Traditional Web Applications and RIAs
	Chapter 4: Important Factors on RIAs Development
	Chapter 5: Multimedia Support for Native/Embedded Video Playback on Frameworks for RIAs Development
	Chapter 6: Aspect-Oriented Programming (AOP) Support on RIAs Development
	Chapter 7: Design Patterns Support for RIAs Development
	Chapter 8: UI Patterns Support on RIAs Development
	Chapter 9: Case Studies Using JavaScript-Based Frameworks
	Chapter 10: Case Studies Using Adobe™ Flex
	Chapter 11: Case Studies Using JavaFX™
	Chapter 12: Multi-Device RIAs Development
	Chapter 13: An Overview of RIAs Development Tools
	Chapter 14: AlexandRIA
	Chapter 15: New Trends on RIAs Development
	Compilation of References
	About the Contributors
	Index

