


TECH MINING
EXPLOITING NEW TECHNOLOGIES
FOR COMPETITIVE ADVANTAGE

ALAN L. PORTER 
SCOTT W. CUNNINGHAM

A JOHN WILEY & SONS, INC., PUBLICATION





TECH MINING





TECH MINING
EXPLOITING NEW TECHNOLOGIES
FOR COMPETITIVE ADVANTAGE

ALAN L. PORTER 
SCOTT W. CUNNINGHAM

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:
Porter, Alan L.

Tech mining : exploiting new technologies for competitive advantage / by Alan L. Porter 
and Scott W. Cunningham.

p. cm.
Includes bibliographical references and index.
ISBN 0-471-47567-X (cloth)
1. Data mining. 2. Technological innovations—Economic aspects. 3. Research,

Industrial. I. Cunningham, Scott W. II. Title.

QA76.9.D343P67 2005
005.74—dc22

2004042241

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.copyright.com. Requests to the Publisher for permission should be addressed to the



Table of Contents

List of Figures xi

Preface xiii

Acknowledgments xv

Acronyms & Shorthands—Glossary xvii

Part I. Understanding Tech Mining 1

1. Technological Innovation and the Need for Tech Mining 3

1.1. Why Innovation Is Significant 3
1.2. Innovation Processes 5
1.3. Innovation Institutions and Their Interests 8
1.4. Innovators and Their Interests 9
1.5. Technological Innovation in an Information Age 12
1.6. Information about Emerging Technologies 13

Chapter 1 Take-Home Messages 15
Chapter Resources 15

2. How Tech Mining Works 17

2.1. What Is Tech Mining? 17
2.2. Why Do Tech Mining? 21
2.3. What Is Tech Mining’s Ancestry? 23
2.4. How To Conduct the Tech Mining Process? 24
2.5. Who Does Tech Mining? 26

v



2.6. Where Is Tech Mining Most Needed? 30
Chapter 2 Take-Home Messages 31
Chapter Resources 32

3. What Tech Mining Can Do for You 33

3.1. Tech Mining Basics 33
3.2. Tech Mining Analyses 34
3.3. Putting Tech Mining Information to Good Use 37
3.4. Managing and Measuring Tech Mining 38

Chapter 3 Take-Home Messages 40

4. Example Results: Fuel Cells Tech Mining 41

4.1. Overview of Fuel Cells 41
4.2. Tech Mining Analyses 42
4.3. Tech Mining Results 43
4.4. Tech Mining Information Processes 46
4.5. Tech Mining Information Products 48

Chapter 4 Take-Home Messages 49
Chapter 4 Resources 50

5. What to Watch for in Tech Mining 51

5.1. Better Basics 51
5.2. Research Profiling and Other Perspectives on the Data 56
5.3. More Informative Products 58
5.4. Knowledge Discovery 59
5.5. Knowledge Management 62
5.6. New Tech Mining Markets 63
5.7. Dangers 65

Chapter 5 Take-Home Messages 65
Chapter 5 Resources 66

Part II. Doing Tech Mining 67

6. Finding the Right Sources 69

6.1. R&D Activity 70
6.2. R&D Output Databases 73
6.3. Determining the Best Sources 79
6.4. Arranging Access to Databases 84

Chapter 6 Take-Home Messages 93
Chapter 6 Resources 94

vi CONTENTS



7. Forming the Right Query 95

7.1. An Iterative Process 95
7.2. Queries Based on Substantive Terms 96
7.3. Nominal Queries 101
7.4. Tactics and Strategies for Query Design 104
7.5. Changing the Query 108

Chapter 7 Take-Home Messages 111

8. Getting the Data 113

8.1. Accessing Databases 113
8.2. Search and Retrieval from a Database 116
8.3. What to Do, and Not to Do 125

Chapter 8 Take-Home Messages 127

9. Basic Analyses 129

9.1. In the Beginning 129
9.2. What You Can Do with the Data 135
9.3. Relations Among Documents and Terms Occurring 

in Their Information Fields 137
9.4. Relationships 141
9.5. Helpful Basic Analyses 145

Chapter 9 Take-Home Messages 153

10. Advanced Analyses 155

10.1. Why Perform Advanced Analyses? 155
10.2. Data Representation 160
10.3. Analytical Families 173
10.4 Debrand Trust Advanced Analysis Example 181

Chapter 10 Take-Home Messages 185
Chapter 10 Resources 186

11. Trend Analyses 187

11.1. Perspective 187
11.2. An Example Time Series Description and Forecast 191
11.3. Multiple Forecasts 205
11.4. Research Fronts 210
11.5. Novelty 212

Chapter 11 Take-Home Messages 213
Chapter 11 Resources 214

CONTENTS vii



12. Patent Analyses 215

12.1. Basics 215
12.2. Why Patent Analyses? 218
12.3. Getting Started 220
12.4. The “What” and “Why” of Patent Analysis 226
12.5. Tech Mining Patent Analysis Case Illustration: Fuel Cells 229
12.6. Patent Citation Analysis 237
12.7. For Whom? 239
12.8. TRIZ 243
12.9. Reflections 246

Chapter 12 Take-Home Messages 247
Chapter Resources 248

13. Generating and Presenting Innovation Indicators 249

13.1. Expert Opinion in Tech Mining 250
13.2. Innovation Indicators 254
13.3. Information Representation and Packaging 274
13.4. Examples of Putting Tech Mining Information 

Representation to Use 281
13.5. Summing Up 286

Chapter 13 Take-Home Messages 287
Chapter 13 Resources 288

14. Managing the Tech Mining Process 289

14.1. Tough Challenges 289
14.2. Tech Mining Communities 290
14.3. Process Management 293
14.4. Enhancing the Prospects of Tech Mining Utilization 296
14.5. Institutionalizing the Tech Mining Function 299
14.6. The Learning Curve 303

Chapter 14 Take-Home Messages 305

15. Measuring Tech Mining Results 307

15.1. Why Measure? 307
15.2. What to Measure 308
15.3. How to Measure 311
15.4. Enabling Measurement 314
15.5. Effective Measurement 316

viii CONTENTS



15.6. Using Measurements to Bolster Tech Mining 318
Chapter 15 Take-Home Messages 319
Chapter 15 Resources 320

16. Example Process: Tech Mining on Fuel Cells 321

16.1. Introduction 321
16.2. First Step: Issue Identification 322
16.3. Second Step: Selection of Information Sources 323
16.4. Third Step: Search Refinement and Data Retrieval 324
16.5. Fourth Step: Data Cleaning 324
16.6. Fifth Step: Basic Analyses 326
16.7. Sixth Step: Advanced Analyses 339
16.8. Seventh Step: Representation 351
16.9. Eighth Step: Interpretation 352
16.10. Ninth Step: Utilization 352
16.11. What Can We Learn 352

Chapter 16 Take-Home Messages 353
Chapter 16 Resources 354

Appendix 355

A. Selected Publication and Patent Databases 355
B. Text Mining Software 361
C. What You Can Do Without Tech Mining Software 363
D. Statistics and Distributions for Analyzing Text Entities 365

References 369

Index 377

CONTENTS ix





xi

List of Figures

Figure 1-1. Increasing national technological competitiveness
Figure 1-2. Comparison of R&D models
Figure 1-3. A networked, instrumented model of innovation
Figure 1-4. Information/technology growth curves
Figure 2-1. Tech mining outcomes (4 Ps) and technology analyses
Figure 4-1. Australian knowledge network on SOFCs
Figure 4-2. Organization types publishing on fuel cells
Figure 4-3. SOFC patenting trends
Figure 4-4. Template to assess a potential collaborating organization
Figure 4-5. One-pager on a potential collaborating organization
Figure 5-1. Using tech mining to stimulate creative design
Figure 6-1. Alternative sources of S&T information
Figure 6-2. S&T maturation axis
Figure 6-3. Five user groups
Figure 8-1. The GTEL home page
Figure 8-2. Available databases from the GTEL gateway
Figure 8-3. Log-in pop-up
Figure 8-4. SCI start page
Figure 8-5. Query page
Figure 8-6. Search page
Figure 8-7. Date limit screen
Figure 8-8. Selecting articles for download
Figure 8-9. Options for download
Figure 8-10. Download options pop-up
Figure 9-1. Sample “Borlaug” article content
Figure 9-2. Document-term relationships
Figure 9-3. Relating the 4 Ps of tech mining to the terms



xii LIST OF FIGURES

Figure 9-4. Bradford distribution of journals in agronomy sample
Figure 10-1. A probabilistic model of data
Figure 10-2. The probability of data given the model
Figure 10-3. The likelihood of the model given the data
Figure 10-4. A search for likely models
Figure 10-5. Relationship types
Figure 10-6. AIC for the Borlaug clustering model
Figure 10-7. Articles and likelihood
Figure 11-1. Annual nanotechnology publication
Figure 11-2. Cumulative nanotechnology publication
Figure 11-3. Annual vs. cumulative data
Figure 11-4. Logarithm of annual nanotechnology publication
Figure 11-5. Forecast bounds for nanotechnology and genetics
Figure 11-6. Nanotechnology publication 2001 vs. 2002
Figure 11-7. Three patterns of growth
Figure 11-8. Patterns of growth in the nanotechnology sample
Figure 11-9. Sample growth rates of nanotechnology keywords
Figure 11-10. Research fronts
Figure 11-11. Takeover analysis of research fronts
Figure 11-12. Nanotechnology, total keywords introduced
Figure 11-13. Nanotechnology keywords introduced as a fraction of total 

articles
Figure 12-1. Patent profile
Figure 12-2. Temporal distribution of DBB patent priority years
Figure 12-3. Honda’s fuel cell knowledge network
Figure 12-4. Ballard Power Systems patent family distribution over time
Figure 12-5. Fuel cell topical emphases
Figure 12-6. Patent citation mapping (Mogee Research & Analysis, LLC)
Figure 12-7. Evolutionary potential assessment
Figure 13-1. “One-pager” on which companies lead in automotive fuel cells
Figure 13-2. Profile of a research domain: data mining for large data sets
Figure 13-3. Alternative technology maturation trends in 3-D
Figure 14-1. Tech mining process and players
Figure 16-1. Top five firms publishing on fuel cells
Figure 16-2. Top eight American universities publishing on fuel cells
Figure 16-3. Selected companies’ patenting activities over time
Figure 16-4. Knowledge network: sociometric map showing which inventors

work with whom (within Emitec)
Figure 16-5. Mapping high-level fuel cell topics
Figure 16-6. Mapping mid-level fuel cell keyword clusters
Figure 16-7. Leading Automotive-oriented fuel cell patent assignees in

Western Europe
Figure 16-8. (a–b–c–d) Fuel cells patent landscapes
Figure 16-9. “Bucketing” the 2002 fuel cell publications



Preface

xiii

In the “information economy,” we recognize the increasing availability of
information. On the one hand, we can be intimidated by the overwhelming
amount of information bearing down on us. On the other hand, we now have
tools to enable us to garner great value from that information quite readily.
New information products can better inform decision processes. As businesses
are making decisions under tremendous competitive pressures, they increas-
ingly seek better information.

This book addresses how to inform technology management by mining a
particularly rich information resource—the publicly accessible databases on
science and technology. These include amazing compilations of the world’s
open R&D literature, patents, and attendant business and public aspects. This
information, when integrated with other data sources (the Internet) and expert
review, can improve decisions concerning development, licensing, and adop-
tion of new technology.

“Tech mining” presents particular challenges. Most fundamentally, it uses
information resources in unfamiliar ways. In the past, we searched abstract
databases to find a few articles worth reading. However, when there are liter-
ally thousands of relevant articles or patents, we also need to present the “big
picture.”This book helps understand the value in “profiling research domains,”
mapping topic relationships, and discerning overall trends. This is a qualita-
tively different way to use technology information.

We wrote Tech Mining for those whose jobs engage emerging technologies.
This includes two groups. Part I addresses those who use such studies, rather
than perform them. We seek to help such professionals and managers become
better informed consumers of tech mining. We inform engineers, researchers,
product developers, business analysts, marketing professionals, and various
technology managers on effective ways they can exploit these information



resources. Part II adds “how to” details for those who analyze, or directly
manage the analysis of, changing technologies. This includes information pro-
fessionals, patent analysts, competitive intelligence specialists, R&D managers,
and strategic planners.

This book is a primer. It sets forth the basic objectives and tools of tech
mining. Chapters 1–5 aim to provide conceptual bases for practical tech mining
actions. The conceptual foundations reside in understanding of how science
and technology leads to successful technology commercialization (the inno-
vation process) more than in information science. Chapters 6–16 provide 
practical advice on performing tech mining. These treat basic and advanced
analyses but also process management considerations vital to effective imple-
mentation. We carry through to point to products of tech mining analyses and
indicate how they can serve particular technology management functions.
Chapter 13 arrays technology management issues and questions along with
candidate “innovation indicators” to answer them.

Each chapter focuses on a particular aspect of tech mining. It explains the
relevant aims, presents the basic steps in accomplishing those aims, and pro-
vides pointers to those who want further details. We illustrate the content with
experiential cases slanted toward practical implementation issues and how
results can be used. Some chapters work through a “chapter challenge” to
think through application of the concepts presented.

Chapters 4 and 16 together step through a concrete analytical example. This
applies VantagePoint software to actual abstract records obtained from three
databases (Derwent World Patent Index, INSPEC, and Web of Science) on the
topic of “fuel cells.” Chapter 4 spotlights sample tech mining results to get 
you thinking of ways you could gain value from tech mining. Chapter 16 illus-
trates the analytical progression and notes pitfalls. The Wiley website 
ftp://ftp.wiley.com/public/sci_tech_med/technology_management offers a
sample data set in VantagePoint Reader to experience the tech mining 
analyses directly.

The book does not require any statistics or artificial intelligence back-
ground. It is not specific to a particular technology domain (e.g., information
technology). In addition to practitioners and managers, we believe it can
benefit technology analysis workshops and graduate courses.
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Part I

Understanding Tech Mining





Chapter 1

Technological Innovation and
the Need for Tech Mining

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

“Tech mining” is our shorthand for exploiting information about emerging
technologies to inform technology management (see the Preface). This
chapter anchors tech mining to technological innovation processes 
and payoffs. It keys on the two contextual forces that drive the book:
“emerging technologies” and the “information economy.” Chapter 2 builds 
on this to explain what tech mining entails and to the describe the book’s 
organization.

1.1. WHY INNOVATION IS SIGNIFICANT

We use “innovation” to mean technological change. We are concerned with
technological change resulting in practical implementation or commercializa-
tion, not just idea generation. This section addresses the importance of tech-
nological innovation to today’s competitive economy and polity.

Today’s worldwide economy depends on technology and technological
innovation to an extraordinary degree:

• We perform a lot of research—for one thing, American companies 
spend over $100 billion annually on R&D; for another data point, the
Organisation for Economic Cooperation and Development (OECD)
countries spent over $550 billion in 1999 (about 70% by companies, 30%
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by government).* That research pays off—participating companies in the
U.S. Industrial Research Institute estimate average new sales ratio—the
percentage of sales attributable to products newly designed in the past
five years—at roughly 35%. In other words, $1 of every $3 in their revenue
comes from recent innovations.

• National economies depend critically on technology. “High-Tech 
Indicators” (http://tpac.gatech.edu) show that the U.S. once dominated
technology-based export competition. Then Japan raced up to become a
staunch competitor. Now, other countries are advancing dramatically.
Tiny Singapore now exports technology-based products at the level of the
European powers. China is advancing dramatically in technology-based
exports, but also in R&D that will drive future generations of products
and services. And they are not the only ones looking ahead. The 371
expert panelists anticipate that, in another 15 years, essentially all 
of the 33 countries tracked will be significant high-tech competitors 
(Fig. 1-1).

Technological innovation impacts our lives in many ways, some direct and
some not so direct. High-technology companies are a significant and growing
component of the economy, contributing over 20 million jobs in the U.S.
(Hecker, 1999). The competitiveness of those companies depends on innova-
tion, credited with being the main economic growth factor in the western
world.

Innovation delivers substantial public and private returns. Mansfield’s
classic survey (1982) on 37 innovations concluded that the firm’s median
return on investment was close to 25 cents on every dollar. And the public
benefits of innovation far outweigh the firm’s benefits—70 cents on every
dollar spent on R&D is returned to society. Despite these rosy average returns,
Mansfield and others find that innovation is highly risky, and failure can be
immensely costly. In some cases, companies bet their existence on the success
of an innovation.

Innovation is improving our standard of living. Developments in medical
and pharmaceutical technologies have delivered extensive returns in health
and life span. The toddler of today can expect 25 more years of life than the
newborn of the year 1900. Death rates from infectious disease have been
reduced 10-fold over the course of the previous century. However, we remain
engaged in an evolutionary war with infectious disease and continue to strug-
gle with cancer and vascular diseases (Lederberg, 1997). Our health and
welfare is intimately linked to innovation.

Without belaboring it, innovation is vitally important to scientists and engi-
neers, private and public organizations, and society. Our key underlying
premise is that tech mining facilitates innovation. To accomplish this, tech

4 TECHNOLOGICAL INNOVATION AND THE NEED FOR TECH MINING

*OECD Science, Technology and Industry  Scoreboard 2001: Towards a knowledge-based
economy  [http://www1.oecd.org/publications/e-book/92-2001-04-1-2987/]



mining relies on understanding technological innovation processes to track
them effectively and to inform decisions about R&D and subsequent imple-
mentation and adoption choices.

1.2. INNOVATION PROCESSES

Our colleague Mary Mogee defines innovation (1993) as “the process by which
technological ideas are generated, developed and transformed into new busi-
ness products, processes and services that are used to make a profit and estab-
lish marketplace advantage.” Let’s explore this process to figure out empirical
measures deriving from innovation activities to generate actionable techno-
logical intelligence (tech mining).

We briefly scan the rich history of models of technological innovation
processes (Fig. 1-2). Dating from the 1950s, the technology push model focused

INNOVATION PROCESSES 5

Figure 1-1. Increasing national technological competitiveness. This radar chart sum-
marizes scaled opinions of knowledgeable observers on the relative ability of each
country to compete in high-tech-based exports. Scores farther out from the center reflect
relatively stronger competitiveness. Note the almost universal expectation of increas-
ing competitiveness. For details see “High-Tech Indicators” at //tpac.gatech.edu.



on R&D as generating the essential push that prompts new product develop-
ment, which the marketplace then accepts. The realization that many innova-
tors and institutions deliberately frame R&D to meet perceived market
opportunities suggested the market pull model. This reversed the main influ-
ence pathway to begin from the customer end. The chain link model offered
a compromise between the two, acknowledging that flows between technol-
ogy and the marketplace are iterative and multidirectional. This first class of
models is basically singular in nature—one organization generates new tech-
nology and takes it to market.

A second class of models recognizes interplay among institutions in gener-
ating and acting on science and technology. The policy network approach
acknowledged that institutions exist in a framework of competitive and col-
laborative relationships. As the great central R&D laboratories (e.g., Bell
Labs, IBM) shrank and distributed activities among operating divisions, com-
panies turned outward for science and technology inputs. Governmental and
academic R&D eased from the isolated, single-investigator model of science.
Organized research units fostered interdisciplinary and interinstitutional col-
laborations. Institutions share and compete for the R&D findings of innova-
tors, with significant knowledge spillovers. Notions such as regional innovation
centers emerged to bolster purposeful interchange of science and technology
approaches and results. A complimentary perspective, the socio-technical
systems approach, examined how different innovators link and unify ideas.
This evolution points toward networks of concepts and material objects (“arti-
facts”) forming a stratum for the creation and dissemination of new science
and technology knowledge, resulting in technological innovation (Fig. 1-2).
(Chapter Resources adds pointers to continuing refinement of such network-
ing models.)

6 TECHNOLOGICAL INNOVATION AND THE NEED FOR TECH MINING

Figure 1-2. Comparison of R&D models



We see networks again and again—networks of researchers and networks
of ideas. These “knowledge networks” are woven by many individuals—cer-
tainly by scientists and engineers—and also by the many institutions that
support and fund new R&D activity—“initiators.” Like the webs of knowl-
edge they create, individuals and institutions find themselves in complex and
interwoven relationships with other innovators. We distinguish four layers of
networking activity (Fig. 1-3). Ideas compete and become interlinked. Inno-
vators select, vary, and propagate the successful ideas. Institutions construct
teams of innovators and cooperate and compete with other institutions. Ini-
tiators fund the research and development activities of institutions. At the
foundation of the system lies the natural world. Ideas are tested constantly
against the facts and needs of the real world.

This networking interchange provides the essential opportunity for tech
mining. The various exchanges of science and technology information effec-
tively instrument (document) knowledge at all four levels. How so? Innova-
tors (scientists and technologists) produce findings. Institutions provide
incentives for innovators to publish or patent those findings. The ideas used
by the innovators are reflected in their publications and patents. Relationships
among innovators can also be discerned from papers (journals and confer-
ences) and patents. Also, the institutional arrangements, in funding, conduct-
ing, and disseminating R&D, often are reflected in the details of those
publications and patents. So, publications and patents—as by-products of the
exploitation and exploration of science and technology—provide a lot of
insight into actual practices leading to technological innovation.

INNOVATION PROCESSES 7

Figure 1-3. A networked, instrumented model of innovation



Innovation is significant! But how can tech mining assist in the innovation
process? In the next two sections we examine innovators and innovative insti-
tutions in society. Our brief survey suggests challenges and needs faced by
these groups and individuals.

1.3. INNOVATION INSTITUTIONS AND THEIR INTERESTS

Let’s examine the institutions that fund and perform research, with an eye
toward how tech mining can further their interests. At least five sources fund
research—industry, government, education, nonprofit, and cross-national
funding. Recent sources place industrial funding of R&D at more than 
63 percent of the total (OECD, 2003). In the United States, the Federal 
government is the largest single source of R&D funding. “High-technology”
manufacturers fund the highest portion of industrial R&D activity. Service-
related R&D spending is much smaller, but a rapidly rising proportion of 
the total. Most industrial R&D focuses on “development”-related efforts.
Notably, industry is the largest performer of R&D. Most of that is done by 
the largest companies (NSF, 2000). Data for 1997 show five leading U.S.
companies contracting for $3 billion or more: GM, Ford, IBM, Lucent, and 
H-P.

Companies face multiple challenges in making those huge R&D invest-
ments (Tassey, 1999). Technology investment is inherently risky, and one’s
R&D often results in spillovers whereby others accrue benefits from it. So,
before diving into an R&D program, the company needs to ascertain what
existing knowledge might be capitalized upon. Tech mining can uncover exter-
nal research results to save rediscovering that wheel. It can identify intellec-
tual property (“IP”) land mines before a substantial technology development
program finds itself blocked.

If new development activities need to be initiated, one method of reducing
risk is strategic partnership. This allows individual partners to leverage their
resources, reduce costs, and enable activities that might not otherwise have
been possible. Additional benefits for corporations may include speeding up
development and reduced competition when the developed product reaches
the marketplace (NSF, 2003). Tech mining can find out what R&D others are
pursuing and pertinent IP so that you can determine the best route to your
goals, possibly via partnering in some form.

Academia is a significant source of public science and the dominant gen-
erator of basic research findings. Government also plays a very substantial
role—particularly through defense funding—in the support of new technol-
ogy development. Industry is often involved in carrying technological devel-
opments to fruition, so it pays to keep tabs on university and governmental
lab research activities.

Significant issues for innovators and their institutions include:

8 TECHNOLOGICAL INNOVATION AND THE NEED FOR TECH MINING



• How can we recognize and reward new and innovative ideas in our 
organization?

• How do we capitalize on the strengths of our knowledge to attract new
funding?

• Can we attain new knowledge before our competitors?
• Can existing, publicly available knowledge provide us with needed 

solutions?

Note the extent to which these issues demand knowledge of others’ science
and technology activities—and tech mining can provide this.

The recognition that new products and processes are central to corporate
renewal underlies these issues and why we care about them (Danneel, 2002).
A careful balance must be sought between exploiting existing competencies
and discovering and developing new competencies. New products close to
existing core capabilities have a greater chance of success. Unfortunately,
however, existing competencies can crowd out opportunities for growth—
resulting in inflexibility and missed opportunities. Positive feedback causes
innovative “path dependencies,” that is, technological choices that lock a firm,
agency, or academic unit in or out of specific development trajectories. With
respect to tech mining, we need to track both internal and external techno-
logical capabilities. Procter & Gamble tells a story on itself. After submission
of a patent application, they got back good news and bad. The bad—a patent
had already been issued. The good—they held it. It’s hard to keep track of
your own technology, much less everyone else’s.

The customer is also critical to new product development. New products
build on a match of new ideas to existing competencies. Successful products
stem from the intersection of customer need and technological competencies.
Institutions that are successful in new product development must understand
their customer—building upon the existing customer base and learning about
new customers, or formerly unrecognized needs of old customers. This is
another form of intelligence essential to successful innovation.

March (1991) characterizes the options of building upon old knowledge or
reaching out to find new knowledge as “exploitation” versus “exploration.”
Exploitation is a process of linking—integrating existing knowledge, combin-
ing and recombining core competencies to meet market need. Exploration
leverages what is known to gain new knowledge. Tech mining seeks to con-
tribute to both.

1.4. INNOVATORS AND THEIR INTERESTS

Where do you find the innovators (largely scientists and engineers)? The
United States has the greatest concentration. Interestingly, nearly one in eight
U.S. scientists or engineers was born abroad, coming particularly from Asia.

INNOVATORS AND THEIR INTERESTS 9



The European Union and Japan also have large scientific and technical work-
forces. An estimated two out of three scientists and engineers today are men;
however, this situation is rapidly changing. By the year 2020, there may be as
many women as men engaged in innovative activities. Most of today’s tech-
nology innovators work in industry, taking on R&D and various other roles.
Although hard to categorize (much is not considered R&D), innovative activ-
ities of the advanced service sectors are ascending rapidly.

In tech mining we often want to know “who’s doing what.” Tracking ideas
and individuals provides vital intelligence that serves various innovators (and
technology managers).

The output of successful industrial innovation is reflected in new products,
processes, and services. The IP involved may be protected through patenting.
Some sectors patent more than others as discussed in Chapter 12. On average,
an industrial scientist innovator patents once every six years. As we shall see,
however, averages can be misleading—the majority don’t patent at all,
whereas a very few patent a very lot. Industrial researchers are also avid con-
sumers of science and technology information.

Academic innovators contribute to public knowledge mainly through pub-
lication (journal and conference papers). An academic scientist or engineer is
45 times more likely to publish his/her research than an industrial counterpart.
Not surprisingly, academic researchers contribute about three-quarters of all
publicly available R&D. And, although comparatively infrequent, academic
patenting is rapidly growing (Hicks et al., 2001). Academic innovators 
have traditionally also been the greatest consumers of science and technology
information.

Too often, innovators reproduce solutions that are known elsewhere. One
Russian researcher, Genrich Altshuller, established that roughly 25% of all
patents solved problems well known in other disciplines or industries. Another
35% are merely minor extensions to established technologies. Less than 1%
of all patents involve creation of foundational knowledge. Altshuller devel-
oped tools to stimulate invention—“TRIZ”—that we introduce in Chapter 12.

Finding the science and technology information needed to inform R&D
presents a vexing challenge to innovators. Innovations are increasingly depen-
dent on new science, and new sciences such as nanotechnology are increas-
ingly multidisciplinary and therefore distributed across multiple fields.
Observers have called for a device called the “memex”—a machine that could
link and correlate ideas, finding connections and recommending relevant
resources. Today, we have the Internet, but the vision of a seamless network
of knowledge seems as distant as it was in the 1930s when the memex notion
was conceived (discussed further in Chapter 2).

The nature of the emerging technologies of interest is itself changing. Many
of our technology analysis tools were generated for an era of industrial (man-
ufacturing) technologies dominated by defense interests (during the Cold War
era) (Technology Futures Analysis Methods Working Group, 2004). In addi-
tion to information technologies, we see emergence of the “molecular tech-
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nologies”—biotech, advanced materials, and nanotechnology. Managing these
emerging technologies requires adaptation to “science-based industry”—these
are industries whose competitiveness is rooted in their appropriation of basic
research knowledge. Besides challenges in identifying and fulfilling opportu-
nities in these emerging technologies, there are corresponding challenges in
identifying threats and abating the attendant risks. Cross-disciplinary and
cross-sector knowledge awareness and integration is mandatory (Rasmussen,
1997). Tech mining can play a major role in forming these integrative links.

New scientific knowledge is generated primarily in specialist communities.
In some ways the quality of this new knowledge can only be assessed by others
in the same community. But the knowledge itself must be utilized and inte-
grated by others who often have vastly different skills. Recognizing expert spe-
cialists can prove challenging. Studies of the social network of innovators
demonstrate that a few scientists or engineers serve as hubs for much of the
collaboration. Others are connectors, individuals who synthesize and integrate
knowledge from diverse groups. Identification of, and communication with,
these hubs and connectors can be extremely useful in exploiting the knowl-
edge of the community.

In this section we have presented a broad-brush portrait of the innovators—
particularly researchers and inventors. We recognize that others play essential
roles in achieving innovation, for example, new product developers, software
engineers, and technology managers. Keeping abreast of science and technol-
ogy information is vital in creating new knowledge, as well as in rediscovering
existing solutions to problems. Challenges arise from science and technology
specialization and the increasing volume of R&D findings.

Innovative individuals and institutions face a number of challenges—chal-
lenges that tech mining can help address. Among these challenges, we have
identified the following:

• Innovation is essential, but risk management practices are needed.
• Innovation necessitates identifying both individuals and institutions with

complementary knowledge; R&D partnerships are commonplace.
• Knowledge creates spillovers; protecting knowledge as well as accessing

all publicly available knowledge is crucial to success.
• Knowledge is often specialized in character, yet it must be synthesized

and integrated by other nonspecialists.
• Too many organizations “reinvent” the wheel.
• Innovation draws on knowledge of customers and the marketplace.
• Science-based industries are making very direct connections between

basic knowledge and the marketplace.

These first sections of the chapter have addressed the first of the two drivers
of this book—“emerging technologies.” The next section transitions to the
second driver—the “information economy.” Out of the confluence of the two
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comes the hope for exploiting electronic forms of science and technology
information in new and powerful ways—tech mining.

1.5. TECHNOLOGICAL INNOVATION IN AN INFORMATION AGE

We truly live in an “information economy”—the developed nations have
largely transitioned from manufacturing to service (information) economies.
The service sector contributes no less than 64% of the U.S. GDP as of 1997.
The U.S. National Science Foundation shows U.S. high-tech service valued at
over $3 trillion for 1997. Amazingly, U.S. commercial service exports were
valued at $240 billion in 1998 (do you even think of “service” as exportable?).
Look around to see how computers and telecommunications permeate our
lives at work, school, and play.

Pervasive waves of increasing information accessibility characterize recent
decades. In the 1980s we did two studies for the U.S. Industrial Research 
Institute (IRI) (Rossini et al., 1988). These documented the remarkable tran-
sition in how engineers and other technical professionals worked. As of 1980,
only about 10 percent of them routinely used a computer in day-to-day activ-
ity; by the end of that decade, most did so (about 80 percent in large U.S. com-
panies—first curve of Fig. 1-4).

On the heels of this transition, another S-curve (not shown) would track
how others came to routinely use personal computers—students, office
workers, and managers. In the 1990s, the developed economies of the world
experienced another transition—those computers became connected. The
telecommunications industry saw data transmission overtaking voice trans-
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mission. We experienced the takeover of our lives by the Internet and E-mail
(second curve of Fig. 1-4). Similar S-shaped curves could be drawn indicating
the penetration of these phenomena into our work and home lives (not
shown). Information technology (“IT”) literally changed lives around the
globe, of course, unevenly.

What is the corresponding transition of this decade? We believe it is not an
“IT” phenomenon as such (see Sidebar), but, rather, it derives from the wide
adoption of computers in the 1980s and networking in the 1990’s—namely, the
increased availability of information (third curve of Fig. 1-4). In the words of
Bill Gates, we have “information at our fingertips.”

INFORMATION ABOUT EMERGING TECHNOLOGIES 13

Sidebar: Technology Information does not Equal Technology

This book does not restrict “technology” to “information technology.” The
changing technology to be managed certainly includes computing and
telecommunications, but it also includes transportation, energy, chemicals,
pharmaceuticals, aerospace, military systems, and so forth. The critical
resource of the Information Age is not IT, it is information.

The message implicit in Figure 1-4 is that new capabilities get adopted—
first by lead users, then by others. These new capabilities are used—first to do
our old tasks faster, then to do them better, then to do entirely new tasks. We
are now beginning to make fuller use of electronic information. Information
worker productivity is finally increasing after decades of investment in IT
(Greenspan, 1998). Moreover, we are going beyond the stage of doing our old
tasks more efficiently, to contriving new tasks that take advantage of the easily
available information. This book is about one such opportunity—exploiting
electronic information resources that pertain to changing technologies in new
and powerful ways.

Technology information is particularly vital to those who would manage
better. Consider the information implications of the fact that we do a lot of
R&D: Knowing about others’ research (and development) is critical—few
companies can do technology development all by themselves today. We antic-
ipate that by about 2010, virtually all successful technology managers will avail
themselves of empirical, not just intuitive, knowledge. Those who don’t “get
it” will get gone.

1.6. INFORMATION ABOUT EMERGING TECHNOLOGIES

Consider the following propositions (which will constitute this chapter’s “take-
home messages”):



• Innovation is a significant force in today’s high-technology organization.
• Technological innovation can be measured and understood.
• Innovation can be tracked—we have the tools to monitor new develop-

ments in science and technology.
• Innovation involves ideas, generated by innovators, and institutions that

initiate, perform, and apply R&D.
• Organizations that track science and technology gain significant market

advantages over those who do not.
• There are advantages in tracking innovation for all participants in the

innovation cycle.

The importance of networking to innovation implies payoffs from pursuing
technological intelligence. Information technology networks are a part of
these social networks, and we can make fuller use of electronic science and
technology information.

The quantity of science and technology information is huge:

• Research generates a tremendous amount of information—for example,
the two databases, EI Compendex and INSPEC, capture a sizable portion
of the world’s major engineering journal and conference papers—
together they add about 500,000 papers each year.

• Other databases capture other research segments—for instance, Web of
Science provides access to some 12,500,000 fundamental research papers
and MEDLINE has compiled over 11,000,000 medical research abstracts
(as of 2002).

• Americans applied for 125,000 U.S. patents in 1997; foreigners filed for
another 110,000 U.S. patents; more amazing is that Americans applied for
1,500,000 patents in other countries in that one year.

Besides R&D, there are standards, press releases, business news, and sign-
posts of popular acceptance. The information spews out through myriad
pipes—print news, electronic media, human contacts, and the Internet. It can
seem like an information onslaught. Nonetheless, you need to track this tech-
nology information and extract knowledge pertinent to your work. Whether
or not you do, your competitor will.

We’re saying that you need to know about changing technologies and that
there are daunting amounts of pertinent technology information pouring
forth. Intimidating? It need not be. Our message is that you can get at the
needed information with powerful new tools that make this relatively fast,
affordable, and easy.

The search for emerging science and technology information is not
unbounded. There are over 10,000 publicly accessible databases. Of those, on
the order of 400 relate to technology. However, 15, or so, key databases filter
and compile major segments of the key publication and patent information.
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Depending on core interests (e.g., pharmaceuticals, chemicals, aerospace, con-
sumer goods), a company’s competitive technological intelligence and tech
foresight professionals might only access one to five databases to get excellent
coverage of what they need to know. The world’s leading center of “sciento-
metrics”—the Center for Science and Technology Studies at the University of
Leiden—accomplishes most of its work of profiling national and organiza-
tional R&D publication by using just four databases: SCI, INSPEC, EI 
Compendex, and MEDLINE. The information contained in such databases is
rich and suitable for mining.

Assessment and monitoring of innovation is crucial to success. Innovative
individuals and institutions have core challenges in managing R&D. What 
are needed are tools to help manage this wealth of science and technology
information. In the next chapter we introduce a suite of tools to do so—tech
mining. We’ll show how the innovation management challenges can be met
head on by exploiting publicly available sources of science and technology
information.

CHAPTER 1 TAKE-HOME MESSAGES

• Innovation is a significant force in today’s high-technology organization.
• Technological innovation can be measured and understood.
• Innovation can be tracked—we have the tools to monitor new develop-

ments in science and technology.
• Innovation involves ideas, generated by innovators, and institutions that

initiate, perform, and apply R&D.
• Organizations that track science and technology gain significant market

advantages over those who do not.
• There are advantages in tracking innovation for all participants in the

innovation cycle.

CHAPTER 1 RESOURCES

This networked model of innovation is, in many ways, a synthesis of previous
R&D models. Some interesting extensions follow: Van Bueren (Van Bueren
et al., 2003) discusses the role of networked activity in societal and institu-
tional decision-making; Hagedoorn (Hagedoorn et al., 2002) discusses the
spillover in technological learning in the marketplace. Similarly, Stuart (Stuart
et al., 2003) empirically confirms the role of social and geographic networks
in the capitalization of intellectual property, whereas Deroian (2002) provides
an analytically explicit model of how collective action occurs in the evaluation
and diffusion of new technologies.
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Chapter 2

How Tech Mining Works

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

Chapter 1 overviewed the significance of technological innovation in modern
society and made the case for tech mining tools to provide intelligence in
support of technology management. This chapter takes a closer look at tech
mining by providing a broad overview and summary of the issues associated
with tech mining. This chapter introduces tech mining through six broad sec-
tions that consider:

• What is tech mining?
• Why do tech mining?
• When did tech mining first start?
• How is tech mining performed?
• Who performs tech mining?
• Where is tech mining most needed?

2.1. WHAT IS TECH MINING?

Tech miners are technology watchers, meaning we analyze changing tech-
nologies. That is, we address what is happening now and likely to happen in
the future with regard to development of particular technologies. To do so, we
compile and analyze information from multiple sources, particularly exploit-
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TABLE 2-2. Various Types of Technology Analyses That Can be Aided by Tech Mining

(A) Technology Monitoring (also known as technology watch or environmental
scanning)—cataloguing, characterizing, and interpreting technology
development activities

(B) Competitive Technological Intelligence (CTI)—finding out “Who is doing what?”
(C) Technology Forecasting—anticipating possible future development paths for

particular technologies
(D) Technology Roadmapping—tracking evolutionary steps in related technologies

and, sometimes, product families
(E) Technology Assessment—anticipating the possible unintended, indirect, and

delayed consequences of particular technological changes
(F) Technology Foresight—strategic planning (especially national) with emphasis on

technology roles and priorities
(G) Technology Process Management—getting people involved to make decisions

about technology
(H) Science and Technology Indicators—time series that track advances in national

(or other) technological capabilities

ing the science and technology databases. We do so to answer a wide variety
of questions—Table 2-1 gives a few. We want to answer variations on the ques-
tions of Table 2-1 (Chapter 13 poses a more exhaustive set of 39 management
of technology—“MOT”—questions).

Such information can facilitate a variety of technology analyses (Table 
2-2). Tech mining provides strong empirical bases for many of these; it does
not take their place.

“Chapter Resources” offers pointers to pursue these analyses. “Knowledge
management” overtones come into play as well. It is important that tech
mining information compilation and analyses cumulate into useful bodies of
knowledge over time. The payoffs far outweigh those from one-off studies that
start from scratch every time.

Later chapters will show “how” to do tech mining. For now, we emphasize
that you really can do more with all this information than warehouse it and
retrieve bits here and there. Tech mining is about exploiting this information
to see patterns, detect associations, and foresee opportunities. The derived
knowledge can help make better plans, designs, and decisions, thereby gaining
significant competitive advantage.

TABLE 2-1. Sample Tech Mining Questions

• What R&D is being done on this technology?
• Who is doing this R&D? Toward what probable market objectives? (sometimes we

focus on a particular competitor to profile what it is doing in multiple areas)
• How does this technology fit organizational aims?
• What are the prospects for successful commercialization?
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Tech mining is the application of text mining tools to science and technology
information, informed by understanding of technological innovation processes.
We distinguish tech mining from data mining and text mining by its reliance
on science and technology domain knowledge to inform its practice (see also
Section 2.3).

To illustrate, U.S. Army, Navy, and Air Force colleagues track foreign R&D
to identify common interests. The aim is to foster collaboration with 
American researchers to advance technologies of military interest. Tech
mining software can digest searches, say in Japanese, to overview a techno-
logical domain of interest that can be processed through automatic translation
software to spotlight activities of interest for detailed investigation much more
quickly and efficiently than by other means.*

With regard to tech mining, note several major threads running through
these types of analyses (Table 2-2).

• Intelligence—external information gathering and interpretation to serve
particular organizational interests—is central to A and B and contributes
to all the others.

• Futures research—anticipating likely future developments, for us, empha-
sizing technological developments—is central to C, D, E, and F.

• Concern about socioeconomic contextual factors as these influence, and
are affected by, changing technologies is central to E and F and impor-
tant to B, G, and H.

• Opportunities analysis—interpreting technological change with regard to
threats and opportunities for our organization—is vital to D, F, and G.

• Process considerations—involvement of stakeholders in determining
actions, in our case, regarding technology—are central to G and especially
salient to D and F.

These questions, analyses, and the threads through them suggest the content
of tech mining. There are also important process dimensions to tech mining.
Figure 2-1 associates four tech mining outcomes with the technology analysis
types. The associations are not one-to-one, only suggestive. To varying degrees
the technology analyses can be served by one or more of the “4 Ps” we seek
from tech mining:

(P1) Product—information and analyses delivered as some form of report
(P2) Process—engaging tech mining doers and users (see Section 2.5) 

to collaborate in focusing, interpreting, and acting on tech mining
results

*TechOASIS  is the “twin” version of VantagePoint software that we use in this book’s examples.
TechOASIS (available free for U.S. Government use) works with SYSTRAN, to achieve such 
purposes.
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(P3) Prediction—indicating more probable future development pathways,
generally in an “extrapolative” mode

(P4) Prescription—advocating actions to affect future technology and busi-
ness development pathways in a “normative” mode  

This book emphasizes that tech mining is more than P1; in particular, the
radical message to some analysts is that P2, interpersonal process, merits major
attention.

Keep these variations in mind as you design your own tech mining program.
Types “A–H,” plus knowledge management, together with the 4 Ps, can point
you to craft a tech mining effort to deliver the best value. For instance, if you
determine that action recommendations are the target bull’s-eye, you surely
want to think in terms of P4 (prescription) and P2 (process management).

Tech mining activities vary considerably as you adapt them to your orga-
nization’s needs. The focus is generally on technology, but in a contextually
rich way. Many tech mining users want the contextual aspects fully integrated
with the technological. For instance, they may demand that cost information,
market projections, and transition plans be combined to inform decisions
about technological choices. Scan Tables 2-1 and 2-3 and observe how much
pertains to the future (see Chapter Resources for more). A key principle:
Good tech mining exploits multiple information sources with multiple tools.
In particular, empirical sources (database mining) need to be complemented
by expert opinion.

Figure 2-1. Tech mining outcomes (4 Ps) and technology analyses
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Tech mining works by gauging the direct outputs of R&D—articles and
patents. We can measure R&D activity many ways, including both input (e.g.,
funding, personnel) and output measures.

2.2. WHY DO TECH MINING?

Table 2-3 presents some reasons why you need to do tech mining.
Fulfilling these promises requires that we attune to the challenges and

opportunities of networked R&D, as per Chapter 1. Think about six underly-
ing principles (Table 2-4) that orient us in answering tech mining questions
like those posed in Table 2-1.

Multiple selection observes that innovative new knowledge and technolo-
gies are forged from multiple selective principles. Selective pressures are
exerted by investors, the initiators of much R&D, but also by the research insti-
tutions, individual innovators, and communities of relevant knowledge.
Insightful tech mining must attend to multiple dimensions, not zoom in too
tightly on a singular research emphasis.

Indirection alerts us to inquire as to where new innovations are likely 
to arise: typically not in a single place. Innovations reside in changes in 
the structure and composition of the network itself. For instance, in the 
sample tech mining of Chapter 16 concerning fuel cells, we are alerted to 
consider infrastructures and roles played by various interests, not just techni-
cal aspects.

TABLE 2-3. Some Reasons to Do Tech Mining

• Forecast likely development paths for emerging technologies
• Identify competitors, or collaborators, at the “fuzzy front end” of new product

development
• Identify potential customers for your intellectual property (“IP”)
• Discover additional application arenas for the outputs of your R&D
• Gauge market potential for prospective technology-based products and services
• Be a wiser consumer of others’ science and technology
• Manage the risks of technology development and implementation based on better

information.

TABLE 2-4. Six Principles of Networked R&D

• Multiple selection
• Indirection
• Multiple scales
• Networked organization
• Success accrues to the successful
• Networked externality



A related principle is the idea of multiple scales. Networks deliver innova-
tions of all sizes and shapes—from small, incremental changes that occur on
a daily basis, to rarer, expansive “transformational” changes that reshape
whole economies and fields of knowledge (Kash and Rycroft, 2000). Studies
of dynamic systems indicate a rich interplay between micro- and macroeffects.
Again, tech mining needs to look down from “40,000 feet” to see the big
picture, but also to zoom in to particulars to understand advances and their
potential payoffs.

A fourth principle is the concept of networked organizations. Networks are
increasingly acknowledged as an economically significant facet of science and
technology organization. Relationships are neither exclusively competitive
nor fully cooperative in character. Risks are shared and diffused throughout
the community. In today’s technological environment, R&D contributing to a
technological innovation often draws on multiple sources. Tech mining can
help array collaborative options to help an organization build a winning team
to generate high-payoff innovation.

A fifth principle of innovation systems is that success accrues to the suc-
cessful. The highly structured social and intellectual networks that stimulate
innovation tend to reward the ideas, innovators, and institutions that have been
successful in the past. Wonder how to be nominated into the U.S. or other
national academies of science or engineering? Hobnob with the members—
Caltech or Harvard faculty are far more likely to be discovered than those at
colleges lacking current national academy members. Identifying capstone
nodes—the individual and institutional leaders in the field—is one way tech
mining provides valuable intelligence.

A sixth principle is that of networked externality. Advances achieved by any
one innovator or institution diffuse throughout the community, to varying
degrees. The most effective R&D networks may also be those that actively
transmit and receive information. A paradox of this situation is that it is very
difficult for the leaders to exclusively capitalize on new science and technol-
ogy developments. Again, this places a premium on tech mining, to take advan-
tage of others’ R&D.

Chapter 1’s model identifies levels—ideas, innovators (individuals), and
institutions. We can further distinguish institutions that initiate (fund) R&D,
those that perform it, and those that use it to generate technological innova-
tions (see Fig. 1-3). This “cast of characters” constitutes both the subjects of
tech mining investigations and the important users of the results of those
investigations.

Tech mining interests arise both at a given level and cross-level. For
instance, researchers can benefit from identifying other researchers. But, also,
organizations may study individuals (innovators) to understand competitor
strengths or to recruit talent they want. Initiator institutions may study R&D
performers to determine where their scarce funds can exert the biggest effect.
In many cases, interests follow the “success to the successful” motif in sup-
porting or collaborating with the best in the field.
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We repeat mention of two essential network operations–exploration and
exploitation. Some authors, drawing on an “evolutionary” analogy, call these
two operations variation and selection. Exploration means discovering the
context of ideas, innovators, and institutions. Sometimes exploration involves
varying ideas that have been successful in the past (cf. TRIZ in Chapter 12).
Exploitation involves fully utilizing existing knowledge and relationships; this
includes building connections where they previously may have not existed.
Exploitation often involves selecting, and supporting, some components of the
innovative process at the expense of others. In tech mining, we see variations
on this theme. In assessing a body of R&D, we can study the core—seeking
ways to exploit the major stream of activities (e.g., we direct management
attention to the “hot” aspect of fuel cell development). On the other hand, we
also pursue exploration when we spot an unusual juxtaposition of research
findings or novel tool application. Effective tech mining addresses both explo-
ration and exploitation.

2.3. WHAT IS TECH MINING’S ANCESTRY?

In coining the term tech mining we owe a nod toward its forebears. Content
analysis (finding patterns in term usage to infer intents) has roots in the pre-
electronic information era. Talmudic scholars have tabulated content patterns
in the Bible for ages. In Western society, the dawn of the modern era foresaw
an interest in rationalism, empiricism, and the application of the scientific
method. Applying the growing knowledge resources was a major concern of
the great Encyclopedists of the Enlightenment. Philosophers such as Diderot,
Voltaire, and Rousseau all anticipated the need to muster newly found knowl-
edge toward the betterment of society.

Vannevar Bush, the instigator of major government research funding, dis-
cussed a device he called the “memex,” in the 1930s. The memex was depicted
in the Atlantic Monthly as “a device in which an individual stores all his books,
records, and communications, and which is mechanized so that it may be con-
sulted with exceeding speed and flexibility.” The modern notions of hypertext
and a hyperlinked Internet bear similarity! More importantly for tech mining,
the memex conceived of a system by which ideas themselves could be linked
together in a complex and evolving system. With considerable foresight, Bush
anticipated the coming glut of information and the need for technological aids
in its management. His ideas are important predecessors of data mining.

Social scientists have applied methods of content analysis for decades.
Counting scientific publication activity dates back at least to the pioneering
work of Derek DeSolla Price (1963). In another domain, intelligence agencies
might analyze a stream of press releases concerning a particular foreign politi-
cian to anticipate where his or her interests are heading. With the advent of
electronic text sources and analytical software, content analysis has matured
into text mining.
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Bibliometrics means counting (metrics) of bibliographic content. It has
been energetically applied to science (“scientometrics”—cf. Current Science,
2000) and technology (“technometrics”). Modern text mining for technology
foresight counts among its pioneers Henry Small, Anthony van Raan, and
Michel Callon.

Data mining seeks to extract useful information from any form of data, but
common usage emphasizes numeric data analyses (e.g., linking your credit
card purchases to your demographic profile). Text data mining or text mining
exploits text sources of various sorts (cf. Kostoff and Giesler, 1999). Special-
ties in text understanding are rapidly evolving with fine distinctions in empha-
sis. For present purposes, we just note emerging areas that concern tech
mining: computational linguistics, natural language processing, and “KDD”
(knowledge discovery in databases).

Tantalizing glimpses are emerging of the next wave of technologies beyond
natural language processing and KDD. These technologies are modular and
decentralized; they exploit probabilities and patterns across diverse data sets.
They are good at taking general tasks and solving them, even as they improve
on previous generations of technology in exploiting the current knowledge of
human users. Machine learning is one such technological expression of ideas
about collecting, summarizing, and managing exhaustive sources of new data.

2.4. HOW TO CONDUCT THE TECH MINING PROCESS?

Tech mining is a problem-solving process. Like other problem-solving
processes, it relies on a structured set of phases (steps, stages) that guide the
user through the process. Generic problem-solving—like tech mining—is well
treated as iterative in nature. It builds upon, and expands the results of, pre-
vious efforts. Indeed, the process might be more appropriately called a
problem-solving cycle. When learning and problem-solving is a continuous
activity, it makes little difference at which step in the process you start.

In 1960 the Nobel laureate Herbert Simon presented a three-phase process
of decision-making. Broadly adopted and even extended (Mintzberg et al.,
1976; Huber, 1986), Simon’s decision-making process has been applied across
diverse domains including information system design. Tech mining also follows
this three-step process; the process has the advantage of describing both how
tech mining ought to be done in practice as well as how tech mining is actu-
ally performed. The steps are (1) intelligence, (2) design (we include analysis),
and (3) choice.

Let’s survey tech mining in terms of these three phases, associating chap-
ters to each.

The intelligence phase involves planning for and collecting the data to be
mined. In addition, reviewing, surveying and integrating the collected data are
all important processes in this phase of activity. Chapter 6 discusses how to
find the right sources to mine. Chapter 7 discusses how to formulate the right
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queries to collect the data. Chapter 8 discusses the mechanics of collecting the
data. Chapter 9 discusses surveying and cleaning the collected data. Tech
mining often draws on multiple sources of information to create a robust
picture of developments in science, technology, and innovation. There tends
to be much noise and redundancy (e.g., manifold variations in topic descrip-
tion or affiliation naming). Data description can also be considered part of this
phase in tech mining. Chapter 8 therefore also examines data cleaning and the
use of lists and tables in creating short, useful summaries of the data you have
collected.

The design and analysis phase of tech mining involves deriving knowledge
from the data collected to solve specific problems of innovation or technology
management. This often mixes deductive and inductive analyses. Analysts may
test specific hypotheses about the data through analytical models. Model
building can serve multiple purposes: It can describe science and technology
activities but also predict coming developments. Modeling serves both confir-
matory and exploratory purposes. Chapter 10 introduces the topic of design-
ing tech mining models and producing advanced analyses. Chapters 11 and 12
examine certain types of analyses in greater detail. Trends over time are a par-
ticularly interesting source of tech mining analysis and are discussed in
Chapter 11. Patents share much in common with other sources of technology
information but have some idiosyncratic characteristics of their own. Patent
analysis is therefore discussed in a chapter of its own, Chapter 12.

The choice phase involves nominating options via tech mining and then
selecting the right innovative opportunities for your organization. Key to this
effort is creating specific metrics or scorecards to gauge available options using
the criteria that are most salient for your target users. We discuss the genera-
tion and presentation of “innovation indicators” in Chapter 13. When success-
ful, tech mining projects create actionable results for organizations. Chapter 14
therefore discusses how to manage and distribute tech mining results across
organizations. Chapter 15 discusses techniques for measuring the impact and
value of tech mining. Chapter 16 is a case study that puts all the pieces
together—intelligence, design and analysis, as well as choice phases of mining.

Table 2-5 provides an overview of the book. Scanning suggests the book’s
aims of both telling about tech mining and describing how to do it. We won’t
belabor the three-phase process, but this maps the chapters to that process to
help you gain perspective. The chapters (1–5) you read now are about tech
mining; they provide an overview of key ideas and the significance of tech
mining in technology management. The details of how to do tech mining await
Chapter 6.

In later chapters we present a more detailed tech mining process (Tables
4-2 and 16-1). A more detailed process is helpful in tracking a tech mining
study. Goals and deliverables for each stage are clear; transparency of the
process is improved.

Table 2-6 introduces this tech mining process and relates it to phases of
decision-making. Each phase of decision-making is in itself is a decision that
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can benefit from a clear and structured approach. The goals at this stage are
simply to introduce the process—Chapters 4 and 16 give practical examples
of the process in action.

2.5. WHO DOES TECH MINING?

To sharpen our thinking as to what knowledge is needed, think in terms 
of tech mining users and doers. We look at the role of tech mining in orga-
nizations, large and small, private and public. Finally, we consider how 

TABLE 2-5. The Structure of the Book

Tech Mining 
Purpose Phase Tech Mining Book

About Tech Chapter 1— Technological Innovation and The Need 
Mining for Tech Mining

Chapter 2— How Tech Mining Works
Chapter 3— What Tech Mining Can Do for You
Chapter 4— Example Results: Fuel Cell Tech Mining 
Chapter 5— What to Watch For in Tech Mining

Doing Tech Intelligence Chapter 6— Finding the Right Sources
Mining Chapter 7— Forming the Right Query

Chapter 8— Getting the Data
Chapter 9— Basic Analyses

Analysis and Chapter 10—Advanced Analyses
Design Chapter 11—Trend Analyses

Chapter 12—Patent Analyses

Choice Chapter 13—Generating and Presenting Innovation 
Indicators

Chapter 14—Managing the Tech Mining Process
Chapter 15—Measuring Tech Mining Results
Chapter 16—Example Process: Tech Mining on Fuel 

Cells

TABLE 2-6. Decision Phases and the Tech Mining Process

Intelligence 1. Issue Identification
2. Selection of Information Sources
3. Search Refinement and Data Retrieval

Analysis and Design 4. Data Cleaning
5. Basic Analyses
6. Advanced Analyses

Choice 7. Representation
8. Interpretation
9. Utilization
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tech mining should be performed—in house by a single unit or distributed, or
outsourced.

This book is for users as well as doers. Knowledgeable tech mining con-
sumers will get more from tech mining, thereby strengthening the case for
doing it. We largely assume that, for the present, users and doers are likely to
be distinct, but we later explore the case where they are one and the same.

Users

Within larger organizations, many can gain value from tech mining findings
(Table 2-7).

How about in smaller organizations? We are less sanguine about tech
mining here. In terms of potential payoff, tech mining might well be greatest
for small companies. Entrepreneurial companies may put everything at stake
in technology decisions, and they often engage emerging technologies and new
markets. They need as much sound information as possible to decide where
and how to proceed. However, today they often suffer from a lack of time (too
harried to do analyses), information resources (not familiar with the data-
bases), and financial resources (too costly to have others analyze technologies
for them). We see the need, but also see multiple, difficult hurdles impeding
small companies and nonprofits from doing tech mining. This presents an
opportunity for consultancies to assess technologies on their behalf.

One of us (SWC) once worked with start-up companies in Silicon Valley.
Now that the bubble has burst on the “dot.com” industry, software and inter-
net companies are a lot leaner, and a whole lot more frugal. Nonetheless, even
as belts tighten and employment declines among many small, privately held
software companies, the role of IP managers is ensured. Why? IP is key to the

TABLE 2-7. Tech Mining Users

• Strategic planners (to target emerging technologies of core importance)
• R&D managers and funders (e.g., to identify portfolio gaps, assess merits of new

proposals)
• Researchers, inventors, and project managers (e.g., to keep informed and facilitate

networking)
• New product developers and designers (to help select technological alternatives)
• Procurement (to help assess alternative products and suppliers)
• Process managers (to advise technology insertion)
• Product managers (to roadmap technologies contributing to the product line)
• Product service managers (to detect causes underlying maintenance problems)
• Marketing experts (e.g., to identify new opportunities to leverage products and

services)
• Information professionals and librarians (to help justify acquisitions)
• IP managers and specialists (e.g., to help assess desirability of patenting a

disclosure)



valuation and, therefore, the long-term health of emerging high-tech compa-
nies. Managing IP means attending closely to technology information; patent
analysis is the leading application of VantagePoint, or Derwent Analytics, soft-
ware that we exemplify in this book.

Emphases vary. We find the private sector to be energetic pursuers of CTI
and increasingly involved with technology forecasting, and also with technol-
ogy and product roadmapping. The public sector has led the way in technol-
ogy assessment and technology foresight activities. Much public policy has a
technology component (consider medicine, defense, economic development),
and tech mining helps track activities to help allocate scarce R&D resources.

Academia presents an intriguing venue for tech mining. University offices
of technology licensing are increasingly active in pursuing IP opportunities,
demanding tech mining. Research planning and “nudging” (the academic
counterpart of managing?) warrant tech mining to identify university strengths
and weaknesses (gap analysis). Most universities have extensive access to the
science and technology repositories, and youthful students (and faculty) com-
fortable with electronic information access. Researchers can gain richer per-
spective on how their work links to that within and at the boundaries of their
R&D domains (Porter et al., 2002). We see great promise for university tech
mining, but little action to date.

Doers

Who performs tech mining? We find an intriguing array of “pros”—including
information professionals, technology analysts, business analysts, and planners.
We also find diverse “amateurs” doing aspects of tech mining—students,
researchers, project leaders, and managers.

Information specialists and librarians have long been the gurus of infor-
mation search and retrieval (and data is essential for tech mining), along with
warehousing information collections. With the rise of electronic information
resources, their roles must change. Consider the university library. Students
and faculty visit the library less than they once did, so they interact less with
the librarians. They do much of their own searching on-line. So, the library’s
information professionals need to go to the faculty and students, not wait for
them to come to the library. They need to specialize in particular scholarly
domains (e.g., one works with aerospace engineers, another with chemists).
They need to know about and train others in use of the tools for exploiting
information resources (i.e., text mining). That implies that they need to
become analysts as well as information searchers and managers. We see par-
ticular appeal in their joining research teams (Newman et al., 2001). As an
analogy, consider how statisticians often participate in research teams, sharing
their specialized methodological knowledge with subject matter experts.

We use the term “business analysts” to represent the diverse organizational
functions beyond the traditional technical side (R&D, engineering, patenting,
etc.). Without pretending to catalog all the roles, those who develop and assess
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marketing, sales, service, finance, and so forth, need access to tech mining.
“Concurrent design” exemplifies the desirability of forming multifunctional
teams to develop new products, processes, and services from the research stage
on. Knowledge of changing technology is vital to such work.

Technology analysts, on the other hand, find it increasingly advantageous
to be able to get their own data. They seek to develop their information search
and retrieval skills, as well as to learn how to exploit various forms of retrieved
information. In “lean” organizations, analysts need to work closely with man-
agers. It is too slow and costly to pass reports up through multiple human
filters. Sometimes those human filters make findings more relevant and cred-
ible to decision-makers, but at the expense of making the process less direct.
So, analysts have to stretch their role from the comfort zone of solitary study
to that of active communicator. They need to sell their studies, push managers
to participate in the analyses (generally uncomfortable for both sides), and
present findings powerfully and interactively.

Choosing the right organization with which to collaborate on a develop-
ment is immensely important. Small companies cannot hope to perform all
the tasks necessary to develop successful, technology-intensive product lines.
Some organizations may be able to design and build a new technology-based
product yet require other companies to market it. Larger corporations enter-
tain patent arrangements to share IP. Litigation is expensive, but so is allow-
ing IP to fall undefended into the hands of competitors. Tech mining can assist
in finding corporations with related interests with whom profitable collabora-
tions may be possible.

“Planners” come in many colors. We mention them here to stretch the tech
mining doer community—to involve new product designers, strategic corpo-
rate planners, technology developers, and others. Their attention and skill sets
need to incorporate tech mining because it dramatically expands their science
and technology information base.

We also nominate “managers”—our prototypical users. They need to be
well aware of, and conversant with, tech mining to become good users. Beyond
that, as mentioned earlier, doing some tech mining themselves can pay off in
quick, on-the-money intelligence.

In essence, we need to reduce the distinctions among the tech mining-
related roles. “Everyone” needs to stretch his/her skill sets to better under-
stand the others’ specialties. This enhances the ability to collaborate on teams
to implement technological changes. And, admitting to slight bias, we advo-
cate that they all learn some tech mining.

Users as Doers

Distinctions often blur. Some of the most avid users of tech mining results
have been analysts. The notion of do-it-yourself tech mining (the doer is the
user) warrants some attention. Do-it-yourself tech mining holds a compelling
advantage—it reduces the information chain’s length to zero (i.e., how many
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heads have to exchange information along the way from “finder” to “keeper”?
The fewer, the better.) Unfortunately, tech mining often suffers from an excep-
tionally long chain.

Why is that? Because those most open to, and able at, mining electronic
information tend to be the youngest and most junior. Imagine that the senior
manager has a problem to resolve. His assistant translates that into a request
to the Engineering Department Head; she passes it to the Director of Tech
Mining, who gives a roughly corresponding assignment to the junior associate
(who also knows least about organizational culture). The chances for tech
mining failure—meaning unused results—are high because of lags and com-
munication noise. In contrast, suppose that senior manager can directly search
a patent database and roughly profile “who’s doing what” on the technology
in question. Within 5 minutes, he has a ballpark answer that may resolve the
problem on the spot. And, if not, he can pose a more precise assignment that
is more likely to be fulfilled effectively.

Given the increasing accessibility of information, many users could cer-
tainly do a little, or even a lot, of tech mining themselves. We are seeing com-
panies providing desktop database access and expecting researchers and
technologists to know what’s happening in their technology domains. Our
vision for tech mining reaches out even further toward the omega point of
“all” scientists and engineers, faculty and students, and technology managers
doing their own tech mining as they initiate and justify projects. Someday
soon!

2.6. WHERE IS TECH MINING MOST NEEDED?

The message is clear—managers need to consider how changing technology
affects their business. Tech mining is certainly needed by anyone conducting
innovative activities, defined broadly. Many companies depend on technolog-
ical change to generate competitive products and services. They also need
timely technology insertion to improve their processes. Additionally, academic
researchers are significant contributors to the production of knowledge and
face significant challenges in managing a runaway supply of science and tech-
nology information. National governments have strong needs for R&D—par-
ticularly with regard to health, defense, and economic competitiveness issues.
Changing technology poses concerns for many players, including:

• Technology-producing and science-based companies
• Companies that consume technology produced by others
• Companies that must assess the market value of other companies
• Government agencies, with interests ranging across research (U.S.

National Institutes of Health) to operations (defense, World Health 
Organization) to regulation (state Environmental Protection Agencies)
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• Universities
• Nonprofits (e.g., research, environmental, and policy organizations)

Another “where” dimension concerns whether tech mining functions
should be centralized, distributed, or outsourced. Chapter 14 examines how
best to institutionalize tech mining. So, what’s best? The answer naturally
depends on your organizational culture, resources, and priorities. A combina-
tion of a small centralized tech mining unit providing support to a wider con-
tingent of part-time technology miners is particularly attractive. Such
arrangements could be further enriched by judicious use of external studies
(both general and tailored). And all this should be embedded in well-thought-
out processes, with incentives, to ensure that tech mining information is used.

At this juncture, let’s review how the book’s pieces fit together. Part I con-
cerns “Understanding” tech mining. Chapter 1 examined the role of innova-
tion in society. Chapter 2 addressed how tech mining can offer its users
significant competitive advantages in tracking that innovation. Chapter 3 scans
Part II content from a user (non-doer) perspective. Chapter 4 illustrates tech
mining results through a case example (fuel cells). Chapter 5 explores likely
future tech mining developments. Part II then details “Doing” tech mining.
Those eleven chapters step through each phase of the tech mining process.
The goal is to exploit the accumulated knowledge resident in the large science
and technology databases.

CHAPTER 2 TAKE-HOME MESSAGES

• Tech mining is the application of text mining tools to science and tech-
nology information, informed by understanding of technological innova-
tion processes.

• Tech mining has roots in content analysis, bibliometrics, and text mining.
• Tech mining has matured to the stage that it has something real to offer

in support of technology management and various technology analyses.
• Identify prospective tech mining users in your organization; we nominate

a good number of candidates, especially in larger organizations.
• Tech mining is not just done by information specialists and IT profes-

sionals, it is widely done by technology analysts and is also accessible to
sometime doers, particularly researchers, technologists, and business 
analysts.

• Tech mining offers critical competitive advantages to a wide range of 
institutions.

• Empirically grounded technology management is better than solely intu-
itive technology decision-making.

• Tech mining draws on networked R&D sources and users; we offer six
principles to keep in mind.



• Tech mining is interested in both “input” and “output” measures of
science and technology activity as potential indicators of technological
development. (We emphasize output measures, particularly R&D publi-
cations and patents.)

• Don’t attend just to technical analyses; effective tech mining comes from
holistic treatment of Product, Process, Prediction, and Prescription.

• Consider tech mining as a three-phase process: intelligence, design and
analysis, and choice.

CHAPTER 2 RESOURCES

We suggest entrees into the various types of technology analyses introduced
in the chapter. Major types of published analyses include:

• Science and technology road maps
• Technology indicators
• Technology foresight studies 
• Competitive intelligence
• Technology forecasting
• Technology assessment
• Process management studies

Multiple views on these perspectives are offered by Glenn and Gordon
(2002). The Technology Futures Analysis Working Group (2004) is working to
integrate understanding of diverse techniques. Kostoff (Kostoff, 2004; Kostoff
et al., 1994) provides an authoritative starting point for the practice and
content of science and technology road maps. Institutions engaged in produc-
ing technology indicators include the National Science Board of the U.S.
National Science Foundation (National Science Board, 2002), as well as the
Georgia Institute of Technology. The European Community Directorate
General for Research provides an in-roads into the literature on technology
foresight. Martin (1989), Salo (Salo et al., 2003), and Cuhls (2003) are also
good sources on the topic of technology foresight. Ashton and Kavens (1997)
provide a handbook of materials on competitive technology assessment.
Porter (Porter et al., 1980; Porter et al., 1991) provide guidebooks and refer-
ences for technology assessment and technology forecasting. Other excellent
technology forecasting resources include a book by Martino (1993) and a
survey article (Coates et al., 2001). De Bruijn (De Bruijn et al., 2002) discusses
why better methods are not enough; process management is also required.
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Chapter 3

What Tech Mining Can Do 
for You

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

This chapter largely excerpts important tech mining features from the “how
to” section that we feel are vital to understanding the process and what it can
provide to you.

3.1. TECH MINING BASICS

We want you to know what tech mining is and what it can do for you. If you
are in a position to receive empirical technology intelligence, some feel for the
processes involved in generating it will make you a better consumer. Table 
3-1 suggests the sort of questions you might ask about the data.

Section 6.3 discusses the characteristics of information sources that make
them suitable for tech mining. We are mainly talking about databases—com-
pilations of certain kinds of information. These are essential because so much
science and technology information is being generated. For instance, each year
there are about 1.5 million new patents issued (of which some 650,000 are dis-
tinct; the others reflect filing of the same invention in multiple locations). You
do not want to track these down yourself and try to digest them one by one.

You may find tracking the “Chapter Challenges” an interesting way to get
a sense of various tech mining activities. Several of these follow the adven-
tures of a hypothetical philanthropic foundation, the DeBrand Foundation, as
it exploits science and technology information resources. In Chapter 7 we 
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consider the issues they confront in deciding how to monitor the literature to
expand DeBrand’s grants program.

3.2. TECH MINING ANALYSES

Don’t let analysts or advocates buffalo you with tech mining imperatives.
Confirm that the analysts have checked critical results with suitable experts.
Make sure you are clear on what those results reflect. In simplest terms, most
tech mining can be reduced to four levels:

1. Lists—i.e., simple activity counts that tell how much of something is
taking place

2. Breakouts from those lists—i.e., take the “Top 10 Patent Assignees” (or
however many interest you of whatever data field you want to know
about) and tell about what each of those leaders is doing. Put another
way, combine two lists to make a matrix or a depiction we find often very
informative—a “profile.”

3. Maps—showing relationships among a chosen type of data, such as key-
words or authors

4. Trends

Chapters 9–12 address tech mining analyses. We suggest you browse 
these chapters to get a feel for what is involved. This section can guide such
browsing.

In Chapter 9, DeBrand tracks literature citing a key figure in a research
arena central to their interests. We see how the R&D abstract records are
manipulated to determine how much various researchers have contributed.
We see “two-dimensional” breakouts to characterize the emphases of leading
researchers. Tech mining software helps elicit relationships among data fields
such as authors and the topics about which they write. It does so based on 
co-occurrence. That is, if particular terms tend to occur in the same records

TABLE 3-1. Informed Consumer Questions

• Which information resources were used, and why? Do these cover all the facets
that should be integrated, especially contextual elements such as business
information? Which sources were considered but not used, and why? (Chapter 6
discusses databases.)

• Are the tech mining study assumptions and boundaries clear? What is included,
what is left out, and why?

• Are the searches suitable? How inclusive are they? What is excluded? Can we
estimate how much relevant material we have missed? And how much extraneous
material we’ve had to deal with? (Chapter 7 explores searching.)

• How clean are the data? 



more than expected by chance, we presume a possible relationship. Table 9-5
arrays many possible relationships that can be explored. Tech mining users
should be generally familiar with these so as to request any of interest that
the analysts might not have pursued.

An intriguing variation on co-occurrence is to cross a field with itself. Table
9-6 notes several interesting possibilities. For instance, we could look at inven-
tors by inventors to see who teams with whom. This is one form of intelligence
that can help uncover knowledge networks. Such awareness can inform deci-
sions on collaborating, acquiring intellectual property, or countering competi-
tor strengths (e.g., hiring away key personnel).

Chapters 9 and 10 ponder the implications of the fact that distributions of
science and technology activity tend to be highly skewed. Whether we are con-
sidering prolific authors, leading patent assignees, or subject matter terms,
these tend to be highly concentrated. That is, the leaders tend to be extremely
prolific, while many others occur in “ones and twos.” One implication for your
analysts is they can build very effective thesauri to consolidate information for
the leaders, neglecting the bit players for most purposes.

Chapter 10 introduces the notion of looking beyond the obvious. Under-
lying constructs can be postulated and explored in the data. For instance,Table
10-1 notes that the “hidden variable” of researchers’ prestige can be gauged
by the measurable amount of citations to their work. In particular, we assert
rich interpretive possibilities based on consideration of technological innova-
tion processes. After the introduction in Chapter 1, we go on to develop a
detailed tech mining framework in Chapter 13 based on our understanding of
how technological innovation comes about.

Patent or publication mapping is a popular way to present relationships
among particular aspects of a data set. Chapter 10 explains principal compo-
nents analysis (PCA) as an important way to model text data. Familiarity with
PCA can aid in understanding the strengths and limitations of these and other
mapping approaches. The discussion of ways to assess the merits of particular
data models can enable you to probe into a given tech mining model to gauge
how well it fits the data.

PCA actually represents one of three important families of mapping. You
will want to recognize these because they emphasize different ways in which
items can be grouped and graphically depicted:

1. Dimensional Analyses—emphasize reducing detail to aid comprehen-
sion. For instance, we might take 150 or so leading keywords from the
thousands of records on a topic and use factor analysis (PCA is a basic
variant) to consolidate subtopics based on keyword co-occurrence pat-
terns down to a dozen factors. We can then map these to see relation-
ships among the factors.

2. Clustering Techniques—also seek natural groupings in the data based on
a chosen similarity measure. Some approaches allow items (terms or
records) to belong to multiple clusters, and some do not.
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3. Tree-Based Techniques—successively divide data into classes. Items are
usually exclusively placed on a particular branch. Trees may be gener-
ated top-down or bottom-up. They lend themselves to presentation as
text outlines or through statement as explicit rules. Whereas dimensional
and clustering approaches key on similarities among the data, trees can
offer a nice way to accentuate differences. Trees also can partition data
through multiple levels.

These approaches can become hard to distinguish. Quite often, analysts
could use more than one approach to achieve similar aims in grouping the
data. For instance, both hierarchical clustering and tree-based techniques help
identify parent-child relationships (dependencies) in the data. Also, be warned
that terminology is imprecise. This book, which highlights the dimensional
approach, PCA, often refers to the resulting principal components as “factors”
or “clusters.”

Mapping can take many forms. Chapter 10 illustrates clustering (as opposed
to PCA) for DeBrand Foundation uses. A sidebar mentions regional innova-
tion clusters that are a natural for geographic mapping. Note that most of our
other maps show term or record proximity locations; often the axes have no
inherent meaning. The bottom line is, if you don’t find a particular formula-
tion helpful, explore whether other approaches might be more illuminating.

Chapter 10 offers a useful sidebar on “threats to validity.” These provide a
set of “detective questions” with which to approach a given analysis. Four dif-
ferent threat types are distinguished:

• Unfair (biased) comparisons being drawn
• Effects likely due to chance
• Poor labeling of effects (e.g., calling more papers being published “tech-

nological progress”)
• Overstated claims for generalizability

Chapter 11 discusses trend analyses. Challenge your tech mining findings to
ensure that you are getting the information most salient to the decision at
hand, not the information that makes the prettiest trend line. Lots of choices
go into selection of which data to analyze, whether and how to transform raw
data, and how to plot the trends most informatively. Chapter 11 illustrates a
range of trend formulations for nanotechnology publication activity. S-shaped
growth curves are the most prevalent models of technological advance, but
they aren’t the only ones.

Get comfortable with the idea that trend growth modeling fits the techno-
logical and contextual realities of your case. If trends are extrapolated into the
future, understand how limits were set and internalize what are reasonable
high and low projections. Test whether interpretations stand up to challenge.
For instance, the nanotrends illustration infers three distinct research fronts



successively advancing (Fig. 11-10). Can you pose alternatives that fit the data
and reflection as well?

Patents are arcane. Whereas publications and their abstracts strive to
convey what the research is all about, patents are highly circumspect. Make
sure your tech mining analysts are highly familiar with interpreting patent
information. Determine whether you can gain the knowledge you seek as
effectively from relatively raw patent data (e.g., the information as provided
by patent authorities) as from that compiled and standardized by databases
(e.g., MicroPatent and Delphion) or if you are best served by having patents
abstracted and indexed by technical specialists (as in the Derwent World
Patent Index).

In tech mining, we emphasize patent macroanalyses, that is, analyzing large
sets of patent abstract records to profile activity in a target domain. These
differ from the microanalyses needed to get exacting and comprehensive cov-
erage to resolve legal matters, such as prior art and patentability. Section 12.7
contrasts the different patent analyses for different uses.

You may find Figure 12-1 helpful in benchmarking other organizations on
two dimensions—patent activity and rate of change therein. Chapter 12 con-
tinues the sample case analysis on fuel cells with patent data. It shows ways
to get at technologies or competitors in terms of who, where, and when, what,
and why.

Patent and publication citation analyses go a step beyond activity measures
to generate indicators of utilization. Figure 12-6 quickly shows the bidirec-
tional aspects of looking back from a given patent (or publication) to see what
knowledge it builds upon (what it references) and looking forward to see who
builds upon it (by citing it).

TRIZ builds upon patent analysis in totally different ways. Section 12.8
introduces this creativity tool that systematically explores alternative ways to
solve a given problem. Particularly interesting is that TRIZ is spreading from
the purely technical domain to help assess promising innovation directions to
pursue broader technology management issues.

3.3. PUTTING TECH MINING INFORMATION TO GOOD USE

Chapter 13 is the cornerstone of our approach to tech mining. It arrays man-
agement of technology (MOT) issues that cascade into more specific MOT
questions. Those can be answered through purposive mining of the empirical
science and technology information resources in what we call “innovation indi-
cators.” Chapter 4 gives a taste of this approach and what it can deliver, but
do browse Chapter 13 to familiarize yourself with innovation indicators as a
base resource to support MOT decision processes. Table 13-2 arrays 39 MOT
questions together with some 200 candidate indicators.

An important facet of tech mining is information representation. Sprinkled
through the analytical chapters (Chapters 9–12), Chapter 13, and the case

PUTTING TECH MINING INFORMATION TO GOOD USE 37



analyses (Chapters 4 and 16) are lots of alternative information visualizations.
Our pride and joy is the “one-pager,” illustrated in Figures 4-5 and 13-1.
This digests volumes of tech mining information to an executive-level con-
densation. It aims to bring to bear key intelligence to aid a particular MOT
decision.

As explored in Section 13.3, we see “paradigm-changing” prospects in the
systematization of business decision processes. This has profound ramifications
for tech mining. By mandating inclusion of specific tech mining findings, in
specific forms, in those strategic processes, we set the stage for two momen-
tous changes. First, we can sensibly expedite the generation of repeat analysts
by scripting search, data cleaning, analysis, and representation steps. Second,
the outputs become much more valuable because they become familiar. No
manager wants to rely on unfamiliar and untested sources for critical deci-
sions. But through systematization, technology intelligence products (TIPs)
can be vetted. They then will come to be relied on because they provide better
information on which to base MOT decisions than traditional, highly intuitive
knowledge sources.

3.4. MANAGING AND MEASURING TECH MINING

Chapter 14 turns our attention to issues in managing tech mining. It explores
options in locating and integrating tech mining activities within an organiza-
tion. The challenges deserve empathy. Moreover, they raise significant infra-
structure requirements and particular sensitivities. Successful tech mining can
pay off tremendously, but it does not come about casually. The chapter ends
with reflections on how the tech mining community can facilitate learning by
sharing experiences within and across organizations.

Consider the five different tech mining “players” introduced in Figure 
14-1. If you are interested in establishing tech mining capabilities, or taking
fuller advantage of existing ones, reflect on who is doing what. Gaps in capa-
bilities are a concern. But one also needs to adjudicate turf and balance per-
spectives. We don’t want to make this process unduly complicated, but
recognizing multiple interests is vital to dealing effectively with the players.

By this point in the book, we are hoping our readers are on board and
enthusiastic about tech mining. But we recognize that buy-in is not automatic.
The “Information Age” means ready access to more and more electronic infor-
mation. Those resources portend increasingly information-based decision
processes. That means dramatic changes in how technology managers func-
tion. We believe the successful ones will exploit tech mining and similar capa-
bilities and thoroughly outperform more intuitive managers. We also need to
recognize the implications for change in how information professionals and
researchers, in particular, work. “Information at your fingertips” means new
forms of interpersonal exchange and new job functions. We don’t believe you
can overestimate the ramifications.

38 WHAT TECH MINING CAN DO FOR YOU



Chapter 14 also promotes the idea of “process management.”As technology
analysts, we have had to learn the hard way that attaining effective utilization
of tech mining takes additional steps beyond good analyses. Sections 14.3 and
14.4 offer situational analysis diagnostics that point to distinct actions to take
to enhance tech mining uptake. Table 14-1 packages these into an eight-point
checklist for managers and analysts to use together to work out suitable study
strategy.

Section 14.5 compares three broad approaches to obtaining tech mining—
centralization, diffused tech mining, or outsourcing. Of course,“it all depends,”
but we make the case for at least partial centralization of tech mining 
function.

Assessing the effectiveness of tech mining is a phenomenon deserving
attention in its own right. Chapter 15 lays out factors to consider measuring
and approaches to do this. For those of you not directly concerned with such
matters, this chapter provides a different use. It offers a number of “meta”
reflections about tech mining that can provide perspective on the overall
endeavor. What can it offer to whom? Our overall orientation is to consider
two key dimensions: Validity treats whether the tech mining findings are
correct; utility concerns whether they prove useful.

For those who are concerned with assessing the worth of tech mining
efforts, Chapter 15 suggests evaluation approaches and points to cover. Two
vital bases for assessment deserve attention. One concerns the value of estab-
lishing comparisons rather than seeking absolute, stand-alone valuations.
Oversimplifying, how are we better off with tech mining than without it? The
second premise is that multiple measures are a whole lot better than single
ones. Tech mining interjects itself into complex business processes concerning
MOT, so efforts to judge it on singular grounds are inadequate. Effective
evaluation requires attention in its own right.

To show we’re not short on chutzpah, Chapter 15 wraps up with our ren-
dition of the Ten Commandments. These compress what we hope is a lot of
insight on what is entailed in doing tech mining well into a handy list. After
this chapter, Part I continues with example tech mining findings from fuel cell
analyses (Chapter 4, whereas Chapter 16 steps through their generation) and
a perspective on possible advances in tech mining to watch for (Chapter 5).

So—wondering what it takes folks to initiate tech mining activities? A VP
of a Singapore small enterprise related how they came to start active intel-
lectual asset management. The day after successful introduction of their soft-
ware to the U.S. market at a trade show, they were served a “cease and desist”
order. After sinking half of their initial profits in attorneys’ fees, they aban-
doned North America. They went to Australia and were slammed with a
lawsuit. In both situations, the VP felt the cases against them were weak, but,
no matter, the threats served to derail their marketing ventures. They now
carefully assess the IP landscape with an eye toward offensive action them-
selves. Tech mining is just what it takes to gain perspective on technological
threats and opportunities.
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• For those of you not regularly engaged in doing or using tech mining, we
suggest that gaining passing familiarity can alert you to situations in which
you can call on it fruitfully.

• Although the book is arranged for Part I to provide general familiarity,
this chapter can guide you on a useful browse of Part II to deepen your
understanding by selective perusal.

For those of you more deeply involved with managing and/or performing
tech mining, this chapter spotlights elements of special importance.
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Chapter 4

Example Results: Fuel Cells
Tech Mining

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

What do tech mining results look like? This chapter illustrates a case tech-
nology analysis.

4.1. OVERVIEW OF FUEL CELLS

We have selected fuel cells as the sample topic of an emerging technology with
broad promise and a considerable literature and patent record base. Fuel cells
fulfill a fundamental need—the storage of power. We expect you have a
general sense of the value of the technology, despite the often advanced chem-
istry involved. In general:

A fuel cell converts hydrogen and oxygen into water, producing electricity and
heat in the process. It functions as an electrochemical device, like a battery, where
it is “recharged” with hydrogen and oxygen instead of electricity.

We will mention several types of fuel cells distinguished by the type of elec-
trolyte they use (Table 4-1). The oxidant is nearly always oxygen, and the main
effluent is water. The lower-temperature cells tend to use more highly active,
expensive catalysts (e.g., precious metals). These cells can be smaller and start
up more quickly,thereby making them more suitable as portable power sources.*

*The website http://auto.howstuffworks.com/fuel-cell2.html gives an overview of fuel cells;
http://fuelcells.si.edu/ also provides background information.
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4.2. TECH MINING ANALYSES

Chapter 16 carries through a nine-step analytical process (Table 4-2). This
process begins with specification of the questions to be answered. Because this
case analysis is done to illustrate many facets of tech mining, it is not moti-
vated by a specific technology management target. Therefore, the findings are
not as sharply focused as they usually would be in practice.

Chapter 12 further expounds on patent analyses. If you would like to see
the data in the tech mining software that we use in these analyses—Vantage-
Point (also available as Derwent Analytics)—visit www.theVantagePoint.com.

As laid out in Chapter 13, we offer a tech mining framework of:

• 13 Technology management issues
• 39 Technology management questions
• ~200+ Innovation indicators

Tech mining addresses one or more particular issues, focusing on the related
questions, to inform the decisions being posed. By analyzing science and tech-
nology as well as other data, it generates indicators of progress toward 

TABLE 4-1. Five Main Fuel Cell Types

Main Fuel Cell Operating Sample Leading
Types Temperatures (°C) Applications Primary Fuels

Proton exchange 90–100 Automotive Hydrogen or methanol
membrane (PEM)

Alkali 100–250 Space program Hydrogen or methanol
Phosphoric acid 150–220 Power plants Hydrogen or methanol
Molten carbonate 500–700 Power plants Hydrocarbons
Solid oxide (SOFC) 700–1000 Power plants Hydrocarbons

TABLE 4-2. The Nine-Step Tech Mining Process

1. Issue identification
2. Selection of information sources
3. Search refinement and data retrieval
4. Data cleaning
5. Basic analyses
6. Advanced analyses
7. Representation
8. Interpretation
9. Utilization
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practical innovation for a given emerging technology. We illustrate mainly with
science and technology data here, but mention the importance of comple-
mentary contextual information and expert opinion.

4.3. TECH MINING RESULTS

We begin with a few basic measures from searches on “fuel cells” performed
in 2002 and 2003. We go on to show a few more intricate innovation indica-
tors (derived measures). Those searches resulted in two files of abstract
records. One contains 9724 patent family records from the Derwent World
Patents Index (“Derwent” for short). The other file includes 11,764 abstracts
of journal and conference research papers gathered from the Science Citation
Index and INSPEC.

The first tech mining “result” indicates how much R&D activity is taking
place—the overall numbers of patents and papers on fuel cells—a lot! Tables
16-3 and 16-4 break these out by data fields to show, for instance, that we have
found articles in 1367 journals and could list 3311 patent assignees. You might
well wonder if such tallies are so exact. Not really—they depend on the scope
of the data set—which search phrases, applied to what databases, over what
time frame. They also depend on how thoroughly the data are cleaned. For
instance, further work would surely consolidate many of those 3311 assignees
as being the same or closely related organizations. However, one trades off
precision for analysis speed and cost. Good analysts will balance these wisely
to provide “clean enough” results for the issue at hand. As a user, you are
usually looking for the order of magnitude in tech mining—much or little
R&D? many or few competitors? 

We can break out any such tally. Consider two main types:

• “What” information that serves to characterize the technology 
• “Who” information that serves to portray competitor (or collaborator)

involvement

At the simplest level, these yield counts or lists. For instance, here are a couple
of “What” breakouts:

• How many articles address solid oxide fuel cells (SOFC)?
We scan the articles file using VantagePoint and find a striking 11% (1286)
of the article titles address solid oxide fuel cells (SOFC).

• How many articles mention particular materials?
Table 4-3 lists a few prominent materials from the keywords field; review-
ing these with your organization’s materials scientists might uncover gaps
in your capabilities. You might want to know, “what we do have ongoing
in zirconium?”
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Chapter 16 gives more examples of handy lists—for example, leading pub-
lishing universities, leading publishing firms, and leading European patenting
firms on fuel cells for cars.

Tech mining software can help take the next steps beyond just counting how
much activity we find. One way is to combine two lists. Chapter 16 tallies pri-
ority vs. family patents, by country, to help distinguish R&D locations from
market interests. It is also easy to count and segregate records on particular
subtopics in the data set to pursue specific concerns. For instance, we could
investigate what a particular competitor is doing with zirconium in fuel cells
(Julich GmbH leads our publishers on this topic).

The Sidebar sets up a “Who” illustration to show that tech mining software
can combine and manipulate data to get at one’s particular interests.

TABLE 4-3. Sample Fuel Cell Materials

Material Main Keyword All Variants

Zirconium variants 673 1050
Lanthanum variants 647 830
Yttrium variants 586 1328
Nickel variants 348 724

Sidebar: Aussie Solid Oxide Fuel Cell (SOFC) Partner?

Imagine a scenario in which we are an American company initiating oper-
ations in Australia. These involve an innovation that needs a power supply
for remote settings. We have investigated technologies and determined that
SOFCs appear most promising, but will need customization. So, we would
like to find an Aussie partner to work with us on this development.

We first check who is involved with SOFCs Down Under. We locate 41
Aussie SOFC articles, then spotlight all authors with 4 or more papers each.
Figure 4-1 portrays the highly interconnected “knowledge network” based on
co-authorship patterns.

To pursue the Aussies further, we might “profile” these researchers.
Table 4-4 combines several fields of data to give some sense of where these
folks are located and what they are up to. They appear to be located at three
organizations—one company, one government lab, and one university. Just
from their titles (leaving out common terms such as SOFC for this group),
Foger and Zhang appear to be close collaborators, even though affiliated with
different organizations. Love is the most recent player; all, except possibly
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ZHANG JK

FOGER, K

Auto-Correlation Map
Authors

Top 12 Links Shown
> 0.75
0.50–0.75
0.25–0.50
< 0.25

0(0)
1(0)
2(0)
6(0)

JIANG, SP

LOVE, JG

CHIAC

BADWAL, SPS

Figure 4-1. Australian knowledge network on SOFCs

TABLE 4-4. Quick Profile of Leading Australian SOFC Researchers

Authors Affiliation Interesting Title Publication Trends
[# of papers] Phrases

Badwal, SPS[22] Ceramic Fuel chemical diffusion [3];
Cells Ltd. fabrication [2]; perovskite

cathodes [2]

Jiang, SP[22] CSIRO chromium species [7];
deposition [7]

Foger, K[16] Ceramic Fuel chromium species [7];
Cells Ltd. deposition [7];

Sr-doped LaMnO/sub 3/
electrodes [3]

Zhang, JX[9] CSIRO chromium species [7];
deposition [7];
Sr-doped LaMnO/sub 3/
electrodes [3]

CIACCHI, FT[8] Ceramic Fuel commercial zirconia
Cells Ltd. powders [2];

DC magnetron [2]
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Ciacchi, seem to remain active in this research area. We will return to this case
shortly.

Chapter 16 shows other fuel cell profiles—leading researchers and topics
at the three top American universities; leading inventors and topics at the five
top patenting firms.

Figure 4-2 illustrates one way to consolidate activity to add interpretive
value. This is done by using a thesaurus that one can continually improve. In
this case it identifies organization types by clues such as “univ” for academic,
in addition to knowing particular names as academic (“MIT”), etc. The portion
of R&D publishing by industry is an innovation indicator. Benchmarking the
typical extent of publishing by certain sectors, companies, and/or technologies
contributes toward determination of how likely rapid commercialization of the
target technology is. In this case, 21 percent of the papers were generated by
companies, suggesting very strong industrial interest in fuel cell development.

Trend analysis provides another basic piece of intelligence. Figure 4-3 pre-
sents patenting trends for organizations whose patent abstracts mention SOFC.

4.4. TECH MINING INFORMATION PROCESSES

As mentioned earlier, Chapter 13 arrays a tech mining framework of tech-
nology management issues, questions, and indicators. A major leap forward
takes place when an organization systematizes the way it integrates these into
its standard business decision processes. Systematization provides many ben-
efits, particularly the semiautomation of much of the tech mining analyses—
that is, specification of usual data sources, scripting of software analytical steps,
and provision of well-recognized output forms. One adopts such systematiza-
tion while needing to guard against overdoing it, thereby straitjacketing tech
mining creativity, adaptiveness, and insight.

929

1799

Academic

Corporate

Government

5690

Figure 4-2. Organization types publishing on fuel cells
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To give the tenor of a happy middle way, we propose that organizations
explicitly consider how tech mining can best contribute to stage-gate and
similar systematic decision processes. Experience will need to refine these
decision-aiding processes, but we suggest an incremental approach. This 
might focus on a particular technology management question that is faced
repeatedly.

For example, suppose our multinational company frequently assesses other
companies as potential collaborators for joint technology development. We
provide a tech mining template illustrated as Figure 4-4. Ideally, the target user
and tech mining analysts would review this together and adapt to the issue at
hand. Adaptation could involve selecting alternative indicator options [e.g.,
for the “Informative chart on what they do best,” let’s substitute Option (3)
Patent map]. We might also simplify by choosing fewer items to address. Or
we might enrich by including additional elements. Note that these need not
be restricted to presentation on one page! 

As experience builds, new templates would be generated for other fre-
quently faced technology management questions. The favored indicators to
help answer these questions would evolve through experience as to what infor-
mation truly adds value to decision-making. Likewise, information product
formats would evolve based on what works.

Figure 4-3. SOFC patenting trends
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4.5. TECH MINING INFORMATION PRODUCTS

Presentation of findings is vital. Here, we consolidate key information perti-
nent to the immediate decision as a “one-pager.” Figure 4-5 illustrates the
instantiation of Figure 4-4 (use of color considerably helps convey this infor-
mation). We have taken “poetic license” here, building on the real data with
hypothetical extensions. The bottom-line question is whether to pursue
contact with Ceramic Fuel Cells, Ltd., as a potential collaborator. We follow
the nominal “default” choices of the template (Fig. 4-4), except for including
all five candidate scorecard elements.

To support this decision-making, we provide a variety of indicators. Start-
ing from the upper left, the “Scorecard” helps assess whether we may have a
good fit. It is deliberately not quantified. Some of the components are judg-
mental—for example,“Tech Fit” with our needs, whether the company is likely
to be “hungry” for opportunities. Others are quantitative—for example, “Tech
Concentration” reflects the portion of their patents pertinent to our interest
in working with them. “Tech Coverage” concerns whether they appear apt 
to meet all our needs. “Capabilities Spectrum” indicates their apparent
strengths in R&D, manufacturing, and commercialization (they have just
started marketing products). Just below is a note from their website indicat-
ing possibly important relationships. Scorecards intend to facilitate cross-
comparisons—for example, if we are considering three prime candidates for

Figure 4-4. Tech mining template to assess a potential collaborating organization
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joint development activity, those should help executives quickly gauge their
relative strengths.

Much of this particular report keys on patenting. At the bottom left is the
trend in their priority patents. Swinging to the upper right, we see a patent
citation tree for three of their patents. These are drawing attention as cited
prior art by other notable players, including Siemens, Ford, Sumitomo, etc. The
“knowledge network” starts with a coinvention map (lower center) that iden-
tifies two teams. We combine that with the R&D publication authorship infor-
mation presented just earlier. We have sifted out the inventor team (near the
bottom of the map) associated with earlier patent activity at Cerametec that
Derwent codes together with Ceramic Fuel Cells. (In a real analysis, we must
investigate this further.) As per the lists of inventors and authors, we see a key
SOFC R&D team. We suggest initiating contact with Badwal or Foger, who
are both actively patenting and publishing.

CHAPTER 4 TAKE-HOME MESSAGES

• This chapter illustrates what tech mining can do for you. It is necessarily
very selective, but should convey the flavor of what is possible. You can
see more results in Chapters 12 and 16.

Figure 4-5. One-pager on a potential collaborating organization
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• Lists convey the amount of R&D activity.
• We can cross two lists to add a second information dimension to show

many variations on “who’s doing what.”
• Trends capture various emerging technology patterns.
• Knowledge networks can be depicted by focusing on individuals and rela-

tionships within and among organizations.
• Mapping shows relations among terms (e.g., technologies, players) or

among documents (cf. Fig. 16-8).
• Tech mining should be tailored to answer your prime questions.

CHAPTER 4 RESOURCES

We recommend study of this chapter together with use of the VantagePoint
Reader* and sample fuel cell data† to try out those methods that seem poten-
tially useful to you.

*Available at http://www.thevantagepoint.com.
†Available at ftp://ftp.wiley.com/public/sci_tech_med/technology_management.



Chapter 5

What to Watch for in 
Tech Mining

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

What does the future hold for tech mining? This chapter suggests ways to raise
our visions of what is possible and ways to lower the barriers to attain those
visions.

The chapter consists of seven sections that address, in turn: better tech
mining basics, alternative perspectives on the data, more informative products,
knowledge discovery, knowledge management, new tech mining markets, and
dangers.

5.1. BETTER BASICS

We are on the right path. Many of the basic requirements to deliver on the
promise of tech mining are coming together. With work by various players, we
could dramatically advance tech mining effectiveness and diffusion. Let’s look
first at tech mining inputs, then at generating outputs.

Better Ingredients and Infrastructure

This is the “push” side of the equation—the data mining perspective. We key
on nurturing more available information resources and better tools to exploit
them.

As illustrated in the fuel cell analyses in this book (Chapters 4, 12, 16), R&D
databases offer a great resource to mine. But, oh, could things be more con-
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venient! Database access mechanisms are slanted toward human users who
seek a few choice records to read. Enhancement of machine access would facil-
itate search and retrieval of sizable search sets. Suitable intellectual property
(“IP”) protection for the database is needed, of course.

The number of core R&D databases depends on your tech mining purposes.
For most tech mining, access to somewhere between one and five well-chosen
databases should suffice. Database and gateway collaboration to facilitate
integration of search results on this scale is highly desirable (e.g., Engineering
Village now offers EI Compendex and INSPEC in combination). Mechanisms
to allow “ metasearching” of multiple databases and websites is becoming
available (e.g., Scirus). Compiling web information in more depth and consis-
tent format could boost tech mining dramatically.

Most database portals are set up to be people friendly—that is, for humans
to locate and retrieve a few items. A tech mining target is to expedite com-
puter access to these data sources. In this model, one would not extract the
search results from the source database into plain text (or other) format to,
then, import them into the analytical tool database. In our example, fuel cell
analyses, we first export from Derwent, Science Citation Index (SCI), and
INSPEC, and then import into VantagePoint. This transfer should become
automatic. One attractive possibility is a direct machine access standard to
expedite interexchanges. Databases such as SCI, MEDLINE, and EI Com-
pendex helpfully provide a step in this direction via the option of exporting
data in “ris” format (for Reference Manager and other software accepting this
format). So analytical software that can import “ris” should be able to easily
consolidate information from these sources.

Another appealing route forward is to integrate databases and analytical
tools. We see an example of this in the provision of ChemAbstracts via the
analytical tool suite of SciFinder. The catch is to provide flexibility. We seek
to enable use of VantagePoint or ClearResearch with ChemAbstracts, or
SciFinder with Derwent World Patent Index, for instance. Certainly, attaining
every combination among competitive players is unrealistic, but collaboration
could expand the market for all tremendously.

Special database licensing would facilitate tech mining. Customers who
want to download many “10,000-record” searches for data mining can’t (and
won’t) pay the same per-record rates as customers who want a handful of
records to read. Many universities enjoy unlimited use licenses with certain
data providers, but we need clarification of what constitutes legitimate uses, of
what amounts of text. Present licensing uncertainties severely restrain the
spread of tech mining in the universities. Yet, this is the place to build aware-
ness and competencies in prime students to go forth and apply familiar tools.

Data access constraints and costs prevent many organizations from explor-
ing tech mining. Creative arrangements need to be devised involving data
providers, gateways (e.g., Dialog, STN), and groups of potential customers. For
instance,Web of Science only became available at Georgia Tech about the year
2000 when a multistate university consortium worked out a package license
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arrangement with its providers (now Thomson Scientific). Another appealing
arrangement involves multiple government users sharing database access with
several data suppliers through a central server at Los Alamos National Lab-
oratory. This simplifies data updating and management through centralization
and also provides attractive cost savings. Similar arrangements with small- and
medium-business consortia, possibly through trade associations, would open
substantial new markets.

Other potential arrangements abound. For one, certain technology infor-
mation providers, such as NERAC, presently provide raw search results to
their customers (e.g., in response to a request on a given topic). They could
enhance the usefulness of such searches by providing overviews (e.g., “one-
pagers” showing the scope, leading authors, etc.) along with the data in minable
form. Live links to full text resources back at the database provider would
encourage further data sales. Automated accounting arrangements among the
end-customers, NERAC or similar intermediary providers, and the data
owners would further boost attractiveness. Another variant would be to enable
technology consultancies to provide data files (e.g., in VantagePoint or Derwent
Analytics) along with their reports. This would provide interactivity, enabling
users to quickly dig down to specifics, as well as to explore relationships. Try
out the interactive website accompanying this book to get a feel for possibil-
ities. Again, simplified fee arrangements could track usage and share revenues
between value-adding information retrieval and technology assessment firms
and the data providers.

Self-documenting record formats exist. These provide “metadata” about the
documents. VantagePoint, for example, keeps track of the search information
with the resulting records. Many syndicated news sources are providing their
content in “rich site summary” (rss) format. More than 200 channels and feeds
exist, allowing news to be aggregated and customized according to specific
audience needs. The key to this easy interchange of data is XML—a self-
explanatory document format that tells you what each component of the news-
feed is and how it can be used in relation to other content. XML was originally
developed in recognition of shortcomings of the internet format—HTML.
HTML tells you how to “lay out” information on a screen, but it doesn’t tell
you how to relate or structure the information you receive into usable, cus-
tomizable knowledge. Now that the news is provided in a neatly shared format,
it would be nice if science and technology publications and patents could also
be broadly interchangeable.

Better Tools and Methods

Cross-tool information transfer is appealing. Many pairwise examples are
appearing. VantagePoint can exchange data with BizInt SmartCharts.
As another example, Reference Manager software works with OmniViz to
enable “RefViz” software that generates visual overviews of research refer-
ence sets.
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We see strong user demand for multifunction tool integration, but also for
simplification. To some extent these aims reinforce each other, as in automated
data import and consolidation and in seamless tool interfacing. Combining
multiple functions, while simplifying, poses some real challenges too. “One size
fits all” looks pretty unlikely when we consider complexities such as:

• Providing a single interface for multi-database searching from one’s ana-
lytical tool

• Treating structured and unstructured text and numeric data
• Encapsulating knowledge from diverse domains
• Enabling entity extraction (with known search targets) as well as induc-

tive data representations (with no imposed knowledge)
• Performing statistical analyses together with artificial intelligence 

applications
• Offering information visualizations with convenient export to standard

office packages
• Generating reports with multiple delivery mechanism options

With U.S. National Science Foundation support, we are exploring ways to
expedite tech mining processes while enabling analysts to tailor processes to
particular needs.

Tech mining methods come to us from varied traditions in statistics, infor-
mation science, artificial intelligence, linguistics, applied sciences, and technol-
ogy futures analysis (TFA). It’s a rich welter, but it suffers from a confusion
of similar analytical methods bearing different names. Standards for judging
the adequacy of models are lacking. Guidelines for choosing and designing
models are also thin. In some ways, the sum has become less than the parts.

On the positive side, the understanding needed to support tech mining is
growing rapidly (see Chapter Resources). We are gaining in techniques to sys-
tematize uncertain knowledge and even witness efforts to develop a unified
framework for understanding content, document, and individual preferences.
We perceive progress toward shared analytical models. Tech mining studies
will benefit from tools for designing new knowledge networks and diagnosing
failed networks. Understanding of how best to support technical information
needs of organizations is advancing. Researchers are experimenting with ways
to “activate” document repositories to anticipate and answer user questions.
Tech mining is increasingly being built right into the structure of portals to the
science and technology databases.

As tech mining advances, it should be continually enriched by capabilities
developing in adjacent areas. For one, the discipline of probabilistic modeling—
also known as graphical models, or even machine learning—offers possibilities.
Probabilistic modeling draws from graph theory and probability theory to help
systematize previous knowledge. It can also help solve difficult applied prob-
lems in areas such as speech recognition. These modeling approaches offer
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systems for recommending content and for indexing information (Popescul 
et al., 2001; Baldi et al., 2003). The opportunistic tech mining analyst should stay
tuned and incorporate such capabilities as they become available.

Table 2-2 noted various forms of TFA, many of which tech mining supports.
Most TFA methods arose in an era dominated by industrial (manufacturing)
technologies and military applications (more than economic competition).
Coates et al. (2001) make the case that new TFA methods are needed to address
increasingly science-based technologies, especially molecular technologies.
They note the increasing pace of change, warranting attention to technology
transition modes (chaotic transition regimes between traditional S-curves) and
continuous technology intelligence. These authors also call for fuller exploita-
tion of information resources—namely, tech mining. As we wrote, a meeting in
May, 2004, explored new TFA methods (Technology Futures Analysis Methods
Working Group, 2004; see also http://www.jrc.es/home).

Better Results

We shift our considerations now to the “pull” side—How can we deliver more
useful technology information products? A coming section considers technol-
ogy information products (content) to address managerial needs; this section
deals with basic improvements in delivering those results.

Delivering tech mining information involves elements of representation,
communication, and interaction. A starting point is to orient technology 
analysts to focus on target users and to learn what information they need. A
further step is to influence those needs by demonstrating capabilities, forming
personal alliances, touting how competitors are gaining advantage from tech
mining, or whatever it takes to get their attention! As covered in Chapter 14,
we need to shove open doors to effective collaboration between tech mining
providers and users.

Devising and carrying out effective communication of findings warrants sig-
nificant effort, perhaps half of total tech mining exercise resources. Informa-
tion representation, for one, must meet user preferences. Today’s repertoire of
information visualization and delivery options permits tailoring technology
information products for different users.

In some cases attaining significantly better understanding of tech mining
findings may require organizational change. We have witnessed organizations
where the distance (number of intermediaries) between end users and tech
mining producers was too high. The value of findings was dissipated by the
indirect transfer mechanisms. Direct interaction between producers and users
before, during, and after the analyses is the better approach. Fitting tech
mining activities to organizational realities poses serious challenges, as
explored in Chapter 14.

Tool adaptations can help. We have learned that VantagePoint software is
most suitable for use by professionals for whom it is a “daily” tool. That has
led to building a free VP Reader to allow users to interact with results but not
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have to learn any complicated functions. So, in addition to providing a written
report, PowerPoint presentation, or whatever, an interested user can browse
lists or maps and open up entities of interest to get to particulars. The key here
is to foster interaction with that user to increase understanding of what under-
lies tech mining recommendations. We also need to make it easy to probe into
the information just when he or she is actively engaged.

Another approach is to provide a range of versions of the tech mining soft-
ware. Aureka’s “gold, silver, and bronze” software options provide three dif-
ferent capabilities at different price levels. Most importantly, the cheapest
option is much easier to learn and use. That opens possibilities for widespread
usage. Extension of this notion could lead to shrinkwrap tech mining software
priced for mass distribution.

An almost magical weapon in the drive for quick and easy is scripting. That
is, sequences of software operations that are called for on a repeat basis are
automated. As already mentioned, VisualBasic scripting of VantagePoint and
MS Excel operations enables performance of quite laborious processes of data
cleaning, analysis, and information representation at the click of a button. Such
scripting can be built up into wizards to guide the analyst through sequences
of choices and actions. These can offer both simple one-button and more com-
plicated options. In this way, tech mining functioning can be made widely
accessible.

5.2. RESEARCH PROFILING AND OTHER PERSPECTIVES ON THE DATA

The growth of science and technology databases over the past decades quali-
tatively changes the amount of information available to us. A technology
analyst in a large multinational company told us how a particular technology
search yielded 12 records in 1985 but about 120 in 1995. She anticipated an
order of magnitude of 1200 in 2005. You cannot read 1200 articles, or even
1200 abstracts! So how can you exploit such quantities of R&D information?
Tech mining, of course!

Tech mining offers multiple perspectives on activity in an R&D domain.
Emerging technology search sets, such as those of the example “fuel cells” tech
mining (Chapters 4, 12, 16), typically contain hundreds or thousands of records.
Traditionally, most technologists and managers, including information profes-
sionals, think of the great R&D databases only as ways to locate a few good
papers to read. Tools such as VantagePoint can help with this, to get to the
most relevant items expeditiously. We illustrate this in Chapter 16 by zooming
in to topics of interest and double-clicking to read particular abstracts. We also
illustrate routines that “bucket” the search set records into clusters; one then
examines the interesting buckets to read the gems, instead of dealing with the
whole set.

In contrast, a “bird’s eye view” seeks to “see” a research domain’s overall
activity. The sense of a bird flying over and looking down at the thousands of
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records is apt. We find high value in analyzing entire search sets—to discern
emphases, trends, and links among issues and methods across an R&D domain.
Chapters 16, 9, and 10 show how we can detect main patterns of domain activ-
ity, as well as fringe activity at the boundaries. We call this “R&D profiling”
(Porter et al., 2002). Such research domain analysis (Borner et al., 2003) can
alter the very way research is done by improving the transfer of knowledge
among scientists and engineers.

Research profiling can involve many tech mining analyses and representa-
tions, including: 3-D landscape views, topic maps (Fig. 16-8), lists and maps of
the main organizational players, lists and collaboration matrices of key
researchers, and so forth. This information can help target prime opportuni-
ties. It can help identify potential collaborators with complementary interests.
It can also help sell the proposal by helping reviewers understand how it fits
in the scheme of research activities and why it is valuable and special (see
Sidebar). Profiling can also help communicate research findings by literally
showing how the new findings relate to other work.
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Sidebar: The Rejected Proposal—Lesson Learned the Hard Way

In 2002 Alan Porter and colleagues submitted a proposal to the U.S.
National Science Foundation to develop “research profiling.” It was
rejected. One of the reviewers tellingly observed that it was hard to locate
where the proposed research fit. To what other activities did it relate?
Where would its contributions exert influence? The reviewer was absolutely
right—we had failed to hear our own message—that is, to provide a
“research profile” for the proposal to develop research profiling! We hadn’t
situated our activities with respect to the overall research arena or speci-
fied how it fit with other efforts. If overviewing research domains doesn’t
come naturally for us, we can’t expect it to come easily to others.

The crucial step forward is to make consideration of such overviews 
standard practice in R&D management and other technology management
activities. Scientists, engineers, and managers don’t think in these terms, so 
this doesn’t come automatically (as per Sidebar). Our “vision” is that every
research project, ranging from an undergraduate class paper to a proposed
multi-million-dollar research project, should profile its research domain.

Most of this book emphasizes capabilities to identify the main research
thrusts, leading organizations, etc. Additional value comes in finding the
“unique.” Spotting the novel concept or the stand-alone experimental finding
can indicate new opportunities worth exploring. Finding a method newly
applied to the R&D domain, or identifying common interests across fields, can
open doors. Tech mining facilitates recognition through both simple tech-



niques (e.g., list comparison) and more elaborate ones (e.g., a variation of PCD
to identify discrete terms—see Chapter 16).

5.3. MORE INFORMATIVE PRODUCTS

Previous chapters raise prospects of

• Understanding user needs, especially those of technology managers
• Deriving answers to the questions of those users
• Drawing on available theory or modeling to devise more interpretable

tech mining findings (“innovation indicators” in Chapter 13)
• Presenting tech mining findings in multiple ways to match various user

personal and cognitive style preferences (numbers, words, pictures).

Tech mining as we define it is not an island unto itself. Rather, it must inte-
grate into a range of technology management functions. We see many ways to
enrich tech mining and the value it provides.

One promising extension is to widen the information resources being
exploited. Our example, fuel cell tech mining, draws on research publication
and patent abstracts. Mining of other resources would enrich the innovation
context and market prospects indicators. Prime candidates include:

• Business information (e.g., abstract databases such as Business Index)—
to obtain indications of commercial interest and activity in a target tech-
nology, to track the emergence of standards, etc.

• Market databases—to help assess market prospects by technology,
product, sector, and locale

• General press—(e.g., newspaper indexes)—to capture signal strength
regarding popular acceptance or resistance to a technology (e.g., envi-
ronmental concerns)

• Public policy compilations—(e.g., Congressional activity, policy
abstracts)—to track development of legislation and regulations, stake-
holder interests

Tech mining must be more than astute data analysis. For example, we have
learned that some technologists and managers favor in-depth technical treat-
ment and explanations. Others just want the “bottom-line” message delivered
succinctly. Still others like integrated treatments—weaving the technology
analyses together with product development, marketing strategy, and cost
analyses in one package.

We distinguish between tech mining, as driven by technological innovation
process concepts, from data mining, which starts from the data. Chapter 13
provides our collection of 13 technology management issues and 39 questions,
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together with “innovation indicators” that we can generate to help address
them. Focus tech mining analyses on answering your users’ key questions but
also explore the data opportunistically—you might discover some pleasant (or
unpleasant) surprises.

Additionally, consider multiple ways to get your message across. Literally,
don’t necessarily choose one from a written report, an in-person presentation,
a web-based posting, or an interactive report-data combination (e.g., provid-
ing software such as VantagePoint Reader to dig down into the source data).
Combinations can amplify the signal.

5.4. KNOWLEDGE DISCOVERY

Tech mining is all about making more information available in new and pow-
erful ways. A key application is discovery of knowledge implicit in text. We
call attention to two variants with special promise—as a creativity stimulus
and in making previously unknown links.

Tech Mining as a Creativity Tool

The creativity potential of tech mining lies in its presenting information of
which people were unaware. The juxtaposition of such new information with
an issue to be resolved can suggest new solutions. The Sidebar on “Tech Mining
as New Idea Trigger” is adapted from a process used by a multinational con-
sumer products company. The tech mining results were used as stimuli at a
brainstorming session of technology analysts and researchers to identify which
new research opportunities to pursue. Note process similarities to framing the
query (Chapter 7).
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Sidebar: Tech Mining as New Idea Trigger

Tech mining can be used to expand research and technology horizons. One
company uses this approach with its researchers to generate new consumer
products. There are many variations on this theme, but here is the idea
transformed as a hypothetical case for “Bug Killers, Inc.” (BKI):

1. Define an issue—We observe that ants “magically” locate food tidbits on
our kitchen counters and get word to their relatives to join the party.
BKI ant poisons presently kill on contact. Let’s explore opportunities
based on attractants (bait) that would draw ants to delayed-action
poisons, to which they could recruit their entire colony.

2. Explore related research domains—start by reviewing research on ants
(e.g., 8275 hits in SCI).

Continued
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a. We identify ant olfactory capabilities and preferences
b. We find various types of related attractants: pheromones, juvenile ant

hormones (has been used as bait), foods that ants like (vegetable oils
and starches have been used as baits).

c. This exploration targets immediately related topics intersecting the
central issue—What materials are ants most sensitive to? (corre-
sponding to the “star” in Fig. 5-1).

3. The Key: Expand the search boundaries to research topics that share
some, but not all, of our issue’s parameters:
a. Deliberately step beyond the directly relevant material to seek novel

possibilities that we might adapt to our target (pursuing the “dough-
nut” in Fig. 5-1 with a hole in the middle).

b. Consider other ant sensing attributes (e.g., sensitivity to propriocep-
tive signals, visual recognition aids, wind detection)

c. Reach out to other ant characteristics besides sensing (such as range
marking, chemosensory capabilities, and behaviors—e.g., influence of
the queen).

d. Compare ant species differences—e.g., research on desert ants (as
opposed to dessert ants).

e. Check out olfactory attractants for other insects (e.g., SCI search on
olfaction and olfactory yields 16,536 hits on Feb 23, 2003; restricting
to insects yields 562)

f. Scan olfactory appeal to other animals (e.g., special human 
sensitivities)

g. Explore what other industries are doing as potential ideas for us to
borrow (e.g., how does the perfume industry disseminate smells so
effectively?)

h. Continue to pursue promising leads even further removed from the
center—(e.g., olfactory binding proteins.

4. Examine information resources other than research papers.
a. Patents (pursuing particulars relating to any of the research topics)
b. Business information (e.g., new product announcements with olfac-

tory elements)
5. Conduct a brainstorming session in which tech mining results are shared

with researchers, product managers, and salespersons in a nonevaluative
forum to stimulate additional ideas.

6. Screen and evaluate—identify one or more ideas with real promise and
pursue (e.g., identification and formulation of cDNA for an ant
chemosensory protein to produce our own attractants with special
appeal).
a. Next steps—technology and new product development (e.g., bait 

formulations; applications, such as building perimeter treatment 
patterns)

b. Obtain patents to protect the target IP spaces.



This stretching of inquiry domains beyond those most directly relevant
shares some notions of “analogies” with TRIZ (see Chapter 12).

Swanson Analyses

The “ants” example sets up another type of tech mining analysis—looking for
new links. In our Chapter 13 example of neural network approaches within
the “large dataset mining” research domain, we came upon a possible associ-
ation of neural nets with statistical analyses. This can be pursued in many ways;
for one, we do a new search on “neural networks” not constrained to large
dataset mining. Within this new neural net search set, we explore for fresh
methodological approaches. Then, we try to relate those back to our original
interest area—large data sets.

Swanson and colleagues have applied this logic to generate biomedical
research advances (see Chapter Resources). The gist of the approach is as
follows. We search a suitable database on Concept A, uncovering interesting
links to Concept B. We then execute a new search on Concept B, uncovering
interesting links to Concept C. With the aid of knowledgeable researchers who
know Concept A, we inquire whether A and C have been studied in conjunc-
tion with each other. If not, might this merit further investigation?

To illustrate, we (Porter and Schoeneck, 2000) have explored the worldwide
decline in amphibian populations (Concept A—why are the frogs dying?).
Searching in SCI, we found many factors advanced as possible contributors to
the decline. Concept A is linked in the research literature to such Concept Bs
as exposure to ultraviolet (UV) radiation, pH levels in streams and lakes, and
fertilizer residues. Linkage is based on co-occurrence of these terms together
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Figure 5-1. Using tech mining to stimulate creative design



with mentions of amphibian health problems. We then perform a new search
on a Concept B to discover factors to which it is linked. For instance, a new
search in SCI on “UV” exposure yields a new set of abstracts. There we find
UV associated with many other concepts. One implicates UV in damaging
DNA (Concept C). We then look for direct A–C links in the research litera-
ture—do any articles discuss DNA damage as a possible contributor to the
amphibian health problems? In the absence of such publications, we would
investigate with bioscientists whether this holds real promise for novel
research. In this illustration, several aspects of DNA damage offer research
promise: Populations that lay eggs more shallowly have greater response to
UV-B radiation, amphibians’ complex developmental sequences could be
especially sensitive to disruption, and the amphibian effects include striking
propensities to malformations. So our tech mining digging offers a fresh
hypothesis for exploration.

If you would care to try out such knowledge discovery, Swanson and 
colleagues have developed an open website, called “Arrowsmith”
(http://kiwi.uchicago.edu/), that facilitates A–B–C analyses on MEDLINE
topics. The site interacts directly with MEDLINE to search and retrieve
abstract records on Concept A and also on Concept C. It then aids one in
screening candidate linkages (Concept Bs). As another example, we have
recently explored putative linkage between Concept A—pesticides and
Concept C—thyroid disease. We were particularly interested in mechanisms
that might involve the immune system, so we screened for “Bs” accordingly.
In general, we see high potential in exploring associations among chemicals
(agents), organs, and disease (effects).

Another approach asks how we can enhance the Internet to actively answer
our questions (Agichtein et al., 2002). The authors entertain expanding tradi-
tional search engines so that questions like “How many miles are there in an
astronomical unit?” can be transformed into traditional Boolean queries (see
Chapter 7) and then answered with well-targeted internet searches. Such an
approach should work well with science and technology databases too. Why
can’t our databases help us directly answer questions?!

5.5. KNOWLEDGE MANAGEMENT

Tech mining generates valuable derived knowledge (i.e., empirically based
intelligence). Here, we raise the issue of how best to cumulate such knowledge
efficiently and effectively.

If an organization (e.g., a company) pays by the record for database search-
ing, it hates to pay for the same records multiple times. A centralized infor-
mation resources unit can maintain search sets for the company to be
augmented and updated, rather than recreated, as needed. An alternative
approach is to save the search algorithm rather than the search results, then
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rerun the search as warranted. The choice depends on working out mutually
satisfactory arrangements with the data provider.

Similar options arise with respect to tech mining analyses. One doesn’t want
to keep starting such analyses from scratch, but how best to retain analyses?
One solution arises with the idea of sharing tech mining information products
via a corporate website with periodic updating. From another standpoint, we
don’t want to repeatedly redo similar cleaning, analysis, and representation
steps. Easy generation of scripts (macros or wizards) can alleviate this burden
by capturing and automating the repetitive elements.

As already mentioned, some companies are moving to establish systematic
procedures to be followed for particular technology management tasks. Tech
mining components contribute to these procedures. Standardization of these
procedures promises huge gains in efficiency via scripting and in utility. Gains
are achieved by establishing a limited set of technology information products
for managers to assimilate. The downside to be guarded against is adoption of
a standard process without experimentation with a wide range of alternative
innovation indicators. Ongoing evaluation (see Chapter 14) can help ensure
continuing organizational learning.

Knowledge transfer extends these notions beyond a particular entity. As
explored in Chapter 14, cross-organizational exchange concerning tech mining
approaches and experiences should be encouraged. Tech mining is also a pow-
erful tool to facilitate cross-disciplinary interchange in that it fosters access to
R&D outside one’s own domain. Somehow, we need to share learning about
tech mining itself across quite distinct communities of information profes-
sionals, technology analysts, subject matter researchers, and technology man-
agers. This challenge is exacerbated in that each of these is really many
communities whose interaction to consider auxiliary tools, such as tech mining,
is uneven. For instance, we are currently grappling with how to share results
on text mining of the Hazardous Substances Data Bank (HSDB) with toxi-
cologists and environmental scientists. Most conferences and journals only
consider the technical subject. Toxicology professional associations exchange
information on advances in toxicology, not on information mining tools to aid
toxicologists. We welcome suggestions!

5.6. NEW TECH MINING MARKETS

We anticipate researchers becoming major tech mining users. We have been
surprised and pleased to see industrial researchers grasp the potential.
Researchers at Air Products and Chemicals worked with us to try out “quick”
generation of technology intelligence (Porter and Brenner, 2003). Some, not
all, became quite enthused at the prospect of doing tech mining themselves.
But to make tech mining analysis practical for casual users requires several
necessary conditions:
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• Desktop data access—unlimited use licensing of a few suitable databases
affordably (one model has researchers doing early-stage, preliminary
screening so that having the “best” data is not necessary)

• Desktop tool access—user-friendly software that a researcher could learn
to use productively in minutes and be able to take up again after not using
it for months

• Low cost per user

Note that such a dispersed tech mining model would run counter to many
organizations’ way of doing things. We believe that a central tech mining 
core of information professionals and technology analysts can support a wider
constituency of occasional users (researchers, technical professionals, and
managers).

The academic research market also beckons. University tech transfer and
vice president for research offices can apply tech mining to help prioritize
opportunities. We can imagine usage then expanding through faculty and staff
researchers to graduate and undergraduate students doing funded or class
research. The “Academic Market?” sidebar suggests that tapping this market
will not come automatically.
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Sidebar: Academic Market?

In 2003, Alan Porter participated in a U.S. National Science Foundation
review panel considering small business proposals (SBIRs). At one point,
a panelist challenged the commercialization plan of a proposed software
development project. His concern was basic—the proposed target market
was academic! The panel (largely academics) agreed on how precarious it
would be to try to make a profit selling to academics. So we have a
paradox—millions of potential tech mining customers, with extensive data
access already paid for, but woefully short of funds to buy the tools. How
can we refocus this picture? 

We see hope in a scenario in which an application of research domain
profiling proves distinctly successful. A major university research center
proposal gains an edge or students apply tech mining effectively to ace a
course. “Word” of success spreads like lightning across the campus and
other campuses as students or faculty share stories. If one campus facili-
tates tech mining by providing a blanket software use license along with the
data, word of this will spread to other schools. We see this enhancing knowl-
edge discovery by expediting transfer of findings and methods among dis-
ciplines. And, perhaps, even offering profit potential to data and software
providers.



5.7. DANGERS

As with data and text mining, tech mining poses certain concerns.* The “dark
side” of tech mining depends on your perspective—one party’s gain may well
be another’s loss. Competitive intelligence is rife with “spy vs. spy” environ-
ments. As CTI activities spread, counterintelligence efforts are apt to increase
as well. Organizations may deliberately present disinformation. Some suggest
that automotive manufacturers have pursued “defensive research” on electric
vehicles for decades, for public relations, not commercialization, purposes.
Conversely, organizations may suppress publication or patenting on a tech-
nology of high promise.

This can be carried further. Imagine drug company A determining to
abandon a particular line of research as they discover serious side effects. One
option is, of course, to publish their findings openly and redirect their efforts.
But a more devious strategy might entail delaying the publishing on the side
effect discovery while continuing to publish research as though they were still
pursuing commercialization of this line of drugs, the hope being that com-
petitor B would track A’s activity and be led to waste their own R&D efforts
pursuing this dead end. Were A to pursue this strategy further, they might
patent in a way to entice others to pursue this dead-end line, too.

In today’s global economy, as suggested in Figure 1-1, the industrializing
countries exploit international R&D very effectively. Well-networked com-
puters mean that well-trained scientists, engineers, and tech miners have full
access to science and technology publication and patent databases and the
Internet “everywhere.” So, that small American high-tech start-up had better
be alert to competition from Southeast Asia, South Africa, or Hungary, not
just Western Europe and Japan. In particular, China and India have strong
R&D capabilities of their own to complement CTI garnered on others’ 
findings.

Beyond these high-tech economic adversaries, a more sinister prospect is
the exploitation of advanced technologies by terrorists. Governments need to
consider the implications of rapid tech transfer being facilitated by tech mining
activities by terrorist organizations.

This short section should suffice to get us thinking about ethical and legal
limits to tech mining. The Society of Competitive Intelligence Professionals
(SCIP) considers such issues as competitive intelligence strives to establish
acceptable professional behavior.

CHAPTER 5 TAKE-HOME MESSAGES

• Look to a bright future for tech mining, with a lot of work required to
achieve it; track developments to quickly make use of those of value.
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• Negotiate with data providers to secure new data access arrangements to
facilitate your tech mining.

• Extend tech mining approaches to data types besides science and 
technology—e.g., policy, business, market, popular trends, product
announcements.

• Pursue tool coordination and integration where these expedite your tech
mining.

• Take advantage of scripting to expedite repetitive analyses dramatically;
try new vistas for tech mining applications enabled by much quicker
analyses.

• Demand research profiling on entire R&D domains at the initiation of
technology development projects.

• Use multiple ways to represent technology information products and to
disseminate these, including intranet sites.

• Try tech mining as a creativity tool; it can provide fresh perspectives and
rich information to stimulate new lines of thinking.

• Explore using tech mining to associate disparate information, to facilitate
knowledge discovery processes (Swanson A–B–C analyses).

• Actively collect and manage tech mining outputs to generate secondary
payoffs at minimal cost.

• Look to engage researchers and academics as active tech miners.

CHAPTER 5 RESOURCES

We note several recent approaches to address knowledge exploitation—see
the following references: Agichtein et al., 2002; Baldi et al., 2003; Barabasi 
et al., 2002; Popescul et al., 2001; and Power, 2002.

“Swanson analysis”—examining R&D literature to generate previously
unknown A–B–C links is reflected in a number of papers—cf. Swanson 
and Smalheiser, 1997; see http://kiwi.uchicago.edu/references.txt. Kostoff
(http://www.onr.navy.mil/sci_tech/special/technowatch/) has arrayed a host of
logical relationship possibilities associated with spanning of isolated research
domains.
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Part II

Doing Tech Mining





Chapter 6

Finding the Right Sources

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

This chapter guides you through the vast amount of electronic information
available on emerging technologies to get to what you need. We distinguish
information about R&D inputs, such as personnel and funding, and R&D
outputs, such as new knowledge and technology. We point to science and tech-
nology databases as the primary gateway to R&D output information. Tech
mining exploits research publication and patent information to yield valuable
indicators of underlying technological progress.

CHAPTER CHALLENGE: THE DEBRAND FOUNDATION

• Imagine that you head the (hypothetical) DeBrand Foundation’s 15-person
research evaluation unit. Your annual research proposal solicitation deadline
is approaching—you are giving out $170 million this year. You will help pick
about 850 winners from some 2500 proposals you expect to receive.

• The Foundation Board has tasked you with improving the proposal review
process by taking better account of other R&D. They want you to apply tech
mining to ascertain how given proposals contribute to particular research
domains and avoid duplication of others’ efforts. They also believe that mining
science and technology databases can help determine the capabilities of the
proposing researchers. Over the six weeks following submission of these 2500
proposals, you are to complete this tech mining effort.

• This chapter will follow the issues faced by this fictional nonprofit as it gets up
to speed with tech mining. We begin by asking:Which on-line databases should
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the Foundation use to further its mission? Has it chosen an optimum means
for accessing the data? What will it cost to get these data?

6.1. R&D ACTIVITY

Scientists and engineers conduct a tremendous amount of research—how do
we find out who’s doing what? Most of our attention is directed at their
“outputs.” Luckily, they publish hundreds of thousands of research articles and
file for hundreds of thousands of patents every year. This number is growing
some 20% every decade. There are thus millions of public research publica-
tions and patents, ripe for investigation. So, how can you get to them?

Focus on two main sources on R&D outputs—the Internet and the pub-
licly accessible (syndicated) databases. The Internet is a vital source of tech-
nology information. Its importance grows because of the increased popularity
of on-line publication and the low transaction costs for retrieving on-line pub-
lications (Lawrence, 2001). Complementing the Internet, a number of data-
bases compile a wealth of science and technology information. We want to
make the most of these sources to monitor R&D activity and its implications
for impending technological progress.

Before embedding ourselves in R&D publication and patent considera-
tions, we more briefly pose R&D input and other output measurement 
possibilities.

Input and Output Measures

Input measures represent investment in a given science and technology area.
One key data type concerns personnel—for example, the number of scientists
and engineers engaged in R&D. Another addresses financial commitment—
for example, investments in R&D. Both are compiled at national and inter-
national levels (e.g., U.S. National Science Board, 2002; UNESCO and
UNCTD) and can be pursued at organizational levels as well. Appropriate
sources vary widely. For instance, PriceWaterhouseCoopers compiles a data-
base on how much venture capital is going into particular technological areas.
For another, the “Community of Science” compiles a Funded Research data-
base that tabulates which businesses have received Small Business Innovation
Research (SBIR) grants.

Promising sources for tracking R&D inputs, policies, and performance by
nation are the “Community Innovation Surveys” being conducted by Euro-
pean countries and a growing number of others. These contribute to the “Inno-
vation Scoreboard” (http://www.cordis.lu/innovation-smes/scoreboard/home.
html). The Organisation for Economic Cooperation and Development
(OECD) publishes a variety of benchmark figures for national and industry
R&D (http://www1.oecd.org/publications/e-book/92-2001-04-1-2987/A.4.1.htm).
See their “Science & Technology Scoreboard.”
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Besides direct R&D outputs such as publications and patents, we can con-
sider many other measures. This book addresses citations to those outputs in
several places. Royalties and license fees constitute another science and tech-
nology output of real interest from corporate to national levels (e.g., the World
Bank’s World Development Report—http://econ.worldbank.org/wdr/). We
expect technological innovation to result in new commercial products and ser-
vices, and interesting data pertain (e.g., number of new product announce-
ments; portion of sales from products introduced in the past three years).
Further downstream, we look to economic growth. Treatment of these less
direct measures, potentially ranging from single organizations to multinational
regions, is beyond this book. Brainstorm measures that could serve your tech-
nology analysis needs and play detective to locate them!

This short treatment has “accordioned” from thinking about quite specific
technological innovation measures—for example, for one target technology as
being developed by one company—to incredibly broad ones—for example,
European innovation writ large. Beware that anytime we treat the overall
science and technology effort of a substantial enterprise, not restricted to a
particular technological domain, those data will be very heterogeneous.

Data Volume and Its Challenges

Tech mining studies range dramatically in scope. You might be profiling R&D
activity across Western Europe to look for potential collaborators. “Edison
House” (a tri-services U.S. military office) does so to “make marriages”
between American and European researchers. They mine science and tech-
nology databases in support of human networking to identify exciting research
activity and bring potential cross-Atlantic collaborators together. Tech mining
helps identify productive conferences on particular topics and to identify
highly active researchers to seek out. It amplifies the effectiveness and effi-
ciency of “good ole boy” networking. As a different example, you might be
focusing on research activity in a particular city to determine its “cluster”
potential. Or competitive technological intelligence (“CTI”) often keys on one
company’s work—either in one technology or across technologies. Sometimes,
we focus on a particular research center or one investigator’s recent activity.
At another level, scientometric studies may do a retrospective over decades of
R&D in a given domain. Obviously, tech mining studies vary greatly as to
which data best tap into the R&D networks for particular purposes.

Scientific research is organized in hierarchies of discipline, field, and 
specialty. Disciplines (e.g., chemistry) are the largest units of scientific orga-
nization, encompassing many fields. Fields (e.g., molecular chemistry) are
intermediate areas of research. Specialties, or research domains (e.g., nano-
tubes), are often the most fruitful level to address in tech mining. Patent
studies are often organized by technology and industrial applicability. You
might be asked to profile the competition in R&D on adhesives—for bio-
medical applications.
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Tech mining thus varies tremendously by topical breadth, temporal horizon,
organizations included, and geographic locus. The amounts of information
involved correspondingly range enormously. Table 6-1 represents the rough
orders of magnitude involved.

Reading “hundreds” of publications and patents would be a challenge—
even to digest that many abstracts. But way beyond this level, some studies
require analyzing hundreds of thousands of articles. One of us (SWC) did his
doctoral research profiling all of British science, processing millions of publi-
cation titles. Regardless of the specific scope, tech mining uses computers and
software to analyze large amounts of science and technology information.

But there’s a major conceptual hurdle here. What do you think of when we
talk about abstract databases and finding thousands of research articles or
patents? Nearly all of us consider articles as something to read. Nearly all of us
cringe at the very thought of reams of printouts—“Here’s 3500 abstracts on fuel
cells; have a great weekend!” But if you really had to—imagine you’re the poor
grad student assigned to “review the literature” and handed those 3500
abstracts—what to do? Winnow, winnow, winnow! Start with the most recent
ones; maybe scan for ones from the leading journals; possibly key on words like
“breakthrough” or “the future of”—anything to reduce the number to a “few
good abstracts.”Then,like an effective information professional,you would give
your advisor a handful of papers to read. If you have successfully read his or
her mind as to what is most salient, you are thanked for finding a gem or two.

Tech mining can help mine for those special nuggets, as per this illustration.
However, tech mining has much more to offer. In the next two sections we
discuss how databases can be leveraged to better understand R&D. We also
discuss how to select the right database for your needs. In later chapters, we
will show how to profile entire bodies of R&D information to see the big
picture, spot trends, and discover new associations.
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TABLE 6-1. The Scope of Scientific Publication

Science and Technology Output Annual Magnitude

Publication: World production 1,000,000+
Patents: World awards

Publication: Output of leading nations 100,000+
Patents: Awards of leading nations

Publication: Disciplinary totals 10,000+
Patents: Industry awards

Publication: “Field” annual totals 1,000+
Publication: “Specialty” lifetime
Patents: Corporate lifetime totals
Patents: Sector annual totals

Publication: “Specialty” totals 100+
Patent: Technology totals



The Internet

The Internet offers a vibrant and rapidly growing resource, but it is a frustrat-
ing source to mine. Peer-reviewed S&T articles are not routinely available on
the Internet. Chapter Resources mentions a few exceptions, and the Internet
often serves as a conduit to access syndicated databases. The Internet contrasts
sharply with the S&T abstract databases. Most significantly, much of the Inter-
net consists of unstructured text,whereas the databases provide field-structured
information. In addition, most Internet sources lack quality assurance.

Despite this, there is increasing evidence that the Internet is becoming an
important repository of scientific information, much of which is freely avail-
able to scientists, engineers, and the interested public. This stems from its low
overhead costs as well as the high visibility it affords scientists who distribute
their research over the internet. It is a vital source of technology information.

Nonetheless, we recommend letting others compile the internet information
for us (see Chapter Resources and Appendix A). A good tech mining motto is
Don’t compile data yourself if someone else is doing it for you! Then access the
prime records from consolidated sources—namely,databases.We use the Inter-
net to augment tech mining of database information. In the tech mining exam-
ple (Chapter 16), we show how to pursue leads generated through analysis of
search sets (from databases), using the Internet to get at current research work.

The coming chapters focus on exploiting syndicated S&T databases. Mining
the scientific information (freely) available on the Internet poses significant
hurdles in gathering and structuring those data. Overcoming these hurdles
requires additional technical capabilities and is best left for more advanced dis-
cussion. Such efforts get into applied artificial intelligence (AI) methods, such
as the use of “bots”(intelligent agents,crawlers) to automatically search for par-
ticular information. Entity extraction approaches do good work in finding asso-
ciated information, if you know ahead of time what you’re looking for to seed
the searches. Search Technology and others are exploring ways to effectively
combine such approaches with the statistically based tools emphasized here.
Combinations of free-text and field-structured text analyses offer particular
promise for tech mining. In the future, expect strides in utilizing S&T databases
together with the Internet in powerful ways. For now, we advocate “picking the
low-hanging fruit”—that is, exploit the great compilations of S&T information
in databases and follow up on specific leads over the Internet.

The next section looks at the data, specifically the S&T databases and the
sort of records they contain.

6.2. R&D OUTPUT DATABASES

Text as Data

A familiar, overarching categorization of data is the distinction among data,
information, and knowledge:
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• Data: raw, unprocessed content and discrete facts
• Information: data organized into meaningful patterns
• Knowledge: insight; information interpreted into a useful framework

Tech mining treats text as data–that is, we manipulate, count, and analyze
text—much as data miners do with numerical data. It’s been charged that this
is an engineer’s approach—to escape having to read. (But, alas, selective
reading is still mandatory!) The big payoffs in tech mining lie in finding rela-
tionships across entire sets of text records retrieved on a topic of interest.

Tech mining transforms textual data—thousands or even millions of chunks
of data—into actionable knowledge about emerging technologies. Let’s
examine what kinds of data to use to gain the most valuable insights.

Publication and Patent Databases

Two of the most accessible sources of technology information are publication
and patent abstract databases. Full-text, as contrasted to abstract, sources are
increasingly available, and obviously highly valuable. But for our detective
work, the abstract databases provide a better starting point because they con-
centrate tremendous quantities of raw information into well-structured
records. They are ideal for tech mining.

Let’s first consider scientific publication abstract databases. The “premium”
information consists of peer-reviewed articles from scientific and technical
journals. Some databases, such as Science Citation Index, restrict themselves
to abstracting articles from such journals. Most S&T databases include peer-
reviewed, primary research articles along with reviews, non-peer-reviewed
articles, letters, conference papers, and so forth. For some tech mining pur-
poses, you won’t care about these source quality distinctions; for others you
will. Many databases include a field denoting publication type (e.g., the “PT”
field in the MEDLINE abstract shown just ahead).

Patent databases provide the other main tech mining resource. Patents 
are the key public disclosures of invention. The U.S. Patent and Trademark
Office (USPTO) is the largest database of patents in the world 
(http://www.uspto.gov/; also see Appendix A). Because of the extent of 
American invention and the appeal of the U.S. market, if you were to pick 
one resource for measuring patent activity, this would be a good one. How-
ever, USPTO presents problems as well. It has historically made available the
patents granted, but lags average several years from submission, with some
patents not appearing for as long as ten years. Only beginning in 2001 has
USPTO made available information on patent applications (18 months after
submission, with exceptions). Tech mining analysis of U.S. patents alone biases
toward American inventors; this is increasingly unacceptable in our global
economy. Moreover, retrieval of large search sets is essentially unworkable.

Virtually all industrialized nations have their own patent systems. The
Japanese Patent Office (JPO) is the second most prominent, with English 
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language patent availability on its website (http://www.jpo.go.jp/). The Euro-
pean Patent Office (EPO) helpfully consolidates much European patenting
(http://www.european-patent-office.org/), but national patenting remains
legally important. The World Intellectual Property Organization (WIPO)
(http://www.wipo.org/) provides resources such as the Intellectual Property
Digital Library with international registrations and patent cooperation treaty
filings (these provide international protection for a year, after filing in one
country to decide in which other countries to file). We will say more about
picking patent databases later and pursue such matters in Chapter 12.

We want access to these publication and patent databases electronically.
This may well be through an Internet connection, but that’s just the medium
to tap into the database. Note that most S&T databases charge to retrieve 
documents. Exceptions include the national patent office databases and other
government databases, such as MEDLINE. Certain database providers take
publicly available information (such as U.S. and other patents) and structure
and organize the information for better access (e.g., Derwent World Patents
Index, MicroPatent)—for a price.

The information contained in such databases is rich and suitable for
“mining.” For instance, the tech mining example we present in Chapter 16 pro-
files development of fuel cells. R&D relating to this electrochemical technol-
ogy generates many papers. A Dialindex scan of 34 science and technology
databases included in Dialog (a gateway service to over 400 databases), finds
almost 28,000 chemistry-related article abstracts in Chemical Abstracts and
much engineering also—over 7500 abstracts in INSPEC and 6500 in EI 
Compendex. Energy Science & Technology yields over 25,000 abstracts 
(coverage ranges from about 1970 to 2002 for these tallies). These searches
overlap to a fair degree, depending on the topical coverage. Additionally, one
might explore business interest in fuel cells via 3600 items found in the Busi-
ness Index since 1988. Often, we search and analyze such volumes of R&D
information to identify leading research groups and then visit their websites
to find out about their latest activities. Tech mining also profiles the totality of
this R&D to discern relationships and trends (upcoming chapters).

Database Organization

Simply stated, an S&T database is a compendium of individual records of data.
Each record usually reflects one publication or patent, whether as an abstract
or a full-text record. The records are stored in a central location and struc-
tured so that users can fetch specific kinds of information on request.

Note that most syndicated S&T databases are set up for use by people who
want to retrieve a very few records—perhaps downloading one or two key
items. Technology miners, however, typically grab thousands of records. Con-
venient downloading in quantity is a critical enabling attribute for tech mining.
Fortunately, many gateways facilitate this type of electronic retrieval. One
needs to be aware of and respect database restrictions. These aim to protect
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the database provider’s intellectual property (“IP”)—for example, to dissuade
users from setting up a copy database.

Individual Records

To ensure that we are on common ground, let’s examine the content of a rep-
resentative database, down to an individual record. In this chapter we will
discuss the arrangements necessary to access, search, and retrieve records from
this, and other, S&T databases.

MEDLINE exemplifies one such structured abstract records database
freely accessible via the internet (http://www.ncbi.nlm.nih.gov/PubMed). One
of the 12 million+ records found on MEDLINE is summarized as a sidebar.
This record tells us that Kamoun and his coauthors did an empirical study
relating to a particular genetic change associated with diabetes. Their write-
up of this research appeared in a French pathology journal in 2001. It has been
indexed for MEDLINE and assigned an identification number.
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Sidebar: Example MEDLINE Record Summary

Kamoun Abid H, Hmida S, Smaoui N, Kaabi H, Abid A, Chaabouni H,
Boukef K, Nagati K.
Association between type 1 diabetes and polymorphism of the CTLA-4
gene in a Tunisian population. Pathol Biol (Paris). 2001 Dec;49(10):794–8.
French.
PMID: 11776689 [PubMed—indexed for MEDLINE]

MEDLINE offers a number of choices to go beyond this limited Record
Summary. In many cases it offers the opportunity to order the full article while
you are on-line. If you’d like to find more articles, it points to another 364 arti-
cles that relate to the topics of this article (as of Jan. 2004). We emphasize
abstract records, noting that some disdain these (sidebar).

Sidebar: Abstracts

Text mining purists demean abstracts. They tout full text as the “whole
truth,” and anything short of that is suspect. We take a different perspec-
tive. Abstracts constrain authors (or indexers) to tell what’s essential about
a piece of work, briefly and clearly (to be understood by a wider audience
than the full text targets). R&D publication abstracts make for rich
mining—they generally try to incorporate all of the key terms and they
entail less noise from marginal text discussions. They are analogous to the
executive summary of corporate reports. Collections of abstracts on a given
topic provide excellent coverage of the content of the field—hence, a fine
source on which to profile an emerging technology.



For tech mining purposes, we prefer to work with an intermediate level of
detail—abstract records. By selecting the “MEDLINE” formatting option on
the website, we obtain these. Furthermore, we elect to retrieve not just one or
a few abstracts of special interest, but the entire set on the topic of our search.
In seconds, this yields some thousand or so abstract records right on our com-
puter. We will discuss this transfer of articles between computers in Chapter
7. Now, however, let’s examine the full abstract record of the article by
Kamoun et al. in Exhibit 5-1.

EXHIBIT 5-1 A Sample MEDLINE Abstract

UI 21633248
PMID 11776689
DA 20020104
DCOM 20020117
IS 0369-8113
VI 49
IP 10
DP 2001 Dec
TI Association between type 1 diabetes and polymorphism of the CTLA-4

gene in a Tunisian population
PG 794-8
AB Susceptibility to type 1 diabetes mellitus is strongly associated with partic-

ular HLA class II alleles. However, non HLA genetic factors are likely to
be required for the development of disease. The candidate genes include the
cytotoxic T lymphocyte associated 4 (CTLA-4) located on chromosome
2q33 and designated (IDDM12), which encodes a cell surface negative
signal T molecule providing for activation. We investigated CTLA-4 exon 1
dimorphism in 74 type 1 patients and a control group of 48 healthy subjects
from Tunisia using two methods PCR (polymerase chain reaction) allele
specific and polymerase chain reaction restriction fragment length poly-
morphism (PCR RFLP). The CTLA-4/G allele was found on 68.9% in type
1 patients as compared to 51.02% in controls (p = 0.002), mostly in homozy-
gous from 43.24% versus 22.45% (p = 0.0058). These results indicate that
CTLA-4/G allele was significantly associated with predisposition to type 1
diabetes in our group from Tunisian population.

AD Institut national de nutrition et de technologie alimentaire, 11, rue Jebal
Lakhdhar Bab Saadoun 1006, Tunis, Tunisie.

FAU Kamoun Abid, H
AU Kamoun Abid H
FAU Hmida, S
AU Hmida S
FAU Smaoui, N
AU Smaoui N
FAU Kaabi, H
AU Kaabi H
FAU Abid, A
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Exhibited 5-1 Continued

AU Abid A
FAU Chaabouni, H
AU Chaabouni H
FAU Boukef, K
AU Boukef K
FAU Nagati, K
AU Nagati K
LA fre
PT Journal Article
TT Etude de l’association entre diabete type 1 et polymorphisme du gene

CTLA-4 dans une population tunisienne.
CY France
TA Pathol Biol (Paris)
JID 0265365
RN 0 (Antigens, Differentiation)
RN 0 (CTLA-4)
SB IM
MH Adolescence
MH Alleles
MH Antigens, Differentiation/*genetics
MH Child

In this abstract record, we see many fields typical of abstract databases. Sep-
arate fields of potential tech mining interest appear for authors, authors’ orga-
nization, title, date, journal name, publication type (article), and keywords.
Other fields shown are usually of less tech mining interest. Patent abstracts
are roughly analogous, but with differences (e.g., those preparing patents may
not want to communicate their intents fully). Patent data are considered later
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TABLE 6-2. Answering Tech Mining Questions by Using R&D Publication Abstract
Record Content

• How recent is this research? [Use Date of publication (DP) or the date on which
the record was added to the database (DA)]

• How might you describe the key ideas in this research? [Could use: Title (TI);
Keywords (MH); and/or Abstract terms (AB)]

• Who is working on topics that concern me? [Look at Authors (AU, FAU)]
• Which organizations are publishing the most on particular subtopics of interest?

[Check First Author’s Affiliation (AD)]
• What nations lead in this research? (Extract the “country”—embedded in the AD

field (First Author’s Affiliation), not CY, which is the publication place of the
journal!)

• How did the authors make their discoveries? [Examine clues in the Abstract (AB)]
• How would others classify this research and identify related topics? [Try Codes or

Keywords (MH for MeSH—medical subject headings)]



in this chapter and in Chapter 12. Table 6-2 shows the basic strategy of posing
a tech mining question and finding record fields that could be tallied to answer
it, with the aid of tech mining software.

Some repositories provide other valuable types of information as well.
These include useful “input” information in the form of sponsorship data and
additional “outcome” information in the form of citation data (in Science Cita-
tion Index). Research may be sponsored by one institution but conducted by
another. Tech mining can use this information to track research funding
emphases and research participation patterns.

Individual authors almost universally provide citations (references) in their
publications. The role of citations is to acknowledge an author’s intellectual
debt to others. Those can be compiled as a valuable form of output informa-
tion. We can mine this information to identify communities of shared interest.
Additionally, this information can suggest which authors, research groups, and
institutions are held in the highest repute by their peers—potentially quite
helpful in research evaluation tasks.

We will come back to consider the information available in typical fields of
an S&T database and how to exploit this. First, however, we step back to con-
sider the nature of the tech mining enterprise—measuring technology.

6.3. DETERMINING THE BEST SOURCES 

What are key characteristics to consider in evaluating potential S&T data-
bases? We also note a number of auxiliary sources. Ultimately, selecting the
specific sources involves consideration of the tech mining priorities, available
information resources, and attendant costs.

Database Characteristics

A few key qualities of the data make MEDLINE, and other databases, par-
ticularly suitable for tech mining. Let’s examine these (Table 6-3).

Scientific repositories are not all based on text. We also have databases 
containing chemicals and their properties, genetic information, geographic

DETERMINING THE BEST SOURCES 79

TABLE 6-3. Database Characteristics Conducive to Tech Mining

• Each record describes specific developments in S&T 
(i.e., primary research findings being reported).

• Each record is attributed to specific researchers and identifies their organization
(at least for the lead author).

• The repository is rich in pertinent text records.
• It comprehensively covers an important S&T domain.
• The repository provides suitable quality assurance.
• Each record is structured with pertinent data fields.



positioning information, and imagery. These are all interesting sources of infor-
mation—however, this book focuses on R&D abstract resources.

Tech mining strives to assess the knowledge of whole communities of sci-
entists and engineers. Complementary “expert opinion” techniques seek the
views of individuals. In contrast, one of tech mining’s aims is to analyze 
the “whole”—the body of knowledge pertaining to a technology of interest.
The goal is therefore to obtain as many relevant records as possible—not those
few that we would traditionally have read.

Records for a tech mining study may derive from a single source (database).
A “dense” repository contains many relevant records in a single place. This is
certainly convenient and provides advantages in consistency (e.g., “keywords”
compiled across databases may merge very different hierarchies). However,
other tech mining work may warrant your blending searches performed in
multiple databases.

Science and technology are quality-assured processes. Scientists and engi-
neers work in communities and have their work peer-reviewed by others. This
helps check that new knowledge can be assimilated and, most importantly,
reproduced by others. The history of S&T is full of maverick ideas and
researchers that rechart the course of scientific history. Nonetheless, the major-
ity of R&D being conducted is “normal” science. It works by using established
principles, with accepted forms of scientific proof and argument. The tech
miner should favor information that has been quality assured. (Exceptions do
arise—for early warning purposes you may want to analyze “fringe” literatures
to identify concerns that may later spread.) Quality can be assured, to a degree,
by using data from peer-reviewed scientific journals or patents that have been
examined to determine novelty. Some scientific content, such as articles, book
reviews, many conference proceedings, and editorial commentary, is not peer-
reviewed. Consider whether or not you want to include these in your analy-
ses. You can often restrict your search to research articles by selecting the
appropriate record type (e.g., in the MEDLINE abstract illustration, by check-
ing the value of “PT”).

A whole “ecology” of information exists about S&T. Sources of informa-
tion may be directly or indirectly attributed to those actually conducting R&D.
Technology information miners would often favor primary research articles
and patents because these more directly reflect R&D activities.

Records come in “structured” and “unstructured” formats. A general 
internet search exemplifies “unstructured” format materials. Tech mining 
uses computerized tools to assess vast quantities of information. Although
these tools are increasingly capable of parsing data in complex formats,
the miner should select structured or “machine-readable” file formats if 
available. Structured records consolidate important information more acces-
sibly than free text, and these records are therefore much easier to mine. The
qualities of data we note here offer solid guidelines for evaluating suitable
databases.
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Other Sources

Not all sources are of equal quality or validity. Figure 6-1 characterizes the
wide range of S&T databases. We can variously locate direct descriptions of
“raw” R&D work, up through interpretations of the implications of entire
bodies of such work. So information about “stem cell research” ranges from
highly technical reports on specific research studies through papal pro-
nouncements on the meaning of life.

You can tap directly into the description of R&D findings by the
researchers themselves. These tend to be rich in technical detail and scientific
specifics. Or, alternatively, you could examine sources written by outside
observers, analysts or journalists, to gain an independent perspective on the
research.

Which sources of information are right? The answer “depends”—on the
issue you are trying to resolve and which types of information speak to that
resolution. Generally, we want to track R&D advances and the prospects for
successful innovation (commercialization) of a certain technology. Had we
such interests for “stem cell” development, we might very well want to profile
both the outpouring of technical gains and the resulting societal reactions.

Figure 6-1 distinguishes four sorts of information based on the source and
level of abstraction. For technical depiction, one would usually prefer to
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operate in the lower left quadrant. Most S&T databases include review type
articles (lower right quadrant) together with primary research reports. This
usually poses no particular concern for tech mining purposes.

Indirect, but relatively specific, content is illustrated by on-line newsgroups
(upper left quadrant). It may be difficult to establish the real identities or affil-
iations of those posting therein. When tech mining is being used to track the
actual conduct, ideas, and activities of scientists and engineers, you generally
prefer to use the most direct depictions of these activities that are available.
Market research reports reflect secondhand interpretation of a given indus-
trially relevant S&T area. These may indeed be useful sources of information;
however, using these metastudies is another topic. For now, we suggest you
augment your tech mining work with these additional perspectives.

Indirect discussion of S&T work appears in news articles and press releases.
These sources have been filtered, often by third parties, to make the informa-
tion approachable and of interest to some larger community. Such sources can
help you as a tech miner understand the basics. They can also shed light on
popular understandability and acceptance, and on the likelihood of “show-
stopper” issues blocking the development of the technology in question.

One can extend the kinds of information, and databases, used for tech
mining. There are sources to track public (e.g., newspaper article compila-
tions), legislative (e.g., Congressional Record), and economic interests (e.g.,
databases such as Lexus-Nexus) attendant to S&T developments. You can
extend tech mining approaches to both enrich your business intelligence and
create “metastudies” of S&T development. However, full treatment is beyond
our scope. We concentrate on the “raw” R&D content that is closest to the
researchers themselves—abstract records of conference and journal papers
and patents.

Evaluating Databases

Regardless of the specifics, you apply similar steps to evaluate the suitability
of a given database.

First, consider the characteristics of the database as a whole, ensuring that
it meets a set of minimum standards in line with your information objectives.
Considerations include:

• Suitable coverage (e.g., covers the topics of concern; inclusion of classi-
fied technical development)

• Comprehensiveness of coverage
• Biases (e.g., toward English language publication; capturing industrial

R&D efforts) 
• Content quality
• Record structure (e.g., inclusion of essential information for your pur-

poses; consistency) 
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• Keyword availability (e.g., inclusion of subject index terms; consistency of
these)

For some purposes, analyzing the entire repository in limited ways can help
calibrate one’s specific analyses. In sections on “innovation indicators,” we
note how “term frequency” in a particular search set can be benchmarked
against the frequency of those same terms across the entire repository (data-
base) to characterize the R&D emphases associated with that topic.

Consider two dimensions in selecting S&T databases. First,determine where
your intelligence needs lie along the “vertical” maturation axis (Fig. 6-2). For
instance, if your analyses serve R&D management in selecting which proposed
projects to support,move upstream (toward Fundamental Research). Consider
using databases like Science Citation Index (SCI). In contrast, if you’re man-
aging IP, shift downstream. Include one or more patent databases and consider
enriching with an engineering or industrially-relevant source as well.

A second dimension distinguishes “horizontal”—topical—emphases (not
shown). For instance, if you are interested in the practice of medicine, start
with MEDLINE. If your interests lie in medical research, augment with SCI.
If your interests lean toward medical devices, access EI Compendex as well.
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Figure 6-2. S&T maturation axis



On the other hand, if you are working with chemicals, the starting point is most
certainly Chem Abstracts.

Stretch to include other sources as warranted. Database providers will help
you recognize topical affinities. For example, Engineering Information (EI;
www.ei.org) offers subsections of the website: “Engineering Village,” “Chem
Village,” and “Paper Village.”

Second, examine the content available in the records to determine which
features serve your tech mining needs. In terms of software such as Vantage-
Point, this means determining which fields to mine. For example, the full repo-
sitory records may contain over a hundred fields (e.g., the Hazardous
Substances Data Bank maintained by the U.S. National Library of Medicine)
from which to select those relevant to your tech mining exercise.

Selecting Databases

How do you decide which S&T databases to mine?  Our three pointers:

• Be clear on your objectives and which types of information support them.
Separate what you “really must have” from what “would be interesting.”

• Know what’s at hand. Check throughout your organization to find out
which databases you have already licensed for unlimited use. Second tier,
identify additional databases whose value is clear, even though you have
to pay for each record you retrieve. Third tier, identify additional data-
bases that seem promising to investigate.

• Balance against your available resources. How much can you spend for
data for this study? How much for tech mining work this year all told?
How much time do you have to learn an unfamiliar database? Will a
cheaper source eat up more of your time and resources trying to make
do with inferior-quality data?

Weighing these three factors, pick one or a few databases that offer the
richest information resource for your needs. In other words, weigh both ben-
efits and costs. Suppose you are pursuing CTI about certain information tech-
nologies. We suggest you consider INSPEC, EI Compendex, and a patent
database, such as Derwent. The “cost” section to follow will make the case that
your organization wants to license a few key databases for unlimited search-
ing to avoid paying by the record. Tech mining calls for “carefree” (or nearly
so) access to tens of thousands of records.

Refer to Appendix A for a listing of some leading S&T databases.

6.4. ARRANGING ACCESS TO DATABASES

We now turn to a key enabling process—how do you gain access to, then search
and retrieve the information to mine? We will also address cost because these
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resources usually come quite dearly. Cost considerations should strongly influ-
ence your organization’s arrangements to access syndicated databases.We begin
by considering two sources of information—internal and external databases.

Internal Databases

Your organization maintains internal data. These data are precious because
they directly address your business, but data turn into valuable information
only if you explicitly determine to exploit them. These data can range enor-
mously—for instance, from credit card records of purchases, to cumulations of
maintenance record notes, to design histories, to you-name-it.

Exploiting internal data requires careful data management—perhaps even a
data warehouse. Data warehousing is not our focus, but we offer three observa-
tions. First, fight against the sacred cow called “security.” The pendulum of fear
swings wildly; we assert that it generally sways too far toward protection at the
cost of access. Second, in determining how to structure internal data repositories,
we recommend flexibility. Rapidly changing information technologies and
rapidly evolving information needs imply that today’s optimum structure has
little chance of being optimal in the future.Third,as we turn our attention to exter-
nal data resources, we favor minimizing compilation within your organization.
Anything you can do to take advantage of someone else managing and updating
information resources, rather than taking on these tasks yourself, the better.

However, beyond this bit of cheerleading to use the data your organization
collects (see the sidebar, too), we will largely emphasize external data. Two
reasons—we can all use these external sources (within bounds),and tech mining
is heavily into intelligence about what’s happening outside our organization.

ARRANGING ACCESS TO DATABASES 85

Sidebar: Exploit Internal Databases

We bet that your organization compiles some potent data and information.
Too often, internal databases are scattered around the organization, difficult
to keep track of,and awkward to access (particularly in conjunction with each
other). Knowledge management wrings its hands over such “black holes”—
resource sinks where a lot goes in but nothing comes out. We’ve just been
working to access a fantastic internal projects database at Georgia Tech. Dif-
ferent people had to authorize ALP to access the database, lead him through
the process to get to it, and provide a digital ID to use it. That’s enough small
hurdles to sap initiative. But four months after initiating the process, he had
access to the database. Step aside for the holidays and some travel. It’s now
early February—and here’s an E-mail that his digital ID is expiring and we
need $13.95 funding to extend it for a year. Yes, this database really merits
high security, but access hurdles sure discourage usage.

The lesson in this is not to do the things the Georgia Tech way—
instead, centralize internal databases, and make authorized access as pain-
less as possible.



External Databases

Few questions can be answered well by using only internal databases. Con-
sulting external databases, however, requires specific institutional and tech-
nological arrangements. Actually, exploiting both internal and external
information resources together is often best—for example, profiling external
R&D on a topic of concern along with review of related internal projects.

To understand the external alternatives, we first consider the institutions
that may be involved in accessing them. Next we discuss the mechanics of
information transfer. Finally, we examine the economic arrangements involved
in accessing S&T databases. Join our DeBrand Foundation in the sidebar to
kick us off.
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Sidebar: Selecting Databases at the DeBrand Foundation

What databases should the Foundation acquire? Three things are dictated
by the Foundation’s mission. First, a strong interest in medicine. Second, a
concern with agricultural technology. Third, a broad emphasis on global
issues, particularly demographics and population in the developing world.
Of particular interest to the Foundation therefore are the following:
MEDLINE (the database of the U.S. National Library of Medicine), Agri-
cola (a leading agricultural science database), and the Science Citation
Index (the foremost database for science).

Organizational Relationships

The diagram in Figure 6-3 shows five groups—the user, the host, the distribu-
tor, the provider, and the researcher. We consider relationships among these
groups and their roles in creating or distributing technology information. First
a brief definition, and then a more detailed discussion of their roles:

• Users access science and technology information.
• Hosts provide the necessary network and licenses to access the 

information.
• Distributors provide a gateway to a variety of databases.
• Providers (also called aggregators) create electronic, and online forms of

content.
• Researchers write scientific and technical articles and submit them to 

journals.

First and foremost there is a user. The user may have a local host that pro-
vides access to one or more technology repositories (databases). For instance,



our Technology Policy and Assessment Center (TPAC) at Georgia Tech
accesses several key sources via the Georgia Tech Electronic Library, others
through the statewide Galileo network, and some directly over the internet
(e.g., MEDLINE). See sidebar.

Some database providers work directly with customers and/or local host
units, whereas others utilize intermediaries to assist in the distribution of the
information. Many offer multiple avenues of access. Providers may be part of
a syndicate with specific rights to published research, such as a publication
company (e.g., Reed Elsevier or Thomson). Database providers compile data
from multiple sources—for example, INSPEC abstracts papers from thou-
sands of journals and conference proceedings.

Intermediary distributors are also known as “gateways.” Gateway services
can take you to multiple database providers through a single common inter-
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Figure 6-3. Five user groups 
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Sidebar: Institutional Access at Two Technological Universities

Many universities these days provide their students and faculty with unlim-
ited use access to many databases.

For instance, at Georgia Tech, we have had a four-tier system. First,
loaded directly on Georgia Tech servers for immediate access have been
INSPEC, Engineering Index (EI Compendex), NTIS (National Technical
Information Service), U.S. Patents, Computer Database, Company Intelli-
gence, Business Index, and others (e.g., Georgia Tech Library Catalog).*
Second, Georgia has a statewide system providing access to about 150 data-
bases, through various providers such as EBSCOhost and ProQuest. These
include Agricola, Applied Science & Technology Index, Environmental Sci-
ences & Pollution Management Set, National Newspapers, and Readers
Guide Abstracts. Third, the State has obtained access to over 100 databases
via the web, including Chem Abstracts, Community of Science, Gale Busi-
ness Resources, and Science Citation Index. Fourth, additional databases
are available on CD-ROM. This availability implies that most graduates will
enter corporations and agencies familiar with these sources and how to use
them.

At the Delft University of Technology (TU Delft), in The Netherlands,
information is available to students and faculty through a single library
website that serves as a useful gateway. Many databases, accessible through
the web, are suitable for tech mining. There are three tiers. The first tier
comprises publicly available databases that anyone can access freely. This
includes, for instance, MEDLINE. The second tier includes syndicated data-
bases that require institutional subscriptions—these are available only from
campus. This includes, for instance, SCI. The third tier of databases entail
premium access but provide full-text access to articles online (in lieu of the
hard copy of the journal). This is made in arrangement with publishers and
is also available only on campus.

The two universities share some characteristics in their access to data.
Both provide information on-line through campus gateways. Both provide
Internet access to much of the data but limit access to members of their
respective institutions. This model of controlled access via the Internet
seems likely to become the dominant model that most institutions will
adopt (e.g., in preference to mounting of the databases on local computers,
as Georgia Tech used to do). We also note that license agreements vary in
terms of their openness to data mining. Some are highly restrictive; others
are quite liberal.

*In late 2003 this system was heavily revamped to provide better linking to full text sources at
the expense of other features including proximity searching and quantity direct downloads of
records.



face with the convenience of single-point billing. We note some leading gate-
ways later in the chapter. At times, TPAC has contracted with Dialog, one
leading distributor, to access over 400 databases, at one flat rate.

Keep in mind that the content of the abstract databases traces back to mul-
titudes of individual scientists and engineers—the researchers themselves.
Without the participation of researchers, technical discoveries would not be
made or documented. Ultimately, we consult S&T databases to learn about
those discoveries.

Costing

There are two basic costs involved in acquiring data—time and money. Ideally,
the tech miner has all the data needed for the analysis right at the desktop at
no additional charge (unlimited downloading). More often, you’ll need to
work with your organization’s information services to obtain the needed data.

Time-based costs accrue when searches are difficult, records are diffusely
distributed, and the download times are lengthy. If the records are not well
structured, analyses consume more time as well. Trade-offs enter between
search and analysis, too. Better searches may take longer to craft but will prob-
ably save more analysis time in trying to clean and interpret dirty data sets.

Monetary costs occur when users access syndicated data sources. You may
want to begin with free sources (e.g., MEDLINE, ResearchIndex, and others).
As noted earlier, organizations may also have internal repositories of data,
ready for use without charge.

How can you properly weigh the various costs involved? Evaluating
whether or not particular data costs are acceptable to the organization
requires a cost model. Table 6-4 introduces variables to consider.

Tech mining units usually begin with a budget, typically on an annual basis.
That budget may or may not reflect income from performing tech mining for
others. Sometimes, a set amount is allocated to technology information access
and analysis. Income refers to funds received for tech mining efforts, either
from external or organizational sources.

By value, we explicitly mean the contribution of tech mining to decision-
making. This includes the knowledge added by integrating with other 
information and in performing technology analyses (Table 2-2). Improved
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TABLE 6-4. Cost and Benefit Considerations 

• Budget (available funds)
• Income
• Value
• Information overhead
• Acquisition costs 
• Discounting
• Licensing fees 



decision-making affords value to your organization, but measuring that value
may prove very challenging.

Information overhead expressly pertains to acquiring information. Other
elements of overhead, which are not considered here, include facility costs,
salaries, and utility bills.

Acquisition costs include salaries paid to information specialists or software
engineers to restructure the acquired data. Opportunity costs should be con-
sidered when the data are time consuming to acquire and process. Software,
such as analysis tools and crawlers, can permanently reduce acquisition costs,
often with a single, one-time fee. Data acquisition may therefore involve both
fixed and variable costs.

Discounting may be possible if multiple units or organizations are willing
to share access, and cost, for the data. For instance, Portugal negotiated access
to Web of Science (including Science Citation Index) for all its public univer-
sities. Likewise, discounting may effectively occur if the data can be reused in
later studies (but some database licenses preclude this).

We are concerned with both costs and benefits. The goal is to gain the
maximum benefit at the lowest cost. Benefits derive from direct value gained
from the information, plus derived knowledge from integrating that informa-
tion in various ways. Exhibit 6-2 presents our resulting model. You can adapt
this basic model to consider whether benefits of tapping a source of data out-
weigh its costs for your unit.
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EXHIBIT 6-2 Data Costing Model

Costs = Net Licensing Fees + Setup Expenses + Analysis Costs
Benefits = Income + Value

Then the resulting licensing fees should not exceed the following:

Licensing < (Benefits – Costs)

The model is not neutral to the nature of the licensing fees. Fixed and vari-
able licensing fees may be evaluated very differently. This model is deliber-
ately generic—tailor it to fit your considerations. For instance, if you must have
certain data no matter what, your modeling should compare alternative
sources for those data and consider other data as additional incremental costs
(e.g., if a package deal might be arranged).

For certain patent analyses, for instance, you might:

• Pay nothing for the data, but spend many hours manually downloading
individual records from the U.S. Patent website

• Pay nothing, but spend even more time by manually downloading from
multiple websites (e.g., USPTO, European Patent Office, Japanese Patent
Office)



• Pay modestly for a database that has compiled patents granted by the U.S.
• Pay more for a database (i.e., Derwent) that rewrites abstracts for added

value from multiple sources (USPTO, EPO, JPO)
• Explore additional options (e.g., patents issued, patent applications,

patent citations) 

Which is the best way to go? Although that choice certainly depends on par-
ticulars, in general we suggest you strongly consider the enhanced quality and
expedited access options.

The model points toward ways in which greater benefits can be attained at
reduced costs. These include seeking cleaner data, sharing your costs, and
reusing data once acquired. Data reuse poses knowledge management chal-
lenges of coordinating access across business units (which may be spread out
internationally) and the retention of purchased information. Nonetheless, it
affords considerable benefit to the organization. The specifics of this cost-
benefit analysis can be clarified through a numerical example (sidebar).

ARRANGING ACCESS TO DATABASES 91

Sidebar: Costing Database Access at the DeBrand Trust

Let’s sketch an example with imagined figures faced by the DeBrand Trust’s
Research Evaluation Unit (REU). The goals will be to 1) see whether antic-
ipated value justifies tech mining and, if so, 2) determine an upper limit
licensing fee for acquiring desired external databases. Start with the 7-factor
costing model of Exhibit 6-2.

Value: Let’s imagine that DeBrand’s REU pilot tests tech mining value
in assessing proposals received. Suppose they determine that tech mining
findings alter decisions regarding 10% of sample proposals. The yearly
R&D investment of the Trust is $170 million. Spending that 10% more
effectively accrues benefits of $17 million (that can be applied to further
the mission of the Trust). No additional Income is gained for DeBrand by
this tech mining effort.

Also, assume that this pilot effort has determined that unlimited access
to 3 particular databases is the best way to go.

Costs: Local hosting and management of the databases has been
assessed as a better option than having individual analysts prepare data on
a case-by-case basis. This is interrelated with the decision to commit to a
multiyear, large-scope (e.g., 2500 proposal topics to address this year)
research intelligence program. Initial setup will entail significant costs for a
workstation server for the data and powerful personal computers for each
of several analysts. It also entails data management design and initial data
preparation costs (staff time). Assume that a data specialist will be hired.
Let’s take total setup costs as $500,000.

Amortization of those costs over a multiyear period is vital to justify
this investment. Let’s superficially divide charges evenly over 5 years, so 
the $500,000 becomes a charge of $100,000 this year. Annual tech mining

Continued



Retention (warehousing) of downloaded information is a concern if you
purchase by the record. We can relate “Believe It Or Not” tales of companies
buying the same patent several times. We turn next to the contractual arrange-
ments necessary for acquiring data.

Contractual Arrangements

As noted, sometimes it is more cost-effective to pay a monetary premium than
to expend a lot of time in cleaning and downloading equivalent data via
cheaper sources. This is because ofttimes costs of time and money are inter-
changeable. Individuals have salaries, and organizations have budgets.

Technology information is rarely fixed in price. Negotiate! Prices charged
by distributors and providers may depend on the size of your organization,
whether it is an academic, industrial, or governmental institution, and the use
to which you put the data.

Routinely, academic institutions pay less. Smaller work units usually pay
less. So, negotiating a license for unlimited access for a year will be somewhat
proportional to the expected usage level. If you work for a large multinational,
but only two people at your site intend to use the data source plus a couple
of people at other company sites, price the alternatives with care. On the one
hand, company-wide site license is appealing to standardize access, minimize
learning curves, and share information. On the other hand, it may be more
cost-effective for each corporate site to strike a separate deal.

Licensing fees are monies paid to distributors or providers for access to
data. A number of different kinds of licensing fees are common. These include
annual fees (e.g., subscription, per-seat fees) and variable charges based on the
number of records downloaded and, possibly, the length of time spent con-
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analysis costs, beyond what REU would have done anyway, are estimated
at $100,000.

Results: The annual tech mining benefits are estimated at $17 million.
Costs are ($100,000 amortized setup + $100,000 additional analyst time +
data licensing fees). This strongly validates pursuing the data and tech
mining. Conversely, should DeBrand choose not to purchase syndicated
data, they could only access 1 of the 3 databases directly (MEDLINE via
the U.S. National Library of Medicine) and would still have to pay to auto-
mate access and clean the data.

Imagine that REU’s annual budget is $2 million and DeBrand policy
anticipates information overhead (cost of data) at 10% of that, or $200,000.
As a small cadre of users within a nonprofit foundation, REU should be
able to negotiate unlimited access to the 3 databases at far under that
ceiling.



nected. Initially, your organization should probably not commit to expensive
licenses but favor free and then pay-per-record arrangements. Gain experi-
ence to help assess whether you want to pursue tech mining actively and which
sources are best for you. Then give strong consideration to a fixed fee (unlim-
ited use license), because active tech mining can consume astounding amounts
of data.
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Sidebar: Licensing and Accessing Databases at the DeBrand Trust

What licensing arrangements should the Trust make regarding these data?
It should eventually pursue unlimited access to its three key databases.
However, it should start with MEDLINE as it is the most relevant for
medical research, and also free. Two of the three databases (Agricola and
MEDLINE) are U.S. government information products. In contrast, SCI is
provided and distributed by the Institute for Scientific Information, a
Thomson subsidiary. DeBrand weighs licensing these databases directly
from the producers versus obtaining all three through a single distributor
(e.g., Dialog).

What access arrangements should the Trust make regarding these
data? All three databases are available both on-line and via CD-ROM. As
noted, the tech mining searches performed in support of the DeBrand
mission are expected to be extensive. Hosting the data locally (as assumed
in the “Costing” sidebar) minimizes bandwidth issues and data cleaning
energies. CD-ROM is an attractive solution. However, as part of its infor-
mation technology budget, DeBrand will also have to supply the additional
hardware and networking to ensure that its Research Evaluation Unit has
full and easy access (to save time).

Imagine that the Trust negotiates with a couple of distributors and
database providers to secure the best deal. They make their case as a non-
profit with relatively few users. Working with the providers/distributors,
they estimate annual demand and strike a bargain.

The next step in the tech mining process is, after identifying your sources,
to create and evaluate useful queries and search strategies for retrieving infor-
mation. We discuss this topic in detail in Chapter 7.

CHAPTER 6 TAKE-HOME MESSAGES

• A vast amount of information is generated by and about S&T; much is
compiled in fee and free databases; consider these as primary tech mining
sources to be augmented by the Internet.

• Publication and patent databases provide some of the best available
output data on S&T.



• Consider sources covering a range from research to commercialization
emphases, plus direct and indirect levels of abstraction.

• Do not create your own database if you can possibly mine someone else’s.
• Tech mining favors records that are both structured and quality assured

(i.e., from major R&D databases).
• Decide what S&T content you need and weigh alternative data sources

in terms of data quality, usability, and cost.
• Perform benefit-cost analysis to help decide on data sources and access

modes.
• Think small—be highly selective in picking databases to mine (e.g., 1–3

sources will probably suffice initially), but then think big—retrieve lots of
records. (Think of text records as data to be collectively mined, not just
to be selectively read.)

• Explore multiple avenues to negotiate the most favorable data access you
can for your organization.

CHAPTER 6 RESOURCES

A number of repositories compile scientific information (research paper
abstracts, full-text links, and, in the case of ResearchIndex, citations) on the
internet. Consider:

• ResearchIndex, or CiteSeer, emphasizing computer and information sci-
ences (http://citeseer.nj.nec.com)

• Scirus: a broad blend of web and database resources from Elsevier
(http://www.scirus.com/)

• arXiv, covering physics, with mathematics, nonlinear sciences, computer
science, and quantitative biology as well (http://arxiv.org/)

Dialog provides a handy description of the content of its 400+ S&T and
other databases (http://library.dialog.com/bluesheets/html/bloS.html). These
“bluesheets” can give you a quick sense of which databases cover a topic you
are pursuing. Also, its “Dialindex” searches allow subscribers to see how many
hits a particular search yields in each of a selected set of databases.
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Chapter 7

Forming the Right Query

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

Chapter 6 addressed database selection. In Chapters 7–9, we guide you
through the process of exploiting these databases by constructing a query,
downloading records, and performing basic analyses. To initiate tech mining,
you must translate your topic into a search strategy—a query—for selecting
articles from the database. This chapter discusses how to form an effective
search strategy.

CHAPTER CHALLENGE

• In Chapter 6 we learned about the DeBrand Foundation, a fictional nonprofit
dedicated to improving human (and particularly children’s) health, nutrition,
and welfare. In pursuit of this mission, the Foundation supplements public
funding for scientific research. However, the Foundation wants to sharpen its
grant-giving process. What fields of science and technology should it monitor
given its objectives? Let’s formulate a database query to help the Foundation
track important developments.

7.1. AN ITERATIVE PROCESS

Tech mining is an iterative process. At each step, you learn a little more about
the topic under investigation. Sometimes the right approach is to press ahead
and complete the original study, and then consider a follow-up. At other times,
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it is best to restart the process with a new query that more effectively captures
the topic you “really” wish to investigate.

Regardless of the aim of the study, it is wise to invest substantial time up
front to consider the question being asked and to discover the best query to
retrieve the available information. Some queries are based on key terms.
Others look for a specific person, place, or article. Still others utilize database
index structures. Combinations of these approaches often work best.

We first discuss how to frame a query and how the choice of a query affects
the results you get. We also discuss how to measure the quality of the articles
retrieved—both the articles you do see and the articles you fail to retrieve.
The chapter then treats changing a query to better meet your study needs. We
defer focus on patent searching to Chapter 12. Patent search nuances include
the importance of combining index-based searching (e.g., using patent classes)
with term searching.

An experienced technical librarian suggested the following general process:

• Describe the information you seek in general terms—that is, list the
subject areas.

• Nominate terms (words or phrases) that you think would capture that
subject information.

• Translate into search logic (i.e., Boolean phrasing—see Sidebar).
• Determine the types of sources desired (e.g., patents granted or applica-

tions; journal articles or conference presentations; books or popular 
articles).

• Consider which sources to search (which databases, websites, etc.).
• Try the search on a small scale (e.g., the most recent year or so); assess

the results; refine.

7.2. QUERIES BASED ON SUBSTANTIVE TERMS

Information in most databases is accessed through Boolean algebra—a 
special language, but a pretty intuitive one. This section turns its attention to
the logic of inquiry, rather than emphasizing these mechanics (but see
Sidebar).

Consider two aspects in formulating an effective query. First is the breadth
of the search—are you looking for broad inclusion (strong recall, missing
minimal relevant items) or a sharp focus (strong precision, getting minimal
irrelevant items)? Second is to consider the nature of the language being used.
Are you using scientific language in your selection of queries? Or, alterna-
tively, is it more appropriate for the search to use the “natural” language
common to scientists and nonscientists alike?
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Breadth of the Query

Consider the trade-offs between broad and narrow searches (Table 7-1). In
Chapter 6 we considered the organization of science and technology. We dis-
cussed disciplines, fields, and specialties, recognizing that they differ by orders
of magnitude in levels of yearly output. Which is the correct unit of analysis?
It depends on your topic and target tech mining uses. If an aim is to spot
unusual, nonmainstream R&D, you want to capture items with the barest
threads of association to your topic—reach out broadly. Conversely, the more
you know just what you’re looking for—say, what research group X is pub-
lishing on subtopic Y—the narrower you prefer.

Suitable breadth also depends on database portals (see Chapter 6). If it is
easy to retrieve the large numbers of records (that well suit tech mining), you
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Sidebar: Boolean Searching

Boolean search applies a select set of operators—including AND, OR, &
NOT—that allow the user to precisely specify a query. Boolean algebra uses
set theory to select and delimit articles. If you are comfortable with Venn
diagrams, they depict the logic well (if not, don’t worry).

The search—“FUEL AND CELL”—fetches articles that contain both
terms. In set theory, this is the class of articles at the intersection of both
“fuel” and “cell” search terms. In contrast, the search—“FUEL OR
CELL”—fetches articles that contain either the term “fuel” or “cell” (or
both). It is therefore a more encompassing search than “FUEL AND
CELL.” In set theory terms, this is the union of the “fuel” and “cell” search
terms.

Specific operators, handling of multiple term phrases, delimiters, and
field options vary among search engines. For example, SCI supports a 
proximity operator—SAME—that restricts to finding both Term A and
Term B in the same sentence or section.

We can also restrict retrieval to terms occurring in certain fields (e.g.,
authors). A query might also limit searches to certain SCI records, say those
with 2004 in the “date” field. Other options help you capture term varia-
tions. Common truncation markers are “*” or “$.” CELL* would retrieve
both “cell” and “cells,” for instance.

In sum, don’t be put off by Boolean searching; a little experimentation
will quickly get you the hang of it. Trying variations on the “FUEL CELL”
search to observe the change in number of hits and how the captured terms
change will readily convey the nature of the process. (For more on Boolean,
see the Sidebar later in this chapter.)



can confidently broaden the search. Tech mining software will later let you
focus to whatever degrees you want.

A paradox of scientific language involves the phenomenon of “self-
reference.” Scientists and technologists operate in insular communities that
have little need to refer to themselves directly. Scientific groups are, in a sense,
self-selected. Specific topics of investigation are often far more productive
queries than a query using the name of the field of science from which they
originate. As an example, searching Web of Science (January, 2004) on “trans-
genic plants” finds a vigorous topic of research with 6371 articles. In contrast,
searching on its parent discipline’s name, “botany,” yields only 2665 articles.
This cautions against using naïve queries as an indicator of the publication
“health” of a discipline, field, or specialty. Another illustration—we will later
explore aspects of “nanotechnology,” an incredibly hot topic as we write. Often
as a research domain grows, researchers abandon use of its nominal name in
their papers—terminology fractures while activity builds. (See “nano” discus-
sion just ahead.)

Queries: Use Scientific or Natural Language?

A second consideration in framing the query is to consider the role of
“natural” versus “scientific” language. What terms should you use when
searching? Natural languages are spoken by scientists and laypeople alike.
Natural languages are rich, expressive, deeply and often deliberately am-
biguous. Computer scientists contrast natural with “machine” languages—
languages constructed for use by computers. Machine language is precise,
structured, unambiguous, but rather limited in its expressive power. Scientific
language exists because scientists and engineers desire precision. To express
scientific or technical ideas in an exclusive way, scientists either appropriate
words or create entirely new words (often rooted in Latin or Greek). These
new scientific words occur within a specific theoretical (and often disciplinary)
framework.
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TABLE 7-1. Breadth of Queries

Nature of the
Query Consequences

Broad Broad queries capture many articles across multiple disciplines or 
fields.

Scientific progress in the form of transfer of ideas is best captured 
in these queries.

Narrow Narrow queries capture fewer articles of a more specific nature.
Scientific progress in the form of research concentrations is best 

captured in these queries.



For this reason scientists often resist adopting the “common sense” lan-
guage used by society when discussing S&T. In the upcoming DeBrand Foun-
dation query example, the commonly used term “jasmine rice” fetches 8
articles. In contrast, the scientific term for rice—Oryza sativa—fetches over
6600 articles.

The natural language of S&T is increasingly English; this is not to say that
extensive publication does not occur in other languages, only that the highest-
profile publication outlets tend to be in English. This facilitates tech mining as
most of the S&T databases appear in English. For instance, JICST, the data-
base covering Japanese S&T, is available in English as well as Japanese.
PASCAL, emphasizing French language S&T, blends English and French
titles, abstracts, and keywords. The prevalence of English also facilitates com-
pilation of global S&T by databases. Although many of them do abstract
papers from languages other than English, most favor English language pub-
lications. This indexing influences researchers to publish in journals or con-
ferences that are abstracted by the major S&T databases, providing
ever-increasing impetus toward English as the dominant language of 
science.

This also suggests caution in evaluating publication performance for non-
native speakers of English. There is an English language bias that can cause
non-English-speaking countries or institutions to appear underrepresented or
undercounted in scientific output. The extent of this bias is not fully known.

A concrete example of the differences between popular and scientific lan-
guage occurred when the authors sought to assess developments in the area
of “nanotechnology” in the mid-1990s (Porter and Cunningham, 1995). This
field involves the ability to manipulate processes at the molecular level.
Researchers in many disparate specialties conduct nanoscience and nano-
technology. But many of them avoid “nano” terminology. In our tech mining
study, searching on “nano” came upon a small amount of “supramolecular
chemistry” work. Knowledgeable colleagues explained that this was closely
related, so we expanded our search to include “supramolecular chemistry,”
finding a huge body of activity with molecular level emphases. The message is
to try multiple terms to obtain the coverage you need.

Table 7-2 summarizes some of the consequences of framing a question with
natural or scientific language. For many purposes, combining terms of both
types will yield richest results.

A devilish tech mining pitfall occurs with homonyms—the same word or
phrase meaning different things. Take the word “environment”; it may mean
the natural environment, the built environment, or even an informational envi-
ronment. Working around synonymy requires developing careful queries, and
developing an iterative approach to get the articles you need. Tech mining
techniques can help disambiguate terms and identify the different commu-
nities of meaning resident in a single term.

A nasty result of these language aspects is that tech mining works much
better in technical research domains. With careful query formulation, we can
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obtain highly satisfactory collections of R&D outputs in domains such as fuel
cells or nanotechnology. In contrast, we struggle to search and to analyze activ-
ity in domains such as “management of technology” (MOT) or “knowledge
management” because the terminology is so heavily and ambiguously “natural
language.” Alternatives to term-based searching (see upcoming sections) help
in these domains, but tech mining analysis remains challenging.

A widespread need among research performers and research managers is
that of information retrieval. For these same reasons of ambiguity in language,
prioritization and management of research outputs present serious challenges.
Our colleague Ron Kostoff commends an iterative approach, using relevance
and feedback from queries, to improve information retrieval. Advanced tech
mining approaches, complemented by more “traditional” literature surveys,
can provide complementary perspectives.

Queries to Capture New S&T Developments 

Tech mining assists individuals in monitoring S&T developments. The selec-
tion of a search strategy can strongly impact which kinds of new developments
are found, or slip by unnoticed.

Changes in S&T often occur in a “bottom-up” fashion. Scientists and engi-
neers in frontier areas of science make new discoveries. These discoveries are
tested, further explored, and then eventually adopted and spread by others.
As a result, “pinpoint” (narrowly focused) queries have the best chance of
uncovering these processes of “normal” scientific discovery and diffusion. A
second major source of change occurs as existing ideas are recombined.
Theories, methods, and technologies are disseminated and then used in new
and often unexpected ways. Barriers to interdisciplinary communication are
typically high—tech mining helps transcend these barriers. Here, “broad-
brush” inquiries often fare best.
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TABLE 7-2. Queries in Scientific and Natural Languages

Nature of the Query Query Consequences

Using scientific language More likely to capture the conduct of science
More likely to capture theoretically rich papers
More likely to capture specified areas of research 

interest
May uncover stagnant fields of research as theoretical 

ideas are abandoned
May uncover rich sources of endogenous change

Using natural language More likely to capture articles of wide interest
More likely to capture multidisciplinary research
More likely to engage societal interests or problems
Less likely to uncover abandoned lines of research
May uncover rich sources of exogenous change



S&T developments also are reflected in the choices of language used by
writers. Here we distinguish between exogenous and endogenous sources of
change. Scientists reference, discuss, and modify each others’ work. These
processes of scientific change are “endogenous,” largely internal, to scientific
communities. In addition scientists are affected by societal events and driven
by economic motivation. Such external, or exogenous, inputs also affect S&T.
Terminology ebbs and flows with funding fashion (e.g., a “war on cancer,”
everything “nano”).

So, in formulating queries, balance these dimensions. Examine records
retrieved to identify additional elements to enrich your search. Look for terms
that tie into adjacent literatures. Have several knowledgeable persons review
the content (e.g., list of leading keywords) of the records you retrieve to
suggest additional search elements.

7.3. NOMINAL QUERIES

The previous section discussed using substantive (topical) terms and phrases—
language—to select subsets of articles from an S&T database. We now discuss
queries based on specific people, places, or articles. We call these “nominal”
queries because the tech miner begins the process with specific names in mind.

Citation-based queries track references to specific articles or authors. These
have a long history of tech mining investigation. We first examine a generic
strategy for querying based on specific people or places, and then consider
citations.

Queries Based on People, Institutions, Regions, and Countries

Many tech mining studies concern a specific person, institution, region, or
country. For these studies it is entirely appropriate to form a query that
searches appropriate fields (such as the “Author” or “Institution”) for the
names being investigated. Such studies can be particularly important for com-
petitive technological intelligence (“CTI”). For instance, imagine General
Motors wanting to track R&D emphases of Ford, Toyota, etc. In addition,
searches focused on particular organizations (or persons or countries) can 
contribute to technology monitoring, technology foresight, and technology
process management (see Chapter 2).

Such queries face specific challenges, which we call “fuzzy boundaries.”
These occur when data input errors, variations, or uncertainties accumulate in
publication or patent databases, preventing users from getting exactly the
information needed. Consider author names. Does the database provide an
author’s first name (unlikely), first initial, or first and second initials? Even if
you have both initials, can you be certain you got the intended person? Diffi-
culties compound as authors change names (marriage) or have names with
multiple segments. In a study of Iraqi engineering (Porter, 2003), we came
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upon the work of Abdul-Halim A.K. Mohammed. We found his name with
every conceivable ordering and abbreviation it seemed. (VantagePoint “author
clean-up” did an excellent job at “finding him’ in multiple forms!) With sub-
stantial data cleaning, and combining evidence from multiple fields (including
affiliation and year—e.g., A. Mohammed of the University of Baghdad in
1990), the diligent tech miner can achieve the target. In the meantime,
however, it becomes necessary to download all potentially relevant articles to
later cull those not wanted. Fuzzy query boundaries also occur with institu-
tions and place names. Even simple names can be spelled with a bewildering
variety of abbreviations, variations, and outright errors. In some cases, we
suspect firms deliberately use institutional variations and encourage patenting
and publication under affiliated organizations.

Another challenge for nominal queries occurs when you do not initially
know all the ones significant for your study. Creating a prioritized list for mon-
itoring is a worthy tech mining investigation in its own right, often requiring
considerable iteration. Tech mining software, such as VantagePoint (or the
version optimized for use with Delphion, Derwent, and Web of Knowledge
data, Derwent Analytics), provides a vehicle to build, then keep improving, spe-
cialized thesauri to facilitate continual query improvement (e.g., a thesaurus
of Iraqi engineering organizations).

Queries Based on Indexes

Another searching option takes advantage of the database’s categorizations.
These might consist of:

• Classification codes (e.g., INSPEC codes such as “A4255N” for fiber lasers
and amplifiers)

• Database controlled terms (keywords) (e.g., EI Compendex indexes 
articles using “Fuel cells” or “Fuel cells—electrolytes”)

• “CODENs” (designators of specific journals; likewise, Conference Codes
in EI Compendex)

• Document type (e.g., restrict to journal articles)

MEDLINE’s “MeSH” index is a prominent example of a multilayer, hierar-
chical index. This helps associate variations; for instance,“asthma” nests under
lung diseases.

Use of indexes is particularly critical in patent searches. We elaborate on
various patent class codes in Chapter 12.

Existing, top-down classifications also present challenges. One of us 
(SWC) considered an existing R&D classification used for policy purposes
(Cunningham, 1996). When the classification used by science funders was
matched with how scientists classified their own research, severe discrepancies
resulted. Roughly one in every three publications could not be fit into a com-

102 FORMING THE RIGHT QUERY



patible framework acceptable to both parties. A wide gap in accounting for
financed research has long been noted. The issue involves different definitions
of research among funders and performers of research (Office of Technology
Assessment, 1986). Fortunately, tech mining can help in creating classifications
of research, development, and knowledge that are based on empirical evidence
drawn from large bodies of research.

Queries Based on Citations

Scientists investigate the literature and reference related research, as part of
the scientific discovery process. Likewise, inventors (or patent attorneys) cite
other patents to delineate their intellectual property (“IP”) from prior art.
Patents also increasingly cite scientific work (more on particulars in Chapter
12). We can map the sometimes elaborate network of citations among papers
and/or patents in an R&D domain to ascertain intellectual and social ties.

Scientific authors exist in a competitive marketplace where the reputation
of ideas and research is at stake. Most papers are rarely read; few are heavily
cited (the most common number of citations to a paper is zero). A few papers
and authors in any specialty are cited repeatedly. Those papers already cited
become easier to find, and more attractive to scientists looking for key refer-
ences. As a result “the rich get richer.” This is known as “the Matthew Effect.”
Tech miners can exploit this “reputational market.” For instance, in our 1995
probe of nanotechnology, we examined who cited its instigator, Eric Drexler,
and who did not. You may want to examine the body of literature that refer-
ences a specific scientific paper, author, or institution.

Queries can begin with a specific scientific paper or patent in mind. Unfor-
tunately, few databases include citation information. The Web of Knowledge
(from Thomson Scientific)—including the Science Citation Index (SCI) and
Social Science Citation Index (SSCI)—is the notable exception. Research
Index also provides citation information. Section 12.6 discusses sources of
patent citation data.

Users of citation analysis should beware—citations are a rich, but ambigu-
ous, measure of article relatedness and worth. Authors reference work for 
multiple motives, including self-aggrandizement. Some citations reflect dis-
agreement with the perspective of a rival community or even criticism of par-
ticular work. Citation-based searches may yield a heterogeneous collection of
articles as a result. The meaning of a citation also varies according to the S&T
community involved. Factors affecting the worth of a citation include the
amount of publication involved in a specific discipline, the frequency of cita-
tion, the frequency of self-citation, the presence of “hub” research leaders, and
the connectedness of research within and outside the domain. Citation com-
parisons among disparate research communities require suitable normaliza-
tion and expert review.

Citations are valuable, for instance, in CTI, where it is important to deter-
mine the experts in a field. Citations serve as a measure of scientific expertise
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that augments sheer publication activity. Other tech mining studies may seek
to identify communities of practice (as reflected in mutual citation). Citations
occur in a network of papers and authors. Depiction of a full and representa-
tive network often requires repeated data collection and iterative analysis.
And finally, tech mining should usually combine citation-based queries with
other queries.

7.4. TACTICS AND STRATEGIES FOR QUERY DESIGN

Types of Queries

Having recognized distinct kinds of queries, we now suggest ways to develop
the right query for your tech mining study. We note specific questions that tech
mining seeks to answer (Chapters 2 and 13). In Chapter 9 we illustrate how
specific data record fields might help answer these questions. This and the next
section consider using various features that you can manipulate to generate
effective database queries to get the information you need for tech mining.

A key dimension concerns broadening or limiting your search (Table 7-3).
For example, think about “fuel cells.” Although our query underlying the
example analyses (Chapter 16) is quite straightforward, it could be tailored
many ways. One might narrow to a particular type of fuel cell, relying heavily
on technical language. Or key on a particular application, which might draw
mainly on natural language. Conversely, we could expand to related electro-
chemical energy technologies beyond fuel cells per se. We suggest trying mul-
tiple search strategies to determine the best blend. Table 7-3 suggests you take
advantage of most search engines’ ability to restrict to occurrence of terms in
particular fields (recall the sample record and its many fields of Exhibit 6-1).
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TABLE 7-3. Query Tactics

Broad Query Narrow Query

Scientific language Try names of specialties Try specific phrases that might  
or R&D domains. occur in titles.

Try journal titles, Try citations to specific on-target 
classifications, or or key scientific publications.
keywords. Try specific, prominent institutions 

and authors.
Try limiting queries by year.

Natural language Frame the query in terms Frame the query in nonscientific 
of broad societal or terms of known policy or 
economic issues. popular interest.

Look for words in Look for words in abstracts.
abstracts.



Integrating Study Requirements into the Query

Specific tech mining study goals affect query formulation. In Chapter 2 we
noted specific types of technology analyses that tech mining serves. Table 7-4
suggests kinds of queries (either term or nominal) that you might use in start-
ing a search. The Sidebar imagines our DeBrand Foundation initiating search-
ing in support of a broad monitoring program in support of its S&T emphases.
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TABLE 7-4. Query by Tech Mining Study Type

Technology Analysis Being Supported Queries Suggested

Technology monitoring—cataloguing Usually term based—broad queries on a 
technology development activities target technology

Competitive technological intelligence Usually nominal, or a mix of nominal and 
—finding out who is doing what topic specific

Technology forecasting—anticipating Usually term based—often quite specific 
future development explorations of related technologies

Technology roadmapping—tracking Often a composite—broad coverage of a 
evolutionary change in families of main technology augmented by 
related technology explorations on maturation of 

component and competing technologies
Technology assessment—anticipating Often broad to pick up contextual 

the possible unintended influences and effects
consequences and new uses of a 
new or altered technology

Technology foresight—national Various broad-sweep technology and 
strategic planning for technology contextual treatments

Technology process management— Often broad, seeking new directions,
getting people involved to make intersecting S&T, and contextual factors 
decisions about technology to stimulate creative thinking

S&T indicators—tracking advances in Usually broad technology interests
national (or other) technological 
capabilities

Sidebar: S&T Monitoring at the DeBrand Foundation

The DeBrand Foundation might profitably start by monitoring exogenous,
issue-driven changes driving science and technology. Recall their interest in
issues of human welfare, food safety, and nutrition. Broad queries might
address: pesticides, herbicides, malnutrition, hunger, child health, salt toler-
ance, salinity tolerance, food safety, food security. These queries range from
1000 hits to more than 15,000. More specific, narrow issues might include:
desertification, child mortality, food crops, food policy, manufactured foods,
nutriceuticals. The narrowest of these queries resulted in only 20 hits.

Continued



Precision and Recall Metric for Queries

Imagine that your query yields exactly the right publications for the question
you seek to answer. Consider the ways that a real study might depart from
this ideal. First, you might find only a fraction of the “ideal” articles that are
out there. The fraction of “ideal” articles captured by a query is known as
“recall.” Second, although you might collect most, or even all, of your ideal
articles you might also include some irrelevant articles. The fraction of rele-
vant articles is known as “precision.”

The ideal query thus has high precision and high recall. You collect a lot of
relevant articles with little extraneous noise. Unfortunately, there is often a
trade-off. Some queries offer more precision at the expense of a loss of recall.
Others offer recall at the expense of precision. Which is worse—a lack of pre-
cision or a lack of recall? 
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The Foundation has strong prior knowledge and expertise in food pro-
cessing, biotechnology, and agriculture. It might also want to monitor
changes in technologies with which it already has in-house expertise. An
interesting example of a biotechnological query is “Oryza sativa,” known
popularly as “plain old rice.” Over 5000 articles have been written in the
last decade on this one plant. Examples of broad scientific or technological
topics include: agriculture, biotechnology, genetic engineering, botany, and
food processing. More specific queries of S&T might include: iron fortifi-
cation, bioprocessing, and crop science.

They might also use citation-based querying. Norman Borlaug won the
Nobel Peace Prize in 1970 for his work in reversing chronic food shortages
in India and Pakistan. His interests and career make him an iconic figure—
a contributor to a body of thought well worth monitoring by the Founda-
tion. We find 173 articles that cite Borlaug’s work. These cover diverse
topics, written by diverse authors, in multiple institutions, across multiple
fields.

The Research Evaluation Unit might also develop proposal-specific
queries. For instance, they might try to devise an automated query formu-
lation process. They could require proposers to suggest search terms to
capture the essence of their topic, or just request keywords. They might
script the searches in their three databases licensed for unlimited search,
based on these nominated terms. Imagine having 2500 such search sets!
Again, scripting would be needed to automatically provide initial screening
analyses on such aspects as:

• Does the Principal Investigator show up as an active publisher? Is (s)he
widely cited?

• How hot is the topic area?
• Who are experts in the area (potential reviewers)?



Experience suggests it is a good idea to choose queries with high recall.
Tech mining techniques can help you identify and eliminate extraneous hits.
In addition, a comprehensive query can be focused later once you better
understand the research domain. Little can be done, however, if new devel-
opments of interest are omitted by a badly chosen query. This recommenda-
tion should be tempered to fit your database access arrangements and costs.

Techniques for Evaluating Queries

How do you know if your query is working well? We suggest five approaches
for assessing queries:

1. Use multiple, redundant search terms and search sources and compare
results.

2. Use indicators to determine how well your query is faring.
3. Read a small fraction of the articles yourself.
4. Ask a subject-matter expert to review results.
5. Utilize “queries by example.”

We will discuss each of these approaches in turn.
There are numerous specific tactics to consider. For one, preselect a group

of articles known to be of interest. Design your query. Then determine how
many of these articles were found by your query. There are limitations to this
method. First, creating a sample of ideal articles can be difficult. Second, this
does not assess precision. However, it does get at recall, which is often tougher
to do.

Use of multiple, possibly redundant, search terms and sources (databases)
invariably increases recall. Unfortunately, a certain loss of precision is also
inevitable—more extraneous articles are bound to be included as a result.
However, it is better to err on the side of a comprehensive (but somewhat
noisy) search.

Indicators might include comparison against statistical distributions that
describe the highly skewed distribution of words in articles. Use of these 
distributions can help you estimate how homogeneous your articles are,
and whether you have reached a complete sample of the universe of possible
articles (see Chapter 9).

Reading some abstracts yourself is always a good idea. You gain familiar-
ity with the research activities and get an idea of the relative number of rele-
vant and irrelevant articles in the sample. Additional techniques, such as
sampling theory, can help you rigorously assess the potential quality of the
query. This technique also helps improve the precision, but not the recall, of
a query.

Asking knowledgeable persons to peruse a list of leading keywords from
your initial search is an easy way to check quality. Ask them to flag additional
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candidate search terms and noise terms that should be excluded. You might
also ask what sources (journals, conferences) they consider to be most rele-
vant to check whether your search results center on these. Possibly, have the
experts suggest a search strategy. Be wary that the expert may have specific
interests, and therefore may not be aware of broader developments in related
fields, and may not be an expert at formulating queries.

Another task concerns “funneling down” from a diffuse search to get on
target. Title scanning, plus review and marking of selected abstracts, allows
players to indicate their “favorites.” Some tech mining software can apply rel-
evance scoring to identify publications or patents most similar to the favorites.
This can be pursued to refine search terms. In VantagePoint, one can also
examine title or abstract phrase lists to flag particularly attractive, or irrele-
vant, terms. Under Advanced Analyses (Chapter 10), we note ways to map
keyword clusters to help perceive knowledge structure in the R&D domain.

Query by example is an interesting technique enabled by some database
portals to help searchers find additional articles of interest. Such techniques
assume the user has found one article of interest and would like to find other
articles of a similar character. Similarities between articles are assessed based
on items such as semantic similarity or common patterns of citation. These
techniques are applied directly to the database to help users find additional
interesting articles. We note three drawbacks to query by example. First, the
queries are rarely “well structured.” That is, the user has to figure out how and
why the query was effective. Second, the query by example is out of the control
of the tech miner; you cannot structure the query to account for the kinds of
similarity most significant for your own study. Third, query by example is
usually implemented with the scientific researcher, not the tech miner, in mind.
This means that using query by example to download and save large numbers
of articles may be awkward.

7.5. CHANGING THE QUERY

What happens when the chosen query doesn’t meet your needs? Sometimes
this occurs relatively early in the study, sometimes much later. We consider
whether cleaning and augmenting existing data is preferable to downloading
entirely new data sets. Sometimes compounding several discrete queries can
help to filter your results so they more closely meet your needs. Finally, we
discuss strategies for entirely reframing your query. As noted at the start of
this chapter, tech mining is an iterative process. Sometimes the study itself
changes, necessitating completely refocusing the query.

Reasons for the Change

When using a query you may discover that it yields too many, or too few, hits
from the data sources. (See query variation results in Step 6 of Chapter 8’s
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Search & Retrieval illustration.) In these situations the query is not at the right
level of generality, and it must be reframed. Narrowing the focus results in
queries with a higher level of precision; broadening the focus improves the
recall. In searching multiple databases, you will probably discover that “one
query does not fit all.” Vary the search parameters, but also try to maintain
logical consistency across the sources.

Secondly, queries may be altered later in the process, once articles have
already been downloaded. A preliminary examination of the articles may
reveal that the query is not what you had intended; the collection may be “cor-
rupted” by the unintentional download of irrelevant articles and abstracts.
Modifications can improve the precision of the selected query. Most times, tech
mining software can separate out unwanted records without the need for
redoing search and retrieval.

We repeat—the tech mining process is iterative. A tech mining analysis
having been completed, new areas of investigation will likely be suggested. In
addition, in support of routine technology monitoring tasks it may be neces-
sary to supplement existing collections of articles with updates or other new
materials. This poses knowledge management issues to most efficiently build
current, well-targeted data sets.

Creating New Queries Versus Cleaning an Existing Query

If you have already downloaded articles (Chapter 8) that are not fully suit-
able for your study, you may face the choice of starting afresh. The download
process can be laborious, and, even if you have an unlimited use database
license, downloading voluminous waste records could encourage the provider
to press for higher charges on license renewal. So, it is often best to choose a
query carefully before commencing full download.

In Chapter 9 we discuss how tech mining tools can help you clean and filter
an existing download. The goal in such filtering is to eliminate known sources
of error, thereby improving the precision of the articles collected. Weigh the
option of adding new articles to an existing collection to improve recall.

Compounding Queries

We discussed how homonyms threaten effective queries by introducing unin-
tended articles and content. We now turn to synonyms; these offer an oppor-
tunity to strengthen queries and enrich data. Synonymy occurs whenever two
distinct words show strong overlap in meaning. This occurs in science, for
instance, when two different research communities share common interests
but have a different language for describing their interests (e.g., the afore-
mentioned “nano” and “supramolecular chemistry” communities).

We have also tried tech mining on “cognitive linguistics” and “natural 
language processing,” to be amazed at the commonality of terminology but
the distinct communities—different journals and little overlap in researcher
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participation. Check with knowledgeable researchers to be sure you are
tapping the right S&T information.

Using multiple, related terms in a query helps broaden the query and ensure
that you get the articles that you intended. Two strategies for compounding
include using “truncation operations” and Boolean operators. (see Sidebar).
A concrete example of this process was seen in the Foundation example—arti-
cles used both “salt tolerance” and “salinity tolerance” to reflect an interest in
breeding plants able to withstand growth in brackish water.
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Sidebar: More Tips on Boolean Searching

Truncation operators are a useful way to broaden your search. For instance,
the search term CELL* would capture occurrences of all words beginning
with the letters C, E, L, L This is useful because it can find plural or adver-
bial forms of words (often what we want), but it may also capture entirely
different words (not what we want—e.g., cellulose). The specifics of trun-
cation vary by search engine (e.g., $ for unlimited strings, other symbols for
individual character or internal character strings).

The use of proximity in searches is a good way to narrow or broaden
a search. The search term ADJ, for instance means “adjacent” in some
search engines. So the search string “FUEL ADJ CELL” would capture
only the phrase “fuel cell.” Some search engines enable operators such as
“NEAR#,” where # says within how many terms of each other, in either
order. What about the search phrase in quotes—“FUEL CELL”? It
depends on the individual search engine. The ISI Web of Science reads this
query as “FUEL ADJ CELL.”

A third tip is to exclude words from your search. So for instance
“FUEL CELL NOT HYDROGEN” eliminates a substantial number of
articles about a specific facet of fuel cells. This capability to limit or exclude
articles in searching is often exactly what is needed. And our best bit of
advice—check the search engine’s “Help” instructions to be sure of what
capabilities are available. Experienced searchers develop an intriguing
variety of ways to accomplish similar ends—you can surely gain insights
from your organization’s information pros.

Reframing the Query

Sometimes it is necessary to elaborate on an existing query. Do you still have
that query? Be sure to save your search phrasing. Some search engines provide
for this internally, but it is still a good idea to copy into your own text file.

As you iterate through a tech mining study, you learn more about the topic,
and new ideas for getting additional related articles may occur to you. Refram-
ing may occur as a result of broadening or narrowing the query. Or you dis-
cover the need to transition between natural and scientific language. Very



commonly in a tech mining study you begin with a general query and decide
it is necessary to explore certain aspects of the topic in much greater detail.
Sometimes you need specific articles that might have been omitted by the orig-
inal query. As a tech mining exercise progresses, it often moves from every-
day terminology into the jargon of the area in question. Having access to
domain expertise greatly facilitates sharpening the query.

In Chapter 8 we take a specific query and data source and discuss how arti-
cles are selected and downloaded from on-line databases. This is preparation
for the basic and advanced analyses to be discussed in Chapters 9 and 10.

CHAPTER 7 TAKE-HOME MESSAGES

• Your tech mining questions determine the right query formulation.
• Effort spent up front in designing a good query will be amply repaid.
• Queries may be based on substantive terms or phrases, on specific people,

organizations, and places, and/or on indexing structures.
• Consider using both scientific and natural language terms for your search.
• Tech mining is an iterative process; plan on performing initial “quick 

and dirty” searches, reviewing results, and then reformulating the search
strategy.

• Recruit someone who knows the research domain to help you refine your
query and assess the quality of search results (e.g., by scanning a list of
prominent keywords returned).

• Learn Boolean searching; it’s easy. But also work with information pro-
fessionals to learn ways to improve your searching.

• Research community norms provide useful information, too; use these by
taking advantage of specialist terminology and by tracking citations.

• Document your search strategy, steps, and results; this can prove essen-
tial in interpreting findings and refining searches.

• Assess your query effectiveness in terms of precision and recall.
• Try the five approaches to help evaluate queries.
• Take advantage of search engine power by using tools such as field delim-

iting and truncation.
• Watch for homonyms; use synonyms; find out how researchers and patent

attorneys phrase the issues of interest.
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Chapter 8

Getting the Data

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

This chapter shows you, step by step, how to access and download records from
an on-line science and technology database.

8.1. ACCESSING DATABASES

The bottom-line message of this chapter is that getting the data is easy.
Arrangements must be made (see Chapter 6), but then the actual access and
transfer of records is usually quite seamless. For instance, a Georgia Tech
student or professor, from his or her laptop—at the office, at home, or on the
road—can connect through the Georgia Tech Electronic Library to the data-
bases. He or she can search hundreds of millions of research publication 
or patent abstracts; then download selected electronic records to that com-
puter, typically within seconds. The world’s science and technology is at our
fingertips.

Before stepping through how to get data electronically, let’s look at the
system elements involved (Table 8-1). We consider each of seven main items:
of hardware, software, or protocol, plus “computers” as the general processors.
(These elements could be ordered many ways.) The table indicates the several
items, gives an instance of each, and points to who is most likely to be con-
cerned about each.

We’ll examine each of the elements in turn, starting with the transfer 
protocols.
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Computers have transfer protocols used in exchanging information. Multi-
ple protocols evolve over time—for instance, “http” (hypertext transfer pro-
tocol), “ftp” (file transfer protocol), and “mime” (used in exchanging E-mail).
These facilitate interactions between computers using web pages, direct file
downloading, or E-mail. These protocols use existing networks such as the
Internet.

Ideally, you would directly tap into the data resource, and signs point toward
movement in this direction (i.e., integration of analytical tools with databases).
However, in most cases today, data are retrieved from one data structure (the
source database), transferred, and then reconverted into another data struc-
ture (in our examples, VantagePoint files).

Computers also need storage (memory) to retain the full data repository
itself (in some cases) or just the selected records (search results). Storage
includes, but is not limited to, a hard drive. Portable storage devices, such as
CD-ROM, can also transfer and save data. If your organization determines to
license the database on site (as Georgia Tech did with several main S&T data-
bases through 2003), storage, networking, and computing resources become
significant considerations.

Several types of software are vital to the data access process. The client
application enables exchange of data between computers. A familiar example
is a web browser (e.g., Netscape). Clients for exchanges of E-mail or files
provide other key capabilities. For instance, if you perform a search at ISI’s
Web of Knowledge, you can download your search results to your computer
using a “save” option or an “e-mail” option. Users and hosts need client 
applications.

Analysis tools include text mining programs that assist in handling and
analysis of the records retrieved. Some such tools (e.g., VantagePoint or
Derwent Analytics) act on data stored in memory at the desktop, others as
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TABLE 8-1. Hardware, Software, and Protocols for Data Access

Hardware, Software, 
or Protocol Elements Example Of Interest To

Computer Personal computer Users, hosts, distributors, and 
providers

Storage CD-ROM drive Users, hosts, distributors, and 
providers

Transfer protocol http Users, hosts, distributors, and 
providers

Analysis tool VantagePoint™ Users
Crawler IBM’s “Aglets Software Users, distributors

Development Kit”
Client (application) Netscape browser Users, hosts, and distributors
Server (application) Apache web server Hosts, distributors, and providers



central server tools acting on data stored at the server (e.g., web-based Aurigin,
now integrated with MicroPatent as Aureka).

Servers distribute information. Tech miners today most often deal with web
servers. However, some providers and gateways still maintain a “telnet” inter-
face option that may offer more end user control over the search process.
Hosts and distributors typically use servers to assist in disseminating raw data
to others.

Additionally, there is a piece of software called a crawler. Other names for
a crawler include “spider,” “intelligent agent,” or “bot.” This software auto-
mates the finding and downloading processes, particularly when multiple
repositories are involved. Search engines deploy web crawlers to check mil-
lions of websites for new information to index. Users who have the choice of
many repositories may wish to do the same in collecting S&T information. At
least one database distributor, NEC with its ResearchIndex, compiles S&T
information with Internet crawlers. Its crawlers seek out research websites,
downloading scientific publications when they are found.

You may be wondering why anyone needs databases and statistical analy-
ses when intelligent crawlers can go and get data “everywhere.” Databases
compile particular, defined classes of information. They offer advantages of
specified coverage and quality control (e.g., MEDLINE and SCI draw only on
peer-reviewed journal articles). They also provide consistent formatting of
records that enormously facilitates tech mining. The Internet offers diversity
and currency—very complementary resources to the databases.

We likewise see a fundamental complementarity between artificial intel-
ligence (AI) capabilities, reflected in crawlers, and statistical analysis
approaches, emphasized in this book. The AI approach works well when you
can specify exactly what to look for. Your instructions can be very encom-
passing—as in “find any scientific article pdf files posted on the web.” Or, they
may be tightly constrained—“find mentions of Vladimir Putin (Russian pres-
ident) in news feeds over the past month.” On the other hand, statistical tech-
niques do well at exploration and discovery—as in “profile that information
on Putin” so we can see patterns and associations. These approaches (often
“disciplinarily dissociated”) can work well together to find and understand
information.

Accessing databases requires some real care in assessing your orga-
nization’s support resources to determine the best way to go. The DeBrand
example (Chapter 6) illustrates an extreme in starting from scratch to 
mount and maintain selected databases locally, tailoring them to the target
uses. At the opposite extreme, most academic users can pretty much assume
it’s “all taken care of”—just check with the campus library to find out how to
access hundreds of databases from your PC. If you are the path-breaker in an
organization lacking much information services support, strongly consider
working through a gateway. For instance, Dialog and STN provide access to
hundreds of databases direct to your PC, with various licensing arrangements.

The following section steps through how to access a syndicated database.
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8.2. SEARCH AND RETRIEVAL FROM A DATABASE

This example illustrates use of a gateway that gains you access to multiple
databases. We’ll go through each of eleven steps for one case to illustrate
what’s involved. With a little guidance to figure out what’s required the first
time, it’s really easy! Your specifics will vary, but this should provide perspec-
tive on what’s involved.

In this example, we’ll access the Science Citation Index (SCI) through the
Georgia Tech Electronic Library (GTEL). The GTEL website serves as a
gateway to many information providers—some of which are limited to
Georgia Tech faculty or staff. Accessing web-GTEL requires a computer with
an Internet connection as well as a browser. Incidentally, this example was
generated remotely (off-campus).

1. Browse the home page of the gateway.
In Figure 8-1 we’ve typed in the URL into an Internet browser (say, Inter-

net Explorer), and arrived at the front page of Georgia Tech’s Electronic
Library (as of 2003; it has since been modified).

2. Select a database.
Navigating to Georgia Tech’s selection of on-line science databases (see Fig.

8-2), we note the availability of Science Citation Index (SCI). SCI is a funda-
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Figure 8-1. The GTEL home page



mental science database that is suitable for many tech mining studies, and one
of three databases we use in the fuel cell example analysis (Chapter 16). SCI
also incorporates a lot of applied research, as well as literature more “man-
agerial” in character.

3. Log in to the portal.
The SCI database is a licensed property of Thomson Scientific & Health-

care. Georgia Tech has a specific licensing agreement that limits access to this
database to its students and faculty. We must therefore use a password and
user name supplied by Georgia Tech (see Fig. 8-3).

Now that we have been authorized through the Georgia Tech website, we
have been redirected to a web portal (Thomson’s Web of Knowledge) con-
taining the specific database in which we are interested.

4. Begin searching the database.
We select the “full-search” option to locate relevant articles (see Fig. 8-4).

5. Address the size of the search.
Our running examples involve a tech mining study of “fuel cells”—a

compact energy source (to power vehicles such as automobiles, for stationary
power sources, etc.). Our search strategy is basic. So we enter “fuel cells” under
the topic section, and hit SEARCH (Fig. 8-5).
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Figure 8-3. Log-in pop-up 

Figure 8-4. SCI start page



There are many choices we might make when conducting this search,
including changing the article type and language. We’ll justify our choice of all
documents and English language later in the chapter.

The raw results of the search reveal 3332 articles containing “fuel cells”
(as of July, 2002) (see Fig. 8-6). This is a fairly typical order of magnitude,
considering we are investigating research across the lifetime of an emerging
technology.

Note that the search was from years 1988–2003, a standard “window” of
dates for ISI databases. We often want as many years as possible of data to
better understand growth and change in a research domain. This window 
of years is increasing of late: Providers such as ISI seem to be incorporat-
ing increasingly older articles in electronic format as well as the newest 
publications.

6. Explore alternative search strategies.
Chapter 7 introduced many considerations in selecting your search strat-

egy. Table 8-2 gives some empirical results showing how much difference
“minor” changes can make!

In this example, inclusion of both plural and singular forms of “fuel cell”
yields an additional 2400 articles to the plural form alone (row 1 vs. row 2).
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This is definitely desirable; both terms capture valuable articles—neither alone
is sufficient. Row 3 is of incidental interest; some records actually contain both
forms. Using all alternative endings for the word cell could yield a lot of irrel-
evant articles (row 4), because it might include words such as “cellular,” “cel-
lophane,” and “cellulite.” In this instance, we neither expected nor wanted
alternatives beyond the terms cell or cells. The search tallies confirm our hopes
that we were getting only the articles we wanted in this respect.
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Figure 8-6. Search page

TABLE 8-2. Alternative Search Strategies

Search Term Hits (Number of Articles)

fuel adj cells 3809
fuel adj cells or fuel adj 6220†

cell
fuel cells and fuel cell 1573
fuel adj cell* 6220
fuel and cell 7533
fuel and cell* 7876

†Checking again in late October, 2003, we found 7975 docu-
ments from 1970 through the present, suggesting the value in
periodic updating of TM studies.



Changing from fuel adjacent to cell to a general association between words
(“fuel and cell”) yields another 1300 articles. Broadening still further to “fuel
and cell*” nets another 500. At this point, however we’ve cast the search too
widely. Articles such as the following title are being collected by this search:

“Correlation between in vivo and in vitro pulmonary responses to jet propulsion
fuel-8 using precision-cut lung slices and a dynamic organ culture system”

This article is about toxicology, not electrochemistry! The costs of cleaning out
these articles on toxicology (and other noise) to gain an incremental addition
to our knowledge base on fuel cells is not worth the trouble. We therefore con-
tinue with our search using the strategy “fuel cell or fuel cells.” Chapter 7 dis-
cusses techniques for reviewing your search and reformulating it if you have
not retrieved the kinds of articles you need.

7. Count the number of articles by year.
Counting the number of “fuel cell or fuel cells” articles published in each

year from 1987 to 2002 provides a useful check. This can be done at the website
by limiting the search to one year, then redoing for the next year, etc. (see Fig.
8-7). Alternatively, it could be done all at once at the desktop in VantagePoint.
The results of the search, by year, appear in Table 8-3.
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Figure 8-7. Date limit screen



These results verify that most research activity in “fuel cells” has occurred
after 1987. The 1987 starting year, as imposed by ISI, will not hinder our study.
The field continues to grow strongly—so strongly that we will have some chal-
lenges in downloading all the articles, discussed next.

On a “final check” in January, 2004, we revisited these searches. It is tough
to exactly replicate searches—a reminder of the importance of precise docu-
mentation on search phrasing and parameters, as well as dates conducted.
Anyway, column 2 actually tallies “any documents” with the terms, fuel cell
and/or fuel cells, present in title, abstract, or keywords. Column 3 restricts to
articles in English. These Web of Knowledge searches actually include results
from the Science Citation Index (e.g., for 2001, 865 items), the Social Science
Citation Index (4 items for 2001), and the Arts & Humanities Citation Index
(0 items for 2001). The values in parentheses show counts on redoing the initial
search at a later date. Note that the data for 2002 have increased tremendously,
whereas a few year 2000 and 2001 articles have been added to the database
considerably later. Specifics aren’t important for our purposes here, but do be
aware that database entry lags publication and that the latest year is often
incomplete data. In analyses, we will suggest you apply some form of nor-
malization to incomplete year data.

8. Mark the articles for download.
This could be a time-consuming step, depending on the search engine 

interface. Some websites allow marking only of single records one at a time.
Others allow marking of small sets, such as a page of records. Some, such as
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TABLE 8-3. Fuel Cell Articles in SCI by Year

Year Fuel Cell or Fuel Cells English Articles

1987 n/a 33
1988 108 43
1989 58 18
1990 128 55
1991 112 63
1992 222 135
1993 195 110
1994 275 165
1995 293 167
1996 423 277
1997 382 241
1998 534 344
1999 536 355
2000 754 458 (461)
2001 869 553 (557)
2002 1046 304 (645)
2003 285 171



MEDLINE, allow you to mark the entire search set at once. The speed of the
Internet connection can affect large downloads, but these days it’s usually not
a serious matter.

It’s best to develop a strategy to systematically download all articles with
the minimum number of steps. In this case, we face a 500-article downloading
limit. (Limits, if any, vary by database interface and institutional agreements.)
We can break the search set into sets by time periods, following Table 8-3. For
instance, we might separately download the 2003 records at one time, with 
the 1987–1993 records as another, separate search and download. Step 11
addresses ways to handle the 2001 record set, which exceeds the 500 limit.
For the others, one, first, marks those records using the button provided (see
Fig. 8-8).

9. Request download of the articles.
SCI provides several options for downloading articles (see Fig. 8-9). Among

the choices are “format for print,”“save to file,”“export to reference software,”
and “e-mail.” For this example, we choose the button labeled “save to file.”

Note that the web portal allows users to customize the download by spec-
ifying specific portions of the record to include or exclude. Recall Exhibit 6-1
illustrating available fields in a MEDLINE record. For our tech mining
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Figure 8-8. Selecting articles for download



example (Chapter 16), we have taken: title, author, source, abstract, document
type, keywords, addresses, and times cited.

10. Save the file on your local computer.
We have now queried the database for an appropriate subset of articles,

marked the list of articles for download, and requested that the file contain-
ing the articles be saved. At this point a pop-up window appears, allowing you
to choose where the file will be saved locally on your computer (Fig. 8-10).
Hit “save” and save the file in a convenient location on your PC. (In this
example, the local computer is an Intel-compatible machine running Windows
XP. The exact steps in saving the download may vary a little according to your
operating system.)

11. Break the download into smaller files, where necessary.
In this illustration, we have 553 abstract article records for 2001. Retriev-

ing this batch of articles involves introducing some additional terms that are
irrelevant to the search, to allow us to break the year 2001 articles into two
smaller groups for downloading. Most effective for this purpose would be
common words widely used in these abstracts. Unfortunately, many common
English words are “reserved” and not used by database search engines. The
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next tier contains common S&T words such as “system,” “source,” “method,”
“design,” and “algorithm.” Use of any of these can serve to split a data set 
satisfactorily.

We construct two queries that together enable us to get all the 2001 “fuel
cell articles”:

• (“fuel cell” OR “fuel cells”) AND “2001” AND “system”
• (“fuel cell” OR “fuel cells”) AND “2001” NOT “system”

The queries effectively reduce the search sets to 196 and 357 record subsets
of the 553 article set for 2001. (Watch out—“2001” could occasionally appear
as a number, not the year, in a document.) An efficient naming and storing
strategy for such files helps later when you wish to reassemble them into a
single unified collection. At a minimum such a strategy should consist of sep-
arate files with a name for the topic, year, and portion (e.g., FuelCell2001a and
FuelCell2001b).

8.3. WHAT TO DO, AND NOT TO DO

General Principles

The search is complete. All the SCI “fuel cell(s)” records are now saved on
our personal computer. However, they reside in a number of files. These can

WHAT TO DO, AND NOT TO DO 125

Figure 8-10. Download options pop-up



be recombined in various ways. For one, use any text editor or word proces-
sor (e.g., MS Word) to open one file and insert each of the others into it,
then save it as one text file. You are now ready for analysis with a text mining
tool like VantagePoint. Chapter 9 sets forth basic analysis elements with 
the VantagePoint software, and Chapter 16 pursues the fuel cell example in
detail.

Note some general principles that apply to almost all on-line searches. First,
we accessed through a web browser. There are other possible arrangements
(using approaches such as file transfer protocol or E-mail). However, web
browsers are rapidly becoming the de facto interface for a wide variety of on-
line tasks. Second, a host provided access to the database. In this example, the
Georgia Tech Electronic Library serves as “gateway” to many syndicated S&T
databases. These are all licensed by the University, but with varying restric-
tions; one should become familiar with the conditions pertinent to text mining.
This is a standard sort of academic arrangement.

Third, the database vendor (Thomson Scientific’s ISI) provides access 
to the actual database in various ways. We used a web interface, but SCI 
is also available through gateways such as Dialog, and they provide the 
database itself for local mounting by certain licensees. Most databases limit
access to registered users, so you need to register, usually as an organizational
unit.

Finally, the search itself typically requires using Boolean logic to specify
which records you want. The specifics may vary, particularly by fields (e.g., how
date ranges are to be specified). Regardless, the general process is much the
same, and really pretty intuitive. When you first try it out, it is wise to ask an
information professional or experienced user to guide you.

Pitfalls and Obstacles

We mention three obstacles when accessing on-line S&T databases. First,
interfaces are usually designed for researchers—not tech miners. As a result,
web portals favor the downloading of small numbers of abstracts (or articles),
with an emphasis on finding a very few “nuggets” and, possibly, linking to full
text sources. Tech miners, in contrast, seek to download many abstract records
spanning entire research domains. We have stepped through related issues
such as marking records. Sometimes, alternative access modes may greatly
improve performance (e.g., for years telnet access held advantages over the
web interface at Georgia Tech).

This brings up a second obstacle tech miners encounter—download limits.
Providers may want to manage load on the server and to protect their intel-
lectual property. Bibliometric applications, such as tech mining, are within the
“fair use” clause of nearly all on-line databases. What is prohibited, however,
is resale or repackaging of the raw information. Despite this “fair use,” large
downloads are not consistently and easily supported by database vendors.
Steps 8 and 11 above discuss tactics to work with download limits.
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The third difficulty is encountered at times by all who use the web—con-
gestion. Possible remedies include securing a faster connection, arranging for
a local copy of the database, or working during off-hours.

To conclude this “getting the data” chapter, we mention some underlying
data pitfalls to avoid. Keep in mind that publication and patent data are S&T
“output” indicators. You may want to augment output indicators with “input”
indicators (e.g., R&D funding) also.

As output measures, publication and patent activity can distort realities. For
one, company policies on publishing and patenting vary greatly; many com-
panies limit publishing. Patents are less suitable indicators in certain sectors.
Many of the S&T databases abstract from leading English language and non-
English language journals and conferences, but favor English language publi-
cations. R&D that makes its way into the databases may not be fully
representative of a nation’s overall R&D efforts (e.g., for Germany).

Publication and patent (see Chapter 12) practices differ across areas. A pub-
lication in mathematics is not necessarily as indicative of technological
progress as one in physics or medicine. Authorship patterns vary, with some
areas typically having huge numbers of authors whereas others favor individ-
ual work. These differences in publication activity stem from intrinsic differ-
ences in the conduct of science itself. Certain fields emphasize conference
presentation, whereas others lean toward journal publication. The career
rewards for publishing and patenting vary by sector (academic, government,
industry, nonprofits), as well as by scientific discipline. The difficulty in pub-
lishing an article, or patenting an invention, also differs by area, and by par-
ticular outlet (e.g., journal). So, be wary in making cross-field comparisons.

We suggest that you use a variety of empirical information sources. In addi-
tion, expert opinion strongly complements empirical tech mining.

CHAPTER 8 TAKE-HOME MESSAGES

To get your tech mining data:

• Learn and exploit the information resources available within your 
organization.

• Start small—pick one (or a very few) databases of greatest relevance to
license for tech mining;augment with additional information as needs arise.

• Choose the best access method for you.
• Try it out; explore an emerging technology of current interest.
• Begin with an information professional or experienced user to “learn the

ropes” in accessing target databases and in performing effective searches.
• Gain experience with basic Boolean searching.
• In doing tech mining, get a person knowledgeable about the subject to

check your search results and suggest improvements.
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Chapter 9

Basic Analyses

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

This chapter guides you into tech mining of science and technology records.
Chapter 8 demonstrated the process of downloading articles selected from
suitable databases. This chapter offers pointers on cleaning the data and in
performing basic analyses. It suggests how even simple analyses can usefully
inform technology management.

CHAPTER CHALLENGE

• The DeBrand Foundation wants to analyze articles citing the Nobel Prize-
winning agronomist Norman Borlaug’s work. This is “exploratory” tech
mining, monitoring for interesting and novel research opportunities. (In
Chapter 6 we introduced this hypothetical research funding organization. Else-
where we pose other tech mining tasks for DeBrand, including support of pro-
posal evaluation in Chapter 6.) We have 173 records from Science Citation
Index (SCI)—what do we do with them? The chapter will trace our steps as
we examine these data, do necessary cleaning, and initiate analyses.

9.1. IN THE BEGINNING

The rationale for, and organization of, this chapter deserve explanation. The
chapter sets forth to explain how to begin to analyze the S&T publication and
patent data we have been working to obtain. On the one hand, we could take
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a down-to-earth approach and just show how to do this. On the other hand,
there are important underlying analytical principles worth noting. We also
confront tensions between showing lots of analyses and explaining how to use
these in management of technology (“MOT”) decision support.

Here is our resolution. Sections 9.1 and 9.2 lay out the basics; they can have
you going and doing tech mining in a few minutes. (Chapter 16 provides more
example analyses on fuel cells to further “show you how.”) Section 9.3 goes
deeper to provide the conceptual framework that underlies these basic analy-
ses. Section 9.4 develops this framework to show how you can investigate a
bountiful set of relationships in S&T data (see especially Table 9-5). Section
9.5 then implements corresponding analyses, pointing toward MOT applica-
tions. Finally, Appendix C notes options if you do not have access to tech
mining software, and Appendix D discusses several characteristically skewed
distributional patterns seen in these bibliographic data.

In this prelude we first note the relationship between “basic” and more
“advanced” forms of analysis. One way of considering basic analyses are
“reports” on the data. Reports provide simple, pragmatic information drawn
directly from the data. These may be counts of authors, institutions, or publi-
cations. Some reports “roll up” or aggregate data; others provide slices across
time. An example of slices includes numbers of publications by year.

Examining and Assessing the Data

Getting right down to business, the first step in any analysis is to explore the
data. Browse through the records obtained to get a feel for coverage and con-
tents. In the Chapter Challenge, an analysis of Borlaug’s work was requested,
so the DeBrand Foundation selected and downloaded 173 SCI article abstracts
citing his work. Figure 9-1 shows one abstract record to illustrate the nature
of the content at hand.

Often, casual browsing will give ideas on expanding the search. In this case,
the Foundation’s interest is to identify promising approaches to remedy world
hunger through improved agriculture. The article shown is a sociological
analysis of technology, but the article set as a whole is highly varied. The down-
load includes technical agronomy and biotechnology articles, as well as issue-
oriented articles that address the status of genetically modified crops. You
might augment this search via additional term-based queries to pursue certain
topics suggested by these articles (Chapter 7 discusses database querying).

“Wallowing in the data” can also uncover data problems. By reading over
abstracts you may spot items that do not belong. A brief review of 30 articles
reveals only one apparent outlier: “Marine mammals in the next one hundred
years: Twilight for a Pleistocene megafauna?” This appears to be about animal
extinction—an important topic, no doubt, but not directly relevant to the
DeBrand Foundation’s hunger interests. Depending on the sensitivity of 
your tech mining objectives to the data, you may want to assess the quality of
your search (see also Chapter 7). We illustrate an approach for data quality
assessment.
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Remember the distinction between precision (“getting only the right arti-
cles”) and recall (“getting all the pertinent articles”) from Chapter 7. The
sample with 29 of 30 articles deemed relevant estimates the precision of the
query. The “binomial test of proportions” can help gauge overall search set
precision (Chapter 7 discusses this). This sample with 1 “flawed” article among
30 (3%) suggests a true rate of error between 1% and 15%. In short—don’t
assume too much confidence in a small sample of articles! 

Estimating recall is much tougher. How can analysts determine whether
they have collected all the relevant articles? One step is to identify certain
known entities such as a set of relevant articles or a few researchers whom
you know author on the topic at hand. Then test whether a search that ought
to capture these pieces does so. Another step is to request subject experts to
review your search results to identify missing work.

Tech Mining Software Helps Clean and Filter Text Records

This book presumes use of tech mining software to facilitate analyses.
Appendix B notes several software packages. Appendix C offers some sug-
gestions on what you can do without such software. We use the package 
that we know best, VantagePoint, to illustrate capabilities. Other tech mining
software will achieve most of the same ends, but not identically. Specialized
tech mining software, like VantagePoint*, offers many advantages. One, we 
can clean downloaded text datasets. Two, such software aids in discovering 
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Figure 9-1. Sample “Borlaug” article content

*You may come across other versions of this software. Derwent Analytics is optimized for use with
Delphion, Derwent, and Web of Knowledge (including Science Citation Index) data. TechOASIS
is a version developed for U.S. Government use.



previously unrecognized relationships. Three, a range of flexible and sophisti-
cated analyses are enabled. Fourth, repetitive analytical processes can be auto-
mated to a degree. This chapter and Chapter 10 set out how to achieve these
advantages.

Tech mining software helps clean collections of text records in several ways.
In the Chapter Challenge, we discovered at least one unrelated article in the
collection by inspection. On the basis of sampling theory, we suspect that there
are others we probably should find and remove. Using a software filter could
eliminate these. Our filter might include the term “human impact” or “extinc-
tion” in the keyword or abstract fields. Conversely, VantagePoint can select
subsets of the records for special analyses (e.g., to focus on those mentioning
genetic modification).

Tech mining software is particularly strong at combining multiple sources
of data and making a repository of data for continued analysis. This enables
you to examine the data with a single, consistent interface regardless of where
the records may have originated. For instance, if we performed another SCI
search, we could combine results with the 173 Borlaug-citing abstracts. More
challenging, we could search and retrieve from another database (e.g.,
MEDLINE, Agricola) and consolidate with the SCI records. To the extent the
fields are the same, this kind of data combination is straightforward. If 
the fields are distinct, then some of the records would have blanks (e.g., the 
Agricola records would lack the “total citation” counts that SCI provides). It
is trickier when both sources provide similar, but not identical data. One must
then judge whether to combine these or not. For instance, “authors” may have
different formats. Even trickier, “keywords” (or descriptors or subject index
terms) take on many guises. SCI, for example, offers “Keywords” (supplied by
authors), as well as “Keywords Plus” (words or phrases appearing frequently
in the titles of an article’s references).

MEDLINE, in contrast, offers its own hierarchical subject index terms
called “MeSH” (medical subject headings). Depending on the tech mining pur-
poses, you may want to mix various types of keywords or not. This is not an
issue in our “exploratory” Borlaug analysis, but it may be critical in situations
where precise nuances are important.

After fusion of data sets, the next step is to identify, and eliminate,
duplicate documents. When performing tech mining analyses, it is useful 
to uniquely identify entities in the system. In Figure 9-2, we call attention 
to documents (or records) and to their information fields (or terms—e.g.,
authors, institutions, locations, or citations). Noise may be introduced 
because of any number of reasons—variations in typing, formatting, and
spelling are most common. These may be introduced by the author, the journal
editor, or the database company. Or, as we combine multiple queries, dupli-
cate articles may be introduced into the set. Duplicates can produce false
counts and give results that are unrepresentative of the underlying data. For
these reasons it is important for tech mining tools to identify and remove
duplicates.
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Considering documents, we want to determine whether we have captured
the same item (i.e., publication or patent abstract record) more than once. Par-
ticularly when fusing records from different sources, some of the fields may
not be identical, even though they reflect the same document. In our fuel cells
case (Chapter 16) we address issues in recognizing whether one record
obtained from SCI is the same as another from INSPEC. Considering the
content of the fields, we again face challenges in deciding what is really the
same and what is different. We illustrate just ahead.

VantagePoint provides fuzzy matching capabilities to help clean. The
analyst has a range of choices including:

• Remove exact duplicate records (documents).
• Match and remove those records with certain fields identical (e.g., 2

papers by the same author published in the same journal).
• Perform fuzzy “near matches” to various degrees on desired fields (e.g.,

special fuzzy match on author giving higher weight on probable last name
matches than on first names and initials).

• Combine exact and fuzzy matching on multiple fields to maximize
removal of true duplicates with minimal loss of actually distinct records.

Your sensitivity to error determines what strategy best suits a situation.
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To exemplify some of these issues, let’s check our 173 article abstracts. Two
have the same title—“Feeding a world of 10 billion people: The miracle
ahead.” Borlaug authored both—one that appeared in Biotechnology &
Biotechnological Equipment in 1997, and the other appearing in In Vitro Cel-
lular & Developmental Biology—Plant in 2002. (Note that these Borlaug arti-
cles appear in our search set because they cite other of his work.) So, despite
having the same title, these are two different articles. Our list of authors
appears quite clean. VantagePoint’s “author clean-up” suggests combining
only: “Pretty, JN” with “Pretty, J.” This makes good sense. However, such con-
solidation would be riskier were this a more common name in a larger data
set—for example, “Smith, JN” with “Smith, J.”

Other cleaning tools include dictionaries of “stop words” (extremely
common words such as “the”), techniques for discovering and counting
phrases, and methods for identifying synonymous or otherwise variant words.
Thesauri are vital. They collect variations on the same entity. Use of thesauri
can consolidate alternative spellings (e.g., English and American variations)
in a standardized fashion. You can build your own thesauri and keep enhanc-
ing these over repeated analyses in your area of interest. We have done 
this with American universities and companies, accruing variations (e.g.,
Massachusetts Institute of Technology and MIT). We also have been building
a thesaurus that groups organizations as academic, industry, government, or
other. It does so by accumulating both general cues (e.g., “univ” or “college”
implies academic) and specifics (e.g., MIT is academic). Tech mining software
facilitates repeated analyses by applying dictionaries and thesauri to consoli-
date terms that reflect the same entity.

The DeBrand Foundation’s commitment to ongoing tech mining to support
proposal review and other ends suggests that they develop specialized the-
sauri. These would attune to their continuing focus on medical and agricul-
tural R&D. We might start by grouping variations on frequent keywords,
institutions, and researcher-authors to initiate three thesauri. For instance, the
author thesaurus would facilitate consolidation of forms of the names of active
researchers and proposers in their R&D domain (e.g., the Mexican authors
discussed in Section 9.3). In following years, this would continue to build upon
the thesauri previously developed. So, over time, tech mining would get better
and easier. We recommend that you strongly consider such a continuing
“learning” strategy—develop thesauri! As tech mining matures, user groups
might well share particular thesauri. To date, our VP experience is that cus-
tomers performing competitive technological intelligence (“CTI”) prefer not
to share.

Other software algorithms (e.g., regular expressions) recognize strings of
letters. This may help group terms. A simple example of this is grouping the
plural and singular versions of a word for further analysis. Judicious combi-
nation of these capabilities can even approximate “understanding” the syntax
of an article. Such syntactical analyses can help identify all the verbs, or proper
nouns, in an article collection. VantagePoint, for example, routinely parses
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noun phrases from titles or abstracts for further analyses. This software com-
bines various cleaning and data manipulation capabilities. Data manipulation
may be used to piece together composite records from multiple sources, or
remove or combine duplicate records. The software also expedites more
advanced tasks such as exporting subsets of records of interest, defining cri-
teria for matching records, and the creation of thesauri.

The tech mining analyst often confronts quite messy data. By rapidly ana-
lyzing data, and removing less significant items from consideration, tech
mining software allows the analyst to drill down and discover the most signi-
ficant articles in a collection. Automatic listing and tallying of the records
comes easily for text mining software. List processing functions include
sorting, finding, and grouping. These are conceptually simple but amazingly
powerful in making sense of thousands of records.

Furthermore, analyses can be duplicated, repeated, and even “canned.” If
you want to know the yearly publication rates for some term for every nation
in your sample, tech mining software can easily generate these. “Canning” of
software manipulations is called scripting or writing macros. This can auto-
mate repetitive operations, providing a quantum leap in ease and speed of data
processing. Additionally, automating cleaning manipulations can markedly
increase tech mining accessibility to nonexpert users. However, this requires
solid understanding of the data and the intended uses. An organization’s infor-
mation resources center may be able to help. If you do automate certain clean-
ing operations, be sure to spot-check cleaned against raw data to be sure it’s
doing what you want.

9.2. WHAT YOU CAN DO WITH THE DATA

Now we’re ready to have fun! Let’s discover “who’s doing what” in the R&D
domain we want to know about. Tony van Raan (1988), a world leader in bib-
liometrics, usefully distinguishes:

• 1st Level Analyses—lists
• 2nd Level Analyses—combining two lists to make a matrix

Lists help you comprehend the data set. For example, our 173 SCI records
contain articles published in 104 different sources (mainly journals). We could
list those 104 and sort alphabetically to see whether a particular journal
appears. Or we might prefer a handier list of the “Top 10” most frequent
authors in this collection. We could go a bit further to provide frequency infor-
mation like the summary shown in Table 9-1.

VantagePoint provides a handy macro to create a custom profile. Table 9-2
presents a trivial author profile for these four. The software has queried the
173-record file for each author, retrieving the three most frequently occurring
title phrases parsed via natural language processing (NLP). It has then added
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another field, showing the one leading publication year for each title phrase.
For Borlaug, the title phrases correspond to the duplicate title previously
noted. For the other three authors, note that the title phrases are suspiciously
similar. Indeed, Exhibit 9-1 confirms that they work closely together. For
instance, six of Rajaram’s eight articles are joint with Mergoum and Pfeiffer,
all eight of Mergoum’s articles were authored with Pfeiffer, and so on.

We could build up lots of examples, and we will do so throughout the 
chapters. For now, just note that we can easily add a third dimension to these
analyses.
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TABLE 9-1. Top 4 Authors Citing Borlaug

Author Articles

Pfeiffer 10
Mergoum 8
Rajaram 8
Borlaug 6

TABLE 9-2. Author Profile

Author Top 4 Title (NLP) (Phrases) Top Phrases Publication Year Top Year

Pfeiffer, WH[10] registration [9]; 2001 [7]
“Cerrillo-TCL99” triticale [1];
“Supremo TCL-2000” triticale [1]

Mergoum, M[8] registration [8]; 2001 [6]
“Cerrillo-TCL99” triticale [1];
“Supremo TCL-2000” triticale [1]

Rajaram, S[8] registration [6]; 2001 [7]
“Cerrillo-TCL99” triticale [1];
“Supremo TCL-2000” triticale [1]

Borlaug, NE[6] miracle ahead [2]; 1992 [2]
10 billion people [2];
WORLD FOOD PRIZE SEEKS 

SUPPORT [1]

EXHIBIT 9-1 Author Co-Occurrence Matrix

Pfeiffer Mergoum Rajaram Borlaug

Pfeiffer, WH 10 8 6 0
Mergoum, M 8 8 6 0
Rajaram, S 6 6 8 0
Borlaug, NE 0 0 0 6



We can take any one field’s information (e.g., year, topic, author) and focus
on one or more values. We might want to create time slices, say, dividing the
173 articles into an early period (through 1994), a middle period (1995–1999),
and a recent period (2000–2003). For each period we could combine any two
variables. For instance, we might examine the leading Borlaug-citing authors
for 2000–2003, and tally the topics they address. This is one way to address
three entities at once—that is, 3-D analysis.

In one respect, this is it for basic analyses—you can go forth and explore
your data. However, we find it helpful to step back at this point to reflect on
the logic of inquiry into text records. Section 9.3 offers a conceptual frame-
work to help you consider the possibilities more fully. Section 9.4 returns to
practical matters to offer suggestions on types of basic analyses that may help
answer particular technology management questions.

9.3. RELATIONS AMONG DOCUMENTS AND TERMS OCCURRING IN
THEIR INFORMATION FIELDS

Document by Term Occurrence

Each document (record, publication) downloaded for analysis presents a
wealth of potential information contained in fields such as Author, Title, and
Date. At the most basic level, we have documents and terms that constitute a
given field of information. For instance, one set of “terms” would be all the
author names appearing in the document set.

The data set file could be represented as shown in Table 9-3. We show the
presence of a term in a document by a “1,” its absence by a “0.” (For other
purposes we might favor actual counts so that a term appearing three times
in a document would have a “3.”) In the Borlaug example, each document
abstracts certain information from a scientific article. As per Figure 9-1, terms
constitute the content of any one of several interesting fields—type of publi-
cation, author, abstract phrases, etc. In our analyses, “document” (which
record) is one dimension. One information field is a second dimension. We
almost always focus on one field at a time. So, “term” in a table like Table 
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TABLE 9-3. Document by Term Occurrence—a “Burt” Matrix

Document\Term A B C D E F (. . .) m

1 1 1 0 1 0 1
2 1 1 1 0 1 0
3 0 0 0 0 1 1
4 1 1 1 1 0 1
5 0 0 1 0 0 1
6 1 1 0 0 0 0
(. . .) n



9-3 might be each of the thousands of keywords appearing somewhere in the
document set. Chapter 10 builds upon Table 9-3 to discover relationships in
the data. We call these “Burt matrices” in honor of Ronald Burt, the pio-
neering sociologist who used such matrices in performing network analyses of
social relationships (cf. Burt, 1983).

Document Fields (“Terms”)

Let’s consider interesting terms for these sorts of documents. These vary some-
what by type of document (e.g., publication vs. patent abstract) and by the
content provided by the database (e.g., science vs. business). We won’t attempt
an exhaustive list, but some of the prominent S&T fields include:

• Author(s) or Inventor(s)
• Citations and references to prior researches or patents
• Topics or other measures of content—including keywords, title phrases or

words, abstract phrases or words, classification codes, international patent
classifications, database class codes

• Institutions, including but not limited to the affiliation of the author or
inventor, patent assignee, or sponsor of the research

• Location, and in particular the geographic site where the research was
conducted, such as the country, state or province, city

• Source for R&D, particularly the journal or conference where the
research was presented

• Year, and in particular the date of publication or indexing into the data-
base; other dates applicable for patenting include the date of invention,
patent application, or patent issued

Note that some of these imply a single value for a given document (e.g., date
of publication, source, location). Others can be multivalued (e.g., authors, cita-
tions, topics). We explore term-term relationships in the next subsection.

It is slightly esoteric, but important, to note that we are dealing with the
information contained in the document (i.e., the patent or publication abstract
record), as opposed to the underlying reality. Some of the records in our
Borlaug set lack abstracts, for instance, so an “abstract phrases” field would be
empty. Obviously, this does not mean the published article lacks content.
Also, most S&T publication databases do not report certain information that
could be of interest—especially citations (SCI is a notable exception) and
sponsorship.

A particularly vexing lack is explicit information on author affiliation in
S&T publication databases. Tech mining wants to know “who is doing what,”
and the institution (organization, company, university, agency, etc.) is vital.
Beware the problems caused by this missing link. Most S&T databases provide
the names of all the authors of a document, but only the institutional affilia-
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tion of the first author. SCI does better; it gives all the institutions of all the
authors, but not unambiguously. The tech miner is usually left guessing on
several important issues:

• Which institutions (companies, agencies, universities) collaborate with
which others?

• Which institutions contributed most to the particular research?
• Which institution is a particular author associated with?

You can “play detective” to come up with reasonable estimates. For
instance, suppose the DeBrand Foundation wants to locate Pfeiffer and ascer-
tain whether the research team is still together (Exhibit 9-1). We can gener-
ate a matrix of author by institution to see which institutions are indicated on
publications by Pfeiffer, Mergoum, and Rajaram. We find: UAAAN, Coahuila,
Mexico; CIMMYT (different subunits), Mexico City; and UAEM, Toluca,
Mexico. We check further on one of four papers on which Mergoum is first
author to see that Mergoum is specifically associated with CIMMYT, Inter-
national Maize & Wheat Improvement Center. But we don’t find Pfeiffer as
first author on any papers. We can then try a Google web search on Pfeiffer.
This turns up an article in Crop Science with a full text link that explicitly indi-
cates the same affiliation as Mergoum. Locating an individual’s home page
also helps confirm that this person has not since relocated. So, DeBrand might
contact these CIMMYT researchers to pursue a line of inquiry. When track-
ing down corporate links, this sleuthing methodology becomes increasingly
convoluted. Hicks and Katz (1996) pursued automated techniques for assign-
ing institutional addresses for all of Britain’s researchers!

We single out the field “Year” (usually the preferred tech mining simplifi-
cation of “Date”) for special treatment because of our interest in tracking
developments over time (the focus of Chapter 11). Date is also a rare numeric
variable in this primarily textual realm. Consider key combinations of Docu-
ments, Terms, and Year (Table 9-4). For example, consider “authors” as the
term of interest at the moment. “Documents by Terms” would tell us how
many of the documents each authored. “Documents by Years” ignores author-
ship; it just tells us how many papers were published each year. “Terms by
Years” would show each author’s publishing by year. “Term A by Term B,” in
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TABLE 9-4. Combinations of Document, Terms, and Year

Combination Tech Mining Interest

Documents by Terms Basic occurrence
Documents by Years Overall R&D domain activity trend
Terms by Years Trends in topical emphases
Term “A” by Term “B” Co-occurrence (basis for term relationships)
Term “A” by Term “B” by Years Trends in relationships



this case would show which authors have coauthored papers with which other
authors. “Term A by Term B by Years” would let us see which coauthorships
occurred in particular years (e.g., to see whether a research team is still actively
collaborating).

Combining Documents and Terms

The following section will explore our primary interest—relating terms based
on their patterns of occurrence across documents. Here, we step back to note
that the basic data (Table 9-3) can be analyzed several ways. Consider our
main tech mining example on fuel cell publications (Chapter 16). The “n” of
documents is 11,764. In a typical principal components analysis (PCA), we
might cluster the top 200 or so keywords. (Chapter 10 gets into PCA and other
advanced analyses.) So, our Burt matrix (Table 9-3) would contain 200
columns and 11,764 rows—a sizable matrix. To map term-by-term relationships,
we create a new type of “co-occurrence” matrix. It consists of the 200 key-
words by the same 200 keywords. Cells contain counts of how many times
keyword A and keyword B occur together in any documents. Values could thus
range from 0 to 11,764. PCA actually draws upon a variant of this, in which
the matrix cells contain a similarity measure, such as correlation or cosine
between the respective terms. Note that computations on a 200 ¥ 200 matrix
are easier than on a 200 ¥ 11,764 matrix.

Conversely, we could examine relationships among the documents based on
the terms they share. This can be derived from a document co-occurrence
matrix. It is big—11,764 by 11,764. It yields document maps such as the famous
“Mt. OJ” showing the “mountain” of concentration of U.S. news articles on
the OJ Simpson trial compared with smaller peaks for other topics during that
time period. This approach is especially good at “query by example.” If a user
identifies a document of special interest and wants to know about similar R&D
activity, such landscape maps indicate similar documents. You may have expe-
rienced this, say, at the Amazon website. You order a book and they suggest
similar books you might like (based on relevance determined by shared
content or by what other purchasers of your book also buy).

The close relationships of these three alternative data representations are
notable. Analyses of term relationships based on the “documents by terms”
matrix (Burt matrix like Table 9-3) should be essentially equivalent to analy-
ses based on the “term by term” matrix (self-join). It is true, however, that the
data about the documents has been lost in this representation. Similarly, analy-
ses of document-to-document relationships based on the “documents by
terms” matrix (Burt matrix) should be essentially equivalent to those based
on the “documents by documents” matrix. Technically speaking, this concept
of structure being unaltered by self-joins is known as “idempotency.” Com-
paring analytical results for idempotent matrices provides a test of reason-
ableness. We pick up on this in Chapter 10.
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9.4. RELATIONSHIPS

The essential tech mining payoff is to ascertain relationships from the S&T
data. Section 9.2 dove right in to do so directly. Section 9.3 has laid out a frame-
work to help you consider which relationships you wish to pursue, in what
ways. We continue by delineating some direct term-by-term associations of
interest, and then some extended ones.

We distinguish the following essential terms: authors, citations, topics, insti-
tution, location, source, and year. Recall that these “terms” are the content
found in the information fields that appear in our documents (Figs. 9-1 and 
9-2). Table 9-5 refines these slightly and suggests some of the interesting inter-
sections that can be pursued among types of terms.

The relationships posed are neither definitive nor exclusive, merely sug-
gestive. In brief, cascading down the columns of Table 9-5 from left to right:

• Teaming—Coauthorship patterns can help ascertain development teams
and core individuals (valuable in discerning competitor “knowledge 
networks”).

• Research Community—Profiling the collective body of knowledge cited
by our document set, in conjunction with author (researcher) publication
activity, can help figure out the extent of the community and the promi-
nence of certain individuals therein (useful in identifying core expertise).

• Co-citation Analysis—Henry Small and colleagues at ISI have generated
a stream of compelling depictions of research fronts based on which doc-
uments (with their attendant term characteristics—e.g., topics) are cited
together by others.

• Esteem—Citation to our work (e.g., as authors, institutions, or countries)
is one metric of value imputed to our research.

• Knowledge Transfer—Citations to a body of research can be profiled to
see what fields are picking up on the results or using the methods.

• Expertise—Which authors (or institutions or countries or other units)
address which topics?

• Cluster Analysis—Statistical procedures can help identify which topics
tend to co-occur, implying relationship.

• Self-reliance—The extent to which actors cite their own work (especially
patents, but also articles) is important in determining interdependencies
(especially important for intellectual property (“IP”).

• Collaboration—the extent to which institutions (or countries) work
together.

• Core Sources—which journals or conferences are most cited by our doc-
uments overall, implying heavy reliance on them; this can be refined to
identify core sources for particular topics.
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• Impact Factor—which journals are most cited, implying that their papers
exert greatest influence.

• Currency—What’s hot? Inspecting trends shows temporal activity 
patterns.

• Research Pace—Noting what proportion of citations, by and to, are recent
tells about how fast the R&D domain is moving (this holds for patents
and for publications).

• Engagement—We often want to know whether an organization or
country is still actively involved with this R&D domain.

This list is somewhat messy as it mixes outputs and analyses. We have tried to
label the entries by the most-used notion. Note that these entries relate to one
another. You might think of the relations as the verbs in the system. Some of
the underlying actions are: research, publish, and cite.

These data are rich! Many S&T development issues are reflected in these
outputs in ways that can be usefully measured. Which measures to use depends
on the questions being addressed. We suspect that tech mining veterans will
find some of Table 9-5 familiar and some strange. This reflects differences in
emphases. In particular, one cadre focuses largely on CTI for companies. They
key on patenting by key competitor companies. Another cadre concentrates
on R&D policy, often at the country level. They lean toward national or global
publication measures. This section aims to enrich everyone’s considerations of
possible measures. Later in the book we will go further to generate “innova-
tion indicators” from the direct measures.

So, tech mining data allow for the investigation of many two-way relation-
ships. Examples include, for a given search set, combinations of “terms” from
particular fields (1, 2):

• Who are all the (1) researchers active at (2) Georgia Tech (publishing or
patenting)?

• In what (1) years can you find (how much) (2) information on a specific
subtopic (say, keywords)? 

• How many (1) articles can you find in that (2) journal? 

Three-way (and higher) relationships within this search set are also possi-
ble. These can concern terms from the same or different fields, as well as across
documents (1, 2, 3). We might ask:

• Over what (1) time period did those (2, 3) two authors collaborate? 
• To what degree (1—how many records) did each of the (2) leading insti-

tutions publish on (3) certain subtopics? 
• Are (1) citations to (2—a country) Chinese research increasing or

decreasing over (3) time?
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Less direct, term-to-term relationships may also prove valuable. For
instance, which authors share interests? In contrast to teaming (a socio-
logical measure—coauthoring), we can discern which authors address 
related topics (i.e., they use closely related words or phrases), whether or 
not they actually collaborate. This can suggest potential value in sharing
knowledge.

Tech mining is especially valuable in identifying potential common inter-
ests among researchers who do not presently interact—that is, across disci-
plines. This is similar to how the military research intelligence user Edison
House works. Their mission is to locate European researchers who work on
topics related to American Army, Air Force, or Navy research interests and
act as “matchmakers,” bringing them together. Tech mining application helps
Edison House identify key researchers to look for at particular conferences
or prominent research labs to target.

We offer one more illustration of less direct relationships. We have infor-
mation on the “core sources” for a given document set; we also have authors
with the most publications therein. We could now ask which authors published
most in the highly cited journals. Also, we might do new searches in SCI to
determine which of our authors have been most highly cited by others. We
could compile these multiple measures to help identify prominent figures in
the field under study.

Examining these three “indirect” relationships we see:

• By comparing (1) content across (2) documents, what do we learn about
shared interests of (3) researchers?

• Using (1) citations to (2) journals to establish prestigious journals and (3)
publication counts by (4) authors to establish the major research con-
tributors, we can now ask, Which authors contribute to the most presti-
gious sources?

One way of thinking about the wealth of data available for analysis is to create
a diagram of entities and relations (Fig. 9-2). Figures like Figure 9-2 are known
in the database world as “entity-relationship diagrams,” often depicted with
detailed formalisms. That is not our intent here; rather, it is to visualize our
main tech mining information resources.

In Figure 9-2, the terms are shown as boxes. Excepting “citations to,” all the
terms derive from within the document set. That is, what we know about
authors, topics, etc., comes from the downloaded set of records (usually patent
and/or publication abstracts). In this book, we will not treat “citations to” our
document set heavily. These potentially useful queries are difficult or impos-
sible to make with many database portals available today.

Most of our tech mining analyses thus derive solely from information res-
ident in the documents. We set “Year” slightly aside because, as already dis-
cussed, we often want to treat this information specially. Note that relations
between terms link through the documents. In most cases this is unambigu-
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ous, but recall that the link between authors and affiliations is usually some-
what ambiguous.

We’ve seen entities—the people, institution, and topics—that can be inves-
tigated using tech mining. We’ve seen relations—ideas such as collaboration,
sponsorship, or research—that can be investigated using tech mining. Now,
let’s look in a little more detail at how to conduct analyses using entities and
relations.

9.5. HELPFUL BASIC ANALYSES

Analytical Perspectives

Figure 2-1 loosely associated the “4 Ps” that tech mining can provide—
product, process, predict, and prescribe—to types of technology analyses.
Figure 9-3 does the same for some of the terms (field information) we have
available in our document set. Again, the ties are weak, merely hinting at uses
you may find for these information resources. Tech mining products make use
of all the information, but especially topical coverage (content). We often see
author, source, and citation information as helpful in stimulating discussion of
ways to address the R&D domain in question. In contrast, process-oriented
studies may be more interested in understanding and characterizing the
research actors in the system—the collectives of researchers represented by
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Figure 9-3. Relating the 4 Ps of tech mining to the terms



journals and by institutions. Most obviously, we associate years (dates) with
prediction; Chapter 11 investigates use of time series data such as these to
project into the future. Institution and location information are salient to
benchmarking efforts that often lead toward recommendations (prescription).

Let’s consider ways to associate and represent the data. Our starting point
is the “list.” Tech mining software readily combines list information, a process
sometimes known as “joining” tables. One issue is how to handle long lists
and, worse, their combination into matrices. Don’t allow yourself to be over-
whelmed by the volumes of detail! Our modest sample of 173 Borlaug-citing
articles yields some 6700 cited publications. There are over 3200 journals cited
by or publishing our 173 articles. This suggests a need to determine “cutoffs,”
for analyses and for presentation of findings. How many journals do we really
need to know about? We might choose the “Top 20” journals (in number of
our 173 articles published) and neglect the rest. Alternatively, we could set a
level of significance—list all journals that have at least 10 citations from this
collection of articles.

Be guided by what your target users need to know to make specific deci-
sions. For instance, you may focus on a subset of the documents, setting aside
the rest. Or you may key on certain key players, ignoring the others. Chapter
13 offers a decision-support framework to guide tech mining efforts toward
answering MOT questions.

Crossing Lists (Fields) with Themselves

An interesting class of relational analyses occurs when lists are combined with
themselves. (Technically this is known as a “self-join.”) These forms of analy-
ses are very versatile. Table 9-6 distinguishes four key analyses. All of them
rely on forms of co-occurrence. That is, if certain terms occur together in mul-
tiple documents more often than expected, we have a basis of possibly signif-
icant relationship.

Co-citation analyses are created by examining the number of times differ-
ent publications are referenced together in the same documents. This count is
aggregated across the entire document collection. The resulting table implies
relationship between documents that multiple authors often reference
together. We can look further at the documents that cite certain sets of refer-
ences together. For a given pair of references, we can examine terms (e.g.,
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TABLE 9-6. Relational Analyses Based on Self-Joins

To Investigate Combine Information from

Co-Citations Citations with Citations
Co-Word Topics with Topics
Authorship Networks Authors with Authors
Institutional Networks Institutions with Institutions



topics, institutions) of the documents that cite them. This can provide insight
into how that pair of papers (or patents) are related. Vice versa, we can con-
sider those of our documents that cite this pair of references as having some
common interests. Co-citation analyses have proven fruitful at identifying
research fronts.

Co-word analyses examine shared similarity in patterns of words or key-
words rather than in patterns of citation. Here again, co-word analyses come
in two flavors: We can understand relationships between words by joining via
the document key, or we can understand relationships among documents by
joining via the content key. Much of Chapter 10 builds on co-word analyses
to ascertain and map term relationships.

Authorship networks have received significant attention lately because of
the “small world phenomenon.” Even large networks of scientists and engi-
neers are bridged with relatively few mutual acquaintances (see Sidebar on
Erdos Numbers). Effective communication and collaboration in such net-
works can be credited to the existence of a few “hubs” that channel informa-
tion and bridge acquaintances. Such “hubs” become valuable partners because
of their experience and wealth of contacts—ensuring that they become even
more central to the network of collaboration. Centrality measures of networks
attempt to rate the importance of hubs in a network. Such indicators can be
created with “self-joins” on the author table.

Another intriguing measure is that of “betweenness.” An individual scien-
tist or engineer may not have an exhaustive list of professional contacts—
but he or she may have precisely the right contacts to bridge gaps. Bridges 
are thereby built between institutions and between scientific and technical 
disciplines. Betweenness indicators to measure such bridges begin with 
self-joins.
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Sidebar: Erdos Numbers

A vivid example of this kind of authorship network analysis occurs in the
graph theory community. Graph theory is a field of applied mathematics
that studies networked relationships of all sorts in the physical, biological,
and social worlds. Not too surprisingly, graph theorists apply their analytic
tools to their own discipline. A long-time “hub” of the graph theory network
was the scientist Paul Erdos. Those scientists who collaborated directly with
Erdos have an “Erdos number” of 1. Those who collaborate with the col-
laborators have Erdos numbers of 2. And so on, with each scientist receiv-
ing a number reflecting the number of steps to link himself or herself to the
central figure of Paul Erdos. (Erdos himself had the number 0.) Graph the-
orists calculate their Erdos numbers for fun, or for prestige. Tech mining
allows the calculation of indirect links—across a variety of disciplines—for
specific applied purposes.



Institutional networks are not unlike authorship networks. Institutional
networks aggregate publication or patenting by their staff. This information
can inform collaboration, competitive intelligence, and funding determina-
tions. Collaborations among industry, academia, government, and nonprofit
sectors are becoming increasingly important to the conduct of science and
technology. International collaborations are also growing in importance. The
number and strength of such links can be studied through “self-joins” on the
institution table.

Bibliographic Data Distributions

Our data are not very well behaved. Because we deal mainly with text data,
our data sets often require different statistical approaches. Properties of text
data deviate from standard statistical test assumptions in some regards.
Chapter 10 explores discrete vs. continuous distribution attributes. More crit-
ically, the distributions of most text data are far from normal. To illustrate, our
173 record set has some 311 authors; of those, only 7 have more than 3 publi-
cations. We need to be aware of these highly skewed distributions. In one
regard, this is welcome news, in that focusing on the “top few” authors, key-
words, etc., may tell us all we need to know.

Appendix D provides background on the properties of the most important
bibliographic distributions. The main thing that tech miners need to know from
these empirical distributions is that the leading sources of information—
whether they be organizations, authors, keywords, or citations—are concen-
trated unevenly. For instance, an information professional may apply a Pareto
principle to decide which sources to acquire. The hope is that the top 20% of
bibliographic sources will provide 80% of the pertinent data needed for analy-
sis. Or, a tech mining analyst can feel reasonably confident in cutting off the
number of terms in indexing documents or selecting keywords. Furthermore,
the generalization is that to obtain the next X% of the content will increase
the workload disproportionately. To calculate specific distributional values,
refer to the respective equations in Appendix D.

Answering Technology Management Questions Through Basic Analyses

We assert that tech mining must be guided by the specific user questions to be
answered. There is a dangerous tendency as analysts to generate information
just because we can. Glance back at Table 9-5 to realize that one could go wild
generating lots of “interesting” stuff that would befuddle, more than inform,
a busy decision-maker. That said, what to do? Chapter 13 arrays 13 technol-
ogy management issues that give rise to 39 questions, for which we nominate
a couple hundred candidate tech mining “innovation indicators” to help
answer. Table 9-7 provides a “mini” version of this structuring to get us think-
ing about how these various tech mining analyses can be directed to useful
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ends. It suggests a way for you to think about your data in terms of what your
user needs to know.

To get started, we advise performing requirements analysis. Interact with
the target users to identify what they want to know. Chapter 14 offers sug-
gestions on nurturing such interactions throughout the course of the tech
mining activity.

We would not advocate diving in and generating every possible table and
relationship. That said, we can point out certain analytical elements likely to
have extensive uses:

• Activity—number of documents (publications, patents) by year
• Activity breakouts—number of documents on particular topics, or by par-

ticular institutions, by year
• Institutions—leading organizational contributors to the target R&D area,

with breakouts for each (“profiles” on what each of them emphasizes,
their leading researchers, how much recent activity, etc.)

• Institution of particular interest—breakouts by particular topics (spot-
light the leading contributors on given topics)

• Researchers—identify the leading individual contributors to the target
R&D area, with breakouts for those leading individuals (e.g., topics each
emphasizes)

• Researchers—breakouts by particular topics to spotlight leaders in
various subareas

• Topics—tabulate the leading topics (e.g., by keywords or other content
indicators)

The next subsection illustrates a sample tabulation.
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TABLE 9-7. Tech Mining Issues, Questions, and Data-Based Responses

Tech Mining Issue Sample Question Possible Responses

Project initiation How do we stack Profile the leading institutions in this 
up against others field in terms of numbers of 
researching or publications, patents, and researchers.
developing this For each, indicate the main topics it 
technology? emphasizes.

Competitive What is the Plot trends in publishing and patenting 
technological development activity for major topic clusters.
intelligence trajectory? Fit S-curve growth models (if 

appropriate) and project ahead.

Mergers & Which possess Tally the patent activity of leading 
acquisitions appealing small companies and key individuals.

intellectual Characterize in terms of topical 
property for this emphases.
technology?



Sample Tallies for the 173 Borlaug-Citing Publication Records

Returning to the DeBrand inquiry, Table 9-8 shows overall totals and example
instances. These are the basic documents and terms available.

Table 9-8 shows that there were 173 publication abstract records in the
sample, with 1 duplicate. These were published in 16 different years, with the
most (23 articles) in 2001. Note the tremendous number of distinct phrases
found in the 173 records. The articles average about two authors each. As
noted earlier, Pfeiffer authored the most (10 papers). The most prolific orga-
nization is Pfeiffer’s CIMMYT in Mexico. The authors were located in 25 dif-
ferent countries, with the greatest number of affiliations from the U.S. (87).
The 173 papers appeared in 104 journals, led by Crop Science with 10. Our
sample’s papers cited 6741 other papers—an average of 39 apiece. Those cited
papers had a total of 4642 authors and appeared in 3229 journals. The sample
cites a wide variety of work.

Figure 9-4 presents Bradford distributions of the publishing journals (for
the 173 articles) in the Borlaug sample and for the 3229 journals cited. Brad-
ford distributions show the concentration of research information across 
journals (see Appendix D). The graph uses log scaling on both axes and “log-
arithmic binning” to handle ties in rank. The Bradford distribution provides a
fair description of these data. The intercept of the cited journals (the c in Equa-
tion D.2) is 627. The intercept of the journals that published our articles is 
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TABLE 9-8. Borlaug-Citing Sample Tabulation

Distinct
Entity Description Instances Most Frequent Example

Documents Publication 173 “2” (1 duplicate) “Greening pesticides:
abstracts A historical 

analysis of the 
social construction 
of farm chemical 
advertisements”

Year Publication 16 years 23 2001
date

Topics Abstract 4849 344 Crop, crops
phrases

Authors Authors 311 10 W. H. Pfeiffer
Institutions Organizations 108 25 CIMMYT

Nations 25 87 United States
Sources Journals 104 15 Crop Science
Citations References 6741 17 Jensen, N. F. (1952),

Journal of 
Agronomy, Vol. 44.

Cited journals 3229 181 Science
Cited authors 4642 280 N. E. Borlaug



23. In other words, the cited journals are 27 times more frequent than the pub-
lishing journals. Table 9-9 shows the two sets of journals.

Suppose we seek to combine the two lists to make a single list of leading
journals for DeBrand Foundation monitoring purposes. The cited journals
include the prestigious general science publications, Science and Nature, in
addition to subject-specific journals. The journals that published the sample
match, but not perfectly, the citing journals. Using what we have learned about
the respective distributions, we create a function to combine the information
provided by the two lists. A weight of 27 for each published article vs. 1 for
each citation gives roughly equal weight to the two sources of information.
The journal Crop Science is at the top of the combined list, with significant
contributions from both the cited and publishing list. Euphytica and Phy-
topathology are journals number two and three, respectively, on the list. The
phenomenon of “scattering” embodied in the Bradford law lets us know that
the relative productivity of sources will diminish rapidly. The DeBrand Foun-
dation now has a list that they may use to monitor the literature on agronomy
and human nutritional welfare.

Further Ideas

Ways to apply such basic analyses and extend them are myriad; we offer a few
ideas. The line between basic and advanced analyses is not sharp. As set forth
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Figure 9-4. Bradford distribution of journals in agronomy sample



here, we call lists and matrices “basic,” even though these may be multitiered
and conceptually intricate.

You can look at the core set of research cited to determine how recent the
referenced literature or patents is. You could probe how the researchers or
institutions collaborate. You may also want to examine the leading journals
and conferences to orient your monitoring activities (Table 9-9). Examination
of topical terms (e.g., keywords, title phrases) could help you investigate how
concentrated the research activity is, on few or many subtopics. In instigating
a doctoral dissertation, for instance, this could help locate your activity with
respect to what others are doing, see how much research has been done relat-
ing to candidate topics, and check that your topic isn’t outdated.

As mentioned earlier, temporal relationships hold special interest. You
might examine how publication or patent rates and content types are chang-
ing over time. Chapter 13 discusses advanced measures, innovation indica-
tors—such as changes in keyword richness—that can indicate technological
maturation.

The basic analyses contribute to the various types of technology analyses
(Table 2-2). We mention a few particulars. Technology road maps involve
designing feasible technology futures; this demands understanding of the
developmental progress of a target technology along with its important con-
stituent technologies and the systems into which it would be applied. Tech
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TABLE 9-9. Top Journals in the Borlaug Sample of Agronomy

Weighted Number of Number of 
Rank Journal Name Score Citations Publications

1 Crop Science 560 155 15
2 Euphytica 425 74 13
3 Phytopathology 278 116 6
4 Plant Physiology 193 112 3
5 Science 181 181 0
6 Plant Pathology 165 30 5
7 Plant Cell Tissue and Organ 135 0 5

Culture
8 Theoretical and Applied 134 134 0

Genetics
9 Journal of Agronomy and 119 65 2

Crop Science 
12 Plant and Soil 108 0 4
12 In Vitro Cellular & 108 0 4

Developmental Biology—
Plant

12 Field Crops Research 108 0 4
12 Current Science 108 0 4
12 Nature 108 108 0



mining on these elements is vital. This entails tracking topical emphases 
over time by major contributors (especially one’s own organization and its
competitors).

CTI keys on “who’s doing what.” Identification of the key actors in the tech-
nology development system (see Chapter Resources) and determination of
how they interact is essential knowledge. Analysis of R&D publication and
patenting can be complemented by examination of accessible information on
R&D inputs and by expert opinion.

Technology “knowledge management” involves evaluating technology
competencies inside and outside an organization. It also concerns retaining
and using this knowledge well. It may also involve locating compatible capa-
bilities and IP. Collaboration, licensing, or other forms of closer integration
then become possible.

Process management involves getting individuals together to discuss
prospective solutions to problems. In national or regional technology fore-
sight, tech mining can help by identifying active researchers. Internal to a large
organization (e.g., a multinational corporation), self-profiling of related activ-
ity can help extend conventional wisdom on who to involve. Institutional and
individual “knowledge networks” revealed through tech mining efforts can be
further explored with techniques such as “actor analysis” (see Chapter 14).

Authors, institutions, and nations are the primary targets for creating S&T
indicators. Aggregate publication, patenting, and citation measures at the suit-
able level contribute. Because indicators gain value as time series, it becomes
important to generate repeatable measures.

Tech mining analyses can enable recognition of new topics through scan-
ning of content together with time markers. The momentum behind new 
technology thrusts can be examined by monitoring the numbers of emerging
publications in a given area and changes in content emphases.

CHAPTER 9 TAKE-HOME MESSAGES

We have come to the conclusion of this complicated chapter on basic 
analyses. The chapter is about cleaning the data and describing “what’s 
happening” through various basic analyses. We have provided hard-earned
advice as to “what works.” But we’ve also offered an underlying conceptual
framework (the Burt matrix, entity relationship diagrams and analyses, and
prominent bibliographic distributions). From these, we’ve tried to stimulate
your thinking about many possible analyses of S&T data (centered on 
Table 9-5).

We emphasize that querying a collection of articles or patents should help
answer questions about S&T activity patterns, with implications for techno-
logical innovation prospects. Chapters 12 (on patents) and 13 (publications
and patents) elaborate on how to bring tech mining analyses to bear as MOT
decision support aids.
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But, as we have seen in other chapters, analyses reach beyond merely query-
ing data. Chapters 10 and 11 show how predictive models can help generalize
tech mining results beyond a collection of articles to understand technology
development prospects.

The primary messages of this chapter are:

• The first step of any analysis should be to understand user requirements.
• Next, “wallow in” your data to get a personal feel for the R&D activities

involved.
• You can accomplish some basic bibliometrics without tech mining 

software.
• Clean your data. Tech mining software can help significantly in cleaning

and filtering data to enable valid analyses. You can merge searches,
remove duplicate records, and consolidate term entities (e.g., variations
on the same author’s name).

• Build thesauri to expedite consolidation of terms that vary and occur
repeatedly. Keep augmenting these, and your tech mining operations will
keep getting better and easier.

• Tech mining analyses are based on the Burt matrix. This arrays your
search set on two dimensions:
– documents (records)
– terms (the data fields represented on each record)

• Relationships are discerned based on co-occurrences of terms across 
documents, or on document similarities on certain sets of terms (e.g.,
keywords).

• Begin with Level 1 analyses—lists of selected entities (terms) occurrences
over the search set documents (e.g., “Top 10” keywords list).

• Move on to Level 2 analyses—crossing two lists together. The resulting
tables and matrices break out who’s doing what in many helpful ways (see
Table 9-5 for ideas).

• Higher-level analyses can be made by combining three or more sets of
terms (e.g., indicate which topics the leading authors emphasized over
time).

• Most tech mining variables show distinctively skewed distributions; most
activity concentrates heavily in the leaders (see Appendix D).

• Tech mining analyses variously serve product or process, and prediction
or prescription, motives.

• Don’t generate lots of tech mining analyses for their own sake; be sure to
start with the MOT questions to be answered and generate only those
analyses that help answer them.
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Chapter 10

Advanced Analyses

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

Chapter 9 discussed basic analyses, those deriving directly from the data. This
chapter discusses advanced analyses, those that go beyond direct measure-
ments. These address unobserved variables and model data behavior. They
yield such useful results as depictions of relationships, causal models, and pre-
dictions. The chapter offers key concepts to guide tech mining practice.

10.1. WHY PERFORM ADVANCED ANALYSES?

Advanced analyses extend beyond basic, descriptive analyses to infer rela-
tionships in the data. We go further than we can strictly observe or count in
the data (e.g., a list of the Top 10 inventors in a field), to patterns that are often
hidden from the casual eye (e.g., the inference that company C is patenting to
block others’ entry into a field). Advanced analyses help check that the pat-
terns and relationships generalize to other situations. A wise choice of model,
with judicious empirical support, can lead to understanding relationships to
draw inferences for technology management action.

At the heart of advanced analyses is a process of summarizing, or model-
ing, the data to find salient patterns. By definition, modeling deemphasizes
noise or inconsequential detail, revealing more robust (repeatable) patterns
in science and technology activity. For this reason modeling helps generalize.
It helps determine patterns that are likely to extend into the future and across

155



changes in particulars of the R&D endeavor. Modeling also leads us to
examine “hidden” variables in the data, a topic that we pursue in the next 
subsection.

Modeling begins with an appreciation of pattern. What patterns do we
anticipate finding in the data? What things are likely to be repeated across
time, place, and content? Tech mining approaches can validate hypotheses—
interpretations about technological innovation that we choose knowingly,
weighing their strengths and weaknesses. We discuss the role of representa-
tion in the material that follows. Representation is, at its heart, a structure or
pattern of data that we hope will be confirmed by analyses.

To set expectations, this chapter aims to provide a conceptual foundation
for you to use in thinking about analyses that go beyond straightforward com-
pilation and presentation of the data. We believe that this is the boundary
between basic and advanced analyses, but we recognize that the distinction
blurs in practice. This chapter is largely conceptual, although it concludes with
an example. We view this chapter as a “basic treatment of advanced analyses.”
The present scope does not allow full development of the particulars of the
many statistical and modeling approaches we note. For those just wishing to
get to the main types of relationship-finding analyses, Section 10.3 is the place.

Hidden Variables or Constructs

Why should we believe in “hidden variables” in the data—things that we
cannot count or measure directly? The truth of the matter is that we believe
only with reluctance. Summary statistics (which are not based on unobserved
constructs) do help us comprehend the underlying structure of noisy data.
However, belief in a few well-chosen constructs (variables not directly mea-
surable) can enhance our comprehension of underlying S&T behavior and
interpretation of the observed data. This section points to six key constructs.
These can help us understand R&D activity and help draw inferences on
motives and future extensions.

What we would really like is strong predictive theory covering research,
development, design, implementation, on through effective commercializa-
tion. We have considerable “technological innovation process” experiential
reports and some experimentation on which to draw for our conceptualiza-
tions. And we do so—for instance in the “innovation indicators” mentioned
throughout this book. Postulating “hidden variables” is a lot like having a
theory about what is important in the data. But unfortunately, we don’t have
exact theory of how S&T knowledge reflects in measured outputs like scien-
tific papers and patents. Given the lack of a strong guiding theory, the smart
tech mining analyst remains somewhat skeptical about empirical inferences.

What do we mean by “hidden variables,” more formally known as con-
structs? Recall that Chapter 9 drew distinctions among documents, terms, and
years as the essential tech mining data. Others would modify these somewhat.
For instance, NEC Research Center (producers of Citeseer, also known as
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ResearchIndex) distinguishes documents, terms (content), and actors (authors,
etc.). In the patent domain, one could refine the emphases somewhat differ-
ently (see Chapter 12). Anyway, we consider the primary distinction to lie
between documents (records) and terms (the content of particular fields con-
tained in the documents—keywords, authors, etc.—see Chapter 9). Hidden
variables are conceptual variables that help explain these observed data, espe-
cially the terms and their relationships. From another domain, imagine that
we are staring at mounds of data on worker tasks, behavior, and performance.
Without psychological constructs such as motivation, incentives, and learning,
we would be hard-pressed to make sense of the worker data. Analogously, we
look to tech mining constructs to help account for patterns in our documents,
terms, and years.

Table 10-1 lists six key constructs not directly measurable from the data. It
notes observable variables (measures) that pertain and describes the logic of
the underlying constructs. The tenor of the constructs shown leans toward
“sociology and philosophy of science.” We find that these notions help under-
stand the data and related observations of tech mining. For instance, when we
tally terms (e.g., keywords) for a body of work, we are really looking at clues
to the generation and building of S&T knowledge. You can certainly devise
additional constructs to be explored in tech mining.

Hypotheses About the Data

The six constructs invite consideration of underlying S&T mechanisms. The
directions of such inquiry depend on the tech mining motivation. One can
pursue many possibilities, from surmising national scientific program intents
to competitive technological intelligence (“CTI”) probes into why a competi-
tor is patenting certain technologies. We offer a few illustrations to stimulate
your thinking on how these constructs (Table 10-1) could serve your interests.

We might pursue prestige considerations to understand what makes a par-
ticular R&D institution so effective. Life cycle notions can help us interpret
trends in publication and patent activity. Invisible college aspects are more
powerful in explaining scientist than engineer behaviors. Identification of such
research communities (“small worlds”) can help us target monitoring efforts.
We may also want to become members of these communities ourselves to
ensure access and influence. Learning models can help get at what main
themes and capabilities are being combined by a given R&D institution. This
might suggest we attend to certain of these ourselves. Tracking work (publi-
cations and patents) over time could also help predict likely further (future)
specializations of the institution under examination. Structure of knowledge
information could point us toward seminal ideas that could indicate break-
through technologies. Knowledge production concerns some of the institu-
tional factors that lead research institutes to develop research programs, and
to grow and maintain these programs over time. This may help us understand
institutional thrusts and how they are nurtured.
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TABLE 10-1. Key Tech Mining Constructs

Construct Empirical Measures Description

Prestige Citations Esteem shown by the pertinent professional 
community—e.g., journals cited heavily 
by other prestigious journals; authors 
heavily cited by their peers.

Life cycle Publication or Attention to particular issues rises and falls 
of ideas patenting trends; (life cycle). New tools or new discoveries 

citation trends may trigger an “avalanche” of R&D in 
certain fields or initiate new fields. We 
may even track the growth and spread of 
ideas with “epidemiology” models.

Invisible Topical content Schools of thought develop around 
colleges emphases; methods differences of theory or method. Content 

emphases; analyses can discern use of key concepts.
coauthorship & Shared ideas also reflect in human 
citation patterns networks. Certain authors become central

to the community of interest, as reflected 
in coauthorships and in citation to their 
work as a hub of knowledge.

Learning Topical or methods Knowledge increments over time. Learning 
emphases may involve incorporation of new 

theories or concepts, methods, and/or 
empirical results into a field of inquiry.
Cumulation of new ideas may reflect 
through the content of publications or 
patents of an R&D domain.

Structure of Topical or methods Technical knowledge reflects structures 
knowledge emphases (terms (approaches, concepts, ideas, methods) 

used); popularity associated with particular disciplines,
of journals or fields, or schools of thought (see invisible 
conferences colleges). The respective technical 

vocabularies often differ and are reflected
in the terms used in publications.
Prevalence of a field’s papers in particular
journals or conferences can indicate 
dominant knowledge structures.

Knowledge Publications & Institutions maintain a “research memory.”
production patents; author & Continuity in a research organization’s 

inventor affiliations emphases over time derives from 
over time selective hiring, special training, and 

collaboration. Internal and external 
networking (funding continuity, enduring 
collaborations) reinforces ongoing 
research emphases and fosters 
productivity.



The “Monkeys” sidebar revisits a classic scientific debate. Imagine trying to
ascertain key elements and implications in “real time.” How can tech mining
algorithms tabulating numbers and content of scholarly papers and patents
hope to find out what is meaningful? The story (loosely) suggests the impor-
tance of constructs to comprehend the meaning in scientific discourses. We
must be alert to invisible college, prestige, and structure of knowledge factors
at work. In the evolution debates, interpretation in terms of learning (accep-
tance or rejection of key theory) and life cycles (uproars in this case) can help
us understand what is happening. Not to liken researchers to monkeys, but we
are individualistic, using terms somewhat differently. But if you consolidate
over many documents, you can model meaningfully.
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Sidebar: Monkeys, Typewriters and Shakespeare

In the middle of a college campus, during the height of the Victorian era,
an agnostic and a bishop met. Monkeys were discussed, and God as well.
There was even talk of typewriters—although it would be seven more years
before typewriters became widely available to the public.

This was the debate before the “Great Debate.” For sixty-five years
later this event would be recreated as the Scopes “Monkey Trial.” However
in 1860 when this debate was held, the British nation was gripped by fever
and rioting about a movement to revitalize the Church of England. Mean-
while, the works of Charles Darwin were growing in repute, leading many
to question the traditional teachings of the Church.

The debate was held at the student union of Oxford University. The
British Association for the Advancement of Science proposed a discussion
of Charles Darwin’s new book, “The Origin of Species.” Bishop Samuel
Wilberforce was a wily man, not to be bound by the ecclesiastic arguments
of the time (many centered there in Oxford). His very slipperiness earned
him the nickname “Soapy Sam.” Darwin himself was chronically ill and
could not attend. Darwin’s champion was the agnostic and educator,
Thomas Huxley. Huxley was a skeptic of all that could not be observed or
otherwise empirically verified. Fervent in his belief, Huxley abandoned his
own biological research to popularize the ideas of evolution throughout
Britain. The actual circumstances of the debate are perhaps lost to history.
The story has it that there was much shouting—and a woman who fainted
at the rudeness of it all.

During the course of the debate Wilberforce was reputed to have asked
Huxley “Which one was it—your grandfather or your grandmother—who
descended from an ape?” Huxley was uncowed. He asked Wilberforce 
to give him “the service” of six monkeys and a typewriter. Given enough
time, said Huxley, the monkeys would not only reproduce the works of
Shakespeare, but all the books in the British Library as well.



10.2. DATA REPRESENTATION

Given a large collection of publication and/or patent abstracts, we can
approach these deductively or inductively. Deduction begins with a theory or
hypothesis that we pose a priori. We then examine the data to see whether
they support or counter that conceptualization. We provide two quick illus-
trations—first, suppose that we theorize that firm F is trying to block entry
into a particular technological arena. One hypothesis is that they will pursue
an intellectual property (“IP”) strategy of filing “blocking” patents to keep
others out. We then examine their patenting portfolio to see whether this is
consistent with a blocking strategy. (Chapter 12 elaborates on empirical mea-
sures and how these relate to alternative patenting strategies.) As a second
illustration—suppose that we have a set of categories of S&T content that we
can interpret with regard to stages of technological innovation (life cycle
stages). We might use a thesaurus to then classify a set of data into those cat-
egories to assess the relative maturity of a target technology.

An inductive approach first turns to the data. We listen to the data, and then
try to categorize and interpret. Taking the same two illustrations, here we
would examine the patenting portfolio just mentioned first and then consider
what the patterns noted might mean in terms of some underlying institutional
strategy. For the second case, we could allow a software program to group the
content terms (e.g., keywords) with no a priori restrictions (e.g., use PCA, prin-
cipal components analysis, to generate keyword clusters). Then we would
examine and interpret the resulting categorizations. If the inductive reasoning
proves productive, we might label the resulting formulations a “model.” In the
future, we could then assess this model via other data sets—that is, on that
next iteration we shift into the deductive approach and test conceptualizations
on new data. (Actually, this reflects the classic scientific method in iterating
between hypothesizing and empirical validation and hypothesis refinement,
followed by further empirical investigation.)

We suggest that tech miners need to be overtly aware of which of these
approaches they use. Both deductive testing and inductive formulating are
valuable, but muddling them can twist us into circular reasoning. Put another
way, we should not allow the data to generate hypotheses that we then claim
those same data validate.

Model Selection and Assessment

Models come in myriad forms and sizes. A model is just a simplification of
reality that helps us understand real processes in some way. There are quali-
tative and quantitative models. Our efforts to understand technological inno-
vation aims constitute one form of qualitative modeling. Now, however, our
attention is on quantitative modeling of tech mining text and numeric data.

Another distinction lies between deterministic and stochastic models. Deter-
ministic models fit their parameters, so that “running the model” always gen-
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erates the same results. Our distribution equations from Chapter 9 could be
deemed deterministic models. Stochastic, or probabilistic, models incorporate
uncertainties. So, running these models can give a range of possible outcomes.
Most tech mining entails stochastic modeling.

A third distinction concerns whether the model’s orientation is static or
dynamic. Static models address a set of variables under given conditions
(state). Dynamic models generate results that “unfold” through time. These
may project future states from past and current information.

Tech mining can involve a wide range of modeling approaches, from quite
casual to highly formalized. Our attention focuses mainly on quantitative, sto-
chastic modeling. We seek to model large quantities of text data for the pur-
poses of understanding how these came to be generated. We sometimes raise
dynamic considerations—asking what we might predict for the future. As
noted in Chapter 2, sometimes we go further, seeking to prescribe. In model-
ing terms, this suggests “what if” examinations, leading to recommendations
that if we do X, desirable outcome Y is likely to result. For instance, if we add
Company C’s IP to our own, we will be positioned beautifully for application
A, whereas if we acquire Company D’s IP, we could tackle application B.

A “good” model does two things: It fits the data with accuracy, and it uses
relatively few parameters. Two sample issues arise in fitting PCA models (see
upcoming sidebar). One is how many keywords (or other terms) to include.
Another is how many principal components (factors) to extract. For instance,
we might compare an 8-factor model with a 12-factor model. We consider
various goodness-of-fit statistical measures (discussed a bit later), as well as
our subjective judgment as to which yield interpretable factors.

Many metrics have been created to determine how accurately a model fits.
One metric is likelihood (see sidebar). It describes how likely it is that the
model could generate the data. Building a tech mining model requires that we
address uncertainty, error, and variation. Many, but not all, models, allow us
to generate sample data. (We discuss more about “generating” data shortly.) 

Modeling Using Probability and Likelihood

Probability and likelihood are two different quantities. Both quantities are
numbers scaled between 0 and 1. Despite this they measure very different
things. In this section we give a brief discussion of probability and likelihood,
and we introduce a few concepts of probabilistic modeling.

Those readers desiring a more detailed (and more rigorous treatment) of
the subject are recommended to consult the work of Edwards (1972), a clear
if theoretical treatment of the concept of likelihood. Ross (2002) provides a
good overview of probabilistic models, without an excess of theoretical detail.
Baldi (Baldi et al., 2003) gives a timely overview of applying probabilistic
models to data collected from the Internet.

Probability is a measure of data given a model, and likelihood is a measure
of models given data. Probability and likelihood are therefore two sides of the
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same coin. Let’s examine this concept a little further with three examples.
Figure 10-1 shows a set of values, plotted on the X-axis. The values are clus-
tered near 0 but are both positive and negative. A few of the values are scat-
tered rightward toward higher positive numbers. Although we have only six
data points, we may form a hypothesis of the underlying process that gener-
ated the data. We ask—if we continued to observe the data, what more might
we see? What would the distribution of observations then look like?

Figure 10-1 overlays the data with a simple model that might have gener-
ated the data—the unit normal distribution. This distribution is symmetric and
centered on 0. Events far from 0 are comparatively rare in the distribution.
Note that the distribution shows the relative frequency of all events—the
probability that a particular value might be an observed outcome. We don’t
really know the relative frequency of our observations, whether they are
typical events or otherwise unusual. Each event in the data is given an equal
weight of one-sixth.

However, now that we have made this very simple model we can look
through each of the observations and ask: What is the probability of this 
data point, given the assumptions of our model? Figure 10-2 examines the
probability of the unit normal distribution generating a value of 0.5. As 
we have seen, values near 0 are more probable—values far from 0 are less
probable.

We may also look at this from another perspective. Given all the possible
models that might have generated this data, which is the most likely? Let us
entertain for instance three different models—normal distributions centered
on –1, 0, and 1. Each of these distributions has the same spread or variation.
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Which of these models is the most likely given the data? For this simple
example, the data consist of but a single point at 0.5.

Figure 10-3 shows that the models centered on 0 and 1 are equally likely.
(The likelihood values are 0.352.) In contrast, the model centered on –1 is com-
paratively unlikely—a value of 0.130.
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If we had no other basis for choosing between the models we might choose
models in proportion to their likelihood.

If we had more data points, we could use this information to further our cal-
culation of likelihoods. Each “independent event” contributes more evidence
toward our assessment of the model. Likelihoods are compounded through
multiplication. A credible model is one in which all events are well described
under the model. A single unlikely event discredits the whole of the model.

Equation 10.1. Compounding the likelihood across all events in the data

Likelihood as a product of all points in the data is shown above as Equa-
tion 10.1. It is convenient for multiple reasons to calculate the log likelihood
of the data. Taking the log of the likelihood enables us to sum across the data
(instead of multiplying). The likelihood of many models is vanishingly small
(for indeed, many models can produce an immense variety of possible out-
comes); it is advantageous to examine the logarithm of the value rather than
the absolute quantity. Such infinitesimal quantities are thereby easily com-
prehended. Finally, because likelihoods are bounded inclusively by 1 and
exclusively by 0, the log likelihood is always a quantity between 0 and nega-
tive infinity. Because the logarithm is a monotonic transform of the original
data, no data are lost by this alternative scaling.

Equation 10.2. Summation and log likelihood

Figure 10-4 takes this reasoning a bit further. What if we extended our
model search to all normally distributed models with unit variance? Which of
the models would then be the most likely? Our model, the normal distribu-
tion, requires two parameters: the central tendency of the model (the mean)
and the spread of the model (the variance, or standard deviation). We extend
our search to find the most likely mean of the data, while keeping the vari-
ance fixed at 1.0.

Figure 10-4 illustrates that the single most likely model is that of the normal
distribution centered on 0.5. This is the maximum likelihood estimate of the
mean. Although this is the most likely value of the model, we might also 
entertain a variety of alternative models about the data of varying levels of
credibility.

In this example we have gone from examining a single parameter of the
model to now considering hyperparameters of the model:What range of values
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of mean for our model is most likely? We have here, in essence, a model of
possible models. We might consider Figure 10-4 to be a likelihood distribu-
tion—but instead by convention we turn back to probability. The hyperpara-
meter is described by its own random distribution. The likelihood is a sound
basis for searching for the best class of models to describe the data; and with
more data we might begin to narrow our search, and to eliminate the uncer-
tainty about the model under consideration.

When and where does the search for models stop? Ultimately, there are an
infinite number of possible models that might describe any given set of data.
For indeed, we might extend our search from parameters of the model to
whole families of models through the use of hyperparameters. An exhaustive
search through all classes of models is not feasible, nor would it necessarily
produce valuable results. Modeling, then, is also a process of judgment, where
explicit knowledge of the subject must be introduced.

Another way of restating likelihood is to consider the following question:
Knowing only the model (with its parameters fit to a tech mining data set),
how well can you recreate the data? Because model processes are noisy, uncer-
tain, or incomplete, model outputs vary.

Therefore, likelihood is described by a probability. A probability of 0 means
that the data could never have been generated by the model. (The probabil-
ity of generating the data may be vanishingly small, but it never actually results
in a likelihood of 0.) A probability of 1, on the other hand, says the model can
always recreate the data—it is a perfect summary of the data. For example,
recall the “documents by terms” data of Table 9-3 (the Burt matrix). If we
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specified the correlations among all the terms, how well could we generate a
“twin” to this matrix? In general, we do not aim for exact precision; rather, we
want to get the important patterns right.

Higher-quality models have a higher likelihood. Often the logarithm of the
likelihood—the log likelihood—is given instead of the actual likelihood. This
log transformation provides advantages in that very small likelihoods are
scaled to negative numbers. In addition, the likelihood sums across various
components of the model; as a result, it is easy to determine the most and least
satisfactory parts of the model.

An accurate model is not always a succinct model. In fact, any sufficiently
detailed model may simply be restating exactly what is found in the data. This
phenomenon—known as overfitting—means that the resultant models are
cumbersome, but also not robust. Overfitted models may not be representa-
tive of the underlying processes; specific details have been reflected, not prin-
ciples. Understanding the succinctness of the model requires that the analyst
examine the parameters used in fitting it. The more parameters (variables)
used, the less succinct the resulting model. This is essentially just Occam’s
Razor, a cornerstone of scientific reasoning.
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Sidebar: Likelihood and Tech Mining

We have previously alluded to a hypothetical case in which we suspect a
competitor is pursuing a “blocking strategy” with their IP. Suppose we
compile a data set of their patenting in a given technological domain. We
might inquire as to the likelihood that the patenting pattern observed is
consistent with an underlying blocking strategy. This implies that we have
a stochastic (probabilistic) model of how a blocking strategy would reflect
in patenting. If the observed patents are highly consistent with this pre-
dicted pattern, we assess the likelihood as high. Conversely, if they fit the
prediction poorly, the likelihood approaches zero. Over time, as we refine
our model and validate it, we could translate it into an algorithm that might
be programmed so as to automatically flag patenting patterns observed by
other companies with a high likelihood of being caused by efforts to block
others. This could serve as an “alert” in our CTI to examine such situations
further.

EXHIBIT 10-1 Occam’s Razor—The Principle of Parsimony

“One should not increase, beyond what is necessary, the number of entities required
to explain anything.”



As the preceding sidebar suggests, accuracy and succinctness are compet-
ing criteria for model building. The most accurate models use more parame-
ters—and the most succinct models use fewer. Fortunately, there are
techniques to help balance accuracy and succinctness to choose the most infor-
mative models. One such criterion is Akaike’s information criterion (AIC; Eq.
10.3). Every increase in model parameters must have a good “payoff” in terms
of model accuracy. Otherwise, the model is less informative than it ought to
be. Analysts may choose a model so that a minimum score of AIC is achieved.
(AIC is always a positive number.)

DATA REPRESENTATION 167

Sidebar: Understanding Model Succinctness:
Principal Components Analysis (PCA)

Consider a study in which the tech mining analyst collects data about
keyword usage across articles. One hundred keywords, indexed across 5000
articles, results in 500,000 (100 ¥ 5000) data points as the basis for the analy-
sis. The analyst applies PCA to discover common patterns.

PCA uses a reduced set of dimensions (“components,” or factors—it is
a basic form of factor analysis) to represent the data. Based on the inter-
play of whatever “terms” are studied (here, keywords), it fits a first linear
combination of the 100 keywords that explains the most variance possible.
Then it creates a second component that best explains the remaining vari-
ance, and so forth. The resulting handful of components take the place of
the 100 keywords so that we can better understand data patterning. Results
can be depicted as maps (see Chapter 16). Each keyword “loads” on one
or more components. Each article gets a “component score” showing the
components to which it most closely relates. In addition, PCA attempts to
center and rescale the data using the mean for each term and the standard
deviation for each term. The following model parameters are involved:

• Model treatment: Means (one for each keyword) (K)
• Model treatment: Standard deviations (one for each keyword) (K)
• Document loadings: Number of documents (D) multiplied by the number

of components (C )
• Keyword loadings: Number of keywords (K) multiplied by the number of

components (C )
• Total number of parameters: C*(D + K) + 2K

In our example, the number of keywords is fixed (100) and the number of
documents is fixed (5000). How many components could reproduce the data
without error? It turns out that 98 components would generate 500,000
points of data—as much as the original data source! If the analyst were to
use 98 components (and perhaps even far fewer components) the resultant
model would be overfit.



Equation 10.3. Akaike’s information criterion (AIC)

AIC = -2*likelihood + 2*parameters

There are other measures of model accuracy and succinctness. PCA models
can be compared in terms of their groupings’ cohesiveness and entropy, for
instance (Watts and Porter, 2003). Regardless of the specific measures of
model adequacy chosen, the same essential trade-offs should be considered.

Modeling Data Relationships

In inductive analyses, we are interested in modeling two kinds of relationships
in the data: “parent-child” and “sibling” relationships (Cunningham, 1996;
Kongthon, 2003). When we do not have a priori categories, we often would
like to understand hierarchical relations. Certain forms of clustering strive to
do this. “Parent-child” relationships offer one way to consider hierarchy. For
instance, to note that “high-energy physics” (the child) is a form of “physics”
(the parent), we are really saying that physics is composed of a number of sub-
disciplines and high-energy physics is but one of these fields.

Sibling relationships concern association. For instance, to note that TU
Delft and Georgia Tech are siblings is to say that they play somewhat similar
R&D roles—but TU Delft does not work exclusively with Georgia Tech, nor
vice versa.

Relationships may be characterized as parent-child, sibling, or a mix. All
that is needed for a pure parent-child relationship is probably a good “data
dictionary”—for instance, to relate all research institutions to their respective
nations. These are well suited for “tree-based” analyses (Section 10.3).

Relationships are rarely exclusively sibling, if only because any two sets
usually vary in magnitude. Nonetheless, advanced analyses are useful to char-
acterize, structure, and predict what elements of the data set are most likely
to be close siblings. Many of the term relationships at any one level can be
considered siblings—for example, studying the shared R&D interests of mul-
tiple organizations.

Figure 10-5 demonstrates these relationships with Venn diagrams. Each
circle represents a set of articles. Sibling sets, as noted, have some overlap. In
tech mining, this translates to co-occurrence in the data (e.g., articles by these
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Figure 10-5. Relationship types



two organizations tend to share keywords). Parent-child relationships find one
set completely contained within the other. Mixed relationships combine attrib-
utes of both. Tech mining data rarely (if ever) fall completely into either
parent-child or sibling.

Drawing Valid Inferences from the Data

We have already discussed the role of advanced analyses as summarization of
the data. A generative model is a recipe that describes how to recreate the
data. Not all analytic techniques involve a generative model, but there are
advantages in so doing (Exhibit 10-2). First, generative models make explicit
hypotheses about the data. The resultant analysis may then be confirmed or
denied as a reasonable description of the data. Analyses without a generative
model risk being “unfalsifiable”—the analyst may produce interesting results
but have no way to assess their merits. Second, generative models require the
analysts to be explicit about what they do or do not know. Knowledge, or the
lack thereof, can be expressed in terms of probabilities. Third, this points
toward measures of model quality—the likelihood of the observed data, given
the model. Fourth, generative models can create mock outputs or “parodies”
of real scientific data. This can assist knowledge management purposes
through possible simulations. Fifth, generative models can highlight which part
of the data is most unusual or surprising. Because the chief tech mining
problem is “information overload,” models that highlight what warrants our
attention are especially helpful. The “Threats to Validity” sidebar adds another
perspective on checking model validity (see also Section 15.3). The “Parodies”
sidebar (Section 10.3) illustrates data generation issues.

EXHIBIT 10-2 Advantages of Generative Models

(1) Explicit Hypotheses
(2) Codifying Knowledge and Level of Uncertainty
(3) Explicit Measures of Model Quality
(4) Parodies Real Data
(5) Highlights Surprising Results
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Sidebar: Threats to Validity

Don Campbell and colleagues (Campbell and Stanley, 1963; Cook and
Campbell, 1979) devised an incredibly helpful set of considerations to check
the validity of inferences drawn from empirical data. They distinguish four
types of threats to validity. Here we synopsize those and add questions for
the wary tech mining analyst to ask:

Continued



Variables and Distributions 

Important features of models include random variables, data transformations,
and “plates”—variables at a comparable level of aggregation. Let’s start by
considering the idea of a random variable. Random variables are the outcome
of a random process; these processes are described by distributions. Random
distributions describe the range of possible outcomes, and the likelihood of
any given outcome actually occurring.

Technological innovation is far from random. However, parts of the system
are not fully understood and many aspects have a stochastic (noisy) element.
Observers might not be able to identify the key terms, important relationships
among terms, and the relative placement of one publication among others of
its kind. We can, however, create random variables to represent this imprecise
knowledge and use suitable models to estimate this information.

S&T publication and patent measures include some discrete variables and
some continuous ones (Exhibit 10-3). Discrete variables take on only certain
values (e.g., number of authors of a paper); continuous variables take on any
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• Internal Validity—whether the observations (the data) are potentially
biased
� Is our data set possibly distorted in ways that could affect important

conclusions (e.g., we are missing “gray” or “black” literature)?
� Might certain events have altered publication and patent behavior in

ways we should take into account (e.g., 2 companies merged)?
� Can we think of ways that publication or patenting behavior might be

a distorted reflection of actual R&D activity (e.g., a company discour-
ages publication)?

• Statistical Conclusion Validity—whether sample sizes are sufficient to be
confident that results are not due to chance
� Is our data set large enough to draw robust conclusions?
� Have we sampled all the important R&D outputs? (e.g., in our fuel cells

tech mining, should we have searched Chem Abstracts in addition to
engineering-oriented EI Compendex?)

• Construct Validity—whether the underlying constructs are properly
reflected by the observable measures
� Do our constructs really relate to the observed measures as we posit?

(e.g., have we gathered data to correctly represent the R&D domain
we think we are addressing?)

• External Validity—whether the findings for the given data set generalize
to other situations
� Are the data suitable to draw conclusions for our tech mining target

interests? (e.g., if the data are historical, do they pertain to current con-
ditions? if we study R&D publication data because we have them, and
these heavily reflect university activity, can we say anything meaning-
ful about companies’ R&D?)



values along a continuum. In tech mining, we most often address situations in
which sufficient discrete values occur that we can approximate by a continu-
ous distribution (e.g., number of papers of a large research community). Exam-
ples of discrete random distributions include the binomial, multinomial, and
Poisson distributions, introduced in Table 10-2.
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TABLE 10-2. Important Discrete Distributions in Tech Mining

Distribution Discussion

Binomial distribution Models the probability of a single event with a fixed 
outcome. Multiple Bernoulli trials with binomial (0/1) 
outcomes. The distribution is discrete because there is 
a fixed outcome (true or false; yes or no).

Multinomial distribution Models the probability of choosing from multiple 
outcomes. Multiple trials of multinomials are known as 
the categorical distribution. The distribution is discrete 
because there is a finite set of outcomes to choose 
from.

Poisson distribution Models the probability of discrete events occurring with 
a specific rate. The distribution is discrete because the 
outcomes are limited to occurring in unit quantities.
(For instance, authors either publish a complete article 
or no article at all.)

EXHIBIT 10-3 Examples of Continuous and Discrete Variables in
Tech Mining

Variable Type Example Given

Discrete Probability of Citation Given a particular author, journal,
date or publication

Probability of Keyword Given a particular abstract, journal or
collection of records

Probability of Collaboration Given a particular author, institution,
or keyword

Probability of Numbers of Given a particular paper
Authors

Continuous Probability of Numbers of Given a particular keyword, date, or
Publication collection of articles

Probability of Numbers of Given a particular paper, date or
Keywords collection of articles

Probability of Numbers of Given a particular paper, date or
Journals collection of articles

Probability of Numbers of Given a particular paper, date or
Authors collection of articles



Many data attributes of tech mining interest are appropriately modeled as
continuous variables. Some of the more frequently used continuous distribu-
tions include the normal (or Gaussian), gamma, Dirichlet, lognormal, and the
power law (Table 10-3 discusses three of these). The choice to treat discrete
quantities (such as papers, citations, collaborations, institutions, and keywords)
as continuous variables is somewhat arbitrary. With sufficient numbers of
observable values, continuous and discrete modeling should yield similar
results. Beware using continuous variables whose distribution encompasses
negative and positive values (e.g., mean of 0) for entities that do not actually
take on negative values. Also, strongly consider using “thick-tailed” distribu-
tions (such as the lognormal or power law) instead of the more popular normal
distribution to represent bibliometric data because, as already noted, these
tend to be highly skewed.

Probability distributions are related to outcomes, and measurable tech
mining data, through “link functions.” Often these links are simple multi-
plicative relationships. They help “multiply” the findings—showing, for
instance, how a range of outcomes can be explained by a small subset of the
variables. Links can also help scale the variable. (The random variable itself
typically has scaling parameters, so it need not be transformed.) Scaling trans-
formations, where a quantity is scaled and an offset is added, are known as
“affine” transformations. These are linear transformations.

There is some concern that the phenomena in tech mining are very complex
and therefore quite nonlinear. Although this may be true, there is consider-
able merit in starting with simple assumptions and testing to see the merits of
the resulting model. Sometimes we transform the data (e.g., taking the loga-
rithm) to better match model to data (e.g., to cope with long-tail distributions).
One important role involves transforming continuous quantities into discrete
outcomes. Discrete outcomes have distinct floors and ceilings (often the func-
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TABLE 10-3. Important Continuous Distributions for Tech Mining

Distribution Discussion

Normal (Gaussian) A two-parameter distribution with a symmetric bell 
distribution shape. Occurs when many additive causes contribute 

to creating an outcome. Related in fundamental ways 
to the binomial and Poisson distributions.

Lognormal distribution A distribution with a leftward-skewed shape, which is 
bounded at 0. Occurs when many causes multiply to 
create a single outcome. Related in fundamental ways 
to the normal distribution.

Power law distribution Distribution with “thick tails”—high-magnitude events 
are relatively frequent. Occurs whenever the “winners”
are rewarded, or are given cumulative advantage.
Related in fundamental ways to the lognormal 
distribution.



tion is limited by 1 at the maximum and 0 at the minimum). A transformation
may ensure that the continuous function does not result in unrealistic out-
comes. One of the most useful transformations for this purpose is the logistic
equation.

Equation 10.4 transforms a variable with an open-ended range of outcomes
to a variable with a bounded set of outcomes. The equation showing x as a
function of y is known as the “link” function. The equation showing y as a
function of x is known as the transformation. (The probit function may some-
times be handy, too—it relates the continuous range of the normal distribu-
tion to a 0-1 discrete probability function.)

Equation 10.4. Logistic link and logistic transformation

Tech mining models may address different levels, on a hierarchy, of vari-
ables. For instance, we might be analyzing both journals (higher-level aggre-
gation) and papers (lower-level aggregation). Or, we have previously noted
the example of the specialty of high-energy physics falling under the higher
aggregate, discipline, of physics. This tiered approach allows you to address
differences among entities, by level. For instance, we could note that high-
power transmission falls under the discipline of electrical engineering (EE)
and that publishing practices differ between physics and EE. Graphical depic-
tions conveniently distinguish entities by level of aggregation—so, physics and
EE would appear on a higher “plate” than the specialties, high-energy physics
and high-power transmission.

We have now discussed the fundamental components of generative
models—probability distributions, transformations and links, and plates or
aggregates of variables. In Section 10.3 we examine how these components are
combined to create standard models. In subsequent sections, we discuss how
custom analytical models may be built for special purposes by selectively com-
bining these components.

10.3. ANALYTICAL FAMILIES

We have argued that advanced analyses serve to summarize the data and reach
conclusions that may generalize beyond the tech mining data sample. Our
choice of representation for the data is one form of hypothesis. We hypothe-
size a structure in the data, and then we use analytical techniques to discover
and fit the data to the structure. As we will see there are several kinds of “fam-
ilies” (alternative modeling approaches) widely used in tech mining. These are
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inductive approaches—seeking to infer structure from observed regularities
in the data. When we begin the analysis with an already-accepted data struc-
ture (deductive approach), we don’t fit a model to the data; instead, we fit the
data into our a priori model. For instance, one of the innovation indicators dis-
cussed in this book asserts that extensive corporate R&D publication is an
indicator of commercialization potential for a technology. To score this indi-
cator, we apply thesauri to tally the extent of publication by industry, acade-
mia, and government/nonprofits/others. In contrast, this section focuses on
inductive approaches.

We address, in turn, dimensional (spatial) models, usually presented as
maps, clustering, trees, and (briefly) causal models. Chapter 11 discusses trend
analyses, another data fitting approach. We seek to distinguish these analyti-
cal approaches and recommend when to use each kind. But note that termi-
nology and usage blur. For instance, the approach most heavily discussed in
this book, PCA, fits into the dimensional models family, but we routinely treat
its outputs as “clusters.” Don’t be put off by this, but recognize that the under-
lying statistical approaches have much in common and that outputs can be
represented in multiple ways. The message of this section is to think through
your tech mining objectives and then choose from among the analytical
approaches one that best serves those objectives. Put another way, don’t be
captive to a single approach.

Term Mapping (Dimensional Analysis Techniques)

Tech mining data are usually of very high “dimensionality,” meaning there may
well be thousands of words, documents, journals, or other items in need of
analysis. Dimensional techniques (Exhibit 10-4) share a common approach in
handling data. The techniques all represent the data with relatively few, under-
lying dimensions. These dimensions can be graphically depicted as “semantic
spaces” or “science maps.” Dimensional analyses help the analyst find and
communicate major patterns in the data by dramatically simplifying focus.
Dimensional techniques can be recognized through their emphasis on creat-
ing “spaces,” factors, or other reduced dimensional forms of representation.

Concerns arise from poor data compression metrics. These may obfuscate
underlying relationships or even introduce artifacts. Metrics that define dis-
tance or similarity among entities make a difference in model outputs. For
instance, in using PCA on keywords, one could use keyword correlations or a
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EXHIBIT 10-4 Dimensional Analysis Techniques

Correspondence analysis Latent semantic indexing
Factor analysis Multidimensional scaling
Independent components analysis Principal components analysis
Kohonen maps



cosine function (or other similarity measures), resulting in somewhat differ-
ent representations of the data.

Spatial techniques are quite effective for understanding networked S&T
structures. Such structures involve sibling relationships, so are most applicable
when comparing things of similar scale. That is, map “plates” of items together;
if you want to break out sublevels (lower aggregates), be sure to distinguish
these clearly in the visualization. Another set of issues arise in how one depicts
distances in a 2-D or 3-D mapping. Some depictions convey what’s happening
more effectively than others. In most situations there is not a simple “right”way,
but rather several reasonable representations. Picking one or a few highly infor-
mative ways to map a data set combines science (statistics) and art (a sense of
what best informs the target users). But if several topics are being compared,
consistent representation is vital. In many semantic spaces, the axes themselves
are arbitrary—be sure your users understand this. Examples of spatial tech-
niques applied in tech mining appear at the end of this chapter and in Chapters
12 and 16. The sidebar notes data generation issues.
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Sidebar: Simulating the Data

Suppose we have performed a dimensional analysis, say, using PCA. We
stare at one of the dimensions—call it “Factor A.” Suppose Factor A is com-
posed of five high-loading keywords. We now work our way back from those
loadings to create “mock” documents. We flip through a set of these simu-
lations of the real data to see whether anything appears ludicrous. If we
spot keywords appearing together that make no sense, this is a “red flag”
to reassess our model.

Another illustration: A police artist listens to descriptions of criminal
suspects by witnesses and tries to render a realistic model. As the artist com-
piles responses to a whole set of questions—e.g., size of forehead, ear loca-
tion, cheekbones—the artist periodically shows the model to the witness to
check whether it is coming out “right.” Be sure to test your models’ depic-
tions on knowledgeable folks.

EXHIBIT 10-5 Clustering Techniques

Agglomerative algorithms Mixture models 
Hierarchical clustering Probabilistic clustering 
K-means Single-link clustering

Clustering Techniques

Clustering techniques (Exhibit 10-5) share a similar goal—the discovery of
“natural types” in the data. These can be identified by an emphasis on dis-
covering natural clusters, groups, or prototypes. Effective clusters group the



most similar items and exclude the most dissimilar ones. The result of a clus-
tering analysis is the discovery of a set of distinct groups.

The most serious challenge these techniques face is defining the nature of
similarity. A wide variety of potential similarity measures have resulted.
Perhaps the most basic is co-occurrence—items in common. For instance, two
articles that share more keywords in common are more similar.

An advantage of clustering techniques lies in their very simple representa-
tional structure. The idea of groups, or types, is very easy to communicate. For
instance, we have mentioned “typing” research organizations as academic,
industry, or government. The constitution of the groups is also easily commu-
nicated—very simply stated, it is a list of all, or the leading, members belong-
ing to that group. A drawback of the technique is that it may be too simple to
effectively represent many phenomena.

Clusters come in various types (Chapter Resources provides a few point-
ers). Some approaches generate “exemplars”—prototypes of the items in a
class; others represent aggregates—a sum total, or collection, of all the
members in its class. Some clustering techniques allow for “soft assignment”;
others don’t. With soft assignment an item may belong to multiple groups. Soft
assignment with exemplar-type clusters can effectively represent sibling rela-
tionships, much like spatial techniques could. Clustering techniques are quite
versatile and may also be used for representing “parent-child” relationships.
Clusters can indicate relationship between the collection and its members,
allowing the analyst to understand hierarchical characteristics in the data.
Such analyses may be quite similar in character to trees, to which we turn in
the next section.

Techniques for grouping data can be used in cleaning the data. For instance,
you might suspect that the query has yielded some irrelevant documents. Clus-
tering can help you identify by grouping (and eliminating) the irrelevant arti-
cles. Examples of clustering applied to tech mining appear at the end of this
chapter and in Chapter 16. The sidebar introduces geographically oriented
clustering.
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Sidebar: Regional Cluster Analyses

Our Georgia Tech colleague, Phil Shapira, has applied tech mining tech-
niques to help study “innovation clusters.” In this case one associates R&D
outputs (patents and/or publications) with particular geographic regions
(e.g., countries or, particularly, metropolitan areas). A thesaurus helps link
the particular organizations generating those patents (or publications) to
particular regions. This tends to be relatively straightforward for major uni-
versities, research institutes, and large companies, but more challenging for
the residuals (e.g., small companies and other organizations). Of course, one
must resolve uncertainties such as how to credit a patent by a multinational
that involves invention carried out in multiple labs, with assignment in
another place and initial patenting elsewhere. But, for the purpose of 



Tree-Based Techniques

Tree-based techniques (Exhibit 10-6) involve successively dividing data into
groups or classes. The tree is “complete” when the links among the various
classes are fully explored. Much like a natural tree, tree-based models reach
from aggregates of data to specific instances or classes. Trees may be created
“trunk out” from the most aggregate level to the most specific (the “leaves”—
small group of documents or terms). Alternatively, trees may be created by
starting with individual articles and aggregating up until the entire collection
has been subsumed. Tree-based techniques can be identified through their
emphasis on denoting family or “compositional” relationships.

The most serious challenges for tree-based techniques are assumptions of
relatedness. These approaches seek to create a parsimonious description of
structure. Armed with a good theory about how the data were generated, and
a succinct and well-formed description, the analyst may then assume that items
that are close together on the tree are more closely related. Unfortunately,
there may be multiple competing trees, all offering succinct descriptions of the
data. Worse yet, when new data are introduced, the shape of the tree may
change radically. “Pruning” the tree—that is, including neither too much nor
too little structure—is an important consideration for building robust models.
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EXHIBIT 10-6 Tree-based Techniques

Association rules Hyperbolic trees
Classification and regression trees KD-trees
Decision trees Minimum spanning trees 
Discriminant analysis Nearest neighbors
Hierarchical models Probabilistic trees

identifying concentrations of types of technological innovation activity (e.g.,
Herfindahl index) to ascertain the best opportunities for certain cities, com-
plete precision is not needed. Shapira and colleagues have used tech mining
to identify the best technological development opportunities for Georgia
cities.

A “natural” for such regional analyses is to map results as suitable
overlays on geographic models (geographic information systems—GIS
depictions). Showing concentrations of particular R&D activity can have
effective technology policy implications, too. We have explored such possi-
bilities with the U.S. National Library of Medicine. In that case, the inter-
est was in showing whether regions confronted with emissions of particular
hazardous substances were or were not the locales wherein research on
dealing with those hazardous materials was taking place.



Trees have interesting representational characteristics. They can be effi-
ciently represented through a set of rules or as a standard textual outline struc-
ture. This can communicate well to those who might not like spatially oriented
techniques (visualizations, maps). However, trees can be represented graphi-
cally, too. Graphical plots often have some danger of misleading,as they suggest
proximity among items that may be neither more nor less related than other
items. In addition, tree-based techniques may produce such richly branched or
cross-linked structures that they are difficult to present graphically.

Trees involve successive divisions of the data, and these are an integral part
of the final representation. In this way,tree-based techniques convert simple par-
titioning (like cluster analysis) into more complex structures. Cluster analysis
addresses the basis for similarity among items. Tree-based approaches are often
more concerned with describing key differences among the branches in the data.

Trees share some similarities with dimensional approaches as well. Both
sort the data along dimensions of similarity or relatedness. Ironically, the basis
for comparison in tree-based techniques may be richer and more multi-
dimensional than that of a strictly dimensional approach. For this reason, trees
offer a more succinct way of representing data than dimensional approaches—
only the key discriminating factors in the data need be highlighted in the rules
and branches of the tree.

Trees work well to represent parent-child relationships. Items of very dif-
ferent scales can be shown on the same map—for better or worse. For
example, some use hyperbolic trees to represent the branching citation struc-
ture of the World Wide Web. A personal home page can appear alongside such
luminaries in the Internet world as “Yahoo,”“Google,” or “CNN.com”—pages
read and cross-linked by millions. Examples of tree-based techniques used for
tech mining appear at the end of this chapter and in Chapter 16.

Table 10-4 highlights key advantages of each analytical family.

Additional Analytical Approaches

Each of the techniques listed in Exhibits 10-4, 10-5, and 10-6 could be explored
in detail, but that is beyond our intent and scope. Chapter 11 is devoted to
trend analyses. We have noted that this section’s approaches are inductive; the
contrasting approach is deductive, trying to fit the observed data into preset
categories.
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TABLE 10-4. Three Analytical Families

Family Strengths

Dimensional Generate a few variables to capture most of the key information;
analysis Facilitate graphical depiction to help understand relationships

Clustering Conceptually straightforward—group like terms;
Can generate exclusive groups or allow multiple membership groups

Trees Provide useful hierarchy information (parent-child);
Can be represented multiple ways



We call attention to causal modeling. Unlike the other approaches
addressed in this section, the driving motive is not classification but under-
standing of cause and effect. Such models may build upon classification and
trend analyses. Multiple regression is one popular form of generating causal
models. For instance, imagine that we want to know the relationship between
U.S. Department of Energy (DOE) funding and publication activity. We could
gather data on funding (amounts, thrust areas, by year) and model against pub-
lishing activity (by field, for DOE grant recipients and others, lagging the
funding by different years). Certainly, correlation (or regression) does not
imply causation. Generating effective causal models for tech mining data
requires compelling constructs and system depiction. One needs to explain
how observed data are more consistent with a causal explanation than with
alternative possible explanations. This sort of thinking, carefully vetted, can be
superb input into management of technology (“MOT”) decision processes.

We have introduced a wide variety of analytical models that can be com-
bined in many ways to achieve particular analytical ends. You can string
together models of different types much like beads on a necklace. The com-
bined models are often more effective than their separate parts. The ability to
jointly estimate two separate models creates a more effective, more succinct
result. A strength of the probabilistic approach is the ability to mix and match
modular components. As an example, you could create a “mixtures of factor
analysis” model (also known as a “mixtures of experts” model). Such a model
includes a cluster model at the aggregate level and a factor analysis model at
the lower, more specific level. Tech mining software could separate records for
each cluster and then perform factor analysis on just those records to see what
topics (keywords) that cluster uses most heavily. This might help recognize dis-
tinct kinds of content across a broad or diffuse field. Or, as another example,
such a model might be used to recognize and detail differences among
research institution emphases.

Various types of information can be combined with temporal markers to
identify change. The number of approaches is extensive, starting with just plot-
ting an activity measure versus time (see, e.g., Chapter 11; also Fig. 16-3). “Time
slicing” into interpretable periods (e.g., before and after a policy shift) can
show up differences. For other purposes, smoothing trends over time statisti-
cally may elucidate what is changing (e.g., using exponential smoothing to
reduce the noisy splatter over monthly patenting data).

We have explored ways to compare PCA maps over time. Particular maps
vary greatly because of the nature of multidimensional scaling (MDS), so
direct comparison over time slices is not straightforward. Human-interpreted
and -drawn maps of the key factors dominant in successive time periods can
be very effective. We used this approach in studies for the Army Environ-
mental Policy Institute to track changes in military noise issues with develop-
ments in technologies to reduce noise (e.g., the emergence of active noise
suppression methods). We prepared a series of 5-year maps showing noise
factors prominent for each period. We then extrapolated into the future on
the basis of apparent trends and expert views on what forces were driving
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change in this area. Thus tech mining term mapping helped forecast techno-
logical and issue changes.

Record topographies are wonderful to visualize change over time. For
example, we could mark one organization’s patents on a landscape by using
different colors for different time periods. Showing this interactively where
first the earliest period’s patenting is lit and then successive periods are added
can convey the diffusion of that organization’s interests compellingly.

Our colleague Bob Watts is researching advanced model quality metrics.
These include (1) percentage of keywords included in PCA or PCD (principal
components decomposition) “factors,” (2) entropy, and (3) the richness of link-
ages among keywords.These metrics could, in turn,be used as indicators of tech-
nological maturation (Watts and Porter, 2003). The PCD algorithm applies
metrics that provide a standard solution to a min-max problem (Watts, 2001). In
other words, it uses an optimization routine to determine how many factors
(principal components) to extract.The PCD process includes as many of the ana-
lyzed records (i.e., abstracts) in the derived “factor groups” as possible. In addi-
tion, the PCD algorithm strives to maximize both the number of factor groups
and the group-defining descriptors (i.e., the high-loading “keywords” for each
PCA factor group). The algorithm also attempts to minimize the number of doc-
uments associated with more than a single factor. This solution approach con-
ceptually equates to minimizing the entropy and maximizing the cohesiveness
of the factors formed (Borner et al., 2003; Steinbach et al., 2000). One advantage
lies in reproducibility—given identical documents, the automated PCD analysis
will repeatedly derive the same set of factors (groups of keywords).

The sidebar considers how one might want to represent (model) S&T, gen-
erally speaking. Section 10.4 offers empirical illustrations for a number of the
approaches introduced.
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Sidebar: Ideal Representations of Science and Technology

Science is often discussed in apparently contradictory terms. Commentators
note the increasing specialization—as John Ziman once put it, scientists
“know everything about nothing.”Scientists appear to work on disconnected
topics, making little reference to the works of one another, particularly
beyond their disciplinary bounds. In contrast, others highlight the densely
connected research networking—emphasizing the people, institutions, and
papers that create connected hubs for the preservation and exchange of
ideas. Such networks, in this perspective, are core to S&T advance.

The ideal S&T representation might balance these two depictions. On
one side, it would seek to identify individual scientific specialists as the keys
to advance. On the other, it would seek to model networking as key to the
spread and diffusion of scientific knowledge. Can we combine both in one
ideal modeling and information representation? We offer this as a challenge
to the tech mining community.



10.4. DEBRAND TRUST ADVANCED ANALYSIS EXAMPLE

We return to our DeBrand Foundation case data of 173 articles citing the
agronomist Norman Borlaug (see Chapter 9). The main tech mining objective
here is to create a monitoring system to discover significant new research,
beyond this small sample, in the area of human welfare and agronomy. A
second objective, therefore, is to expand the original search to discover addi-
tional relevant articles.

Given these objectives and the small cross-disciplinary data set, we favor
an inductive approach to discover patterns in these data. Clustering techniques
seem most in order. By identifying various types of articles, the DeBrand
Foundation hopes to deepen its knowledge of relevant research.

The analysts know that the breadth of the topic is not well-suited to being
captured in keywords. Borlaug is cited across disciplines, by authors of very
different interests and orientation. Instead, the analysts chose a mixture of
cited authors and cited journals to get at a suitable range of scientific and
policy knowledge elements. (This is a mix of two kinds of basic analyses; see
Chapter 9). Table 10-5 shows the 20 most frequently cited authors and most
frequently cited journals in this literature.
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Table 10-5. Top Twenty Cited Journals and Authors for the Borlaug Collection

Rank Journal Author

1 Science Borlaug NE
2 Crop Sci Wolfe MS
3 Theor Appl Genet Christou P
4 Phytopathology FAO (United Nations Food and Agriculture 

Organization)
5 Plant Physiol Zadoks JC
6 Nature Mundt CC
7 Plant Soil Jensen NF
8 Proc Natl Acad Sci USA Worland AJ
9 Bio-Technol Browning JA

10 Plant Cell Rep Rajaram S
11 Euphytica Malhi SS
12 Soil Sci Soc Am J Vanderplank JE
13 J Food Sci Law CN
14 Agron J Finckh MR
15 Plant Mol Biol Baligar VC
16 Annu Rev Phytopathol Wang HL
17 Adv Agron Khush GS
18 Plant J Simmonds NW
19 Nat Biotechnol Marschner H
20 Genetics Leonard KJ (tie)

Sanford JC*



Two general- interest scientific journals, Science and Nature, rank highly—
affirming the broad scope of this inquiry. Not surprisingly, Borlaug leads the
list of most frequently cited authors—the collection is based on citation of his
work. More interesting are the other highly cited authors—Wolfe, for instance,
and the United Nations Food and Agriculture Organization. These have been
“learned” from the data as possibly significant sources of agronomy literature.

In preparation for clustering, each of the 173 articles is indexed to identify
whether it cites each of these Top 20 journals and authors. Because authors
and journals may be cited repeatedly, the index for each article is discrete
numbers greater than 0. This indexing leaves only 5 of the 173 articles without
any indices at all. (These are popular news articles that don’t formally cite sci-
entific content.) The indexing strategy is therefore successful in revealing a
dense network of cited literatures that spans the article collection.

The analysts choose Poisson clustering to group the data. This probabilistic
technique assumes that the data have been created from a mixture of “N” dis-
tinct types of literature, each citing the authors and journals with their own
characteristic rates. (McLachlan and Peel, 2002, discuss probabilistic modeling
in detail.) The tech mining analysts run a set of analyses, varying the number of
clusters extracted.They compare results using AIC as the criterion (recall Equa-
tion 10.3—the lower AIC, the more informative the model). Figure 10-6 sug-
gests that the best model contains 5 clusters (clusters are discrete—we’re not
going to have a model with 4.7 clusters!). Models with fewer clusters do not
adequately describe the data. In contrast, the models with more clusters make
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greater assumptions about the data and require more parameters to fit the
data—these models are too elaborate given the limited nature of the sample.

A “responsibility matrix” shows on an article-by-article basis the assign-
ment of documents to underlying clusters. The clusters are “responsible” for
describing the characteristics of their respective documents. The probabilistic
clustering technique allows for “soft clustering”—the possibility that a given
document might be a mixture of one or more clusters. But, as can be seen in
the partial matrix (Table 10-6), most documents appear to be “pure types,”
best explained by one cluster.

The key findings from the cluster analysis are shown in Table 10-7.
The table summarizes the five clusters in terms of the raw numbers, the key

authors, and the key journals associated with each cluster. First of all, it is inter-
esting to note that the generalist journals Nature and Science are read across
all the clusters identified—citations to these sources can be eliminated as a
source of discriminating power. Likewise, by definition, Borlaug is widely
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Table 10-6. Sample of Responsibility Matrix

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Article 1 0.00 0.00 1.00 0.00 0.00
Article 2 1.00 0.00 0.00 0.00 0.00
Article 3 1.00 0.00 0.00 0.00 0.00
Article 4 0.00 0.00 1.00 0.00 0.00

TABLE 10-7. Key Findings from Cluster Analysis

Number/
Cluster Percentage 
Number Tentative Label of Articles Key Authors Key Journals

Cluster 1 Genetics 18/10% Christou P Genetics
Leonard KJ Natl Biotechnol
Sanford JC Bio-Technol

Proc Natl Acad Sci
Cluster 2 Plant science 15/9% Marschner H Plant Sci

Khush GS Soil Sci Soc Am J
Baligar VC

Cluster 3 General interest 102/59%
Cluster 4 Phytopathology 39/20% Wolfe ME Phytopathology

Zadoks JC
Mundt CC
Browning JA
Finckh MR
Leonard KJ

Cluster 5 Food science 4/2% Wang HL Agron J
and agronomy Malhi SS J Food Sci

Worland AJ



sampled across the collection and is therefore not a significant discriminator
among groups.

Secondly, it is interesting to note that a very substantial cluster (Cluster 3)
represents “general-interest” articles of a topical character. These articles
contain relatively few citations to particular established authors or journals.
Isolating these articles is helpful as it clarifies the characteristics of the more
specialist clusters that remain. It also suggests that our recommended moni-
toring strategy reach beyond specialist literature.

Cluster 1 represents biotechnology articles. Three authors and four journals
stand out as particularly representative of the group. Cluster 2 consists of a
group of plant science and food science articles. Plant horticulture and nutri-
tion are at the forefront in these articles. Cluster 4, a substantial group, talks
about phytopathology. There are a number of significant articles, but at least
in this sample, only a single journal stands out as a source of literature. The
fifth group is relatively poorly sampled—four articles or roughly 2% of the
total. This group emphasizes research on food science and human nutrition.
Journals include the Agronomy Journal, and the Journal of Food Science. The
leading author (in this very limited sample of articles) is SS Malhi.

As discussed, the likelihood can also serve to highlight surprising, or poorly
explained, aspects of the data. With the probabilistic clustering model, each
record of the data receives a “log likelihood” score—the more negative the
number, the less likely the record could have been generated by this model.
Figure 10-7 shows the distribution of likelihood across all articles. (The quan-
tity shown is actually the log likelihood.)

As can be seen there exists a small, but substantial “tail” of poorly explained
articles. Examining these articles on a case-by-case basis (data not shown)
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often gives revealing results, and offers opportunities to improve the model.
First, we note that two of the six least likely articles come from the “food
science” cluster—a cluster we have acknowledged needs additional explo-
ration and data collection. Second, the single most unlikely article comes from
a particular set of authors (name withheld) who cite themselves far in excess
of the rates at which other authors in their discipline cite their work. We can
compare the generative model (likelihood estimates) with the actual to fine-
tune; for instance, in recommending a monitoring strategy we might shift the
journal set slightly (Table 10-8).

In sum, this case analysis has proven productive. It identifies research
domains we might monitor based on the clusters that inductively arise from
the 173-document set. Could we have used dimensional analyses (term
mapping) or tree-based analyses? Yes, but we do not feel these would have
worked as well. Continuous dimensions to research emphases would be
awkward in terms of specifying which areas to monitor. Trees provide more
linkage (hierarchy) detail than we want here. Space does not really allow us
to demonstrate all these analytical options. The intent of this section is to
provide one illustration of advanced analysis—probing more deeply into a
data set to get at underlying and interpretable patterns.

CHAPTER 10 TAKE-HOME MESSAGES

• Advanced analyses summarize the data to help discover patterns and
relationships.

• Consideration of constructs (hidden variables) can help to understand
underlying mechanisms at work.

• We offer six key constructs to help stretch tech mining thinking beyond
observables.

• Deductive approaches fit the data into preset models to ascertain how
well they fit.

• Inductive approaches seek natural categories emergent from the data
themselves.

• We contrast model types: qualitative and quantitative, deterministic and
stochastic, and static and dynamic.

• Weigh two evaluative criteria for your models: accuracy and parsimony.
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TABLE 10-8. Reweighting the Journal Index

Added to the Journal Index Dropped from the Journal Index

J Agr Food Chem Plant J
J Sci Food Agr Nat Biotechnol
Can J Soil Sci Genetics



• “Likelihood” offers a useful concept in assessing model effectiveness in
representing data.

• The AIC helps in assessing model quality.
• Recognize two basic data relationships: parent-child (hierarchy) and

sibling (same level).
• Generative models that recreate (simulate) data sets can serve to 

check model reasonableness and to generate mock data for decision
explorations.

• One ought to consider whether discrete or continuous variables can best
capture the essential data attributes.

• Three analytical families merit strong consideration in striving to under-
stand your data: dimensional analyses (term mapping), clustering, and
tree-based techniques.

• Combinations of analytical approaches add further power.

CHAPTER 10 RESOURCES

Others (cf. Teichert and Mittermayer, 2002) and ourselves (cf. http://
tpac.gatech.edu) compare alternative clustering and related approaches in the
tech mining context. As we write, Alisa Kongthon and Cherie Courseault are
completing dissertations on these topics at Georgia Tech. Zhu et al. (1999) and
Watts and Porter (2003) discuss facets of these issues more deeply as well.
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Chapter 11

Trend Analyses

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

Time is a variable of special importance to tech mining. This chapter presents
a range of approaches to trend analyses, in order to:

• Describe technological changes occurring in the past
• Predict future technological changes, over time

11.1. PERSPECTIVE

This is the third of our analytical chapters. Chapter 9 presented basic analy-
ses (relatively straightforward reflections of publication and patent abstract
data sets). Chapter 10 introduced advanced analyses (considerations in uncov-
ering underlying relationships among the data). Here we address trend analy-
ses (ways to understand and represent changes over time). The intent of this
chapter is to foster insight and present options, more than detailing “how to”
particulars. We do introduce a new example of nanotechnology publication
data, through which to illustrate various time series analysis approaches.

Chapter 9 distinguished documents (records), terms (content of the infor-
mation fields), and time (usually years). This chapter focuses on analyses per-
taining to terms changing over years. One can also map documents over years.
That is another way to get at technological activity changing over time, for
instance, in tracking when a company began to patent in each of several spe-
cific domains.
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This chapter notes the straightforward trend analysis possibilities but does
not expend much energy on these (see Chapter Resources). It instead intro-
duces a number of ways to measure change over time. We suggest ways to deal
with data uncertainties prevalent in tech mining. Much of the discussion is
couched in terms of regression, a basic statistical technique. (Any lack of famil-
iarity with statistics should not seriously hinder your understanding of the
ideas presented.) 

Time series data are prevalent in tech mining, and a variety of questions
can be answered in many ways, so we don’t present a lockstep procedure. That
said, Exhibit 11-1 offers a set of steps worth addressing in some order.
However, the chapter is not organized neatly by steps, so you will find discus-
sions and illustrations interspersed as we raise various tech mining trend con-
siderations. Previous chapters addressed many data issues.

If you are doing trend analyses, adapt these steps to your situation. For
instance, you may instigate trend analyses on inspection of your tech mining
data to find potentially important shifts over time. That may lead you to
obtaining more historical data to deepen the time series. If you are the con-
sumer of trend analyses, just check that the analysts have performed some
approximation of these. For instance, you probably don’t want to be swamped
with lots of alternative trends and projections, but you deserve assurance that
the analysts have considered alternative formulations.

Description Versus Prediction

This chapter discusses several techniques for analyzing changes in publication
and patent data over time. Two reasons for performing trend analyses contrast
sharply—description and prediction. Description means succinctly summariz-
ing the patterns and trends found in the existing data. Prediction seeks to
extend those trends into the future to help anticipate likely science and tech-
nology advances.

Trend description helps address many technology management questions.
Technology monitoring requires ongoing efforts to summarize incoming data.
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EXHIBIT 11-1 Steps in Trend Analysis

1. Spell out your objectives and perspective; decide if you want to model your data.
2. If so, identify candidate models.
3. Collect and treat (possibly transform) the data.
4. Fit the models to the data.
5. Project forward with the suitable model or models (if you are interested in 

forecasting).
6. Check model fit and perform sensitivity analyses.
7. Interpret.



Describing trends and changes in them can help to understand what’s chang-
ing in S&T. This can help decision-makers get abreast of shifting emphases in
a research area, or of changing emphases by a rival organization. At the least,
trends help gain an overview of R&D activity in ways not otherwise viable,
say by reading thousands of patent abstracts. Describing trends in the data is
a vital part of technology monitoring.

Prediction aims to understand where S&T activities are heading. This is a
daunting task. Publication and patent data provide useful information, but we
recognize that these are “outputs” of an S&T system. As such, they don’t tell
us directly about changes in the underlying mechanisms. Consequently, we
need to be wary in offering predictions. We recommend combining publica-
tion and patent trend analyses with other empirical analyses (e.g., R&D
funding patterns) and with expert judgment about the research domains under
study to generate strong predictions.

Trends of What?

As just noted, we focus on trends in observed publication and patent activity
(but most of the principles apply to other such data). We have time series of
data on these outputs, not on the “real” processes generating them. So beware
extrapolating observed trends in situations where the driving forces are apt to
change. For one thing, publication or patent patterns for emerging technologies
are likely to hold only for relatively short time periods (i.e., a few years). For
another, we need to reflect on the likelihood of new techniques, conceptual
breakthroughs,empirical discoveries,or market shifts altering the historical pat-
terns we observe. We need to remind ourselves that R&D does not plow
forward in a simple linear fashion to commercialization. In addition to science
impacting technology,new technology (e.g., tools,methods) often opens up new
scientific opportunities. Furthermore, R&D outputs generate new ideas and
opportunities to pursue on side routes. Disappointing application results may
feed back to develop a capability further, leading to different applications.Tech-
nological innovation results from highly interactive, multivariable systems.
Some observers would distinguish three forms of technological change: incre-
mental, transitional, and transformational (Kash and Rycroft, 2000).

We address trend analyses separately in this chapter, and not in Chapter 9,
because we want to press beyond “data description.” At the simplest level,
we just plot activity versus time to see the pattern. At a second level, we 
break out subtopics from the overall activity of an R&D domain to track 
shifts in topical (or other) emphases. For instance, at a first level we plot
general nanotechnology research publication by year (see Fig. 11-1 below).
At a second level, we might plot occurrences of selected subtopics (e.g.,
from Table 11-3 later in the chapter, we might compare research intensity on
nanofilms with that on nanotubes—not illustrated). Tech mining software
expedites such sub-data set trend analyses by making it easy to group and sep-
arate records.
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At a third level, we consider ways to analyze changing publication and
patent patterns over time to help elucidate underlying mechanisms. Toward
these ends, we will introduce approaches to estimate rates of change, ways to
combine multiple entities in trend analyses, and means to examine the fit of
particular growth models to the time series data.

A potential weakness of the time series approach is the fairly simplistic
depiction of scientific growth that results. We might determine, for instance,
that a given area of technology is growing at 35% yearly. Unfortunately, we
do not learn the causes of such rapid growth, nor do we know whether the
growth can be sustained in the future. Nonetheless the relative success of these
simple models of S&T adoption suggests that many fields operate under con-
ditions of relative stability. The collective action of multiple scientists, regu-
larity in funding patterns, and publication continuity (active publishers tend
to keep publishing) helps ensure relatively steady growth for many S&T fields.
When the driving forces remain essentially the same—a situation known as
“stationarity”—trend projection is valid. Determining stationarity calls for
insight into what is driving R&D in the domain and any impending limits
(physical, funding, or market). The greater the understanding of the techno-
logical systems in question, the more assured you can be of getting this right.
This cries out for involvement of substantive experts in making projections for
an emerging technology.

The prototypical tech mining time series data concern some “content”
over “time.” Content—that is, terms—means patent classes, title phrases,
keywords, inventors, organizations, and so forth. But any of the content of 
our document sets can be analyzed over time. For instance, we might track
changing coauthorship patterns or national interest in a subtopic. “Over time”
usually means exploring how these measures change year over year. Rarely
do the data warrant using finer periods (e.g., months) because of anomalies 
at that level (e.g., a substantial portion of a year’s research publication 
might derive from a conference that happens to fall in a given month). On 
the other hand, we sometimes find value in consolidating multiple years as
“time slices” to see important changes better. Unfortunately, for “emerging
technologies,” we rarely have the luxury of extended time series for such 
purposes.

So approach simple trend descriptions and predictions with caution (for a
classic treatment of the pitfalls see Ascher, 1978). Think through what factors
and forces could alter historical patterns. Trend forecasts do best in S&T
domains showing a cumulation of incremental changes. The prominent
example is Moore’s law—describing sustained exponential growth trajectories
in many facets of silicon-based semiconductor advances from the 1960s over
the following 50 years (more on this in Section 11.2). As we write, however,
prognosticators speculate on how much longer these trends will hold, mainly
because of impending physical limitations as component dimensions shrink
toward the nanoscale.

190 TREND ANALYSES



11.2. AN EXAMPLE TIME SERIES DESCRIPTION AND FORECAST

In this section we illustrate trend analyses on a sample research publications
data set generated by searching on “nanotechnology” in the title, keyword, or
abstract fields in the Science Citation Index (SCI).* We start with simple analy-
ses, then introduce regression analysis, and proceed through a range of more
advanced analyses.

Basic Nanotechnology Trends

Table 11-1 arrays the number of nanotechnology articles by year. The table
clearly indicates dramatic growth. (We discuss the two estimated values later
and address the other columns shortly.) Figure 11-1 plots the same data. Some
users prefer the tabular presentation to get the precise numerical values;
others perceive the pattern more effectively from the visualization. Many
alternative visualizations are possible—consider line charts, histograms (bar
or column charts), and three-dimensional column charts to compare trends for
several entities (Chapter 16 illustrates such options.) Find out what informa-
tion representations work best for your target users.
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TABLE 11-1. Nanotechnology Publication

Observed (& Estimated) Cumulative 
Years Annual Publications Publications Log of Annual Publications

1988 3 3 1.099
1989 0 (5)* 8 1.597
1990 3 11 1.099
1991 20 31 2.996
1992 9 40 2.197
1993 18 58 2.890
1994 34 92 3.526
1995 30 122 3.401
1996 38 160 3.638
1997 42 202 3.738
1998 75 277 4.317
1999 88 365 4.477
2000 135 500 4.905
2001 175 675 5.165
2002 293 968 5.680
2003 304 (405)* 1373 6.004

*Values have been estimated.

*For a more considered tech mining treatment of nanotechnology R&D activity patterns, see
Hullman and Meyer (2003). This exercise only illustrates trend analyses; it taps one database with
a simplistic search. Much molecular level S&T research does not use the term “nanotechnology.”



Consider “second-level” trends we might calculate. Instead of charting the
overall activity, we could break it out for a partial set of certain terms. For
instance, we might identify the “Top 6” universities (or whatever) for this data
set and then chart the publication activity for each of them separately. Better
yet, we could compare the trends for those Top 6 in one figure, possibly looking
for those with the longest duration of, or the most recent, activity.

Also decide how you wish to treat “time.” For some purposes, you may want
finer than yearly data, possibly to pick up seasonality. This is most likely for
economic aspects of technological innovation, such as sales of a technology-
enhanced product versus the base product. As already mentioned, sometimes
we find it helpful to bundle years together as “time slices.”These can be chosen
to reflect significant contextual changes. In examining Iraqi engineering R&D
(Porter, 2003), we used natural break points (e.g., occurrence of the Gulf War)
to make up periods of roughly comparable duration (or total activity) to spot-
light marked shifts in R&D publication.

Figure 11-2 plots the cumulative data. (This just sums all the activity year
by year, beginning in 1988, up through a given year.) This “transformation” is
useful in visualizing the “S-shaped” growth curves, to be discussed further.

Basic Regression Notions

Here is a quick primer on linear regression (“regression” for short)—a basic
statistical technique that proves quite helpful in trend analyses. Equations 11.1
develop regression notions. Part (a) shows an ultrasimple relationship.
Suppose Y is the English system unit of length, yards, and X is feet. This equa-
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tion can calculate the number of yards in any given number of feet (e.g., 15
feet equals 5 yards)—Day 1 of high school algebra! Linear regression is just
an extension of this.

Equations 11.1. Linear regression

(a) Y = (1/3)X
(b) Y = bX
(c) Y = a + bX
(d) Y = a + bX + e
(e) Y = a + b1X1 + b2X2 + e
(f) Y = a + b1X1 + b2X2 + . . . bNXN + e

Part (b) generalizes the relationship between Y (the dependent variable)
and X (the independent variable). The constant “b” could take on any value.
When X is multiplied by b, one gets Y. Returning to high school algebra, we
sometimes had to solve one or more equations like this to find “b.”

Part (c) adds a constant. This allows one to displace the relationship by the
amount “a.” Again testing your recall (if you’re American), part (c) could be
used to relate degrees Fahrenheit to degrees Celsius. In this case, a = 32 and
b = 9/5. To express 40 degrees C in degrees F, we solve part (c) to get 104
degrees F.

Part (d) brings us into real statistics! Here we add an error term, e, reflect-
ing that our equation may entail imprecision. Unlike the relationship between
degrees Fahrenheit and degrees Celsius, other relationships are often noisy. For
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instance, consider American men’s weight as a function of their height. Weight
tends to be greater for taller people, but there is a lot of individual variation.
The greater the scatter about the line [part (c) is an equation of a line], the larger
“e” is. If all the points fall exactly on this regression line, “e” is 0. If the points
are a “shotgun blast” of randomness, with no relation to the line, b = 0.

Part (e) is getting slightly sophisticated. This is multiple regression. Here
we use two independent variables to help predict Y. For instance, we might
refine our “weight as a function of height” equation by adding gender as a
second “X” term.

Part (f) just expresses this in a more general way. Here one could have as
many independent variables as desired. That’s regression. Solving these equa-
tions to fit actual data yields specific values for the “a” and “b” coefficients
that constitute many of our trend models. This involves minimizing the sum
of squared deviations of the actual data about the calculated regression line.
MS Excel or any statistics package does the calculations.

Linear regression attempts to model the relationship between two variables
by fitting a linear equation to observed data. Before attempting this statisti-
cal fitting, a modeler should first consider whether or not there might be a
meaningful relationship between the variables of interest. This does not nec-
essarily imply that one variable causes the other (for example, higher SAT
scores do not cause higher college grades), but that there is some significant
association between them. The commonly used method of least squares cal-
culates the best-fitting line for the observed data by minimizing the sum of the
squares of the vertical deviations from each data point to the line. If a point
lies on the fitted line exactly, then its vertical deviation is 0. Because the devi-
ations are first squared and then summed, there are no cancellations between
positive and negative values.

Many tech mining variables have integer values. But regression can gen-
erate noninteger values. Reality frowns on partial patents or publications.
Usually you can just round to the nearest integer. Better yet, deemphasize
“point” forecasts in reporting tech mining results in favor of likely ranges.

Growth Models

In technology forecasting, we have found four growth models particularly
useful (Exhibit 11-2). This Exhibit shows how Equation 11.1 (d) would be
adjusted to represent each type of growth. The linear model requires no trans-
formation, just use Equation 11.1(d). The other three are inherently nonlin-
ear, but we can transform them into a linear form to use linear regression to
fit their model parameters. We then can transform them back if desired (e.g.,
take the antilog in these cases). Exponential growth is properly fit by a straight
line if one takes the logarithm of Y (either natural log or log to the base 10).
The two S-shaped growth curves are fit by the somewhat more intricate trans-
forms shown. All these models pertain well to cumulative growth data.

Annual growth data are obtained by taking the difference of subsequent
cumulative growth data. An annual growth data model results from taking the
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derivative of a cumulative growth data model, so relationships differ accord-
ingly. Figure 11-3 (a) plots hypothetical annual data that grow exponentially
to a peak, then decline to zero. Plot (b) shows the corresponding cumulative
data. This “S-shape” reflects slow initial growth, followed by rapid ascendancy,
then slowing growth that asymptotically approaches the limit (L). Variations
of this pattern are most common for growth in technological capabilities and
also for market diffusion processes. They are not universal, of course.

Many other equations also describe growth relationships. A particularly
popular S-shaped curve for representing market growth is the Bass model.
Systems of equations can be formed to describe more complex, interactive
relationships. For instance, the Lotka-Volterra equations represent Y as a func-
tion of X, but also X as a function of Y (Porter et al., 1991). The next section
investigates exponential growth modeling.

Which model, using which form of data, best suits publications and patents?
Unfortunately, the answer is not clear. Growth in the “hard sciences” seems
better fit to annual publication rates, whereas the “soft sciences” seem better
aligned to models based on cumulative growth. Why? Perhaps in faster-
changing domains, one finds many active researchers feeding off more recent
literature for ideas, new tools, etc. Scientists read (and cite) less older litera-
ture than do social scientists. We suggest you inspect both the annual and
cumulative publication or patent trends. Consider which seems most suitable
to the case at hand.

Do S-shaped curves model publication or patent growth well? On the one
hand, publication in a fast-growing domain like nanotechnology cannot grow
at exponential rates forever. However, to fit the S-curves, one needs to specify
a limit—that is, an upper bound to growth. In many technology domains one
can identify real limits to growth (e.g., physical limits on microelectronic
effects). In most market domains we also have reasonable grounds to set limits
(e.g., 100% as maximum market penetration). Publishing or patenting have no
actual limits, but we can generate conditional limits for modeling purposes.
For instance, based on our sense of the number of active researchers and the
extent of funding we might pose 1000 articles per year as a limit for a horizon
of interest, say 5 years. This may help us generate a reasonable fit and pro-
jection over the next couple of years. A good idea if we take this route is to
try out several reasonable limits and observe how model outcomes vary as a
result (e.g., set L = 800, 1000, and 1200 in the equations of Exhibit 11-2).
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EXHIBIT 11-2 Four Growth Models

Model Linear Transformation
Linear Y
Exponential ln (Y)
Gompertz ln (L/Y) where L = the upper growth limit
Fisher-Pry (Pearl) ln [(L - Y)/Y]



Another good idea is to fit several models (e.g., both S-curves) as a form of
sensitivity analysis—observe results and interpret by offering a reasonable
range of projections.

If an S-curve appropriately describes growth of the research domain being
studied, we then fit one or more such curves. These can provide highly valu-
able insight into impending maturation of the domain. Even as the number 
of patents or publications continues to increase, but at a decreasing rate, we
can signal to management that this domain may be losing momentum. This is
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vital information for R&D program management to begin to redirect efforts
early on.

What happens to publication in a hot emerging technology domain like
nanotechnology? A paradox to ponder—if you scan across research domains
at one point in time and compare their growth rates, smaller domains tend to
be growing faster. But if you track one domain over time, adjusting your search
algorithm to capture relevant research emphases, growth often continues
unabated as the domain grows. Why? Many factors interact. Subtopics tend
to grow and wane—you get annual rates that rise and fall, often roughly like
a bell-shaped curve (normal distribution). Cumulation of these subtopics over
time may generate an “envelope curve”—a succession of S-curves building
one upon another. Another tendency is toward specialization. As interests
evolve and particularize, terminology changes. So, a search on “nanotech-
nology” 5 years from now is apt to capture considerably less of the related
activity than it does today. In other words, we add indexing, or searching, com-
plexities on top of the increasing specialization of the research.

As the number of publications or patents under study becomes large, dif-
ferences in modeling approaches become less influential. For nanotechnology,
we have more confidence in the recent trend than in the early years of the
time series. Note in Figures 11-2 and 11-3 the relative smoothing of the curves
after the early period.

Exponential Growth

Although the S-shaped growth curves just discussed are more common in 
technological innovation, another simple and effective time series model is 
to assume that the growth rate is constant over time. The most famous expo-
nential growth case is known as Moore’s law. Gordon Moore, founder of Intel,
predicted in 1965 that a number of key semiconductor performance metrics
would keep improving exponentially—and they have for five decades! The
constants differ somewhat and, in fact, show some changes over time, but
Moore’s law has profoundly captured the exponential growth powering “IT”
and our “Information Economy.” For example, the density of components on
computer chips doubles roughly each 2.5 years.

Exponential growth assumptions are expressed mathematically by Equa-
tion 11.1 (d) with log(Y) replacing Y, and in alternative forms by Equations
11.2. Yearly publication is Y; the change of publication over time is the deriv-
ative of Y; and the rate of publication change is b. Note that the independent
variable (the general “X” in Equations 11-1) is specified as time “t.” Equations
11-2 nicely represent the case in which “publication increases by a constant
multiplier each year.” The resulting differential equation represents exponen-
tial growth. (Or, when b is negative, it represents exponential decay.) The 
variable C represents a constant of integration—in this case, the level of pub-
lication at year zero. (We may arbitrarily set “year zero” to whichever year we
wish. For this example, we set it to 1987.)
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Equations 11.2. Constant publication growth

We have already seen that our nanotechnology publication activity shows
strong growth. Is an exponential growth “model” suitable? Visually, both
annual growth (Fig. 11-1) and cumulative growth (Fig. 11-2) appear exponen-
tial. Figure 11-4 shows the linearized version of the annual growth, reflecting
the log (no. of publications). Note that after the earliest years, the data fall
quite nicely linear. (Not shown, the logarithmic version of the cumulative data
also are nicely linear after the first few years.)

We want to estimate the rate of change of nanotechnology publication. To
use linear regression, we can take the last form of Equations 11.2. We have 16
data points (Table 11-1): t values are the years; ln(Y) values are the log (no.
of publications)—Column 3 of Table 11-1. The regression shows a good fit, as
reflected in the R2 (amount of variance in the values about the line accounted
for) of 0.95. The growth rate (coefficient “b” in the last of Eqs. 11.2) is 31%.
(See sidebar on “compounding growth.”) 
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This same regression line can be extended into the future to predict publi-
cation rates. Doing so anticipates 493 publications in 2004 and 674 in 2005.
Obviously, one should not believe in any such precision. Indeed, 50% confi-
dence intervals for 2005 stretch from 510 to 891 publications. Confidence inter-
vals widen as one extrapolates farther into the future (these are discussed
further in a later section). (Regression routines to do these calculations are
available in MS Excel or in statistical packages.)

Exponential models are one of our four attractive growth models. Expo-
nential projections would not be expected to hold over an extended horizon.
Scientific interests specialize and shift, and the number of scientists is limited.
However, for the short run, they make sense. They offer an appealing sim-
plicity in that they can be given as a compounding growth rate. Nearly all of
us understand such notions from experience with checking account or credit
card interest rates.

Which growth model should we use—exponential, linear, or S-shaped? (See
previous section.) The tech mining analyst must consider:

• What fits our concept of what is going on?
• Which of the four (or more) models fits the data best? (judge this based

on appearance and statistical goodness of fit)

Conceptually, what makes sense? Tech mining analysts should engage persons
who understand the S&T in question to check. To gauge fit, one should con-
sider data issues too—the next section addresses these.

Data Considerations

Publication and patent data sets that span many years give us a rich source of
tech mining information because they show how emphases change over time.
However, they also pose a host of issues in dealing with time series data. This
section identifies a number of issues and suggests how to deal with them.
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Sidebar: Compounding Growth Rates

Note two possible ways to express the growth rate. One is to take the coef-
ficient from fitting the growth equation. This is like receiving interest on an
annual basis. If you get 31% interest on $100, you have $131 at the end of
the year. But we may prefer to think of continually compounded interest.
That is, if the bank pays you interest daily, instead of yearly, at the same
rate, you end up with a bit more than $136. Whichever rate you use, the
nanotechnology literature shows a startlingly rapid rise in publication.



Chapter 9, in particular, treats issues in cleaning data. Were this not done,
you can well imagine problems being caused for trend analysis—for example,
inflated values due to duplicate records. Consider also general data consider-
ations, including:

• Data quality—What basis do you have that reliability is satisfactory?
• Data relevance—Do the data measure what you want to analyze?

Missing Values

We sometimes have gaps in the data. Some statistical approaches can just
ignore these and go about fitting a suitable trend. If not, you need to estimate
the missing values. Such procedures can become quite complicated. Consider
how you are using the results to determine how much care is warranted 
in coming up with a superior estimate. For instance, in our nanotechnology
data (Table 11-1), we deal with a related data issue, the zero value for 1989.
Given that we are much more interested in recent activity developments, we
shouldn’t expend much effort on this “ancient” value. Put another way, the
pertinent conclusions and tech mining recommendations are not very sensi-
tive to how we treat this value.

What we have done to generate an estimate for the 1989 nanotechnology
publication is to fit the regression and use its calculated value here. One
approach is to iterate this estimation. For example, we could first insert the
average of the adjacent series values (3 for both 1988 and 1990, so 3). Then fit
the regression, obtaining an estimated 1989 value of 4. Repeating the process,
converges to a value of about 4.5, which we round up to 5.

Outliers

Another issue concerns how to deal with unusual series values. Note that the
1991 nanotechnology publication value is considerably greater than the adja-
cent values. Our first question is whether we feel our tech mining conclusions
would be highly sensitive to this. In this case, the answer is “no,” so no further
refinement is needed. Were we concerned, we might next examine the actual
data to see whether we can tell what is happening. For instance, publication
data often show bursts of activity as special conferences convene on topics not
routinely addressed. Were that the case, we accept the data and turn to how
best to analyze them.

One powerful approach to deal with “bursty” series is smoothing. There are
many variations, such as moving average (e.g., replace each year’s value with
an average of it and the previous 2 years’ values) or exponential smoothing
(places more weight on more recent data).

Another approach can combine statistical treatment and judgment. Note,
for instance, that Poisson regression is an explicit technique for dealing 
with bursty data. Visual inspection can flag an outlier data point that appears
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erroneous. We can check this by statistical measures (e.g., comparison with a
regression estimate for that year). We can also ask knowledgeable persons
whether they can explain the apparent outlier. Explanations could provide
insight into mechanisms, unusual actions, or research breakthroughs.

When we have an outlier that seriously affects the tech mining, we have
several choices. We can discard the outlier and treat it as a missing value. Or
we can adjust it as illustrated for the next topic.

Partial-Year Effect

Typically, our most recent data point(s) are incomplete. This causes an appar-
ent decline in publication rate and may lower estimates of growth rate. Most
critically, it may lead to erroneous conclusions that the R&D domain is in
decline.

There are multiple causes including incomplete indexing by the database.
In the past, lags of a couple years were not uncommon between publication
or patenting and inclusion in the database. This could be compounded by
version lags—for instance, if your organization acquires the database on CD
quarterly or annually. We also see differential lags for various patent offices.
Furthermore, a differential occurs between publication outlets that provide
electronic version access to particular databases and other conferences or
journals that are indexed only after actual paper publication and distribution.
Although major S&T databases have reduced the indexing lag, it is not
unusual for publication tallies to continue to increase slightly for several years.

Tech mining almost always grapples with whether to include the most
recent part-year data. On the one hand, getting the most up-to-date data is
vital. Tech mining data already suffer from lags between actual research and
publication or patenting. On the other hand, the most recent yearly tallies are
artificially low. Again, choices include leaving out the most recent, incomplete
year to combining this last part year (especially if it is a small portion of the
year) with the previous one to help compensate for the indexing effect. In
general, a better approach is to adjust the data according to the fraction of the
year to date that is included. In the “nanotechnology” example, the 2003 data
were collected through August 2003. We called this about 75% of the year,
and so corrected the observed value by multiplying by 4/3 (Table 11-1).

Zeroes

A special estimation issue arises if we are fitting an exponential model—the
logarithm of 0 is undefined. Our judgment on how critical the estimates are
influences how simple or complicated we make the resolution. We have lots
of choices:

• Omit that value (best if relatively few zeroes)
• Assign a very low value and proceed (sacrifices some accuracy)
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• Model the data in their cumulative form
• Estimate a nonzero value; then fit the exponential growth model; next

replace the initial estimate with the new one provided by the model;
iterate until suitable convergence is obtained (as presented in addressing
missing values)

• Estimate the model in its exponential (nonlinear) form. (This involves
maximizing the log likelihood of the normally distributed error about a
function estimating the function—e.g., publication activity.)

• Use Poisson regression. This stretches beyond our scope, but is worth
noting in dealing with series with more than a few low numbers (i.e., near
0). Poisson fits and forecasts never admit negative outcomes, whereas
regression based on normal distributions can. This is especially likely in
presenting forecast ranges (confidence intervals). Managers could be put
off by “negative publications or patents,” so be sure to present lower limits
as 0. We illustrate the use of Poisson regression in the next subsection.
Agresti (2002) offers a complete introduction to Poisson regression, as
well as other techniques for handling categorical data.

An “Emerging Technology” Nanoexample

One of the early proponents of nanotechnology, Eric Drexler, anticipated a
“wet” route to nanotechnology. He anticipated that nanotechnology might
progress by emulating organic life. Let’s examine a sample data set that loosely
pursues this interest by using the query: both “nanotechnology” and “genet-
ics” as keywords. This yields a small subset of 30 of our nanotechnology doc-
uments. Table 11-2 shows the publications by year for this query.

As can be seen, in the early years of the time series, publications are very
sparse. The many zeroes, low numbers, and dramatic growth suggest that
Poisson regression would be a good approach to fit an exponential model. We
choose, for convenience, the year 1990 as “year zero.” Exhibit 11-2 shows the
estimated parameters for the last of Equations 11.2 for our exponential growth
model using Poisson assumptions of noise. The forecast estimates an astound-
ing 61% growth rate for publications in this area. The equivalent normal
(Gaussian distribution) regression (not shown) estimates 45% growth and,
more significantly, yields a much less likely explanation of the data (based on
log likelihoods).
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EXHIBIT 11-2 Model Parameters for “Nanotechnology and Genetics”

Intercept Parameter 
[year 0 = 1990] –3.770
Slope 0.470 Annualized growth 61.1%
Log likelihood –19.466



For amusement, we project these two growth rates out to 2020. From the
same time series, the Poisson projects 38,000 vs. the normal distribution, expo-
nential model regression’s 5800 publications per year. For obvious reasons, we
would not expect these long-term projections to pan out. We extrapolate just
to indicate that these two ways to fit an exponential growth model to a single
data set yield different results. Figure 11-5 shows only the Poisson-based expo-
nential model projection, with confidence intervals.

In tech mining, dealing with “emerging technologies” often confronts us
with data series like this—very short series (if we ignore the single 1993 pub-
lication) with low numbers. Be alert to the distributional assumptions in con-
sidering how best to model such data. We also emphasize that any resulting
model should be treated as crude. The next year’s data point is likely to alter
the model and its projections significantly. So, interpret findings with due
caution. On the other hand, tech mining provides great value by early iden-
tification of such new research fronts. The 30 publications in 10 years is a 
“ho-hum” research specialization, but interpreted via the trend model, one
sees a potential blockbuster brewing in nano/genetics.

Confidence Intervals

Confidence intervals are an important part of time series projections. As noted
above, publication or patent counts are variable, as they reflect the interplay
of many forces and factors. The forecasts based on these data cannot be taken
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TABLE 11-2. Publications per Year for the Query
“Nanotechnology and Genetics”

Year Year Index Publications

1985 –5 0
1986 –4 0
1987 –3 0
1988 –2 0
1989 –1 0
1990 0 0
1991 1 0
1992 2 0
1993 3 1
1994 4 0
1995 5 0
1996 6 0
1997 7 0
1998 8 1
1999 9 1
2000 10 2
2001 11 7
2002 12 10
2003 13 8



as absolute. Providing confidence intervals communicates this uncertainty and
natural variability to decision-makers who may use the forecasts. Confidence
intervals (CIs), or prediction intervals, are a function of the assumed data dis-
tribution. They include three terms—a term that increases the further out one
projects the trend, another that decreases as the data set size increases, and an
increasing function of the scatter of the actual data about the regression line.
A 90% CI implies only a 10% chance that the actual value would fall outside
these bounds (based only on statistical considerations). A 50% CI has a 50%
chance of proving wrong, so this CI fits more snugly to the regression line (cf.
Porter et al., 1991).

Figure 11-5 shows 90% confidence intervals for our forecast of “nanotech-
nology and genetics” publications. The middle forecast is much more plausi-
ble than either the high or low forecast. Note that the CI bounds are not
symmetric about the regression line because the model is nonlinear (it’s expo-
nential). Also, the bounds widen as the extrapolation lengthens—the longer
the forecast, the higher the uncertainty.

Recall that the 2020 “forecast” using normal instead of Poisson regression
(last section; not shown in Fig. 11-5) differed greatly. These “naïve” forecasts
do not address the causal forces driving publication rates. The tech mining
analyst would want to interact with subject experts to consider what the
drivers are and how they are likely to change. Uncertainties in research output
measurement and complexities in the R&D system combine to endorse active,
ongoing monitoring. These considerations also demand careful interpretation
of emerging technologies—active research does not guarantee successful inno-
vation. Put another way, were a forecast of “nanotechnology and genetics”
made today, it should be frequently revisited and updated.
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11.3. MULTIPLE FORECASTS

In the previous sections we developed trend models and projections for 
a chosen technology. We presented logistic (S-curves) and exponential 
growth models and compared models with different distributional assump-
tions. Although the example applied the techniques to nanotechnology, any
variable (or for tech mining, any term of interest) could be modeled with
similar techniques. In fact, we fit exponential models for both overall nan-
otechnology publication activity and also the subset of “nanotechnology and
genetics.”

We could also have modeled these research outputs with a linear model
(but that would obviously have been stupid—see Figs. 11-1 and 11-2). More
appealing, we could have tried S-curve models and compared their fit and pro-
jections to the exponential models. Indeed, various Gompertz and, especially,
Fisher-Pry models fit the nanotechnology data quite well (about as well as our
exponential models). We strongly encourage comparing such multiple models
as a form of sensitivity analyses.

We now suggest “multiple” in another sense—to compare the trends of 
multiple entities. Variations on this approach can be used to compare rates of
progress across technologies. Here we compare multiple values from the 
nanotechnology publication content. We can apply this to answer questions
such as:

• Which subtopics of nanotechnology are growing the fastest?
• Which nations are pursuing nanotechnology the most vigorously?

This multiple-indicators approach, which we will illustrate in this section, aids
in scanning the technological environment to identify high-growth research
domains or rapidly shifting organizational emphases. It can help benchmark
one’s activity against leaders in the field. This points toward another tech
mining principle—relative (comparative) indicators are generally more effec-
tive than absolute (stand alone) indicators.

Cross-Sectional Plots

Often we are most interested in recent change in a target R&D domain. Also,
sometimes we lack much early data. A handy alternative to trend plots is to
produce a cross section of publication outputs for each of two years. Figure
11-6 shows one such cross section. Plotted on the figure are one hundred of
the top keywords occurring in the collection of nanotechnology articles.
Plotted on the graph are the numbers of publications containing each of those
keywords in 2001 versus 2002.

The graph is scaled logarithmically on both axes. This presents more than
three orders of magnitude between the most frequent and the least frequent
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keyword in the selection. This cross-sectional plot can help identify high-
growth subareas. To do so, we would add labels for the more interesting key-
words, particularly those showing much higher values in 2002. Terms falling
along the diagonal occur as frequently in 2002 as in 2001. Terms above the
diagonal increased in popularity, suggesting heightened interest (see Fig. 11-8
below).

Figure 11-7 shows three idealized patterns of growth encountered in cross-
sectional plots. The patterns are shown as clean lines; real plots are noisy (Fig.
11-6). The idealized patterns help distinguish types of S&T growth. The first
pattern is when nearly all subtopics, or whatever variables (terms) you are
examining, increase over time—this is labeled “increasing growth” in Figure
11-7. This suggests a uniformly expanding research domain. The second, “no
growth” pattern evidences similar output year over year for all the subtopics.
The “declining growth” pattern finds all the subtopics shrinking in the later
year.

Now imagine Figure 11-7 with the lines angling. Let’s focus on the growth
side (above the diagonal). If the “increasing growth” line sloped more steeply
than the diagonal, that would mean the large subtopics were gaining momen-
tum relative to the smaller ones. This would fit a situation where R&D were
concentrating in certain prime subtopics at the expense of fringe interests. This
“big get bigger” phenomenon is so well known in bibliometrics that it has its
own name, the “Matthew effect,” from the biblical proverb. Mechanisms such
as focused funding and peer reinforcement can fuel this.

Looking at the nanotechnology cross-sectional plot (Fig. 11-6), we see 
the expected noise. Not every keyword grew over time, nor did the keywords
grow in equal proportions. Fitting a regression line shows a pattern of the
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“small get bigger” phenomenon (Fig. 11-8). This may reflect, in part, a size 
phenomenon—it is easier for low-frequency terms to show a high percentage
shift increase. Put another way, we are more likely to find low-frequency key-
words well above the diagonal; Figure 11-8 shows just that pattern. Interest-
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ingly, the two most frequent keywords in the sample—“nanotechnology” and
“microscope”—contradict this. They are above the extrapolated line as well
as the no-growth diagonal line. This means that the terms are growing rela-
tively more vigorously.

Note that you could represent these data other ways, too. As the nano-
technology publications are increasing so rapidly, from 175 to 293 papers from
2001 to 2002, you might recode values as a fraction of the year’s total. Such a
relative scaling could help focus on fast-growing topics. We have noted the
tendency of low-frequency terms to have a propensity to be especially fast
growing. So, you might use a threshold to exclude very low-frequency terms
(e.g., 1s and 2s). Our message is to explore alternatives to help you discern
and then communicate phenomena pertinent to the technology management
questions you are pursuing.

Multiple Regression Techniques

Cross-sectional, biannual scatterplots visualize the data simply. However, they
only utilize two years (or two time slices) of the data. Plots of publication or
patent activity for each of several leading terms over time provide a rich alter-
native (cf. Fig. 11-4) but can get visually complex if we include many terms. If
one wants to assess growth rates for many terms over the entire time period,
multiple regression works well.

Multiple linear regression employs multiple independent or dependent
variables as per Equation 11.1(f). In the following example we have multiple
independent variables predicted by a single dependent variable. We seek to
predict the pattern of keyword occurrences using time as the key variable. In
this example we look most closely at predicted time coefficient—the growth
rate.

Figure 11-9 gives an example of growth rates across a selection of leading
nanotechnology keywords. This particular display accentuates distributional
characteristics. For other purposes, one would want to provide the term iden-
tities, particularly for the fast-growing keywords. The figure illustrates that
there is a range of growth within the single topic of nanotechnology. Many
keywords within nanotechnology are growing at rates of 18–27%. Relatively
few keywords are growing much slower or faster. This gives a good sense of
the rate of advance of the core fronts of the field.

Recall earlier that the average growth rate for all of nanotechnology was
31%—yet the average keyword within nanotechnology grows more slowly
(22%). Why is this? In this particular example, a few high-magnitude, high-
growth terms dominate the sample (Table 11-3). This pushes the overall
growth rate higher. Nanotechnology, like most fields of science and technol-
ogy, is a very heterogeneous topic. Results such as Figure 11-9 suggest that 
the growth rates of keywords within nanotechnology are themselves random
variables. Point estimates of growth do not appear to capture the concept that
some areas of nanotechnology grow much faster than others.
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TABLE 11-3. Highest-Growth Terms 

Keywords Percentage Growth

Molecule, molecules, molecular 38%
Nanotechnology 37%
Film, films 35%
Nanoparticle, nanoparticles 33%
Surface, surfaces 33%
Nanotube, nanotubes 32%
DNA 31%
Microscope, microscopes, 31%

microscopy, scanning 
tunneling microscopy,
atomic force microscopy

Polymer, polymers 31%
Self-assembly, self-assembled 30%



The advantage of multiple linear regression is that it allows a rapid scan-
ning of many keywords to identify the highest and the lowest growth in the
sample. In this nanotechnology literature, the highest-growth keywords are
shown in Table 11-3.

Topping the list are keywords involving variants of the word “molecule.”
“Nanotechnology” itself displays vigorous growth. Several other terms involve
molecular structures—films, tubes, and surfaces—these may be the focus of
up-and-coming nanotechnology research. A list such as this may suggest new
areas of investigation, or ways to expand or improve data queries. Exploration
of these results with knowledgeable researchers could prompt deeper explo-
ration of “why” these patterns present themselves.

11.4 RESEARCH FRONTS

We gain a different perspective by “clumping” keywords by their dominance
of particular time periods. These “research fronts” evolve over time and may
reflect major research thrusts. This form of temporal analysis thus clusters
terms (e.g., keywords) and clusters years (into time slices). (Note that Henry
Small and his ISI colleagues have long identified research fronts based on 
co-citation, rather than our use of co-keyword co-occurrence.)

Figure 11-10 illustrates what such an analysis might provide. We see three
groups of research activity—the “fronts.” The first is centered about the year
1989, and the second and third about 1994 and 1999, respectively. Each suc-
cessive front increases in level of publication. In addition, each front can be
identified by a distinct set of topics, evolving over time as the field adapts its
agenda to embrace new discoveries, concepts, or tools.

An important aspect is to associate keyword identifiers to research fronts.
For instance, in VantagePoint, we might proceed as follows:
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1. Create a matrix of the leading 100 or so keywords vs. year.
2. Visually discern concentrations of keywords by time periods.
3. Time slice the data into those time periods.
4. For each time period, perform principal components analysis (PCA) to

identify the leading activity cluster.
5. For each such cluster, compile the occurrence of its high-loading key-

words over the entire time period.
6. Plot the equivalent of Figure 11-10.

Other approaches can achieve similar ends. Note the iterative nature of group-
ing terms, and grouping years, and revisiting each. A table of keywords
showing their association with the research fronts nicely complements Figure
11-10. Such analyses need not be limited to examining keywords (or other
units of content). We could apply this, for instance, to examine research insti-
tutions prominent in each front.

Examining how a given research front develops over time affords a differ-
ent perspective based on the same underlying data. Figure 11-11 illustrates a
potential “takeover curve.” To generate this, we could identify the keywords
that define a given research front (e.g., the most recent one in Fig. 11-10), then
select all the nanotechnology articles that use any of these keywords. We then
examine this subset of records. We plot time against some activity measure:
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“relative activity in research front” (Fig. 11-11). The pattern of growth is typ-
ically S-shaped, showing a leading edge of researchers adopting new research
ideas. The growth picks up rapidly in this example throughout the 1990s. Tech
mining may pick up early signals of the generation of a critical mass of atten-
tion to an emerging technology. Some call this a “small world” and deem it an
essential precursor to successful technological innovation.

These adoption curves are familiar from the literature of technology fore-
casting. A variety of such curves pertain depending on the nature of the tech-
nological adoption processes. Some authors have suggested that these curves
have much in common with epidemics. Barriers to the adoption of new tech-
nological ideas (e.g., software) may be substantially lower than the barriers to
adopting new physical technologies.

11.5. NOVELTY

Novelty is an interesting parameter to study with time series methods. First,
it gives an indication of how new topics emerge over time. Second, it provides
a valuable early warning bell that our queries may be growing dated in the
face of new and emerging science.

Figure 11-12 shows the cumulative total of new keywords introduced in our
nanotechnology sample. Note that we have counted only the top 100 key-
words. (As per Zipf’s law, additional keywords much beyond 100 tend to occur
in very few records.) Elsewhere in the book we discuss “innovation indica-
tors,” one of which is “keyword richness.” Briefly, the notion is that the spe-
cialization of terminology in a technological domain may signal significant
maturation. From this point of view, we see a dramatic surge from 1992 to
1996. We could investigate further by identifying the nature of the new ter-
minology (e.g., whether it pertains to research topics, new tools, materials, or
applications).

Rather shockingly most of the keywords were first introduced over a
decade ago! Our study may be dated before it has even begun! Figure 11-13
provides another perspective on the cumulative number of new keywords
introduced over time. The vertical axis plots this variable as a fraction of the
total number of articles published. As can be seen in the nanotechnology
sample, the introduction rate of new keywords is declining dramatically over
time. The function fits exponential decline.

Is the novelty of new nanotechnology research actually declining? In all like-
lihood, the answer is no. Patterns like Figure 11-13 could, in part, reflect data-
base indexing. The parameters of our search query and the resulting keyword
selection may be growing more and more inadequate over time. This chart
serves as a helpful warning signal to begin considering ways to expand our query
and to increase the recall of the original selection. As the science of nanotech-
nology grows, we must be careful to expand and improve our terminology or
risk not keeping up—and worse, sampling unrepresentative publication data.
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CHAPTER 11 TAKE-HOME MESSAGES

This chapter has tried to provide ideas on how trend analysis can enrich tech
mining. We invite you to address the temporal dimension to your time series
data sets:
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• Consider whether description and/or prediction contributes to your tech-
nology management aims.

• Consider the driving forces that could alter the trend projections in deter-
mining how far to extend these and how to interpret implications.

• Determine which form of the time series data are most suitable—annual
(intuitive and directly informative) or cumulative (often best suited for
growth models).

• Determine whether to examine overall activity trends and/or differential
trends broken out for particular research topics (or by other variables,
such as research organization).

• Choose how to treat time to best convey important shifts in activity; time
slices provide a good alternative to yearly units.

• Decide whether to present simple plots, tabulations, and/or estimated
equations (especially giving growth rates).

• Information visualization options include line plots, histograms, and 3-D
multiple-term profiles.

• If your data extend over an order of magnitude, consider plotting the log
(data).

• If you want to focus on recent change, consider cross-sectional scatter-
plots comparing two time slices.

• Remember that assumptions about underlying distributions and variabil-
ity may strongly impact your forecasts.

• Recognize the importance of confidence intervals in producing robust
forecasts; avoid thinking of singular valued forecasts as “the future.”

• For sparse data series, consider modeling based on the Poisson distribution.
• Term frequency, over time, can be represented several ways. Analysis of

changes can help detect novelty (new topics emerging).
• Tracking research fronts over time consolidates much detail into action-

able form.
• Favor relative over absolute tech mining indicators—comparisons are

extremely illuminating.

CHAPTER 11 RESOURCES

Technology forecasting books (e.g., Martino, 1993; Porter et al., 1991) and jour-
nals (e.g., Technological Forecasting and Social Change) treat technology trend
analysis methods in some depth. Nearly all statistics texts present techniques
such as correlation and regression. Advanced statistical treatments of fore-
casting and trend analyses differ in orientation, emphasizing lengthy time
series of measures with analytical interest usually in predicting very few time
periods ahead (cf. http://hops.wharton.upenn.edu/forecast/).
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Chapter 12

Patent Analyses

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

Patent analysis provides key information concerning the technology environ-
ment. This chapter introduces a rich set of analytical possibilities. We begin by
discussing the basics of patents and what patents offer for analysis. We then
discuss steps in patent analysis, building upon the basic tech mining process.
We provide a detailed case study of patent analysis in the automotive indus-
tries, focusing on “fuel cell” technologies. Finally, we examine two advanced
examples of patent analysis: patent citation analysis and the TRIZ technique.

12.1. BASICS

Patents protect one’s intellectual property (“IP”). Other IP protection comes
in the form of trademarks, copyrights, and trade secrets. Trade secrets may
involve a process or device, or even a compilation of information used in one’s
business for competitive advantage—such as Coca Cola’s “formula.” Each
brings to bear varying degrees of legal punch. This chapter focuses on mining
patents, but the concepts extend in varying degrees to generating intelligence
from trademarks and copyrights as well.

As a rough rule of thumb, a patent these days reflects on the order of $1
million in R&D investment. So, if you see 50 distinct patents in a particular
domain, this suggests some $50 million being invested. This frame of reference
can especially help in gauging a small company’s activities.
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Four main fields traditionally rely most heavily on patents for intellectual
protection: mechanical, electrical, chemical, and thermodynamic. Biological
patenting is becoming very important, too. And we find other coverage devel-
oping, including software and business processes. As a technology matures, the
type of patenting tends to shift. Initial patents cover a basic technology or
product. Then particular application patents may follow. Spreading even
further in time may be process patents to cover better ways to produce the
product.

The patenting process works roughly as follows:

1. An individual or an organization determines that commercial 
interests warrant seeking protection of an invention. Working with a
patent attorney, they file the patent application with one or more patent
offices.

2. The patent application asserts certain claims reflecting the 
utility (scope) of the invention; a patent examiner reviews prior 
art to determine whether the invention is novel (at least in that patent
office’s jurisdiction) and whether the claims are valid given the prior 
art.

3. If approved, a patent is issued. In exchange for revealing the idea and
how to implement it so others can build on this knowledge, legal pro-
tection is granted for (generally) the longer horizon of 17 years from
patent issue or 20 years from patent application.

The data used in tech mining derive from this process. Patent applications
are the earliest source, coming available sooner than granted patents, but 
not always published (patent office regulations vary). Granted patents them-
selves contain several important parts. The “front page” summarizes the patent
and provides the content for patent abstract records (see sidebar). Patent
claims contain essential information on the intended purposes and can be
located in patent claims databases. Full patents, including text and diagrams,
provide the greatest detail. Patent citations are references to other patents.
The section on Patent Data considers the uses of these different forms of 
information.

The sidebar shows one of the fuel cell patent abstracts included in the
sample analysis (Chapter 16 and this chapter). Many other fields are available
in Derwent World Patent Index (“Derwent”) abstracts, including other classi-
fication codes.* Full patents can be extensive, ranging at the extreme to thou-
sands of pages. For tech mining purposes, we analyze the abstract record text
fields, but with the general caution that patents and abstracts are written to
convey as little useful information as possible, while asserting effective claims.
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We usually simplify patent dates to years. “Patent family” refers to a set of
closely related patents, many of which may be essentially the same patent filed
in different patent offices. So,“family years” range from the earliest to the latest
(most recent). “Basic patent” here means the one that Derwent obtained first,
and its year often indicates when it was filed as a patent application. “Priority
patent” is the first application filed—this is often, but not always, the basic
patent.Also keep in mind that the average lag from filing to issuance of a patent
in the United States is about three years, with some applications pending for a
decade or more. This lag is important for tech mining. The “Submarining
Patents” sidebar notes that things aren’t always quite what they seem.
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Sidebar: Sample Patent Abstract Record

Derwent Accession 1984-090845
Number

Family Member Years 1984
(most recent)

Priority Years (earliest) 1981
Title Molten salt chemical current source-operable at 

relatively low temps.
Basic Patent Year 1984
Inventors (Cleaned) GAGYI P, NAGY A, PREPOSTFFY E,

VINCZE P
Derwent Classifications L03-Electro-(in)organic - chemical features of 

(Cleaned) con ductors, resistors, magnets, capacitors and
switches, electric discharge lamps, semicon-
ductor and other materials, batteries, accumu-
lators and thermo-electric devices, including
fuel cells, magnetic recording media, radiation
emission devices, liquid crystals and basic elec-
tric elements, X16-Electrochemical Storage

File Segment CPI, EPI
Abstract Molten salt (NaCl/KCl/AlCl3) current source 

has a heated, scaled housing sepd. into two
chambers by an ion-selective membrane.
Specifically, the cathode is made of non-
alloyed tol metal and the anode consists of a
grid made of a conductive metal resistant to
the melt and coated with a pyrite-contg. solid
mixt. The appts. is relatively corrosion-resis-
tant and is operable at relatively low temps.

Derwent rewrites the abstracts to enhance understanding (see “Sample Patent
Abstract Record” sidebar).



12.2. WHY PATENT ANALYSES?

Effective technology management increasingly requires patent intelligence.
Patent filings are on the rise and becoming more international. Licensing of
one’s IP has become a major revenue source. Informed IP management
impacts legal, marketing, and technological interests. Patents and IP have gone
from the periphery of business to the core as we collectively move into a
knowledge-based economy. It is important to know whether your business
actually depends on someone else’s patent (see “Commodore’s Demise”
sidebar). Conversely, you can make a lot of money by licensing your IP to
others.
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Sidebar: Submarining Patents 

Some companies play games with patenting to inhibit competitors. One
trick is to “submarine” their own patent application by submitting a stream
of modifications over several years. The United States only began publish-
ing patent applications in 2001, and then only with approval of the appli-
cant. Thus, one could keep the U.S. filing secret while still establishing
defensible IP should a competitor arise. (Note: this doesn’t work if one files
internationally.)

Sidebar: Commodore’s Demise

Rivette and Kline (2000) relate the tale of Cadtrak Corporation and Com-
modore Computers. In the early 1980s Cadtrak invented improved graph-
ics processing but failed in marketing computer-aided design products. Then
they discovered that a patent of theirs was vital to the graphics processing
that became EGA and VGA displays. Many companies, including IBM,
licensed the technology from Cadtrak. Commodore refused. Cadtrak took
them to court and won an infringement ruling, along with a permanent
injunction barring sales of Commodore computers in the United States.
That contributed heavily to bankrupting one of the early leaders in per-
sonal computers.

Both internal and external technology management demand understand-
ing of the patent environment. Internally, it can help formulate a smart R&D
program. This can be followed by profitable exploitation of the resulting
knowledge and attendant IP. From a technological intelligence perspective,
patents tell about what other organizations consider worth protecting. Care-



fully interpreted, this can yield insight on those organizations’ developmental
trajectories. Mining patent information can also help forecast others’ upcom-
ing technology-based products and services.

Trippe (2003a) distinguishes two types of patent analysis: micro—detailed
examination of a small number of patents—and macro—study of a large
number of documents. He describes the latter colorfully:

Instead of finding a needle in a haystack, today’s searchers are becoming ana-
lysts and being asked to identify haystacks from space and then forecast whether
the haystack is the beginning of a new field or the remainder from last year’s
harvest.*

We emphasize the macro level. One adjusts the scope of a patent search
depending on its intended use (Akers and Khorsandian, 2003):

• State of the art: Find background art on a technology (e.g., in initiating a
research program)—not as comprehensive as a search to be the basis for
a legal decision.

• Patentability: Check whether background art (across all dates) anticipates
a particular invention (needed in applying for a patent).

• Freedom to operate (“FTO”): interest in the claims of those patents still
in force, in each country of interest, to determine how this impedes your
own technology development.

• Validity: in-depth, focused search to uncover references that could inval-
idate other companies’ patent claims.

The differences are major. For some uses, we want to probe a few directly rel-
evant patents in extreme detail. For others, we want to map broadly to detect
related interests. For tech mining purposes, we undertake patent analyses to
facilitate technology management in many ways, including:

• R&D management: One might determine the “appropriability” (pro-
tectability) of potential project results (technologies) as a consideration
in project selection.

• Technological intelligence: Identify new technological capabilities and
key IP and assess possible product pathways to commercialize the 
technology.

• Identification of desirable IP: This can help target licensing or joint devel-
opment opportunities, or even “M&A” possibilities.

• Mergers and acquisitions (M&A): Patent profiling using indicators intro-
duced here can help evaluate the IP potential of one company versus
others. In-depth probing, such as examination of inventor team longevity,
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external ties, and current employment of key inventors, can help assess
the opportunity.

• Competitor intelligence: Profile one or more companies’ IP by patent
classes to benchmark relative strengths.

• International market analyses: Note concentrations of competitor patent
families by countries.

• Human resources management: Strive to understand the roles and rela-
tive productivity of inventors both within your organization and in others.

Contrast patent analysis with our other emphasis—analysis of S&T publica-
tions. In a nutshell, these reflect mining at two stages along the technology
development stream. R&D publications are usually “upstream” of patenting.
Publications provide earlier-stage information on prospective emerging tech-
nologies (recall Chapter 6). Patents, in contrast, tap a later developmental
stage activity. In particular, they reflect an organization’s assessment of poten-
tial commercial value for the technology in question. The interplay of patents
and business publications is also rich. The former speaks to technical aspects,
whereas the latter informs of business intents concerning technological inno-
vation. Publication and patent analyses complement each other in the tech
mining repertoire.

Certain analytical aspects differ between publication and patent analysis.
At some point you may want to go through the fuel cell analysis illustrations
in this chapter (patents) together with those in Chapter 16 (mainly publica-
tions, but some patent analyses). Some differences to keep in mind, particu-
larly in combining publication and patent analyses in a comprehensive tech
mining:

• Publications are more likely to reflect academic activity, whereas patents
tap industrial R&D efforts.

• Companies’ policies on publishing and patenting vary greatly.
• The content of publication and patent abstract records are comparable,

in part, but not identical (e.g., inventors vs. authors, patent assignees vs.
author affiliations, publication vs. patent class codes).

• Publication abstracts usually try to explain what the researchers did and
why. Patent abstracts often try not to convey corporate intents; this makes
patent searching and analysis more challenging.

12.3. GETTING STARTED

This chapter takes the nine-step tech mining approach presented earlier and
again in Chapter 16 as its base. It distinguishes aspects of patent analysis that
demand special consideration over and above the general tech mining
approach.
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Patent Data

Chapters 6 through 8 address general issues in getting data. Here we discuss
special patent data issues. Patent data come in several forms from many
sources. Most basic is the patent itself, often available first as an application
and later as an issued patent (if that indeed occurs). Government patent offices
establish the patent information, increasingly available via websites. Our inter-
ests as tech miners key on abstracted information, including “front page”
(abstract information), “claims,” and “citations” (explored later in this
chapter). Databases compile such information for one or more patent offices,
often refining the data and providing access in bulk. (Retrieval of large
numbers of records is cumbersome from most patent authority websites.)

We also note the existence of auxiliary patent documents. Some are pub-
licly available, such as state-of-the-art reports, opposition claims, and appeals.
Both patent applicants and opponents may also compile proprietary docu-
ments. Information on licensing and maintenance of patent rights (in what
patent jurisdictions and over what time periods) rounds out the picture
(Granstrand, 1999).

For certain purposes, you may want information on patenting in particular
nations. For instance, in assessing Malaysia’s knowledge economy, we found it
fruitful to distinguish patenting by Malaysians from that by foreigners in
Malaysia. The latter indicates appreciation of Malaysia as a market, whereas
the former gets at indigenous technology development capabilities. Or 
one might track a competitor’s country patenting patterns to gauge their
global marketing intents. We note in passing the Patent Cooperation 
Treaty (PCT) that aims to facilitate international patent protection (See
http://www.wipo.org; see also “national profile” discussion in Chapter 13’s
“Patent Indicators” section.) For tech mining, we usually concentrate on one
or more of three key patent offices—European (EPO), Japanese (JPO),
United States (USPTO)—or composite collections. We note patent database
producers and distributors (some play both roles) in Appendix A.

As noted, patent data come in many forms. Good news—these are public
information and therefore free. Bad news—you get what you pay for. Indi-
vidual patent offices provide front page information, claims, and full patents,
via websites and other means (e.g., on CDs). When you need to study a par-
ticular patent, you can go directly to the appropriate patent office website. But
tech mining demands access to quantities of patents, not just a select few. The
databases provide the key to convenient access because it would be onerous
to retrieve large numbers of patent abstracts from the patent office websites.
Furthermore, the databases add value to varying degrees by providing con-
sistent formatting (e.g., field structured abstract records—see the sample
record sidebar), additional coding, and search and retrieval capabilities.

Not surprisingly, price varies accordingly. For instance, U.S. patent abstracts
can be compiled as a database and are commercially available quite econom-
ically. Delphion and MicroPatent go further to compile patent abstracts from
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the major patent offices in a single format, striving to provide consistent 
renderings of names and indicating related patents (“families”)—but at a
somewhat higher cost. MicroPatent and IFI also provide claims information.
(Chapter 6 also discusses patent sources.)

Because we are using Derwent patent abstracts in our fuel cell example, we
focus on them. Derwent abstracts are more costly because they rewrite the
originals. In principle, patents protect IP in exchange for public disclosure so
that others can learn from the invention. In practice, patent attorneys word
applications with great care, making it quite difficult to discern the real capa-
bilities and intents. Derwent also adds additional classification coding (more
on this later).

Patent data pose serious challenges. Searches to meet legal needs must be
just right, and we don’t venture to address those special issues here. Finding
chemical and pharmaceutical information involves special knowledge, too. For
instance, one might make use of chemical structures, names, CAS Registry
Numbers (American Chemical Society), and/or scientific terms. For our
vitamin B12 illustration ahead (Section 12.4), Xu’s search algorithm in
MicroPatent incorporated 92 terms! MicroPatent offers abstracts and claims—
one could search either or both, or pursue full patent records. The following
section addresses another valuable resource—patent citations. The sidebar
notes another increasingly important type of technological information
resource.
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Sidebar: Sequence Data and Biotech

Biotechnology with genetic modification efforts generates a whole new
domain of IP considerations—sequence data. Sequence data present issues
somewhat analogous to general patenting issues. The data behave like text
in many regards, but not regular “English” writing. DNA or RNA
sequences, for instance, can be interminable strings representing the
nucleotides—A (adenine), C (cytosine), G (guanine), T (thymine), and U
(uracil). Searchers may be looking for gene similarities, nucleotide strings
near gene activators (codons), and so forth.

Tech mining enters in with similarity searching of protein sequences
(Chemical Abstracts Service—CAS—provides over 1.8 million as of early
2003) and nucleic acid (RNA, DNA) sequences (over 22 million as of early
2003). Key sources include CAS Registry, BLAST (available through STN),
GenBank, DGENE, and PCTGEN.

For tech mining, where should you search for patents? It depends on your
objectives and resources. Inventors with sufficient resources generally patent
in the United States because it is such an important market. Coverage is like-
wise often sought in Japan and Europe, with additional national patents added



to the “family” to cover perceived competitive threats and key market targets.
We recommend mining the accessible compilations of worldwide patents if
you can afford the information. However, U.S. patents alone give an approx-
imation (see Table 12-2 later in this chapter). Looking to the future, the Orga-
nisation for Economic Cooperation and Development (OECD) and others are
investigating ways to analyze trioffice patenting (EPO, JPO, USPTO) to gen-
erate more consistent and inclusive metrics.

Searching

Tech mining searching should use patent indexes (classifications) as the
primary search mechanism. This contrasts sharply with searching R&D pub-
lication sources, relying mainly on Boolean searching for specific terms. Term
searching is very difficult in patent sources that have not been rewritten to
improve clarity. Even in the Derwent records that have been rewritten, search-
ing can be problematic. To illustrate—our “fuel cells” search incorporated two
parts:

1. International Patent Classification (IPC) code H1M-8 (fuel cells;
Derwent adds leading zeroes to standardize the format as H01M-008) 

OR

2. The phrase “fuel cell(s)” in patent family title or abstract

This yielded 23,836 records (before we eliminated Japan-only patent families).
Had we just searched on the H1M-8 classification code we would have missed
5245 of these (22%). Had we just searched using the terms, we would have
missed 7920 (33%).

Patent classification codes were developed to aid patent examiners in
finding prior art, but they also prove vital to electronic searching by users.
Classifications are not globally standardized. Efforts are underway to harmo-
nize JPO’s FI/F terms, EPO’s ECLA, and USPTO classifications, so one should
monitor developments. Note:

• USPTO distinguishes about 150,000 sub-classes.*
• EPO is moving toward 20,000 top-level and 137,000 specific ECLA

classes.
• JPO tracks some 180,000 FI terms and 320,000 F terms.
• WIPO’s International Patent Classification (IPC) includes about 70,000

classes.
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Concordances among these are not simple, and national patent offices are not
fully consistent in their assignment of IPC codes. In general, examiner assign-
ment of subclasses is not very reliable, so searchers may want to check related
subclasses, too. Codes are updated frequently with new classifications added
and old ones dropped.

Databases may add additional coding. The IFI CLAIMS and Derwent data-
bases assign classifications based on what a knowledgeable reader sees as
important. This provides better prospects for capturing most or all pertinent
records (good recall) than searching raw records provided by the patent
offices.

Gateways (e.g., STN, Dialog) offer the convenience of a “one-stop shop”
providing a standard interface and search commands to access multiple data-
bases. Dialog offers special operators that can facilitate patent searching, for
instance:

(T)—to find multiple terms in a chemical name—e.g., amino (T) benzene,
to locate those that incorporate “amino” and “benzene” in some com-
bination within the chemical name

(L)—links two terms in the descriptor field, such as a particular CAS 
Registry number with some property of interest

Our fuel cell patent abstracts from Derwent actually offer more codes than
the Derwent Classifications shown in the sample record. In addition, we can
access IPC codes and Derwent Manual Codes—covering chemicals (CPI),
electronics (EPI), and polymers.

A well-rounded search might begin by using an established protocol, aug-
mented by review of key related patent classes. This could extend to tracking
both exact and related terms identified in claims. Patent analysts should con-
sider including citations (see “Citations” section). Obviously, your search strat-
egy depends on the intended uses and available resources. You can spend a lot
of money on your search, or you can obtain cheaper searches and spend a lot
of time (and, hence, money) cleaning the data or floundering through the noise.

Until one becomes familiar with patent searching, guidance of an experi-
enced patent searcher is invaluable. It is notable that the USPTO in its pro-
posed 21st Century Strategic Plan would certify searchers.

Cleaning

Various tools can help perform patent analyses. Data cleaning tasks constitute
a significant part of tech mining patent analyses. We illustrate with Vantage-
Point.*

*Trippe outlines some of the common choices for patent analysis at his “Patinformatics” site:
http://www.infotoday.com/searcher/oct02/trippe.htm. VantagePoint is also available in a version
specialized for use with Derwent, Delphion, and Web of Knowledge (e.g., Science Citation Index)
as Derwent Analytics.
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Patent data providers take pains, to varying degrees, to clean the data. For
instance, IFI maintains a standard registry of assignees and it indexes chemi-
cal documents with special attention to titles and text notations. It tries to
update USPTO classifications to reflect subsequent classification changes and
maintain a concordance with IPCs. CHI’s assignee thesaurus contains about
45,000 name variants for the top 1800 patenting organizations! It is available
through Delphion. Whichever patent sources you use, be cognizant of such
aspects and assess the quality of the data.

Who Does Patent Analysis?

The “who” question parallels that of tech mining in general. To what degree
should this be done by information specialists? patent analysts? researchers?
technology managers? The answer blurs as access to patent information
becomes easier for those who are not search specialists. Reducing the length
of the chain of tech mining intermediaries to the end users is desirable. The
danger lies in nonspecialists doing poor searches or failing to understand
nuances in patenting—leading to significant misinterpretation. (For instance,
U.S. examiners tend to cite more prior art than do EPO examiners, so direct
comparisons are distorted.) The “Worry Factors” sidebar shares a few of
Granstrand’s 16 factors to be wary of in patent analyses (1999).
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Sidebar: Worry Factors

(1) Company consolidations and deliberate use of multiple assignee desig-
nations, making it hard to correctly associate patents with companies

(2) Variable patent quality—may need to assess types of patents, blocking
power, decoy patents, etc.

(3) Multiple patent classification systems that change frequently, making
time series precarious

(4) Patent authority practices vary considerably; legal systems differ; and
examination is uneven.

(5) Whether patent “counts” reflect individual patents or families, applica-
tions or patents granted, patents in force

(6) Uneven time lags from R&D to patenting by patent authority and
company

To decide who should perform patent analyses, consider this mix of requi-
site knowledge and skills—(1) technical subject familiarity, (2) patent search
and interpretation skills, (3) tech mining analytical skills, (4) familiarity with
users and their needs, and (5) representation and communication skills. If
these are concentrated in a single person, all is well! If not, suitable teaming
should be arranged. Such teaming should entail cross-training so that the avail-
ability of the component skills diffuses within your organization.



The greater the number of persons familiar with many of the five skills just
mentioned, the better the prospects for organizational tech mining learning—
that is, the development of processes to use technology analyses effectively.
Such development of shared knowledge is mandatory for robust tech mining.
Don’t underestimate the need for quality control. End users cannot easily dis-
tinguish rubbish, due to poorly cleaned or misinterpreted data, from valid tech
mining inferences. Getting burned, even once, can cause managers to lose faith
in all tech mining.

12.4. THE “WHAT” AND “WHY” OF PATENT ANALYSIS

Tasks and Resources

Xu (2003) gives a 3 ¥ 3 framework: regarding IP management. Table 12-1 adds
a strategic management task to his set to give 4 tasks ¥ 3 information resource
types. Each cell gives one example to illustrate the intersection—for example,
the upper right cell indicates that existing patents constrain a firm’s options to
develop technology. Ignorance of such constraints could lead a firm to expend
precious resources pursuing down a blind alley.

Technology development tasks (Table 12-1, Row 1) include “white space”
determination—an intellectually intriguing effort to “find something that’s not
there”—that is, to determine open opportunities not precluded by existing
claims. Xu illustrates with a hypothetical case exploring Vitamin B12 possi-
bilities. A white space emerges to develop a B12 derivative tolerant of high
temperature because this destroys B12 effectiveness. (A contrarian perspec-
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TABLE 12-1. Intellectual Property Tasks by Information Types, with Examples

Information Resource Types to Mine:

Business & 
Task Technological Marketing Legal

Technology, product, Identify white Assess market Ascertain 
process, or service space size, location, freedom to 
development & positioning innovate

IP protection Anticipate Determine Gauge scope 
potential for competition of claims to 
novelty assert

Commercialization Discover end use Probe profit Weigh patent 
of IP-based applications potential status & 
opportunities term

Strategic Assess technological Assess competitive Consider  
management of environment environment patents,
technology standards,

regulations



tive asserts that “white space” is voodoo—an artifact of where mapping
happens to situate activity clusters. Most visualizations are somewhat arbitrary
in that there is no one right way to depict a multidimensional reality in two
or three dimensions. So, be sure to challenge interpretations, testing that they
are grounded in technological and market facts.)

Another illustration from Xu aims at IP protection (Row 2). This begins
with our firm’s researchers coming up with a new retinoblastoma (cancer of
the retina often seen in young children) gene with 17 phosphorylation sites.
We review publications and patents to identify similar nucleic acid sequences,
previously identified phosphorylation sites, and possible uses. Together, this
information helps us decide whether to seek a patent or maintain a trade
secret, what claims to assert if we do patent, and what markets to target if we
pursue. We could go further to decide in which countries to seek patent pro-
tection, based on competitors’ patenting and marketing locales.

For each of the four types of tasks, Table 12-1 reminds us to consider mul-
tiple types of information (see Columns). Strategic management (Row 4)
weighs technological capabilities vis-à-vis the technological environment, but
also market size and competitor positioning. Awareness of pertinent standards
and regulations needs to enter the decision equation, too.

A common thread running through all four task types is risk management.
Patent intelligence can be thought of from this perspective as helping man-
agers estimate the relative risks and payoffs of alternative courses of action.

When we have IP, we have to decide how to exploit it. Options include man-
ufacturing a product, licensing our IP to others, or trading for other patents
more aligned with our core competencies. Tech mining can help by identify-
ing upstream and downstream producers with potential intersecting interests.

Competitive Benchmarking

Elsewhere in this book (Chapter 13) we present ideas on how to translate par-
ticular tech mining measures into “innovation indicators.” These measures
track maturation of a technology and gauge its prospects for successful 
commercialization. Patent analyses contribute richly to such indicators. For
instance, in Chapter 13, we discuss Ernst’s (2003) patent-oriented indicators,
including technological emphasis, technology status (e.g., share of activity in a
domain but, more generally, any suitable indicator), and rate of technological
growth.

Suitable combinations of indicators and more straightforward measures can
generate informative breakouts. For example, plot technology status on the 
X-axis versus rate of change on the Y-axis. Depending on how many orga-
nizations we want to compare and their concentration, we might do a four-
quadrant chart. Figure 12-1 illustrates.

We have plotted three hypothetical companies based on their standing in
a domain of interest (say, the retinoblastoma gene engineering mentioned
above). The technology status positioning reflects whatever indicator you
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choose (e.g., drawing on technological share and patent quality). We then look
to a suitable rate of change indicator (e.g., showing recent gain). The symbols
reflect a third dimension also, technological emphasis, with the full octagon of
T2 suggesting that this gene engineering is their main thrust, whereas this
domain is only a small part of T1’s developmental efforts, with Us in between.

What action does Figure 12-1 suggest? Scanning the X-axis, T1 (“Them”)
is the leader, followed by T2, with our company lagging. On rate of change,
we find T2 leading with Us moving faster than T1. Implications? This paints a
challenging picture. If we only focus on the leader,T1, we are gaining, but from
a weak position. T2 adds an intimidating specter—they are ahead of us and
moving forward more aggressively, too. So we might want to retarget our
efforts to a nearby domain to sidestep T1 and T2, or look for a partner to
enhance our joint capabilities, or get out of this domain altogether.

Pilkington (2003) offers an appealing variation of Figure 12-1 on which he
plots “Quality” (citations/patent) vertically and “Productivity” (patents/orga-
nization or individual) horizontally, both divided at the mean for the technol-
ogy set under scrutiny. He calls the High/High quadrant “Key,” the High
Quality/Low Productivity “Talents,” and the Low/High group “Industrious.”

We advocate adapting these notions to your organization’s pressing tech-
nological issues and familiar communication forms. For instance, another
graphic might compare our patent portfolios in all of our main areas of inter-
est. We could indicate relative technology status and rate of change measures
to identify more and less promising fields. Ernst (2003) also models a combi-
nation graphic that plots our relative technological strength side by side with
our market strength to help assess prospects for a given technology-based
product (or service or process) arena.
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12.5. TECH MINING PATENT ANALYSIS CASE ILLUSTRATION: 
FUEL CELLS

This chapter exists because, although tech mining addresses similar questions
whatever the data type, there are significant differences in analyzing patent
data. One paramount difference is that it is harder to analyze a technology than
an organization from patent information. As discussed under “Searching,”
topical patent searching is tough because of the deliberate obfuscation in
writing patents. Contrast this chapter’s examples with the fuel cell case analy-
sis of Chapter 16 that mines publication and patent data oriented primarily
toward technology analyses. Our fuel cell search works to identify the major
organizational players, and we will pursue an organization-focused example
analysis here. Depending on our tech mining sensitivities, one might want to
probe further to look for organizations working on a related technology not
identified as “fuel cell.” Also beware subsidiary or special venture organiza-
tions not unified with the major companies identified.

You can certainly pursue technology-focused analyses with patents, but it
is harder. To pursue questions like “What fuel cell technologies are likely to
emerge as big winners in the coming years?” one might embellish the present
fuel cells search along these lines:

1. Examine the leading 50 or so patenting organizations here; compare
tallies with those organizations’ overall patenting activity by searching
in the source database (no need to download records, just count 
activity).

2. Retrieve the records of the leaders who focus heavily on this technology
(e.g., we see that Ballard Power Systems concentrates on fuel cells
whereas Siemens’ interests spread widely).

3. Scan these recent patents to identify associated class subcodes that are
not “fuel cells,” but do relate—e.g., enabling technologies.

4. Now search on these subcodes for work by anyone (e.g., include Siemens
here) to analyze what emerging technology pertains to fuel cells.

But now let’s step through a sample analysis focused on organizations. We will
try to answer “w4—who, where, when, and finally what?” To set the stage,
Chapter 16 touches on European patenting with automotive interests (cf. Fig.
16-7). Suppose that our tech mining interest lies in understanding certain
capabilities of three companies: Daimler-Chrysler (“Daimler” for short),
Honda, and Ballard Power Systems (“Ballard” for short)—over the 10 years
from 1993 to 2002. Actually, we have chosen these companies in part because
they are three of the Top 5 overall fuel cell patenters for this period (Siemens
is the overall leader with 312 patent families). That these three leaders share
automotive application interests implies that this could be the leading fuel cell
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application arena. We next present selective results to show possibilities, not
an exhaustive analysis.

Who? Where? When?

Imagine this section as “playing detective” with the fuel cell patent data to
uncover possible technological thrusts by Daimler, Honda, and Ballard. Our
attitude is somewhat casual as we don’t have explicit driving questions to
answer but are using this case to illustrate possibilities. Figure 16-7 triggers our
inquiry. This figure suggests that Ballard is closely associated with DBB and
XCELLSiS, based on copatenting. This leads us into a series of follow-on
“who” and “when” questions.

In VantagePoint, we make an “Assignees by Assignees” matrix and sort on
Ballard. Selecting the intersection cell between Ballard and DBB, we note in
a Detail Window that the 17 joint assignee patent families’ priority years peak
in 1998 (8 patents) and end in 1999 (1). That prompts us to look at all 84 DBB
patents—Figure 12-2 shows these rising and falling abruptly.

We probe further to find that the EXCELLIS profile is peculiarly comple-
mentary to DBB, showing a dramatic upsurge to 68 patent filings in 2000. A
quick Google web search sheds light as we learn that Daimler and Ballard had
a 4-year collaboration from 1993 to 1997. (Our data set shows 10 joint patent
assignments peaking in 1996–97.) In 1997, reports indicate that they greatly
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expanded this collaboration with two jointly owned companies, XCELLSiS
GmbH (formerly DBB Fuel Cell Engines GmbH!) and Ballard Automotive.

Furthermore, in 1997, Ballard and Daimler expanded their alliance to
include Ford Motor Company investing in XCELLSiS and Ballard Automo-
tive. The three together started a third venture, Ecostar, responsible for devel-
oping electric drives for electric vehicles (1 patent, priority year of 2002).

This vignette also hints at the difficulties in tracking company interests.
Daimler’s active patenting (149 families) appears to drop sharply from a peak
in 1999 (priority year). However, we discover these three joint ventures,
suggesting Daimler is really more, not less, committed to developing this 
technology. For Ford, we spot only 19 patent families (as Ford Global Tech-
nologies), with only two joint assignments—one with Ecostar and one with
Ballard. Yet the sense here is that they too have very active efforts under way
to advance fuel cells for automotive use.

Let’s look at Honda, with 186 patent families. Can we ascertain a “knowl-
edge network” of its fuel cell inventors? We map the inventors with five or
more inventions (Fig. 12-3; compare to the map of Fig. 16-5 showing collabo-
ration among another company’s inventors). Figure 12-3 maps many small,
relatively independent teams (not many cross-links). Stronger links (more co-
inventing) are indicated by heavier lines. This pattern suggests a relatively new
R&D operation—let’s check this out.

Sticking with Honda, we note that their patent priority years are very
recent. Of Honda’s 186 patent families from 1993 to 2002, 91% of the patents
are in the most recent three years. Only 4 of their top 49 inventors (those with
5 or more fuel cell patents) had a patent issued before 1999. “Fuel cells” is a
very young Honda initiative! In contrast, Daimler also exhibits heavy recent
activity (92 of its 149 families show basic patents in 2000–2003), but it shows
notable activity dating from 1993 onward.

To check the longevity of the three companies’ interests in fuel cells, we go
back to the full fuel cells file. For any assignees, we find a trickle of patents
issued (fewer than 10 annually) from 1967, with an explosion of interest start-
ing in 1974 (129 basic patents that year). In comparison, Daimler’s first patent
appears in 1977, with another in 1989, and continuous activity from 1992
onward. Honda’s first is in 1993, but we don’t see multiple patents until 1997.
Ballard first shows in 1991, with multiple patents from that year forward. So,
Daimler and Ballard have been players longer than Honda.

Shifting gears, where do these three companies patent? Table 12-2 shows a
very uneven distribution. Each company has its strongest presence in its home
region. However, Honda also emphasizes American patent coverage, with
some European spread. Daimler-Chrysler shows much less interest in North
America (surprisingly?) and Japan. Ballard makes far greater use of the Patent
Cooperation Treaty through WIPO than either of the other two.

We can probe “where?” on a finer scale. For instance, there are five  joint
Honda-Stanford patent families. All filed initially (the priority patents) in the
United States, with the basic patent (first entered in the Derwent database) in
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WIPO. Intriguing is that all five show up for Australia—that’s quite unusual
for Honda (Table 12-2). Further analysis would be needed to confirm this
because Australia automatically publishes a document if a WIPO application
lists Australia as a “designated state,” but the PCT applicant may not actually
pursue an Australian patent.

We combine “where and when” questions to check Ballard’s patenting 
vs. time. Figure 12-4 shows the seven patent offices where Ballard has 
heavy patenting (40 or more); all show more activity during the past couple
of years than in Japan. In particular, note the rise in recent North American
(U.S. and Canada) patents. This suggests that Ballard has given up on Japan,
but such a conclusion requires confirmatory evidence (i.e., discussion with
experts).
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What?

We now consider the “what” question—what technologies are being patented?
Scanning the Derwent Manual Codes and the abstract noun phrases for the
inventor teams within Honda or Daimler, we have difficulty discerning 
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TABLE 12-2. Patent Family Distribution

Honda Ballard Daimler

Japan 169 40 22
United States of America 160 126 58
European Patent Office 43 94 71
Germany 40 77 147
Canada 40 45 5
WIPO (PCT) 22 103 30
Australia 8 85 8
China 4 0 0
United Kingdom 2 14 4
France 1 0 5
Italy 0 0 2
Czech Republic 0 0 1
Hungary 0 0 1
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technology emphases. However, we can use VantagePoint to perform princi-
pal components analysis (PCA) on the Derwent-assigned “manual” codes to
map clusters of topical emphases (Fig. 12-5). Each cluster is named after its
most central manual code. Figures 16-6 and 16-7 show PCA maps based on
fuel cell publication keywords. Compared with Figure 12-5, those offer more
of a “technical” feel—for example, spotlighting leading fuel cell types,
advanced materials, and electrochemistry facets. Figure 12-5 tends more
toward distinguishing application areas, but also technologies (see the example
sets of high-loading manual codes shown as “pull-downs.”)
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We can combine “who?” with these “what?” questions. Doing so (Table 
12-3), we see major differences in emphasis. For example, the polymer appli-
cations cluster (e.g., using these organic molecules as membranes to improve
conductivity properties) finds strong positions for Honda and Ballard, with the
overall leader being Matsushita with 82 patents. In contrast, the “Miscella-
neous” (fuels, etc.) cluster finds the leading assignees to be individuals, led by
Vinegar with 59, with the leading companies being XCELLSiS (including
DBB), International Fuel Cells with 39, and Daimler with 21. Honda shows
much less interest here with 5 families.

Curious about those 59 patents assigned to Vinegar, we look at the co-
assignees. We see 7 additional individuals with at least 41 patents assigned to
them and 3 others with 20 or more. Only one company appears with a single
coassignment, Shell. So we look at Shell’s 17 patents and find these same 
individuals listed as inventors on many of the patents. These may be a Shell
research team and this batch of 59 patents, with a single exception, were
assigned to individual technologists, not to the company. Furthermore, 58 of the
59 patents were issued in 2002, all in the United States. Next step—seek knowl-
edgeable review of this batch of patents to figure out what Shell is up to!

Returning to Table 12-3, the semiconductor applications cluster presents a
completely different picture. This is a much smaller fuel cells domain. and
none of our target players appears highly active.

We could pursue “who’s doing what” via additional database searches. We
could search patent claims databases for fuel cell patenting by our companies
to investigate their commercial interests. Also, we could search in a patents
citation database to see which of these patents appear pivotal. Or we could
search Derwent for any patents (not just fuel cells) filed by each of our focal
companies (Table 12-3) to explore how fuel cell activities fit within their
overall patent portfolio.

Ferreting Out Patent Strategies

These patent analysis illustrations reflect exploration variations. Section 12.7
(“For Whom?”) suggests additional, more specific question-answering motifs.
An “in-between” patent analysis assignment might profile a key competitor’s
patent portfolio. We might pose questions such as:
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TABLE 12-3. Selected Topical Clusters by Companies

Individual Patents

Patent XCELLSiS 
Topical Cluster Families Ballard Daimler (incl. DBB) Honda

Polymer applications 1200 38 14 7 51
Misc. (fuels, etc.) 692 14 21 49 7
Semiconductors 144 1 0 4 3



• How much do they rely on patenting, given the extent of their 
R&D?

• Do they identify many or few inventors (making it relatively easy or hard
to identify their knowledge networks)?

• Expiration dates—What is the temporal distribution of their patents by
technology (which might suggest areas they are giving up and others they
are building up for a commercial thrust)?

• “Picket fence” analysis—Do they appear to be assertively building 
protection in certain areas? If so, can we surmise their commercial 
objectives?

• Portfolio valuation—What’s the worth of their IP? What would it be
worth to us (how does it complement our strengths and priorities)? 

We can look to our empirical measures to help answer such questions. Many
“patent indicators” can be constructed—cf. CHI under Chapter Resources and
discussions in Chapter 13. Nils Newman offers four patent indicators of tech
mining value:

(A) Concentration—mean number of Derwent manual codes (these reflect
technology types and applications) per patent family for Company 
X’s fuel cell patents compared with the mean for all the fuel cell 
patent families (a company with a tight concentration of codes is less
apt to be blanketing or fencing than a company with a diverse code
pattern).

(B) Uniqueness—frequency of manual codes for Company X that do not
appear in any patent families of other companies in the fuel cells set
(more uniqueness suggests possible strategic patenting or inventing
around).

(C) Concept Clustering—Create a clusters map like Figure 12-5. Several
distinct, loosely related clusters suggest fencing; several distinct, nearly
unrelated clusters suggest blanketing; one or a few superclusters could
signify the comprehensive approach; sharply defined and tightly
related clusters suggest strategic patenting.

(D) Distribution—manual codes concentrated in a few areas suggest
strategic patenting; many, loosely related codes suggest the compre-
hensive approach; a long “tail” of relatively few patents in many codes
is consistent with blanketing or fencing.

The “Strategic Patenting” sidebar poses six “why?” possibilities. It then
summarizes our empirical indicators relating to “blanketing” and “fencing” as
pointing toward possible underlying corporate “strategy.”
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12.6. PATENT CITATION ANALYSIS

Patents cite “prior art” to indicate their own novelty. This implies that patent
citation information can help identify related bodies of knowledge. Citing pub-
lications and patents, so long as these do not obviate one’s claims, provides
strong defense against a competitor later challenging your patent claims based
on that prior art.

Several patent databases (e.g., Derwent, Delphion, MicroPatent) provide
citation information. Citing patterns inform about technological dependencies
and extensions. They speak to whether companies rely mainly on their own
technology or build upon that of others.

Mapping “citation trees” can elucidate intellectual relationships among
patents. Figure 12-6, provided by Mogee Research & Analysis, LLC (see
Chapter 12 Resources), spotlights one 1997 Lucent patent (U.S. Patent
#5701152). Lucent cites seven earlier U.S. patents that its patent builds upon
(the earliest being a 1978 Skiatron patent). Others cite #5701152 as a stepping-
stone for their inventions—the figure shows six U.S. patents citing it as of 2001
(e.g., a 1999 Motorola patent).
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Sidebar: Strategic Patenting—Six IP Gambits (Granstrand, 1999)
• “Inventing around”—protecting a special application
• Strategic patenting—a potent patent on which to build
• Blanketing—heavy patenting on multiple facets of a technology
• Fencing—a string of patents to block others over a range of related 

functions
• Surrounding—“girdling” to cripple a key competitor patent’s commer-

cialization
• Comprehensive—patent networks forming a comprehensive portfolio

Empirical exploration of a few of the leading fuel cell companies over the
past decade is intriguing, but complicated. Siemens scores low on Concen-
tration and high on Uniqueness. Its concept clusters seem sharply defined
and pretty tightly related. Distribution is relatively concentrated. Together,
the indicators suggest a strategic patenting approach to secure core inven-
tions within several specific fuel cell technologies. Honda scores low on
Concentration and low on Uniqueness, its concept clusters all network
together, and it evidences broad distribution. All told, the indicators suggest
comprehensive and surrounding strategic inclinations. Ballard is different—
fairly high Concentration, many singly occurring manual codes (high on
Uniqueness), concept clustering suggests focus on both production and uses
of fuel cells, with broad Distribution—interpretable together as possible
blanketing. We invite you to explore these or your own indicators using the
sample data file on the website.



We can examine various aspects of the backward and forward relationships.
We might note that #5701152 cites several patents in U.S. Class 725 (interac-
tive video distribution systems) as well as two in Class 380 (cryptography)—
an interesting combination. We note that the patents citing #5701152 increase
in number year by year. These later patents belong to other companies, as
opposed to Lucent pursuing this technology. Citation mapping can help elu-
cidate patent patterns conveying strategic intent. Recall the “Strategic Patent-
ing” sidebar; Granstrand (1999) illustrates six strategies and provides a variety
of patent citation maps.

Mary Mogee, head of Mogee Research & Analysis, LLC, and a leading
patent citation analyst, notes that such analysis can help expand a search. Also,
it can suggest licensing opportunities and potential partners or competitors
with related interests. Citations can reveal important inventors, vital to retain,
in a firm being considered for merger.

For a target technology domain (as opposed to tracking relationships of a
single patent, as just done), patent citation analyses can distinguish influential
patents, prominent organizations, and/or leading inventors. One can gauge the
pace of innovation by measuring median time lags from citing applications to
cited patent grant dates. Tabulating the percentage of citations by an organi-
zation to itself can indicate whether it is a pioneer and whether it is building
its IP in the target arena. (See “Patent Citation Reports” under Chapter 9
Resources.)

The gist of citation analysis is often to distinguish those patents receiving
significant numbers of citations. Citation rates vary by year of issue (earlier
patents have had more time to be cited) and by technology area. Normaliza-
tion is necessary. As with most tech mining data, distributions tend to be highly
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Patent Number: 5701152
Issue Date: 19971223
Application Date: 19950928
Title: Arrangement of Billing
      Interactive Communication
      Services
Author: Chen, Howard Zehua
Assignee: Lucent Technologies,
      Inc.
USC. 725/4
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Figure 12-6. Patent citation mapping (Mogee Research & Analysis, LLC).



skewed, with a few patents accruing many citations and most patents receiv-
ing none or almost none. In gauging a company’s IP, focus on the highly cited
patents and their inventors (e.g., are they still with the company?). One might
identify the organizations with the most patents in the “Top 10% Most Cited”
for the target technology area (corrected for year of issue).

As already mentioned, patent analysis can aid company valuation for mer-
gers and acquisitions. CHI Research carries this notion further. They gauge the
future prospects of companies based on citations to their patents (see Chapter
Resources). Companies with relatively more heavily cited patents than others
in their industry are promising. Those whose market valuation in relation to
their book value does not reflect this technological advantage make attractive
investments. Some money managers and hedge funds now incorporate patent
metrics intro their models, and unit trusts have been set up on this basis.

Patents also cite scientific articles (Narin et al., 1997). CHI (see Chapter
Resources) warns of the importance of cleaning these citations as they are very
dirty and not standardized. Citing science is far more prevalent in some fields
(e.g., biotechnology) than in others (e.g., electronics). Overall, the amount of
citing of scientific publications is increasing sharply (up from under 0.5 cites per
patent by U.S. patents in 1987 to about 2 cites per patent in 2000—National
Science Board, 2002). This implies an increase in science-based innovation—
particularly in areas such as biotechnology and pharmaceuticals. In those indus-
tries, some 90 percent of patents cite scientific papers, but other manufacturing
industries also increasingly cite scientific papers. Lane and Makri (2000) have
fit a growth model to the trend in patents citing scientific papers, projecting that
this may continue to rise greatly. Diana Hicks updates this to suggest growth,
but less pronounced (http://www.nsf.gov/sbe/srs/seind02/c5/c5s3.htm#growth).
Examining science citation may help you understand key sources of ideas in an
area, fundamental research worth further tracking, and collaboration networks
(e.g., companies working with particular universities).

Boyack (2003) has done interesting work on scientific paper citation at the
cluster level to ascertain which technology areas draw on which others. Chen
(2003) shows patent “landscape” maps created by Boyack et al. changing over
time. Changes in cross-domain interactions can track competitor technology
interests. It is also illuminating to see who is citing your firm’s patents. Such
analyses help formulate a research program that will yield effective IP.

12.7. FOR WHOM?

The “Why Patent Analysis?” section arrayed rationales for doing patent analy-
sis and distinguished broad purposes. Here, we mention a few things patent
analysis can accomplish for various users.

First we point out that patents play considerably different roles in various
industries. The Derwent patent “File Segments” field distinguishes chemical
from engineering patents. The chemical and pharmaceutical industries rely
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Sidebar: Patent Scenarios

One way to communicate competitive landscape and risk implications is
through patent-driven scenarios. Imagine that General Motors were explor-
ing fuel cell possibilities. Suppose they tallied the patent data (see Chapter
14) associated with Derwent classifications separately for electric vehicles,
automotive electrics, and electric propulsion. In reviewing these data they
note that three of the Top 10 companies patenting in this area are XCELL-
SiS GMBH (#1), Daimler-Chrysler (#3), and Ballard Power Systems (#9)—
and that these three companies share a number of these patent assignments.
In contrast, General Motors is #4 and shows no co-assignments with other
companies on these automotive fuel cell patents. The analysts might convey
the possible risks and action options through a set of alternative scenarios.
Here are two GM sketches suggesting directions forward (these are purely
imaginary, not based on substantive analyses).

Scenario 1—Fuel Cell Future Without GM: Daimler-Chrysler locks up
the key IP for the new low-temperature fuel cell vehicle. It’s now 2015 as
they introduce the overwhelmingly superior fuel cell automotive fleet, just
as restrictions driven by global warming concerns kick in. We are locked
out of the most promising engine innovation since the internal combustion
engine. . . .

Scenario 2—Counterpunch:After careful analysis of a number of alter-
native propulsion technologies, we (GM) have identified and pursued two
product development programs. One partners us with Siemens, the fuel cell
R&D leader in a radical new bio-fuel cell. The second entails our purchase
of key IP held by a small Japanese company for a combination solar fuel
cell approach. We assess the prospects of each at about 20 percent to rev-
olutionize automotive propulsion by 2020. . . .

The intent here is NOT to forecast explicit future occurrences and their
likelihoods; it is to engage senior management in weighing alternative
strategies given the technological environment.

very heavily on patenting for IP management, so patent analysis is especially
important to them. Patents from the Chemical Abstract Service are valued
because of the special structural (chemical formula) information set up. In
other technology-oriented industries (e.g., software), the role of patenting is
much weaker. Business method patents are now allowed to protect new uses
for known processes, machines, or manufacturing methods. In some areas
patent practices are undergoing rapid change (biotechnology). See the “Patent
Scenarios” sidebar.

Users of patent analyses include attorneys, IP managers, researchers, plan-
ners, and managers. Each has somewhat different, but overlapping, informa-
tion interests.

Attorneys perform “due diligence” to learn of potential blocking patents.
(Recall the sidebar on “Strategic Patenting—6 IP Gambits”; “blocking”



patents mainly intend to interfere with other companies’ innovation paths.)
Understanding the patent landscape helps assess whether to apply for certain
patents and, if the answer is “yes,” to have information useful in making claims.
Attorneys might also identify possible infringement of our existing patents.
We have seen four patent attorneys spend a day to come up with a counter-
claim against another company that was suing their client company over a dif-
ferent patent.

IP managers could map related patents to assess the present state of tech-
nological development pertinent to their company’s interests. They also can
examine patent trends to gauge competitive landscapes and prospects. This
information complements understanding of our organization’s strategic aims
and its technological capabilities in helping formulate IP strategies. Should we
exploit particular technology by manufacturing a product? Would we be better
off licensing it to another company (which one)? Are certain patents not worth
paying fees to maintain? Decisions bear on protecting and exploiting our IP
via licensing or sale, or acquisition of complementary rights (possibly to block
competitors from that arena). The sidebar illustrates tech mining being used
by IP together with marketing.
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Sidebar: What Might This Mean?

Merrill Brenner relates how an Air Products’ technologist noticed that a
competitor had seven patents in an aspect of a technology in which we 
and our other competitors each had one patent. We performed a signal
analysis that illuminated that this competitor with seven patents had a 
much stronger position in one pertinent market, and therefore a different
view of the value of the technology. In addition, we were concerned about
the competitor taking this technology into another market area of more
interest to us; in response, we made certain that our patent protected our
position.

Product managers want to know which competitors are doing what in the
domain. This could impact short-term product development pacing. It greatly
affects marketing plans. In other words, compare a competitor’s patent port-
folio with their product portfolio to anticipate their future product portfolio.
We have seen “expert” understanding of a competitor’s interests and strengths
proven wrong by patent analysis.

New product developers can scan patent distributions (who is doing what
lately?) to find potential technology development collaborators with com-
plementary knowledge. Tony Trippe (noted patent analysis authority,
tony@trippe.com) relates how a company applied patent analysis to com-
pletely change plans for developing a new product. See sidebar.



Strategic planners’ interests dovetail with those just mentioned; obviously,
these various technology management aspects require thoughtful coordina-
tion. Planners tend to address broad and long-range technology management.
As such, they could appreciate 3-D topological mapping (see Fig. 16-8) of the
broad patent environment. Interpretation of changing technologies together
with competitor emphases and market evolution can enable better “Goal
Level B” planning. Using Rouse’s distinctions (1994), Goal Level A concerns
short-term, fully attainable technology and product targets. Goal Level C
posits ultimate targets for technological capabilities, product development, and
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Sidebar: You’re Not Getting Sleepy . . .

The story unfurls as this Fortune 50 company considers developing a
product to affect sleep patterns. This company emphasizes product mar-
keting, so they began by researching which companies held highest market
share. They identified three companies as the major players in the sleep
adjustment space. Once again, as this company thinks first about branding
and product marketing, they determined to speak to these three companies
about possible partnering.

Tony had recently trained one of the team members in performing text
analysis on patent documents, and this individual suggested that before the
team contacted the market leaders perhaps they should analyze the “sleep”
patent space. Because this project was highly technical in nature, this person
was able to convince the team that patent analysis could add insights to the
market analysis.

In this case the company used the Aureka Online System (formerly
from Aurigin Systems, now owned by MicroPatent) to search for relevant
worldwide patents based on a keyword and patent classification code search
for sleep adjustment (including deprivation, enhancement, insomnia, etc.).
Aureka contained a module to map documents based on shared content
(co-occurrence based clustering; see Chapter 10) using 3-D surface 
maps (developed as “SPIRE” by Battelle, then marketed by Cartia, before
Aurigin acquired it).

When the text clustering map was completed, the team noticed a con-
centration of documents talking about research on circadian rhythms. They
were interested in pursuing additional research in this area and wondered
which organizations held this IP. Somewhat surprisingly, examination
showed that the market leaders did not own the IP they were representing.
Instead, the IP in this space was owned by a number of smaller companies
that the team had never heard of. At this point they decided to approach a
few of the technology leaders, because the combination of the special IP
with the marketing and branding muscle of the Fortune 50 company would
produce a much better result than collaboration with one of the market
leaders. The team later reported that the use of tech mining techniques on
patent information made a critical contribution to the success of the project.



market successes. Goal Level B is the critical in-between targeting over the
next horizon. This is where understanding possibilities and the competitive
environment can pay off with significantly better products (or processes or 
services) to beat the competition.

Managers can take various messages from patent analyses. Marketing may
want to profile key customers to better understand their intents and capabil-
ities. Human resources could use these analyses to identify prime recruiting
candidates to complement your own organization’s top producers. R&D man-
agers could benchmark their efforts against leaders in their industry.

Patent analysis, reinforced with other empirical investigations (e.g., techni-
cal and business publications mining), can help answer many questions across
this gamut of technology managers. Patent analysis should follow the general
tech mining prescription to integrate it with expert knowledge (particularly
human source intelligence about others’ activities and technical domain
knowledge to interpret empirical findings).

Mary Mogee (2003) provides a nice patent analysis case. A client is con-
sidering purchase of several patents to support manufacture of a medical
device. Patent activity and citation analysis helps assess how important these
patents are compared with those of competitors. Networking with knowl-
edgeable persons can confirm and enrich the actual patent analysis. Imagine
making such decisions without understanding how this set of patents fits into
the patent landscape. Less obviously, consider how vital knowledge of what
IP the various key players possess is to any decision about mergers and acqui-
sitions, licensing, or competitive posture.

To add a cautionary note, as with all tech mining, interpreting patent activ-
ity requires substantive familiarity and thoughtful checking. This is particu-
larly so with patents given the inherent intent of those applying for patents to
disclose as little as possible of their real insights and plans. Be wary of varia-
tions in company name, subsidiaries, mergers, and filing practices. Try to assess
why companies are pursuing particular strategies—for example, to commer-
cialize a particular technology or just to block others so as to protect another
technology of theirs. Check out anomalies such as the absence of patents from
particular companies or nations. Check that the data sources you are using
have suitable and compatible classification codes (e.g., International Patent
Classifications are much less detailed than EPO or USPTO codes) and that
the codes are up to date.

12.8. TRIZ

TRIZ (pronounced “trees”) stands for the “theory of inventive problem-
solving.” It builds on work by Altshuller in the Soviet Union from 1946
onward. He and colleagues analyzed hundreds of thousands of patents to cat-
egorize invention types. They also pointed out flaws in the Soviet inventive
process, earning Stalin’s gratitude in the form of an extended trip to the gulag.
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While imprisoned, they continued to uncover and categorize types of changes
(principles) that generate worthwhile inventions.

TRIZ reflects an entirely different sort of patent analysis. One draws on
certain inventive principles to creatively solve a problem at hand. TRIZ holds
that problem types and solution types repeat across domains. It strives to iden-
tify essential “contradictions” by tabulating interactions among 39 system fea-
tures. It compiles ideas on how to resolve those contradictions by using a set of
40 problem-solving principles (e.g., transformation of states of an object, seg-
mentation, self-service). Extensive analysis of Soviet patents generated those
principles (Terninko et al., 1998). Candidate ways to eliminate contradictions
should be assessed to see whether they can boost achievement of useful func-
tions and/or reduction of harmful functions. TRIZ thus only involves “patent
analysis” as we mean it as background intelligence. We see exciting potential
for an enhanced innovation management process guided by TRIZ.

TRIZ holds that about 95 percent of inventive problems have already been
solved, in some other field. That’s quite interesting for tech mining in sug-
gesting that exploration in other domains can provide fruitful analogies.
Although TRIZ typologies were formulated to address engineering problems,
the approach extends to other problems. One can use the TRIZ systems per-
spective and checklists manually or with the aid of software, such as The Inven-
tion Machine (See Chapter Resources). Let’s illustrate with approaches that
specifically aim to facilitate technological innovation and new product design.
You might consider this as a grand “systems” extension of our notion of “inno-
vation indicators” (see Chapter 13).

Clarke (2000) presents a “directed evolution” approach that goes under the
name of I-TRIZ. This seeks to assess where your present technological system
under study stands and where it has greatest potential to advance along eight
Patterns of Evolution, paraphrased as:

(1) Stage of the overall technological system in question along its S-curve
evolutionary path.

(2) Ideality—ratio of the system’s useful to its harmful effects; look to
increase this.

(3) System Component Evolution—each component has its own S-curve
against which to assess prospects for improvement and ways to elimi-
nate conflicts among components.

(4) Dynamism and Controllability—look for ways to perform more func-
tions, more flexibly.

(5) Complexity, then Simplification—systems tend to first increase in quan-
tity and quality of functions, then move toward simplification.

(6) Address changes in system elements to alter their match or mismatch
with each other.

(7) Getting smaller—look to advance from macro- toward microsystems.
(8) Decreasing human involvement—look to further automation of tedious

functions.
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Clarke illustrates with looking for a new way to close skin wounds. Known
approaches include sutures (sewing) and staples. Exploration of Patterns 5 and
7 leads to consideration of a next-generation instrument to extrude liquid
polymer through a pressurized nozzle through the wound against an anvil. The
polymer would then be solidified to yield a continuous lattice formed to the
exact wound shape to hold the tissues together. This promises gains on Pattern
2 (Ideality), 4 (Flexibility), and 5 (Simplification).

Mohrle (2000) offers a CTI application of TRIZ. Some 1400 patent
abstracts relating to a not particularly “high-tech” topic—“mops”—were
retrieved. The 40 judged most important were categorized with the TRIZ
inventive principles. The analysts then compared their company with two key
competitors in terms of which inventive approaches each used. The results
informed a workshop to assess their company’s R&D emphases, leading to a
proposal to acquire one of the competitors for its complementary inventive
approaches. We applaud using tech mining analyses in this way to stimulate
further interactive solution processes.

TRIZ can be used for technology forecasting and product improvement by
examining the status of a particular technology application. Plotting this on a
radar chart shows how advanced the solution is along pertinent trend axes.
Mann (2003) and colleagues have distinguished 35 technology trends (e.g.,
taking advantage of color in the application) and another 23 business trends.
The features of a current capability (possibly defined by a particular patent)
can be gauged (0–5 scale) as a distance away from the ultimate evolutionary
potential. Figure 12-7 assesses a hypothetical product on eight dimensions
recast toward business potential. One then assesses potential improvements,
keying on those with the greatest remaining potential. We suggest you try out
evolutionary potential assessment on an emerging technology of interest:

(1) Specify whatever 5–10 technical and/or business dimensions (trends)
you consider most salient to success for this innovation.
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Figure 12-7. Evolutionary potential assessment



(2) For each dimension, agree on what minimum (0) and maximum (5)
values make sense.

(3) Assess the current technology status on each dimension and plot on a
radar chart like Figure 12-7.

(4) Looking toward those dimensions with the greatest potential for
improvement, establish your technology development priorities and
generate a strategy to achieve these.

12.9. REFLECTIONS

This is a long and rich chapter. Patent information provides a treasure trove
of potential intelligence. Various forms of patent analysis help derive such
valuable knowledge. This chapter addresses the special issues in exploiting
patent information. But we would also remind readers to consider this in con-
junction with the general tech mining considerations raised in the rest of the
book. In particular, don’t neglect to blend patent-derived insights with what
can be gleaned from other S&T and contextual information resources.
Also, be sure to engage suitable experts to help interpret and draw action 
recommendations.

Almost all large companies are pursuing more proactive IP assessment,
intelligence, and management these days. Here is a sidebar to finish up with a
sense of how tech mining can help a small company, too.
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Sidebar: Intellectual Assets, Inc.

Paul Germeraad reported (2004) how they were able to help an enterprise
initiate negotiations with 3 prospective licensees for their IP (negotiations
under way as we write). They helped the company uncover prospective
interest in its 6 patents through a series of analyses:

(1) Identify which companies are citing your patents. Then check who is
citing those citing patents.

(2) Look for the companies that are most actively patenting in the same
technologies by checking the pertinent class codes. In particular, look
for companies that are increasing their patenting in the last 3 years.
Also, perform thematic searches for patents based on technologies
being mentioned (titles, abstracts, claims) to find active companies.

(3) Analyze your competitors’ patenting.
(4) Combine the results of the previous three steps to compose a list of

candidates. Examine promising ones to understand their interests. Try
to ascertain their patenting strategies and objectives. Look for their
probable application targets (sectors, products).



CHAPTER 12 TAKE-HOME MESSAGES

• Patent information is a vital component of tech mining requiring 
specialized skills, particularly in searching and in interpretation 
regarding legal IP issues (e.g., patentability, grounds for claims,
infringement).

• Patent analysis contributes importantly to R&D program planning and
to competitive strategy regarding mergers and acquisitions.

• Different databases provide several important forms of patent informa-
tion: abstracts of “front page” information from patent applications or
from patents granted, claims, citations, and full text. Match your searches
to your particular tech mining needs.

• Table 12-1 offers a framework to guide use of multiple information types
for four major patent analysis tasks.

• Patent analyses help profile organizations (companies) and also, with
more difficulty, emerging technologies.

• Patent analysis can address “who, where, and when” questions well and
“what” questions with more difficulty.

• Tech mining-oriented patent analysis can identify inventor teams—
“knowledge networks”—understanding of which can help formulate
“what if?” scenarios on where a competitor might be heading or the impli-
cations if they were to partner with a third organization.

• We advocate patent innovation indicators—derived knowledge based on
patent information concerning technological emphasis, technology share,
growth rate, patent quality, and aggregate (e.g., national) profile. These
can help benchmark your technology against the leaders in particular
arenas. (See also Chapter 13.)

CHAPTER 12 TAKE HOME MESSAGES 247

(5) Screen these to the most promising, and profile each of them. Check
how extensively they cite prior art, identify their inventor knowledge
networks, categorize what and where they patent. Then explore the fit
between their interests and your IP. Creatively extrapolate how rights
to your patents could benefit them. Determine which of your patents
appear most valuable to them. Assess the consequences for your
company of conveying IP rights to each of these prospective licensees.
Identify promising contact persons. Summarize this information on
each prospective licensee in a comparative fashion (e.g., use spider
charts) to prioritize the best prospects to pursue.

(6) If initial inquiries find potential interest, prepare briefing support mate-
rials to enter negotiations well-informed about their situation. Mapping
our patents together with theirs helps convey complementarities.



• Quick Google searches can provide vital contextual information to flesh
out issues raised by patent analyses.

• Patent analyses can generate insight into competitor technological inno-
vation strategies.

• Patent citation analysis can distinguish key patents and significant knowl-
edge dependencies.

• Work with your organization to diffuse patent analysis skills and famil-
iarity among data specialists, analysts, and various technology managers
to help build a robust tech mining environment.

• A good number of tech mining patent analyses will strike users as strange
new ways to achieve familiar objectives (e.g., patent attorneys used to
reading many patents to achieve what can now be done more broadly,
quickly, and cheaply through tech mining). As such, these users are good
prospects to use these analyses, but they need careful explanation of the
bases for conclusions reached.

• TRIZ, based in patent analyses, offers innovative ways to solve 
many technology and business problems. The notion of evolutionary
potential assessment can help distinguish more promising technological
innovations.

CHAPTER 12 RESOURCES

There are a variety of groups and sources of information relevant to patent
analysis. The Patent Information Users Group, Inc. (PIUG) is the international
society for patent information. It holds multiple meetings at which patent 
data and software vendors interact with various users to share ideas. See
http://www.piug.org/. The European Commission and the European Patent
Office in 2003 hosted the EPIDOS conference along with PATINNOVA to
advance knowledge and sharing of patent information.

Consulting groups active in patent analysis include Mogee Research 
and Analysis, LLC (http://www.mogee.com), Patinformatics (http://www.
patinformatics.com), and CHI Research (http://www.chiresearch.com). Mary
Mogee (of Mogee associates) publishes research in patent analysis (see, e.g.,
Mogee, 2003). Anthony Trippe of Patinformatics provides a thorough
overview of analytical techniques and objectives in patent analysis (Trippe,
2003b). Francis Narin of CHI Research is also a leading patent researcher.
Resources from Narin include Narin (2001) and Narin (1992).

TRIZ, a technique discussed in this chapter, could be pursued through
many available books and articles. One software package to aid in applying
TRIZ is the “Invention Machine” (2004, http://www.invention-machine.com/).
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Chapter 13

Generating and Presenting
Innovation Indicators

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

The previous several chapters have described “doing” tech mining—that is, the
analyses. This chapter applies the results of those analyses to answer technol-
ogy management questions. We offer an extensive set of questions and per-
tinent measures to help answer them. Certain of those measures track
technological development via “innovation indicators.” The chapter then
addresses how to present and package these tech mining findings for users.

CHAPTER CHALLENGE

• Imagine you work in Mergers & Acquisitions at “QQQ”—a high-tech multi-
national company. QQQ is actively considering purchase of a smaller company
(“qqq”) that has invented an attractive electronic technology. QQQ senior
management wants you to play tech mining detective to find out what you can
about qqq’s technological capabilities—fast—as negotiations are heating up.
What can you provide?

The “Chapter Challenge” exemplifies one of several tasks well served by
tech mining—acquisition decisions—and, as it unfolds, it shows how several
tech mining analyses and resulting findings can contribute. We need to 
continually remind ourselves that we are doing tech mining to better inform
decisions about changing technologies. Thus the starting point is really the 
end point—what information needs prompt this analysis? These needs, of
course, vary widely and can be characterized from many perspectives.
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Table 2-3 set out a few technology management needs; we expand to 13 issues
in Table 13-1.

In early chapters, we offered another perspective—the types of technology
analyses that tech mining can aid (Table 2-2). Obviously, the distinctions in
Table 13-1 could be shuffled endlessly. For present purposes, we direct atten-
tion to a level more specific—questions—whose answers would help resolve
these issues. We noted some management of technology (MOT) questions in
the initial chapters as meriting our attention but saved the full list for this
chapter, where we suggest measures to answer them.

This chapter is about technology choice. How do we choose the correct
technologies or innovations for our organization’s purpose, based on the best
possible information? Part of the answer lies in the use of expert opinion tech-
niques, which we discuss in Section 13.1. Expert opinion techniques can be
problematic: Finding the experts, and soliciting the right information from
experts, requires technological intelligence to conduct correctly. We also
discuss the use of innovation indicators as a way of integrating tech mining
information to meet particular needs. Issues of information representation and
packaging arise. The chapter concludes with a set of examples of applying tech
mining to issues of technological choice.

13.1. EXPERT OPINION IN TECH MINING

This section emerged when our series editor reminded us of the importance
of expert opinion to complement mining of information resources. We have
mentioned expert opinion as a key counterbalance to various empirical 
analyses. Tech mining does not usually need to do formal surveying—that is,
to compile representative sample responses to a set of questions. So, we can’t
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TABLE 13-1. Technology Management Issues and Concerns

A. R&D portfolio selection
B. R&D project initiation
C. Engineering project initiation
D. New product development
E. New market development
F. Mergers
G. Acquisitions of intellectual property (“IP”)
H. Exploiting one’s own intellectual assets 
I. Collaboration in technology development
J. Identifying and assessing competing organizations
K. Tracking and forecasting emerging or breakthrough technologies 

(opportunities & threats)
L. Strategic technology planning 
M. Technology roadmapping



just point to survey methods sources! Instead, we usually need to ask a couple
of knowledgeable colleagues to:

• Assess whether our empirical findings are correct, complete, and on
target.

• Draw implications from the complex of issues and empirical findings—
i.e., stretch beyond the data.

This section offers some pointers.

Locating Needed Expertise

In tech mining we’re usually interested in special expertise, not large numbers
of responses. It is critical to define the needed expertise, which likely entails 
multiple perspectives. For instance, imagine we are assessing aspects of the
European automotive application of fuel cells, as explored in our case analy-
sis (Chapters 12 and 16). Depending on the decisions to be made, we should
probably seek persons knowledgeable about our firm’s European interests,
fuel cells, automotive technology, popular acceptance of alternative energy
sources, and other aspects. In other words, the nature of the expertise can
address technical, market, customer acceptance, policy, and other dimensions
pertinent to successful innovation.

Consider various sources of relevant expertise. Distinguish

• External experts—Offer richest potential to obtain diverse points of view.
However, one must guard proprietary information, often key in compet-
itive technological intelligence (CTI).

• Internal experts—Advantages include ease of access, common interests,
and avoidance of proprietary data concerns. Folks from the same organi-
zation are also apt to share perspectives (culture, knowledge of intents),
a plus. However, this can also result in the “zeitgeist” phenomenon—a
shared point of view, leading to overendorsement of the party line.

A special set of key internal perspectives must be provided by the intended
tech mining users. Chapter 14 treats ways to engage would-be users through-
out the exercise.

Tech mining can help identify experts, particularly concerning technology
matters. In the fuel cells case, we could list leading authors or inventors and
profile their particular research emphases. An interesting twist is to use tech
mining to locate internal, as well as external, experts. We have compiled
Georgia Tech research published on fuel cells to enrich the “good old boy”
knowledge of who studies fuel cells on campus. Tech mining particularly helps
spot new and younger researchers in large organizations such as this. As we
match candidate researcher interests to our needs for expertise, we might
review their websites and ask local colleagues whether they know of their work.
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Be on the alert for potential bias. From your side, be alert to avoid color-
ing their judgment. On their side, those knowledgeable about particular tech-
nology issues usually have a stake in them. Depending on the scale of effort
and time available, it may be fruitful to seek out disparate viewpoints. An early
“divergent” stage can suggest novel avenues for tech mining pursuit. Later
“convergent”-stage expert contributions shift toward review and formulation
of consensus interpretations and action recommendations.

Eliciting the Needed Expert Information

What do we want from those experts? It varies by phase of the study. Early
on we can use help in scoping the technological and other boundaries and
checking the adequacy of our data searching. In process, interim review of
analyses can spot misunderstandings and gaps. At the end, review and aug-
mentation of interpretations and action recommendations can add greatly.

Handy colleagues may be willing to collaborate. You can casually engage
them whenever tech mining questions arise. Reaching out to external experts
requires more care in formulating your inquiry. We suggest:

• Jot down your immediate questions.
• Deliberately step back to anticipate likely future questions.
• Prioritize and prune your questions so you can focus on the essentials in

whatever amount of time the expert can give you.
• If at all possible, pilot test your questions, even if this is only asking a tech

mining collaborator to check them.
• Ask whether the expert would be willing to later review your results—

this bonus round can add tremendous value.

Payment issues may arise, so be prepared in terms of what you can offer, start-
ing with the tech mining results. Determine ahead how you will capture what
the expert says. Having a colleague take notes while you focus on question-
ing is often effective. If quite technical details must be captured precisely (e.g.,
chemical formulas), determine how to do this. Asking the expert to review
your notes afterwards can work well.

We find that interactivity is usually key to tech mining expert opinion.
Showing the expert what we have done can help trigger specific suggestions.
Incidentally, providing them with the tech mining often gives them a different
perspective on their field, so they may value this. Do be properly humble,
because we have found experts who “know it all” and find any empirical por-
trayal of “their” domain automatically wrong. Keep in mind that R&D domain
profiling is not generally familiar. What you are doing will strike them as some-
where between inane and inspired, but probably closer to the former.

Focusing can pose challenges. If you are asking an automotive marketing
expert to review your fuel cells tech mining, most of your content will seem
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abstruse. Ease that expert into your study, guiding toward the aspects on which
you seek his or her judgment. For instance, if you are E-mailing a hefty attach-
ment of draft results, guide the expert to exactly what sections you’d like
reviewed and what your key issues are. Interaction, in person or by phone, is
highly desirable here so they comprehend their role.

If possible, we also want to interact with the experts concerning their 
observations and critiques. We “review” their inputs and probe with them to
understand and elaborate. For instance, going over possible steps to improve
the tech mining can elicit helpful pointers on where to look, how to cover gaps,
and pitfalls to sidestep. Just having a one-shot E-mail from them can’t provide
this.

Consider group as well as individual expert interaction modes. Various
forms of focus group offer potential advantages over sequential expert
encounters in efficiency (multiple experts at one time) and interaction (inter-
play among different points of view to explore possible implications.

Offering incentives or clarifying personal stakes may greatly enhance co-
operation. Sharing results is an obvious candidate “carrot,” but be creative.
Sometimes having the request for help come from the right person can make
all the difference in securing the cooperation of a busy expert.

That is all well and good, but what about the quick study? How does one
obtain expert inputs when the analysis is due in one day? As noted, tech
mining can help identify candidate experts. Under severe time constraints, we
need to seek the most suitable, available sources. Someone local who is some-
what knowledgeable about automotive fuel cell applications can probably
meet our rush needs better than an eminent expert not close at hand. So reflect
on whether true “expert” knowledge, or simply journeyman awareness, will
suffice. By analogy, to statistically analyze a set of results, you don’t need the
world’s leading statistician, just someone who understands the standard sta-
tistical treatment of such data.

Integrating Expert Opinion with Tech Mining

Figure 14-1 suggests that tech mining empirical findings enter one
manager/user ear while the expert has the other ear. While “battling” intuitive
judgments, tech mining really doesn’t want to meet up with the expert this late
in the game. Rather, we ought to have already integrated expert perspectives
with the empirical findings to present a single, coherent message.

That said, we are best served by initially stepping back to sketch ahead what
expertise we want to obtain at various stages of the exercise. In other words,
expressly design which and how experts should be engaged. Early on, judg-
ment on technological and business opportunities should contribute to scoping
the exercise. Other types of knowledge should help determine the right infor-
mation sources, formulate searches, interpret data, and draw implications sen-
sitive to our organization’s aims and context. In “24-hour” tech mining work,
ways to tap expertise have to be greatly compressed, but not ignored.
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Consider also the “last” expert. The sections that follow emphasize 
engaging users actively and planning how best to provide them with technol-
ogy intelligence so as to inform their decision-making. This suggests a high
potential in working with key managerial associates—that guy who has the
boss’s ear in Figure 14-1—to formulate and present tech mining findings most 
effectively.

13.2. INNOVATION INDICATORS

One might view Table 13-2 as the centerpiece of this book. It offers 39 ques-
tions to be addressed by tech mining. Each question pertains to certain of the
technology management issues (Table 10-1)—we cross-link to these in Column
2. Because questions don’t nest under single issues, we don’t organize this table
about the issues. We don’t expect you to “read” this table—it is our grand com-
pilation.The last column offers a “shopping list”of potential measures and inno-
vation indicators that could help answer particular questions. The list offers
both relatively straightforward measures (e.g.,counting activity) and more elab-
orate “innovation indicators.”The next section discusses innovation indicators.
Note that we do not limit indicators to strictly numeric measurements.

The table is organized by question and data type. The questions are ordered
as follows:

• What? (questions in italics mainly concerning content): research—
development—commercialization

• Who? (nonitalicized questions concerning players): research—
development—commercialization

Questions do not neatly fit categories, but they are ordered to roughly track
the innovation progression from research (drawing heavily on publication
data), through development (relying heavily on patents), through commer-
cialization aspects (stretching from technical into business and popular press
information resources, although we don’t fully develop these).

To illustrate, Question 24 asks: Who are available experts? You might want
to pose this question in addressing various MOT issues, such as: D, J, K, or L
(Table 13-1). However, you might not have a need for experts in the way you
are treating these issues. Conversely, for a management issue that we didn’t
note (e.g., in support of A—R&D portfolio selection), you might. Our associ-
ations are just suggestive. Likewise, indicators do not map uniquely to ques-
tions. For Question 24 we mention two indicators:

• Profile most prolific and most cited inventors not associated with a 
large company (affiliations, leading patent class codes; temporal 
distribution)
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TABLE 13-2. Tech Mining Questions and Indicators

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

1. What emerging A,J,K,M Scorecard measures for rapid overview of 
technologies merit multiple technologies.
our ongoing Consider separate metrics for industrial vs.
attention? information vs. molecular technology 

screening.
Design alerts (what measures; one-pager type 

updates).
Plot trends in publication activity, with rate of 

change measure, by database (with database 
benchmarks—e.g., multiple information 
technologies).

Plot trends in patent activity, with rate of  
change measure.

Overlay publication trends from multiple 
databases (ranging from fundamental 
research to development and business) and 
patent trends to assess technology 
maturation.

Research community size—track change 
(publications, patents, distinct authors & 
inventors)—look for explosive new growth.

Plot domain size vs. growth rate (for 
publications; for patents).

Fit growth models (often S-curves) to the 
pertinent technologies to gauge their 
maturation.

2. What facets of B,C,G,H, PCA mapping of keyword clusters to identify 
this technology I,K,L major R&D facets to the technology.
development are “What’s hot?” indicator (which leading 
especially hot? keywords show recent upsurge in usage) 

Ratio of conference/journal papers (by main 
topics, too; ratio benchmarked against 
relevant research domains) (possibly sort 
domains on this ratio).

3-D trend charts for topics (component 
technologies) over time.

Rate of change metric compared for main 
topics (e.g., fuel cell types; KDD tools).

Time slice profiles by main topics showing 
changing substantive emphases (using 
keywords, class codes, and/or alternative).



TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Research community size—track change by 
main topics (publications, patents, distinct 
authors and inventors).

Indicators of “spreading (or constricting) 
interest”—no. of organizations of various 
types engaged on each main topic, and rate 
of change.

Plot company vs. (Academic + Gov’t + Other) 
publication by main topic.

Mark status and project tech development 
prospects on an S-curve (tech maturation) 
for each main topic.

3. What are new A,K Use list comparison to ascertain new topics.
frontiers for this Use NLP on titles and abstracts to generate 
technology candidate new topics (for human screening).
(fringes with Tally extent that patents cite scientific papers.
opportunity)? If substantial, search hot topics and recent 

trends in those scientific research domains.
4. What are the A,K.L,M Map topical clusters (PCA).

component Map class codes (publications).
technologies that Map class codes (patents).
contribute Use ARM to help sort parent-child 
importantly? relationships.
significant subtypes Map suggestive intertopic relationship flow 
of the technology? diagram for expert review.

5. How does this B,C,D,I,K, White space maps.
technological L,M Devise density measures to distinguish “desert”
development fit from “jungle” and intermediate activity 
within the levels.
technological 3-D surface maps.
landscape? Provide normalized metrics as a function of 

size of the technology area.
Provide time-slice versions of the maps to show

evolution over time (development paths).
Compare coverage of this technology across 

relevant publication databases (can also plot 
over suitable time period).

Identify current alternatives and potential 
substitutes.

6. What is driving A,B,C,E,I, Score relative science base (% of patents citing
this technology K,L,M R&D papers).
development? Preponderance of use of terms that suggest 

particular drivers (e.g., regulations, market 
pull, technology push).
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Relative publishing by academic, industry, and 
other organizational types.

Chart leaders in publishing (e.g., nations) and 
patenting (e.g., companies, nations).

7. What are key A,B,C,D, Scan of mentions in conjunction with the target
competing G,I,K, technology.
technologies? L,M Comparative assessments found.

For technologies identified as potential 
competitors, compare their maturation,
drivers, etc., with the target technology.

8. How bright are B,C,D,G, Scorecard measures for rapid overview of 
the development H,I,K,L multiple technologies.
prospects for this Consider separate metrics for emerging vs.
technology? developed technologies.

Research activity over time (publications;
patents).

“Evolutionary potential”—Radar charts (adapt 
from Mann’s TRIZ dimensions to suit patent 
and publication data in this technological 
domain—see Notes).

Indicators of “spreading interest”—no. of 
organizations of various types engaged, and 
rate of change.

Indicators of “constricting interest,” too.
“Spreading word”—no. of distinct sources 

publishing on this technology—trend over 
time.

Research teaming—compare team size (no. of 
coauthors) vs. other technologies (more 
teaming is a positive indicator).

9. What are the C,D,E,G, Indicate velocity (rate of patenting and rate of 
likely development H,K,L change of patenting).
pathways for this Indicate velocity (publication rate and rate of 
technology? change).

Mark status and project tech development 
prospects on an S-curve (tech maturation).

Mark status and project tech production 
process prospects on an S-curve (display 
together).

Mark status and project development prospects
on S-curves for critical component 
technologies.
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Perform sensitivity analyses on the growth 
models to assess likelihoods—i.e., depict a 
range of plausible future developments.

Flag signals of regime change (chaotic 
transition to new S-curve).

Possibly compile similar measures on the key 
variations or forms of this technology—
present these comparatively.

Distinguish differentiation possibilities 
(apparent drivers—present visually for 
human expert review).

Generate one or more leading indicators (plot 
the technological maturation and commercial
diffusion of an earlier technology against the 
target emerging technology, where we have 
bases for analogous growth trajectory).

Break out application prospects (based on 
patent claims, class codes, publication class 
codes, etc.) to compare the main topics 
within the technology.

10. What are the A,K.L,M Map topical clusters (PCA).
component Map class codes (publication).
technologies that Map class codes (patents).
contribute Use ARM to help sort parent-child 
importantly? relationships.
significant subtypes Map suggestive intertopic relationship flow 
of the technology? diagram for expert review.

11. Assess the B,C,D,G, List related technologies for expert screening.
maturation of the I,M “Type” topics noted—technological classes.
component Spotlight topics relatively peculiar to this 
technologies. technology (vs. prevalence in the database as 

a whole).
Generate “hot spots” maps (follow CHI model 

using normalized recency of patenting by 
component technology—set our thresholds 
for what constitutes a hot spot).

12. Identify A,B,I,J,K, Track over time—publication topic linkage 
technology fusion L patterns.
potential. Track over time—patent topic linkage patterns.

Extrapolate trends to predict possible fusion.
Map time slices of high-level topic clustering 

(look for beginning of cross-topic association,
both within our technology and extending
out to others).
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Identify organizations that bring multiple 
capabilities together.

13. Should we apply H Present “one-pager” to facilitate expert risk 
for particular assessment.
patents relating to Display “hot spots” activity intersecting this 
this technology? patent.
What claims 
should we pursue?

14. Develop a M Consolidate information on components and 
technology-product their maturation, technology development 
road map. paths, production process development, and 

applications in the form of a visual road 
map. It should show for our organization:

a) the integration of components to produce 
this technology;

b) its evolution through generations; and 
c) products and their generations to which this 

technology can apply.
15. Assess the B,C,D,E, Application systems profile (identify main 

maturation of G,H,I, targets; identify status of each; present for 
systems in which M expert inputs concerning gaps and our access
to apply this to the system).
technology.

16. Which aspects A,C,D,G, Break out main topic by publication and/or 
(main topics) of H,I,M patent claim mentions (using our own 
this technology application targets thesaurus).
match our Break out main topic by class codes 
application (publication; patent).
interests? Plot trends in these breakouts.

17. What are our A,B,C,D, Profile patent assignees (how many and how 
opportunities in E,H,L strong) in a composite visualization.
this emerging Visually compare our position with the 
technology? distribution of leading players.

Indicate patent density.
Indicate patent currency (licenses being 

maintained).
Indicate apparent patent strategies of leading 

players.
Indicate velocity (slope of new entrants).
Indicate patent set importance with patent 

citations.
Particularize measures (patent density, trends,

etc.) for technology or application interests 
that intersect our own.
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Identify apparent “blocking” patents that could 
impede our intended developments.

Benchmark with CHI patent citation data by 
sector.

Supply chain—our access to necessary 
components + our access to systems and 
customers.

Scorecard scale—relative attractiveness of 
alternative commercialization possibilities 
(e.g., developing).

Composite indicator of height of barrier to 
entry based on overall extent of patenting,
patent self-citation, patent concentration,
overall publishing activity and maturation.

18. What societal C,D,E,L, Scan mentions in publications (for ideas; also 
and market needs M to count suggested possibilities and identify 
do this technology alternative terms).
and its applications Trends in needs mentioned.
address?

19. What applications D,E Use NLP on claims to search for applications.
offer promise for Develop an applications thesaurus to use in 
this technology? screening claims for applications.

Visually depict the IPC or Manual Code 
distribution.

Visually depict the spread of IPC or Manual 
Code mentions over time.

20. What are E,H Geo-plot patent assignee concentrations.
the global Geo-plot national patenting by various 
opportunities? assignees (as indicator of market potential).

Geo-plot research publication by author 
nationality.

Delimit important barriers and impediments 
by region or country (e.g., competitors,
standards, regulations, restricted access).

Denote significant assets and advantages by 
region or country (e.g., partners, local 
capabilities).

Risk scorecard metric (devise suitable risk 
assessment for global opportunities for our 
organization).

21. What is changing H,J Indicate new entrants (first patents).
in the competitive Indicate changing rate of entrance of new 
environment? patenters.
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Identify companies “exiting” (no new patents 
in N years; not maintaining patents).

22. Does this A,B,C,D, Gauge the technological infrastructure (track 
technology G,H,L required component technologies’  
offer strong availability; track development of systems to 
commercialization absorb this technology).
prospects? Scorecard measures for rapid overview of 

multiple technologies.
Benchmark patent activity against comparable 

technologies.
Benchmark spread of patent class code and 

publication activity by industrial sectors.
Tabulate applications mentioned by industrial 

sectors.
Keyword richness indicator—Plot this measure 

of R&D specialization over time.
Technology decomposition (keyword type 

spread)—Using keyword type thesaurus,
show trend for spreading development 
interests (categorizing relative emphasis on 
fundamental science, process, technology 
development, materials, applications).

Pie chart—% of R&D publication by industry 
(vs. academic and gov’t or other) 
(alternatively, plot % by industry over time).

Ratio of (business and trade) to technical 
papers (benchmarked).

Tabulate applications mentioned, over time 
(from patent claims, publication abstracts).

3-D trend plot of publication class codes over 
time (a spreading focus indicator).

Identify substitutes for this technology (real or 
potential competitor technologies).

Nominate scale score on “ease of adoption”—
request expert refinement.

Compare correspondence of technological 
development and market opportunities.

23. Assess the B,C,D,E, Score the 5 Michael Porter competitive forces:
competitive G,H,J – Rivalry (none; few; many competitors)
environment. – Suppliers (lean to rich)

– Potential entrants (threat low to high)
– Buyers (dry to juicy marketplace)
– Substitutes (threat low to high)
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Chart recent (e.g., 1/3 of time period) slope for 
no. of class codes appearing annually,
benchmarked against earlier period slopes.

Map dispersion of the technology:
– Diffusion of patenting across countries, over 

time
– “Fringe” patenting (no. of companies with 1 

or 2 patents, vs. time)
Depict our organization’s role vis-à-vis 

competitors.
24. Who are the D,J,K,L Profile most prolific and most cited inventors 

available experts? not associated with a large company 
(affiliations, leading patent class codes;
temporal distribution).

Profile most prolific and most cited authors 
(leading keywords, affiliation, web address,
possibly disciplinary background).

25. Which A,B,I Profile “Top N” publishing organizations in 
universities or recent years (topical emphases, temporal 
research labs lead activity distribution, core team strength).
in this technology Profile “Top N” publishing—for particular 
—overall or in types of organizations and/or for particular 
particular aspects? locations (e.g., U.S.).

Compare publication class codes (visualization).
Map leading research organizations’ publishing 

on 3-D surfaces, showing evolution over time.
Longevity indicator—temporal activity pattern.
Map authors (coauthorship teaming; topical 

emphases).
26. What are the A,B,C,D, Tabulate publication and/or patent activity in 

strengths and gaps F,G,I,M related technologies.
within our own Map who collaborates with whom inside our 
organization? organization.

Identify our gaps in required capabilities to 
achieve innovation objectives.

27. Which companies E,F,G,H, Profile “Top N” patenting companies by main 
lead in particular I,J topic (or use class codes).
aspects (main Profile “Top N” publishing companies by main 
topics) of this topic (class codes, keywords).
technology Concentration indicator (% of patents held by 

top companies).
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Focus indicator (proportion of a company’s 
patents on this main topic vs. related vs.
unrelated).

Map leading companies’ patents on 3-D 
surfaces, showing evolution over time.

Map one company at a time to understand 
emphases.

Provide easy rating one-pagers to facilitate 
combining expert judgment with tech mining 
outputs.

Graphically depict outlier companies (those 
with distinct patenting patterns).

Matrix of leading companies by main topics.
28. How strong are G,H,I,J Map inventors (coinvention teaming; topical 

the leading emphases).
companies’ R&D Map authors (coauthorship teaming; topical 
teams? emphases).

Map team activity over time (by topical 
emphases—spot dead-ending; fusion or 
fusion potential).

Identify inventors associated with highly cited 
patents (note degree of concentration).

29. Which companies G,H,I,J,L Profile “Top N” recent patenting companies.
lead in this Graph patent citation distribution for most- 
technology? cited companies.

Graph patent citation distribution for high-
citing companies.

Profile “Top N” recent publishing companies.
Plot publications and patents over time for

each leading company.
Longevity—Compare duration of engagement 

(publications; patents).
Indicate patent self-sufficiency (reliance on 

other patents).
Focus indicator (proportion of a company’’ 

patents on this technology vs. related vs.
unrelated).

30. How do leading D,E,H,I,J Compare IPC or Manual Codes (visualization) 
companies’ against ours.
development Compare publication class codes (visualization)
emphases compare against ours.
to ours? Identify their hot spots and their citing of 

others’ hot spots vs. ours.
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

Spotlight rates of change in our vs. their R&D 
activity patterns (e.g., recent years vs. earlier 
years).

Scorecard as potential collaborator; develop 
suggestive indicators pointing to joint R&D,
IP acquisition, etc.

31. What other H,I,J Profile their related patenting by IPC or 
technological Manual Codes.
strengths does each Map their patent emphases.
leading company Compute a concentration measure showing % 
have? of patenting in this technological area.

32. Characterize a F,G,H,I,J Profile leading assignees (companies and others)
company’s IP comparatively (how many patents each and 
relating to this how strong) in a composite visualization.
technology Indicate concentration for each (what % of 
(competitor their patenting is on this technology; what % 
analysis, or relates; what % is unrelated).
collaborator Indicate publication concentration (on this and 
analysis). related technologies) for key publishers, over

time.
Track concentration over time.
Indicate patent currency (licenses being 

maintained).
Indicate apparent patent strategies of leading 

players.
Indicate each assignee’s patent set importance 

with patent citations.
Profile this company’s R&D strength (core 

researchers and inventors, longevity,
emphases).

33. What smaller G,I Profile assignees (how many and how strong)  
companies or in a composite visualization.
individuals have Indicate patent currency (licenses being 
attractive IP maintained).
relating to this Indicate apparent patent strategies of leading 
technology players.
[potential Indicate velocity (slope of new entrants).
acquisitions or Indicate patent set importance with patent 
hires]? citations.

Identify companies receiving SBIR R&D 
support, and from which Federal agencies.
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

34. Who’s partnering D,E,F,H, Identify coassignees.
with whom I,J Identify coauthors.
(competitive Profile timing of these collaborations.
environment)? Plot organization interests; flag intersections as 

potential future collaborations.
Profile candidate company-company partnering

(status; mode—e.g., joint development,
comarketing; capabilities of each).

Profile candidate company-other (university,
lab) partnering (status; mode; capabilities of 
each; emphases).

35. Competitor J Profile their capabilities pertinent to  
Profiling developing this technology (scan across tech 

development stages from research to sales 
and maintenance and life cycle issues) (frame
for expert judgment with our “hints”).

Profile their resources (financial, knowledge,
technical, marketing, customer base).

Scorecard scale—this company’s innovativeness
in various regards: technology, products,
services, production processes, delivery 
systems (pose to invite expert inputs or 
refinements).

Scorecard scale—goodness of fit of this 
technology’s potentials with their business 
strategy.

36. What companies J Scorecard measures for rapid overview of 
should we place multiple companies.
on watch? Profile candidate companies (their hot spots;

their areas of citing hot spot patenting—i.e.,
patents cited much more heavily in the last 
year or so).

Design alerts (what measures; one-pager type 
updates).

37. Who might be H Identify organizations with complementary 
prospects to license technologies under development as 
our IP (or partner candidate licensees for our technology.
in some way)?

38. How E,J Indicate velocity (slope of new small business 
entrepreneurial is entrants in patenting).
the competitive Trend in companies receiving SBIR awards 
environment? (and rate of change).

Scorecard item: availability of venture capital.
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TABLE 13-2. Continued

Tech Mining 
Questions:
1–23. What? 
questions
24–39. Who? Helpful Information (Measures & Innovation 
questions Mgt Issues Indicators)

39. Assess each key G,H,I,J Chart competitors’ recent vs. earlier publishing 
competitor. and patenting rates (looking for activity and 

rate of change).
Assess competitors’ technology strategy 

(identify probable targets and uncertainties 
in our knowledge of same).

Assess competitors’ SWOT position (strengths,
weaknesses, opportunities, threats).

Assess competitors’ product positioning.
Assess competitors’ likely time to market with 

target new products or services.
Assess competitors’ new product development 

effectiveness.
Construct a rough technology roadmap for 

each key competitor (identify likely hurdles 
for them with risk estimates).

Scorecard “them vs. us” across these and  
other pertinent factors.

**Pose all these for expert input or refinement
of our rough, initial estimates.

Note: SBIR = Small Business Innovation Research; KDD = Knowledge Discovery in Databases.
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• Profile most prolific and most cited authors (leading keywords, affiliation,
web address, possibly disciplinary background)

These profiles might also help answer other questions. On the other hand, you
may figure out better ways to identify the experts you want. For instance,
perhaps you seek a couple of Japanese professors with complementary inter-
ests to each other to participate in a special workshop. Tailor your tech mining
accordingly.

Use Table 13-2 to stimulate your thinking. In using it, we find that scanning
the questions is the best way to focus. Then consider whether any of the sug-
gested measures, as is or modified, would help answer your questions. Browse
nearby questions for additional ideas for measures. Derivation of some of the
indicators is not fully explained, but space and sanity preclude treating each.
Exhibit 13-1 introduces basic indicator notions.



EXHIBIT 13-1 Explanations of Selected Indicator Notions for Table
13-2

Indicator Explanation
Scorecard measures Reduction of various numerical scales to simple 0–100 

stacked bar presentations (or similar) so that a user gains a 
general comparative sense

Alerts User-tailored, periodic updates that show changes over time 
on certain key metrics

One-pagers Composite presentations of multiple indicators to give a quick 
“heads-up” on complementary intelligence to help answer a 
particular question

Benchmarks Comparisons presented against one or more targets
Growth models and Basic technology growth models, including S-shaped growth 

S-curves curves (e.g., Pearl or Gompertz curves), exponential, or 
linear trends

PCA mapping Clustering of keywords, or such, to show major activity 
concentrations and their interrelationships

NLP Natural language processing to break titles or abstracts into 
noun phrases for further analyses

Map authors Show who publishes with whom
“Top N” Lists cut off to show the most interesting leading entities (e.g.,

Top 10 university research centers)
Profiles Usually take the top “N” from a list of interest and provide 

auxiliary information on each of those leading entities
White space maps Depictions of activity in a domain so as to identify topics not 

heavily addressed (see Chapter 12)
3-D surface maps Plots of records grouped by their common use of terms with 

concentrations depicted as “peaks”
Spreading interest Indications of increase on a metric of interest over time
Velocity Tracking change over time, and also rate of change over time 

(often by comparing recent vs. prior activity)
Map class codes PCA used to map co-occurring classifications (analogous to 

keyword cluster mapping)
IPC International patent classification codes
Time slices Time broken into multiyear periods to help discern patterns
Patent density Concentration of patenting activity in certain topics
Hot spots Patent (or other) activity concentrating in the most recent 

years (using certain criteria, especially citation rates)
Geo-plot Show activity overlaid on a geographic map
Keyword richness Extent of keyword specialization, possibly categorized by type

of terms (e.g., materials)
Fringe Activity at the R&D domain boundary, usually low frequency
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CHAPTER CHALLENGE

• Pursuing our acquisition issue, you scan Table 13-2 to identify some 15 ques-
tions pertaining to “G.” These trigger your thinking as to what concerns you
most in assessing qqq as a potential acquisition by QQQ. You seek IP, so you
need to carefully gauge how valuable qqq’s patents are (i.e., Questions 26 and
27). You also need to know about their R&D team and assure yourself that
the key players remain in place (i.e., Question 8). You might then check how
well qqq’s technology complements your technology via a gap analysis (Ques-
tion 9—to assess what capabilities you need to strengthen). Consider extend-
ing this to think through how the combined (QQQ + qqq) technology could
meet your application targets (Question 19).

• Once you have sharpened the questions for your tech mining work, you again
scan Table 13-2 for ideas on which measures to generate for each. These will
depend on the data and time available to provide your recommendations to
QQQ senior management.

• Reflecting on the Chapter Challenge,
• Could you answer all the questions (15) associated with acquisition issues in

Table 13-2? Theoretically, yes; practically, no.
• Should you answer all those questions? No.
• Would you generate all the listed measures and indicators for given ques-

tions? No, tailor to your needs.

Consider Table 13-2 as a combined questions and indicators idea list to help
you decide what questions to answer, using what indicators. The next section
develops our rationale for innovation indicators.

In undertaking to answer particular questions, many suggested measures
are quite straightforward (Table 13-2). Take Question 27: Which companies
lead in particular aspects of this technology? One measure tabulates the com-
panies that have the most patents relating to the target technology. Other mea-
sures elaborate somewhat—“profile the ‘Top N’ recent patenting companies.”
By “profile” we imply compiling additional relevant information for those
“Top N” companies. “N” is typically 2–10, depending on the breadth of the
competition and our particular technology management concerns (Table 16-9
gives an example profile). However, other measures can become complicated.
We see high potential for a particularly appealing set of these, the innovation
indicators, conceptually derived from our understanding of innovation
processes and patterns.

Technological Innovation Processes

The key distinction between tech mining and data mining is that tech mining
begins from a conceptual model of technological innovation processes. In con-
trast, data mining is theoryless. The goal of data mining is to first find empir-
ical regularities in the data that hopefully offer business value. Only later (if
ever) does one seek theoretical explanation for the findings.
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Innovation processes take place through highly complex, socio-techno-
economic systems, so any model will be approximate. These aspire to capture
key cause-and-effect relationships—what drives successful implementation of
new technologies?

We have found the “technology delivery system” conceptual model helpful
in understanding what translates an idea into an effective innovation. This
model points toward a broad complex of influential factors:

• Consider dependencies both on component technologies and on the
larger systems into which our target innovation must fit (infrastructure
considerations).

• Address internal organizational capabilities (institutional and technical
resources).

• Attend to external socioeconomic forces affecting the innovation in ques-
tion (e.g., emergence of standards, regulatory environment).

• Identify applications and factors affecting customer acceptance (does
implementation demand behavioral change?).

• Assess intended and unintended effects and likely acceptance of the inno-
vation by all the stakeholders.

A rich body of research and experience documents factors that promote (or
inhibit) successful technological innovation. Studies of new product develop-
ment, technology substitution, technology transfer, and other aspects of inno-
vation abound. We scavenge “innovation success factors” from multiple
perspectives. Intriguing notions include technological generations, the inno-
vation funnel, champions, sponsorship, substitution, early adoption, techno-
logical fusion, acceleration, and competitive and contextual forces. Others
have identified innovation indicators for emerging technologies and for
looking within organizations (see Chapter Resources).

These conceptualizations help focus tech mining on generating results that
speak to the prospects of attaining technological innovation. We also draw on
our experiences in the conduct of over 100 tech mining studies of various types
(see Chapter Resources). Feedback from users of VantagePoint as to what
works and what doesn’t also contributes to this growing collection of innova-
tion indicators.

Three Types of Innovation Indicators

Innovation indicators exploit empirical information to estimate factors that
affect technological advance and successful commercialization. Indicators can
be formulated to measure the implications of R&D (or other) activity with
respect to a technology under scrutiny. Or they can be framed to assess one
or more competitor organizations’ several technology development activities.
You need to select indicators that help resolve particular managerial issues.
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As tech mining matures, it should build a repertoire of indicators validated by
series of analyses.

Watts and Porter (1997) argue for interpretation of publication, patent, and
business information with regard to implications for successful technological
innovation. They distinguish three types of innovation indicators:

(1) Technology life cycle status
(2) Innovation context receptivity
(3) Market prospects 

Technology Life Cycle information keys on determining how far along the
development pathway the technology has advanced, its growth rate, and the
status of technologies on which it depends. These indicators key on techno-
logical maturation. The dominant model is S-shaped growth (slow takeoff, fol-
lowed by rapid rise, then asymptotic approach to a limit—cf. Porter et al., 1991;
Glenn and Gordon, 2003). Activity over time provides the key data. Gather-
ing such information from multiple sources that range from fundamental
research to business attention can prove enlightening.

Contextual factors begin with measures of whether supporting technologies
are sufficient. Often these are not fully ready, so indicators may project like-
lihood and risk considerations. Competing technologies affect innovation
prospects, so they merit indicator development. The extent of involvement in
the technology by other organizations is vital intelligence. Tracking establish-
ment of standards and regulations warrants inclusion, too. Contextual indica-
tors should draw on sources beyond R&D publication and patent data,
namely, popular press and business compilations.

Market Prospect indicators address the potential commercial payoffs of the
technology and products to which it contributes. These indicators aim to gauge
requirements to attain such payoffs. Identification of potential applications
suits such indicators. Competitive assessment of IP and market strength of
other companies is vital. Tracking the dispersion of commercial activity (e.g.,
new product announcements, international patenting, other market estima-
tions) is important.

These three types of innovation influences interlink and overlap, so sepa-
ration is somewhat arbitrary. We use the three types to help conceive candi-
date indicators. We don’t follow through to categorize the resulting specific
indicators by these types because that seems unnecessary.

Innovation indicators are measures with a purpose. We offer the image of
a large set of candidate indicators on a “palette” from which to choose. Assess-
ment of a small company target for acquisition, for instance, warrants very dif-
ferent technological intelligence than comparing proposed R&D projects.
Hence, Table 13-2 is only a starting point.
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Interim Indicators

One view of tech mining is that of an activity flow. The tech mining activity
flow:

• Exploits data,
• Uses tech mining software,
• Generates technology information products (TIPs), and ultimately 
• Supports decision-making.

This is another way of looking at our tech mining process introduced in
Chapter 2. We will return to this process and activity flow again in Chapter 
14, where we consider utilization. The aspect of note for this section is that
tech mining serves multiple parties—information professionals, researchers,
and technology analysts, as well as end users. Table 13-2 concentrates on
answering managers’ questions. Before this payoff, we may well want to
resolve needs of the other players along the way. Other chapters go into rela-
tionships among these players and their distinctive perspectives, so we won’t
belabor those here.

Tech mining players may want to set up their own categorizations and
assign records to them. These categorized documents can then be examined
further to develop more specialized targets, possibly leading to query refine-
ment. Some analysts prefer examining outputs in other formats, particularly
while processing preliminary results. VantagePoint, for instance, can hand off
outputs to MS Excel or Bizint SmartCharts for further analyses.

In Section 13.5, we advocate “one-pagers”—composite, highly visual TIP
representations. Versions of these can be generated from initial search results
to help refine understanding. The point is to consider formulation of useful
interim tech mining results that will likely never be presented to senior 
managers.

Indicators Relying on Additional Information Resources

If Table 13-2 doesn’t offer enough candidate indicators, we can generate more!
In fact, many more could be derived by extending the prime information
sources beyond publications and patents. Note that nearly all of the measures
and indicators of Table 13-2 result from mining these sources. We focus on
those as particularly rich, but that is not to say high value cannot be obtained
from business databases, popular press compilations, market information
reports and databases, and Internet scanning. Our knowledge is greater on the
publication and patent side, and this book’s scope accentuates these. A con-
sequence of our focus is that the innovation indicators we offer are strongest
for technology life cycle, intermediate on contextual influences, and weakest
on market prospects. We invite suggestions to enhance the innovation indica-
tors set.
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To whet your appetite, here are some candidate indicators based on these
wider ranging information sources:

• Patent infringement activity (using other patent information resources)
• Market assessment (market size and attribute sources)
• Market forecasting (using new product announcements among other

sources)
• Competitor resource profiling (drawing on corporate financials)
• Environmental issues posed by the innovation (environmental databases)
• Customer acceptance (test and evaluation with current and new customer

groups)
• Supply chain assessment 
• National absorptive capacity assessment (incorporating country informa-

tion sources)
• R&D funding (assessment and projection of available resources based on

funding agency announcements, project databases, and other intelligence)
• Organizational change profiling (human resources information plus cul-

tural intelligence)

Patent Indicators

Obviously, Table 13-2 uses patent information heavily in the generation of
many indicators. Chapter 12, especially Section 12.4, offers special considera-
tions for patent analyses and patent-based indicators. In this section we
suggest some additional patent-based indicators.

Ernst (2003) presents a rich array of possible patent indicators oriented
toward actionable technological intelligence. Possibly his greatest contribution
is to point us beyond basic patent activity tabulation toward derived knowl-
edge. We build on his repertoire to offer some appealing indicators (and, in
fact, you can find threads of these across Table 13-2). Adapt these ideas to gen-
erate indicators based on patents, plus other information, to help inform your
organization’s key issues.

(A) Technological Emphasis: Compare an organization’s patenting activ-
ity (applications or patents granted) among “fields” (e.g., use Interna-
tional Patent Classes or your own markers of domains of special
interest).

(B) Technology Share: For a given field, compare various organizations’
extent of patent activity.

(C) Rate of Technological Growth: Compare recent versus earlier activity
levels.

(D) Patent Quality: Adjust the amount of patenting to take into account
the quality (see discussion below).
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(E) National Profile: Examine a country’s indigenous patent activity and
extent of patenting by foreigners.

Let’s illustrate possible applications.
(A) Technological Emphasis could be used to benchmark your organiza-

tion (Us) against a key other (Them) to flag areas where you compete and
areas where you complement each other’s IP for collaborative opportunities.
Instead of just tabulating organizations’ patent activity relating to the target
technology, you might tally:

• Patent activity in one or more particular patent authorities (e.g., EPO or
South American countries)

• Current patents (using INPADOC—the International Patent Documen-
tation Centre of EPO—to ascertain which patents are being maintained,
or those being dropped)

(B) Technology Share could be based on patents granted and/or on patent
applications in one or more key patent locales (i.e., EPO, JPO, USPTO). One
might compare all firms active in certain domains of interest, or just selected
key firms. Consider using relative measures to facilitate comparison. The
leader is scored “100,” and others are scaled against this. For instance, if the
leader has 30 patents in the chosen field over the pertinent time frame its score
is 100; another firm with 10 patents would score 33.

(C) Rate of Technological Growth can be calculated for selected time slices.
These should roughly accord with the rate of change in the domain under
scrutiny. For fast-changing domains, we want to compare recent activity levels.
Suppose we have decided to compare the two most recent 5-year periods. Firm
U increases from 5 to 20 patents (ratio of 4.0), while Firm T increases only
from 10 to 12 (ratio of 1.2). For areas with many players over many years, cal-
culation of an average rate of change using moving averages to smooth out
lumpy patterns may facilitate interpretation.

(D) Patent Quality can involve various measures. Ernst (2003) notes four:
(1) ratio of patents granted to applications, (2) international scope (extent of
filing in multiple locales, especially the “triad” of EPO, JPO, and USPTO), (3)
technological scope (coverage of pertinent areas to the interests in question),
and (4) citation frequency. These should be normalized to the relevant domain
(e.g., citation frequency compared to other patents in the same area, calibrated
by age).

(E) National Profile can be derived from Derwent patent families for
patenting in given countries. Patenting activity by natives indicates indigenous
R&D capability. Patenting by foreigners provides an indicator of that market’s
appeal. Together these can indicate the viability of the country’s IP protection.
These indicators could contribute to decisions on investing in that country.
Although WIPO data nominally indicate which countries, many applicants
designate many countries when filing a PCT application. They are truly inter-
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ested in those for which they actually pursue national IP protection (infor-
mation available in databases like INPADOC, as well as Derwent WPI—see
Chapter 12 on patent analyses and Appendix A on data sources).

13.3. INFORMATION REPRESENTATION AND PACKAGING

What do we do with all these indicators? We use the term technology infor-
mation products, or TIPs, to get ourselves thinking about the importance of
effectively communicating our “product.” That tech mining product is value-
added information derived from raw empirical technology information—that
is, indicators. We need to think hard about how best to deliver this to the
intended users.

Multiple Indicators

Indicators can be combined to provide richer, comparative insights. Let’s illus-
trate with the patent indicators just discussed. Figure 12-1 shows how variants
of (B) Technology Share and (C) Rate of Technological Growth can make a
2 ¥ 2 chart to help benchmark competitive positions. Suitable combinations of
these, and other, metrics can generate informative breakouts. For example,
plot Technological Status on the X-axis versus Rate of Change on the Y-axis.
Depending on how many organizations we want to compare and their con-
centration, we might do a four-quadrant chart, as in Figure 12-1.

Publication activity measures complement the patent tallies, if the organi-
zations in question both publish and patent. You might display the compari-
son with dual-column charts ranging from the areas in which “Us” and “Them”
compete most strenuously to those areas where only one participates.

R&D “input” measures, such as expenditures and number of scientists and
engineers in R&D, juxtapose against patents and publications—R&D
“output” measures. You might, cautiously, examine various divisions within
your organization in terms of output-to-input ratios, or compare countries or
organizations for which such data are of interest.

Another extension is to compare patent measures with “downstream” eco-
nomic activity. For instance, profile a set of competitors based on patenting,
revenues, and market share, in a target area (cf. Hall et al., “Market Value and
Patent Citations,” http://emlab.berkeley.edu/users/bhhall/). You can further
benchmark them against the median (or mean) values for their sector.

Multiple indicators give a more complete picture of technological innova-
tion prospects. Another example—classic investment portfolio analyses seek
to maximize potential gains while keeping risks tolerable. This approach
adapts well to R&D project “portfolio management.” Indicators can help
weigh gain versus risk. Furthermore, tech mining provides a vehicle to inte-
grate external R&D prospects into the determination of internal R&D project
selection. For example, structured technology forecasting can help NASA
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(U.S. National Aeronautics and Space Administration) focus scarce support
on R&D concerning technological components rated least likely to otherwise
be ready when needed for a target technological system (see Chapter
Resources).

Information Visualization

Discussion to this point concerns the content to be presented. We now add a
different dimension—consideration of how to present that information. Infor-
mation can be represented in many ways. Information visualization is the
aspect receiving the greatest attention because enhanced computing capabil-
ities present much richer visualization possibilities than ever before. See
Chapter Resources.

Three Cognitive Styles

However, visualization is only one worthy approach. Effective communication
draws on (1) linguistic, (2) analytical, and (3) spatial intelligences. Each of
these styles helps communicate different “TIP” aspects. The challenge is to
succinctly summarize information patterns in ways that best speak to the
target audiences. Options may include one or more of text (our mainstay),
tables (providing more details conveniently), or figures (more visual).

Tech mining can use at least four linguistic techniques to facilitate written
communication. First, presenting sample records can help the user gain in-
depth insights. Second, hyperlinks allow the reader to follow chains of rea-
soning to assemble patterns of content by following on-screen links between
documents.

The third strategy relies on automatic document classification. Clusters 
of related documents are more easily browsed to discern content patterns
(Cunningham, 1996). The fourth strategy is the most advanced, relying on
automatic abstracting to create short summaries of new developments with
natural language processing (NLP) techniques. Automatic abstracting tech-
niques vary, but they all seek to offer quick digests of bodies of information.
VantagePoint can select sentences from a PCA cluster of abstracts based on
coverage of the high-loading keywords that define the cluster.

Analytical techniques count activity to be presented as lists, matrices, or
arrays. Lists lend themselves to tabular presentation. Matrices combine two
lists and are even more effective interactively, allowing the user to explore
subtopics. Arrays, or “profiles,” provide multidimensional reports. For in-
stance, a profile of leading authors might indicate  organizational affiliation of
each, prominent keywords used, and temporal publication distribution.

Spatial techniques communicate patterns and interrelationships best for
many users. Maps can convey emerging issues in a landscape of scientific and
technological (S&T) discovery. Distances between items depicted communi-
cate relatedness. Items may be documents, or index terms including keywords,
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classifications, or research institutions. A related approach uses the metaphor
of networks to communicate relationships. Nodes represent items or collec-
tions of items. Linkages show relationships among nodes. Indirect links may
be investigated with the aid of software such as Pathfinder. However, don’t
assume that your target users like spatial presentations; they are not intuitive
for everyone—ask. Also, spatial techniques encourage a gestalt form of under-
standing that may or may not fit the tech mining needs.

Reducing to Practice: Scripting

A key benefit of scripting (i.e., automating routine processes using MS Visual
Basic commands) standard tech mining measures is that analyses can then be
done dramatically quicker. We know of instances in which the time to gener-
ate particular technology information products has been reduced from months
to a day or so. That makes such analyses viable decision support in technol-
ogy management arenas where time is of the essence. This is a qualitative
change whose importance cannot be overestimated. Tech mining advocates
need to demonstrate such capabilities to their organizations to build demand.

Scripting enables semiautomated generation of desired TIP components.
It can also support development of selected palettes. Table 13-2 suggests 
this approach—for a given question, we offer the analyst a shopping list of
indicators from which to choose. As the next step, a set of ready-made tem-
plates can expedite composition of those indicators into composite TIP rep-
resentations—“one-pagers.” Section 13.6 pursues these possibilities, including
the notion of standardizing business decision processes to take strong advan-
tage of them. VantagePoint can be scripted in conjunction with MS Office.
“Wizards” can guide users in simplified analyses (“one-button” options) or
through more elaborate options.

One-Pagers

Indicator packages offer strong appeal to address a given issue in a concise,
informative way. The sidebar on “QQQ—the Resolution” suggests consolida-
tion of the pertinent information into a single composite presentation—ideally
on one page. Then decision-makers and stakeholders can quickly digest this
to gain insight into the prospects.

Information compilations differ greatly between technology questions and
organizational questions. Figure 13-1 illustrates a one-pager for fuel cells on
an organizational question—Question 7 from Table 13-2—Which companies
lead in particular aspects of this technology? We adapt this question toward
the patent scenario (Section 12.7) in which General Motors is hypothetically
exploring fuel cell possibilities. Our modified question to address becomes:
“Which companies lead in fuel cell development in the automotive arena, and
how do we (GM) compare?”
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As the tech mining analyst tackling this question, one would review the sug-
gested indicators for Question 7 (Table 13-2), but adjust to our target users’
expectations. For instance, the one-pager focuses on the leading five other
companies, plus GM. You can see that including fewer entities unclutters the
presentation but risks missing important competitor activity. This points
toward the benefits of standardization, where all involved share expectations
on what is being presented.

Obviously, the one-pager should be backed by more detailed breakouts and
it requires interpretation. This initial try would need refinement to tailor to
user needs. It presents “at a glance”:

• Us vs. Them—GM alongside five leading automotive fuel cell patenters.
• All of us show comparable levels of patenting in this domain.
• Siemens is by far most actively publishing R&D; the two Japanese firms

publish nothing.
• Trends show all of us, but especially Honda, energetically pursuing auto-

motive fuel cells.
• Interestingly, we (GM) and the two Japanese auto companies emphasize

patenting in the United States and Japan, whereas the three European
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companies emphasize Europe; Nissan also has six Korean patents,
whereas no one else has any.

• Patent emphases show general similarity among all six firms.
• Copatenting suggests extremely important collaborations are underway.

As an auto manufacturer, we need to find out more about Daimler-
Chrysler’s partnering (see Chapter 12).

This one-pager is less graphical than others we have generated. This reflects the
focus on showing how six companies’ activities compare, in some detail. In con-
trast, in focusing on an emerging technology, general visuals often work well.
Maps of intersecting themes within a technological domain pack a lot of infor-
mation. Color can be used more aggressively (e.g., contrast GM vs. the others),
but we had an eye toward black-and-white publication here. Pie charts show
the extent of industrial vs. academic and government R&D well (an innovation
indicator). Trends and projections convey how hot an area, or subtopics, are.
For other technology management questions, information on individuals can be
spotlighted (e.g., experts, knowledge networks). For some purposes we like to
show “outliers”—players with distinctly different interest patterns.

The “scorecard” notion of simplified, comparative presentations of selected
overview indicators offers great promise. The one-pager presents charts
showing relative publication and patent activity in the area and showing con-
centration in automotives. The latter flags Siemens as patenting the most on
fuel cells associated with other applications.

In technology-oriented one-pagers, scorecards are a great way to get a sense
of technological maturity, competitive climate, science base, and interdepen-
dence on other areas. We are exploring scorecard effectiveness in an on-going
research project.* Initial trials with Air Products and Chemicals, Inc., finds
managers liking such high-level abstraction, but analysts fearing superficial
decision-making could result.

The “QQQ—the Resolution” sidebar wraps up our chapter challenge, with
a nod toward one-pagers.
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*“QTIP”—Quick Technology Information Products—Search Technology, Inc., supported by the
U.S. National Science Foundation as Small Business Innovation Research (SBIR) Project # DMI-
0231650.

Sidebar: QQQ—The Resolution

So, how do you judge this small company’s (qqq’s) capabilities? Patent
analysis, plus. Start by identifying all of qqq’s patents. Then highlight all the
patents that relate closely to the electronic technology in question. Extract
these as a cluster to make a new sub-data set of relevant patent records.
List the inventors and map them to identify who has been most active in



Technology Information Products

The bottom line for tech mining is that we do not know how to represent the
information we generate in ways that technology decision makers (R&D
leaders, senior researchers, engineering project directors, technology transfer
professionals, etc.) accept. We do not think this is because we are stupid, but
rather it requires a significant behavioral shift. A colleague at one company
using VP laments that they have 40 analysts assessing the technological envi-
ronment, but what sways senior managers is the “Sunday Times Technology
Section.” We need to provide the right content, in the right form, delivered in
a friendly way.

Figure 14-1 assays the situation. Our manager listens to that expert by his
side. Expertise fits our comfort zone—it is familiar and quick. At present, tech-
nology managers rely far more on intuition and expertise than on hard data
and sound analyses. Tech mining strives to balance this through relevant TIPs
that reach that manager’s “other ear.” The aim is not to base decisions solely
on either empirical intelligence or expert opinion, but to rely on a balance.

An image embedded in our psyches is the cubicle of our DARPA U.S.
Defense Advanced Research Projects Agency program manager on a 1995
research project leading to VP. He oversaw $40 million in research from within
mountains of paper (we suspect largely unread). He got his technological intel-
ligence from the network of researchers and colleagues who had his ear.
Although he endorsed the concept of exploiting electronic information, he did
not do so personally.
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this domain, and who works with whom. Use this to tentatively identify the
core team working on this electronic technology. (See examples in Chap-
ters 9 and 14.)

Now perform additional searches in patent and R&D publication data-
bases (e.g., INSPEC) to track the activities of the core team members.
Reach out to capture qqq annual reports, financial records, product
announcements, and so forth. Extract the information into succinct pre-
sentations. Show the results to knowledgeable persons and ask them to help
interpret.

Then consolidate the empirical evidence with your understanding to
tell the qqq story. This could incorporate “one-pager”-type compilations
with interpretation. The story should close with its punch line—to buy or
not to buy?

“The Rest of the Story”—The QQQ case is based on a real corporate
case that took place in 2002. What the tech mining analyses suggested, and
experts confirmed, was that the electronic technology development team
was no longer intact at qqq. qqq’s capabilities to advance this technology
were now marginal. Successful tech mining ended QQQ’s plans to acquire
qqq.



This chapter is really about providing the right information. The first part
of the chapter concerned the right content to answer the technology manager’s
questions. Section 13.2 offered ways to package that content to have maximum
punch. This section ponders ways to deliver those information packets most
effectively. Chapter 14 pursues process issues in communicating TIPs more
effectively.

Alternative Delivery Modes

Dissemination of tech mining findings can be approached in many ways.
Researchers performing tech mining at Air Products expressed the desire for
easy portability. That is, they want to output information from tech mining
software in highly modular form for easy cut/paste into MS Office applications
for ease of presentation and reporting.

Interactivity presents another dimension. Various users (recall Figure 14-1)
want to take different information from tech mining analyses. The capability
to “dig down” to specifics, just as needed, can amplify findings powerfully. For
instance, VP analyses can be shared with users via VP Reader software that
enables them to explore what interests them hand-in-hand with digesting a
report (we invite you to try this out on the Wiley website).

Another appealing route is to develop an intranet website for technologi-
cal intelligence and foresight. Combining two key concepts could amplify the
power:

• Standardized innovation indicators to allow easy assimilation
• Multiple technology and/or competitor profiles, supporting comparisons

Such a web-based technology information forum encourages periodic updat-
ing to keep the technology profiles current, as a potent organizational
resource.

Integration into Business Decision Systems

Suppose we could standardize how our organization presents tech mining find-
ings. Then, when such tech mining findings are presented, the users will rec-
ognize them. An organization should develop sets of “standard” indicators.
Although these should not preclude experimentation with new measures,
having well-recognized sets of indicators will greatly aid their acceptance as
they become familiar and understood. In addition, such sets lend themselves
to scripting to automate their generation.

Air Products & Chemicals (“APCI”) has shared their systematization of
their intellectual asset management process. This stage-gate process poses a
dozen major technology management concerns, including (paraphrased):
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(1) Who has important IP in this technological domain?
(2) For a given company with important IP, what are their emphases?

Each of the major APCI concerns opens out further into several vital 
questions. For instance, Concern 2 breaks out into questions including 
(paraphrased):

(A) Is Company X focusing its R&D on particular technologies? 
(B) Do they publish actively? Patent actively?
(C) Do they partner with other companies? In which areas?
(D) When did they enter particular technological arenas? Exit any?

APCI requires particular analyses and specific outputs to answer these ques-
tions. For instance, at the initial stage of a project, the researcher might need
to address Concern 2, but only to spell out Question a by providing a table to
show the “top 5” International Patent Classifications for patents in Company
X’s portfolio. If the project passes the first-stage screening, the researcher
might later be required to address all the questions within Concern 2 in depth.
APCI prescribes which S&T databases, and which analytical software, to use
at every stage.

Standardization does not obviate the need for interpretation. Furthermore,
it must not preclude experimentation and refinement of what information is
used. That said, we see systematization as “the” way to improve technology
management.

13.4. EXAMPLES OF PUTTING TECH MINING INFORMATION
REPRESENTATION TO USE

Table 13-2 arrays a host of possible measures and indicators. This chapter 
goes on to suggest several ways to package TIPs and alternative delivery
routes. We close the chapter with examples of successful, and unsuccessful,TIP
uses.

One failure illustrates the sensitivity to misunderstanding about dealing
with large bodies of information. This can lead to a researcher wanting to know
why someone he or she knows appears to be misplaced, or missing, in a map
of the R&D domain. Unless the tech mining response to such challenges is
compelling, the credibility of the whole analysis can collapse. This happened
to us in a study for the U.S. National Institute of Occupational Health—
NIOSH. A researcher in a high-level Institute briefing perceived herself mis-
located in a map. The NIOSH program manager presenting the findings was
unable to convince her of the legitimacy of the analysis from the podium, and
his personal credibility suffered a serious blow. It turned out that the mapping
was statistically quite proper and why she was positioned in the “wrong”
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topical domain could be explained step by step. But that was a moot point;
the damage was done.

Interpret this cautionary note to mean that tech mining principles and
outputs are not generally familiar. As with any innovative approach, the
burden is on the innovators to convince the establishment of their legitimacy
and value. In presenting tech mining “answers,” do your homework thor-
oughly. Know how familiar your intended users are with these sorts of analy-
ses. If they are relatively unfamiliar, explain what has been done with extra
care and thoroughness. Check tech mining results with knowledgeable
persons—anomalies need not mean “failure”; they can be fruitful stimuli to
further exploration. Chapter 14 suggests ways to enhance the utilization of
tech mining analyses.

We next describe several experiences in which tech mining analyses were
used successfully, in different ways. These illustrate possibilities in directing
selected tech mining outputs to particular target applications.

Gap Analysis for the Vice President for Strategic Planning, 
Georgia Institute of Technology

Georgia Tech was determining whether to develop a new center of excellence
in an applied artificial intelligence (AI) area. The Vice President for Strategic
Planning needed to ascertain what complex of skills was needed for the pro-
posed center to succeed, and how we stacked up on those skills.

Tech mining helped by mapping the ten pertinent subtopics that contribute
importantly to this defense AI application. Note that the Vice President did
not request such a “map”—he had never seen such a representation. Tech
mining then helped identify active players within Georgia Tech.

The Georgia Tech AI self-profile suggested weakness in a couple of areas.
The resulting profile was presented to a group of Georgia Tech research man-
agers and AI researchers for review. None of them was used to using tech
mining. That meant that presentations had to be “transparent” so they could
understand and judge whether the tech mining “answers”” were credible.
There were doubts! They quickly corrected the tech mining profile to note an
active Georgia Tech Research Institute group who were highly able, but rarely
published because they primarily did defense contract work. We were still left
with a gap in another area.

At that point, the external research domain profiling helped identify poten-
tial sources of that expertise. Such expertise could be tapped by recruiting new
graduates or faculty from universities with prominent research centers
working the gap area. Alternatively, expertise could be accessed by forming a
collaborative relationship with such research centers. Another option was to
rethink the proposed center of excellence more narrowly to better match
current Georgia Tech strengths.

Note that this case does not fall neatly within a single technology manage-
ment issue (Table 13-1). Although the questions asked by the Vice President
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in this case involved setting R&D priorities, other important decisions were
involved. These included evaluating other academic research enterprises and
assessing the potential for R&D funding in the target area. So this study actu-
ally addressed a mix of MOT issues.

Using Tech Mining to Identify Research Thrusts in Data Mining on 
Large Datasets to Scope a Ph.D. Dissertation

Figure 13-2 illustrates one R&D profiling view (Porter et al., 2002). The
domain in question concerns the use of data mining on very large data sets
(e.g., sets of images generated by satellite cameras passing over a target
region). The figure shows the relative attention to three different data mining
aspects: data splitting/segmentation (smallest segment), data reduction/
analysis (largest segment), and data integration. It also indicates that the
overlap is considerable [e.g., only 41 of the 146 data splitting records fail to also
address either data analysis (68 records), data integration (20), or both (17)].

This activity profile helps understand certain major research thrusts in large
dataset mining. It also sets the stage for further analyses. For instance, we
might identify researchers interested in both data splitting and integration. In
this case, we were pursuing how “neural networks” contribute to large data
set mining, seeking to focus a PhD dissertation. We hypothesized that neural
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Figure 13-2. Profile of a research domain: data mining for large data sets. [Note: The
numbers in parentheses represent neural networks associated with data integration.]



nets could play a major data integration role. The search set of 991 records
from INSPEC contains 86 that address neural nets, of which only 15 concern
data integration (add the numbers in parentheses in the right circle of Fig.
13-2). This alerts us to the possibility that neural nets might serve multiple
needs in mining large datasets. We go further to pull out the 86 neural nets
records as a separate subset and map them various ways (not shown here). We
find promising data splitting and data analysis roles to pursue.

This example demonstrates a very specific TIP—providing “bird’s-eye
views” of data. Chapter 16 explores such “research profiling” further. The tech
mining results gave a fresh perspective on the research opportunities. The case
ended with an interesting twist. The PhD student involved became so intrigued
with text mining in support of technology management that she switched her
dissertation to a tech mining topic.

Reassessing Ceramics for Tank Engines

At the U.S. Army Tank and Automotive Command (TACOM), a researcher
wondered whether ceramics could improve automotive engine performance
(Watts and Porter, 1997). Previously the Army had supported ceramics
research but had abandoned it as a failure in the late 1980s. Watts hypothe-
sized that the technology might have matured sufficiently by the mid-1990s to
warrant renewed Army investment. As you might imagine, convincing “once-
burned” senior R&D managers to change their mind about a technology takes
some doing. Tech mining did the job.

Figure 13-3 provided the clue to ceramic maturation. The back row shows
that ceramic R&D publication relating to engines peaked in the 1980s.
Through subject matter experts we learned that, at that time, sponsors lost
confidence in this overhyped area and funding dropped precipitously. By the
mid-1990s, research activity had risen modestly. The middle row In Figure 
13-3 shows a similar pattern in the involvement of research organizations. The
number involved had dropped dramatically, showing a modest upsurge in the
mid 1990s. The front row tells something different. It indicates that the com-
plexity of the research in the mid-1990s has jumped dramatically—extending
way beyond the nature of the 1980s topical coverage. The interpretation: R&D
had indeed progressed beyond general fascination with ceramics to specifics.
This pattern of specialization implies pursuit of real applications.

Figure 13-3 led to further analyses. We went on to identify the change in
topical coverage from the 1980s to the mid-1990s in specific areas. Our paper
tabulates keyword coverage, by time period, for particular topics such as mate-
rials, process engineering, etc. The trends showed that “research” appeared to
be moving into “development” aspects. Critically, ceramic experts examined
these indicators and confirmed the interpretations. The combination of empir-
ical evidence and expert evaluation led to the Army Tank Command autho-
rizing Watts to pursue ceramic possibilities.
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The case continued to showcase tech mining capabilities. Watts next
explored which organizations were doing the cutting edge R&D in ceramic
applications pertinent to automotive engine conditions. Somewhat to the sur-
prise of his colleagues, this R&D was not being done by those they associated
with structural ceramics application. For instance, one interest concerned
coating metallic surfaces with thin ceramic films to enhance performance and
engine life. They identified the most interesting thin film ceramic research in
the microelectronics sector! There, researchers were working to improve per-
formance of semiconductors with ceramic coatings. Anyway, the Army decided
to partner with one national lab and one company to see whether these
ceramic films would perform well in the automotive engine environment. And
they did. As we write, an engine processing facility is going into operation to
coat military engine parts for extended life and improved environmental per-
formance as well.

This example demonstrates the utility of innovation indicators—“keyword
richness,” in this case.

Bonus Uses of Technology Analyses

Technology information products (TIPs) can be used beyond answering 
the immediate, internal question. The sidebar describes an imaginative 
extension.
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13.5. SUMMING UP

In several respects, this chapter is the heart of tech mining. By focusing on
technology management issues, we can craft technology information products
(TIPs) that answer the key questions being posed. To accomplish this aim, we
offer a range of candidate measures and innovation indicators (Table 13-2).
These can be synthesized into composite representations to answer particular
tech mining questions. Those representations can be delivered in different
ways to maximize their utilization.

However, this is a nascent area of study. Our innovation indicators are just
an initial set of ways to tap publication and patent abstract data resources.
They need to be fire-tested to see what measures and representations thereof
“work” for technology managers and other users. They need to be enriched
by tapping other data sources—patent and publication citations are lightly
mentioned in Table 13-2. R&D inputs (e.g., project databases, funding infor-
mation) warrant probing. Business, marketing, public policy, and popular press
compilations need to be mined. Table 13-2 is richest in technology maturation
indicators, moderate on contextual influences, and weak on market indicators.
We have also not investigated best ways to integrate these empirical indica-
tors with human intelligence. We hope scholars and practitioners will tackle
these opportunities to develop tech mining.

In sum, tech mining consists of:

• Addressing technology management issues (Table 13-1 offers 13) by
• Answering particular questions (Table 13-2 offers 39) through
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Sidebar: Bonus Use of Technology Analyses

KPN, the leading Dutch telecommunications company, has been perform-
ing scenario analyses to better understand changing technologies and con-
texts for its businesses. They use these within the company for multiple
purposes. For instance, KPN Research has steered R&D initiatives to meet
priorities based on scenario analyses. That is, certain telecommunica-
tion products and services were developed to meet targets identified in 
scenarios.

Many companies develop scenarios but keep them highly confidential.
In contrast, in the late 1990s KPN began to share its scenarios (alternative
futures pertaining to telecommunications). Notably, KPN used these as a
marketing aid. As their representatives visited current or prospective clients
(e.g., a bank), they would share the KPN scenarios to help that customer
explore its future telecommunications needs under various contingencies.
Sharing the KPN scenario information enhanced the credibility of the KPN
representatives and generated goodwill—and sales.



• Empirical indicators (see Table 13-2, including both straightforward mea-
sures and conceptually based innovation indicators, generated from com-
pilations of R&D publication and patent abstracts, and other sources) 

• Composed with the aid of various computer processes including: text
mining software, scripting of routine steps, wizards to guide analyses,
drawing on palettes of question/indicator choices and templates to facil-
itate information presentation, particularly in the form of

• Composite information visualizations—“one-pagers” (Fig. 13-1).

CHAPTER 13 TAKE-HOME MESSAGES

• Tech mining begins with technology management issues (Table 13-1) to
be resolved, not with data to be massaged.

• Table 13-2 offers an extensive list of questions that tech mining can help
answer. This is a key resource pointing to candidate measures and 
indicators to address those questions of interest in a given tech mining
effort.

• We sort Table 13-2 into “what?” and “who?” topics. You can subdivide
further by innovation stage: research (publication-oriented indicators),
development (patent-based indicators), and commercialization.

• Explore which particular tech mining outputs resonate with your target
users in helping them to make decisions.

• “Innovation indicators” relate empirical information to technological
innovation processes to help assess prospects of success.

• Innovation indicators speak to a technology’s maturation, context, and
market prospects.

• Tech mining also provides useful interim information to the parties
involved in the analyses to refine queries and enrich perspectives.

• This book concentrates on mining publication and patent abstracts, but
we note extensive complementary information resources pertinent to the
business environment.

• Derive your own innovation indicators that speak to your organization’s
keen concerns, whether technological maturation, contextual support,
and/or market prospects.

• Go for multiple, not single, measures.
• Devise “one-pagers” that compile the information to best answer the

central technology management questions confronting you.
• Organizations should develop a system of preferred indicators to build

user familiarity.
• Such indicators should be incorporated into systematized business deci-

sion processes to best leverage tech mining power.
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• Document-based delivery of technology information products (TIPs)
should facilitate easy incorporation into end uses (e.g., into MS Power-
Point presentations).

• Web-based TIP delivery offers good prospects for comparing tech mining
findings across technologies.

• TIPs have proven very effective in informing various technology man-
agement concerns, but be sure to set user expectations carefully to avoid
misunderstandings.

CHAPTER 13 RESOURCES

Our earlier book, Forecasting and Management of Technology (Porter et al.,
1991) offers a chapter on expert opinion relating to technology analyses. This
previous work is oriented around how to perform expert opinion analyses; in
contrast, the current chapter discusses how and why technology mining should
be integrated with these techniques to gain a complete perspective.

The literature relating to technological change and innovation processes is
extensive and diverse. Some concepts to illustrate the breadth of considera-
tions are: competitive forces (M. Porter, 1985), the innovation funnel (Dunphy
et al., 1996), technology generations (Mahajan and Muller, 1996), substitution
(Smith, 1992), infrastructure (Modis, 1993), industry interplay (Anderson and
Tushman, 1990), design standards (Dror, 1989), diffusion (Metcalfe, 1988), tech
transfer (Cohen et al., 1979), sponsor and adopter (Souder et al., 1990), and
acceleration (Millson et al., 1992). We note other approaches to innovation
indicators (Ortt and van der Duin, 2004; Tidd et al., 1997; Dundon, 2002;
Gaynor, 2002).

Georgia Tech’s Technology Policy and Assessment Center website
(http://tpac.gatech.edu) encapsulates much of our experiences leading toward
“innovation indicators.” See the “Papers” posted, especially those relating to
“Technology Opportunities Analysis.” Case explorations of candidate indica-
tors appear there for Knowledge Discovery in Databases (KDD) and Fuel
Cells. “HotTech” illustrates a web-based information delivery approach to
answer 15 technology management questions—see the Intelligent Agents
example.

Technical risk management has its own literature (cf. Michaels, 1996).
Blending information on internal and external technology development
efforts can help plan and allocate resources (Kirby et al., 2001).

Information visualization is exploding with new approaches, ideas, and soft-
ware. Especially pertinent to tech mining, we note the work of colleagues (cf.
Borner et al., 2003). Special journals include Information Visualization, edited
by Chaomei Chen. His most recent book (2003) focuses on visualizing scien-
tific information.
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Chapter 14

Managing the Tech 
Mining Process

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

This chapter offers ways to enhance the utilization of tech mining in an 
organization. Successful tech mining must do more than analyze science and
technology (S&T) information. It must manage an array of personal and orga-
nizational processes. This chapter begins by posing tough challenges facing
those who would manage tech mining successfully. We offer a checklist to
enhance the prospects for an organization to make use of these studies. This
leads to considering how tech mining is institutionalized by the organization.
The chapter concludes by considering ways to facilitate the learning of tech
mining.

14.1. TOUGH CHALLENGES

Tech mining is an emerging area without an established track record. It con-
sists of an amalgam of analytical approaches, carried out by a loose cadre of
professionals, to contribute to diverse technology management ends. This
chapter and Chapter 15 grapple with how to manage such an ill-formed field.

Does tech mining infrastructure appear to be coming together smoothly?
The answer is, unfortunately, “no.” Would-be tech mining practitioners face
difficult hurdles in getting the raw data they need. Neither database providers
nor information services managers have fully grasped the desirability of pro-
viding sizable sets of text records at moderate cost for mining (i.e., unlimited-
use licensing to readily retrieve thousands of abstract records). The software
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tools to exploit these text resources are not fully integrated. Tech mining users
confront distinct search engines, retrieval mechanisms, analytical software,
visualization software, and end user presentation aids. Potential tech mining
users don’t fall neatly into single organizational units. In sum, those who would
put tech mining to use have their hands full.

Those tech mining infrastructure weaknesses can be overcome by commit-
ment and hard work. Then tech mining can derive potentially valuable knowl-
edge. But that is not enough. Our experience, reinforced by colleagues, is that
the tech mining process often breaks down at transferring the knowledge 
into the decision-making processes (cf. Hansen et al., 1999). Communication
between analysts and users needs hard work.

So why bother? Throughout the book we make the case that the potential
to exploit rich technology information resources is so strong that it can’t be
stopped, indeed, that essentially “all” technology managers must utilize tech
mining in the near future to compete successfully. Chapter 1 set forth some of
the “Information Age—Knowledge Economy” considerations that offer
tremendous tech mining opportunities. That’s why we think the tech mining
potential warrants confronting the severe management challenges to make it
work well.

Furthermore, on the upbeat side, the authors believe that we have useful
things to do with tech mining. Tables 2-1, 2-2, and 2-3 laid out real needs that
call for tech mining. Chapter 13 posed substantial sets of technology manage-
ment issues and questions and proceeded to show how tech mining can address
them effectively. In various places, we have raised additional uses of tech
mining, not limited to managerial concerns, including:

• Intelligence—understanding internal and external knowledge networks
• Technology foresight—alerting to potentially disruptive technologies
• Knowledge discovery—potential instigation of new research
• Research profiling—helping researchers relate to S&T developments

within and adjacent to their R&D domains
• Public policy analysis—such as national technology capability assessment

and research funding prioritization

These share a theme of more fully exploiting external information resources.
This chapter expands the discussion by examining how the value from such
analyses can best be captured within an organization.

14.2. TECH MINING COMMUNITIES

In composing this section, we began by distinguishing two communities—ana-
lysts and users. Chapter 2 made the case that these are usually quite different
folks. A third community we are nominating consists of information profes-
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sionals (searchers, librarians). We also have come to see researchers as a cadre
involved with tech mining with distinct needs. Figure 14-1 points to five com-
munities meriting attention if tech mining is to be successfully delivered.

The tech mining process whereby S&T and other (e.g., business) informa-
tion resources are exploited through the use of tech mining software is
addressed elsewhere in the book. A keen interest of this chapter is ensuring
that the resulting derived knowledge reflected in “TIPs” (technology infor-
mation products) does serve user needs. Section 14.4 concentrates on that. This
section raises considerations for the particular player communities.

Over time, we keep finding more tech mining players. Information
providers include patent office personnel. They not only process patent 
applications but increasingly involve themselves in enhancing information
provision and working to promote information utilization. Likewise, database
providers’ roles are moving beyond the traditional stopping point of “here’s
the data.” They are extending interests into analytical aspects. For instance,
two major patent database providers, MicroPatent and Derwent, provide
various text mining capabilities. In particular, MicroPatent offers Aureka and
Thomson Scientific offers Derwent Analytics (a version of VantagePoint 
tailored to exploit Derwent World Patent Index, Delphion, and Web of 
Knowledge, including Science Citation Index). (See Appendix B.)

Somewhat surprisingly, many information professionals have not yet
“gotten it”—the idea of gaining metaknowledge from analyses of collective
bodies of S&T information (e.g., 10,000 fuel cell technical publications and/or
patents). At the 2003 Patent Information Users Group (PIUG) meeting in
Chicago, one of us (ALP) listened to successive, contrasting presentations. A
technology analyst-manager posed farsighted possibilities for applying tech
mining as a key component in one multinational’s newly systematized, strate-
gic business decision processes. Then a corporate information professional, still
anchored in the paper world, returned to the old standby of how to locate the
right few papers.

We believe that exploitation of electronic text information entails a para-
digm shift, possibly as momentous as the shift from handwritten to printed
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text information. Both open entire new realms of information uses, so we
shouldn’t be shocked that certain interests resist change. Imagine back about
1455 when Gutenberg started printing a few bibles. (Incidentally, checking that
date took about 20 seconds with Google—a phenomenon of this electronic
information age.) Were the clergy pleased at this newfound capability to share
the Christian message widely? Certainly not—it threatened their power
enough to occasion burning bible translators at the stake. Over a few centuries,
the clergy have adapted to provide new services to those who can read the
bible messages themselves.

Today’s information professionals, likewise, have to redefine their profes-
sion. They need to take into account users directly accessing electronic
resources. Information professionals can (and are) developing new opportu-
nities for themselves to contribute to information assurance and analyses.
Today’s technical librarians are electronic data specialists. Increasingly, many
are learning tech mining tools (under whatever name). The exciting opportu-
nities lie in their bringing these skills to bear in new ways. We suggest that
these include being the trainers who teach researchers and other profession-
als how and when to apply tech mining tools. We also want information 
professionals to become full team members in research and technology devel-
opment projects (Newman et al., 2001).

Another tech mining community should be distinguished—researchers. We
mean to include scientists, inventors, product designers, and R&D staff.
Scientists and engineers need to perform some tech mining as part of their 
job requirements. Many scientists and engineers implicitly perform competi-
tive technological intelligence (“CTI”) as part of their job function. Technol-
ogy “hot spots,” such as Silicon Valley, draw on concentrations of
knowledgeable personnel. These personnel share experiences in keeping on
top of new technologies and figuring out how to combine them to best advan-
tage. High job mobility ensures that interorganizational learning of successes
and failures occurs. In the coming years on-line communities will reduce the
“critical mass” of knowledgeable personnel needed to create “learning com-
munities” about technology.

In a pilot tech mining project with Air Products & Chemicals, we learned
that researchers emerge as explicit “doers” of tech mining as well. Air 
Products’ stagegate process (wherein projects pass through a series of check-
points to assess their merits) entails early screening. “Researchers” (including
inventors and technical project managers) perform tech mining at their desk-
tops, having unlimited-use access to a few key S&T databases. They examine
the R&D domain and patent landscape to provide prescribed TIPs that 
contribute to the decision to proceed, or not, with the project in question.

Researchers doing tech mining may or may not become expert at it. Most
will be casual tech mining doers. For them to successfully accomplish this a
couple times a year requires that the tech mining software be very easy to use
and embed considerable analytic knowledge. Chapter 13 probed these emerg-
ing tech mining capabilities to expedite analyses and information representa-
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tion of the findings generated. On the other hand, Air Products’ experience
indicates that some researchers will do more. They will appreciate tech mining
potential and enjoy becoming adept at it. These “power tool users” can help
the spread interest in tech mining and provide vital distributed support helping
others to do it. The involvement of these industrial researchers in doing tech
mining encourages us that faculty and student researchers will pick up tech
mining interests and skills in the near future as well.

Returning to the electronic information paradigm shift, we note that this
impacts a key end user contingent—managers. The availability of pertinent
information presses them to shift from intuitive to empirically substantiated
decision-making. That will only come “over the dead bodies” of many tradi-
tional managers. Dave Grossman, a General Motors veteran, shared his per-
ception that executive selection processes at companies like General Motors
favor those acculturated into “business” over managers with technical back-
grounds. The resulting lack of managerial familiarity with technologies rein-
forces tendencies to rely more on marketing and financial information in
reaching decisions.

We surmise another selection process at work that leads toward executives
having undue faith in their own intuition. Enough intuitive decision-makers,
making enough choices, will hit a proportionate number that work out right.
If you are lucky and make the correct choice on some high-visibility decisions,
your star ascends. Quite likely, your ego does too—you come to believe in
your intuition. We assert that managerial intuition is inherently inferior to the
combination of empirical evidence with experiential judgment (intuition). As
tech mining contributes to good decisions, we forecast a landslide in this direc-
tion over the coming 5–10 years. In the meantime, expect tensions between
tech mining advocates and traditional managers.

In an ideal organizational world, information professionals, researchers,
technology analysts, and senior technology managers would unify in support
of tech mining initiatives. In the real world, anticipate and counter likely 
multiway tensions. But also look for interest and support from those attuned
to the importance of knowledge exploitation across these communities.

14.3. PROCESS MANAGEMENT

Tech mining emphasizes logical resolution of issues based on conceptual
models, information capture, and empirical analyses. Most tech miners are
“analytical types” more than “people persons.” But good analytical work in
itself rarely accomplishes anything. A colleague at one company using VP
laments that analysts and managers speak different languages. Analysts love
to detail the complete story, replete with quantification. Senior managers are
always in a rush to get the unadorned bottom line, preferably conveyed as a
personal story. And pictures are really nice too. We need to provide the right
content, in the right form, delivered in a captivating way.
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Decision-makers routinely disregard analyses, even when well done, timely,
and pertinent to the issues at hand. Figure 14-1 hints at competition for that
manager’s ear. That other person with the manager represents an expert.
Expertise is familiar, quick, and to the point; empirical analyses are often un-
familiar, slow, and obtuse. What is to be done? Consider “process” in addition
to “analysis.” Andy Hines, veteran of futures research at Kellogg and Dow,
suggests that such professionals reallocate their energies significantly. He rec-
ommends 70 percent of your time be devoted to process with only 20 percent
to content (analysis), and the remaining 10 percent to organizational culture
change!

The “Technology, Policy and Management” Faculty of the Technical 
University of Delft, where one of us (SWC) serves in the Policy Analysis
Department, includes another department, that of Process Management. This
faculty studies mechanisms to facilitate decision processes that involve multi-
ple stakeholders. This book is mainly about analysis, but here we challenge
ourselves to attend to process as well, if we are to get the several tech mining
communities to work together effectively. The sidebar offers a possible
analogy.
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Sidebar: The Education of a Poker Player

The title of this aside is that of a classic book on poker written by Herbert
O. Yardley (1957). Yardley was a World War II intelligence agent who spun
charming tales of his poker playing experiences in backrooms from Indiana
to China. A key message was that to be good at this game, one had to study
the players, as much as knowing the cards and the odds. At the extreme,
really good players can identify situations where they can expect to win no
matter what cards they are dealt. The analogy fits the technology analyst—
it is essential to understand the players as well as to handle the analytics.

Two of us have applied process management concepts (de Bruijn and
Porter, in press) to explore the bedeviling question—“Why don’t technology
managers use our technology analyses?” (Porter and Newman, 2001). Imagine
a hypothetical situation—our firm is deciding whether technology innovation
T is worth pursuing to improve service S. We commission a tech mining study.
What are the factors that determine whether the tech mining analysis influ-
ences our firm’s decision? Certainly, the quality of the analysis is a necessary
condition, but it is not sufficient.

One needs to consider several factors in gauging the likelihood of tech
mining impact and, moreover, in figuring out how to enhance the prospects of
real influence. First, is the problem at hand relatively structured? That is, does
it lend itself to an authoritative solution? With respect to our hypothetical
case, it’s not hard to imagine some early stage innovations (T) that lack deter-



minant information to gauge their prospects. Or our firm’s executives may not
agree fully on decision criteria. For tech mining utilization, such uncertainties
point toward a contested issue. Here, any finding may prompt questions about
tech mining assumptions, system bounding, data, and analyses. Expect conflict.

A second factor is that most tech mining studies serve a network of inter-
ested parties, not a single decision-maker. This implies that multiple stake-
holders are involved. They are likely to have differing interests in technology
T and service S. This portends a contested decision process, likely to generate
challenges to the tech mining approach and findings.

A third factor is the importance of the issue at stake. On unimportant issues,
the decision-makers may not care about tech mining analyses. The opposite
situation is that the subject is of great importance to many participants.
Although this is likely to generate interest in the tech mining results, it is also
apt to mean that certain players will have strong incentives to criticize the tech
mining study if it generates findings with which they are uncomfortable.

A fourth factor is urgency. If time is of no essence, very limited counter-
vailing reasons may be sufficient to undermine tech mining-based recommen-
dations. A shared sense of urgency will enhance interest in the analysis, if there
is enough time to perform tech mining and comprehend it.

In the paper just mentioned (de Bruijn and Porter), we work through a 
decision tree with the possible situational combinations. Compressing this,
we suggest that tech mining proponents perform a situational analysis 
(see sidebar).
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Sidebar: Situational Analysis

Questions to ask about how your tech mining fits into the situation:

• Does the decision process involve one actor or multiple actors?
• Are the interests of the actors closely aligned or not?
• Is tech mining generally accepted by these actors or not?
• Is the issue at hand considered important?
• How urgent is the decision?

Simplifying somewhat, we pose five alternative tech mining process man-
agement actions based on this situational analysis. These largely address the
extent of user involvement, but they extend to other considerations that may
be suggested by certain situational factors:

(1) Perform tech mining analysis, clean and simple—when minimal disc-
ordant views are to be expected, just perform a quality, timely study
and communicate results clearly (see next section).



(2) Work on communication especially to initiate the tech mining exer-
cise—strive to engage all the parties in the issue at hand (information
professionals, analysts, intended users, others). Getting the players
involved tends to add insights and obtain “buy-in” to the study and its
eventual results. When either (a) stakeholders differ somewhat on
values but probably share confidence in the tech mining or (b) stake-
holders differ on values but don’t consider the issue very important, use
this strategy. Limited “process management” here aims not to involve
the stakeholders actively in the tech mining but to learn their interests
well so as to generate clear and understandable tech mining findings
for them.

(3) Actively involve stakeholders in the tech mining process throughout—
when either (a) the actors don’t have confidence in tech mining or (b)
the actors have strongly different interests. Interaction should include
consideration of the “rules of the game” regarding which stakeholders
will be involved in the analyses and when, how to reach decisions 
at key tech mining steps, and what stakeholders must commit to a 
conclusion.

(4) Focus on the decision-making space—for important, urgent issues with
discordant stakeholders, who don’t trust tech mining, target a “no-
regret” decision. Get stakeholders to point out potential bases for
regrets to analysts, who then provide findings that address prospects
and influences relating to these bases. Analysts offer sensitivity analy-
ses, trade-off analyses, “what-if?” scenarios, and such for stakeholders
to weigh in arriving at a decision that retains flexibility. Think “negoti-
ation” and how tech mining can catalyze innovative resolutions.

(5) Don’t attempt tech mining—we note the possibility that situational
analysis may imply that tech mining is so unlikely to be used that it is
unwarranted. Factors to weigh include stakeholders so hostile that
process agreement is unlikely, widespread suspicion about tech mining
validity on the issue, or an issue that is considered unimportant.

Tech mining practice can learn from other decision support approaches. For
instance, risk assessment has expanded its attention from analytical concerns,
to effective communication of results, toward proactive involvement of the 
different stakeholders (Fischhoff, 1998). Other technical fields are also 
working to incorporate broader considerations and process aspects into their
scope.

14.4. ENHANCING THE PROSPECTS OF TECH MINING UTILIZATION

The preceding discussion reminds “analysts” to attend to process as well as
analysis. This is half the battle, and it will go far toward boosting utilization
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TABLE 14-1. Tech Mining Utilization Checklist

In Good Needs 
Tech Mining Utilization Indicators Shape: Work:

User-Analyst Environment:
(1) Analysts: Know thy users!  Managers: Know thy 

analysts! (Share your expectations for TIPs) 1.

(2) Analysts: Get your users involved.
Managers: Get involved.

• in formulating the analysis 2a.
• in the analytical process 2b.

(3) Managers & Analysts: Check & enhance the 
organizational climate 

• Are your organizational unit(s) receptive to new 3a.
information?

• Get other users’ support for the study. 3b.
• Reduce the extent that the TIP threatens some users. 3c.
• Budget the TIP appropriately. 3d.

Information Characteristics (the TIP):
(4) Work together to build credibility
• Ensure that the analyst’s credentials are properly 4a.

appreciated
• Get the TIP endorsed by well-respected person(s) 4b.
• Ensure that TIP methods are familiar and accepted 4c.

by users

(5) Encourage vivid **#@!#*!! (memorable) reports 5.

(6) Ensure that the TIP is on time for decision making 6.

(7) Be clear on what TIP content is needed:
• The right blend of information for taking action 7a.
• Answers (as opposed to raising more questions) 7b.

(8) Ensure best possible communication
• Present the right level of detail for each user 8a.
• Analysts personally communicate with each user 8b.
• Present findings interactively (with 2-way feedback) 8c.
• Provide information in readily digestible amounts 8d.
• Customize TIPs to match all key users’ demands 8e.

prospects. A good portion of the previous section pointed toward involving tech
mining users with the doers. Table 14-1 consolidates advice on ways to accom-
plish such engagement gained through our studies of utilization of tech mining.*

*We appreciate research support from the U.S. National Science Foundation (NSF—Project DMI-
9872482, 1998–2001) Management of Technological Innovation Program and from the Center for
Innovation Management Studies (CIMS—2001–2002), presently located at North Carolina State
University, Raleigh, NC, USA.



Table 14-1 provides an easy-to-use checklist for analysts and their counter-
part end users (nominally, “managers”) to use in assessing prospects and then
taking action to bolster utilization of a given tech mining exercise. Depending
on who is performing tech mining for whom, you might want to involve infor-
mation specialists and researchers as well. Eight factors serve as reminders to
check stakeholder needs and whether these are being addressed. The first three
factors key on interactions between analysts and managers. The last five factors
key on the “technology information products (TIPs) that convey findings.

We suggest that the principal persons involved in a tech mining sit down
together and check off whether each factor is under control or needs work.
Determine jointly how best to follow up on those that need work.

One might restate Table 14-1 as “eight ways to enhance communication”!
It starts with knowing your audience and what they need to know (indicators
1 and 7) and moves to engaging that audience (indicator 2). We will pursue
organizational issues (indicator 3) in the coming section. Indicator 4 (“Work
together to build credibility”) does not go without saying; for many analysts
it goes against the grain to tout credentials. But how else does management
know that tech mining works and that you are good at it? Call attention to
successes.

In our CIMS study (see last footnote) we interviewed 32 colleagues about
the utilization of technology analyses. Most compelling was “Al,” a fellow who
started as an information scientist and moved up to become the analytical
right-hand man of the Chief Technology Officer (CTO) at a major multina-
tional. Al did things purposefully—the sidebar illustrates. The salient message
is that if you want instant credibility for your tech mining method with the
Executive Suite, go to Al, their gatekeeper. If he endorses your approach, the
executives will be positively inclined.
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Sidebar: Process Management in Action

One of Al’s tales to us actually concerned reorganization of the R&D func-
tion at his company. He was doing the background research to prep the
executives for a workshop to determine the best way to go forward. Al
decided that a certain paper really laid out important alternatives, but the
paper was not “executive length”—i.e., it was on the order of 40 dense
pages. He took as his mission seducing the executives  into reading this in
preparation for the workshop. He attacked these challenges like a battle-
field commander. He mustered weapons (endorsement by the CTO), made
personal appeals to particular executives (“Charlie, you need to read this
before the meeting because . . .”), and added his own summarization that
pitched the importance of reading the source document. Of course, he pro-
vided it in convenient form. And it worked—a majority of these extremely
busy managers did read the paper and it contributed to a productive 
decision process.



Paul Germeraad, former Vice President of Aurigin, producers of Aureka
tech mining software (now offered by MicroPatent), adds a keen insight.
Analysts tend to tell the “whole story,” possibly answering the key question
prompting the tech mining, but burying this with 18 other observations,
caveats, further questions, and general distractions. Those busy executives are
far better served by sharply pointed reporting that gives THE major conclu-
sion, and recommendation, if suitable. The “rest of the story” should be
appended in case an “Al” desires to trace through how the conclusion was
reached. Paul advised that vivid presentation with a clear take-away message
is vital to put tech mining to use (Indicator 5, Table 14-1).

Indicator 6 (“Ensure that the TIP is on time”) seems obvious. But it war-
rants explicit attention. “We” analysts tend to place thoroughness, rather than
relevance, at the top of our priority list. We can attest to the resulting dis-
comfiture when proudly presenting that profound tech mining based on
months of work to really get it right, only to have the requestor blankly stare
as (s)he tries to recall—Did I ask for this? Why? The course of events can
move ahead faster than the analysis gets done. So, do the best tech mining you
can in the time available, even if that’s one hour; don’t do the best tech mining
however long it takes.

Likewise, Indicator 8 (“Ensure the best possible communication”) cannot
be taken for granted. It takes attention and serious effort to communicate
effectively. A successful tech mining analyst-manager told us to rebalance the
allocation of effort from the typical 95 percent on analysis and 5 percent on
communication toward a 50-50 split. Fantastic tech mining content is worth-
less unless it is delivered effectively.

The 2002 World Future Society spotlighted an unexpected speaker for a
meeting of futures researchers. He was a Walt Disney “communicator.” His
message was to “tell a story.” Again, this goes against the grain of well-trained
tech mining analysts who want to detail their repertoire of empirical data and
show off their thorough statistics. But the vivid case, presented “up close and
personal,” provides a hook on which listeners can attach the take-home
message of the data-based analyses.

14.5. INSTITUTIONALIZING THE TECH MINING FUNCTION

Centralized, Decentralized, or Outsourced?

Tech mining can support a wide range of organizational functions, as explored
several places in this book [e.g., R&D management, intellectual property
(“IP”) management, strategic planning]. It also has much to offer to new
product, business, and marketing strategy development. It involves informa-
tion specialists and technology analysts and strong interaction with target
users (managers and professionals in many corporate units). So, where should
the tech mining function be located? We don’t have an easy answer, but 
consider key options: decentralization, outsourcing or centralization (and if
centralized, in what type of unit).
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We have worked with a few organizations that have pursued distributed
tech mining activities. In particular, technology monitoring and CTI assign-
ments can be allocated among a large contingent of researchers, engineers, and
analysts. However, such work tends to be perceived as an extra burden, not
core to the individuals’ job descriptions. In one case, we recall lots of effort
invested in setting up files, allocating topics, and arranging a reporting pro-
cess. We do not recall much carry-through. On the positive side, distributing
CTI and tech mining functions takes advantage of existing topical interest 
and expertise. It can direct attention to emerging technology opportunities.
Distributed tech mining can foster carryover from ideas to implementation 
by directly engaging “the players” themselves. We suggest that those initiating
distributed tech mining devise clear incentive structures for this work.
Buckman Labs has shown that demonstrably serious corporate commitment
to knowledge sharing can work (http://www.knowledge-nurture.com/). As
their tale goes, initial incentives of vacation trips for effective knowledge
sharing transitioned to “apply your knowledge to solve others’ problems or
lose your job.”

Outsourcing also presents strengths and weaknesses. Small and large con-
sulting firms offer technology monitoring and assessment. That expertise can
pay off nicely, offering fresh perspective (breaking from the customer organi-
zation’s own conventional wisdom). Consultancies can sometimes lower your
tech mining costs through multiclient studies. Downsides include lengthening
of the information chain, making rapid response on immediate decision issues
almost impossible. Also, the outside perspective may be less well suited to 
generating workable technology solutions for your organization. Andy Hines
has worked both as an external consultant (at Coates & Jarratt) and as an
internal futurist at Kellogg and Dow. On balance, he sees the internal role,
including a lot of process management, as outperforming the external aura 
of expertise, in effecting action.

Although the “centralized vs. decentralized” argument always has two sides,
we believe that some centralization of tech mining makes good sense. Exter-
nal R&D publication and patent abstracts tend to be costly information
resources. Capturing benefits from these databases gains from having a core
of knowledgeable persons who build up experience in handling those data. In
addition, one doesn’t want the organization paying multiple times for the same
data. A centralized unit can bargain for the best deal in licensing databases
and help ensure data quality. Centralized operations also facilitate sharing and
retention of tech mining results via intranet sites, report series, etc. In addi-
tion, centralization facilitates sharing of tech mining experiences to support
continued learning, effective training, and mutual reinforcement. On the
proverbial “other hand,” some decentralization can facilitate interaction with
key tech mining users.

Having just lauded the potential for centralized information processing, we
now argue against tech mining being situated in an Information Services unit.
One reason is that we do not believe the current information professional
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culture is fully cognizant of the emergent tech mining potential (e.g., metaper-
spectives on R&D activity of entire fields—see Section 11.2). Nor are infor-
mation specialists usually the right persons to interact closely with senior
managers (see previous section). When VantagePoint tech mining software has
been purchased by information services (library) units, results have often been
poor; they are unable to develop convincing tech mining outcomes and rarely
renew the software license. In contrast, sales to various technology analysis
units fare far better, although some of those peter out if champions are trans-
ferred, units are reorganized, or management does not appreciate the value of
results.

We suggest that tech mining should be based at an appropriate technology
analysis unit. Such units can be located in many branches of the organization.
You might look to any of the following: the CTO’s office, R&D management,
engineering, IP management, strategic intelligence or planning, and so forth.
Favorable attributes include solid ties to information services and to key tech-
nology managers. The “Tech Mining Software & the Organization” sidebar
offers an insight.
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Sidebar: Tech Mining Software & the Organization

Over the past few years, Search Technology (providers of VantagePoint) and
colleagues involved with Aureka, our main competitor for the patent analy-
sis tech mining market over this period, have informally compared notes
over a few beers at the trade shows. The simplified story goes that technol-
ogy analysts often favor VantagePoint as an analyst tool, but struggle to con-
vince senior management of the value of the tech mining findings that they
generate. In contrast, executives love the 3-D visualizations of the patent
landscape from Aureka, but analysts are less sanguine about what the soft-
ware does. The message to both companies is that you really need analysts
and managers on board, plus cooperation of the information specialists, for
enduring success. As we go to press, MicroPatent and Aureka are to be
taken over by Thomson Scientific, which licenses use of Derwent Analytics
(VantagePoint)!

It is also important that tech mining not be “captured” by a single business
function so as to ignore other applications. Effective networking to build rela-
tionships with multiple users is one key to developing a robust tech mining
capability, able to survive personnel shifts, changes in management, and eco-
nomic downturns. The “Organizational Tech Mining Synergy” sidebar shares
one instance of value gained through multiple linkages.



Innovative Institutionalization

In 2003, a tech mining breakthrough occurred. We viewed this through our
“VantagePoint sales” lens. A major customer that had used our tech mining
software for several years came to us to obtain a much broader corporate site
license. The reason was that this company was developing a systematized
process in which specific tech mining analyses contribute to the company’s
strategic business decision processes. Tech mining analyses thus become stan-
dardized and routine. This makes a dramatic difference in their familiarity to
technology professionals and managers in the organization. That familiariza-
tion leads to a jump in the utilization of tech mining findings, in turn provid-
ing positive feedback for “more” tech mining to be undertaken.

This is not a single instance, as we also know of another corporation moving
toward a similar sort of business process being established with Aureka. In
both cases, the organization is prescribing that certain software (not just the
two tech mining packages) be used to provide well-specified technology infor-
mation products (TIPs) for each stage of new product development, intellec-
tual asset management, and other decision processes. This standardization also
allows for scripting of major portions of the tech mining information retrieval,
cleaning, analysis, and representation stages. That scripting drastically speeds
up and reduces the cost of tech mining.

Within one of the companies, we were surprised to learn that finance is
playing a central role in this systematization—that is, that technology intelli-
gence is being integrated with financial information in the decision processes.
We see this as important because it moves technology management a big step
toward reliance on empirical knowledge (i.e., tech mining) as a balance to
managerial intuition (not to replace tacit knowledge, but to complement it).
This is an analogy to manufacturing process managers shifting from intuition
to statistical quality control measures as key input to improve product quality.
“Six Sigma” quality would not be possible without empirical measures that
underpin process control. We feel that empirical knowledge offers the poten-
tial for corresponding major advances in technology management.
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Sidebar: Organizational Tech Mining Synergy

Merrill Brenner relates how Air Products had several “voices in the wilder-
ness” for a number of years talking about a new technology that could be
both an opportunity and a threat. In fact, it could be a problem for five Air
Products businesses, but it did not appear big enough to any one of those
five to generate action. The Technology Intelligence group developed a
background package and brought together a team for a SWOT (strengths,
weaknesses, opportunities, threats) analysis. Although Air Products was too
late to participate in the core technology, they did determine to get involved
through a partnering strategy.



We, at Search Technology, are developing indicators of technological inno-
vation tailored to provide “one-page” TIPs to address particular technology
management decisions (Chapter 13). We are working to provide “palettes” of
indicators derived from R&D publication and patent data. These data are
transformed to address specific questions that address one issue. For instance,
this might be a quick profile of small companies leading in a target technol-
ogy for possible acquisition. Or, for competitive intelligence, we would gener-
ate a comparative profile of what our key competitors are emphasizing in the
target arena. We believe such indicator options, together with information
visualization templates, will enable other companies to systematize their tech
mining. This offers major competitive advantage. A colleague has included
tech mining analyses in the proverbial “pick 2 of the 3”—quick, cheap, or good.
We think this is changing; systematization promises all three!

Leon Hermans quite correctly pointed out for us that systematization poses
concerns as well. To begin, this is likely far more suitable for large organiza-
tions. Standardization could sometimes require tech mining activities that are
not truly useful. Of greatest concern might be the generation of “almost, but
not quite, useful” information forced into a standard format that does not best
address the issues at hand. On balance, we believe that pursuing systematiza-
tion of technology management processes will prove highly worthwhile, as
long as we keep our eyes open to avoid the pitfalls.

14.6. THE LEARNING CURVE

Tech mining is a nascent area that needs to learn “what works” through exper-
imentation. The field needs to become committed to interchange of ideas to
improve its performance.

Intraorganizational learning requires some centralization of tech mining
function to nucleate interest. Centralization also enables accumulation of
experiences. To the extent that these experiences are subjected to explicit eval-
uation, learning can be tremendously enhanced. Ideally, tech mining evalua-
tion would be designed into all, or a representative sample of, tech mining
exercises. Design elements to address (Chapter 15) this include:

• Specification of objectives for the tech mining activity in question 
(provides a bonus advantage in fostering discussion of what those 
objectives are among analysts, information specialists, and managers and
professionals)

• What criteria spell success
• Who would compile data on those criteria—i.e., explicitly measure tech

mining results
• How evaluation results should be shared and incorporated into tech

mining process improvement
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Cross-organizational learning poses further challenges. Certain professional
meetings offer good venues at which to share experiential learning and fresh
conceptualizations of how to advance these activities. We note:

• SCIP—Society of Competitive Intelligence Professionals—brings
together a strong contingent of technology intelligence professionals

• PIUG—Patent Information Users Group—and other gatherings of
patent analysts

• ACS—American Chemical Society, Division of Chemical Information 
• PDMA—Product Development Management Association
• PICMET and IAMOT—venues focusing on management of technology
• AUTM (Association of University Technology Managers) and other

venues focusing on technology licensing and transfer
• ASIST—American Society for Information Science and Technology—

and other venues focusing on S&T information (e.g., Science & Technol-
ogy Indicators Conference)

• MATI—Management of Accelerated Technology Insertion—and other
consortia concerned with technology forecasting, roadmapping, and
assessment practices

At this stage, it seems more desirable for tech mining advocates to interact
with such intersecting professional interests through organizations such as
these than to set out on their own.

Should there be explicit training programs for tech mining skills? We see
clear value in short workshops on specific tools and methods. These might be
offered in conjunction with meetings like those noted, as stand-alone offer-
ings of commercial or university continuing education units, or on site. Perhaps
most compelling is the development of electronically delivered training
modules. These could be amplified through scheduled web meetings to present
and discuss practice issues.

However, we argue that most learning of “add-on” skills such as tech mining
should be job-centered. The best time for me to learn a particular tech mining
skill is when I want it to contribute to a project on which I’m working now.
The best place for me is at my computer, using the actual software applied to
the data I really want to analyze.

We aspire to develop computer-based tech mining modules. In conjunction
with software (VantagePoint or Derwent Analytics in our case), we want a tech
miner to be able to quickly (e.g., in 20 minutes) generate useful results. Con-
sider the word processor—one wants to type a simple document right away,
then augment skills as needed. Likewise, we think tech mining software should
enable easy start-up. A series of training modules would be available at the
tech miner’s “fingertips” to allow acquisition of a particular skill (e.g., gener-
ating a special thesaurus) or generation of a specific output (e.g., a knowledge
network map).
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Are there prospects for university level courses? Yes. These could be
offered in conjunction with masters programs in management of technology
(“MOT”) or technical tracks within an MBA. They would complement infor-
mation science and related programs. We could imagine good fit and interest
within S&T policy analysis, futures research, data mining, and “information
engineering” programs. Distance learning offerings would hold special appeal,
given the argument just made for on-the-job tech mining training.

Courses offer the potential to help build a tech mining community. Just the
fact that I took a course with others interested in this field would strengthen
my sense of collegial support for such activities. Courses would also provide
an indirect “imprimatur” for tech mining—that is, the fact that there is suffi-
cient organized knowledge to formulate a course may help convince practi-
tioners and customers that there is substance of value. Instructors also can be
called on to make presentations to dubious colleagues. Course alumni could
someday achieve sufficient initiative to build networks that could evolve into
critical mass for a professional organization.

To wrap up, this chapter concentrates on the elements of tech mining
beyond the analytical stream. It starts by posing infrastructure needs (con-
cerning data access and tools), leading into addressing the needs of all the
players involved in tech mining. Tech mining poses notable challenges for
information professionals, researchers, analysts, and end users. Under the
rubric “process management,” we suggest ways to make tech mining useful. A
vital element of process management is ensuring that analysts and users share
information well—use of our checklist can ensure this happens. We then turn
to issues in institutionalizing tech mining. Within an organization we favor a
degree of centralization of tech mining function, but we also suggest extraor-
ganizational exchange of knowledge on how to do tech mining.

CHAPTER 14 TAKE-HOME MESSAGES

• Assess to what extent the five potential communities that play prominent
roles in tech mining—information providers, information specialists,
researchers, analysts, and target users (managers)—are on board.

• As you undertake a given tech mining exercise, assess the situational fit
on 5 dimensions—whether multiple stakeholders are involved, whether
their interests align, if tech mining is generally accepted, issue importance,
and urgency.

• Then determine what process management actions optimize your utiliza-
tion prospects: tech mining analysis alone, good communication, interac-
tive process management, no-regret options development, or no analysis.

• Step through the Tech Mining Utilization Checklist (Table 14-1) with the
information professionals and technology managers involved to assess
specific actions to bolster utilization.
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• In establishing tech mining operations, explicitly consider alternative
organizational options; we favor basing tech mining in a key technology
analysis unit, with suitable outreach.

• Consider ways to systematize tech mining components in your organiza-
tion’s strategic decision processes.

• Participate in interorganizational exchanges on tech mining practices.
• Look to on-the-job modular tech mining training and more formalized

educational opportunities.
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Chapter 15

Measuring Tech Mining Results

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

How effective is tech mining? This chapter addresses ways to assess that effec-
tiveness to help improve tech mining. The chapter discusses what should be
measured, how measuring is performed, and steps to ensure that the measures
used are effective and valid. The last section of the chapter reminds us that
sometimes measurement even points out our successes! The chapter begins by
first asking “Why measure the success of our tech mining efforts?”

15.1. WHY MEASURE?

Chapter 14 argued for attention to a tech mining learning curve and boot-
strapping ourselves up the curve. To do that, we need to know how we’re doing
to enable us to improve. That means we need to measure tech mining results.

We use “measuring” as the chapter focus. We might instead have called this
“tech mining evaluation” or “tech mining assessment.”Those correctly suggest
that the activity has a reflective element. For some, “evaluation” connotes
serious attention to design and execution of fairly elaborate exercises in their
own right. For others, evaluation carries a pejorative aura. For present pur-
poses, we need not pursue these aspects deeply. This chapter makes the case
for measuring tech mining results and suggests how to do so.

Why wouldn’t we measure tech mining results? The incentives for 
measurement and evaluation tend to be much weaker than those for doing
“anything else.” There are other pressing needs with more immediate payoffs.
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And evaluation conveys threat. Measures may indicate that our present prac-
tices are less than optimal—who wants to hear that? Furthermore, assessment
may suggest that we ought to change what we’re now doing, and change is
uncomfortable. So, while we definitely see upbeat aspects to measurement in
helping demonstrate the efficacy of tech mining, we doubt that much will get
measured without explicit prodding. We urge tech mining managers to
mandate and support measurement of results.

Measurement payoffs can follow various routes. Most of the time we would
use results internally. Measures inform those who direct tech mining practice
to improve its effectiveness. They also can aid related business functions in
determining appropriate roles for tech mining in their units. But we also want
to propose the value of providing tech mining assessments for external use.
More or less formal assessments can be shared in conferences or other venues
to advance the state of the art.

15.2. WHAT TO MEASURE

Tech mining is complex. It involves multiple doers, users, outputs, and pur-
poses. Measuring tech mining must therefore be multidimensional. To begin,
the would-be assessor needs to specify the unit of analysis. In most situations,
this will not be routine. Tech mining often builds upon earlier related analy-
ses, passes through iterations, and generates results used in more than a single
application. We suggest determining tech mining bounds based on the primary
objectives of the evaluation. For instance, if a key concern is to determine the
value of a particular database, we want to measure the effectiveness of multi-
ple analyses that incorporated data from this source. Or if we want to contrast
the usability of alternative analytical approaches, compare tech mining using
one tool set with tech mining using different tool sets. Or if one organizational
unit is assessing the decision support value of tech mining efforts, it would
want to look across several exercises performed on its behalf.

We focus on a few overlapping measurement dimensions:

• Direct vs. indirect measures—in particular, “asking” the participants and
users about aspects of the tech mining exercise (e.g., surveys, interviews)
vs. “observing” (e.g., tallying patents or new products, comparing balance
sheets)

• Factual vs. opinion data—However gathered, decide on the suitability of
empirical tallies (how much of certain attributes) vs. opinions (as to effi-
cacy, appropriateness, etc.).

• Players vs. observers—Do you want to “hear it from the players them-
selves” or get perspectives from interested bystanders?

What balance of measures help answer the key evaluation questions? You
want valid and reliable measures, and you want them cheaply and easily. Your
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evaluation design needs to weigh these essential trade-offs. Should these be
quantitative or qualitative? Most empirical data gathering lends itself to
counting. Even for opinion gathering approaches, simple scaling of query
responses expedites data collection and comparative analyses. However, open-
ended queries allow respondents to explain the essence of what was really
important. We recommend that the tech mining measurement system designer
explicitly consider:

• Survey instrument—what questions to pose to whom
• Mode of measurement—can questions be posed via E-mail or do they

warrant more personal interaction (in person, phone)?
• Whether there are secondary data sources that can be used to avoid

having to ask people some or all of the questions (if you can find the
answer yourself, don’t ask)

• Suitable blend of closed-form, simple measures and open-ended oppor-
tunities for key players to expound on what mattered most

• Suitable mix of respondents—i.e., ask the tech mining analysts about
process, the end users about satisfaction, and the subject experts about
accuracy.

One’s measurement objectives should determine what one measures. We will
not discuss the possibilities in detail, but instead we array a number of candi-
date measures in Table 15-1. Suitable subsets of these or similar factors could
be targeted for measurement. Within an organization, standardization of the
measures used builds familiarity and credibility. Some factors are trickier to
measure. For instance, “mistakes or costs avoided” has the tenor of an
ephemeral double negative but nevertheless could be highly important.

Note that these measures, particularly those concerning tech mining
processes, are largely qualitative. This does not imply loss of rigor, but it does
demand attention to measurement quality. Survey questions must be formu-
lated with care and should be pilot-tested. These should be posed to minimize
biasing responses. In general, we advise drafting your tech mining evaluation
protocol, then reviewing every item for relevance to the key issues targeted.
Throw out every “nice to know” item, retaining only the “need to know” mea-
sures. This will simplify data collection and analysis. But most importantly,
reducing the burden on colleagues bolsters the prospects for high response
rates.

Auxiliary information may need to be gathered, too. Demographic infor-
mation about the analysts, target users, information professionals, and others
involved helps understand “who” contributed. Knowing educational back-
ground and job responsibility could prove relevant in understanding why
certain findings proved valuable. Tracking the extent of prior familiarity with
particular tech mining elements would help discern needs for training and
familiarization.
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The sidebar gives the flavor of a research project involving technology man-
agers and professionals at Air Products in 2003. An initial survey inquired 
as to what they wanted from an analytical process called “QTIP” (Quick 
Technology Intelligence Process). QTIP set out to mine topical searches in EI
Compendex and MicroPatents to profile emerging technologies in one day or
less. This effort relates to “user needs” (Table 15-1). It illustrates the range of
possible tech mining-related facets to consider measuring.
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TABLE 15-1. Factors of Interest and Candidate Measures of Them

Factor Measures

Focus/content User judgment of relevance to the issues at hand,
completeness, proper inclusion of contextual factors, etc.

User needs What their tech mining needs were and the degree to which 
each was met

Tech mining outputs Value placed on each output
Process management Relative effectiveness of various participatory actions,

including time/cost trade-offs
Credibility User judgments concerning credibility of (1) analysts, (2) the 

tech mining generally, and (3) particular findings
Communication User judgments on effectiveness overall and of particular 

media used
Information access Extent of use of alternative modes (e.g., workshops,

modes websites) and user judgments on the effectiveness of each
Timeliness User judgment
What users liked User judgments on comprehensibility, vividness, etc.
What else users User opinions on what additional information would be 

want valuable, possibly contingent on available resources for 
the tech mining

Information quality Analyst and information specialist views on the adequacy of 
information inputs (collectively; individually)

Tech mining Analyst and information specialist judgments on data 
resources adequacy and value of particular software tools

Tech mining Analyst and information specialist assessments of the 
practices adequacy of tech mining steps and ways to improve them:

search, retrieval, data cleaning, analyses done, technology 
information products (TIPs) generated, information 
visualizations, and communication mechanisms used

Tech mining validity Views of various analysts on whether the best available 
information and analyses were performed, and on the 
validity of conclusions reached; suggestions on ways to 
improve

Tech mining costs Direct costs of the tech mining activity ($); opportunity costs
Tech mining payoffs What value was obtained from the tech mining activity? 

Direct benefits? Secondary benefits? Unintended benefits?



Note that this experimental arrangement involved an additional level of
players beyond the “three communities” that we initially anticipated. Here, we
had (1) information professionals (helping with searches and data cleaning),
(2) tech mining analysts (applying VantagePoint to generate basic tabulations
and “innovation indicators”), (3) researchers assigned to assess some aspect 
of a changing technology and related business opportunities, and (4) senior
technology managers as end users of the findings.

15.3. HOW TO MEASURE

Tech mining measurement is akin to research evaluation. A tech mining study
is done and we want to document what was done and how effective it was. Did
tech mining result in the desired outcomes? If not, why not? If so, can we
capture why? We want to build our knowledge of how to perform effective
tech mining by evaluating our tech mining exercises. Research evaluation has
its own body of knowledge that we will not delve into deeply (e.g., journals
such as Research Evaluation, see http://www.prism.gatech.edu/~sc149/reseval/
html/past.html). We share a few basic considerations concerning the nature of
evaluation and evaluation design here.
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Sidebar: User Interests in Tech Mining—the “QTIP” Case

An E-mail survey asked some 30 senior technology managers for their pref-
erences concerning a number of factors. Highlights include:

• More interested in profiling particular technologies than in comparing
companies across technologies

• Quite interested in screening unfamiliar technologies
• Want to see trends in R&D activity for target technologies, and for

subtopics
• Would like tech mining to help forecast technologies’ development
• Interested in identifying related or extension IP
• Like graphical outputs
• Generally would rather not be heavily involved in performing the tech

mining analyses

After generating five sample tech mining analyses, we reviewed these with
Air Products researchers working on those technologies. They expressed a
high priority for hands-on involvement in working with VantagePoint files
and preliminary tech mining outputs. They sought to personally refine, inter-
pret, and present suitable findings to senior technology management.



The distinction between formative and summative evaluation helps align
measurement priorities. Formative evaluation obtains feedback on how an
activity is going, to inform improvement—in our case, to do tech mining better.
Summative evaluation, in contrast, assesses the merits of a completed activity.
This contributes to judgment on its efficacy, and, perhaps, on whether it should
be continued or not. The tech mining manager setting up a measurement
program needs to decide which (s)he wants.

When should tech mining review procedures be designed? It is always best
to design the measurement system in advance—a priori. This enables collec-
tion of the needed information and establishment of suitable baselines and
comparisons. When a priori evaluation design is not possible, post hoc can be
attempted.

What constitutes a good measurement system? The magic answer is suit-
able, fair comparisons. The notion of “threats to valid inference” has proven
an extraordinarily valuable guide in designing interpretable evaluations (cf.
Campbell and Stanley, 1963; Cook and Campbell, 1979; and Section 10.2).
Those designing measurements should keep in mind four general concerns:

• Internal validity—Can you discern whether the activity of interest (tech
mining or a related activity) made a difference? Do you have good bases
for comparison?

• Statistical conclusion validity—Whether the differences observed could
reasonably be attributed to chance? This is enhanced by highly reliable
measures that minimize measurement noise.

• Construct validity—Can we ascertain the underlying variables (con-
structs) at work (to help generalize our findings)? Have we opera-
tionalized our understanding of cause and effect factors well enough to
assess?

• External validity—Can the tech mining outcomes be generalized to other
situations of interest? Could the results be generalized to other persons,
in different contexts, at different times?

To meet these four tests of valid inference, we need to set up solid compar-
isons. Contrast this with the more typical “case study,” in which a singular
activity is reported, often in glowing terms. In the case approach, we might
have performed the coinventor analysis only; then reported that “it worked
great.” In general, such stand-alone case studies are good only to generate
hypotheses for further assessment; they are not generally interpretable regard-
ing the effectiveness of tech mining. The Klavans team, in contrast, compares
coinventor analysis with four other approaches (see sidebar “Comparative
Tech Mining Design”). Those comparisons might be made along a single
measure, but would be even better with multiple measures. That would help
us see in what ways coinventor analysis was, or was not, more effective than
the other tech mining approaches tried.
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To repeat, we recommend that measurements be set up to provide relevant
comparisons. Some basic comparisons are (Georghiou and Meyer-Krahmer,
1992):

• Before and after—“This time we applied tech mining; last time, for a
similar issue, we did not”—here’s how the results differ along several
dimensions (e.g., decision quality, timeliness).

• Control group—“Two units faced a similar issue; our unit applied tech
mining and theirs did not”—here’s how results differed along several
dimensions.

• Comparison groups—extend the control group notion to multiple
instances. These might apply different versions of tech mining, as well as
no tech mining, or other decision support activities.

• Pre- and posttreatment comparison groups—Ideally, an experimenter
would like to control many factors that could distort comparisons; random
assignment of subjects to treatment really helps do this. This almost never
would make sense for tech mining measurement. Best would be to
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Sidebar Case—Comparative Tech Mining Design

Dick and Judith Klavans described (American Chemical Society Annual
Meeting, San Diego, 2001) an intriguing tech mining approach and, what is
really quite unique, a careful validation of it. They worked with a pharma-
ceutical firm to determine what patent analyses would most accurately
portray that firm’s competence in a particular technology. They compiled
over 750 patents filed by the firm over a 5-year period. They then compared
five methods:

(1) Coinventor analysis (cluster based on which individuals appear
together on particular patents)

(2) Cocitation analysis (cluster patents based on their tendency to be cited
together)

(3) Coterm analysis (cluster patents based on similar language used in the
abstracts)

(4) Patent categorization (cluster based on International Patent Classifica-
tion categories) 

(5) Science categorization (cluster based on the scientific journals cited by
the patents in question) 

They determined that coinventor analysis best characterized the technical
competencies of the firm. The intent, of course, is to apply such methods to
learn about other firms. They also note that methods (4) and (5) help probe
for other organizations with related technology interests.



combine the before-and-after type comparison with the comparison
groups notion in a “quasi-experimental design.”

Given the natural disinclination to perform evaluation, we need to devise tech
mining measurement schemes that balance simplicity and cost-effectiveness
with interpretability. Campbell and colleagues have generated a helpful,
limited list of about 50 specific factors that can jeopardize valid interpretation.
Guarding against a few of the key factors that seem to bear strongly on tech
mining measurement can yield more informative results:

• Subject selection—Are the tech mining doers and users reasonably
similar in the units being compared (e.g., in their familiarity with tech
mining, overall subject knowledge)?

• External influences—Can we rule out extraneous influences as causes of
observed differences (e.g., this decision supported by tech mining worked
out better than another decision without tech mining, but could the dif-
ference be attributable to the change in CEO? to the upturn in the
economy?)?

• Other explanations—Play detective!—Can you come up with alternative
plausible explanations for the observed differences (e.g., we put a lot
more resources into resolving Issue A than into Issue B)?

• Reactance—Are the players involved aware that they are being evalu-
ated? If so, could they distort the measures to convey the desired results
(e.g., the manager reports that tech mining made a tremendous contribu-
tion in order to boost chances of future tech mining resource allocations)?

• Robustness—Do we observe similar effects over multiple instances (e.g.,
be wary of one-time findings that tech mining did, or did not, contribute)?

Two “who” issues deserve mention. First, we need to be clear as to whose judg-
ments we want to obtain. Some tech mining measurements (e.g., data quality)
are best provided by information specialists; others (e.g., usability of tech
mining software) by analysts; and still others (e.g., were particular tech mining
outputs influential in reaching decisions?) by end users.

Second, we need to decide who will take the measurements. Tech mining
analysts are most familiar with the work done and the various players, but they
have a strong stake in coming up with favorable findings. Sometimes, it may
be worthwhile to get neutral observers to assess the tech mining results and
practices. It’s a trade-off whose resolution depends on the intended uses of
the measures.

15.4. ENABLING MEASUREMENT

What is needed to initiate tech mining measurement? Here are some factors
in addition to those raised in the previous sections. First, someone needs a
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clear assignment to perform tech mining assessment. That needs to be bol-
stered by definitive organizational backing for the measurement effort.
Otherwise, it won’t happen.

In practice, we have found that documentation of tech mining activities does
not come naturally. Yet it is invaluable for measuring tech mining results and
ascertaining the merits of particular practices. Being able to track “how”
someone performed that search, why they used particular sources, what
prompted generation of that chart, and so forth, facilitates many aspects of
tech mining management. It also fosters quality assurance awareness and
actions (if necessary). Table 15-2 provides a starter checklist to stimulate think-
ing on what should be documented. Once you have decided on the measures
to maintain, it is desirable to make record-keeping easy and convenient, but
also accessible and understandable by others.

It helps to hold a wrap-up meeting at which the players in the tech mining
exercise reflect on who did what, and what worked well. This gives analysts a
chance to reflect on data issues, how they determined analytical approaches,
and the nature of interactions with users. It offers interested users a chance to
enhance their understanding of what lies behind the tech mining results. It can
help information specialists see the “rest of the story”—what was done with
the information they helped provide and refine. Enhanced mutual under-
standing helps build one’s tech mining community. The sense that others share
an interest in performing these analyses fosters resolve to overcome hurdles.
Networking with each other builds a more robust environment so that tech
mining structures don’t collapse when one key person leaves.
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TABLE 15-2. Documenting Tech Mining

Tech Mining Action Document

Sources used Which were considered; why chosen; how accessed
Resources invested Funds, personnel, special materials available for the tech 

mining exercise
Tech mining actions Activities log (indicating who did what, when)

taken
Process steps Log significant steps (e.g., contacts, meetings, key inputs, how 

users were engaged in tech mining activities, feedback 
mechanisms used, communications received).

Outputs (TIPs) File draft reports.
generated

Reactions Compile responses to tech mining presentations, reports,
requests for additional information.

Follow-up Compile information on what happened regarding the issue  
at hand, reports on how tech mining information affected 
decision processes, hindsight assessments of how well tech 
mining had gone and the issue outcomes.



15.5. EFFECTIVE MEASUREMENT

So far, we have set forth a number of considerations in generating measures.
Let’s now focus on what we intend to gain from this effort. In so doing, the
first facet we emphasize concerns measures of success. When all is said and
done, what do we want from tech mining measurement? We distinguish two
main criteria: validity and utility.

Validity concerns whether the tech mining was done as well as it could be.
Did it make the best possible use of the best available information? Did the
analysts apply the most suitable tools to generate the most meaningful indi-
cators? Were those tools applied correctly?

Note that validity does not key on whether tech mining forecasts prove
correct. For instance, suppose we generate competitive technological intelli-
gence (“CTI”) asserting that competitor C could undercut our position in
market M by acquiring certain intellectual assets. As a result of this warning,
our company aggressively counters C’s moves and our market position holds
firm. The threatened bad outcome thus does not come about, but that does
not mean the tech mining was wrong. Indeed, effective tech mining ought to
lead to actions that alter projected futures in our favor.

Other tech mining addresses inherently uncertain situations. We may iden-
tify several alternative courses of action and assign relative probabilities to
each. Our test of validity bears less on what proves out than on whether we
find flaws in the underlying analyses. In the face of uncertainties in forecast-
ing emerging technologies, we want robust tech mining. That is, we seek results
that are replicable by others. We recommend explicit expression of tech mining
assumptions as a starting point for robust analyses.

Determination of validity relies on critical review of tech mining activities
by well-informed professionals (the participants or more neutral observers).
Reviewers may be able to suggest alternative information resources or new
analytical tools besides those used in the study in question. Useful review can
be quite simple or more elaborate.

Utility concerns whether the tech mining proved useful.* This can be 
multifaceted, considering:

• Findings directly contributed to the focal decision processes; the target
users used the results.

• We already knew what decision we were going to make; tech mining
helped in justifying that decision.

• The findings contributed to resolving other issues, possibly by other users
than those initially targeted (i.e., secondary benefits).
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*Utility has other meanings, too. Economists distinguish variations on the “greatest good for the
greatest number.” Others argue that overconcentration on economic benefits downplays other
important human interests (e.g., equity, transcendence). There is a loose parallel for us from such
debates—the utility of tech mining can take many forms.



• The tech mining processes enhanced “everyone’s” understanding of the
issues relating to the topic,possibly leading to redefinition of the critical issue.

• The tech mining processes enhanced appreciation for the use of empiri-
cal knowledge in technology management, leading to better decision
processes generally.

Measurement of utility can become involved. At the first tier, we may ask
the target users whether the tech mining influenced their decision-making.
Pursuing further, we might explore how tech mining outputs affected people’s
thinking on the issues. Also, we can try to understand more about the processes
through which tech mining was applied. For instance, we might pick up that
tech mining saved X amount of time in coming to a decision (or conversely,
that the decision was improved a little bit, but it sure was slowed by tech
mining!). Or we could seek to find out reasons why certain players appreci-
ated the tech mining and others did not. The sidebar “Keeping Awake at
Night” illustrates utility of a special nature.
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Sidebar: Keeping Awake at Night 

(an Air Products experience related by Merrill Brenner)
Merrill asked a technology manager in an emerging area what was

keeping him awake at night, and he replied with three “A vs. B” technol-
ogy choices that could undermine his proposed product offerings. The Tech-
nology Analysis unit gathered substantial background information on these
three topics and did analyses to determine corporate paths. That is, they
played out alternative development strategies and their relative payoffs for
Air Products. From these, senior management chose a favored strategy. The
technology manager was very pleased to stop the “recycling”—he was asked
often to change directions based on the latest external developments. He
now has a set direction, with a documented basis, and he only has to worry
about the basis changing.

One danger in focusing measurement or assessment on single tech mining
activities is losing sight of cumulative benefits. Compilation of tech mining
results across many studies of different technologies and organizations (com-
petitive intelligence) can prove very useful. A given technology profile can now
be contrasted with that of other technologies. Recognition of similarities and
differences can aid technology forecasting. Other technologies’ development
patterns may make good analogies. As such, they could be “leading indicators”
for the target technology (e.g., VCR market penetration as a model for DVD
emergence) (See Chapter Resources). Similarly, a given competitor profile can
be benchmarked against other companies (or countries or whatever).



Moreover, cumulation of tech mining results over time can build up valuable
indicators. Particular analyses can be updated regularly (e.g., semiannually).
Updated information of this sort can flag important changes, acting as an early
warning system. Time series on R&D and business activity over time may lend
themselves to fitting of growth curve models and projections. The combination
of tech mining outputs over multiple topics, over time, can be a powerful infor-
mation resource. Consider sharing this information via intranet websites to
provide a base for organizational knowledge sharing and application.

15.6. USING MEASUREMENTS TO BOLSTER TECH MINING

And last, a word in flagrant tech mining self-interest! Although measurement
of tech mining results entails threats to its practitioners, it also offers great
opportunities. As a new enterprise, tech mining does not come with ready-
made credibility. We need to document that tech mining works, that it gener-
ates really valuable information, most of which is not available by other means.
We also need to show that the tech mining benefit-to-cost ratio can be
extremely high. As advocates, we believe these positive results are within our
reach. That does not mean that all tech mining efforts will be unqualified suc-
cesses. Rather, we sense progress up a sharp learning curve that will make tech
mining indispensable someday. So, measure tech mining results and broadcast
the results to build support for the endeavor.

Recalling a message of the last chapter, personalized stories provide a com-
pelling, vivid way to convey messages. So, in addition to generating credible
measures and tabulating the advantages accrued from tech mining, we need to
collect success stories. These have their first use within organizations—where
well-respected colleagues relating value received from tech mining exert bona
fide influence. We also hope that somewhat sanitized story versions can be
shared outside, helping to build the larger tech mining enterprise. To be even-
handed, we need to also share tales of failure, along with putative remedies.

While we are considering how to promote tech mining, we suggest thinking
about ways to lower the barriers to tech mining use. One key seems to be pro-
vision of cost-effective infrastructure. For tech mining, this begins with access
to data—that is, unlimited-use licenses for a core set of science and technology
databases. Database providers and gateways should explore ways to expand
such access. For one, data provider agreements with trade associations could
provide affordable data access to small and medium enterprises (SMEs). Inte-
grating data access with tech mining software to streamline analyses and busi-
ness arrangements would help a lot. Allowing technology consultants to resell
data from R&D and patent abstract databases could expand tech mining an
order of magnitude. We ought to target universities so that students graduate
with an awareness of what tech mining can contribute and how to make it
happen.

Within large organizations, the infrastructure breakthrough is beginning.
The inclusion of tech mining elements in strategic business decision processes
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elevates tech mining to a new platform. Making it part of the decision system
means that a much wider user cadre becomes aware of its potential and famil-
iar with its technology information products (TIPs). That should provide
needed positive feedback to develop more powerful tech mining tools and
more effective results. It also promises a robust base for tech mining, in con-
trast to the situation of a lone champion whose departure results in collapse
of the endeavor.

One final boost—were there a visible research program in place, this would
have broad impact. In the early 1970s, the U.S. National Science Foundation
set up modest funding for technology assessment (TA). That helped spawn
research and publications thereof, academic courses, books on TA, and a com-
munity of practice. Recent European Community research initiatives support
the extension of technological foresight methods and practices (e.g.,Workshop
on Future Technology Analyses, Institute for Prospective Technology
Studies—IPTS—Seville, May, 2004). Tech mining would benefit tremendously
from having a research program focused on its practices. That, in turn, could
stimulate a peer-reviewed literature to develop practice.

CHAPTER 15 TAKE-HOME MESSAGES

This chapter has addressed ways to assess a tech mining exercise. Exhibit 
15-1 digests our experiences to offer more informal rules of thumb.
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EXHIBIT 15-1 Ten Tech Mining Commandments

(1) Focus your tech mining exercise with care; the right scope is critical.
(2) Get with your users; process management makes a huge difference.
(3) Be clear on the main questions to be answered and what information is desired,

when.
(4) Gain access to suitable data sources.
(5) Search and run preliminary analyses for review by knowledgeable persons to

refine the search.
(6) Clean your data.
(7) Pick multiple indicators that address the target management questions most effec-

tively; address contextual and market considerations, as well as technological 
maturation.

(8) Run the necessary analyses (not all conceivable ones); check results; run sensi-
tivity analyses.

(9) Be alert to surprises—activity at the fringe of your target technologies; don’t
become a captive of the conventional wisdom.

(10) Invest serious effort in representing your findings so they convey the punch line
effectively, but also the uncertainties and risks.



We suggest regarding tech mining evaluation:

• Develop a systematic strategy to measure, or evaluate, your tech mining
results.

• Decide whether formative and/or summative evaluation is wanted.
• Design tech mining evaluations with suitable, fair bases for comparison.
• Address the main threats to drawing valid inference from your 

evaluation.
• Be clear on whose judgments are most suitable on each facet of the 

evaluation.
• Decide who should take the measurements and make this a clear 

responsibility.
• Require tech mining documentation.
• Hold a wrap-up meeting to mark the completion of a tech mining exer-

cise to spell out lessons learned.
• Measure the validity of the tech mining in question.
• Measure the utility of the tech mining in question.
• Gather tech mining findings and share them via the intranet.
• Use measured results and success stories to promote tech mining in your

organization.
• Look to systematize tech mining as part of your organizational decision

or policy processes.

CHAPTER 15 RESOURCES

There are many technology forecasting and assessment methods. Glenn 
and Gordon’s (2002), Futures Research Methods (http://www.acunu.org/
millennium/FRM-v2.html ), is an excellent resource. See also Technology
Futures Analysis Methods Working Group (2004).
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Chapter 16

Example Process: Tech Mining
on Fuel Cells

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

How do you do tech mining? This chapter shows the way through an illustra-
tive analysis of fuel cells. If you wish, you can step through the tech mining
actions with us by using software (VantagePoint Reader) and sample data 
provided via the Wiley website (ftp://ftp.wiley.com/public/sci_tech_med/
technology-management).

16.1. INTRODUCTION

Read this chapter in conjunction with Chapter 4. It introduces fuel cells and
presents selected results for those interested in using tech mining, but not nec-
essarily doing analyses themselves. This makes for some cross-referencing of
results presented there, for which we apologize.

We select VantagePoint (“VP”for short) as the software to illustrate the analy-
ses. You may have come across versions of the software under other names.
TechOASIS is the version of VP available without charge for U.S. Government
users.* Another version of VP, Derwent Analytics, is tailored to work easily with
Derwent patent data (and also Delphion and Web of Knowledge data).

You might question whether this choice is biased—it is. We are intimately
involved with VP development. But this is the software we know best and have
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collectively used in over 100 tech mining analyses of various sorts. So discount
our enthusiasm, but judge for yourself the value of the sorts of outputs we gen-
erate. Helpfully, using a single software package enables us to provide a
“reader” version of it so that you can get a hands-on feel for tech mining. You
may want to visit the website and track the tech mining steps on sample files
containing about 10 percent of the fuel cell records.

This chapter aims to present the steps leading to outputs of tech mining,
rather than the mechanics of using this particular software. Hence, we mention
some of the dirty work—such as data cleanup—but without detailing it. We
want you to gain a sense of the requirements and capabilities of tech mining.

VP works in conjunction with Microsoft Windows programs. This makes
tech mining results easily available in the Microsoft Office suite for further
analyses, reports, and presentations. How, other than using VP, could you do
such tech mining? You have several major alternatives, including:

• Do it yourself using the capabilities of a database search engine and other
common software. For typical Boolean search engines, you can generate
activity counts by varying your search terms. For instance, through the
Engineering Village website, you could search INSPEC for “fuel cells.”
Then restrict that search year by year (e.g., “fuel cells” and “2002”) to jot
down annual activity. You could then enter those counts into general ana-
lytical software, such as MS Excel, to generate a trend plot over time.

• Apply search engines that offer an analytical option. For instance, Chem
Abstracts’ search engine, SciFinder, can directly generate activity lists in
the form of nomographs.

• Create your own tech mining scripts with special purpose languages such
as Perl.*

• Use other text mining or statistical software. Possibilities are noted in
Appendix B, “Text Mining Software.”

Stepping through this chapter should give you a good sense of what tech
mining entails. For tech mining veterans, you may also gain some new ideas
on alternative ways to generate useful outputs. We follow the nine-step process
for carrying out tech mining, used throughout the book—Table 16-1.

This chapter treats each of these steps in turn, in greatly varying degrees of
detail, for selected fuel cell aspects. In particular Steps 5 and 6, basic and
advanced analyses, are illustrated in depth.

16.2. FIRST STEP: ISSUE IDENTIFICATION

The goal of this step is to establish a clear set of questions for performing the
tech mining study. In the present case of fuel cells, the motive is simply illus-
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tration. Additional motives in performing an analysis of fuel cells might focus
upon:

• Competitor analysis—profiling and interpreting what one or more orga-
nizations are pursuing in fuel cells

• Particular subtechnology analyses—exploring what is happening in one
technology (e.g., solid-oxide fuel cell advances) or comparing multiple
technologies (e.g., alternative bio-fuel cell approaches) 

• Target applications (e.g., the relative merits of certain fuel cells, compared
with each other and with other energy sources, for electric vehicle use) 

In the present case we explore various application topics in a casual manner,
for example, profiling R&D for “microgrids.”* 

16.3. SECOND STEP: SELECTION OF INFORMATION SOURCES

The goal of this step is to find the most authoritative sources available for
mining information about the topic. In the present case of fuel cells, we
selected the following three databases.†

• Science Citation Index (SCI—from Thomson ISI’s Web of knowledge
website)—an extensive source for fundamental research

• INSPEC (from IEE, the Institution of Electrical Engineers)—an excel-
lent source of engineering research

• Derwent World Patents Index (“Derwent” for short)—a leading source of
patent documents published by multiple patent offices
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TABLE 16-1. The Nine-Step Tech Mining Process

1. Issue identification
2. Selection of information sources
3. Search refinement and data retrieval
4. Data cleaning
5. Basic analyses
6. Advanced analyses
7. Representation
8. Interpretation
9. Utilization

*“Microgrids” are multifunctional electrical networks with distributed energy production.
†We accessed data via Dialog, a leading gateway to over 400 different databases. We expressly
thank IEE, Thomson Derwent, Thomson ISI, and Thomson Dialog for their permission to utilize
these data.



Furthermore, other attractive fuel cell publications sources include Energy
Science and Technology and Chem Abstracts (coverage noted in Section 3.2).
Also, Internet resources are used to identify more current activities and 
contacts. Eventually, these empirical studies should be complemented with
expert opinion.

16.4. THIRD STEP: SEARCH REFINEMENT AND DATA RETRIEVAL

The goal of this step is to formulate queries for extracting the records (whether
patents or papers) from the databases.

In October 2002, we searched for abstracts of papers relating to “fuel cells”
in SCI and INSPEC. In March 2003, we updated these searches and also
searched for patent abstracts mentioning “fuel cell” in Derwent. Alternative
search schemes might have restricted searches to particular data fields (e.g.,
titles, keywords) or certain years.

In real tech mining we would iterate these searches to sharpen the focus.
We would also continue to grow our knowledge of fuel cells by expanding and
refining our queries as our awareness of the technology deepened.

We are not seeking to retrieve a handful of records that precisely match a
target interest—as a good librarian might do for a researcher who wants to
read a few state-of-the-art papers. Nonetheless, we do need both to ensure
that the search results reflect the scope of the field of fuel cells and to reduce
the truly extraneous noise. We usually do this by downloading 500 recent
records from a simple search on the identified issue. We then use VP to gen-
erate a list of leading keywords. We show the most frequent keywords to the
target user or others knowledgeable about the technology and identified issue,
requesting feedback on the following:

• Synonymous terms to add to the search algorithm
• Clearly wrong terminology, possibly to suggest phrases to exclude from

the search
• Example “right on target” items

This sometimes serves to open the door for the user to alter the original tech
mining request!

16.5. FOURTH STEP: DATA CLEANING

The goal of this step is to eliminate redundancy and unnecessary variations in
the data. Although the search begins with nearly 24,000 patents, and nearly
12,000 publications, these are reduced by cleaning. Table 16-2 helps track the
data consolidation processes.
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In the case of patents, some patents were defined too narrowly and were
only of the most narrow specialty interest. In the case of publications, dupli-
cations were introduced as the two different database companies indexed the
same article. This section considers how to find and eliminate these excess
records.

The Derwent search on fuel cells yielded 23,899 records. Many of those
patent records reflect patents applied for only in Japan. We focus on 9724
patent family abstract records (a subset of the 23,899 records) including only
records whose patent family includes one or more patents in a country other
than Japan. (VP enables this by designating a “group” made up of every
country other than Japan for the patent family field. We then form a new
dataset based on this group.) Unless one has a particular interest in Japanese
patenting, this process yields a better perspective on world patenting of fuel
cell technologies.

The 9724 patent family abstracts reflect 31,559 patents (i.e., 3.3 patents per
family). However, we see 34,073 instances because some patents appear in
multiple families (closely related patents).

Generating a single research papers file of 11,764 publication abstract
records presented other challenges. We consolidated searches in two databases
(SCI and INSPEC). We also blended the October 2002, and March, 2003
searches that contained major overlaps for the year 2002.

To do this, we first applied VP’s “data fusion” function, then its “remove
duplicate records.” The latter can be done simply—as we did, just matching on
article titles to remove one if there were another paper with the same title.
For more critical applications, it can be adjusted more finely to use informa-
tion from multiple fields (e.g., author and source) and to apply fuzzy match-
ing. The right cleanup process will depend on sensitivities given the intended
uses.

Data fusion was necessary for two reasons. First, where duplicate records
were found, we needed to delete one of the two records and create a single
uniform record containing all available information. Second, for analysis
reasons we need a single uniform record. Where fields differ by name or
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TABLE 16.2. The Data Cleaning Process

Databases Aggregations Focus Quantities

1 Derwent Patents All records 23,899
2 Derwent Patent families All records <23,899
3 Derwent Patent families Excluding solely Japanese 9,724

families
4 Derwent Patents Excluding solely Japanese 31,559

families
5 SCI, INSPEC Publications All records >11,764
6 SCI, INSPEC Publications All unique records 11,764



content between our two databases, we must fuse the data to create a common
record type for analysis. Note that we chose to not fuse the publication and
patent records together. The two kinds of data are qualitatively different, and
we deem it best to view these as complementary, rather than comparable, indi-
cators of technological progress. What follows is a more detailed example of
this data fusion process.

We needed to combine “the same” fields from SCI and INSPEC records
(e.g., “author” from SCI records with “author” from INSPEC records; “date
actual” from INSPEC with “source publication year” from SCI). We likewise
combined the nonidentical “affiliation” (of the first author) from INSPEC with
“affiliation” (of all authors) from SCI. Such nuances suggest careful review of
your tech mining objectives before fusing records from different sources.

For some fields, combination requires trickier choices. For instance, SCI and
INSPEC each provide keywords, but not with identical meanings. We searched
INSPEC through Georgia Tech’s Electronic Library wherein author- or
journal-generated keywords are consolidated with INSPEC-assigned key-
words in a single field. On the other hand, we have SCI “keywords plus” (key-
words using cited title phrases distinct from the article itself; these differ from
INSPEC’s standardized index terms), separate from SCI’s field for author-
generated keywords. For present purposes we combine all of these as 
“keywords-combined.”

Data cleaning can dramatically improve the quality of tech mining analy-
ses to follow. One way to expedite the process is to script the basic cleaning
steps you routinely use. We have several “generic cleanup” macros for VP. You
can select a suitable one and let the computer crank through the steps—often
fairly time-consuming for files containing thousands or tens of thousands of
records. Cleanup tasks differ by information source (e.g., markedly different
for publication and patent databases) and intended tech mining uses. Section
16.6 deals with additional cleaning aspects. Do clean your data!

16.6. FIFTH STEP: BASIC ANALYSES

The goal of this step of the nine-step process is to begin the analysis of the
data. These analyses may target specific information you know you want and
exploratory purposes, to find out about the topic. As you read the following
materials, note that we describe four distinct tasks:

• Exploratory Analyses
This task aims to explore both content and players. This can help scope
available sources of information and confirm that the query used is actu-
ally getting the data intended.

• Additional Data Cleaning
This task aims to explicitly reduce unwanted noise, variation, and redun-
dancy. It involves identifying sources of noise that must be cleaned before
even basic analyses can be conducted.
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• Producing Lists (“first-order” analyses)
This task aims to identify the top areas of research, as well as the top
research participants, via lists. Lists identify the major components of the
data, whether they be leading keywords, leading research institutions, or
whatever.

• Combining Lists as Matrices (“second-order” analyses)
This task helps to understand complexities of the data—second-order
effects, if you will. It can help produce research profiles.

Note that the tasks are usually iterative. For instance, in browsing a list we
notice extraneous or duplicate information, which prompts us toward further
cleaning. We discuss first-order and second-order analyses in Chapter 9.

This section combines distinct analyses of publications and patents to get a
robust picture of activity in the field of fuel cells. We therefore discuss the two
sources of data side by side in this tech mining example.

First Basic Analysis Task: Exploratory Analyses

In the exploratory analyses we examine the fields available to us in our patent
and publication abstract records. We get a sense of the general scale of activ-
ities by examining the numbers. Where warranted, we probe further by using
our tech mining software to conduct more detailed queries against the data.
We then look at specific records and patents to make sure we have down-
loaded relevant information. And, having identified sources of noise in the
data, we use tools such as algorithms and thesauri to clean the data. This
section indicates specific steps taken to clean up names of various research
institutions and countries.

First, we begin with the examination of general fields and headings. Table
16-3 lists the available headings from the Summary VP sheet for our combined
SCI & INSPEC publication abstracts file. The reference “Cleaned” mentioned
below indicates that lists have been processed using “list cleanup” and/or the-
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TABLE 16-3. Available Publication Abstract Fields

Fields Numbers of Items

Raw record 11,764
Affiliation (cleaned) 2,522
Authors (cleaned) 12,720
Class codes 793
Country 342
Keywords 8,929
Record type 22
Source (conference) 465
Source (journal) 1,367
Title 11,764
Title phrases (cleaned) 18,962



sauri operation(s). The VP Summary page provides background information
(number of records, databases searched, date). It also gives field descriptions,
which are not shown in this table. These include the following.

• Whether the field is “as is” or is derived from the raw record
• The nature of the data in that field
• Whether it has been tagged as a certain type of data such as “year”

As shown in Table 16-3, we see how many items from each field appear in the
data set of 11,764 fuel cell R&D publication abstract records.

Table 16-3 conveys the scale of research activity on fuel cells (e.g., do we
find 10 or 10,000 papers?). It also provides additional information that can be
surprisingly useful. For instance, note there are 12,720 authors for these 11,764
papers, or just over 1 author per paper. We can go further by tallying the
number of authors with a single paper (6700), plus 2 times the number with
two papers (2472), on through the one author with 492 fuel cell-related papers.
This yields a total of 42,534 authorships for the 11,764 papers—an average of
3.6 authors per paper. This large degree of teaming suggests a field actively
pursuing technology application.

Next we examine our patent mining counterpart to Table 16-3. Thus 
Table 16-4 lists the available headings from the Summary VP sheet for our
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TABLE 16-4. Available Patent Abstract Fields

Numbers of 
Fields Items

Raw record 9,724
Abstract advantage 5,948
Abstract novelty 4,227
Abstract use 3,619
Basic patent country (cleaned) 35
Basic patent year 39
Derwent accession number 9,724
Derwent classifications (cleaned) 278
Family member countries (cleaned) 42
Family member years 39
Family member years (most recent) 37
File segment 3
Inventors (cleaned) 10,112
Patent assignees (cleaned) 3,311
Priority countries (cleaned) 41
Priority years 44
Priority years (earliest) 44
Tech focus 1,892
Titles 9,631



Derwent patent abstracts file. The VP Summary page provides background
information akin to that for the R&D publications of Table 16-3. Table 16-4
tallies how many items from each field appear in the data set of 9724 fuel cell
records.

The actual summary will vary according to which fields you import to
analyze. And, as already noted, databases differ in the numbers and types of
fields they provide. As an example, Derwent rewrites patent abstracts to better
convey content and claims (note the several Abstract fields in Table 16-4), and
assigns its own classifications (Derwent Classifications shown here, as well as
others not shown—File Segment classification, Manual Codes, Chemical 
Fragment Codes, Keywords Indexed, etc.).

The data summarized in this table present the three following patent 
types:

• “Basic”—a patent application cited in the search report of a patent appli-
cation filed later, whose invention is an improvement upon that of the
former application, which is sometimes called “basic invention”

• “Family”—a group of patent applications and patents directed to 
the same invention, i.e., associated with the same priority patent 
application

• “Priority”—the first patent application within the meaning of the Paris
Convention, sometimes called “priority patent application,” upon which
other patent applications are subsequently filed claiming priority, thereby
forming a patent family 

Here we have only imported country and year information for these types;
useful information varies according to your purposes. For instance, competi-
tive technological intelligence (“CTI”) can garner insight from plotting the
distribution over time of a company’s priority vs. family patents (overall or on
a specific topic). The lag between priority applications and issued patents can
tell about that company’s patenting skill, global market interests, and strate-
gies (e.g., “submerging” patents, in the U.S., by ongoing modification of a
patent application to delay the patent to be issued)—Chapter 12 pursues
patent analysis issues further.

We have now performed a basic survey of the data. Before concluding the
survey, let’s first examine the data for a given topic of interest. VP supports
our surveys with a “find” function. We mentioned interest in “microgrids”—
the “find” function applied to the Keywords list of our publications locates
none. So, we search the Title Phrases list and there we indeed find one.
Reading that abstract suggests that we expand our search to look for the
phrase “distributed power,” yielding ten hits. Searching “Raw Records”
expands the set to 45 hits. These could be examined further to weed out un-
related items and to identify additional worthy search terms. Such probing
may well suggest you go back and refine your search.
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We shouldn’t neglect the straightforward aspect of “mining”—locating
“gems” in the form of specific key articles or patents to be studied in depth.
Here again tech mining software supports our needs in getting a quick survey
over the data. For instance, given our interest in microgrids, we certainly want
to read the publication abstract entitled: “Microgrids [distributed power gen-
eration].” Our data set of abstracts does not contain the full conference paper,
so obtaining that requires external search and retrieval. Some science and
technology databases do provide full texts and others provide links to full
papers or patents. This depends on the licensing arrangements made by the
database providers, as discussed in Chapter 6.

Second Basic Analysis Task: Additional Data Cleaning

Note that we have a suspiciously large number of countries in our publication
data—Table 16-3 shows 342 distinct countries publishing in the area of fuel
cells! Inspection of the “countries” shows that the file has considerable noise
in trying to extract country name from the author affiliation field. We’ll keep
this in mind and correct the totals for countries of interest.

This illustrates an essential tech mining principle—don’t pursue “perfec-
tion’ in your searching or cleaning unless it directly serves a tech mining objec-
tive. You can expend (waste) gobs of resources seeking the unattainable goals
of capturing every related paper, with no unrelated ones, and getting every
author, institution, and term just right. BUT—you must set your users’ expec-
tations to match. Tech mining depicts “big picture” activity patterns that do
not depend on supreme accuracy. Yet it also probes deeply, where accuracy
can become essential. Our message is to decide how important recall (getting
all relevant records) and precision (no irrelevant ones) is to each tech mining
subtask as you proceed. For instance, if your broad-brush examination sug-
gests that one company is a promising acquisition candidate, then go back and
refine your search and data cleanup for that company’s R&D activity records.

So, continuing with our data, what about the institution names? We also
recognize that the names of institutions are noisy and redundant. Cleaning
these names is important to get accurate counts of the leaders, or organiza-
tions about which we have particular interests, in research. Don’t fritter away
tech mining resources trying to get every last publishing organization of our
2500 precisely right. Who cares?

To make a better tally we find and group variations on the leading institu-
tions. For example, we have VP find any affiliations containing the string
“julich.” Examination of the 9 variations suggests these all pertain to “Inst. fur
Werkstoffe und Verfahren der Energietechnik, Forschungszentrum Julich
GmbH,” so we combine them (second item in Table 16-5 below). We usually
consolidate affiliations at the company, university, or research institute level.
However, for some purposes, one might need to distinguish particular loca-
tions of a company, or a single research lab within a research organization or
university (see sidebar).
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We repeat this process of finding possibly common entries, inspecting those
candidates, and tagging the ones we deem to be the same institution, forming
a group. (If you have access to the Wiley website, you might want to follow
this discussion by using VP Reader on the 10% sample fuel cell data sets.) We
then sort the list on this group (e.g., University of London) to view all the
tagged items together. In the case of the University of London, searching on
“london” finds a number of entities that are not the University, so we untag
them. But it also suggests that “Imperial College” is affiliated with the 
University, so we find the string “imperial coll” too, and add tags to the 
University of London group. Some knowledge of the organizations involved
obviously helps in this process as it might be preferable to retain separate iden-
tities for these colleges. In VP, we can “create thesaurus from groups” to indi-
cate these are all to be taken as variants of the particular institutions. Then we
apply the resulting thesaurus to generate a list with those organizations con-
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Sidebar: Who’s Who?

Affiliation cleaning example—which of these three organizations that VP
nominates as being the same are truly the same?

(1) Adv. Energy Technol. Grp, Korea Electr. Power Res Inst., Daejeon,
South Korea

(2) Dept of Mater. Sci and Eng, Korea Adv. Inst. of Sci and Technol.,
Daejon, South Korea

(3) Korea Electr. Power Res. Inst., Taejon, South Korea

We deem the first and third as the same organization—overriding the nom-
inally different city and the different organizational level. Cleaning the data
often entails making somewhat uncertain choices. For some uses, one
prefers a conservative approach to avoid clouding the case. For most,
however, aggressive cleaning offers net gains.

TABLE 16-5. Top Organizations in Fuel Cell Publication (Raw)

Number of Revised Numbers 
Affiliations (Cleaned) Records of Records

Univ London Imperial Coll Sci Technol & Med 148 158
Res. Centre Julich KFA, Germany 115 241
Tokyo Elect Power Co Ltd 87 102
Lab. of Materials Science, Delft Univ. of Technol., 83 90

The Netherlands
Los Alamos Nat. Lab., NM, USA 72 128



solidated as we desire. The last column of Table 16-5 indicates a revised order-
ing of the top organizations publishing research on fuel cells. You need to
decide the most suitable organizational level (e.g., you might want to separate
departments within a university, consolidate units of one campus, or, as in this
case, combine colleges of one university system).

VP keeps getting smarter—“learning” by continually enhancing given the-
sauri. Software “out of the box” may come with premade thesauri. Nonethe-
less, it may require additional learning to adapt these thesauri to the terms,
authors, and organizations most commonly met during your targeted studies.
We continue to enhance thesauri for certain prominent multinational compa-
nies and American universities (e.g., cumulating variations on “MIT”). Others
might keep building suitable thesauri covering keywords, authors, and organi-
zations of enduring interest.

We often want to distinguish specific types of research organization. We
have been growing a thesaurus that categorizes affiliations into industry, acad-
emia, and government. We do not, for our purposes, make a distinction
between nonprofit or other forms of research organizations—others might
wish to do so, however. Bibliometric indicators demonstrate that we often
encounter “80/20 rules”—the first 20 percent of all organizations will proba-
bly encompass more than 80 percent of all references we encounter in prac-
tice. This is both a blessing and a curse—a thesaurus can be made quickly and
effectively. But if we aspire to perfect cleanliness in the data, it is going to take
a lot of work, and many, many more references to fully complete.

This organizational type thesaurus uses general cues (e.g., “univ” is usually
university and “ltd” for limited is usually corporate) plus specific identities
(e.g., “Georgia Tech” is a university). Figure 4-2 illustrates the distribution of
the three types of organization publishing on fuel cells, namely, academic, cor-
porate, and government. This coarse analysis has only captured about 70
percent of our fuel cell organizational identities. But that’s OK—it gives us
the sense of what’s going on. Of the 8418 organizations so classified, 1799 are
taken as corporate—21 percent. This is quite high for technical publication,
implying serious corporate interest in fuel cell development.

Third Basic Analysis Task: Producing Lists 

Making lists that tally the content in particular fields over a large set of records
sounds simple, and it is. Nonetheless, this is often the most valuable tech
mining step. In a matter of minutes, a tech mining novice can gain under-
standing of “who’s doing what” in a research domain. One can then concen-
trate on the aspects of most interest for further analyses.

Tech mining adds value to a bibliographic search beyond finding particular
“gems.” We can make lists of any of the fields of Table 16-3. We could list
leading journals covering fuel cells. We could spot intersecting research
domains by applying a thesaurus to the “Class Codes,” and on and on. Let’s
create a “Top N” list for affiliations (research organizations). We don’t really
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want to list all 2522 affiliations; Table 16-5 offers the five leading ones based
on number of records.

Figure 16-1 illustrates the activity levels for the five top publishing firms.
Note that none of these appear in Table 16-5, even though some publish more
than TU Delft. Comparing the table’s “number of records” with the “revised
number,” we find considerable increases. These resulted from searching and
tagging variations on these leading affiliations to consolidate their publications
better. In doing this, we did not check all the affiliations, so we missed that
Siemens belonged in the table. (Then, we left the table and figure as they are
to illustrate the foibles of something so simple as counting!). Other issues also
arise—in some cases we were not sure of all variations on a company’s name;
for Siemens, we decided to include Westinghouse, and we combined Siemens
research from Germany and the United States. For Mitsubishi, we don’t
include Mitsubishi Materials or Mitsubishi Heavy Industries. We’ll return to
these data in conjunction with patenting later.

Another example—what are the leading American universities in fuel cell
publication? We again use the find; tag; and group process to consolidate vari-
ations. Figure 16-2 depicts these leading American universities. We’ll refine
this tally in the next section when we combine these data with additional infor-
mation to produce “matrices.” Note also that we could chose “Top N” as we
like—in this case we stopped with Top 8, at ALP’s alma mater (Caltech).

Universities tend to be the most frequent publishers, whereas corporations
tend to be the most frequent assignees for patents. We can probe finer levels
in many ways. Suppose we’re examining Western European activity in fuel
cells oriented toward automotive applications. To illustrate use of a data
subset, we select (1) automotive-oriented fuel cell patents, (2) dating 2000–03,
for (3) assignees in Western European countries—yielding 278 records. Table
16-6 gives the “Top 8” companies (chosen as the cutoff because there is a drop
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to 7 patents for the ninth company). Note that many are automotive compa-
nies, but others, such as Siemens, have related fuel cell patents in this domain
as well as in other areas.

Table 16-7 shows the family member distribution for priority patents from
these top European automotive fuel cell companies. This table indicates the
patent protection behavior for European firms. For instance, 47 of Xcellsis’ 49
patents show German priority. Xcellsis has then gone on to file with EPO on
35 of these, and for U.S. protection on 34, but only 11 in Japan. Keep in mind
that bibliometrics cannot substitute for knowledge of the field and the data.
We will explore Xcellsis further shortly.
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Figure 16-2. Top eight American universities publishing on fuel cells

TABLE 16-6. Leading Automotive-Oriented Fuel Cell
Patent Assignees in Europe, 2000–03

Patent Assignee No.

Xcellsis 49
Daimler-Chrysler 40
Siemens-Westinghouse 22
Mannesmann 20
Volkswagen 18
Emitec 17
Renault 16
DBB Fuel Cell Engines 15
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Fourth Basic Analysis Task: Publication Mining—Matrices

We combine two lists to generate “2-D” analyses. Matrices enable you to see
interactions (e.g., Table 16-7) or to break out additional details for each
member of a chosen list. In VP, handy macros ease the combining of data to
produce matrices and tables. In this example we focus largely on “research
profiling”—combining information about institution with information about
keyword or classification. At the end of the section we highlight a variety of
additional matrices that can be tabulated readily and interpreted for fuel cells.
These include co-occurrence data as discussed in Chapter 9 (Section 9.3).

Table 16-8 shows the results of running a “custom profile” macro for the
top 3 American universities. Here we just asked for the top 3 authors and top
5 keywords for each university, from our fuel cell publications file. This helps
spotlight colleagues with whom we want to establish contact. Were our inter-
ests in solid oxide fuel cells, based on this information, we might check out
websites of Georgia Tech first.*

How might you use such breakouts? Imagine you are helping identify invi-
tees for a special fuel cells workshop. You restrict analyses to publications of
the past three years, seeking those currently active in the field or a specialty
therein. You then profile, say, Asian and European universities because you
are seeking international participants. In addition, you might successively
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TABLE 16-8. Custom Profile: Top American Universities

Publication
Universities Counts Authors Keywords

Univ of Texas [88] 88 Goodenough, JB [33]; tubular fuel cell [42];
Appleby, AJ [18]; fuel cells [38];
Keqin Huang [13] electrochemical 

electrodes [15];
electrolytes [9];
electrolytic material [9]

Georgia Tech [81] 81 Min Liu [39]; tubular fuel cell [34];
Winnick, J. [22]; fuel cells [28];
Wepfer, WJ [11] electrochemical 

electrodes [23];
solid oxide fuel cells [13];
oxides [8]

Case Western [71] 71 Savinell, RF [47]; tubular fuel cell [37];
Wainwright, JS [20]; fuel cells [33];
Wasmus, S [14] electrochemistry [13];

electrochemical
electrodes [12];

electrolytes [7]

*See more at http://www.fcbt.gatech.edu/.



search on specific topics such as solid oxide fuel cells, then on proton exchange
membrane fuel cells—seeking a balance of interests by type of fuel cells.

We can repeat these sorts of simple analyses with the patent data. Figure
16-1 showed the five companies publishing most on fuel cells. Table 16-9 pro-
files those companies’ patent activity; using classifications, we profile the
varying areas of fuel cell activity. We note the following points:

• Siemens and Westinghouse each show extensive patenting activity; one
might prefer to analyze these merged companies separately for some pur-
poses. Note also that both show extensive recent patenting, unlike some
of the other companies.

• The leading publishers are not the same as the leading patenters—Tokyo
Electric shows minimal patenting, whereas International Fuel Cells shows
251 patents in the data set and Honda 186 (not shown here).

• Distinctions in emphases do not appear generally from the Derwent
patent classifications, but one could locate activity in particular classes,
such as X21—Electric Vehicles.

• Certain inventors are quite prominent—one might well explore further
for CTI interests.

Here are additional matrices to stimulate your thinking of candidates to
craft for your own tech mining needs:

• Publication Keywords by Year—to identify emerging commercialization
opportunities

• Patent Classification by Year—performed for all leading patent assignees.
Figure 16-3 shows one type of visualization of such a matrix.

• (Topic or Researcher) by Year—to see trends and what or who is “hot”
• (Topic or Researcher) by Time Slice (e.g., 3-year blocks)—similar, but

consolidates time to better see major transitions
• Topic (Keyword or Cluster or Title/Abstract Phrases) by Class or 

Industry Code—to see which areas are emphasizing which topics
• Author by Times Cited—to see whose work appears to have high 

influence.

Figure 16-3 shows the evolution of selected companies’ patenting activities
since 1990. It highlights the current importance of fuel cells. As shown in this
figure, Siemens has the longest involvement with this technology, but watch
out for Honda, which is dramatically escalating its work.

In addition, co-occurrence (i.e., information derived from terms tending to
occur in the same records) can help answer other questions. Suppose you want
to decide which conference would be best to attend to learn of current
research on solid oxide fuel cells. A co-occurrence matrix of the phrase “solid
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oxide” versus conferences of the past few years suggests the following as very
active.

• Solid Oxide Fuel Cells Conference (e.g., Honolulu, 1999, had 45 papers
for which “solid” variations were keywords)

• ICMAT (International Conference for Materials for Advanced 
Technologies, Singapore, 2001, had 15 such papers)

• Grove Fuel Cell Symposium (London, 2001, had 12 such papers)

16.7. SIXTH STEP: ADVANCED ANALYSES

The goal of our treatment of this step is to introduce a variety of advanced
analyses on the fuel cell data, limited by a desire to provide a succinct account-
ing. Table 16-10 summarizes the analyses that follow in this section. We
examine the raw data used, the modeling approach, and the purposes for which
we apply the analyses.
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Figure 16-3. Selected companies’ patenting activities over time



Knowledge Networks

A powerful patent analysis approach probes the IP of a target company. As
brought up in Chapter 12, we might want to assess the IP capabilities of a
company we are considering acquiring. Imagine that we’re interested in the
third from last company in Table 16-6, Emitec GES Emissionstechnologie
MBH. Their 17 patents therein noted expand to 41 when we search our full
fuel cell patents data file (not limiting to automotive and year 2000 or later).
We now focus on their 22 inventors. We can check years to see who has not
patented recently.

We can map “inventors ¥ inventors” to see how activity is concentrated
within Emitec, spot core researchers, and denote teaming. Figure 16-4 shows
such a map. Checking back, we see that Emitec’s seven automotive-related
patents all list Brueck, Grosse, and Reizig as inventors; Poppinger appears on
six of these seven. Examining the co-occurrence matrix of inventors X inven-
tors (not shown) confirms that these four plus Konieczny team extensively.
Beresford only has a single patent, Reizig has 27, Grosse 25, Konieczny 19,
and Poppinger 17—every single one of their patents is joint with Brueck, hence
the very dense map. So, if our firm seeks Emitec’s IP, we want to ascertain the
status of this team and its core person, Brueck (38 patents). (Note also a data
cleaning tidbit—we suspect that “Bruck, R” is the same as “Brueck, R.”Again,
depending on your purposes, catching such errors may or may not be critical.)

We can investigate activities of these core inventors through other
sources—studying their full patents, websites, and experts. We also check
Emitec’s patent assignees—lo and behold—27 of them also list Siemens! (See
also Fig. 16-8.) We certainly want to speak with knowledgeable persons to
learn more of this relationship.
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TABLE 16-10. Advanced Analyses Used in Fuel Cells Case Study

Data Models Purposes

Patent: inventors Networks Investigate IP networks for a key fuel 
cell R&D company.

Patent: inventors Spatial Examine relationships among 
companies based on shared 
inventors.

Publication: keywords Spatial Examine relationships among 
documents based on shared 
keywords.

Publication: keywords Mixed: spatial— Create maps to quickly identify key 
network areas of research, and identify 

points of correspondence with 
experts.

Publication: keywords Mixed: spatial— Discover interesting cross-relationships 
clustering among technologies using inductive 

classifications of publications.



Content, Technology, and Topic Analyses

Let’s pursue the automotive-related fuel cell development in Western Europe
(cf. the 1187-record subfile introduced in the previous section). Imagine that
our firm is initiating a novel catalyst development project, so we want to see
what emphases current patent publications reflect. We now incrementally
import abstract phrases [parsed by VP’s natural language processing (NLP)
algorithm] to the VP file. This yields over 16,000 noun phrases—a rich avenue
along which to explore patent emphases. We can search for who is working on
a specific topic of interest, leading inventors, or leading companies.

Suppose our firm’s materials scientists ask to see which materials are linked
to catalysis in this set of patents. We use “Find” to select 66 abstract phrases
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Figure 16-4. Knowledge network: sociometric map showing which inventors work with
whom (within Emitec)



mentioning catalysis and form a “Group” in the Abstract Phrases List. If we
had a “Materials” thesaurus, we could apply it to Abstract Phrases to create a
“Materials” group. Another way to accomplish this is to make a co-occurrence
matrix of “Abstract Phrases ¥ Abstract Phrases” (Grouped), focusing atten-
tion on the “Catalys*” Group to identify materials of interest. For easy pre-
sentation here, we chose a third way—creating a “New Data Set” of the 46
patent abstracts that mention catalysis (or catalyst, etc.). From this, we can
browse the 1346 Abstract Phrases to grab abstracts mentioning interesting
materials for review by our materials scientists. Table 16-11 shows some
sample abstract phrases.

This example could be extended to R&D publication analysis. Imagine that
the two automotive-related patent publications mentioning “cerium” stimu-
late questions about research addressing cerium in fuel cells. Impressively,
searching for “cerium” in our SCI–INSPEC fuel cells’ Keywords List locates
313 records. Investigate these to determine the most active research groups
and their key emphases. Ongoing interaction between tech miners, subject
experts, and key users can lead to rich, iterative discovery processes.

Mapping of Terms Across Records

VP (and other tech mining software) provides statistically based tools to
uncover relationships within a data set. Relationships are based on patterns
of terms co-occurring across records. Figure 16-5 presents a high level map of
clusters of fuel cell keywords.

Keeping in mind that the keywords are an amalgam of different types of
descriptors of the article content, this offers a first cut at the topical content
of the research domain. This is a principal components analysis (PCA) map
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TABLE 16-11. Catalyst Materials Mentioned

Abstract (NLP) (Phrases) No. of Instances

Copper 7
Cerium oxide 1
Distributed metal polycrystals 1
Electro-catalyst 2
Finely divided alumina 1
Hydrosilylation catalyst 1
Iridium 2
Iridium catalyst 3
Linear fluoropolyether compound 1
Palladium-containing solution 1
Palladium-zinc-cerium-zirconium-based compounds 1
Supported platinum-ruthenium catalyst 1
Unsupported platinum-ruthenium catalyst 1
Zinc-containing solution 2



that VP generated from the 59 most frequently occurring keywords in the full
(11,764 record) SCI–INSPEC dataset, excluding the most generic terms (e.g.,
“fuel cells,” “electrochemistry”). Selection of terms here was judgmental,
seeking a very broad overview. One can generate different depictions depend-
ing on tech mining aims, number of records, number of factors extracted, and
how related the records are. Zhu and Porter (2002) overview factors to con-
sider and show some of the varied maps possible.

This mapping (Fig. 16-5) reflects the following.

• Nodes indicate principal components (a basic form of factor analysis; so
we call these factors)—each of these ten reflects a set of keywords that
tend to occur with each other in the fuel cell records.

• Node size (to reflect the relative number of records containing any of the
high-loading keywords represented by that statistical component)
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• Multidimensional scaling (to locate the PCA factors reflecting their
degree of relationship to each other)

• Path-erasing algorithm (to indicate the relative strength of relationship
among the PCA factors)—darker, more solid lines indicate stronger 
association.

What does this map show? In the upper left region, we see four nodes inter-
linked moderately. These pertain to solid oxide fuel cells (SOFCs) and to mea-
surement of electrical properties. The three nodes linked in the upper right
relate to proton exchange membrane (PEM) fuel cells. In VP, one can pull
down menus to identify terms associated with a given node. Figure 16-6 shows
such a pull-down for the ion-exchange factor. This gives the high-loading key-
words that make up this factor. The keyword, “ion-exchange” is the most
highly loading (most central to the factor), and the factor is given this name.
In the VP Reader demonstration posted on the web, you can explore PCA
map nodes using “Details Windows.”
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Figure 16-6 shows another PCA map of the same data set, but based on a
selection of more specific fuel cell keywords—just another perspective.

Note that one might choose to rename a factor based on judgment as to a
better description of its makeup—the “Heat Transfer” factor to the right pulls
together concepts of both “Mass and Heat Transfer.” The factor in the upper
right with its high-loading keywords shown suggests a relationship between
photovoltaic power systems and SOFCs. Maps can help newcomers quickly
grasp “what’s happening” in a research domain. In contrast, experts can inves-
tigate frontiers, get ideas on new tool applications, and identify researchers
active in particular subareas.

Let’s use the patent data to look at a different kind of map. CTI often
probes rather deeply. One way to explore for possible relationships is to see
whether any inventor is associated with multiple assignees. Figure 16-7 
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Figure 16-7. Leading automotive-oriented fuel cell patent assignees in leading Western
European countries



maps the leading companies patenting in Western Europe based on shared
inventors.

Xcellsis, DBB Fuel Cell, and Ballard Power Systems may be working
together (or a core inventor team could have shifted companies). Siemens and
Emitec also share inventors, suggesting possible collaboration, to be investi-
gated further by examination of their patent records and expert assessment.
Chapter 12 pursues a couple of these relationships further via internet
searches. “Serious” tech mining would require expert review with in-depth
follow-ups. Analogous notions with publications are to explore coauthorship
and cocitation patterns.

Mapping of Records Across Terms

As per the discussion relating to Table 16-9, we can also map records based
on their shared use of certain terms (the inverse of mapping the terms based
on records). This is another variant of co-occurrence mapping. Figure 16-8-a
to d shows four “time slices” of the fuel cells publications. This 3-D map
sequence depicts concentrations of records for 10,252 of the 11,764 records.
Because this map is based on terms in the abstract, not all records were used
because not all records have abstracts. In this illustration, we only label
selected large “mounds” (concentrations). Such 3-D representations achieved
some notoriety in showing how coverage of the 1995 OJ Simpson murder trial
dominated U.S. newspaper coverage—“Mount OJ” being by far the tallest
peak.

We generated this figure set working with VxInsight software (see Chapter
Resources). We exported records from VantagePoint to VxInsight to generate
the map. We then selected record groups for each of the main peaks and,
returning into VantagePoint, listed their leading abstract phrases. Inspecting
those, we labeled each peak with the most frequent phrase (or two) that is rel-
atively unique (e.g., ignoring pervasive terms like “fuel cells”).

Figure 16-8-a–d presents four time slices chosen to reflect roughly equiva-
lent publication activity. On these, we have plotted a dot for each Georgia Tech
paper. We see an intriguing pattern in which this university’s research activity
seems to almost disappear in the third period (1999–2000), then bounce back
sharply (2001–2002). Were one probing this organization, this would warrant
further investigation. Inspecting the authorship, we note that Min Liu pub-
lished 18 papers dated 1995–98 and 20 for 2001–2002, but only 1 in 1999–2000.
(We created a “new data set” of the 81 Georgia Tech publications to ascertain
this easily.) We also note some active authors ceasing to publish after 1998
with a Georgia Tech affiliation (e.g., Bessette)—Did they leave the university?
But we see a cadre of five others with 3–7 publications in 2001–2002, but none
before. Might these be new faculty brought in to advance fuel cell research?
If so, it seems their interests dovetail closely with existing Georgia Tech
research thrusts in that the 2001–2002 dots fall largely in the same terrain as
the 1995–98 dots.
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Figure 16-8. Fuel cells patent landscapes. a. Time slice 1988–1994. b. Time slice
1995–1998. c. Time slice 1999–2000. d. Time slice 2000–2001
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b
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Figure 16-8. Continued

c

d



For this depiction, we have fixed the background for the entire period to
focus on shifts in Georgia Tech research emphases. VxInsight also enables one
to view shifts in overall activity for each time period, and show Georgia Tech
changes as overlays on that. Tech mining software enables a great range of
ways to cut and depict the data.

As Chapter 13 emphasizes, we strongly recommend that you begin with
your technology management questions, to devise suitable indicators, and then
work out the empirical manipulations to generate the needed information and
its visualization.

Bucketing Records with PCD—Principal Components Decomposition

Another useful text mining function bundles documents (records) based on
observed commonalities. This inductive classification contrasts with the use of
predefined indexes by which to locate records deductively. “Bucketing” of
records can improve access to information when one is dealing with thousands
of documents, as we are here.

The PCD algorithm (introduced in Chapter 10) applies metrics that provide
a standard solution to an optimization problem (Watts, 2001). The PCD
process includes as many of the analyzed records (i.e., abstracts) in the derived
“factor groups” as possible. Concurrently, the PCD algorithm strives to max-
imize both the number of factor groups and group-defining descriptors (i.e.,
the high-loading “keywords” for each PCA factor group). The algorithm also
seeks to minimize the duplication of constituent abstracts between the derived
factor groups. This min-max solution approach, conceptually, equates to min-
imizing the entropy and maximizing the cohesiveness of the PCD-derived
factor groups (Borner et al., 2003; Steinbach et al., 2000). Given identical
abstract files, the automated PCD analysis will repeatedly derive the same set
of factor groups.

Figure 16-9 shows part of this hierarchy for the 2002 publication records.
Shown (for space and comprehensibility reasons) are 10 of the 19 main factors.
Each of these 10 is named after its most frequently occurring term. The first
factor,“ionic conductivity,” appears to relate to electrical properties. Four key-
words define this cluster (ionic conductivity, oxygen ionic conductivity, elec-
trical resistivity, and cobalt compounds). It contains 190 of the 1902 total
records for 2002. Other top-level factors relate to the following typical areas:

• Materials (e.g., lanthanum compounds)
• Research tools (e.g., X-ray diffraction)
• Major types of fuel cells (e.g., PEMFCs, proton-exchange membrane fuel

cells)
• Broader issues (e.g., hydrogen economy)

Under each top factor (1–10) are shown the subfactors, giving only the
name of the top keyword. In brackets are the number of records in which that
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keyword appears/total number of records in that subfactor. The last subfactor
is the “left-overs”—the records not otherwise grouped.

How might you use this? Imagine you are exploring fuel cell R&D pub-
lished in 2002. You note:

• Hydrogen economy (shown in CAPITAL LETTERS), the defining term
of Factor 9, is also a subfactor of Factor 6, with an electrical vehicle focus.
Reading the 20 records in the subfactor could provide insights into the
association between hydrogen economy and electric vehicles.

• PEMFCs (shaded) show up as the defining term of Factor 8, and also in
conjunction with X-ray diffraction (Factor 4) and fuel cell power plants
(Factor 8). If you have interests in proton-exchange membrane fuel cells,
you might peruse these two clusters to pursue these connections.

• Lithium compounds (in italics) appear as a prominent term in Factor 3
and as sub-factors under ionic-conductivity (Factor 1), X-ray diffraction
(Factor 4), and electrical vehicle (Factor 6). These particular bundles of
abstract records may hold interest if you are a lithium researcher.

• The “Other” Factor likely reflects a mix of noise and interesting novelties
that have not coalesced. Knowledgeable fuel cell researchers may find
intriguing leads worth pursuing. “Nafion” was unfamiliar to us, but we
quickly discovered 563 of our records mentioning this and a Google
search showed that this Dupont membrane dated to the 1970s!

• The Factor “Other”—Subfactor “Other” points to 139 records unclassi-
fied through both iterations—great abstracts to explore for new ideas.
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In sum, this offers another way to categorize the records with pointers toward
subsets of possible interest. PCD can suggest possibly interesting cross-links
among technologies, methods, and applications.

Temporal Change Analyses

Temporal markers identify change for various types of information. This can
be done in many ways. One can just plot an activity measure versus time (e.g.,
Figs. 16-3 and 16-8). “Time slicing” into interpretable periods (e.g., before and
after a policy shift) can sharpen differences. For other purposes, smoothing
trends over time statistically may elucidate what is changing (e.g., using expo-
nential smoothing to reduce the noisy splatter over monthly patenting data).

Tools like VP expedite list comparisons. One could compare the keywords
from automotive fuel cell articles appearing in 2002 with those seen in prior
years to detect new terms. This usually yields a noisy mix from which an expert
can glean a few surprises worth following up. Additional examples of this tech-
nique are given in Chapter 11.

We have explored ways to compare PCA factor maps over time. Particular
maps vary greatly because of the nature of multidimensional scaling, so direct
comparison over time slices is not straightforward. Bob Watts is researching
metrics (i.e., percentage of keywords included in PCA or PCD factors, entropy,
and the richness of linkages among keywords) that could be used as indica-
tors of technological maturation (Watts and Porter, 2003).

Human-interpreted and -drawn maps of the key factors dominant in suc-
cessive time periods can be very effective. We used this approach in studies
for the Army Environmental Policy Institute to track changes in technologies
that reduce military noise (e.g., the emergence of active noise suppression
methods). To help visualize these changes, we prepared a series of 5-year maps
based on PCA. Two future 5-year period maps projected the apparent trends.
Thus tech mining helped forecast changes in noise technologies. We did this
as well to identify emerging noise issues. The factor maps were presented to
experts, whose feedback led to refinements for the final report.

Record topographies, such as Figure 16-8a–d, are wonderful to visualize
change over time. For example, we could mark one organization’s patents on
the landscape by using different colors for different time periods. Interactive
presentation could light the earliest period’s records; then successive periods
would be progressively spotlighted. This can convey the diffusion of that orga-
nization’s interests over time.

16.8. SEVENTH STEP: REPRESENTATION

Sections 16.6 and 16.7, just previous, deliberately used a wide variety of tabular
and graphical forms. The tech miner needs to balance the use of numbers, pic-
tures, and words to best deliver the message to the target users. This should
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reflect conscious choice, knowing user preferences. We amplify on these issues
in the other chapters, so we do not belabor them here.

One option to be considered is interactive representation. On the one hand,
providing Figure 16-7 in MS PowerPoint makes it handy to share in presenta-
tions. On the other hand, provision via VP Reader allows the user to dig down
to explore those Honda patent abstracts right then. We invite readers to try
this “hands on” via the sample data file on the Wiley website.*

16.9. EIGHTH STEP: INTERPRETATION

Tech mining outputs do not generally speak for themselves. Too often we have
fallen into the trap of thinking that they do. Imagine being given Figure 16-5
without clear explanation of what it shows and the meaning to be inferred.
Again, other chapters explore interpretation with respect to target users. Be
wary of this chapter as an example in that it lacks that compelling reason why
one is conducting tech mining. Hence, most of the illustrations do not go all
the way to make the case (e.g., should we purchase Company C to obtain that
critical IP we need to dominate Application A?).

16.10. NINTH STEP: UTILIZATION

Here as well, we include this heading as a reminder of its importance to tech
mining, but we address it elsewhere in the book.

16.11. WHAT CAN WE LEARN?

This chapter set out to illustrate many types of tech mining analyses. It did 
so without explicit tech mining users to satisfy. Hence, it does not address 
a main theme of this book—to perform analyses that answer pressing 
technology management questions, rather than to show off our analytical
repertoire. So with that caution, this chapter works through our nine-step 
tech mining approach. It presents basic and advanced analyses, including 
trend analyses. Throughout, we deliberately select a variety of representation
modes (tables and charts) to get you thinking of options for your own 
presentations.

We suggest you review Chapter 16 in conjunction with use of the VP
Reader and sample data available on the web.* Realize that those examples
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will not exactly match the results presented herein because they use 
approximately 10 percent samples of the publication and patent records.
Nonetheless, that should give you a good sense of both large picture summa-
rization and the ability to follow interesting leads back to specific source
abstracts.

CHAPTER 16 TAKE-HOME MESSAGES

• The chapter tracks our recommended nine-step approach to tech 
mining.

• Search quality is required; close consultation with key users can refine 
the search and facilitate acceptance of the eventual tech mining 
results.

• Appropriate data cleaning is critical to analysis ease and quality.
• Tech mining finds value in various lists as these convey extent and con-

centration of R&D activity—“who’s doing what.”
• Mine lists with “find and group” tools help to focus on key elements (e.g.,

particular organizations or topics).
• Short lists (“Top 10s”) communicate well; don’t get fancy unless it’s

directly useful.
• Augmenting lists with a second dimension (forming a matrix) adds intel-

ligence on interactions, specialization, and capabilities.
• “Profiling” particular organizations or individuals helps answer many user

questions.
• Publication and patent data complement each other.
• Tech mining can elucidate “what’s new?” and track technological 

maturation.
• Knowledge networks can be depicted by focusing on individuals and rela-

tionships within and among organizations.
• Content analysis gets at particular technologies or topics.
• Mapping provides an array of ways to show relations among terms (e.g.,

technologies, players).
• Other forms of mapping provide ways to show relations among docu-

ments; these provide compelling landscapes of technological develop-
ment, particularly good at showing change over time.

• “Bucketing” records can help make cross-topic associations and sift
through massive quantities of text records to get to the gold.

• Tech mining should be seen in terms of iterative analyses, where one result
prompts further investigations, rather than as once-and-done generation
of passively observed outputs.
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CHAPTER 16 RESOURCES

We recommend study of this chapter together with use of the VantagePoint
Reader* and sample fuel cell data† to try out those methods that seem poten-
tially useful to you.
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Appendix A

Selected Publication and 
Patent Databases

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.

We note selected science and technology (S&T) information resources.

Databases

Gateways to Access Multiple S&T Publication and Patent Databases:

• Dialog (http://www.dialog.com)
• STN (http://www.fiz-karlsruhe.de)

Patents:

• MicroPatent (http://www.micropat.com)
• Delphion (http://www.delphion.com)
• PatentCafe.com (http://erp.patentcafe.com)
• Questel-Orbit, including citations (http://www.questel.orbit.com)
• WIPS (http://www.wipsglobal.com)
• Derwent World Patent Index and Patent Citation Index 

(http://www.thomsonderwent.com/)
• IFI CLAIMS (http://www.ificlaims.com)
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S&T Publications

• Engineering Village, including EI Compendex (Engineering Index) and
INSPEC (http://www.engineeringvillage2.org)

• Web of Knowledge, including Science Citation Index and Social Science
Citation Index (http://www.isinet.com/)

• Chem Abstracts (CAS)—with their special software, SciFinder, that can
do considerable profiling of search sets (covering chemical literature and
patents): (http://www.cas.org)

• MEDLINE (http://www.ncbi.nlm.nih.gov/PubMed/)
• NTIS, covering over 2 million U.S. government and other government-

sponsored research project reports (http://grc.ntis.gov/ntisdb.htm)
• Pascal, covering 5000 multidisciplinary journals 

(http://www.cas.org/ONLINE/DBSS/pascalss.html)
• RaDiUS, covering U.S. Government projects 

(http://www.rand.org/services/radius)
• ResearchIndex, free compilation of S&T papers from the Internet

(http://citeseer.nj.nec.com)

Below we provide thumbnail sketches of four leading S&T databases to
give the flavor of what these contain.

Key Patent Offices

• EPO—European Patent Office (http://www.european-patent-office.org/;
esp@cenet; epoline; see also INPADOC at 
http://www.european-patent-office.org/inpadoc/general.htm)
Note that their PFS database covers patent publications issued by some
65 patent offices and their PRS database tracks which patents and patent
applications are still in force.

• JPO—Japan Patent Office (http://www.jpo.go.jp/)
• USPTO—United States Patent and Trademark Office 

(http://www.uspto.gov/)
• WIPO—World Intellectual Property Organization (http://www.wipo.org/)

Thumbnail Sketches of Selected S&T Databases

Science Citation Index Science Citation Index (ISI, Thomson Scientific):
http://www.isinet.com/products/citation/sci/

The Science Citation Index Expanded™ (SCI) is perhaps the premiere
database for coverage of fundamental research. The Institute of Scientific
Information (ISI), a subsidiary of Thomson Scientific, produces SCI and com-
panion Social Science Citation Index and Arts & Humanities Citation Index.

356 SELECTED PUBLICATION AND PATENT DATABASES



All are found at the Web of Knowledge site, by subscription. Researchers at
ISI, particularly Henry Small, have been early proponents of using science and
technology databases for competitive intelligence and national evaluation or
research. The database is a gold standard by which national governments
(including United States, Australia, and Britain) evaluate national R&D per-
formance. SCI provides coverage of 5700 journals and exceeds one million
records per year (as of 2002). Although these journals nominally cover all of
science and technology, SCI maintains a particularly strong physical science
emphasis.

Characteristics Evaluation

Text SCI is exclusively a text repository.
Density SCI offers dense coverage of most areas of science.
Quality assurance SCI identifies peer reviewed journals and distinguishes 

research articles from commentary.
Intellectual property SCI contains records and abstracts of individual scientific 

articles, and is a widely accepted measure of intellectual 
property

Structured SCI is cleanly and uniformly structured, with export 
capabilities to bibliometric management software.

Other points SCI contains citation information.
SCI carefully and uniformly notes primary and secondary 

addresses for authors.
SCI contains a well-respected classification of the sciences.
Full text of articles may be available through direct link,

depending on service.
Author abstracts available since 1991; other information from 

1945 may be available depending on service.

U.S. Patent Office Database U.S. Patent and Trademark Office:
http://www.uspto.gov/main/patents.htm

The U.S. Patent Office (USPTO) provides the world’s largest patent data-
base. Many international companies often first seek a U.S. patent, then patent
through other world agencies as needed. As a result, the USPTO is a strong
indicator of world patent activity. U.S. patents are available directly through
the USPTO for a nominal fee (e.g., for CDs). These are also available through
premium services that charge for structuring the information and easing down-
load. Key points about this database are noted below.
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Characteristics Evaluation

Text USPTO contains both diagrams and text; the two sources are 
clearly distinguished.

Density USPTO is a rich source for patent activity.
Quality assurance USPTO clearly distinguishes between patent applications 

and awards.
Intellectual property USPTO is backed by U.S. patent laws, a legally binding 

measure of intellectual property.
Structured USPTO is well structured; documents are available in XML,

a powerful and generic structured format.
Other points USPTO provides full-text services, through document 

delivery.
USPTO contains multiple date fields for dates.
USPTO contains a well-regarded classification of industrial 

activity known as “Standard Industrial Codes” (SIC).
USPTO is searchable on records since 1976.

INSPEC INSPEC (Institution of Electrical Engineers, UK): http://www.
iee.org

INSPEC® is provided by IEE, a not-for-profit professional institution
headquartered in the United Kingdom. INSPEC comprehensively covers
physics, telecommunications, electrical and control engineering, computer
science, and information technology. It also provides significant coverage of
many other fields of engineering. The applied and industrial focus of INSPEC
makes it an attractive source for technology studies. INSPEC covers over 3400
journals and some 2000 conference proceedings. As of 2002 INSPEC reached
its 7 million record mark and is growing at a rate of 350,000 records a year in
2002. It explicitly acknowledges the use of its database for current awareness
of technology, new product information, competitive intelligence, and tech-
nology forecasting.

Characteristics Evaluation

Text INSPEC is a text database.
Density INSPEC provides very dense coverage of computing,

telecommunications, and electrical engineering.
Quality assurance INSPEC allows searchers to distinguish research articles from 

other sorts of content.
Intellectual property INSPEC gives a valuable perspective on technology 

development in industry, including new product 
development.

Structured INSPEC is well structured.
Other points INSPEC offers full text of documents through document 

delivery.
INSPEC contains multiple date fields for dates.
INSPEC provides its own classification for comparison.
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MEDLINE MEDLINE: http://www.ncbi.nlm.nih.gov/PubMed/
Medical articles are qualitatively different than those of other disciplines.

Much of medical research involves case studies, which are highly applied
research articles discussing concrete intervention on specific medical condi-
tions and cases. Medical science is currently the largest single discipline of
science and technology in terms of research publication levels. It is valuable,
therefore, when researching medical topics, to examine dedicated medical
databases. The leading medical database is MEDLINE, provided as a service
by the U.S. National Library of Medicine. This database provides access to
over 11 million records. It is free.

Characteristics Evaluation

Text MEDLINE is a text database.
Density MEDLINE provides very dense coverage of medicine and 

biosciences.
Quality assurance MEDLINE provides quality assurance by focusing on 

peer-reviewed journals.
Intellectual property MEDLINE records represent significant intellectual property 

in terms of research articles as well as clinical trials.
Structured MEDLINE is well structured.
Other points Medline provides its own subject classification system known 

as MeSH.
Medline baselines date from the mid 60s.
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Appendix B

Text Mining Software

Chapter 14 discusses several strategies for gaining tech mining capabilities.
These range from: doing it yourself using manual queries against the S&T
database of your choice; utilizing the advanced analysis capabilities of some
technology databases; developing your own tech mining “scripts” with pro-
gramming languages; or using tech mining software. Chapter 9 introduces the
tools and software needed to support tech mining. This appendix identifies
selected software options.

Many options can support tech mining. These range from dedicated soft-
ware programs to “toolkits” where you can assemble applications tailored to
your needs. Other options include the use of statistical packages to accomplish
tech mining analyses. You may also find useful capabilities embedded in data-
base applications (where you may already store data). Others vary along a
spectrum from generic text mining applications to those specifically catering
to analyzing S&T databases. Still others vary in their emphasis on visualiza-
tion versus analysis of data. Examples of several kinds of software follow.

Text Mining Software

• ClearResearch from ClearForest (http://www.clearforest.com)

General Text Mining Capability Within Statistical Packages

• LexiQuest-Mine within SPSS (http://www.spss.com/lexiquest)

Tech Mining: Exploiting New Technologies for Competitive Advantage, Edited by Alan L. Porter
and Scott W. Cunningham.
ISBN 0-471-47567-X Copyright © 2005 by John Wiley & Sons, Inc.
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• SAS Text Miner, Enterprise Miner, and IntelliVisor (http://www.sas.com) 
• WordStat within Simstat (http://www.simstat.com/wordstat.htm)

Other Tools Integrated with Databases*

• MicroPatent’s inclusion of Aurigin software (Aureka) 
(http://www.micropat.com/0/pdf/f_patentweb_091803.pdf)

• Thomson Delphion capabilities [including Citation Link, Snapshot for
online lists (bar charts), PatentLab-II for off-line analyses, and Text Clus-
tering] (http://www.delphion.com/)

Software Targeted on Science and Technology Information 
Resource Mining

• VantagePoint (http://www.theVantagePoint.com)†

• Dataview at the University of Marseilles ( http://crrm.u-3mrs.fr/)
• Focust (http://wisdomain.com/)

Software Particularly Aimed at Information Visualization

• Anacubis (http://www.anacubis.com/) 
• VX Insight (http://www.viswave.com/)

Special “Toolkits” 

• IBM’s Intelligent Miner for Text 
(http://www-3.ibm.com/software/data/iminer/)
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*In 2004,Thomson announced plans to acquire MicroPatent, so further integration appears likely.
†You may come upon two variations of this software. Derwent Analytics
(http://thomsonderwent.com/products/dapt/derwentanalytics/) is specially tailored for use with
Delphion, Derwent, and Web of Knowledge data. TechOASIS is a U.S. Government version. The
software was developed with considerable U.S. support from the Defense Advanced Research
Projects Agency (DARPA) and the Army (Tank-automotive and Armaments Command), largely
under the guidance of Robert J. Watts. For information, see http://www.searchtech.com.
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What You Can Do Without
Tech Mining Software
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Without tech mining software, data “tuning and tallying” is mainly about
detecting general activity patterns and building a better query. Your main tool
is the search engine itself. By modifying your search strategy, you can vary how
many hits you get and record this information.

More complicated analyses are largely constrained by what you already
know about the data. For instance, if you know the top research producer in
the field, you can construct a query to discover precisely how many articles
this individual or institution has published. If you want to check the preva-
lence of a particular term, you can modify your search strategy to find publi-
cations or patents using this term. You could do this for the database as a
whole, or within another search set. For instance, you could tally how many of
the Borlaug-citing articles mentioned genetic modification. Or, as illustrated
in Table 7-3, you could query the on-line database to discover the number of
publications occurring in each year. Keep in mind that search engines are
designed for researchers, not tech mining analysts. As a result, the interfaces
are often poorly adapted to counting, much less actual text mining.

Adept analysts can use other software packages or even their programming
skills to generate many tech mining analyses. You don’t need tech mining soft-
ware. In particular, tabulating activity and searching through records can cer-
tainly be achieved by using Microsoft Excel and Access. More sophisticated
statistical analyses can be handled by any of the major statistics packages. Pro-
gramming using computer languages such as perl, Java, or VisualBasic can give



immediate, if limited, returns to those organizations with these skills. Further
growth is limited only by time and commitment. The do-it-yourself approach
does not seem the best use of analyst skills to us, but we are intimately involved
in the development and application of tech mining software. And, it is true
that “growing your own” tech mining solutions may permit valuable cus-
tomization and integration within the existing information technology infra-
structure of your firm.
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Appendix D

Statistics and Distributions for
Analyzing Text Entities
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The importance of distributional characteristics to tech mining is addressed in
Chapter 9. Many S&T information compilations evidence highly skewed dis-
tributions so that assuming normality (or even conditional normality) is inap-
propriate. Here we provide more details on some of the key distributions that
are so important in depicting S&T information.

The Zipf distribution is often used in analyzing content. The distribution
relates the number of words, phrases, or other units of content to their rela-
tive frequencies in a collection of articles.

Equation D.1. The Zipf distribution

In the equation w (omega) is a ranked ordering of words and phrases from the
most frequent word (rank number one) to the least frequent word (rank N
where there are N distinct words in the collection.) The probability of the word
occurring when a selection is made from words on the list is given by P(w).
Finally, the value cc is a constant that varies from collection to collection.

This distribution informs us, for instance, that there are a great many infre-
quent words in any article collection. The tenth most frequent word in a col-
lection will, for instance, be ten times less frequent than the most common
word. The Zipf distribution is widely applicable to scientific as well as non-
scientific language.

P cw w( ) = -1



Bradford’s law tells us that a relatively few sources contain a majority of
relevant publications for any given study. It is used, in particular, in analyzing
journal coverage. The formula looks familiar:

Equation D.2. Bradford’s law

In Bradford’s law the symbol j (phi) represents a ranked list of journals from
the most useful journals for any given subject matter (ranked 1) to the least
useful journals (ranked N). The probability of finding an article of interest
from a journal, given a particular article collection, is P(j). The constant c
might vary from distribution to distribution. Here again we see a law of scat-
tering where a few journals provide most of the content, but a broad tail of
minor journals considerably complement the “core set.”

Lotka’s law reminds us that relatively few authors will write a majority of
scientific publications in most fields.

Equation D.3. Lotka’s law

Lotka’s law relates a ranked list of authors given by a (alpha) where rank 1
is given to the most prolific author, and rank N (out of a list of N authors) is
given to the least prolific author. Lotka’s law asserts that the probability of
finding an author with a given productivity P(a) diminishes with the square
of the productivity. The constant may vary from article collection to collec-
tion. Unlike the previous laws and distributions, Lotka’s law is inverse-
squared, emphasizing the extreme rarity of highly prolific authors.

Other authors have examined the formation of scientific networks and also
characterized these relationships mathematically, using probability distribu-
tions. The law reminds us that there are relatively few “hubs” of knowledge
among scientific and technical communities.

Equation D.4. Networked evolution of coauthorship

In this equation P is the frequency of authors with chi (c) coauthors. The con-
stant c may vary from system to system, collection to collection. In this equa-
tion, highly collaborative authors are even more infrequent than highly
productive authors. They diminish by the cubic power of the total number of
coauthors.

Theories of network formation are of interest to many fields, including tech
mining. The original theories postulated that networks formed randomly, and

P cc c( ) = -3

P ca a( ) = -2

P cj j( ) = -1
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then examined the implication of the assumptions for the structure of the
network and for the behavior of “nodes” in the network. More recently,
researchers have examined networks in which nodes and linkages evolve
dynamically over time—in particular, networks in which the connected have
more advantage over time.

These networks have several interesting properties. (1) They are “small-
world” networks in which relatively few links and hubs encourage effective
intercommunication. (2) These networks bear structural resemblance to net-
works that occur in real life. (3) They often display power law relationships.
The networks are said to be “scale free” because they look very similar struc-
turally across a wide variety of levels of detail.

The strong similarity among these four distributions suggests to some
authors that there may be a single explanation for diverse sorts of behavior in
publication and collaboration. In all four cases, the laws and distributions show
a “power law” form. Underlying similarities have led to attempts to create 
a single “law” of publishing behavior known to some as the “Bradford–Zipf
distribution.”

In the Zipf distribution, frequent terms have an advantage in being read,
recognized, and adopted by others. Under Bradford’s law, journals that begin
to specialize in a given domain of knowledge have efficiencies in publishing
additional articles of similar character. In Lotka’s law of authorship, less pro-
lific authors have a systematic disadvantage because of their lack of name
recognition among reviewing and editorial committees. Contrariwise, prolific
authors gain specialized knowledge when continuing to publish in a specific
science or technology domain. Finally, authors in the center of collaborative
networks of scientists gain preferential treatment when new scientists seek out
potential collaborators.

The original mathematical treatment of these laws or distributions by their
original discoverers (including Zipf, Bradford, and Lotka) differs from the
formats given here. This section gives each distribution in the same framework.
This eases comparison and, hopefully, increases insight into the commonali-
ties among the four.

Note that in each case the law (or distribution) is shown with an integer
power. Actual estimation of these distributions with sample data results in
power laws that might differ fractionally from those shown here. Furthermore,
actual data often vary systematically from the laws and distributions shown
here, particularly at the beginning (most frequent) and end (least frequent)
ends of the distribution. By and large these variations from predictions are
poorly understood. Some say the power law should continue to hold but lim-
itations in data collection prevent adequate measurement. Other authors
suggest that the dynamics apply only in the aggregate—other behavioral
regimes may be seen over time and in certain domains.

This section gives some theory to discuss why words, authorship, coauthor-
ship, and journals vary so widely in a collection. Furthermore, it shows 
that a few words, journals, or authors will always comprise the core of the 
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collection. These laws and distributions are useful therefore in establishing
cut-off points: How many authors, journals, or collaborative links need be con-
sidered to get a representative measure of the science or technology system
being studied?
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