

CONTENTS

INTRODUCTION

CHAPTER	ONE	DESIGNERS	AND	CODE

The	Computer	as	a	Creative	Environment
Code:	Manipulating	the	Medium
Getting	Started
Code:	Vocabulary	and	Instructions

CHAPTER	TWO	DRAWING	WITH	NUMBERS

Drawing	Instructions

Number	Patterns
Repetition:	Systematic	Drawings
Complexity	from	Simplicity
Random	Drawings
Dynamic/Generative	Drawings
Code:	Drawing	Functions

CHAPTER	THREE	GROWTH	AND	FORM

Nature	as	Inspiration
Drawing	as	Growth
Organic	Shapes:	Spirals	and	Waves
Complex	Mathematical	Models
Digital	Eco-Systems
Environmental	Forces:	Gravity,	Elasticity
Spotlight	on	Daniel	Brown
Code:	Digital	Environments

CHAPTER	FOUR	DYNAMIC	TYPOGRAPHY

Form	and	Content
Movement	and	Interactive	Type
Text	as	Data	Source
External	Data
Spotlight	on	Ariel	Malka
Code:	Computational	Typography

CHAPTER	FIVE	SEEING	THE	WORLD

Digital	Spaces
Large	Screen	Projections:	Body	Movement
Small	Screen	Displays:	Digital	Mirrors
Ways	of	Seeing

Seeing	People
Seeing	Distance	and	Proximity
Spotlight	on	Theo	Watson	and	Emily	Gobeille
Code:	Seeing	the	World

CHAPTER	SIX	LARGE	AND	LIVE	EXTERNAL	DATA

The	Data-lived	Life
Code	as	a	Data	Visualization	Tool
Data	Sources
Mapping	Data
Mapping	Society
Spotlight	on	Jer	Thorp
Code:	Getting	and	Using	External	Data
Conclusion

APPENDIX

Bibliography	and	Webography
Picture	Credits
Index
Acknowledgments

INTRODUCTION

Digital	 technology	 has	 become	 an	 increasingly	 important	 part	 of
creative	 design	 and	 visual	 communication	 practice.	 As	 the	 tools	 and
the	 technology	 for	design	change,	grow	and	develop,	 so	 the	number
of	 opportunities	 for	 creative	 activity	 increase.	 In	 this	 growing
technological	 environment,	 it	 is	 important	 that	 creative	 artists	 and
designers	 play	 an	 active	 role	 in	 learning	 how	 to	 think	 about,
approach,	 and	 use	 digital	 technology	 in	 order	 to	 harness	 its	 unique
capabilities	 and	 characteristics,	 and	 push	 the	 boundaries	 of	 visual
expression.

Rather	 than	 use	 these	 tools	 and	 environments	 “blindly”	 or	 unthinkingly,	 a
critical	and	creative	approach	is	needed	which	helps	to	develop	new	modes
of	 visual	 expression	 and	 types	 of	 visual	 communication.	 By	 approaching
digital	environment	in	this	open-minded	way,	everything	is	“up	for	grabs,”
there	 are	 no	 predefined	 or	 prescriptive	 outcomes,	 only	 possibilities:	 new
modes	 of	 visual	 expression	 to	 be	 found	 and	 explored.	 Key	 to	 this	 way	 of
thinking	is	a	creative	approach	to,	and	understanding	of,	the	computer	as	a
visually	data-driven	design	tool.

At	its	heart,	the	computer	is	an	amazing	data	“input	and	output”	device;	able
to	pull	in	huge	amounts	and	types	of	information,	images,	colors,	numbers,
words,	 sounds	etc.	 from	a	wide	range	of	 input	 sources	 (user	 interaction,	 file
sharing,	online	connection	etc.),	outputting	them	to	the	screen	as	graphics,
images,	or	animations.	When	coupled	with	its	amazing	processing	capability,
the	 input-output	 data	 flow	 of	 the	 computer	 makes	 it	 a	 unique	 “design
environment”	 capable	 of	 creating	 new	 types	 of	 dynamically	 generated
visuals.	 Dynamic	 shapes	 and	 forms	 can	 be	 generated	 which	 can	 be	 used
within	 a	 wide	 range	 of	 visual	 and	 graphic	 design	 contexts.	 Using	 and
understanding	 the	 technology,	being	able	 to	 think	about	 the	uniqueness	of

the	computer	environment,	its	possibilities	and	capabilities,	opens	up	a	great
many	creative	opportunities	to	create	pieces	of	work	which	visually	embody
the	 dynamic,	 flexible,	 and	 adaptable	 characteristics	 of	 the	 digital
environment.

An	 important	 part	 of	 harnessing	 the	 processing	 ability	 of	 the	 computer	 is
programming	code.	Code	is	at	the	heart	of	the	input/output	digital	world,	it
is	 the	 way	 through	 which	 data	 is	 transmitted,	 translated	 and	 transformed
from	an	(“input”)	stream	of	information	and	output	as	a	variety	of	static	and
moving	 visual	 forms.	 Understanding	 and	 using	 code	 as	 part	 of	 a	 broader
approach	 to	 creative	 digital	 practice	 allows	 designers	 to	 engage	 with	 the
wider	 potential	 of	 the	 computer	 as	 a	 data-driven	 device.	 Even	 a	 small
understanding	 of	 the	 concepts	 of	 the	 way	 programming	 code	 gets	 and
processes	data	expands	the	horizons	for	creative	design	solutions	and	allows	a
broader	range	of	design	outcomes	and	possibilities	to	be	considered.

Written	 as	 an	 inspiring	 overview	 of	 the	 intersections	 between	 visual
communication	and	code,	this	book	provides	an	introduction	to	the	ways	in
which	a	broad	approach	 to	 the	computer	 as	 a	data	 input/output	device	has
been	 used	 to	 create	 new,	 uniquely	 “data-driven”	 visuals,	 inspiring
experimental	 approaches	 to	 “traditional”	 areas	 of	 graphic	 design.	 Starting
with	 the	 basic	 concepts,	 each	 chapter	 outlines	 how	 different	 types	 of	 data
“input”	 (e.g.	 numbers,	 text,	 images	 etc.)	 can	 be	 harnessed,	 via	 code,	 to
generate	 innovative	 types	 of	 output,	 i.e.	 creative	 visual	 outcomes	 both	 for
print	and	screen.	Examples	of	design	and	art	pieces,	provide	creative	context
and	inspiration,	whilst	more	detailed	(step-by-step)	guides	to	the	techniques
of	writing	programming	code,	 situated	at	 the	end	of	each	chapter,	provide
the	 introduction	 to	 basic	 practical	 tools	 to	 enable	 a	 fresh	 approach	 to
designing	with	and	for	the	data-driven	environment.

The	 book	 can	 be	 used	 as	 an	 overview	 of	 concepts,	 a	 source	 of	 visual	 and
creative	 inspiration,	 or	 as	 a	 starting	 point	 for	 learning	 the	 fundamental
elements	 of	 code.	 Hopefully	 it	 will	 be	 a	 text	 which	 you	will	 return	 to	 at

different	points	of	your	own	creative	process.	Whether	or	not	you	become	a
programmer,	the	ideas	and	examples	in	the	book	will	remain	relevant	even	as
the	technology	changes.

This	 vast	 and	 interesting	 subject	 can	 lead	 off	 in	 many	 different	 creative
directions.	As	the	examples	of	work	and	the	designers	in	this	book	illustrate,
a	lot	of	new	and	exciting	things	happen	by	playing	with	code.	Hopefully	this
represents	just	the	first	step	on	a	long	and	exciting	creative	journey:	An	open
mind,	 a	 healthy	 dose	 of	 curiosity,	 a	 desire	 to	 explore	 new	 things	 and	 a
willingness	 to	 make,	 and	 learn	 from,	 mistakes	 will	 take	 you	 a	 long	 way.
Good	luck.

CHAPTER	ONE

DESIGNERS	AND	CODE

“Try	to	get	the	most	out	of	your	material,	but	always	in	such	a	way
as	honors	it	most.”
William	Morris

THE	COMPUTER	AS	A	CREATIVE	ENVIRONMENT
The	 introduction	of	 computer	 processes	 has	 shifted	 the	 everyday	 tools	 and
methods	of	the	graphic	design	process	from	the	physical	environment	of	ink
and	 paper	 to	 the	 digital	 environment	 of	 pixels	 and	 screens.	 Designers	 are
now	able	to	edit,	copy,	enhance,	manipulate,	transform,	and	combine	visuals
in	 ways	 not	 imaginable	 using	 traditional	 processes.	 The	 computer	 is,
however,	much	more	than	 just	a	digital	canvas,	darkroom,	or	editing	suite.
By	looking	beyond	the	confines	of	the	software	tools,	it	is	possible	to	see	the
computer	as	a	creative	medium	in	its	own	right,	with	its	own	unique	set	of
properties,	 characteristics,	 and	 attributes	 that	 open	 up	 new	 possibilities	 for
creative	practice.	 Just	 as	 physical	materials,	 paper,	 ink,	 and	paint	 each	have
their	own	individual	qualities	 to	be	considered	and	manipulated,	 so	too	the
computer	 has	 its	 own	 unique	 abilities	 and	 characteristics	 to	 be	 creatively
explored.	Seeing	and	using	the	built-in	potential	of	the	computer	as	a	device
that	can	take	and	use	lots	of	different	types	of	data	input	(e.g.,	from	mouse,
video	 camera,	 or	 microphone)	 to	 generate	 visuals	 opens	 up	 new	 ways	 of
thinking,	new	ways	of	working,	and	new	types	of	computationally	created
images.

“Reactive”	Graphics

Computers	are	fantastic	data	processing	and	calculation	devices,	designed	for
manipulating	 and	 processing	 huge	 amounts	 of	 information	 immensely
quickly.	The	ability	of	the	computer	to	take,	use,	and	combine	media	means
that	 it	 can	 connect	 visuals	 and	 data	 quickly	 and	 in	 interesting	 ways.
Information	 input	 via	 connected	 data	 sources	 (web	 files,	 sounds,	 video,	 or
text)	 can	 be	 used	 to	 generate	 a	 wide	 range	 of	 digital	 images,	 objects,	 or
environments.	The	 enormous	 processing	 capability	 of	 the	 computer	 to	use
and	transform	media	(images,	text,	video,	or	sound)	in	a	“live”	or	interactive
format	forms	a	great	source	of	creative	innovation	and	possibility.	A	digital
sound	source	can,	for	example,	be	used	to	generate	a	drawing;	a	piece	of	text
can	 be	 visually	 translated	 into	 a	 graphical	 image;	 the	 data	 from	 the

movement	of	people	passing	in	front	of	a	shop	window	can	be	used	to	create
projected	 images	 and	 sounds.	 Visuals	 created	 in	 this	 way	 move	 beyond
traditional	 graphics	 and	 become	 new	 kinds	 of	 reactive,	 interactive,	 or
“generative”	 graphics	 created	 in	 response	 to	 data	 input.	 These	 kinds	 of
graphics	 are	unique,	 responsive	 to	 their	 environment,	 and	only	possible	by
harnessing	the	processing	ability	of	the	computer.	Exploring	the	possibilities
of	the	computer	as	a	device	for	generating	reactive	graphics	therefore	opens
up	 new	 possibilities	 for	 re-thinking	 digital	 objects	 and	 exceeding	 the
boundaries	of	traditional	image	editing	and	digital	graphics	software.

1.2	Seconde	Nature,	Universal	Everything
An	audio-reactive	identity	generator	for	a	music	venue	in	Aix-En-Provence,	France.
Computer	reactive	trees	grow	in	response	to	being	played	different	genres	of	music.

Vector	files	are	produced	for	use	by	the	venue’s	communications	team.

CODE:	MANIPULATING	THE	MEDIUM
Exploring	 the	 creative	 potential	 of	 the	 computer	 as	 a	 data	 processing
machine	means	creating	bespoke	programs	(software)	to	manipulate	and	sort
digital	 information	 (text,	 images,	 etc.),	 using	 and	 transforming	 it	 to	 create
new	visual	outcomes.	In	the	physical	environment,	human	hands	manipulate
materials,	 such	 as	 pen	 on	 paper	 or	 paint	 on	 canvas.	 In	 the	 computational
environment,	 data	 is	 directly	 manipulated	 into	 digital	 objects	 by	 writing
lines	of	programming	code.

Every	object	that	exists	in	the	digital	environment	is	created	and	controlled
by	code.	Every	digital	tool	that	you	use	(word	processor,	image	editor,	web
browser)	is	created	using	programming	code.	When	you	are	writing	a	book,
sending	an	email,	or	editing	a	photograph,	behind	the	glossy	drag-and-drop
menus	and	user	interfaces,	the	computer	is	busy	processing	the	programming
instructions	to	perform	the	necessary	tasks.	Code	can	be	used	for	a	range	of
tasks	 and	purposes;	 it	 can	be	used	 to	 create	 a	 single	web	page	or	 to	 create
large-scale	 software	 applications.	 Using	 code	 provides	 a	 natural	 and	 direct
way	of	making	and	manipulating	the	digital	environment.

Programming	languages	come	in	many	different	forms	and	are	used	in	 lots
of	different	contexts.	Each	language	is	created	for	a	specific	purpose,	created
to	work	with	a	specific	set	of	media	or	perform	a	specific	set	of	tasks.	Each
programming	language	has	its	own	vocabulary	and	grammar,	which	define
the	range	and	scope	of	the	language	and	determine	the	type	of	tasks	that	 it
can	 perform.	Common	 languages	 include	 Java,	 JavaScript,	 and	C#.	 Just	 as
learning	 a	 new	 foreign	 language	 allows	 the	 speaker	 to	 connect	 with	 new
people	 and	 opens	 up	 opportunities	 for	 communication,	 so	 too	 learning	 a
programming	 language	 allows	 the	 programmer	 to	 communicate	 directly
with	 the	 computer	 and	 opens	 up	 new	 opportunities	 for	 creating	 digital
objects	and	environments.

Like	 natural	 languages,	 programming	 languages	 have	 vocabularies	 and
grammars.	Unlike	natural	languages,	the	words	of	a	programming	language
are	often	 limited	 to	 instructions	 and	 commands,	 and	 the	 rules	 of	usage	 are
strict	and	well	defined.	Instructions	have	to	be	written	precisely;	otherwise,
the	 computer	 does	 not	 know	what	 to	 do	 and	 the	 program	will	 not	work.
There	 is	 little	 scope	 to	 be	 descriptive	 with	 a	 programming	 language—no
poetry,	just	commands.

Code	and	Creativity

All	designers,	whatever	their	medium,	need	to	have	an	appreciation	for	and
understanding	of	 their	material.	Experience	of	 the	processes,	characteristics,
limitations	 and	 abilities	 of	 their	 media	 plays	 a	 crucial	 part	 in	 creating	 a
successful	 and	 practical	 design	 solution,	 which	 makes	 the	 best	 and	 most
appropriate	 use	 of	 the	materials.	 Artists	 and	 designers	 keen	 to	 explore	 the
qualities,	 characteristics	 and	 creative	 possibilities	 of	 the	 computer
environment	 do	 so	 using	 code;	 just	 as	 print-based	 designers	who	 have	 an
understanding	of	paper-weights,	print	processes,	 color	 separations,	 etc.,	use
this	experience	to	inform	their	design	work,	so,	designers	working	towards
screen-based	 outcomes	 who	 have	 understanding	 of	 code	 can	 use	 this
knowledge	 to	 develop	 design	 informed,	 creative	 design	 solutions.
Understanding	 the	way	code	works	opens	up	new	ways	of	 thinking	about
and	 designing	 with	 and	 for	 the	 digital	 environment;	 it	 presents	 fresh
opportunities	 for	 creative	 thought,	 and	 provides	 opportunities	 to	 design
amazing	digital	visuals	and	experiences.

1.3	Big	Eyes,	Identity	Illustrations,	FIELD	and	SomeOne
An	example	of	design	work	which	makes	innovative	use	of	data-driven	processes.	The
system	created	for	an	ad	agency	is	based	on	generative	digital	images	resembling	the

human	iris.	The	visuals	are	adaptive,	flexible,	and	data-powered,	which	change
depending	on	their	context	and	application,	creating	unique	designs	for	each

application.	The	eyes	can	mirror	visiting	clients	and	can	be	activated	by	client	data,	big
or	small.	The	flexible	element	of	the	visual	brand	identity	creates	a	flexible	cohesive

visual	approach	that	can	be	applied	across	lots	of	different	types	of	media.

Code	 is	a	useful	and	powerful	creative	 tool	 that	artists	and	designers	use	 to
explore	 the	 creative	 possibilities	 of	 the	 digital	 environment	 and	 to	 create
original	 digital	 objects,	 designs,	 and	 artworks.	 By	 writing	 code,	 designers
can	create	 interactive	games,	generate	visuals	 that	 respond	 to	user	 input	or
the	 physical	 environment,	 draw	 generative	 graphics,	 or	 manipulate
typography.	 Writing	 code	 opens	 up	 new	 opportunities	 to	 create	 unique,
individual	digital	objects	and	environments	as	well	as	application	and	system
software.

Programming	 is	 a	 creative	 process	 unlike	 any	 other;	 it	 is	 a	 flexible	 and
“natural”	way	of	engaging	with	and	harnessing	the	digital	processing	power
of	 the	 computer	 for	 creative	 visual	 output.	 It	 provides	 new	 possibilities	 to
create	 objects	 and	 solutions	 that	 would	 be	 otherwise	 un-thinkable.	 Rather
than	 limiting	 themselves	 to	 digital	 drawing	 and	 editing	 tools,	 artists	 and
designers	 can	 use	 code	 to	 create	 and	 invent	 their	 own	 drawing	 tools	 and
applications.

EXEMPLAR

John	Maeda

John	Maeda	is	a	graphic	designer	and	computer	scientist	who	has	been	a
highly	 influential	 voice	 in	 the	 area	 of	 design	 and	 technology	 with	 a
particular	 interest	 in	 the	way	 that	 these	 areas	merge	 and	 intersect.	 As	 a
designer,	 Maeda’s	 early	 work	 combined	 computer	 code	 with	 design
aesthetics—a	combination	that	redefined	the	use	of	code	as	a	tool	for	visual
expression,	and	paved	the	way	for	future	generations	of	interactive	media
designers.

1.4	Design	by	Numbers	John	Maeda
The	graphic	design	work	of	John	Maeda	combines	a	uniquely	Japanese	aesthetic
with	computational	processes	that	result	in	characteristically	elegant	pieces	of

design	both	for	print	and	screen.

Design	by	Numbers	(DBN)

Design	 By	 Numbers	 (DBN)	 was	 a	 programming	 language	 and
environment	created	by	John	Maeda	in	1999	as	part	of	his	Aesthetics	and
Computation	Group	to	teach	coding	to	designers	and	artists.	The	goals	of
the	project	were	to	introduce	code	as	a	way	to	think	about	creating	design
for	 the	 screen	 and	 to	 provide	 a	 useful	 tool	 for	 introducing	 code	 to	 a
visually	literate	community.	The	language	provided	a	unified	interface	for
writing	and	running	simple	programs.	Using	a	minimal	screen	grid	of	100
by	 100	 pixels	 and	 a	 limited	 set	 of	 commands	 and	 functions,	 the
programming	 environment	 distilled	 the	 basic	 structures,	 concepts,	 and
commands	 of	 computation,	 encouraging	 the	 designer	 to	 think	 carefully
about	designing	within	these	constraints.

The	associated	DBN	book	is	beautiful,	and	it	is	as	much	a	discussion	of	the
concepts	of	code	as	it	is	an	instruction	manual	for	the	language.	Although
the	programming	language	itself	is	no	longer	in	use,	the	project	proved	to
be	 highly	 influential;	 its	 legacy	 continues	 to	 be	 felt.	 DBN	 had	 a	 huge
influence	on	the	subsequent	development	of	the	Processing	programming
language	created	by	two	of	Maeda’s	students,	Ben	Fry	and	Casey	Reas.	Fry
and	Reas	 developed	Processing	 in	 order	 to	 continue	 the	 original	 idea	 of
DBN:	creating	a	programming	environment	for	designers.

Reactive	Square	(Reactive	Books)

John	 Maeda’s	 early	 interest	 in	 the	 use	 of	 computer	 code	 as	 a	 design
material—one	 that	 can	 be	 used	 as	 creatively	 as	 a	 brush	 or	 a	 pen—has
inspired	and	influenced	a	generation	of	digital	designers.	His	work	and	his
writing	established	the	idea	that	code	could	be	used	to	create	new	types	of
visual	 design.	He	 laid	 the	 foundations	 for	 an	 area	 of	 design	 that	 is	 now
often	referred	to	as	“creative	coding.”

His	early	experiments	 in	 the	creative	and	visual	applications	of	computer

programming	may	look	simple	now,	but	they	were	(and	still	are)	unique
pieces	 of	 digital	 design	 that	 prepared	 the	 ground	 for	 many	 of	 the
interactive	graphics	we	see	today.	His	idea	of	“reactive	graphics,”	used	to
describe	visual	shapes	and	type	that	move	and	respond	to	specific	types	of
computer	and	user	input,	still	resonates.

1.5	Reactive	Square	Series	John	Maeda
Maeda’s	“Reactive	Square”	Series	were	important	early	experiments	exploring	the
visual	possibilities	of	the	computer	as	an	environment	for	creating	new	types	of

design.	Looking	beyond	the	limitations	of	software	Maeda	explored	the	computer	as
a	creative	medium	which	could	create	graphics	responsive	to	user	input,	such	as

sound.

Between	1994	and	1999,	Maeda	created	a	series	of	digital	books	to	explore
and	develop	the	notion	of	“reactive	graphics.”	Each	book	explored	a	single
type	of	 input	 source	 to	generate	 the	graphics:	microphone,	mouse,	 time,
and	 keyboard.	 The	 first	 book	 was	The	 Reactive	 Square:	 ten	 squares	 that
respond	 to	 audio	 from	 the	 microphone.	 The	 second	 was	Flying	 Letters,
which	used	 the	mouse	 as	 a	way	of	 playing	with	digital	 type	 forms.	The
third	was	twelve	playful	clocks	called	“12	o’clocks”	that	displayed	the	time
in	a	specific	digital	format.	The	final	book,	Tap,	Type,	Write,	was	a	digital
interaction	inspired	by	the	typewriter;	it	used	the	keyboard	as	input.	The
single	input	source	used	for	each	book	of	experiments,	 together	with	the
visual	 simplicity	 and	 playfulness	 of	 each	 piece,	 created	 a	 series	 of
compelling	pieces	of	work	which	introduced	a	new	way	of	looking	at	and
thinking	about	digital	design	for	a	new	generation	of	artists	and	designers.
These	books	are	now	hard	to	view	because	they	require	a	Mac	with	pre-
OS	X	software,	but	their	ideas	and	concepts	remain	as	vivid	as	ever.

1.6	12	o’clocks	John	Maeda
Each	of	the	“reactive	books”	was	a	playful	experiment	in	digital	aesthetics
presented	as	a	book-based	CD-ROM.	The	1996	typographic	project	of	the	12

o’clocks,	seen	here,	was	an	early	forerunner	to	the	interactive	media	that	has	since
seen	explosive	growth.

GETTING	STARTED
One	of	the	attractions	of	exploring	code	is	its	accessibility.	Unlike	buying	the
latest	 version	 of	 design	 software,	 getting	 started	 with	 a	 programming
language	 does	 not	 require	 any	 huge	 financial	 outlay.	As	 long	 as	 you	 have
access	 to	 an	 Internet-connected	 computer,	 you	 can	 download	 and	 access
resources	 for	 free	 and	 immediately	 start	 experimenting	 and	 exploring	 the
processes	and	ideas	of	the	language.

Most	 programming	 languages	 are	 created	 and	 delivered	 as	 “open	 source”
projects,	which	means	 that	 they	 are	 free	 for	 use	 and	development.	A	 large
and	 growing	 open	 source	 community	 of	 designers,	 programmers,	 artists,
experts,	and	novices	alike	share	ideas,	projects,	source	code,	and	resources	for
expanding	 the	 capability	 of	 each	 language.	When	 starting	 to	 explore	 the
creative	possibilities	of	 code,	 the	main	 requirements	 to	begin	your	 journey
are	a	healthy	dose	of	curiosity	(a	desire	to	understand	how	things	work	and
to	 look	 under	 the	 “hood”	 of	 the	 computer),	 an	 interest	 in	 experimenting
with	new	ideas,	and	a	willingness	to	make	mistakes.

Tools	and	technology

There	 are	 lots	 of	 different	 programming	 languages	 and	 environments
available	 for	 designers	 to	 use.	 Each	 language	 and	 environment	 has	 specific
strengths	that	make	it	appropriate	to	a	particular	type	of	work	(e.g.,	dealing
with	video,	online	data,	etc.).	The	following	is	a	brief	overview	of	some	of
the	 most	 commonly	 used	 programming	 environments	 used	 by	 creative
coders,	artists,	and	designers.

Processing:	www.processing.org
Processing	is	a	programming	language	created	to	give	artists	and	designers	a
simple	 way	 to	 create	 interactive	 drawings	 and	 graphics	 and	 to	 teach	 the
fundamentals	 of	 programming	 code.	 Initially	 created	 as	 a	 tool	 to	 teach
software	 literacy	 to	 the	 visual	 art	 and	 design	 community,	 the	 program	has

http://www.processing.org

evolved	into	a	language	that	is	used	by	students	and	professionals	alike.	The
Processing	environment	is	a	“ring	fenced”	version	of	the	(much	larger)	Java
language;	it	allows	users	to	quickly	get	into	creating	code-generated	visuals.
Code	is	written	as	“sketches”	that	can	be	quickly	and	easily	tested.	Over	the
years,	 the	 language	 and	 the	 community	 have	 grown	 such	 that	 it	 is	 now	 a
full-blown	design	and	prototyping	tool	used	for	large-scale	installation	work,
motion	 graphics,	 and	 data	 visualizations.	 Processing	 will	 be	 used	 as	 the
programming	environment	for	the	examples	and	tutorials	used	in	this	book.

VVVV:	vvvv.org
VVVV	(also	called	“v4”	or	“v-four”)	 is	a	programming	environment	with	a
particular	emphasis	on	real-time	video	work,	and	it	is	used	for	creating	large-
scale	 media	 environments	 with	 physical	 interfaces	 and	 real-time	 motion
graphics,	 audio,	 and	 video.	 Although	 it	 is	 a	 programming	 environment,
VVVV	uses	a	graphical	programming	tool	editor	that	allows	interactions	and
environments	 to	 be	 created	 visually,	 without	 having	 to	 write	 lines	 of
programming	 code	 as	 text.	 Individual	 instructions	 and	 functions	 are
represented	 as	 boxes	 (nodes),	 which	 the	 user	 links	 together	 to	 pass	 data
between	 them.	An	entire	 structure	composed	of	nodes	 and	 links	 is	 called	a
“patch.”	Although	VVVV	provides	a	visual	way	of	representing	the	structure
of	 a	 program,	 the	 interface	 is	 not	 intuitive,	 and	 complex	 programs	 can
quickly	create	an	intricate	web	of	nodes	and	links.

openFrameworks:	www.openframeworks.cc
OpenFrameworks	 is	 a	 software	 library	 designed	 for	 creative	 coding.	 It	 has
been	 created	 to	 allow	 designers	 and	 artists	 to	 make	 pieces	 that	 combine
media	elements	(graphics,	sound,	video,	etc.)	in	an	interactive	way.	The	idea
behind	 openFrameworks	 is	 very	 similar	 to	 that	 of	 Processing.	 However,
unlike	Processing,	openFrameworks	 is	not	a	programming	 language;	 it	 is	a
toolkit,	a	“glue”	that	brings	together	lots	of	different	programming	libraries
and	 assets	 into	 a	 single	 framework.	 This	 makes	 openFrameworks	 more
flexible	 and	 powerful,	 especially	when	 creating	 3D	 graphics	 and	 real-time

http://vvvv.org
http://www.openframeworks.cc

manipulation	of	video.	The	library	structure	and	framework	does,	however,
make	 it	 sometimes	 confusing	 or	 difficult	 for	 novice	 programmers	 to
navigate.

1.7	Processing
A	screen	shot	from	the	Processing	development	environment.	Code	is	written	directly
into	the	text	editor.	The	display	window	shows	the	results	of	the	code	when	it	is	run.

1.8	VVVV
A	screen-shot	from	VVVV,	which	uses	a	hybrid	visual	and	textual	development

environment.

NodeBox3:	www.nodebox.net/node/
NodeBox	3	 is	 a	visual	programming	 tool	 that	 is	designed	 for	 creating	data
visualizations	 quickly	 and	 easily.	 Programs	 in	 NodeBox	 3	 are	 constructed
visually	 by	 dragging	 boxes	 (nodes)	 onto	 the	 screen	 and	 linking	 them
together.	Each	node	performs	a	specific	task	(function),	the	details	of	which

http://www.nodebox.net/node/

can	be	edited	by	selecting	from	menu	items	within	each	node.	External	data
can	be	plugged	into	the	nodes	to	set	and	change	the	on-screen	visuals.	The
ability	to	visually	construct	programs	by	linking	boxes	together	makes	it	an
interesting	starting	point	for	the	beginner.	Although	individual	nodes	can	be
custom	built	and	edited	using	Python,	the	programming	environment	is	not
as	wide	ranging	and	“expressive”	as	some	of	the	other	examples.	The	trade-
off	 for	 the	visual	 interface	 is	 that	 there	 is	 less	 flexibility	 and	 control.	 It	 is	 a
good	 tool	 to	 explore	 for	 experimenting	 with	 data	 visualizations.	 A	 new
version,	 NodeBox	 Live,	 runs	 in	 the	 browser	 and	 will	 support	 both	 visual
programming	(through	nodes)	and	textual	programming	(using	JavaScript).

1.9	NodeBox	3	J.	Aulbach,	2012
Visualization	of	shipwrecks	of	California.

HTML,	CSS,	and	JavaScript
In	 addition	 to	 these	 creative	 code	 environments,	 there	 are	 other	 mainstream	 programming
languages	and	scripts	that	are	used	on	the	web.	HTML	and	CSS	are	specific	“mark	up”	languages
used	to	create	the	content	and	look	of	a	webpage.	JavaScript	is	a	programming	language	used	to
create	 interactivity	 and	 games	 on	 the	 web.	 Although	 this	 book	 will	 not	 specifically	 look	 at
JavaScript,	the	core	principles	of	programming	used	in	many	of	these	examples	are	shared	across
many	languages,	including	JavaScript.

1.10	NodeBox	Live	F.	De	Bleser,	2014
Image	visualized	as	a	color	circle.

Code	 is	not	only	used	as	an	 individual	 stand-alone	 language;	 it	can	also	be
used	within	a	piece	of	software	to	enhance	or	add	functionality	or	introduce
elements	 of	 interactivity.	 This	 can	 be	 done	 to	 save	 time	 and	 automate
repetitive	 processes	 or	 to	 generate	 work	 dynamically.	 For	 example,	 the
popular	motion	graphics	software,	Adobe	After	Effects,	has	its	own	built-in
programming	 environment	 called	 Expressions	 that	 can	 be	 used	 to	 create
dynamic	 animations	 without	 manually	 adding	 many	 key	 frames.	 The
Expressions	 scripts	 are	 based	 on	 the	 language	 system	 and	 structure	 of
JavaScript.	 Similarly,	 the	 animation	 tool	 Adobe	 Flash	 has	 its	 own	 built-in
programming	 language	 called	 actionScript.	 ActionScript	 has	 evolved	 with
the	 software;	 it	 has	 grown	 from	 a	 simple	 set	 of	 functions	 into	 a	 language
capable	of	adding	a	wide	range	of	 levels	of	 interaction	and	developed	from
simple	button	presses	and	menu	items	to	fully	dynamic	animations	generated
entirely	 by	 code.	 The	 ability	 to	 add	 interaction	 to	 an	 animation	 using
actionScript	has	made	it	a	popular	tool	for	designers,	although	it	is	now	more
commonly	used	for	creating	online	games.

Processing
The	examples	in	this	book	use	Processing	as	the	default	language.	Processing	is	a	good	all-round
programming	environment;	it	is	freely	available,	easy	to	get	up	and	running,	and	well	supported
with	 a	 large	 online	 community	 and	 plenty	 of	 example	 code.	 The	 Processing	 language	 uses
programming	concepts	 that	 are	 common	 to	other	 languages	 and	environments,	 so	 it	provides	 a
good	 starter	 language	 in	 which	 to	 learn	 the	 basic	 concepts	 of	 programming,	 which	 can	 be
translated	into	other	environments.	Although	the	code	examples	given	in	the	book	are	specifically
built	with	Processing,	most	 of	 the	 concepts	 are	 common	 to	 all	 programming	 structures,	 and	 so
provide	good	overview	of	the	fundamentals	of	code.

CODE:	VOCABULARY	AND	INSTRUCTIONS

Work	 along	with	 the	 examples	 in	 this	 section	 and,	 in	 addition,	 use	 the
book	resources	available	online.	Get	started	with	code	by	downloading	the
Processing	development	environment	now!	 It	 is	easy	 to	 install	 and	ready
to	use	from:	https://processing.org/download/

The	Processing	website	is	home	to	a	lively	community	of	artists,	designers,
and	programmers.	It	includes	a	host	of	useful	guides	and	tutorials	that	will
act	as	helpful	references	alongside	the	examples	in	this	book.

This	section	will	start	by	introducing	some	of	the	main	elements	of	code
that	 are	 common	 to	 many	 programming	 languages.	 They	 are	 very
important	 and	 form	 the	 basic	 principles	 from	 which	 the	 rest	 of	 the
examples	in	this	book	will	be	created.

Functions

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	1,	and	click	on	the
project	“Adding	Color.”

Every	 programming	 language	 consists	 of	 its	 own	 set	 of	 pre-written
instructions,	 which	 tell	 the	 program	 what	 to	 do.	 These	 are	 called
“functions,”	 and	 they	 direct	 the	 code	 to	 perform	 specific	 tasks.	 Each
programming	 language	 includes	 its	 own	 functions,	 which	 are	 usually
listed	in	a	reference	guide.	Functions	are	written	by	name,	followed	by	a
set	of	parentheses()	and	a	semi-colon	(;)	to	end	the	line.

doSomething();

In	 Processing,	 for	 example,	 a	 function	 to	 “smooth”	 the	 appearance	 of
graphics	on	screen	 is:	 //	a	 function	 to	draw	graphics	with	an	anti-aliased
edge	smooth();

https://processing.org/download/
http://www.bloomsbury.com/richardson-data-driven

The	online	Processing	reference	guide	gives	details	of	each	function	and	indicates	which	(and	how
many)	arguments	any	function	requires.	See	https://processing.org/reference/

The	brackets	are	used	for	extra	information	(called	“arguments”)	to	specify
how	the	function	works.	For	example,	 the	function	to	set	 the	width	of	a
line	includes	a	single	argument,	a	number,	to	indicate	a	width	in	pixels:	//
set	the	stroke	to	10	pixels	wide
strokeWeight(10);

//	set	the	stroke	to	5	pixels	wide
strokeWeight(5);

Arguments	can	be	displayed	as	numbers	or	as	other	types	of	data,	such	as
text.	 The	 println()	 function,	 used	 to	 print	 text	 in	 the	 output	 window,
specifies	the	text	to	display	within	the	brackets.

//	outputs	the	word	“hello”	to	the	output	window
println(“hello”);

Functions	often	need	more	than	one	argument	to	work.	Extra	arguments
are	separated	using	a	comma:	//	sets	the	width	and	height	of	the	screen	size
size(200,	300);

Arguments	of	different	data	types	can	be	used	together.	For	example,	the
function	for	writing	text	on	the	screen	needs	to	know	what	the	text	is	as
well	as	the	numeric	x,	y	location	of	the	words:	text	(“hello”,	10,	20);

Functions	 have	 to	 be	 typed	 in	 exactly	 the	 correct	 way.	 Any	 mistakes	 in	 lowercase	 characters,
uppercase	characters,	or	spelling	will	cause	the	code	to	return	an	error	message.

https://processing.org/reference/

TRY	IT
Create	a	new	Processing	sketch.	Use	the	size()	function	to	set	the	size	of	the	window.	Use	the	println()
function	to	print	a	message	in	the	“output”	area.

Grammar	and	Syntax

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	1,	and	click	on	the
project	“Syntax	Examples.”

Just	 as	written	 languages	 use	 punctuation	 (such	 as	 commas	 and	 periods)
and	paragraphs	to	structure	a	piece	of	writing	and	thus	to	help	the	reader
understand	its	content,	so	programming	languages	also	have	their	own	set
of	 punctuation	marks	 used	 to	 structure	 a	 piece	 of	 code,	which	 help	 the
computer	to	read	the	instructions	correctly.

The	 following	 is	 a	 short	 list	 of	 common	 grammatical	 elements	 used	 in
programming	to	define	the	structure	of	code.

Semi-colon	 (;):	This	 is	 a	 small	but	 important	part	of	 code	 that	 is	used	 to
end	 a	 line,	 similar	 to	 the	 full	 stop	 of	 a	 period.	 Each	 command	 or
instruction	is	ended	with	a	semi-colon	so	that	the	computer	knows	where
the	end	of	a	command	is.	Without	these,	several	lines	of	code	merge	into
one,	creating	errors.

//	incorrect	and	will	result	in	an	error
size	(200,	200)

size	(200,	300);	//	correct

Curly	 brackets	 ({}):	 These	 indicate	 a	 “block”	 of	 code,	 similar	 to	 a
paragraph.	 A	 large	 section	 of	 a	 program	 is	 often	 delineated	 as	 a	 single
block	of	 code.	The	 curly	brackets	 show	where	 the	block	of	 code	begins

http://www.bloomsbury.com/richardson-data-driven

and	ends.	Brackets	have	to	be	paired;	each	opening	bracket	has	to	have	a
corresponding	closing	bracket.

{

a	line	of	code;
Another	line	of	code;

}

Blocks	of	code	can	be	“nested”	inside	one	another.	Specific	elements,	such
as	“if	statements,”	are	structured	using	curly	brackets.

Comments	 (//):	These	 are	 the	notes	 and	 annotations	written	 in	 the	 code
that	are	ignored	by	the	computer.	All	programming	languages	include	the
ability	 to	 add	 comments,	 which	 can	 make	 the	 code	 more	 readable	 to
yourself	 and	 others.	 In	 Processing,	 a	 comment	 is	 added	 into	 code	 using
two	forward	slash	symbols	(//).

//	this	is	a	comment
smooth();
//	and	this	is	a	comment	also

Many	of	the	code	examples	in	the	book	will	include	comments	alongside
the	code	to	help	explain	it.

Variables

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	1,	and	click	on	the
project	“Variable	Types.”

Variables	are	at	the	heart	of	many	programming	concepts	and	provide	the
cornerstone	for	creating	digitally	dynamic,	responsive	graphics.	A	variable
is	 simply	 a	 named	 container,	 which	 represents	 a	 piece	 of	 stored
information.	 The	 name	 of	 the	 container	 remains	 the	 same,	 but	 the
information	it	stores	can	be	changed	or	retrieved	while	the	program	runs.

http://www.bloomsbury.com/richardson-data-driven

Variables	can	be	used	 for	keeping	 track	of	 information	 such	as	a	player’s
game	score,	the	location	of	an	object	on	the	screen,	or	the	name	of	a	user.

Variables	are	created,	usually	at	the	start	of	a	program,	by	defining	a	name
(without	spaces)	and	data	“type”	(something	that	says	what	type	of	data	is
being	stored).	They	are	often	given	an	initial	(starting)	value.	Variables	are
usually	named	in	a	way	that	reflects	how	they	will	be	used.

//	creates	a	number	variable	called	score
int	score	=	0;

//	creates	a	number	variable	called	x_pos
float	x_pos	=	120.5;

//	creates	a	variable	to	store	a	user	name
String	userName	=	“Bill”;

Once	a	variable	has	been	created,	it	exists	within	the	program	and	can	be
used	elsewhere	in	the	code	in	the	place	of	fixed	data	values.

String	name	=	“Andrew”;	//	creates	a	variable
//	prints	out	the	variable	name	(“Andrew”)
println	(name);
float	thickness	=	10;
strokeWeight	(thickness);

The	value	 (the	content)	of	 a	variable	can	be	updated	and	changed	while
the	program	runs.

String	name	=	“Bill”;
println	(name);	//	prints	“Bill”
name	=	“Bob”;
println	(name);	//	prints	“Bob”

Number	variables	can	be	altered	mathematically	or	via	other	input,	such	as
user	interaction	(e.g.,	mouse	movement).

Simple	mathematical	calculations	are	often	used	to	“increment”	(increase)
or	“decrement”	(decrease)	numeric	variables.

float	xpos	=	100;

float	xpos	=	100;
xpos	=	xpos	+	10;	//	increase	by	10	(to	110)
xpos	=	xpos	—	20;	//	decrease	by	20	(to	90)
//	scale	(multiply)	by	10	(to	900)
xpos	=	xpos	*	10;
xpos	=	xpos	/	2;	//	divide	by	2	(to	450)

In	programming	languages	the	basic	mathematical	symbols	are:

Addition:	+
Subtraction:	—
Multiplication:	*
Division:	/

The	following	is	“shorthand”	way	of	writing	the	same	calculations:

xpos	+=	10;
xpos	-=	20;
xpos	*=	10;
xpos	/=	2;

Changing	number	variables	are	often	used	in	drawing	functions,	which	set
the	 location	 of	 a	 shape	 drawn	 on	 the	 screen.	 Updating	 the	 variable
therefore	changes	the	location	and	moves	the	shape.

Variable	Data	Types

Variables	can	be	used	to	store	lots	of	different	kinds	of	data,	(numbers,	text,
colors).	When	a	variable	is	created	it	is	assigned	a	“data	type”	to	define	the
“type”	of	information	it	is	going	to	store.	The	data	type	is	written	before
the	variable	name	when	it	is	created:	int	x	=	10;	//	a	variable	with	an	“int”
data	type

The	basic	data	types	(which	will	be	used	in	this	text)	are	as	follows:

Integer	 (int):	 The	 int	 data	 type	 is	 used	 for	 storing	 whole	 numbers
(integers),	commonly	used	for	values	that	will	always	be	a	whole	number
(e.g.,	a	player’s	score	in	a	game).

int	score	=	50;

Float:	 A	 float	 value	 is	 also	 a	 number,	 but	 it	 is	 able	 to	 store	 decimal,	 or
“floating	number,”	values.	These	are	commonly	used	 for	values	 that	may
need	to	be	precisely	defined	or	changed—for	example,	when	calculating	a
changing	angle	or	movement	of	an	object	across	the	screen.

float	angle	=	45.5;

String:	 A	 String	 is	 a	 piece	 of	 data	 that	 stores	 a	 sequence	 (a	 “string”)	 of
characters,	 often	 letters,	 inside	 speech	marks.	 Strings	 are	 commonly	used
for	saving	literal	text,	such	as	user	names.

String	name	=	“Andrew”;

Boolean:	Boolean	data	types	are	those	that	can	have	a	value	of	either	true
or	false.	They	are	useful	for	creating	objects	that	can	be	used	as	a	type	of
“switch”	in	the	code	that	can	be	turned	either	“on”	or	“off.”	These	values
are	often	used	in	conditional	statements	(see	below)	to	determine	the	flow
of	a	program.

Boolean	visible	=	true;

TRY	IT
Try	creating	your	own	variable	(String,	int,	or	float).	Give	it	a	name,	a	data	type,	and	a	starting	value.	Put
the	variable	inside	the	println()	function	to	output	its	value.
Update	or	change	the	variable	value	to	see	how	this	changes	the	messages	that	are	printed.

Making	Decisions

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	1,	and	click	on	the
project	“If	Statements.”

Controlling	 the	 “flow”	of	 a	program	 is	 at	 the	heart	of	 any	 interactive	or
generative	 process.	 It	 allows	 the	 outcomes	 of	 the	 program	 to	 change
according	 to	 a	 range	 of	 conditions	 and	 prevents	 the	 program	 from
producing	the	same	results	every	time	it	is	run.

If	Statements

“If”	 statements	 are	 common	 to	 many	 programming	 languages.	 Also
known	as	“conditional	statements,”	the	basic	concept	is	simple;	a	block	of
code	is	created	that	will	be	run	only	if	a	condition	is	true.	The	structure	of
an	“if”	statement	is	as	follows:	if	(condition)	{

do	this	if	condition	is	true;

}

The	condition	 to	be	 tested	 is	written	 inside	 the	parentheses.	 If	 it	 is	 true,
then	the	instructions	inside	the	curly	braces	are	executed;	if	not,	then	they
are	simply	ignored.

The	 following	 statement	 checks	 to	 see	 if	 a	 Boolean	 value	 of	 a	 variable
(“visible”)	is	true	and,	if	it	is,	provides	instructions	to	show	some	graphics.

if	(visible	==	true)	{

http://www.bloomsbury.com/richardson-data-driven

if	(visible	==	true)	{
//	show	graphics;

}

“If”	 statements	 can	 be	 also	 be	 used	 to	 check	 the	 value	 of	 a	 number	 and
compare	it	with	another.	Standard	mathematical	symbols	are	used	to	assess
whether	 a	 number	 is	 greater	 than	 (>),	 less	 than	 (<),	 or	 equal	 to	 (==)
another.	The	 following	 examples	 are	 used	 to	 check	 if	 a	 player’s	 score	 is
below	20	or	above	50	and	outputs	a	message	accordingly.

Mathematical	conditions	used	in	“if”	statements:	Greater	Than:	>
Less	Than:	<
Equal	To:	==
Greater	Than	or	Equal	to:	>=
Less	Than	or	Equal	to:	<=

if	(score	<	20)	{
println	(“bad	luck”);

}

if	(score	>	50)	{
println	(“well	done”);

}

“If”	statements	can	also	include	a	extra	part	to	determine	what	happens	if
the	 initial	 condition	 is	 not	met.	 In	 other	words,	 “if	 this	 is	 true”	 then	 do
something;	otherwise,	 (“if	 it	 is	not	 true”)	do	 something	 else.	Adding	 the
“else”	statement	creates	two	different	outcomes.	In	the	following	statement
one	 of	 two	 statements	 are	 printed	 out,	 according	 to	whether	 or	 not	 the
value	of	“age”	is	greater	than	60:	if	(age	>	60)	{

println	(“you	are	over	60”);
}	else	{
println	(“you	are	60	or	under”);

}

}

TRY	IT
Create	a	numeric	variable	called	“score,”	and	give	it	an	initial	value.	Write	an	“if”	statement	that	prints
out	a	message	if	the	value	of	“score”	is	less	than	50.	Add	other	“if”	statements	to	print	different	messages
depending	on	the	value	of	“score.”

Loops

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	1,	and	click	on	the
project	“For	Loops.”

Looped	 elements	 in	 a	 program	 provide	 a	 very	 quick	 and	 useful	 way	 of
counting,	 by	working	 through	 lists,	 and	 for	 creating	 structured,	 ordered
sequences.	A	common	type	of	 loop	used	in	programming	is	a	“for”	 loop.
“For”	 loops	 use	 a	 variable	 “counter”	 and	 comprise	 three	 elements:	 the
starting	 value	 of	 the	 variable;	 a	 test	 condition,	 which	 is	 checked	 to	 see
whether	 to	remain	 in	or	exit	 the	 loop;	and	an	“update”	statement,	which
changes	the	variable	at	the	end	of	each	loop	(usually	increasing	it	by	one).

The	following	standard	“for”	loop	creates	a	variable	(i),	which	starts	at	zero
(int	i=0),	loops	while	i	is	less	than	10	(i<10),	and	increases	i	by	one	at	the
end	of	each	loop	(i++).

for	(int	i=0;	i<10;	i++)	{
println	(i);	//	outputs	“0	1	2	3	4	5	6	7	8	9”

}

Each	iteration	of	 the	 loop	calls	 the	println	 instruction,	which	outputs	 the
value	 of	 the	 variable.	 The	 println()	 function	 is	 repeated	 10	 times,
outputting	the	value	of	“i”	each	time,	generating	a	number	sequence	0	to
9.

http://www.bloomsbury.com/richardson-data-driven

TRY	IT
Create	a	“for”	loop	to	count	values	from	0	to	9.	Alter	the	number	that	the	loop	counts	up	to	by	changing
the	value	in	the	“i<10”	element	of	the	loop.

User-defined	Functions

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	1,	and	click	on	the
project	“User	Defined	Functions.”

Programmers	 can	go	beyond	 the	pre-written,	built-in	 functions,	 such	 as
smooth()	 and	 println(),	 available	 in	 a	 programming	 language	 to	 create
additional	 functions,	 which	 are	 reusable	 blocks	 of	 code.	 A	 function	 is	 a
named	wrapper	for	a	group	of	instructions.	Once	created,	calling	the	name
of	the	function	automatically	runs	the	instructions.	Wrapping	instructions
into	a	function	makes	the	code	more	useable	and	repeatable.

Creating	a	basic	function	is	simple.	Create	a	function	by	giving	it	a	name;
a	 “return	 type”	 (the	 default	 is	 “void”);	 a	 set	 of	 parentheses,	 into	 which
variables	 can	 be	 added;	 and	 a	 set	 of	 curly	 brackets,	 between	 which	 the
instructions	are	written.	For	example:	void	myFunction	()	{

//	do	something

}

In	 this	 example,	 a	 function,	 called	 calcValue(),	 calculates	 and	 prints	 the
squared	value	of	a	number.

void	calcValue()	{
float	number	=	3;
println	(number	*	number);	//	outputs	9

}

http://bloomsbury.com/richardson-data-driven

Once	 created,	 a	 function	 can	 be	 used	 like	 using	 any	 other	 pre-written
code	 instruction:	by	calling	 its	name	 followed	by	parentheses.	Each	 time
calcValue()	 is	 called,	 it	 performs	 the	 calculation	within	 the	 function	 and
prints	the	value	of	the	sum.

calcValue();	//	calls	the	function

Just	 as	 pre-built	 functions	 often	 use	 values	 (arguments)	 to	 make	 them
work,	 so	user-defined	 functions	 can	 also	 include	variables	 to	make	 them
more	useful.

A	more	practical	version	of	the	example	function,	previously,	would	be	to
calculate	 and	 print	 the	 squared	 value	 of	 any	 given	 number.	 To	 achieve
this,	 a	 variable	 (num)	 is	 added	 between	 the	 parentheses	 and	used	within
the	function	to	affect	the	calculation.

void	calcValue	(float	num)	{
float	number	=	num;
println	(number	*	number);

}

The	value	of	“num”	is	set	when	the	function	is	called.

A	 single	 argument,	 a	 number,	 is	 put	 between	 the	 parentheses	 to	 set	 the
value	 of	 “num”	 and	 produce	 new	 results	 each	 time:	 calcValue	 (4);	 //
num=4,	prints	“16”
calcValue	(12);	//	num=12,	prints	“144”

Additional	 arguments	 can	 be	 added	 to	 the	 function,	 which	 have	 to	 be
defined	when	it	is	called:	//	a	function	now	takes	2	number	values	(num1,
num2)
void	calcValue	(float	num1,	float	num2)	{
float	number1	=	num1;
float	number2	=	num2;
println	(number1	*	number2);

}

}

//	when	the	function	is	called	num1	and	num2	are	multiplied	together
calcValue	(10,	2);	//	prints	20
calcValue	(12,	5);	//	prints	60

If	a	function	is	called	with	misplaced	or	missing	arguments,	it	will	return
an	error:	//	wrong	number	of	arguments	(missing	one)
calcValue	(10);
//	right	number	of	arguments,	wrong	type
calcValue	(“three,”	2);

Functions	 are	 a	 really	 valuable	 part	 of	 code;	 they	 create	 a	 useful	way	 to
create	reusable	elements	in	a	program.

Loops	in	the	Structure:	setup()	and	draw()

Programming	 environments	 generally	 have	 two	 main	 structural	 blocks
that	define	how	and	when	the	instructions	are	processed.	The	first	creates
the	 starting	 conditions	 for	 the	 program,	 a	 place	 which	 “initializes”	 the
program	so	that	everything	is	set	up	correctly	as	the	program	begins.	The
second	defines	what	happens	while	 the	program	 is	 running:	 the	 looping
part	 of	 the	 program	 in	 which	 instructions	 are	 repeatedly	 executed	 and
processed.	These	blocks	of	code,	the	initializing	function	and	the	looping
function,	may	have	different	names	 in	different	 languages;	 in	Processing,
they	are	referred	to	as	“setup()”	and	“draw().”

The	setup()	function	is	called	once	when	the	program	starts.	It	 is	used	to
define	 initial	 properties,	 such	 as	 screen	 size.	Code	 inside	 setup()	 is	 called
only	once.

void	setup	()	{
//code	in	here	is	run	only	once

}

The	draw()	function	continually	loops	while	the	program	is	running.	Any

instructions	 or	 lines	 of	 code	 inside	 the	 draw	 function	 are	 continually
repeated.

void	draw()	{
//code	in	here	is	repeated

}

The	setup()	and	draw()	functions	will	be	used	as	the	basic	structure	for	the
examples	used	throughout	the	book.

Lists	and	Arrays

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	1,	and	click	on	the
project	“Arrays.”

An	 array	 is	 a	 list	 of	 data,	 like	 a	 shopping	 list,	 commonly	 used	 by
programming	languages	and	useful	for	storing	lots	of	variable	values,	such
as	number	values	(int,	float)	or	text	data	(String).

An	array	is	created	by	defining	the	type	of	data	to	store	and	the	number	of
elements	that	can	be	added	to	the	list.	The	following	example	creates	a	list
called	shoppingList,	which	has	4	elements,	or	“spaces,”	 that	can	hold	text
data	(String):	String	[]	shoppingList	=	new	String	[4];

The	square	brackets	here	are	used	when	creating	and	accessing	an	array.

Once	created,	 the	array	 list	 is	 “populated”	by	putting	data	values	 to	each
element	 (each	 space)	 in	 the	array.	The	 square	brackets	 are	used	 to	access
items	in	the	list.	Elements	in	the	array	are	numbered	beginning	at	0	(not
1).	 Data	 is	 assigned	 to	 the	 first	 item	 (element	 zero)	 in	 shoppingList	 as
follows:	//	the	first	item	in	the	list	is	“apples”
shoppingList[0]	=	“apples”;

The	rest	of	the	list	can	be	populated	in	a	similar	way,	using	a	number	to

http://www.bloomsbury.com/richardson-data-driven

refer	to	the	position	of	the	data	in	the	list:	//	the	2nd	item	in	the	shopping
list
shoppingList[1]	=	“milk”;

//	the	3rd	item	in	the	shopping	list
shoppingList[2]	=	“eggs”;

//	the	4th	item	in	the	shopping	list
shoppingList[3]	=	“bread”;

Once	 populated,	 items	 in	 an	 array	 can	 be	 found	 by	 referring	 to	 their
element	number	 (i.e.,	where	 they	 are	 in	 the	 list).	Keep	 in	mind	 that	 the
first	 item	 is	 at	 element	 zero,	 so	 the	 last	 item	 in	 list	 of	 4	 items	will	 be	 at
element	position	3.

println	(shoppingList[0]);	//	prints	out	“apples”
println	(shoppingList[1]);	//	prints	out	“milk”
println	(shoppingList[2]);	//	prints	out	“eggs”
println	(shoppingList[3]);	//	prints	out	“bread”

Each	array	has	a	variable	called	“length”;	this	is	a	number	that	returns	the
total	number	of	elements	in	an	array.

println	(shoppingList.length);	//	prints	out	“4”

“For”	 loops	 provide	 a	 quick	 way	 of	 cycling	 through	 lists	 to	 access	 or
change	 the	data.	A	“for”	 loop	works	as	a	counter	 that	can	quickly	access
each	of	 the	 array	 elements,	one	 at	 a	 time.	The	 following	example	 cycles
through	and	prints	out	each	item	in	the	shoppingList	array.	As	the	value	of
“i”	changes	within	the	“for”	loop,	so	each	element	in	the	array	is	found	in
turn.

for	(int	i=0;	i<shoppingList.length;	i++)	{
//	prints	one	element	in	the	array,	each	time
println	(shoppingList[i]);

}

CHAPTER	TWO

DRAWING	WITH	NUMBERS

“Everything	is	Number”
Pythagorus

DRAWING	INSTRUCTIONS
Drawing	using	 code	 provides	 designers	with	 a	 unique	 set	 of	 opportunities
and	tools	for	creating	digitally	dynamic	graphics;	it	is	a	process	that	requires
a	different	approach	 to,	 and	way	of	 thinking	about,	how	 images	are	made,
and	it	opens	up	new	avenues	for	visual	expression.

Unlike	the	physical	process	of	making	a	mark	with	a	pen,	brush,	or	even	a
digital	 tablet,	 computational	 drawings	 are	 created	 by	 a	 written	 list	 of
programming	instructions	based	on	rules	and	procedures	that	a	programmer
writes;	 a	 computer	 translates	 and	 executes	 the	 instructions	 into	 individual
marks,	lines,	and	shapes	on	the	screen.	Most	programming	languages	include
a	 set	 of	 specific	 instructions	 that	 generate	 simple	 geometric	 shapes	 (circles,
squares,	and	lines)	and	that	plot	and	position	those	shapes	on	the	screen	in	a
way	 that	 is	 similar	 to	 how	we	 plot	 and	 draw	 shapes	 on	 a	 piece	 of	 graph
paper.	 In	 the	programming	environment,	 these	 simple	geometric	 forms	are
the	 most	 basic	 visual	 units	 from	which	 the	 vast	 array	 of	 visually	 complex
graphics	 can	be	generated.	Although	 they	 are	 simple,	when	combined	 and
repeated	hundreds	or	even	thousands	of	times	within	a	program,	these	shapes
can	create	new	and	more	visually	complex	shapes.	Learning	how	to	use	code
to	create	the	most	basic	shapes	is	an	important	first	step	towards	developing
complex	data-driven	graphics.	Although	a	traditional	drawing	begins	with	a
single	mark	on	paper,	a	(dynamic)	code-based	drawing	begins	with	writing
an	instruction	to	plot	a	line	or	dot	on	the	screen.
See	Code	section:	Drawing	Shapes.

A	significant	part	of	the	unique	drawing	power	of	code	lies	 in	its	ability	to
harness	the	immense	processing	capacity	of	the	computer.	The	way	in	which
a	 computer	 can	endlessly	 execute	 a	 series	of	drawing	 instructions	over	 and
over,	 hundreds	 of	 times	 per	 second,	 means	 that	 complex	 graphics	 and
patterns	 can	 be	 generated	 from	 even	 just	 of	 a	 few	 lines	 of	 code.	 When
combined	 and	 repeated,	 individual	 instructions	 act	 together	 as	 a	 kind	 of

“drawing	machine”	that	can	generate	a	complex	set	of	dense	visuals.	Added
to	 this,	 the	 process	 usually	 includes	 elements	 that	 allow	 the	 program	 to
generate	 individual	varieties	of	 shape	and	 line	based	on	 internal	or	external
data	 information	 fed	 into	 it.	 The	 programmer	 defines	 a	 generic	 set	 of
drawing	parameters;	the	computer	then	uses	and	interprets	them	to	generate
the	visuals.	The	same	set	of	programming	instructions	can,	therefore,	create	a
variety	of	unique	and	visually	dense	forms,	graphics,	and	shapes	that	develop
and	 change	 on	 the	 screen.	 Using	 the	 computer	 in	 this	 way	 establishes	 a
creative	 “partnership”	 between	 the	 programmer	 and	 the	 computer	 that
generates	 drawings	 and	 graphics	 that	 would	 be	 impossible	 using	 any
traditional	process.

Numbers	and	Number	Sequences

Numbers	 are	 a	 key	 element	within	 digital,	 screen-based	 graphics;	 they	 are
fundamental	 to	 the	 way	 in	 which	 all	 digital	 images	 are	 understood	 and
processed.	Behind	the	gloss	of	the	graphical	user	interface	(GUI)	of	a	digital
painting	or	drawing	program	lies	a	hidden	numeric	environment	that	defines
the	 details	 of	 the	 size,	 shape,	 position,	 color,	 and	 other	 features	 of	 every
digital	line	and	form	drawn	on	the	screen.	We	see	this	in	practice	every	time
software	gives	the	user	the	ability	to	transform	or	define	the	details	of	a	shape
by	 entering	 number	 values	 that	 set	 its	 visual	 attributes,	 such	 as	 its	 width,
height,	 rotation,	 location,	 or	 color.	 Adobe	 Illustrator,	 for	 example,	 allows
users	to	see	and	set	the	size	or	position	of	a	selected	shape	by	altering	number
values	in	the	Transform	window.

Although	 largely	 hidden	 behind	 the	 GUI	 interface	 of	 the	 software,	 the
importance	 and	 significance	 of	 numbers	 for	 creating	 digital	 graphics
becomes	 unavoidable	 when	 programming.	 Individual	 number	 values	 are
crucial	to	most	aspects	of	the	programming	environment;	they	are	the	basic
unit,	 the	 starting	 point,	 for	 all	 computational	 drawings,	 and	 they	 are	 used
extensively	 in	 all	 pieces	 of	 code.	Numbers	 are	 essential	 to	 define,	 describe,
create,	move,	transform,	and	combine	shapes,	lines,	animations,	images,	and

words	on	screen.	Every	single	programming	function	used	to	create	even	the
simplest	line	or	shape	needs	a	set	of	numbers	to	define	its	exact	position,	size,
shape,	and	even	color.

2.2	2D	SuperShapes.	Reza	Ali
2D	SuperShapes	is	an	application	created	by	Reza	Ali	that	allows	users	to	play	with

2D	SuperShapes	is	an	application	created	by	Reza	Ali	that	allows	users	to	play	with
numeric	parameters	to	produce	a	range	of	organic	shapes.	Manipulation	of	the
numbers	creates	an	assortment	of	interesting	and	unexpected	geometric	forms.

Using	code	to	draw	reveals	what	is	happening	behind	the	scenes	of	common
graphical	software	such	as	Photoshop	and	Illustrator.	By	using	programming
code,	artists	and	designers	have	the	opportunity	to	dig	“below	the	surface”	of
software;	to	directly	“play”	with	the	numerical	data	that	is	usually	hidden	to
create,	 repeat,	 and	 combine	 shapes	 and	 graphics	 and	 this	 produce	 a	 wide
variety	of	generative,	data-driven,	dynamic	images.

The	 influence	 and	 use	 of	 number	 values	 is	 fundamentally	 important	 as	 a
means	 of	 generating	 graphics	 and	 visuals.	 The	 direct	 connection	 between
number	 values	 and	 visual	 properties	 available	 in	 the	 programming
environment	opens	up	a	wide	range	of	visual	and	conceptual	possibilities	for
generating	 dynamic	 digital	 graphics.	 Number	 data	 can	 be	 sourced	 either
from	 internal	 mathematical	 calculations	 or	 from	 external	 data	 sources	 and
used	 to	 dynamically	 change	 the	 visual	 appearance	 of	 graphics	 (e.g.,	 their
shapes,	sizes,	colors,	movements).
See	Code	section:	Adding	Variables.

NUMBER	PATTERNS

The	 simplest	 way	 to	 create	 numbers	 to	 define	 visual	 output	 is	 by	 using
numeric	 patterns	 created	 from	 a	 sequential,	 repetitive	 mathematical	 re-
calculation	 of	 values.	 Number	 sequences	 can	 be	 used	 to	 create	 repeatable
grids	and	other	structures	that	provide	visual	order	and	harmony	to	a	piece	of
art	or	design.	They	have	inspired	generations	of	artists	and	designers	from	a
wide	range	of	creative	practices	(e.g.,	art,	music,	and	design)	and	have	been
applied	 to	 a	 variety	 of	 creative	 visual	 contexts—for	 example,	 the	 logical,
functional	 visuals	 of	 Swiss	 modernist	 design;	 the	 geometric	 pattern	 of
ornamental	 decoration;	 and	 the	 structure	 of	 a	 Philip	 Glass	 musical
composition.	 The	 “mechanical”	 consistency	 and	 predictability	 of	 these
values,	when	applied	to	a	page,	screen,	or	canvas,	can	create	a	clear	sense	of
rhythm,	balance,	and	harmony.

The	repetitive	re-positioning	and	combining	of	simple	geometric	shapes	can,
for	 example,	 be	 used	 to	 generate	 fabulously	 intricate	 patterns.	 Complex
patterns	 emerge	 that	 contain	 a	 strong	 mathematical	 and	 visual	 rhythm
harmony.	The	ornamentation	found	in	Islamic	pattern	is	a	good	example	of
numerically	 inspired	 repetitions	 of	 simple	 geometric	 shapes	 that	 create	 a
wealth	 of	 highly	 decorative	 patterns.	 In	 the	 programming	 environment,
generating	number	sequences	is	a	direct	means	of	generating	visuals.	Simple
mathematical	 calculations	 (e.g.,	 increasing	 or	 decreasing	 a	 value)	 create
sequences	 of	 numbers	 that	 can	 be	 applied	 to	 define	 any	 of	 the	 visual
attributes	 of	 a	 shape	 (its	 size,	 movement,	 location,	 angle,	 color)	 and,
therefore,	used	to	generate	rhythmic	sequences	of	computationally	generated
pattern.	 The	 ability	 of	 the	 computer	 to	 process	 many	 hundreds	 of
calculations	very	quickly,	applying	them	to	huge	number	of	graphics,	makes
the	 repetition	 of	 numeric	 calculation	 something	 that	 can	 quickly	 yield
complex	visual	patterns.

2.3	Islamic	decorative	art
Decorative	tiles	and	designs	used	in	Islamic	art	are	typified	by	highly	structured

geometric	patterns	that	are	a	representation	of	the	spirituality	of	the	Islamic	world
view	and	act	as	concrete	symbols	of	the	infinite.	These	types	of	geometric	patterns
have	much	in	common	with	code-generated	graphics.	The	natural	ability	of	computer

programming	to	infinitely	repeat,	redraw,	scale,	and	change	number	values	can
generate	a	wide	variety	of	geometrical	patterns	and	shapes.

Once	a	link	between	a	number	pattern	and	visual	attribute	(e.g.,	rotation)	has
been	 created,	 any	 adjustments	 to	 its	 calculation,	 either	 intentional	 or
accidental,	 will	 distort	 disrupt	 or	 change	 the	 visual	 outcome.	 A	 slight
alteration	to	a	calculation	that,	for	example,	is	used	to	set	the	angle	of	a	shape
will	alter	or	disrupt	its	rhythmically	rotating	pattern,	creating	a	new	version
of	 shape	 and	 form.	 “Playing	with”	 the	number	 values—altering	 the	way	 in
which	they	are	calculated	and	how	they	are	applied—has	a	direct,	and	often
surprising,	 effect	 on	 the	 final	 visual	 result.	 Simple	 number	 sequences	 can
therefore	 generate	 repeatable	 shapes	 and	 patterns	 that	 can	 be	 used	 and	 re-
used	in	many	different	ways.

2.4–2.5	Puddle	Builder	Andreas	Gysin	and	Sidi	Vanetti
Andreas	Gysin	and	Sidi	Vanetti	used	Processing	to	create	a	code-based	drawing	tool
that	generates	a	range	of	graphics	that	were	ultimately	used	as	promotional	posters
and	flyers	for	the	Puddle,	a	live	electronic	music	event	around	Zürich.	This	project

demonstrates	how	code	can	produce	structured	patterns	and	graphics	from	a	numeric
sequence.

EXEMPLAR

Marius	Watz

Marius	Watz	is	an	artist	whose	work	extensively	explores	the	use	of	code-
based	 and	 mathematical	 processes	 to	 generate	 striking	 computational
images.	The	“algorithm,”	the	code	used	to	generate	number	patterns	and
sequences,	 is	 important	 to	much	 of	 his	 work	 as	 he	 investigates	ways	 of
generating	visually	unique	artifacts	from	code.	The	work	is	characterized
by	 well-defined	 geometrical	 forms	 and	 vivid	 colors,	 and	 its	 range	 is
extensive—from	 pure	 software	works	 and	 projections	 to	 physical	 objects
produced	with	digital	fabrication	technology.

2.6	Illuminations	B	Marius	Watz
These	images	are	taken	from	a	sequence	of	100	vector	images	that	were	generated
by	a	specially	written	software	system.	A	real-time	projection	of	the	images	was

used	alongside	the	printed	versions.

2.7	Bridge	Hypothesis	Marius	Watz
Still	images	taken	from	a	computationally	generated	animation	of	geometric	forms
that	reflect	the	strong	structures	of	bridges	and	roads.	Watz	designed	the	originals

to	be	viewed	as	a	large-scale	projection.

REPETITION:	SYSTEMATIC	DRAWINGS
Repetition	is	a	concept	at	the	heart	of	many	digital	design	processes.	Copy-
and-paste	 or	 “step	 and	 repeat”	 procedures	 are	 common	 among	 many
software	 drawing	 tools.	They	 allow	 shapes	 to	 be	 repeatedly	 and	 accurately
reproduced	and	transformed	(scaled,	rotated,	moved,	etc.)	to	create	intricate
repeating	 designs.	 The	 results	 of	 this	 type	 of	 process	 are	 organized	 and
controlled,	yet	they	produce	variety.	Repeatedly	scaling	and	moving	even	a
simple	shape	can	create	a	kaleidoscopic	array	of	shapes	and	patterns.

The	idea	of	repetition	is	also	a	very	important	part	of	writing	computer	code.
Code	can	quickly	and	accurately	repeat	an	instruction	or	calculation	or	sort
through	a	large	set	of	data,	and	these	key	abilities	are	central	to	many	of	the
tasks	 it	 is	 required	 to	 perform.	 Every	 programming	 language	 includes	 a
range	 of	 different	ways	 to	 loop	 (repeat)	 instructions	 or	 functions;	 they	 are
part	of	 the	 fabric,	and	structure	of	 the	programming	environment.	Built-in
core	functions—for	example,	draw()—are	used	to	continually	execute	lines	of
code,	repeatedly	going	over	a	list	of	instructions	for	as	long	as	the	program	is
running	(potentially	infinitely—or	until	the	program	is	switched	off).

Other	 programming	 elements	 are	 specifically	 designed	 to	 loop	 (iterate)	 a
series	of	 instructions	a	 set	number	of	 times;	 these	kinds	of	 loops	 (e.g.,	 “for”
loops	or	“while”	loops)	can	be	used	to	count	through	a	list	of	items	or	alter
and	 re-draw	 a	 shape	 a	 fixed	 number	 of	 times.	 Using	 looped	 (iterative)
functions	 to	 generate	 a	 visual	 outcome	 creates	 graphics	with	 a	 clear	 visual
structure.	A	 “for”	 loop	 function	can	be	used,	 for	 example,	 to	 incrementally
scale,	move,	 or	 rotate	 a	 shape;	 it	 creates	 neat,	 regular,	 and	well	 controlled
visual	results.
See	Code	Section:	Repetition	and	Drawing	with	“For”	Loops.

2.8	Illustrator	screen	shot
An	example	of	the	visual	result	from	a	“step	and	repeat”	process	in	Adobe	Illustrator,

which	can	be	used	to	generate	simple	geometric	shapes	and	forms.

2.9	Process	6	Casey	Reas
Casey	Reas’s	“process”	works	are	a	series	of	experimental	computational	drawings	and
paintings	in	which	a	formal	written	description	of	a	process	is	translated	into	computer

instructions	to	generate	the	images.	Each	process	produces	a	unique	set	of
computational

EXEMPLAR

Moving	Brands:	Logo	for	EMScom

Moving	 Brands	 are	 a	 design	 agency	 noted	 for	 innovation	 and
experimentation	within	the	arena	of	design	for	new,	digital	media.	Their
rebrand	 design	 of	 the	 EMScom	 logo	 highlights	 an	 innovative,
experimental	 approach	 to	 graphic	 design	 that	 encompasses	 a	 range	 of
disciplines	within	 the	 graphic	 design	 area	 and	 showcases	ways	 in	which
digital	programming	design	can	inform	traditional	graphic	design.

The	 EMScom	 brand	 identity	 was	 developed	 from	 a	 visualization	 of	 the
brand	 identity	 and	 subsequently	 used	 across	 print	 and	 screen	 media.	 A
simple	 “reactive”	 grid	 of	 lines	 was	 programmed	 in	 Processing	 as	 an
interactive,	visual	representation	of	the	characteristics	of	the	core	identity
of	 the	company.	Each	 individual	 line	 in	 the	grid	was	programmed	 to	be
reactive	 to	 user	mouse-clicks	 and	 responsive	 to	 the	 qualities	 of	 the	 lines
around	 it,	 so	 that	 each	 line	 takes	 its	 orientation	 and	weight	 from	 those
surrounding	it.

2.10–11	EMScom	Moving	Brands
An	interactive	organic	grid	of	lines,	used	as	the	basis	for	the	visual	identity	of	the
EMScom	brand,	was	created	using	Processing	code.	The	visual	structure	worked	as

a	strong,	flexible	base	from	which	a	range	printed	outcomes	were	produced.

Generative/Dynamic	Logos
Corporate	identities	are	created	as	a	detailed	set	of	visual	grids,	rules,	and	structures	that	outline	the
circumstances	and	rules	of	their	usage.	By	applying	programming	rules	and	instructions	to	set	and
manipulate	their	visual	attributes,	brand	identities	can	be	created	as	“dynamic,”	reactive	logos—not

only	animated	but	also	responsive	to	different	types	of	data	input.	These	“dynamic”	logos	become
flexible,	generative,	living	objects	that	express	the	values	and	characteristics	of	a	brand	in	a	range	of
playful,	malleable,	and	highly	customizable	ways.

Many	examples	have	been	created	that	explore	and	experiment	with	the	idea	of	translating
(creating)	dynamic	number	parameters	to	generate	variations	and	visual	systems	for	logo	design.

COMPLEXITY	FROM	SIMPLICITY
The	sheer	computational	(number-crunching)	ability	of	the	computer	means
that	 the	 number	 of	 iterations	 or	 loops	 that	 can	 be	 performed	 completely
overwhelms	 what	 would	 be	 possible	 any	 other	 way.	 Hundreds	 or	 even
thousands	of	 instructions	and	processes	can	be	continually	 (and	effortlessly)
looped	 or	 iterated	 several	 times	 per	 second	while	 the	 program	 runs.	Thus,
using	this	environment	to	draw	can	begin	a	process	that	can	repeat	and	run—
theoretically,	at	least—forever.

The	 ability	 of	 a	 computer	 program	 to	 infinitely	 repeat	 calculations	 and
processes	gives	it	an	enormous	potential	for	creating	complex	drawings	and
graphics.	Just	as	a	single	paint	stroke	or	pencil	line,	when	repeatedly	applied,
can	create	an	 intricate	drawing	or	diagram,	simple	geometric	 shapes,	when
computationally	repeated	and	combined,	can	generate	intricate	digital	forms.
When	computational	 shapes	 are	plugged	 into	 a	program	 that	harnesses	 the
vast	 processing	 ability	 of	 the	 computer	 to	 draw	 and	 change	 numbers	 and
graphics,	 an	 infinite	 variety	 and	 combination	 of	 shapes	 is	 made	 possible.
Combinations	of	circles,	lines,	and	polygons	can	quickly	be	re-generated	to
create	 a	huge	variety	of	graphical	 forms.	Programming	 instructions	 can	be
used	 to	 define	 initial	 rules	 and	 parameters,	 and	 a	 repetitive	 process	 allows
drawings	 and	designs	 to	gradually	grow	and	evolve.	Minor	changes	 to	 the
drawing	functions,	when	repeated,	will	generate	changes	to	the	drawing	of
lines,	shapes,	and	graphics.
Programming	 loops,	 therefore,	 give	 designers	 the	 ability	 to	 generate
complex	 drawings	 from	 a	 few	 simple	 instructions.	 A	 long	 list	 of	 drawing
commands	 is	 unnecessary;	 a	 few	 drawing	 instructions	 can	 be	 recurrently
executed	hundreds	or	thousands	of	times.	An	initial	design	rule	provides	the
starting	 conditions	 and	 parameters	 for	 the	 process.	 The	 visual	 complexity
that	can	emerge	from	just	a	few	initial	instructions	gives	both	the	code	and
the	drawing	a	kind	of	computational	elegance,	generating	visual	complexity
from	programmed	simplicity.	The	combination	of	complexity	and	simplicity

is	an	important	and	powerful	idea	that	is	often	used	by	artists	and	designers
when	exploring	the	capacities	of	programming	code.

EXEMPLAR

Universal	Everything:	Lovebytes	Logo

Universal	 Everything	 used	 programming	 code	 to	 produce	 publicity
material	 for	Lovebytes,	a	digital	arts	organization	based	 in	Sheffield,	UK.
The	 design	 solution	 was	 based	 around	 a	 specially	 written	 generative
drawing	program	that	produced	20,000	unique	variations	of	a	single	basic
amoeba	 character	 that	 was	 then	 used	 as	 the	 image	 for	 20,000	 unique
postcards	and	invites.	The	code	repeated	commands	to	adjust	the	specific
attributes	of	each	individual	amoeba	(its	shape,	texture,	color,	eye	position,
etc.).	Although	all	were	created	from	one	generic	computational	template,
each	 drawing	 was	 unique.	 Projects	 like	 this	 highlight	 the	 potential	 of
computer	code	working	with	print	processes	in	order	to	yield	graphics	of
infinite	variety.

2.12	Lovebytes	Universal	Everything
Repeatedly	(and	potentially	almost	infinitely)	applying	random	computational

processes	to	a	print-based	project	produces	a	unique	set	of	generative	postcards.

Moving	Brands:	IO

In	 2013,	Moving	Brands	 developed	 the	 visual	 identity	 and	 branding	 for
Swisscom’s	stand-alone	communication	app.	Although	the	final	outcomes
included	many	traditional	types	of	print	and	screen	media,	an	experimental
engagement	with	generative	 code	was	 used	 as	 a	 central	 part	 of	 the	 final

design	process	and	 solution.	The	project	 is	 an	 interesting	example	of	 the
way	 in	 which	 code	 can	 be	 used	 to	 create	 simple	 yet	 flexible	 visual
programming	“sketches”	that	can	generate	a	dynamic	set	of	brand	assets.

Using	 Processing	 as	 a	 coding	 environment,	 the	 design	 team	 wrote	 a
simple	 application	 that	 repeats	 a	 basic	 arc	 shape	 in	 a	 range	 of	 different
spiral	 formations.	 The	 number	 values	 used	 to	 set	 the	 visual	 details
(location,	angle,	color,	etc.)	of	each	repetitive	pattern	could	be	changed	via
a	 set	of	on-screen	 sliders	 that	 shifted	 the	appearance	of	overall	 shape	and
form.

Even	minor	adjustments	to	the	values	resulted	in	large	visual	changes,	and
encouraged	 the	 designer	 to	 “play”	 with	 the	 programming	 system	 to
generate	 a	 variety	 of	 outcomes.	 The	 visually	 generative	 program	 was
therefore	 able	 to	 output	 an	 almost	 endless	 array	 of	 vibrant	 shapes	 and
forms.	Selected	visuals	produced	by	the	program	were	saved	and	employed
as	 both	 static	 and	 moving	 textures	 across	 the	 brand,	 including	 the	 app
interface,	website	elements,	printed	artwork,	and	promotional	video.

2.13	iO	Moving	Brands
A	specially	built	Processing	tool	allowed	the	designers	of	the	visual	identity	for	iO
the	chance	to	develop	a	range	of	generatively	created	static	and	moving	textures

that	helped	inform	all	aspects	of	the	final	design	solution.

RANDOM	DRAWINGS
If	simple	mathematical	sequences	generate	visual	predictability,	then	random
numbers	generate	uncertainty	and	visual	noise.	The	concept	of	“randomness”
as	 a	 part	 of	 visual	 expression	 is	 important;	 it	 has	 been	 explored	 and
experimented	 with	 in	 different	 ways	 by	 artists	 and	 designers.	 The	 most
notable	 example	 probably	 comes	 from	 the	 American	 abstract	 expressionist
movement	of	artists	typified	by	Jackson	Pollock,	whose	“drip”	paintings	have
become	a	well-known	symbol	of	artistic	chance.

Introducing	 uncontrolled	 visual	 elements	 of	 chance	 or	 accident	 allows	 the
artist	 to	step	outside	the	usual	boundaries	of	conscious	effort,	move	beyond
visual	 predictability,	 and	 step	 into	 an	 area	 governed	 by	 other	 external,
uncontrolled,	or	subconscious	forces.	The	results	are	one-off	pieces	of	work
that	contain	elements	of	the	unexpected.	Elements	of	unpredictability	bring
their	 own	kind	of	 visual	 beauty,	 often	 associated	with	hand-made	or	non-
mechanistic	processes,	and	have	even	been	introduced	into	the	environment
of	 graphics	 software.	 Special	 brush	 tools	 in	 Illustrator	 and	 Photoshop	 use
elements	of	randomness	to	simulate	the	effect	real-life	painting	tools.

The	 introduction	 of	 chance	 and	 accident	 (“randomness”)	 does	 not	 mean,
however,	 that	 the	 work	 is	 completely	 without	 the	 influence	 of	 the	 artist.
Even	in	a	random	process,	some	of	the	visual	parameters	and	attributes	have
to	 be	 set	 and	 defined	 by	 the	 artist	 or	 designer.	 For	 example,	 in	 Pollock’s
“drip”	 paintings,	 the	 artist	 selects	 the	 colored	 paints	 and	 his	 physical
movements	 contribute	 to	 the	 creation	 of	 the	 lines.	 A	 “random”	 process
therefore	involves	a	balance	between	the	controlled	and	the	uncontrolled	in
which	the	artist	sets	the	constraints	and	makes	the	final	judgments	(i.e.,	how
much	 “randomness”	 to	 apply	 and	 when	 the	 piece	 is	 finished).	 Total
randomness	results	in	visual	noise;	however,	when	carefully	applied	and	used
within	 defined	 visual	 parameters	 (e.g.,	 a	 limited	 color	 palette),	 the
unexpected	nature	of	the	results	can	be	interesting.

2.14	An	example	of	one	of	Jackson	Pollock’s	famous	“drip”	style	paintings.

2.15	Illustrator	screen	shot
Elements	of	visual	“randomness”	are	often	desirable	parts	of	a	drawing	or	design.
Illustrator,	like	many	pieces	of	drawing	software,	includes	the	ability	to	randomize
shapes	and	marks	on	the	screen	by	adjusting	the	settings	of	the	“scatter”	brush.

In	the	code	environment,	visual	randomness	is	achieved	numerically:	Special
programming	 functions	 generate	 random	 number	 values	 that	 can	 then	 be
applied	 to	 one	 or	 many	 visual	 elements	 of	 the	 drawing.	 The	 shape,	 size,
color,	 line	 weight,	 and	 line	 direction	 of	 a	 drawing	 can	 be	 generated
randomly,	 producing	 different	 results	 and	 visual	 outcomes	 each	 time	 the
program	 is	 run.	The	direct	 connections	 among	code,	numbers,	 and	visuals

allow	a	direct	 link	 to	be	made	between	 a	 randomly	 selected	number	 value
and	 a	 randomly	 changing	 visual	 element.	 Adding	 randomness	 into	 a	 code
drawing	 is	 a	 simple	 but	 powerful	way	 to	 generate	 an	 unpredictable	 set	 of
visual	designs	subject	to	chance	and	random	selection.
See	Code	section:	Chaos:	Random	Patterns.

2.16	Process	16	Casey	Reas
Although	defined	by	a	set	of	written	and	computational	instructions,	the	outcomes
from	Casey	Reas’s	computational	“process”	paintings	have	a	tendency	towards

from	Casey	Reas’s	computational	“process”	paintings	have	a	tendency	towards
randomness	that	is	an	echo	of	Jackson	Pollock’s	“drip”	paintings.

The	designer	defines	“how	much”	randomness	to	use	(the	level	of	“chance”
within	 the	 work)	 by	 specifying	 the	 range	 from	 which	 the	 numbers	 are
selected	 and	 specifying	which	 attributes	 are	 generated	 in	 this	way.	This	 is
important	because	the	results	of	pure	(computational)	randomness,	in	which
all	 colors,	 shapes,	 and	 marks	 are	 randomly	 generated,	 produces	 uniformly
messy	results:	the	visual	equivalent	of	“white	noise.”	When	applied	carefully,
elements	 of	 randomness	 and	 unpredictability	 can	 offer	 nuances	 of	 change
and	variance	 that	generate	 subtle	 variations	of	 visual	 change.	Although	 the
idea	 of	 randomness	 may	 seem	 to	 oppose	 artists’	 and	 designers’	 desire	 to
maintain	 visual	 control,	 they	 value	 it;	 it	 provides	 nuance	 to	 graphics
generated	 in	 the	 otherwise	 predictable	 and	 potentially	 formulaic
computational	environment.

When	using	code	to	create	graphics,	the	designer	has	to	embrace	the	idea	of
visual	uncertainty.	Relinquishing	some	control	over	details	of	the	final	visuals
is	an	important	part	of	the	creative	process.

EXEMPLAR

Holger	Lippmann:	Perlin	Scape	1

Holger	 Lippmann	 is	 a	 German-based	 artist	 who	 uses	 programming
(particularly	Processing)	 as	 a	 significant	part	of	his	 creative	practice.	The
Perlin	Scape	 series	 is	based	on	a	“perlin	noise”	algorithm:	a	 function	 that
generates	a	 random	series	of	number	values	 that	have	a	more	naturalistic
sequence	than	“purely”	random	numbers.

A	randomly	generated	perlin	number	sequence	is	used	to	define	the	visual
attributes	(i.e.,	colors	and	angles)	of	a	series	of	rectangles.	The	outcome	of
the	 process	 is	 a	 harmonic	 composition:	 a	 digital	 painting	 of	 a	 flowing
wave	 of	 colored	 shapes.	 The	 use	 of	 computationally	 generated	 random
number	 values	 gives	 the	 composition	 its	 naturalistic	 feel	 and	means	 that
each	new	version	of	the	artwork	is	unique.

2.17	Perlin	Scape	Holger	Lippmann
The	controlled	randomness	of	the	“Perlin	noise”	values	gives	a	harmonic,	naturalistic

visual	flow	to	the	images.

Perlin	Noise
“Perlin	noise”	 is	 an	 algorithm	 invented	 by	Ken	Perlin	 in	 the	 1980s	 that	 produces	 a	 “naturalistic”

sequence	of	random	numbers.	 It	 is	often	applied	 to	create	organic-seeming	 textures,	 terrains,	and
shapes	in	the	computer	environment.

2.18	10,000	Digital	Paintings	FIELD
A	series	of	10,000	unique	illustrations	generated	by	code	processes	and	developed
for	use	as	cover	artwork	for	G.	F.	Smith’s	paper	brochure.	The	final	design	solution

showcases	the	immense	possibilities	of	digital	print	and	generative	design.

FIELD:	10,000	Digital	Paintings

The	innovative	design	studio	Field	created	a	series	of	10,000	unique	digital
illustrations	to	use	on	printed	promotional	pieces	to	publicize	the	work	of
the	 independent	 paper	 manufacturer	 G.	 F.	 Smith.	 The	 studio	 used	 a
randomized	generative	process	to	create	an	organic	digital	sculpture;	each
individual	fragment	from	it	became	one	of	10,000	images.	The	result	is	a
set	 of	 vibrant,	 colorful	 paintings	 whose	 use	 of	 dynamically	 generated
images	pushes	the	boundaries	and	possibilities	of	digital	print.

DYNAMIC/GENERATIVE	DRAWINGS
Unlike	 a	 sketch	 fixed	onto	 paper,	 or	 the	 digital	 animation	 fixed	 in	 time,	 a
code-based	graphic	is	dynamic	(i.e.,	changeable	and	variable).	The	outcome
of	 a	 code-generated	 drawing	 can	 be	 subject	 to	 change	 from	 external	 data
information	 and	 can	produce	 a	 range	of	 surprising	 and	unexpected	 results.
The	 same	 piece	 of	 code	 run	 one	 hundred	 times	 can	 return	 one	 hundred
slightly	different	results	because	numbers	that	define	graphical	attributes	are
dynamic	and	changeable,	altering	each	time	the	code	is	run.	Acting	as	a	kind
of	 data-driven	 visualization,	 computational	 drawings	 and	 designs	 can	 be
generated	 from	 an	 array	 of	 numeric	 data	 sources,	 which	 opens	 up	 new
creative	 possibilities	 for	 drawing	 and	 visualizing	 graphical	 information.
Code-created	 drawings	 can	 be	 created	 from	 number	 values	 that	 are
generated	 randomly	 or	 mathematically	 (as	 discussed),	 from	 mouse
movement,	 user	 gesture	 and	 interaction,	 time	 data,	 audio	 feeds,	 or	 from
many	other	externally	sourced	data	sets.

In	 programming	 terminology,	 changeable	 data	 values	 are	 referred	 to	 as
“variables.”	 Variables	 are	 named	 containers	 for	 changing	 values	 and	 are
commonly	used	to	replace	fixed	numbers	used	to	define	a	visual	attribute	of	a
drawing.	 Variables	 are	 at	 the	 heart	 of	 many	 programming	 concepts	 and
provide	 the	 cornerstone	 for	 creating	 digitally	 dynamic	 and	 responsive
images.	 Each	 time	 the	 program	 is	 run,	 new	 sets	 of	 visual	 outcomes	 are
produced.	 The	 results	 can	 include	 a	 wide	 range	 of	 visual	 experiments;
pleasant	accidents	and	unexpected	visual	combinations	emerge,	with	a	range
of	graphical	uses	and	applications.
See	Code	sections:	Adding	Variables	and	Mouse	Position:	mouseX,	mouseY.

A	designer	will	create	the	overarching	structure	and	parameters	of	the	code
but	 sets	 aside	 total	 control	of	 the	visual	 result	 by	 allowing	 the	 influence	of
variable,	 external	 data	 (e.g.,	 random	 numbers,	 user	 generated	 data,	 or
external	 data)	 to	 create	 specific	 elements	 of	 the	 visual	 output.	 Some	 initial

ideas	 that	 imagine	how	variables	and	visuals	can	be	 linked	together	help	 to
create	a	concept	to	define	the	parameters	of	the	drawing.	The	initial	concept
can	 be	 very	 simple	 (“draw	 circles	 at	 the	 position	 of	 the	 mouse”)	 or	 more
complex;	 it	may,	 for	 example,	 link	 color	 values	 to	numbers	 that	 are	 fed	 in
from	an	external	data	source.

Once	 a	 link	between	dynamic	number	 values	 and	 visual	 parameters	 of	 the
drawing	 have	 been	 created,	 the	 creative	 process	 becomes	 one	 of	 “fine-
tuning”	 this	 relationship	 between	 the	 numbers	 and	 the	 visuals	 in	 order	 to
generate	 the	most	 pleasing	 set	 of	 outcomes.	An	 experimental	 cycle	 of	 trial
and	 error—a	 creative	 dialogue	 between	 the	 designer	 and	 the	 program—
develops	in	which	a	balance	and	harmony	between	the	“hard”	numbers	and
code	 and	 the	 “soft”	 graphics	 is	 developed.	 The	 creative	 process	 is	 a
“partnership”	 between	 the	 designer,	 who	 defines	 the	 concept	 and	 the
structure,	and	the	code,	which	allocates	and	uses	specific	data	values.

Connecting	 variable	 values	 to	 visual	 attributes	 allows	 an	 image	 to	 become
“dynamically”	changeable.	A	huge	variety	of	different	numeric	data	sources
can	be	used	to	generate	graphics	that	can	be	used	in	a	wide	range	of	visual
contexts	 and	 outcomes.	 Even	 simple	 connections	 between	 visuals	 and
dynamically	changeable	number	values	can	form	rewarding	and	 interesting
visual	results.	The	position	of	the	mouse	on	screen,	for	example,	is	captured
by	two	simple	coordinate	number	values	(mouseX,	mouseY),	which	change
as	 the	 user	 moves	 the	 mouse.	 Mouse	 movement	 can	 be	 linked	 to	 several
visual	 attributes	 and	 used	 to	 change	 the	 position,	 size,	 or	 color	 of	 a	 shape.
Connecting	“dynamic”	values	 to	 the	visual	properties	of	a	graphic	creates	a
simple,	but	direct,	link	between	the	user	and	an	on-screen	graphic,	and	can
produce	many	interesting	visual	results.

EXEMPLAR

Sagmeister	and	Walsh:	Casa	da	Musica	Identity

Created	by	Sagmeister	and	Walsh,	the	visual	identity	for	Casa	Da	Musica,
a	 center	of	music	 in	Porto,	Portugal,	 is	 a	good	example	of	how	bespoke
software	 can	 be	 used	 to	 inform	 a	 visually	 flexible	 and	 dynamic	 graphic
identity.

The	 uniquely	 distinctive	 shape	 of	 the	 Rem	 Koolhass–designed	 building
was	used	as	a	visual	source	from	which	a	3D	logo	was	generated,	viewable
from	a	variety	of	different	 viewpoints	 and	perspectives.	New	versions	of
the	 logo	 shape	 were	 created	 from	 individual	 views	 of	 the	 building.	 A
bespoke	 software	 program	 was	 written	 as	 a	 “logo	 generator”	 to	 create
unique	 versions	 of	 the	 logo	 informed	 by	 color	 values	 from	 a	 selected
image	 (e.g.,	 a	 photograph	 of	 a	musician	 or	 staff	 from	 the	 venue).	Color
values	are	picked	from	seventeen	specific	points	on	the	image	and	used	to
define	 the	 seventeen	 colored	 faces	 of	 the	 3D	 logo	 shape.	 Each	 image
therefore	generates	 a	unique	 set	of	 colored	visual	 identities	based	around
the	core	 logo	shape	that	matches	the	colors	of	the	original	 image.	In	this
way,	a	dynamically	flexible	set	of	visual	identities	is	created	that	has	a	clear
visual	link	back	to	an	original	image.	Each	new	set	of	logos	can	be	used	on
a	range	of	graphical	outcomes	associated	with	the	venue	to	create	unique
promotional	event	posters	or	personalized	business	cards.

2.19	Casa	da	Musica	Identity	Sagmeister	&	Walsh
Logo	generator	software	was	created	to	extract	color	from	an	image	and	then

apply	it	to	different	versions	of	the	logo.	Individual	versions	of	the	logo	are	created
that	have	a	visual	connection	with	the	image.

Print	Screen
When	using	code	to	create	graphics,	the	images	are	generated	at	a	low	“screen”	resolution	that	looks

good	on	a	monitor	but	is	not	good	for	printing	at	a	large	scale	(e.g.,	to	use	as	a	graphic	on	a	poster).
Some	programming	languages	include	the	ability	to	export	the	screen-generated	graphics	as	large-
scale	 images	 or	 even	 as	 pdf	 files,	 which	 can	 be	 opened	 and	 re-sized	 at	 any	 printer-friendly
resolution.	The	Processing	language,	for	example,	includes	a	special	library	that	makes	it	possible	to
write	code-generated	graphics	as	pdf	files,	and	this	is	a	useful	way	to	generate	graphics	that	can	be
scaled,	sized,	and	output	at	very	high	resolutions.	Details	of	 the	 library	are	available	as	part	of	the
Processing	reference	guide	online	here:	https://processing.org/reference/libraries/pdf/

IO:	Here	to	There

The	project	Here	to	There	explores	a	process	that	combines	programming
algorithms,	processes,	and	concepts	alongside	hand-illustrated	graphics	 to
create	a	series	of	imaginative,	digitally	generated	illustrations	for	children.

Inspired	by	the	childhood	memories	of	artworks	on	their	bedroom	walls,
the	 designers	 Emily	Gobeille	 and	Theo	Watson	 built	 their	 own	 suite	 of
software	 tools	 (using	 openFrameworks),	 each	 of	 which	 explored
computational	 concepts	 such	 as	 algorithm	 and	 cause	 and	 effect.	 The
graphics	each	program	produced	became	the	basic	building	blocks	of	the
posters;	 these	were	 combined	with	 hand-illustrated	 graphics	 of	 creatures
and	characters	to	create	a	hybrid	story	of	two	worlds:	“City”	and	“Jungle.”
A	 wide	 variety	 of	 data	 sources	 were	 mined	 as	 numeric	 information	 to
generate	 the	 drawings—for	 example,	 elevation	 data	 from	 a	 Hawaiian
volcano	and	from	the	surface	of	the	moon,	as	well	as	data	taken	from	voice
waveforms	of	the	artists.	The	resultant	illustrations	are	playful	depictions	of
a	bizarre	 fantasy	of	worlds;	 they	mix	computationally	developed	 imagery
with	character	design,	narrative,	and	illustration	to	create	the	story	of	two
visually	 striking	 environments.	 The	 final	 artworks	 were	 released	 as	 a
limited	run	of	prints.

Computational	 drawings	 can	 therefore	 generate	 compelling	 visual
representations	 of	 data	 (movement,	 time,	 user	 interaction,	 etc.),	 making
interesting	 new	 visual	 associations	 directed	 by	 programming	 rules	 and
parameters.	The	 links	 between	 dynamic	 data	 and	 graphical	 outcome	 are
explored	in	more	detail	throughout	the	rest	of	this	book.

https://processing.org/reference/libraries/pdf/

2.20	Here	to	There	Design	IO
Illustrations	for	children’s	posters	created	from	a	mix	of	code-generated	graphics

and	hand-drawn	illustrations.

CODE:	DRAWING	FUNCTIONS

Many	 programming	 languages	 have	 their	 own	 vocabulary	 of	 pre-built
drawing	functions	that	allow	the	programmer	to	define	and	create	simple
shapes,	points,	 and	 lines.	Although	basic,	 these	 simple	 elements	 form	 the
basis	 of	many	 computational	 drawings,	 and	when	 repeated,	 layered,	 and
combined	can	create	intricate	visual	forms.	The	following	is	an	outline	of
the	basic	drawing	procedures	used	in	Processing.

Creating	the	Canvas

It	 is	 useful	 to	 think	 of	 the	 on-screen	 “canvas”	 as	 a	 digital	 type	 of	 graph
paper	on	which	each	pixel	is	a	single	square	of	the	graph.	The	size	of	the
drawing	area	(the	canvas)	is	defined	by	a	“size()”	function,	which	sets	the
pixel	width	and	height	of	the	on-screen	drawing	area.

size	(width,	height);
//	creates	a	drawing	area	of	640px	by	480px
size	(640,	480);

Drawing	Shapes

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	2,	and	click	on	the
project	“Drawing	Functions.”

Processing	includes	a	range	of	drawing	functions	that	can	be	used	to	draw
points,	 lines,	 circles,	 and	 squares.	 Each	 of	 these	 is	 created	 by	 simple
programming	functions	that	plot	a	shape	on	the	x	and	y	coordinate	grid	of
the	canvas.

The	simplest	shape	is	a	single	pixel	dot,	which	can	be	drawn	to	the	screen
using	 the	point()	 function.	The	 function	uses	 two	number	values,	which
set	the	x	and	y	coordinate	location	of	the	dot.

point	(x,	y);	//	the	point	function

http://www.bloomsbury.com/richardson-data-driven

//	draws	a	dot	at	the	coordinate	point	x:100px,	y:150px`
point	(100,	150);

A	 straight	 line	 is	 created	 by	 connecting	 two	 points	 together.	 The	 line()
function	 takes	 the	 x,	 y	 coordinates	 of	 two	 points	 and	 joins	 them	 into	 a
straight	line;	//	sample	syntax
line	(x1,	y1,	x2,	y2);
//	draws	a	line	from	x:100,	y:150	to	x:300,	y:250
line	(100,	150,	300,	250);

Other	simple	2D	shapes	can	be	created	by	plotting	and	connecting	more
points.	A	triangle,	for	example,	is	created	by	the	triangle()	function,	which
connects	three	sets	of	x,	y	coordinate	points.

//	3	sets	of	coordinate	points	create	a	triangle
triangle	(x1,	y1,	x2,	y2,	x3,	y3);
//	connect	the	points	(100,	50),	(25,	120),	(150,	140)	into	a
triangle	triangle	(100,	50,	25,	120,	150,	140);

Ellipses	 and	 rectangles	 are	 drawn	 by	 setting	 a	 single	 coordinate	 as	 the
starting	 location	 for	 the	 shape	 (e.g.,	 the	 center	 point	 of	 the	 ellipse	 or
corner	 point	 of	 the	 rectangle)	 and	 using	 two	 other	 values	 to	 define	 the
width	and	height	of	the	shape.

The	ellipse()	function	draws	ellipses	and	circles:	//	set	the	x,	y,	width	and
height	values
ellipse	(x,	y,	w,	h);
//	draw	an	ellipse	at	x:70,	y:60,	width:40,	height:30
ellipse	(70,	60,	40,	30);

The	rect()	function	draws	rectangles	and	squares:

//	set	the	x,	y,	width	and	height	values	of	the	rectangle	rect	(x,
y,	w,	h);
rect	(150,	200,	50,	70);
rect	(150,	200,	100,	100);	//	a	100	pixel	square

Circles	and	 squares	are	drawn	by	using	equal	width	and	height	numbers

with	the	ellipse()	and	rect()	functions.

An	example	of	the	basic	types	of	shapes	that	designers	can	create	with	shape
drawing	functions.	These	types	of	shapes	are	basic	visual	units	of	computational

drawings.

TRY	IT
Create	a	new	Processing	sketch.
Use	the	size()	function	to	set	the	drawing	area.
Explore	 each	 of	 the	 drawing	 functions	 (point,	 ellipse,	 line,	 and	 rect);	 use	 them	 to	 draw	 some	 simple
computational	drawings	to	the	screen.

Color:	fills	and	strokes

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	2,	and	click	on	the
project	“Adding	Color.”

Color,	 like	 many	 things	 in	 the	 computational	 environment,	 is	 precisely
defined	as	number	values.	The	simplest	set	of	color	values	is	the	256	shades
of	gray.

Grayscale	 values,	 moving	 from	 black	 to	 white,	 are	 defined	 by	 a	 single
range	of	number	values	from	0	to	255,	where	0	is	“black,”	255	is	“white.”
All	values	in	between	are	shades	of	gray,	moving	from	dark	grays	(lowest
numbers)	to	light	grays	(highest	values).

Grayscale	numbers	can	be	used	to	change	the	color	of	elements	on	screen
to	specific	shades	of	black	and	white.

Color	used	as	the	fill	and	outline	of	shapes	is	set	with	the	fill()	and	stroke()
functions.	 The	 background	 color	 of	 the	 canvas	 is	 set	 using	 the
background()	function.

//	sets	the	background	of	the	page	to	white
background	(255);
//	sets	the	outline	(stroke)	color	to	black
stroke	(0);
fill	(125);	//	sets	the	fill	color	to	mid-gray

http://www.bloomsbury.com/richardson-data-driven

A	much	greater	range	of	colors	and	shades	are	available	by	using	the	RGB
color	 range,	 created	 by	 using	 three	 number	 values,	 each	 between	 0	 and
255,	 to	 represent	 amounts	 of	 red,	 green,	 and	 blue.	 Like	 the	 grayscale
values,	RGB	values	can	be	applied	to	change	the	color	of	the	page,	fills,	or
outlines.

//	syntax	examples:
background	(r,	g,	b);
fill	(r,	g,	b);
stroke	(r,	g,	b);

By	using	 numbers	 to	 digitally	 “mix”	 amounts	 of	 red,	 green,	 and	 blue,	 a
designer	can	create	any	shade	of	color	within	the	RGB	spectrum.	Bright
red,	 for	example,	 is	defined	by	the	RGB	values	of	(255,	0,	0),	which	mix
the	“most”	amount	of	red	(255)	with	no	green	or	blue	(0,	0).

Other	colors	within	the	RGB	spectrum	can	be	mixed	using	combinations
of	 these	 RGB	 values.	 Processing	 includes	 a	 color	 picker	 to	 help	 set	 the
RGB	numbers	for	any	color.	Once	a	fill	or	stroke	value	is	set,	it	is	applied
to	all	subsequent	shapes	and	lines,	unless	it	is	changed	further	down.

fill	(13,	184,	216);	//	select	blue	as	fill
ellipse	(100,	200,	40,	40);	//	draw	blue	circle
fill	(214,	104,	13);	//	change	fill	to	orange
rect	(300,	200,	50,	50);	//	draw	orange	square

The	Color	Selector	in	Processing	allows	the	RGB	(red,	green,	blue)	values	of	any
color	to	be	found.	There	are	similar	tools	available	in	most	pieces	of	image-editing

software.

Alpha	values	are	percentage	values	(0	to	100)	that	can	be	added	at	the	end

of	 the	RGB	values	 as	 a	 fourth	number	 to	 change	 the	 color	 transparency
level.

//	Syntax	example:
fill	(red,	green,	blue,	ALPHA);

//	bright	red	with	a	50%	alpha	value
fill	(255,	0,	0,	50);

TRY	IT
Use	fill()	and	stroke()	to	change	the	colors	of	shapes	in	your	drawings.

Other	visual	attributes	of	a	shape	can	be	adjusted,	 including	the	width	of
the	line	or	outline:	strokeWeight(5);	//	sets	the	weight	of	the	outline
noStroke();	//	removes	all	outlines
noFill();	//	removes	fill	color

Adding	variables

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	2,	and	click	on	the
project	“Variables.”

Each	of	the	drawing	examples	so	far	has	used	fixed	number	values	 in	the
ellipse()	 or	 rect()	 drawing	 function	 to	 set	 the	 location	 and	 size	 of	 each
shape.	Instead,	however,	of	a	fixed	number	value,	using	a	variable	number
within	the	drawing	function	gives	the	shape	more	potential	to	be	flexible
and	changeable.	Once	a	variable	is	used	within	a	function	to	draw	a	shape,
altering	 the	 variable	 will	 automatically	 alter	 the	 shape.	 Once	 a	 number
variable	 is	 created,	 it	 can	 be	 used	 in	 place	 of	 a	 fixed	 number	 in	 a	 shape
function.

float	xpos	=	20;
float	ypos	=	10;
ellipse	(xpos,	ypos,	10,	10);

Altering	or	re-calculating	the	value	of	a	variable	will	therefore	change	the
drawing	function	in	which	it	is	used.

http://www.bloomsbury.com/richardson-data-driven

TRY	IT
Create	a	number	variable	and	use	it	in	place	of	a	fixed	number	in	a	shape	drawing	function.
Change	 the	 value	 of	 the	 variable	 to	 see	 how	 it	 affects	 the	 shape.	Create	more	 variables	 to	 alter	 other
elements	of	the	shape.

Writing	the	code	to	change	a	variable	and	draw	a	shape	inside	a	looping
draw()	 element	 of	 a	 program	will	 re-draw	 the	 resulting	 shape,	 and	 that
repeated	redrawing	can	create	a	simple	animated	movement.	For	example,
continually	changing	a	variable	that	is	used	to	set	the	x	position	of	a	shape
will	allow	the	shape	to	move	horizontally	across	the	screen.

float	xpos	=	10;
void	draw()	{
ellipse	(xpos,	50,	5,	5);
xpos	+=	2;

}

TRY	IT

Re-create	the	Processing	example	above.
Add	a	new	variable	and	use	it	to	set	the	y	location	of	the	ellipse.
Add	a	line	of	code	to	change	the	value	of	the	new	variable.	Create	additional	variables	to	alter	the	width
and	height	of	the	shape.

Mouse	Position:	mouseX,	mouseY

Variable	number	values	can	be	changed	by	data	from	other	sources,	such
as	user	input.	System	variables	mouseX	and	mouseY	are	really	simple	and
useful	 variables	 that	 grab	 the	 screen	 location	 of	 the	 mouse	 as	 it	 moves
across	the	screen.	They	can	be	used	to	create	objects	that	respond	to	users’
mouse	movements.	The	following	example	will	repeatedly	draw	a	circle	at
the	location	of	the	mouse.

void	draw()	{
ellipse	(mouseX,	mouseY,	50,	50);

ellipse	(mouseX,	mouseY,	50,	50);

}

Shapes	drawn	using	the	system	variables	of	mouseX	and	mouseY	to	set	the	x	and	y
location	will	follow	the	mouse	as	the	user	moves	it	across	the	screen.

Repetition	and	Drawing	with	“For”	Loops

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	2,	and	click	on	the
project	“For	Loops.”

“For”	 loops	repeat	 lines	of	code	and	create	predictable	number	sequences
that	 can	be	 used	 to	 repeat	 graphics	 in	 a	 structured	 and	orderly	way	 and
create	 repetitive	 shapes	 and	 patterns.	A	 single	 drawing	 function	 inside	 a
“for”	loop	will	be	repeated	several	times	and	create	several	drawings.

In	 this	example,	 the	“counter”	variable	 (i)	 is	used	 to	draw	40	 lines,	using
the	value	of	“i”	to	alter	the	x	position	of	each	line	in	a	sequential	manner.
As	the	value	of	“i”	counts	up	from	0	to	40,	so	the	x	position	of	each	line
also	increments	from	0	to	40.

//	as	i	changes,	so	does	the	x	position	of	the	both	ends	of	the	line
for	(int	i=0;	i<40;	i++)	{
line	(i,	10,	i,	100);

}

Slight	adjustments	to	the	line	function	code	alter	the	distance
between	the	lines.

//	draw	each	line	10	pixels	apart
for	(int	i=0;	i<40;	i++)	{

http://www.bloomsbury.com/richardson-data-driven

for	(int	i=0;	i<40;	i++)	{
line	(i*10,	10,	i*10,	100);

}

Drawing	shapes	with	a	“for”	loop	creates	a	regular	sequence	of	shapes.	In	this
instance,	lines	are	created	in	a	regular	sequence.	Altering	one	of	the	number	values
—for	example,	the	x	location	of	the	top	of	the	line—creates	a	simple	rhythmical

pattern.

Nesting	two	“for”	loops,	one	inside	another,	is	used	to	create	a	“grid”	of	shapes.
Simple	adjustments	to	the	size	of	the	shape	alter	the	overall	shape	patter

TRY	IT
Create	your	own	“for”	loop.
Include	a	println()	command	to	output	a	number	sequence.	Add	a	drawing	function	and	use	the	loop	to
generate	a	regimented	sequence	of	shapes.

“For”	loops	are	useful	for	generating	graphics:

•	“For”	loops	can	be	used	to	create	ordered	sequential	graphics.
•	A	“for”	loop	can	generate	100s	or	1000s	of	items	in	a	few	lines	of	code.
•	Nesting	loops,	one	inside	another,	can	be	used	to	generate	a	structured	row	and	column	“grid”	of
shapes.

Chaos:	Random	Patterns

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	2,	and	click	on	the
project	“Random.”

In	contrast	to	the	ordered	number	sequences	created	by	a	“for”	loop,	other
programming	 functions	 can	be	used	 to	generate	 less	 predictable	number
sequences	that	can	be	applied	to	create	visual	variety.

In	Processing,	the	random()	function	is	used	to	generate	a	random	number
from	 within	 a	 given	 range.	 The	 number	 range	 is	 expressed	 within	 the
brackets	either	as	a	single	(maximum)	value	or	as	two	numbers	(minimum
and	 a	maximum)	 values.	 If	 one	 number	 is	 used,	 0	 is	 used	 as	 the	 default
minimum	number.

//	generates	a	number	between	0	and	“max”
random	(max);
//	generates	a	number	between	0	and	20
random	(20);
random	(min,	max);
//	generates	a	number	between	10	and	20
random	(10,	20);

http://www.bloomsbury.com/richardson-data-driven

//	generates	a	number	between	-40	and	40
random	(-40,	40);

Each	 time	 the	 random()	 function	 is	 called,	 it	 generates	 a	 new	 value.
Applying	a	random	number	to	a	variable	allows	the	value	of	the	variable	to
generate	 unpredictable	 number	 values.	 Random	 values	 can	 be	 used	 to
generate/alter	any	numeric	property	 (e.g.,	 size,	position,	color,	etc.).	The
following	example	draws	a	circle	at	a	random	x,	y	location	each	time	it	is
run.

float	x	=	random(400);	//	create	a	random	x	value
float	y	=	random(200);	//	create	a	random	y	value
//	draw	a	circle	at	the	x,	y	location
ellipse	(x,	y,	20,	20);

TRY	IT

Use	the	random()	function	to	create	a	random	number.	Apply	it	to	one	element	of	a	drawing	function
(e.g.,	width).	Add	more	random	elements	and	apply	to	a	color	value.	Put	the	code	within	a	draw()	loop
to	keep	redrawing	the	random	shapes.

A	random	function	combined	with	a	“for”	loop	can	be	used	to	generate	a
lot	of	random	shapes.	The	following	example	generates	100	circles	drawn
at	 random	 locations	 at	 random	 sizes.	 Each	 iteration	 of	 the	 “for”	 loop
generates	new	values	and	draws	a	new	shape	with	a	new	size	and	location.

//	use	a	“for”	loop	to	repeat	the	random	drawing	of	a	circle	for
(int	i=0;	i<100;	i++)	{
float	x	=	random	(300);
float	y	=	random	(400);
float	w	=	random	(5,	50);
ellipse	(x,	y,	w,	w);

}

Random	lines	and	shapes	can	be	quickly	created	by	repeating	the	random()
function	to	draw	shapes	in	new	locations	and	in	different	sizes.

Remember:

•	Randomness	is	visually	useful,	but	needs	to	be	controlled.
•	Random	numbers	can	be	applied	to	any	numeric	element.
•	A	new	random	value	is	created	each	time	the	random()	function	is	called.

The	random()	function	creates	unpredictable	numbers,	which	can	be	applied	to	any
visible	attribute	of	a	shape,	including	color	(using	random	numbers	for	the	red,

green,	and	blue	values).

TRY	IT
Use	a	“for”	loop	to	generate	100	shapes.
Use	the	random()	function	to	randomize	the	features	of	each	shape,	including	size,	location,	and	color.

Translate	and	Rotate

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	2,	and	click	on	the
project	“Translate	and	Rotate.”

Plotting	shapes	on	the	grid	of	the	screen	can	be	done	in	the	usual	way.	For
example:	//	draw	a	shape	at	x:10	and	y:20
ellipse	(10,	20,	5,	5);

However,	drawings	in	processing	can	also	be	“translated.”	This	means	that
rather	 than	moving	 the	 shape	 to	 a	given	 screen	 coordinate,	 a	 translation
moves	 the	 coordinate	 grid	 of	 the	 screen.	 A	 translate()	 function	 has	 the
effect	 of	 shifting	 the	 (0,0)	 origin	 point	 to	 a	 new	 place.	 This	 effect	 of
“moving	the	graph	paper”	means	that	the	positions	of	all	the	shapes	on	the
grid	 are	 shifted.	 The	 translate()	 function	 uses	 two	 values	 to	 shift	 the
coordinate	grid	of	the	screen.

translate(x,	y);	//	syntax	example

The	 following	 example	 draws	 a	 shape	 before	 the	 screen	 grid	 has	 been
translated	and	after,	illustrating	how	the	function	works:	//	draw	a	shape
ellipse	(10,	20,	5,	5);
//	translate	the	grid	of	the	screen
translate	(50,	50);
//	draw	a	shape	on	the	translated	screen
ellipse	(10,	20,	5,	5);

Even	though	the	code	for	drawing	the	two	shapes	is	the	same,	the	second

http://www.bloomsbury.com/richardson-data-driven

shape	is	drawn	after	the	drawing	grid	has	been	moved	50	pixels	across	and
down.	This	has	the	visual	effect	of	drawing	the	second	shape	further	along
and	down	the	screen,	at	the	coordinates	of	60,	70.

A	translation	is	a	way	of	moving	the	coordinate	grid	of	the	stage,	meaning	that
shapes	drawn	after	translation	has	happened	are	shifted	to	a	new	place	on	the

screen.

Translate	 functions	 are	 often	 used	 with	 pushMatrix()	 and	 popMatrix()
functions.	These	are	used	to	save	and	re-set	the	shifted	coordinate	grid,	so
that	the	drawing	area	is	reset	back	after	the	translation	has	happened.

In	the	following	example,	the	ellipse	is	drawn	on	the	“translated”	grid.	The
pushMatrix()	and	popMatrix()	functions	are	used	to	save	and	reset	the	grid,
so	that	the	rectangles	are	drawn	on	the	normal	coordinate	grid.

rect	(10,	20,	5,	5);
//	save	the	current	grid	position
pushMatrix();
translate	(50,	50);
//	draw	a	shape	with	translation
ellipse	(10,	20,	5,	5);
//	return	back	to	the	normal	grid
popMatrix();
//	draw	a	shape	on	the	“normal”	grid
rect	(30,	30,	5,	5);

TRY	IT
Draw	shapes	before	and	after	a	translate()	function	to	see	how	this	works.
Add	a	pushMatrix()	and	popMatrix()	to	reset	the	grid	and	draw	more	shapes.

Using	 translate()	 is	 most	 useful	 when	 rotating	 shapes	 in	 Processing.
Rotating	a	shape	is	done	by	using	the	rotate	command	and	then	drawing	a
shape:	rotate	(radians	(45));	//	rotate	grid	by	45	degrees
rect	(0,	0,	20,	20);	//	draw	a	shape

Processing	uses	radians	rather	than	degrees	for	rotation.	The	radians()	function	converts	the	angle
into	radians	for	us.

The	rotate	function	rotates	the	grid	on	which	the	shape	is	drawn,	so	when
a	shape	is	rotated,	it	is	done	so	around	the	origin	point	of	the	screen	grid
x:0,	y:0.	To	place	a	shape	in	the	middle	of	the	screen	and	get	it	to	rotate
around	its	center	point,	the	screen	has	to	be	translated	first.	The	sequence
of	commands	is:	1)	translate	the	coordinate	grid;	2)	rotate	the	grid;	3)	draw
the	shape.

The	following	is	an	example	of	how	this	works.

pushMatrix();
translate	(50,	50);	//	move	the	grid
rotate	(radians	(45));	//	rotate	the	grid
rect	(0,	0,	10,	10);	//	draw	the	shape
popMatrix();

The	translate	function	shifts	the	grid	of	the	stage,	which	allows	shapes	to	be	rotated
around	a	center	point.	A	series	of	rotated	shapes	can	create	a	simple	spiral.

Notice	how	the	shape	function	plots	it	at	0,	0.	Because	the	screen	has	been
translated,	0,	0	now	appears	to	be	in	the	middle	of	the	screen	at	(50,	50).
This	is	all	done	inside	the	pushMatrix()	and	popMatrix()	functions	so	that
any	subsequent	drawings	will	be	placed	on	the	grid	as	normal.

TRY	IT
Apply	the	translate()	and	rotate()	functions	to	rotate	a	simple	shape.

CHAPTER	THREE

GROWTH	AND	FORM

“The	harmony	of	the	world	is	made	manifest	in	Form	and	Number.”
D’Arcy	Thompson

NATURE	AS	INSPIRATION
The	environment	of	the	natural,	physical	world	and	the	environment	of	the
digital,	interactive	world	have	much	in	common.	Many	of	the	basic	concepts
that	govern	 the	growth	 and	development	of	organic	 life	 inspire	 the	 shapes
and	 movements	 of	 “virtual”	 environments.	 Code	 gives	 “life”	 to	 digital
objects,	 adding	 individual	 behaviors	 and	 characteristics	 to	 otherwise
inanimate	images.	Designers	and	programmers	use	code	to	create	their	own
digital	 “life	 forms”:	 Lines	 and	 shapes	 emerge	 within	 the	 confines	 of	 a
computationally	 generated	 world.	 Virtual	 simulations	 of	 real-life
environmental	 forces—growth,	 movement,	 interaction,	 and	 decay—propel
those	 forms.	 The	 link	 between	 virtual	 and	 digital	 worlds	 is	 such	 that
designers	 commonly	borrow	 the	 language	of	 the	natural	world	 to	describe
the	attributes	and	characteristics	of	 their	 interactive	creations.	The	screen	 is
an	“environment”;	objects	are	often	referred	to	as	having	“life”	or	“health”	or
the	ability	to	“spawn”	new	shapes.	Programmed	interactive	objects	are	given
“behaviors”;	 they	 “grow,”	 possess	 “structure,”	 and	 enjoy	 the	 attributes	 of
digital	movement	and	life.

Computational	 designers	 therefore	 often	 look	 beyond	 the	 traditional
landscape	of	graphic	design	and	turn	toward	the	natural	world	as	a	source	of
creative	inspiration	and	reference.	Naturally	occurring	behaviors,	movement,
and	 textures	provide	a	wealth	of	visual	 information	 that	 sparks	 ideas.	Their
observation	 and	 documentation	 can	 form	 a	 key	 part	 of	 the	 visual	 and
conceptual	 research	 and	 development	 process.	 The	 shapes	 and	 structures
found	 in	 plants,	 trees,	 ferns,	 and	 fungus;	 the	 arcs	 and	 curves	 of	 leaves	 and
shells;	and	the	movements	observed	in	a	flock	of	birds	or	a	school	of	fish	can
provide	the	creative	springboard	from	which	interactive	digital	concepts	take
flight.

Personal	 observations	 are	 not	 the	 only	 possible	 starting	 points;	 scientific
diagrams,	 photographs,	 and	 illustrations	 also	 provide	 inspiration	 for

interactive	 and	 generative	 ideas.	 The	 descriptions	 of	 historical	 and
contemporary	 scientists	 seeking	 to	 order	 the	 forms	 of	 botanical	 and
biological	matter	provide	a	rich	source	of	visual	 information	that	continues
to	inspire	and	inform	the	work	of	many	digital	artists.	The	drawings	of	the
German	biologist	Ernst	Haeckel	in	his	book	Art	Forms	of	Nature	(1899)	and
the	 ideas,	 diagrams,	 and	 observations	 of	 the	 biologist	 D’Arcy	Wentworth
Thompson	 in	 his	 work	 On	 Growth	 and	 Form	 (1917),	 for	 example,	 have
inspired	work	by	contemporary	code-based	designers.

3.2	Sunflower	and	Flocking	Birds
Shapes	and	forms	found	in	nature—for	example,	in	the	spiral	of	a	sunflower	or	the

formation	of	flocking	birds—contain	their	own	kind	of	organic	rhythm	and	beauty	that
have	been	a	significant	source	of	inspiration	for	generations	of	artists	and	designers.

3.3	Biological	illustration	Ernst	Haeckel
Ernst	Haeckel	was	a	nineteenth-century	German	biologist,	naturalist,	and	artist	who

studied	the	genealogical	origin	of	many	life	forms.	The	detailed	illustrations	in	his	book

Art	Forms	of	Nature	(1899)	bridged	the	gap	between	science	and	art	and	proved	to	be
a	highly	influential	source	in	both	architecture	and	design.

The	 natural	 world	 not	 only	 provides	 an	 important	 source	 of	 visual
inspiration	for	interactive	design;	it	also	provides	inspiration	as	an	organized
evolving	 system	 of	 growth	 that	 generates	 complex	 forms,	 patterns,	 and
behaviors.	 Nature,	 like	 code,	 works	 according	 to	 an	 intricate	 and	 well-
defined	 set	 of	 patterns	 and	 rules	 that	 govern	 the	 way	 in	 which	 plants,
flowers,	 trees,	 birds,	 fish,	 insects,	 and	 others	 develop.	 Understanding	 the
rules,	structures,	and	growth	patterns	of	organic	 life	can	inspire	and	inform
digital	and	computational	designers	by	showing	how	a	repeatable	“template”
of	 simple	 rules	 and	 instructions	 can	 be	 applied	 to	 generate	 complicated
forms.

Just	 as	 the	 seed	 of	 a	 plant	 contains	 a	 genetic	 code	 to	 determine	 the	 shape,
pattern,	and	structure	of	each	species	(i.e.,	the	number,	size,	and	frequency	of
branches,	 leaves,	and	flowers),	so	also	a	set	of	programming	instructions	act
as	 type	 of	 “digital	 seed”	 used	 to	 define	 computational	 rules	 from	 which
digital	shapes	emerge	and	grow.	A	single	seed-type	generates	a	set	of	plants
that,	despite	generic	 similarities,	grow	with	 its	own	 subtle	 set	of	 individual
characteristics	 and	 variations;	 no	 two	 flowers	 or	 trees	 are	 exactly	 identical.
Similarly,	variations	embedded	within	digital	 code	means	 that	 each	version
of	the	code	can	produce	uniquely	varied	results.	The	concept	of	a	repeating,
self-generating	system	of	growth	from	which	a	rich	variety	of	drawings	can
“grow”	 and	 emerge	 provides	 an	 important	 rich	 source	 of	 inspiration	 for
artists	and	designers	using	code	to	draw.

3.4	Dual	Gardens	ART+COM	Studios
The	growth	of	a	large-scale	digital	“garden”	of	plants	and	flowers	is	governed	by

computational	instructions	that	replicate	the	organic	shapes	and	patterns	of	flowers,
fronds,	and	leaves.

DRAWING	AS	GROWTH
Code-generated	 drawings,	 like	 organic	 life,	 do	 not	 appear	 all	 at	 once,	 but
develop	 gradually	 over	 time.	The	 process	 is	 similar	 to	 planting	 a	 seed	 and
watching	 it	 grow:	 lines,	 colors,	 and	 forms	 emerge	 gradually.	 They	 spread
across	the	canvas	of	the	screen	like	a	digital	organic	form.	The	evolution	of	a
code-driven	 drawing	 is	 a	 significant	 part	 of	 the	 experience	 and	 process	 of
using	code,	which	opens	up	interesting	new	ways	of	generating	work.

Traditional	 software	 drawing	 tools	 allow	 designers	 to	 make	 closely
considered	 design	 decisions,	 in	 which	 the	 details	 of	 a	 composition	 can	 be
carefully	controlled	and	edited.	Unlike	conventional	digital	works,	drawings
created	 by	 code	 are	 subject	 to	 much	 wider	 levels	 of	 uncertainty.
Computational	rules	determine	the	overall	conditions	for	the	development	of
a	 drawing	without	 precisely	 defining	 the	 exact	 outcome.	 Individual	 visual
attributes	 (e.g.,	 the	 specific	 direction,	movement,	 shape,	 color,	 or	 size	 of	 a
line)	can	be	created	as	variable	elements,	 the	values	of	which	are	generated
and	changed	while	the	program	runs	and	the	drawing	grows.	Code	creates
visuals	 that	 develop	 in	 unexpected	 ways,	 producing	 results	 that	 can	 be
surprising	both	to	the	viewer	and	to	the	programmer.

Just	 as	 in	 the	 natural	world	 no	 two	 shapes	 are	 identical,	 so	 it	 is	 that	 code
allows	designers	to	generate	tens	or	hundreds	of	variations	around	the	same
shape.	 Rather	 than	 having	 a	 fixed	 design	 vision	 or	 outcome	 in	mind,	 the
designer	/	programmer	may	instead	start	with	a	concept	that	is	the	“seed”:	an
instruction	that	forms	the	basis	of	the	program.	The	concept	could	be	based
on	observation	of	 a	natural	 form,	 rhythm,	or	pattern	 (e.g.,	 “branching	 line
sprouts	two	more	lines”)	or	could	be	more	abstract.	By	repeatedly	looping	a
drawing	instruction,	an	organic	shape	can	grow.	Small	variable	or	“random”
elements	can	be	added	into	the	calculations	that	subtly	change	the	quality	of
each	line	or	shape,	giving	each	one	its	own	naturalistic	nuances.	Altering,	or
adding	variation	to,	the	base	concept	will	output	a	variety	of	interesting	and

surprising	results	around	the	core	theme.	The	designer	can	modify	the	rules
without	 fully	knowing	what	effects	 the	changes	may	have	on	 the	outcome
when	the	code	is	run;	the	same	drawing	program	can	produce	a	wide	range
of	new	and	unexpected	visual	outcomes	each	time.

EXEMPLAR

Conditional	Design	Group

The	 Conditional	 Design	 Group	 is	 an	 experimental,	 research-based,
graphic	 design	 collective	 that	 explores	ways	 of	 generating	 drawings	 and
artifacts	 by	 using	 self-imposed	 conditions	 and	 rules	 of	 play	 to	 create
organic	 visual	 outcomes.	 Using	 only	 non-digital	 materials	 (pens,	 paint,
clay,	 tape,	etc.),	groups	of	participants	engage	in	playful	activities,	 taking
turns	 to	 add	 to	 a	drawing	according	 to	 a	pre-defined	 set	of	 “rules.”	The
rules	 of	 an	 activity	 provide	 defined	 limits	 to	 the	 design	 process	 but	 also
allow	participants	to	fully	and	wildly	explore	the	visual	possibilities	within
those	boundaries	of	play.	The	result	is	a	series	of	“generative”	designs	that
emerge	from	shared	processes	of	chance,	time,	and	instruction.

3.5	Making	of	Hatching	Conditional	Design

This	 kind	 of	 “generative”	 development	 of	 a	 drawing,	 which	 is	 both
regulated	by	 rules	 and	 also	 “open”	 to	play,	 randomness,	 exploration,	 and
interpretation,	 mirrors	 the	 processes,	 concepts,	 and	 procedures	 used	 in
programming	code.	Although	the	materials	are	physical	rather	than	digital,

and	the	lines	are	drawn	by	hand,	rather	than	by	a	computer,	the	similarities
are	clear.	Written	rules	act	as	the	“program”	and	the	participants	act	as	the
computer,	 translating	 and	 executing	 the	 instructions.	 Numbering	 the
instructions,	 “taking	 turns,”	 and	 giving	 precise	 parameters	 for	 the
drawings	 (e.g.,	defining	one	color	per	person	or	 stating	 that	circles	must
be	 between	 2cm	 and	 5cm)	 makes	 sure	 that	 the	 creative	 actions	 occur
within	 defined	 parameters	 and	 in	 an	 orderly	 sequence—as	 they	 do	 in	 a
computer	 program.	 The	 individual	 creativity	 of	 the	 participant	 drawing
“within	the	rules”	of	the	activity	simulates	the	elements	of	variability	and
chance	 embedded	 into	 code	 processes.	 The	 process	 sets	 rules	 that	 are
carried	out	with	time	and	chance	as	variables.	The	outcomes	of	the	process
are	 wonderfully	 varied	 and	 random;	 they	 translate	 the	 concepts	 of	 a
computer	program	into	the	physical	world	of	markers,	pens,	and	paper.

3.6	Making	of	Knots	Conditional	Design
The	rule-based	systems	of	drawing	devised	by	Conditional	Design	allow	participants
to	engage	in	a	process	of	image	making	in	which	the	drawings	emerge	as	a	shared
playful	experience.	Combining	defined	rules	with	individuals’	choices,	it	mirrors	the

process	of	a	computational	system	from	which	shapes	emerge	and	grow.

ORGANIC	SHAPES:	SPIRALS	AND	WAVES
Organic	patterns	are	not	chaotic	or	random;	even	the	most	complex-looking
organic	 form	 contains	 an	 orderly	 sequence	 of	 repeating	 pattern	 and
structure.

The	movement	of	birds,	the	shape	a	leaf,	or	the	spiral	of	a	snail’s	shell	can	be
mathematically	described	by	sequences	of	numbers.	The	connection	between
nature	and	mathematics	has	informed	and	inspired	generations	of	artists	and
designers	 and	 has,	 for	 a	 long	 time,	 been	 explored	 by	 mathematicians,
scientists,	 and	 philosophers	 keen	 to	 numerically	 describe	 and	 unravel	 the
numeric	 beauty	 and	 complexity	 behind	 the	 forms	of	 nature.	A	particularly
famous	 example	 of	 an	 organic	 number	 pattern	 is	 the	 Fibonacci	 sequence.
Observed	 by	 a	 mathematician	 in	 the	 thirteenth	 century,	 the	 Fibonacci
pattern	of	numbers	is	generated	from	a	numeric	calculation	in	which	the	last
2	numbers	of	the	sequence	are	added	to	obtain	the	next	number:	1,	1,	2,	3,	5,
8,	 13,	 21,	 34,	 55	 .	 .	 .	 and	 so	 on.	 The	 relationship	 between	 each	 of	 these
apparently	random	numbers	is	used	to	generate	the	Fibonacci	Spiral	(by	the
“golden	 ratio”),	 a	 pattern	 that	 is	 observable	 in	 many	 naturally	 occurring
organic	 shapes,	 including	 sea	 shells,	 branching	 plants,	 seeds,	 leaves,	 and
flower	petal	arrangements.

3.7	Shell	spiral
The	spiral	shape	found	is	a	shell	is	a	naturally	occurring	example	of	the	Fibonacci

number	pattern.

3.8	Sine	wave
A	sine	wave	is	a	computationally	generated	shape.	The	oscillating	values	that	“bounce”
between	a	minimum	and	maximum	number	generate	a	regular,	flowing	waveform.	This

type	of	wave	can	be	applied	to	drawing	lines	or	creating	movement.

3.9	An	example	of	a	spiral	shape	generated	by	re-calculating	the	angle	and	length	of	a
line.

Other	number	sequences	generated	by	similar	formal	mathematical	functions
can	be	used	to	generate	aesthetically	pleasing	shapes	and	lines	that	reflect	the
movement	 found	 in	 the	 natural	 environment.	 An	 example	 of	 this	 is	 the
mathematical	 “sine”	 function.	 The	 sine	 calculation,	 originally	 used	 in
Pythagoras	 calculations	 to	 work	 out	 the	 properties	 of	 a	 triangle,	 also
generates	a	pattern	of	(oscillating)	number	values	which,	when	plotted	along
a	line,	generate	organic-looking	wave	shapes	and	forms.
See	Code	section:	Sine	Wave.

Computational	 programs	 often	 draw	 by	 repeating	 procedures	 to	 move	 an

object	 (as	 a	 virtual	 “pen”)	 across	 the	 screen;	 the	 “trail”	 of	 the	 path	 of
movement	 leaves	 behind	 a	 line	 on	 the	 screen.	 Repeated	 mathematical
calculations	 used	 to	move	 and	 re-position	 the	 location	 of	 the	 “pen”	 create
organic-looking	 arcs,	 curves,	 or	 swirls.	 A	 drawing	 function	 that,	 for
example,	 repeatedly	 increases	 the	 angle	 for	 each	 location	 of	 the	 “pen”	will
draw	a	line	that	gradually	spirals	inwards.	Similarly,	numbers	generated	by	a
mathematical	calculation	like	a	Fibonacci	sequence	or	a	sine	function	can	be
used	to	create	a	flowing	line	drawing	that	mirrors	the	graceful	elegance	of	a
leaf	or	petal	shape.

Number	patterns	applied	to	code-generated	graphics	create	visually	pleasing
rhythms	 and	patterns	 that	mirror	 the	 shapes	 and	movements	of	 the	natural
environment.

COMPLEX	MATHEMATICAL	MODELS
More	 recently,	 computer-based	mathematical	 systems	have	been	developed
that	 accurately	 and	 realistically	 simulate	 the	 repeating	 patterns	 of	 complex
botanical	growth	(e.g.,	plants,	weeds,	yeast,	fungi).	These	systems	are	applied
to	 scientific	 study	within	 systems	 biology	 and	 also	 extensively	 used	within
computer	 game	 technology	 to	 generate	 realistic	 environmental	 landscapes
and	terrain.	Although	technical	and	somewhat	specialist	in	nature,	computer
modeling	systems	highlight	important	principles	of	organic	growth	that	can
be	computationally	replicated,	providing	ideas	and	inspiration	for	designers.
The	following	is	a	brief	overview	of	some	of	the	concepts	behind	the	main
systems	for	computer-generated	organic	growth.	Although	they	are	do	not
need	 to	 be	 followed	 exactly,	 they	 reveal	 some	 important	 and	 interesting
features.

Recursion

Programming	 structure	 and	 organic	 structure	 share	 the	 same	 tendency
towards	recursion.	Recursion	is	a	self-referencing,	self-repeating	process;	part
of	 the	process	 includes	 an	 instruction	back	 to	 the	original,	which	 creates	 a
(potentially	 infinite)	 circular	 loop.	 There	 is	 a	 well-known	 joke	 about	 the
dictionary	definition	that	illustrates	the	concept	in	action:	Recursion	(noun)
See	“Recursion.”

Structures	that	display	the	visible	properties	of	recursion	are	those	that	show
characteristics	 of	 “self-similarity”;	 that	 is,	 each	 small	 part	 of	 the	 shape	 is
exactly	 or	 approximately	 similar	 to	 its	 overall	 shape.	 Recursive	 structures,
therefore,	 most	 commonly	 occur	 in	 the	 self-repeating	 shapes	 of	 organic
forms,	 such	 as	 trees	 and	 rocks.	 Ferns	 are	 especially	 good	 examples	 of
recursive	 shapes;	 each	 tiny	 frond	 and	 leaf	 of	 the	 fern	 is	 a	 similar,	 smaller
version	of	the	overall	fern	shape.

Recursive	 drawing	 functions	 written	 into	 code	 are	 therefore	 those	 that

contain	 instructions	 to	 re-draw	 themselves,	 creating	 (infinitely)	 self-
repeating	patterns.	There	 is	a	 shared	visual	 link	between	structured	organic
elements	of	 the	natural	world	 and	graphics	 created	 from	recursive	 (looped)
programming	processes.	They	both	display	visual	self-similarity.

3.10	Recursive	shapes	are	often	found	in	nature,	especially	in	plants.	In	ferns,	for
instance,	the	whole	shape	is	a	large	replica	of	each	of	the	small	individual	sections.

3.11	Bloom	Robert	Hodgin
Recursive	processes	can	be	used	in	code	to	create	a	branching	structure	of	plantlike
shapes.	The	branching	structure	of	a	tree	is	created	by	a	“recursive”	rule	that	repeats

shapes.	The	branching	structure	of	a	tree	is	created	by	a	“recursive”	rule	that	repeats

a	simple	instruction	for	each	branch	to	create	a	number	of	smaller	branches.	Starting
with	a	single	line	(branch),	the	rule	is	repeated,	and	the	tree	shape	is	created.	This	is

a	type	of	“fractal”	geometry.	Slight	alterations	to	the	way	the	branches	occur	change
the	appearance	of	the	overall	plant,	allowing	the	system	to	generate	many	different

shapes.

EXEMPLAR
Holger	Lippmann:	Cloud	Forest

Cloud	Forest	is	a	series	of	generative	trees	created	by	the	digital	programmer
and	 artist	 Holger	 Lippmann.	 Lippmann	 uses	 a	 recursive,	 generative	 code
(Processing)	 to	create	a	 series	of	complex,	highly	 intricate	digital	drawings.
The	 level	 of	 detail,	 subtlety,	 and	 complexity	 in	 each	of	 the	drawings	gives
each	 piece	 the	 qualities	 of	 a	 painting	 rather	 than	 a	 computer-generated
image.	 At	 the	 core	 of	 the	 work	 is	 a	 simple	 tree-branching	 (recursive)
algorithm.	The	artist	has	carefully	changed	and	adjusted	the	parameters	and
“settings”	of	the	drawing	algorithm,	altering	parameters	that	determine	size,
positioning,	and	transparency	to	achieve	results	that	are	closest	to	his	vision
for	the	final	image.	Working	in	this	way	is	less	like	being	a	programmer	and
more	 like	being	an	 artist	or	 a	painter—experimenting	with	 a	process,	 fine-
tuning	the	material	(code),	and	continually	making	adjustments	and	aesthetic
judgments	 to	achieve	 the	desired	visual	 results.	Lippmann	himself	describes
the	 process	 of	 using	 this	 code	 as	 similar	 to	 dancing	 or	 improvising	music,
from	which	the	final	work	evolves.

3.12	Cloud	Forest-Nebelwald	Holger	Lippmann
The	generative	tree	compositions	created	by	a	recursive	branching	process	possess

a	visual	lightness	suggestive	of	a	traditional	drawing	or	painting.

Koch	Snowflake

Recursive	functions	allow	designers	to	repeat	and	re-draw	simple	shapes	in

ways	 that	 increase	 complexity.	 The	Koch	 snowflake	 is	 a	 complex	 shape
developed	 by	 repeating	 a	 simple	 set	 of	 drawing	 instructions.	 It	 is	 an
example	 of	 a	 fractal	 shape—that	 is,	 a	 mathematical	 shape	 that	 repeats	 at
different	 scales.	 The	 Koch	 snowflake	 is	 constructed	 by	 starting	 with	 an
equilateral	triangle	and	recursively	adding	triangles	to	each	of	its	sides.	The
repetition	 of	 this	 process	 creates	 an	 increasingly	 complex	 snowflake-like
shape.	Variations	of	the	form	can	be	created	by	applying	the	same	process
to	a	range	of	different	types	of	shapes

3.13	A	Koch	snowflake	example
By	repeating	the	line-drawing	instruction,	the	fractal	shape	gradually	gets	more

complex.

L	Systems

An	 L	 system	 (Lindenmayer	 system)	 is	 a	 set	 of	 written	 rules	 that	 simulates
growth	 by	 representing	 plant	 structure	 as	 an	 expanding	 series	 of	 letters.	 L
systems	describe	biological	growth	as	a	formal	grammatical	structure.

A	 letter	 (usually	A	or	B)	 represents	 a	 part	 of	 the	 plant	 (e.g.,	 a	 left	 or	 right
branch).	 Starting	 with	 a	 single	 letter,	 a	 few	 simple	 rules	 are	 used	 to	 re-
generate	 the	 starting	 letter	 into	an	 increasingly	 long	sequence,	adding	new
“branches”	each	turn.	A	computer	program	can	then	interpret	each	letter	as	a

new	 line	 or	 branch,	 creating	 an	 overall	 branching	 plant	 structure	 that
corresponds	to	the	growing	letter	sequence.	For	example,	 if	we	begin	with
the	 letter	 “A”	 and	 the	 rule	 that	 for	 each	 turn,	 “A”	 becomes	 “AB”	 and	 “B”
becomes	“A,”	then	the	following	sequence	is	created:	rule	1:	A	becomes	AB
rule	2:	B	becomes	A
turn	1:	A
turn	2:	AB
turn	3:	ABA
turn	4:	ABAAB

After	 each	 generation	 of	 the	 plant,	 the	 rules	 are	 applied	 again	 and	 the
sequence	 added	 to.	 The	 result	 is	 an	 evolving	 letter	 sequence	 that	 can	 be
visually	interpreted	as	the	growth	of	a	natural	form.

3.14	L-System	example
When	interpreted	by	a	drawing	machine,	the	string	of	characters	generated	by	an	L-

System	creates	a	series	of	plantlike	shapes	and	forms.

DIGITAL	ECO-SYSTEMS
Programming	 environments	 are	 self-contained	digital	 eco-systems:	 abstract
environments	 within	 which	 the	 programmer	 defines	 rules	 of	 movement,
growth,	and	interaction.	 Just	as	a	computer	game	environment	has	 its	own
self-contained	 characteristics	 that	 determine	 how	 objects	 and	 characters
move	 and	 interact,	 so	 each	 programming	 environment	 contains	 its	 own
rules,	defined	by	the	programmer,	that	govern	the	way	in	which	objects	on
the	screen	move,	grow,	and	interact.	These	rules	can	be	naturalistic,	echoing
behaviors	of	the	physical	world,	or	invented	entirely	from	the	imagination	of
the	creator.	The	screen	 is	a	“blank	canvas”	 in	which	the	designer	can	“play
god,”	defining	the	specific	characteristics	of	the	new	environment.

Determining	 the	 “rules	 of	 play”	 for	 the	 environment	 is	 therefore	 an
important	 part	 of	 the	 creative	 process,	 giving	 the	 work	 its	 focus	 and
foundation.	Digital	environments	may	draw	their	rules	from	those	that	guide
the	 evolution	 of	 a	 set	 of	 microorganisms,	 the	 movement	 of	 bubbles,	 or
flocking	behaviors	of	birds.

3.15	Lightweeds	Simon	Heijdens
Projections	of	digital	plants	that	grow	and	move	within	indoor	spaces	inreaction	to

environmental	conditions	outside.

environmental	conditions	outside.

EXEMPLAR

Simon	Heijdens:	Lightweeds

Simon	Heijden’s	 project	 “Lightweeds”	 is	 an	 interesting	 example	 of	 how
the	 digital	 environment	 can	 be	 an	 inspiration	 and	 a	 reflection	 of	 the
natural	 world.	 Applying	 concepts	 inspired	 by	 the	 changing	 rhythms	 of
growth,	 life,	 and	decay	present	 in	organic	matter,	 the	work	consists	of	 a
series	of	digital	 light	projections	that	look	like	plants	that	grow	taller	and
bend	 in	 the	 breeze.	 Often	 situated	 within	 an	 urban	 interior	 space,	 the
presence	 of	 digital	 botanical	 forms	 that	 self-seed	 and	 undulate	 creates	 a
sharp	contrast	to	the	controlled	environments	and	architecture	of	modern
spaces:	a	reminder	of	the	lost	presence	of	nature	in	daily	life.

The	digital	 plants	grow	 from	code	 that	mirrors	 the	growth	patterns	 and
structures	 of	 organic	 life.	 Code-generated	 “seeds”	 determine	 the	 genetic
structure	 and	behavior	of	 each	plant.	All	plants	generated	 from	 the	 same
family	 are	 generated	 by	 the	 same	 seed	 and	 therefore	 grow	 and	 act
according	to	a	shared	“genetic”	code.	Each	digital	plant	grows,	 lives,	and
dies	 in	 accordance	 with	 its	 digital	 seed.	 The	 plants	 even	 pollinate	 new
plants,	generating	further	growth.	Information	about	the	outside	weather
conditions	 (humidity,	 wind,	 and	 temperature)	 and	 the	 movement	 of
people	 in	 front	 of	 the	 projection	 is	 translated	 into	 data	 that	 determines
how	the	digital	plants	move	and	develop.	The	line	between	the	digital	and
the	 organic	 blurs	 as	 the	 digital	 projections	 undulate	 and	 propagate	 in
response	to	real	environmental	conditions.

3.16	Interactive	Logograph	Golan	Levin
An	example	of	an	early	experiment	in	creating	an	interactive	logograph.	The	BP

logo	is	re-imagined	as	a	dynamic	field	of	individual	shapes	that	collectively	move	in
response	to	user	interaction,	gradually	reforming	to	create	the	logo.	The	group

behavior	of	the	shapes	mirror	the	organic,	naturalistic	movement	of	living	creatures
as	they	flock	and	swarm	together.

Life-Like	Behaviors

Code	can	be	used	to	construct	and	apply	naturalistic	behaviors	to	individual
graphical	 objects	 or	groups	of	 them,	 transforming	digital	 shapes,	 letters,	 or
lines	into	interactive	and	reactive	objects.	Behaviors	give	“life”	to	objects	on
screen,	 transforming	 them	 into	 digital	 organisms,	 allowing	 them	 to	move,
grow,	change,	 interact	with	other	objects,	and	even	spawn	and	re-generate
new	 shapes	 and	 forms.	 Graphics	 with	 these	 kinds	 of	 behavioral	 qualities
become	 digital	 versions	 of	 simple	 life	 forms:	 plants,	 seeds,	 or	 living	 cell
organisms.

Just	 as	 a	 family	 or	 species	 of	 living	 things	 share	 common	 attributes	 and
behaviors,	 so	 groups	 of	 digital	 objects	 can	 inherit	 and	 share	 behavioral
patterns.	 Object	 oriented	 programming	 (OOP)	 allows	 programmers	 to

create	 groups	 of	 digital	 objects	 that	 share	 core	 functions	 and	 define	 a
common	set	of	generic	behaviors	 (e.g.,	 the	ability	 to	grow)	while	allowing
each	object	the	capacity	to	maintain	its	own	individual	attributes	and	aspects
of	its	own	“personality”	(e.g.,	the	specific	rate	of	growth).	Digital	objects	can
therefore	be	created	that,	although	they	have	their	own	individual	attributes,
can	 act	 and	 move	 with	 a	 common	 purpose,	 a	 kind	 of	 shared	 “group
mentality,”	 creating	 a	 pattern	 of	motion	 that	 replicates	 natural	 phenomena
such	as	the	way	birds	flock	and	fish	swim.
See	Code	section:	Objects	and	Groups.

EXEMPLAR

3.17	PolyFauna	Radiohead,	Nigel	Godrich,	Stanley	Donwood,	and	Universal
Everything

An	experimental,	immersive	audiovisual	environment	for	iOS	and	Android	inhabited
by	computationally	generated	life	forms.

Radiohead,	Nigel	Godrich,	Stanley	Donwood	and	Universal	Everything
Polyfauna	Described	as	a	“a	living,	breathing,	growing	touchscreen
environment”	and	inspired	by	atmospheric	landscape	paintings	from	J.	W.
Turner	to	Peter	Doig,	as	well	as	the	computational	life	forms	of	Carl	Sims,
PolyFauna	is	the	result	of	a	creative	collaboration	among	Radiohead,	Nigel
Godrich,	Stanley	Donwood,	and	Universal	Everything.

Built	using	the	Unity	engine	and	programmed	in	C#,	the	app	presents	an
immersive	 audiovisual	 digital	 environment	 of	 primitive	 life,	 weather,
sunsets,	 mountains,	 and	 forests.	 The	 ambient	 abstract	 environment	 is
populated	with	computationally	generated	life	forms.	Variations	of	music,
weather,	 color	 palette,	moon	phase,	 and	 creature	 species	 offer	 the	 user	 a
unique	set	of	encounters	each	time	it	 is	used.	The	digital	environment	 is
explored	 through	gesture	and	movement,	 the	 internal	camera	within	 the
space	keeps	moving	forward,	and	movement	left	and	right	is	achieved	by
physical	 rotations	 of	 the	 body.	 The	 project	 explores	 uses	 of
computationally	 generated	 digital	 life	 and	 organic	 growth	 to	 create	 an
immersive	user	experience.

Sennep	and	Yoke:	Dandelion	Interactive

Sennep	and	Yoke:	Dandelion	Interactive

The	 movement	 of	 dandelion	 seeds	 as	 they	 get	 blown	 in	 the	 breeze	 is
replicated	digitally	in	this	beautifully	playful	interactive	installation.	Users
interact	 with	 a	 projection	 of	 a	 dandelion	 by	 using	 a	 hairdryer	 to	 blow
seeds	from	it.	The	seeds	drift	away	on	a	virtual	breeze	until	none	remain;
then	they	reform	and	begin	again.	Code	is	used	to	mimic	the	movement
of	 seeds	 floating	 on	 a	 breeze	 and	 create	 an	 experience	 resonant	 of
childhood.	Digital	code	translates	interaction	with	the	natural	world	into	a
poetic,	immersive	digital	experience.

3.18	Dandelion	Sennep	and	Yoke
Created	using	Processing,	this	novel	program	explores	a	physical	way	of	interacting
with	the	environment.	Virtual	dandelion	seeds	are	blown	across	the	screen	with	a

hair	dryer.

BOIDS
In	 the	 late	1980s,	 computer	 scientist	Craig	Reynolds	developed	algorithmic	 steering	behaviors	 for
animated	 characters.	 These	 behaviors	 allowed	 individual	 elements	 to	 navigate	 their	 digital
environments	 in	 a	 “lifelike”	 manner	 with	 strategies	 for	 fleeing,	 wandering,	 arriving,	 pursuing,
evading,	and	so	on.	By	building	a	system	of	multiple	characters	that	steer	themselves	according	to	a
simple	set	of	rules,	surprising	levels	of	complexity	emerge.	The	most	famous	example	is	Reynolds’s
“boids”	model	 for	 “flocking/	 swarming”	behavior.	This	model	of	behavior	has	been	 re-applied	by
designers	 and	 artists	 to	 develop	 swarms	 of	 characters	 that	 display	 the	 kind	 of	 group	 behavior

displayed	in	the	flocking	and	steering	activities	of	groups	of	fish	or	birds.

ENVIRONMENTAL	FORCES:	GRAVITY,	ELASTICITY
In	addition	to	creating	patterns	of	individual	and	group	behavior	movements
and	interactions	of	individual	objects,	code	can	also	define	the	characteristics
of	the	environment	in	which	these	objects	move.	Virtual,	digital	forces	that
replicate	 the	 physical	 properties	 of	 the	 natural	 environment,	 such	 as	wind,
friction,	 or	 gravity,	 can	 enhance	 the	 digital	 environment	 and	 affect	 the
movement	 and	motion	 of	 all	 the	 objects	 within.	 Simulation	 of	 forces	 that
replicate	 “wind”	 within	 the	 screen	 world,	 can,	 for	 example,	 mean	 that
graphics	and	pieces	of	typography	are	gracefully	blown	across	the	screen	like
leaves	in	a	breeze.	Adding	or	making	changes	to	environmental	factors	(e.g.,
the	 values	 that	 alter	 the	 attributes	 of	 heaviness	 or	 lightness)	 changes	 the
nature	 of	 the	 virtual	 scene	 and	 can	 determine	 whether	 objects	 on	 screen
appear	as	if	they	are	in	air,	in	water,	or	in	outer	space.	Changing	the	amount
of	computational	“gravity”	within	a	scene,	for	example,	will	affect	the	speed
and	movement	of	objects	towards	the	“ground.”
See	Code	section:	Friction	and	Damping	&	Gravity.

By	 adding	 behavioral	 and	 environmental	 qualities	 to	 the	 screen,	 code	 can
transform	 the	 objects	 within	 a	 programmed	 environment	 so	 they	 act	 like
living	digital	creatures,	 subject	 to	change	over	 time	and	able	 to	 live,	grow,
move,	and	even	self-replicate.	Digitally	created	objects	can	create	a	range	of
visually	 fascinating	 environments	 that	 can	 either	 be	 self-generating,	 like
garden	 or	 pond	 eco-systems,	 or	 be	 generated	 and	 informed	 by	 user
interaction.

EXEMPLAR

Bibliotheque	Design:	Ollo

A	visual	identity	created	for	Ollo,	a	digital	telecom	company,	explores	the
potential	 of	 interactive	 code	 to	 form	 a	 key	 part	 of	 a	 design	 solution.	As
part	of	the	brand	development,	the	 logo	is	 imagined	not	as	a	fixed,	static
visual,	 but	 as	 a	 living,	 organic	 shape	 with	 its	 own	 visually	 dynamic
properties.	 To	 fit	 alongside	 the	 brand	 concept	 “one	 line	 of
communication,”	the	Ollo	logo	is	created	as	a	single,	dynamically	flexible
line	 that	 can	 be	 manipulated	 via	 a	 touch-based	 interaction,	 which
encourages	 users	 to	 push	 and	 pull	 the	 shape	 on	 the	 screen.	 Interactive
manipulation	 of	 the	 logo	 becomes	 a	 creative	 tool	 in	 building	 the	 visual
identity,	which	allows	the	designer	to	create	an	infinite	number	of	unique
digital	 assets	 that	 can	 be	 integrated	 into	 the	 brand.	 Computationally
created	physical	forces,	such	as	elasticity	and	springiness,	give	the	shape	its
playfully	 expressive	 characteristics,	 which	 reflect	 the	 personality	 and
informality	of	the	brand.

3.19	Ollo	Bibliotheque	Design
A	soft,	responsive	logo	created	for	Ollo	and	made	to	match	the	personality	of	the
brand.	The	digital	flexibility	of	the	logotype	creates	a	brand	image	that	encourages
playful	interaction	with	the	customers	and	is	open	to	almost	infinite	visual	variety.

Everywhere:	Oasis

Oasis	 is	 a	playful	 interactive	 environment,	 a	 self-contained,	pond-like	 eco-
system	 inhabited	 by	 digitally	 generated	 life	 forms.	 The	 interactive
application	 populates	 the	 environment	 with	 a	 range	 of	 various	 digital
organisms,	 each	 with	 its	 own	 characteristics,	 behaviors,	 and	 movements.
Using	code	to	enhance	and	create	 the	behaviors	of	each	creature,	users	can
play	with	the	environment	by	forming	ponds	of	life	forms	from	the	sand	on
the	 surface.	 The	 movement	 and	 interaction	 of	 the	 digital	 creatures	 is
fascinating	 for	viewers	who	can	explore	 and	watch;	 it	 re-creates	 the	child-
like	interest	of	peering	into	a	virtual	rock-pool.

Digitally	created	eco-systems	possess	 a	 lightness,	beauty,	 and	uniqueness	of
shape	 that	 are	 not	 always	 mathematically	 or	 scientifically	 precise	 but	 are
artistic	 interpretations	 of	 the	 organic	 forms.	 The	 shapes,	 colors,	 form,	 and
movement	echo	the	lightness	and	beauty	of	the	real	world.	Living	within	the
space	of	a	screen	or	projection	blends	the	real	and	virtual	environments.

3.20	Oasis	Everyware
Virtual	computational	life	forms	emerge	in	digital	“rock	pools.”

SPOTLIGHT	ON

Daniel	Brown

Daniel	 Brown	 is	 a	 designer,	 programmer,	 and	 artist	 and	 one	 of	 a
generation	 of	 pioneers	 exploring	 creative	 uses	 and	 applications	 of
interactive	 technology.	 He	 has	 been	 at	 the	 forefront	 of	 digital	 and
interactive	 design	 since	 he	 launched	 his	 playful,	 innovative	 web
experiments,	Noodlebox,	in	1997.

Daniel’s	work	combines	cutting-edge	technology	and	programming	with
an	aesthetic	sense	that	is	inspired	by	the	decorative	lightness	and	freshness
of	natural	 shapes	 and	 forms.	He	has	 produced	work	 for	 a	wide	 range	of
fashion	 and	 luxury	 brands	 in	 addition	 to	 creating	 private	 and	 public
installations.

Natural	 botanical	 beauty—especially	 the	 shapes,	 forms,	 and	 colors	 of
butterflies	and	flowers—suffuses	Daniel’s	work.	Many	of	his	pieces	translate
botanical	 forms	into	a	digital	environment—flowers	and	plants	 that	grow
and	 reproduce.	 Complex	 technological	 processes	 and	 generative
algorithms	 are	 hidden	 behind	 the	 elegance	 of	 the	 final	 pieces	 so	 that
viewers	 appreciate	 not	 the	 clever	 application	 of	 code,	 but	 the	 aesthetic
beauty	of	the	pieces	themselves.

3.21	On	Growth	and	Form	Daniel	Brown

Commissioned	by	the	University	of	Dundee,	this	is	a	generative	artwork	created	in
homage	to	D’Arcy	Thompson’s	pioneering	book	On	Growth	and	Form	(1917)	for	the

D’Arcy	Thompson	Zoology	Museum.	Inspired	by	shapes	and	textures	in	the
museum’s	exhibits,	the	work	generates	digital	plants	and	flowers	that	continually

grow	and	re-generate.	This	piece	forms	a	part	of	Daniel’s	ongoing	series	of
generative	artworks,	in	which	botanical	shapes	and	forms	are	created	from	complex

algorithms	and	computational	processes.

3.22	Mulberry	Love	Blossoms	Daniel	Brown
The	Love	Blossoms	project	commissioned	by	Mulberry	offers	users	the	opportunity

to	send	unique,	digitally	generated	flowers	as	a	Valentine’s	gift.	By	selecting	a
seasonal	Mulberry	pattern,	the	user	sends	a	seed	that	grows	into	a	unique	digital
flower.	Computational	processes	are	used	to	create	the	shapes	and	forms	of	each
flower	and	petal,	meaning	that	no	two	are	ever	the	same,	and	the	experience	for

flower	and	petal,	meaning	that	no	two	are	ever	the	same,	and	the	experience	for
each	recipient	is	unique.	The	combination	of	interactive	media	with	elegant
naturalistic	forms	creates	a	beautiful	digital	experience	for	the	viewer	and	the

recipient.

How	 did	 you	 become	 interested	 in	 designing	 and
programming?
From	an	early	 age,	 I	was	 always	 interested	 in	 all	 things	 visual	 and	computers.	 If	 I
wasn’t	 playing	 with	 the	 computer,	 I	 would	 be	 drawing	 or	 painting	 and	 getting
myself	and	everything	around	me	messy.	You	might	say	it	was	somewhat	inevitable,
with	a	mathematician	and	musician	mother,	and	a	programmer	and	painter	 father.
The	 timing,	 however,	was	 interesting.	Until	 the	mid-90s,	 the	only	 real	 outlet	 for	 a
mixture	of	such	skills	was	the	computer	game	industry,	which	I	did	consider	going
into	 quite	 seriously.	 But	 then,	 by	 fortunate	 timing,	 digital	 media	 came	 along	 and
required	the	exact	mix	that	I	had	accidentally	stumbled	upon	out	of	passion	rather
than	anything	else.	I	won’t	pretend	it	was	a	master	plan.

Where	do	you	look	to	find	creative	inspiration	for	your	work:
Who	or	what	motivates	and	inspires	you?
At	the	root	of	it	all	are	two	core	things:
•	 a	 desire	 to	 create	 interactive	 experiences	 which	 allow	 the	 public	 to	 empower
themselves	creatively	and	culturally.
•	a	curiosity	in	seeing	how	computers	can	synthesize	the	aesthetic	found	in	nature
and	everyday	physical	phenomena,	and	how	they	can	further	create	new	aesthetics
that	go	beyond	the	boundaries	of	that	reality.

The	idea	of	playful	experimentation	is	clear	especially	in	your
early	work.	What	role	does	“play”	and	experimentation	have
as	part	of	your	creative	practice?
I	 think	that	very	much	came	out	of	 the	 fact	 that	as	a	 teenager	 I	was	 interested	 in
computer	 games	 and	 the	 “demo	 scene.”	 I	was	 interested	 in	 how	web	 technology
could	 be	 used	 to	 create	 a	 more	 game-like	 experience,	 and	 in	 pushing	 the
performance	to	its	limit.	On	a	personal	level,	anyone	who	knows	me	will	tell	you	that
I	don’t	take	life	too	seriously	and	if	 I	can	make	anything	more	fun	than	boring	and
trivial	for	me	and	my	friends,	I	will	do!

Why	 do	 you	 code?	 Do	 you	 think	 that	 there	 are	 specific
qualities	 or	 characteristics	 of	 programming	 which	 open	 up
creative	opportunities?
Well,	 the	 simple	 answer	 is	 that	 since	2003	when	 I	 sustained	a	 very	 serious	 spinal
injury,	 I	have	been	severely	paralyzed.	 I	can	no	 longer	hold	a	brush,	or	a	pencil,	 a
scalpel,	 or	 even	 Lego.	My	 only	 creative	 outlet	 is	 in	writing	 code—which	 I	 am	 still
fortunately	able	to	do	by	means	of	an	adapted	computer.	The	long	answer	is	that	I
enjoy	the	challenge	of	programming;	it	keeps	me	thinking	every	day	what	can	I	do
that	I	haven’t	done	before.	When	I	think	of	aesthetics	and	design,	 I	 like	to	imagine
styles	 and	 looks	 that	 don’t	 exist	 yet;	 that’s	what	 I	 try	 to	 invent.	 Pens	 and	pencils

can’t	help	you	with	that.

Working	 on	 the	 intersection	 between	 technology	 and
creativity	 involves	 quite	 separate	 (left-brain	 /	 right-brain)
activities.	How	 is	writing	 code	 integrated	 into	 your	 creative
process?
Personally	I	don’t	see	a	distinction.	I	remember	my	mother	playing	the	piano	when	I
was	child	and	improvising.	I	remember	her	telling	me	that	once	you	practice	playing
an	 instrument	 to	a	certain	point,	 it	almost	becomes	a	part	of	you	and	your	hands
can	instinctively	connect	the	song	in	your	head	with	the	keys.	 I	think	 it’s	the	same
thing	 for	 me	 to	 use	 technology.	 My	 brain	 works	 instinctively	 in	 tune	 with	 the
creative	possibilities;	I	don’t	think	about	it.

Nature,	growth,	and	form	is	a	strong	theme	in	your	work.	Do
you	 see	 a	 connection	 between	 the	 organic	 and	 the
computational	environments?
The	 very	 first	 work	 in	 my	 flowers	 series	 was	 actually	 meant	 to	 be	 a	 technical
demonstration	 of	 a	 particular	 type	 of	 computer	 algorithm.	 It	 was	 only	 after	 the
London	Design	Museum	saw	it	and	asked	to	put	 it	on	display	that	 I	thought	much
about	 it.	 It	 turned	 out	 to	 be	 one	 of	 the	 most	 popular	 works	 in	 the	 show,	 and	 I
realized	that	digital	 flowers	are	a	 fantastic	way	of	demonstrating	computer	power
and	 mathematics	 to	 the	 public.	 It’s	 a	 universal	 aesthetic	 that	 everyone	 can
understand.

You	have	created	a	wide	range	of	projects	and	design	work.
Is	 there	a	particular	piece	or	project	of	which	you	are	most
proud?
I	 would	 say	my	 flowers	 series.	 Seeing	 young	 children	 jumping	 up	 trying	 to	 catch
them	when	projected	on	the	wall,	or	elderly	people	look	in	wonder	as	they	grow	all
around	them.	Again,	it’s	a	universal	beauty.	It	touches	humanity.

Do	 you	 have	 any	 word	 of	 advice	 to	 young	 designers	 /
students	starting	to	explore	this	field	of	creative	technology?
I’m	going	to	sound	rather	boring	and	archaic,	but	I	would	suggest	that	you	start	out
by	really	understanding	how	a	computer	works,	and	how	you	use	computer	code	to
interact	with	 one.	 If	 you	 go	 down	 the	 path	 of	 learning	 one	 particular	 package	 or
system—Unity	or	Flash,	say—that	 is	good,	but	you	will	still	never	really	understand
the	difference	between	that	system’s	 limitations	and	the	near-limitless	possibilities
of	 computing	 itself.	 It’s	 hard	 work—sorry—but	 it	 offers	 great	 rewards.	 Creating
something	that	was	previously	unimaginable	only	yesterday	gives	a	great	feeling	of
accomplishment.

CODE:	DIGITAL	ENVIRONMENTS

Many	forces	from	the	real	world	can	be	computationally	simulated	in	the
digital	 environment	 by	 applying	 simple	 mathematical	 calculations	 to
create	 shape	 and	movement.	The	 following	 section	 outlines	 some	useful
examples.

Sine	Wave

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	3,	and	click	on	the
project	“Sine	Wave.”

A	 sine	 wave	 is	 a	 mathematically	 described	 curve,	 often	 used	 in
trigonometry,	which	can	be	applied	to	draw	curved	lines	or	create	smooth
bouncing	movement.	 A	 sine	 function	 uses	 an	 angle	 to	 create	 a	 number
sequence:	As	the	angle	increases,	the	number	sequence	“bounces”	between
a	minimum	(-1)	and	maximum	(+1)	value.

sine(angle);	//	syntax	example
sin(radians(90));	//	outputs	1
sin(radians(270));	//	outputs	-1

In	Processing,	 angles	 are	 expressed	as	 “radians,”	 rather	 than	as	degrees.	The	 radians()	 function	 is
used	here	to	convert	the	angle	from	degrees	into	radians.

Multiplying	 the	 result	 by	 a	 larger	 number,	 a	 “magnitude”	 value,
“magnifies”	the	numbers	into	a	more	usable	range.

float	magnitude	=	20;	//	create	a	“magnify”	value
sin(radians(90))	*	magnitude;	//	outputs	20
sin(radians(270))*	magnitude;	//	outputs	-20

As	the	value	of	the	angle	steadily	increases,	the	number	created	by	the	sine
function	 “bounces”	 between	 a	 minimum	 and	 maximum	 value.	 The
following	code	re-calculates	the	location	of	a	circle	on	the	y-axis	by	using

http://www.bloomsbury.com/richardson-data-driven

a	sine	function	to	move	the	shape	up	and	down.

float	angle=0;	//	starting	angle
void	draw(){
//	a	“bouncing”	value	between	-20	and	20
float	ypos	=	sin(radians(angle))*20;
ellipse	(10,	ypos,	10,	10);	//	draw	circle
angle++;	//	increase	angle	by	1

}

By	adding	a	variable	to	move	the	object	across	the	stage	at	the	same	time,
a	simple	wave	(bounce)	motion	is	created.

float	angle	=	0;
float	xpos	=	10;
void	draw()	{
float	ypos	=	sin(radians(angle))*20;
//	draw	ellipse	with	variables	for	x	and	y
ellipse	(xpos,	ypos+50,	10,	10);
angle++;	//	increase	angle	by	1
xpos	+=	2;	//	increase	xpos	value

}

A	sine	wave	can	be	used	to	move	objects	in	a	wave-like	motion	across	the	screen.
Making	adjustments	to	calculations,	such	as	the	rate	at	which	the	angle	value

increases	or	the	magnitude	number,	alters	the	type	of	wave	and	motion	produced.

Gradually	increasing	the	size	of	the	object	as	it	moves	produces	a	more	organic-

Gradually	increasing	the	size	of	the	object	as	it	moves	produces	a	more	organic-
looking	wave	motion.

TRY	IT
Apply	a	sine	function	to	the	movement	of	a	shape	to	“bounce”	the	shape	across	the
screen.
Try	applying	a	sine	function	to	change	other	variable	values	applied	to	other	properties	of	a	shape,	such
as	its	size	or	color.

Environment	and	Forces

The	movement	 and	 behavior	 of	 interactive	 objects	 can	 be	 given	 added
realism	by	adding	computational	 simulations	of	 real-world	 forces	 such	as
friction,	gravity,	wind,	and	elasticity.

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	3,	and	click	on	the
project	“Inertia	and	Damping.”

Friction	and	Damping

The	movements	 of	 objects	 in	 the	 real	 world	 are	 subject	 to	 friction	 and
other	 resistive	 forces,	 which	 make	 objects	 gradually	 decelerate	 before
stopping.	Roll	a	ball	across	the	floor	and	it	does	not	come	to	an	immediate
halt;	instead,	it	gradually	slows	down.	This	deceleration	effect	is	achieved
mathematically	 by	multiplying	 a	 “speed”	 value	 by	 a	 fraction.	Repeatedly
multiplying	a	number	by	fractional	value	(e.g.,	0.5	or	0.9)	slowly	decreases
(“dampens”)	its	value	and	is	a	good	way	to	simulate	a	slowing-down	effect.
For	example,	if	a	variable	“speed”	starts	with	a	value	of	100,	multiplying	by
0.5	will	reduce	the	speed	to	50%	of	its	value	each	time.

float	speed	=	100;
speed	=	speed*0.5;	//speed	becomes	50
speed	=	speed*0.5;	//speed	becomes	25
speed	=	speed*0.5;	//speed	becomes	12.5
speed	=	speed*0.5;	//speed	becomes	6.25

http://www.bloomsbury.com/richardson-data-driven

speed	=	speed*0.5;	//speed	becomes	3.125

Halving	 the	 values	 each	 time	 means	 that	 the	 rate	 change	 between	 the
numbers	 gradually	 decreases.	 Mapping	 this	 change	 visually	 creates	 a
slowing-down	effect.

Altering	the	fraction	value	changes	the	rate	of	movement.	In	the	following
example,	 the	 speed	 value,	 used	 to	 change	 the	 x	 location	 of	 the	 shape,	 is
continually	multiplied	by	0.9,	which	has	the	effect	of	“damping”	the	speed
and	decelerating	the	shape’s	movement.

//	create	starting	variables	for	speed	and	x	location
float	speed	=	5;
float	xpos	=	10;
void	draw()	{
speed	=	speed*0.9;	//	“dampen”	the	speed
xpos	=	xpos	+	speed;	//	update	the	shape	location
ellipse	(xpos,	50,	10,	10);	//	draw	shape

}

Using	a	 fractional	number	value	 to	 “dampen”	 the	horizontal	 speed	of	 an
object	can	be	used	to	create	an	effect	 in	which	an	object	gradually	slows
down	 as	 it	 nears	 a	 target.	 In	 the	 following	 example,	 a	 circle	 is	 moved
towards	a	fixed	point,	gradually	decelerating	as	it	does	so.

During	 the	 looped	 “draw”	 section	of	 the	 code,	 the	distance	between	 the
object’s	 x	 location	 (xpos)	 and	 its	 target	 point	 (targetX)	 is	 re-calculated.
This	 value	 represents	 the	 total	 distance	 between	 the	 ball	 and	 its	 end
destination,	 and	 is	 stored	 as	 the	 variable	 (“distanceToMove”).	 Instead	 of
moving	the	circle	to	its	target	in	one	single	leap,	a	“damping”	value	is	used
to	move	the	circle	a	fraction	of	the	total	distance	required.

As	 this	 process	 is	 repeated,	 the	 distance	 between	 the	 ball	 and	 its	 target
becomes	 smaller	 and	 the	 fractions	 become	 smaller,	 having	 the	 effect	 of
slowing	the	object	gradually	to	a	halt.

float	damping	=	0.1;
float	targetX	=	90;	//	target	x	location	to	aim	for
float	xpos	=	10;	//	starting	x	location

void	draw(){
background	(0);
//	find	how	far	to	move
float	distanceToMove	=	targetX—xpos;
//	move	a	fraction	of	distance
xpos	=	xpos	+	(distanceToMove	*	damping);
ellipse	(xpos,	50,	10,	10);

}

An	object	gradually	slows	down	to	a	halt.

TRY	IT
Re-create	the	examples	above.
Try	applying	“damping”	to	both	movement	on	the	x	and	y	axis	at	the	same	time.

Gravity

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	3,	and	click	on	the
project	“Gravity.”

Computational	 “gravity”	 is	 represented	 in	 code	 as	 a	 number,	 which	 is
continually	added	to	a	speed	value	and	steadily	increases	the	movement	of
an	object.	Speed	begins	at	0,	but	as	the	gravity	value	is	added	to	it	over	and
again,	quickly	gathers	momentum.

float	gravity	=	0.3;	//	a	constant	gravity	value
//	use	gravity	to	increase	speed
speed	=	speed	+	gravity;
//	change	y	location	using	speed
ypos	=	ypos	+	speed;
ellipse	(10,	ypos,	5,	5);	//	draw	object

By	 looping	 this	 process,	 a	 programmer	 creates	 the	 effect	 of	 an	 object
falling	with	gravitational	force:	float	gravity	=	0.1;	//	a	set	value
float	speed	=	0;	//	a	changing	value	that	increases
//	the	starting	y	location	of	the	ball
float	ypos	=0;

void	draw(){
//	gradually	increase	the	speed
speed	=	speed	+	gravity;
//	update	the	y	location	of	the	object
ypos	=	ypos	+	speed;
ellipse(10,	ypos,	5,	5);	//	draw	the	ball

}

http://www.bloomsbury.com/richardson-data-driven

}

A	falling	shape	subject	to	computational	gravity	increases	speed	as	it	nears	the
ground.

Bounce

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	3,	and	click	on	the
project	“Bounce.”

Gravity	makes	a	shape	drop	and	fall	off	the	edge	of	the	screen.	“Bounce”
can	 be	 added	 by	 reversing	 the	 speed	 of	 the	 object	 when	 it	 hits	 the
“ground.”	 Reversing	 the	 speed	 reverses	 the	 direction	 of	 movement.	 To
reverse	 the	 speed	 value,	 multiply	 it	 by	 a	 negative	 number.	 Multiplying
anything	 by	 -1	 will	 switch	 it	 from	 a	 positive	 to	 a	 negative,	 or	 from	 a
negative	to	a	positive	number:	10	*	-1	=	-10;
-10	*	-1	=	10;

Multiplying	 speed	 by	 a	 negative	 number	 therefore	 has	 the	 effect	 of
reversing	 the	 direction	 of	 an	 object,	 creating	 a	 “bounce”	 effect.	 Using
-0.95	rather	than	-1	“dampens”	the	speed,	causing	the	object	to	lose	a	little
momentum	with	each	“bounce.”

//	reverse	direction	and	lose	energy
speed	=	speed	*	-0.95;

The	“bounce”	effect	needs	to	be	triggered	at	a	certain	point	(i.e.,	when	the
ball	falls	too	far	or	“hits	the	ground”).	In	code	terms,	this	means	triggering
the	 reverse	 in	 speed	when	 the	 y	 location	 of	 the	 object	 has	 hit,	 or	 fallen
below,	the	“ground	level”	on	the	screen.	An	“if”	statement	is	used	within

http://www.bloomsbury.com/richardson-data-driven

the	draw()	 section	 to	 continually	 check	 the	y	 location	of	 the	object	 as	 it
falls.	If	the	ball	hits,	or	falls	beyond	the	bottom	edge	of	the	screen,	then	the
speed	is	reversed	and	the	ball	bounces.

if	(ypos>height)	{
speed	=	speed	*	-0.95;

}

TRY	IT
Create	an	object	that	falls	using	gravity.
Try	different	values	of	gravity	to	alter	the	effect.
Allow	the	shape	to	“bounce”	when	it	hits	the	edge	of	the	screen.

Wind

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	3,	and	click	on	the
project	“Wind.”

Just	as	gravity	is	a	number	that	is	used	to	affect	the	y	location	of	an	object,
so	computational	“wind”	can	be	generated	by	using	a	number	to	affect	the
x	 location	 of	 an	 object	 and	 push	 it	 sideways.	 Adding	 a	 force	 to	 alter
sideways	movement	can	be	used	to	simulate	a	“breeze”	blowing	across	the
screen.

float	wind	=	0.4;
xpos	=	xpos	+	wind;
ellipse	(xpos,	100,	50,	50);

The	 combined	 effects	 of	 the	 gravity	 and	 wind	 forces	 give	 the	 digital
environment	 properties	 that	 begin	 to	 simulate	 the	behaviors	 in	 a	natural
physical	 eco-system.	Digital	 objects	 come	 to	 life,	moving	 in	 simple	 but
effectively	realistic	ways.

float	speed	=	0;
float	gravity	=	0.3;
float	wind	=	0.4;
float	ypos	=	0;
float	xpos	=	10;

void	draw()	{
speed	=	speed	+	gravity;	//	increase	speed
ypos	=	ypos	+	speed;	//	move	ball’s	y	position

http://www.bloomsbury.com/richardson-data-driven

xpos	=	xpos	+	wind;	//	move	ball’s	x	position
ellipse	(xpos,	ypos,	10,	10);	//	draw	ball
//	reverse	speed	when	the	ball	reaches	bottom	of	screen
if	(ypos>height)	{
speed	=	speed*-0.95;

}

}

TRY	IT

Add	a	variable	that	affects	the	amount	of	sideways	motion	of	an	object	(“wind”).
Experiment	with	different	values	for	this	variable.

An	example	shape	moved	by	computational	forces	of	“gravity”	and	“wind.”	Gravity
increases	the	speed	of	the	shape	as	it	moves	toward	the	ground.	When	it	reaches
the	base	of	the	screen,	the	speed	is	reversed	to	“bounce”	the	shape.	An	additional

“wind”	force	moves	the	object	sideways	as	it	falls.

Springs	and	Elastics

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	3,	and	click	on	the
project	“Elasticity.”

Forces	of	elasticity	create	movements	that	give	objects	a	lively,	spring-like
behavior.	The	movement	of	a	spring	is	replicated	in	code	using	a	standard
calculation	used	to	model	this	kind	of	elastic	force.

spring	force	=	stiffness	*	distance	stretched;

Stiffness	 represents	 how	 “bouncy”	 the	 spring	 is;	 the	 distance	 stretched

http://www.bloomsbury.com/richardson-data-driven

could	 be	 the	 distance	 between	 a	 graphic	 and	 its	 intended	 rest	 location.
Once	 calculated,	 spring	 force	 is	 added	 to	 change	 the	 movement	 of	 an
object.	Damping	is	applied	to	make	sure	the	spring	gradually	slows	down
to	a	stop.	Spring	forces	could	be	applied	to	the	movement	of	an	object	in
the	following	way:	//	create	starting	variables
float	stiffness	=	0.1;	//	a	constant	value
//	a	constant	value	to	dampen	the	force
float	damping	=	0.9;

float	targetX	=	80;	//	location	to	“spring”	to
float	xpos;
float	speed;
void	draw(){
//	calculate	spring	force
float	spring_force	=	stiffness	*	(targetX-xpos);
//	add	force	to	speed
speed	=	speed	+	spring_force;
//	apply	damping
speed	=	speed	*	damping;
xpos	=	xpos	+	speed;
ellipse	(xpos,	50,	20,	20)

}

This	type	of	bouncy	spring	force	can	be	especially	effective	when	moving
shapes	to	a	destination,	giving	the	movement	an	extra	level	of	“vitality.”	It
can	 also	 give	 graphics	 an	 increased	 element	 of	 physicality	when	used	 to
change	the	size	of	a	shape:	a	wobbly	kind	of	squash-and-stretch	effect.

TRY	IT
Re-create	the	example	here.
Experiment	with	different	settings	to	adjust	the	spring	movement.

Objects	and	Groups

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	3,	and	click	on	the
project	“OOP.”

The	above	are	examples	in	which	a	single	shape	(a	ball)	is	moved	by	values
that	 simulate	 forces	 of	 gravity	 and	 wind.	 This	 works	 fine	 for	 a	 single
shape,	 but	 what	 if	 you	 wanted	 to	 create	 many	 more	 similarly	 moving
objects—for	example,	as	particles	or	leaves	blown	by	the	breeze?

Repeating	the	same	processes	to	create	hundreds	of	similar	moving	shapes
would	require	new	sets	of	variables	and	calculations	for	every	new	shape,
and	would	quickly	get	very	complicated.	A	more	useful	and	efficient	way
to	do	this	would	be	to	use	object	oriented	processes	and	to	create	a	generic
behavior	as	a	“class.”

A	Programming	“Class”

In	 programming,	 a	 “class”	 is	 a	 block	 of	 code	 that	 acts	 as	 a	 template
(blueprint)	from	which	lots	of	individual	objects	can	be	created.	The	class
defines	 the	 generic	 properties	 and	 behaviors	 of	 each	 object.	 When
individual	objects	are	created,	they	inherit	the	same	generic	properties	and
behaviors,	but	each	object	may	have	different	values	for	certain	properties
(e.g.,	 be	 a	 different	 size	 or	 color	 value).	 Creating	 a	 class	 allows	 the
programmer	to	re-create	and	reproduce	lots	of	similar	objects	that	have	a
shared	generic	behavior	and	look.

http://www.bloomsbury.com/richardson-data-driven

The	“Car”	Class	Example

A	class	is	a	template	that	is	used	to	create	lots	of	similar	objects.	They	can
be	as	simple	or	as	complex	as	required.

Classes	are	written	as	collections	of	variables	and	functions	that	define	the
properties	 (characteristics)	 and	 methods	 (behaviors)	 of	 an	 object.	 Every
instance	of	the	class	inherits	the	same	set	of	properties	and	behaviors.	For
example,	think	of	a	car.	Every	car	shares	the	same	general	properties	(they
each	 have	 doors,	 engine,	 gears,	 etc.)	 and	 behaviors	 (they	 can	 accelerate,
turn,	brake).	When	it	 is	built,	each	car	“object”	has	individual	differences
(color,	 make,	 model);	 they	 may	 be	 different	 shapes	 and	 sizes,	 but	 each
comes	from	the	same	generic	template.	This	is	the	same	for	objects	created
by	a	class:	They	share	the	same	template	but	each	has	individual	qualities.

In	 our	 example,	 the	 “car”	 class	 would	 be	 written	 to	 define	 the	 generic
properties	and	functions	of	a	car	as	follows:	class	Car	{

//	define	properties	of	the	car
float	engineSize;
int	numberOfDoors;
float	maxSpeed;

//	define	the	“constructor”*	to	create	a	car
Car	(float	ms)	{
maxSpeed	=	ms;

}

//	define	some	behaviors:functions	of	the	car
void	changeSpeed	()	{
//	add	functions	here

}

void	changeDirection	()	{
//	add	functions	here

}

}

}

Once	 the	 class	 has	 been	 written,	 individual	 instances	 (objects)	 can	 be
created	from	it.	New	cars	can	be	created	from	the	car	class	by	creating	a
“new”	instance	that	calls	the	constructor	function	written	into	the	class.	In
this	example,	a	new	car	is	constructed	and	sets	the	maxSpeed	value	of	each
new	car	instance:	//	a	new	“car”	instance
Car	car1	=	new	Car	(120);
//	another	new	“car”	instance
Car	car2	=	new	Car	(200);

TIP:	 The	 “constructor”	 function	 is	 a	 function	 that	 shares	 the	 same	 name	 as	 the	 class	 and	 is
automatically	called	when	the	class	is	used.	The	constructor	function	is	used	to	set	the	specific	values
to	properties	of	the	class.	In	this	example,	when	the	class	is	used	the	maxSpeed	of	each	individual	car
is	defined.

Once	instances	of	the	class	have	been	created,	the	properties	and	functions
written	 in	 the	 “template”	 class	 can	be	 accessed	using	 “dot”	notation.	For
example,	each	car	 that	has	been	created	 (car1,	car2)	can	set	or	change	 its
engineSize	property	as	follows:	car1.engineSize	=	200;
car2.engineSize	=	car1.engineSize	+	20;

Similarly,	they	can	call	the	changeSpeed()	or	changeDirection()	functions.

car1.changeSpeed();
car2.changeDirection();

A	Class	to	Create	Multiple	Shapes

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	3,	and	click	on	the
project	“OOP	Shapes.”

In	a	previous	example,	a	single	shape	was	moved	by	a	gravity	value.	The
movement	of	the	shape	was	generated	using	three	variables:	float	gravity	=

http://www.bloomsbury.com/richardson-data-driven

0.1;
float	speed	=	0;
float	ypos	=	0;

The	 main	 program	 looped	 three	 main	 instructions:	 increase	 the	 speed,
update	the	location,	and	draw	the	shape.

//	increase	the	speed
speed	=	speed	+	gravity;
//	update	the	location	of	the	object
ypos	=	ypos	+	speed;
//	draw	the	shape
ellipse(10,	ypos,	5,	5);

These	variables	and	the	instructions	can	be	used	as	the	basis	for	a	generic
circle	 “class”	 that	 can	 be	 used	 as	 a	 template	 for	 creating	 loads	 of	 similar
falling	 circle	 shapes.	 The	 example	 circle	 class	 can	 include	 variables	 to
control	 the	 object’s	 gravity,	 speed,	 and	 y	 position,	 and	 functions	 to
increase	its	speed,	update	its	 location,	and	draw	the	shape.	The	following
code	is	an	example	starting	point	for	creating	this	type	of	re-usable	circle
class.

class	Circle	{
//	name	the	properties
float	speed;
float	ypos;
float	gravity;

//	set	the	“constructor”	to	set	the	gravity	and	y	position	each
instance	Circle	(float	g,	float	y)	{
gravity	=	g;
ypos	=	y;

}

//	create	simple	functions:	re-locate	the	circle
void	updateSpeedAndLocation	()	{
speed	=	speed	+	gravity;
ypos	=	ypos	+	speed;

}

//	draw	the	circle
void	drawShape()	{
ellipse(10,	ypos,	5,	5);

}

}

Once	created,	the	circle	class	can	be	used	to	create	lots	of	new	individual
instances,	each	with	its	own	starting	gravity	and	ypos	values	(as	defined	in
the	“constructor”	function).

//	create	a	new	circle	with	a	gravity	of	0.1	and	y	position	of	10
Circle	c1	=	new	Circle	(0.1,	10);
//	create	a	new	circle	with	a	gravity	of	0.2	and	y	position	of	20
Circle	c2	=	new	Circle	(0.2,	20);

Defining	 different	 gravity	 and	 ypos	 values	 makes	 each	 circle	 start	 at	 a
different	height	and	fall	at	a	different	rate.	Both	of	the	new	circle	instances
(“c1”	 and	 “c2”)	 can	now	call	 the	 functions	written	 into	 the	 class	 used	 to
move	and	draw	each	shape	on	the	screen:	c1.updateSpeedAndLocation();
c1.drawShape();
c2.updateSpeedAndLocation();
c2.drawShape();

This	simple	example	shows	how	a	class	structure	is	used	to	create	re-usable
objects	and	behaviors.	Assigning	individual	values	to	the	properties	of	each
instance	 gives	 each	 object	 its	 own	 unique	 identity.	 Once	 the	 basic
structure	has	been	created,	more	complexity	can	be	added	by,	for	example,
adding	 more	 variables	 (e.g.,	 to	 specify	 the	 size	 or	 x	 location	 of	 each
individual	circle),	or	by	adding	extra	functions,	such	as	“bounce.”

Object	oriented	programming	allows	groups	of	objects	to	be	created	with	the	same
generic	behavior.

Filling	an	array	can	populate	the	screen	with	objects	with	similar	behaviors.
Individual	instances	of	each	object	have	slight	differences	that	change	attributes

such	as	their	size,	starting	location,	or	speed	of	movement.

TRY	IT
Create	a	sample	“circle”	class	 to	make	a	shape	affected	by	gravity.	Create	 two	or
three	circle	instances	and	call	the	functions	to	draw	and	move	them.
Add	extra	variables	to	the	class	to	alter	the	x	location	and	size	of	each	instance.
Add	a	“bounce”	function	to	react	when	a	circle	hits	the	ground.

Once	the	class	has	been	created,	an	array	can	be	created	to	hold	and	store
lots	 of	 instances	 all	 together.	 This	 provides	 a	 quick	 way	 to	 create	 and
access	tens	or	hundreds	of	object	instances	at	once.	The	following	example
creates	a	list	(“circleList”)	that	is	able	to	hold	up	to	10	circle	instances.

Circle	[]	circleList	=	new	Circle	[10];

A	“for”	 loop	 is	used	 to	populate	 the	 list	with	Circle	objects,	giving	 each
instance	a	different	gravity	and	ypos	value:	for	(int	i=0;	i<circleList.length;
i++)	{

circleList[i]	=	new	Circle	(random	(0.7),	i*10);

}

Another	“for”	loop	can	then	be	used	to	cycle	through	the	list	and	call	the
updateSpeedAndLocation()	 and	 drawShape	 functions	 to	 each	 circle
instance	in	turn:	for	(int	i=0;	i<circleList.length;	i++)	{

circleList[i].updateSpeedAndLocation();
circleList[i].drawShape();

}

TIP:	There	are	lots	of	additional	code-based	libraries	available	which	have	been	specifically	designed
to	simulate	the	forces	of	the	physical	world	in	more	complex	ways	(bounce,	gravity)	both	in	2D	and
3D.	 Processing	 libraries	 that	 do	 this,	 such	 as	 “Box2D	 for	 Processing,”	 are	 listed	 on	 the	 website:
https://processing.org/reference/libraries/

https://processing.org/reference/libraries/

CHAPTER	FOUR

DYNAMIC	TYPOGRAPHY

“Typography	needs	to	be	audible.
Typography	needs	to	be	felt.
Typography	needs	to	be	experienced.”
Helmut	Schmid

FORM	AND	CONTENT
Typography	has	played	a	critical	role	 in	visual	communication	and	forms	a
key	part	 of	graphic	design	practice.	From	 the	 earliest	 pioneers	 in	 the	 early
twentieth	 century	 right	 up	 to	 the	 present	 day,	 graphic	 designers	 have
experimented	with	the	creative	possibilities	of	type	and	letterforms	as	a	mode
of	visual	communication.

The	 changing	 technological	 landscape	 has	 opened	 up	 a	 host	 of	 creative
opportunities	for	designers	to	experiment	and	explore	ways	of	playing	with
the	form	and	look	of	letters	and	fonts.	Pixelated	layers	in	a	bitmap	document,
points	and	paths	 in	a	vector	 file,	objects	 in	a	3D	landscape,	and	an	array	of
filters	 effects:	 all	 allow	digital	 text	 to	be	 transformed	and	 reconfigured	 in	 a
range	of	different	ways.	The	concept	of	“text	as	image”	is	common;	software
tools	 allow	and	encourage	visual	playfulness	with	words	 and	 letters	 as	 they
are	stretched,	combined,	and	layered.

In	addition	to	changing	the	aesthetics	of	typography,	digital	technology	has
also	changed	the	way	 in	which	type	and	words	are	read.	Digital	media	has
shifted	the	concept	of	text	from	that	of	a	fixed	and	permanent	set	of	printed
words	toward	a	digital	data	source	whose	content	and	form	can	be	read,	re-
read,	 and	manipulated.	 In	 the	digital	world,	words	 are	not	 fixed	 to	a	page;
they	 exist	 in	 an	 environment	 in	 which	 form	 and	 content	 is	 subject	 to
alteration.

Designers	are	able	to	use	code	to	creatively	re-imagine	the	shape	and	content
of	 text.	Using	programming	code,	digital	 text	can	be	manipulated	either	as
shape	data—points,	lines,	and	curves	that	create	dynamic,	animated	visuals	as
letterforms—or	 as	 content—for	 example,	 text	 files	 of	 digital	 information,
novels,	 books,	 and	 poems—whose	 content	 is	 used	 to	 create	 and	 generate
graphics.	This	 chapter	will	 give	 an	 overview	 of	 the	ways	 in	which	 digital
data	can	be	used	to	create	and	manipulate	text	and	typography—both	as	form

and	as	content.
See	Code	section:	Anatomy	of	Text	as	Data.

Type	as	form

Programming	 rules	 and	 structures	 can	be	 creatively	 applied	 to	dynamically
transform	and	combine	individual	pieces	of	text	or	to	manipulate	their	forms.
They	can	be	applied	either	to	manipulate	existing	fonts	and	letterforms	or	to
create	 new,	 computationally	 generated	 shapes.	 Unlike	 “closed”	 software-
driven	 procedures,	 limited	 to	 a	 pre-set	 range	 of	 image	 manipulation
techniques	 (filters,	 warping,	 etc.),	 programming	 methods	 open	 up	 the
creative	possibilities	of	working	with	the	details	of	type,	allowing	designers
to	play	and	experiment	with	the	fundamental	visual	attributes	of	typographic
shapes	and	to	produce	unique	and	original	variations	of	the	form.

4.2	Code-Type	Kyuha	Shim
An	example	piece	from	Kyuha	Shim’s	“Code	and	Type”	project	(previous	page),	which
uses	computational	processes	to	produce	digital	letterforms.	The	rules	of	code	allow
shapes	to	be	repeated	and	transformed	and	the	repetition	of	a	rotating	line	creates	a

unique	set	of	code-based	letters.

Rules	and	Transformations

Applying	programming	 functions	 to	a	 letter	or	word	 shape	encourages	 the

designer	 to	 fundamentally	 re-think	 and	 re-imagine	 its	 typographic	 form,
structure,	and	composition	to	rebuild	digital	 letters.	Programming	rules	can
be	 used	 to	 apply	 mathematical	 transformations	 that	 visually	 recalculate	 a
shape	 in	 a	 numerically	 predictable	 and	 controllable	 way.	 Code	 that
systematically	 or	 randomly	 repeats,	 scales,	 transforms,	moves,	 or	 otherwise
manipulates	 parts	 of	 or	 entire	 letters	 can	 create	 unique	 compositions	 and
letters.	 Individual	 letter	 shapes	 can	 be	 transformed	 and	 combined	 into
rhythmic	patterns	by	repeatedly	recalculating	or	deconstructing	the	position
or	shape	of	a	letter.

EXEMPLAR

Ricard	Marxer:	Caligraft

Caligraft	 is	an	experimental	project	that	takes	inspiration	from	traditional
calligraphy	 (the	 art	 of	 decorative	 writing)	 and	 uses	 programming	 to
generate	 digital	 “calligraphic”	 letterforms.	 Code	 is	 used	 to	 dynamically
reinterpret	letters	in	a	variety	of	ways,	abstracting	the	original	shapes	into	a
series	 of	 animated	 forms,	 each	 of	 which	 has	 its	 own	 kind	 of	 distinctive
character	and	style.	Digital	strokes	and	lines	that	animate	and	generate	the
letters	 reflect	 the	 hand-drawn	 aesthetic	 of	 traditional	 calligraphy	 in	 a
uniquely	 digital	 way.	 The	 project	 works	 as	 a	 series	 of	 playful	 online
experiments	 that	 explore	 ways	 of	 creating	 digitally	 “handmade”	 work
using	code.

4.3	Caligraft	Ricard	Marxer
Ricard	Marxer’s	Caligraft	project	uses	a	self-made	generative	system	to	play	with	re-
creating	letters.	The	“sketches”	animate	and	draw	characters	in	a	fluid	way.	A	series
of	experiments	explore	different	rules	for	modifying	letter	shapes.	Each	experiment

is	a	visual	representation	of	a	wider	design	process	in	which	a	set	of	rules	and
functions	has	been	systematically	applied	to	generate	the	work.

4.4	Caligraft	Ricard	Marxer
Other	experiments	from	the	Caligraft	project	combine	letter	shapes	according	to

well-defined	generative	rules.

Shape	paths	and	points

Code	 transforms	 words	 and	 letters	 into	 digitally	 pliable	 shapes.	 Individual
coordinate	points	and	paths	describing	and	defining	the	points	and	curves	of
a	 letter	 shape	 can	 be	 changed	 using	 code	 to	 dynamically	 alter	 its	 visual
appearance.	Designers	can	use	programming	functions	to	visually	pull	letter
shapes	 apart.	 When	 subject	 to	 computational	 rules	 and	 forces	 (such	 as
recursion,	repetition,	physical	movement,	randomness),	the	strokes	and	lines,
points	 and	 curves	 of	 a	 letter	 shape	 can	 re-generate	 into	 typographic	 forms
and	become	graphics	either	for	screen	or	print.

Programming	methods	used	to	deconstruct	type	and	letter	shapes	encourage
a	 kind	 of	 visual	 inventiveness	 that	 can	 develop	 new	 versions	 of	 the	 letter
shapes.	The	outline	paths	and	curves	of	a	letter	can	be	used	as	motion	guides
along	which	objects	animate,	visually	reinventing	the	letter	shape	as	a	series

of	 dynamic	moving	 lines.	 Individual	 points	 of	 a	 single	 letter	 shape	 can	 be
used	as	coordinates	for	“seeding”	points	from	which	digital	lines	organically
grow	and	reproduce	or	even	as	“magnetic”	points	towards	and	around	which
other	graphics,	lines,	shapes,	and	colors	gravitate	and	interact.

4.5	Yeohyun	Ahn
Examples	of	work	from	Yeohyun	Ahn,	a	typographer	and	interactive	visual	designer,
who	explores	the	link	between	art,	design,	and	typography.	These	experimental	pieces
of	typography	use	Processing	and	Ricard	Marxer’s	Geomerative	library	to	re-imagine

letterforms	as	code-generated	environments.

Letter	shapes	from	date

A	range	of	external	data	 sources	can	also	modify	 the	coordinate	points	and
values	of	 a	 letter.	For	 instance,	mouse	movements,	 audio,	or	 a	 sequence	of
key	presses	can	be	captured	and	applied	as	information	to	change	the	visual
details	 of	 a	 letter	 shape.	 The	 size,	 shape,	 or	 color	 of	 typography	 can	 be
generated	 as	 a	 visual	 response	 to	 external	 audio	 files	 from,	 for	 example,
speech	or	a	bird	song.	Linking	a	typographic	shape	with	a	data	source	opens
up	 new	 ways	 of	 expressing	 and	 creating	 typographic	 experiences.	Words

become	 a	 visual	 expression	 of	 a	 specific	 experience	 or	 idea.	 Unique
computational	typefaces	can	be	created	that	visually	represent	a	specific	data
set	or	series	of	actions	captured	and	“frozen”	into	a	visual	format.

EXEMPLAR

Reza	Ali	mis.shap.en.ness

Reza	 Ali	 is	 a	 programmer	 and	 designer	 whose	 research	 has	 led	 him	 to
explore	 the	 visual	 possibilities	 of	 applying	 code	 to	 dynamically	 generate
shape	 and	 form.	 By	 connecting	 data	 sources	 and	 computationally
generated	physical	forces	into	a	framework	for	creating	shapes	and	images,
he	has	been	able	 to	generate	an	 interesting	body	of	experimental	 shapes.
Seeing	 typography	 as	 a	 pliable	 computational	 form	whose	 shape	 can	 be
sculpted	 and	 changed	 in	 response	 to	 external	 forces	 and	 data,	 Reza	 has
experimented	with	creating	“generative”	typography:	letter	shapes	that	are
responsive	to	built-in	particle	systems	as	well	as	external	audio	files.

The	results,	documented	on	his	blog,	are	a	series	of	wonderfully	colorful,
fluid,	 typographic	 forms	 with	 uniquely	 changeable	 qualities;	 they	 work
either	 as	 static	 or	 animated	 graphics.	 The	 experiments	 highlight	 how,
having	 abstracted	 the	 letter	 shapes	 into	 a	 series	 of	 individual	 colors	 and
points	 and	 created	 a	 connection	with	 the	 data	 (e.g.,	 an	 audio	 file),	Reza
continues	to	experiment	by	changing	parameters	in	order	to	get	a	range	of
different	results.	Reza	applies	and	re-uses	simple	programmed	forces	(e.g.,
springs	 and	particles)	 to	 affect	 the	 color	 and	 shape	of	 the	 letters.	 Simple,
subtle	 changes	 of	 these	 parameters	 and	 values	 yield	 a	 range	 of	 different
visuals	generated	from	one	concept.

4.6	mis.shap.en.ness	Reza	Ali
The	outlines	of	letters	are	transformed	into	flexible	shapes	by	applying	code-

generated	particles	that	move	and	fall,	distorting	the	words	as	they	“drip”	down	the

screen.

4.7	See	the	sounds	of	nature	Elena	Kalaydzhieva
In	this	example	of	experimental	design	work,	the	typography	is	generated	in	response
to	the	audio	files	of	bird	song	recorded	during	the	dawn	chorus.	Processing	is	used	to

visualize	each	of	the	songs	of	the	birds	through	graphical	sound	waves	and
manipulating	the	typography.	The	final	printed	outcome	includes	the	images	created

from	the	Processing	application.

MOVEMENT	AND	INTERACTIVE	TYPE
Code	not	only	generates	new	letter	shapes	and	forms	but	can	also	be	used	to
create	animated	and	“reactive”	typographic	experiences:	letters	that	move	in
response	to	user	interaction.	Programming	methods	can	divide	and	subdivide
the	formal	structure	of	a	line	or	paragraph	of	text	into	a	string	of	individual
words,	letters,	or	points.	Rigid	rows	of	text	can	be	transformed	into	flexible,
free-floating	objects,	subject	to	internally	or	externally	generated	interactive
rules	 and	 forces.	 Freeing	 letters	 from	 their	 original	 formatting	 allows	 the
typography	 to	 be	 playfully	 and	 interactively	 animated.	 Individual	 letters
become	kinetic,	graphical	objects	whose	positions,	points,	and	contours	can
be	manipulated.
See	Code	section:	Using	Variables	With	Text.

The	 creative	 application	 of	 programming	 allows	 words	 to	 jump	 from	 the
page	into	an	interactive	environment:	Mouse	movement,	user	gesture,	sound
input,	 and	 so	 on	 can	 be	 used	 to	 dynamically	 twist	 and	 manipulate
typography	into	 interactively	flexible	shapes	and	movements,	 sending	them
spinning,	rotating,	or	dancing	on	the	screen,	blown	by	virtual	winds	of	user-
generated	 interaction.	 Computational	 rules	 can	 make	 digital	 typography
interactive,	allowing	viewers	to	engage	with	content	in	new	ways.
See	Code	section:	Adding	Animation:	Jiggle,	Rotate.

EXEMPLAR

Nanika	(Andreas	Müller):	For	All	Seasons	app

The	 For	 All	 Seasons	 app	 is	 a	 version	 of	 a	 2005	 interactive	 typographic
piece	created	by	Andreas	Müller.	The	work	is	an	experimental	and	playful
exploration	 of	 interactive	 typography.	 It	 is	 divided	 into	 four	 passages	 of
text,	 each	 describing	 a	memory	 associated	with	 a	 season	 of	 the	 year.	 In
each	 case,	 the	 letters	 and	 words	 from	 the	 passage	 transform	 into	 a
corresponding	interactive	environment.

The	 words	 transform	 into	 dandelion	 seeds	 that	 get	 blown	 in	 the	 wind
(spring),	 swimming	 fish	 (summer),	 piles	 of	 fallen	 leaves	 (autumn),	 and
falling	 snowflakes	 (winter).	 Users	 are	 able	 to	 explore	 and	 interact	 with
each	 environment,	 causing	 the	 letters	 to	 get	 blown	gracefully	 across	 the
screen,	 swim,	or	 fall	gently	on	a	 tree	 (as	 snow).	The	organic,	naturalistic
movement	 of	 the	 letters	 mirrors	 the	 digital	 environment	 they	 are	 in,
creating	an	engaging,	playful,	and	poetic	association	with	each	passage	of
text.

Each	screen	is	a	new	environment.	The	letters	become	the	objects	 in	the
environment	 (seeds,	 fish,	 leaves,	 snow)	 that	 are	 moved	 by	 naturalistic
forces	of	 the	virtual	world.	The	project	 is	a	good	example	of	 the	affinity
between	 the	 organic	 and	 digital	 environment,	 as	 the	 movement	 of	 the
programmed	 objects	 takes	 inspiration	 from	 and	 beautifully	 mirrors	 that
found	in	the	natural	world.

4.8	For	All	Seasons	Nanika
A	playful	use	of	typography	in	which	emotions	are	explored	through	interactive

recollections	of	each	of	the	seasons.	Each	natural	environment	features	letters	and
words	that	seem	to	organically	move	as	computational	rules	guide	them.

Born	Magazine

An	 early	 experiment	 in	 the	 use	 of	 digital	 media	 to	 create	 engaging
interactive	 text-experiences,	 Born	 (bornmagazine.org)	 is/was	 a
experimental	collaborative	project	bringing	together	designers,	artists,	and
writers	 to	 generate	 interactive,	 online	 poems	 and	 explore	 the	 poetic
qualities	of	interactive	and	moving	typography.

Born	 provided	 a	 place	 for	 digital	 designers,	 artists,	 and	 writers	 to
collaborate	 to	 create	 visually	 rich	 interactive	 poems	 and	 stories.	 A
combination	 of	 graphics	 programming	 and	 writing	 helped	 to	 create	 an
open	area	for	exploring	and	pushing	the	boundaries	of	digitally	interactive

http://bornmagazine.org

ways	of	experiencing	and	reading	text.

4.9	Zoology	Sasha	West	(author)	and	Ernesto	Lavandera	(artist)
Screen	shots	from	the	project	published	in	the	online	magazine	Born.

4.10	Walking	Together	What	Remains	Chris	Green	(author)	and	Erik	Natzke
(artist)

Screen	shots	from	the	project	published	in	the	online	magazine	Born.

Moving	 and	 interactive	 typography	 gives	 digital	 letters	 new	 life	 and
character.	 Code	 makes	 animated	 letterforms	 interactive	 and	 changeable;
programmers	can	 shift	 the	 letterforms’	content	according	 to	user	 input	and
interaction	 and	 allow	 users	 to	 read	 and	 experience	 words	 in	 a	 uniquely
interactive	 and	 digital	 way.	 Creating	 interactive	 environments	 of	 text	 can
enliven	user	engagement	with	the	content	and	change	the	way	the	words	are

understood.	Reading	becomes	a	playful,	poetic	experience	in	which	the	users
can	 construct	 meanings	 from	 their	 own	 explorations	 of	 the	 words.	 The
arrival	 of	 hand-held	 screens	 and	 tablets	 brings	 the	 experience	 of	 reading
digital	text	even	closer	to	that	of	reading	a	physical	book	and	presents	more
opportunities	for	creating	rich,	interactive	content.
See	Code	section:	Letters	as	Dynamic	Objects.

4.11	Wordscapes	Peter	Cho
Peter	Cho’s	interactive	typography	work	represents	an	exploration	of	the	creative

possibilities	of	computational	interactive	text.	Wordscapes	is	a	collection	of	twenty-six
playful	interactive	typographic	landscapes.

TEXT	AS	DATA	SOURCE
Code	allows	designers	to	access	and	use	text	as	an	important	data	source	that
can	 be	 visually	 interpreted.	 Using	 the	 characteristics	 of	 a	 text	 source	 as
information	to	drive	and	direct	the	style	and	format	of	the	visuals	establishes
a	 relationship	 between	 the	 content	 and	 its	 graphical	 treatment.	 Code	 can
“mine”	the	details	of	text,	reveal	hidden	details	(word	count,	word	frequency,
letter	count,	line	length,	word	length,	the	relationships	between	words,	etc.),
translating	 them	 into	 number	 values	 and	 applying	 them	 to	 define	 visual
elements	(color,	shape,	geometry,	or	rotation).	Using	code	in	this	way	opens
up	 opportunities	 to	 delve	 into	 the	 structure	 and	 content	 of	 words,	 “dig
below”	 surface	 meaning,	 reveal	 and	 visualize	 “hidden”	 patterns	 and
relationships	within	 the	 content.	 Artists	 and	 designers	 are	 able	 to	 generate
their	own	new	visual	associations	between	the	text	and	image,	transforming
and	 visualizing	 selected	 attributes	 of	 the	 text	 and	 creating	 new	 visual
expressions	of	the	words.
See	Code	section:	Text	as	Data:	Load	Strings.

Abstracting	text

The	 idea	 of	 transforming	 text	 into	 a	 set	 of	 visual	 attributes	 may	 seem	 an
abstract	or	difficult	concept.	However,	like	much	of	the	information	used	in
programming	code,	the	values	and	attributes	of	a	piece	of	text	are	processed
and	understood	by	the	computer	as	numbers.	Number	values	form	a	highly
significant	 part	 of	 any	 programming	 code;	 they	 set	 and	 define	 the	 visual
details	 of	 every	object.	Numbers	 in	 code	 are	 transformative	 values:	 flexible
pieces	of	data	that	can	be	used	to	define	and	change	reams	of	visual	elements
and	attributes.	Numbers	can	define	color,	shape,	texture,	or	movement.	For
designers	 using	 code,	 numbers	 provide	 a	 useful,	 direct	way	 to	 change	 and
manipulate	graphics.	The	idea	that	a	piece	of	writing	can	be	represented	in	a
number	format	is	therefore	key	to	understanding	how	text	can	be	visualized
in	a	graphical	format.	It	opens	up	a	vista	of	creative	design	work.

Text	 data	 can	 be	 derived	 directly	 from	 user	 input	 or	 from	 data	 saved	 and
input	 from	 an	 external	 file.	 Sources	 of	 letter	 and	word	 information	 can	be
computationally	 analyzed,	 abstracted,	 and	 transformed	 to	 generate	 unique
sets	of	graphics.	A	simple	example	relates	to	how	graphics	can	be	generated
from	keyboard	input.

EXEMPLAR

Boris	Müller:	Poetry	on	the	Road

Poetry	on	the	Road	is	an	ongoing	experimental	visual	design	project	based
around	an	annual	 literature	 festival	held	 in	Bremen,	Germany.	Each	year
since	2002,	 the	designer	Boris	Müller	has	been	commissioned	 to	create	a
visual	theme	that	reflects	the	work	of	the	writers	featured	in	the	festival.

The	 graphical	 challenge,	 to	 represent	 a	 diverse	 range	 of	 writing	 in	 a
visually	 coherent	 manner,	 is	 an	 interesting	 one,	 which	 Boris	 solves	 by
using	code	as	a	way	of	visualizing	the	literature.	A	bespoke	programming
system	 is	 created	 that	 turns	 the	 text	 into	 images;	 each	 graphic	 directly
represents	of	a	particular	piece	of	writing.

Even	though	the	basic	concept	remains	the	same,	each	new	programming
system	is	designed	to	draw	and	visualize	words	in	a	different	way,	creating
new	 connections	 and	 generating	 a	 fascinating	 range	 of	 graphical	 and
interactive	 work.	 Each	 version	 of	 the	 project	 creates	 new	 visual
interpretations	 of	 the	 poems	 because	 different	 methods	 of	 transforming
words	 into	 images	 are	 explored.	 Connections	 between	 the	 content	 of	 a
poem	and	the	graphics	are	made	in	a	variety	of	interesting	ways,	each	of
which	produces	a	unique	visual	outcome.

4.12	Poetry	on	the	Road	Boris	Müller
Sample	covers	from	three	editions	of	Poetry	on	the	Road,	designed	by	Boris	Müller.
The	details	show	compositions	created	as	visualizations	of	some	of	the	individual

pieces	of	poetry.

The	attributes	of	the	words	and	letters	in	each	poem	are	deconstructed	and
used	 to	 create	 abstract	 shapes	 whose	 visual	 attributes	 (color,	 shape,
position,	 direction,	 etc.)	 are	 determined	 by	 the	 number	 values	 and	 the

characteristics	found	within	the	words	themselves	(e.g.,	letter	count,	word
frequency,	and	size).	By	this	method,	individual	letters	are	abstracted	into
colored	 boxes	 and	 lines;	 common	 words	 are	 found,	 made	 larger,	 and
connected	 together;	 and	 entire	 poems	 are	 drawn	 as	 a	 “particle”	 field	 of
words	with	 its	 own	 set	 of	 forces.	Other	 experiments	 push	 further	 at	 the
visual	connections	between	word	and	image:	Poems	are	transformed	into	a
collage	of	tagged	online	images,	a	3D	shape,	and	even	a	set	of	interactive
bar	codes.

The	 results	 of	 the	 Poetry	 on	 the	 Road	 experiments	 can	 be	 seen	 online,
along	 with	 interactive	 versions	 of	 the	 programs	 used	 to	 generate	 the
images.	The	 final	 body	 of	work	 presents	 a	 highly	 diverse	 set	 of	 striking
graphics	that	give	insight	into	the	wide	range	of	ways	in	which	code	can
be	used	to	visualize	words	as	graphics.

Keyboard	user	input

Each	 letter	 and	 character	 on	 a	 computer	 keyboard	 is	 assigned	 a	 numeric
value,	derived	from	its	corresponding	ASCII	value.	These	values	are	used	to
allow	 word	 processing	 programs	 to	 differentiate	 between	 specific	 key
presses.	 Programming	 languages	 can	 capture	 individual	 user	 keystrokes	 as
they	are	typed,	using	them	to	create	and	define	variables	that	define	specific
shape	 and	 graphical	 attributes	 (e.g.,	 color,	 height,	 shape,	 or	 size).	 Lines	 of
typed	 letters	 and	words	 can	 therefore	be	visually	 abstracted	 into	 a	 series	 of
colors,	 shapes,	 forms,	and	graphics	 that	correspond	to	words	 typed	 into	the
keyboard.	 Dynamic	 visual	 patterns	 can	 be	 generated	 as	 a	 direct	 visual
response	to	user	keyboard	input.	A	kind	of	“visual	typewriter”	can	be	created
in	which	unique	letter	combinations,	words,	and	sentence	are	visualized	as	a
unique	 set	 of	 shape	 and	 color	 patterns.	 The	 rhythms	 and	 tones	 of	 words,
lines,	and	sentences	are	transformed	into	visual	patterns.

4.13	Keyboard	generated	shapes
Inspired	by	John	Maeda’s	“Color	Typewriter,”	this	abstract	composition	of	shapes	and

colors	is	generated	by	keyboard	input.	Typed	letters	are	abstracted	into	colorful
shapes	that	create	a	rhythmic	composition	of	words	and	phrases.

Large	text	files

Just	as	single	letters	and	short	phrases	can	be	drawn	and	re-visualized,	so	text
sourced	 from	 large	 external	 data	 files	 can	 also	 be	 translated	 into	 visual
information.	 Programming	 functions	 give	 designers	 the	 tools	 to	 read	 and
analyze	digital	content	from	literally	thousands	of	lines	of	text	in	the	matter
of	 a	 few	 seconds.	 Data	 values	 mined	 from	 a	 large	 piece	 of	 text	 can	 be
abstracted	 into	 graphical	 visualizations	 or	 used	 to	 re-draw	 or	 alter	 the
typographic	style	of	the	words	themselves.

Digital	 files	 of	 entire	 books	 can	 be	 quickly	 and	 efficiently	 read	 into	 a
drawing	program,	computationally	analyzed,	dissected,	and	split	 into	useful
groups	of	paragraphs,	sentences,	or	words.	The	repetitive	processing	power
of	the	computer	allows	a	single	function,	used	to	find	and	visualize	a	single
word,	 to	 be	 repeated	 and	 applied	 thousands	 of	 times—and	 to	 thousands	 of
words.	The	details	and	structural	complexities	of	entire	passages	or	pages	of
books	 can	be	quickly	picked	out	 and	 re-formatted	 into	new	visual	 formats
(for	 example,	 as	 data-informed	drawings	 or	 pieces	 of	 typography).	Hidden
patterns,	connections,	and	characteristics	within	 the	 text	can	be	discovered,
revealed,	and	visualized.

For	 example,	 counting	 the	 number	 of	 times	 “key”	words	 are	 repeated	 can
reveal	common	ideas	and	themes	within	the	text.	The	frequency	of	specific
words	can	be	 found	and	 saved	as	 a	number	 that	 is	used	 to	affect	 the	visual
style	of	the	text—for	example,	to	set	the	font	size	of	the	re-occurring	words.
This	 technique	 is	 commonly	 used	 in	 “Wordles,”	 text	 clouds	 that	 highlight
important	 phrases	 and	word	 counts,	 but	 other	 visual	 formats	 can	 use	 it,	 as
well.

Digital	text	data	is	available	from	a	number	of	different	sources;	for	example,
digital	 versions	 of	 many	 literary	 classics	 are	 freely	 available	 online	 to
download	 from	 sites	 such	 as	 Project	 Gutenberg	 (www.gutenberg.org).	 A
novel	 can	 be	 an	 interesting	 text	 data	 source;	 the	 ability	 to	 apply
programming	functions	to	an	entire	book	creates	fabulous	opportunities	for
designers	to	manipulate	the	content,	bring	a	fresh	approach	to	a	familiar	text,
and	 create	 design	 work	 that	 would	 be	 otherwise	 impossible	 to	 achieve.
Entire	passages	and	books	of	text	can	be	re-rendered	in	a	visual	format	that
reflects	the	themes	of	their	content.	For	example,	the	occurrences	of	specific
words	of	phrases,	or	 the	 rhythms	and	patterns	within	word	groups,	 can	be
visually	 rendered	 and	 applied	 to	 the	 style	 of	 the	 typography,	 revealing
patterns	and	characteristics	of	the	text.

http://www.gutenberg.org

4.14	Wordle	Cloud
A	“Wordle”	is	an	example	of	a	“word	cloud,”	which	visualizes	the	relative	frequency	of
words	in	a	piece	of	text.	This	example	shows	the	occurrences	of	words	within	this

chapter.	The	Wordle	visualizer	is	available	at	www.wordle.net.

http://www.wordle.net

EXEMPLAR

Stephan	Thiel:	Understanding	Shakespeare

The	Understanding	Shakespeare	project	 is	 a	good	example	of	data	being
used	to	visually	inform	the	content	of	a	piece	of	text,	changing	the	way	it
is	 read	 and	understood.	The	project,	 completed	 as	 a	 graduate	 project	 by
then	 interface	 design	 student	 Stephan	 Thiel,	 explores	 and	 examines	 the
works	of	Shakespeare.	Thiel	uses	programming	to	extract	and	graphically
represent	 specific	 pieces	 of	 information	 found	within	 the	 text.	 By	 using
code	 to	 re-visualize	 parts	 of	 Shakespeare’s	 plays,	 the	 project	 reveals
previously	 hidden	 elements	 of	 underlying	 narrative	 within	 the	 text	 and
opens	up	new	ways	to	read	the	work.	The	project	uses	programming	tools
to	analyze	the	plays	in	five	distinct	ways,	producing	for	each	one	a	set	of
images	 that	 graphically	 summarize	 key	 elements	 found	with	 each	 of	 the
narratives,	thus	representing	this	imposing	body	of	work	in	a	succinct	and
visually	striking	format.

Programming	functions	are	used	to	select	and	show	frequently	used	words
for	 the	 characters	 in	 each	 play;	 sentences	 that	 summarize	 speeches;
instances	of	 statements	beginning	with	personal	pronouns,	 such	as	 I,	me,
we,	 and	 so	 on;	 stage	 directions	 to	 indicate	 dramatic	 entrances	 and	 exits;
and	 popular	 elements	 of	 each	 play,	 according	 to	 Google	 searches.	 The
outcome	 in	 each	 case	 graphically	 presents	 an	 overview	 of	 the	 play.	 For
each	data	search,	a	set	of	large-scale	prints	is	produced,	allowing	viewers	to
get	 a	 broad	 visual	 overview	 of	 the	 patterns	 and	 rhythms	 within	 the
dramatic	 structure	 of	 each	 play.	 All	 the	 information	 is	 summarized	 and
represented	in	book	format.

Understanding	 Shakespeare	 is	 a	 great	 example	 of	 visual	 storytelling	 in
which	programming	methods	have	been	creatively	applied	to	the	field	of

graphical	 communication.	 The	 designer	 has	 used	 and	 applied	 data	 in	 a
thoughtful	and	meaningful	way,	applying	the	capability	of	code	to	extract
specific	words	and	phrases	to	create	a	visual,	design-led	outcome.	The	final
results	are	a	strong	set	of	images	that	provide	a	fresh	visual	approach	to	an
old	and	familiar	text.

4.15	Understanding	Shakespeare	Stephan	Thiel
Example	images	from	the	project,	which	generated	dynamic	visualizations	of	some
of	Shakespeare’s	most	famous	works,	allowing	viewers	to	“read”	and	understand	the

familiar	texts	in	a	new	way.

EXTERNAL	DATA
As	well	as	using	and	revealing	information	and	characteristics	from	within	a
piece	 of	 writing,	 the	 visual	 style	 of	 a	 piece	 of	 digital	 text	 can	 also	 be
influenced	by	data	sources	external	to	the	text.	External	information	that	has
a	direct	relevance	to	or	connection	with	the	content	of	the	text	can	be	used
to	change	the	details	of	its	shape	and	form,	creating	visual	compositions	that
are	visually	and	 intellectually	 stimulating,	presenting	 the	words	 in	a	 format
that	reveals	new	aspects	and	associations	in	the	text	that	would	otherwise	be
hidden.	 Interesting	visual	connections	can	be	made	 that	encourage	viewers
to	 read	 the	 text	 in	 a	 new	 way,	 establishing	 new	 connections	 that	 draw
attention	to	the	links	between	the	text	and	its	wider	context	or	environment.
For	 example,	 Twitter	 activity,	 GPS	 data,	 or	 other	 online	 activity,	 can	 be
linked	 to	 passages	 of	 text	 to	 reveal	 the	 online	 activity	 surrounding	 specific
text	or	to	link	the	words	to	a	specific	location	or	landscape.	Text	can	even	be
linked	to	sound	files;	code	interprets	elements	of	the	audio	track	to	generate	a
visual	 rhythm	 within	 the	 typography.	 Creating	 a	 link	 between	 data	 and
typography	makes	a	direct	connection	between	the	meaning	and	the	visual
attributes	of	words,	which	are	defined	by	the	data	itself.	Using	and	applying
data	to	text	and	typography	this	way	provides	a	designer	with	a	host	of	new
creative	tools	to	communicate	visually	meaningful	aspects	of	written	content.

EXEMPLAR

4.16	Generative	Gatsby	Vladimir	V.	Kuchinov
A	visual	re-working	of	the	novel	The	Great	Gatsby	(1925)	in	which	the	rhythms	and
notes	from	jazz	music	scores	have	been	used	to	reinterpret	the	typography	of	the

original	text.

Vladimir	V.	Kuchinov:	Generative	Gatsby

Generative	Gatsby	is	a	project	created	by	Vladimir	V.	Kuchinov	in	which
F.	Scott	Fitzgerald’s	novel,	The	Great	Gatsby	(1925),	has	been	re-imagined
by	 altering	 the	 typography	 of	 the	 original	 prose	 using	 data	 from	 the

rhythms	 of	 nine	 “big	 band”	 jazz	 standards	 from	 the	 1920s.	 The	musical
scores,	which	could	have	played	at	Gatsby’s	parties,	are	used	as	 templates
for	 the	 code-based	 typography,	 in	 which	 each	 note’s	 pitch,	 velocity,
position,	and	duration	are	used	 to	determine	 the	positioning	and	style	of
the	 letters	 and	words	 on	 the	 page.	 Furthermore,	 each	 instrument	 in	 the
musical	arrangement	(piano,	guitar,	bass,	brass,	and	percussion)	is	given	a
specific	 typeface	 considered	 to	 be	 evocative	 of	 the	 instrument’s	 visual	 or
emotional	 attributes.	 For	 example,	 the	 strings	 of	 the	 jazz	 guitar	 are
represented	 by	 a	 modern	 thin	 typeface	 (Brandon	 Grotesque	 Thin)	 and
drums	 and	 percussion	 are	 represented	 by	 a	 classic	 typewriter	 font
(Remington	Typewriter)	evocative	of	 the	rhythmic,	percussive	 sounds	of
typewriters	 in	 the	 1920s.	 The	 final	 layouts	 produced	 by	 this	 generative
design	 process	 highlight	 the	 rhythms	 of	 the	 jazz	 era,	 transforming	 the
novel	 into	 a	 visual	 typographic	 expression	 of	 the	 musical	 styles	 of	 the
Roaring	Twenties.

SPOTLIGHT	ON

Ariel	Malka

Ariel	 Malka	 is	 a	 designer	 and	 programmer	 who	 has	 created	 a	 range	 of
interactive	 projects.	 Most	 of	 his	 creative	 research	 is	 focused	 on
experimenting	with	different	forms	of	interactive	typography.	His	work	is
characterized	by	 the	 creation	of	 environments	 that	 transform	words	 into
animated,	 fluid	strings	and	ribbons	of	 text,	allowing	the	user	 to	read	and
experience	 the	 content	 in	 a	 playful	 and	 engaging	way.	His	 research	 and
experiments	 are	well	 documented	 on	 his	website	 (chronotext.org).	 Two
typically	interesting	outcomes	for	his	ongoing	creative	research	process	are
“Javascriptorium”	 and	 a	more	 recent	 interactive	 transformation	 of	 James
Joyce’s	Ulysses	(1922):	“He	Liked	Thick	Word	Soup.”

4.17	Javascriptorium	Ariel	Malka
Ariel	Malka	uses	programming	to	generate	dynamically	animated	and	interactive

versions	of	religious	spiritual	texts;	these	are	beautifully	poetic	interactive
typographic	pieces	that	explore	the	relationship	between	text	and	content.

http://chronotext.org

4.18	He	Liked	Thick	Word	Soup	Ariel	Malka
Ariel	Malka’s	app	turns	sections	of	the	text	from	James	Joyce’s	Ulysses	(1922)	into
interactive	ribbons	of	text.	The	act	of	reading	becomes	an	intricate,	challenging,	but
pleasurable	experience	that	resonates	with	the	characteristics	of	the	original	work.

How	 did	 you	 develop	 an	 interest	 in	 designing	 and
programming?
A	mix	of	passion	and	creative	impulse,	interleaved	in	a	long	trial-and-error	process
(I	don’t	think	I	produced	something	worthwhile	before	the	age	of	30	.	.	.)	It	started
by	comics:	reading	them	was	not	enough,	I	had	to	create	my	own.	And	then	came
video	games	.	 .	 .	 I	received	my	first	computer	as	a	teenager	in	1985	and	it	became
obvious	that	I	had	to	teach	myself	programming	in	order	to	create	games.

Recipe:	 1)	 Insert	 a	 Konami	 game	 cartridge	 into	 your	 MSX
computer	 while	 turned-on.	 2)	 If	 the	 hardware	 did	 not	 short-
circuit,	write	 a	 program	 in	BASIC	 for	 “dumping”	 the	memory
on	 screen.	 3)	 Decrypt	 the	 soup	 of	 hexadecimal	 numbers
(which	are	bits	of	 images	or	music?	which	are	instructions	for
the	Z80	processor?	 .	 .	 .)	Where	do	you	 look	 to	 find	creative
inspiration	 for	 your	 work:	 Who	 or	 what	 motivates	 and
inspires	you?
Inspiration	 is	 usually	 not	 the	 problem:	 opening	 a	 good	 book	 at	 a	 random	 page,
stumbling	 upon	 a	 soundtrack	 on	 ubuweb,	 discovering	 stunning	 architecture	 on

Flickr.	The	challenge	 is	more	to	 liberate	enough	time	for	digesting	and	processing
all	these	inspirational	gems	(and	then	produce	a	new	artwork,	which	is	my	primary
motivation).

Why	 do	 you	 code?	 Do	 you	 think	 that	 there	 are	 specific
qualities	or	 characteristics	of	 the	programming	world	which
open	up	creative	possibilities?
Without	 the	 ability	 to	 code,	 your	 creativity	 may	 soon	 become	 limited	 by	 the
metaphors	 imposed	by	“mainstream”	authoring	tools.	Besides,	producing	a	decent
interactive	 application	 requires	 skills	 and	 talent	 in	 both	 programming	 and	 design
(that	being	said,	 locking	a	software-engineer	and	an	art-director	in	the	same	room
for	enough	time	is	not	necessarily	the	best	option	.	.	.)	I	believe	that	cultivating	your
own	“hybrid”	mindset	is	the	optimal	creative	strategy.

In	 what	 ways	 do	 you	 think	 that	 creating	 interactive	 type
changes	or	enhances	 the	 reader’s	experience	of	 the	original
text?
Instead	of	responding	directly,	I	prefer	creating	an	artwork	asking	similar	questions
and	let	the	audience	provide	answers.	For	instance,	my	latest	piece	(“He	Liked	Thick
Word	Soup”)	is	a	mobile	app	for	reading	James	Joyce’s	Ulysses	with	your	fingers.	Is
it	a	new	way	to	experience	the	original	 text?	Probably,	according	to	the	feedback
received	so	far.	I	invite	everyone	to	judge	by	themselves.

Is	it	important	that	the	text	in	your	work	is	“readable”	for	the
user?
Ideally,	text	in	my	work	should	be	not	only	readable	but	also	touchable,	zoomable,
copyable,	 utterable,	 linkable.	 It’s	 probably	 going	 to	 take	 a	 while	 to	 develop	 and
integrate	all	the	required	software	components.

You	have	created	a	wide	range	of	projects	and	design	work;
is	 there	a	particular	piece	or	project	of	which	you	are	most
proud?
I’m	particularly	proud	of	the	new-chronotext-toolkit	(open-source	on	github),	which
I	use	for	creating	my	own	artworks	and	for	making	a	living	as	a	software	architect
the	rest	of	the	time.	I	shall	be	even	prouder	once	the	toolkit	has	evolved	enough	and
other	people	start	using	it	for	creating	their	own	text	experiments!

Do	 you	 have	 any	 word	 of	 advice	 to	 young	 designers	 /
students	starting	to	explore	this	field	of	creative	technology?
Take	 your	 time,	 build	 a	 self-confidence	 iteratively	 via	micro	 successes,	 then	 allow
yourself	to	get	lost	(and	to	reinvent	the	wheel	.	.	.).

CODE:	COMPUTATIONAL	TYPOGRAPHY

Anatomy	of	Text	as	Data

Programming	 functions	 can	 be	 used	 to	 capture	 and	 display	 text	 on	 the
screen.	Text	 in	a	program	 is	 stored	as	String	data.	A	String	 is	 a	 series	of
characters	(usually	letters)	“strung	together”	between	a	set	of	speech	marks:
//	example	String
String	s	=	“a	String	of	characters”;

Individual	letters	or	characters	are	stored	as	char	data	types.

char	c	=	‘a’;	//	a	single	character

A	String	is	essentially	a	list	of	individual	characters	and	could	be	written	as
follows:	char[]	letters	=	{‘S’,	‘t’,	‘r’,	‘i’,	‘n’,	‘g’};

String	data	can	be	displayed	 in	many	different	ways	and	can	be	accessed
from	many	different	sources.	Once	saved	or	generated	into	the	program,
String	 data	 can	 be	manipulated	 and	 re-formatted	 in	 a	 range	 of	 different
visual	ways.

Displaying	and	Formatting	Text

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	4,	and	click	on	the
project	“Displaying	Text.”

Most	programming	languages	have	functions	to	display	text	on	the	screen.
In	 Processing,	 the	 function	 to	 display	 words	 is	 the	 text()	 function.	 The
text()	 function	 uses	 three	 parameters	 (arguments):	 a	 String	 of	 text	 to
display,	 and	 a	 pair	 of	 numbers	 to	 determine	 the	 x	 and	 y	 location	 of	 the
words	on	the	screen.

text	(String,	x,	y);
//	put	message	on	screen	at	x=10,	y=50
text	(“hello	world”,	10,	50);

http://www.bloomsbury.com/richardson-data-driven

text	(“hello	world”,	10,	50);

In	 this	 example,	 a	 default	 font,	 size,	 and	 color	 are	 used.	 Additional
functions	can	alter	 the	size	and	color	of	 the	font.	Font	size	can	be	set	by
the	 textSize()	 function.	Font	color	 is	 set	using	 the	 fill()	 function:	 textSize
(48);
fill	(255,0,0);
text	(“hello”,	10,	50);

A	Processing	example	of	type	drawn	to	the	screen.

TIP:	A	list	of	other	Processing	functions	used	to	set	or	control	text	on	screen	can	be	found	online:
https://processing.org/reference/text_.html

https://processing.org/reference/text_.html

TRY	IT
Use	the	text	functions	to	write	some	text	to	the	screen.
Try	different	sizes,	colors,	and	locations.

Selecting	and	Controlling	Fonts	(PFont)

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	4,	and	click	on	the
project	“Using	PFont.”

In	order	to	add	and	use	a	greater	range	of	fonts	in	Processing,	the	PFont
class	is	used.	The	PFont	class	can	load	fonts	into	a	sketch,	ready	to	display
them	 on	 screen.	 Before	 a	 new	 font	 can	 be	 used,	 its	 font	 file	 has	 to	 be
created	and	saved	inside	a	“data”	folder	within	the	sketch;	this	is	done	via
the	Tools	>	Create	Font	menu,	which	creates	the	necessary	font	(.vlw)	file.

Once	the	font	file	has	been	added	into	a	data	folder,	it	is	ready	to	be	loaded
into	the	sketch	via	the	PFont	class.	The	loadFont()	function	loads	the	font
file	 ready	 to	 use.	The	 textFont()	 function	 selects	 the	 font	 to	 be	 used	 on
screen.

PFont	myFont;	//	create	a	new	PFont	object	to	use	//	load	the	font,
the	file	has	to	be	in	the	data	folder	myFont	=
loadFont(“LetterGothicStd-38.vlw”);	//	select	the	loaded	font	and
set	the	size	textFont	(myFont,	38);
text	(“word”,	10,	50);

http://www.bloomsbury.com/richardson-data-driven

The	Processing	PFont	class	gives	options	for	selecting	and	using	a	variety	of	fonts
on	the	screen.

TRY	IT
Create	a	font	using	the	Processing	menu.
Load	and	apply	the	font	to	alter	the	typographic	style	of	the	letters.	Try	different	types	of	typography.

Using	Variables	with	Text

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	4,	and	click	on	the
project	“Text	and	Variables.”

Using	variables	instead	of	fixed	values	allows	the	text	to	change	its	position
or	content.	The	data	elements	used	in	the	text()	function	to	set	the	content
and	location	of	words	can	be	replaced	with	more	useful,	variable	values.	A
String	 variable	 can	 replace	 the	 first	 parameter	 and	 number	 variables	 can
replace	the	values	that	set	the	text’s	x	and	y	screen	location:	String	message
=	“hello	world”;
float	xpos	=	100;
float	ypos	=	50;
text	(message,	xpos,	ypos);

A	change	 to	 the	content	of	any	of	 the	variables	will	change	 the	way	the
text	 is	 displayed.	Using	variables	 can	dynamically	 alter	both	 the	position
and	the	content	of	the	text	on	screen.	In	the	following	example,	a	variable
is	used	to	replace	the	fixed	number	that	sets	the	x	location.	Changing	the
variable—for	example,	by	increasing	by	10—updates	the	x	 location	of	the
text,	making	it	scroll	horizontally	along	the	screen.

float	xpos	=	10;
void	draw()	{
text	(“hello”,	xpos,	100);
xpos	+=	10;

}

http://www.bloomsbury.com/richardson-data-driven

The	 system	 variables	mouseX,	mouseY	 can	 also	 be	 used	 to	 dynamically
move	text	with	the	location	of	the	mouse	cursor.

void	draw()	{
text	(“hello”,	mouseX,	mouseY);

}

Using	the	mouseX	and	mouseY	variables	to	set	the	x	and	y	location	of	text	will
make	the	text	follow	the	movement	of	the	cursor.

TRY	IT
Create	some	simple	examples	of	words	that	move	horizontally,	move	vertically,	or	follow	the	mouse.

As	well	 as	 changing	 the	 location,	 variables	 can	 also	 dynamically	 change
the	content	of	text.	In	the	following	example,	a	String	variable	(“message”)
is	 used	 to	 set	 the	 words	 to	 be	 displayed.	 The	 content	 of	 the	 variable
changes	with	the	horizontal	movement	of	the	mouse.	When	the	mouse	is
on	 the	 left	 side	 of	 the	 screen	 (<50)	 the	 value	 of	 the	 variable,	 “message,”
changes	to	“left,”	and	when	the	mouse	is	on	the	right,	the	variable	changes
the	text	to	“right.”

String	message	=““;
void	draw()	{
background(0);
text	(message,	mouseX,	50);
if	(mouseX<50)	message	=	“left”;
if	(mouseX>50)	message	=	“right”;

}

Using	a	variable	as	the	content	of	the	text	can	create	a	simple	type	of	interaction:
The	words	can	change	as	the	mouse	is	moved	to	the	left	and	right	sides	of	the

screen.

TRY	IT
Create	a	variable	to	alter	the	content	of	the	words	on	screen	when	the	mouse	is	moved	up	and	down.

Manipulating	a	String

Processing	includes	a	range	of	functions	useful	for	analyzing	the	characteristics
of	a	String.	Functions	can	be	used	to	compare	Strings,	find	specific	characters,
or	 switch	 between	 lower	 and	 uppercase.	 A	 sample	 of	 some	 of	 the	 main
functions	are	listed:	charAt	(n):	finds	the	nth	letter	(“character”)	in	a	String.

indexOf(string):	 finds	 the	 first	 occurrence	of	 specified	String.	Can	be	 used	 for
finding	the	first	time	a	word	or	part	of	a	word	is	used.

length():	gets	the	number	of	characters	in	piece	a	String.

equals():	compares	one	String	to	another.

subString():	finds	a	sub-section	of	a	String.

split():	used	to	divide	a	String	into	separate	sections.

Programming	a	computer	to	quickly	sift	through	text	in	this	way	can	be	a	useful
source	 of	 creative	 and	 visual	 interpretation.	 A	 full	 reference	 list	 of	 String
functions	can	be	found	at:	https://processing.org/reference/String.html

Splitting	Strings

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	4,	and	click	on	the
project	“Splitting	Strings.”

Moving	and	manipulating	entire	words	as	a	single	block	has	limited	visual
use.	Manipulating	 the	 individual	 characters	 of	 a	 String	 can	 create	 more
visually	interesting	results.

A	String	is	a	list,	an	array,	of	individual	characters.	Like	any	other	array,	a
String	 has	 a	 “length()”	 function	 that	 returns	 the	 number	 of	 characters	 it
contains:	String	message	=	“hello	world”;
int	numOfChars	=	message.length();
println	(numOfChars);	//	outputs	11

https://processing.org/reference/String.html
http://www.bloomsbury.com/richardson-data-driven

A	 specific	 character	 within	 the	 String	 can	 be	 found	 using	 the	 charAt()
function.	The	 charAt()	 function	 returns	 the	 character	 found	 at	 a	 specific
point	(index)	within	a	String.	The	first	character	 is	at	 index	point	0	so	 is
found	by	charAt(0);	String	message	=	“hello	world”;
//	finds	the	first	character	(‘h’)
message.charAt	(0);

Every	character	in	a	String	could	be	found	and	output	as	follows:

String	message	=	“hello	world”;
println	(message.charAt	(0));	//	prints	‘h’
println	(message.charAt	(1));	//	prints	‘e’
println	(message.charAt	(6));	//	prints	‘w’
println	(message.charAt	(10));	//	prints	‘d’

A	more	efficient	way	of	finding	each	character	of	a	String	in	turn	is	to	use
a	 “for”	 loop,	which	 provides	 a	 quick	way	 of	 looping	 through	 the	 list	 of
characters:	String	message	=	“hello	world”;
for	(int	i=0;	i<message.length();	i++)	{
char	letter=message.charAt(i);
println	(letter);

}

By	adding	a	text()	function	within	the	“for”	loop,	this	basic	structure	can
be	used	to	place	and	draw	each	letter	on	the	screen	one	at	a	time.

float	xloc	=	10;	//	starting	loc	for	first	letter
String	message	=	“hello	world”;
for	(int	i=0;	i<message.length();	i++)	{
char	letter=message.charAt(i);	//	get	a	letter
text	(letter,	xloc,	50);	//	draw	a	letter	at	an
xloc
xloc	+=	10	;	//	increase	xloc

}

NOTE:	The	variable	“xloc”	needs	to	be	used	to	set	the	x	position	for	each	letter	in	turn	so	that	they
are	all	evenly	spaced.

Splitting	a	String	to	draw	letters	one	at	time	means	that	each	character	can
be	individually	changed	and	drawn	in	a	unique	way.	In	the	sample	below,
functions	 are	 added	 to	 the	 “for”	 loop	 to	 assign	 random	 size	 and	 color
values	to	each	character	in	a	String.

float	xloc	=	10;
String	message	=	“hello	world”;
for	(int	i=0;	i<message.length();	i++)	{
char	letter=message.charAt(i);	//	get	a	letter
fill	(random	(255));	//	select	a	random	fill	color
//	select	a	random	text	size
textSize(random	(4,	50));
text	(letter,	xloc,	50);
xloc	+=	textWidth	(letter);

}

Splitting	a	String	of	text	into	individual	characters	allows	letters	to	be	drawn
individually,	each	at	a	different	weight	and	height.

TIP:	The	 textWidth()	 function	 is	 used	 to	 create	 an	 evenly	 spaced	word;	 the	width	of	 the	 current
each	letter	is	found,	and	this	value	is	used	to	recalculate	the	position	of	the	next	letter.

TRY	IT
Create	a	sketch	of	randomly	colored	letters.
Use	a	draw()	function	to	make	the	letters	animate	and	move	over	time.

Adding	Animation:	Jiggle,	Rotate

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	4,	and	click	on	the
project	“Animating	Text.”

Being	 able	 to	 find	 and	 draw	 each	 character	 in	 a	 String	 opens	 up
opportunities	 to	 animate	words	by	moving	each	 letter	 independently.	 In
the	 following	 example,	 a	 variable	 is	 used	 to	 randomly	 offset	 the	 “x”
location	of	each	letter	and	vary	the	overall	appearance	of	the	word.	Putting
the	code	to	do	this	 in	a	repeating	“draw()”	function	continually	re-draws
the	 text	 and	 creates	 an	 overall	 “jiggle”	 effect	 of	 animated	 letters:	 String
message	=	“hello	world”;
void	draw()	{
background	(125);
float	xloc	=	10;
for	(int	i=0;	i<message.length();	i++)	{
char	letter=message.charAt(i);
float	offset_x	=	random	(-3,	3);
text	(letter,	xloc+offset_x,	50);
xloc	+=	textWidth	(letter);

}

}

http://www.bloomsbury.com/richardson-data-driven

Each	individual	letter	is	repeatedly	re-drawn	at	a	small	random	distance	from	its
original	location,	creating	a	simple	“animation”	effect	for	each	letter.

TRY	IT
Recreate	the	example.
Add	a	new	variable	to	also	offset	the	y	position	of	the	letters.

Letters	as	Dynamic	Objects

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	4,	and	click	on	the
project	“Letter	Class.”

The	ability	 to	change	and	animate	 individual	 letters	can	be	enhanced	by
using	 object	 oriented	 programming	 (OOP)	 techniques.	 Object	 oriented
programming	 processes	 can	 enhance	 the	 behavioral,	 flexible	 qualities	 of
individual	 letters,	 transforming	 each	 into	 an	 animated	 “reactive”	 object
with	its	own	set	of	functions,	behaviors,	and	attributes.

OOP	functions	can	be	used	to	take	individual	 letters	and	apply	animated
and	 interactive	behaviors	 to	each	one.	The	 following	 is	 sample	“generic”
Letter	 class	 that	 contains	 variables	 to	 store	 the	 letter,	 its	 location,	 and	 its
speed.	It	also	contains	functions	to	move	and	draw	the	letter:	class	Letter	{

float	ypos;
float	xpos;
char	letter;
float	speed;
Letter	(char	let,	float	x,	float	y)	{
letter	=	let;
xpos	=	x;
ypos	=	y;
speed	=	random	(1,	5);

}

void	moveLetter()	{
ypos	+=	speed;

http://www.bloomsbury.com/richardson-data-driven

ypos	+=	speed;

}

void	drawLetter()	{
text	(letter,	xpos,	ypos);

}

}

Instances	of	 this	 class	 are	created	using	 the	 “new”	command,	which	calls
the	“constructor”	function	in	the	class:	Letter	letter1	=	new	Letter	(‘a’,	100,
200);

Once	 created,	 functions	 within	 the	 class	 to	 move	 and	 draw	 the	 letter
instance	are	called	as	follows:	letter1.moveLetter();
letter1.drawLetter();

An	array	of	Letter	instances	can	be	created	from	each	individual	character
of	 a	 String.	 The	 following	 example	 takes	 a	 String	 and	 converts	 each
character	in	turn	into	a	new	Letter	instance:	String	message	=	“drop”;
Letter	[]	letters;
float	xpos	=	10;

void	setup()	{
//	create	an	array	for	the	letters
letters	=	new	Letter	[message.length()];
for	(int	i=0;	i<letters.length;	i++)	{
//	add	an	letter	instance
letters[i]	=	new	Letter	(message.charAt(i),
xpos,	20);
xpos	+=	10;

}

}

Each	 instance	 of	 the	 letter	 object	 is	 created	 with	 a	 specific	 character,
location,	and	random	speed.	The	moveLetter()	and	drawLetter()	functions
can	be	called	for	each	instance	in	the	array	to	animate	them.

void	draw()	{
background	(125);
for	(int	i=0;	i<letters.length;	i++)	{
letters[i].moveLetter();
letters[i].drawLetter();

}

}

Using	OOP	 in	 this	 way	 allows	 letters	 to	 become	 individually	 animated
and	 reactive	 objects	 with	 the	 ability	 to	 move	 independently	 of	 one
another.	More	functionality	can	be	written	into	the	Letter	class	to	extend
the	range	of	movements	and	behaviors	for	each	letter.

Processing:	Using	an	object-oriented	approach	to	drawing	letters	allows	e	ach	letter
to	have	its	own	set	of	behaviors.

TRY	IT
Look	at	the	online	examples	of	the	Letter	class.
Try	to	create	and	apply	your	own	Letter	class.
Add	a	function	to	make	each	letter	“bounce”	off	the	edges	of	the	screen.

Text	as	Data:	Load	Strings

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	4,	and	click	on	the
project	“Load	Text	as	Data.”

As	well	as	using	(short)	String	variables	written	inside	the	program,	String
data	can	be	loaded	in	from	an	external	source.	The	loadStrings()	function
imports	 the	 contents	 of	 an	 external	 text	 file	 and	 creates	 an	 array	 of	 its
individual	lines.

//	create	an	array	of	the	lines	of	text	from	an	external	file	String
[]	lines	=	loadStrings	(“wutheringHeights.	txt”);
//	display	the	number	of	lines	in	the	text
println	(“number	of	lines	=	“	+	lines.length);

NOTE:	The	text	file	to	be	loaded	must	be	located	in	the	Processing	sketch’s	“data”	folder.	A	resource
of	 free	 downloadable	 books	 available	 as	 plain	 text	 (.txt)	 files	 can	 be	 found	 online	 at	 Project
Gutenberg	(www.gutenberg.org).

Once	 imported,	every	 line	of	 text	 in	 the	array	can	be	read	and	displayed
on	the	screen:	float	ypos	=	20;
String	[]	lines	=	loadStrings	(“wutheringHeights.	txt”);
for	(int	i=0;	i<lines.length;	i++)	{
text	(lines[i],	10,	ypos);	//	draw	a	line	of	text
//	change	the	y	position	for	the	next	line	of	text
ypos	+=	10;

}

http://www.bloomsbury.com/richardson-data-driven
http://www.gutenberg.org

Using	the	split()	or	splitTokens()	function,	lines	of	text	can	be	subdivided
into	 arrays	 of	 individual	 words.	 Both	 the	 split()	 and	 the	 splitTokens()
function	 “split”	 a	 String	 (e.g.,	 a	 line	 of	 text)	 into	 an	 array	 of	 individual
pieces	 (e.g.,	words).	A	 specific	 character	 is	 used	 to	determine	where	 this
split	 happens	 (commonly	 the	 space	 between	 each	 word).	 Unlike	 split(),
splitTokens()	 can	use	more	 than	one	character	 to	divide	a	String,	 and	 so
can	remove	additional	punctuation	marks	as	well	as	spaces.

//	example	using	split()	and	splitTokens()
String	message	=	“Hi.	A	greeting!”;	//	String	to	be	divided	up	//
splits	String	at	the	spaces:	creates	an	array	of	3	words	String
words1[]	=	split(message,	“	“);
//	splits	String	at	the	spaces	and	removes	the	punctuation	(,	and	!)
String	words2[]	=	splitTokens(message,	“	,!”);

Getting	individual	words	from	a	large	text	file	is	a	useful	starting	point	for
digging	 deeper	 into	 the	 text:	 for	 example,	 looking	 for	 patterns	 or	word
occurrences.	 The	 words	 in	 each	 line	 can	 be	 counted	 (to	 get	 an	 overall
word	count)	or	checked	for	number	of	occurrences	of	a	specific	word.	In
the	following	example,	each	line	of	text	 is	split	 into	words.	Each	word	is
then	compared	to	see	if	it	matches	a	character	name	from	the	novel.	Each
time	a	match	is	found,	the	“wordSearch”	variable	is	increased	by	one.

String	[]	lines	=	loadStrings	(“wutheringHeights.txt”);
int	wordSearch=0;
int	wordCount=0;

for	(int	i=0;	i<lines.length;	i++)	{
String	words	[]	=	splitTokens	(lines[i],	“

,.;:!”);

wordCount	+=	words.length;
for	(int	n=0;	n<words.length;	n++){
//	look	for	a	specific	word
if	(words[n].equals(“Heathcliff”))	{
wordSearch++;

}

}

}

}

//	print	the	total	number	of	words
println	(“total	words	=	“	+	wordCount);
//	print	the	number	of	words	matching	the	search	term	println	(“word
search	count	=	“	+	wordSearch);

In	 this	 way,	 large	 amounts	 of	 text	 data	 can	 be	 easily	 sorted	 and	 sifted,
revealing	hidden	patterns	of	word	usage	that	can	be	visualized	in	a	number
of	different	ways.

CHAPTER	FIVE

SEEING	THE	WORLD

“Vision	is	the	art	of	seeing	what	is	invisible	to	others.”
Jonathan	Swift

DIGITAL	SPACES
Our	modern	environment	has	become	a	space	increasingly	filled	with	digital
objects	and	experiences	where	the	line	between	the	physical	and	the	virtual
has	blurred.	Digital	media	 is	more	 flexible	 than	ever;	 it	 is	encountered	 in	a
huge	variety	of	ways	and	places	and	surrounds	us	more	and	more	in	our	daily
lives.	Technology	has	moved	digital	images	from	the	constraints	of	a	desktop
computer	screen	to	new	environments	and	places,	meaning	that	they	can	be
encountered	 as	 a	 part	 of	 our	 everyday	 experience.	 Projected,	 interactive
images	 are	 used	 to	 transform	 mundane,	 everyday	 spaces	 or	 objects	 (e.g.,
buildings,	rooms,	tables)	into	immersive	and	lively	user	environments.	Large
screen	 projections,	 small	 screen	 hand-held	 devices,	 and	 interactive	 surfaces
use	digital	technology	to	augment	retail	spaces,	galleries,	museums,	and	other
areas.

Retail	spaces

Retail	environments	are	focused	on	display	and	are	always	eager	to	use	eye-
catching	ways	of	drawing	attention	to	their	brands	and	products.	In	the	face
of	 fierce	 competition	 from	 online	 shopping,	 brick-and-mortar	 stores	 have
increasingly	 explored	 interactivity	 to	 inform,	 engage,	 and	 amuse,	 making
shopping	 a	 more	 enticing	 experience.	 Bright	 digital	 displays	 are	 now	 a
common	 feature	 of	 modern	 shopping;	 touch-screens	 offer	 information;
monitors	 act	 as	moving	billboards.	 Images	projected	onto	 the	wall	or	 floor
can	be	made	interactive	by	the	use	of	cameras	and	sensors	that	detect	human
movement	 and	 allow	 visitors	 to	 “kick”	 through	 virtual	 leaves	 or	 play	 and
interact	with	virtual	animals.	In-store	digital	displays	can	include	interactive
virtual	mirrors	 that	allow	shoppers	 to	preview	themselves	wearing	different
outfits	from	the	store.

Large	storefronts	and	window	displays	can	be	transformed	with	cameras	and
sensors	 into	 interactive	 experiences	 that	 generate	 interactive	 graphics	 or
messages	 by	 sensing	 and	 responding	 to	 human	movement	 in	 front	 of	 the

store.

Gallery/museum	spaces

Set	against	an	increasingly	technological	background	and	competing	for	the
attention	of	an	increasingly	tech-savvy	audience,	museums	and	galleries	have
also	 become	 increasingly	 keen	 to	 make	 use	 of	 interactive	 technology	 to
enhance	 the	 visitor	 experience	 and	 to	 increase	 engagement	 with	 and
understanding	of	items	in	the	museum	collection.

Interactive	devices	 allow	 the	experience	of	 an	exhibition	 to	extend	beyond
the	 traditional	 glass	 case	 and	 the	 “look-but-don’t-touch”	 approach	 into
immersive	 large-and	 small-screen	 environments	 that	 allow	 the	 visitor	 to
explore	 items	 of	 a	 collection	 or	 navigate	 through	 an	 exhibition	 in	 more
depth.	This	is	an	emerging	area—a	new	way	for	museums	to	deliver	content.
Touch	screens	and	protected	images	create	interactive	information	graphics:
3D	 models,	 interactive	 maps,	 and	 graphics	 can	 be	 useful	 visual	 ways	 of
conveying	 detailed	 information	 that	 would	 be	 otherwise	 hard	 to	 explain.
Smartphone	 technology	allows	visitors	 to	 find	out	more	 information	about
specific	 elements	 in	 an	 exhibition	 or	 help	 them	 navigate	 a	 path	 around	 a
show.	Augmented	reality	technology	can	also	be	used	to	expand	the	physical
environment	 of	 an	 exhibition	 or	 museum,	 bringing	 to	 life	 places,	 people,
environments,	 and	 situations	 that	 help	 to	 tell	 the	 story	of	 a	 show.	Viewers
can	discover	background	details	or	be	lead	on	a	journey	through	a	historical
account.	Revealing	the	events,	descriptions,	and	stories	behind	the	objects	on
display	helps	 to	create	an	 immersive	experience	that	 situates	 the	visitor	 in	a
specific	place	or	time	relevant	to	the	display—a	type	of	time	travel.

Game	play

Being	engaged	with	content	does	not	have	 to	be	about	 filling	a	head	with
facts	 and	 figures;	 game	 play	 and	 lightheartedness	 in	 general	 can	 also	 be	 a
good	way	to	engage	viewers	and	visitors.	Less-tangible	 information	can	be
offered	to	visitors	in	an	exploratory	way.	Wrapping	ideas	and	concepts	into	a

game	environment	is	a	good	way	to	allow	people	to	discover	and	explore	a
subject—one	that	 is	especially	useful	 for	exploring	more	abstract	 ideas,	 such
as	co-operation	or	creativity.

Interactive	environments	that	sense	or	detect	human	movement	can	immerse
viewers	in	a	powerful	and	engaging	way,	breaking	the	barrier	of	the	screen,
mouse,	 and	 keyboard,	 leading	 to	 a	 fulfilling	 interactive	 experience.	Work
that	playfully	engages	viewers	 in	an	“all	 round”	experience,	 in	which	body
movement	 is	 used	 as	 trigger	 for	 interaction,	 can	 be	 a	 powerful	 way	 of
involving	audiences	for	both	educational	and	commercial	purposes.

5.2	Bede’s	World	Museum
Augmented	Reality	(AR)	is	used	as	a	way	of	bringing	objects	in	a	museum	to	life.

When	viewed	through	a	smart	phone	or	similar	device,	objects	become	“augmented”
with	additional,	digitally	created,	images	or	3D	models.	The	Bede’s	World	Museum	app

uses	AR	to	bring	viewers	face	to	face	with	the	ghost	of	the	Venerable	Bede.

5.3	Large-scale	Markers
This	test	for	an	augmented	reality	concept	makes	use	of	large-scale	markers	to

produce	very	big	AR	experiences—in	this	instance,	a	virtual	mammoth.

LARGE	SCREEN	PROJECTIONS:	BODY	MOVEMENT
Large	 screen	projections	 allow	environments	 to	 respond	 to	 the	presence	of
figures	within	a	space;	they	can	be	used	in	many	different	contexts.	Whether
in	a	large	shopping	center	window	display	or	in	the	controlled	interior	space
of	 a	 museum	 or	 gallery,	 a	 large	 digital	 projection	 can	 create	 playful
immersive	environments	 that	 the	user	can	 feel	 fully	part	of.	These	 types	of
environments	often	track	and	use	large	user	gestures	and	actions	that	involve
the	whole	 figure.	They	may	use	green	 screen	 technology	 in	which	people
see	themselves	superimposed	onto	a	new	background	and	thus	“transported”
into	 a	 new	world.	Graphical	 objects	 and	 animations	 can	 interact	with	 the
gestures	of	 the	users,	perhaps	attracted	to	or	repelled	to	the	users’	 figures	as
they	move,	kick,	or	wave	their	arms.	These	types	of	interactive	environments
generate	a	range	of	different	interactive	responses.	As	well	as	being	projected
onto	a	wall	or	building,	large	scale	interactives	can	be	projected	from	above
onto	a	floor,	tracking	the	positions	of	people	as	they	move	through	a	space.
Interactive	graphics	on	a	 floor	 surface	 react	 to	 figures	 as	 they	move	 in	and
across	the	floor	(e.g.,	scattering	leaves,	etc.).

EXEMPLAR

Yoram	Mesuere	and	Bagger:	Vitrine

Vitrine	is	an	experimental	 interactive	window	installation,	created	by	the
interactive	 design	 agency	 Baggar	 working	 alongside	 Yoram	 Mesuere.
Graphical	shapes	initially	collect	and	move	together	around	the	logo	at	the
center	of	the	screen.	The	movement	of	passers-by	in	front	of	the	window
display	is	monitored	by	cameras	and	used	to	trigger	the	shapes	to	animate
and	follow	the	viewers	as	they	pass.

A	computer	set-up	is	used	to	track	the	general	positions	of	people	in	front
of	the	screen.	This	allows	the	graphics	to	move	to	the	general	location	of
the	 users,	 rather	 than	 have	 to	 track	 outlines	 or	 gestures	 exactly.	 The
interaction	creates	a	simple	yet	strong	connection	between	the	viewer	and
the	image	and	gives	immediate	visual	feedback,	allowing	the	viewer	to	see
the	effects	of	their	movements	on	the	animations.	The	movements	of	the
shapes	have	an	organic	feel;	the	shapes	gradually	flock	and	swarm	together
like	 birds	 or	 leaves	 blown	 by	 the	wind.	 The	 naturalistic	 qualities	 of	 the
movement	add	a	sense	of	simple	pleasure	to	the	interactive	experience	that
masks	the	digital	and	computational	processes.

5.4	Vitrine	Baggar	and	Yoram	Mesuere
An	experimental	interactive	window	installation,	created	by	the	design	agency

Baggar	working	alongside	Yoram	Mesuere.

SMALL	SCREEN	DISPLAYS:	DIGITAL	MIRRORS

5.5	You	Fade	To	Light	Random	International
A	large-scale	installation	created	using	a	grid	of	LEDs	and	a	camera-based	motion

tracking	system.	Working	as	a	kind	of	digital	looking-glass	grid,	viewers	are
encouraged	to	engage	physically	to	create	images	of	themselves.

Small	display	screens	can	employ	cameras	as	image	recognition	devices,	often
to	create	single-user	interactions	in	which	a	screen	reacts	to	the	viewer	as	a
kind	of	digital	mirror.	A	live	feed	can	make	real-time	changes	to	the	viewer’s
image,	manipulating	or	digitally	enhancing	it.	Graphics	and	images	can	also
augment	the	image—for	instance,	gravitating	toward	the	body	or	face.

The	magic	of	a	digital	mirror	can	transform	the	images	of	the	viewers	as	they
peer	into	it.	A	kind	of	“Alice	In	Wonderland”	effect	occurs	as	the	viewers	see
themselves	in	a	new	way,	transformed	by	the	technology.	The	viewers	may
see	themselves	wearing	new	digital	clothing,	masks,	or	head	wear;	their	on-
screen	images	may	become	a	magnet	for	creatures	to	swarm	towards	or	even
begin	to	sprout	new	limbs	or	wings.	Seeing	your	own	image	changed	with

even	simple	transformations	can	make	for	a	fascinating	experience.

EXEMPLAR

Moving	brands:	LC	Fashion	show

Commissioned	by	the	London	College	of	Fashion,	Moving	Brands	created
a	 reactive	 tabletop	 surface	 as	 a	 way	 of	 interactively	 showcasing	 all	 500
pieces	of	work	in	the	Graduate	Portfolio	Exhibition.

Each	 student	 in	 the	 exhibition	 was	 represented	 by	 a	 specially	 designed
postcard,	which	had	a	sample	visual	of	their	printed	work	on	the	front,	and
a	unique	identifying	tag	on	the	back.	When	placed	on	the	surface	of	the
table,	 the	 tag	on	each	postcard	 triggered	a	 set	of	digital	 images	 from	the
corresponding	student’s	portfolio.	Moving	the	card	created	the	interaction;
turning	 and	 rotating	 the	 card	 allowed	 the	 viewer	 to	 shuffle	 through	 the
image	set.

The	 project	 uses	 a	 combination	 of	 Processing	 and	 Reactivision
technologies	 to	 create	 the	printed	 tags	 as	 interactive	 triggers.	A	webcam
and	infrared	lamp	beneath	the	surface	of	the	table	were	used	to	track	the
location	of	the	tags	on	the	table	and	send	the	information	to	the	computer,
which	projected	the	digital	images	from	below.

The	 overall	 experience	 beautifully	 combines	 the	 physical	 quality	 of	 the
postcard	with	 the	digital	 projection	on	 the	 table,	making	 the	 interaction
intuitive	 and	 the	 experience	 compelling:	 ordinary	 printed	 postcards	 are
transformed	into	something	interactive,	surprising,	even	magical.

5.6	Interactive	Portfolio	Table	for	the	London	College	of	Fashion,	Moving	Brands
Screens	can	be	turned	into	responsive	table	surfaces	that	react	to	objects	placed	on

them,	as	demonstrated	in	this	imaginative	design	solution	created	by	Moving
Brands,	to	showcase	the	work	of	over	500	final-year	students’	virtual	portfolios.

Special	“fiducial”	markers	were	used	on	cards	as	triggers	to	project	images	for	each
student.	The	combination	of	the	physical	(printed	cards)	with	the	digital	creates	an

engaging	and	intuitive	experience.

WAYS	OF	SEEING
There	are	lots	of	different	ways	in	which	the	computer	can	“see”	in	order	to
detect	the	presence	and	the	gestures	of	humans,	objects,	lights,	and	so	on.	As
an	 input	 device,	 the	 computer	 is	 usually	 used	 as	 a	 “blind”	 observer	 on	 the
world,	limited	to	sensing	movement	via	only	mouse	and	keyboard	input.	As
a	 sensing	 device,	 however,	 the	 computer	 is	much	more	 sophisticated	 than
that,	and	capable	of	responding	to	a	wide	range	of	input	types.	Many	artists,
designers,	and	creative	technologists	have	realized	that	limiting	the	scope	of
computer	 input	 and	 interaction	 to	 keyboard	 and	mouse	 input	 ignores	 the
immense	 capability	 of	 the	 computer	 as	 a	 sophisticated	 input	 and	 data
processing	 device.	 In	 recent	 years,	 therefore,	 artists,	 designers	 and
programmers	have	worked	hard	to	enthusiastically	explore	the	capabilities	of
the	 computer	 as	 a	multi-sensory	 device,	 creating	 digital	 environments	 that
can	sense	the	world	around	them.

The	 main	 area	 of	 activity	 in	 this	 area	 has	 centered	 on	 the	 computer	 as	 a
seeing	 device	 (“computer	 vision”).	 Allowing	 the	 computer	 to	 access	 and
process	visual	 information	has	proved	to	be	of	particular	 interest	to	creative
artists	 and	 designers.	 Recent	 advancements	 in	 computer	 processing	 have
made	 computer	 vision	 a	 field	 that	 has	 been	 applied	 to	 a	 range	 of	 creative
projects.	Despite	 the	 increased	 sophistication	of	 technology,	 the	 same	basic
concepts	are	still	used.	With	the	right	tools	and	resources	(and	there	are	lots
online),	 a	 programmer	 can	 allow	 a	 computer	 to	 see	 objects	 and	 people
quickly	and	with	little	expense.

Computer	“vision”

The	 most	 common	 way	 of	 connecting	 a	 computer	 to	 its	 outside
environment	is	by	attaching	it	to	a	camera—for	example,	a	webcam—which
becomes	the	“eye”	of	the	device.	Once	connected	to	a	camera,	the	computer
acts	as	the	“brain,”	processing	and	interpreting	visual	information	in	order	to
make	 sense	 of	 the	 world.	 There	 are	 a	 few	 different	 approaches	 and

techniques	that	can	be	used	to	detect	different	types	of	object	and	movement.

Seeing	Color

One	of	the	main	ways	in	which	the	computer	can	make	sense	of	the	world
around	it	is	by	looking	at	color	information	through	the	lens	of	a	camera.	A
moving	image	from	a	camera	feeds	sequences	of	 images	to	a	computer	at	a
rate	 of	 about	 28	 frames	 per	 second.	 Each	 individual	 frame	 from	 the	 video
source	contains	hundreds	of	individual	boxes	(pixels),	which	are	captured	and
processed	 by	 the	 computer	 as	 a	 list	 of	 color	 values.	 For	 example,	 a	 camera
that	captures	footage	at	an	image	size	of	320	x	240	pixels	creates	a	series	of
individual	 frames,	 each	 of	which	 contain	 76,800	 individual	 pixels	 of	 color.
Code	 can	 be	 used	 to	 sort	 through	 each	 of	 the	 thousands	 of	 color	 values,
looking	for	specific	shades	or	hues,	and	it	can	use	this	information	to	help	the
computer	to	find	patterns,	identify	shapes,	and	make	sense	of	the	visual	world
around	it.	Using	code	to	sort,	select,	and	manipulate	the	color	data	from	pixel
information	is	therefore	a	key	part	of	computer	vision.
See	Code	section:	Color	as	a	Data	Type.

EXEMPLAR

Matthieu	Savery:	Pixel	Data

Pixel	Data	is	a	free	app,	created	by	Matthieu	Savary,	that	re-examines	the
visual	 possibilities	 of	 smartphone	 photography.	 The	 app	 treats
photographic	 images	 as	 sets	 of	 color	 information	 and	 uses	 the	 data	 to
rearrange	the	pixels	of	an	image	using	parameters	such	as	 tone	and	color
value.	After	being	broken	into	its	individual	bits	of	color	information,	each
image	 is	 re-organized	 according	 to	 different	 parameters,	 such	 as	 tone	or
RGB	 values.	 The	 parameters	 by	 which	 the	 pixels	 are	 re-organized	 are
adjustable	via	a	series	of	on-screen	sliders.

By	 sorting	 color	 data	 according	 to	 logical	 values,	 the	 app	 challenges	 the
assumption	that	the	pixels	in	a	digital	photograph	have	to	be	viewed	in	a
“correct”	 order,	 and	 allows	 users	 to	 re-interpret	 their	 photography	 to
create	 abstract	 and	 impressionistic	 images.	 The	 resultant	 confetti-like
images	present	a	fresh	way	of	thinking	about	the	way	in	which	the	color
information	of	a	smartphone	image	is	processed	and	displayed.

5.7	Pixel	is	Data	Matthieu	Savary
Sample	images	from	the	app	that	computationally	re-organizes	pixel	data	from

smartphone	photographs.	Changing	the	settings	produces	different	sets	of	digitally
“impressionistic”	results.

Static	Images

Every	 digital	 bitmap	 image	 (gif	 or	 jpeg)	 is	 a	 collection	 of	 hundreds	 or

thousands	of	individual	color	values:	pixels.	Even	the	most	complex	of	digital
images	is	actually	a	list,	a	mosaic,	of	individual	squares	of	color.	When	using
digital	graphics	software	to	select	and	apply	a	filter	to	an	image	(e.g.,	apply
blur	 or	 contrast),	 the	 designer	 is	 actually	 getting	 the	 software	 to
computationally	manipulate	and	change	the	pixel	information	in	the	original
image.	Code,	however,	gives	designers	and	programmers	direct	access	to	the
list	of	individual	color	values	in	an	image,	allowing	them	to	manipulate	the
color	 data	 in	 a	more	 direct,	 “hands-on”	way.	 This	 “direct	 access”	 to	 color
data	allows	programmers	to	use	code	to	extract	and	analyze	the	color	data	of
a	bitmap	image	in	real	time,	as	part	of	an	interaction.	This	can	be	especially
effective	when	applied	to	a	sequence	of	moving	images	taken	from	a	video
feed.
See	Code	section:	Get	Color	from	a	Static	Image.

Moving	Images

Lists	of	pixel	 color	data	 from	a	 live	video	 source	can	be	captured,	 searched
through,	 and	 analyzed.	 Searching	 through	 and	 extracting	 individual	 color
values	from	a	live	camera	feed	gives	the	designer	a	valuable	way	of	observing
the	 surrounding	 environment.	 Code	 can	 be	 used	 to	 search	 for	 and	 find
sections	of	a	video	feed	that	contain	a	specific	color	(e.g.,	green)	or	find	areas
of	extreme	contrast,	brightness,	or	darkness.	Having	the	ability	to	find	pre-
defined	colors	or	 areas	of	particular	brightness	or	darkness	 allows	designers
the	 starting	 point	 to	 create	 environments	 that	 identify	 moving	 figures	 as
colors,	 separate	 foreground	 and	 background	 elements,	 or	 track	 color	 or
lights.

5.8	“Image	mosaic”	example
The	color	data	from	pixels	in	video	images	can	be	used	to	create	“digital	mirrors”	in

which	the	images	are	transformed	into	a	moving	mosaic	of	graphical	shapes.

See	Code	section:	Import	a	Live	Video	Source.

Techniques	for	finding	color	information	can	be	applied	in	the	creation	of	a
number	of	types	of	interactive	environment.	Green	screen	techniques,	which
separate	the	background	from	foreground	figures,	can	be	used	to	replace	the
background	of	a	 scene	with	entirely	new	 imagery	or	manipulate	 the	visual
effects	on	people	in	front	of	the	camera.	Similarly,	finding	very	bright	pixels
can	 be	 used	 as	 a	 way	 of	 generating	 physical	 interactions	 based	 on	 the
movement	of	LED	lights	or	flashlights	as	they	are	waved	in	front	of	a	screen,
a	way	of	 interacting	that	 is	 the	basis	behind	the	concept	and	technology	of
the	Nintendo	Wii.
See	Code	sections:	Follow	the	Brightest	Pixel	&	Green	Screening.

Green	Screen	Effects

•	“Green	screen”	effects	can	be	created	by	finding	large	areas	of	pixels	of	a	specific	single	hue	that	form
a	background	wall;	these	can	be	ignored	or	replaced,	leaving	the	figure	in	the	foreground.

•	Areas	of	low	brightness	values	can	reveal	the	presence	and	movement	of	people;	the	shadows	or
silhouettes	of	figures	can	be	found	as	they	pass	in	front	of	or	behind	a	screen.

•	Finding	and	following	the	very	brightest	pixels	in	front	of	a	camera	is	a	simple	way	of	tracking	the
movements	of	lights.

•	An	alternative	to	green	screening	is	the	“difference	technique,”	which	is	a	variation	of	the	green	screen
concept.	Color	values	of	the	empty	environment	are	continually	compared	with	color	values	of	the
current	scene.	Differences	between	the	two	indicate	the	presence	of	people	entering	the	space.

EXEMPLAR

5.9	Party	Wall	Sennep
Images	of	the	interactive	projection	created	as	part	of	a	wedding	party.	Dance-floor

movement	is	captured	and	used	to	project	images	on	to	the	wall.

Sennep:	Party	Wall

Sennep:	Party	Wall

Party	Wall	was	a	specially	commissioned	interactive	projection	installation
created	 for	 a	post-wedding	celebration.	The	movement	of	guests	 on	 the
party	dance	floor	is	tracked,	and	the	amount	of	energy	is	used	to	trigger	a
wall	projection.	Little	or	no	movement	results	in	a	blank	screen;	however,
as	soon	as	a	certain	level	of	physical	energy	is	detected	by	the	system,	large
images	 of	 the	 dancers	 are	 projected	 onto	 the	wall	 in	 a	 pixelated	 grid	 of
dots.	 The	 system,	 which	 responds	 to	 energetic	 dance	 moves,	 therefore
encourages	even	greater	participation	from	the	guests.

SEEING	PEOPLE
Looking	 for	 color	 information	 is	 the	 simplest	 and	 quickest	way	of	 finding
movement	 and	 the	 presence	 of	 figures	 within	 an	 environment.	 The
techniques	involved	are	useful	 for	spotting	something	new	or	different	 in	a
space.	 Color	 information,	 however,	 cannot	 give	 any	 detailed	 information
about	 the	 specific	 figures	 within	 the	 space—for	 example,	 the	 number	 of
people	or	the	locations	of	their	faces,	gestures,	or	limbs.	This	kind	of	detailed
information	 requires	 more	 sophisticated	 methods	 of	 image	 processing	 and
computer	vision.	These	methods	involve	many	more	complex	mathematical
processes.	 Fortunately	 for	 creative	 designers,	 there	 are	 several	 libraries	 and
resources	available	that	can	assist	and	make	the	process	less	painful.	This	is	a
summary	of	the	main	concepts.

Blobs

Being	 able	 to	 find	 shapes	within	 an	 image	 is	 a	 sophisticated	 and	 powerful
way	of	detecting	 the	presence	 and	movement	people	 in	 a	 scene,	 and	gives
much	 more	 detail	 than	 simply	 comparing	 color	 values.	 The	 detection	 of
shapes	and	figures	is	a	part	of	computer	vision	called	“Blob	Detection,”	and	it
is	 very	 useful	 for	 finding	 outlines	 of	 people.	 Blob	 detection	 is	 complex
mathematical	way	of	finding	similar	areas	within	an	image	whose	color	and
brightness	 stand	 out	 against	 the	 rest	 of	 the	 image.	 Finding	 shapes	 that
contain	areas	of	broadly	similar	colors	and	shades	gives	a	much	more	detailed
and	 useful	 picture	 regarding	 the	 numbers	 and	 the	 movements	 of	 people
within	 a	 scene.	Because	blobs	 join	broadly	 similar	 areas	of	 color	 (e.g.,	 skin
tone	 and	 clothing	 colors)	 they	 therefore	 allow	 much	 greater	 accuracy	 in
detecting	the	outlines	of	people	and	can	also,	 importantly,	track	and	follow
individual	 figures	 as	 they	 move	 across	 a	 scene.	 Blobs	 not	 only	 accurately
detect	 shapes,	 but	 they	 can	 also	 distinguish	 among	 and	 follow	 different
individuals.	 Both	 of	 these	 capabilities	 are	 useful	 for	 generating	 user
interaction.

Computer	Vision	Libraries	for	Processing
The	Processing	environment	includes	a	range	of	extra	libraries	that	are	used	to	extend	the	capability	of
the	 programming	 language	 in	 specific	 ways.	 Amongst	 these	 are	 libraries	 specifically	 built	 to	 enable
Processing	 to	 engage	 in	 computer	 vision:	 seeing	 and	 analyzing	 the	 presence	 of	 people	 within	 a	 live
video	 image.	 Two	 good	 examples	 of	 these	 include	 BlobDetection
(http://www.v3ga.net/processing/BlobDetection/)	 and	 OpenCV	 for	 Processing
(https://github.com/atduskgreg/opencv-processing).	A	full	list	of	the	libraries,	including	ones	used	for
“computer	vision,”	can	be	found	online	at:	https://processing.org/reference/libraries/

Finding	edges

Blob	detection	of	people	in	a	scene	can	be	used	to	find	the	edges	of	figures	in
an	environment,	which	can	be	used	as	 the	basis	of	 imaginative	 interactions
that	work	with	and	around	the	participants’	body	shapes.	Animated	lines	or
graphics	 can	be	 attracted	 to	 the	outline	of	person’s	body;	digital	 “rain”	 can
settle	onto	hands	or	 arms;	graphics	can	grow	and	emerge	 from	around	 the
body	outline.	Locating	the	shapes	and	outlines	of	people	in	this	way	helps	to
effectively	place	them	in	the	center	of	an	interactive	screen	or	game,	giving	a
fuller	 illusion	 of	 interaction	 and	 adding	 to	 the	 level	 of	 engagement,
enjoyment,	and	“magic.”

http://www.v3ga.net/processing/BlobDetection/
https://github.com/atduskgreg/opencv-processing
https://processing.org/reference/libraries/

EXEMPLAR

5.10	The	Treachery	of	Sanctuary	Chris	Milk
Images	from	the	interactive	triptych	in	which	participants	use	their	bodies	to	create
hybrids	of	human	and	bird-like	creatures.	The	direct	physicality	of	the	interaction

creates	a	remarkable	transformation	of	the	human	form.

Chris	Milk:	The	Treachery	of	Sanctuary

The	 Treachery	 of	 Sanctuary	 is	 a	 large-scale	 interactive	 installation,
consisting	of	three	projected	panels.	Each	panel	uses	a	projected	silhouette
of	the	participant’s	body,	interactively	manipulating	it	with	images	of	birds
to	 represent	 the	narrative	of	birth,	death,	and	 transfiguration.	As	users	 in
front	 of	 the	 screen	 move,	 their	 projected	 body	 shape	 is	 digitally
transformed	into	a	flock	of	flying	birds	(“birth”),	into	a	figure	attacked	by
birds	 (“death”),	 or	 into	 a	 figure	 sprouting	wings	 (“transfiguration”).	The
visual	 transformation	of	 the	user’s	body	 shape	 creates	 a	 strong	emotional
link	with	the	theme.	The	simplicity	of	the	interaction,	together	with	black
and	white	color	scheme,	adds	beauty	and	elegance	to	the	overall	effect.

The	 shadows	 and	 movements	 of	 the	 user	 in	 front	 of	 each	 panel	 are
captured	using	a	Kinect	camera.	The	code,	written	as	an	openFrameworks
application,	processes	the	information	from	the	Kinect	and	connects	to	the
graphics	 software,	 created	 in	 Unity,	 which	 created	 the	 animated,
interactive	birds.

Finding	individuals

5.11	The	ability	to	track	faces	is	useful	starting	point	for	creating	interactions	based
around	individual	users.

The	ability	of	blobs	to	track	and	locate	faces	and	individuals	in	a	scene	gives
creative	designers	greater	scope	to	develop	group-based	interactions,	which
include	and	involve	the	participation	of	several	people	at	once.	Animations,
graphics,	games,	and	interactions	can	be	individually	focused	to	follow	single
players	 within	 a	 group,	 while	 new	 users	 can	 be	 detected,	 triggering	 their
own	new	sets	of	animated	images	and	graphics.	Virtual	clothing	or	costumes
can	move	with	each	user;	individual	styles	of	animation	and	graphics	can	be
introduced	for	each	new	player	in	the	scene.

Finding	Faces
In	addition	to	locating	edges	and	tracking	individuals	in	a	scene,	blob	detection	processes	can	also	find
and	recognize	faces.	This	is	useful	for	graphics	and	animations	that	work	by	locating	the	head	and	face
portions	of	a	figure.	Virtual	disguises—hats,	ears,	masks—can	appear	on	and	around	the	faces	of	each
user,	animating	and	changing	with	each	individual.

EXEMPLAR

Hellicar	and	Lewis:	Interactive	mask

Hellicar	 and	 Lewis	 are	 a	 creative	 team	 who	 blend	 technology,	 art,	 and
design	 to	 create	 a	 range	 of	 interactive	 experiences	 for	 a	wider	 range	 of
clients	 and	 contexts,	 including	 fashion,	 performance,	 art,	 and	 education.
Their	work	uses	interaction	to	explore	the	relationships	between	viewers,
spaces,	 and	 technology	 and	 brings	 together	 influences	 from	 several
different	art	and	science	disciplines.

5.12	Diaghilev	Mask	Hellicar	and	Lewis
Face-tracking	software	is	used	to	find	users	in	the	scene	and	position	the	graphical

animal	masks	onto	the	faces	of	the	participants.

Hellicar	and	Lewis:	Diaghilev	mask

The	interactive	mask	project	was	commissioned	by	the	Victoria	and	Albert
Museum,	London,	 in	 collaboration	with	 their	 educational	 department	 to
coincide	 with	 their	 Diaghilev	 exhibition.	 Picking	 up	 on	 the	 theme	 of
theatrical	masks,	the	interactive	exhibit	uses	face	recognition	code	to	apply
digital	 masks	 to	 participants	 in	 front	 of	 a	 computer	 camera.	 Specially
written	 programming	 code	 creates	 each	 mask	 design	 and	 tracks	 the
movement	of	the	user	wearing	it.
Other	 pieces	 of	 interactive	 installation	 created	 by	 Hellicar	 and	 Lewis
include	Uniqlo	 Stripes,	 a	 commissioned	wallbased	 interactive	 installation
with	 the	 theme	 of	 stripes	 developed	 to	 help	 promote	 an	 event	 for	 the
fashion	 label	 Uniqlo,	 and	 Norwegian	 Wood,	 an	 audioresponsive
projection	for	the	premiere	of	the	film	adaptation	of	the	book	Norwegian
Wood,	 by	 Haruki	 Murakami,	 in	 London	 at	 the	 Haunch	 of	 Venison
Gallery,	which	references	elements	of	 the	film	and	traditional	 imagery	of
Japanese	seasons.

SEEING	DISTANCE	AND	PROXIMITY
Regular	 digital	 cameras,	 or	 webcams,	 can	 be	 used	 very	 effectively	 in
computer	vision	projects	to	detect	colors	or	shapes;	however,	they	are	limited
in	their	capability	to	detect	depth	or	specific	user	movements.	The	Kinect	is
a	more	sophisticated	camera	set-up	that	can	detect	both.

The	 gaming	 industry	 has,	 over	 recent	 years,	 been	 at	 the	 forefront	 in	 the
development	 of	 new	 technology	of	 computer	 vision	 in	 order	 to	 find	new,
immersive	new	ways	for	gamers	to	play	and	interact	with	gaming	consoles.
For	 example,	 Nintendo’s	 innovative	 hand-held	 Wii	 motion	 and	 gesture
sensors	opened	up	new	ways	of	thinking	about	traditional	game	controllers.

Each	 development	 of	 innovative	 commercial	 devices	 and	 technology	 is
quickly	 seized	 upon	 by	 creative	 developers	 keen	 to	 explore	wider	 creative
uses	and	applications	for	the	technology.	One	recent	example	is	the	Kinect,
launched	 by	 Xbox,	 a	 powerful	 device	 that	 can	 detect	 a	 range	 of	 human
movements	and	gestures.	The	device	itself	contains	a	“regular”	RGB	camera,
plus	an	infrared	camera	and	infrared	light	(used	to	detect	depth	and	gesture).
Although	usually	used	with	Xbox,	 the	Kinect	can	be	used	as	 a	 stand-alone
camera	connected	directly	 to	a	computer	and	used	as	a	 sophisticated	sensor
for	developing	interactive	applications.

Several	 code	 libraries	 have	 been	 developed	 that	 allow	 direct	 access	 to	 the
sensory	information	of	the	Kinect,	allowing	programmers	access	to	a	scene	as
a	 conventional	 (RGB)	 image,	 detect	 distance,	 and	 sense	 full-body	 physical
gestures.

5.13	The	Kinect	camera	has	a	built-in	RGB	camera,	infrared	light,	and	depth	sensor,

which	can	be	used	to	visualize	body	movement,	gesture,	and	proximity	to	the	camera.

5.14	An	example	of	a	regular	(RGB)	image	(right)	and	a	“depth”	image	(left)	captured
by	the	Kinect	camera	connected	to	a	computer	device.	Dan	Shiffman’s	Processing
library,	“Open	Kinect	for	Processing,”	is	used	to	extract	the	depth	image.	Details

available	at:	http://shiffman.net/p5/kinect/

Depth	camera

In	addition	to	the	regular	camera	view	of	a	scene,	the	Kinect’s	camera	device
is	also	able	to	create	a	“depth	image”	of	an	environment:	a	grayscale	image	in
which	the	color	value	of	each	pixel	accurately	relates	to	its	distance	from	the
camera.	 Objects	 that	 are	 closest	 to	 the	 camera	 appear	 as	 white,	 and	 those
furthest	away	as	black.	The	result	is	a	“depth	image.”	Differentiation	between
the	 proximity	 of	 objects	 from	 the	 camera	 means	 that	 objects	 in	 the
foreground	 can	 be	more	 easily	 tracked	while	 background	 elements	 can	 be
ignored	or	removed.

Open	Kinect	for	Processing
Processing	includes	some	code	libraries	that	enable	the	code	to	connect	to	and	use	the	Kinect	camera
and	 its	 depth	 information.	 A	 good	 resource	 is	 Daniel	 Shiffman’s	 Open	 Kinect	 for	 Processing
(http://shiffman.net/p5/kinect/),	which	provides	a	useful	starting	point	for	connecting	to	and	using	the
Kinect	as	an	image	data	source.

http://shiffman.net/p5/kinect/
http://shiffman.net/p5/kinect/

EXEMPLAR

5.15	Body	Dysmorphia	Robert	Hodgin
The	Kinect	sensor	creates	a	3D	“map”	of	a	figure	that	can	be	computationally

adjusted	to	create	real-time	distortions	of	the	viewer’s	image.

Robert	Hodgin:	Body	Dysmorphia

Body	Dysmorphia	 uses	 a	 Kinect	 sensor	 to	 create	 a	 real-time	 interactive
visualization	 of	 body	 dysmorphia	 disorder,	 a	 condition	 in	 which	 the
sufferer	 is	 excessively	 concerned	 about	 a	 perceived	 physical	 deffect.
Proximity	data	 from	 the	Kinect	 camera	 is	used	 to	get	visual	 information
about	the	viewer,	which	is	computationally	adjusted	and	redrawn	to	create
a	 live	 distorted	mirror.	 Surface	 information	 obtained	 from	 the	 camera	 is
pushed	 out	 or	 in	 to	 make	 the	 subject	 fatter	 or	 thinner,	 morphing	 the
viewer’s	 real-time	 form	 into	 one	 that	 is	 either	 excessively	 bloated	 or

emaciated.

Infrared	and	Visual	Noise
An	infrared	light	source	and	camera	are	very	useful	for	detecting	shapes	or	figures	in	a	scene.	Infrared
lights	are	often	used	in	security	camera	devices;	they	emit	a	strong	light	source	that	humans	cannot	see
but	 that	 infrared	 cameras	 can.	 Infrared	 lights	 can	 be	 purchased	 from	 security	 suppliers.	 Webcams
cannot	usually	see	infrared	light	because	they	have	a	special	filter	that	blocks	it	out,	but	a	programmer
can	“hack”	one	to	make	it	an	infrared	camera	by	finding	and	removing	the	filter.

One	problem	with	using	a	normal	camera	for	figure	detection	is	other	light	sources,	especially
projectors	or	display	screens,	add	extra	light	that	interferes—lots	of	“visual	noise”	that	makes	the	job	of
figure	detection	much	more	difficult	for	the	camera.	Throwing	an	infrared	spotlight	over	a	scene	and
using	a	camera	that	only	sees	areas	lit	up	with	the	infrared	is	a	way	of	removing	all	the	visible	light
sources	that	cause	interference,	allowing	the	camera	to	detect	the	people	in	the	space.

Gesture	detection

As	well	as	being	able	to	sense	distance	and	depth,	 the	Kinect	camera	can
detect	 individual	 figures,	 find	 and	 track	 hand	 positions,	 and	 even
recognize	 hand	 gestures	 and	 full	 body	 movements.	 The	 ability	 to
accurately	 track	hand	and	body	movement	 creates	 a	 foundation	 for	 fully

immersive	 interactive	 experiences	 in	which	 the	 user’s	 body	 becomes	 the
game	controller,	intuitively	involved	in	the	environment.	It	is	a	powerful
feature	 that	 has	 been	 explored	 and	 exploited	 by	 several	 games	 and
interactive	environments.

Hand	tracking	allows	users	to	playfully	engage	with	gesture-based	screens
or	 interactive	 table	 surfaces.	 Full-body	 figure	 detection	 can	 be	 used	 to
create	 immersive	 large	 screen	experiences,	which	playfully	 engage	 single
or	multiple	users.

5.16	Collections	Wall	Cleveland	Museum	of	Art
An	interactive	wall	featuring	over	4,100	works	of	art	from	the	permanent	collection
housed	in	The	Cleveland	Museum	of	Art.	Touch-screen	technology	allows	visitors	to
explore	the	collection	and	connect	with	objects,	making	their	visit	a	more	personal

experience.

Local	projects:	Cleveland	Museum	of	Art

Local	 Projects	 is	 a	 media	 design	 company	 that	 creates	 interactive
experiences	 for	 public	 and	 museum	 spaces.	 With	 a	 focus	 on	 using
technology	to	share	stories,	the	company	encourages	new	ways	for	people

to	interact	with	art,	cities,	and	each	other.	In	a	recent	major	commission,
Local	 Projects	 created	 an	 entire	 suite	 of	 interactive	 experiences	 for	 the
Cleveland	 Museum	 of	 Art	 (Gallery	 One)	 aimed	 at	 inspiring	 visitors	 to
explore	 and	 look	 again	 at	 the	museum’s	 collection	 in	 new	 and	 different
ways.

Included	among	the	outcomes	was	a	set	of	carefully	engineered	individual
“interactive	lenses”	placed	throughout	the	exhibition	space	to	allow	visitors
to	enhance	their	experiences	of	the	collection.

The	 Strike	 a	 Pose	 (“Sculpture	 lens”)	 and	 Making	 Faces	 lenses	 are
interactive	encounters	that	use	gesture	and	face	recognition	technology	to
encourage	 visitors	 to	 actively	 connect	 with	 the	 collection	 by	 seeing
themselves	in	the	art	on	display,	encouraging	visitors	to	think	about	how
human	form	inspires	art.

Strike	 A	 Pose	 is	 a	 game	 in	 which	 visitors	 to	 the	 museum	 imitate	 the
unique	 pose	 of	 a	 sculpture	 from	 the	 collection.	 The	 interaction	 uses	 a
Kinect	to	track	the	user’s	position	and	compare	the	key	points	against	that
of	 the	 sculpture.	 The	 code	 then	 rates	 the	 user’s	 accuracy	 as	 a	 score.
Encouraging	viewers	to	mimic	the	shape	and	position	of	a	sculpture	helps
viewers	 to	 consider	 the	 artwork	 more	 closely	 and	 develop	 a	 physical
connection	with	it.

The	Make	a	Face	interaction	matches	the	user’s	facial	expression	to	one	of
the	artworks	within	the	museum	collection.	The	visitor’s	facial	expression
is	captured	via	a	webcam	and	its	key	features	(distance	between	eyes,	shape
of	mouth,	etc.)	are	compared	to	a	database	of	180	artwork	images	to	find	a
best	match.	A	photo-strip	of	the	matched	faces	can	be	emailed,	shared,	or
displayed	on	a	screen	elsewhere	in	the	museum.

5.17	Make	a	Face	Cleveland	Museum	of	Art	by	Local	Projects
Face-recognition	software	is	used	to	match	the	facial	expression	of	the	user	with
one	of	the	pieces	of	artwork	in	the	museum,	creating	a	unique	way	of	exploring	the

collection.

collection.

5.18	Line	and	Shape	Cleveland	Museum	of	Art	by	Local	Projects
In	this	interactive,	visitors	draw	a	line	across	the	screen,	which	is	then	matched	with

In	this	interactive,	visitors	draw	a	line	across	the	screen,	which	is	then	matched	with
one	of	the	objects	in	the	museum’s	collection	that	contains	a	similar	line,	allowing

the	visitor	to	make	new	visual	connections	between	objects.

SPOTLIGHT	ON

Theo	Watson	and	Emily	Gobeille

Theo	Watson	and	Emily	Gobeille	have	produced	a	number	of	engaging
environments	in	which	users	playfully	explore	and	interact	with	animated
environments.	 Real-time	 green	 screening	 of	 live	 images	 combine	 with
movement	 and	gesture	 recognition	 to	 create	 imaginary	worlds	 in	which
the	participant	can	 trigger	 rainstorms,	 release	 lightning	bolts,	or	produce
showers	of	leaves	through	movement	and	gesture.	The	scale	and	elegance
of	 these	creations,	 together	with	 the	combination	of	 creative	 technology
and	reactive	graphics,	makes	each	environment	a	charming	experience.

Knee	Deep

Knee	Deep	is	an	immersive	installation	that	uses	computer	technology	and
real-time	green	screening	effects	to	encourage	children	to	jump	into	and
explore	 new	 imaginary	 worlds	 with	 their	 feet.	 A	 video	 feed	 of	 the
participants	 in	 front	 of	 the	 green	 screen	 is	 fed	 into	 a	 computer	 and
processed	 (using	 openFrameworks)	 in	 order	 to	 superimpose	 the
background	 and	 project	 the	 child	 into	 a	 fantasy	 landscape.	 A	 computer
vision	 system	 tracks	 the	 positions	 and	 movements	 of	 the	 children	 and
generates	 the	 dynamic	 animations.	 The	 overall	 effect	 immerses	 the
children	 in	 an	 exploratory	 world	 in	 which	 they	 appear	 as	 giants,
controlling	and	commanding	creatures	and	environments	that	respond	to
their	activity.

5.19	Knee	Deep	Theo	Watson	and	Emily	Gobeille
Examples	taken	from	the	immersive	interactive	installation.	Users	are	green-

screened	into	one	of	several	imaginary	worlds	and	become	active	participants,

screened	into	one	of	several	imaginary	worlds	and	become	active	participants,
interacting	with	characters	and	creatures	by	moving	and	stamping	their	feet.

CODE:	SEEING	THE	WORLD

Color	as	a	Data	Type

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	5,	and	click	on	the
project	“Color	as	Data.”

Creating	 a	 computer	 program	 that	 can	 “see”	 begins	 by	 getting	 and
processing	 color	 information	 from	 a	 digital	 image;	 this	 can	 be	 from	 a
single	bitmap	or	even	from	a	live	video	feed.

Color,	 like	 many	 other	 things	 in	 the	 computational	 environment,	 is
defined	and	understood	as	 a	 type	of	data.	 In	Processing,	 the	 “color”	data
type	is	used	to	store	and	save	color	values	that	the	code	can	refer	back	to
later.

The	following	example	creates	two	color	data	types	of	red	and	blue.

color	c1	=	color	(255,	0,	0);
color	c2	=	color	(0,	0,	255);
fill	(c1);
stroke	(c2);

Get	Color	from	a	Static	Image

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	5,	and	click	on	the
project	“Color	from	Image.”

Bitmap	images	are	essentially	a	large	list	of	individual	(RGB)	color	values,
drawn	on	the	stage	as	individual	pixels.	Finding	and	using	these	values	is
the	 starting	 point	 to	 being	 able	 to	 create	 a	 program	 that	 can	 “see”	 and
respond	to	the	outside	world.

Color	information	can	be	retrieved	from	either	static	or	moving	images.	It
is	good	to	begin	by	looking	at	single	static	images.	In	Processing,	images

http://www.bloomsbury.com/richardson-data-driven
http://www.bloomsbury.com/richardson-data-driven

are	loaded	into	the	program	by	using	the	PImage	class	and	the	loadImage()
function	as	follows:	PImage	img;
img	=	loadImage	(“face.jpg”);

The	image()	function	is	used	to	place	a	loaded	image	onto	the	screen:

//	draw	the	image	on	the	screen
image	(img,	100,	100);

TIP:	In	order	to	be	loaded,	the	source	image	file	has	to	be	located	in	the	“data”	folder	of	the	sketch.

Extracting	color	data	of	a	SINGLE	pixel	in	an	image	can	be	done	by	using
the	get()	 function,	which	gets	color	 information	 from	a	 specific	x,	y	co-
ordinate:	get	(x,	y);
//	gets	the	color	of	a	pixel	x100,	y10	from	the	image	“img”
img.get	(100,	10);

Alternatively,	 color	 data	 can	 be	 extracted	 by	 referencing	 a	 specific	 pixel
from	 the	 array	 list.	 (This	 is	 computationally	 a	 faster	 way.)
pixels[pixel_in_list];
//	get	the	pixel	at	position	144	in	the	array
img.	pixels[144];

These	 functions	 can	 be	 applied	 to	 get	 the	 color	 of	 a	 single	 pixel	 from	 a
loaded	image:	size	(800,	800);
PImage	img	=	loadImage	(“face.jpg”);	//	load	image
image	(img,	0,	0);	//	put	image	on	stage

//	save	pixel	color	from	image
color	c1	=	img.get(100,	100);
color	c2	=	img.pixels[400];

fill	(c1);	//	use	pixel	color	as	fill	color
rect	(600,	0,	100,	100);
fill	(c2);
rect	(600,	150,	100,	100);

An	example	of	getting	and	displaying	a	color	from	a	pixel	in	an	image.	A	single	pixel
color	from	a	photograph	can	be	found	and	used	as	a	fill	color	for	other	graphics	on

the	screen.

TRY	IT
Load	an	image	into	a	Processing	sketch.
Create	the	code	to	find	and	save	a	color	value	from	a	pixel	in	an	image.
Use	mouseX,	mouseY	to	find	pixel	color	of	the	mouse	location	as	it	moves	over	the	image.

Get	All	Color	Values	from	a	Static	Image

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	5,	and	click	on	the
project	“All	Color	from	Image.”

As	well	 as	getting	a	 single	value	 from	an	 image,	code	can	 retrieve	every
color	pixel	from	an	image	and	re-draw	them	on	the	screen.

A	nested	“for”	loop,	one	“for”	loop	inside	the	other,	is	a	common	way	of
sequentially	going	through	each	row	and	column	of	an	image.	The	outer
loop	runs	through	the	“y	location”	of	each	pixel;	the	inner	loop	gets	the	“x
location”	 of	 each	 pixel.	 Using	 this	 structure	 and	 the	 get()	 function,	 the
color	of	every	pixel	can	be	sequentially	found	and	redrawn.

PImage	img	=	loadImage	(“me.jpg”);	//	load	image
noStroke();
for	(int	y=0;	y<img.height;	y++)	{
for	(int	x=0;	x<img.width;	x++)	{
//	find	the	color	of	the	current	pixel
color	c	=	img.get(x,	y);
fill	(c);	//	use	found	color	as	the	fill	color
ellipse	(x,	y,	1,	1);	//	redraw	as	a	circle

}

}

This	 is	a	 simple	type	of	“image	manipulation”	 in	which	the	color	 from	a

http://www.bloomsbury.com/richardson-data-driven

pixel	in	an	image	can	be	redrawn	as	a	shape,	creating	a	mosaic	effect.

A	pixelated	“mosaic”	image	effect	is	achieved	by	redrawing	all	the	pixels.	Color
information	from	each	pixel	is	found	and	used	to	draw	each	square..

TRY	IT
Re-create	the	example	above.
Alter	the	ellipse()	function	to	re-draw	each	shape	at	a	larger	size.
Add	spacing	between	each	shape	to	alter	the	mosaic-like	effect.

Extract	More	Color	Information

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	5,	and	click	on	the
project	“Extract	Color	Data.”

Additional	 functions	 can	 be	 used	 to	 extract	 more	 detailed	 color
information	 from	 a	 pixel—for	 example,	 finding	 its	 brightness	 value	 or
amounts	of	red,	green,	or	blue.

The	brightness()	function	finds	the	level	of	brightness	in	a	color,	saved	as	a
value	between	0	and	255,	where	0	the	darkest	and	255	is	the	brightest.

color	c1	=	(64,	0,	0);
//	finds	the	brightness	level	from	a	color
float	br	=	brightness	(c1);

The	 red(),	 green(),	 and	 blue()	 functions	 extract	 a	 value	 that	 gives	 the
amount	of	each	in	a	color:	//	extracts	the	amount	of	red	from	a	color
float	r	=	red	(c1);
float	g	=	green	(c1);	//	extracts	the	amount	of	green
float	b	=	blue	(c1);	//	extracts	the	amount	of	blue

This	type	of	color	information	can	be	used	to	affect	the	way	in	which	an
image	is	redrawn.	For	example,	getting	the	brightness	value	of	each	pixel
in	 the	 example	 code	 above	 can	 determine	whether	 or	 not	 an	 individual
“pixel”	 shape	 is	 drawn	 on	 the	 stage,	 so	 that	 only	 the	 darkest	 pixels	 are
drawn.

http://www.bloomsbury.com/richardson-data-driven

//	Use	the	following	code	within	the	example	for	loop	here.
color	c	=	img.get(x,	y);
fill	(c);
//	get	the	brightness	of	the	color
float	br	=	brightness	(c);
//	only	draw	shape	if	brightness	is	less	than	125
if	(br<125)	{
ellipse	(x,	y,	1,	1);

}

Similarly,	the	brightness	value	of	a	color	can	be	used	to	define	the	size	of
each	circle	shape,	meaning	that	dark	pixels	are	redrawn	at	the	largest	size.
An	example	portion	of	the	script	is	shown	below:	color	c	=	img.get(x,	y);
fill	(c);
//	get	the	brightness
float	br	=	brightness	(c);
//	map	the	brightness	number	to	a	useful	range
br	=	map	(br,	255,	0,	0,	20);
//	use	the	brightness	value	to	define	the	width	and
height	of	the	circle
ellipse	(x,	y,	br,	br);

A	simple	image-manipulation	example	in	which	the	brightness	of	each	pixel	color	is
used	to	define	the	size	of	each	square	when	it	is	redrawn.	Darker	areas	are	drawn	at

larger	sizes,	creating	an	“impressionistic”	style	of	image.

TIP:	The	map()	function	is	used	to	translate	the	brightness	levels	(0	to	255)	to	a	more	useful	number
range	(0	to	20).

TRY	IT
Modify	the	original	“pixel	mosaic”	example.
Add	a	function	that	finds	the	brightness	of	each	color	pixel.
Use	the	brightness	value	to	only	draw	light/dark	pixels.
Use	the	brightness	value	to	modify	the	size	of	each	pixel	shape.

Import	a	Live	Video	Source

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	5,	and	click	on	the
project	“Input	Video.”

The	examples	have	so	far	dealt	with	finding	and	using	color	 information
sourced	from	a	static	image	file;	however,	these	techniques	can	be	equally
applied	to	moving	images	sourced	from	a	live	video	feed	(from	a	webcam,
for	example).	Switching	the	input	source	from	a	single	image	file	to	a	live
camera	 feed	means	 that	 the	 same	 effects	 of	 extracting	 and	manipulating
color	 pixel	 information	 can	 be	 used	 to	 create	 a	 more	 visually	 dynamic
effect.

TIP:	 In	Processing,	 a	 “Video”	 library	 is	used	 to	play	 and	display	 video	 files	 and	 to	 capture	 a	 live
video	feed	from	a	camera.

A	code	 “library”	 is	 a	 type	of	 “add	on,”	 a	way	of	 extending	 the	 capability	 of	 a
programming	language.

Details	are	at:	https://www.processing.org/reference/libraries/video/index.html

To	begin,	the	Video	library	is	imported	into	the	Processing	sketch:

import	processing.video.*;

Once	imported,	the	library	can	then	be	used	to	get	and	display	a	live	video
feed	 from	 any	 connected	 webcam	 or	 internal	 camera.	 A	 new	 Capture
object	is	created	that	establishes	a	connection	to	a	camera,	begins	the	feed,

http://www.bloomsbury.com/richardson-data-driven
https://www.processing.org/reference/libraries/video/index.html

and	 draws	 the	 image	 on	 the	 screen:	 //	 CAPTURE	 AND	 DISPLAY	 A
VIDEO	FEED	//
import	processing.video.*;
Capture	camera;
void	setup()	{
size(800,	600);
camera	=	new	Capture(this,	320,	240);
camera.start();

}

void	draw()	{
if	(camera.available())	{
camera.read();

}

image(camera,	0,	0);

}

NOTE:	 The	 image	 capture	 for	 moving	 images	 is	 done	 within	 the	 looped	 draw()	 section	 of	 the
program	to	ensure	the	image	information	is	continually	updated.

TRY	IT
Create	your	own	example	that	gets	and	views	a	live	video	input.

Once	a	live	feed	has	been	established,	color	information	from	each	frame
of	 the	 video	 can	 be	 extracted,	 using	 the	 same	 basic	 nested	 “for”	 loop
structure	that	has	been	previously	applied	to	the	single	static	images.	The
result	is	a	kind	of	digital	mosaic,	a	type	of	pixelated	mirror.

//	PIXEL	MIRROR	FROM	CAMERA	FEED	/////
import	processing.video.*;
Capture	camera;
float	spacing	=	5;
float	dotSize	=	4;
void	setup()	{
size(800,	600);
camera	=	new	Capture(this,	160,	120);
camera.start();
noStroke();

}

////////////

void	draw()	{
background	(255);
if	(camera.available())	{
camera.read();

}

//	go	through	all	the	pixels	in	the	video	image
//	get	the	color	of	each	pixel,	and	draw	a	circle
for	(int	y=0;	y<camera.height;	y++)	{
for	(int	x=0;	x<camera.width;	x++)	{
color	c	=	camera.get(x,	y);

color	c	=	camera.get(x,	y);
fill	(c);
ellipse	(x*spacing,	y*spacing,	dotSize,	dotSize);

}

}

}

An	example	of	a	pixelated	“mirror”	created	by	redrawing	the	pixels	from	a	live	video
source	as	a	grid	of	squares.

TRY	IT
Re-create	the	example	above	to	get	and	re-draw	the	color	information	from	the	video	feed.
Modify	the	size	of	the	dots	and	the	spacing	to	alter	the	visual	effect.

Adjust	Brightness

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	5,	and	click	on	the
project	“Video	Brightness.”

The	 same	 color	 functions	 previously	 applied	 to	 a	 static	 image—red(),
green(),	 blue(),	 brightness()—can	 also	 be	 applied	 to	 extract	 color
information	from	the	pixels	of	a	moving	image	and	used	to	manipulate	a
video	 image.	 For	 example,	 the	 following	 code	 can	 be	 added	within	 the
camera	 feed	example	 (above)	 to	get	 the	brightness	of	 each	pixel	 color;	 it
uses	the	value	to	set	the	size	of	each	shape.	The	result	is	a	distorted	moving
image	that	changes	with	levels	of	light	and	dark.

//	get	the	color	from	the	pixel
color	c	=	camera.get(x,	y);
fill	(c);	//	select	color	for	fill
float	br	=	brightness	(c);	//	get	the	brightness	value	//	map
brightness	to	usable	range	(0–8)
br	=	map	(br,	255,	0,	0,	8);
//	use	brightness	to	set	size	of	circle
ellipse	(x*5,	y*5,	br,	br);

Circles	are	drawn	for	each	pixel	in	the	video,	which	creates	a	grid-like	effect.	The

http://www.bloomsbury.com/richardson-data-driven

Circles	are	drawn	for	each	pixel	in	the	video,	which	creates	a	grid-like	effect.	The
size	of	each	circle	is	adjusted	according	to	the	brightness	value	of	the	color.	Light

areas	create	smaller	circles	and	dark	areas	create	larger	circles.

TRY	IT
Modify	the	previous	example	you	have	created,	and	add	code	to	get	the	brightness	value	of	each	pixel.
Use	this	pixel	to	alter	the	size	of	each	shape.

NOTE:	The	simplest	way	of	getting	color	information	from	a	pixel	in	an	image	is	by	using	the	get()
function	and	specifying	the	x,	y	location	of	the	pixel	to	find.

color	c	=	camera.get(x,	y);

Computationally,	 however,	 a	 faster	way	 is	 to	use	 the	pixel[]	 alternative,	which
grabs	information	(directly)	from	the	pixel	array.

color	c=	camera.pixel[number_of_pixel_to	get];

The	pixel	array	lists	all	the	pixels	in	a	single	long	list.	Use	the	x,	y	location	of	pixel
to	 find	 its	 position	 in	 the	 array	 by	 using	 the	 calculation:	 y*image_width+x	 int
pixelNum	=	y*camera.width+x;

color	c	=	camera.pixels[pixelNum];

When	using	live	video	image	processing,	speed	is	more	of	an	issue,	and	so	using
the	fastest	way	of	getting	data	is	preferable.

Follow	the	Brightest	Pixel

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	5,	and	click	on	the
project	“Find	the	Brightest	Pixel.”

Extracting	color	data	from	the	pixels	in	a	live	image	provides	the	ability	to
do	useful	things	such	as	find	and	track	specific	areas	of	color	or	brightness.
By	comparing	the	values	of	every	pixel	in	an	image,	the	overall	brightest,
reddest,	 bluest,	 or	 greenest	 pixel	 can	 be	 found.	 This	 opens	 up	 creative
possibilities	 for	 the	 creation	 of	 interactive	 pieces	 of	 work.	 For	 example,
getting	 the	 brightest	 pixel	 in	 a	 scene	 can	 be	 the	 first	 step	 in	 creating
interactive	graphics	that	follow	the	movement	of	a	flashlight.

To	get	 the	brightest	pixel	 from	a	 scene,	 a	variable	 is	needed	 to	 store	 the
overall	brightest	pixel	value.	It	starts	with	a	low	value,	and	is	used	to	save

http://www.bloomsbury.com/richardson-data-driven

the	highest	brightness	value	it	finds:	float	overallBrightest	=	0;

In	the	nested	“for”	loops,	the	brightness	value	of	each	pixel	color	is	found
in	turn	and	compared	to	the	overallBrightest	value.	If	a	pixel	is	found	with
a	brightness	greater	 than	 the	current	highest	 level,	 then	 it	 is	 saved	as	 the
new	overallBrightest	value,	and	 its	 location	(x,	y)	 is	 saved	 (as	brightestX,
brightestY).	The	result	of	this	process	is	that	for	every	frame	in	the	video
feed,	the	overall	brightest	pixel	and	its	x,	y	location	is	found.	A	shape	can
then	 be	 drawn	 at	 the	 brightest	 x,	 y	 location;	 the	 following	 is	 an	 extract
from	the	code	that	would	be	used	to	find	the	brightest	pixel	in	an	image.

float	overallBrightest	=	0;

//

for	(int	y=0;	y<camera.height;	y++)	{
for	(int	x=0;	x<camera.width;	x++)	{
//	get	the	COLOR	of	the	current	pixel
color	c	=	camera.get(x,	y);
//	get	the	BRIGHTNESS	of	current	pixel
float	currentBrightness	=	brightness	(c);
//	compare	this	pixel	with	the	BRIGHTEST	found

so	far
//	if	the	current	pixel	is	brighter	than	the

overall	brightest,
//	then	save	it	and	its	location
if	(currentBrightness	>	overallBrightest)	{
overallBrightest	=	currentBrightness;
brightestX	=	x;
brightestY	=	y;

}

}

}

//	draw	circle	at	the	brightest	spot

ellipse	(brightestX,	brightestY,	50,	50);

In	 this	 example,	 a	 circle	 shape	 will	 continually	 track	 the	 movement	 of
bright	lights	or	objects	(e.g.,	it	can	track	the	movement	of	a	user	waving	a
flashlight	or	LED	light).	By	extracting	amounts	of	red,	green,	or	blue,	the
same	approach	can	be	used	to	track	spots	of	a	specific	color	(e.g.,	to	track
and	follow	the	movement	of	chosen	lights).

An	example	of	brightness	tracking.A	red	circle	is	drawn	at	the	location	of	the
brightest	pixel	in	the	image.	A	flashlight	can	be	used	to	control	the	movement	of

the	shape	on	screen.

TRY	IT
Take	a	look	at	the	brightest	pixel	example	online.
Try	to	re-create	your	own	version	of	it.
Modify	it	so	that	the	shape	follows	the	darkest	pixel	or	the	pixel	with	the	most	amount	of	red.

Green	Screening

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	5,	and	click	on	the
project	“Green	Screen.”

Extracting	 color	 information	 can	 also	 be	 used	 as	 the	 basis	 of	 green
screening	 techniques,	 in	which	 colors	 close	 to	 a	 particular	 (“key”)	 color
(e.g.,	 bright	 green)	 are	 ignored	 (not	 drawn	 in	 the	 scene),	 which	 allows
other	background	images	or	graphics	to	show	through.

To	find	how	close	a	pixel	is	to	a	specific	key	color,	it	is	necessary	to	get	the
red,	 green,	 and	 blue	 values	 for	 each	 color	 and	 calculate	 the	 overall
“distance”	between	them:	First	the	values	of	the	amounts	of	red,	green,	and
blue	of	the	“key”	color	are	found	and	saved—in	this	case,	a	brightest	green:
color	chromaKey	=	color	(0,	255,	0);
float	chromaR	=	red	(chromaKey);
float	chromaG	=	green(chromaKey);
float	chromaB	=	blue	(chromaKey);

Next,	 the	color	of	 each	pixel	 in	 the	video	 feed	 is	 found	within	 the	 “for”
loop	 structure	 and	 the	 RGB	 values	 are	 extracted	 in	 turn:	 color	 c	 =
camera.get(x,	y);
fill	(c);
//	extract	RGB	values	from	the	current	pixel
float	r	=	red(c);
float	g	=	green(c);
float	b	=	blue	(c);

http://www.bloomsbury.com/richardson-data-driven

Then	the	“distance”	between	the	color	values	is	found.	The	dist()	function
returns	a	single	number,	which	is	 the	overall	difference	between	the	two
sets	of	numbers	(in	this	case,	the	RGB	values);	thus,	it	finds	the	“distance”
between	the	two	colors	(i.e.,	how	closely	they	are	matched).

float	colorDiff	=	dist	(r,	g,	b,	chromaR,	chromaG,	chromaB);

Colors	 that	 have	 small	 “distance”	 between	 them	 indicate	 that	 the	 “key”
color	 and	 the	 pixel	 color	 are	 closely	 matched.	 Colors	 that	 most	 closely
match	the	“key”	green	color	are	ignored.	Only	colors	with	a	wide	distance
between	them	are	drawn:	if	(colurDiff	>	180)	{

rect	(x,	y,	1,	1);

}

The	overall	 effect	 in	 this	 example	 is	 that	 the	greenest	pixels	 are	 ignored;
they	are	not	drawn.	Any	background	image	or	color	will	therefore	be	able
to	 show	 through	 these	 gaps.	 In	 this	way,	 a	 “green	 screen”	 effect	 can	 be
achieved,	and	a	figure	can	be	made	to	appear	in	a	new	scene.

A	simple	example	of	a	“green	screen”	effect.	The	bright	green	pixels	from	the	image
are	ignored,	allowing	the	background	image	to	show	through.	A	green	piece	of

paper	transforms	in	front	of	the	camera	into	sky	and	clouds.

TRY	IT
Take	a	look	at	the	green	screen	example	online.
Try	to	re-create	your	own	version	of	it.
Modify	it	to	alter	the	“key”	color.	Adjust	the	values	that	set	the	“tolerance”	level	of	the	effect.

CHAPTER	SIX

LARGE	AND	LIVE	EXTERNAL	DATA

“Data	visualization	is	all	about	melding	the	visual	and	the
conceptual.”

David	McCandless

THE	DATA-LIVED	LIFE
We	 live	 in	 a	 digitally	 connected,	 data-driven	 world.	 Sophisticated	 mobile
technology	allows	people	to	connect	with	each	other	and	to	data	like	never
before.	 Satellite	 navigation	 systems	 (GPS)	 link	 us	 to	 maps	 and	 live	 traffic
information;	running	watches	record	and	share	 individual	exercise	patterns,
including	movement,	 speed,	and	routes	 taken;	 text	and	photographs	can	be
uploaded	 and	 shared	 from	 remote	 locations	 across	 the	 globe.	 From
government	 statistics	 via	global	 institutions	 right	down	 to	 individual	 social
media	 messages	 and	 images,	 data	 is	 shared	 on	 a	 minute-by-minute	 basis,
adding	to	a	vast	expanding	pool	of	information.	Our	“information	society”	is
swimming	in	data;	it	is	everything	and	everywhere.

The	term	“data”	can	sound	cold	and	dry,	conjuring	up	ideas	of	impenetrable
lists	 of	 numbers	 and	 facts;	 however,	 although	 it	 is	 often	 digitally	 sourced,
data	is	human-centered.	Each	set	of	data	represents	a	record	of	the	patterns	and
stories	 of	 human	 activity.	 Behind	 every	 text	 or	 number	 list	 lies	 a	 story,
experience,	 feeling,	or	 interaction.	Digital	data	 can	provide	 a	 “snapshot”	of
the	mood	or	 activity	of	 a	group	of	 people	 during	 a	 particular	 time	or	 at	 a
specific	 location.	 It	 is	 a	 valuable	 record	 of	 narratives,	 emotions,	 ideas,	 and
experiences.

Taking	 and	 visualizing	 data	 in	 a	 graphical	 format	 is	 an	 important	 and
powerful	 way	 of	 relating	 the	 ideas,	 experiences,	 and	 stories	 of	 human
interaction	 that	may	otherwise	 go	untold	 or	 unseen.	Complex	 or	 hard-to-
digest	information	can	be	given	new	life	and	meaning	by	a	visual	image	that
communicates	facts	and	information	in	a	direct	and	accessible	manner.

The	practice	of	presenting	data	 in	a	visual	 format,	 sometimes	referred	 to	as
“information	graphics,”	has	 long	been	a	key	part	of	graphic	design	and	still
remains	a	powerful	and	important	means	of	visually	presenting	figures,	facts,
stories,	and	ideas.	Charts,	diagrams,	and	graphics	have	been	used	throughout

design	 history	 to	 condense	 and	 communicate	 information	 in	 vital	 and
meaningful	way.	As	 far	back	as	1858,	Florence	Nightingale	used	 the	now-
familiar	 pie	 chart	 as	 a	 visual	way	 to	 summarize	 army	 death	 rates	 and	 data
highlighting	how	poor	hygiene	in	hospitals	caused	preventable	diseases.	Her
graphic	representation	of	pages	of	hospital	data	brought	her	cause	to	light	by
condensing	the	facts	into	a	single,	direct	piece	of	visual	information,	which
helped	changed	the	conditions	in	which	injured	soldiers	were	treated.

Many	fields,	from	sports	to	government,	use	information	graphics	to	present
and	 communicate	 information	 for	 varied	 reasons	 and	 in	 diverse	 contexts.
Information	 graphics	 can	 even	 be	 used	 to	 make	 data	 look	 beautiful.
Representing	 data	 in	 a	 visual	 format	 can	 make	 content	 arresting	 and
compelling	 for	 the	 viewer.	 “Beautifying”	 data	 is	 an	 important	 means	 of
getting	data	noticed	or	seen	in	a	new	way.	Visual	design	is	a	powerful	tool
for	 revealing	 hidden	 patterns	 within	 data	 and	 communicating	 them	 in
meaningful	 and	 striking	 ways.	 The	 creative	 skills	 of	 the	 graphic	 designer
therefore	play	an	important	part	in	communicating	the	“story”	of	data.

CODE	AS	A	DATA	VISUALIZATION	TOOL
Although	data	visualization	and	information	graphics	have	long	been	used	as
part	 of	 graphic	 design	 practice,	 the	 unprecedented	 rise	 of,	 and	 access	 to,
digital	data	over	the	past	few	years	has	seen	this	area	of	design	quickly	rise	to
prominence	as	data	becomes	available	 in	 larger	and	larger	quantities.	In	the
modern	data	era,	 the	most	powerful	 tool	 for	accessing	and	visualizing	large
data	 sets	 is	 not	 traditional	 graphics	 and	 drawing	 software	 tools	 but
programming	and	code.

Code	 is	 a	 powerful	 data	 visualization	 environment,	 which	 creates	 a	 direct
link	between	the	data	source	and	graphical	output.	Code	gives	designers	and
programmers	a	unique	way	 to	extract	huge	amounts	of	digital	 information
and	directly	apply	it	to	a	visual	output.	Live	data	values	can	directly	change
the	variables	hard-wired	in	a	piece	of	code	that	define	the	visuals	of	a	digital
graphic	or	drawing	(e.g.,	sizes,	colors,	shapes,	positions,	etc.).	Designers	and
programmers	 use	 code	 to	 connect	 external	 data	 sources	 to	 graphics	 and
visuals	in	a	dynamic	and	responsive	way.

The	sheer	scale	of	the	data	that	can	be	processed	in	this	way	gives	designers
the	 chance	 to	 use	 and	 represent	 large	 sets	 of	 data	 in	 increasingly	 complex
ways.	 The	 processing	 power	 of	 digital	 programming	 processes	 allows
designers	 the	 chance	 to	 create	 data	 visuals	 on	 a	 scale	 previously
unimaginable.	Code	can	sift	through	and	organize	huge	amounts	of	data	in
ways	 manual	 processes	 cannot;	 it	 can	 make	 visual	 associations	 among	 the
qualities	found	within	the	data	values,	revealing	fascinating	patterns	of	group
human	activity.

6.2	Grid	Futura	Epsis	1
Code	can	be	used	to	visualize	data	from	an	audio	source.	This	is	an	interactive	multi-
touch	sound	visualization	created	for	live	events	that	translates	the	audio	track	into	a
graphical	3D	space.	The	application	consists	of	a	desktop	version	(created	using
Processing)	for	real-time	graphic	visualization	of	music	and	also	an	iOS	version	for

interacting	with	the	Processing	app	(created	using	openFrameworks).

DATA	SOURCES
Finding	and	selecting	the	most	appropriate	and	most	interesting	data	source
is	 an	 important	 part	 of	 any	 data	 visualization	 process.	The	 online	world	 is
awash	with	 data—stocks	 and	 shares,	 temperatures,	 news	 headlines,	 images,
opinions,	 geo-locations,	 and	 so	 on—each	 of	which	 can	make	 a	 potentially
interesting	 starting	point	 for	 creative	work.	Data	can	exist	 as	 a	 single,	 live,
varying	 value	 (e.g.,	 weather	 information	 or	 stocks	 and	 shares	 values)	 on	 a
website	 or	 as	 large,	 downloadable	 spreadsheets	 (e.g.,	 Excel	 documents	 or
Google	 docs)	 of	 statistical	 information	 gathered	 by	 governments	 or
institutions.	 In	 an	 environment	 swimming	 in	 so	much	digital	 information,
the	problem	often	is	not	the	lack	of	data	but	the	amount	of	it.

Whatever	 the	 source	 of	 the	 data,	 much	 of	 the	 initial	 programming	 work
with	data	values	involves	sifting	and	searching	through	a	source	to	find	the
most	 useful	 or	 interesting	 elements	 of	 information	 and	 extracting	 it	 in	 a
“clean”	 and	useable	 format.	This	 can	mean	 removing	erroneous,	unwanted
tags	and	text	from	an	HTML	file	or	sorting	through	rows	and	columns	on	a
table	 of	 information.	 The	 process	 of	 hunting	 for	 data	 values	 is	 sometimes
referred	to	as	“data	mining.”

The	following	provides	a	summary	of	some	of	the	main	formats	for	accessing
online	data.

HTML

A	simple	way	of	getting	at	data	is	to	directly	access	information	from	a	web
source.	HTML	 (HyperText	Markup	Language)	documents	provide	 a	good
starting	point	for	doing	this.	Lots	of	data	values	exist	as	dynamically	updated
elements	 within	 the	 body	 of	 a	 dynamically	 updated	 web	 (HTML)	 page.
Changeable	information,	such	as	sports	scores	and	stock	values	can	be	found
within	 the	 HTML	 source	 of	 web	 documents,	 providing	 a	 simple,	 direct
source	of	numeric	data.	Those	individual	data	values	can	be	extracted	from	a
web	page	and	used	to	drive	dynamic	graphics.

The	 source	 code	 of	 an	HTML	 document	 can	 be	 imported	 directly	 into	 a
program,	which	then	sorts	and	sifts	 it,	extracting	useful	bits	of	 information.
Once	 extracted,	 the	 data	 values	 from	 the	website	 can	 be	 used	 as	 part	 of	 a
simple	 but	 dynamic	 graphic.	 The	 source	 (HTML	 formatted	 text)	 of	 a
weather	 forecast	website	may,	 for	example,	contain	within	 the	body	of	 the
page	values	that	relate	to	the	current	and	future	temperature	of	a	given	city.
Loading	 the	 HTML,	 and	 then	 sifting	 and	 extracting	 these	 values,	 can
generate	graphics	that	adjust	with	the	changing	weather	conditions—perhaps
those	experienced	on	the	other	side	of	the	world.

Although	 an	 accessible	 source	 of	 data,	HTML	 formatted	 content	 does	 not
serve	 the	 information	 up	 in	 an	 immediately	 accessible	way;	 it	 requires	 the
programmer	to	do	a	lot	of	sorting	and	hunting	(mining)	before	an	individual
piece	of	data	can	be	extracted	and	used.

XML

Information	 buried	 deep	 within	 the	 body	 of	 a	 web	 (HTML	 formatted)
document	can	be	read	by	humans,	who	are	able,	after	some	searching,	to	see
and	 pick	 out	 the	 necessary	 data.	 By	 looking	 carefully	 through	 the	 source
code,	we	may	be	able	to	spot	values	that	correspond	to	the	specific	pieces	of
information	we	want.	Our	own	ability	sift	through	complex	HTML	tags	to
find	a	particular	key	piece	of	data	from	an	HTML	document	is	not,	however,
easily	translatable	into	a	computer	program.	Writing	a	code	to	perform	the
equivalent	 task	 of	 digging	 a	 data	 item	 out	 of	 an	 HTML	 document	 can
become	cumbersome	and	problematic.	XML	(Extensible	Markup	Language)
documents,	on	the	other	hand,	provide	a	more	useful	and	accessible	way	of
organizing	data,	which	helps	to	ease	this	problem.

XML	is	a	widely	used	formatting	language	for	describing	data	in	a	useful	and
easily	accessible	format.	Although	HTML	is	used	to	describe	the	content	of	a
page,	XML	is	a	useful	way	of	describing	the	data	within	a	page	and	provides
an	efficient	means	of	getting	at	the	nuts	and	bolts	of	data	online.	XML	does
not	“do”	anything;	 it	 is	a	 tool	 for	carrying	information	and	an	ideal	 format
for	accessing	and	finding	information.	Rather	than	using	pre-defined	tags	(as
in	HTML),	data	elements	in	an	XML	file	are	wrapped	in	tags	defined	by	the
programmer,	giving	each	item	of	data	an	accurate	and	easily	understandable
description.	XML	is	a	highly	flexible	format	for	describing	data.	It	is	used	for
a	wide	 range	 of	 purposes	 (page	 content,	 databases,	 catalogues,	 etc.).	 It	 is	 a
great	format	for	grabbing	and	using	interesting	data	sources.

Data	 in	 an	 XML	 document	 are	 usually	 nested	 (i.e.,	 stored	 inside	 one
another),	 creating	 a	 branching	 structure	 of	 “items”	 and	 “sub	 items”
(equivalent	to	folders	and	sub	folders).	This	organized,	nested	structure	helps
define	 and	collate	 information	 in	 a	 logical	 and	accessible	manner.	 It	 allows
the	programmers	a	relatively	straightforward	way	of	digging	and	navigating
through	what	 could	 be	 a	 potentially	 complex	 set	 of	 data.	 Computers	 read

XML	documents	much	more	 easily	 than	HTML	documents.	Code	 can	 be
written	 to	 search	 for	 data	 details,	 easily	 navigating	 through	 the	 organized
directory	style	of	the	XML	document.

XML	data	is	all	over	the	web.	Online	data	as	a	weather	or	news	feed	in	this
format	 can	 be	 identified,	 selected,	 and	 imported	 into	 programming
applications	that	are	free	to	represent	it	in	new	and	original	ways.
See	Code	section:	XML	Data.

Tabular	data

Large	quantities	of	national	and	global	statistical	data	are	collated,	stored,	and
made	available	for	public	use	from	several	online	sources	(e.g.,	Guardian	data
blog:	www.theguardian.com/data).	 This	 data	 contains	 interesting	 facts	 and
background	 figures	 relating	 to	 health,	 economies,	 social	 issues,	 and	 other
areas.	This	type	of	data	is	typically	formatted	as	a	single	large	spreadsheet	or
table	of	values	and	properties.	Information	of	this	kind	is	typically	exported
and	reformatted	as	a	single	large	list	of	values	separated	either	by	commas	or
by	 tabs.	 Unsurprisingly,	 these	 are	 referred	 to	 as	 Comma	 Separated	 Values
(CSV)	or	Tab	Separated	Values	(TSV).

Huge	 lists	 of	 TSV	 or	 CSV	 data,	 although	 too	 unwieldy	 to	 be	 read	 by
humans,	are	in	a	useful	and	easily	digestible	format	for	computer	 languages
and	 programs	 to	 use.	 The	 systematic	 format	 (comma	 separation)	 of	 data,
which	removes	all	unnecessary	text	formatting,	presents	the	“raw”	data	in	a
single	 simple	 serving,	 leaving	 programmers	 the	 relatively	 straightforward
task	 of	 finding	 and	 extracting	 individual	 pieces	 of	 information.	 The	 CSV
format	 is	 especially	 useful	 for	 number	 data	 on	 a	 large	 scale—from
temperatures	 across	 the	 globe	 to	 trends	 in	 world	 health	 to	 maps	 of
information	from	GPS	routes	and	co-ordinates.
See	Code	sections:	Comma-separated	Data	and	Loading	Table	Data.

API	(Application	programming	interface)

An	 API	 or	 “application	 programming	 interface”	 enables	 applications	 to
communicate	with	one	 another.	APIs	 are	 a	 good	way	of	 extracting	online
content	in	a	useful	format	(e.g.,	either	as	XML	or	JSON	formatted	content)
and	 are	 especially	 useful	 for	 sourcing	 information	 created	 online	 by	 social
media	 applications.	There	are	many	APIs	 available	 that	 allow	programmers
and	 developers	 to	 access	 the	 data	 within	 their	 application.	 Both	 Facebook
and	Twitter,	for	example,	have	their	own	APIs,	which	allow	developers	and
coders	 ways	 of	 extracting	 and	 accessing	 the	 comments,	 images,	 status

http://www.theguardian.com/data

updates,	 and	 other	 elements	 in	 a	 format	 that	 can	 be	 used	 to	 create	 new
applications	 (with	Processing,	 for	 instance)	or	data	visualizations.	Each	API
has	 its	 own	 reference	 guide	 and	 documentation,	which	 is	 usually	 available
from	 the	 content	 provider’s	 “developer”	 section	 of	 their	 website	 (e.g.,
https://dev.twitter.com).

https://dev.twitter.com

MAPPING	DATA
Maps	are	graphical	representations	and	interpretations	of	the	physical	world.
Designers	 of	 a	 map	 present	 a	 particular,	 edited	 version	 of	 geographical
landscape,	 adding	 or	 leaving	 out	 visible	 landmarks,	 places,	 and	 points	 of
interest	as	appropriate	to	the	map’s	function	and	purpose.	In	addition	to	the
visible	features	of	the	physical	world,	an	extra	layer	of	data	exists	that	can	be
connected	 to	 specific	 locations	 and	 places	 across	 the	 globe.	 Increasing
amounts	of	data	 linked	with	 locations—either	via	 individual,	 location-based
GPS	devices	or	via	national	and	international	statistical	data—is	now	available
for	creating	visually	informative,	data-driven	maps.	A	traditional	map	marks
the	 physical	 sites	 and	 characteristics	 of	 a	 location;	 a	 data	 map	 marks	 and
locates	 the	 invisible	 information	 involving	 human	 movement,	 experience,
and	interaction.
See	Code	section:	Simple	Data	Map.

Mapping	people

Location	data	pervades	our	digital	lives.	Devices	that	plot	users’	positions	are
increasingly	 commonplace.	 GPS	 (satellite)	 technology	 embedded	 into
phones,	computers,	and	wearable	devices	situate	the	user	with	a	remarkable
degree	 of	 accuracy.	 Social	 media	 applications	 can	 use	 and	 send	 location
information,	 allowing	 people	 to	 share	 both	 the	 “what”	 and	 the	 “where”	 of
their	digital	lives.

As	well	as	being	a	navigation	tool,	location	data	generates	a	digital	data	trail
of	our	lives.	Data	records	of	the	locations	and	movements	of	people	as	they
interact	 generate	 a	 fluid	 digital	 layer	 of	 information	 that	 programmers	 can
communicate	in	data	maps.

Collating	 large	 amounts	 of	 data	 creates	 a	 huge	data	 cloud	of	 thoughts	 and
experiences—a	 digitally	 fluid	 map	 of	 user	 experience	 and	 human	 activity.
Social	 media	 location	 data	 linked	 with	 other—informal	 or	 formal—
information	 reveals	 a	 digital	 data	 trail	 of	 shared	words,	 places,	 images,	 and
thoughts	that	can	be	picked	up	by	artists	designers	programmers	to	be	visually
re-interpreted	to	create	patterns	of	the	digital	human	life.	These	maps	create
a	 global	 view	 of	 individual	 activity,	 which	 collectively	 creates	 a	 new	 and
revealing	perspective	on	human	activity.

EXEMPLAR

Onformative:	4010	Facebook	tree

Deutsche	 Telekom	 commissioned	 onformative	 to	 design	 and	 create	 the
Gallery	Wall	 of	 their	 flagship	 store	 in	 Berlin.	 The	 store	 communicated
with	 customers	 on	 Facebook,	 posting	 photos,	 special	 offers,	 and	 events.
The	design	team	printed	a	data	visualization	to	cover	the	wall,	generating
it	from	the	store’s	own	Facebook	messages	and	communications.

Using	 the	 Facebook	Graph-API,	 the	 design	 team	 accessed	 and	 analyzed
data	 recorded	 over	 a	 four-year	 period	 with	 a	 piece	 of	 custom	 software
written	 in	 Processing.	 The	 challenge	 was	 to	 take	 the	 vast	 quantity	 of
different	 data	 elements	 from	 the	 Facebook	 API	 (e.g.,	 posts,	 number	 of
likes,	 topics,	 comments,	 and	 times)	 and	 illustrate	 them	 in	 a	 single
compelling	data	graphic.

An	 organic	 plant	 structure	 proved	 to	 be	 a	 useful	 visual	 metaphor	 for
connecting	and	illustrating	the	different	strands	and	elements	of	the	social
network.	Leaves	are	generated	according	to	the	found	“characteristics”	of
each	 post—for	 example,	 the	 creation	 date	 and	 time,	 the	 number	 of
comments	and	likes	an	individual	post	received,	as	well	as	the	topic	of	the
post.	 Values	 from	 each	 of	 these	 elements	 were	 mapped	 to	 create	 the
individual	 characteristics,	 shape,	 and	 color	 of	 each	 leaf.	 The	 amount	 of
“red”	 in	 a	 leaf,	 for	 example,	 is	determined	by	 the	number	of	 likes	 a	post
received,	and	the	time	a	post	was	created	defines	how	much	the	leaf	opens
up	(posts	created	during	early	morning	or	evening	open	up	less	than	those
created	 during	 the	 day).	 Buds	 spawned	 around	 the	 leaves	 reflect	 the
number	 of	 comments	 around	 the	 post.	 Each	 type	 of	 post—whether	 a
message,	a	link,	or	a	photo—generates	its	own	style	of	leaf	with	identifiable
visual	characteristics.	Branches	are	used	to	connect	posts	according	to	the
date	of	their	creation,	allowing	the	viewer	to	read	the	development	of	the

Facebook	communication	over	time,	from	the	root	of	the	tree	to	its	top.

To	generate	 the	 final	 layout,	 the	 team	used	Processing	 to	 auto-generate
different	variations	and	then	manually	edited	to	get	the	desired	layout	and
look.	The	final	result	is	both	visually	striking	and	compelling	in	its	detailed
treatment	 of	 the	 data.	 Seeing	 group	 communication	 as	 organic	 form
creates	 a	 strong	 final	 visual	 image	 that	 resonates	 with	 the	 social	 media
community.

6.3	4010	Facebook	Tree	onformative	design
Visualization	of	customers’	Facebook	activity	for	Deutsche	Telekom,	Berlin.	Each

branch	and	fern	relates	to	specific	themes,	topics,	and	posts	taken	from	the
company’s	own	Facebook	page.	The	organic	structure	highlights	threads	of	online

conversation	and	activity	as	a	decorative	piece	of	data-driven	wallpaper.

conversation	and	activity	as	a	decorative	piece	of	data-driven	wallpaper.

Eric	Fischer:	See	Something	Say	Something;	Tourists	and
Locals

Eric	Fischer	 is	a	data	visualization	artist	 /	designer	who	uses	 social	media
information	to	plot	maps	of	people’s	 locations	as	 they	move	through	and
around	cities.	The	results	are	a	series	of	visually	stunning	data	maps.

Fischer	uses	programming	code	(usually	C)	to	grab	geo-located	data	from
social	media	networks—notably	Twitter	API	or	Flickr.	He	then	re-uses	the
information	 to	plot	pixels	 that	 reveal	 the	 locations	of	users	 as	 they	move
through	a	 space	and	connect	with	 the	 social	network.	The	 results	of	 the
project	are	shared	online	and	create	highly	detailed	data	maps	that	present
a	 new	 and	 compelling	 vision	 of	 our	 world.	 Towns,	 cities,	 and	 even
countries	are	mapped	in	this	way,	bringing	to	life	patterns	of	social	media
activity	mapped	to	specific	geo-locations.

A	 couple	 of	 notable	 projects	 from	 this	 ongoing	 series	 of	 experiments
include	 “See	 Something	 Say	 Something”	 and	 “Tourists	 and	 Locals.”	 In
each	 of	 these	 experiments,	 Fischer	 explores	 differences	 in	 the	 data	 to
differentiate	and	locate	among	types	of	user	activity.

The	 “See	Something	Say	Something”	project	uses	 color	 to	 indicate	users
who	 see	 something	 (share	 a	 photo),	 those	 who	 say	 something	 (Tweet
some	text),	and	those	who	do	both.	Different	colored	dots	are	mapped	to
indicate	the	locations	of	each	of	these	groups.

In	the	“Tourists	and	Locals”	project,	color	is	used	to	indicate	users	who	are
new	to	the	city	and	those	who	are	visiting.	This	differentiation	is	gleaned
by	looking	at	the	history	of	each	user’s	location	to	determine	if	they	have
recently	traveled	in	to	town.	Colors	across	the	map	reveal	 the	 limitations
of	 tourist	 explorations	 around	 a	 city,	 highlighting	 the	 hot	 spots	 and
boundaries	of	their	wanderings.

Visually	marking	 and	 exploring	 these	 simple	 differentiations	 in	 the	 user
data	 adds	 to	 the	 way	 in	 which	 we	 understand	 it	 and	 adds	 to	 its	 visual
strength.

6.4	See	Something	Say	Something	Eric	Fischer
Data	visualizations	of	New	York,	London,	and	Tokyo,	created	from	geo-tagged

Tweets	of	users.	The	colored	dots	indicate	where	a	person	has	shared	a	Flikr	photo
(orange),	or	posted	a	Tweet	(blue),	or	both	(white).

6.5	Tourists	and	Locals	Eric	Fischer
Data	visualizations	of	maps	of	New	York,	Paris,	and	San	Francisco,	indicating	the
activity	of	locals	and	visitors	to	the	city.	Blue	points	indicate	pictures	taken	by

locals;	red	points	are	pictures	taken	by	tourists;	yellow	points	are	pictures	of	users
who	may	be	either.

Mapping	journeys

As	well	as	being	able	to	locate	and	map	individual	user	locations,	data	can	be
accessed	from	GPS	devices,	such	as	running	watches,	which	record	and	store
data	of	individual	routes	or	journeys.	Using	this	technology,	individuals	can
map	 and	 share	 their	 own	 personal	 running	 or	 walking	 routes,	 saving	 and
sharing	each	step	as	they	journey	across	the	landscape.	A	collated	list	of	GPS
(longitude	 and	 latitude)	 values	 from	 a	 run	 or	 walk	 provides	 a	 wealth	 of
interesting	useable	number	information,	which	can	be	translated	into	digital
graphics	or	drawings.

A	single	run	or	walk	will	generate	a	large	list	of	number	values:	the	record	of
each	step,	twist,	and	turn	of	a	single	user’s	journey.	(It	will	include	extra	data,
as	well,	 such	as	distance,	elevation	 speed,	etc.)	These	values,	when	plugged
into	 a	 drawing	 program,	 can	 be	 turned	 into	 lines	 and	 strokes,	 creating	 a
graphical	 representation	 of	 each	 individual	 journey.	 This	 kind	 of	 human-
centered	data	connects	number	values	with	 real-life	 experiences	 and	allows
designers	and	programmers	 to	generate	exciting	graphics	driven	by	unique
individual	experiences.

A	retail	 installation	was	created	as	a	 follow-up	 to	 this	 initial	project,	which
visualized	a	year’s	worth	of	 runs	 from	the	Nike+	website.	Custom	software
was	 created	 that	 replayed	 tens	 of	 thousands	 of	 individual	 runs	 from	 across
three	 cities	 (New	York,	 London,	 and	Tokyo).	The	 animated	 visualization,
based	 on	 the	 data	 of	 thousands	 of	 individual	 runners,	 reveals	 individual
journeys	and	highlights	the	collective	energy	of	urban	runners	in	each	city.

EXEMPLAR

Nike	+:	Paint	With	Your	Feet

Paint	 With	 Your	 Feet	 was	 a	 project	 created	 by	 the	 design	 agency
YesYesNo	 to	work	 alongside	 the	 launch	 of	 the	Nike	 Free	Run+	 2	City
Pack	series.	Using	the	GPS	data	captured	from	the	Nike+	device,	runners
were	invited	to	create	their	own	individual	dynamic	paintings	with	their
feet.

The	 data	 taken	 from	 runners	 over	 a	 two-day	 period	 was	 collated	 and
imported	into	a	piece	of	custom	software,	which	used	it	to	create	graphics
based	on	 specific	 parameters:	 the	 speed,	 consistency,	 and	unique	 style	 of
each	person’s	run.

6.6	Nike+	Paint	With	Your	Feet	YesYesNo
Images	from	the	final	paintings	and	data	from	each	run	was	used	to	create	a

personalized	shoe	box	containing	a	pair	of	the	“City	Pack”	shoes.

MAPPING	SOCIETY
Maps	 of	 data	 can	 be	 created	 from	 other,	 less	 personal,	 online	 sources.
Archives	 containing	 vast	 quantities	 of	 statistical	 data	 compiled	 by	 large
(social)	 organizations	 or	 institutions	 often	 compile	 and	 share	 findings	 and
analysis	 of	 social	 issues,	 such	 as	 the	health,	wealth,	 politics,	 or	happiness	 of
large	groups	of	people.	Findings	from	this	kind	of	data	source	are	commonly
ranked	according	to	location	(e.g.,	town,	county,	state,	province,	postal	code,
or	country).	Code	that	gives	a	visual	value	to	the	raw	number	data	and	maps
the	data	according	to	location	can	therefore	be	used	to	chart	social	changes
and	attitudes	across	regions	and	countries.	Finding,	accessing,	and	visualizing
this	kind	of	information	allows	designers	to	represent	the	data	in	a	way	that
directly	communicates	issues	of	social	and	economic	importance.

EXEMPLAR

Jed	Carter:	Eyes	on	the	Sky

Eyes	on	the	Sky	is	a	creative	investigation	into	generative	design	and	the
weather.	 Carter	 collected	 image	 data	 from	 sixty-four	 public-access
webcams	from	across	Europe	(once	an	hour	 for	 twenty-four	hours	every
day)	and	used	the	information	to	generate	a	set	of	abstract	digital	images.
The	color	of	the	sky	was	extracted	from	each	of	the	webcam	photographs
as	numeric	values	of	red,	green,	and	blue,	and	Processing	was	used	to	map
the	color	back	to	its	correct	geographic	location.	A	final	series	of	images,
charting	 the	 changing	 sky	 colors	 across	 Europe	 across	 one	 week,	 was
collated	into	a	book	of	data-driven	weather	maps.

6.7	Eyes	on	the	Sky	Jed	Carter
Using	data	taken	from	public	webcams,	this	book	graphically	documents	the
changing	weather	and	sky	colors	across	towns	and	cities	in	Europe	during	the

changing	weather	and	sky	colors	across	towns	and	cities	in	Europe	during	the
course	of	one	week.

Mapping	emotions

As	well	 as	being	able	 to	 find	and	use	 location-based	 information,	code	can
also	 collect	 and	map	 less	 tangible	 thoughts,	 ideas,	 and	 feelings.	The	online
world	 is	 like	a	virtual	meeting-place;	a	public	 forum	in	which	people	 from
different	 social,	 religious,	 ethnic,	 and	 political	 backgrounds	 communicate
personal	opinions,	beliefs,	 ideas,	hopes,	and	fears.	The	digital	community	 is
alive	 with	 conversations	 and	 exchanges,	 ranging	 from	 the	 trivial	 to	 the
profound,	 as	 users	 discuss	 and	 debate.	 Social	 media	 environment	 is	 a	 vast
resource	of	online	human	emotion,	charting	users’	communications	across	all
parts	of	 the	globe.	Tweets,	 status	updates,	 images,	videos,	 links,	 comments,
re-posts,	 and	 blog	 posts	 all	 add	 to	 a	 vast	 and	 expanding	 global	 digital
conversation.

Programming	tools	can	dip	into	this	vast	pool	of	digital	discussion	to	collect
information	and	provide	insight	into	the	thoughts,	opinions,	and	emotions	of
the	 online	 community.	 Code	 can	 search	 social	 media	 (Twitter,	 Facebook,
blog	 posts)	 to	 find	 information	 about	 a	 specific	 theme,	 time,	 or	 place.
Specific	APIs	 for	 individual	media	 applications	give	programmers	 access	 to
the	data	behind	social	media	activity,	allowing	them	to	search	and	retrieve	a
wide	range	of	data,	including	the	content	of	a	post,	embedded	media,	links,
details	of	when	and	where	a	post	was	written,	by	whom,	as	well	as	links	to
users	or	associated	conversations.

Searching	in	such	a	huge	pool	of	data	means	that	programmers	need	to	set
boundaries	 to	 prevent	 creating	 sets	 of	 results	 that	 are	 so	 large	 as	 to	 be
meaningless.	 It	 is	 important	 to	have	a	clear	 idea	of	 the	specific	 type	of	data
desired;	 this	 helps	 give	 results	 more	 weight	 and	 meaning.	Wide	 searches,
using	broad	keywords	such	as	“love,”	will	produce	too	many	results,	which
require	 further	 sifting	and	sorting.	Limiting	a	 search	 to	a	 specific	phrase	or
series	 of	 keywords	 gives	 the	 results	 more	 coherence	 and	 meaning.	 Using

combinations	of	terms	or	putting	parameters	on	the	search	helps.	Combining
phrases,	such	as	“love”	and	“London,”	will	naturally	narrow	down	the	results,
offering	greater	insight	into	a	particular	topic.

Once	 results	have	been	 found,	 there	 is	more	work	 to	be	done	 to	 refine	or
categorize	 them	 to	 reveal	 hidden	 patterns	 or	 themes.	 The	 API	 of	 a	 social
network	application	can	help	this	refining	process,	allowing	the	programmer
to	dig	deeper	 into	 the	 results.	For	example,	 looking	at	 the	 time	a	post	was
written,	 the	 location,	 or	 the	 age	of	 the	writer	gives	more	 insight	 and	 adds
more	layers	to	the	data	results.

Similarly,	 limiting	 the	 search	 to	 a	 specific	 time	 frame	 or	 location	 can	 also
help	 to	 clarify	 and	 filter	 the	 results.	 For	 example,	 searching	 for	 the	 word
“goal”	during	the	 time	of	 the	World	Cup	soccer	 final	will	produce	a	 set	of
results	 that	 relate	 to	 the	 game	 as	 it	 is	 in	 progress,	 as	 people	 comment,
anticipate,	or	react	during	and	after	a	goal	is	scored.	Searching	for	the	word
“goal”	 at	 any	 other	 time	will	 (naturally)	 produce	 a	much	 broader	 and	 less
interesting	set	of	results.

Search	results	will	always	contain	elements	that	have	little	or	no	relevance	to
the	intended	theme;	however,	a	 large	enough	set	of	meaningful	results	will
over-ride	a	small	number	of	erroneous	answers.

EXEMPLAR

Jonathan	Harris	and	Spe	Kamvar:	We	Feel	Fine

We	 Feel	 Fine	 is	 an	 innovative	 online	 application	 created	 by	 Jonathan
Harris	and	Spe	Kamvar	(originally	in	2005).	The	concept	behind	the	work
is	straightforward,	but	the	results	are	an	extraordinary	visual	exploration	of
human	emotions	online.

The	work	continually	searches	a	wide	range	of	newly	posted	blog	entries,
looking	 for	 the	 phrase	 “I	 feel”	 or	 “I	 am	 feeling.”	 Each	 time	 a	match	 to
either	of	these	phrases	is	found,	the	full	sentence	is	recorded	and	stored	in	a
growing	database	of	emotions	and	feelings	captured	from	across	the	globe.
Each	 entry	 to	 the	 database,	 therefore,	 represents	 a	 unique	 record	 of	 an
individual’s	mood	at	a	given	point	in	time.

As	well	as	recording	the	mood	of	a	person	recorded	on	their	blog	(“I	feel	.
.	 .”	happy,	sad,	etc.),	 the	app	captures	other	data	 to	give	a	more	rounded
understanding	 of,	 and	 background	 for,	 the	 feeling.	 Data	 extracted	 from
the	 blog,	 such	 as	 the	 age,	 gender,	 and	 location	 of	 the	 author,	 is	 saved,
alongside	the	date	and	weather	conditions	at	the	time	the	post	was	written.
Images	 from	 the	 blog	 post	 are	 also	 collated	 alongside	 the	 emotional
sentence.	Every	day	between	fifteen	and	twenty	thousand	new	feelings	are
added,	resulting	in	a	huge	database	of	human	feelings.

The	data	itself	is	displayed	as	a	colorful,	self-organizing	particle	cloud.	The
visual	 properties	 of	 each	 particle—its	 color,	 size,	 shape,	 and	 opacity—are
defined	according	the	feeling	it	represents.	Each	individual	particle	can	be
clicked	 on	 to	 reveal	 its	 data:	 the	 full	 phrase,	 image,	 and	 background
information.

Viewing	 the	 colorful	 particle	 cloud	 gives	 an	 overarching	 picture	 of	 the
kinds	of	 emotions	 experienced.	The	particle	 visualization	 can	be	 visually

sorted	 and	 searched	 according	 to	 various	 parameters:	 the	mood,	 gender,
time,	 or	 location	 of	 the	 author.	 Groups	 of	 the	 colored	 particles	 shift	 or
coagulate,	according	to	the	search	parameters	used.	This	means	that	users
can	discover	their	own	graphic	visualizations	of	human	emotion.	Digging
deeper	into	the	individual	data	combines	the	text	and	images	of	individual
blog	posts,	which	creates	poignant	and	meaningful	snapshots	of	individual
experiences.

The	project	works	as	a	robust	and	growing	piece	of	data	visualization	that
uses	 graphics	 to	 reflect	moods	 of	 the	 online	 community	 in	 an	 engaging
way.	The	work	has	been	delivered	as	an	online	project	and	has	also	been
produced	in	a	book	format,	which	adds	a	further	layer	to	the	design	of	the
project.

6.8	We	Feel	Fine	Jonathan	Harris	and	Spe	Kamvar
By	looking	for	the	phrase	“I	feel”	or	“I	am	feeling”	in	new	blog	entries,	a	data

visualization	of	human	emotion	is	created.	Results	can	be	viewed	as	a	particle	cloud
of	dots	that	can	be	filtered	and	sorted	by	different	criteria.	Photo	montages

automatically	combine	phrases	from	the	blog	with	images	to	create	snapshots	of
emotions.

Dario	Taraborelli,	Giovanni	Luca	Ciampaglia,	and	Moritz
Stefaner:	Notabilia	Notabilia	is	a	research-based	visualization
of	the	discussions	that	take	place	around	article	deletions	on
Wikipedia.	The	Wikipedia	community	reviews	each	article
posted	against	its	“notability”	guidelines	to	determine	whether
or	not	the	topic	in	question	is	suitable	for	inclusion.	Editors	can
nominate	an	article	for	deletion	and,	if	the	nomination	is
legitimate,	a	community	discussion	takes	place,	during	which
members	discuss	reasons	for	or	against	keeping	it.

members	discuss	reasons	for	or	against	keeping	it.

The	 Notabilia	 project	 takes	 the	 Article	 for	 Deletion	 discussions	 and
visualizes	 the	 data	 as	 a	 series	 of	 branches	 in	 a	 treelike	 structure.	 The
direction	 and	 color	 of	 each	 branch	 segment	 is	 determined	 by	 individual
users’	 views	 on	 the	 article	 as	 the	 discussion	 develops.	 Green	 segments
leaning	 towards	 the	 left	 are	 created	 when	 a	 user	 recommends	 keeping,
merging,	or	redirecting	the	article.	Red	segments	leaning	right	are	created
each	time	a	user	recommends	deleting	the	article.

The	overall	color	and	shape	of	each	line	is	therefore	a	visual	representation
of	 the	 overall	 mood	 of	 the	 discussion	 as	 it	 develops.	 The	 longest	 one
hundred	discussions	have	been	collated	into	a	treelike	structure	of	branches
that	highlight	 the	general	 flow	of	discussion	around	each	 topic,	which	 is
ultimately	either	kept	or	deleted.

6.9	Notabilia	Dario	Taraborelli	and	Giovanni	Luca	Ciampaglia	(data	and	analysis)
and	Moritz	Stefaner	(visualization)

Organic,	treelike	structures	are	created	as	visualizations	of	online	discussions	about
whether	or	not	a	topic	should	remain	or	be	deleted	from	Wikipedia.	The	color	and
direction	of	each	branch	is	determined	by	the	comments	of	each	contributor,	either

for	or	against	the	subject’s	deletion.

SPOTLIGHT	ON

Jer	Thorp

Jer	 Thorp	 is	 a	 generative	 software	 artist	 and	 educator	 whose	 practice
explores	 the	 boundaries	 between	 science,	 data,	 art,	 and	 culture.	He	 uses
Processing	 code	 to	 translate	 large	 amounts	 of	 data	 into	 visual	 outcomes,
which	adds	meaning	and	narrative,	helping	viewers	understand	and	 take
control	of	the	information	that	surrounds	them.

He	has	worked	as	Data	Artist	in	Residence	at	the	New	York	Times	and	is
an	adjunct	Professor	in	New	York	University’s	ITP	program	and	the	co-
founder	of	the	Office	For	Creative	Research,	a	multi-disciplinary	research
group	exploring	new	modes	of	engagement	with	data.
His	visual	explorations	of	data	have	produced	some	striking	pieces	of	print
and	 screen-based	 design.	 Notable	 examples	 include	 the	 138	 Years	 of
Popular	Science	and	Cascade	projects.

Cascade

Cascade	 is	 an	 interactive	 tool	 created	 for	 the	 New	 York	 Times	 R&D
department	 that	 visualizes	 how	 news	 stories	 and	 information	 from	 the
organization	 are	 shared	 across	 social	 networks.	 The	 tool,	 created	 in
Processing,	 gives	 users	 opportunities	 to	 explore	 how	 the	 more	 than	 six
thousand	pieces	of	content	created	each	month	are	shared	and	“cascaded”
across	the	Internet.

The	 application	 is	 a	 highly	 visual	 exploratory	 tool	 that	 allows	 a	 close
examination	 into	 the	movement	of	 content	 and	 can	be	 viewed	 either	 in
Story	mode	or	Cascade	mode.	The	Story	mode	highlights	 sets	of	 stories,
which	can	be	requested	either	via	keyword	search,	section	search,	or	using
a	 set	 of	 “interestingness”	 parameters.	 The	 Cascade	mode	 shows	 how	 an
event	or	story	cascades	through	the	online	world	as	it	is	shared	and	travels
across	social	networks	over	a	period	of	minutes,	hours,	or	days.

The	 almost	 real-time	 based	 element	 of	 the	 application	 gives	 a	 unique
insight	into	the	way	in	which	each	story	“unfolds”	and	develops	over	the
Internet.	 Different	 2D	 and	 3D	 perspectives	 of	 the	 Cascade	 mode	 allow
viewers	 to	 analyze	 the	movement	 of	 conversations	 and	 information	 in	 a
range	of	informative	ways.	Looking	at	this	data	in	this	novel,	time-based
way	provides	a	valuable	insight	into	the	way	in	which	messages	are	shared,
capturing	 their	 movement	 as	 they	 spread	 through	 the	 ether	 of	 social
media.	In	addition	to	operating	as	a	small	screen	application,	the	Cascade
project	 was	 also	 implemented	 in	 “exhibition”	 mode,	 staged	 on	 a	 five-
screen	video	wall.

6.10	Cascade	Jer	Thorp
Cascade	is	an	is	an	interactive,	exploratory	tool	that	conveys	how	New	York	Times’
content	is	shared	(cascades)	across	social	networks,	showing	the	way	in	which

stories	and	ideas	travel	through	the	online	world.

6.11	138	Years	of	Popular	Science	Jer	Thorp
Images	of	a	visualization	piece	that	explores	the	archive	of	Popular	Science

magazine	to	show	how	different	technical	and	cultural	terms	have	moved	in	and	out
of	use	in	the	magazine	since	the	start	of	its	publication.	Each	year	acts	as	an	anchor
connecting	a	range	of	words.	Thorp	used	Processing	as	a	tool	to	find	the	frequency
of	each	word	and	to	identify	the	most	interesting	ones	to	use	in	the	final	graphic.

Q&A:	Jer	Thorp

How	did	you	develop	an	interest	for	design	and	programming?
I	actually	did	some	programming	in	BASIC	when	I	was	about	ten	years	old,	but	my
interest	in	programming	really	started	when	my	Dad	brought	home	a	Mac	in	1985.	I
learned	how	to	program	in	HyperCard,	which	was	a	really	amazing	tool	for	creating
simple	software	that	combined	code	with	visual	elements.	HyperCard	was	definitely
the	gateway	drug	for	me	.	.	.	I	still	miss	it.

Where	 do	 you	 look	 to	 find	 creative	 inspiration:	 Who	 or	 what	 motivates	 and
inspires	you?
I	read	a	lot	of	fiction,	which	provides	an	endless	supply	of	inspiration.	I’m	also	very
lucky	to	have	an	incredibly	talented	team	of	collaborators	at	The	Office	for	Creative
Research.	 Everyone	 brings	 something	 to	 the	 mix:	 We	 have	 architects	 and
mathematicians	and	theater	directors	and	video	artists.	Lately	I’ve	been	spending	a
lot	of	 time	with	Lillian	Schwartz,	who	 is	a	pioneer	 in	 the	use	of	computers	 for	art
making.	 I’ve	 really	 learned	a	 lot	 from	her	about	collaboration,	and	about	 fostering
cross-disciplinary	thinking.	She’s	still	making	art	at	the	age	of	87,	which	 I	can	only
dream	of.

Do	you	think	that	there	are	specific	qualities	or	characteristics	of	code	that	open
up	creative	possibilities?
There’s	an	obvious	answer	to	that	question,	which	is	that	computers	+	code	allow	us
to	do	things	which	are	just	not	possible	otherwise.	Here	I’m	thinking	about	iterative
processes	 or	 the	 creation	 of	 complex	 forms,	 or	 the	 implementation	 of
computationally	difficult	algorithms.	I	think	a	lot	of	work	around	computers	and	art
has	focused	on	these	“couldn’t	do	it	before”	possibilities.

I	also	believe	that	the	underlying	structures	of	code–the	language	itself,	the	syntax,
the	 order	 in	 which	 it	 is	 executed–provide	 really	 rich	 terrain	 for	 interrogation	 and
intervention.	 Artists	 like	 Casey	 Reas	 have	 done	 really	 profound	 work	 that
investigates	these	possibilities.

What	are	the	main	challenges	of	data	visualization?
The	 main	 challenge	 in	 data	 visualization	 is	 in	 restriction	 of	 choice.	 There	 are
hundreds	of	ways	in	which	any	number	or	set	of	numbers	can	be	mapped	into	visual
form.	 Success	 in	 visualization	 is	 really	 about	 finding	 the	 mappings	 that	 are	 best
suited	 to	 the	data.	 Ideally	 you’re	 looking	 for	 an	 approach	 that	will	 fit	 the	 specific
character	of	the	data	set	and	will	also	communicate	 in	a	way	that	 is	 legible.	There
are	a	lot	of	unsolved	problems	in	data	visualization.	Perhaps	the	one	that	interests
me	most	is	uncertainty:	We	really	haven’t	yet	found	good	ways	that	make	sense	to
the	public	 to	show	the	potential	error	 in	data.	Almost	every	visualization	presents
the	data	as	if	it	was	true,	whereas	in	most	cases	the	data	is	inherently	inaccurate.

You	have	created	a	wide	range	of	work,	 is	 there	a	particular	piece	or	project	of
which	you	are	most	proud?
I	am	very	critical	of	my	own	work:	When	I	 look	back	on	it,	 I	tend	to	see	the	things
that	 are	 broken	 or	 erroneous	 or	 unfinished	 rather	 than	 the	 things	 that	 are

supposedly	 successful.	 That	 said,	 I’m	 quite	 fond	 of	 the	work	 that	 I	 did	with	Mark
Hansen	 at	 the	New	York	Times,	 particularly	Cascade,	which	was	 a	 first-of-its-kind
Twitter	visualization	tool.

Do	you	have	any	word	of	advice	to	young	designers	/	students	starting	to	explore
data	visualization	for	themselves?
Two	things:
Sketch	your	 ideas	with	a	pen	and	paper.	The	clearer	you	are	about	 the	 form	your
visualization	will	take,	the	easier	it	will	be	to	code	it.	Things	will	change	as	they	shift
from	analog	 to	digital,	 but	 it’s	 always	 a	 lot	better	 to	 have	 a	plan	 to	 follow	 rather
than	jumping	into	the	code	with	no	clear	path	to	follow.	Start	with	a	data	set	that
you	 care	 about.	 The	 easiest	way	 to	 satisfy	 this	 requirement	 is	 to	 use	 data	 about
yourself:	track	your	sleep	habits	for	two	weeks,	or	get	your	location	data	from	your
phone,	or	export	your	Gmail	data.	Not	only	will	you	learn	about	yourself,	you’ll	also
be	guaranteed	that	you’ll	be	working	in	an	area	where	you	are	the	expert.

CODE:	GETTING	AND	USING	EXTERNAL	DATA

Loading	Data	from	a	Text	File

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	6,	and	click	on	the
project	“Import	Text.”

There	 are	 lots	 of	 ways	 and	 lots	 of	 places	 from	 which	 data	 can	 come,
including	 GPS,	 temperature	 information,	 and	 other	 statistics.	 Whatever
the	source,	data	is	commonly	exported	into	a	document	of	text	or	number
values	that	can	be	read	into	a	program,	sorted,	and	manipulated.

The	simplest	way	of	loading	external	data	into	a	program	is	as	a	basic	text
file.

Data	in	a	text	file	can	be	in	the	form	of	either	words	(Strings)	or	numbers,
and	 it	 can	be	 read	 into	a	 file	using	a	 simple	 loadStrings()	 function	and	a
reference	to	the	name	of	the	document	to	be	loaded.

loadStrings	(“name_of_document”);

(Recall	 that	 “String”	 is	 a	 programming	 term	 for	 text	 or	 information	 set
inside	 inverted	 commas—a	 “string”	 of	 characters.)	 The	 loadStrings()
command	 reads	 external	 text	 data	 into	 the	 program	 and	 formats	 it	 as	 an
array	 (a	 list)	of	 individual	 lines.	A	 sample	 text	 file	 (for	example	 “test.txt”)
can	be	imported	with	the	loadStrings().

test.txt:
I	wandered	lonely	as	a	cloud
That	floats	on	high	over	vales	and	hills,
When	all	at	once	I	saw	a	crowd,
A	host,	of	golden	daffodils;

String	lines[]	=	loadStrings	(“test.txt”);

http://www.bloomsbury.com/richardson-data-driven

The	data	from	the	text	file	gets	automatically	formatted	and	split	into	a	list
of	 individual	 lines.	 The	 result	 is	 an	 array	 called	 “lines”:	 lines	 [0]	 =	 “I
wandered	lonely	as	a	cloud”
lines	[1]	=	“That	floats	on	high	over	vales	and	hills,”

Getting	the	text	as	a	list	of	lines,	rather	than	as	a	single	large	block	of	text,
means	 that	 the	 data	 is	 now	 in	 a	 useful	 and	 useable	 format	 of	 individual
lines,	which	can	be	more	easily	sorted	and	output	in	a	visual	format.

Comma-separated	Data

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	6,	and	click	on	the
project	“CSV	Data.”

As	well	as	being	used	to	import	words,	external	text	files	can	also	hold	and
be	used	 to	 import	useful	numerical	 data.	Number	values	 exported	 into	 a
text	file	format	(e.g.,	 lists	of	GPS	data)	may	be	formatted	as	a	single	long
list	 of	 values	 separated	 by	 commas	 and	 without	 spaces.	 For	 example:
Weather_data.txt:

http://www.bloomsbury.com/richardson-data-driven

78,82,93,85,45,44,56,78,98

Number	values	 from	the	comma-separated	document	can	be	 loaded	 into
the	program	and	then	split	and	converted	into	a	list	of	numbers	(creating	a
useful	set	of	usable	values).	A	 loadStrings()	 function	imports	 the	numbers
as	one	long	single	string.

String	[]	loadedData	=	loadStrings	(“Weather_data.txt”);

This	puts	the	single	line	of	numbers	into	the	first	element	in	an	array.

loadedData	[0]	=	“78,82,93,85,45,44,56,78,98”

The	single	list	item,	which	contains	all	the	data	as	one	single	string,	can	be
split	 into	 an	 array	 of	 individual	 number	 values.	 The	 split	 function	 is	 a
function	used	 to	 split	 text	up.	 In	 this	case,	 it	 is	used	 to	 split	 the	 string	of
numbers	into	a	new	list	of	individual	number	values,	using	each	comma	as
the	cut-off	point	for	each	number	(the	“delimiter”).

The	following	splits	the	array	into	an	array	of	individual	items,	using	the
comma	as	 the	point	at	which	to	make	the	divisions:	 //	 split	 the	data	 into
individual	values
String[]	dataAsStrings	=	split(loadedData[0],	‘,’);

The	 result	 of	 this	 process	 is	 an	 array	 of	 individual	 numbers,	 written	 as
Strings.	There	is	a	difference,	in	a	programming	environment,	between	a
String	(text)	and	an	integer	(number)—even	though	to	us,	they	may	look
the	same.	For	example,	the	String	(“42”)	is	not	the	same	as	the	integer	(42).
The	data	array	therefore	has	to	be	converted	from	Strings	(“78,”	“82”)	into
integers	(78,	82)	before	they	can	be	seen	and	used	as	numbers.

The	int()	function	is	used	to	convert	data	into	number	(“int”)	values.	The
entire	 list	 of	 data	 in	 “dataAsStrings”	 is	 converted	 into	 a	 new	 array	 of

numbers:	//	convert	the	entire	array	from	Strings	to	numbers
int	[]	dataAsNumbers	=	int	(dataAsStrings);

The	 result	 is	 an	 array	 of	 individual	 number	 values	 perfectly	 useable	 for
creating	a	set	of	shapes	or	graphics.

dataAsNumbers	[0]	=	78
dataAsNumbers	[1]	=	82
dataAsNumbers	[2]	=	93

A	“for”	loop	would	typically	be	used	to	sort	and	cycle	through	each	of	the
values	in	the	array.

TRY	IT

Create	a	text	document	of	comma-separated	numbers.
Save	into	the	data	folder	of	a	Processing	sketch,	and	load	into	the	sketch	using	loadStrings().
Split	the	data	into	individual	chunks.	Create	a	script	that	draws	a	series	of	shapes	based	on	each	of	the
number	values.

Loading	Table	Data

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	6,	and	click	on	the
project	“Table	Data.”

As	well	as	being	able	to	get	data	from	a	simple	text	file	as	a	string	of	values,
data	 can	 also	 be	 extracted	 into	 a	 program	 from	 tables	 of	 data.	 Data
formatted	 into	 a	 table	 of	 columns	 and	 rows	 is	 a	 common	 way	 of
formatting	 information.	 Spreadsheets	 and	 databases,	 online	 or	 offline,
organize	 information	 into	 organized	 groups	 of	 columns	 and	 rows.	 A
simple	example:	data.tsv:
Name Age Gender
Andrew 42 M
Steve 36 M
Charlie 24 F

Data	 formatted	 in	 this	way	 is	 a	 highly	 useful	 and	 very	 common	way	of
sorting	 and	 delivering	 content.	 Information	 organized	 in	 this	 way	 may
originate	 from	 lots	 of	 different	 online	 or	 offline	 sources	 (e.g.,	 Excel	 or
Google	 spreadsheets,	 or	 values	 generated	 from	 GPS	 or	 other	 types	 of
mapping	 devices).	 Columns	 group	 information	 under	 a	 given	 topic
heading	 (Name,	 Age,	 Gender).	 Rows	 of	 data	 are	 added	 for	 individual
examples	(Andrew,	Steve,	Charlie)	for	each	group.

Information	 organized	 into	 a	 table	 can	 be	 exported	 either	 into	 a	 CSV
(Comma	Separated	Values)	or	TSV	(Tab	Separated	Values)	format,	each	of
which	provides	 the	raw	data	 in	a	 format	 that	can	be	most	easily	grabbed
and	sorted	by	a	program	into	rows	and	columns.	Reading	and	importing
values	from	a	table	allows	the	data	to	be	extracted	and	then	reformatted.

A	 table	 from	a	CSV	or	TSV	 source	 can	easily	be	 imported	by	using	 the
loadTable()	 function,	 which	 creates	 a	 usable	 grid	 of	 data	 from	 the

http://www.bloomsbury.com/richardson-data-driven

incoming	document.

Table	table	=	loadTable	(“data.tsv”);

This	 function	works	 in	a	 similar	way	 to	 the	 loadStrings()	 command,	but
instead	of	generating	a	list	of	String	(text)	information,	it	creates	a	special
Table	object	that	sorts	the	data	into	easily	readable	rows	and	columns.	This
provides	a	far	easier	way	of	working	with	and	sorting	data	than	would	be
possible	 if	 imported	 as	 a	 String,	which	would	 then	 have	 to	 be	 split	 and
sorted.

Once	 the	 table	 is	 loaded,	 data	 can	 be	 extracted	 by	 looking	 through
individual	 rows	 of	 information.	 Accessing	 the	 data	 means	 looking	 for
specific	 information	 within	 rows	 or	 columns.	 Data	 in	 a	 table	 object	 is
divided	 into	 a	 “grid”	 of	 rows	 and	 columns.	 Each	 row	 and	 column	 is
numbered,	creating	a	simple	sort	of	x,	y	grid.

TIP:	The	example	table	above,	data.tsv,	has	4	rows	and	3	columns.	Given	that	the	computer	starts
counting	from	zero,	not	one,	the	item	in	row	1,	column	0,	for	example,	is	“Andrew.”	Row	1	is	the
second	row	in	the	list.	Column	0	is	the	first	column	on	the	left.

Data	from	any	of	the	individual	“cells”	 in	the	table	can	easily	be	accessed
by	simple	functions,	which	“get”	specific	types	of	data,	using	the	row	and
column	 numbers	 as	 reference.	 The	 data	 to	 get	 will	 either	 be	 text,
getString(),	 or	 numbers,	 getInt()	 or	 getFloat().	 Remember,	 an	 “int”	 is	 a
whole	 number	 (integer);	 a	 “float”	 includes	 decimal	 (floating	 point)
numbers.

TIP:	 An	 extensive	 list	 of	 that	 which	 can	 be	 used	 when	making	 and	 getting	 data	 from	 Tables	 in
Processing	is	available	online:	https://processing.org/reference/Table.html

For	example,	the	following	code	gets	the	String	data	(name)	from	the	item
at	row	2,	column	0:	String	name	=	table.getString	(2,	0);
println	(name);	//	outputs	“Steve”

https://processing.org/reference/Table.html

Similarly,	the	age	value	(int)	can	be	found	by	looking	at	row	2,	column	1:

//	get	data	from	row	2	column	1
int	age	=	table.getInt	(2,	1);
println	(age);	//	outputs	“36”

Another	way	to	get	information	from	a	table	is	to	find	all	the	data	from	a
specific	row	or	column	using	getRow()	or	getColumn().

For	example,	 the	 following	extracts	an	entire	 row	of	data	 from	row	1	of
the	sample	file:	//	gets	data	first	row	1
TableRow	row1	=	table.getRow(1);

Once	this	has	been	found,	the	items	in	the	row	(name,	age,	gender)	can	be
accessed	in	sequence:	//	gets	the	1st	item	in	row1	(a	String)
String	name	=	row1.getString	(0);
//	gets	the	2nd	item	in	the	row	(a	number)
int	age	=	row1.getInt	(1);
//	gets	the	3rd	item	in	the	row	(a	String)
String	gender	=	row1.getString	(2);

These	 simple	 Processing	 functions	 are	 useful	 and	 efficient	 tools	 for
importing,	 finding,	extracting,	and	visualizing	data	 from	a	 large	database
or	 spreadsheet.	 They	 can	 be	 applied	 to	 a	 huge	 range	 of	 datasets	 and	 be
used	to	create	a	wide	range	of	visual	purposes	and	outcomes.

Simple	Data	Map

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	6,	and	click	on	the
project	“Data	Map.”

Using	these	functions,	large	sets	of	data	can	quickly	be	accessed	and	cycled
through.	For	example,	a	larger	set	of	data	that	shows	the	location	of	each
state	 in	 America	 is	 saved	 as	 a	 “locs.tsv”	 file	 (available	 via	 the	 online
examples).	 In	 the	 file,	 the	 abbreviation	of	 each	 state	 is	 stored	 in	 the	 first
column,	 and	 the	 corresponding	 grid	 co-ordinates	 of	 the	 state	 located	 in

http://www.bloomsbury.com/richardson-data-driven

the	following	two	columns.

locs.tsv:
AL 439 270
AK 94 325
.	.	.
WI 392 103
WY 207 125

The	number	values	can	be	used	as	useful	x,	y	co-ordinates	to	draw	shapes
on	the	screen.	A	“for”	loop	is	able	to	do	the	hard	work	of	cycling	through
the	list	of	data	and	is	used	to	cycle	through	all	the	rows,	one	at	time,	and
for	 each	 one,	 get	 the	 row	 of	 data,	 extract	 the	 two	 number	 co-ordinates
from	the	columns,	and	use	them	to	plot	a	shape	on	the	screen:	for	(int	i=0;
i<table.getRowCount();	i++)	{

//	get	a	row	of	data
TableRow	row	=	table.getRow	(i);
//	get	the	first	number	value	(column	1)
int	x	=	row.getInt(1);
//	get	the	second	number	value	(column	2)
int	y	=	row.getInt(2);
ellipse	(x,	y,	10,	10);	//	draw	a	shape

}

The	result	is	a	simple,	but	effective,	data	driven	“map.”

TIP:	In	this	example,	the	“for”	loop	finds	out	how	many	times	it	has	to	loop	(i.e.,	how	many	rows
there	are	in	the	table)	by	using	the	getRowCount()	function,	which	returns	the	number	of	rows	in	a
table.

Simple	example	of	map	of	state	locations	plotted	from	data	from	an	external	data

Simple	example	of	map	of	state	locations	plotted	from	data	from	an	external	data
file.

TRY	IT

Get	the	“locs.tsv”	data	from	the	online	examples	from	this	chapter
Use	the	file	as	a	data	source	to	create	your	own	visualization.
Load	the	data	as	a	table.
Access	the	data	in	the	rows	and	columns	to	plot	shapes	on	the	screen.

XML	Data

Go	to	www.bloomsbury.com/richardson-data-driven,	Chapter	6,	and	click	on	the
project	“XML	Data.”

XML	is	a	useful	format	for	reading	and	getting	data	from	the	web.

It	is	more	useful	and	more	readable	for	a	computer	program	than	HTML,
which	involves	much	more	“mining”	to	extract	data.

XML	Structure

XML	data	is	organized	into	a	well-defined	structure	of	elements	and	tags
that	can	be	put	(nested)	inside	one	another	to	create	a	tree	(a	branch-like
structure).

clients.xml
<?xml	version=“1.0”>
<client_list>
<person>
<name>andrew</name>
<age>42</age>
<address>
<street>main	street</street>
<town>durham</town>
</address>
</person>
<person>
<name>bill</name>
<age>34</age>
<address>

http://www.bloomsbury.com/richardson-data-driven

<address>
<street>high	road</street>
<town>manchester</town>
</address>
</person>
</client_list>

The	top	level	of	the	document	is	called	the	“root.”	Elements	inside	the	root
are	 called	 “child”	 elements.	 Each	 element	 can	 have	 its	 own	 sub	 (“child”)
elements—that	is,	others	inside	of	it	(like	a	file	directory)	or	even	“parent”
elements,	which	sit	one	level	above.

In	 the	 example	 above,	 <client_list>	 is	 the	 root	 element	of	 the	document,
into	 which	 everything	 sits.	 It	 has	 two	 “child”	 <person>	 elements
representing	different	people	 in	 the	<person>	 tags.	Each	<person>	has	 its
own	set	of	child	elements,	which	are	used	to	store	information	about	the
name,	 age,	 and	 address.	 The	 parent	 element	 of	 <age>	 is	 the	 <person>
element	 it	 sits	 within.	 The	 elements	 (<street>	 and	 <town>)	 are	 child
elements	of	<address>.

This	 organized	 (root	 parent,	 child)	way	of	 defining	 and	organizing	data
makes	 it	 a	 simple	 way	 to	 create	 multi-layered	 documents	 that
programming	elements	can	delve	into	(mine)	to	extract	data.

Loading	and	Accessing	XML

Load	XML	data	using	the	 loadXML()	function.	This	can	be	used	to	 load
data	 from	 a	 downloaded	 (offline)	 XML	 document,	 or	 directly	 to	 a	 live
XML	source.	For	example:	XML	xml	=	loadXML	(“clients.xml”);

Once	the	XML	doc	is	loaded,	there	are	lots	of	XML-specific	functions	that
can	 search	 and	 retrieve	 data	 from	within	 the	 XML	 file.	 The	 getChild()
function	is	a	useful	way	to	get	at	the	data	and	dig	(and	navigate)	into	the
structure	of	the	document.

TIP:	 A	 full	 list	 of	 Processing	 functions	 for	 handling	 XML	 data	 is	 available	 online:
https://www.processing.org/reference/XML.html

The	 getChild()	 function	 gets	 items	 in	 the	 document	 with	 a	 tag	 that
matches	 the	name	used	 in	 the	 function.	For	 example,	 the	 following	will
get	 the	 first	 “person”	 item	 in	 the	 list:	 XML	 firstPerson	 =	 xml.getChild
(“person”);

A	useful	alternative	is	to	grab	all	the	“person”	items	as	a	single	list,	which
can	 then	 be	 looped	 through	 and	 extracted	 for	 more	 information.	 The
following	returns	a	list	of	all	the	“person”	items	in	the	XML	document.

XML	[]	listOfPeople	=	xml.getChildren	(“person”);

Having	grabbed	a	 full	 list	of	 the	main	content,	 each	element	 (person)	 in
the	list	can	be	found	and	looked	at	to	get	the	details	of	each	person’s	name,
age,	and	address	data.	This	is	done	by	taking	an	item	in	the	list	and	using
the	 getChild()	 function	 to	 grab	 this	 detail.	The	 following	 example	 finds
the	XML	elements	“name”	and	“age”	of	the	first	person	in	the	list.

//	gets	XML	element	called	name	and	age	from	the	first	person	in	the
list	//	gets	<name>	Andrew	</name>
XML	name	=	listOfPeople[0].getChild	(“name”);
XML	age	=	listOfPeople[0].getChild	(“age”);

This	process	gets	the	XML	item,	including	the	tags	(e.g.,	<name>	Andrew
</name>).	The	getContent()	 function	will	extract	 the	content	of	the	data
within	 the	 tags,	 a	 much	 more	 useful	 format:	 String	 name_data	 =
name.getContent();
String	age_data	=	age.getContent();
println	(name_data);
println	(age_data);

Although	this	is	a	very	simple	example,	being	able	to	extract	and	use	XML
data	from	offline	or	online	sources	is	a	valuable	way	of	sourcing	live	data
that	can	be	used	to	inform	graphics	and	visuals.

https://www.processing.org/reference/XML.html

CONCLUSION

Each	 of	 the	 chapters	 throughout	 the	 course	 of	 this	 book	 has
demonstrated	different	ways	in	which	programming	code	can	open	up
creative	 approaches	 to	 help	 designers	 think	 in	 new	ways	 and	 create
new	 types	 of	 digital	work.	 It	 is	 hoped	 that	 this	 book	has	 provided	 a
greater	appreciation	of	the	role	that	code	can	play	as	a	part	of	creative
design	 practice	 and	 encouraged	 readers	 to	 see	 that	 computer-based
design	 encompasses	 a	 wide	 vista	 of	 creative	 approaches	 and
possibilities.

Seeing	code	as	a	key	part	of	creative	design	practice	is	important.	It	is	a	way
to	 develop	 a	 fresh	 approach	 to	 creating	 work	 for	 the	 data-driven
environment,	 to	 re-think	 a	 default	 reliance	 on	 off-the-shelf	 software	 tools,
and	to	inspire	a	different	perspective	on	creative	digital	processes.	Having	a
greater	 understanding	 and	 appreciation	 of	 the	 possibilities	 for	 creating
computationally	 driven	 design	 provides	 an	 important	 springboard	 for
generating	 original	 creative	 concepts	 that	 harness	 the	 data	 input	 /	 output
capability	 of	 the	 digital	 environment.	 It	 also	 fosters	 an	 approach	 to	 digital
design	that	will	continue	to	be	valuable	even	as	the	technology	changes.

Although	 not	 a	 tangible,	 physical,	 media	 like	 paint	 or	 ink,	 getting	 your
“hands	 dirty”	 with	 code	 is	 an	 experimental,	 playful	 process	 in	 which
imagination	 and	 creativity	 are	 crucial.	 This	 type	 of	 approach	 requires	 a
broader	perspective	 towards	code	 that	 is	not	 restricted	 in	 its	 limits	or	 in	 its
creative	 ambition.	 A	 narrow	 vision	 of	 code	 can	 be	 constraining,	 limiting
programming	 to	 a	 purely	 functional,	 machine-like	 tool,	 useful	 only	 for
repetitive	 and	 laborious	 computational	 tasks.	However,	 when	 put	 into	 the
hands	of	creative	artists,	programmers,	and	designers,	code	opens	up	a	new
realm	 of	 imaginative	 possibilities—one	 that	 can	 create	 new,	 unique	 visual
outcomes	of	graphics,	drawings,	and	interactions.

The	experimental,	playful	process	of	exploring	code	as	part	of	digital	design
practice	 can	 be	 likened	 to	 other	 types	 of	 creative	 processes,	 environments,
and	mediums.	Just	as	an	artist	explores	the	traditional	processes	and	materials
of	paint,	ink,	or	chalk	to	discover	and	develop	his	or	her	own	visual	style,	so
too	 artists	 and	 designers	 whose	 work	 uses	 the	 “material”	 of	 programming
engage	 in	 a	 similar	 exploratory	process	 to	 discover	 their	 own	 approach	 to,
and	way	of	working	with,	code.	Like	finding	a	personal	style	of	drawing	or
painting,	 successfully	 writing	 code	 to	 create	 unique	 pieces	 of	 work	 is	 a
matter	 of	 developing	 an	 individual	 approach	 to	 the	 types	 and	 uses	 of	 the
programming	functions	and	instructions.	Although	code	can	be	easily	copied
and	pasted	to	create	generic-looking	pieces	of	work,	the	creative	“eye”	of	the
individual	designer	or	programmer	needs	to	be	harnessed	to	create	work	that
stands	above	the	rest.	Engaging	with	a	creative	process	to	explore	a	specific
element	 of	 computational	 data	 raises	 the	 work	 beyond	 the	 generic	 into
something	that	is	individual	and	unique.	Each	piece	of	work	featured	in	this
book	is	an	expression	of	the	creative	vision	of	the	individual	artist	or	designer
behind	 the	 work;	 it	 is	 a	 product	 of	 their	 own	 creative	 experiments	 and
investigations,	used	to	explore	a	specific	aspect	of	coding	and	to	create	pieces
of	 computational	work	 that	 possess	 an	 individual	 style.	Whether	 exploring
large	 sets	 of	 data,	 making	 experimental	 computational	 drawings,	 or
producing	 code-generated	 typography,	 each	 of	 the	 designers	 and	 artists
featured	 herein	 have	 developed,	 through	 their	 personal	 practice,	 their	 own
approach	and	way	of	using	code	to	express	their	unique	creative	vision	and
identity.

When	exploring	ways	 to	 integrate	 the	processes	of	code	as	part	of	 creative
practice,	 it	 is	therefore	important	to	develop	a	personal	approach	to	explore
your	own	ideas	and	vision.	The	range	and	types	of	code	and	data	are	so	wide
and	varied	that,	like	every	other	artist	or	designer,	a	particular	area	of	interest
or	 specialism	 needs	 to	 be	 developed.	 Whether	 the	 main	 interest	 is	 in
graphics,	 drawings,	 or	 typography,	 each	 designer	 needs	 to	 develop	 a	 focal
point,	 a	 central	 area	of	 interest,	 around	which	 ideas	 can	grow	develop	 and

flourish.	You	may	be	keen	to	explore	the	capacity	of	code	to	produce	large-
scale	 generative	 drawings,	 computational	 letterforms,	 or	 visualizations	 of
social	 media.	 The	 focal	 point,	 whatever	 it	 is,	 forms	 an	 important	 hub	 for
creative	exploration	and	play.

Playing	 with	 code	 allows	 ideas	 to	 emerge.	 Creative	 computational	 pieces
grow	 from	 very	 simple	 starting	 points.	 Even	 the	 most	 complex	 piece	 of
programming	starts	with	a	few	lines	that	establish	the	broad	parameters,	the
overall	 concept,	 of	 the	 work.	 By	 incrementally	 adding	 to	 and	 changing
elements	 one	 by	 one,	 ideas	 develop	 and	 grow	 in	 different	 directions.	 A
generic	 explanation	or	 simple	 tutorial	 can	be	 the	 starting	point,	 the	 “seed,”
for	 a	 huge	 range	 of	 new	 ideas	 and	 experiments.	 Perhaps	 some,	 or	 maybe
even	just	one,	of	the	ideas	or	concepts	featured	in	this	book	of	“seeds”	will	be
the	 starting	 point	 for	 a	 whole	 garden	 full	 of	 your	 own	 unique	 creative
explorations	into	code.

APPENDIX

BIBLIOGRAPHY

Blauvelt,	 A.	 and	 van	 Mensvoort,	 K.	 (2013)	 Conditional	 Design:
Workbook.	Valiz.

Bohnacker,	 B.,	 Gross,	 B.,	 and	 Laub,	 J.	 (2012)	 Generative	 Design:
Visualize,	 Program,	 and	Create	with	 Processing.	 Princeton	Architectural
Press.

Borenstein,	 G.	 (2012)	 Making	 Things	 See:	 3D	 vision	 with	 Kinect,
Processing,	Arduino,	and	MakerBot.	Maker	Media.

Dawes,	 B.	 (2006)	 Analog	 in,	 Digital	 Out:	 Brendan	 Dawes	 on	 Interaction
Design.	New	Riders.

Fry,	 B.	 (2007)	Visualizing	 Data:	 Exploring	 and	 Explaining	 Data	 with	 the
Processing	Environment.	O’Reilly	Media.

Haeckel,	E.	(1899)	Art	Forms	of	Nature.	Prestel	(reprinted	2008).

Klanten,	 R.	 (2010)	Data	 Flow:	 v.	 2:	 Visualizing	 Information	 in	Graphic
Design.	Die	Gestalten	Verlag.

Klanten,	 R.	 (2011)	 A	 Touch	 of	 Code:	 Interactive	 Installations	 and
Experiences.	Die	Gestalten	Verlag.

Lima,	 M.	 (2011)	 Visual	 Complexity:	 Mapping	 Patterns	 of	 Information.
Princeton	Architectural	Press.

Lupton,	 E.	 (2008)	 Graphic	 Design:	 The	 New	 Basics.	 Princeton
Architectural	Press.

Maeda,	J.	(2000)	Maeda	@	Media.	Thames	&	Hudson.

Maeda,	J.	 (2004)	Creative	Code:	Aesthetics	and	Computation.	Thames	&
Hudson.

Pearson,	M.	(2011)	Generative	Art.	Manning	Publications.

Reas,	 C.	 (2015)	 Processing:	 A	 Programming	 Handbook	 for	 Visual
Designers	and	Artists.	MIT	Press.

Reas	 C.	 and	 McWilliams	 C.	 (2010)	 Form+Code	 in	 Design,	 Art,	 and
Architecture.	Princeton	Architectural	Press.

Rendgen,	S.	(2012)	Information	Graphics.	Benedikt	Taschen	Verlag.

Sauter,	J.,	Jaschko,	S.,	and	Angesleva,	J.	(2011)	ART+COM:	Media	Spaces
and	Installations.	Die	Gestalten	Verlag.

Shiffman,	 D.	 (2008)	 Learning	 Processing	 2.0:	 A	 Beginner’s	 Guide	 to
Programming	Images,	Animation,	and	Interaction.	Morgan	Kaufmann.

Shiffman,	 D.	 (2012)	 The	 Nature	 of	 Code:	 Simulating	 Natural	 Systems
with	Processing.	The	Nature	of	Code.

Thompson,	 D.	 W.	 (1917)	 On	 Growth	 and	 Form.	 Canto	 Classics
(reprinted	2014).

Troika	 (2010)	Digital	by	Design:	Crafting	Technology	 for	Products	 and
Environments.	Thames	and	Hudson.

Yau,	 N.	 (2011)	 Visualize	 This:	 The	 Flowing	 Data	 Guide	 to	 Design,
Visualization,	and	Statistics.	John	Wiley	&	Sons.

WEBOGRAPHY

Processing
https://processing.org

openProcessing
http://www.openprocessing.org

Boris	Müller
http://www.esono.com

Conditional	Design
http://conditionaldesign.org

Creative	Applications
http://www.creativeapplications.net

Daniel	Brown
http://www.danielbrowns.com

Daniel	Shiffman
http://shiffman.net

design	I/0
http://design-io.com

https://processing.org
http://www.openprocessing.org
http://www.esono.com
http://conditionaldesign.org
http://www.creativeapplications.net
http://www.danielbrowns.com
http://shiffman.net
http://design-io.com

FIELD

http://www.field.io

Jer	Thorp
http://blog.blprnt.com

Joshua	Davis
http://www.joshuadavis.com

Moving	Brands
http://www.movingbrands.com

Robert	Hodgin
http://roberthodgin.com

Universal	Everything
http://www.universaleverything.com

YES	YES	NO	Interactive
http://www.yesyesno.com

http://www.field.io
http://blog.blprnt.com
http://www.joshuadavis.com
http://www.movingbrands.com
http://roberthodgin.com
http://www.universaleverything.com
http://www.yesyesno.com

PICTURE	CREDITS

1.1–1.2:	©	Universal	Everything

1.3:	Courtesy	FIELD	and	SomeOne

1.4–1.6:	Courtesy	John	Maeda

1.7:	Courtesy	Processing.org

1.8:	Courtesy	vvvv—a	multipurpose	toolkit

1.9–1.10:	Courtesy	NodeBox

2.2:	Courtesy	Reza	Ali

2.3:	Courtesy	Bartosz	Hadyniak/Getty	Images

2.4:	Test	patterns	for	The	Puddle	poster,	edition	13.	Designed	by	A.	Gysin	and	S.	Vanetti

2.5:	Posters	for	The	Puddle,	edition	1	and	13,	Silkscreen	on	colored	paper,	210	x	420mm.	Designed
by	A.	Gysin	and	S.	Vanetti,	2011–2013

2.6–2.7:	Courtesy	Marius	Watz

2.9:	Courtesy	Casey	Reas	and	the	bitforms	gallery,	New	York

2.10–2.11:	Courtesy	Moving	Brands®

2.12:	©	Universal	Everything

2.13:	Courtesy	Moving	Brands®

2.14:	Peter	Macdiarmid/Getty	Images

2.16:	Courtesy	Casey	Reas	and	the	bitforms	gallery,	New	York

2.17:	Courtesy	Holger	Lippmann

2.18:	Courtesy	FIELD

2.19:	Courtesy	Sagmeister	&	Walsh

2.20:	Courtesy	Design	I/O—http://design-io.com

3.1	and	3.18:	Sennep	Ltd.	in	collaboration	with	Yoke

3.2:	(top)	Saul	Landell/Mex/Getty	Images	(bottom)	Fiona	Elisabeth	Exon/Getty	Images

3.3:	Courtesy	www.BioLib.de

3.4:	©	ART+COM	Studios,	Berlin

3.5–3.6:	 Courtesy
Moniker/conditionaldesign.org/studiomoniker.com/thursdays.studiomoniker.com

http://Processing.org
http://design-io.com
http://www.BioLib.de
http://conditionaldesign.org/
http://studiomoniker.com/
http://thursdays.studiomoniker.com

3.7:	Phil	Cardamone/Getty	Images

3.10:	Emma	Johnson/Getty	Images

3.11:	Courtesy	Robert	Hodgin

3.12:	Courtesy	Holger	Lippmann

3.15:	 Lightweeds,	 Simon	Heijdens,	 2005.	Museum	 of	Modern	Art	New	York	 2014/Lightweeds,
Simon	Heijdens,	2005.	Utah	Museum	of	Natural	History,	Salt	Lake	City	2011

3.16:	Courtesy	Golan	Levin.	BP	for	StudioAKA,	London	and	Art+COM,	Berlin,	Germany

3.17:	Radiohead/Thom	Yorke,	Nigel	Godrich,	Stanley	Donwood,	Universal	Everything

3.18:	Sennep	Ltd.	In	collaboration	with	Yoke

3.19:	Courtesy	Bibliothèque

3.20:	Courtesy	Everyware

3.21–3.22:	Courtesy	Daniel	Brown

4.1:	 Courtesy	 Poetry	 2003.	 Team:	 Petra	 Michel,	 Boris	 Müller,	 Florian	 Pfeffer.
www.esono.com/boris/projects/poetry03/

4.2:	Courtesy	Kyuha	Shim

4.3–4.4:	Courtesy	Ricard	Marxer

4.5:	 (A)	 Yeohyun	Ahn.	Geomerative	 library	 by	 Ricard	Marxer,	 Binary	 tree	 algorithm,	 the	 font,
Stanford,	 in	 Processing,	 created	 by	 Casey	 Reas	 and	 Ben	 Fry.	 (G)	 Yeohyun	 Ahn.	 Geomerative
Library	by	Ricard	Marxer,	Binary	Tree.	Algorithm,	the	font,	Arial,	in	Processing	by	Casey	Reas	and
Ben	Fry.	(Y)	Yeohyun	Ahn.	Geomerative	library	by	Ricard	Marxer,	Binary	tree	algorithm,	the	font,
Arial,	in	Processing	by	Casey	Reas	and	Ben	Fry.

4.6:	Courtesy	Reza	Ali

4.7:	Courtesy	Elena	Kalaydzhieva

4.8:	Concept,	Design	and	Programming	by	Andreas	Müller

4.9:	From	“Zoology.”	Poem	by	Sasha	West,	design	by	Ernesto	Lavandara

4.10:	From	“Walking	Together	What	Remains”	by	Chris	Green	 (Interface	by	Erik	Natzke)	4.11:
Courtesy	Peter	Cho

4.12:	 Poetry	 2002.	 Team:	 Friederike	 Lambers,	 Boris	 Müller,	 Florian	 Pfeffer.
www.esono.com/boris/projects/poetry02/

4.15:	Studio	NAND	2010

4.16:	©	2013,	Vladimir	V.	Kuchinov

4.17–4.18:	Courtesy	Ariel	Malka

5.1	and	5.5:	Courtesy	Random	International

http://www.esono.com/boris/projects/poetry03/
http://www.esono.com/boris/projects/poetry02/

5.2:	Courtesy	Bede’s	World/Vector76/The	App	Chaps

5.3:	Courtesy	The	App	Chaps

5.4:	Courtesy	Baggar	and	Yoram	Mesuere

5.6:	Courtesy	Moving	Brands®

5.7:	©	Matthieu	Savary	(Smallab.org)	5.9:	Courtesy	Sennep	Ltd

5.10:	Matthew	Lloyd/Stringer/Getty	Images

5.12:	Courtesy	Hellicar&Lewis

5.15:	Courtesy	Robert	Hodgin

5.16–5.18:	Courtesy	Local	Projects

5.19:	Design	I/O—http://design-io.com

6.1	and	6.4–6.5:	Courtesy	Eric	Fischer

6.2:	©	Futura	Epsis	1

6.3:	onformative/	Cedric	Kiefer/www.onformative.com

6.6:	 Designed	 and	 Produced	 by	 YesYesNo	 in	 collaboration	with	 DualForces.	 YesYesNo	 Team:
Zach	 Lieberman,	 Emily	 Gobeille	 and	 Theo	 Watson.	 Software	 made	 with	 openFrameworks.
http://yesyesno.com,	http://dualforces.com,	http://openframeworks.cc

6.7:	Courtesy	Jed	Carter

6.8:	Courtesy	Jonathan	Harris	and	Sep	Kamvar

6.9:	 Notabilia:	 Moritz	 Stefaner,	 Dario	 Taraborelli	 and	 Giovanni	 Luca	 Ciampaglia,	 2011.
http://notabilia.net/

6.10–6.11:	Jer	Thorp,	o-c-r.org

http://Smallab.org
http://design-io.com
http://www.onformative.com
http://yesyesno.com
http://dualforces.com
http://openframeworks.cc
http://notabilia.net/
http://o-c-r.org

INDEX

A

actionScript,	21
Adobe	After	Effects,	Expressions,	21
Adobe	Flash,	actionScript,	21
Adobe	Illustrator,	32,	33,	40,	48
Adobe	Photoshop,	40,	48
Ahn,	Yeohyun,	101
Ali,	Reza,	33,	102
animation,	81,	124–125.	See	also	movement	API	(application	programming	interface),	165,	166,	168,

173
arguments,	22
arrays.	See	lists	and	arrays
Art	Forms	of	Nature	(Haeckel),	66,	67
ART+COM,	68–69
audio.	See	sound
augmented	reality	technology,	130,	131

B
Bagger,	132
Bede’s	World	Museum	app,	131
Big	Eyes	Identity	Illustrations	(FIELD	&	SomeOne),	13
Biological	Illustration	(Haeckel),	67
BlobDetection,	140
blocks	of	code,	23,	93–95
Bloom	(Hodgin),	73
Body	Dysmorphia	(Hodgin),	145–146
“boids”	model,	81
books
dynamic	typography	based	on,	114–115,	116–117,	118–119
reactive	graphics	in,	16–17
Boolean	data,	25
Born	magazine,	106–107
bounce,	91
Box2D	for	Processing,	95
brackets
arguments	in,	22
curly,	23
square,	28
Bridge	Hypothesis	(Watz),	39
brightness()	function,	154,	156–158
Brown,	Daniel,	84–87

C
Caligraft	(Marxer),	99
Carter,	Jed,	172
Casa	da	Musica	identity	(Sagmeister	&	Walsh),	53
Cascade	(Thorp),	178–179
char	data	types,	120
charAt()	function,	122,	123
Cho,	Peter,	109
Ciampaglia,	Giovanni	Luca,	176–177
class	programming,	93–95
Cleveland	Museum	of	Art,	147–149
Cloud	Forest-Nebelwald	(Lippmann),	74
code
animation	using,	124–125
arguments	in,	22
blocks	of,	23,	93–95
bounce	using,	91
brightness()	function	in,	154,	156–158
charAt()	function	in,	122,	123
class	programming	using,	93–95
code	libraries	for,	95,	140,	144,	155
color	using,	120,	152–159
comments	in,	23
computer	vision	libraries	for,	140
creativity	and,	12–13,	188–189
as	data	visualization	tool,	162–163
decision	making	in,	25–29
designers	using	(see	designers)
digital	environments	via,	88–95
dist()	function	in,	158
draw()	function	in,	28,	40
drawing	with	numbers	via,	32–33,	44,	46,	48,	52,	53,	56–63
drawLetter()	function	in,	125
dynamic	typography	using,	98,	99,	100,	102,	103,	104,	108,	110,	114,	120–127
elasticity	and	spring	using,	92
ellipse()	function	in,	56–57
environmental	forces	via,	89–92,	94–95
equals()	function	in,	122
external	data	using,	162–163,	165,	166–167,	168,	171,	173,	178,	180,	182–187
fill()	function	in,	120

float	data	in,	24–25,	184
friction	and	damping	using,	89–90
functions	in,	22–23	(see	also	specific	functions)	get()	function	in,	152–153,	157
getChild()	function	in,	187
getFloat()	function	in,	184
getInt()	function	in,	184
getRowCount()	function	in,	185
getString()	function	in,	184
getting	started	using,	18–21
grammar	and	syntax,	23
gravity	using,	90,	94–95
green	screening	using,	158–159
growth	and	form	via,	66,	68,	69,	72,	73–75,	77,	79,	88–95
“if”	statements	in,	25–26,	91
image()	function	in,	152–153
importing	live	video	sources	via,	155–156
indexOf(string)	function	in,	122
int()	function	in,	183
integer	data	in,	24,	183,	184
length()	function	in,	122,	123
line()	function	in,	56
lists	and	arrays	in,	28–29,	95,	157,	182–183	(see	also	String	data)	loadFont()	function	in,	121
loadImage()	function	in,	152–153
loadStrings()	function	in,	126–127,	182
loadTable()	function	in,	183–184
loadXML()	function	in,	186
loops	in,	26,	28,	29,	40,	59–60,	61,	69,	73,	90,	95,	123,	153,	155,	157,	183,	185
loops	in	the	structure	in,	28
manipulating	medium	via,	12–13
map()	function	in,	154
mathematical	symbols	in,	24,	25–26
moveLetter()	function	in,	125
object	oriented	programming	using,	78,	93–95,	124–125
PFont	class	in,	121
PImage	class	in,	152–153
pixel[]	alternative	in,	157
point()	function	in,	56
popMatrix()	function	in,	62
programming	languages	in,	12,	15,	18–21,	22,	164–165	(see	also	processing)	pushMatrix()	function	in,
62

radians()	function	in,	63,	88
random()	function	in,	60–61

rect()	function	in,	56–57
red(),	green(),	blue()	functions	in,	154,	158–159
repetition	in,	40,	59–60,	61,	69,	72,	73–75	(see	also	loops)	rotate	function	in,	62–63
seeing	the	world	using,	134,	138,	140,	144,	147,	152–159
setup()	function	in,	28
sine	waves	in,	72,	88–89
split()	function	in,	122,	126
splitTokens()	function	in,	126
String	data	in,	25,	120,	121–122,	123–124,	126–127,	182–183,	184
subString()	function	in,	122
text()	function	in,	120,	123
text	in,	110,	114,	120–124,	126–127,	182
textFont()	function	in,	121
textSize()	function	in,	120
textWidth()	function	in,	124
translate()	function	in,	62–63
triangle()	function	in,	56
user-defined	functions	in,	27
variable	data	types	in,	24–25	(see	also	float	data;	integer	data;	String	data)	variables	in,	23–25,	52,	58–
59,	69,	93,	121–122

video	library	for,	155
vocabulary	and	instructions	for,	22–29
wind	using,	91–92
Code-Type	(Shim),	99
Collections	Wall	(Cleveland	Museum	of	Art),	147
color
brightness	of,	154,	156–158
as	data	type,	152
drawing,	57–58
dynamic	typography	in,	120
external	data	displayed	via,	168,	169,	172,	174,	176
fill()	function	for,	120
grayscale	values,	57,	144
pixels	of,	136–138,	152–157
red(),	green(),	blue()	functions,	154,	158–159
RGB	color	range,	57–58,	136,	152,	154,	158–159,	172
seeing	the	world	in,	136–138,	140,	144,	152–159
from	static	images,	152–153
“Color	Typewriter”	(Maeda),	112
Comma	Separated	Values	(CSV),	165,	182–183
comments,	23
Conditional	Design	Group,	70–71

conditional	(“if”)	statements,	25–26,	91
constructor	function,	94
CSS,	20

D
Dandelion	Interactive	(Sennep	and	Yoke),	64,	80–81
data-driven	graphic	design.	See	also	each	topic	below	for	additional	detail
designers	and	code	for,	9–29
drawing	with	numbers,	31–63
dynamic	typography	in,	97–127
external	data	in,	161–187
growth	and	form	in,	65–95
overview	of,	6–7,	188–189
seeing	the	world	in,	129–159
decision	making,	25–29
Design	by	Numbers,	14,	15
Design	IO,	54–55
designers.	See	also	exemplars	of	specific	designers
Daniel	Brown	as,	84–87
code	used	by	(see	code)
creative	opportunities	for,	10–11
Emily	Gobeille	as,	54,	150–151
John	Maeda	as,	14–17,	112
Ariel	Malka	as,	118–119
reactive	graphics	by,	10–11,	16–17
Jer	Thorp	as,	178–181
Theo	Watson	as,	54,	150–151
Deutsche	Telekom,	166
Diaghilev	Mask	(Hellicar	&	Lewis),	142–143
dist()	function,	158
Donwood,	Stanley,	78–79
draw()	function,	28,	40
drawing	with	numbers
Bridge	Hypothesis	as,	39
Casa	da	Musica	identity	as,	53
code	for,	32–33,	44,	46,	48,	52,	53,	56–63
colors	in,	57–58
complexity	from	simplicity	in,	44–45
creating	the	canvas	for,	56
drawing	instructions	for,	32–33
dynamic/generative	drawings	in,	52–53
EMScom	logo	as,	42–43
exemplars	of,	38–39,	42–43,	44–45,	46–47,	50,	51,	53,	54–55
Here	to	There	as,	54–55

Illuminations	B	as,	38
iO	visual	identity	as,	46–47
Islamic	decorative	art	as,	34–35
Lovebytes	logo	as,	44–45
mouse	movement	in,	52,	59
number	patterns	in,	34–39
numbers	and	number	sequences	in,	32–33
Perlin	Scape	as,	50
Process	6	as,	41
Process	16	as,	49
Puddle	Builder	as,	36–37
random	drawings	in,	48–50,	60–61
repetition	and	systematic	drawings	in,	40–41,	44,	59–60,	61
shapes	in,	33,	56–57
10,000	Digital	Paintings	as,	51
translation	and	rotation	in,	62–63
2D	SuperShapes	as,	33
variables	in,	52,	58–59
drawLetter()	function,	125
Dual	Gardens	(ART+COM),	68–69
dynamic	typography
abstracting	text	in,	110
Born	magazine	showing,	106–107
Caligraft	showing,	99
code	for,	98,	99,	100,	102,	103,	104,	108,	110,	114,	120–127
Code-Type	showing,	99
exemplars	of,	99,	102,	104–105,	106–107,	110–111,	114–115,	116–117
external	data	for,	101–103,	104,	110,	116–117,	126–127
For	All	Seasons	app	showing,	104–105
form	and	content	of,	98–103
Generative	Gatsby	showing,	116–117
He	Liked	Thick	Word	Soup	showing,	118–119
Javascriptorium	showing,	118
keyboard	user	input	for,	101,	110,	112
large	text	files	for,	112–113
letter	shapes	from	data	in,	101–103
Ariel	Malka	creating,	118–119
mis.shap.en.ness	showing,	102
movement	and	interactive	type	in,	104–109,	118,	124–125
Poetry	on	the	Road	showing,	96,	110–111
rules	and	transformations	in,	99
See	the	Sounds	of	Nature	showing,	103

shape	path	and	points	in,	100
String	data	in,	120,	121–122,	123–124,	126–127
text	as	data	source	for,	110–115,	120–124,	126–127
type	as	form	in,	98
Understanding	Shakespeare	project	showing,	114–115
variables	in,	121–122
Walking	Together	What	Remains	showing,	107
Wordles/Wordle	Cloud	showing,	112,	113
Wordscapes	showing,	109
Zoology	showing,	107
dynamic/generative	drawings,	52–53,	70–71,	85.	See	also	dynamic	typography

E
elasticity	and	spring,	82–83,	92
ellipse()	function,	56–57
EMScom	logo,	42–43
environmental	forces,	82–83,	89–92,	94–95
equals()	function,	122
Everywhere,	83
external	data
APIs	extracting,	165,	166,	168,	173
Cascade	showing,	178–179
code	as	data	visualization	tool,	162–163
code	for	extracting	and	using,	162–163,	165,	166–167,	168,	171,	173,	178,	180,	182–187
Comma	Separated	Values	as,	165,	182–183
data	sources	of,	164–165,	182–187
data-lived	life	based	on,	162
drawing	with	numbers	using,	32,	33,	52
dynamic	typography	using,	101–103,	104,	110,	116–117,	126–127
exemplars	of,	166–167,	168–169,	170–171,	172,	174–175,	176–177
Eyes	on	the	Sky	showing,	172
4010	Facebook	Tree	showing,	166–167
GPS	data	as,	116,	162,	165,	166,	169,	170,	182
Grid	showing,	163
HTML,	164
mapping	data	using,	166–171,	185
mapping	ideas	and	emotions	using,	173–177
mapping	journeys	using,	169–171
mapping	people	using,	166–169
mapping	society	using,	171–177
NodeBox	3	using,	20
Notabilia	showing,	176–177
138	Years	of	Popular	Science	showing,	180
Paint	with	Your	Feet	showing,	170–171
See	Something	Say	Something	showing,	168
Tab	Separated	Values	as,	165,	185
tabular,	165,	183–184
text	files	as,	182
Jer	Thorp	using,	178–181
Tourists	and	Locals	showing,	160,	168	We	Feel	Fine	showing,	174–175
XML,	164–165,	186–187
Eyes	on	the	Sky	(Carter),	172

F
Facebook,	165,	166–167,	173
faces,	finding,	142,	147–148
Fibonacci	sequence,	72
FIELD,	13,	51
fill()	function,	120
Fischer,	Eric,	160,	168–169
Flickr,	168
float	data,	24–25,	184
Flying	Letters	(Maeda),	17
fonts,	text,	120–121
For	All	Seasons	app	(Müller),	104–105
form.	See	growth	and	form
forward	slash	symbols,	23
4010	Facebook	Tree	(onformative	design),	166–167
friction	and	damping,	89–90
Fry,	Ben,	15
functions,	22–23
brightness()	function,	154,	156–158
charAt()	function,	122,	123
classes	as	collections	of,	93
constructor	function,	94
dist()	function,	158
draw()	function,	28,	40
drawing,	56–63
drawLetter()	function,	125
ellipse()	function,	56–57
equals()	function,	122
fill()	function,	120
get()	function,	152–153,	157
getChild()	function,	187
getFloat()	function,	184
getInt()	function,	184
getRowCount()	function,	185
getString()	function,	184
image()	function,	152–153
indexOf(string)	function,	122
int()	function,	183
length()	function,	122,	123
line()	function,	56

loadFont()	function,	121
loadImage()	function,	152–153
loadStrings()	function,	126–127,	182
loadTable()	function,	183–184
loadXML()	function,	186
map()	function,	154
moveLetter()	function,	125
point()	function,	56
popMatrix()	function,	62
pushMatrix()	function,	62
radians()	function,	63,	88
random()	function,	60–61
rect()	function,	56–57
red(),	green(),	blue()	functions,	154,	158–159
rotate	function,	62–63
setup()	function,	28
split()	function,	122,	126
splitTokens()	function,	126
subString()	function,	122
text()	function,	120,	123
textFont()	function,	121
textSize()	function,	120
textWidth()	function,	124
translate()	function,	62–63
triangle()	function,	56
user-defined,	27
Futura	Epsis	1,	163

G
generative	drawings.	See	dynamic/generative	drawings
Generative	Gatsby	(Kuchinov),	116–117
gestures
dynamic	typography	via,	104
seeing	the	world	using,	144,	146,	147,	150–151
get()	function,	152–153,	157
getChild()	function,	187
getFloat()	function,	184
getInt()	function,	184
getRowCount()	function,	185
getString()	function,	184
Gobeille,	Emily,	54,	150–151
Godrich,	Nigel,	78–79
GPS	data,	116,	162,	165,	166,	169,	170,	182
grammar	and	syntax,	23
gravity,	82–83,	90,	94–95
grayscale	values,	57,	144
The	Great	Gatsby	(Fitzgerald),	117
Green,	Chris,	107
green	screen	technology,	132,	138,	150,	158–159
Grid	(Futura	Epsis	1),	163
growth	and	form
Biological	Illustration	showing,	67
Bloom	showing,	73
“boids”	model	showing,	81
bounce	in,	91
Daniel	Brown	creating,	84–87
class	programming	for,	93–95
Cloud	Forest-Nebelwald	showing,	74
code	for,	66,	68,	69,	72,	73–75,	77,	79,	88–95
complex	mathematical	models	for,	73–75
Dandelion	Interactive	showing,	64,	80–81
digital	eco-systems	of,	76–81
drawing	as	growth,	69
Dual	Gardens	showing,	68–69
elasticity	and	spring	in,	82–83,	92
environmental	forces	on,	82–83,	89–92,	94–95
exemplars	of,	70–71,	74,	77,	78–79,	80–81,	82
friction	and	damping	in,	89–90

gravity	in,	82–83,	90,	94–95
Interactive	Logograph	showing,	77
Koch	snowflake	showing,	75
L	system	for,	75
life-like	behaviors	in,	78–81,	82
Lightweeds	showing,	76,	77
Making	of	Hatching	showing,	70
Making	of	Knots	showing,	71
Mulberry	Love	Blossoms	showing,	86
nature	as	inspiration	for,	66–69
Oasis	showing,	83
object	oriented	programming	for,	78,	93–95
Ollo	Bibliotheque	Design	showing,	82
On	Growth	and	Form	showing,	84–85
organic	shapes:	spirals	and	waves	in,	72,	88–89
PolyFauna	showing,	78–79
recursion/recursive	shapes	in,	73–75
repetition	in,	69,	72,	73–75
“seed”	for,	68,	69,	77
Sunflower	and	Flocking	Birds	showing,	66
wind	in,	91–92
Gysin,	Andreas,	37

H
Haeckel,	Ernst,	66,	67
Harris,	Jonathan,	174–175
He	Liked	Thick	Word	Soup	(Malka),	118–119
Heijdens,	Simon,	76,	77
Hellicar	and	Lewis,	142–143
Here	to	There	(Design	IO),	54–55
Hodgin,	Robert,	73,	145–146
HTML	(HyperText	Markup	Language),	20,	164

I
“if”	statements,	25–26,	91
Illuminations	B	(Watz),	38
image()	function,	152–153
“image	mosaic,”	138
indexOf(string)	function,	122
infrared	light,	146
int()	function,	183
integer	data,	24,	183,	184
Interactive	Logograph	(Levin),	77
Interactive	Portfolio	Table	(Moving	Brands),	134–135
interactive	technology
dynamic	typography	using,	104–109,	118,	124–125
growth	and	form	via,	66,	77,	80–81,	82,	83,	84,	86
programming	languages	including,	18,	42–43
reactive	graphics	and,	10,	16
seeing	the	world	using,	130,	131,	132,	134–135,	138,	140,	141,	142–143,	145–146,	147–151
iO	visual	identity,	46–47
Islamic	decorative	art,	34–35

J
JavaScript,	20,	21
Javascriptorium	(Malka),	118

K
Kalaydzhieva,	Elena,	103
Kamvar,	Spe,	174–175
keyboard	input,	101,	110,	112
Kinect	camera,	141,	144–146,	147
Knee	Deep	(Watson	&	Gobeille),	150–151
Koch	snowflake,	75
Kuchinov,	Vladimir	V.,	116–117

L
L	system	(Lindenmayer	system),	75
Lavandera,	Ernesto,	107
length()	function,	122,	123
Levin,	Golan,	77
Lightweeds	(Heijdens),	76,	77
Line	and	Shape	(Cleveland	Museum	of	Art),	149
line()	function,	56
Lippmann,	Holger,	50,	74
lists	and	arrays,	28–29,	95,	157,	182–183.	See	also	String	data	loadFont()	function,	121
loadImage()	function,	152–153
loadStrings()	function,	126–127,	182
loadTable()	function,	183–184
loadXML()	function,	186
Local	Projects	(Cleveland	Museum	of	Art),	147–149
London	College	of	Fashion,	134–135
loops,	26
drawing	with	numbers	using,	40,	59–60,	61
dynamic	typography	using,	123
external	data	using,	183,	185
“for”	loops,	26,	29,	40,	59–60,	61,	95,	123,	153,	155,	157,	183,	185
growth	and	form	using,	69,	73,	90,	95
loops	in	the	structure,	28
nesting,	60,	153,	155,	157
seeing	the	world	using,	153,	155,	157
“while”	loops,	40
Love	Blossoms	(Brown),	86
Lovebytes	logo,	44–45

M
Maeda,	John,	14–17,	112
Make	a	Face	(Cleveland	Museum	of	Art),	147–148
Making	of	Hatching	(Conditional	Design),	70
Making	of	Knots	(Conditional	Design),	71
Malka,	Ariel,	118–119
map()	function,	154
Marxer,	Ricard,	99
mathematical	symbols,	24,	25–26
McCandless,	David,	161
Mesuerem	Yoram,	132
Milk,	Chris,	141
mis.shap.en.ness	(Ali),	102
Morris,	William,	9
mouse	movement
drawing	with	numbers	using,	52,	59
dynamic	typography	via,	101,	104,	121–122
moveLetter()	function,	125
movement
animation	as,	81,	124–125
drawing	with	numbers	creating,	58
dynamic	typography	for,	104–109,	118,	124–125
gestures	as,	104,	144,	146,	147,	150–151
growth	and	form	for,	66,	72,	76,	77,	79,	80,	81,	82,	83,	88–92,	94
live	video	source	showing,	155–156
mouse,	52,	59,	101,	104,	121–122
reactive	graphics	and,	10
seeing	the	world	using,	132,	138–139,	141,	144,	146,	147,	150–151,	155–156
Moving	Brands,	42–43,	46–47,	134–135
Mulberry	Love	Blossoms	(Brown),	86
Müller,	Andreas,	104–105
Müller,	Boris,	96,	110–111

N
Nanika,	104–105
nature,	growth	and	form	inspired	by,	66–69
Natzke,	Erik,	107
New	York	Times,	178–179
Nightingale,	Florence,	162
Nike	+,	169,	170–171
Nintendo	Wii,	138,	144
NodeBox	3,	20
NodeBox	Live,	20,	21
Norwegian	Wood	(Hellicar	&	Lewis),	143
Notabilia	(Taraborelli,	Ciampaglia,	&	Stefaner),	176–177
numbers
Design	by	Numbers,	14,	15
drawing	with,	31–63
dynamic,	52–53
external	data	as,	182–183,	185
Fibonacci	sequence,	72
grayscale,	57,	144
integer	data,	24,	183,	184
number	patterns,	34–39,	72
numbers	and	number	sequences,	32–33,	72,	88
random,	48–50,	60–61
text	processed	as,	110
variable,	58–59	(see	also	variables)

O
Oasis	(Everywhere),	83
object	oriented	programming	(OOP),	78,	93–95,	124–125
Ollo	Bibliotheque	Design,	82
On	Growth	and	Form	(Brown),	84–85
On	Growth	and	Form	(Thompson),	66,	85
138	Years	of	Popular	Science	(Thorp),	180
onformative	design,	166–167
Open	Kinect	for	Processing,	144
OpenCV	for	Processing,	140
openFrameworks,	18,	54
organic	shapes,	72,	88–89

P
Paint	with	Your	Feet	(YesYesNo),	170–171
Party	Wall	(Sennep),	139
Perlin,	Ken,	50
perlin	noise,	50
Perlin	Scape	(Lippmann),	50
PFont	class,	121
PImage	class,	152–153
pixel[]	alternative,	157
Pixel	Data	app	(Savery),	136–137
Poetry	on	the	Road	(Müller),	96,	110–111
point()	function,	56
Pollock,	Jackson,	48
PolyFauna	(Radiohead,	et	al.),	78–79
popMatrix()	function,	62
Popular	Science	magazine,	180
Process	6	(Reas),	41
Process	16	(Reas),	49
processing
animation	using,	124–125
bounce	using,	91
Box2D	for	Processing,	95
brightness()	function	in,	154,	156–158
charAt()	function	in,	122,	123
class	programming	using,	93–95
code	libraries	for,	95,	140,	144,	155
color	using,	120,	152–159

computer	vision	libraries	for,	140
decision	making	in,	25–29
as	default	language	in	book,	21
development	of,	15
dist()	function	in,	158
draw()	function	in,	28
drawing	with	numbers	using,	53,	56–63
drawLetter()	function	in,	125
dynamic	typography	using,	103,	120–127
elasticity	and	spring	using,	92
ellipse()	function	in,	56–57
environmental	forces	via,	89–92,	94–95
equals()	function	in,	122
external	data	use	via,	166–167,	178,	180,	182–187
fill()	function	in,	120
float	data	in,	24–25,	184
friction	and	damping	using,	89–90
functions	in,	22–23,	27	(see	also	specific	functions)	get()	function	in,	152–153,	157
getChild()	function	in,	187
getFloat()	function	in,	184
getInt()	function	in,	184
getRowCount()	function	in,	185
getString()	function	in,	184
grammar	and	syntax	in,	23
gravity	using,	90,	94–95
green	screening	using,	158–159
growth	and	form	using,	88–95
“if”	statements	in,	25–26,	91
image()	function	in,	152–153
importing	live	video	sources	via,	155–156
indexOf(string)	function	in,	122
int()	function	in,	183
integer	data	in,	24,	183,	184
length()	function	in,	122,	123
line()	function	in,	56
lists	and	arrays	in,	28–29,	95,	157,	182–183	(see	also	String	data)	loadFont()	function	in,	121
loadImage()	function	in,	152–153
loadStrings()	function	in,	126–127,	182
loadTable()	function	in,	183–184
loadXML()	function	in,	186
loops	in,	26,	28,	29,	59–60,	61,	90,	95,	123,	153,	155,	157,	183,	185
loops	in	the	structure	in,	28

map()	function	in,	154
mathematical	symbols	in,	24,	25–26
moveLetter()	function	in,	125
object	oriented	programming	using,	93–95,	124–125
Open	Kinect	for	Processing,	144
OpenCV	for	Processing,	140
overview	of,	18
PFont	class	in,	121
PImage	class	in,	152–153
pixel[]	alternative	in,	157
point()	function	in,	56
popMatrix()	function	in,	62
pushMatrix()	function	in,	62
radians()	function	in,	63,	88
random()	function	in,	60–61
rect()	function	in,	56–57
red(),	green(),	blue()	functions	in,	154,	158–159
reference	guide,	53
rotate	function	in,	62–63
screen	shot	of,	19
seeing	the	world	using,	134,	140,	144,	152–159
setup()	function	in,	28
sine	waves	in,	88–89
split()	function	in,	122,	126
splitTokens()	function	in,	126
String	data	in,	25,	120,	121–122,	123–124,	126–127,	182–183,	184
subString()	function	in,	122
text()	function	in,	120,	123
text	in,	120–124,	126–127,	182
textFont()	function	in,	121
textSize()	function	in,	120
textWidth()	function	in,	124
translate()	function	in,	62–63
triangle()	function	in,	56
user-defined	functions	in,	27
variable	data	types	in,	24–25	(see	also	float	data;	integer	data;	String	data)	variables	in,	23–24,	58–59,
93,	121–122

video	library	for,	155
vocabulary	and	instructions	for,	22–29
website	for,	18
wind	using,	91–92
programming	code.	See	code
programming	languages

programming	languages
actionScript	as,	21
code	libraries	for,	95,	140,	144,	155
commonly	used,	18–21
CSS	as,	20
Design	by	Numbers	as,	14,	15
drawing	with	numbers	using,	32,	52,	53,	56–63
dynamic	typography	using,	103,	120–127
external	data	use	via,	166–167,	178,	180,	182–187
functions	in,	22–23,	27	(see	also	specific	functions)	grammar	and	syntax	in,	23
growth	and	form	using,	88–95
HTML	as,	20,	164
JavaScript	as,	20,	21
lists	and	arrays	in,	28–29,	95,	157,	182–183	(see	also	String	data)	loops	in,	26,	28,	29,	40,	59–60,	61,
90,	95,	123,	153,	155,	157,	183,	185

mathematical	symbols	in,	24,	25–26
NodeBox	Live	as,	20,	21
NodeBox3	as,	20
object	oriented	programming	using,	93–95,	124–125
open	source,	18
processing	as,	15,	18,	19,	21,	22–29,	53,	56–63,	88–95,	103,	120–127,	134,	140,	144,	152–159,	166–
167,	178,	180,	182–187

seeing	the	world	using,	134,	140,	144,	152–159
text	in,	120–124,	126–127,	182
user-defined	functions	in,	27
variables	in,	23–25,	52,	58–59,	93,	121–122
vocabulary	and	instructions	for,	22–29
VVVV	as,	18,	19
XML	as,	164–165,	186–187
Project	Gutenberg,	113,	126
Puddle	Builder,	36–37
pushMatrix()	function,	62
Pythagorus,	31

R
radians()	function,	63,	88
Radiohead,	78–79
random	drawings,	48–50,	60–61
random()	function,	60–61
Random	International,	128,	133
reactive	graphics,	10–11,	16–17,	104,	134.	See	also	interactive	technology	The	Reactive	Square	(Maeda),

16–17
Reactivision	technology,	134
Reas,	Casey,	15,	41,	49,	181
rect()	function,	56–57
recursion/recursive	shapes,	73–75
red(),	green(),	blue()	functions,	154,	158–159
repetition.	See	also	loops
animation	using,	124
drawing	with	numbers	using,	40–41,	44,	59–60,	61
growth	and	form	using,	69,	72,	73–75
Reynolds,	Craig,	81
RGB	color	range,	57–58,	136,	152,	154,	158–159,	172
rotate	function,	62–63

S
Sagmeister	and	Walsh,	53
Savery,	Matthieu,	136–137
Schmid,	Helmut,	97
Schwartz,	Lillian,	181
Seconde	Nature	(Universal	Everything),	8,	11
See	Something	Say	Something	(Fisher),	168
See	the	Sounds	of	Nature	(Kalaydzhieva),	103
seeing	the	world
augmented	reality	technology	for,	130,	131
Bede’s	World	Museum	app	as,	131
blobs	in,	140
Body	Dysmorphia	as,	145–146
code	for,	134,	138,	140,	144,	147,	152–159
Collections	Wall	as,	147
color	in,	136–138,	140,	144,	152–159
computer	vision,	136–138,	140
depth	camera	for,	144
Diaghilev	Mask	as,	142–143
digital	mirrors	for,	133–135,	138,	155–156
digital	spaces	for,	130–131
exemplars	of,	132,	134–135,	136–137,	139,	141,	142–143,	145–146,	147–149
finding	edges	in,	140
finding	faces	in,	142,	147–148
finding	individuals	in,	142,	146
gallery/museum	spaces	for,	130,	147–149
game	play	for,	131,	142,	144
Emily	Gobeille	creating,	150–151
green	screen	technology	for,	132,	138,	150,	158–159
“image	mosaic”	as,	138
infrared	light	in,	146
Interactive	Portfolio	Table	as,	134–135
interactive	technology	for,	130,	131,	132,	134–135,	138,	140,	141,	142–143,	145–146,	147–151
Knee	Deep	as,	150–151
large	screen	projections	for,	132
Line	and	Shape	as,	149
live	video	source	for,	155–156
Local	Projects	as,	147–149
Make	a	Face	as,	147–148
movement/moving	images	for,	132,	138–139,	141,	144,	146,	147,	150–151,	155–156

Party	Wall	as,	139
retail	spaces	for,	130
seeing	distance	and	proximity,	144–151
seeing	people,	140–143,	146
small	screen	displays	for,	133–135
smartphone	technology	for,	130,	136–137
sound	for,	143
static	images	for,	138,	152–153
Strike	a	Pose	as,	147
The	Treachery	of	Sanctuary	as,	141
visual	noise	in,	146
Vitrine	as,	132
Theo	Watson	creating,	150–151
ways	of	seeing,	136–139
You	Fade	to	Light	as,	128,	133
semi-colons,	23
Sennep,	64,	80–81,	139
setup()	function,	28
shapes
classes	to	create	multiple,	94–95
drawing,	33,	56–57
dynamic	typography	using,	100,	101–103
growth	and	form	using,	72,	73–75,	88–89,	94–95
seeing	the	world	in,	140
Shiffman,	Daniel,	144
Shim,	Kyuha,	99
sine	waves,	72,	88–89
smartphone	technology,	130,	136–137
social	media,	116,	165,	166–169,	173
SomeOne,	13
sound
code	to	visualize	images	from,	163
dynamic	typography	via,	101,	103,	104,	116–117
external	data	from,	163
reactive	graphics	using,	10–11,	16–17
seeing	the	world	via,	143
spirals	and	waves,	72,	88–89
split()	function,	122,	126
splitTokens()	function,	126
Stefaner,	Moritz,	176–177
Strike	a	Pose	(Cleveland	Museum	of	Art),	147
String	data,	25,	120,	121–122,	123–124,	126–127,	182–183,	184

subString()	function,	122
Sunflower	and	Flocking	Birds,	66
Swift,	Jonathan,	129

T
Tab	Separated	Values	(TSV),	165,	185
tabular	data,	165,	183–184
Tap,	Type,	Write	(Maeda),	17
Taraborelli,	Dario,	176–177
10,000	Digital	Paintings	(Field),	51
text()	function,	120,	123
textFont()	function,	121
textSize()	function,	120
textWidth()	function,	124
Thiel,	Stephan,	114–115
Thompson,	D’Arcy	Wentworth,	65,	66,	85
Thorp,	Jer,	178–181
Tourists	and	Locals	(Fisher),	160,	168
translate()	function,	62–63
The	Treachery	of	Sanctuary	(Milk),	141
triangle()	function,	56
12	o’clocks	(Maeda),	17
Twitter,	116,	165,	168,	173
2D	SuperShapes	(Ali),	33
typography.	See	dynamic	typography

U
Ulysses	(Joyce),	118
Understanding	Shakespeare	project	(Thiel),	114–115
Uniqlo	Stripes	(Hellicar	&	Lewis),	143
Unity,	141
Universal	Everything,	8,	11,	44–45,	78–79
user	gestures.	See	gestures
user-defined	functions,	27

V
Vanetti,	Sidi,	37
variables,	23–25
classes	as	collections	of,	93
drawing	with	numbers	using,	52,	58–59
dynamic	typography	using,	121–122
growth	and	form	using,	69
variable	data	types,	24–25	(see	also	float	data;	integer	data;	String	data)	video	sources,	importing	live,
155–156

visual	noise,	146
Vitrine	(Mesuere	&	Bagger),	132
VVVV,	18,	19

W
Walking	Together	What	Remains	(Green	&	Natzke),	107
Watson,	Theo,	54,	150–151
Watz,	Marius,	38–39
We	Feel	Fine	(Harris	&	Kamvar),	174–175
West,	Sasha,	107
Wikipedia,	176–177
wind,	91–92
Wordles/Wordle	Cloud,	112,	113
Wordscapes	(Cho),	109

X
Xbox,	144
XML	(Extensible	Markup	Language),	164–165,	186–187

Y
YesYesNo,	170–171
Yoke,	64,	80–81
You	Fade	to	Light	(Random	International),	128,	133

Z
Zoology	(West	&	Lavandera),	107

ACKNOWLEDGMENTS

I	 would	 like	 to	 express	 my	 sincere	 thanks	 to	 all	 those	 who	 generously
contributed	 their	 work,	 without	 which	 this	 book	would	 not	 have	 been
possible.	I	would	also	like	to	thank	all	those	who	helped	with	the	writing
and	editing	process	by	offering	comments,	advice,	and	encouragement.

Special	 thanks	go	to	my	wife,	Loraine,	and	son,	James,	 for	their	constant
support	and	patience.

The	 publishers	 would	 like	 to	 thank	 Gavin	 Allanwood,	 Jamie	 Steane,
Michael	Salmond,	Joseph	Reinsel,	Joel	Swanson,	and	Wayne	Madsen.

Fairchild	Books
An	imprint	of	Bloomsbury	Publishing	Plc
Imprint	previously	known	as	AVA	Publishing

50	Bedford	Square 1385	Broadway
London New	York
WC1B	3DP NY	10018
UK USA

www.bloomsbury.com

This	 electronic	 edition	 published	 in	 2017	 by	 Bloomsbury	 Publishing	 Plc	 FAIRCHILD
BOOKS,	BLOOMSBURY	and	the	Diana	logo	are	trademarks	of	Bloomsbury	Publishing
Plc

©	Bloomsbury	Publishing	Plc,	2016

Andrew	Richardson	has	asserted	his	 right	under	 the	Copyright,	Designs	and	Patents
Act,	1988,	to	be	identified	as	Author	of	this	work.

All	rights	reserved	
You	may	 not	 copy,	 distribute,	 transmit,	 reproduce	 or	 otherwise	 make	 available	 this
publication	 (or	 any	 part	 of	 it)	 in	 any	 form,	 or	 by	 any	 means	 (including	 without
limitation	electronic,	digital,	optical,	mechanical,	photocopying,	printing,	 recording	or
otherwise),	without	the	prior	written	permission	of	the	publisher.	Any	person	who	does
any	 unauthorised	 act	 in	 relation	 to	 this	 publication	 may	 be	 liable	 to	 criminal
prosecution	and	civil	claims	for	damages.

No	 responsibility	 for	 loss	 caused	 to	 any	 individual	 or	 organization	 acting	 on	 or
refraining	from	action	as	a	result	of	the	material	in	this	publication	can	be	accepted	by
Bloomsbury	or	the	author.

British	Library	Cataloguing-in-Publication	Data
A	catalogue	record	for	this	book	is	available	from	the	British	Library.
ISBN:	978-1-4725-7830-3	(PB)
ISBN:	978-1-4742-5977-4	(eBook)
ISBN:	978-1-4725-7831-0	(ePDF)

Library	of	Congress	Cataloging-in-Publication	Data
Richardson,	Andrew	(Lecturer	in	Design)
Data-driven	 graphic	 design:	 creative	 coding	 for	 visual	 communication	 /	 Andrew
Richardson	pages	cm
Includes	index.
ISBN	978-1-4725-7830-3	(pbk.)	–	ISBN	978-1-4725-7831-0	(epdf)	–	1.	Graphic	arts–Data
processing.	2.	Computer	programming.	1.	Title.	T385.R4966	2016
006.6—dc23

http://www.bloomsbury.com

2015008891
Series:	Required	Reading	Range,	1234567X

To	find	out	more	about	our	authors	and	their	books	please	visit	www.bloomsbury.com
where	you	will	find	extracts,	author	interviews	and	details	of	forthcoming	events,	and
to	 be	 the	 first	 to	 hear	 about	 latest	 releases	 and	 special	 offers,	 sign	 up	 for	 our
newsletters.

http://www.bloomsbury.com
http://www.bloomsbury.com/newsletter

	Title Page
	CONTENTS
	INTRODUCTION
	CHAPTER ONE DESIGNERS AND CODE
	The Computer as a Creative Environment
	Code: Manipulating the Medium
	Getting Started
	Code: Vocabulary and Instructions

	CHAPTER TWO DRAWING WITH NUMBERS
	Drawing Instructions
	Number Patterns
	Repetition: Systematic Drawings
	Complexity from Simplicity
	Random Drawings
	Dynamic/Generative Drawings
	Code: Drawing Functions

	CHAPTER THREE GROWTH AND FORM
	Nature as Inspiration
	Drawing as Growth
	Organic Shapes: Spirals and Waves
	Complex Mathematical Models
	Digital Eco-Systems
	Environmental Forces: Gravity, Elasticity
	Spotlight on Daniel Brown
	Code: Digital Environments

	CHAPTER FOUR DYNAMIC TYPOGRAPHY
	Form and Content
	Movement and Interactive Type
	Text as Data Source
	External Data
	Spotlight on Ariel Malka
	Code: Computational Typography

	CHAPTER FIVE SEEING THE WORLD
	Digital Spaces
	Large Screen Projections: Body Movement
	Small Screen Displays: Digital Mirrors
	Ways of Seeing
	Seeing People
	Seeing Distance and Proximity
	Spotlight on Theo Watson and Emily Gobeille
	Code: Seeing the World

	CHAPTER SIX LARGE AND LIVE EXTERNAL DATA
	The Data-lived Life
	Code as a Data Visualization Tool
	Data Sources
	Mapping Data
	Mapping Society
	Spotlight on Jer Thorp
	Code: Getting and Using External Data
	Conclusion

	APPENDIX
	Bibliography and Webography
	Picture Credits
	Index
	Acknowledgments

	eCopyright

