

Desktop Audio Technology

Titles in the Series

Acoustics and Psychoacoustics, 2nd edition (with website)
David M. Howard and James Angus

Composing Music with Computers (with CD-ROM)
Eduardo Reck Miranda

Computer Sound Design: Synthesis techniques and programming, 2nd edition
(with CD-ROM)
Eduardo Reck Miranda

Desktop Audio Technology: Digital audio and MIDI principles
Francis Rumsey

Digital Sound Processing for Music and Multimedia (with website)
Ross Kirk and Andy Hunt

Network Technology for Digital Audio
Andrew Bailey

Sound and Recording: An introduction, 4th edition
Francis Rumsey and Tim McCormick

Sound Synthesis and Sampling
Martin Russ

Sound Synthesis and Sampling CD-ROM
Martin Russ

Spatial Audio
Francis Rumsey

Desktop Audio
Technology
Digital audio and MIDI principles

Francis Rumsey

Focal Press
An imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington MA 01803

First published 2004

Copyright © 2004, Francis Rumsey. All rights reserved

The right of Francis Rumsey to be identified as the author of this work
has been asserted in accordance with the Copyright, Designs and
Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether
or not transiently or incidentally to some other use of this publication) without
the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed
to the publisher

Permissions may be sought directly from Elsevier’s Science and Technology Rights
Department in Oxford, UK: phone: (�44) (0) 1865 843830; fax: (�44) (0) 1865 853333;
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the
Elsevier homepage (www.elsevier.com), by selecting ‘Customer Support’
and then ‘Obtaining Permissions’

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 240 51919 1

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India
Printed and bound in the Netherlands

For information on all Focal Press publications visit our website at:
www.focalpress.com

Contents

Series introduction xiii

1 Introduction to desktop audio technology 1
1.1 About this book 1
1.2 Audio workstations 2
1.3 Audio and the computer industry 3
1.4 Audio and quality 3

2 Digital audio principles 5
2.1 Analog and digital information 5
2.2 Binary number systems 7

2.2.1 Basic binary 7
2.2.2 Negative numbers 9
2.2.3 Fixed- and floating-point representation 10
2.2.4 Logical operations 10

2.3 Basic A/D and D/A conversion of control information 11
2.4 A/D conversion of audio signals 13

2.4.1 Audio sampling 13
2.4.2 Filtering and aliasing 16
2.4.3 Quantisation 18
2.4.4 Relationship between sample resolution and sound quality 21
2.4.5 Use of dither 22
2.4.6 Types of dither 27
2.4.7 Oversampling in A/D conversion 29
2.4.8 Noise shaping in A/D conversion 30

2.5 D/A conversion 32
2.5.1 A basic D/A convertor 32
2.5.2 Oversampling in D/A conversion 33

v

2.6 Sound quality versus sample rates and resolutions 33
2.6.1 Psychoacoustic limitations 33
2.6.2 Sampling rate 34
2.6.3 Quantising resolution 37

2.7 Direct Stream Digital (DSD) 38
2.8 Changing the resolution of an audio signal (requantisation) 39
2.9 Dynamic range enhancement 41
2.10 Error correction 42
2.11 Introduction to digital audio signal processing 44

2.11.1 Gain changing (level control) 44
2.11.2 Crossfading 45
2.11.3 Mixing 46
2.11.4 Digital filters and equalisation 46
2.11.5 Digital reverberation and other effects 48
2.11.6 Dynamics processing 49
2.11.7 Sample rate conversion 50

2.12 Audio data reduction 51
2.12.1 Why reduce the data rate? 51
2.12.2 Lossless and lossy coding 52
2.12.3 MPEG – an example of lossy coding 53
2.12.4 Other data-reduced formats 56

Further reading 57

3 Recording, replay and editing principles 58
3.1 The sound file 58
3.2 RAM buffering 59
3.3 Disk drive performance issues 62
3.4 Allocation units or transfer blocks 64
3.5 Multichannel recording and replay 64

3.5.1 Multitrack or multichannel? 64
3.5.2 Inputs, outputs, tracks and channels 65
3.5.3 Track usage, storage capacity and disk assignment 66
3.5.4 Dropping-in 67

3.6 System latency 68
3.7 Principles of audio editing 69

3.7.1 Advantages of non-linear editing 69
3.7.2 Sound files and sound segments 69
3.7.3 Edit point handling 70
3.7.4 Crossfading 71
3.7.5 Editing modes 73
3.7.6 Simulation of ‘reel-rocking’ 77

4 MIDI and synthetic audio control 79
4.1 Background 79
4.2 What is MIDI? 81
4.3 MIDI and digital audio contrasted 81

Contents

vi

4.4 Basic MIDI principles 82
4.4.1 System specifications 82
4.4.2 Simple interconnection 83
4.4.3 MIDI channels 84
4.4.4 Message format 84

4.5 MIDI messages in detail 85
4.5.1 Channel and system messages contrasted 86
4.5.2 Note on and note off messages 86
4.5.3 Velocity information 87
4.5.4 Running status 88
4.5.5 Polyphonic key pressure (aftertouch) 88
4.5.6 Control change 89
4.5.7 Channel modes 91
4.5.8 Program change 93
4.5.9 Channel aftertouch 94
4.5.10 Pitch bend wheel 94
4.5.11 System exclusive 95
4.5.12 Universal system exclusive messages 95
4.5.13 Tune request 96
4.5.14 Active sensing 96
4.5.15 Reset 97

4.6 MIDI control of sound generators 97
4.6.1 MIDI note assignment in synthesisers

and samplers 97
4.6.2 Polyphony, voice and note assignment 100
4.6.3 MIDI functions of sound generators 100
4.6.4 MIDI data buffers and latency 100
4.6.5 Handling of velocity and aftertouch data 102
4.6.6 Handling of controller messages 102
4.6.7 Registered and non-registered parameter numbers 105
4.6.8 Voice selection 106

4.7 MIDI tuning control 106
4.8 General MIDI 108
4.9 Scalable polyphonic MIDI (SPMIDI) 110
4.10 Standard MIDI files (SMF) 110

4.10.1 General structure of MIDI files 111
4.10.2 Header chunk 111
4.10.3 Track chunks 112
4.10.4 MIDI file track events 113
4.10.5 Time signatures and tempo maps 115

4.11 Downloadable Sounds (DLS) and SoundFonts 115
4.12 RMID and XMF files 117
4.13 SAOL and SASL in MPEG 4 Structured Audio 117
4.14 MIDI and synchronisation 118

4.14.1 Introduction to MIDI synchronisation 118
4.14.2 Music-related timing data 118

Contents

vii

4.14.3 Timecode and synchronisation 121
4.14.4 MIDI timecode (MTC) 123

4.15 MIDI machine control (MMC) 125
4.16 MIDI over USB 128
4.17 MIDI over IEEE 1394 129
4.18 After MIDI? 130
Further reading 131
Useful websites 131

5 Hardware and systems issues 132
5.1 Storage media 132

5.1.1 Storage requirements of digital audio and video 132
5.1.2 Disk drives in general 133
5.1.3 Disk drive specifications 135
5.1.4 Magnetic hard disk drives 136
5.1.5 RAID arrays 138
5.1.6 Removable magnetic media 138
5.1.7 Optical disks in general 140
5.1.8 CAV and CLV modes in optical storage 141
5.1.9 The magneto-optical (M-O) drive 141
5.1.10 Phase-change optical recording 143
5.1.11 Compact discs and drives 143
5.1.12 DVD 145
5.1.13 Optical disc filing structures 147
5.1.14 Tape storage media 147

5.2 Peripheral interfaces 148
5.2.1 SCSI 149
5.2.2 ATA/IDE interface 151
5.2.3 PCMCIA 151
5.2.4 IEEE 1394 (Firewire) and USB 151

5.3 Filing systems and volume partitions 152
5.4 Formatting, fragmentation and optimisation of media 153
5.5 Audio processing and synthesis hardware 153

5.5.1 Introduction 153
5.5.2 Audio processing latency 155
5.5.3 DSP cards 155
5.5.4 Host-based audio processing 156
5.5.5 Integrated sound cards 156
5.5.6 Synthesis engines on sound cards 156

5.6 External synchronisation interfaces 159
5.7 User interfaces 159
5.8 Serial control interfaces 160

5.8.1 RS-232 and RS-422 160
5.8.2 The basic MIDI interface 160
5.8.3 MIDI connectors and cables 163
5.8.4 Interfacing a computer to a MIDI system 164

Contents

viii

5.9 Drivers and audio I/O software 165
Useful websites 167

6 Audio formats and data interchange 168
6.1 Audio file formats 168

6.1.1 Introduction 168
6.1.2 File formats in general 169
6.1.3 Sound Designer I format 171
6.1.4 Sound Designer II format 171
6.1.5 AIFF and AIFF-C formats 172
6.1.6 RIFF WAVE format 173
6.1.7 WAVE-format extensible 175
6.1.8 Broadcast WAVE format 175
6.1.9 MPEG audio file formats 177
6.1.10 DSD-IFF file format 179
6.1.11 Edit decision list (EDL) files 180
6.1.12 AES 31 format 180
6.1.13 The Open Media Framework Interchange (OMFI) 182
6.1.14 MXF – the Media Exchange Format 183
6.1.15 AAF – the Advanced Authoring Format 184

6.2 Disk pre-mastering formats 185
6.3 Interconnecting audio devices 186
6.4 Computer networks and digital audio interfaces compared 187
6.5 Dedicated audio interface formats 189

6.5.1 Digital interface types 189
6.5.2 The AES 3 interface (AES 3) 189
6.5.3 Standard consumer interface (IEC 60958-3) 192
6.5.4 Carrying data-reduced audio over standard digital interfaces 194
6.5.5 Tascam digital interface (TDIF) 195
6.5.6 Alesis digital interface 195
6.5.7 Roland R-bus 196
6.5.8 Sony digital interface for DSD (SDIF-3) 196
6.5.9 Sony multichannel DSD interface (MAC-DSD) 196

6.6 Networking 197
6.6.1 Basic principles of networking 197
6.6.2 Extending a network 199
6.6.3 Network standards 200
6.6.4 Network protocols 202
6.6.5 Audio network requirements 203
6.6.6 ISDN 204
6.6.7 Protocols for the Internet 205
6.6.8 Wireless networks 206

6.7 Streaming audio over computer interfaces 206
6.7.1 Audio over Firewire (IEEE 1394) 206
6.7.2 Audio over universal serial bus (USB) 210
6.7.3 AES 47: Audio over ATM 212

Contents

ix

6.7.4 CobraNet 215
6.7.5 MAGIC 215
6.7.6 MOST 216
6.7.7 BSS SoundWeb 216

6.8 Digital content protection 216
Further reading 218
Useful websites 218

7 Audio software 219
7.1 Sequencers 219

7.1.1 Introduction 219
7.1.2 Tracks, channels, instruments and environments 220
7.1.3 Input and output filters 221
7.1.4 Timing resolution 222
7.1.5 Displaying, manipulating and editing information 222
7.1.6 Quantisation of rhythm 224
7.1.7 Automation and non-note MIDI events 224
7.1.8 MIDI mixing and external control 226
7.1.9 Synchronisation 226
7.1.10 Synchronised digital video 226

7.2 Plug-in architectures 227
7.2.1 What is a plug-in? 227
7.2.2 Plug-in examples 228

7.3 Virtual instruments 229
7.4 Librarians and editors 231
7.5 Audio editing and post-production software 231

7.5.1 Sonic Studio HD 232
7.5.2 SADiE 233

7.6 Mastering and restoration software 235
7.7 Advanced audio processing software and development tools 235
7.8 Computer music software 237
Further reading 239

8 Operational and systems issues 240
8.1 Level control and metering 240
8.2 Spatial reproduction formats 242

8.2.1 Introduction to multichannel formats 242
8.2.2 4-channel surround (3-1 stereo) 242
8.2.3 5.1 channel surround (3-2 stereo) 244
8.2.4 Dolby EX 246
8.2.5 7.1 channel surround 247
8.2.6 Surround panning and spatial effects 248

8.3 Controlling and maintaining sound quality 249
8.4 Preparing for and understanding release media 252

8.4.1 CD-Audio 252
8.4.2 DVD 252

Contents

x

8.4.3 Super Audio CD (SACD) 255
8.4.4 MP3 256
8.4.5 MPEG-4, web and interactive authoring 257

8.5 Synchronisation 257
8.5.1 Requirements for synchronisation 258
8.5.2 Timecode synchronisation 258
8.5.3 Synchronisation to external audio, film or video references 259

8.6 System troubleshooting 259
8.6.1 Troubleshooting MIDI 259
8.6.2 Digital interface troubleshooting 262
8.6.3 Troubleshooting software 264

Further reading 264

Index 265

Contents

xi

This Page Intentionally Left Blank

xiii

Series introduction

The Focal Press Music Technology Series is intended to fill a growing need for authoritative
books to support college and university courses in music technology, sound recording,
multimedia and their related fields. The books will also be of value to professionals already
working in these areas and who want either to update their knowledge or to familiarise
themselves with topics that have not been part of their mainstream occupations.

Information technology and digital systems are now widely used in the production of sound
and in the composition of music for a wide range of end uses. Those working in these fields
need to understand the principles of sound, musical acoustics, sound synthesis, digital
audio, video and computer systems. This is a tall order, but people with this breadth of
knowledge are increasingly sought after by employers. The series will explain the technol-
ogy and techniques in a manner which is both readable and factually concise, avoiding the
chattiness, informality and technical woolliness of many books on music technology.
The authors are all experts in their fields and many come from teaching and research
backgrounds.

Dr Francis Rumsey
Series Consultant

This Page Intentionally Left Blank

1 Introduction to desktop
audio technology

1.1 About this book
Audio in computers and other modern desktop devices is inherently digital. This is a book
about how digital audio works and how to make best use of its capabilities, including con-
trol technologies that are related to the MIDI protocol. The argument for digital audio has
been well and truly made by now so there is no particular attempt in this book to justify the
merits of it against analog audio. It is a fact that the resources of the computer technology
described in this book would not be available unless audio information was converted into
a digital form, so the case is closed. The future of audio is now digital, without question, and
the devices that audio engineers use are increasingly just generic computing devices that
happen to be suitable. Of course audio signals need to be analog at the point where they are
converted into acoustic signals, in order for them to be transmitted through the air, but stor-
age, transfer and processing are the topics of this book.

The technology covered in this book is divided into a number of areas. The book is based to
some extent on earlier books that are now out of print, bringing together the most important
information on digital audio and MIDI in one place. The two are so often combined in applica-
tions now that it seems sensible to present them in one book. It also introduces a lot of more
recent information on these topics because the field has moved on considerably since those
books were written. In this book, therefore, the reader will find coverage of recent develop-
ments such as surround sound formats, direct stream digital, new audio project formats, new
interfaces and alternatives to MIDI.

The first main chapter, Chapter 2, is concerned with the principles of digital audio and
Chapter 3 discusses specific aspects of how this is applied in recording, replay and editing
within workstations. Chapter 4 is all about MIDI and synthetic audio control, looking at the
means by which artificial sounds can be controlled and manipulated. Chapter 5 deals with
hardware of various sorts, including storage devices, buses, computer interfaces and audio

1

processing options. Chapter 6 then concentrates on the question of how to transfer audio
between systems, including coverage of audio interfaces, networking and file formats.
Chapter 7 deals with audio software or applications, giving examples of different commer-
cial packages that exemplify some of the concepts previously described in practice. The book
is not about specific commercial software, however, so readers or manufacturers should look
elsewhere if they want detailed coverage of these. Chapter 8 concludes by considering oper-
ational issues that may not be familiar to some readers, such as recent spatial reproduction
formats, consumer format mastering and quality control issues. It also covers troubleshooting
and systems issues such as synchronisation.

Coverage is primarily aimed at professional operations but it is acknowledged that a good
definition of this is hard to come by and that many people who use such technology are not
professionals. However, the intention is to cover the systems and concepts that apply in opera-
tions such as production and post-production, broadcasting and music. To a large extent this
book stops at the point where audio leaves the studio environment. Topics such as Internet
streaming and consumer delivery of audio have intentionally been avoided as these are large
topics in their own right.

1.2 Audio workstations
I have called this book Desktop Audio Technology to highlight the coverage of digital audio as
it applies in desktop devices such as computer-based audio workstations. There are many
different definitions one could use here but for the purposes of this book it is convenient to
describe an audio workstation as any computer-based device that stores and processes digi-
tal audio and/or control data (such as MIDI data). It is assumed that such devices use some
form of direct access storage such as hard disks or solid-state memory, as opposed to tape, as
the primary storage medium, so dedicated digital audio tape formats are not covered here.

Many devices that will be termed audio workstations here are also general-purpose multi-
media workstations that may handle video and other media data. However the emphasis in
this book is on the audio technology and principles involved. There is an increasing use of
general purpose computing platforms for audio, both in professional and consumer envi-
ronments, whereas previously there was wider use of dedicated hardware. This is largely
because the processing power available on the average desktop PC is now more than
adequate for dealing with multiple channels of audio recording and replay, whereas previ-
ously there was a need for hardware that was specially engineered for the purpose. So fast and
capacious have desktop machines become that they can now accommodate digital signal
processing of audio information (for effects, mixing, and so forth) using the main processor
of the computer, at least for a number of channels and depending on the sophistication of the
processing required.

The decline in popularity of dedicated audio workstations has had one notable disadvantage
to the user – that being the loss of hardware dedicated to control system functions. Modern
software packages running on PCs use screen-based interfaces, with keyboard and mouse
controls, just like any other application, whereas dedicated devices often had physical con-
trols dedicated to the functions required in editing and processing. This has enabled pack-
ages to be sold much more cheaply, but now there is a rapid growth in external physical

Desktop Audio Technology

2

controllers that restore some of the lost usability of dedicated systems. The result of this is
that users can now decide whether they are content to operate a system using screen and
mouse or whether they need something larger and more physical.

1.3 Audio and the computer industry
The fact that audio engineers now use general-purpose computers for much of their work
highlights the position in which the field of audio engineering now finds itself. Once a clearly
distinct field of endeavour with arcane dedicated equipment that needed lining up and care-
ful handling by those in the know, there is a sense (a false one) that anyone can do audio these
days. Just give them a computer and a bit of software and ‘Bob’s your uncle’, so to speak.

This situation is not unlike that encountered in the late 1980s by the typesetting, graphic
design and publishing industry. Desktop publishing was taking the world by storm and all
of a sudden anyone with a computer and a bit of software could produce camera ready art-
work. Who needed typesetters or graphic designers any longer? We could do it all ourselves
on our desks! Of course it rapidly became clear that there was still a need for people with the
creative skills and the time to do it properly, they just had to learn to use the new equipment.
If they insisted on sticking with hot metal or pen and paper they ran the risk of being
branded as dinosaurs and losing out on a lot of new work. Sales executives, no matter how
much they might fancy themselves as designers, are better off selling things and not wasting
hours creating second rate brochures, for example.

The same or similar is true of audio, and there is a strong danger that the field will take some
backward steps in terms of quality unless audio engineers continue to make clear what is
good audio and what will not do. Audio is rapidly being swallowed up by the computer
industry and many of the standard architectures and operating systems are incorporating
audio features that will dictate what is possible in numerous future applications. Things like
correct dithering, sampling frequency conversion, timing issues and so forth, are all crucial
to achieving high quality. They are things that have been known about in relation to dedi-
cated audio systems for years but they don’t always migrate into the computer industry,
which now increasingly thinks it understands audio. So by all means we should take advan-
tage of the economies of scale and the huge benefits that the computer industry brings to
audio but we have a duty to ensure that high quality audio remains our key goal.

1.4 Audio and quality
Quality is going both ways in audio at the moment as depicted in Figure 1.1. When digital
audio first appeared in consumer and professional forms it was normally fixed at a resolu-
tion of 16 bits and a sampling frequency of 44.1 or 48 kHz. This provided very good tech-
nical quality that, with good conversion hardware, arguably represented a noticeable
improvement over existing analog formats in most respects. Since then there has been devel-
opment both upwards and downwards in terms of quality.

Quality has gone upwards with the introduction of higher sampling frequencies and resolu-
tions, offering bandwidths into the hundreds of kilohertz if required, and a dynamic range

Introduction to desktop audio technology

3

that equals or exceeds that of human hearing. For those audiophiles that still exist in the
world this will be appealing, but the economics and practicalities of supplying them with
such delights have yet to be completely demonstrated. Spatial quality is also on the increase
with the introduction of surround sound and other 3D audio formats. On the other hand,
quality is being pushed downwards by the need to deliver audio over potentially very low
rate links such as the Internet and mobile communications. Here the question is not how
good the quality can be made but how bad it can be made without anyone noticing too much.

Technologies such as MPEG audio coding enable audio to be represented at much lower rates
than previously, with minimal impact on audio quality. It is possible to trade off audio qual-
ity and bit rate to suit a particular context. Audio quality can also be scaled in MPEG 4 so that
a decoder chooses the level of representation depending on the data rate and resources avail-
able. There is also a move towards representing audio in the form of objects and control infor-
mation so that the sound can be resynthesised or rendered in the replay device. This
effectively breaks the link between the source and destination in terms of technical quality,
because the quality in such a case is dictated primarily by the resources available in the
rendering engine, as discussed further in Chapter 8. It is also affected by the completeness of
the description of the sound that is supplied. This type of representation is likely to be increas-
ingly common in virtual and synthetic audio authoring environments, for games and the like.

Desktop Audio Technology

4

CD quality (linear PCM,
44.1 kHz, 16 bit)

Extended resolution audio
(e.g. DSD, 96/24)

Lower quality audio
(e.g. data-reduced natural audio
coding such as MP3)

Very low rate audio
(e.g. object representation of audio
such as MPEG-4 synthetic, MIDI)

In
cr

ea
si

ng
 d

at
a

ra
te

Figure 1.1 Audio quality is developing both upwards and downwards from the original reference point of ‘CD
quality’. Note that lower data rates do not automatically lead to lower quality – this depends on the encoding
method used. As the data rate gets lower the method of representation tends towards object representation
(description of ‘scene’ elements, requiring resynthesis by a decoder) rather than natural audio coding (coding of
the original audio waveform)

2 Digital audio principles
This chapter explains the fundamental principles of digital audio as they apply in computers.
The aim is to aid understanding of the inner workings of equipment so that appropriate
operational and technical decisions can be made.

2.1 Analog and digital information
The human senses deal mainly with analog information but computers deal internally with
digital information, resulting in a need for conversion between one domain and the other at
various points.

Analog information is made up of a continuum of values of some physical quantity, which at
any instant may have any value between the limits of the system. For example, a rotating
knob may have one of an infinite number of positions – it is therefore an analog controller
(see Figure 2.1). A simple switch, on the other hand, can be considered as a digital controller,
since it has only two positions – off or on. It cannot take any value in between. The bright-
ness of light that we perceive with our eyes is analog information and as the sun goes down
the brightness falls gradually and smoothly, whereas a household light without a dimmer
may be either on or off – its state is binary (that is it has only two possible states). A single
unit of binary information is called a bit (binary digit) and a bit can only have the value one
or zero (corresponding, say, to high and low, or on and off states of the electrical signal).

Electrically, analog information may be represented as a varying voltage or current. If the
rotary knob of Figure 2.1 is used to control a variable resistor connected to a voltage supply,
its position will affect the output voltage (see Figure 2.2). This, like the knob’s position, may
occupy any value between the limits – in this case anywhere between 0 V and �V. The switch
could be used to control a similar voltage supply and in this case the output voltage could
only be either 0 V or �V. In other words the electrical information that resulted would be
binary. The high (�V) state could be said to correspond to a binary one and the low state to
binary zero (although in many real cases it is actually the other way around). One switch can
represent only one binary digit (or bit) but most digital information is made up of more than
one bit, allowing digital representations of a number of fixed values.

5

Analog information in an electrical form can be converted into a digital electrical form using
a device known as an analog-to-digital (A/D) convertor. This must be done if the informa-
tion is to be handled by any logical system such as a computer. The process will be described
later. The output of an A/D convertor is a series of binary numerical values representing the
analog voltage as accurately as possible, at discrete points in time (sampling instants).

Digital information made up of binary digits is inherently more resilient to noise and inter-
ference than analog information, as shown in Figure 2.3. If noise is added to an analog signal
it becomes very difficult to tell what is the wanted signal and what is the unwanted noise,

Desktop Audio Technology

6

Continuously-variable
position

(a)

ON OFF

(b)

Figure 2.1 (a) A continuously variable control such as a rotary knob is an analog controller. (b) A two-way
switch is a digital controller

+V

0

(a)

Voltage
between
0 and +V
depending
on position

Variable
resistor

+V

0

(b)

Voltage is
0 or +V
depending
on position

Switch

Output
O/P

Figure 2.2 Electrical representation of analog and digital information. The rotary controller of Figure 2.1(a)
could adjust a variable resistor, producing a voltage anywhere between the limits of 0 and �V, as shown in (a).
The switch connected as shown in (b) allows the selection of either 0 or �V states at the output

+

+

=

=
High

Low

(a)

(b)

Figure 2.3 When noise is added to an analog signal, as shown at (a), it is not possible for a receiver to know
what is the original signal and what is the unwanted noise. With the binary signal, as shown at (b), it is possible
to extract the original information even when noise has been added. Everything above the decision level is high
and everything below it is low

as there is no means of distinguishing between the two. If noise is added to a binary signal it is
possible to extract the important information at a later stage, as it is known that only two states
matter – the high and low, or one and zero states. By comparing the signal amplitude with a
fixed decision point it is possible for a receiver to treat everything above the decision point as
‘high’ and everything below it as ‘low’. Any levels in between can be classified in the nearest
direction. For any noise or interference to influence the state of a digital signal it must be at least
large enough in amplitude to cause a high level to be interpreted as ‘low’, or vice versa.

The timing of digital signals may also be corrected to some extent, giving digital signals
another advantage over analog ones. This arises because digital information has a discrete
time structure in which the intended sample instants are known. If the timing of bits in a digi-
tal message becomes unstable, such as after having been passed over a long cable with its
associated signal distortions, resulting in timing ‘jitter’, the signal may be re-clocked at a sta-
ble rate. There is no equivalent way of removing unwanted speed or timing distortions from
analog signals because they have a time-continuous structure.

2.2 Binary number systems
2.2.1 Basic binary

In the decimal number system each digit of a number represents a power of ten. In a binary
system each digit or bit represents a power of two (see Figure 2.4). It is possible to calculate the
decimal equivalent of a binary integer (whole number) by using the method shown. A number
made up of more than one bit is called a binary ‘word’, and an 8-bit word is called a ‘byte’ (from
‘by eight’). Four bits is called a ‘nibble’. The more bits there are in a word the larger the num-
ber of states it can represent, with 8 bits allowing 256 (28) states and 16 bits allowing 65 536 (216).
The bit with the lowest weight (20) is called the least significant bit or LSB and that with the

Digital audio principles

7

High = 1

Low = 0

00 0 01 1 1 1

A binary
word or ‘byte’

One bit

(c)

(a)

128 64 32 16 8 4 2 1

Binary

Decimal weights

Decimal equivalent
of the binary number

0 + 64 + 32 + 16 + 0 + 0 + 2 + 0 = 114

(b)

0 1 1 1 0 0 1 0

0 1 1 1 0 0 1 0

Figure 2.4 (a) A binary number (word or ‘byte’) consists of bits. (b) Each bit represents a power of two.
(c) Binary numbers can be represented electrically in pulse code modulation (PCM) by a string of high and
low voltages

greatest weight is called the most significant bit or MSB. The term kilobyte or Kbyte is used to
mean 1024 or 210 bytes and the term megabyte or Mbyte represents 1024 Kbytes.

Electrically it is possible to represent a binary word in either serial or parallel form. In serial
communication only one connection need be used and the word is clocked out one bit at a
time using a device known as a shift register. The shift register is previously loaded with the
word in parallel form (see Figure 2.5). The rate at which the serial data is transferred depends
on the rate of the clock. In parallel communication each bit of the word is transferred over a
separate connection.

Because binary numbers can become fairly unwieldy when they get long, various forms of
shorthand are used to make them more manageable. The most common of these is hexadeci-
mal. The hexadecimal system represents decimal values from 0 to 15 using the sixteen symbols
0–9 and A–F, according to Table 2.1. Each hexadecimal digit corresponds to four bits or one

Desktop Audio Technology

8

Table 2.1 Hexadecimal and decimal equivalents
to binary numbers

Binary Hexadecimal Decimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

0 01 1 1 1

Clock (bit rate)

Serial output

0 0

Parallel input

Figure 2.5 A shift register is used to convert a parallel binary word into a serial format. The clock is used to
shift the bits one at a time out of the register, and its frequency determines the bit rate. The data may be
clocked out of the register either MSB or LSB first, depending on the device and its configuration

nibble of the binary word. An example showing how a long binary word may be written in
hexadecimal (hex) is shown in Figure 2.6 – it is simply a matter of breaking the word up into
4-bit chunks and converting each chunk to hex. Similarly, a hex word can be converted to
binary by using the reverse process.

Hexadecimal numbers are often labelled with the prefix ‘&’ to distinguish them from other
forms of notation.

2.2.2 Negative numbers

Negative integers are usually represented in a form known as ‘twos complement’. Negative
values are represented by taking the positive equivalent, inverting all the bits and adding a
one. Thus to obtain the 4-bit binary equivalent of decimal minus five (�510) in binary twos
complement form:

510 � 01012

�510 � 1010 � 0001 � 10112

Twos complement numbers have the advantage that the MSB represents the sign (1 � nega-
tive, 0 � positive) and that arithmetic may be performed on positive and negative numbers
giving the correct result:

e.g. (in decimal): 5

� (�3)

�2

or (in binary): 0101

� 1101

� 0010

The carry bit that may result from adding the two MSBs is ignored.

An example is shown in Figure 2.7 of 4-bit, twos complement numbers arranged in a
circular fashion. It will be seen that the binary value changes from all zeros to all ones as it
crosses the zero point and that the maximum positive value is 0111 whilst the maximum
negative value is 1000, so the values wrap around from maximum positive to maximum
negative.

Digital audio principles

9

2 F B E

0 0 0 0 01 1 1 1 1 1 1 1 1 1 1

Figure 2.6 This 16-bit binary number may be represented in hexadecimal as shown, by breaking it up into 4-bit
nibbles and representing each nibble as a hex digit

2.2.3 Fixed- and floating-point representation

Fixed-point binary numbers are often used in digital audio systems to represent sample
values. These are usually integer values represented by a number of bytes (2 bytes for 16 bit
samples, 3 bytes for 24 bit samples, etc.). In some applications it is necessary to represent
numbers with a very large range, or in a fractional form. Here floating-point representation
may be used. A typical floating-point binary number might consist of 32 bits, arranged as
4 bytes, as shown in Figure 2.8. Three bytes are used to represent the mantissa and one byte
the exponent (although the choice of number of bits for the exponent and mantissa are open
to variance depending on the application). The mantissa is the main part of the numerical
value and the exponent determines the power of two to which the mantissa must be raised.
The MSB of the exponent is used to represent its sign and the same for the mantissa.

It is normally more straightforward to perform arithmetic processing operations on fixed-
point numbers than on floating-point numbers, but signal processing devices are available in
both forms.

2.2.4 Logical operations

Most of the apparently complicated processing operations that occur within a computer are
actually just a fast sequence of simple logical operations. The apparent power of the

Desktop Audio Technology

10

0000

1111

1110

1101
1100

1011

1010

1001

1000

0111

0110

0101
0100

0011

0010

0001Positive
values

Negative
values

Max +

Max – 0

– 1

Figure 2.7 Negative numbers represented in twos complement form create a continuum of values where
maximum positive wraps round to maximum negative, and bits change from all zeros to all ones at the zero
crossing point

Exponent Mantissa Mantissa Mantissa

MSB = sign of exp. MSB = sign of mantissa

1 byte 3 bytes

Figure 2.8 An example of floating point number representation in a binary system

computer and its ability to perform complex tasks are really due to the speed with which
simple operations are performed.

The basic family of logical operations is shown in Figure 2.9 in the form of a truth table next
to the electrical symbol that represents each ‘logic gate’. The AND operation gives an output
only when both its inputs are true; the OR operation gives an output when either of its inputs
are true; and the XOR (exclusive OR) gives an output only when one of its inputs is true. The
inverter or NOT gate gives an output which is the opposite of its input and this is often
symbolised using a small circle on inputs or outputs of devices to indicate inversion.

2.3 Basic A/D and D/A conversion of control information
In order to convert analog information into digital information it is necessary to measure its
amplitude at specific points in time (called ‘sampling’) and to assign a binary value to each
measurement (called ‘quantising’). The diagram in Figure 2.10 shows a rotary knob against a
fixed scale running from 0 to 9. If one were to quantise the position of the knob it would be nec-
essary to determine which point of the scale it was nearest and unless the pointer was at exactly
one of the increments the quantising process would involve a degree of error. It will be seen
that the maximum error is actually plus or minus half of an increment, as once the pointer is
more than halfway between one increment and the next it should be quantised to the next.

Quantising error is an inevitable side effect in the process of A/D conversion and the degree
of error depends on the quantising scale used. Considering binary quantisation, a 4-bit scale
offers 16 possible steps, an 8-bit scale offers 256 steps, and a 16-bit scale 65 536. The more bits,
the more accurate the process of quantisation.

Digital audio principles

11

A

B
C

A

B
C

A

B
C

A B C

0 0 0

1 0 0

0 1 0

1 1 1

A B C

0 0 0

1 0 1

0 1 1

1 1 1

A B C

0 0 0

1 0 1

0 1 1

1 1 0

AND

OR

EXOR

Inverter (NOT)

Figure 2.9 Symbols and truth tables for basic logic functions. The inverter shown on the right has an output
which is always the opposite of the input. The circle shown on the inverter’s output is used to signify inversion on
any input or output of a logic gate

In older systems, the position of an analog control was first used to derive an analog voltage (as
shown earlier in Figure 2.2), then that voltage was converted into a digital value using an A/D
convertor (see Figure 2.11). More recent controls may be in the form of binary encoders whose
output is immediately digital. Unlike analog controls, switches do not need the services of an
A/D convertor for their outputs to be useable by a computer – a switch’s output is normally
binary in the first place. Only one bit is needed to represent the position of a simple switch.

The rate at which switches and analog controls are sampled depends very much on how
important it is that they are updated regularly. Some older audio mixing consoles sampled
the positions of automated controls once per television frame (40 ms in Europe), whereas
some modern digital mixers sample controls as often as once per audio sample period
(roughly 20 �s). Clearly the more regularly a control is sampled the more data will be
produced, since there will be one binary value per sample.

Digital-to-analog conversion is the reverse process and involves taking the binary value that
represents one sample and converting it back into an electrical voltage. In a control system this
voltage could then be used to alter the gain of a voltage-controlled amplifier (VCA), for exam-
ple, as shown in Figure 2.12. Alternatively it may not be necessary to convert the word back
to an analog voltage at all. Many systems are entirely digital and can use the binary value
derived from a control’s position as a multiplier in a digital signal processing operation.
A signal processing operation may be designed to emulate an analog control process.

Desktop Audio Technology

12

+ V

0

Variable
resistor

A/D
convertor

Analogue voltage
representing
control's position

Nearest equivalent
binary value

Figure 2.11 In older equipment a control’s position was digitised by sampling and quantising an analog voltage
derived from a variable resistor connected to the control knob

0

1

2

3

4 5

6

7

8

9

Figure 2.10 A rotary knob’s position could be measured against a numbered scale such as the decimal scale
shown. Quantising the knob’s position would involve deciding which of the limited number of values (0–9) most
closely represented the true position

2.4 A/D conversion of audio signals
The process of A/D conversion is of paramount importance in determining the inherent
sound quality of a digital audio signal. The technical quality of the audio signal, once con-
verted, can never be made any better, only worse. Some applications deal with audio purely
in the digital domain, in which case A/D conversion is not an issue, but most operations
involve the acquisition of audio material from the analog world at one time or another. The
quality of convertors varies very widely in digital audio workstations and their peripherals
because the price range of such workstations is also great. Some stand-alone professional
convertors can easily cost as much as the complete digital audio hardware and software for
a desktop computer. One can find audio A/D convertors built in to many multimedia desk-
top computers now, but these are often rather low performance devices when compared with
the best available. As will be seen below, the sampling rate and the number of bits per sam-
ple are the main determinants of the quality of a digital audio signal, but the design of the
convertors determines how closely the sound quality approaches the theoretical limits.

Despite the above, it must be admitted that to the undiscerning ear one 16-bit convertor
sounds very much like another and that there is a law of diminishing returns when one com-
pares the increased cost of good convertors with the perceivable improvement in quality.
Convertors are very much like wine in this respect.

2.4.1 Audio sampling

An analog audio signal is a time-continuous electrical waveform and the A/D convertor’s
task is to turn this signal into a time-discrete sequence of binary numbers. The sampling
process employed in an A/D convertor involves the measurement or ‘sampling’ of the ampli-
tude of the audio waveform at regular intervals in time (see Figure 2.13). From this diagram
it will be clear that the sample pulses represent the instantaneous amplitudes of the audio
signal at each point in time. The samples can be considered as like instantaneous ‘still frames’
of the audio signal which together and in sequence form a representation of the continuous
waveform, rather as the still frames that make up a movie film give the impression of a con-
tinuously moving picture when played in quick succession.

In order to represent the fine detail of the signal it is necessary to take a large number of these
samples per second. The mathematical sampling theorem proposed by Shannon indicates
that at least two samples must be taken per audio cycle if the necessary information about

Digital audio principles

13

Binary
value

DC voltage

Control voltage input

VCA

D/A
convertor

Figure 2.12 A D/A convertor could be used to convert a binary value representing a control’s position into an
analog voltage. This could then be used to alter the gain of a voltage-controlled amplifier (VCA)

Desktop Audio Technology

14

(a)

(b)

Figure 2.14 In the upper example many samples are taken per cycle of the wave. In the lower example less
than two samples are taken per cycle, making it possible for another lower-frequency wave to be reconstructed
from the samples. This is one way of viewing the problem of aliasing

Time

A
m

pl
itu

de

Audio waveform

0

+

–

Sample pulses

t = sample period

Figure 2.13 An arbitary audio signal is sampled at regular intervals of time t to create short sample pulses
whose amplitudes represent the instantaneous amplitude of the audio signal at each point in time

the signal is to be conveyed. It can be seen from Figure 2.14 that if too few samples are taken
per cycle of the audio signal then the samples may be interpreted as representing a wave
other than that originally sampled. This is one way of understanding the phenomenon
known as aliasing. An ‘alias’ is an unwanted representation of the original signal that arises
when the sampled signal is reconstructed during D/A conversion.

Another way of visualising the sampling process is to consider it in terms of modulation, as
shown in Figure 2.15. The continuous audio waveform is used to modulate a regular chain of
pulses. The frequency of these pulses is the sampling frequency. Before modulation all these
pulses have the same amplitude (height), but after modulation the amplitude of the pulses is
modified according to the instantaneous amplitude of the audio signal at that point in time.
This process is known as pulse amplitude modulation (PAM). The frequency spectrum of the
modulated signal is as shown in Figure 2.16. It will be seen that in addition to the ‘baseband’
audio signal (the original audio spectrum before sampling) there are now a number of addi-
tional images of this spectrum, each centred on multiples of the sampling frequency.
Sidebands have been produced either side of the sampling frequency and its multiples, as a
result of the amplitude modulation, and these extend above and below the sampling
frequency and its multiples to the extent of the base bandwidth. In other words these side-
bands are pairs of mirror images of the audio baseband.

Digital audio principles

15

modulates

produces

Time

A
m

pl
itu

de

Time

A
m

pl
itu

de
Time

A
m

pl
itu

de

Audio
waveform

Constant amplitude
pulses (frequency = 1/t)

Pulse amplitude
modulation

t = sample period

Figure 2.15 In pulse amplitude modulation, the instantaneous amplitude of the sample pulses is modulated by
the audio signal amplitude (positive values only shown)

2.4.2 Filtering and aliasing

It is relatively easy to see why the sampling frequency must be at least twice the highest base-
band audio frequency from Figure 2.17. It can be seen that an extension of the baseband
above the Nyquist frequency results in the lower sideband of the first spectral repetition
overlapping the upper end of the baseband and thus appearing within the audible range that
would be reconstructed by a D/A convertor. Two further examples are shown to illustrate the
point – the first in which a baseband tone has a low enough frequency for the sampled
sidebands to lie above the audio frequency range, and the second in which a much higher
frequency tone causes the lower sampled sideband to fall well within the baseband, forming
an alias of the original tone that would be perceived as an unwanted component in the
reconstructed audio signal.

Desktop Audio Technology

16

Time

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de

Frequency

A
m

pl
itu

de

Time

A
m

pl
itu

de

Time

fs

fs

2fs 3fs

2fs 3fs

Nyquist frequency

0.5fs

Time domain Frequency domain

Audio
waveform

Constant amplitude
pulses

Pulse amplitude
modulation

Figure 2.16 The frequency spectrum of a PAM signal consists of a number of repetitions of the audio baseband
signal reflected on either side of multiples of the sampling frequency

The aliasing phenomenon can be seen in the case of the well-known ‘spoked-wheel’ effect on
films, since moving pictures are also an example of a sampled signal. In film, still pictures
(image samples) are normally taken at a rate of 24 per second. If a rotating wheel with a
marker on it is filmed it will appear to move round in a forward direction as long as the rate
of rotation is much slower than the rate of the still photographs, but as its rotation rate
increases it will appear to slow down, stop, and then appear to start moving backwards. The
virtual impression of backwards motion gets faster as the rate of rotation of the wheel gets
faster and this backwards motion is the aliased result of sampling at too low a rate. Clearly
the wheel is not really rotating backwards, it just appears to be. Perhaps ideally one would
arrange to filter out moving objects that were rotating faster than half the frame rate of the
film, but this is hard to achieve in practice and visible aliasing does not seem to be as annoying
subjectively as audible aliasing.

If audio signals are allowed to alias in digital recording one hears the audible equivalent of the
backwards-rotating wheel – that is, sound components in the audible spectrum that were not
there in the first place, moving downwards in frequency as the original frequency of the signal
increases. In basic convertors, therefore, it is necessary to filter the baseband audio signal
before the sampling process, as shown in Figure 2.18, so as to remove any components having
a frequency higher than half the sampling frequency. It is therefore clear that in practice the
choice of sampling frequency governs the high frequency limit of a digital audio system.

In real systems, and because filters are not perfect, the sampling frequency is usually made
higher than twice the highest audio frequency to be represented, allowing for the filter to roll
off more gently. The filters incorporated into both D/A and A/D convertors have a pro-
nounced effect on sound quality, since they determine the linearity of the frequency response

Digital audio principles

17

1 kHz 29 31 59 61 1713 4743

Alias
Orig.

(c) (d)fs 2fs fs 2fs

fn fs fn fsAlias
region

Audio
baseband

Sampled
spectrum

(a) (b)

Figure 2.17 Aliasing viewed in the frequency domain. In (a) the audio baseband extends up to half the sampling
frequency (the Nyquist frequency fn) and no aliasing occurs. In (b) the audio baseband extends above the Nyquist
frequency and consequently overlaps the lower sideband of the first spectral repetition, giving rise to aliased
components in the shaded region. In (c) a tone at 1 kHz is sampled at a sampling frequency of 30 kHz, creating
sidebands at 29 and 31 kHz (and at 59 and 61 kHz, etc.). These are well above the normal audio frequency
range, and will not be audible. In (d) a tone at 17 kHz is sampled at 30 kHz, putting the first lower sideband at
13 kHz – well within the normal audio range. The 13 kHz sideband is said to be an alias of the original wave

within the audio band, the slope with which it rolls off at high frequency and the phase lin-
earity of the system. In a non-oversampling convertor, the filter must reject all signals above
half the sampling frequency with an attenuation of at least 80 dB. Steep filters tend to have
an erratic phase response at high frequencies and may exhibit ‘ringing’ due to the high ‘Q’ of
the filter. Steep filters also have the added disadvantage that they are complicated to
produce. Although filter effects are unavoidable to some extent, manufacturers have made
considerable improvements to analog anti-aliasing and reconstruction filters and these may
be retro-fitted to many existing systems with poor filters. A positive effect is normally noticed
on sound quality.

The process of oversampling and the use of higher sampling frequencies (see below) has
helped to ease the problems of such filtering. Here the first repetition of the baseband is
shifted to a much higher frequency, allowing the use of a shallower anti-aliasing filter and
consequently fewer audible side effects.

2.4.3 Quantisation

After sampling, the modulated pulse chain is quantised. In quantising a sampled audio signal
the range of sample amplitudes is mapped onto a scale of stepped values, as shown in
Figure 2.19. The quantiser determines which of a fixed number of quantising intervals (of size
Q) each sample lies within and then assigns it a value that represents the mid-point of that
interval. This is done in order that each sample amplitude can be represented by a unique binary
number in pulse code modulation (PCM) (PCM is the designation for the form of modulation
in which signals are represented as a sequence of sampled and quantised binary data words).
In linear quantising each quantising step represents an equal increment of signal voltage.

The quantising error magnitude will be a maximum of plus or minus half the amplitude of
one quantising step and a greater number of bits per sample will therefore result in a smaller
error (see Figure 2.20), provided that the analog voltage range represented remains the same.

Desktop Audio Technology

18

Anti-aliasing
filter

A/D
convertor

To coder
Analog
input

Output
level Audio band

Filter response

Nyquist
limit

fSampling
frequency

Figure 2.18 In simple A/D convertors an analog anti-aliasing filter is used prior to conversion, which removes
input signals with a frequency above the Nyquist limit

Digital audio principles

19

Q

time

B
in

ar
y

va
lu

es
 o

f q
ua

nt
is

in
g

in
te

rv
al

s
(3

 b
it

qu
an

tis
er

)

000

001

010

011

111

110

101

100

Figure 2.19 When a signal is quantised, each sample is mapped to the closest quantising interval Q, and given
the binary value assigned to that interval. (Example of a 3-bit quantiser shown.) On D/A conversion each binary
value is assumed to represent the voltage at the mid point of the quantising interval

000

001

010

011

time

Error

Max. error

Mid points of
quantising
intervals

Q0.5Q

(a)

3
bi

t q
ua

nt
is

in
g

sc
al

e

Figure 2.20 In (a) a 3-bit scale is used and only a small number of quantising intervals cover the analog voltage
range, making the maximum quantising error quite large. The second sample in this picture will be assigned the
value 010, for example, the corresponding voltage of which is somewhat higher than that of the sample.

Desktop Audio Technology

20

Figure 2.20 (continued) During D/A conversion the binary sample values from (a) would be turned into pulses
with the amplitudes shown in (b), where many samples have been forced to the same level owing to quantising. In
(c) the 4-bit scale means that a larger number of intervals is used to cover the same range and the quantising
error is reduced (expanded positive range only shown for clarity)

(c)

0000

0001

0010

0011

time

Error

Max. error

Mid points of
quantising
intervals

Q

0.5Q

0100

0101

0110

0111

4
bi

t q
ua

nt
is

in
g

sc
al

e

000

001

010

011

time

(b)

V
ol

ta
ge

s
eq

ui
va

le
nt

 to
 th

es
e

bi
na

ry
 n

um
be

rs

Figure 2.21 shows the binary number range covered by digital audio signals at different
resolutions using the usual twos complement hexadecimal representation. It will be seen
that the maximum positive sample value of a 16-bit signal is &7FFF, whilst the maximum
negative value is &8000. The sample value changes from all zeros (&0000) to all ones
(&FFFF) as it crosses the zero point. The maximum digital signal level is normally termed

Digital audio principles

21

0 dBFS (FS � full scale). Signals rising above this level are normally hard-clipped, resulting
in severe distortion, as shown in Figure 2.22.

2.4.4 Relationship between sample resolution and sound quality

The quantising error may be considered as an unwanted signal added to the wanted signal,
as shown in Figure 2.23. Unwanted signals tend to be classified either as distortion or noise,
depending on their characteristics, and the nature of the quantising error signal depends
very much upon the level and nature of the related audio signal. Here are a few examples,
the illustrations for which have been prepared in the digital domain for clarity, using 16-bit
sample resolution.

First consider a very low level sine wave signal, sampled then quantised, having a level only
just sufficient to turn the least significant bit of the quantiser on and off at its peak (see
Figure 2.24(a)). Such a signal would have a quantising error that was periodic, and strongly
correlated with the signal, resulting in harmonic distortion. Figure 2.24(b) shows the frequency
spectrum, analysed in the digital domain of such a signal, showing clearly the distortion prod-
ucts (predominantly odd harmonics) in addition to the original fundamental. Once the signal

0000
FFFF

8000

7FFF

00000
FFFFF

80000

7FFFF

00
FF

80

7FMax. +ve signal voltage

Max. –ve signal voltage

Zero volts

(a) (b) (c)

Positive values

Negative values

Figure 2.21 Binary number ranges (in hexadecimal) related to analog voltage ranges for different convertor
resolutions, assuming twos complement representation of negative values. (a) 8-bit quantiser, (b) 16-bit
quantiser, (c) 20-bit quantiser

Large signal Zero-crossing level

Maximum negative signal level

0 dBFS (full scale) signals above this level are clipped

Range of
convertor

Figure 2.22 Signals exceeding peak level in a digital system are hard-clipped, since no more digits are
available to represent the sample value

Desktop Audio Technology

22

5 bit 2’s complement

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

0
1
0
0
1
1
0
0
1
0
1
0
1
1
0
0

0
10
8
6
4
2
0

–2
–4
–6
–8

–10
–50 0 50 100 150 200 250 300

Time

0
1
0
1
0
1
0
1
1
1
0
1
0
1
0

Figure 2.23 Quantising error depicted as an unwanted signal added to the original sample values. Here the
error is highly correlated with the signal and will appear as distortion. (Courtesy of Allen Mornington West)

falls below the level at which it just turns on the LSB there is no modulation. The audible result,
therefore, of fading such a signal down to silence is that of an increasingly distorted signal sud-
denly disappearing. A higher-level sine wave signal would cross more quantising intervals
and result in more non-zero sample values. As signal level rises the quantising error, still with
a maximum value of �0.5Q, becomes increasingly small as a proportion of the total signal
level and the error gradually loses its correlation with the signal.

Consider now a music signal of reasonably high level. Such a signal has widely varying
amplitude and spectral characteristics and consequently the quantising error is likely to have
a more random nature. In other words it will be more noise-like than distortion-like, hence
the term quantising noise that is often used to describe the audible effect of quantising error.
An analysis of the power of the quantising error, assuming that it has a noise-like nature,
shows that it has an r.m.s. amplitude of Q/√—12, where Q is the voltage increment represented
by one quantising interval. Consequently the signal-to-noise ratio of an ideal n-bit quantised
signal can be shown to be:

6.02n � 1.76 dB

This implies a theoretical S/N ratio that approximates to just over 6 dB per bit. So a 16-bit
convertor might be expected to exhibit a S/N ratio of around 98 dB, and an 8-bit convertor
around 50 dB. This assumes an undithered convertor, which is not the normal case, as
described below. If a convertor is undithered there will only be quantising noise when a
signal is present, but there will be no quiescent noise floor in the absence of a signal. Issues
of dynamic range with relation to human hearing are discussed further in Section 2.6.

2.4.5 Use of dither

The use of dither in A/D conversion, as well as in conversion between one sample resolu-
tion and another, is now widely accepted as correct. It has the effect of linearising a normal

convertor (in other words it effectively makes each quantising interval the same size) and
turns quantising distortion into a random, noise-like signal at all times. This is desirable for
a number of reasons. Firstly because white noise at very low level is less subjectively annoy-
ing than distortion; secondly because it allows signals to be faded smoothly down without
the sudden disappearance noted above; and thirdly because it often allows signals to be
reconstructed even when their level is below the noise floor of the system. Undithered audio
signals begin to sound ‘grainy’ and distorted as the signal level falls. Quiescent hiss will
disappear if dither is switched off, making a system seem quieter, but a small amount of con-
tinuous hiss is considered preferable to low level distortion. The resolution of modern high
resolution convertors is such that the noise floor is normally inaudible in any case.

Digital audio principles

23

000400

Hex

000300

000200

000100

000000

FFFF00

FFFE00

FFFD00

FFFC00

0.00

–17.50

–35.00

–52.50

–70.00

–87.50

–105.00

–122.50

–140.00
0 2756 5512 8268 11025 13781 16537 19293 22050FFT

FFT

0.00 0.36
ms

0.73 1.09 1.45 1.81 2.18 2.54 2.90
SCOPE

SCOPE

dBFS

1 kHz sine wave, ampl. 1 LSB, no dither

1 kHz sine wave, ampl. 1 LSB, no dither
(a)

(b)

Hz

Figure 2.24 (a) A 1 kHz sine wave at very low level (amplitude �1 LSB) just turns the least significant bit of
the quantiser on and off. Analysed in the digital domain with sample values shown in hex on the vertical axis
and time in ms on the horizontal axis. (b) Frequency spectrum of this quantised sine wave, showing distortion
products

Desktop Audio Technology

24

Dithering a convertor involves the addition of a very low level signal to the audio whose
amplitude depends upon the type of dither employed (see below). The dither signal is usu-
ally noise, but may also be a waveform at half the sampling frequency or a combination of
the two. A signal that has not been correctly dithered during the A/D conversion process
cannot thereafter be dithered with the same effect, because the signal will have been irrevo-
cably distorted. How then does dither perform the seemingly remarkable task of removing
quantising distortion?

It was stated above that the distortion was a result of the correlation between the signal and the
quantising error, making the error periodic and subjectively annoying. Adding noise, which is a
random signal, to the audio has the effect of randomising the quantising error and making it
noise-like as well (shown in Figure 2.25(a) and (b)). If the noise has an amplitude similar in level
to the LSB (in other words, one quantising step) then a signal lying exactly at the decision point
between one quantising interval and the next may be quantised either upwards or downwards,
depending on the instantaneous level of the dither noise added to it. Over time this random
effect is averaged, leading to a noise-like quantising error and a fixed noise floor in the system.

12
10
8
6
4
2

–2
–4
–6
–8

–10
–12

–50

10
8

6
4

2
0

–2
–4

–6
–8

–10
–50 0 50 100 150 200 250 300

0 50 100

Amplitude(a)

Amplitude(b)

150 200 250 300

Time

Time

0

Figure 2.25 (a) Dither noise added to a sine wave signal prior to quantisation. (b) Post-quantisation the error
signal is now random and noise-like. (Courtesy of Allen Mornington West)

Digital audio principles

25

0.00 ms 0.36 0.73 1.09 1.45 1.81 2.18 2.54
SCOPE

2.90

0 Hz

FFT

2756 5512 8268 11025 13781 16537 19293 22050

Hex

000300

000200

000100

000000

FFFF00

FFFE00

FFFD00

FFFC00

0.00

dBFS

–17.50

–35.00

–52.50

–70.00

–87.50

–105.00

–122.50

–140.00

SCOPE

000400(a)

(b)

FFT

1 kHz sine wave, ampl. 1 LSB, TPDF dither

1 kHz sine wave, ampl. 1 LSB, TPDF dither

Figure 2.26(a) shows the same low-level sine wave as in Figure 2.24, but this time with dither
noise added. The quantised signal retains the cyclical pattern of the 1 kHz sine wave but is
now modulated much more frequently between states, and a random element has been
added. The frequency spectrum of this signal, Figure 2.26(b), shows a single sine wave com-
ponent accompanied by a flat noise floor. Figure 2.26(c) and (d) show the waveform and

Figure 2.26 (a) 1 kHz sine wave, amplitude �1 LSB, with dither added, analysed in the digital domain.
(b) Spectrum of this dithered low level sine wave showing lack of distortion and flat noise floor.

Desktop Audio Technology

26

0.00 ms 0.36 0.73 1.09 1.45 1.81 2.18 2.54
SCOPE

2.90

0 Hz

FFT

2756 5512 8268 11025 13781 16537 19293 22050

Hex

000300

000200

000100

000000

FFFF00

FFFE00

FFFD00

FFFC00

0.00

dBFS

–17.50

–35.00

–52.50

–70.00

–87.50

–105.00

–122.50

–140.00

SCOPE

000400(c)

(d)

FFT

1 kHz sine wave, –104 dBFS, TPDF dither

1 kHz sine wave, –104 dBFS, TPDF dither

Figure 2.26 (continued) (c) 1 kHz sine wave at a level of �104 dBFS with dither, showing occasional modulation
of LSB. (d) Spectrum of this signal showing that it is still possible to discern the original signal. An undithered 16-
bit system would be incapable of representing a signal below about �97 dBFS

Digital audio principles

27

spectrum of a dithered sine wave at a level that would be impossible to represent in an
undithered 16-bit system. In this case the LSB is in the zero state much more frequently than
the one state, but an element of the original 1 kHz period can still be seen in its modulation
pattern if studied carefully. The duty cycle of the LSB modulation (ratio between time on and
time off) varies with the instantaneous amplitude of the original signal. When this is passed
through a D/A convertor and reconstruction filter the result is a pure sine wave signal plus
noise, as can be seen from the spectrum analysis.

Dither is also used in digital processing devices such as mixers, but in such cases it is
introduced in the digital domain as a random number sequence (the digital equivalent of
white noise). In this context it is used to remove low-level distortion in signals whose gains
have been altered and to optimise the conversion from high resolution to lower resolution
during post-production (see below).

2.4.6 Types of dither

Research has shown that certain types of dither signal are more suitable than others for high
quality audio work. Dither noise is often characterised in terms of its probability distribution,
which is a statistical method of showing the likelihood of the signal having a certain amplitude.
A simple graph such as that shown in Figure 2.27 is used to indicate the shape of the distri-
bution. The probability is the vertical axis and the amplitude in terms of quantising steps is
the horizontal axis.

Logical probability distributions can be understood simply by thinking of the way in which
dice fall when thrown (see Figure 2.28). A single die throw has a rectangular probability distri-
bution function (RPDF), because there is an equal chance of the throw being between 1 and 6
(unless the die is weighted!). The total value of a pair of dice, on the other hand, has a roughly
triangular probability distribution function (TPDF) with the peak grouped on values from 6 to
8, because there are more combinations that make these totals than there are combinations
making 2 or 12. Going back to digital electronics, one could liken the dice to random number
generators and see that RPDF dither could be created using a single random number genera-
tor, and that TPDF dither could be created by adding the outputs of two RPDF generators.

RPDF dither has equal likelihood that the amplitude of the noise will fall anywhere between
zero and maximum, whereas TPDF dither has greater likelihood that the amplitude will be

Probability

Amplitude +– Amplitude 0

Figure 2.27 A probability distribution curve for dither shows the likelihood of the dither signal having a certain
amplitude, averaged over a long time period

zero than that it will be maximum. Analog white noise has Gaussian probability, whose
shape is slightly more unusual than either of the logically generated dithers. Although RPDF,
TPDF and Gaussian dither can have the effect of linearising conversion and removing dis-
tortion, RPDF dither tends to result in noise modulation at low signal levels. The most suit-
able dither noise is found to be TPDF with a peak-to-peak amplitude of 2Q (see Figure 2.29).
If RPDF dither is used it should have a peak-to-peak amplitude of 1Q.

Desktop Audio Technology

28

Probability

0 +0.5Q–0.5Q
Q peak-to-peak

Probability

0 +1Q–1Q
2Q peak-to-peak

(a)

(b)

Figure 2.29 Most suitable digital dither signals for audio. (a) TPDF dither with a peak-to-peak amplitude of 2Q.
(b) RPDF dither with an amplitude of 1Q

P
ro

ba
bi

lit
y

1 2 3 4 5 6 Value
P

ro
ba

bi
lit

y

31 6–8

(a)

(b)

Figure 2.28 Probability distributions of dice throws. (a) A single die throw shows a rectangular PDF. (b) A pair of
thrown dice added together has a roughly triangular PDF (in fact it is stepped)

Whilst it is easy to generate ideal logical PDFs in the digital domain, it is likely that the noise
source present in many convertors will be analog and therefore Gaussian in nature. With
Gaussian noise, the optimum r.m.s. amplitude for the dither signal is 0.5Q, at which level
noise modulation is minimised but not altogether absent. Dither at this level has the effect of
reducing the undithered dynamic range by about 6 dB, making the dithered dynamic range
of an ideal 16 bit convertor around 92 dB.

2.4.7 Oversampling in A/D conversion

Oversampling involves sampling audio at a higher frequency than strictly necessary to
satisfy the Nyquist criterion. Normally, though, this high rate is reduced to a lower rate in a
subsequent digital filtering process, in order that no more storage space is required than for
conventionally sampled audio. It works by trading off sample resolution against sampling
rate, based on the principle that the information carrying capacity of a channel is related to
the product of these two factors. Samples at a high rate with low resolution can be converted
into samples at a lower rate with higher resolution, with no overall loss of information (this
is related to sound quality). Oversampling has now become so popular that it is the norm in
most high-quality audio convertors.

Although oversampling A/D convertors often quote very high sampling rates of up to 128
times the basic rates of 44.1 or 48 kHz, the actual rate at the digital output of the convertor is
reduced to a basic rate or a small multiple thereof (e.g. 48, 96 or 128 kHz). Samples acquired
at the high rate are quantised to only a few bits resolution and then digitally filtered to reduce
the sampling rate, as shown in Figure 2.30. The digital low-pass filter limits the bandwidth
of the signal to half the basic sampling frequency in order to avoid aliasing, and this is cou-
pled with ‘decimation’. Decimation reduces the sampling rate by dropping samples from the
oversampled stream. A result of the low-pass filtering operation is to increase the word
length of the samples very considerably. This is not simply an arbitrary extension of the
wordlength, but an accurate calculation of the correct value of each sample, based on the
values of surrounding samples (see Section 2.11 on digital signal processing). Although over-
sampling convertors quantise samples initially at a low resolution, the output of the decimator
consists of samples at a lower rate with more bits of resolution. The sample resolution can
then be shortened as necessary (see Section 2.8 on requantising) to produce the desired word
length.

Oversampling brings with it a number of benefits and is the key to improved sound quality
at both the A/D and D/A ends of a system. Because the initial sampling rate is well above

Digital audio principles

29

Sample Quantise
Digital LPF

and
decimate

Rate = Multiple of fs Rate = fs

Small number
of bits per sample

Larger number
of bits per sample

Audio in

Figure 2.30 Block diagram of oversampling A/ D conversion process

the audio range (often tens or hundreds of times the nominal rate) the spectral repetitions
resulting from PAM are a long way from the upper end of the audio band (see Figure 2.31).
The analog anti-aliasing filter used in conventional convertors is replaced by a digital
decimation filter. Such filters can be made to have a linear phase response if required, resulting
in higher sound quality. If oversampling is also used in D/A conversion the analog recon-
struction filter can have a shallower roll-off. This can have the effect of improving phase
linearity within the audio band, which is known to improve audio quality. In oversampled
D/A conversion, basic rate audio is up-sampled to a higher rate before conversion and recon-
struction filtering. Oversampling also makes it possible to introduce so-called ‘noise shaping’
into the conversion process, which allows quantising noise to be shifted out of the most audible
parts of the spectrum.

Oversampling without subsequent decimation is a fundamental principle of Sony’s Direct
Stream Digital system, described in Section 2.7.

2.4.8 Noise shaping in A/D conversion

Noise shaping is a means by which noise within the most audible parts of the audio frequency
range is reduced at the expense of increased noise at other frequencies, using a process that

Desktop Audio Technology

30

A
m

pl
itu

de

Frequency Multiple
of fs

Audio
band

fs

A
m

pl
itu

de

Audio
band

fs 2fs 3fs 4fs

Digital LPF

(a)

(b)

Potential alias region

Figure 2.31 (a) Oversampling in A/D conversion initially creates spectral repetitions that lie a long way from the
top of the audio baseband. The dotted line shows the theoretical extension of the baseband and the potential for
aliasing, but the audio signal only occupies the bottom part of this band. (b) Decimation and digital low pass
filtering limits the baseband to half the sampling frequency, thereby eliminating any aliasing effects, and creates a
conventional collection of spectral repetitions at multiples of the sampling frequency

‘shapes’ the spectral energy of the quantising noise. It is possible because of the high sampling
rates used in oversampling convertors. A high sampling rate extends the frequency range over
which quantising noise is spread, putting much of it outside the audio band.

Quantising noise energy extends over the whole baseband, up to the Nyquist frequency.
Oversampling spreads the quantising noise energy over a wider spectrum, because in over-
sampled convertors the Nyquist frequency is well above the upper limit of the audio band.
This has the effect of reducing the in-band noise by around 3 dB per octave of oversampling
(in other words, a system oversampling at twice the Nyquist rate would see the noise power
within the audio band reduced by 3 dB).

Digital audio principles

31

Audio
signal

Noise-shaping
filter/integrator

A/D
convertor

Decimator/
low-pass filter

D/A
convertor

Add

–

+

Figure 2.32 Block diagram of a noise shaping delta-sigma A/ D convertor

Figure 2.33 Frequency spectra of quantising noise. In a non-oversampled convertor, as shown in (a), the
quantising noise is constrained to lie within the audio band. In an oversampling convertor, as shown in (b), the
quantising noise power is spread over a much wider range, thus reducing its energy in the audio band. (c) With
noise shaping the noise power within the audio band is reduced still further, at the expense of increased noise
outside that band

fn

Quantising noise

Quantising noise

Audio band

P
ow

er

P
ow

er

FrequencyFrequency

Audio band

fn

P
ow

er

Frequency

no noise shaping
with 1st order filter
with 2nd order filter

Quantising noise power

Audio band

fn

(a) (b)

(c)

Desktop Audio Technology

32

Figure 2.34 Processes involved in D/A conversion (positive sample values only shown)

In oversampled noise-shaping A/D conversion an integrator (low-pass filter) is introduced
before the quantiser, and a D/A convertor is incorporated into a negative feedback loop, as
shown in Figure 2.32. This is the so-called ‘sigma-delta convertor’. Without going too deeply
into the principles of such convertors, the result is that the quantising noise (introduced after
the integrator) is given a rising frequency response at the input to the decimator, whilst the
input signal is passed with a flat response. There are clear parallels between such a circuit
and analog negative-feedback circuits.

Without noise shaping, the energy spectrum of quantising noise is flat up to the Nyquist
frequency, but with first-order noise shaping this energy spectrum is made non-flat, as shown
in Figure 2.33. With second-order noise shaping the in-band reduction in noise is even
greater, such that the in-band noise is well below that achieved without noise shaping.

2.5 D/A conversion
2.5.1 A basic D/A convertor

The basic D/A conversion process is shown in Figure 2.34. Audio sample words are
converted back into a staircase-like chain of voltage levels corresponding to the sample values.
This is achieved in simple convertors by using the states of bits to turn current sources on or
off, making up the required pulse amplitude by the combination of outputs of each of these
sources. This staircase is then ‘resampled’ to reduce the width of the pulses before they are
passed through a low-pass reconstruction filter whose cut-off frequency is half the sampling
frequency. The effect of the reconstruction filter is to join up the sample points to make a
smooth waveform. Resampling is necessary because otherwise the averaging effect of the
filter would result in a reduction in the amplitude of high-frequency audio signals
(the so-called ‘aperture effect’). Aperture effect may be reduced by limiting the width of the
sample pulses to perhaps one-eighth of the sample period. Equalisation may be required to
correct for aperture effect.

2.5.2 Oversampling in D/A conversion

Oversampling may be used in D/A conversion, as well as in A/D conversion. In the D/A
case additional samples must be created in between the Nyquist rate samples in order that
conversion can be performed at a higher sampling rate. These are produced by sample rate
conversion of the PCM data. (Sample rate conversion is introduced in Section 2.11.7.) These
samples are then converted back to analog at the higher rate, again avoiding the need for
steep analog filters. Noise shaping may also be introduced at the D/A stage, depending on
the design of the convertor, to reduce the subjective level of the noise.

A number of advanced D/A convertor designs exist which involve oversampling at a high
rate, creating samples with only a few bits of resolution. The extreme version of this approach
involves very high rate conversion of single bit samples (so-called ‘bit stream conversion’),
with noise shaping to optimise the noise spectrum of the signal. The theory of these conver-
tors is outside the scope of this book.

2.6 Sound quality versus sample rates and resolutions
The question often arises as to what sample rate and resolution is necessary for a certain
quality of audio. What are the effects of selecting certain values? Are there standards? This
section aims to provide some guidelines in this area, with reference to the capabilities of
human hearing that must be considered the ultimate arbiter in this matter.

2.6.1 Psychoacoustic limitations

It is possible with digital audio to approach the limits of human hearing in terms of sound
quality. In other words, the unwanted artefacts of the process can be controlled so as to be
close to or below the thresholds of perception. It is also true, though, that badly engineered
digital audio can sound poor and that the term ‘digital’ does not automatically imply high
quality. The choice of sampling parameters and noise shaping methods, as well as more sub-
tle aspects of convertor design, affect the frequency response, distortion and perceived
dynamic range of digital audio signals.

The human ear’s capabilities should be regarded as the standard against which the quality
of digital systems is measured, since it could be argued that the only distortions and noises
that matter are those that can be heard. It might be considered wise to design a convertor
whose noise floor was tailored to the low level sensitivity of the ear, for example. Figure 2.35
shows a typical low level hearing sensitivity curve, indicating the sound pressure level (SPL)
required for a sound just to be audible. It will be seen that the ear is most sensitive in the mid-
dle frequency range, around 4 kHz, and that the response tails off towards the low and high
frequency ends of the spectrum. This curve is often called the ‘minimum audible field (MAF)’
or ‘threshold of hearing’. It has an SPL of 0 dB (ref. 20 �Pa) at 1 kHz. It is worth remembering,
though, that the thresholds of hearing of the human ear are not absolute but probabilistic. In
other words, when trying to determine what can and cannot be perceived one is dealing with
statistical likelihood of perception. This is important for any research which attempts to
establish criteria for audibility, since there are certain sounds which, although as much as
10 dB below the accepted thresholds, have a statistical likelihood of perception which may

Digital audio principles

33

approach certainty in some cases. Also, some listeners are known to be more sensitive than
others.

Dynamic range could be said to be equal to the range between the MAF and the loudest
sound tolerable. The loudest sound tolerable depends very much on the person, but the
threshold of ‘pain’ is usually said to occur between 130 and 140 dB SPL. The absolute maxi-
mum dynamic range of human hearing is therefore around 140 dB at 1 kHz, but quite a lot
less than that at low and high frequencies. Whether or not it is desirable to be able to record
and reproduce such a wide dynamic range is debatable.

Work carried out by Louis Fielder and Elizabeth Cohen attempted to establish the dynamic
range requirements for high quality digital audio systems by investigating the extremes of
sound pressure available from acoustic sources and comparing these with the perceivable
noise floors in real acoustic environments. Using psychoacoustic theory, Fielder was able to
show what was likely to be heard at different frequencies in terms of noise and distortion,
and where the limiting elements might be in a typical recording chain. Having defined
dynamic range as ‘the ratio between the r.m.s. maximum undistorted sine wave level pro-
ducing peak levels equal to a particular peak level and the r.m.s. level of 20 kHz band-limited
white noise that has the same apparent loudness as a particular audio chain’s equipment
noise in the absence of a signal’, he proceeded to show that the just audible level of a 20 kHz
bandwidth noise signal was about 4 dB SPL, and that a number of musical performances
reached levels of between 120 and 129 dB SPL in favoured listening positions. From this he
determined a dynamic range requirement of 122 dB for natural reproduction. Taking into
account microphone performance and the limitations of consumer loudspeakers, this
requirement dropped to 115 dB for consumer systems.

2.6.2 Sampling rate

The choice of sampling rate determines the maximum audio bandwidth available. There is a
strong argument for choosing a sampling rate no higher than is strictly necessary, in other

Desktop Audio Technology

34

100 1 kHz 10 kHz

Frequency Hz

S
P

L
(d

B
 r

ef
. 2

 x
 1

0–5
 N

m
–2

)

20

0

70

Figure 2.35 Hearing threshold curve

words not much higher than twice the highest audio frequency to be represented. This often
starts arguments over what is the highest useful audio frequency and this is an area over
which heated debates have raged. Conventional wisdom has it that the audio frequency band
extends up to 20 kHz, implying the need for a sampling frequency of just over 40 kHz for
high quality audio work. There are in fact two standard sampling frequencies between
40 and 50 kHz: the compact disc rate of 44.1 kHz and the so-called ‘professional’ rate of 48 kHz.
These are both allowed in the original AES5 standard of 1984, which sets down preferred
sampling frequencies for digital audio equipment. Table 2.2 is an attempt to summarise the
variety of sampling frequencies in existence and their applications.

The 48 kHz rate was originally included because it left a certain amount of leeway for down-
ward varispeed in tape recorders. When many digital recorders are varispeeded, their sam-
pling rate changes proportionately and the result is a shifting of the first spectral repetition of
the audio baseband. If the sampling rate is reduced too far, aliased components may become
audible. Most professional digital tape recorders allowed for only around �12.5 per cent of
varispeed for this reason. It is possible now, though, to avoid such problems using digital low

Digital audio principles

35

Table 2.2 Common sampling rates encountered in digital audio applications

Frequency (kHz) Application

8 Telephony (speech quality). ITU-T G711 standard.
16 Used in some telephony applications. ITU-T G722 data

reduction.
18.9 CD-ROM/XA and CD-I standard for low–moderate quality

audio using ADPCM to extend playing time.
~22.05 Half the CD frequency is 22.05 kHz. Used in some moderate

quality computer applications. The original Apple Macintosh
audio sampling frequency was 22254.5454… Hz.

32 Used in some broadcast coding systems, e.g. NICAM. DAT
long play mode. AES 5 secondary rate.

37.8 CD-ROM/XA and CD-I standard for intermediate quality audio
using ADPCM.

44.056 A slight modification of the 44.1 kHz frequency used in some
older equipment to synchronise digital audio with the NTSC
television frame rate of 29.97 frames per second. Such ‘pull-
down’ rates are sometimes still encountered in video sync
situations.

44.1 CD sampling frequency. AES 5 secondary rate.
47.952 Occasionally encountered when 48 kHz equipment is used in

NTSC video operations. Another ‘pull-down’ rate, ideally to be
avoided.

48 AES 5 primary rate for professional applications.
88.2 Twice the CD sampling frequency. Optional for DVD-Audio.
96 AES 5-1998 secondary rate for high bandwidth applications.

Optional for DVD-Video and DVD-Audio.
176.4 and 192 Four times the basic standard rates, optional in DVD-Audio.
2.8224 MHz DSD sampling frequency.

pass filters whose cut-off frequency varies with the sampling frequency, or by using digital
signal processing to vary the pitch of audio without varying the output sampling frequency.

The 44.1 kHz frequency had been established earlier on for the consumer compact disc and
is very widely used in the industry. In fact in many ways it has become the sampling rate of
choice for most professional recordings. It allows for full use of the 20 kHz audio band and
oversampling convertors allow for the use of shallow analog anti-aliasing filters which avoid
phase problems at high audio frequencies. It also generates 10 per cent less data per second
than the 48 kHz rate, making it economical from a storage point of view.

A rate of 32 kHz is used in some broadcasting applications, such as NICAM 728 stereo TV
transmissions, and in some radio distribution systems. Television and FM radio sound
bandwidth is limited to 15 kHz and a considerable economy of transmission bandwidth is
achieved by the use of this lower sampling rate. The majority of important audio information
lies below 15 kHz in any case and little is lost by removing the top 5 kHz of the audio band.
Some professional audio applications offer this rate as an option, but it is not common. It is
used for the long play mode of some DAT machines, for example.

Arguments for the standardisation of higher sampling rates have become stronger in recent
years, quoting evidence from sources claiming that information above 20 kHz is important
for higher sound quality, or at least that the avoidance of steep filtering must be a good thing.
Many sound engineers seem to be in favour of such moves, claiming to be able to distinguish
clearly between the high rates and the conventional ones. One Japanese professor has shown
convincing evidence that frequencies above 20 kHz stimulate the production of so-called
alpha waves in the brain that correspond with a state of satisfaction and relaxation. It is cer-
tainly true that the ear’s frequency response does not cut off completely at 20 kHz, but there
is very limited properly supported evidence that listeners can repeatably distinguish
between signals containing higher frequencies and those that do not. Whatever the difficul-
ties of arriving at convincing evidence for all this, sufficient people believe that it matters for
manufacturers to be falling over themselves to implement high rate options in their equipment
and the new DVD standards incorporate such sampling frequencies as standard features.
AES 5–1998 (a revision of the AES standard on sampling frequencies) now allows 96 kHz as
an optional rate for applications in which the audio bandwidth exceeds 20 kHz or where
relaxation of the anti-alias filtering region is desired.

Doubling the sampling frequency leads to a doubling in the overall data rate of a digital
audio system and a consequent halving in storage time per megabyte. It also means that any
signal processing algorithms need to process twice the amount of data and alter their algo-
rithms accordingly, so the move to higher rates is not taken lightly in large mixing console
design, for example. It follows that these higher sampling rates should be used only after
careful consideration of the merits.

Low sampling frequencies such as those below 30 kHz are sometimes encountered in
PC workstations for lower quality sound applications such as the storage of speech samples,
the generation of internal sound effects and so forth. Multimedia applications may need to
support these rates because such applications often involve the incorporation of sounds of
different qualities. There are also low sampling frequency options for data reduction codecs,
as discussed in Section 2.12.

Desktop Audio Technology

36

2.6.3 Quantising resolution

The number of bits per sample dictates the signal-to-noise ratio or dynamic range of a digital
audio system. For the time being only linear PCM systems will be considered, because the
situation is different when considering systems that use non-uniform quantisation or
data reduction. Table 2.3 attempts to summarise the applications for different sample
resolutions.

For many years 16-bit linear PCM was considered the norm for high-quality audio applications.
This is the CD standard and is capable of offering a good dynamic range of over 90 dB.
For most purposes this is adequate, but it fails to reach Fielder’s ideal (quoted above) of
122 dB for subjectively noise-free reproduction in professional systems. To achieve such a
dynamic range requires a convertor resolution of around 21 bits, which is achievable with
today’s convertor technology, depending on how the specification is interpreted. Some early
designs employed two convertors with a gain offset, using digital signal processing to com-
bine the outputs of the two in the range where they overlapped, achieving a significant
increase in the perceived dynamic range. Others used two convertors in parallel with inde-
pendent dither, summing their outputs so that the signal rose by 6 dB but the noise by only
3 dB. So-called 24-bit convertors are indeed available today, but exactly what this means in
terms of technical specification is quite hard to define. Twenty-four active bits are certainly
produced at the output of such devices but their audio performance is strongly dependent

Digital audio principles

37

Table 2.3 Linear quantising resolution

Bits per Approx. dynamic Application
sample range with dither (dB)

8 44 Low–moderate quality for older PC internal
sound generation. Some older multimedia
applications. Usually in the form of unsigned
binary numbers.

12 68 Older Akai samplers, e.g. S900.
14 80 Original EIAJ format PCM adaptors, such as

Sony PCM-100.
16 92 CD standard. DAT standard. Commonly used

high quality resolution for consumer media,
some professional recorders and multimedia
PCs. Usually twos complement (signed) binary
numbers.

20 116 High-quality professional audio recording and
mastering applications.

24 140 Maximum resolution of most recent
professional recording systems, also of AES 3
digital interface. Dynamic range exceeds
psychoacoustic requirements. Hard to convert
accurately at this resolution.

Desktop Audio Technology

38

upon the stability of the timing clock, electrical environment, analog stages, grounding and
other issues.

It is often the case that for professional recording purposes one needs a certain amount of
‘headroom’ – in other words some unused dynamic range above the normal peak recording
level which can be used in unforeseen circumstances such as when a signal overshoots its
expected level. This can be particularly necessary in live recording situations where one is
never quite sure what is going to happen with recording levels. This is another reason why
many professionals feel that a resolution of greater than 16 bits is desirable for original
recording. For this reason, 20- and 24-bit recording formats are becoming increasingly pop-
ular, with mastering engineers then optimising the finished recording for 16-bit media (such
as CD) using noise-shaped requantising processes.

At the lower quality end, older PC sound cards and internal sound generators operated at
resolutions as low as 4 bits. Eight-bit resolution also used to be quite common in desktop
computers, proving just about adequate for moderate quality sound through the PC’s inter-
nal loudspeakers. It gave a dynamic range of nearly 50 dB undithered. Modern multimedia
PCs and sound cards generally offer 16-bit resolution as standard. Some early MIDI sam-
plers operated at 8-bit resolution, and some more recent models at 12-bit, but it is now com-
mon for MIDI samplers to offer 16- or 20-bit resolution.

2.7 Direct Stream Digital (DSD)
DSD is Sony’s proprietary name for its 1-bit digital audio coding system that uses a very
high sampling frequency (2.8224 MHz as a rule). This system is used for audio representa-
tion on the consumer Super Audio CD (SACD) and in various items of professional equip-
ment used for producing SACD material. The company is trying to establish a following for
this approach, for use in high-quality digital audio applications, and a number of other man-
ufacturers are beginning to produce products that are capable of handling DSD signals. It is
not directly compatible with conventional PCM systems although DSD signals can be down-
sampled and converted to multibit PCM if required.

DSD signals are the result of delta-sigma conversion of the analog signal, a technique used
at the front end of some oversampling convertors described above. As shown in Figure 2.36,
a delta-sigma convertor employs a comparator and a feedback loop containing a low pass
filter that effectively quantises the difference between the current sample and the accumu-
lated value of previous samples. If it is higher then a ‘1’ results, if it is lower a ‘0’ results. This
creates a one-bit output that simply alternates between one and zero in a pattern that
depends on the original signal waveform. Conversion to analog can be as simple a matter as
passing the bit stream through a low pass filter, but is usually somewhat more sophisticated,
involving noise shaping and higher order filtering.

Although one would expect one-bit signals to have an appalling signal-to-noise ratio, the
exceptionally high sampling frequency spreads the noise over a very wide frequency range
leading to lower noise within the audio band. Additionally, high-order noise shaping is used
to reduce the noise in the audio band at the expense of that at much higher (inaudible) fre-
quencies, as discussed earlier. A dynamic range of around 120 dB is therefore claimed, as
well as a frequency response extending smoothly to over 100 kHz.

2.8 Changing the resolution of an audio signal (requantisation)
There may be points in an audio production when the need arises to change the resolution of
a signal. A common example of this in high-quality audio is when mastering 16-bit consumer
products from 20- or 24-bit recordings, but it also occurs within signal processors of all types
because sample wordlengths may vary at different stages. It is important that this operation
is performed correctly because incorrect requantisation results in unpleasant distortion, just
like undithered quantisation in A/D conversion.

If the length of audio samples needs to be reduced then the worst possible solution is simply
to remove unwanted LSBs. Taking the example of a 20-bit signal being reduced to 16 bits, one
should not simply remove the 4 LSBs and expect everything to be alright. By removing the
LSBs one would be creating a similar effect to not using dither in A/D conversion – in other
words one would introduce low-level distortion components. Low-level signals would
sound grainy and would not fade smoothly into noise. Figure 2.37 shows a 1 kHz signal at a
level of �90 dBFS that originally began life at 20-bit resolution but has been truncated to
16 bits. The harmonic distortion is clearly visible.

The correct approach is to redither the signal for the target resolution by adding dither noise
in the digital domain. This digital dither should be at an appropriate level for the new
resolution and the LSB of the new sample should then be rounded up or down depending
on the total value of the LSBs to be discarded, as shown in Figure 2.38. It is worrying to note
how many low-cost digital audio applications fail to perform this operation satisfactorily,
leading to complaints about sound quality. Many professional quality audio workstations
allow for audio to be stored and output at a variety of resolutions and may make dither user
selectable. They also allow the level of the audio signal to be changed in order that maximum
use may be made of the available bits. It is normally important, for example, when master-
ing a CD from a 20-bit recording, to ensure that the highest level signal on the original record-
ing is adjusted during mastering so that it peaks close to the maximum level before
requantising and redithering at 16-bit resolution. In this way as much as possible of the origi-
nal low-level information is preserved and quantising noise is minimised. This applies in any
requantising operation, not just CD mastering. A number of applications are available that
automatically scale the audio signal so that its level is optimised in this way, allowing the
user to set a peak signal value up to which the highest level samples will be scaled. Since
some overload detectors on digital meters and CD mastering systems look for repeated
samples at maximum level to detect clipping, it is perhaps wise to set peak levels so that they

Digital audio principles

39

Audio
input

Negative feedback loop

Audio
output

Loop filter:
noise shaping
and integration Quantiser

Storage

Low-pass
filter

64 × /1-bit 64 × /1-bit
Q

–

+
∫∫

Figure 2.36 A simple example of the DSD conversion process

Desktop Audio Technology

40

0.00(a)

(b)
1 kHz sine wave, –90 dBFS, 20-bit truncated to 16-bit

1 kHz sine wave, –90 dBFS, 20-bit original

0.00

–17.50

dBFS

–35.00

–70.00

–87.50

–105.00

–122.50

–140.00
0 2756Hz 5512 8268 11025 13781 16537 19293 22050FFT

FFT

FFT

–52.50

–17.50

dBFS

–35.00

–70.00

–87.50

–105.00

–122.50

–140.00
0 2756Hz 5512 8268 11025 13781 16537 19293 22050FFT

–52.50

Figure 2.37 Truncation of audio samples results in distortion. (a) shows the spectrum of a 1 kHz signal
generated and analysed at 20-bit resolution. In (b) the signal has been truncated to 16-bit resolution and the
distortion products are clearly noticeable

lie just below full modulation. This will ensure that master tapes are not rejected for a sus-
pected recording fault by duplication plants and subsequent users do not complain of ‘over’
levels.

2.9 Dynamic range enhancement
It is possible to maximise the subjective dynamic range of digital audio signals during the
process of requantisation described above. This is particularly useful when mastering high-
resolution recordings for CD because the reduction to 16-bit wordlengths would normally
result in increased quantising noise. It is in fact possible to retain most of the dynamic range
of a higher resolution recording, even though it is being transferred to a 16-bit medium. This
remarkable feat is achieved by a noise shaping process similar to that described earlier.

During requantisation digital filtering is employed to shape the spectrum of the quantising
noise so that as much of it as possible is shifted into the least audible parts of the spectrum.
This usually involves moving the noise away from the 4 kHz region where the ear is most
sensitive and increasing it at the HF end of the spectrum. The result is often quite high
levels of noise at HF, but still lying below the audibility threshold. In this way CDs can be
made to sound almost as if they had the dynamic range of 20-bit recordings. Some typical
weighting curves used in a commercial mastering processor from Meridian are shown in
Figure 2.39, although many other shapes are in use.

This is the principle employed in mastering systems such as Sony’s Super Bit Mapping
(SBM). Some approaches allow the mastering engineer to choose from a number of ‘shapes’
of noise until he finds one which is subjectively the most pleasing for the type of music con-
cerned, whereas others stick to one theoretically derived ‘correct’ shape.

Digital audio principles

41

Peak level

New res. noise floor

Original res. noise floor

Original signal
dynamic range

Optimise
dynamic

range

Add dither
at correct level

for new res.

Requantise
to new res.

Figure 2.38 The correct order of events when requantising an audio signal at a lower resolution is shown here

2.10 Error correction
Since this book is concerned with digital audio for workstations the topic of error correction
will only be touched upon briefly. Although dedicated audio recording formats need spe-
cially designed systems to protect against the effects of data errors, systems that use com-
puter mass storage media do not. The reason for this is that mass storage media are formatted

Desktop Audio Technology

42

40(a)

(b)

30

20

10

N
oi

se
 s

pe
ct

ru
m

 (
dB

)

0

–10

–20

–30
0 5000

Shape A

Shape B

Shape D

Shape E

Shape C

10000

Frequency (Hz)

15000 20000

40

30

20

10

0

N
oi

se
 s

pe
ct

ru
m

 (
dB

)

–10

–20

–30
0 5000 10000

Frequency (Hz)

15000 20000

Figure 2.39 Examples of noise weighting curves used in the Meridian 518 mastering processor. Note linear
frequency scale. Shape A: flat dither, 2nd order shaper. Shape B: flat dither, 9th order shaper (MAP). Shape C:
flat dither, 9th order shaper (MAF). Shape D: high pass dither, 9th order shaper (MAF). Shape E: High pass dither.
MAP � minimum audible pressure, MAF � minimum audible field. (Courtesy of J. R. Stuart and R. J. Wilson,
Meridian Audio)

in such a way as to make them essentially error free. When, for example, a computer disk
drive is formatted at a low level, the formatting application attempts to write data to each
location and read it back. If the location proves to be damaged or gives erroneous replay it is
noted as a ‘bad block’, after which it is never used for data storage. In addition, disk and tape
drives look after their own error detection and correction by a number of means that are nor-
mally transparent to the digital audio system. If a data error is detected when reading data
then the block of data is normally re-read a few times to see if the data can be retrieved. The
only effect of this is to slow down transfer slightly.

This differs greatly from the situation with dedicated audio formats such as DAT. In dedi-
cated audio formats there are many levels of error protection, some of which allow errors to
be completely corrected (no effect on sound quality) and others that allow the audible effects
of more serious errors to be minimised. A process known as interpolation, for example,
allows missing samples to be ‘guessed’ by estimating the level of the missing sample based
on those around it (see Figure 2.40). Computer systems, on the other hand, cannot allow this
type of error correction because it is assumed that data is either correct or it is useless. When
reading a financial spreadsheet, for example, it would not be acceptable for an erroneous
figure to be guessed by looking at those on either side!

The result is that computer mass storage media are treated as raw, error-free data storage
capacity, without the need to add an overhead for error correction data once formatted. This
does not mean that such media are infallible and will never give errors, because they do fail
occasionally, but that audio workstations do not normally use any additional procedures on
top of those already in place. The downside of this is that if an unavoidable error does arise

Digital audio principles

43

Figure 2.40 Interpolation is a means of hiding the audible effects of missing samples, as shown here

in the replay of a sound file from a digital workstation then it often results in a total inability
to play that file. The file is assumed to be corrupt and the computer will not read it. The user
does not have the option of being able to decide whether the error is audible, he must instead
resort to one of the various computer file ‘rescue packages’ that attempt to rebuild the cor-
rupted information using various proprietary techniques.

2.11 Introduction to digital audio signal processing
Just as processing operations like equalisation, fading and compression can be performed in
the analog domain, so they can in the digital domain. Indeed it is often possible to achieve
certain operations in the digital domain with fewer side effects such as phase distortion. It is
possible to perform operations in the digital domain that are either very difficult or impossi-
ble in the analog domain. High quality, authentic-sounding artificial reverberation is one such
example, in which the reflection characteristics of different halls and rooms can be accurately
simulated. Digital signal processing (DSP) involves the high-speed manipulation of the binary
data representing audio samples. It may involve changing the values and timing order of
samples and it may involve the combining of two or more streams of audio data. DSP can
affect the sound quality of digital audio in that it can add noise or distortion, although one
must assume that the aim of good design is to minimise any such degradation in quality.

In the sections that follow an introduction will be given to some of the main applications of
DSP in audio workstations without delving into the mathematical principles involved. In
some cases the description is an over-simplification of the process, but the aim has been to
illustrate concepts not to tackle the detailed design considerations involved.

2.11.1 Gain changing (level control)

It is relatively easy to change the level of an audio signal in the digital domain. It is most easy
to shift its gain by 6 dB since this involves shifting the whole sample word either one step to
the left or right (see Figure 2.41). Effectively the original value has been multiplied or divided
by a factor of two. More precise gain control is obtained by multiplying the audio sample
value by some other factor representing the increase or decrease in gain. The number of bits
in the multiplication factor determines the accuracy of gain adjustment. The result of multi-
plying two binary numbers together is to create a new sample word which may have many

Desktop Audio Technology

44

0 00 01 1 11

MSB LSB

0 1 0 1 1 1 0 0

MSB LSB

Original 8-bit sample

New sample with higher level

+6 dB

=

Figure 2.41 The gain of a sample may be changed by 6 dB simply by shifting all the bits one step to the
left or right

more bits than the original and it is common to find that digital mixers have internal struc-
tures capable of handling 32-bit words, even though their inputs and outputs may handle
only 20. Because of this, redithering is usually employed in mixers at points where the
sample resolution has to be shortened, such as at any digital outputs or conversion stages, in
order to preserve sound quality as described above.

The values used for multiplication in a digital gain control may be derived from any user
control such as a fader, rotary knob or on-screen representation, or they may be derived from
stored values in an automation system. A simple ‘old-fashioned’ way of deriving a digital
value from an ‘analog’ fader is to connect the fader to a fixed voltage supply and connect the
fader wiper to an A/D convertor, although it is quite common now to find controls capable
of providing a direct binary output relating to their position. The ‘law’ of the fader (the way
in which its gain is related to its physical position) can be determined by creating a suitable
look-up table of values in memory which are then used as multiplication factors correspond-
ing to each physical fader position.

2.11.2 Crossfading

Crossfading is employed widely in audio workstations at points where one section of sound
is to be joined to another (edit points). It avoids the abrupt change of waveform that might
otherwise result in an audible click and allows one sound to take over smoothly from the
other. The process is illustrated conceptually in Figure 2.42. It involves two signals each
undergoing an automated fade (binary multiplication), one downwards and the other

Digital audio principles

45

Decreasing coefficients

Amplitude

Amplitude

Time

Increasing coefficients

Time

Outgoing
samples

Multipliers

Sum

Incoming
samples

Adder

Figure 2.42 Conceptual block diagram of the crossfading process, showing two audio signals multiplied by
changing coefficients, after which they are added together

upwards, followed by an addition of the two signals. By controlling the rates and coefficients
involved in the fades one can create different styles of crossfade for different purposes.

2.11.3 Mixing

Mixing is the summation of independent data streams representing the different audio chan-
nels. Time coincident samples from each input channel are summed to produce a single
output channel sample. Clearly it is possible to have many mix ‘buses’ by having a number
of separate summing operations for different output channels. The result of summing a lot of
signals may be to increase the overall level considerably and the architecture of the mixer
must allow enough headroom for this possibility. In the same way as an analog mixer, the
gain structure within a digital mixer must be such that there is an appropriate dynamic range
window for the signals at each point in the chain, also allowing for operations such as equal-
isation that change the signal level.

2.11.4 Digital filters and equalisation

Digital filtering is something of a ‘catch-all’ term, and is often used to describe DSP opera-
tions that do not at first sight appear to be filtering. A digital filter is essentially a process that
involves the time delay, multiplication and recombination of audio samples in all sorts of
configurations, from the simplest to the most complex. Using digital filters one can create
low- and high-pass filters, peaking and shelving filters, echo and reverberation effects, and
even adaptive filters that adjust their characteristics to affect different parts of the signal.

To understand the basic principle of digital filters it helps to think about how one might emu-
late a certain analog filtering process digitally. Filter responses can be modelled in two main
ways – one by looking at their frequency domain response and the other by looking at their
time domain response. (There is another approach involving the so-called z-plane transform,
but this is not covered here.). The frequency domain response shows how the amplitude of
the filter’s output varies with frequency, whereas the time domain response is usually repre-
sented in terms of an impulse response (see Figure 2.43). An impulse response shows how
the filter’s output responds to stimulation at the input by a single short impulse. Every

Desktop Audio Technology

46

Amplitude

Time

Amplitude

Frequency

(a) (b)

Figure 2.43 Examples of (a) the frequency response of a simple filter, and (b) the equivalent time domain
impulse response

frequency response has a corresponding impulse (time) response because the two are directly
related. If you change the way a filter responds in time you also change the way it responds
in frequency. A mathematical process known as the Fourier transform is often used as a
means of transforming a time domain response into its equivalent frequency domain
response. They are simply two ways of looking at the same thing.

Digital audio is time discrete because it is sampled. Each sample represents the amplitude of
the sound wave at a certain point in time. It is therefore normal to create certain filtering char-
acteristics digitally by operating on the audio samples in the time domain. In fact if it were
desired to emulate a certain analog filter characteristic digitally one would theoretically need
only to measure its impulse response and model this in the digital domain. The digital ver-
sion would then have the same frequency response as the analog version, and one can even
envisage the possibility for favourite analog filters to be recreated for the digital workstation.
The question, though, is how to create a particular impulse response characteristic digitally,
and how to combine this with the audio data.

As mentioned earlier, all digital filters involve delay, multiplication and recombination of
audio samples, and it is the arrangement of these elements that gives a filter its impulse
response. A simple filter model is the finite impulse response (FIR) filter, or transversal filter,
shown in Figure 2.44. As can be seen, this filter consists of a tapped delay line with each tap
being multiplied by a certain coefficient before being summed with the outputs of the other
taps. Each delay stage is normally a one sample period delay. An impulse arriving at the

Digital audio principles

47

N N N NN X X X X X

+

Delay
1/fs

Delay
1/fs

Delay
1/fs

Delay
1/fs

Delay
1/fs

Out

In

Time

1/fs

Input Output

Figure 2.44 A simple FIR filter (transversal filter). N � multiplication coefficient for each tap. Response shown
below indicates successive outputs samples multiplied by decreasing coefficients

input would result in a number of separate versions of the impulse being summed at the out-
put, each with a different amplitude. It is called a finite impulse response filter because a
single impulse at the input results in a finite output sequence determined by the number of
taps. The more taps there are the more intricate the filter’s response can be made, although a
simple low pass filter only requires a few taps.

The other main type is the infinite impulse response (IIR) filter, which is also known as a
recursive filter because there is a degree of feedback between the output and the input
(see Figure 2.45). The response of such a filter to a single impulse is an infinite output
sequence, because of the feedback. IIR filters are often used in audio equipment because they
involve fewer elements for most variable equalisers than equivalent FIR filters, and they are
useful in effects devices. They are unfortunately not phase linear, though, whereas FIR filters
can be made phase linear.

2.11.5 Digital reverberation and other effects

It can probably be seen that the IIR filter described in Section 2.11.4 forms the basis for certain
digital effects, such as reverberation. The impulse response of a typical room looks something
like Figure 2.46, that is an initial direct arrival of sound from the source, followed by a series
of early reflections, followed by a diffuse ‘tail’ of densely packed reflections decaying gradu-
ally to almost nothing. Using a number of IIR filters, perhaps together with a few FIR filters,
one could create a suitable pattern of delayed and attenuated versions of the original impulse
to simulate the decay pattern of a room. By modifying the delays and amplitudes of the early
reflections and the nature of the diffuse tail one could simulate different rooms.

Desktop Audio Technology

48

Delay
1/fs

N

X

+

Time

Input Output

Figure 2.45 A simple IIR filter (recursive filter). The output impulses continue indefinitely but become very small.
N in this case is about 0.8. A similar response to the previous FIR filter is achieved but with fewer stages

The design of convincing reverberation algorithms is a skilled task, and the difference
between crude approaches and good ones is very noticeable. Some audio workstations offer
limited reverberation effects built into the basic software package, but these often sound
rather poor because of the limited DSP power available (often processed on the computer’s
own CPU) and the crude algorithms involved. More convincing reverberation processors are
available which exist either as stand-alone devices or as optional plug-ins for the work-
station, having access to more DSP capacity and tailor-made software.

Other simple effects can be introduced without much DSP capacity, such as double-tracking
and phasing/flanging effects. These often only involve very simple delaying and recombina-
tion processes. Pitch shifting can also be implemented digitally, and this involves processes
similar to sample rate conversion, as described below. High-quality pitch shifting requires
quite considerable horsepower because of the number of calculations required.

2.11.6 Dynamics processing

Digital dynamics processing involves gain control that depends on the instantaneous level of
the audio signal. A simple block diagram of such a device is shown in Figure 2.47. A side
chain produces coefficients corresponding to the instantaneous gain change required, which

Digital audio principles

49

Direct sound

Early reflections

Diffuse decay

Time

Le
ve

l
Figure 2.46 The impulse response of a typical reflective room

Delay

RMS detection
and time constants

Threshold and
slope control

Log
Anti
log

Attack
time

Recovery
time

Threshold Slope

X

Figure 2.47 A simple digital dynamics processing operation

are then used to multiply the delayed audio samples. First the r.m.s. level of the signal must
be determined, after which it needs to be converted to a logarithmic value in order to deter-
mine the level change in decibels. Only samples above a certain threshold level will be
affected, so a constant factor must be added to the values obtained, after which they are
multiplied by a factor to represent the compression slope. The coefficient values are then
antilogged to produce linear coefficients by which the audio samples can be multiplied.

2.11.7 Sample rate conversion

Sample rate conversion is necessary whenever audio is to be transferred between systems
operating at different rates. The aim is to convert the audio to the new rate without any
change in pitch or addition of distortion or noise. These days sample rate conversion can be
a very high-quality process, although it is never an entirely transparent process because it
involves modifying the sample values and timings. As with requantising algorithms, it is
fairly common to encounter poorly implemented sample rate conversion on low-cost digital
audio workstations, often depending very much on the specific software application rather
than the hardware involved.

The easiest way to convert from one rate to another is by passing through the analog domain
and resampling at the new rate, but this may introduce a small amount of extra noise. The
most basic form of digital rate conversion involves the translation of samples at one fixed rate
to a new fixed rate, related by a simple fractional ratio. Fractional-ratio conversion involves
the mathematical calculation of samples at the new rate based on the values of samples at the
old rate. Digital filtering is used to calculate the amplitudes of the new samples such that
they are correct based on the impulse response of original samples, after low-pass filtering
with an upper limit of the Nyquist frequency of the original sampling rate. A clock rate com-
mon to both sample rates is used to control the interpolation process. Using this method,
some output samples will coincide with input samples, but only a limited number of pos-
sibilities exist for the interval between input and output samples.

If the input and output sampling rates have a variable or non-simple relationship the above
does not hold true, since output samples may be required at any interval in between input
samples. This requires an interpolator with many more clock phases than for fractional-ratio
conversion, the intention being to pick a clock phase that most closely corresponds to the
desired output sample instant at which to calculate the necessary coefficient. There will
clearly be an error, which may be made smaller by increasing the number of possible inter-
polator phases. The audible result of the timing error is equivalent to the effects of jitter on
an audio signal (see above), and should be minimised in design so that the effects of sample
rate conversion are below the noise floor of the signal resolution in hand. If the input sam-
pling rate is continuously varied (as it might be in variable-speed searching or cueing) the
position of interpolated samples with relation to original samples must vary also. This
requires real-time calculation of filter phase.

Many workstations now include sample rate conversion as either a standard or optional
feature, so that audio material recorded and edited at one rate can be reproduced at another.
It is important to ensure that the quality of the sample rate conversion is high enough not to
affect the sound quality of your recordings, and it should only be used if it cannot be avoided.

Desktop Audio Technology

50

Poorly implemented applications sometimes omit to use correct low-pass filtering to avoid
aliasing, or incorporate very basic digital filters, resulting in poor sound quality after rate
conversion.

Sample rate conversion is also useful as a means of synchronising an external digital source
to a standard sampling frequency reference, when it is outside the range receivable by a
workstation.

2.12 Audio data reduction
Conventional PCM audio has a high data rate, and there are many applications for which it
would be an advantage to have a lower data rate without much (or any) loss of sound qual-
ity. Sixteen-bit linear PCM at a sampling rate of 44.1 kHz (‘CD quality digital audio’) results
in a data rate of about 700 kbit s�1. For multimedia applications, broadcasting, communica-
tions and some consumer purposes (e.g. streaming over the Internet) the data rate may be
reduced to a fraction of this with minimal effect on the perceived sound quality. At very low
rates the effect on sound quality is traded off with the bit rate required. Simple techniques for
reducing the data rate, such as reducing the sampling rate or number of bits per sample,
would have a very noticeable effect on sound quality, so most modern low bit rate coding
works by exploiting the phenomenon of auditory masking to ‘hide’ the increased noise
resulting from bit rate reduction in parts of the audio spectrum where it will hopefully be
inaudible. There are a number of types of low bit rate coding used in audio systems, work-
ing on similar principles, and used for applications such as consumer disk and tape systems
(e.g. Sony ATRAC), digital cinema sound (e.g. Dolby Digital, Sony SDDS, DTS) and multi-
media applications (e.g. MPEG).

2.12.1 Why reduce the data rate?

Nothing is inherently wrong with linear PCM from a sound quality point of view, indeed it
is probably the best thing to use. The problem is simply that the data rate is too high for a
number of applications. Two channels of linear PCM require a rate of around 1.4 Mbit s�1,
whereas applications such as digital audio broadcasting (DAB) or digital radio need it to be
more like 128 kbit s�1 (or perhaps lower for some applications) in order to fit sufficient chan-
nels into the radio frequency spectrum – in other words more than ten times less data per
second. Some Internet streaming applications need it to be even lower than this, with rates
down in the low tens of kilobits per second for modem-oriented connections or mobile
communications.

The efficiency of mass storage media and data networks is related to their data transfer rates.
The more data can be moved per second, the more audio channels may be handled simultan-
eously, the faster a disk can be copied, the faster a sound file can be transmitted across the
world. In reducing the data rate that each audio channel demands, one also reduces the
requirement for such high specifications from storage media and networks, or alternatively
one can obtain greater functionality from the same specification. A network connection capa-
ble of handling eight channels of linear PCM simultaneously could be made to handle, say,
48 channels of data-reduced audio, without unduly affecting sound quality.

Digital audio principles

51

Although this sounds like magic and makes it seem as if there is no point in continuing to
use linear PCM, it must be appreciated that the data reduction is achieved by throwing away
data from the original audio signal. The more data is thrown away the more likely it is that
unwanted audible effects will be noticed. The design aim of most of these systems is to try to
retain as much as possible of the sound quality whilst throwing away as much data as pos-
sible, so it follows that one should always use the least data reduction necessary, where there
is a choice.

2.12.2 Lossless and lossy coding

There is an important distinction to be made between the type of data reduction used in some
computer applications and the approach used in many audio coders. The distinction is
really between ‘lossless’ coding and coding which involves some loss of information (see
Figure 2.48). It is quite common to use data compression on computer files in order to fit more
information onto a given disk or tape, but such compression is usually lossless in that the
original data are reconstructed bit for bit when the file is decompressed. A number of tape
backup devices for computers have a compression facility for increasing the apparent capac-
ity of the medium, for example. Methods are used which exploit redundancy in the informa-
tion, such as coding a string of eighty zeros by replacing them with a short message stating
the value of the following data and the number of bytes involved. This is particularly relevant
in single-frame bit-mapped picture files where there may be considerable runs of black or
white in each line of a scan, where nothing in the image is changing. One may expect files
compressed using off-the-shelf PC data compression applications to be reduced to perhaps
25–50 per cent of their original size, but it must be remembered that they are often dealing
with static data, and do not have to work in real time. Also, it is not normally acceptable for
decompressed computer data to be anything but the original data.

It is possible to use lossless coding on audio signals. Lossless coding allows the original PCM
data to be reconstructed perfectly by the decoder and is therefore ‘noiseless’ since there is no
effect on audio quality. The data reduction obtained using these methods ranges from noth-
ing to about 2.5:1 and is variable depending on the program material. This is because

Desktop Audio Technology

52

Lossless
encoding Decoding

Storage or
transmission

Original
data

Lossy
encoding Decoding

Storage or
transmission

Approximation
to original data

Original
data

Original
data

(a)

(b)

Figure 2.48 (a) In lossless coding the original data is reconstructed perfectly upon decoding, resulting in no
loss of information. (b) In lossy coding the decoded information is not the same as that originally coded, but the
coder is designed so that the effects of the process are minimal

audio signals have an unpredictable content, do not make use of a standard limited charac-
ter set, and do not spend long periods of time in one binary state or the other. Although it is
possible to perform this reduction in real time, the coding gains are not sufficient for many
applications. Nonetheless, a halving in the average audio data rate is certainly a useful
saving. A form of lossless data reduction known as Direct Stream Transfer (DST) can be used
for Super Audio CD (see Section 2.7) in order to fit the required multichannel audio data into
the space available. A similar system is available for DVD-Audio, called MLP (Meridian
Lossless Packing), discussed further in Chapter 8.

‘Noisy’ or lossy coding methods make possible a far greater degree of data reduction, but
require the designer and user to arrive at a compromise between the degree of data reduction
and potential effects on sound quality. Here data reduction is achieved by coding the signal
less accurately than in the original PCM format (using fewer bits per sample), thereby increas-
ing quantising noise, but with the intention that increases in noise will be ‘masked’ (made
inaudible) by the signal. The original data is not reconstructed perfectly on decoding. The suc-
cess of such techniques therefore relies on being able to model the characteristics of the human
hearing process in order to predict the masking effect of the signal at any point in time – hence
the common term ‘perceptual coding’ for this approach. Using detailed psychoacoustic mod-
els it is possible to code high-quality audio at rates under 100 kbit s�1 per channel with mini-
mal effects on audio quality. Higher data rates, such as 192 kbit s�1, can be used to obtain an
audio quality that is demonstrably indistinguishable from the original PCM.

2.12.3 MPEG – an example of lossy coding

The following is a very brief overview of how one approach works, based on the technology
involved in the MPEG (Moving Pictures Expert Group) standards.

As shown in Figure 2.49, the incoming digital audio signal is filtered into a number of narrow
frequency bands. Parallel to this a computer model of the human hearing process (an auditory
model) analyses a short portion of the audio signal (a few milliseconds). This analysis is used
to determine what parts of the audio spectrum will be masked, and to what degree, during
that short time period. In bands where there is a strong signal, quantising noise can be allowed
to rise considerably without it being heard, because one signal is very efficient at masking
another lower level signal in the same band as itself (see Figure 2.50). Provided that the noise
is kept below the masking threshold in each band it should be inaudible.

Digital audio principles

53

Quantisation
and scale

factors

Framing
Data-reduced
bit stream

Band
splittingPCM

audio

Perceptual
model

Figure 2.49 Generalised block diagram of a psychoacoustic low bit rate coder

Blocks of audio samples in each narrow band are scaled (low level signals are amplified so that
they use more of the most significant bits of the range) and the scaled samples are then
reduced in resolution (requantised) by reducing the number of bits available to represent each
sample – a process that results in increased quantising noise. The output of the auditory model
is used to control the requantising process so that the sound quality remains as high as possi-
ble for a given bit rate. The greatest number of bits is allocated to frequency bands where noise
would be most audible, and the fewest to those bands where the noise would be effectively
masked by the signal. Control information is sent along with the blocks of bit-rate-reduced
samples to allow them to be reconstructed at the correct level and resolution upon decoding.

The above process is repeated every few milliseconds, so that the masking model is con-
stantly being updated to take account of changes in the audio signal. Carefully implemented,
such a process can result in a reduction of the data rate to anything from about one-quarter
to less than one-tenth of the original data rate. A decoder uses the control information trans-
mitted with the bit-rate-reduced samples to restore the samples to their correct level and can
determine how many bits were allocated to each frequency band by the encoder, recon-
structing linear PCM samples and then recombining the frequency bands to form a single
output (see Figure 2.51). A decoder can be much less complex, and therefore cheaper, than an
encoder, because it does not need to contain the auditory model.

A standard known as MPEG-1, published by the International Standards Organisation (ISO
11172–3), defines a number of ‘layers’ of complexity for low bit rate audio coders as shown
in Table 2.4. Each of the layers can be operated at any of the bit rates within the ranges shown
(although some of the higher rates are intended for stereo modes) and the user must make
appropriate decisions about what sound quality is appropriate for each application. The
lower the data rate, the lower the sound quality that will be obtained. At high data rates the
encoding-decoding process has been judged by many to be audibly ‘transparent’ – in other
words listeners cannot detect that the coded and decoded signal is different from the origi-
nal input. The target bit rates were for ‘transparent’ coding.

Desktop Audio Technology

54

Figure 2.50 Quantising noise lying under the masking threshold will normally be inaudible

‘MP3’ will be for many people the name associated with downloading music files from the
Internet. The term MP3 has caused some confusion; it is short for MPEG-1 Layer 3, but MP3
has virtually become a generic term for the system used for receiving compressed audio from
the Internet. There is also MPEG-2 which can handle multichannel surround, and further
developments in this and later systems will be briefly touched upon.

MPEG-2 BC (Backwards Compatible with MPEG-1) additionally supports sampling fre-
quencies from 16 kHz to 22.05 kHz and 24 kHz at bit rates from 32 to 256 kbit s�1 for Layer 1.
For Layers 2 and 3, bit rates are from 8 to 160 kbit s�1. Developments intended to supersede
MPEG-2 BC have included MPEG-2 AAC (Advanced Audio Coding). This defines a standard
for multichannel coding of up to 48 channels, with sampling rates from 8 kHz to 96 kHz. It
also incorporates a Modified Discrete Cosine transform system as used in the MiniDisc cod-
ing format (ATRAC). MPEG-2 AAC was not, however, designed to be backwards compatible
with MPEG-1.

MPEG-4 ‘natural audio coding’ is based on the standards outlined for MPEG-2 AAC; it
includes further coding techniques for reducing transmission bandwidth and it can scale the
bit rate according to the complexity of the decoder. There are also intermediate levels of para-
metric representation in MPEG-4 such as used in speech coding, whereby speed and pitch of
basic signals can be altered over time. One has access to a variety of methods of representing
sound at different levels of abstraction and complexity, all the way from natural audio cod-
ing (lowest level of abstraction), through parametric coding systems based on speech syn-
thesis and low level parameter modification, to fully synthetic audio objects.

When audio signals are described in the form of ‘objects’ and ‘scenes’, it requires that they be
rendered or synthesised by a suitable decoder. Structured Audio (SA) in MPEG-4 enables syn-
thetic sound sources to be represented and controlled at very low bit rates (less than 1 kbit s�1).
An SA decoder can synthesise music and sound effects. SAOL (Structured Audio Orchestra
Language), as used in MPEG-4, was developed at MIT and is an evolution of CSound (a syn-
thesis language used widely in the electroacoustic music and academic communities). It enables

Digital audio principles

55

Data reduced
frames Frames

unpacking

Reconstruction
of subband

samples

Reconstruction
of PCM audio

PCM audio at
original rate

Figure 2.51 Generalised block diagram of an MPEG-Audio decoder

Table 2.4 MPEG-1 layers

Layer Complexity Min. delay Bit rate range Target
(ms) (kbit s�1) (kbit s�1)

1 Low 19 32–448 192
2 Moderate 35 32–384* 128
3 High 59 32–320 64

* In Layer 2, bit rates of 224 kbit s�1 and above are for stereo modes only.

‘instruments’ and ‘scores’ to be downloaded. The instruments define the parameters of a num-
ber of sound sources that are to be rendered by synthesis (e.g. FM, wavetable, granular, addi-
tive) and the ‘score’ is a list of control information that governs what those instruments play and
when (represented in the SASL or Structured Audio Score Language format). This is rather like
a more refined version of the established MIDI control protocol, and indeed MIDI can be used
if required for basic music performance control. This is discussed further in Chapter 4.

Sound scenes, as distinct from sound objects, are usually made up of two elements – that is
the sound objects and the environment within which they are located. Both elements are inte-
grated within one part of MPEG-4. This part of MPEG-4 uses so-called BIFS (Binary Format
for Scenes) for describing the composition of scenes (both visual and audio). The objects are
known as nodes and are based on VRML (virtual reality modelling language). So-called Audio
BIFS can be post-processed and represent parametric descriptions of sound objects. Advanced
Audio BIFS also enable virtual environments to be described in the form of perceptual room
acoustics parameters, including positioning and directivity of sound objects. MPEG-4 audio
scene description distinguishes between physical and perceptual representation of scenes,
rather like the low- and high-level description information mentioned above.

2.12.4 Other data-reduced formats

Dolby Digital or AC-3 encoding was developed as a means of delivering 5.1-channel
surround to cinemas or the home without the need for analog matrix encoding. The AC-3
coding algorithm can be used for a wide range of different audio signal configurations and
bit rates from 32 kbit s�1 for a single mono channel up to 640 kbit s�1 for surround signals. It
is used widely for the distribution of digital sound tracks on 35 mm movie films, the data
being stored optically in the space between the sprocket holes on the film.

It is sufficient to say here that the process involves a number of techniques by which the data
representing audio from the source channels is transformed into the frequency domain and
requantised to a lower resolution, relying on the masking characteristics of the human hearing
process to hide the increased quantising noise that results from this process. A common bit pool
is used so that channels requiring higher data rates than others can trade their bit rate require-
ments provided that the overall total bit rate does not exceed the constant rate specified.

Aside from the representation of surround sound in a compact digital form, Dolby Digital
includes a variety of operational features that enhance system flexibility and help adapt
replay to a variety of consumer situations. These include dialogue normalisation (‘dialnorm’)
and the option to include dynamic range control information alongside the audio data for
use in environments where background noise prevents the full dynamic range of the source
material to be heard. Downmix control information can also be carried alongside the audio
data in order that a two-channel version of the surround sound material can be reconstructed
in the decoder. As a rule, Dolby Digital data is stored or transmitted with the highest num-
ber of channels needed for the end product to be represented and any compatible downmixes
are created in the decoder. This differs from some other systems where a two-channel down-
mix is carried alongside the surround information.

The DTS (Digital Theater Systems) ‘Coherent Acoustics’ system is another digital signal coding
format that can be used to deliver surround sound in consumer or professional applications,

Desktop Audio Technology

56

using low bit rate coding techniques to reduce the data rate of the audio information. The DTS
system can accommodate a wide range of bit rates from 32 kbit s�1 up to 4.096 Mbit s�1 (some-
what higher than Dolby Digital), with up to eight source channels and with sampling rates up
to 192 kHz. Variable bit rate and lossless coding are also optional. Downmixing and dynamic
range control options are provided in the system. Because the maximum data rate is typically
somewhat higher than that of Dolby Digital or MPEG, a greater margin can be engineered
between the signal and any artefacts of low bit rate coding, leading to potentially higher sound
quality. Such judgements, though, are obviously up to the individual and it is impossible to
make blanket statements about comparative sound quality between systems.

SDDS stands for Sony Dynamic Digital Sound, and is the third of the main competing for-
mats for digital film sound. Using Sony’s ATRAC data reduction system (also used on
MiniDiscs), it too encodes audio data with a substantial saving in bit rate compared with the
original PCM (about 5:1 compression).

Real Networks has been developing data reduction for Internet streaming applications for a
number of years and specialises in squeezing the maximum quality possible out of very low
bit rates. It has recently released ‘Real Audio with ATRAC 3� which succeeds the earlier Real
Audio G2 standard. Audio can be coded at rates between 12 and 352 kbit s�1, occupying only
63 per cent of the bandwidth previously consumed by G2.

Further reading
Bosi, M. and Goldberg, R. (2003) Introduction to Digital Audio Coding and Standards. Kluwer Academic

Publishers.
Watkinson, J. (2001) The Art of Digital Audio, third edition. Focal Press.

Digital audio principles

57

58

3 Recording, replay and
editing principles

This chapter is concerned with the principles of audio recording and replay using mass
storage media, including various approaches to editing.

3.1 The sound file
In audio workstations, recordings are stored in sound files on mass storage media. The stor-
age medium is normally a disk but other media may be used in certain circumstances such
as for backup of disks. For the sake of simplicity disks are assumed to be the primary means
of storage in the following sections. A sound file is an individual recording of any length from
a few seconds to a number of hours (within the limits of the system). With tape recording,
parts of a tape may be recorded at different times, and in such a situation there will be sec-
tions of that tape that represent distinctly separate recordings: they may be ‘tracks’ for an
album, ‘takes’ of a recording session, or short individual sounds such as sound effects. This
is the closest that tape recording gets to the concept of the sound file: that is a distinct unit of
recorded audio, the size of the unit being anything that fits into the available space.

In the audio workstation the disk can be thought of as a ‘sound store’ in which no one part
has any specific time relationship to any other part – no section can be said to be ‘before’
another or ‘after’ another. This is the nature of random- or direct-access storage (although
some forms of optical disk store data contiguously for all or part of their capacity, although
they retain random accessibility). It has led to the use of the somewhat confusing description
‘non-linear recording’, which contrasts with the ‘linear’ recording process that takes place on
tape. (To many people, the term ‘non-linear’ means that the audio has been quantised non-
linearly, which is not the case in most professional audio systems.)

A disk may accommodate a number of sound files of different lengths. It is possible that one
file might be a 10 minute music track whilst another might be a 1 second sound effect. As

many sound files can be kept in the store as will fit in the space available, although some
operating systems have upper limits on the number of individual files that can be handled
by the directory structure. Each sound file is made up of a number of discrete data blocks and
normally the block size will limit the minimum size occupied by a file since systems do not
normally write partial blocks (see below).

Normally sound files are either mono or stereo – that is either a single channel or two related
channels of audio combined into one file. They are rarely more than stereo, since multichan-
nel operation is normally achieved by storing a number of separate mono files, one for each
channel. Stereo sound files contain the left and right channels of a stereo pair, usually inter-
leaved on a sample-by-sample basis as described in Chapter 6, and are useful when the two
channels will always be replayed together and in a fixed timing relationship. Accessing a
stereo file is then no different from accessing a mono file, except that the stereo file requires
twice the amount of data to be transferred for the same duration of audio. As far as the user
is concerned, the system can present a stereo sound file under a single title and note in the
file header that it is stereo. In this case any buffering (see below) would have to be split such
that left channel samples would be written to and read from one group of memory addresses,
and right channel samples to and from another. As would be expected, stereo files take up
twice the amount of disk space of the equivalent mono file.

3.2 RAM buffering
Computer disk drives were not originally designed for recording audio, although they can
be made to serve this purpose. As explained in Chapter 5, a disk is normally formatted in sec-
tors, often grouped into blocks, and the blocks making up a file need not be stored contigu-
ously (contiguous means physically adjacent). The result of this is that data transfer to and
from such media is not smooth but intermittent or burst-like. Furthermore, editing may
involve the joining of sections from files stored in physically separate locations, resulting in
breaks in the data flow from disk at edit points whilst the new file is located. Although this
burst transfer rarely presents a problem in applications such as text processing (it does not
matter if a text file is loaded in bursts) it is unsuitable for the recording and replay of real-
time audio. Audio (and video in most cases) requires that samples are transferred to and
from convertors or digital interfaces at a constant rate, in an unbroken stream. Consequently
digital audio hardware and software must include mechanisms for converting burst data
flow into continuous data flow and vice versa. This is achieved by using RAM (random
access memory) as a short-term ‘buffer’ or reservoir.

RAM is temporary solid-state memory with a very fast access time and transfer rate. It can
be addressed directly by the processing hardware of the audio workstation, and is used as an
intermediate store for audio samples on their way to and from the disk drive (see Figure 3.1).
During recording, audio samples are written into the RAM at a regular rate and read out
again a short time later to be written as blocks of data on the disk. At least one complete
sector of audio is transferred in one operation, and usually a number of sectors are written in
one operation (see Section 3.4). The transfer is effectively time compressed, since samples
acquired over, say, 100 ms, may be written to the disk in a short burst lasting only 20 ms,
followed by a gap. During simple replay, data blocks are transferred from the disk into RAM

Recording, replay and editing principles

59

in bursts and then read out at a steady rate for transfer to a D/A convertor or digital inter-
face. The process of transferring out from the buffer normally begins before the file has been
transferred completely into the buffer, because otherwise (a) there would be an unacceptable
delay between the initiation of replay and the onset of an audible output, and (b) the size of
the buffer would have to be great enough to hold the largest sound file entirely.

The RAM buffer acts in a similar way to a water reservoir. It allows supply and demand to
vary at its input and its output whilst remaining able to provide an unbroken supply, assum-
ing that sufficient water remains in the reservoir. Figure 3.2 shows an analogy with a water
bucket that has a hole in the bottom, filled by a tap. One may liken the tap to a disk drive and
the water flowing out of the hole to an audio output. The tap may fill the bucket in bursts,
but within certain limits this is converted into continuous outflow. Provided that the average
flow rate of water entering the bucket is the same as the average rate at which it flows out of
the hole, then the bucket will neither empty nor overflow (within the limits of the size of the
bucket). If water flows out of the hole faster than it is supplied by the tap then the bucket will

Desktop Audio Technology

60

Record buffer

Replay buffer

Intermittent data Continuous data

Audio
in

Audio
out

RAM

Delay

Disk drive

Figure 3.1 RAM buffering is used to convert burst data flow to continuous data flow, and vice versa

Continuous outflow

Intermittent fill

Figure 3.2 RAM buffering may be likened to a water reservoir that acts to convert intermittent filling to
continuous outflow

eventually become empty. On the other hand, the bucket could overflow if the tap was left
on all the time and was filling the bucket faster than the hole could empty it.

Clearly some control mechanism is called for. Sensors could be attached to the insides of the
bucket to detect high and low water levels, as shown in Figure 3.3, connected to control logic
which operated a valve in the supply line. The valve would be opened when the water level
was getting low, and closed when it was getting high. A tap on the bucket outlet could be
added to stop and start the flow (the equivalent of the PLAY button for audio replay).
Equivalents of this control mechanism exist in audio workstation software. Pointers are
incremented up and down to register the state of fullness of RAM buffers during record and
replay operations, and action is taken at certain states of fullness either to transfer new blocks
of data to and from the disk or to halt transfer.

The analogy can be taken further. There might be more than one hole in the bucket (more
audio outputs), larger holes in the bucket (higher sampling rates and resolutions) or a tap
with low water pressure (a slow storage device). Audio system design is largely a matter of
juggling with these parameters and others to optimise the system performance. (The bucket
analogy does not hold water if examined too closely, as water will flow faster out of the holes
in the bucket the fuller the bucket, and this does not hold true for memory buffers in audio
workstations!)

RAM buffering has a number of other uses. Firstly, it can be used to ensure that any short
term timing irregularities in the data coming from the storage device will be ironed out and
will not be allowed to affect audio quality. Data written into memory from the store, even if

Recording, replay and editing principles

61

Control
logic

Inlet valve

Water
level
sensors

Outlet control

High

Low

Open/close

Figure 3.3 A control system could be added to the simple reservoir to regulate inflow and outflow so that
supply and demand are linked

it has timing jitter, can be read out from the store at a constant steady rate, under control of
an accurate crystal clock. The only penalty of buffering is that it introduces a small delay
between the input to and the output from the buffer, the extent of which depends on the
delay between the writing of samples to the RAM and the reading of them out again. The
maximum delay is limited by the size of the buffer, as with a small buffer there will come a
point where the memory is filled and must be partially emptied before any new samples can
be written in. The delay effect of the buffer can be disguised in operation because data can be
read from disk ahead of the required time and written at an appropriate time after sample
acquisition.

Secondly, the buffer may be used for synchronisation purposes. If audio data is to be synchro-
nised with an external reference such as timecode, then the rate at which data is read out of the
buffer can be finely adjusted to ensure that lock is maintained. It is also possible to align the
timings of multiple audio channels that are supposed to be nominally in sync with each other.

The size of buffer in a digital audio system may or may not be under the user’s control, but
is typically in the region of 0.5–2 Mbytes. An area of operating RAM will be set aside for this
purpose, sometimes located on the audio processing board itself rather than being system
RAM of the host computer. Generally, the more channels to be handled, the larger the buffer,
since each channel requires its own memory space; also a larger buffer can help to compen-
sate for badly fragmented storage space (see Section 5.4), although it cannot make up for a
disk drive that is too slow overall.

3.3 Disk drive performance issues
Access time and transfer rate are important features governing the suitability of disk drives
for primary digital audio storage. The sustained transfer rate is far more important than the
instantaneous rate, since this is more likely to represent the performance in real file transfer
operations.

Tables 3.1 and 3.2 show the data rates and capacities required for different resolutions of
digital audio, either linear PCM or data-reduced. From this one can begin to work out the

Desktop Audio Technology

62

Table 3.1 Data rates and capacities for linear PCM

Sampling rate Resolution Bit rate Capacity/min. Capacity/hour
(kHz) (bits) (kbit s�1) (Mbytes min�1) (Mbytes hour�1)

96 16 1536 11.0 659
88.1 16 1410 10.1 605
48 20 960 6.9 412
48 16 768 5.5 330
44.1 16 706 5.0 303
44.1 8 353 2.5 151
32 16 512 3.7 220
22.05 8 176 1.3 76
11 8 88 0.6 38

performance requirements of storage devices. The data rate for one channel of audio at
48 kHz, 16 bits, amounts to around 0.75 Mbit s�1, thus it might be assumed that a device with
a transfer rate of 0.75 Mbit s�1 would be able to handle the replay of one audio channel’s data
satisfactorily. If the store were made up of solid state RAM which has a negligible access time
(of the order of tens or hundreds of nano seconds) then a transfer rate of 0.75 Mbit s�1 would
be adequate, but in the usual case where the store is a disk drive, the access time will severely
limit the average transfer rate. Although the burst transfer rate from the disk to the buffer
may be high, the gaps between transfers as the drive searches for new blocks of data will
reduce the effective rate. It is therefore the combination of access time and transfer rate that
go to make up the effective transfer rate. What is needed is a fast transfer rate and a fast
access time.

The job of the buffer is to disguise the effects of access time delays, and it may be seen that
the size of the buffer will depend on the potential access delay, among other things. If trans-
fer is erratic, that is with long gaps and then extremely fast transfers, the buffer is likely to
swing between being very full and very empty, rather than deviating a small amount around
a half full position. In the former case it is likely that a larger buffer will be required.

Over a period of time the disk is likely to become fragmented and this will lead to file blocks
being stored in a number of physically separate locations. The more fragmented a store
becomes the lower the efficiency of data retrieval, as a file will be transferred in a number of
short bursts separated by breaks while the next block is accessed. Furthermore, the access
time depends on how far apart the blocks are, as the retrieval mechanism will take less time
to travel a short distance than to travel a long way. (This is covered further in Chapter 5.) For
this reason, figures quoted for access time can only ever be a rough guide.

Certain storage media have different access times and transfer rates when recording (writing)
to those encountered when replaying (reading). For example, hard disks use a magnetic
recording method that overwrites old information completely without erasing it first. Some
magneto-optical drives require a two-stage process in order to rewrite over old data, so the
required block must be erased on one revolution and then written on the next. There may
also be a ‘verify’ pass after writing. This suggests that recording performance may not always
be as good as replay performance, and that a disk drive may be able to replay more channels
simultaneously than it can record.

Recording, replay and editing principles

63

Table 3.2 Data rates and capacities for data-reduced audio

Bit rate Capacity/min. Capacity/hour
(kbit s �1) (Mbytes min �1) (Mbytes hour �1)

64 0.5 27
96 0.7 41

128 0.9 55
196 1.4 84
256 1.8 110
384 2.7 165

For all the above reasons it is often difficult to calculate how many channels of audio one may
expect a disk drive to be able to handle. To take an example, assume an older disk drive with
an average access time of 20 milliseconds and a transfer rate of 20 Mbit s�1. If the access time
was near zero then the transfer rate of 20 Mbit s�1 would allow around 26 channels of audio
to be transferred at the example resolution given above, but the effective transfer rate in real
operation will bring this number down to perhaps twelve or fewer channels for safe, reliable
operation in a wide variety of operational circumstances. Editing operations also place
considerable additional demands on disk drive performance, depending on how edits are
carried out. Because of all this, some manufacturers play very safe and limit their systems to
a small number of channels per disk drive, even if the drive might be able to handle more
under some circumstances. Other software simply leaves it up to the user to determine when
disk drive will fail to perform, or provides a warning when it is getting close to the limit. The
effect of using a disk drive beyond the limits of its performance is normally to experience
‘drop-outs’ in replay, and system messages such as ‘drive too slow’ when attempting to
replay large numbers of channels with many edits.

3.4 Allocation units or transfer blocks
Optimising the efficiency of data transfer to and from a storage device will depend on keep-
ing the number of head seeks to a minimum for any given file transfer. This requires careful
optimisation of the size and position of the audio transfer blocks or allocation units.
Typically, a disk sector (that is the smallest addressable storage unit) contains 512 bytes of
information, although some drives use 1024 byte (or greater) sectors. This is very small in
relation to the size of a digital audio file of even moderate length and if a file were to be split
up into chunks of 512 bytes spread all over the disk then efficiency would be impossibly
reduced due to the large number of seeks required to different parts of the disk. For this
reason a minimum transfer block or allocation unit is usually defined, which is a certain
number of bytes that are transferred together and preferably stored contiguously in order to
improve efficiency. It might be that a transfer block would contain 8 kbytes of audio data,
which in the case of 512 byte sectors would correspond to 16 sectors. The size of the transfer
block must be small enough to engender efficient use of the disk space in cases of fragmen-
tation and large enough to result in efficient data transfer. If the digital audio system stores
audio under the native filing system of the host computer then the size of the transfer block
may be fixed during the formatting of the disk volume. A common size is 32 kbytes.

3.5 Multichannel recording and replay
3.5.1 Multitrack or multichannel?

It is important to understand a fundamental difference between the workstation concept of
multichannel operation and the traditional concept of multitrack tape recording. The differ-
ence is that ‘tracks’ and ‘channels’ need not necessarily mean the same thing. In a multitrack
tape recorder there may be up to 48 tracks of audio recorded onto the tape, each of which is an
independent mono track lasting the length of the tape. Each of these tracks feeds a numbered
audio output and is fed from a numbered input. Once sound is recorded onto a numbered

Desktop Audio Technology

64

track it is fixed in time and physical position in relation to other sounds recorded on the same tape
and it will be replayed on the same-numbered audio channel at all times (unless the internal
wiring of the machine is changed).

In workstations the terms ‘track’ and ‘channel’ may be separated from each other, in that a
sound file, once stored, may be replayed on any audio channel depending on the user’s
choice. It may even be that the concept of the track is done away with altogether, but this
depends on the user interface of the system. Most manufacturers have chosen to retain the
concept of tracks because it is convenient and well understood. Tracks, in workstation
terminology, are just ways of showing which sound elements have been grouped together for
replay on the same channel, but they are not fixed as in tape recording. Figure 3.4 shows a
simulated display from a multitrack package in which tracks are represented as horizontal
bands containing sound file segments. On the left-hand side it is possible to change the phys-
ical audio output assigned for replay of that track. The sound segments can be moved around
in time on the virtual track by sliding them left or right and they can be copied or moved to
other tracks if necessary.

3.5.2 Inputs, outputs, tracks and channels

Because of the looser relationship between tracks, channels and audio inputs and outputs,
confusion occasionally arises. Firstly, none of these are necessarily related to each other,
although a designer may decide to relate them. In a 24-track tape machine, there are 24
inputs, 24 outputs, 24 tracks and 24 channels, so it is very easy to see a direct relationship
between one and the others. It is even possible to say exactly where on the tape track 13 will
be recorded at any point in time. In a workstation it is possible, for example, for there to be
two inputs, eight outputs, 99 tracks, and eight channels. It is rarely possible to say exactly
where track 13 will be recorded at any point, or what information is recorded on it, as it all
depends on what the user has decided. In this example it may be that only two inputs have

Recording, replay and editing principles

65

CAR3 [2] BIRDS [2]

CLUNK1 [1] ATMOS [5]

I HAVEN’T...[1]

BACH [10]

DOGS [2]

1REC

2REC

3REC

4REC

5REC

6REC

7REC

8REC

Figure 3.4 Tracks are represented in this simulated display as horizontal bands containing named sound file
segments. The output to which that track is routed is selected at the left-hand side, along with recording and
replay muting controls

been provided because that is all that the designer is going to allow you to record at any one
time, but it is highly likely that these two inputs could be routed to any ‘track’ or any output
channel. The two inputs allow for the recording of stereo or mono sound files that will be
stored in a free location and given names by the user. Although only two ‘tracks’ may be
recorded at once, this operation may be performed many times to build up a large number
of sound files in the store.

In some systems, the concept of the track has been considered as important, and in the above
example there are 99 tracks (just a virtual concept) but only eight outputs or channels. This
is because the user is allowed to record information onto any of the tracks, but he may only
replay eight of them simultaneously. The number of simultaneous output channels is limited
by the transfer rates of the storage devices, the signal processing capacity of the system and
the number of D/A convertors or digital outputs employed. By expanding the system, adding
more or faster disks and adding more processing power, more of the 99 tracks could be
replayed simultaneously. Many manufacturers have taken this modular approach to system
design, allowing the user to start off in a small way, expanding the capabilities of the system
as time and money allow.

3.5.3 Track usage, storage capacity and disk assignment

The storage space required for multiple channels increases pro rata with the number of
channels, although in fact eight-track recording may not require eight times the storage space
of mono recording because many ‘tracks’ may be blank for large amounts of the time. If you
think about the average multitrack recording on tape you will realise that many tracks have
large gaps with nothing recorded. The total storage space used will depend on the total dura-
tion of the mono sound files used in the program, whatever tracks or channels they are
assigned to. It has been estimated, for example, that sound effects tracks in feature film
production contain about two-thirds silence and that dialogue tracks are only 10–20 per cent
utilised.

(It is often said that disk-based systems do not record the silences on tracks and therefore do
not use up as much storage space as might be expected, but the only time when silences save
storage time is when they exist as blank spaces between the output of sound files, where no
sound file is assigned to play (see Figure 3.5). Recorded silence uses as much disk space as
recorded music!)

Multichannel disk recording systems sometimes use more than one disk drive, and there is a
limit to the number of channels that can be serviced by a single drive. It is necessary, therefore,
to determine firstly how many channels a storage device will handle realistically and then to
work out how many are needed to give the total capacity required. Some older systems
attempted to imitate a multitrack tape recorder in assigning certain disk drives permanently
to certain groups of tracks, as shown in Figure 3.6, but this limited operational flexibility. If a
sound file from one track were needed on another it might have to be copied to the appropri-
ate drive, which would take time. This approach is becoming much less common now that the
performance of disk drives is getting to the point where one can replay perhaps 16 channels
simultaneously from a single drive. In modular systems, if one needs greater channel rec-
ording and replay capacity one can simply add further disk I/O cards, each connected to a

Desktop Audio Technology

66

separate disk. If one needs more storage capacity then more disk drives can be attached to the
same SCSI bus, as shown in Figure 3.7. It is then relatively unimportant which drive a file is
stored on, provided that the software is capable of handling the addressing of multiple drives.
There may be some restrictions if the user has constructed a play list which requires more
simultaneous file transfers from a certain disk than can be handled.

3.5.4 Dropping-in

In multitrack music systems the capability to ‘drop-in’ is important. Dropping-in involves
instantaneous entry into record mode at the touch of a button and it is expected that a

Recording, replay and editing principles

67

File assigned
Silent section -
no file assigned File assigned

File assigned over
whole section Silent section

within file

Figure 3.5 The silent section on the upper track does not require any disk space because no recording exists
for this time slot. The silent section on the lower track was recorded as part of a file, and so consumes as much
space as any other sound

In

Out

Channels 1 and 2

Buffers Store 1

In

Out

Channels 3 and 4

Buffers Store 2

In

Out

Channels 5 and 6

Buffers Store 3

In

Out

Channels 7 and 8

Buffers Store 4

Figure 3.6 Some older multitrack disk systems assigned disks permanently to certain tracks, as shown here

seamless join will result between old and new material, both at the start of the drop-in and
at the drop-out into the old material again.

Dropping in and out are really very similar operations to those involved in editing, where a
crossfade must be added between old and new material at the join. In terms of file operations,
it may be appreciated that one cannot simply start to write new material half way through a
previously written file, making it necessary to write a new file for the ‘dropped-in’ portion.
Internally, as part of the replay schedule, the system will then have to keep a record of times
at which it must crossfade from one file to the other and back again.

3.6 System latency
Latency is the delay that occurs between one event and another. In workstations the term
latency is usually used to describe the delay between inputs and outputs of the audio hard-
ware. It is particularly important because this latency affects the ease with which a worksta-
tion may be used as the principal audio signal-processing engine in a studio, this now being
a realistic prospect. Large-scale audio workstations with multiple inputs and outputs can
now handle most of the operations that would once have been handled by stand-alone

Desktop Audio Technology

68

Disk I/O card 1

Disk I/O card 2

Disk I/O card n

Signal processing

Increase storage capacity

Increase channel capacity

H
ig

h
sp

ee
d

bu
s

SCSI chainSCSI IF

Disk drives

Figure 3.7 Arrangement of multiple disks in a typical modular system, showing how a number of disks can be
attached to a single SCSI chain to increase storage capacity, and how additional disk I/O cards can be added to
increase data throughput for additional audio channels

mixers, effects and recording equipment. Furthermore they are now capable of real-time sig-
nal processing and ‘full duplex’ operation which means that audio signals can be taken from
an input, processed and sent to an output, this taking only a few milliseconds. Low latency
is therefore highly desirable, in particular when using workstation channels as foldback
signal paths to provide cue signals to musicians when overdubbing new material. It may also
be important to be able to fix the latency rather than having it change when different opera-
tions are undertaken. This issue is raised further at other appropriate points in the book.

3.7 Principles of audio editing
3.7.1 Advantages of non-linear editing

Speed and flexibility of editing is probably one of the greatest benefits obtained from non-
linear recording. Tape editing had some advantages but with digital audio it was often cum-
bersome, requiring material to be copied in real time from source tapes to a master tape.
Difficulties also arose when making minor adjustments to a finished master. Tape-cut editing
was very fast and cheap, being the main method used for years with analog tape, but it was
rather unreliable on digital formats and little used in practice. When cut-editing tape, the
editor fixed the edited sections in a physical and therefore in a temporal relationship with
each other. If he or she desired to change any aspect of the edited master then it would be
taken apart and rejoined, there usually only being one final version of the master tape.

The majority of editing is done today using audio workstations. Non-linear editing has also
come to feature very widely in post-production for video and film, because it has a lot in
common with film post-production techniques involving a number of independent mono
sound reels. The editor may preview a number of possible masters in their entirety before
deciding which should be the final one. Even after this, it is a simple matter to modify the
edit list to update the master. Edits may also be previewed and experimented with in order
to determine the most appropriate location and processing – an operation which is less easy
with other forms of editing.

This kind of editing is truly non-destructive because the edited master only exists as a series
of instructions to replay parts of certain sound files at specified times, with optional signal
processing overlaid, as shown in Figure 3.8. The original sound files remain intact at all times
and a single sound file can be used as many times as desired in different locations and on
different tracks without the need to duplicate the audio data. Editing may involve the sim-
ple joining of sections, or it may involve more complex operations such as long crossfades
between one album track and the next, or gain offsets between one section and another. The
beauty of non-linear editing is that all these things are possible without in any way affecting
the original source material.

3.7.2 Sound files and sound segments

Sound files are discussed further in Chapter 6: they are the individual sound recordings
contained on a disk, each of which is catalogued in the disk directory. In the case of music
editing sound files might be session takes, anything from a few bars to a whole movement,

Recording, replay and editing principles

69

while in picture dubbing they might contain a phrase of dialogue or a sound effect. They are
normally stored with a name to identify them. Specific segments of these sound files can be
defined by the user while editing, in order to get rid of unwanted material or to select useful
extracts. In such cases it is useful to be able to identify the wanted segment as an entity in its
own right, so that it can be named and used wherever required. The terminology varies but
such identified parts of sound files are usually termed either ‘clips’ or ‘segments’. They require
the original sound files as source data and will not usually be replayable independently.

Rather than creating a copy of the segment or clip and storing it as a separate sound file, it is
normal simply to store it as a ‘soft’ entity – in other words as simply commands in an edit list
or project file that identify the start and end addresses of the segment concerned and the
sound file to which it relates. It may be given a name by the operator and subsequently used
as if it were a sound file in its own right. An almost unlimited number of these segments can
be created from original sound files, without the need for any additional audio storage space.

3.7.3 Edit point handling

Edit points can be simple butt joins or crossfades. A butt join is very simple because it
involves straightforward switching from the replay of one sound segment to another. Since
replay involves temporary storage of the sound file blocks in RAM (see above) it is a rela-
tively simple matter to ensure that both outgoing and incoming files in the region of the edit
are available in RAM simultaneously (in different address areas). Up until the edit, blocks of
the outgoing file are read from the disk into RAM and thence to the audio outputs. As the

Desktop Audio Technology

70

EDL

Disk I/O and
memory

Signal
processing

Audio
outputs

Sound files on disk

Commands
derived from
EDL

Host computer
running editing software

Edited
audio

Figure 3.8 Instructions from an edit decision list (EDL) are used to control the replay of sound file segments
from disk, which may be subjected to further processing (also under EDL control) before arriving at the audio
outputs

edit point is reached a switch occurs between outgoing and incoming material by instituting
a jump in the memory read address corresponding to the start of the incoming material.
Replay then continues by reading subsequent blocks from the incoming sound file. It is
normally possible to position edits right down to single sample accuracy, making the timing
resolution as fine as a number of tens of microseconds if required.

The problem with butt joins is that they are quite unsubtle. Audible clicks and bumps may
result because of the discontinuity in the waveform that may result, as shown in Figure 3.9.
It is normal, therefore, to use at least a short crossfade at edit points to hide the effect of the
join. This is what happens when analog tape is spliced, because the traditional angled cut has
the same effect as a short crossfade (of between 5 and 20 ms depending on the tape speed and
angle of cut). Most workstations have considerable flexibility with crossfades and are not
limited to short durations. It is now common to use crossfades of many shapes and durations
(e.g. linear, root cosine, equal power) for different creative purposes. This, coupled with the
ability to preview edits and fine-tune their locations, has made it possible to put edits in
places previously considered impossible.

The locations of edit points are kept in an edit decision list (EDL) which contains information
about the segments and files to be replayed at each time, the in and the out points of each sec-
tion and details of the crossfade time and shape at each edit point. It may also contain addi-
tional information such as signal processing operations to be performed (gain changes, EQ, etc.).

3.7.4 Crossfading

Crossfading is similar to butt joining, except that it requires access to data from both incoming
and outgoing files for the duration of the crossfade. The crossfade calculation involves simple
signal processing, during which the values of outgoing samples are multiplied by gradually
decreasing coefficients whilst the values of incoming samples are multiplied by gradually
increasing coefficients. Time coincident samples of the two files are then added together to
produce output samples, as described in Chapter 2. The duration and shape of the crossfade

Recording, replay and editing principles

71

Poor join
owing to

discontinuity

Good join at
zero crossing

(a)

(b)

Figure 3.9 (a) A bad butt edit results in a waveform discontinuity. (b) Butt edits can be made to work if there is
minimal discontinuity

can be adjusted by altering the coefficients involved and the rate at which the process is
executed.

Crossfades are either performed in real time, as the edit point passes, or pre-calculated and
written to disk as a file. There are merits to both approaches. Real-time crossfades can be var-
ied at any time and are simply stored as commands in the EDL, indicating the nature of the
fade to be executed. The process is similar to that for the butt edit, except that as the edit point
approaches samples from both incoming and outgoing segments are loaded into RAM in
order that there is an overlap in time. During the crossfade it is necessary to continue to load
samples from both incoming and outgoing segments into their respective areas of RAM, and
for these to be routed to the crossfade processor, as shown in Figure 3.10. The resulting sam-
ples are then available for routeing to the output. A consequence of this is that a temporary
increase in disk activity occurs, because two streams of data rather than one are read during
a crossfade. It is important, therefore, to have a disk drive and buffer size capable of handling
the additional load present during real time crossfades, which represents a doubling in the
transfer rate required. Eight channel replay would effectively become sixteen channel replay
for the duration of a crossfade edit on all eight channels, for example. An editing system may
consequently be pushed close to its limits if asked to perform long real time crossfades on
multiple channels at the same time.

A common solution to this problem is for the crossfade to be calculated in non-real time when
the edit point and crossfade duration is first determined by the user. This incurs a short delay
while the system works out the sums, after which a new sound file is stored which is simply
the crossfade period and nothing else. Replay of the edit is then a more simple matter, which
involves playing the outgoing segment up to the beginning of the crossfade, then the cross-
fade file, then the incoming segment from after the crossfade, as shown in Figure 3.11. Load

Desktop Audio Technology

72

Replay
schedule
control

Solid-state
memory

Crossfade
processor

Output
buffer

Audio
output

X

Y

Store
X and Y
blocks

X X X X
X X X X

X YY Y Y Y Y
Y Y Y Y Y

Figure 3.10 Conceptual diagram of the sequence of operations that occur during a crossfade. X and Y are the
incoming and outgoing sound segments

on the disk drive is therefore no higher than normal. This approach has advantages because
it makes any number and length of crossfade possible on any combination of tracks, with the
sure knowledge that they can be replayed. The slight disadvantage is the need for the system
to write a new crossfade file every time the edit is altered and the disk space taken up by the
crossfade files (although this is normally quite small).

The shape of the crossfade is often able to be changed to suit different operational purposes.
Standard linear fades (those where the gain changes uniformly with time) are not always the
most suitable for music editing, especially when the crossfade is longer than about ten milli-
seconds. The result may be a momentary drop in the resulting level in the centre of the cross-
fade that is due to the way in which the sound levels from the two files add together. If there
is a random phase difference between the signals, as there will often be in music, the rise in
level resulting from adding the two signals will normally be around 3 dB, but the linear
crossfade is 6 dB down in its centre resulting in an overall level drop of around 3 dB (see
Figure 3.12). Exponential crossfades and other such shapes may be more suitable for these
purposes, because they have a smaller level drop in the centre. It may even be possible to
design customised crossfade laws. Figure 3.13 shows the crossfade editing controls from a
system by Sonic Solutions. It is possible to alter the offset of the start and end of the fade from
the actual edit point and to have a faster fade up than fade down.

Many systems also allow automated gain changes to be introduced as well as fades, so that
level differences across edit points may be corrected. Figure 3.14 shows a crossfade profile
that has a higher level after the edit point than before it, and different slopes for the in and
out fades. A lot of the difficulties that editors encounter in making edits work can be solved
using a combination of these facilities.

3.7.5 Editing modes

During the editing process the operator will load appropriate sound files and audition them,
both on their own and in a sequence with other files. The exact method of assembling the
edited sequence depends very much on the user interface, but it is common to present the
user with a visual analogy of moving tape, allowing files to be ‘cut-and-spliced’ or ‘copied
and pasted’ into appropriate locations along the virtual tape. These files, or edited clips of

Recording, replay and editing principles

73

Butt
join

Time

Output

Crossfade
fileFile X File Y

Butt
join

Figure 3.11 Replay of a precalculated crossfade file at an edit point between files X and Y

Desktop Audio Technology

74

Outgoing take Incoming take

Summed output level
over crossfade

Outgoing take Incoming take

Summed output level
over crossfade

Time

Time

(a)

(b)
A

m
pl

itu
de

A
m

pl
itu

de

Figure 3.12 Summation of levels at a crossfade. (a) A linear crossfade can result in a level drop if the
incoming and outgoing material are non-coherent. (b) An exponential fade, or other similar laws, can help
to make the level more constant across the edit

Figure 3.13 An example of crossfade control in Sonic Studio HD

them, are then played out at the timecode locations corresponding to their positions on this
‘virtual tape’ (an example is shown in Figure 3.15). It is also quite common to display a rep-
resentation of the audio waveform that allows the editor to see as well as hear the signal
around the edit point (see Figure 3.16).

In the editing of music using digital tape systems it was common to assemble an edited mas-
ter from the beginning, copying takes from source tapes in sequence onto the master. An
example of typical procedure will serve to illustrate the point. Starting at the beginning of the
piece of music the first take would be copied to the master tape until a short time after the
first edit was to be performed. The editor would then locate the edit point on the master tape
(the outgoing take) by playing up to the approximate point and marking it, followed by fine

Recording, replay and editing principles

75

+6 dB

A

C
BD

E

Time

0 dB

–∞

G
ai

n

Figure 3.14 The system may allow the user to program a gain profile around an edit point, defining the starting
gain (A), the fade-down time (B), the fade-up time (D), the point below unity at which the two files cross over (C)
and the final gain (E)

Figure 3.15 Example from SADiE editing system, showing audio clips assigned to different tracks on a virtual
tape, against a timeline

trimming of this point, either by nudging it in small time increments, or by the simulation of
analog ‘reel-rocking’. The edit point would then be confirmed and the same procedure per-
formed on the source take to be joined at this point (the incoming take). This edit would then
be auditioned, with a crossfade between outgoing and incoming material at the edit point,
after which any further trimming would be performed before the edit was committed to the
master tape by dropping it into record mode at the appropriate time.

In non-linear systems this approach is often simulated, allowing the user to roughly locate an
edit point while playing the virtual tape followed by a fine trim using simulated reel-rocking
or a detailed view of the waveform. Some software presents source and destination streams
as well, in further simulation of the tape approach. Sound files and segments are treated as
the equivalent of the ‘takes’ in the above example and the system notes the points in each
segment at which one is to cease and another is to begin playing, with whatever overlap has
been specified for cross-fading.

It is also possible to insert or change sections in the middle of a finished master, provided that
the EDL and source files are still available. To take an example, assume that an edited opera
has been completed and that the producer now wishes to change a take somewhere in the
middle (see Figure 3.17). The replacement take is unlikely to be exactly the same length but
it is possible simply to shuffle all of the following material along or back slightly to accom-
modate it, this being only a matter of changing the EDL rather than modifying the stored
music in any way. The files are then simply played out at slightly different times than in the
first version of the edit.

It is also normal to allow edited segments to be fixed in time if desired, so that they are not
shuffled forwards or backwards when other segments are inserted. This ‘anchoring’ of

Desktop Audio Technology

76

Figure 3.16 Example from SADiE editing system showing the ‘trim editor’ in which is displayed a detailed view
of the audio waveform around the edit point, together with information about the crossfade

segments is often used in picture dubbing when certain sound effects and dialogue have to
remain locked to the picture.

3.7.6 Simulation of ‘reel-rocking’

It is common to simulate the effect of reel-rocking in non-linear editors, providing the user
with the sonic impression that reels of analog tape are being ‘rocked’ back and forth as they
are in analog tape editing when fine-searching edit points. Editors are used to the sound of
tape moving in this way, and are skilled at locating edit points when listening to such a
sound.

Recording, replay and editing principles

77

Take M

Take M

Take N

To be replaced

Take P is just
too long for space

left by N

Take P
(replaces N)

Take O

Take O

Take O

Take M

(b)

(a)

Take M

Take N

To be replaced

Gap left by N may be
widened to accept P

Take P
(replaces N)

Take O

Figure 3.17 Replacing a take in the middle of an edited program. (a) Tape based copy editing results in a gap
of fixed size, which may not match the new take length. (b) Non-linear editing allows the gap size to be adjusted
to match the new take

The simulation of variable speed replay in both directions (forwards and backwards) is usu-
ally controlled by a wheel or sideways movement of a mouse which moves the ‘tape’ in either
direction around the current play location. This magnitude and direction of this movement is
used to control the rate at which samples are read from the disk file, via the buffer, and this
replaces the fixed sampling rate clock as the controller of the replay rate. Systems differ very
greatly as to the sound quality achieved in this mode, because it is in fact quite a difficult task
to provide convincing simulation. So poor have been many attempts that many editors do not
use the feature, preferring to judge edit points accurately ‘on the fly’, followed by trimming or
nudging them either way if they are not successful the first time. Good simulation requires
very fast, responsive action and an ergonomically suitable control. A mouse is very unsuitable
for the purpose. It also requires a certain amount of DSP to filter the signal correctly, in order
to avoid the aliasing that can be caused by varying the sampling rate.

Desktop Audio Technology

78

4 MIDI and synthetic audio
control

MIDI is the Music Instrument Digital Interface, a control protocol and interface standard for
electronic musical instruments that has also been used widely in other music and audio prod-
ucts. Although it is relatively dated by modern standards it is still used extensively, which is
something of a testament to its success. Even if the MIDI hardware interface is used less these
days, either because more synthesis, sampling and processing takes place using software
within the workstation, or because other data interfaces such as USB and Firewire are becom-
ing popular, the protocol for communicating events and other control information is still
widely encountered. A lot of software that runs on computers uses MIDI as a basis for
controlling the generation of sounds and external devices.

Synthetic audio is used increasingly in audio workstations and mobile devices as a very
efficient means of audio representation, because it only requires control information and sound
object descriptions to be transmitted. Standards such as MPEG-4 Structured Audio enable syn-
thetic audio to be used as an alternative or an addition to natural audio coding and this can be
seen as a natural evolution of the MIDI concept in interactive multimedia applications.

4.1 Background
Electronic musical instruments existed widely before MIDI was developed in the early 1980s,
but no universal means existed of controlling them remotely. Many older musical instru-
ments used analogue voltage control, rather than being controlled by a microprocessor, and
thus used a variety of analog remote interfaces (if indeed any facility of this kind was pro-
vided at all). Such interfaces commonly took the form of one port for timing information,
such as might be required by a sequencer or drum machine, and another for pitch and key
triggering information, as shown in Figure 4.1. The latter, commonly referred to as ‘CV and
gate’, consisted of a DC (direct current) control line carrying a variable control voltage (CV)

79

which was proportional to the pitch of the note, and a separate line to carry a trigger pulse.
A common increment for the CV was 1 volt per octave (although this was by no means the
only approach) and notes on a synthesiser could be triggered remotely by setting the CV to
the correct pitch and sending a ‘note on’ trigger pulse which would initiate a new cycle of the
synthesiser’s envelope generator. Such an interface would deal with only one note at a time,
but many older synths were only monophonic in any case (that is, they were only capable of
generating a single voice).

Instruments with onboard sequencers would need a timing reference in order that they could
be run in synchronisation with other such devices, and this commonly took the form of a
square pulse train at a rate related to the current musical tempo, often connected to the device
using a DIN-type connector, along with trigger lines for starting and stopping a sequence’s
execution. There was no universal agreement over the rate of this external clock, and
frequencies measured in pulses per musical quarter note (ppqn), such as 24 ppqn and
48 ppqn, were used by different manufacturers. A number of conversion boxes were available
that divided or multiplied clock signals in order that devices from different manufacturers
could be made to work together.

As microprocessor control began to be more widely used in musical instruments a number of
incompatible digital control interfaces sprang up, promoted by the large synthesiser manu-
facturers, some serial and some parallel. Needless to say the plethora of non-standardised
approaches to remote control made it difficult to construct an integrated system, especially
when integrating equipment from different manufacturers. Owing to collaboration between
the major parties in America and Japan, the way became cleared for agreement over a com-
mon hardware interface and command protocol, resulting in the specification of the MIDI
standard in late 1982/early 1983. This interface grew out of an amalgamation of a proposed
universal interface called USI (the Universal Synthesiser Interface) which was intended
mainly for note on and off commands, and a Japanese specification which was rather more
complex and which proposed an extensive protocol to cover other operations as well. Since
MIDI’s introduction, the use of older remote interfaces has died away very quickly, but there
remain available a number of specialised interfaces which may be used to interconnect

Desktop Audio Technology

80

CV
TempoPitch

Note trigger

Electronic musical instrument

Start
Stop
Continue

Figure 4.1 Prior to MIDI control, electronic musical instruments tended to use a DC remote interface for pitch
and note triggering. A second interface handled a clock signal to control tempo and trigger pulses to control the
execution of a stored sequence

non-MIDI equipment to MIDI systems by converting the digital MIDI commands into the
type of analog information described above.

The standard has been subject to a number of addenda, extending the functionality of MIDI
far beyond the original. The original specification was called the MIDI 1.0 specification, to
which has been added such addenda as the MIDI Sample Dump protocol, MIDI Files,
General MIDI (1 and 2), MIDI TimeCode, MIDI Show Control, MIDI Machine Control and
Downloadable Sounds. The MIDI Manufacturers Association (MMA) seems now to be the
primary association governing formal extensions to the standard, liaising closely with a
Japanese association called AMEI (Association of Musical Electronics Industry).

4.2 What is MIDI?
MIDI is a digital remote control interface for music systems. It follows that MIDI-controlled
equipment is normally based on microprocessor control, with the MIDI interface forming an
I/O port. It is a measure of the popularity of MIDI as a means of control that it has now been
adopted in many other audio and visual systems, including the automation of mixing con-
soles, the control of studio outboard equipment, the control of lighting equipment and of
other studio machinery. Although many of its standard commands are music related, it is
possible either to adapt music commands to non-musical purposes or to use command
sequences designed especially for alternative methods of control.

The adoption of a serial standard for MIDI was dictated largely by economic and practical
considerations, as it was intended that it should be possible for the interface to be installed
on relatively cheap items of equipment and that it should be available to as wide a range of
users as possible. A parallel system might have been more professionally satisfactory, but
would have involved a considerable manufacturing cost overhead per MIDI device, as well
as parallel cabling between devices, which would have been more expensive and bulky than
serial interconnection. The simplicity and ease of installation of MIDI systems has been
largely responsible for its rapid proliferation as an international standard.

Unlike its analog predecessors, MIDI integrates timing and system control commands with
pitch and note triggering commands, such that everything may be carried in the same format
over the same piece of wire. MIDI makes it possible to control musical instruments poly-
phonically in pseudo real time: that is, the speed of transmission is such that delays in the
transfer of performance commands are not audible in the majority of cases. It is also possible
to address a number of separate receiving devices within a single MIDI data stream, and this
allows a controlling device to determine the destination of a command.

4.3 MIDI and digital audio contrasted
For many the distinction between MIDI and digital audio may be a clear one, but those new
to the subject often confuse the two. Any confusion is often due to both MIDI and digital
audio equipment appearing to perform the same task – that is the recording of multiple chan-
nels of music using digital equipment – and is not helped by the way in which some manu-
facturers refer to MIDI sequencing as digital recording.

MIDI and synthetic audio control

81

Digital audio involves a process whereby an audio waveform (such as the line output of a
musical instrument) is sampled regularly and then converted into a series of binary words that
represent the sound waveform, as described in Chapter 2. A digital audio recorder stores this
sequence of data and can replay it by passing the original data through a digital-to-analog
convertor that turns the data back into a sound waveform, as shown in Figure 4.2. A multitrack
recorder has a number of independent channels that work in the same way, allowing a sound
recording to be built up in layers. MIDI, on the other hand, handles digital information that
controls the generation of sound. MIDI data does not represent the sound waveform itself.
When a multitrack music recording is made using a MIDI sequencer (see Chapter 7) this control
data is stored, and can be replayed by transmitting the original data to a collection of MIDI-
controlled musical instruments. It is the instruments that actually reproduce the recording.

A digital audio recording, then, allows any sound to be stored and replayed without the need
for additional hardware. It is useful for recording acoustic sounds such as voices, where
MIDI is not a great deal of help. A MIDI recording is almost useless without a collection of
sound generators. An interesting advantage of the MIDI recording is that, since the stored
data represents event information describing a piece of music, it is possible to change the
music by changing the event data. MIDI recordings also consume a lot less memory space
than digital audio recordings. It is also possible to transmit a MIDI recording to a different
collection of instruments from those used during the original recording, thus resulting in a
different sound. It is now common for MIDI and digital audio recording to be integrated in
one software package, allowing the two to be edited and manipulated in parallel.

4.4 Basic MIDI principles
4.4.1 System specifications

The MIDI hardware interface and connections are described in Chapter 5. MIDI is a serial
interface, running at a relatively slow rate by modern standards, over which control

Desktop Audio Technology

82

A/D
convertor

D/A
convertor

Store

Data DataSound source

Analog
waveform

Line out

Control data Control data

Store
Line
out

Line
out

MIDI out MIDI in

(a)

(b)

Figure 4.2 (a) Digital audio recording and (b) MIDI recording contrasted. In (a) the sound waveform itself is
converted into digital data and stored, whereas in (b) only control information is stored, and a MIDI-controlled
sound generator is required during replay

messages are sent as groups of bytes. Each byte is preceded by one start bit and followed by
one stop bit per byte in order to synchronise reception of the data which is transmitted asyn-
chronously, as shown in Figure 4.3. The addition of start and stop bits means that each 8-bit
word actually takes 10 bit periods to transmit (lasting a total of 320 �s). Standard MIDI mes-
sages typically consist of one, two or three bytes, although there are longer messages for
some purposes that will be covered later in this book.

4.4.2 Simple interconnection

In the simplest MIDI system, one instrument could be connected to another as shown in
Figure 4.4. Here, instrument 1 sends information relating to actions performed on its own
controls (notes pressed, pedals pressed, etc.) to instrument 2, which imitates these actions as
far as it is able. This type of arrangement can be used for ‘doubling-up’ sounds, ‘layering’ or
‘stacking’, such that a composite sound can be made up from two synthesisers’ outputs. (The
audio outputs of the two instruments would have to be mixed together for this effect to be
heard.) Larger MIDI systems could be built up by further ‘daisy-chaining’ of instruments,
such that instruments further down the chain all received information generated by the first
(see Figure 4.5), although this is not a very satisfactory way of building a large MIDI system.
In large systems some form of central routing helps to avoid MIDI ‘traffic jams’ and simplifies
interconnection.

MIDI and synthetic audio control

83

One clock period

Idle state

Start bit

Data word

LSB MSB

Stop bit

1

0

320 μs

Figure 4.3 A MIDI message consists of a number of bytes, each transmitted serially and asynchronously by a
UART in this format, with a start and stop bit to synchronise the receiving UART. The total period of a MIDI data
byte, including start and stop bits, is 320 �s

MIDI IN

MIDI cable

Instrument 1 Instrument 2

MIDI OUT

Figure 4.4 The simplest form of MIDI interconnection involves connecting two instruments together as shown

4.4.3 MIDI channels

MIDI messages are made up of a number of bytes. Each part of the message has a specific
purpose, and one of these is to define the receiving channel to which the message refers. In
this way, a controlling device can make data device-specific – in other words it can define
which receiving instrument will act on the data sent. This is most important in large systems
that use a computer sequencer as a master controller, when a large amount of information
will be present on the MIDI data bus, not all of which is intended for every instrument. If a
device is set in software to receive on a specific channel or on a number of channels it will act
only on information which is ‘tagged’ with its own channel numbers. Everything else it will
usually ignore. There are 16 basic MIDI channels and instruments can usually be set to
receive on any specific channel or channels (omni off mode), or to receive on all channels (omni
on mode). The latter mode is useful as a means of determining whether anything at all is
being received by the device.

Later it will be seen that the limit of 16 MIDI channels can be overcome easily by using multi-
port MIDI interfaces connected to a computer. In such cases it is important not to confuse the
MIDI data channel with the physical port to which a device may be connected, since each
physical port will be capable of transmitting on all 16 data channels.

4.4.4 Message format

There are two basic types of MIDI message byte: the status byte and the data byte. The first
byte in a MIDI message is normally a status byte. Standard MIDI messages can be up to three
bytes long, but not all messages require three bytes, and there are some fairly common excep-
tions to the rule which are described below. Table 4.1 shows the format and content of MIDI
messages under each of the statuses.

Status bytes always begin with a binary one to distinguish them from data bytes, which
always begin with a zero. Because the most significant bit (MSB) of each byte is reserved to
denote the type (status or data) there are only seven active bits per byte which allows 27 (that
is 128) possible values. As shown in Figure 4.6, the first half of the status byte denotes the
message type and the second half denotes the channel number. Because four bits of the status
byte are set aside to indicate the channel number, this allows for 24 (or 16) possible channels.
There are only three bits to denote the message type, because the first bit must always be a
one. This theoretically allows for eight message types, but there are some special cases in the
form of system messages (see below).

Desktop Audio Technology

84

OUT IN THRU IN THRU IN

Instrument 1 Instrument 2 Instrument 3 Instrument 4

Figure 4.5 Further instruments can be added using THRU ports as shown, in order that messages from
instrument 1 may be transmitted to all the other instruments

MIDI and synthetic audio control

85

Table 4.1 MIDI messages summarised

Message Status Data 1 Data 2

Note off &8n Note number Velocity
Note on &9n Note number Velocity
Polyphonic aftertouch &An Note number Pressure
Control change &Bn Controller number Data
Program change &Cn Program number –
Channel aftertouch &Dn Pressure –
Pitch wheel &En LSbyte MSbyte
System exclusive
System exclusive start &F0 Manufacturer ID Data, (Data), (Data)
End of SysEx &F7 –
System common
Quarter frame &F1 Data –
Song pointer &F2 LSbyte MSbyte
Song select &F3 Song number –
Tune request &F6 –
System realtime
Timing clock &F8 – –
Start &FA – –
Continue &FB – –
Stop &FC – –
Active sensing &FE – –
Reset &FF – –

4.5 MIDI messages in detail
In this section the MIDI communication protocol will be examined in detail. The majority of
the basic message types and their meanings will be explained. The descriptions here are not
intended as an alternative to reading the MIDI documentation itself, but rather as a
commentary on it and an explanation of it. It follows that examples will be given, but that the
reader should refer to the standard for a full description of the protocol. The standard has
been extended and refined over the years and the following is to be regarded as an intro-
duction to the basic messages. The prefix ‘&’ will be used to indicate hexadecimal values
throughout the discussion; individual MIDI message bytes will be delineated using square
brackets, e.g. [&45], and channel numbers will be denoted using ‘n’ to indicate that the value
may be anything from &0 to &F (channels 1 to 16).

1 s s s n n n n 0 x x x x x x x 0 y y y y y y y

Status Data 1 Data 2

8 bits

Figure 4.6 General format of a MIDI message. The ‘sss’ bits are used to define the message type, the
‘nnnn’ bits define the channel number, whilst the ‘xxxxxxx’ and ‘yyyyyyy’ bits carry the message data.
See text for details

The MMA has defined Approved Protocols (APs) and Recommended Practices (RPs). An AP
is a part of the standard MIDI specification and is used when the standard is further defined
or when a previously undefined command is defined, whereas an RP is used to describe an
optional new MIDI application that is not a mandatory or binding part of the standard. Not
all MIDI devices will have all the following commands implemented, since it is not manda-
tory for a device conforming to the MIDI standard to implement every possibility.

4.5.1 Channel and system messages contrasted

Two primary classes of message exist: those that relate to specific MIDI channels and those
that relate to the system as a whole. One should bear in mind that it is possible for an instru-
ment to be receiving in ‘omni on’ mode, in which case it will ignore the channel label and
attempt to respond to anything that it receives.

Channel messages start with status bytes in the range &8n to &En (they start at hexadecimal
eight because the MSB must be a one for a status byte). System messages all begin with &F,
and do not contain a channel number. Instead the least significant nibble of the system status
byte is used for further identification of the system message, such that there is room for 16
possible system messages running from &F0 to &FF. System messages are themselves split
into three groups: system common, system exclusive and system realtime. The common mes-
sages may apply to any device on the MIDI bus, depending only on the device’s ability to
handle the message. The exclusive messages apply to whichever manufacturer’s devices are
specified later in the message (see below) and the realtime messages are intended for devices
which are to be synchronised to the prevailing musical tempo. (Some of the so-called realtime
messages do not really seem to deserve this appellation, as discussed below.) The status byte
&F1 is used for MIDI TimeCode.

MIDI channel numbers are usually referred to as ‘channels one to sixteen’, but it can be
appreciated that in fact the binary numbers that represent these run from zero to fifteen (&0
to &F), as fifteen is the largest decimal number which can be represented with four bits. Thus
the note on message for channel 5 is actually &94 (nine for note on, and four for channel 5).

4.5.2 Note on and note off messages

Much of the musical information sent over a typical MIDI interface will consist of these two
message types. As indicated by the titles, the note on message turns on a musical note, and
the note off message turns it off. Note on takes the general format:

[&8n] [Note number] [Velocity]

and note off takes the form:

[&9n] [Note number] [Velocity] (although see Section 4.5.3)

A MIDI instrument will generate note on messages at its MIDI OUT corresponding to what-
ever notes are pressed on the keyboard, on whatever channel the instrument is set to trans-
mit. Also, any note which has been turned on must subsequently be turned off in order for it

Desktop Audio Technology

86

to stop sounding, thus if one instrument receives a note on message from another and then
loses the MIDI connection for any reason, the note will continue sounding ad infinitum. This
situation can occur if a MIDI cable is pulled out during transmission.

MIDI note numbers relate directly to the western musical chromatic scale and the format of
the message allows for 128 note numbers which cover a range of a little over ten octaves –
adequate for the full range of most musical material. This quantisation of the pitch scale is
geared very much towards keyboard instruments, being less suitable for other instruments
and cultures where the definition of pitches is not so black and white. Nonetheless, means
have been developed of adapting control to situations where unconventional tunings are
required. Note numbers normally relate to the musical scale as shown in Table 4.2, although
there is a certain degree of confusion here. Yamaha established the use of C3 for middle C,
whereas others have used C4. Some software allows the user to decide which convention will
be used for display purposes.

4.5.3 Velocity information

Note messages are associated with a velocity byte that is used to represent the speed at which
a key was pressed or released. The former will correspond to the force exerted on the key as
it is depressed: in other words, ‘how hard you hit it’ (called ‘note on velocity’). It is used to
control parameters such as the volume or timbre of the note at the audio output of an instru-
ment and can be applied internally to scale the effect of one or more of the envelope genera-
tors in a synthesiser. This velocity value has 128 possible states, but not all MIDI instruments
are able to generate or interpret the velocity byte, in which case they will set it to a value half
way between the limits, i.e.: 6410. Some instruments may act on velocity information even if
they are unable to generate it themselves. It is recommended that a logarithmic rather than
linear relationship should be established between the velocity value and the parameter which
it controls, since this corresponds more closely to the way in which musicians expect an
instrument to respond, although some instruments allow customised mapping of velocity
values to parameters. The note on, velocity zero value is reserved for the special purpose of

MIDI and synthetic audio control

87

Table 4.2 MIDI note numbers related to the musical scale

Musical note MIDI note number

C–2 0
C–1 12
C0 24
C1 36
C2 48
C3 (middle C) 60 (Yamaha convention)
C4 72
C5 84
C6 96
C7 108
C8 120
G8 127

turning a note off, for reasons which will become clear in Section 4.5.4. If an instrument sees
a note number with a velocity of zero, its software should interpret this as a note off message.

Note off velocity (or ‘release velocity’) is not widely used, as it relates to the speed at which
a note is released, which is not a parameter that affects the sound of many normal keyboard
instruments. Nonetheless it is available for special effects if a manufacturer decides to imple-
ment it.

4.5.4 Running status

Running status is an accepted method of reducing the amount of data transmitted. It
involves the assumption that once a status byte has been asserted by a controller there is no
need to reiterate this status for each subsequent message of that status, so long as the status
has not changed in between. Thus a string of note on messages could be sent with the note
on status only sent at the start of the series of note data, for example:

[&9n] [Data] [Velocity] [Data] [Velocity] [Data] [Velocity]

For a long string of notes this could reduce the amount of data sent by nearly one third. But
in most music each note on is almost always followed quickly by a note off for the same note
number, so this method would clearly break down as the status would be changing from note
on to note off very regularly, thus eliminating most of the advantage gained by running
status. This is the reason for the adoption of note on, velocity zero as equivalent to a note off
message, because it allows a string of what appears to be note on messages, but which is, in
fact, both note on and note off.

Running status is not used at all times for a string of same-status messages and will often
only be called upon by an instrument’s software when the rate of data exceeds a certain
point. Indeed, an examination of the data from a typical synthesiser indicates that running
status is not used during a large amount of ordinary playing.

4.5.5 Polyphonic key pressure (aftertouch)

The key pressure messages are sometimes called ‘aftertouch’ by keyboard manufacturers.
Aftertouch is perhaps a slightly misleading term as it does not make clear what aspect of
touch is referred to, and many people have confused it with note off velocity. This message
refers to the amount of pressure placed on a key at the bottom of its travel, and it is used to
instigate effects based on how much the player leans onto the key after depressing it. It is
often applied to performance parameters such as vibrato.

The polyphonic key pressure message is not widely used, as it transmits a separate value for
every key on the keyboard and thus requires a separate sensor for every key. This can be
expensive to implement and is beyond the scope of many keyboards, so most manufacturers
have resorted to the use of the channel pressure message (see below). The message takes the
general format:

[&An] [Note number] [Pressure]

Desktop Audio Technology

88

Implementing polyphonic key pressure messages involves the transmission of a considerable
amount of data that might be unnecessary, as the message will be sent for every note in a
chord every time the pressure changes. As most people do not maintain a constant pressure
on the bottom of a key whilst playing, many redundant messages might be sent per note.
A technique known as ‘controller thinning’ may be used by a device to limit the rate at which
such messages are transmitted and this may be implemented either before transmission or at
a later stage using a computer. Alternatively this data may be filtered out altogether if it is
not required.

4.5.6 Control change

As well as note information, a MIDI device may be capable of transmitting control informa-
tion that corresponds to the various switches, control wheels and pedals associated with it.
These come under the control change message group and should be distinguished from
program change messages. The controller messages have proliferated enormously since the
early days of MIDI and not all devices will implement all of them. The control change
message takes the general form:

[&Bn] [Controller number] [Data]

so a number of controllers may be addressed using the same type of status byte by changing
the controller number.

Although the original MIDI standard did not lay down any hard and fast rules for the assign-
ment of physical control devices to logical controller numbers, there is now common agree-
ment amongst manufacturers that certain controller numbers will be used for certain
purposes. These are assigned by the MMA. There are two distinct kinds of controller: the
switch type and the analog type. The analog controller is any continuously variable wheel,
lever, slider or pedal that might have any one of a number of positions and these are often
known as continuous controllers. There are 128 controller numbers available and these are
grouped as shown in Table 4.3. Table 4.4 shows a more detailed breakdown of some of these,
as found in the majority of MIDI-controlled musical instruments, although the full list is
regularly updated by the MMA. The control change messages have become fairly complex
and interested users are referred to the relevant standards.

MIDI and synthetic audio control

89

Table 4.3 MIDI controller classifications

Controller number (hex) Function

&00–1F 14 bit controllers, MSbyte
&20–3F 14 bit controllers, LSbyte
&40–65 7 bit controllers or switches
&66–77 Originally undefined
&78–7F Channel mode control

Desktop Audio Technology

90

Table 4.4 MIDI controller functions

Controller number (hex) Function

00 Bank select
01 Modulation wheel
02 Breath controller
03 Undefined
04 Foot controller
05 Portamento time
06 Data entry slider
07 Main volume
08 Balance
09 Undefined
0A Pan
0B Expression controller
0C Effect control 1
0D Effect control 2
0E–0F Undefined
10–13 General purpose controllers 1–4
14–1F Undefined
20–3F LSbyte for 14 bit controllers

(same function order as 00–1F)
40 Sustain pedal
41 Portamento on/off
42 Sostenuto pedal
43 Soft pedal
44 Legato footswitch
45 Hold 2
46–4F Sound controllers
50–53 General purpose controllers 5–8
54 Portamento control
55–5A Undefined
5B–5F Effects depth 1–5
60 Data increment
61 Data decrement
62 NRPC LSbyte

(non-registered parameter controller)
63 NRPC MSbyte
64 RPC LSbyte

(registered parameter controller)
65 RPC MSbyte
66–77 Undefined
78 All sounds off
79 Reset all controllers
7A Local on/off
7B All notes off
7C Omni receive mode off
7D Omni receive mode on
7E Mono receive mode
7F Poly receive mode

The first 64 controller numbers (that is up to &3F) relate to only 32 physical controllers (the
continuous controllers). This is to allow for greater resolution in the quantisation of position
than would be feasible with the seven bits that are offered by a single data byte. Seven bits
would only allow 128 possible positions of an analog controller to be represented and this
might not be adequate in some cases. For this reason the first 32 controllers handle the most
significant byte (MSbyte) of the controller data, while the second 32 handle the least signi-
ficant byte (LSbyte). In this way, controller numbers &06 and &38 both represent the data
entry slider, for example. Together, the data values can make up a 14-bit number (because the
first bit of each data word has to be a zero), which allows the quantisation of a control’s posi-
tion to be one part in 214 (1638410). Clearly, not all controllers will require this resolution, but
it is available if needed. Only the LSbyte would be needed for small movements of a control.
If a system opts not to use the extra resolution offered by the second byte, it should send only
the MSbyte for coarse control. In practice this is all that is transmitted on many devices.

On/off switches can be represented easily in binary form (0 for OFF, 1 for ON), and it would
be possible to use just a single bit for this purpose, but, in order to conform to the standard
format of the message, switch states are normally represented by data values between &00
and &3F for OFF and &40–&7F for ON. In other words switches are now considered as 7-bit
continuous controllers. In older systems it may be found that only &00 � OFF and
&7F � ON.

The data increment and decrement buttons that are present on many devices are assigned to
two specific controller numbers (&60 and &61) and an extension to the standard defines four
controllers (&62 to &65) that effectively expand the scope of the control change messages.
These are the registered and non-registered parameter controllers (RPCs and NRPCs).

The ‘all notes off’ command (frequently abbreviated to ‘ANO’) was designed to be transmit-
ted to devices as a means of silencing them, but it does not necessarily have this effect in prac-
tice. What actually happens varies between instruments, especially if the sustain pedal is held
down or notes are still being pressed manually by a player. All notes off is supposed to put all
note generators into the release phase of their envelopes, and clearly the result of this will
depend on what a sound is programmed to do at this point. The exception should be notes
which are being played while the sustain pedal is held down, which should only be released
when that pedal is released. ‘All sounds off’ was designed to overcome the problems with ‘all
notes off’, by turning sounds off as quickly as possible. ‘Reset all controllers’ is designed to
reset all controllers to their default state, in order to return a device to its ‘standard’ setting.

4.5.7 Channel modes

Although grouped with the controllers, under the same status, the channel mode messages
differ somewhat in that they set the mode of operation of the instrument receiving on that
particular channel.

‘Local on/off’ is used to make or break the link between an instrument’s keyboard and its
own sound generators. Effectively there is a switch between the output of the keyboard and
the control input to the sound generators which allows the instrument to play its own sound
generators in normal operation when the switch is closed (see Figure 4.7). If the switch is
opened, the link is broken and the output from the keyboard feeds the MIDI OUT while the

MIDI and synthetic audio control

91

sound generators are controlled from the MIDI IN. In this mode the instrument acts as two
separate devices: a keyboard without any sound, and a sound generator without a keyboard.
This configuration can be useful when the instrument in use is the master keyboard for a
large sequencer system, where it may not always be desired that everything played on the
master keyboard results in sound from the instrument itself.

‘Omni off’ ensures that the instrument will only act on data tagged with its own channel
number(s), as set by the instrument’s controls. ‘Omni on’ sets the instrument to receive on all
of the MIDI channels. In other words, the instrument will ignore the channel number in the
status byte and will attempt to act on any data that may arrive, whatever its channel. Devices
should power-up in this mode according to the original specification, but more recent devices
will tend to power up in the mode that they were left. Mono mode sets the instrument such
that it will only reproduce one note at a time, as opposed to ‘Poly’ (phonic) in which a num-
ber of notes may be sounded together.

In older devices the mono mode came into its own as a means of operating an instrument in
a ‘multitimbral’ fashion, whereby MIDI information on each channel controlled a separate
monophonic musical voice. This used to be one of the only ways of getting a device to gen-
erate more than one type of voice at a time. The data byte that accompanies the mono mode
message specifies how many voices are to be assigned to adjacent MIDI channels, starting
with the basic receive channel. For example, if the data byte is set to 4, then four voices will
be assigned to adjacent MIDI channels, starting from the basic channel which is the one on
which the instrument has been set to receive in normal operation. Exceptionally, if the data

Desktop Audio Technology

92

Sound generators

Keyboard

MIDI IN

MIDI OUT

Local on/off
 switch

Figure 4.7 The ‘local off’ switch disconnects a keyboard from its associated sound generators in order that the
two parts may be treated independently in a MIDI system

byte is set to 0, all 16 voices (if they exist) are assigned each to one of the 16 MIDI channels.
In this way, a single multitimbral instrument can act as 16 monophonic instruments,
although on cheaper systems all of these voices may be combined to one audio output.

Mono mode tends to be used mostly on MIDI guitar synthesisers because each string can
then have its own channel and each can control its own set of pitch bend and other param-
eters. The mode also has the advantage that it is possible to play in a truly legato fashion –
that is with a smooth take over between the notes of a melody – because the arrival of a
second note message acts simply to change the pitch if the first one is still being held down,
rather than re-triggering the start of a note envelope. The legato switch controller (see Table 2.4)
allows a similar type of playing in polyphonic modes by allowing new note messages only
to change the pitch.

In poly mode the instrument will sound as many notes as it is able at the same time.
Instruments differ as to the action taken when the number of simultaneous notes is exceeded:
some will release the first note played in favour of the new note, whereas others will refuse to
play the new note. Some may be able to route excess note messages to their MIDI OUT ports
so that they can be played by a chained device. The more intelligent of them may look to see
if the same note already exists in the notes currently sounding and only accept a new note if
is not already sounding. Even more intelligently, some devices may release the quietest note
(that with the lowest velocity value), or the note furthest through its velocity envelope, to
make way for a later arrival. It is also common to run a device in poly mode on more than one
receive channel, provided that the software can handle the reception of multiple polyphonic
channels. A multitimbral sound generator may well have this facility, commonly referred to as
‘multi’ mode, making it act as if it were a number of separate instruments each receiving on a
separate channel. In multi mode a device may be able to dynamically assign its polyphony
between the channels and voices in order that the user does not need to assign a fixed
polyphony to each voice.

4.5.8 Program change

The program change message is used most commonly to change the ‘patch’ of an instrument
or other device. A patch is a stored configuration of the device, describing the setup of the
tone generators in a synthesiser and the way in which they are interconnected. Program
change is channel-specific and there is only a single data byte associated with it, specifying
to which of 128 possible stored programs the receiving device should switch. On non-musical
devices such as effects units, the program change message is often used to switch between
different effects and the different effects programs may be mapped to specific program
change numbers. The message takes the general form:

&[Cn] [Program number]

If a program change message is sent to a musical device it will usually result in a change of
voice, as long as this facility is enabled. Exactly which voice corresponds to which program
change number depends on the manufacturer. It is quite common for some manufacturers to
implement this function in such a way that a data value of zero gives voice number one. This
results in a permanent offset between the program change number and the voice number,

MIDI and synthetic audio control

93

which should be taken into account in any software. On some instruments, voices may be
split into a number of ‘banks’ of 8, 16 or 32, and higher banks can be selected over MIDI by
setting the program change number to a value which is 8, 16 or 32 higher than the lowest
bank number. For example, bank 1, voice 2, might be selected by program change &01,
whereas bank 2, voice 2, would probably be selected in this case by program change &11,
where there were 16 voices per bank.

There are also a number of other approaches used in commercial sound modules. Where
more than 128 voices need to be addressed remotely, the more recent ‘bank select’ command
may be implemented.

4.5.9 Channel aftertouch

Most instruments use a single sensor, often in the form of a pressure-sensitive conductive
plastic bar running the length of the keyboard, to detect the pressure applied to keys at the
bottom of their travel. In the case of channel aftertouch, one message is sent for the entire
instrument and this will correspond to an approximate total of the pressure over the range of
the keyboard, the strongest influence being from the key pressed the hardest. (Some manu-
facturers have split the pressure detector into upper and lower keyboard regions, and some
use ‘intelligent’ zoning.) The message takes the general form:

&[Dn] [Pressure value]

There is only one data byte, so there are 128 possible values and, as with the polyphonic ver-
sion, many messages may be sent as the pressure is varied at the bottom of a key’s travel.
Controller ‘thinning’ may be used to reduce the quantity of these messages, as described above.

4.5.10 Pitch bend wheel

The pitch wheel message has a status byte of its own, and carries information about the move-
ment of the sprung-return control wheel on many keyboards which modifies the pitch of any
note(s) played. It uses two data bytes in order to give 14 bits of resolution, in much the same
way as the continuous controllers, except that the pitch wheel message carries both bytes
together. Fourteen data bits are required so that the pitch appears to change smoothly, rather
than in steps (as it might with only seven bits). The pitch bend message is channel specific so
ought to be sent separately for each individual channel. This becomes important when using
a single multi-timbral device in mono mode (see above), as one must ensure that a pitch bend
message only affects the notes on the intended channel. The message takes the general form:

&[En] [LSbyte] [MSbyte]

The value of the pitch bend controller should be halfway between the lower and upper range
limits when it is at rest in its sprung central position, thus allowing bending both down and
up. This corresponds to a hex value of &2000, transmitted as &[En] [00] [40]. The range of
pitch controlled by the bend message is set on the receiving device itself, or using the RPC
designated for this purpose (see Section 4.6.7).

Desktop Audio Technology

94

4.5.11 System exclusive

A system exclusive message is one that is unique to a particular manufacturer and often a
particular instrument. The only thing that is defined about such messages is how they are to
start and finish, with the exception of the use of system exclusive messages for universal
information, as discussed elsewhere. System exclusive messages generated by a device will
naturally be produced at the MIDI OUT, not at the THRU, so a deliberate connection must be
made between the transmitting device and the receiving device before data transfer may take
place. Occasionally it is necessary to make a return link from the OUT of the receiver to the
IN of the transmitter so that two-way communication is possible and so that the receiver can
control the flow of data to some extent by telling the transmitter when it is ready to receive
and when it has received correctly (a form of handshaking).

The message takes the general form:

&[F0] [ident.] [data] [data] ... [F7]

where [ident.] identifies the relevant manufacturer ID, a number defining which manufac-
turer’s message is to follow. Originally, manufacturer IDs were a single byte but the number
of IDs has been extended by setting aside the [00] value of the ID to indicate that two further
bytes of ID follow. Manufacturer IDs are therefore either one or three bytes long. A full list of
manufacturer IDs is available from the MMA.

Data of virtually any sort can follow the ID. It can be used for a variety of miscellaneous pur-
poses that have not been defined in the MIDI standard and the message can have virtually
any length that the manufacturer requires. It is often split into packets of a manageable size
in order not to cause receiver memory buffers to overflow. Exceptions are data bytes that look
like other MIDI status bytes (except realtime messages), as they will naturally be interpreted
as such by any receiver, which might terminate reception of the system exclusive message.
The message should be terminated with &F7, although this is not always observed, in which
case the receiving device should ‘time-out’ after a given period, or terminate the system
exclusive message on receipt of the next status byte. It is recommended that some form of
error checking (typically a checksum) is employed for long system exclusive data dumps,
and many systems employ means of detecting whether the data has been received accurately,
asking for re-tries of sections of the message in the event of failure, via a return link to the
transmitter.

Examples of applications for such messages can be seen in the form of sample data dumps
(from a sampler to a computer and back again for editing purposes), although this is
painfully slow, and voice data dumps (from a synthesiser to a computer for storage and
editing of user-programmed voices). There are now an enormous number of uses of
system exclusive messages, both in the universal categories and in the manufacturer
categories.

4.5.12 Universal system exclusive messages

The three highest numbered IDs within the system exclusive message have been set aside to
denote special modes. These are the ‘universal non-commercial’ messages (ID: &7D), the

MIDI and synthetic audio control

95

‘universal non-realtime’ messages (ID: &7E) and the ‘universal realtime’ messages (ID: &7F).
Universal sysex messages are often used for controlling device parameters that were not
originally specified in the MIDI standard and that now need addressing in most devices.
Examples are things like ‘chorus modulation depth’, ‘reverb type’ and ‘master fine tuning’.

Universal non-commercial messages are set aside for educational and research purposes and
should not be used in commercial products. Universal non-realtime messages are used for
universal system exclusive events which are not time critical and universal realtime mes-
sages deal with time critical events (thus being given a higher priority). The two latter types
of message normally take the general form of:

&[F0] [ID] [dev. ID] [sub-ID #1] [sub-ID #2] [data] [F7]

Device ID used to be referred to as ‘channel number’, but this did not really make sense since
a whole byte allows for the addressing of 128 channels and this does not correspond to the
normal 16 channels of MIDI. The term ‘device ID’ is now used widely in software as a means
of defining one of a number of physical devices in a large MIDI system, rather than defining
a MIDI channel number. It should be noted, though, that it is allowable for a device to have
more than one ID if this seems appropriate. Modern MIDI devices will normally allow their
device ID to be set either over MIDI or from the front panel. The use of &7F in this position
signifies that the message applies to all devices as opposed to just one.

The sub-IDs are used to identify firstly the category or application of the message (sub-ID #1)
and secondly the type of message within that category (sub-ID #2). For some reason, the orig-
inal MIDI sample dump messages do not use the sub-ID #2, although some recent additions
to the sample dump do.

4.5.13 Tune request

Older analog synthesisers tended to drift somewhat in pitch over the time that they
were turned on. The tune request is a request for these synthesisers to re-tune themselves to a
fixed reference. (It is advisable not to transmit pitch bend or note on messages to instruments
during a tune up because of the unpredictable behaviour of some products under these
conditions.)

4.5.14 Active sensing

Active sensing messages are single status bytes sent roughly three times per second by a con-
trolling device when there is no other activity on the bus. They act as a means of reassuring
the receiving devices that the controller has not disappeared. Not all devices transmit active
sensing information, and a receiver’s software should be able to detect the presence or lack
of it. If a receiver has come to expect active sensing bytes then it will generally act by turn-
ing off all notes if these bytes disappear for any reason. This can be a useful function when a
MIDI cable has been pulled out during a transmission, as it ensures that notes will not be left
sounding for very long. If a receiver has not seen active sensing bytes since last turned on, it
should assume that they are not being used.

Desktop Audio Technology

96

4.5.15 Reset

This message resets all devices on the bus to their power-on state. The process may take some
time and some devices mute their audio outputs, which can result in clicks, therefore the
message should be used with care.

4.6 MIDI control of sound generators
4.6.1 MIDI note assignment in synthesisers and samplers

Many of the replay and signal processing aspects of synthesis and sampling now overlap so
that it is more difficult to distinguish between the two. In basic terms a sampler is a device
that stores short clips of sound data in RAM, enabling them to be replayed subsequently at
different pitches, possibly looped and processed. A synthesiser is a device that enables sig-
nals to be artificially generated and modified to create novel sounds. Wavetable synthesis is
based on a similar principle to sampling, though, and stored samples can form the basis for
synthesis. A sound generator can often generate a number of different sounds at the same
time. It is possible that these sounds could be entirely unrelated (perhaps a single drum, an
animal noise and a piano note), or that they might have some relationship to each other (per-
haps a number of drums in a kit, or a selection of notes from a grand piano). The method by
which sounds or samples are assigned to MIDI notes and channels is defined by the replay
program.

The most common approach when assigning note numbers to samples is to program the
sampler with the range of MIDI note numbers over which a certain sample should be
sounded. Akai, one of the most popular sampler manufacturers, calls these ‘keygroups’. It
may be that this ‘range’ is only one note, in which case the sample in question would be trig-
gered only on receipt of that note number, but in the case of a range of notes the sample would
be played on receipt of any note in the range. In the latter case transposition would be
required, depending on the relationship between the note number received and the original
note number given to the sample (see above). A couple of examples highlight the difference in
approach, as shown in Figure 4.8. In the first example, illustrating a possible approach to note
assignment for a collection of drum kit sounds, most samples are assigned to only one note
number, although it is possible for tuned drum sounds such as tom-toms to be assigned over
a range in order to give the impression of ‘tuned toms’. Each MIDI note message received
would replay the particular percussion sound assigned to that note number in this example.

In the second example, illustrating a suggested approach to note assignment for an organ,
notes were originally sampled every musical fifth across the organ’s note range. The replay
program has been designed so that each of these samples is assigned to a note range of a fifth,
centred on the original pitch of each sample, resulting in a maximum transposition of a third
up or down. Ideally, of course, every note would have been sampled and assigned to an indi-
vidual note number on replay, but this requires very large amounts of memory and pain-
staking sample acquisition in the first place.

In further pursuit of sonic accuracy, some devices provide the facility for introducing a cross-
fade between note ranges. This is used where an abrupt change in the sound at the bound-
ary between two note ranges might be undesirable, allowing the takeover from one sample

MIDI and synthetic audio control

97

to another to be more gradual. For example, in the organ scenario introduced above, the tim-
bre could change noticeably when playing musical passages that crossed between two note
ranges because replay would switch from the upper limit of transposition of one sample to
the lower limit of the next (or vice versa). In this case the ranges for the different samples are
made to overlap (as illustrated in Figure 4.9). In the overlap range the system mixes a pro-
portion of the two samples together to form the output. The exact proportion depends on the
range of overlap and the note’s position within this range. Very accurate tuning of the origi-
nal samples is needed in order to avoid beats when using positional crossfades. Clearly this
approach would be of less value when each note was assigned to a completely different
sound, as in the drum kit example.

Crossfades based on note velocity allow two or more samples to be assigned to one note or
range of notes. This requires at least a ‘loud sample’ and a ‘soft sample’ to be stored for each
original sound and some systems may accommodate four or more to be assigned over the

Desktop Audio Technology

98

Tom-toms

C
ym

ba
l

H
i-h

at

S
na

re

K
ic

k
dr

um

C
ow

 b
el

l

R
at

tleTimpani

B
ru

sh
ed

 c
ym

ba
l

(a)

(b)

E2 C3 G3 E4

C3E2 G3 E4

Figure 4.8 (a) Percussion samples are often assigned to one note per sample, except for tuned percussion
which sometimes covers a range of notes. (b) Organ samples could be transposed over a range of notes,
centred on the original pitch of the sample

velocity range. The terminology may vary, but the principle is that a velocity value is set at
which the replay switches from one stored sample to another, as many instruments sound
quite different when they are loud to when they are soft (it is more than just the volume that
changes: it is the timbre also). If a simple switching point is set, then the change from one
sample to the other will be abrupt as the velocity crosses either side of the relevant value.
This can be illustrated by storing two completely different sounds as the loud and soft
samples, in which case the output changes from one to the other at the switching point. A
more subtle effect is achieved by using velocity crossfading, in which the proportion of loud
and soft samples varies depending on the received note velocity value. At low velocity values
the proportion of the soft sample in the output would be greatest and at high values the
output content would be almost entirely made up of the loud sample (see Figure 4.10).

MIDI and synthetic audio control

99

E2
C3

G3
E4

Crossfade
region

Crossfade
region

Crossfade
region

C3E2 G3 E4

Figure 4.9 Overlapped sample ranges can be crossfaded in order that a gradual shift in timbre takes place over
the region of takeover between one range and the next

00

7F

50

C
ro

ss
fa

de
 r

eg
io

n

Loud sample
range

Soft sample
range

4F
Switch point (example)

Max. velocity

Min. velocity

Figure 4.10 Illustration of velocity switch and velocity crossfade between two stored samples (‘soft’ and ‘loud’)
over the range of MIDI note velocity values

4.6.2 Polyphony, voice and note assignment

Modern sound modules (synthesisers and samplers) tend to be multi-note polyphonic. When
the polyphony of a device is exceeded the device should follow a predefined set of rules to
determine what to do with the extra notes. Typically a sound module will either release the
‘oldest’ notes first, or possibly release the quietest. Alternatively, new notes that exceed the
polyphony will simply not be sounded until others are released. Rules for this are defined in
some of the recent General MIDI specifications (see Section 4.8), and composers may now
even be able to exercise some control over what happens in devices with limited polyphony.

It is important to distinguish between the degree of polyphony offered by a device and the
number of simultaneous voices it can generate. Sometimes these may be traded off against
each other in multi-timbral devices, by allocating a certain number of notes to each voice,
with the total adding up to the total polyphony. Either 16 notes could be allocated to one
voice or four notes to each of four voices, for example. Dynamic allocation is often used to
distribute the polyphony around the voices depending on demand and this is a particular
feature of General MIDI sound modules.

A multi-timbral sound generator is one that is capable of generating more than one voice at
a time, independent of polyphony considerations. A voice is a particular sound type, such as
‘grand piano’ or ‘accordion’. This capability is now the norm for modern sound modules.
Older synthesisers used to be able to generate only one or two voices at a time, possibly
allowing a keyboard split, and could sometimes make use of MIDI channel mode 4 (mono-
phonic, omni off) to allow multiple monophonic voices to be generated under MIDI control.
They tended only to receive polyphonically on one MIDI channel at a time. More recent sys-
tems are capable of receiving on all 16 MIDI channels simultaneously, with each channel con-
trolling an entirely independent polyphonic voice.

4.6.3 MIDI functions of sound generators

The MIDI implementation for a particular sound generator should be described in the manual
that accompanies it. A MIDI implementation chart such as the one shown in Figure 4.11 indicates
which message types are received and transmitted, together with any comments relating to lim-
itations or unusual features. Functions such as note off velocity and polyphonic aftertouch, for
example, are quite rare. It is quite common for a device to be able to accept certain data and act
upon it, even if it cannot generate such data from its own controllers. The note range available
under MIDI control compared with that available from a device’s keyboard is a good example of
this, since many devices will respond to note data over a full ten octave range yet still have only
a limited (or no) keyboard. This approach can be used by a manufacturer who wishes to make a
cheaper synthesiser that omits the expensive physical sensors for such things as velocity and
aftertouch, while retaining these functions in software for use under MIDI control. Devices con-
forming to the General MIDI specification described in Section 4.8 must conform to certain basic
guidelines concerning their MIDI implementation and the structure of their sound generators.

4.6.4 MIDI data buffers and latency

All MIDI-controlled equipment uses some form of data buffering for received MIDI mes-
sages. Such buffering acts as a temporary store for messages that have arrived but have not

Desktop Audio Technology

100

MIDI and synthetic audio control

101

YAMAHA
Model

Function

Basic Default

Default 3

O - 127

0–127

O 9nH, v=1–127
X

X
O

O

O 0–24 semi 12-bit resolution

O - 127

3,4 (m = 1)
X

*2

*1

*3*3

Messages
Altered

X 1–16 Memorised
1–16X

X
X

X
X

X
X

Transmitted Recognised Remarks

TG100 MIDI Implementation Chart Version : 1.00
(Tone Generator)

Channel

Mode

Note

Velocity Note ON
Note OFF

After
Touch

Pitch Bender

Control

Change

Prog
Change : True #

System Exclusive

System : Song Pos.

Common : Tune

System : Clock
Real Time: Commands

Aux : Local ON/OFF
 : All Notes OFF
Messages: Active Sense
 : Reset

 : Song Sel.

X

Ch’s

X

★★★★★★★★★★★★★★

★★★★★★★★★★★★★★

X
★★★★★★★★★★★★★★

O

Number : True voice

Changed

Key’s

O MSB only Bank select0,32 X

X
X
X
X

X
O (123–127)
O
X

X
X
X

X
X

X
X
X

X
X

Modulation wheelOX1
Portamento timeOX5
Data entryOX6,38

*1 VolumeOX7
PanpotOX10

*1 ExpressionOX11
Hold 1OX64
PortamentoOX65
Effect depth 1O (Reverb)X91
PRN LSB, MSBOX100,101
All sound offOX120
Reset all controlsO

O

X121

Notes : *1 ; receive if switch is on.
*2 ; m is always treated as “1” regardless of its value.
*3 ; transmit /receive if exclusive switch is on.

Mode 1 : OMNI ON, POLY
POLYMode 3 : OMNI OFF,

Mode 2 : OMNI ON, POLY
MONO

O :Yes
X : NoMode 4 : OMNI OFF,

Figure 4.11 A typical MIDI implementation chart for a synthesiser sound module. (Yamaha TG100, with
permission)

yet been processed and allows for a certain prioritisation in the handling of received mes-
sages. Cheaper devices tend to have relatively small MIDI input buffers and these can over-
flow easily unless care is taken in the filtering and distribution of MIDI data around a large
system (usually accomplished by a MIDI router or multiport interface). When a buffer over-
flows it will normally result in an error message displayed on the front panel of the device,
indicating that some MIDI data is likely to have been lost. More advanced equipment can
store more MIDI data in its input buffer, although this is not necessarily desirable because
many messages that are transmitted over MIDI are intended for ‘real-time’ execution and one
would not wish them to be delayed in a temporary buffer. Such buffer delay is one potential
cause of latency in MIDI systems. A more useful solution would be to speed up the rate at
which incoming messages are processed.

4.6.5 Handling of velocity and aftertouch data

Sound generators able to respond to note on velocity will use the value of this byte to control
assigned functions within the sound generators. It is common for the user to be able to pro-
gram the device such that the velocity value affects certain parameters to a greater or lesser
extent. For example, it might be decided that the ‘brightness’ of the sound should increase
with greater key velocity, in which case it would be necessary to program the device so that
the envelope generator that affected the brightness was subject to control by the velocity
value. This would usually mean that the maximum effect of the envelope generator would
be limited by the velocity value, such that it could only reach its full programmed effect (that
which it would give if not subject to velocity control) if the velocity was also maximum. The
exact law of this relationship is up to the manufacturer and may be used to simulate differ-
ent types of ‘keyboard touch’. A device may offer a number of laws or curves relating
changes in velocity to changes in the control value, or the received velocity value may be
used to scale the preset parameter rather than replace it.

Another common application of velocity value is to control the amplitude envelope of a
particular sound, such that the output volume depends on how hard the key is hit. In many
synthesiser systems that use multiple interacting digital oscillators, these velocity-sensitive
effects can all be achieved by applying velocity control to the envelope generator of one or
more of the oscillators, as indicated earlier in this chapter.

Note off velocity is not implemented in many keyboards, and most musicians are not used
to thinking about what they do as they release a key, but this parameter can be used to con-
trol such factors as the release time of the note or the duration of a reverberation effect.
Aftertouch (either polyphonic or channel, as described in Section 4.5) is often used in syn-
thesisers to control the application of low frequency modulation (tremolo or vibrato) to a
note. Sometimes aftertouch may be applied to other parameters, but this is less common.

4.6.6 Handling of controller messages

The controller messages that begin with a status of &Bn, as listed in Table 4.4, turn up in vari-
ous forms in sound generator implementations. It should be noted that although there are stan-
dard definitions for many of these controller numbers it is often possible to remap them either
within sequencer software or within sound modules themselves. Fourteen-bit continuous

Desktop Audio Technology

102

controllers are rarely encountered for any parameter and often only the MSbyte of the controller
value (which uses the first 32 controller numbers) is sent and used. For most parameters the 128
increments that result are adequate.

Controllers &07 (Volume) and &0A (Pan) are particularly useful with sound modules as a
means of controlling the internal mixing of voices. These controllers work on a per channel
basis, and are independent of any velocity control which may be related to note volume.
There are two real-time system exclusive controllers that handle similar functions to these,
but for the device as a whole rather than for individual voices or channels. The ‘master
volume’ and ‘master balance’ controls are accessed using:

&[F0] [7F] [dev. ID] [04] [01 or 02] [data] [data] [F7]

where the sub-ID #1 of &04 represents a ‘device control’ message and sub-ID #2s of &01 or
&02 select volume or balance respectively. The [data] values allow 14-bit resolution for the
parameters concerned, transmitted LSB first. Balance is different to pan because pan sets the
stereo positioning (the split in level between left and right) of a mono source, whereas bal-
ance sets the relative levels of the left and right channels of a stereo source (see Figure 4.12).
Since a pan or balance control is used to shift the stereo image either left or right from a centre
detent position, the MIDI data values representing the setting are ranged either side of a mid-
range value that corresponds to the centre detent. The channel pan controller is thus

MIDI and synthetic audio control

103

Input

(a)

Left

Right

Input

Left

Right

L

R

(b)

0

–6

–12

–18

–24

CentreLeft Right

–3 dB

L channel

R channel

G
ai

n
(d

B
)

Figure 4.12 (a) A pan control takes a mono input and splits it two ways (left and right), the stereo position
depending on the level difference between the two channels. The attenuation law of pan controls is designed to
result in a smooth movement of the source across the stereo ‘picture’ between left and right, with no apparent
rise or fall in overall level when the control is altered. A typical pan control gain law is shown here. (b) A balance
control simply adjusts the relative level between the two channels of a stereo signal so as to shift the entire
stereo image either left or right

normally centred at a data value of 63 (and sometimes over a range of values just below this
if the pan has only a limited number of steps), assuming that only a single 7-bit controller
value is sent. There may be fewer steps in these controls than there are values of the MIDI
controller, depending on the device in question, resulting in a range of controller values that
will give rise to the same setting.

Some manufacturers have developed alternative means of expressive control for synthesisers
such as the ‘breath controller’, which is a device which responds to the blowing effort applied
by the mouth of the player. It was intended to allow wind players to have more control over
expression in performance. Plugged into the synthesiser, it can be applied to various envelope
generator or modulator parameters to affect the sound. The breath controller also has its own
MIDI controller number. There is also a portamento controller (&54) that defines a note num-
ber from which the next note should slide. It is normally transmitted between two note on
messages to create an automatic legato portamento effect between two notes.

The ‘effects’ and ‘sound’ controllers have been set aside as a form of general purpose control
over aspects of the built-in effects and sound quality of a device. How they are applied will
depend considerably on the architecture of the sound module and the method of synthesis
used, but they give some means by which a manufacturer can provide a more abstracted
form of control over the sound without the user needing to know precisely which voice
parameters to alter. In this way, a user who is not prepared to get into the increasingly
complicated world of voice programming can modify sounds to some extent.

The effects controllers occupy five controller numbers from &5B to &5F and are defined as
Effects Depths 1–5. The default names for the effects to be controlled by these messages are
respectively ‘External Effects Depth’, ‘Tremolo Depth’, ‘Chorus Depth’, ‘Celeste (Detune)
Depth’ and ‘Phaser Depth’, although these definitions are open to interpretation and change
by manufacturers. There are also ten sound controllers that occupy controller numbers from
&46 to &4F. Again these are user- or manufacturer-definable, but five defaults were originally
specified (listed in Table 4.5). They are principally intended as real-time controllers to be used
during performance, rather than as a means of editing internal voice patches (the RPCs and
NRPCs can be used for this as described below).

The sound variation controller is interesting because it is designed to allow the selection of
one of a number of variants on a basic sound, depending on the data value that follows the
controller number. For example, a piano sound might have variants of ‘honky tonk’, ‘soft

Desktop Audio Technology

104

Table 4.5 Sound controller functions (byte 2 of status &Bn)

MIDI controller number Function (default)

&46 Sound variation
&47 Timbre/harmonic content
&48 Release time
&49 Attack time
&4A Brightness
&4B–4F No default

pedal’, ‘lid open’ and ‘lid closed’. The data value in the message is not intended to act as a
continuous controller for certain voice parameters, rather the different data values possible
in the message are intended to be used to select certain pre-programmed variations on the
voice patch. If there are less than the 128 possible variants on the voice then the variants
should be spread evenly over the number range so that there is an equal number range
between them.

The timbre and brightness controllers can be used to alter the spectral content of the sound.
The timbre controller is intended to be used specifically for altering the harmonic content of
a sound, whilst the brightness controller is designed to control its high frequency content.
The envelope controllers can be used to modify the attack and release times of certain enve-
lope generators within a synthesiser. Data values less than &40 attached to these messages
should result in progressively shorter times, whilst values greater than &40 should result in
progressively longer times.

4.6.7 Registered and non-registered parameter numbers

The MIDI standard was extended a few years ago to allow for the control of individual inter-
nal parameters of sound generators by using a specific control change message. This meant,
for example, that any aspect of a voice, such as the velocity sensitivity of an envelope genera-
tor, could be assigned a parameter number that could then be accessed over MIDI and its
setting changed, making external editing of voices much easier. Parameter controllers are a
subset of the control change message group, and they are divided into the registered and non-
registered numbers (RPNs and NRPNs). RPNs are intended to apply universally and should
be registered with the MMA, whilst NRPNs may be manufacturer specific. Only five parame-
ter numbers were originally registered as RPNs, as shown in Table 4.6, but more may be added
at any time and readers are advised to check the most recent revisions of the MIDI standard.

Parameter controllers operate by specifying the address of the parameter to be modified, fol-
lowed by a control change message to increment or decrement the setting concerned. It is also
possible to use the data entry slider controller to alter the setting of the parameter. The
address of the parameter is set in two stages, with an MSbyte and then an LSbyte message,
so as to allow for 16 384 possible parameter addresses. The controller numbers &62 and &63
are used to set the LS- and MSbytes respectively of an NRPN, whilst &64 and &65 are used

MIDI and synthetic audio control

105

Table 4.6 Some examples of RPC definitions

RPC number (hex) Parameter

00 00 Pitch bend sensitivity
00 01 Fine tuning
00 02 Coarse tuning
00 03 Tuning program select
00 04 Tuning bank select
7F 7F Cancels RPN or NRPN

(usually follows Message 3)

to address RPNs. The sequence of messages required to modify a parameter is as follows:

Message 1

&[Bn] [62 or 64] [LSB]

Message 2

&[Bn] [63 or 65] [MSB]

Message 3

&[Bn] [60 or 61] [7F] or &[Bn] [06] [DATA] [38] [DATA]

Message 3 represents either data increment (&60) or decrement (&61), or a 14-bit data entry
slider control change with MSbyte (&06) and LSbyte (&38) parts (assuming running status). If
the control has not moved very far, it is possible that only the MSbyte message need be sent.

4.6.8 Voice selection

The program change message was adequate for a number of years as a means of selecting one
of a number of stored voice patches on a sound generator. Program change on its own allows
for up to 128 different voices to be selected and a synthesiser or sound module may allow a
program change map to be set up in order that the user may decide which voice is selected on
receipt of a particular message. This can be particularly useful when the module has more
than 128 voices available, but no other means of selecting voice banks. A number of different
program change maps could be stored, perhaps to be selected under system exclusive control.

Modern sound modules tend to have very large patch memories – often too large to be ade-
quately addressed by 128 program change messages. Although some older synthesisers used
various odd ways of providing access to further banks of voices, most modern modules have
implemented the standard ‘bank select’ approach. In basic terms, ‘bank select’ is a means of
extending the number of voices that may be addressed by preceding a standard program
change message with a message to define the bank from which that program is to be recalled.
It uses a 14-bit control change message, with controller numbers &00 and &20, to form a 14-
bit bank address, allowing 16 384 banks to be addressed. The bank number is followed
directly by a program change message, thus creating the following general message:

&[Bn] [00] [MSbyte (of bank)]

&[Bn] [20] [LSbyte]

&[Cn] [Program number]

4.7 MIDI tuning control
Conventional equal-tempered tuning is the norm in western musical environments, but there
may be cases when alternative tuning standards are required in order to conform to other

Desktop Audio Technology

106

temperaments or to non-western musical styles. Many devices now have the capability to
store a number of alternative tuning maps, or to be retuned ‘on the fly’. A number of manu-
facturer-specific methods were used in the past (prior to the MIDI Tuning Standard), being
SysEx messages preceded by the relevant manufacturer ID, but the MIDI Tuning Standard
now forms the basis for communicating information about alternative tunings.

The tuning standard assumes that any note on a sound generator can be tuned over the entire
range 8.1758 Hz to 13 289.73 Hz. It then allows individual notes’ tuning to be adjusted in frac-
tions of a semitone above a conventional MIDI note’s pitch (which would be based on the
equal temperament convention). A semitone is divided into 100 cents. A cent is one hun-
dredth of a semitone, and as such does not represent a constant frequency increment in hertz
but represents a proportion of the frequency of the note concerned. As the pitch of the basic
note rises, so the frequency increment represented by a cent also increases. Two MIDI data
bytes are used to indicate the fraction of a semitone above the basic note pitch, so the maxi-
mum resolution possible is 100 cents/214 which equals 0.0061 cents.

Tuning of individual notes is represented by three MIDI messages in total. The first specifies
a numbered semitone in the MIDI note range on which the fractional tuning is to be based
(the same as the MIDI note number in a note on message) and the second and third form a
pair containing a 14-bit number (the MSB of each is 0), transmitted MSB first. This 14-bit
number is used as described in the previous paragraph, with each increment representing a
change of 0.0061 cents upwards in pitch from the basic semitone number (see Figure 4.13). A
sound generator that is not capable of tuning to the accuracy contained in the message
should tune to the nearest possible value, but it is recommended that it stores the full resolu-
tion tuning value in tuning memories, in case data is to be transmitted to other devices which
are capable of full resolution. The frequency value of &[7F] [7F] [7F] is reserved to indicate
no change to the tuning of a particular note.

A number of MIDI messages are associated with tuning. These break down into bulk dumps
of tuning data (to retune a complete instrument), single note retuning messages and the
selection of prestored tuning programs and banks of programs. The only one of these that is
currently a real-time message is the single note retuning. Users may select stored tuning
programs and banks of tuning programs using the RPN messages shown in Table 4.6.
A device may request a bulk tuning dump from another using the general SysEx non-
realtime form:

&[F0] [7E] [dev. ID] [08] [00] [tt] [F7]

MIDI and synthetic audio control

107

Basic note number 0 [MSB … … … …] 0 [… … … … LSB]

Equal-tempered
semitone on which

tuning is based

14-bit value representing increments of
0.0061 cents above basic semitone pitch

Byte 1 Byte 2 Byte 3

Figure 4.13 MIDI tuning messages indicate the pitches to which MIDI notes should be tuned using three bytes,
as shown here

where the sub-ID #1 of &08 indicates a MIDI tuning standard message and the sub-ID #2 of
&00 indicates a bulk dump request. &[tt] defines the tuning program which is being
requested. Such a request should result in the transmission of a bulk dump if such a tuning
program exists, and the dump should take the form:

&[F0] [7E] [dev. ID] [08] [01] [tt] [tuning name] [tuning data] ...
... ... [LL] [F7]

where [tuning name] is 16 bytes to name the tuning program (each byte holds a 7-bit ASCII
character) and [tuning data] consists of 128 groups of 3 bytes to define the tuning of each
note, in the format described in the previous section. &LL is a checksum byte.

A single note may be retuned using the SysEx realtime message:

&[F0] [7F] [dev. ID] [08] [02] [tt] [ll] ([kk] [tuning data]) [F7]

where &[ll] indicates the number of notes to be retuned, followed by that number of groups
of tuning data. Each group of tuning data is preceded by &[kk] which defines the note to be
retuned.

4.8 General MIDI
One of the problems with MIDI sound generators is that although voice patches can be
selected using MIDI program change commands, there is no guarantee that a particular pro-
gram change number will recall a particular voice on more than one instrument. In other
words, program change 3 may correspond to ‘alto sax’ on one instrument and ‘grand piano’
on another. This makes it difficult to exchange songs between systems with any hope of the
replay sounding the same as intended by the composer. General MIDI is an approach to the
standardisation of a sound generator’s behaviour, so that songs can be exchanged more
easily between systems and device behaviour can be predicted by controllers. It comes in
three flavours: GM 1, GM Lite and GM 2.

General MIDI Level 1 specifies a standard voice map and it specifies a minimum degree of
polyphony, requiring that a sound generator should be able to receive MIDI data on all 16
channels simultaneously and polyphonically, with a different voice on each channel. There is
also a requirement that the sound generator should support percussion sounds in the form
of drum kits, so that a General MIDI sound module is capable of acting as a complete ‘band
in a box’.

Dynamic voice allocation is the norm in GM sound modules, with a requirement either for at
least 24 dynamically allocated voices in total, or 16 for melody and 8 for percussion. Voices
should all be velocity sensitive and should respond at least to the controller messages 1, 7,
10, 11, 64, 121 and 123 (decimal), RPNs 0, 1 and 2 (see above), pitch bend and channel after-
touch. In order to ensure compatibility between sequences that are replayed on GM modules,
percussion sounds are always allocated to MIDI channel 10. Program change numbers are
mapped to specific voice names, with ranges of numbers allocated to certain types of sounds, as
shown in Table 4.7. Precise voice names may be found in the GM documentation. Channel 10,

Desktop Audio Technology

108

the percussion channel, has a defined set of note numbers on which particular sounds are to
occur, so that the composer may know for example that key 39 will always be a ‘hand clap’.

General MIDI sound modules may operate in modes other than GM, where voice allocations
may be different, and there are two universal non-realtime SysEx messages used to turn GM
on or off. These are:

&[F0] [7E] [dev. ID] [09] [01] [F7]

to turn GM on, and:

&[F0] [7E] [dev. ID] [09] [02] [F7]

to turn it off.

There is some disagreement over the definition of ‘voice’, as in ‘24 dynamically allocated
voices’ – the requirement that dictates the degree of polyphony supplied by a GM module.
The spirit of the GM specification suggests that 24 notes should be capable of sounding
simultaneously, but some modules combine sound generators to create composite voices,
thereby reducing the degree of note polyphony.

General MIDI Lite (GML) is a cut-down GM 1 specification designed mainly for use on
mobile devices with limited processing power. It can be used for things like ring tones on
mobile phones and for basic music replay from PDAs. It specifies a fixed polyphony of 16
simultaneous notes, with 15 melodic instruments and 1 percussion kit on channel 10. The
voice map is the same as GM Level 1. It also supports basic control change messages and the
pitch-bend sensitivity RPN. As a rule, GM Level 1 songs will usually replay on GM Lite

MIDI and synthetic audio control

109

Table 4.7 General MIDI program number ranges (except channel 10)

Program change (decimal) Sound type

0–7 Piano
8–15 Chromatic percussion
16–23 Organ
24–31 Guitar
32–39 Bass
40–47 Strings
48–55 Ensemble
56–63 Brass
64–71 Reed
72–79 Pipe
80–87 Synth lead
88–95 Synth pad
96–103 Synth effects
104–111 Ethnic
112–119 Percussive
120–128 Sound effects

devices with acceptable quality, although some information may not be reproduced. An alter-
native to GM Lite is SPMIDI (see Section 4.9) which allows greater flexibility.

GM Level 2 is backwards compatible with Level 1 (GM 1 songs will replay correctly on GM
2 devices) but allows the selection of voice banks and extends polyphony to 32 voices.
Percussion kits can run on channel 11 as well as the original channel 10. It adds MIDI tuning,
RPN controllers and a range of universal system exclusive messages to the MIDI specifica-
tion, enabling a wider range of control and greater versatility.

4.9 Scalable polyphonic MIDI (SPMIDI)
SPMIDI, rather like GM Lite, is designed principally for mobile devices that have issues with
battery life and processing power. It has been adopted by the 3GPP wireless standards body
for structured audio control of synthetic sounds in ring tones and multimedia messaging. It
was developed primarily by Nokia and Beatnik. The SPMIDI basic specification for a device
is based on GM Level 2, but a number of selectable profiles are possible, with different levels
of sophistication.

The idea is that rather than fixing the polyphony at 16 voices the polyphony should be scal-
able according to the device profile (a description of the current capabilities of the device).
SPMIDI also allows the content creator to decide what should happen when polyphony is
limited – for example, what should happen when only four voices are available instead of 16.
Conventional ‘note stealing’ approaches work by stealing notes from sounding voices to sup-
ply newly arrived notes, and the outcome of this can be somewhat arbitrary. In SPMIDI this
is made more controllable. A process known as channel masking is used, whereby certain
channels have a higher priority than others, enabling the content creator to put high priority
material on particular channels. The channel priority order and maximum instantaneous
polyphony are signalled to the device in a setup message at the initialisation stage.

4.10 Standard MIDI files (SMF)
Sequencers and notation packages typically store data on disk in their own unique file
formats. The standard MIDI file was developed in an attempt to make interchange of
information between packages more straightforward and it is now used widely in the indus-
try in addition to manufacturers’ own file formats. It is rare now not to find a sequencer or
notation package capable of importing and exporting standard MIDI files. MIDI files are
most useful for the interchange of performance and control information. They are not so
useful for music notation where it is necessary to communicate greater detail about the way
music appears on the stave and other notational concepts. For the latter purpose a number
of different file formats have been developed, including Music XML which is among the most
widely used of the universal interchange formats today. Further information about Music
XML resources and other notation formats may be found in the Further reading at the end of
this chapter.

Three types of standard MIDI file exist to encourage the interchange of sequencer data
between software packages. The MIDI file contains data representing events on individual

Desktop Audio Technology

110

sequencer tracks, as well as containing labels such as track names, instrument names and
time signatures.

4.10.1 General structure of MIDI files

There are three MIDI file types. File type 0 is the simplest and is used for single-track data,
whilst file type 1 supports multiple tracks which are ‘vertically’ synchronous with each other
(such as the parts of a song). File type 2 contains multiple tracks that have no direct timing
relationship and may therefore be asynchronous. Type 2 could be used for transferring song
files made up of a number of discrete sequences, each with a multiple track structure.

The basic file format consists of a number of 8-bit words formed into chunk-like parts, very
similar to the RIFF and AIFF audio file formats described in Chapter 6. SMFs are not exactly
RIFF files though, because they do not contain the highest level FORM chunk. (To encap-
sulate SMFs in a RIFF structure, use the RMID format, described in Section 4.12.) The header
chunk, which always heads a MIDI file, contains global information relating to the whole file,
whilst subsequent track chunks contain event data and labels relating to individual
sequencer tracks. Track data should be distinguished from MIDI channel data, since a
sequencer track may address more than one MIDI channel. Each chunk is preceded by a
preamble of its own, which specifies the type of chunk (header or track) and the length of the
chunk in terms of the number of data bytes that are contained in the chunk. There then follow
the designated number of data bytes (see Figure 4.14). The chunk preamble contains 4 bytes
to identify the chunk type using ASCII representation and 4 bytes to indicate the number of
data bytes in the chunk (the length). The number of bytes indicated in the length does not
include the preamble (which is always 8 bytes).

4.10.2 Header chunk

The header chunk takes the format shown in Figure 4.15. After the 8-byte preamble will nor-
mally be found 6 bytes containing header data, considered as three 16-bit words, the first of

MIDI and synthetic audio control

111

Type Length Data

Four bytes ASCII 32 bits hex

MS LS

Figure 4.14 The general format of a MIDI file chunk. Each chunk has a preamble consisting of a 4-byte ASCII
‘type’ followed by 4 bytes to represent the number of data bytes in the rest of the message (the ‘length’)

0 6M T h d 0 0

Type Length format ntrks division

Figure 4.15 The header chunk has the type ‘MThd’ and the number of data bytes indicated in the ‘length’
is 6 (see text)

which (‘format’) defines the file type as 0, 1 or 2 (see above), the second of which (‘ntrks’)
defines the number of track chunks in the file, and the third of which (‘division’) defines the
timing format used in subsequent track events.

A zero in the MSB of the ‘division’ word indicates that events will be represented by ‘musi-
cal’ time increments of a certain number of ‘ticks per quarter note’ (the exact number is
defined in the remaining bits of the word), whilst a one in the MSB indicates that events will
be represented by real-time increments in number-of-ticks-per-timecode-frame. The frame
rate of the timecode is given in the remaining bits of the most significant byte of ‘division’,
being represented using negative values in twos complement form, so the standard frame
rates are represented by one of the decimal values �24, �25, �29 (for 30 drop frame) or �30.

When a real-time format is specified in the header chunk, the least significant byte of
‘division’ is used to specify the subdivisions of a frame to which events may be timed. For
example, a value of ‘410’ in this position would mean that events were timed to an accuracy
of a quarter of a frame, corresponding to the arrival frequency of MIDI quarter-frame time-
code messages, whilst a value of ‘8010’ would allow events to be timed to bit accuracy within
the timecode frame (there are 80 bits representing a single timecode frame value in the
SMPTE/EBU longitudinal timecode format).

4.10.3 Track chunks

Following the header come a number of track chunks (see Figure 4.16), the number depend-
ing on the file type and the number of tracks. File type 0 represents a single track and will
only contain a header and one track chunk, whilst file types 1 and 2 may have many track
chunks. Track chunks contain strings of MIDI events, each labelled with a delta-time at which
the event is to occur. Delta-times represent the number of ‘ticks’ since the last event, as
opposed to the absolute time since the beginning of a song. The exact time increment speci-
fied by a tick depends on the definition of a tick contained in the ‘division’ word of the
header (see above).

Delta-time values are represented in ‘variable length format’, which is a means of represent-
ing hexadecimal numbers up to &0FFFFFFF as compactly as possible. Variable length values

Desktop Audio Technology

112

M T r k

Type Length Event Event

Delta-time Event

2 to 8 bytes Any number of bytes

Figure 4.16 A track chunk has the type ‘MTrk’ and the number of data bytes indicated in the ‘length’ depends
on the contents of the chunk. The data bytes which follow are grouped into events as shown

represent the number in question using one, two, three or four bytes, depending on the size
of the number. Each byte of the variable length value has its MSB set to a one, except for the
last byte whose MSB should be zero. (This distinguishes the last byte of the value from the
others, so that the computer reading the data knows when to stop compiling the number.)
Seven bits of each byte are therefore available for the representation of numeric data (rather
like the MIDI status and data bytes). A software routine must be written to convert normal
hex values into this format and back again. The standard document gives some examples of
hex numbers and their variable length equivalents, as shown in Table 4.8.

4.10.4 MIDI file track events

The track events that occur at specified delta-times fall into the categories of ‘MIDI event’,
‘SysEx event’ and ‘meta-event’. In the case of the MIDI event, the data bytes that follow the
delta-time are simply those of a MIDI channel message, with running status used if possible.

System exclusive (SysEx) events are used for holding MIDI system exclusive dumps that
occur during a sequence. The event data is normally identical to the system exclusive data
packet to be transmitted, except that the length of the packet is specified after the initial &[F0]
byte that signals the beginning of a SysEx message and before the normal manufacturer ID,
as follows:

&[F0] [length] [SysEx data]

The ‘length’ value should be encoded in variable length format, and the standard requires that
&[F7] be used to terminate a SysEx event in a MIDI file. (Some software omits this when trans-
mitting such data over MIDI.) It is also possible to have a special ‘SysEx’ event, as follows:

&[F7] [length] [data]

The standard says that this can be used as a form of ‘escape’ event, in order that data may be
included in a standard MIDI file that would not normally be part of a sequencer file, such
as real-time messages or MTC messages. The &F7 byte is also used as an identifier for
subsequent parts of a system exclusive message that is to be transmitted in timed packets

MIDI and synthetic audio control

113

Table 4.8 Examples of numbers in variable length format

Original number (hex) Variable length format (hex)

00000000 00
00000040 40
0000007F 7F
00000080 81 00
00002000 C0 00
00100000 C0 80 00
0FFFFFFF FF FF FF 7F

(some instruments require this). In such a case the first packet of the SysEx message uses the
&F0 identifier and subsequent packets use the &F7 identifier, preceded by the appropriate
delta-times to ensure correct timing of the packets.

The meta-event is used for information such as time signature, key signature, text, lyrics,
instrument names and tempo markings. Its general format consists of a delta-time followed
by the identifier &FF, as follows:

&[FF] [type] [length] [data]

The byte following &FF defines the type of meta-event, and the ‘length’ value is a variable
length number describing the number of data bytes in the message which follows it. The num-
ber of bytes taken up by ‘length’ therefore depends on the message length to be represented.

Many meta-events exist and it is not intended to describe them all here, although some of the
most common type identifiers are listed in Table 4.9. A full list of current meta-events can be
obtained from the MMA. It is allowable for a manufacturer to include meta-events specific to a
particular software package in a MIDI file, although this is only recommended if the standard
MIDI file is to be used as the normal storage format by the software. In such a case the ‘type’
identifier should be set to &7F. A software package should expect to encounter events in MIDI
files that it cannot deal with, and be able simply to ignore them, since either new event types
may be defined after a package has been written, or a particular feature may be unimplemented.

A standardised meta-event format for lyrics has been published by the MMA as Recom-
mended Practice RP-017, avoiding the confusion that used to be widespread regarding the

Desktop Audio Technology

114

Table 4.9 A selection of common meta-event type identifiers

Type (hex) Length Description

00 02 Sequence number
01 Var Text event
02 Var Copyright notice text
03 Var Sequence or track name
04 Var Instrument name
05 Var Lyric text (normally one syllable per event)
06 Var Marker text (rehearsal letters, etc.)
07 Var Cue point text
20 01 MIDI channel prefix (ties subsequent events to a particular

channel, until the next channel event, MIDI or meta)
2F 00 End of track. (No data follows)
51 03 Set tempo (�s per quarter note)
54 05 Timecode location (hh:mm:ss:ff:100ths) of track start (following

the MTC convention for hours)
58 04 Time signature (see below)
59 02 Key signature. First data byte denotes number of sharps

(�ve value) or flats (�ve value). Second
data byte denotes major (0) or minor (1) key

7F Var Sequencer-specific meta-event (see above)

way that lyrics were represented in MIDI files. There is also a recommended practice for
including device names and program names in meta-events, called RP-019. This enables spe-
cific destination devices to be identified in MIDI files, so that a track’s events can subsequently
be routed to that particular device. This is an alternative to identifying cable numbers on
multi-port MIDI interfaces. The program name meta-event allows specific program or voice
names to be included in the file so that the rather anonymous bank select and program change
messages that are used to select sound generator voices can be identified by name.

4.10.5 Time signatures and tempo maps

The format of time signature meta-events needs further explanation, as it is somewhat
arcane. The event consists of four data bytes following the ‘length’ identifier, as shown in
Figure 4.17. The first two of these define the conventional time signature (e.g.: 4/4 or 6/8) and
the second two define the relationship between MIDI clocks and the notated music. The
denominator of the time signature is represented as the power of two required to produce
the number concerned. For example, this value would be &03 if the denominator was 810
because 23 equals 8. The third data byte defines the number of MIDI clocks per metronome
click (the metronome may click at intervals other than a quarter note, depending on the time
signature) and the final byte allows the user to define the number of 32nd notes actually
notated per 24 MIDI clocks. This last, perhaps unusual-sounding definition allows for a
redefinition of the tempo unit represented by MIDI clocks (which would normally run at a
rate of 6 per 16th note), in order to accommodate software packages that allow this relation-
ship to be altered. The tempo map of a song may need to be transferred between one machine
and another, and the MIDI file format may be used for this purpose. Such a file could be a type
0 file consisting solely of meta-events describing tempo changes, but otherwise the map must
be contained in the first track chunk of a larger file. This is where reading devices will expect
to find it.

4.11 Downloadable Sounds (DLS) and SoundFonts
A gradual convergence may be observed in the industry between the various different meth-
ods by which synthetic sounds can be described. These have been variously termed
‘Downloadable Sounds’, ‘SoundFonts’ and more recently ‘MPEG 4 Structured Audio Sample
Bank Format’. Downloadable Sounds is an MMA specification for synthetic voice description
that enables synthesisers to be programmed using voice data downloaded from a variety of

MIDI and synthetic audio control

115

n n d d c c b b

Numerator of
time signature

Denominator of
time signature

(expressed as 2dd)

MIDI clocks
per metronome

click

No. of notated 32nd
notes per 24 MIDI clocks

Figure 4.17 Meaning of the data bytes in the time signature meta-event

sources. In this way a content creator could not only define the musical structure of his
content in a universally usable way, using standard MIDI files, but could also define the
nature of the sounds to be used with downloadable sounds. In these ways content creators
can specify more precisely how synthetic audio should be replayed, so that the end result is
more easily predicted across multiple rendering platforms.

The success of the most recent of these approaches depends to a large extent on the agree-
ment around a common method of sound synthesis known as ‘wavetable synthesis’. Here
basic sound waveforms are stored in wavetables (simply tables of sample values) in RAM, to
be read out at different rates and with different sample skip values, for replay at different
pitches. Subsequent signal processing and envelope shaping can be used to alter the timbre
and temporal characteristics. Such synthesis capabilities exist on the majority of computer
sound cards, making it a realistic possibility to implement the standard widely.

Downloadable Sounds Level 1, version 1.1a, was published in 1999 and contains a specifica-
tion for devices that can deal with DLS as well as a file format for containing the sound
descriptions. The basic idea is that a minimal synthesis engine should be able to replay a
looped sample from a wavetable, apply two basic envelopes for pitch and volume, use low
frequency oscillator control for tremolo and vibrato, and respond to basic MIDI controls such
as pitch bend and modulation wheel. There is no option to implement velocity crossfading
or layering of sounds in DLS Level 1, but keyboard splitting into 16 ranges is possible.

DLS Level 1 requires a minimum specification of the sound card or rendering device that can
be used to replay or render the synthetic sounds described. This includes a minimum of the
following: 512 KB of wavetable storage (assuming 16 bit samples); 128 instruments, sets of
articulation data, regions and samples at once; 24 simultaneous voices and 22.05 kHz
sampling rate. The DLS Level 1 file format is based on the RIFF structure, described in
Chapter 6. It is based on chunks containing instrument definitions and WAVE file data
(containing the sampled audio for the individual wavetables). So-called articulation informa-
tion describes things like loop points and envelope shapes that indicate how the sound is to
be replayed. The WAVE data is mono and stored either in 16-bit twos complement form, or in
8-bit unsigned form. DLS RIFF files (file extension ‘.dls’) may contain wave and articulation
data for a number of instruments and for a number of note regions within those instruments.
Information chunks provide textual information describing the instruments defined in the file,
and instrument list chunks and sub-chunks contain the data for the instruments themselves –
pointing to relevant wavetable data stored in WAVE chunks.

DLS Level 2 is somewhat more advanced, requiring two six-segment envelope generators,
two LFOs, a low-pass filter with resonance and dynamic cut off frequency controls. It
requires more memory for wavetable storage (2 MB), 256 instruments and 1024 regions,
among other things. DLS Level 2 has been adopted as the MPEG-4 Structured Audio sample
bank format (see Chapter 2 for more information about MPEG).

Emu developed so-called SoundFonts for Creative Labs and these have many similar char-
acteristics to downloadable sounds. They have been used widely to define synthetic voices
for Sound Blaster and other computer sound cards. In fact the formats have just about been
harmonised with the issue of DLS Level 2 that apparently contains many of the advanced fea-
tures of SoundFonts. SoundFont 2 descriptions are normally stored in RIFF files with the
extension ‘.sf2’.

Desktop Audio Technology

116

4.12 RMID and XMF files
RMID is a version of the RIFF file structure that can be used to combine a standard MIDI file
and a downloadable sound file within a single structure. In this way all of the data required to
replay a song using synthetic sounds can be contained within one file. As shown in Figure 4.18,
it adds a 20-byte header to the file before the start of the SMF data, which contains the standard
4-byte ASCII ‘RIFF’ identification, followed by a 4-byte length indication and a 4-byte ‘RMID’
identifier. The ‘data’ chunk that follows contains the SMF data. A DLS chunk can be appended
to the end of the SMF chunk within the overall RMID chunk length.

RMID seems to have been superseded by another file format known as XMF (eXtensible
Music Format) that is designed to contain all of the assets required to replay a music file. It
is based on Beatnik’s RMF (Rich Music Format) which was designed to incorporate standard
MIDI files and audio files such as MP3 and WAVE so that a degree of interactivity could be
added to audio replay. RMF can also address a Special Bank of MIDI sounds (an extension of
GM) in the Beatnik Audio Engine. XMF is now the MMA’s recommended way of combining
such elements. It is more extensible than RMID and can contain WAVE files and other media
elements for streamed or interactive presentations. XMF introduces concepts such as looping
and branching into standard MIDI files. RMF included looping but did not incorporate DLS
into the file format. In addition to the features just described, XMF can incorporate 40-bit
encryption for advanced data security as well as being able to compress standard MIDI files
by up to 5:1 and incorporate metadata such as rights information. So far, XMF Type 0 and
Type 1 have been defined, both of which contain SMF and DLS data, and which are identical
except that Type 0 MIDI data may be streamed.

4.13 SAOL and SASL in MPEG 4 Structured Audio
SAOL is the Structured Audio Orchestra Language of MPEG 4 Structured Audio (a standard
for low bit rate representation of digital audio). SASL is the Structured Audio Score
Language. A SASL ‘score’ controls SAOL ‘instruments’. SAOL is an extension of CSound, a
synthesis language developed over many years, primarily at MIT, and is more advanced than
MIDI DLS (which is based only on simple wavetable synthesis). Although there is a restricted

MIDI and synthetic audio control

117

“RIFF” “RIFF”RMID_size “RMID” MIDI_size“data” “MThd” remaining MIDI file data DLS_size “DLS ” DLS data...

Original MIDI file Original
DLS file

Size of
all data
to follow

Size of
MIDI file

RMID chunk DLS chunkRIFF header

Figure 4.18 Structure of a basic RMID file containing both standard MIDI file (SMF) and downloadable sound
(DLS) data. All header elements are 4 bytes long. The MIDI file data and the downloadable sound data are
however long they are described to be

profile of Structured Audio that uses only wavetable synthesis (essentially DLS Level 2 for
use in devices with limited processing power), a full implementation allows for a variety of
other synthesis types such as FM, and is extensible to include new ‘unit generators’ (the
CSound name for the elements of a synthesis patch).

SASL is more versatile than standard MIDI files in its control of SAOL instruments. There is
a set of so-called ‘MIDI semantics’ that enables the translation of MIDI commands and con-
trollers into SAOL events, so that MIDI commands can either be used instead of a SASL score,
or in addition to it. If MPEG 4 Structured Audio (SA) gains greater ground and authoring
tools become more widely available, the use of MIDI control and DLS may decline as they
are inherently less versatile. MIDI, however, is inherently simpler than SA and could well
continue to be used widely when the advanced features of SA are not required.

4.14 MIDI and synchronisation
4.14.1 Introduction to MIDI synchronisation

An important aspect of MIDI control is the handling of timing and synchronisation data. MIDI
timing data takes the place of the various older standards for synchronisation on drum machines
and sequencers that used separate ‘sync’ connections carrying a clock signal at one of a number
of rates, usually described in pulses-per-quarter-note (ppqn). There used to be a considerable
market for devices to convert clock signals from one rate to another, so that one manufacturer’s
drum machine could lock to another’s sequencer, but MIDI has supplanted these by specifying
standard synchronisation data that shares the same data stream as note and control information.

Not all devices in a MIDI system will need access to timing information – it depends on the
function fulfilled by each device. A sequencer, for example, will need some speed reference
to control the rate at which recorded information is replayed and this speed reference could
either be internal to the computer or provided by an external device. On the other hand, a
normal synthesiser, effects unit or sampler is not normally concerned with timing informa-
tion, because it has no functions affected by a timing clock. Such devices do not normally
store rhythm patterns, although there are some keyboards with onboard sequencers that
ought to recognise timing data.

As MIDI equipment has become more integrated with audio and video systems the need has
arisen to incorporate timecode handling into the standard and into software. This has
allowed sequencers either to operate relative to musical time (e.g. bars and beats) or to ‘real’
time (e.g. minutes and seconds). Using timecode, MIDI applications can be run in sync with
the replay of an external audio or video machine, in order that the long-term speed relation-
ship between the MIDI replay and the machine remains constant. Also relevant to the sys-
tems integrator is the MIDI Machine Control standard that specifies a protocol for the remote
control of devices such as external recorders using a MIDI interface.

4.14.2 Music-related timing data

This section describes the group of MIDI messages that deals with ‘music-related’ synchroni-
sation – that is synchronisation related to the passing of bars and beats as opposed to ‘real’ time

Desktop Audio Technology

118

in hours, minutes and seconds. It is normally possible to choose which type of sync data will
be used by a software package or other MIDI receiver when it is set to ‘external sync’ mode.

A group of system messages called the ‘system realtime’ messages control the execution of
timed sequences in a MIDI system and these are often used in conjunction with the song
pointer (which is really a system common message) to control autolocation within a stored
song. The system realtime messages concerned with synchronisation, all of which are single
bytes, are:

&F8 Timing clock

&FA Start

&FB Continue

&FC Stop

The timing clock (often referred to as ‘MIDI beat clock’) is a single status byte (&F8) to be
issued by the controlling device six times per MIDI beat. A MIDI beat is equivalent to a musi-
cal semiquaver or sixteenth note (see Table 4.10) so the increment of time represented by a
MIDI clock byte is related to the duration of a particular musical value, not directly to a unit
of real time. Twenty-four MIDI clocks are therefore transmitted per quarter note, unless the
definition is changed. (As mentioned in the discussion of time signature format in MIDI files
(see Section 4.10.5) some software packages allow the user to redefine the notated musical
increment represented by MIDI clocks.) At any one musical tempo, a MIDI beat could be said
to represent a fixed increment of time, but this time increment would change if the tempo
changed.

The timing clock byte, like other system realtime messages, may temporarily interrupt other
MIDI messages, the status reverting to the previous status automatically after the realtime
message has been handled by a receiver. This is necessary because of the very nature of the
timing clock as a synchronising message. If it were made to wait for other messages to finish,
it would lose its ability to represent a true increment of time. It may be seen that there could
still be a small amount of error in the timing of any clock byte within the data stream if a large
amount of other data was present, because the timing byte may not interrupt until at least
the break between one byte and another, but this timing error cannot be greater than plus or
minus half the duration of a MIDI byte, which is 160 �s.

MIDI and synthetic audio control

119

Table 4.10 Musical durations related to MIDI timing data

Note value Number of MIDI beats Number of MIDI clocks

Semibreve (whole note) 16 96
Minim (half note) 8 48
Crotchet (quarter note) 4 24
Quaver (eighth note) 2 12
Semiquaver (sixteenth note) 1 6

So the &F8 byte might appear between the two data bytes of a note on message, for example,
but it would not be necessary to repeat either the entire message or the ‘note on’ status after
&F8 had passed. &F8 may also interrupt running status in the same way, without the need
for reiteration of the status after the timing byte has been received. MIDI clocks should be
given a very high priority by receiving software, since the degree of latency in the handling
of this data will affect the timing stability of synchronised replay. On receipt of &F8, a device
that handles timing information should increment its internal clock by the relevant amount.
This in turn will increment the internal song pointer after six MIDI clocks (i.e. one MIDI beat)
have passed. Any device controlling the sequencing of other instruments should generate
clock bytes at the appropriate intervals and any changes of tempo within the system should
be reflected in a change in the rate of MIDI clocks. In systems where continuously varying
changes have been made in the tempo, perhaps to imitate rubato effects or to add ‘human feel’
to the music, the rate of the clock bytes will reflect this.

The ‘start’, ‘stop’ and ‘continue’ messages are used to remotely control the receiver’s replay.
A receiver should only begin to increment its internal clock or song pointer after it receives a
start or continue message, even though some devices may continue to transmit MIDI clock
bytes in the intervening periods. For example, a sequencer may be controlling a number of
keyboards, but it may also be linked to a drum machine that is playing back an internally
stored sequence. The two need to be locked together, so the sequencer (running in internal
sync mode) would send the drum machine (running in external sync mode) a ‘start’ message
at the beginning of the song, followed by MIDI clocks at the correct intervals thereafter to
keep the timing between the two devices correctly related. If the sequencer was stopped it
would send ‘stop’ to the drum machine, whereafter ‘continue’ would carry on playing from
the stopped position, and ‘start’ would restart at the beginning. This method of synchronisa-
tion appears to be fairly basic, as it allows only for two options: playing the song from the
beginning or playing it from where it has been stopped.

SPPs are used when one device needs to tell another where it is in a song. (The term ‘song’
is used widely in MIDI parlance to refer to any stored sequence.) A sequencer or synchroniser
should be able to transmit song pointers to other synchronisable devices when a new loca-
tion is required or detected. For example, one might ‘fast-forward’ through a song and start
again twenty bars later, in which case the other timed devices in the system would have to
know where to restart. An SPP would be sent followed by ‘continue’ and then regular clocks.
Originally it was recommended that a gap of at least 5 seconds was left between sending a
SPP and restarting the sequence, in order to give the receiver time to locate to the new posi-
tion, but revisions state that a receiver should be able to register a ‘continue’ message and
count subsequent MIDI clocks even while still locating, even if it is not possible to start play-
ing immediately. Replay should begin as soon as possible, taking into account the clocks
elapsed since the ‘continue’ message was received.

An SPP represents the position in a stored song in terms of number of MIDI beats (not clocks)
from the start of the song. It uses two data bytes so can specify up to 16 384 MIDI beats. SPP
is a system common message, not a realtime message. It is often used in conjunction with &F3
(song select), which is used to define which of a collection of stored song sequences (in a drum
machine, say) is to be replayed. SPPs are fine for directing the movements of an entirely musi-
cal system, in which every action is related to a particular beat or subdivision of a beat, but
not so fine when actions must occur at a particular point in real time. If, for example, one was

Desktop Audio Technology

120

using a MIDI system to dub music and effects to a picture in which an effect was intended to
occur at a particular visual event, that effect would have to maintain its position in time no
matter what happened to the music. If the effect was to be triggered by a sequencer at a par-
ticular number of beats from the beginning of the song, this point could change in real time if
the tempo of the music was altered slightly to fit a particular visual scene. Clearly some means
of real-time synchronisation is required either instead of, or as well as the clock and song
pointer arrangement, such that certain events in a MIDI controlled system may be triggered
at specific times in hours, minutes and seconds.

Recent software may recognise and be able to generate the bar marker and time signature
messages. The bar marker message can be used where it is necessary to indicate the point at
which the next musical bar begins. It takes effect at the next &F8 clock. Some MIDI synchro-
nisers will also accept an audio input or a tap switch input so that the user can program a
tempo track for a sequencer based on the rate of a drum beat or a rate tapped in using a
switch. This can be very useful in synchronising MIDI sequences to recorded music, or fitting
music which has been recorded ‘rubato’ to bar intervals.

4.14.3 Timecode and synchronisation

There are a number of ways of organising real-time synchronisation in a workstation, but
they all depend on the use of timecode in one form or another. In this section the principles
of timecode and its relationship to MIDI are explained.

Timecode is more correctly referred to as SMPTE/EBU time and control code. It is often just
referred to as SMPTE (‘simpty’) in studios. It comes in two forms: linear timecode (LTC),
which is an audio signal capable of being recorded on a tape recorder, and vertical interval
timecode (VITC), which is recorded in the vertical interval of a television picture. Timecode
is basically a binary data signal registering time from an arbitrary start point (which may be
the time of day) in hours, minutes, seconds and frames, against which the program runs.
It was originally designed for video editing, and every single frame on a particular video
tape has its own unique number called the timecode address. This can be used to pinpoint a
precise editing position. More recently timecode has found its way into audio, where TV
frames have less meaning but are still used as a convenient subdivision of a second.
Sometimes a sample offset is added to a timecode value to indicate the precise point of an
edit in audio samples from the start of a frame.

A number of frame rates are available, depending on the television standard to which they
relate, the frame rate being the number of still frames per second used to give the impression
of continuous motion in the TV picture. Thirty frames per second (fps), or true SMPTE, was
used for monochrome American television; 29.97 fps is used for colour NTSC television
(mainly USA, Japan and parts of the Middle East), and is called ‘SMPTE drop-frame’; 25 fps is
used for PAL and SECAM TV and is called ‘EBU’ (Europe, Australia, etc.); and 24 fps is used
for some film work. SMPTE drop frame timecode is so called because in order to maintain sync
with NTSC colour television pictures running at 29.97 fps it is necessary to use the 30 fps
SMPTE code but to drop two frames at the start of each minute, except every tenth minute. This
is a compromise solution which has the effect of introducing a short term sync error between
timecode and real time, whilst maintaining reasonable control over the long-term drift.

MIDI and synthetic audio control

121

An LTC frame value is represented by an 80-bit binary ‘word’, split principally into groups
of 4 bits, with each 4 bits representing a particular parameter such as tens of hours, units of
hours, and so forth, in BCD (binary-coded decimal) form (see Figure 4.19). Sometimes, not all
four bits per group are required – the hours only go up to ‘23’, for example – and in these
cases the remaining bits are either used for special control purposes or set to zero (unas-
signed): 26 bits in total are used for time address information to give each frame its unique
hours, minutes, seconds, frame value; 32 are ‘user bits’ and can be used for encoding infor-
mation such as reel number, scene number, day of the month and the like; bit 10 denotes
drop-frame mode if a binary 1 is encoded there, and bit 11 can denote colour frame mode if
a binary 1 is encoded (used in video editing). The end of each word consists of 16 bits in a
unique sequence, called the ‘sync word’, and this is used to mark the boundary between one
frame and the next. It also allows a timecode reader to tell in which direction the code is
being read, since the sync word begins with ‘11’ in one direction and ‘10’ in the other.

This binary information cannot be directly recorded as an audio signal, since its bandwidth
would be too wide, so it is modulated in a simple scheme known as ‘biphase mark’, or FM,
in which a transition from one state to the other (low to high or high to low) occurs at the
edge of each bit period, but an additional transition is forced within the period to denote a
binary 1 (see Figure 4.20). The result looks rather like a square wave with two frequencies,
depending on the presence of ones and zeros in the code. The code can be read forwards or
backwards, and phase inverted. Readers are available which will read timecode over a very

Desktop Audio Technology

122

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Frame
units

User
bits 1

User
bits 2

Secs
units

User
bits 3

Secs
tens

User
bits 4

Mins
units

User
bits 5

Mins
tens

User
bits 6

Hours
units

User
bits 7

User
bits 8

Hours
tens

Frame
tens

Drop frame
bit

Sync word

Bit

Figure 4.19 Data format of the SMPTE/ EBU longitudinal timecode frame. Note the sync word
0011111111111101 which occurs at the end of each frame to mark the boundary. This pattern does not occur
elsewhere in the frame and its asymmetry allows a timecode reader to determine the direction in which the code
is being played

Bit period

0 1 1 0 1

Figure 4.20 The FM or biphase-mark channel code is used to modulate the timecode data so that it can be
recorded as an audio signal

wide range of speeds, from around 0.1 to 200 times play speed. The rise-time of the signal,
that is the time it takes to swing between its two extremes, is specified as 25 �s � 5 �s, and
this requires an audio bandwidth of about 10 kHz.

VITC is recorded not on an audio track, but in the vertical sync period of a video picture, such
that it can always be read when video is capable of being read, such as in slow-motion and
pause modes. It is useful in applications where slow-motion cueing is to be used in the loca-
tion of sync or edit points and is extracted directly from the video signal by a timecode
reader. Some MIDI synchronisers can accept VITC, but this is much less common than the
ability to read and write LTC.

In audio workstations timecode is not usually recorded as an audio signal on a specific ‘track’
but is derived from the system clock in relation to the replay rate of an audio or MIDI
sequence. Its use as an audio signal (LTC) will probably decline as more and more synchro-
nisation of audio, video and MIDI takes place within the workstation itself. LTC will remain
useful for synchronisation with external recorders.

4.14.4 MIDI timecode (MTC)

MIDI timecode has two specific functions. Firstly, to provide a means for distributing conven-
tional SMPTE/EBU timecode data around a MIDI system in a format that is compatible with
the MIDI protocol. Secondly, to provide a means for transmitting ‘setup’ messages that may
be downloaded from a controlling computer to receivers in order to program them with cue
points at which certain events are to take place. The intention is that receivers will then read
incoming MTC as the program proceeds, executing the pre-programmed events defined in
the setup messages. Sequencers and some digital audio systems often use MIDI timecode
derived from an external synchroniser or MIDI peripheral when locking to video or to
another sequencer. MTC is an alternative to MIDI clocks and song pointers, for use when real
time synchronisation is important.

In an LTC timecode frame, two binary data groups are allocated to each of hours, minutes,
seconds and frames, these groups representing the tens and units of each, so there are eight
binary groups in total representing the time value of a frame. In order to transmit this infor-
mation over MIDI, it has to be turned into a format that is compatible with other MIDI data
(i.e. a status byte followed by relevant data bytes). There are two types of MTC synchronis-
ing message: one that updates a receiver regularly with running timecode and another that
transmits one-time updates of the timecode position. The latter can be used during high
speed cueing, where regular updating of each single frame would involve too great a rate of
transmitted data. The former is known as a quarter-frame message, denoted by the status
byte (&F1), whilst the latter is known as a full-frame message and is transmitted as a uni-
versal realtime SysEx message.

One timecode frame is represented by too much information to be sent in one standard MIDI
message, so it is broken down into eight separate messages. Each message of the group of
eight represents a part of the timecode frame value, as shown in Figure 4.21, and takes the
general form:

&[F1] [DATA]

MIDI and synthetic audio control

123

The data byte begins with zero (as always), and the next seven bits of the data word are made
up of a 3-bit code defining whether the message represents hours, minutes, seconds or
frames, MSnibble or LSnibble, followed by the four bits representing the binary value of that
nibble. In order to reassemble the correct timecode value from the eight quarter-frame mes-
sages, the LS and MS nibbles of hours, minutes, seconds and frames are each paired within
the receiver to form 8-bit words as follows:

Frames: rrr qqqqq

where ‘rrr’ is reserved for future use and ‘qqqqq’ represents the frames value from 0 to 29;

Seconds: rr qqqqqq

where ‘rr’ is reserved for future use and ‘qqqqqq’ represents the seconds value from 0 to 59;

Minutes: rr qqqqqq

as for seconds; and

Hours: r qq ppppp

where ‘r’ is undefined, ‘qq’ represents the timecode type, and ‘ppppp’ is the hours value
from 0 to 23. The timecode frame rate is denoted as follows in the ‘qq’ part of the hours value:
00 � 24 fps; 01 � 25 fps; 10 � 30 fps drop-frame; 11 � 30 fps non-drop-frame. Unassigned
bits should be set to zero.

At a frame rate of 30 fps, quarter-frame messages would be sent over MIDI at a rate of 120
messages per second. As eight messages are needed fully to represent a frame, it can be

Desktop Audio Technology

124

F1

Status byte

Type Time data

Data byte

4 bits 4 bits

0000 Frames LSnibble
0001 Frames MSnibble
0010 Seconds LSnibble
0011 Seconds MSnibble
0100 Minutes LSnibble
0101 Minutes MSnibble
0110 Hours LSnibble
0111 Hours MSnibble

Figure 4.21 General format of the quarter-frame MTC message

appreciated that 30 � 8 � 240 messages really ought to be transmitted per second if the
receiving device were to be updated every frame, but this would involve too great an over-
head in transmitted data, so the receiving device is updated every two frames. If MTC is
transmitted continuously over MIDI it takes up approximately 7.5 per cent of the available
data bandwidth. Quarter-frame messages can be transmitted in forward or reverse order, to
emulate timecode running either forwards or backwards, with the ‘frames LSnibble’ message
transmitted on the frame boundary of the timecode frame that it represents.

The receiver must in fact maintain a two-frame offset between displayed timecode and
received timecode since the frame value has taken two frames to transmit completely. For
real-time synchronisation purposes, the receiver may wish simply to note that time has
advanced another quarter of a frame at the receipt of each quarter-frame message, rather as
it advances by one-sixth of a beat on receipt of each MIDI clock. Internal synchronisation soft-
ware should normally be able to flywheel or interpolate between received synchronisation
messages in order to obtain higher internal resolution than that implied by the rate of the
messages. For all except the fastest musical tempo values, MIDI timecode messages arrive
more regularly than MIDI clocks would, so they might be considered a more reliable timing
reference. Nonetheless, MIDI clocks are still needed when synchronisation is based on musi-
cal time increments.

The format of the full-frame message is as follows, falling into the group of messages known
as the sysex universal realtime messages:

&[F0] [7F] [dev. ID] [01] [01] [hh] [mm] [ss] [fr] [F7]

The device ID would normally be set to &7F which signifies that the message is intended for
the whole system, the sub-ID #1 of &01 denotes an MTC message, and sub-ID #2 denotes a
full-frame message. Thereafter hours, minutes, seconds and frames take the same form as for
quarter-frame messages.

4.15 MIDI machine control (MMC)

MIDI may be used for remotely controlling tape machines and other studio equipment, as
well as musical instruments. MMC uses universal realtime SysEx messages with a sub-ID #1
of either &06 or &07 and has a lot in common with a remote control protocol known as
‘ESbus’ which was devised by the EBU and SMPTE as a universal standard for the remote
control of tape machines, VTRs and other studio equipment. The ESbus standard uses an
RS422 remote control bus running at 38.4 kbaud, whereas the MMC standard uses the MIDI
bus for similar commands. Although MMC and ESbus are not the same and the message pro-
tocols are not identical, the command types and reporting capabilities required of machines
are very similar. There are a number of levels of complexity at which MMC can be made to
operate, making it possible for people to implement it at anything from a very simple level
(i.e. cheaply) to a very complicated level involving all the finer points.

MMC is designed to work in either open- or closed-loop modes (see Figure 4.22). This is
similar to other system exclusive applications that make use of handshaking between the
transmitter and the receiver. Communication can be considered as occurring between a

MIDI and synthetic audio control

125

‘controller’ and a ‘controlled device’, with commands flowing from the controller to the
controlled device and responses returning in the opposite direction. Since a controller may
address more than one controlled device at a time it is possible for a number of responses to
be returned, and this situation requires careful handling, as discussed below. It is expected
that MMC devices and applications will default to the closed-loop condition, but a controller
should be able to detect an open-loop situation by timing out if it does not receive a response
within two seconds after it has sent a message which requires one. From then on, an open
loop should be assumed. Alternatively, a controller could continue to check for the comple-
tion of a closed loop by sending out regular requests for a response, changing modes after a
response was received. In the closed-loop mode a simple handshaking protocol is defined,
again similar in concept to the sample and file dump modes, but involving only two
messages – WAIT and RESUME. These handshaking messages are used to control the flow
of data between controller and controlled device in both directions, in order to prevent the
overflowing of MIDI receive buffers (which would result in loss of data). Handshaking is
discussed further below.

Typical MMC communications involve the transmission of a command from the controller to
a particular device, using its device ID as a means of identifying the destination of the com-
mand. It is also possible to address all controlled devices on the bus using the &7F device ID
in place of the individual ID. Commands take the general format:

&[F0] [7F] [dev. ID] [06] [data] [F7]

Note that only sub-ID #1 is used here, following the device ID, and there is no sub-ID #2 in order
to conserve data bandwidth. The sub-ID #1 of &06 denotes an MMC command. [data] repre-
sents the data messages forming the command, and may be from one to many bytes in length.

The amount of data making up a command depends on its type. Commands that consist of
only a single byte, such as the ‘play’ command (&02), occupy the range from &01 to &3F
(&00 is reserved to be used for future extensions to the command set). A typical command of
this type (e.g. ‘play’) would thus be transmitted as:

&[F0] [7F] [dev. ID] [06] [02] [7F]

Desktop Audio Technology

126

Commands

Responses
from machineControlling computer

Controlled tape machine

Figure 4.22 A closed-loop MMC arrangement. The controller should receive a response from the controlled
device within two seconds of issuing a command which expects a response. If it does not, it should assume an
open loop

The handshaking messages, WAIT (&7C) and RESUME (&7F), can be issued by either the
controller or any of its controlled devices. Handshaking depends on the use of a closed loop.
When issued by the controller the message would normally be a command addressed to any
device trying to send data back to it, and thus the device ID attached to controller hand-
shaking messages is &7F (‘all call’). For example, a controller whose receive data buffer was
approaching overflow would wish to send out a general ‘everybody WAIT’ command, to
suspend MMC transmission from controlled devices until it had reduced the contents of the
buffer, after which an ‘everybody RESUME’ command would be transmitted. Such a com-
mand would take the form:

&[F0] [7F] [7F] [06] [7C or 7F] [F7]

When issued by a controlled device, handshaking messages should be a response tagged
with the device’s own ID, as a means of indicating to the controller which device is request-
ing a WAIT or RESUME. On receipt of a WAIT from a particular device ID the controller
would suspend transmissions to that device but continue to transmit commands to others.
Such a message would take the form:

&[F0] [7F] [dev. ID] [07] [7C or 7F] [F7]

Table 4.11 gives a list of the single byte transport commands used in the MMC protocol. The
list of MMC commands and their accompanying data occupies many pages so it is not
proposed to describe them in detail here. Readers should refer to the MIDI Machine Control
section of the MIDI standard for the latest information. There is no mandatory set of com-
mands or responses defined in the standard, although there are some guidelines concerning
possible minimum sets for certain applications. It is possible to tell which MMC commands
and responses have been implemented in a particular device by analysing the ‘signature’ of
the device. The signature will normally be both published in written form in the manual, and
available as a response from the controlled device. It exists in the form of a bit map in which
each bit corresponds to a certain MMC function. If the bit is set to ‘1’ then the function is
implemented. The signature comes in two parts: the first describing the commands imple-
mented and the second describing the responses implemented. It also contains a header

MIDI and synthetic audio control

127

Table 4.11 Basic MMC transport controls

Command Hex value Comment

Stop 01
Play 02
Deferred play 03 Play after autolocate achieved
Fast fwd 04
Rewind 05
Record strobe 06 Drop into or out of record (depending on rec. ready state)
Record exit 07
Record pause 08 Enters record-pause mode
Pause 09

describing the version of MMC used in the device. The exact format of the signature is
described in the MMC standard.

4.16 MIDI over USB
USB (Universal Serial Bus) is a computer peripheral interface that carries data at a much
faster rate than MIDI (up to 12 Mbit s�1 or up to 480 Mbit s�1, depending on the version). It
is very widely used on workstations and peripherals these days and it is logical to consider
using it to transfer MIDI data between devices as well. The USB Implementers Forum has
published a ‘USB Device Class Definition for MIDI Devices’, version 1.0, that describes how
MIDI data may be handled in a USB context. It preserves the protocol of MIDI messages but
packages them in such a way as to enable them to be transferred over USB. It also ‘virtualises’
the concept of MIDI IN and OUT jacks, enabling USB to MIDI conversion, and vice versa,
to take place in software within a synthesiser or other device. Physical MIDI ports can also
be created for external connections to conventional MIDI equipment (see Figure 4.23).

Desktop Audio Technology

128

XFER in endpoint

XFER out endpoint

MIDI in endpoint(s)

MIDI out endpoint(s)

MIDI data
MIDI data

Element
e.g.

FM synthesiser

Element
e.g. wavetable

synthesiser

USB

External MIDI jacks

OUTIN

USB-to-MIDI convertor

USB MIDI function

Embedded
MIDI jack

Figure 4.23 A USB MIDI function contains a USB-to-MIDI convertor that can communicate with both embedded
(internal) and external MIDI jacks via MIDI IN and OUT endpoints. Embedded jacks connect to internal elements
that may be synthesisers or other MIDI data processors. XFER in and out endpoints are used for bulk dumps
such as DLS and can be dynamically connected with elements as required for transfers

A so-called ‘USB MIDI function’ (a device that receives USB MIDI events and transfers) may
contain one or more ‘elements’. These elements can be synthesisers, synchronisers, effects
processors or other MIDI-controlled objects.

A USB to MIDI convertor within a device will typically have MIDI in and out endpoints as
well as what are called ‘transfer’ (XFER) endpoints. The former are used for streaming MIDI
events whereas the latter are used for bulk dumps of data such as those needed for down-
loadable sounds (DLS). MIDI messages are packaged into 32-bit USB MIDI events, which
involve an additional byte at the head of a typical MIDI message. This additional byte con-
tains a cable number address and a code index number (CIN), as shown in Figure 4.24. The
cable number enables the MIDI message to be targeted at one of 16 possible ‘cables’, thereby
overcoming the 16-channel limit of conventional MIDI messages, in a similar way to that
used in the addressing of multiport MIDI interfaces. The CIN allows the type of MIDI mes-
sage to be identified (e.g. System Exclusive; Note On), which to some extent duplicates the
MIDI status byte. MIDI messages with fewer than three bytes should be padded with zeros.

The USB message transport protocol and interfacing requirements are not the topic of this
book, so users are referred to the relevant USB standards for further information about imple-
mentation issues.

4.17 MIDI over IEEE 1394
IEEE 1394, or ‘Firewire’ as it is sometimes known, is another high speed serial interface
encountered widely on workstations and media equipment. It is capable of data rates up to
many hundreds of megabits per second. The MMA and AMEI have published a ‘MIDI Media
Adaptation Layer for IEEE 1394’ that describes how MIDI data may be transferred over 1394.
This is also referred to in 1394 TA (Trade Association) documents describing the ‘Audio and
Music Data Transmission Protocol’ and IEC standard 61883-6 that deals with the audio part
of 1394 interfaces.

The approach is similar to that used with USB, described Section 4.16, but has somewhat
greater complexity. MIDI 1.0 data streams can be multiplexed into a 1394 ‘MIDI conformant
data channel’ that contains eight independent MIDI streams called ‘MPX-MIDI data chan-
nels’. This way each MIDI conformant data channel can handle 8 � 16 � 128 MIDI channels
(in the original sense of MIDI channels). The data are transferred in AM824 format (see
Section 6.7.1), using groups of ‘quadlets’ (four bytes). The first version of the standard limits
the transmission of packets to the MIDI 1.0 data rate of 31.25 kbit s�1 for compatibility with

MIDI and synthetic audio control

129

Cable
number

Code
Index

Number
MIDI_0 MIDI_1 MIDI_2

Normal MIDI messageUSB packet header

Figure 4.24 USB MIDI packets have a 1-byte header that contains a cable number to identify the MIDI jack
destination and a code index number to identify the contents of the packet and the number of active bytes

other MIDI devices, however provision is made for transmission at substantially faster
rates for use in equipment that is capable of it. This includes options for 2X and 3X MIDI 1.0
speed.

1394 cluster events can be defined that contain both audio and MIDI data. This enables the
two types of information to be kept together and synchronised.

4.18 After MIDI?
Various alternatives have been proposed over the years, aiming to improve upon MIDI’s rel-
atively limited specification and flexibility when compared with modern music control
requirements and computer systems. That said, MIDI has shown surprising robustness to
such ‘challenges’ and has been extended over the years so as to ameliorate some of its basic
problems. Perhaps the simplicity and ubiquity of MIDI has made it attractive for developers
to find ways of working with old technology that they know rather than experimenting with
untried but more sophisticated alternatives.

ZIPI was a networked control approach proposed back in the early 1990s that aimed to break
free from MIDI’s limitations and take advantage of faster computer network technology, but
it never really gained widespread favour in commercial equipment. It has now been over-
taken by more recent developments and communication buses such as USB and 1394.

Open Sound Control is currently a promising alternative to MIDI that is gradually seeing
greater adoption in the computer music and musical instrument control world. Developed
by Matt Wright at CNMAT (Centre for New Music and Audio Technology) in Berkeley,
California, it aims to offer a transport-independent message-based protocol for communica-
tion between computers, musical instruments and multimedia devices. It does not specify a
particular hardware interface or network for the transport layer, but initial implementations
have tended to use UDP (user datagram protocol) over Ethernet or other fast networks as a
transport means. It is not proposed to describe this protocol in detail and further details can
be found at the website indicated at the end of this chapter. A short summary will be given,
however.

OSC uses a form of device addressing that is very similar to an Internet URL (uniform
resource locator). In other words a text address with sub-addresses that relate to lower
levels in the device hierarchy. For example (not a real address) ‘/synthesiser2/voice1/
oscillator3/frequency’ might refer to a particular device called ‘synthesiser2’, within which
is contained voice 1, within which is oscillator 3, whose frequency value is being addressed.
The minimum ‘atomic unit’ of OSC data is 4 bytes (32 bits) long, so all values are 32-bit
aligned, and transmitted packets are made up of multiples of 32-bit information. Packets of
OSC data contain either individual messages or so-called ‘bundles’. Bundles contain
elements that are either messages or further bundles, each having a size designation that
precedes it, indicating the length of the element. Bundles have time tags associated with
them, indicating that the actions described in the bundle are to take place at a specified time.
Individual messages are supposed to be executed immediately. Devices are expected to have
access to a representation of the correct current time so that bundle timing can be related to
a clock.

Desktop Audio Technology

130

Further reading
Hewlett, W. and Selfridge-Field, E. (eds) (2001) The Virtual Score: Representation, Retrieval, Restoration.

MIT Press.
MMA (1999) Downloadable Sounds Level 1. V1.1a, January. MIDI Manufacturers Association.
MMA (2000) RP-027: MIDI Media Adaptation Layer for IEEE 1394. MIDI Manufacturers Association.
MMA (2000) RP-029: Bundling SMF and DLS data in an RMID file. MIDI Manufacturers Association.
MMA (2001) XMF Specification Version 1.0. MIDI Manufacturers Association.
MMA (2002) The Complete MIDI 1.0 Detailed Specification. MIDI Manufacturers Association.
MMA (2002) Scalable polyphony MIDI specification and device profiles. MIDI Manufacturers Association.
Scheirer, D. and Vercoe, B. (1999) SAOL: the MPEG 4 Structured Audio Orchestra Language. Computer

Music Journal, 23, 2, pp. 31–51.
Selfridge-Field, E., Byrd, D. and Bainbridge, D. (1997) Beyond MIDI: The Handbook of Musical Codes. MIT

Press.
USB Implementers’ Forum (1996) USB Device Class Definition for MIDI Devices, version 1.0. Available

from www.usb.org.

Useful websites
MIDI Manufacturers Association: www.midi.org
Music XML: www.musicxml.org
Open Sound Contol: cnmat.cnmat.berkeley.edu/OpenSoundControl/

MIDI and synthetic audio control

131

132

5 Hardware and systems
issues

This chapter is concerned with explaining the audio storage media, sound cards and interfaces
commonly encountered on computers. It also considers signal processing options and hard-
ware abstraction layers for communication with sound cards.

5.1 Storage media
The purpose of this section is to describe the principles, limitations and applications of storage
media used for audio in computer workstations. The media described are not exclusive to the
field of audio and are widely encountered in general-purpose storage applications. In most
cases the same media that are used for general purpose applications in computers can be
used for storing audio and video without modification, although certain specifications must
be adequate if operation is to be satisfactory. There will continue to be a decline in the use of
dedicated audio recording formats in favour of general purpose mass storage media, if only
because of the simple economics of the matter.

Improvements in the design of storage media will continue and prices will continue to fall.
The devices described here are likely to remain popular for some years to come and in any
case the fundamental principles involved are unlikely to change radically. Examples of speci-
fications should only be taken as representative of today’s equipment.

5.1.1 Storage requirements of digital audio and video

There are two main roles for storage media in audio workstations. One is the primary role of
real-time recording and replay and the other is the secondary role of backup storage. The
requirements differ somewhat, although it is possible to use similar media for both purposes.
Real-time recording and replay needs storage devices capable of sustaining data transfer for
a number of audio channels, so that the channels can record or replay for long periods

without breaks, be edited and post processed, with quick access to stored files. This was
discussed in greater detail in Chapter 3. Backup can take place in non-real time, does not
need such fast access to files and does not need to support editing and other post processing
operations. Backup may also need a large capacity and it would be advantageous if it were
cheaper than primary storage, and be based on removable media. It follows that certain
devices are suitable for backup that may not be suitable for primary storage.

Storage systems may use removable media but many have fixed media. It is advantageous to
have removable media for audio and video purposes because it allows different jobs to be
kept on different media and exchanged at will, but unfortunately the highest performance is
normally only obtainable from storage systems with fixed media. Systems involving a small
number of audio channels or using data reduction may be able to take advantage of remov-
able media as primary storage, but in most current systems removable media are normally
used as secondary storage.

It perhaps goes without saying that any storage system used for audio and video should be
as reliable and robust as possible. It is also likely to need to be a fairly ‘heavy duty’ system
because the demands of audio and video recording are quite heavy and will require the stor-
age device to be in an almost constant state of activity. This differs from the more gentle task
of, say, word processing, where the storage device is idling for long periods.

5.1.2 Disk drives in general

Disk drives are probably the most common form of mass storage. They have the advantage
of being random-access systems – in other words any data can be accessed at random and
with only a short delay. This may be contrasted with tape drives that only allow linear access –
by winding through the tape until the desired data is reached, resulting in a considerable
delay. Disk drives come in all shapes and sizes from the commonly encountered floppy disk
at the bottom end to high performance hard drives at the top end. The means by which data
are stored is usually either magnetic or optical, but some use a combination of the two, as
described below. There exist both removable and fixed media disk drives, but in almost all
cases the fixed media drives have a higher performance than removable media drives. This
is because the design tolerances can be made much finer when the drive does not have to
cope with removable media, allowing higher data storage densities to be achieved. Although
removable disk media can appear to be expensive compared with tape media, the cost must
be weighed against the benefits of random access and the possibility that some removable
disks can be used for primary storage whereas a tape can not. Removable media should be
distinguished from removable drives, the latter requiring that the complete drive is removed
from the system as opposed to the storage surface(s) only.

The general structure of a disk drive is shown in Figure 5.1. It consists of a motor connected
to a drive mechanism that causes one or more disk surfaces to rotate at anything from a few
hundred to many thousands of revolutions per minute. This rotation may either remain
constant or may stop and start, and it may either be at a constant rate or a variable rate,
depending on the drive. One or more heads are mounted on a positioning mechanism that
can move the head across the surface of the disk to access particular points, under the control
of hardware and software called a disk controller. The heads read data from and write data

Hardware and systems issues

133

to the disk surface by whatever means the drive employs. Certain disk types are read-only,
some are write-once-read-many (WORM) and some are fully erasable and rewritable.

The disk surface is normally divided up into tracks and sectors, not physically but by means
of ‘soft’ formatting (see figure 5.2). Formatting writes logical markers to indicate block
boundaries, amongst other processes. On most hard disks the tracks are arranged as a series
of concentric rings, but with some optical disks there is a continuous spiral track.

Desktop Audio Technology

134

Read/write head

Common spindle Disk surface

Head positioner

Figure 5.1 The general mechanical structure of a disk drive

Sector

Figure 5.2 Disk formatting divides the storage area into tracks and sectors

5.1.3 Disk drive specifications

Disk drive performance is characterised by specifications that are often quoted in promotional
literature. These are the subject of a certain amount of misunderstanding and manufacturers
often play games with these figures to make their drives seem better than they are. As with
all specifications it is important to compare like with like, and to know how a certain para-
meter has been measured. The most important parameters are:

● access time;
● instantaneous transfer rate;
● sustained transfer rate; and
● storage capacity (formatted).

These are not the only factors that affect the performance or desirability of a drive, but they
are a ready means of comparing two apparently similar drives.

Access time, normally quoted in milliseconds, is the time taken for a block of data to be
accessed. It may be specified in a number of ways, since clearly the actual access time
depends on where the head is when a block is requested. Figure 5.3 shows that true access
time is made up of seek latency and rotational latency. The seek latency is dependent on the
speed of the positioner and the rotational latency is dependent on how fast the disk rotates.
Access time may often be just seek latency and may be quoted as ‘track-to-track’, which is the
fastest, ‘average’, which is a reliable guide to general performance, or ‘one-third full sweep’,
which is the time taken for the head to traverse one third of the active disk radius.

Instantaneous transfer rate is the fastest speed at which data can be read from the disk
surface once the head has arrived at its correct location. Normally quoted in megabits per
second, it gives a guide to the peak performance of the drive.

Hardware and systems issues

135

Direction of rotation

Rotational latency

Required block

Seek latency
Head positioner

Figure 5.3 The delays involved in accessing a block of data stored on a disk

Sustained transfer rate is a more useful guide to real performance, though, because it gives
a guide to the long-term data rate that might be expected from the disk, sustained over many
blocks. This parameter, though, is affected considerably in real multimedia systems by the
fragmentation of the drive and by the number of channels it has to service.

Formatted storage capacity is the number of megabytes of capacity available for user data
after the disk has been formatted. It is often considerably smaller than the unformatted
capacity of the disk (which is not a very useful figure to know). The formatted capacity is
available for the storage of audio data if necessary, with no necessity to add an overhead for
error correction, as described in Chapter 2.

5.1.4 Magnetic hard disk drives

Magnetic hard disks provide space for the storage of a large amount of data in a relatively
small space, are reliable, fast and reasonably economical. Performance and capacity are
normally in excess of typical multichannel audio requirements these days. One can store
many hours of monophonic audio on a hard disk and they are capable of handling a large
number of simultaneous channels of recording and replay. A quiet drive is important
for audio operations, especially if the drive is to be installed in the same room as the
operator.

A typical drive is a sealed unit and the physical disks inside it cannot be removed to make
way for others. The recording process is magnetic, whereby data is stored in the form of flux
reversals in the surface layer of the disks. The drive is a combination of physical disk surfaces
on which data is stored, electromagnetic heads that read and write data, a positioner to move
the heads to the right place, a motor that rotates the surfaces, a servo mechanism that con-
trols the moving parts, and a controller that looks after the data flow to and from the surfaces
and interfaces to the rest of the computer system. A cut-away diagram of an older drive is
shown in Figure 5.4.

The drive is sealed (except sometimes for a small pressure-relief vent) in order to prevent the
surfaces of the disks from becoming contaminated. The lack of contamination and the fact
that the disks will never be removed means that fine tolerances can be used in manufacture,
allowing a larger amount of data to be stored in a smaller space than is possible with remov-
able magnetic disks. It also results in a very low error rate. One or more disks normally reside
inside a drive and it is common for both sides of each disk to be used. These disks are rigid,
not floppy, and all rotate on a common spindle. Each surface has its own read/write heads,
which can be moved across the disk surface to access data stored in different places. The head
positioner moves all the heads at the same time, rather than independently. The heads do not
touch the surface of the disks during operation, they fly just a small distance above the
surface, lifted by the aerodynamic effect of the air which is dragged around above the disk
surface due to friction. A small area of the disk surface is set aside for the heads to land on
when the power is turned off and this area does not contain data.

Data are stored in tracks divided up into sectors. Each sector is separated by a small gap and
preceded by an address mark that uniquely identifies the sector’s location and a preamble to
synchronise the reading of data. The term cylinder relates to all the tracks that reside physi-
cally in line with each other in the vertical plane through the different surfaces (see Figure 5.5).

Desktop Audio Technology

136

Hardware and systems issues

137

Figure 5.4 Cut-away drawing of a typical Winchester drive. (Courtesy of MacUser)

Track

Cylinder

Figure 5.5 Winchester drive tracks on different surfaces form concentric cylinders

A sector typically contains 512 bytes. The disk is of the ‘write-many-times’ format which
means that old data may be overwritten many times in order to reuse the storage space.
Although the disk surfaces of such a drive are not removable, drives exist that may be inter-
changed in their entirety. Such drives are known as removable drives (not removable disks)

and they are usually mounted in a cartridge with a handle so that they can be ‘unplugged’
from a docking frame of some sort. Figure 5.6 shows a photograph of such a system. This is a
useful feature, but it is relatively expensive to interchange complete drives in this way. It may
be considered worth the advantage of being able to take a complete session’s primary storage
from one system and insert it into another.

5.1.5 RAID arrays

Hard disk drives can be combined in various ways to improve either data integrity or data
throughput. RAID stands for redundant array of inexpensive disks, and is a means of link-
ing ordinary disk drives under one controller so that they form an array of data storage
space, as shown in Figure 5.7. A RAID array can be treated as a single volume by a host com-
puter. There are a number of levels of RAID array, each of which is designed for a slightly
different purpose, as summarised in Table 5.1.

One of the main reasons for using a RAID array would be to improve the reliability of data
storage. At certain RAID levels the data is spread across all of the drives involved, with a final
drive used to store error protection information (the check drive). The aim is to prevent you
losing your data if one of the drives fails, because it can be reconstructed from the remaining
data. ‘Mirroring’ is also an option that allows the data on one disk to be perfectly duplicated
on another, again for improving data security. By spreading data across drives it is also
possible to speed up read and write operations.

5.1.6 Removable magnetic media

Floppy disks are unsuitable for AV applications because of just about every aspect of their
specification. They are too small and too slow. Higher capacity removable magnetic media
have existed for some time, though, with speeds approaching that of slower hard disks.
These include things like Iomega’s Zip disks that are constructed rather like large floppy
disks, in a rigid cartridge. These have tended to offer capacities up to 250 Mbytes, which
makes them only marginally useful for AV applications requiring short storage times.

Advances in the magnetic recording field have resulted in removable media offering much
higher capacities and transfer speeds. Because removable media are not permanently sealed
the reliability and performance may be less satisfactory than sealed hard disks, but there is the
advantage of removability. One example, the Iomega Jaz drive, has performance suitable for
primary storage in audio systems. This is a form of removable cartridge that houses hard disk

Desktop Audio Technology

138

Figure 5.6 A typical removable disk drive system allowing multiple drives to be inserted or removed from the
chassis at will (Courtesy of Glyph Technologies, Inc.)

Hardware and systems issues

139

13

56789

24

Data

Disk 1

Disk 2

12

34567

12

Data

Disk 1

Disk 2

1a2a

1b2b

34567Data

Disk 1

Disk 2

Disk n

Parity disk

Data blocks

P

1n2n

1P2P

Split data
bytes

(a)
_

(b)

(c)

Figure 5.7 Some examples of RAID array configurations. (a) Level 0. (b) Level 1. (c) Level 3

platters inside a dustproof case. Syquest has also manufactured a range of high capacity
removable storage systems (but they were bought out by Iomega), and Castlewood Systems
has introduced a range of so-called ‘ORB’ drives based on magneto-resistive head technology
that allows greater capacity per area of the disk surface.

5.1.7 Optical disks in general

There are a number of families of optical disk drive that have differing operational and
technical characteristics, although they share the universal benefit of removable media. They
are all written and read using a laser, which is a highly focused beam of coherent light,
although the method by which the data is actually stored varies from type to type. Optical
disks are sometimes enclosed in a plastic cartridge that protects the disk from damage, dust
and fingerprints, and they have the advantage that the pickup never touches the disk surface
making them immune from the ‘head crashes’ that can affect magnetic hard disks.

Compatibility between different optical disks and drives is something of a minefield because
the method of formatting and the read/write mechanism may differ. The most obvious differ-
ences lie in the erasable or non-erasable nature of the disks and the method by which data is
written to and read from the disk, but there are also physical sizes and the presence or lack of
a cartridge to consider. Drives tend to split into two distinct families from a compatibility point
of view: those that handle CD/DVD formats and those that handle magneto-optical (M-O)
and other cartridge-type ISO standard disk formats. The latter may be considered more suit-
able for ‘professional purposes’ whereas the former are often encountered in consumer
equipment.

WORM disks (for example the cartridges that were used quite widely for archiving in the late
1980s and 90s) may only be written once by the user, after which the recording is permanent

Desktop Audio Technology

140

Table 5.1 RAID levels

RAID level Features

0 Data blocks split alternately between a pair of disks, but no
redundancy so actually less reliable than a single disk. Transfer rate is
higher than a single disk. Can improve access times by intelligent
controller positioning of heads so that next block is ready more quickly

1 Offers disk mirroring. Data from one disk is automatically duplicated
on another. A form of real-time backup

2 Uses bit interleaving to spread the bits of each data word across the
disks, so that, say, eight disks each hold one bit of each word, with
additional disks carrying error protection data. Non-synchronous head
positioning. Slow to read data, and designed for mainframe computers

3 Similar to level 2, but synchronises heads on all drives, and ensures
that only one drive is used for error protection data. Allows high
speed data transfer, because of multiple disks in parallel. Cannot
perform simultaneous read and write operations

4 Writes whole blocks sequentially to each drive in turn, using one
dedicated error protection drive. Allows multiple read operations but
only single write operations

5 As level 4 but splits error protection between drives, avoiding the
need for a dedicated check drive. Allows multiple simultaneous reads
and writes

6 As level 5 but incorporates RAM caches for higher performance

(a CD-R is therefore a type of WORM disk). Other types of optical disks can be written
numerous times, either requiring pre-erasure or using direct overwrite methods (where new
data is simply written on top of old, erasing it in the process). The read/write process of most
current rewritable disks is typically ‘phase change’ or ‘magneto-optical’. The CD-RW is an
example of a rewritable disk that now uses direct overwrite principles.

The speed of some optical drives approaches that of a slow hard disk, which makes it possible
to use them as an alternative form of primary storage, capable of servicing a number of audio
channels. One of the major hurdles which had to be overcome in the design of such optical
drives was that of making the access time suitably fast, since an optical pickup head was
much more massive than the head positioner in a magnetic drive (it weighed around 100 g
as opposed to less than 10 g). Techniques are being developed to rectify this situation, since
it is the primary limiting factor in the onward advance of optical storage.

5.1.8 CAV and CLV modes in optical storage

CAV (constant angular velocity) and CLV (constant linear velocity) recording are two modes
of rotation used in optical disk drives. In CLV recording the rotational speed of the disk
changes depending on the position of the pickup, in order to keep a constant length of track
passing under the head per second. In CAV recording the rotational speed of the disk
remains constant. CAV disks normally have sectors of a fixed angle of arc, holding a fixed
amount of data, so the data is more densely packed in sectors towards the centre of the disk
(see Figure 5.8). CLV recording allows more data sectors to be stored towards the edges of the
disk than at the centre, so may allow more efficient use to be made of the space available, but
CLV requires servo operation to change the disk speed when the pickup head is moved,
making them slower to access data.

Some drives use a mode known as zoned-CAV (Z-CAV) to pack more data into the outer
tracks of a disk. The disk rotates at one of a number of fixed speeds depending on which
‘zone’ the pickup is in. This is really a halfway house between CAV and CLV recording and
does not compromise access time so much. Compact discs use CLV recording, for example,
but most optical disk cartridge drives (e.g. M-O) use a form of CAV or Z-CAV recording.
Recent drives may use CAV replay, even for CLV disks, in order to enable constant spin
speeds and faster access time. Z-CLV is a variant of CLV recording used on DVD-RAM disks.

5.1.9 The magneto-optical (M-O) drive

M-O drives use optical disks that can be erased and re-recorded. In order to write data, the
laser is used at a higher power to that used in the reading process, to heat spots in the record-
ing layer that is made up of rare earth elements (typically gadolinium and terbium). In older
drives a biasing magnet is used to create a weak magnetic field in the vicinity of the heated spot
on the disk, whose recording layer only takes on this prevailing magnetic polarisation when it
is hot. Under normal conditions the recording layer cannot be magnetised (see Figure 5.9).
When the spot cools it retains this magnetisation. So-called LIMDOW (light intensity modu-
lated direct overwrite) drives have enabled better recording performance from M-O technol-
ogy by doing away with the external biasing magnet. Instead the disk contains two magnetic
layers with opposite polarity, close to the recording layer. The magnetic polarity taken on by
the recording layer then depends on the laser intensity during recording.

Hardware and systems issues

141

Although the data is recorded by a combination of optical heating and magnetisation, it is
read by an entirely optical means which relies upon the fact that laser light reflected from the
disk will be polarised depending on the magnetic state of the recording layer. This is known
as the Kerr effect and the change in optical polarisation angle may be as small as a few degrees
depending on the material concerned. The reflected light passes through a polarisation

Desktop Audio Technology

142

(a)

(b)

Figure 5.8 (a) Sectors on a CAV disk are of equal angle of arc. (b) On a Z-CAV disk the sector angle is not
constant and more sectors are recorded at the outer edges of the disk than at the centre

Laser beam

Focusing lens

Magnetic head

Protective layer
Recording layer
Reflective layer

Figure 5.9 The magneto-optical disk is recorded by exposing small areas of the recording layer to high-power
laser light, whereupon they take on the magnetic polarity provided by the polarising magnet. On replay the
magnetic polarisation affects the polarisation of reflected laser light

analyser, resulting in changes in intensity of the light falling on a photodetector. The
M-O disk is normally pre-grooved and sectored to enable the drive to track the medium
during recording.

An ISO standard was established for M-O disks, to which most of the major manufacturers
adhere. This allows for two different sector sizes (512 bytes and 1024 bytes), giving 297 and
325 Mbytes per side of storage capacity respectively on a 5.25 inch disk (594 or 650 Mbytes in
total) using CAV recording. There are also higher density versions offering up to around
9 Gbytes capacity, in approximate multiples of two times the basic capacity stated above.

5.1.10 Phase-change optical recording

In phase-change recording data is written by a high-powered laser, changing recorded spots
from a non-crystalline (amorphous) state to a crystalline state. In the crystalline state the
reflectivity is increased considerably over that of the amorphous state. Data are read by a
lower-powered laser that detects changes in reflectivity. By careful selection of the recording
material and laser beam control the process may be made reversible (so data may be over-
written). The only apparent drawback is the number of re-write cycles allowed (cycles of
erasure and re-recording), which may be in the order of ten times lower than that of the
M-O disk. The CD-RW is based on phase-change principles.

5.1.11 Compact discs and drives

The CD is not immediately suitable for real-time audio editing and production, partly
because of its relatively slow access time compared with hard disks, but can be seen to have
considerable value for the storage and transfer of sound material that does not require real-
time editing. Broadcasters use them for sound effects libraries and studios and mastering
facilities use them for providing customers and record companies with ‘acetates’ or test
pressings of a new recording. They have also become quite popular as a means of transfer-
ring finished masters to a CD pressing plant in the form of the PMCD (pre-master CD). They
are ideal as a means of ‘proofing’ CD-ROMs and other CD formats, and can be used as low-
cost backup storage for computer data.

Compact discs (CDs) are familiar to most people as a consumer read-only optical disk for
audio (CD-DA) or data (CD-ROM) storage. Standard audio CDs (CD-DA) conform to the Red
Book standard published by Philips. The CD-ROM standard (Yellow Book) divides the CD
into a structure with 2048 byte sectors, adds an extra layer of error protection, and makes it
useful for general purpose data storage including the distribution of sound and video in the
form of computer data files. It is possible to find disks with mixed modes, containing sections
in CD-ROM format and sections in CD-Audio format. The CD Plus is one such example.

CD-R is the recordable CD, and may be used for recording CD-Audio format or other
CD formats using a suitable drive and software. The Orange Book, Part 2, contains informa-
tion on the additional features of CD-R, such as the area in the centre of the disk where data
specific to CD-R recordings is stored. Audio CDs recorded to the Orange Book standard can
be ‘fixed’ to give them a standard Red Book table of contents (TOC), allowing them to
be replayed on any conventional CD player. Once fixed into this form, the CD-R may not

Hardware and systems issues

143

subsequently be added to or changed, but prior to this there is a certain amount of flexibility,
as discussed below. CD-RW disks are erasable and work on phase-change principles, requir-
ing a drive compatible with this technology, being described in the Orange Book, Part 3.

The degree of reflectivity of CD-RW disks is much lower than that of typical CD-R and
CD-ROM. This means that some early drives and players may have difficulties reading them.
However the ‘multi-read’ specification developed by the OSTA (Optical Storage Technology
Association) describes a drive that should read all types of CD, so recent drives should have
no difficulties here.

Figure 5.10 shows the cross-section through a typical blank CD-R disk. The disk consists of a
pre-formed ‘groove’ in the so-called recording layer. The recording layer consists of a green
semi-transparent material, behind which is a gold reflective layer. During recording, the laser
heats the recording layer to around 250 	C, a process which causes it to melt, forming a pit
similar to that found on a conventional CD. On replay, the laser pickup, operated at a lower
power than for recording, experiences a lower level of reflected light in the presence of a pit
than it does in the absence of a pit, in exactly the same manner as for a prerecorded CD.

An Orange Book CD does not have to be recorded all at once. It can be removed from the
machine and added to at a later date, appending the new material to the end of the last record-
ing. In order to make this possible the disc contains an additional recording area inside the
starting point of a conventional CD (normal CDs begin with a TOC in the centre of the disk
and play from the inside out), divided into two parts (see Figure 5.11). The Program

Desktop Audio Technology

144

Protective layer

Reflective layer

Recording layer

Plastic substratePreformed tracks

Figure 5.10 Cross section through a CD-R WORM disk

PCA

PMA

Lead-in

Recording areaHole

Area for
clamping

22.35 mm

23 mm

25 mm

Figure 5.11 Division of recording area on the CD-R, showing space for program calibration area (PCA) and
temporary program memory area (PMA)

Calibration Area (PCA) is used for optimising laser power by making a number of short test
recordings when a new disk is first inserted. On subsequent occasions this calibration is not
required since a message is stored on the disk to indicate the appropriate laser power. The
Program Memory Area (PMA) is used to store a temporary TOC while the disk is yet ‘unfixed’
and this TOC is updated every time a new track is recorded. Here is also stored ‘skip’ informa-
tion, which allows certain tracks to be skipped on replay if they have been messed up
(although this will only work when the disk is replayed on a CD player that recognises
skip IDs).

The lead-in area of an Orange Book CD, where a normal CD would start to read its TOC, is
left blank until such time as the user decides that the disc is completed. On ‘fixing’ the disk
the machine records a Red Book TOC, after which no further recording is allowed. The early
blanks for these machines ran to 63 minutes, but 74 minute disks became available, running
at the slightly slower linear velocity of 1.2 m s�1. The standard capacity for a CD-R is 650
Mbyte (74 minutes), although 700 Mbyte (80 minute) disks are now available. ‘Audio-only’
disks have a royalty attached to them that offsets the supposed losses of the record industry
owing to consumer piracy. Some consumer CD recorders may refuse to record audio on disks
other than these.

A number of recording modes are possible on most Orange Book drives. ‘Disk-at-once’ is the
most basic, in which all of the information is written at one time together with a Red Book TOC;
‘Track-at-once’ allows partial recording of the disk, with the option to record more at a later
time, but without the option to read any of the data back until the disk TOC is fixed;
‘Multisession’ allows partial recording of the disk to a total of 99 sessions, with the option to
read back the recorded data before the disk has been filled (provided that the reading drive
is multisession capable and can read the temporary Orange Book TOC). ‘Packet writing’ or
‘incremental writing’ allows very small chunks of data to be recorded, even within a track.
Only OSTA (Optical Storage Technology Association)-endorsed ‘Multi-Read’ CD drives can
replay packet-written disks.

5.1.12 DVD

DVD is the natural successor to CD, being a higher-density optical disc format aimed at the
consumer market, having the same diameter as CD and many similar physical features. It
uses a different laser wavelength to CD (635–650 nm as opposed to 780 nm) so multi-standard
drives need to be able to accommodate both. Data storage capacity depends on the number
of sides and layers to the disk, but ranges from 4.7 Gbytes (single-layer, single-sided) up to
about 18 Gbytes (double-layer, double-sided). The data transfer rate at ‘one times’ speed is
just over 11 Mbit s�1.

DVD-Video is the format originally defined for consumer distribution of movies with
surround sound, typically incorporating MPEG-2 video encoding and Dolby Digital surround
sound encoding. It also allows for up to eight channels of 96 kHz linear PCM audio, at up to
24-bit resolution. DVD-Audio is intended for very high quality multichannel audio reproduc-
tion and allows for linear PCM sampling rates up to 192 kHz, with numerous configurations of
audio channels for different surround modes, and optional lossless data reduction (MLP).
These formats will not be described in detail here as the intention is primarily to consider

Hardware and systems issues

145

DVD as a mass storage medium for workstations, rather than as a consumer release
format.

DVD can be used as a general-purpose data storage medium. Like CD, there are numerous
different variants on the recordable DVD, partly owing to competition between the numer-
ous different ‘factions’ in the DVD consortium. These include DVD-R, DVD-RAM, DVD-RW
and DVD�RW, all of which are based on similar principles but have slightly different
features, leading to a compatibility minefield that is only gradually being addressed. It is not
proposed to go into this topic in great detail here, but a brief overview is given and a
summary of common formats is shown in Table 5.2.

The ‘DVD Multi’ guidelines produced by the DVD Forum are an attempt to foster greater
compatibility between DVD drives and disks, but this does not really solve the problem of
the formats that are currently outside the DVD Forum.

Writeable DVDs are a useful option for backup of large projects, particularly DVD-RAM
because of its many-times overwriting capacity and its hard disk-like behaviour. It is possible

Desktop Audio Technology

146

Table 5.2 Recordable DVD formats

Recordable DVD type Description

DVD-R (A and G) DVD equivalent of CD-R. One-time recordable in sequential
manner, replayable on virtually any DVD-ROM drive.
Supports ‘incremental writing’ or ‘disk at once’ recording.
Capacity either 3.95 (early disks) or 4.7 Gbytes per side.
‘Authoring’ (A) version (recording laser wavelength �
635 nm) can be used for pre-mastering DVDs for pressing,
including DDP data for disk mastering (see Chapter 6).
‘General’ (G) version (recording laser wavelength � 650 nm)
intended for consumer use, having various ‘content
protection’ features that prevent encrypted commercial
releases from being cloned

DVD-RAM Sectored format, rather more like a hard disk in data structure
when compared with DVD-R. Uses phase-change (PD-type)
principles allowing direct over-write. Version 2 disks allow
4.7 Gbyte per side (reduced to about 4.2 Gbytes after
formatting). Type 1 cartridges are sealed and Type 2 allow
the disc to be removed. Double-sided discs only come in
sealed cartridges. Can be re-written about 100 000 times.
The recent Type 3 is a bare disc that can be placed in an open
cartridge for recording

DVD-RW Pioneer development, similar to CD-RW in structure,
involving sequential writing. Does not involve a cartridge.
Can be re-written about 1000 times. 4.7 Gbytes per side

DVD�RW Non-DVD-Forum alternative to DVD-RAM (and not
compatible), allowing direct overwrite. No cartridge. Data
can be written in either CLV (for video recording) or CAV
(for random access storage) modes. There is also a
write-once version known as DVD�R

that a format like DVD-RAM could be used as primary storage in a multitrack recording/
editing system, as it has sufficient performance for a limited number of channels and it has
the great advantage of being removable. However it is likely that hard disks will retain the
performance edge for the foreseeable future.

5.1.13 Optical disc filing structures

There is a standard filing structure for CD-ROM known as ISO 9660 or High Sierra, which
was (and still is) used when wanting to ensure that disks can be read across a wide range of
platforms, although CD-ROMs can also be formatted in non-ISO modes for use on propri-
etary platforms. ISO 9660 format handles basic eight-character filenames and three-character
extensions, but there are extensions such as ‘Joliet’ to allow for longer filenames.

The universal disc format (UDF) was developed as a means of simplifying the compatibility
problems between optical discs such as CD and DVD, especially when used in ‘packet-writ-
ing’ modes. It is an IEC standard: IEC 13346. ISO 9660 compatibility is included in UDF.
A form of UDF (version 1.02) was originally devised for DVD formats, version 1.5 being
introduced later to encompass CD formats. It maintains ‘virtual allocation tables’ (VATs) on
the disc that map physical data locations to relevant file packets, and these are updated to
include all previous VAT data each time new packets are written.

5.1.14 Tape storage media

There are a number of types of storage media in common use for tape backup storage with AV
workstations. All are cassette or cartridge formats. These include DDS, Exabyte, Mammoth,
AIT and DLT. Tapes are not usually formatted in the same way as disks. Tapes are often used
as basic ‘data streamers’ where data is stored in a very simple sequential fashion, possibly
even with the block size varying in different parts of the tape. It may be that no directory is
stored on the tape itself, this being kept in a disk file on the host computer. An ANSI standard
exists which defines basic rules for information interchange on magnetic tapes and this is
often used on media such as Exabyte to determine the method of labelling tapes and filing
information. Because tapes are not usually ‘mountable volumes’ in the same way as disks, it
is rare to be able to ‘see’ them on the desktops of GUI-based computers, requiring special soft-
ware with appropriate drivers for the tape system in question to read and write information.

DDS is the DAT Data Storage format, and rather like the CD-ROM is the extension of a
format originally intended purely for audio to general purpose data storage applications. The
DAT format uses 4 mm tape and the tape is read and written using heads mounted in a drum
which scans the tape in a helical fashion. On top of the audio DAT formatting is added for-
matting and error correction information so that the tape is then useful as a block-structured
medium with low enough error rates for data purposes, and a directory area at the start of
the tape.

DDS drives normally have four heads on the drum so that the data can be verified immediately
after it is written – important for checking data reliability. It is recommended that one uses spe-
cial DDS tapes for data purposes, which are said to be manufactured to the high specifications
needed to ensure reliability, but some users have been known to use audio DAT tapes with

Hardware and systems issues

147

varying degrees of success. It is sometimes necessary to alter a switch inside the drive for this
purpose, so that it accepts ordinary tapes. DDS-1 drives store up to 2 Gbytes of data on a tape
and some drives incorporate built-in data compression which can boost the storage capacity of
such drives up to a maximum of 8 Gbytes. This is lossless compression allowing the data to be
recovered in precisely its original form. The transfer rate to and from a DDS-1 drive is moder-
ate (of the order of 180 kbyte s�1), and the access time is quite slow compared with a disk drive
(of the order of seconds). DDS-2 drives offer higher storage capacity and higher transfer rates.
Using a longer tape, the DDS-2 drive can store up to 4 Gbytes of data in uncompressed form
and up to 16 Gbytes compressed. The transfer rate is approximately 500 kbyte s�1.

Exabyte tapes are based on the original consumer Video-8 format, adapted for data storage.
The tapes are 8 mm wide, as opposed to the 4 mm of DDS, and the cartridges are slightly
larger. Drives are typically more expensive than DDS drives. Storage capacities and transfer
rates available from Exabyte drives are considerably greater than those available from DAT.
One current example holds up to 5 Gbytes per tape and transfers data at a rate of around
500 kbyte s�1. Maximum available capacity is currently 7 Gbytes uncompressed. Mammoth is
a relatively recent tape storage technology based also on 8 mm tape. It allows considerably
greater capacity than Exabyte (around 60 Gbytes) and increased data transfer rates with a
simpler mechanism that is said to reduce tape wear.

The QIC (quarter-inch cartridge) is quite a well-established tape backup medium, used
widely in professional computing and mainframe systems. It uses quarter-inch tape housed
in a largish cartridge, and has very low error rates and high longevity. Recording is via
stationary heads with multiple narrow tracks. Capacities and transfer rates are quite high,
with drives storing over 10 Gbytes planned.

Digital Linear Tape (DLT) drives use a large number of linear tracks (128) across the width of
a half-inch tape. It is often used for DVD masters, offering an uncompressed capacity of up
to 35 Gbytes. Using a SCSI-2 interface, these drives offer transfer rates of up to 20 Mbyte s�1

with very low error rate, which makes them ideal for workstation backup purposes. Super
DLT is a more recent alternative to DLT, offering yet higher capacity and transfer rate.

An alternative to these for high-capacity storage is AIT (Advanced Intelligent Tape), that also
offers capacities into the hundreds of gigabytes and high transfer rates, as well as data
compression. An interesting feature of AIT is the incorporation of a memory chip into the
cassette, to store data such as a search map that enables information to be located without
rewinding the tape to the directory at the start. The LTO Ultrium series of drives and
cartridges, developed by HP, IBM and Seagate, has similarly high capacity and uses a 4KB
cartridge memory chip that can communicate with the drive using a radio frequency trans-
mission while the tape is not even inserted in the drive. This cartridge memory contains a file
log and other user information.

5.2 Peripheral interfaces
A variety of different physical interfaces can be used for interconnecting storage devices and
host workstations. Some are internal buses only designed to operate over limited lengths of
cable and some are external interfaces that can be connected over several metres. The interfaces

Desktop Audio Technology

148

can be broadly divided into serial and parallel types, the serial types tending to be used for
external connections owing to their size and ease of use. The disk interface can be slower than
the drive attached to it in some cases, making it into a bottleneck in some applications. There
is no point having a super fast disk drive if the interface cannot handle data at that rate.

5.2.1 SCSI

For many years the most commonly used interface for connecting mass storage media to host
computers was SCSI (the Small Computer Systems Interface), pronounced ‘scuzzy’. It is still
used quite widely for very high performance applications but EIDE interfaces and drives are
now capable of very good performance that can be adequate for many purposes.

SCSI is a high-speed parallel interface found on many computer systems, originally allowing
up to seven peripheral devices to be connected to a host on a single bus. Such peripheral
devices include all forms of mass storage media, CD drives, scanners, printers and network
ports. It is specified in ANSI X3.131 (1986). SCSI-2 can be both faster and wider than SCSI-1,
allowing for higher speed data transfer (SCSI-1 interfaces were limited to speeds of around
4–5 Mbyte s�1, and were only 8 bits wide, whereas SCSI-2 can run at over 10 Mbyte s�1 and
may be 16 or even 32 bits wide). SCSI has grown through a number of improvements and revi-
sions, the latest being Ultra160 SCSI, capable of addressing 16 devices at a maximum data rate
of 160 Mbyte s�1.

SCSI devices are connected in a ‘daisy-chain’ fashion, as shown in Figure 5.12. SCSI-1 devices
have two 50-pin connectors for this purpose, although some computers like the Macintosh
have a non-standard 25-pin D-type connector. SCSI-2 usually uses a higher density connector.
SCSI devices all have a means of setting their address, either with a DIP switch, a rotary or push
button switch, and this determines the address on which the device will respond. The highest
numbered address has the highest priority on the bus and will be dealt with first, which helps
when two devices conflict in attempting to access the bus. Normally the host computer has the
highest address (ID7), leaving ID0 through ID6 for peripherals. A computer’s internal hard disk
often uses ID0. It is important to ensure that all devices on the bus have different addresses,
otherwise problems arise, although it is not necessary to assign SCSI IDs in sequence.

Hardware and systems issues

149

Host computer

SCSI storage devices

Chained SCSI busSCSI
bus

Figure 5.12 Interconnection of SCSI devices

The SCSI bus requires termination at both ends (one end is normally in the host computer or
card and is not modifiable). This termination is a collection of resistors connected to each of
the parallel lines that ensure the termination impedance of the bus is correct, in order that the
data is not distorted by reflections or attenuated. Unterminated SCSI buses occasionally
work, but it is not recommended. Termination can be either internal or external to the periph-
eral and it may be switchable or automatically sensed and controlled. Internal unswitchable
termination is not advisable because it forces one to use the terminated device at the end of
the SCSI chain (see Figure 5.13). It is particularly inconvenient if more than one SCSI device
is to be connected, because the termination has to be physically removed from those devices
in the middle of the chain (not always easy). External termination normally involves plug-
ging a termination block into the daisy-chain connector of the last device in the chain. These
can be easily purchased from computer stores. Automatic termination is useful because it
means that the user does not need to think about which devices are in which positions on the
bus – the device senses the impedance of the bus and terminates or not accordingly. Only the
devices at each end of the bus should be terminated, not any of those in between.

‘The shorter the better’ is the motto when it comes to choosing cables. Data rates are very high
on the SCSI bus and it is important to limit cable lengths to less than a metre where possible,
otherwise errors will arise. Poor quality cables are the root of many problems encountered
with SCSI buses and trouble-free operation depends on using high quality cables that are
double-screened.

The most common problems to arise involve (a) computers failing to ‘see’ certain peripherals;
(b) systems failing to boot up properly; (c) data errors resulting in erroneous file transfers;
(d) system crashes and ‘glitches’. The following hints form a first-level troubleshooting guide:

● Never connect or disconnect SCSI devices with power turned on.
● Check that all devices have different addresses.
● Check all cables and connectors for soundness.
● Try swapping cables around or changing cables.
● Try shorter cables.
● Check termination and change if necessary.
● Try putting devices in different physical positions in the chain.

Desktop Audio Technology

150

From host

External
terminator

SCSI bus

Unterminated devices

Figure 5.13 Termination of a SCSI chain, showing use of an external terminator on the last device in the chain

● Try changing the order of SCSI addresses.
● Try powering up SCSI devices in a different order.
● Try moving devices apart physically.
● Ensure that the correct device drivers are installed on the host computer.
● Run a SCSI diagnostic software tool which may point to the fault.

5.2.2 ATA/ IDE interface

The ATA and IDE family of interfaces has evolved through the years as the primary internal
interface for connecting disk drives to PC system buses. It is cheap and ubiquitous. Although
drives with such interfaces were not considered adequate for audio purposes in the past,
many people are now using them with the on-board audio processing of modern computers
as they are cheap and the performance is adequate for many needs. It is a development of
IBM’s Advanced Technology Attachment (ATA) interface and has gone through improve-
ments such as EIDE (Enhanced IDE) which improved performance and allowed four devices
to be attached instead of the two of basic IDE. IDE started off using direct cylinder and sector
addressing of disk drives but recent versions use logical addressing because of the disk size
limitations imposed by physical addressing. Recent flavours of this interface family include
Ultra ATA/66 and Ultra ATA/100 that use a 40-pin, 80-conductor connector and deliver data
rates up to either 66 or 100 Mbyte s�1. ATAPI (ATA Packet Interface) is a variant used for stor-
age media such as CD drives.

Serial ATA is a relatively recent development designed to enable disk drives to be interfaced
serially, thereby reducing the physical complexity of the interface. High data transfer rates
are planned, eventually up to 600 Mbyte s�1. It is intended primarily for internal connection
of disks within host workstations, rather than as an external interface like USB or Firewire.

5.2.3 PCMCIA

PCMCIA is a standard expansion port for notebook computers and other small-size
computer products. A number of storage media and other peripherals are available in PCMCIA
format, and these include flash memory cards, modem interfaces and super-small hard disk
drives. The standard is of greatest use in portable and mobile applications where limited
space is available for peripheral storage.

5.2.4 IEEE 1394 (Firewire) and USB

Firewire and USB are both serial interfaces for connecting external peripherals. They are
covered in Chapter 4 and Chapter 6 in relation to their use for MIDI and audio information
respectively, so they will not be described in detail here. It is sufficient to explain that they both
enable disk drives to be connected in a very simple manner, with high transfer rates (many
hundreds of megabits per second), although USB 1.0 devices are limited to 12 Mbit s�1. A key
feature of these interfaces is that they can be ‘hot plugged’ (in other words devices can be con-
nected and disconnected with the power on). The interfaces also supply basic power that
enables some simple devices to be powered from the host device. Interconnection cables can
usually be run up to between 5 and 10 metres, depending on the cable and the data rate.

Hardware and systems issues

151

5.3 Filing systems and volume partitions
So far only the physical structure and basic format of mass storage have been described. The
way in which this raw storage space is used is another issue. There are a number of ways of
organising the storage capacity of a disk drive which involve formatting it at a high level for
a particular filing system, depending on the computer platform or other host device and its
operating system. It is this that determines whether the files stored on a disk or tape will be
accessible by the host computer, once interfaced correctly. If physical media are to be
exchanged between systems, for example, then the filing system must be able to be handled
by the host computer’s operating system. Driver or extension software can often be obtained
to enable computers to read filing systems other than their own.

When a disk is formatted at a low level the sector headers are written and the bad blocks
mapped out. A map is kept of the locations of bad blocks so that they may be avoided in sub-
sequent storage operations. Low level formatting can take quite a long time as every block
has to be addressed. During a high level format the disk may be subdivided into a number
of ‘partitions’. Each of these partitions can behave as an entirely independent ‘volume’ of
information, as if it were a separate disk drive (see Figure 5.14). It may even be possible to
format each partition in a different way, such that a different filing system may be used for
each partition. Each volume then has a directory created, which is an area of storage set aside
to contain information about the contents of the disk. The directory indicates the locations of
the files, their sizes, and various other vital statistics.

A number of audio workstation manufacturers developed their own filing systems that were
optimised for speed and efficiency in real-time applications. In many cases this was the key

Desktop Audio Technology

152

Volume A Header info
(size, block size,
interleave ratio,

filing system, etc.)

Directory

Subdirectories

Files

Volume A Volume B Volume C

Disk store

Total available storage capacity

Ditto Ditto

Figure 5.14 A disk may be divided up into a number of different partitions, each acting as an independent
volume of information

to their success because it allowed them to obtain more simultaneous audio channels from a
given disk than would otherwise have been possible. Now that disk drives have become
cheap and fast, the need for special filing systems has become less important while compat-
ibility has become more important because of the need to interchange data between systems.
The most common general purpose filing systems in audio workstations are HFS
(Hierarchical Filing System) or HFS� (for Mac OS), FAT 32 (for Windows PCs) and NTFS (for
Windows NT and 2000). The Unix operating system is used on some multi-user systems and
high-powered workstations and also has its own filing system. These were not designed
principally with real-time requirements such as audio and video replay in mind but they
have the advantage that disks formatted for a widely used filing system will be more easily
interchangeable than those using proprietary systems.

5.4 Formatting, fragmentation and optimisation of media
The process of formatting a disk or tape erases all of the information in the volume. (It may
not actually do this, but it rewrites the directory and volume map information to make it
seem as if the disk is empty again.) Effectively the volume then becomes virgin territory
again and data can be written anywhere.

When an erasable volume like a hard disk has been used for some time there will be a lot of
files on the disk, and probably a lot of small spaces where old files have been erased. New
files must be stored in the available space and this may involve splitting them up over the
remaining smaller areas. This is known as disk fragmentation, and it seriously affects the
overall performance of the drive. The reason is clear to see from Figure 5.15. More head seeks
are required to access the blocks of a file than if they had been stored contiguously, and this
slows down the average transfer rate considerably. It may come to a point where the drive
is unable to supply data fast enough for the purpose.

There are only two solutions to this problem: one is to reformat the disk completely (which
may be difficult, if one is in the middle of a project), the other is to optimise or consolidate
the storage space. Various software utilities exist for this purpose, whose job is to consolidate
all the little areas of free space into fewer larger areas. They do this by juggling the blocks
of files between disk areas and temporary RAM – a process that often takes a number of
hours. Power failure during such an optimisation process can result in total corruption of
the drive, because the job is not completed and files may be only half moved, so it is advis-
able to back up the drive before doing this. It has been known for some such utilities to
make the files unusable by some audio editing packages, because the software may have
relied on certain files being in certain physical places, so it is wise to check first with the
manufacturer.

5.5 Audio processing and synthesis hardware
5.5.1 Introduction

A lot of audio processing now takes place within the workstation, usually relying either on the
host computer’s processing power (using the CPU to perform signal processing operations) or

Hardware and systems issues

153

on one or more DSP (digital signal processing) cards attached to the workstation’s expansion
bus. Professional systems usually use external A/D and D/A convertors, connected to a ‘core’
card attached to the computer’s expansion bus. This is because it is often difficult to obtain the
highest technical performance from convertors mounted on internal sounds cards, owing to the
relatively ‘noisy’ electrical environment inside most computers. Furthermore, the number of
channels required may not fit onto an internal card. As more and more audio work takes place
entirely in the digital domain, though, the need for analog convertors decreases. Digital inter-
faces (see Chapter 6) are also often provided on external ‘breakout boxes’, partly for conveni-
ence and partly because of physical size of the connectors. Compact connectors such as the
optical connector used for the ADAT 8-channel interface or the 2-channel SPDIF phono con-
nector are accommodated on some cards, but multiple AES/EBU connectors cannot be.

It is also becoming increasingly common for substantial audio processing power to exist on
integrated sound cards that contain digital interfaces and possibly A/D and D/A convertors.
These cards are typically used for consumer or semi-professional applications on desktop
computers, although many now have very impressive features and can be used for advanced
operations. Such cards are now available in ‘full duplex’ configurations that enable audio to
be received by the card from the outside world, processed and/or stored, then routed back to
an external device. Full duplex operation usually allows recording and replay simultaneously.

Sound cards and DSP cards are commonly connected to the workstation using the
PCI (peripheral component interface) expansion bus. Older ISA (PC) buses or NuBus (Mac)

Desktop Audio Technology

154

Block 2

Block 2

Block 1

Block 1

Pickup positioner

Pickup positioner

Block 3

Block 3
(b)

(a)

Figure 5.15 At (a) a file is stored in three contiguous blocks and these can be read sequentially without moving
the head. At (b) the file is fragmented and is distributed over three remote blocks, involving movement of the
head to read it. The latter read operation will take more time

slots did not have the same data throughput capabilities and performance was therefore
somewhat limited. PCI can be extended to an external expansion chassis that enables a larger
number of cards to be connected than allowed for within the host computer.

Sufficient processing power can now be installed for the workstation to become the audio
processing ‘heart’ of a larger studio system, as opposed to using an external mixing console
and effects units. The higher the sampling frequency, the more DSP operations will be
required per second, so it is worth bearing in mind that going up to, say, 96 kHz sampling
frequency for a project will require double the processing power and twice the storage space
of 48 kHz. The same is true of increasing the number of channels to which processing is
applied.

5.5.2 Audio processing latency

Latency is the delay incurred in executing audio operations between input and output of a
system. The lower the better is the rule, particularly when operating systems in ‘full duplex’
mode, because processed sound may be routed back to musicians (for foldback purposes) or
may be combined with undelayed sound at some point. The management of latency is a soft-
ware issue and some systems have sophisticated approaches to ensuring that all supposedly
synchronous audio reaches the output at the same time no matter what processing it has
encountered on the way.

Minimum latency achievable is both a hardware and a software issue. The poorest systems
can give rise to tens or even hundreds of milliseconds between input and output whereas the
best reduce this to a few milliseconds. Audio I/O that connects directly to an audio process-
ing card can help to reduce latency, otherwise the communication required between host and
various cards can add to the delay. Some real-time audio processing software also implements
special routines to minimise and manage critical delays and this is often what distinguishes
professional systems from cheaper ones. The audio driver software or ‘middleware’ that com-
municates between applications and sound cards influences latency considerably. One exam-
ple of such middleware intended for low latency audio signal routing in computers is
Steinberg’s ASIO (Audio Stream Input Output), discussed further in Section 5.9.

5.5.3 DSP cards

DSP cards can be added to widely used workstation packages such as Digidesign’s ProTools.
These so-called ‘DSP Farms’ or ‘Mix Farms’ are expansion cards that connect to the PCI bus
of the workstation and take on much of the ‘number crunching’ work involved in effects pro-
cessing and mixing. ‘Plug-in’ processing software is becoming an extremely popular and
cost-effective way of implementing effects processing within the workstation, and this is dis-
cussed further in Chapter 7. ProTools plug-ins usually rely either on DSP Farms or on host-
based processing (see Section 5.5.4) to handle this load.

Digidesign’s TDM (Time Division Multiplex) architecture is a useful example of the way in
which audio processing can be handled within the workstation. Here the processing tasks are
shared between DSP cards, each card being able to handle a certain number of operations per
second. If the user runs out of ‘horse power’ it is possible to add further DSP cards to share

Hardware and systems issues

155

the load. Audio is routed and mixed at 24-bit resolution, and a common audio bus links the
cards that are connected on a separate multiway ribbon cable.

5.5.4 Host-based audio processing

An alternative to using dedicated DSP cards is to use the now substantial processing capacity
of a typical desktop workstation. The success of such ‘host-based processing’ obviously
depends on the number of tasks that the workstation is required to undertake and this capac-
ity may vary with time and context. It is however quite possible to use the host’s own CPU
to run DSP ‘plug-ins’ for implementing equalisation, mixing and limited effects, provided it
is fast enough.

The software architecture required to run plug-in operations on the host CPU is naturally
slightly different to that used on dedicated DSP cards, so it is usually necessary to specify
whether the plug-in is to run on the host or on a dedicated resource such as Digidesign’s
TDM cards. A number of applications are now appearing, however, that enable the integra-
tion of host-based (or ‘native’) plug-ins and dedicated DSP such as TDM-bus cards. Audio
processing that runs on the host may be subject to greater latency (input to output delay)
than when using dedicated signal processing, and it obviously takes up processing power
that could be used for running the user interface or other software. It is nonetheless a
cost-effective option for many users that do not have high expectations of a system and it
may be possible to expand the system to include dedicated DSP in the future.

5.5.5 Integrated sound cards

Integrated sound cards typically contain all the components necessary to handle audio for
basic purposes within a desktop computer and may be able to operate in full duplex mode
(in and out at the same time). They typically incorporate convertors, DSP, a digital interface,
FM and/or wavetable synthesis engines. Optionally, they may also include some sort of I/O
daughter board that can be connected to a break-out audio interface, increasing the number
of possible connectors and the options for external analog conversion. Such cards also tend
to sport MIDI/joystick interfaces. A typical example of this type of card is the ‘SoundBlaster’
series from Creative Labs.

Any analog audio connections are normally unbalanced and the convertors may be of only
limited quality compared with the best external devices. For professional purposes it is
advisable to use high quality external convertors and balanced analog audio connections.

5.5.6 Synthesis engines on sound cards

The two main approaches to synthetic sound generation on PC sound cards are FM and
wavetable synthesis. In FM synthesis, as pioneered by John Chowning and developed by
Yamaha, the frequency of one oscillator (or ‘operator’) is modulated by another oscillator or
chain of oscillators, as shown in Figure 5.16. The result of this frequency modulation (FM) is
the creation of a complex set of sidebands or spectral components around the fundamental
or ‘carrier’ frequency of the last oscillator in the chain, as exemplified in Figure 5.17. Quite
rich timbres can be created with only a few oscillators/operators, although advanced

Desktop Audio Technology

156

FM synthesisers often use up to six operators per voice. The operators can be arranged in
different ways, either in a chain with each modulating the next, or partly in parallel with each
sub-chain contributing a particular component of the voice. These configurations are called
‘algorithms’, and some examples are shown in Figure 5.18. Each operator can be affected by
an envelope generator which controls the way in which the amplitude of the output changes
with time, and a simple envelope has four stages, as shown in Figure 5.19.

Although FM is a very flexible way of producing new synthesised sounds it is not always easy
to predict or program, so as to produce a particular desired output. Wavetable synthesis is
more predictable in this respect, since it involves the storage of short portions of sampled

Hardware and systems issues

157

Operator 4
Env.
gen.

Operator 3

Operator 2

Operator 1

Env.
gen.

Env.
gen.

Env.
gen.

Audio output

Mod. input

Affects timbre

Affects timbre

Affects timbre

Affects overall amplitude

Output

Figure 5.16 In FM synthesis one operator (the equivalent of an oscillator) frequency modulates another so as
to alter its output spectrum. Each operator has its own envelope generator which affects how the output level of
the operator changes with time

fc

SidebandsSidebands

Carrier

0 Freq Hz
fm

Figure 5.17 The result of FM is the creation of a sideband pattern around the ‘carrier’ oscillator frequency (fc).
The amplitudes and frequencies of these sidebands depend on the amplitude and frequency of the modulating
signal (fm). Sidebands are spaced apart by the frequency of the modulating signal, and a higher modulator
amplitude generally creates more sidebands (a richer timbre). Sidebands which fall into the negative frequency
range (below 0 Hz) are folded back into the positive range, some with phase reversal

Desktop Audio Technology

158

1

6

5

6

5

4

3

4

3

2

1

2

1

2 3 4 5 6

(b)

(c)

(a)

Figure 5.18 Some examples of FM synthesis algorithms. (a) Operators in parallel give the equivalent of
additive synthesis (not really FM). (b) Operators in series produce very complex and unpredictable timbres.
(c) A combination of series and parallel operators can be used so that different components of the sound
can be handled by different parts of the algorithm

R

A

D
S

C
on

tr
ol

 o
ut

pu
t

Note on Note off

Time

Figure 5.19 A typical envelope generator has four stages. Attack (A), Decay (D), Sustain (S) and Release (R).
The rates and maximum values of each stage of the envelope can be set independently

Hardware and systems issues

159

sound waves in memory (the wave table is basically the series of memory addresses containing
the discrete sample values of the stored wave segment). During replay, the wave samples are
read out of memory in various ways, very similar to the replay of ordinary digital audio
recordings, except that the pitch of the stored sound is varied by skipping samples in order to
change the period of the replayed sound. Using variable rate replay and digital filtering a
simple stored wave segment can be transformed in both pitch and timbre. A technique known
as looping is used to allow quite short stored wave segments to be lengthened or sustained
on replay by repeating one section of the stored wave over and over. There is a clear trade off
here between the shortness of the looped segment (which conserves memory) and the qual-
ity of the instrumental sound produced. As with other forms of synthesis, envelope genera-
tors are used to alter the characteristics of the output over the duration of each note, and often
separate wavetables are used for attack and sustain portions of a note.

Wavetables stored in ROM are inflexible because only a standard sound set is available to the
multimedia sound designer. Increasingly common is for sound cards to contain an area of
working RAM, in addition to standard sounds on ROM, which can be used for the storage of
temporary or custom wavetables, now possible through the use of downloadable sound
(DLS) as described in Chapter 4. In this way the sound designer can ensure that the sounds
he wants to use are available when his product is played, by arranging for the appropriate
audio samples to be uploaded into the sound card RAM before the action begins. New
sounds could be loaded during the course of a game or other multimedia production.

5.6 External synchronisation interfaces
It is quite rare to find a means of externally synchronising the audio sampling rate of a basic
sound card or computer audio system. Silicon Graphics included this as one of the digital
audio options on its Unix workstations, but the average PC sound card can only be internally
clocked. More sophisticated sound cards or additional hardware is usually needed to allow
workstations to be externally synchronised. For example Digidesign’s ‘Sync I/O’ interface
enables ProTools to be connected to a range of sync sources and destinations. Creamware
also has a ‘Sync Plate’ card that accompanies its SCOPE Fusion hardware and software,
carrying word clock and an ADAT sync interface.

The minimum requirement for external synchronisation is usually a word clock input and
output, being a BNC connector carrying a square wave signal at the sampling frequency.
More advanced systems will also provide composite video sync interfaces and possibly a
SMPTE/EBU timecode interface for locking systems to sources of external timecode (such as
from an audio tape machine or video tape recorder).

5.7 User interfaces
Screen-based graphical user interfaces (GUIs) have been the norm in most low-cost audio
workstation packages for many years because they are cheap and can display a lot of infor-
mation. A user would typically interact with such an interface using a mouse and a
QWERTY keyboard, which tends to limit the flexibility and controllability for complicated
mixes. Dedicated audio workstations, however, have typically used a combination of screen

Desktop Audio Technology

160

display and physical controls. Dedicated systems are typically more expensive than PC- or
Mac-based systems and have lost ground commercially as the power of desktop worksta-
tions has increased and the cost fallen. The versatility of plug-in architectures and standard
computing platforms has proven very popular. However, as the power of desktop systems
has increased the difficulty of controlling all the functions has also increased, as has the num-
ber of channels, leading to a need for dedicated control interfaces again. Furthermore, now
that the audio workstation has the processing power to act as the mixing console and effects
processor in a studio, some users are doing away with an external mixer altogether and
attaching a sophisticated control interface to the workstation.

Examples of external control interfaces from Digidesign are shown in Figure 5.20. Devices
such as these can range from low-cost devices to substantial control surfaces with transport
control, editing control, metering and multiple moving faders.

5.8 Serial control interfaces
A variety of external serial interfaces can be provided to enable interconnection with control
devices and data networks. Networking is discussed in Chapter 6. RS-232, RS-422 and MIDI
are discussed in this section.

5.8.1 RS-232 and RS-422

RS-232 and RS-422 should be mentioned here as they are serial data interfaces still used quite
a lot for controlling external equipment. RS-232 normally terminates on a 25-way D-type
connector and carries receive and transmit data lines as well as all sorts of control and house-
keeping lines for managing the flow of data between devices such as computers and
modems. Data transmission is unbalanced. RS-422 normally terminates in a 9-pin D-type
connector and can transfer data at a number of rates using a standard asynchronous serial
communication protocol. The electrical interface is normally balanced and the collection
of control and housekeeping lines that accompany RS-232 are drastically reduced to ‘request
to send (RTS)’ and ‘clear to send (CTS)’ handshaking. A widely used protocol on this inter-
face is ‘Sony 9-pin’ which is used a lot for controlling video equipment at a data rate of
38.4 kbit s�1. The ES Bus was also developed as a universal remote control standard over
RS-422, but it did not catch on as expected and does not seem to be particularly widely used.

5.8.2 The basic MIDI interface

The MIDI standard specifies a unidirectional serial interface running at 31.25 kbit s�1�1%.
The rate was defined at a time when the clock speeds of microprocessors were typically much
slower than they are today, this rate being a convenient division of the typical 1 or 2 MHz
master clock rate. The rate had to be slow enough to be carried without excessive losses over
simple cables and interface hardware, but fast enough to allow musical information to be
transferred from one instrument to another without noticeable delays.

The hardware interface is shown in Figure 5.21. Most equipment using MIDI has three inter-
face connectors: IN, OUT, and THRU. The OUT connector carries data that the device itself
has generated. The IN connector receives data from other devices and the THRU connector
is a direct throughput of the data that is present at the IN. As can be seen from the hardware

interface diagram, it is simply a buffered feed of the input data, and it has not been processed
in any way. A few cheaper devices do not have THRU connectors, but it is possible to obtain
‘MIDI THRU boxes’ which provide a number of ‘THRUs’ from one input. Occasionally,
devices without a THRU socket allow the OUT socket to be switched between OUT and THRU
functions. A 5 mA current loop is created between a MIDI OUT or THRU and a MIDI IN, when

Hardware and systems issues

161

(a)

(b)

Figure 5.20 Examples of two external control interfaces from Digidesign. (a) ProControl. (b) Control 24

connected with the appropriate cable, and data bits are signalled by the turning on and off of
this current by the sending device. This principle is shown in Figure 5.22.

The interface incorporates an opto-isolator between the MIDI IN (that is the receiving socket)
and the device’s microprocessor system. This is to ensure that there is no direct electrical link
between devices and helps to reduce the effects of any problems that might occur if one

Desktop Audio Technology

162

220

220 220

220 220

To UART From UART

+5V

+5V +5V

IN THRU OUT

5 2 45 2 45 2 4

Opto-isolator

Buffers Buffers

Figure 5.21 MIDI electrical interface showing IN, OUT and THRU ports

+5V

From UART

MIDI cable

55 44
OUT

or
THRU

IN

Figure 5.22 A current loop is formed between the OUT of the transmitter and the IN of the receiver when
a MIDI cable is connected. The LED in the receiver’s opto-isolator is turned on and off according to current flow

instrument in a system were to develop an electrical fault. An opto-isolator is an encapsulated
device in which a light-emitting diode (LED) can be turned on or off depending on the volt-
age applied across its terminals, illuminating a photo-transistor which consequently con-
ducts or not, depending on the state of the LED. Thus the data is transferred optically, rather
than electrically. In the MIDI specification, the opto-isolator is defined as having a rise time
of no more than 2 �s. The rise time affects the speed with which the device reacts to a change
in its input and if slow will tend to distort the leading edge of data bit cells, as shown in
Figure 5.23. The same also applies in practice to fall times.

Rise-time distortion results in timing instability of the data, since it alters the time at which a
data edge crosses the decision point between one and zero. If the rise time is excessively slow
the data value may be corrupted since the output of the device will not have risen to its full
value before the next data bit arrives. If a large number of MIDI devices are wired in series
(that is from THRU to IN a number of times) the data will be forced to pass through a num-
ber of opto-isolators and thus will suffer the combined effects of a number of stages of rise-
time distortion. Whether or not this will be sufficient to result in data detection errors at the
final receiver will depend to some extent on the quality of the opto-isolators concerned, as
well as on other losses that the signal may have suffered on its travels. It follows that the
better the specification of the opto-isolator, the more stages of device cascading will be
possible before unacceptable distortion is introduced.

The delay in data passed between IN and THRU is only a matter of microseconds, so this
contributes little to any audible delays perceived in the musical outputs of some instruments
in a large system. The bulk of any perceived delay will be due to other factors like process-
ing delay, buffer delays and traffic.

5.8.3 MIDI connectors and cables

The connectors used for MIDI interfaces are five-pin DIN types. The specification also allows
for the use of XLR-type connectors (such as those used for balanced audio signals in profes-
sional equipment), but these are rarely encountered in practice. Only three of the pins of a
five-pin DIN plug are actually used in most equipment (the three innermost pins). In the
cable, pin 5 at one end should be connected to pin 5 at the other, and likewise pin 4 to pin 4,
and pin 2 to pin 2. Unless any hi-fi DIN cables to be used follow this convention they will not
work. Professional microphone cable terminated in DIN connectors may be used as a higher-
quality solution, because domestic cables will not always be a shielded twisted-pair and thus
are more susceptible to external interference, as well as radiating more themselves which
could interfere with adjacent audio signals.

Hardware and systems issues

163

Rise-time
distortion

Original data pulse Distorted pulse

Figure 5.23 The edges of a square pulse subjected to rise-time distortion

The cable should be a shielded twisted pair with the shield connected to pin 2 of the connector
at both ends, although within the receiver itself, as can be seen from Figure 5.21, the MIDI IN
does not have pin 2 connected to earth. This is to avoid earth loops and makes it possible to
use a cable either way round. (If two devices are connected together whose earths are at
slightly different potentials, a current is caused to flow down any earth wire connecting
them. This can induce interference into the data wires, possibly corrupting the data, and can
also result in interference such as hum on audio circuits. It is recommended that no more than
15 m of cable is used for a single cable run in a simple MIDI system and investigation of typi-
cal cables indicates that corruption of data does indeed ensue after longer distances, although
this is gradual and depends on the electromagnetic interference conditions, the quality of cable
and the equipment in use. Longer distances may be accommodated with the use of buffer or
‘booster’ boxes that compensate for some of the cable losses and retransmit the data. It is also
possible to extend a MIDI system by using a data network with an appropriate interface.

5.8.4 Interfacing a computer to a MIDI system

In order to use a workstation as a central controller for a MIDI system it must have at least
one MIDI interface, consisting of at least an IN and an OUT port. (THRU is not strictly nec-
essary in most cases.) Unless the computer has a built-in interface, as found on the old Atari
machines, some form of third-party hardware interface must be added and there are many
ranging from simple single ports to complex multiple port products.

A typical single port MIDI interface can be connected either to one of the spare I/O ports of
the computer (a serial or USB port, for example), or can be installed as an expansion slot card
(perhaps as part of an integrated sound card). Depending on which port it is connected to,
some processing may be required within the MIDI interface to convert the MIDI data stream
to and from the relevant interface protocol. PCs have serial interfaces that will operate at a
high enough data rate for MIDI, but are not normally able to operate at precisely the 31.25
kbaud required. Nonetheless, there are a few external interfaces available which connect to
the PC’s serial port and transpose a higher serial data rate (often 38.4 kbaud) down to the
MIDI rate using intermediate buffering and flow control. Some PCs and sound cards also
have the so-called ‘MIDI/joystick port’ that conforms to the old Roland MPU-401 interface
standard. Adaptor cables are available that provide MIDI IN and OUT connectors from this
port. Some older PC interfaces also attach to the parallel port. The majority of recent MIDI
interfaces are connected either to USB or Firewire ports of host workstations.

Multiport interfaces have become widely used in MIDI systems where more than 16 MIDI
channels are required, and they are also useful as a means of limiting the amount of data sent
or received through any one MIDI port. (A single port can become ‘overloaded’ with MIDI
data if serving a large number of devices, resulting in data delays.) Multiport interfaces are
normally more than just a parallel distribution of a single MIDI data stream, typically han-
dling a number of independent MIDI data streams that can be separately addressed by the
operating system drivers or sequencer software.

Recent interfaces are typically connected to the host workstations using USB or Firewire. On
older Mac systems interconnection was handled over one or two RS-422 ports while an expan-
sion card, RS-232 connection or parallel I/O, was normally used on the PC. The principle of
such approaches is that data is transferred between the computer and the multiport interface

Desktop Audio Technology

164

at a higher speed than the normal MIDI rate, requiring the interface’s CPU to distribute the
MIDI data between the output ports as appropriate, and transmit it at the normal MIDI rate.
As described in Chapter 4, USB and Firewire MIDI protocols allow a particular stream or
‘cable’ to be identified so that each stream controlling 16 MIDI channels can be routed to a
particular physical port or instrument.

Emagic’s Unitor 8 interface is pictured in Figure 5.24. It has RS-232 and RS-422 serial ports as
well as a USB port to link with the host workstation. There are eight MIDI ports with two on
the front panel for easy connection of ‘guest’ devices or controllers that are not installed at the
back. This device also has VITC and LTC timecode ports in order that synchronisation infor-
mation can be relayed to and from the computer. A multi-device MIDI system is pictured in
Figure 5.25, showing a number of multi-timbral sound generators connected to separate MIDI
ports and a timecode connection to an external video tape recorder for use in synchronised
post-production. As more of these functions are now being provided within the workstation
(e.g. synthesis, video, mixing) the number of devices connected in this way will reduce.

5.9 Drivers and audio I/O software
Most audio and MIDI hardware requires ‘driver’ software of some sort to enable the operating
system (OS) to ‘see’ the hardware and use it correctly. There are also sound manager or multi-
media extensions that form part of the operating system of the workstation in question,
designed to route audio to and from hardware in the absence of dedicated solutions. This
topic crosses the boundary into software and is discussed further in Chapter 7, but basic
audio and MIDI I/O extensions will be described here. (It is different from the topic of plug-in
architecture which is also discussed in Chapter 7.)

The standard multimedia extensions of the OS that basic audio software used in older
systems to communicate with sound cards could result in high latency and might also be
limited to only two channels and 48 kHz sampling frequency. Dedicated low-latency
approaches were therefore developed as an alternative, allowing higher sampling frequen-
cies, full audio resolution, sample-accurate synchronisation and multiple channels. Examples
of these are Steinberg’s ASIO (Audio Stream Input Output) and Emagic’s EASI. These are
software extensions behaving as ‘hardware abstraction layers’ (HALs) that replace the

Hardware and systems issues

165

(a)

(b)

Figure 5.24 Front and back panels of the Emagic Unitor 8 interface, showing USB port, RS-422 port, RS-232
port, LTC and VITC ports and multiple MIDI ports

OS standard sound manager and enable applications to communicate more effectively with
I/O hardware. ASIO, for example, handles a range of sampling frequencies and bit depths, as
well as multiple channel I/O, and many sound cards and applications are ASIO-compatible.

As high-quality audio begins to feature more prominently in general purpose desktop
computers, audio architectures and OS audio provision improve to keep step. OS native
audio provision may now take the place of what third-party extensions have provided in the
past. For example, Apple’s OS X Core Audio standard is designed to provide a low-latency

Desktop Audio Technology

166

Multi-timbral
expander

Multi-timbral
expander

Multi-timbral
expander

Drum
machine

Sampler

Effects 1

Effects 2

Controller

Master keyboard

Automated mixer

Audio
routing
matrix

Multiport MIDI
interface

High speed I/O

Timecode

Video or audio recorder

Figure 5.25 A typical multi-machine MIDI system interfaced to a computer via a multiport interface connected
by a high-speed link (e.g. USB)

HAL between applications and audio hardware, enabling multichannel audio data to be
communicated to and from sound cards and external interfaces such as USB and Firewire.
Core Audio handles audio in 32-bit floating-point form for high-resolution signal processing,
as well as enabling sample accurate timing information to be communicated alongside audio
data. Microsoft has also done something similar for Windows systems, with the Windows
Driver Model (WDM) audio drivers that also include options for multichannel audio, high
resolutions and sampling frequencies. DirectSound is the Microsoft equivalent of Apple’s OS
X Core Audio.

Core MIDI and DirectMusic do a similar thing for MIDI data in recent systems. Whereas
previously it would have been necessary to install a third-party MIDI HAL such as OMS
(Opcode’s Open Music System) or MIDI Manager to route MIDI data to and from multiport
interfaces and applications, these features are now included within the operating system’s
multimedia extensions.

Useful websites
The Optical Storage Technology Association: www.osta.org
DVD Forum: www.dvdforum.com
DVD�RW Alliance: www.dvdrw.com
WDM Audio: www.microsoft.com/hwdev/tech/audio/wdmaudio.asp
OS X Core Audio: http://developer.apple.com/audio/coreaudio.html

Hardware and systems issues

167

168

6 Audio formats and data
interchange

This chapter is concerned with common formats for the storage and interchange of digital
audio. It includes coverage of the most widely encountered audio and edit list file formats,
digital interfaces and networking protocols.

6.1 Audio file formats
6.1.1 Introduction

There used to be almost as many file formats for audio as there are days in the year. In the
computer games field, for example, this is still true to some extent. For a long time the spe-
cific file storage strategy used for disk-based digital audio was the key to success in digital
workstation design, because disk drives were relatively slow and needed clever strategies to
ensure that they were capable of handling a sufficiently large number of audio channels.
Manufacturers also worked very much in isolation and the size of the market was relatively
small, leading to virtually every workstation or piece of software using a different file format
for audio and edit list information.

There are still advantages in the use of filing structures specially designed for real-time appli-
cations such as audio and video editing, because one may obtain better performance from a
disk drive in this way, but the need is not as great as it used to be. Interchange is becoming
at least as important as, if not more important than ultimate transfer speed and the majority
of hard disk drives available today are capable of replaying many channels of audio in real
time without a particularly fancy storage strategy. Indeed a number of desktop systems simp-
ly use the native filing structure of the host computer (see Chapter 5). As the use of net-
worked workstations grows, the need for files to be transferred between systems also grows
and either by international standardisation or by sheer force of market dominance certain file

formats are becoming the accepted means by which data are exchanged. This is not to say
that we will only be left with one or two formats, but that systems will have to be able to read
and write files in the common formats if users are to be able to share work with others.

The recent growth in the importance of metadata (data about data), and the representation of
audio, video and metadata as ‘objects’, has led to the development of interchange methods
that are based on object-oriented concepts and project ‘packages’ as opposed to using simple
text files and separate media files. There is increasing integration between audio and other
media in multimedia authoring and some of the file formats mentioned below are closely
related to international efforts in multimedia file exchange.

It is not proposed to attempt to describe all of the file formats in existence, because that
would be a relatively pointless exercise and would not make for interesting reading. It is
nonetheless useful to have a look at some examples taken from the most commonly encoun-
tered file formats, particularly those used for high quality audio by desktop and multimedia
systems, since these are amongst the most widely used in the world and are often handled
by audio workstations even if not their native format. It is not proposed to investigate the
large number of specialised file formats developed principally for computer music on vari-
ous platforms, nor the files used for internal sounds and games on many computers.

6.1.2 File formats in general

A data file is simply a series of data bytes formed into blocks and stored either contiguously or
in fragmented form. In a sense files themselves are independent of the operating system and
filing structure of the host computer, because a file can be transferred to another platform and
still exist as an identical series of data blocks. It is the filing system that is often the platform- or
operating-system-dependent entity. There are sometimes features of data files that relate directly
to the operating system and filing system that created them, these being fairly fundamental
features, but they do not normally prevent such files being translated by other platforms.

For example, there are two approaches to byte ordering: the so-called little-endian order in
which the least significant byte comes first or at the lowest memory address, and the big-
endian format in which the most significant byte comes first or at the highest memory
address. These relate to the byte ordering used in data processing by the two most common
microprocessor families and thereby to the two most common operating systems used in
desktop audio workstations. Motorola processors, as used in the Apple Macintosh, deal in
big-endian byte ordering, and Intel processors, as used in MS-DOS machines, deal in little-
endian byte ordering. It is relatively easy to interpret files either way around but it is neces-
sary to know that there is a need to do so if one is writing software.

Secondly, Macintosh files may have two parts – a resource fork and a data fork, as shown in
Figure 6.1, whereas Windows files only have one part. High level ‘resources’ are stored in the
resource fork (used in some audio files for storing information about the file, such as signal
processing to be applied, display information and so forth) whilst the raw data content of the
file is stored in the data fork (used in audio applications for audio sample data). The resource
fork is not always there, but may be. The resource fork can get lost when transferring such
files between machines or to servers, unless Mac-specific protocols are used (e.g. MacBinary
or BinHex).

Audio formats and data interchange

169

Some data files include a ‘header’, that is a number of bytes at the start of the file containing
information about the data that follows (see Figure 6.2). In audio systems this may include
the sampling rate and resolution of the file. Audio replay would normally be started immedi-
ately after the header. On the other hand, some files are simply raw data, usually in cases
where the format is fixed. ASCII text files are a well known example of raw data files – they
simply begin with the first character of the text. More recently file structures have been
developed that are really ‘containers’ for lots of smaller files, or data objects, each with its
own descriptors and data. The RIFF structure, described in Section 6.1.6, is an early example
of the concept of a ‘chunk-based’ file structure. Apple’s Bento container structure, used in
OMFI, and the container structure of AAF are more advanced examples of such an
approach.

The audio data in most common high-quality audio formats is stored in twos complement
form (see Chapter 2) and the majority of files are used for 16- or 24-bit data, thus employing
either two or three bytes per audio sample. Eight-bit files use one byte per sample.

Desktop Audio Technology

170

Figure 6.1 Macintosh files may have a resource and a data fork

Macintosh file

Data fork

e.g. audio
sample data

Resource fork

e.g. icons,
display format,

edit points

Figure 6.2 Three different kinds of sound file. (a) A simple file containing only raw audio data (showing optional
Mac resource fork). (b) A file that begins with a number of bytes of header, describing the audio data that
follows. (c) A chunk-format file containing self-describing chunks, each fulfilling a different function

Raw audio data

Header Audio data

Optional resource fork

Chunk 1 Chunk 2 Chunk 3

(a)

(b)

(c)

6.1.3 Sound Designer I format

Sound Designer files originate with the Californian company Digidesign, manufacturer of
probably the world’s most widely used digital audio hardware for desktop computers. Many
systems handle Sound Designer files because they were used widely for such purposes as the
distribution of sound effects on CD-ROM and for other short music sample files. Detailed
information about Digidesign file formats can be obtained if one wishes to become a third-
party developer and the company exercises no particular secrecy in the matter.

The Sound Designer I format (SD I) is for mono sounds and it is recommended principally
for use in storing short sounds. It originated on the Macintosh, so numerical data are stored
in big-endian byte order but it has no resource fork. The data fork contains a header of
1336 bytes which is followed by the audio data bytes. The header contains information about
how the sample should be displayed in Sound Designer editing software, including data
describing vertical and horizontal scaling. It also contains details of ‘loop points’ for the file
(these are principally for use with audio/MIDI sampling packages where portions of the
sound are repeatedly cycled through while a key is held down, in order to sustain a note).
The header contains information on the sample rate, sample period, number of bits per sam-
ple, quantisation method (e.g. ‘linear’, expressed as an ASCII string describing the method)
and size of RAM buffer to be used.

The audio data are normally either 8- or 16-bit, and always MS byte followed by LS byte of
each sample.

6.1.4 Sound Designer II format

Sound Designer II has been one of the most commonly used formats for audio workstations
and has greater flexibility than SD I. Again it originated as a Mac file and unlike SD I it has a
separate resource fork. The data fork contains only the audio data bytes in twos complement
form, either 8 or 16 bits per sample. SD II files can contain audio samples for more than one
channel, in which case the samples are interleaved, as shown in Figure 6.3, on a sample by
sample basis (i.e. all the bytes for one channel sample followed by all the bytes for the next,
etc.). It is unusual to find more than stereo data contained in SD II files and it is recommended
that multichannel recordings are made using separate files for each channel. Some multi-
channel applications, when opening stereo SD II files have first to split them into two mono

Audio formats and data interchange

171

Figure 6.3 Sound Designer II files allow samples for multiple audio channels to be interleaved.
Four-channel, 16-bit example shown

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 Dn

MS byte LS byte

First byte of file

A1 = first sample of channel A
B1 = first sample of channel B
etc.

16-bit audio sample

files before they can be used, by deinterleaving the sample data. This requires that there is
sufficient free disk space for the purpose.

Since Mac resource forks can be written separately from their associated data forks, it is pos-
sible to update the descriptive information about the file separately from the audio data. This
can save a lot of time (compared with single-fork files such as SD I) if the file is long and the
audio data has not changed, because it saves rewriting all the audio data at the same time.
Only three resources are mandatory and others can be added by developers to customise the
files for their own purposes. The mandatory ones are ‘sample size’ (number of bytes per sam-
ple), ‘sample rate’ and ‘channels’ (describing the number of audio channels in the file).
Digidesign optionally adds other resources describing things like the timecode start point
and frame rates originally associated with the file, for use in post-production applications.

6.1.5 AIFF and AIFF-C formats

The AIFF format is widely used as an audio interchange standard, because it conforms to the
EA IFF 85 standard for interchange format files used for various other types of information
such as graphical images. AIFF is an Apple standard format for audio data and is encoun-
tered widely on Macintosh-based audio workstations and some Silicon Graphics systems.
It is claimed that AIFF is suitable as an everyday audio file format as well as an interchange
format and some systems do indeed use it in this way. Audio information can be stored at a
number of resolutions and for any number of channels if required, and the related AIFF-C
(file type ‘AIFC’) format allows also for compressed audio data. It consists only of a data fork,
with no resource fork, making it easier to transport to other platforms.

All IFF-type files are made up of ‘chunks’ of data which are typically made up as shown in
Figure 6.4. A chunk consists of a header and a number of data bytes to follow. The simplest
AIFF files contain a ‘common chunk’, which is equivalent to the header data in other audio
files, and a ‘sound data chunk’ containing the audio sample data. These are contained over-
all by a ‘form chunk’ as shown in Figure 6.5. AIFC files must also contain a ‘version chunk’
before the common chunk to allow for future changes to AIFC.

The common chunk header information describes the number of audio channels, the number
of audio samples per channel in the following sound chunk, bits per sample (anything from

Desktop Audio Technology

172

Figure 6.4 General format of an IFF file chunk

Chunk ID

Chunk data size

Data

4 byte ASCII type identifier

Size in bytes of following data
(32-bit signed integer)

Data content of chunk

H
ea

de
r

8
by

te
s

1 to 32), sample rate, compression type ID (AIFC only, a register is kept by Apple), and a string
describing the compression type (again AIFC only). The sound data chunk consists of twos
complement audio data preceded by the chunk header, the audio samples being stored as
either 1, 2, 3 or 4 bytes, depending on the resolution, interleaved for multiple channels in the
same way as for SD II files (see Section 6.1.4). Samples requiring less than the full eight bits of
each byte should be left-justified (shifted towards the MSB), with the unused LSBs set to zero.

Optional chunks may also be included within the overall container chunk, such as marker
information, comments, looping points and other information for MIDI samplers, MIDI data
(see Chapter 4), AES channel status data (see Section 6.5.2), text and application-specific data.

6.1.6 RIFF WAVE format

The RIFF WAVE (often called WAV) format is the Microsoft equivalent of Apple’s AIFF. It has
a similar structure, again conforming to the IFF pattern, but with numbers stored in little-
endian rather than big-endian form. It is used widely for sound file storage and interchange
on PC workstations, and for multimedia applications involving sound. Within WAVE files it
is possible to include information about a number of cue points, and a playlist to indicate the
order in which the cues are to be replayed. WAVE files use the file extension ‘.wav’.

A basic WAV file consists of three principal chunks, as shown in Figure 6.6, the RIFF chunk,
the FORMAT chunk and the DATA chunk. The RIFF chunk contains 12 bytes, the first four of

Audio formats and data interchange

173

Figure 6.5 General format of an AIFF file

'FORM'

Size

Form type

Chunks

'FORM'

Size

Bytes

4

4

4

Size
– 4

'AIFF'

'COMM'

Size

Data

'SSND'

Size

Sound
data

Form chunk format AIFF file format

which are the ASCII characters ‘RIFF’, the next four indicating the number of bytes in the
remainder of the file (after the first eight) and the last four of which are the ASCII characters
‘WAVE’. The format chunk contains information about the format of the sound file, includ-
ing the number of audio channels, sampling rate and bits per sample, as shown in Table 6.1.

The audio data chunk contains a sequence of bytes of audio sample data, divided as shown
in the FORMAT chunk. Unusually, if there are only 8 bits per sample or fewer each value is
unsigned and ranges between 0 and 255 (decimal), whereas if the resolution is higher than
this the data are signed and range both positively and negatively around zero. Audio
samples are interleaved by channel in time order, so that if the file contains two channels a
sample for the left channel is followed immediately by the associated sample for the right
channel. The same is true of multiple channels (one sample for time-coincident sample
periods on each channel is inserted at a time, starting with the lowest numbered channel),
although basic WAV files were nearly always just mono or 2-channel.

Desktop Audio Technology

174

Figure 6.6 Diagrammatic representation of a simple RIFF WAVE file, showing the three principal chunks. Additional
chunks may be contained within the overall structure, for example a ‘bext’ chunk for the Broadcast WAVE file

RIFF

‘RIFF’ 4

4

4

4

4

1

‘WAVE’

‘fmt’

Length (&00000010)

Format information

Size (of file –8)
12

24FORMAT

DATA
(Audio)

W
av

e
fil

e

Table 6.1 Contents of FORMAT chunk in a basic WAVE PCM file

Byte ID Contents

0–3 ckID ‘fmt_’ (ASCII characters)
4–7 nChunkSize Length of FORMAT chunk (binary, hex value:

&00000010)
8–9 wFormatTag Audio data format (e.g. &0001 � WAVE format PCM)

Other formats are allowed, for example IEEE floating
point and MPEG format (&0050 � MPEG 1)

10–11 nChannels Number of channels (e.g. &0001 � mono, &0002 �
stereo)

12–15 nSamplesPerSec Sample rate (binary, in Hz)
16–19 nAvgBytesPerSec Bytes per second
20–21 nBlockAlign Bytes per sample: e.g. &0001 � 8-bit mono; &0002 �

8-bit stereo or 16-bit mono; &0004 � 16-bit stereo
22–23 nBitsPerSample Bits per sample

The RIFF WAVE format is extensible and can have additional chunks to define enhanced
functionality such as surround sound and other forms of coding. This is known as ‘WAVE-
format extensible’. Chunks can include data relating to cue points, labels and associated data,
for example.

6.1.7 WAVE-format extensible

In order to enable the extension of the WAVE format to contain new audio formats such as cer-
tain types of surround sound and data-reduced audio (e.g. MPEG, Dolby Digital), WAVE-format
extensible has a means of referring to globally unique identifiers (GUIDs) and sub-format
chunks that can be vendor-specific. The ‘format’ chunk is extended to describe the additional
content of the file, with a ‘cbSize’ descriptor at the end of the standard format chunk followed
by the additional bytes describing the extended format. The details of this are too complex to
describe here, and interested readers will find more information on the Microsoft website at
www.microsoft.com/hwdev/tech/audio/multichaud.asp. The various sub-format possibilities
include the option to define alternative coding formats for surround sound data that are not tied
to the loudspeaker locations described below, such as B-format Ambisonic signals.

One of the necessary ambiguities to resolve was the mapping to loudspeaker locations of the
multiple channels contained within a file, for speaker-feed-oriented multichannel formats.
This has been achieved by defining a standard ordering of the loudspeaker locations
concerned and including a channel mask word in the format chunk that indicates which
channels are present. Although it is not necessary for every loudspeaker location’s channel to
be present in the file the samples should be presented in this order, leaving out missing chan-
nels. The first 12 of these correspond to the ordering of loudspeaker channels in the USB 1.0
specification (see Section 6.7.2), as shown in Table 6.2.

Secondly, the extensible format defines more clearly the alignment between audio sample
information and the byte structure of the WAVE file, so that audio sample resolutions that do
not fit exactly within a number of bytes can be handled more unambiguously. Here,
wBitsPerSample must be a multiple of eight and a new field defines how many of those bits
are actually used. Samples are then MSB-justified.

6.1.8 Broadcast WAVE format

The Broadcast WAVE format, described in EBU Tech. 3285, was standardised by the
European Broadcasting Union (EBU) because of a need to ensure compatibility of sound files
and accompanying information when transferred between workstations. It is based on the
RIFF WAVE format described above, but contains an additional chunk that is specific to the
format (the ‘broadcast_audio_extension’ chunk, ID � ‘bext’) and also limits some aspects of
the WAVE format. Version 0 was published in 1997 and Version 1 in 2001, the only difference
being the addition of a SMPTE UMID (unique material identifier) in Version 1 (this is a form
of metadata). Such files currently only contain either PCM or MPEG-format audio data.

Broadcast WAVE files contain at least three chunks: the broadcast_audio_extension chunk,
the format chunk and the audio data chunk. The broadcast extension chunk contains the data
shown in Table 6.3. Optionally files may also contain further chunks for specialised purposes

Audio formats and data interchange

175

Desktop Audio Technology

176

Table 6.3 Broadcast_audio_extension chunk format

Data Size (bytes) Description

ckID 4 Chunk ID � ‘bext’
ckSize 4 Size of chunk
Description 256 Description of the sound clip
Originator 32 Name of the originator
OriginatorReference 32 Unique identifier of the originator (issued by

the EBU)
OriginationDate 10 ‘yyyy-mm-dd’
OriginationTime 8 ‘hh-mm-ss’
TimeReferenceLow 4 Low byte of the first sample count since

midnight
TimeReferenceHigh 4 High byte of the first sample count since

midnight
Version 2 BWF version number, e.g. &0001 is Version 1
UMID 64 UMID according to SMPTE 330M. If only a

32-byte UMID then the second half should be
padded with zeros

Reserved 190 Reserved for extensions. Set to zero in
Version 1

CodingHistory Unrestricted A series of ASCII strings, each terminated by
CR/LF (carriage return, line feed) describing
each stage of the audio coding history,
according to EBU R-98

Table 6.2 Channel ordering of WAVE format extensible audio data

Channel Spatial location

0 Left Front (L)
1 Right Front (R)
2 Center Front (C)
3 Low Frequency Enhancement (LFE)
4 Left Surround (LS)
5 Right Surround (RS)
6 Left of Center (LC)
7 Right of Center (RC)
8 Back center (BC)
9 Side Left (SL)

10 Side Right (SR)
11 Top (T)
12 Top Front Left (TFL)
13 Top Front Center (TFC)
14 Top Front Right (TFR)
15 Top Back Left (TBL)
16 Top Back Center (TBC)
17 Top Back Right (TBR)

and may contain chunks relating to MPEG audio data (the ‘fact’ and ‘mpeg_audio_extension’
chunks). MPEG applications of the format are described in EBU Tech. 3285, Supplement 1
and the audio data chunk containing the MPEG data normally conforms to the MP3 frame
format described in Section 6.1.9.

A multichannel extension chunk has recently been proposed for Broadcast WAVE files that
defines the channel ordering, surround format, downmix coefficients for creating a two-
channel mix, and some descriptive information. There are also chunks defined for metadata
describing the audio contained within the file, such as the ‘quality chunk’ (ckID � ‘qlty’),
which together with the coding history contained in the ‘bext’ chunk make up the so-called
‘capturing report’. These are described in Supplement 2 to EBU Tech. 3285. Finally there is a
chunk describing the peak audio level within a file, which can aid automatic programme
level setting and programme interchange.

6.1.9 MPEG audio file formats

It is possible to store MPEG-compressed audio in AIFF-C or WAVE files, with the compres-
sion type noted in the appropriate header field. There are also older MS-DOS file extensions
used to denote MPEG audio files, notably .MPA (MPEG Audio) or .ABS (Audio Bit Stream).
However, owing to the ubiquity of the so-called ‘MP3’ format (MPEG 1, Layer 3) for audio
distribution on the Internet, MPEG audio files are increasingly denoted with the extension
‘.MP3’. Such files are relatively simple, being really no more than MPEG audio frame data in
sequence, each frame being preceded by a frame header. Although the frame header at the
beginning of the file might be considered to relate to all the remaining audio information,
there is the possibility that settings may change during the course of replay. For example, the
bit rate can change in variable bit rate modes, or joint stereo coding might be switched on, so
each frame header should ideally be correctly decoded. The following describes the basic for-
mat of .MP3 files and Figure 6.7 shows the structure of a typical MPEG frame.

Layer 1 frames correspond to 384 original PCM samples (8 ms at a sampling rate of 48 kHz),
and Layer 2 and 3 frames correspond to 1152 PCM samples (24 ms @ 48 kHz). The frame
consists of a 32-bit header, a 16-bit CRC check word, the audio data (consisting of subband

Audio formats and data interchange

177

Figure 6.7 MPEG-Audio frame format

Header CRC

Bit
allocation

Bit
allocation

Scale factors

Scale factorsSCFSI

Subband samples

Subband samples

Audio

Based on 384 original PCM samples

Based on 1152 original PCM samples

Anc.
data

(a)
Generalised
frame format

(b)
Layer 1
Audio data

(c)
Layer 2
Audio data

samples, appropriate scale factors and information concerning the bit allocation to different
parts of the spectrum) and an ancillary data field whose length is currently unspecified. The
32-bit header of each frame consists of the information shown in Table 6.4.

MPEG files can usually be played from pretty well anywhere in the file by looking for the
next frame header. Layer 1 and 2 frames are self-contained and can be decoded immediately,
but Layer 3 (the only one that should strictly be called MP3) is slightly different and can take
up to nine frames before the decoding can be completed correctly. This is because of the bit
reservoir technique that is used to share bits optimally between a series of frames.

A so-called ‘ID3 tag’ has been included in many MP3 files as a means of describing the con-
tents of the file, such as the title, artists, and so forth. This is usually found in the last 128 bits
of the whole file and should not be decoded as audio. It does not begin with a frame header

Desktop Audio Technology

178

Table 6.4 MPEG audio frame header

Function No. of bits Description

Sync word 11 All set to binary ‘1’ to act as a synchronisation pattern.
(Technically the first 12 bits were intended to be the
sync word and the following ID a single bit, but see
MPEG 2.5 below)

ID bits 2 Indicates the ID of the algorithm in use: ‘11’ � MPEG 1
(ISO 11172-3); ‘10’ � MPEG 2 (ISO 13818-3);
‘01’ � reserved; ‘00’ � MPEG 2.5 (an unofficial version
that allowed even lower bit rates than specified in the
original MPEG 2 standard, by using lower sampling
frequencies (8, 11 and 12 kHz))

Layer 2 Indicates the MPEG layer in use: ‘11’ � Layer 1; ‘10’ �
Layer 2; ‘01’ � Layer 3; ‘00’ � reserved

Protection bit 1 Indicates whether error correction data has been added
to the audio bitstream (‘0’ if yes)

Bitrate index 4 Indicates the total bit rate of the channel according to a
table which relates the state of these 4 bits to rates in
each layer

Sampling frequency 2 Indicates the original PCM sampling frequency: ‘00’ �
44.1 kHz; ‘01’ � 48 kHz; ‘10’ � 32 kHz

Padding bit 1 Indicates in state ‘1’ that a slot has been added to the
frame to make the average bit rate of the data-reduced
channel relate exactly to the original sampling rate

Private bit 1 Available for private use
Mode 2 ‘00’ � stereo; ‘01’ � joint stereo; ‘10’ � dual channel;

‘11’ � single channel
Mode extension 2 Used for further definition of joint stereo coding mode

to indicate either which bands are coded in joint stereo,
or which type of joint coding is to be used

Copyright 1 ‘1’ � copyright protected
Original/copy 1 ‘1’ � original; ‘0’ � copy
Emphasis 2 Indicates audio pre-emphasis type: ‘00’ � none; ‘01’ �

50/15 �s; ‘11’ � CCITT J17

sync pattern so most software will not attempt to decode it as audio. A simple tag has the
typical format shown in Table 6.5.

ID3v2.2 is a much more developed and extended ID3 tagging structure for a range of informa-
tion contained within frames of data, each frame having its own header. The ID3, version 2
header format is shown in Table 6.6. Patterns of data within the ID3 information that might
look like an audio sync pattern are dealt with using a method known as unsynchronisation
that modifies the tag to prevent the sync pattern occurring. It does this by inserting an extra
zero-valued byte after the first byte of the false sync pattern.

6.1.10 DSD-IFF file format

Sony and Philips have introduced Direct Stream Digital (DSD), as already discussed in
Section 2.7, as an alternative high-resolution format for audio representation. The DSD-IFF
file format is based on a similar structure to other IFF-type files, described above, except that

Audio formats and data interchange

179

Table 6.5 A simple ID3 tag structure

Sign Length Description
(bytes)

A 3 Tag identification. Normally ASCII ‘TAG’.
B 30 Title
C 30 Artist
D 30 Album
E 4 Year
F 30 Comment string (only 28 bytes followed by

‘ \0’ in some versions)
G 1 This may represent the track number, or may

be part of the comment string
H 1 Genre

Table 6.6 MPEG file ID3v2 tag header

Function No. of Description
bytes

File identifier 3 ASCII ‘ID3’
Version 2 & 03 00 (major version then revision number)
Flags 1 Binary ‘abc00000’

a � unsynchronisation used when set
b � extended header present when set
c � flag for indicating experimental version of tag

Size 4 Four lots of 0xxxxxxx, concatenated ignoring the MSB of
each byte to make a 28-bit word that indicates the length
of the tag after the header and including any
unsynchronisation bytes

it is modified slightly to allow for the large file sizes that may be encountered. Specifically the
container FORM chunk is labelled ‘FRM8’ and this identifies all local chunks that follow as
having ‘length’ indications that are 8 bytes long rather than the normal 4. In other words,
rather than a 4-byte chunk ID followed by a 4-byte length indication, these files have a 4-byte
ID followed by an 8-byte length indication. This allows for the definition of chunks with a
length greater than 2 Gbytes, which may be needed for mastering SuperAudio CDs.

In such a file, local mandatory chunks are the format version chunk (‘FVER’), the property
chunk (‘PROP’), containing information such as sampling frequency, number of channels
and loudspeaker configuration, and at least one DSD or DST (direct stream transfer – the
losslessly compressed version of DSD) sound data chunk (‘DSD’ or ‘DST’). There are also
various optional chunks that can be used for exchanging more detailed information and com-
ments such as might be used in project interchange. Further details of this file format, and an
excellent guide to the use of DSD-IFF in project applications, can be found in the DSD-IFF
specification, as described in the Further reading at the end of this chapter.

6.1.11 Edit decision list (EDL) files

EDL formats have usually been unique to the workstation on which they are used but the
need for open interchange is increasing the pressure to make EDLs transportable between
packages. There is an old and widely used format for EDLs in the video world that is known
as the CMX-compatible form. CMX is a well-known manufacturer of video editing equipment
and most editing systems will read CMX EDLs for the sake of compatibility. These can be
used for basic audio purposes, and indeed a number of workstations can read CMX EDL files
for the purpose of auto-conforming audio edits to video edits performed on a separate
system. The CMX list defines the cut points between source material and the various transi-
tion effects at joins, and it can be translated reasonably well for the purpose of defining audio
cut points and their timecode locations, using SMPTE/EBU form, provided video frame
accuracy is adequate.

Software can be obtained for audio and video workstations that translates EDLs between a
number of different standards to make interchange easier, although it is clear that this process
is not always problem-free and good planning of in-house processes is vital. The OMFI struc-
ture also contains a format for interchanging edit list data, as described below. AES 31 (see
below) is now gaining considerable popularity among workstation software manufacturers
as a simple means of exchanging audio editing projects between systems. The Advanced
Authoring Format (AAF) is becoming increasingly relevant to the exchange of media project
data between systems, and is likely to take over from OMFI as time progresses.

6.1.12 AES 31 format

AES 31 is an international standard designed to enable straightforward interchange of audio
files and projects between systems. Audio editing packages are increasingly offering AES 31 as
a simple interchange format for edit lists. In Part 1 the standard specifies a disk format that is
compatible with the FAT32 file system, a widely used structure for the formatting of computer
hard disks. Part 2 is not finalised at the time of writing but is likely to describe an audio file for-
mat closely based on the Broadcast WAVE format. Part 3 describes simple project interchange,

Desktop Audio Technology

180

including a format for the communication of edit lists using ASCII text that can be parsed by a
computer as well as read by a human. The basis of this is the edit decision markup language
(EDML). It is not necessary to use all the parts of AES 31 to make a satisfactory interchange of
elements. For example, one could exchange an edit list according to part 3 without using a disk
based on part 1. Adherence to all the parts would mean that one could take a removable disk
from one system, containing sound files and a project file, and the project would be readable
directly by the receiving device.

EDML documents are limited to a 7-bit ASCII character set in which white space delimits
fields within records. Standard carriage return (CR) and line-feed (LF) characters can be
included to aid the readability of lists but they are ignored by software that might parse the
list. An event location is described by a combination of timecode value and sample count
information. The timecode value is represented in ASCII using conventional hours, minutes,
seconds and frames (e.g. HH:MM:SS:FF) and the optional sample count is a four-figure num-
ber denoting the number of samples after the start of the frame concerned at which the event
actually occurs. This enables sample-accurate edit points to be specified. It is slightly more
complicated than this because the ASCII delimiters between the timecode fields are changed
to indicate various parameters:

HH:MM delimiter � Frame count and timebase indicator (see Table 6.7)

MM:SS delimiter � Film frame indicator (if not applicable, use the pre-
vious delimiter)

SS:FF delimiter � Video field and timecode type (see Table 6.8)

The delimiter before the sample count value is used to indicate the audio sampling frequency,
including all the pull-up and pull-down options (e.g. fs times 1/1.001). There are too many of

Audio formats and data interchange

181

Table 6.7 Frame count and timebase indicator coding in AES 31

Frame count Unknown Timebase

1.000 1.001

30 ? | :
25 ! . /
24 # � -

Table 6.8 Video field and timecode type indicator in AES 31

Counting mode Video field

Field 1 Field 2

PAL . :
NTSC non-drop-frame . :
NTSC drop-frame , ;

these possibilities to list here and the interested reader is referred to the standard for further
information. This is an example of a timecode and (after the slash denoting 48 kHz sampling
frequency) optional sample count value:

14:57:24.03/0175

The Audio Decision List (ADL) is contained between two ASCII keyword tags
ADL� and

/ADL�. It in turn contains a number of sections, each contained within other keyword tags
such as
VERSION�,
PROJECT�,
SYSTEM� and
SEQUENCE�. The edit points
themselves are contained in the
EVENT_LIST� section. Each event begins with the ASCII
keyword ‘(Entry)’, which serves to delimit events in the list, followed by an entry number
(32-bit integer, incrementing through the list) and an entry type keyword to describe the
nature of the event (e.g. ‘(Cut)’). Each different event type then has a number of bytes fol-
lowing that define the event more specifically. The following is an example of a simple cut
edit, as suggested by the standard:

(Entry) 0010 (Cut) F “FILE://VOL/DIR/FILE” 1 1 03:00:00;00/0000
01:00:00:00/0000 01:00:10:00/0000_

This sequence essentially describes a cut edit, entry number 0010, the source of which is the
file (F) with the path shown, using channel 1 of the source file (or just a mono file), placed on
track 1 of the destination timeline, starting at timecode three hours in the source file, placed
to begin at one hour in the destination timeline (the ‘in point’) and to end ten seconds later
(the ‘out point’). Some workstation software packages store a timecode value along with each
sound file to indicate the nominal start time of the original recording (e.g. BWF files contain
a timestamp in the ‘bext’ chunk), otherwise each sound file is assumed to start at time zero.

It is assumed that default crossfades will be handled by the workstation software itself. Most
workstations introduce a basic short crossfade at each edit point to avoid clicks, but this can
be modified by ‘event modifier’ information in the ADL. Such modifiers can be used to adjust
the shape and duration of a fade in or fade out at an edit point. There is also the option to
point at a rendered crossfade file for the edit point, as described in Chapter 3.

6.1.13 The Open Media Framework Interchange (OMFI)

OMFI was introduced in 1994 by Avid Technology, an American company specialising in
desktop audio and video post-production systems (now merged with Digidesign). It was an
attempt to define a common standard for the interchange of audio, video, edit list and other
multimedia information between workstations running on different platforms. It was in effect
a publicly available format and Avid did not charge licensing fees of any kind, OMFI being a
means of trying to encourage greater growth in this field of the industry as a whole. A number
of other manufacturers signed up to support OMF and worked jointly on its development. Avid
makes available an OMF Interchange Toolkit at moderate cost for developers who want to build
OMF compatibility into their products. The company is gradually migrating from OMFI to a
new format called AAF (Advanced Authoring Format) that is supported by a wide range of
multimedia vendors. Parts of OMFI 2.0 have apparently been incorporated within AAF.

Desktop Audio Technology

182

The OMFI 1.0 specification was lengthy and dealt with descriptions of the various types of
information that could be contained and the methods of containment. It also contained details
of compositions and the ways in which edit timing data should be managed. Version 1.0
of OMFI was very video oriented and specified no more for audio than the two common
formats for the audio data files and a means of specifying edit points and basic crossfade
durations (but not the shape). Compared with AES 31, OMFI is much more difficult for pro-
grammers to understand because it is much more expandable and versatile, being based on
object-oriented concepts rather than being a simple text-based description of the project.
OMFI 2.0 is yet more involved and links information in a different way to 1.0, the two being
incompatible. As far as the audio user is concerned, the 1.0 version specifies that the common
audio formats to be used are the uncompressed versions of either the AIFF format or the
WAVE format (see above), depending on the intended hardware platform. It also allows for
the possibility that manufacturers might want to specify ‘private’ interchange formats of
their own. The format apparently limits audio resolution to 16 bits for interchange, but there
is no particular reason why this should be so and some programmers have modified the
Toolkit code to accommodate 24-bit audio files. Most of the version 1.0 document referred to
video operations, so cuts and effects were all described in video terms.

OMFI 1.0 projects contain two types of information: ‘compositions’ and ‘sources’.
Compositions specify how the various sources are to be assembled in order to play the fin-
ished product. Source data (audio, video, or other multimedia files) may be stored either in
separate files, referenced by the OMF file, or within the OMF container structure. The con-
tainer structure is similar to the IFF model described above (indeed Avid originally started to
use IFF), in that it contains a number of self-describing parts, and is called Bento (an Apple
development). Each part of the OMFI file is complete in itself and can be handled independ-
ently of the other parts – indeed applications do not need to be able to deal with every com-
ponent of an OMFI file – allowing different byte ordering for different parts if required.
Systems may claim OMFI compatibility yet still not be able to deal with some of the data
objects contained within the file, requiring care in implementation and some discipline in the
use of OMFI within organisations. The fact that OMFI used Apple’s Bento container was one
of the problems encountered by the AES when attempting to standardise editing project
interchange for the AES 31 standard. Since Bento is not an open standard and is Apple’s pro-
prietary technology, AES apparently could not adopt OMFI directly.

6.1.14 MXF – the Media Exchange Format

MXF was developed by the Pro-MPEG forum as a means of exchanging audio, video and
metadata between devices, primarily in television operations. It is based on the modern con-
cept of media objects that are split into ‘essence’ and ‘metadata’. Essence files are the raw
material (i.e. audio and video) and the metadata describes things about the essence (such as
where to put it, where it came from and how to process it).

MXF files attempt to present the material in a ‘streaming’ format, that is one that can be played
out in real time, but they can also be exchanged in conventional file transfer operations. As such
they are normally considered to be finished program material, rather than material that is to be
processed somewhere downstream, designed for playout in broadcasting environments. The
bit stream is also said to be compatible with recording on digital videotape devices.

Audio formats and data interchange

183

6.1.15 AAF – the Advanced Authoring Format

AAF is an authoring format for multimedia data that is supported by numerous vendors,
including Avid which has adopted it as a migration path from OMFI (see above). Parts of
OMFI 2.0 form the basis for parts of AAF and there are also close similarities between AAF
and MXF (described in the previous section). Like the formats to which it has similarities,
AAF is an object-oriented format that combines essence and metadata within a container
structure. Unlike MXF it is designed for project interchange such that elements within the
project can be modified, post-processed and resynchronised. It is not, therefore, directly suit-
able as a streaming format but can easily be converted to MXF for streaming if necessary.

Rather like OMFI it is designed to enable complex relationships to be described between con-
tent elements, to map these elements onto a timeline, to describe the processing of effects,
synchronise streams of essence, retain historical metadata and refer to external essence
(essence not contained within the AAF package itself). It has three essential parts: the AAF
Object Specification (which defines a container for essence and metadata, the logical contents
of objects and rules for relationships between them); the AAF Low-Level Container
Specification (which defines a disk filing structure for the data, based on Microsoft’s
Structured Storage); and the AAF SDK Reference Implementation (which is a software devel-
opment kit that enables applications to deal with AAF files). The Object Specification is exten-
sible in that it allows new object classes to be defined for future development purposes.

Desktop Audio Technology

184

Figure 6.8 Graphical conceptualisation of some metadata package relationships in AAF: a simple audio
post-production example

Segment SegmentVideo slot

Audio 1 slot

Audio 2 slot

Audio 3 slot

Audio 4 slot

Seg

Source clip segment

refers to....

refers to....

Slot 1 File source package

00:12:00:00 00:13:00:00

Sound file on disk (essence)

Composition

package

Time

The basic object hierarchy is illustrated in Figure 6.8, using an example of a typical audio
post-production scenario. ‘Packages’ of metadata are defined that describe either composi-
tions, essence or physical media. Some package types are very ‘close’ to the source material
(they are at a lower level in the object hierarchy, so to speak) – for example a ‘file source pack-
age’ might describe a particular sound file stored on disk. The metadata package, however,
would not be the file itself, but it would describe its name and where to find it. Higher level
packages would refer to these lower level packages in order to put together a complex pro-
gram. A composition package is one that effectively describes how to assemble source clips
to make up a finished program. Some composition packages describe effects that require a
number of elements of essence to be combined or processed in some way.

Packages can have a number of ‘slots’. These are a bit like tracks in more conventional
terminology, each slot describing only one kind of essence (e.g. audio, video, graphics). Slots
can be static (not time-dependent), timeline (running against a timing reference) or event-
based (one-shot, triggered events). Slots have segments that can be source clips, sequences,
effects or fillers. A source clip segment can refer to a particular part of a slot in a separate
essence package (so it could refer to a short portion of a sound file that is described in an
essence package, for example).

6.2 Disk pre-mastering formats
The original tape format for submitting CD masters to pressing plants was Sony’s audio-
dedicated PCM 1610/1630 format on U-matic video tape. This is now ‘old technology’ and
has been replaced by alternatives based on more recent data storage media and file storage
protocols. These include the PMCD (pre-master CD), CD-R, Exabyte and DLT tape formats.
DVD mastering also requires high-capacity media for transferring the many gigabytes of
information to mastering houses in order that glass masters can be created.

The Disk Description Protocol (DDP) developed by Doug Carson and Associates is now
widely used for describing disk masters. Version 1 of the DDP laid down the basic data struc-
ture but said little about higher level issues involved in interchange, making it more than a
little complicated for manufacturers to ensure that DDP masters from one system would be
readable on another. Version 2 addressed some of these issues.

DDP is a protocol for describing the contents of a disk, which is not medium specific.
That said it is common to interchange CD masters with DDP data on 8 mm Exabyte data
cartridges and DVD masters are typically transferred on DLT Type III or IV compact tapes or
on DVD-R(A) format disks with CMF (cutting master format) DDP headers. DDP files can
be supplied separately to the audio data if necessary. DDP can be used for interchanging
the data for a number of different disk formats, such as CD-ROM, CD-DA, CD-I and
CD-ROM-XA, DVD-Video and Audio, and the protocol is really extremely simple. It consists
of a number of ‘streams’ of data, each of which carries different information to describe the
contents of the disk. These streams may be either a series of packets of data transferred over
a network, files on a disk or tape, or raw blocks of data independent of any filing system.
The DDP protocol simply maps its data into whatever block or packet size is used by the
medium concerned, provided that the block or packet size is at least 128 bytes. Either a
standard computer filing structure can be used, in which case each stream is contained

Audio formats and data interchange

185

within a named file, or the storage medium is used ‘raw’ with each stream starting at a
designated sector or block address.

The ANSI tape labelling specification is used to label the tapes used for DDP transfers. This
allows the names and locations of the various streams to be identified. The principal streams
included in a DDP transfer for CD mastering are as follows:

1 DDP ID stream or ‘DDPID’ file. 128 bytes long, describing the type and level of DDP
information, various ‘vital statistics’ about the other DDP files and their location on the
medium (in the case of physically addressed media), and a user text field (not transferred
to the CD).

2 DDP Map stream or ‘DDPMS’ file. This is a stream of 128-byte data packets which together
give a map of the CD contents, showing what types of CD data are to be recorded in each
part of the CD, how long the streams are, what types of subcode are included, and so forth.
Pointers are included to the relevant text, subcode and main streams (or files) for each part
of the CD.

3 Text stream. An optional stream containing text to describe the titling information for vol-
umes, tracks or index points (not currently stored in CD formats), or for other text com-
ments. If stored as a file, its name is indicated in the appropriate map packet.

4 Subcode stream. Optionally contains information about the subcode data to be included
within a part of the disk, particularly for CD-DA. If stored as a file, its name is indicated in
the appropriate map packet.

5 Main stream. Contains the main data to be stored on a part of the CD, treated simply as a
stream of bytes, irrespective of the block or packet size used. More than one of these files can
be used in cases of mixed-mode disks, but there is normally only one in the case of a con-
ventional audio CD. If stored as a file, its name is indicated in the appropriate map packet.

6.3 Interconnecting audio devices
In the case of analog interconnection between devices, replayed digital audio is converted to
the analog domain by the replay machine’s D/A convertors, routed to the recording machine
via a conventional audio cable and then reconverted to the digital domain by the recording
machine’s A/D convertors. The audio is subject to any gain changes that might be introduced
by level differences between output and input, or by the record gain control of the recorder
and the replay gain control of the player. Analog domain copying is necessary if any analog
processing of the signal is to happen in between one device and another, such as gain cor-
rection, equalisation, or the addition of effects such as reverberation. Most of these opera-
tions, though, are now possible in the digital domain.

An analog domain copy cannot be said to be a perfect copy or a clone of the original master,
since the data values will not be exactly the same (owing to slight differences in recording
level, differences between convertors, the addition of noise, and so on). For a clone it is neces-
sary to make a true digital copy.

Professional digital audio systems, and some consumer systems, have digital interfaces con-
forming to one of the standard protocols and allow for a number of channels of digital audio

Desktop Audio Technology

186

data to be transferred between devices with no loss of sound quality. Any number of genera-
tions of digital copies may be made without affecting the sound quality of the latest generation,
provided that errors have been fully corrected. The digital outputs of a recording device are
taken from a point in the signal chain after error correction, which results in the copy being
error corrected. Thus the copy does not suffer from any errors that existed in the master, pro-
vided that those errors were correctable. This process takes place in real time, requiring the
operator to put the receiving device into record mode such that it simply stores the incoming
stream of audio data. Any accompanying metadata may or may not be recorded (often most
of it is not).

Digital interfaces may be used for the interconnection of recording systems and other audio
devices such as mixers and effects units. It is now common only to use analog interfaces at
the very beginning and end of the signal chain, with all other interconnections being made
digitally.

Making a copy of a recording using any of the digital interface standards involves the con-
nection of appropriate cables between player and recorder, and the switching of the
recorder’s input to ‘digital’ as opposed to ‘analog’, since this sets it to accept a signal from
the digital input as opposed to the A/D convertor. It is necessary for both machines to be
operating at the same sampling frequency (unless a sampling frequency convertor is used)
and may require the recorder to be switched to ‘external sync’ mode, so that it can lock its
sampling frequency to that of the player. Alternatively (and preferably) a common reference
signal may be used to synchronise all devices that are to be interconnected digitally.
A recorder should be capable of at least the same quantising resolution (number of bits per
sample) as a player, otherwise audio resolution will be lost. If there is a difference in resolu-
tion between the systems it is advisable to use a processor in between the machines that
optimally dithers the signal for the new resolution, or alternatively to use redithering options
on the source machine to prepare the signal for its new resolution.

6.4 Computer networks and digital audio interfaces compared
Dedicated ‘streaming’ interfaces, as employed in broadcasting, production and post-production
environments, are the digital audio equivalent of analog signal cables, down which signals
for one or more channels are carried in real time from one point to another, possibly with
some auxiliary information (metadata) attached. An example is the AES-3 interface,
described below. Such an audio interface uses a data format dedicated to audio purposes,
whereas a computer data network may carry numerous types of information.

Dedicated interfaces are normally unidirectional, point-to-point connections, and should be
distinguished from buses and computer networks that are often bidirectional and carry data
in a packet format. Sources may be connected to destinations using a routeing matrix or by
patching individual connections, very much as with analog signals. Audio data are trans-
mitted in an unbroken stream, there is no handshaking process involved in the data transfer,
and erroneous data are not retransmitted because there is no mechanism for requesting its
retransmission. The data rate of a dedicated audio interface is directly related to the audio
sampling frequency, wordlength and number of channels of the audio data to be transmitted,

Audio formats and data interchange

187

ensuring that the interface is always capable of serving the specified number of channels. If
a channel is unused for some reason its capacity is not normally available for assigning to
other purposes (such as higher-speed transfer of another channel, for example).

Dedicated audio interfaces, therefore, may be thought of as best suited to operational situations
in which analog signal cabling needs to be replaced by a digital equivalent, and where digital
audio signals are to be routed from place to place within a studio environment so as to ensure
dedicated signal feeds. There are, however, a number of developments in real-time computer
networking that begin to blur the distinction between such approaches and conventional asyn-
chronous file transfers, owing to the increased use of ‘streaming media’, as discussed below.

There is an increasing trend towards employing standard computer interfaces and networks
to transfer audio information, as opposed to using dedicated audio interfaces. Such com-
puter networks are typically used for a variety of purposes in general data communications
and they may need to be adapted for audio applications that require sample-accurate real-
time transfer. The increasing ubiquity of computer systems in audio environments makes it
inevitable that generic data communication technology will gradually take the place of dedi-
cated interfaces. It also makes sense economically to take advantage of the ‘mass market’
features of the computer industry.

Computer networks are typically general-purpose data carriers that may have asynchronous
features and may not always have the inherent quality-of-service (QoS) features that are
required for ‘streaming’ applications. They also normally use an addressing structure that
enables packets of data to be carried from one of a number of sources to one of a number of
destinations and such packets will share the connection in a more or less controlled way. Data
transport protocols such as TCP/IP are often used as a universal means of managing the
transfer of data from place to place, adding overheads in terms of data rate, delay and error
handling that may work against the efficient transfer of audio. Such networks may be
intended primarily for file transfer applications where the time taken to transfer the file is not
a crucial factor – as fast as possible will do.

Conventional office Ethernet is a good example of a computer network interface that has
limitations in respect of audio streaming. The original 10 Mbit s�1 data rate was quite slow,
although theoretically capable of handling a number of channels of real-time audio data. If
employed between only two devices and used with a low-level protocol such as UDP (user
datagram protocol) audio can be streamed quite successfully, but problems can arise when
multiple devices contend for use of the bus and where the network is used for general pur-
pose data communications in addition to audio streaming. There is no guarantee of a certain
quality of service, because the bus is a sort of ‘free for all’, ‘first-come-first-served’ arrange-
ment that is not designed for real-time applications. To take a simple example, if one’s col-
league attempts to download a huge file from the Internet just when one is trying to stream
a broadcast live-to-air in a local radio station, using the same data network, the chances are
that one’s broadcast will drop out occasionally.

One can partially address such limitations in a crude way by throwing data-handling capac-
ity at the problem, hoping that increasing the network speed to 100 Mbit s�1 or even 1 Gbit s�1

will avoid it ever becoming overloaded. Circuit-switched networks can also be employed to
ease these problems (that is networks where individual circuits are specifically established

Desktop Audio Technology

188

between sources and destinations). Unless capacity can be reserved and service quality
guaranteed a data network will never be a suitable replacement for dedicated audio interfaces
in critical environments such as broadcasting stations. This has led to the development of real-
time protocols and/or circuit-switched networks for handling audio information on data
interfaces, in which latency (delay) and bandwidth are defined and guaranteed. The audio
industry can benefit from the increased data rates, flexibility and versatility of general purpose
interfaces provided that these issues are taken seriously.

Desktop computers and consumer equipment are also increasingly equipped with general
purpose serial data interfaces such as USB (universal serial bus) and FireWire (IEEE 1394).
These are examples of personal area network (PAN) technology, allowing a number of
devices to be interconnected within a limited range around the user. These have a high
enough data rate to carry a number of channels of audio data over relatively short distances,
either over copper or optical fibre. Audio protocols also exist for these, as described below.

6.5 Dedicated audio interface formats
6.5.1 Digital interface types

There are a number of types of digital interface, some of which are international standards
and others of which are manufacturer-specific. They all carry digital audio for one or more
channels with at least 16-bit resolution and will operate at the standard sampling rates of
44.1 and 48 kHz, as well as at 32 kHz if necessary, some having a degree of latitude for
varispeed. Some interface standards have been adapted to handle higher sampling frequen-
cies such as 88.2 and 96 kHz. The interfaces vary as to how many physical interconnections
are required. Some require one link per channel plus a synchronisation signal, whilst others
carry all the audio information plus synchronisation information over one cable.

The interfaces are described below in outline. It is common for subtle incompatibilities to
arise between devices, even when interconnected with a standard interface, owing to the dif-
ferent ways in which non-audio information is implemented. This can result in anything
from minor operational problems to total non-communication and the causes and remedies
are unfortunately far too detailed to go into here. The reader is referred to The Digital Interface
Handbook by Rumsey and Watkinson, as well as to the standards themselves, if a greater
understanding of the intricacies of digital audio interfaces is required.

6.5.2 The AES 3 interface (AES 3)

The AES 3 interface, described almost identically in AES3-1992, IEC 60958 and EBU Tech.
3250E among others, allows for two channels of digital audio (A and B) to be transferred
serially over one balanced interface, using drivers and receivers similar to those used in the
RS422 data transmission standard, with an output voltage of between 2 and 7 volts as shown
in Figure 6.9. The interface allows two channels of audio to be transferred over distances up
to 100 m, but longer distances may be covered using combinations of appropriate cabling,
equalisation and termination. Standard XLR-3 connectors are used, often labelled DI (for
digital in) and DO (for digital out).

Audio formats and data interchange

189

Each audio sample is contained within a ‘subframe’ (see Figure 6.10), and each subframe begins
with one of three synchronising patterns to identify the sample as either A or B channel, or to
mark the start of a new channel status block (see Figure 6.11). These synchronising patterns
violate the rules of bi-phase mark coding (see below) and are easily identified by a decoder.
One frame (containing two audio samples) is normally transmitted in the time period of one
audio sample, so the data rate varies with the sampling frequency. (Note, though, that the
recently introduced ‘single-channel-double-sampling-frequency’ mode of the interface
allows two samples for one channel to be transmitted within a single frame in order to allow
the transport of audio at 88.2 or 96 kHz sampling frequency.)

Additional data is carried within the subframe in the form of 4 bits of auxiliary data (which
may either be used for additional audio resolution or for other purposes such as low-quality
speech), a validity bit (V), a user bit (U), a channel status bit (C) and a parity bit (P), making
32 bits per subframe and 64 bits per frame. Channel status bits are aggregated at the receiver
to form a 24-byte word every 192 frames, and each bit of this word has a specific function
relating to interface operation, an overview of which is shown in Figure 6.12. Examples of bit
usage in this word are the signalling of sampling frequency and pre-emphasis, as well as the
carrying of a sample address ‘timecode’ and labelling of source and destination. Bit 1 of the
first byte signifies whether the interface is operating according to the professional (set to 1)
or consumer (set to 0) specification.

Bi-phase mark coding, the same channel code as used for SMPTE/EBU timecode, is used in
order to ensure that the data is self-clocking, of limited bandwidth, DC free, and polarity

Desktop Audio Technology

190

Figure 6.9 Recommended electrical circuit for use with the standard two-channel interface

EQ

Driver Cable Receiver

3

2

1

3

2

1

Figure 6.10 Format of the standard two-channel interface frame

Audio sample dataSync Aux

V U C P

4 4 20 4

Subframe A = 32 bits Subframe B = 32 bits

LSB

Audio sample dataSync Aux

V U C P

4 4 20 4

LSB

1 Frame = 64 bits; Duration = 1 sample period = 20.8 μs @ 48 kHz sampling rate

Audio formats and data interchange

191

Figure 6.11 Three different preambles (X, Y and Z) are used to synchronise a receiver at the starts of subframes

X (M)

Y (W)

Z (B)

Channel
A

Channel
B

Channel
A

Channel
B

Channel
A

Channel
BX Y Z Y X Y

32
bit periods

1 bit
period

Frame 191 Frame 0 Frame 1

Subframe Subframe

Start of new channel
status block

Figure 6.12 Overview of the professional channel status block

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Basic control data

Mode and user bit management

Use of aux bits, alignment and audio wordlength

Multichannel mode and channel number

Sampling frequency and sync reference

Reserved

Source identification (4 bytes of 7-bit ASCII,
no parity)

Destination identification (4 bytes of 7-bit ASCII,
no parity)

Local sample address code (32-bit binary)

Time-of-day sample address code (32-bit binary)

Channel status reliability flags

CRCC

Byte

independent, as shown in Figure 6.13. The interface has to accommodate a wide range of
cable types and a nominal 110 ohms characteristic impedance is recommended. Originally
(AES3-1985) up to four receivers with a nominal input impedance of 250 ohms could be con-
nected across a single professional interface cable, but the later modification to the standard
recommended the use of a single receiver per transmitter, having a nominal input impedance
of 110 ohms.

6.5.3 Standard consumer interface (IEC 60958-3)

The most common consumer interface (historically related to SPDIF – the Sony/Philips dig-
ital interface) is very similar to the AES 3 interface, but uses unbalanced electrical intercon-
nection over a coaxial cable having a characteristic impedance of 75 ohms, as shown in Figure
6.14. It can be found on many items of semi-professional or consumer digital audio equip-
ment, such as CD players and DAT machines, and is also widely used on computer sound
cards because of the small physical size of the connectors. It usually terminates in an RCA
phono connector, although some equipment makes use of optical fibre interconnects (TOS-
link) carrying the same data. Format convertors are available for converting consumer for-
mat signals to the professional format, and vice versa, and for converting between electrical
and optical formats.

When the IEC standardised the two-channel digital audio interface, two requirements
existed: one for ‘consumer use’, and one for ‘broadcasting or similar purposes’. A single IEC
standard (IEC 958) resulted with only subtle differences between consumer and professional
implementation. Occasionally this caused problems in the interconnection of machines, such
as when consumer format data was transmitted over professional electrical interfaces. IEC
958 has now been rewritten as IEC 60958 and many of these uncertainties have been
addressed.

The data format of subframes is the same as that used in the professional interface, but the
channel status implementation is almost completely different, as shown in Figure 6.15. The
second byte of channel status in the consumer interface has been set aside for the indication
of ‘category codes’, these being set to define the type of consumer usage. Current examples
of defined categories are (00000000) for the General category, (10000000) for Compact Disc

Desktop Audio Technology

192

Figure 6.13 An example of the bi-phase mark channel code

0 1 1 0 1

Original
NRZ data

Bi-phase mark
coded data

Audio formats and data interchange

193

Figure 6.14 The consumer electrical interface (transformer and capacitor are optional but may improve the
electrical characteristics of the interface)

Driver Cable Receiver

Figure 6.15 Overview of the consumer channel status block

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Basic control and mode data

Category code

Source and channel number

Sampling rate and clock accuracy

Depends on application
Default to binary 0

Byte

and (11000000) for a DAT machine. Once the category has been defined, the receiver is
expected to interpret certain bits of the channel status word in a particular way, depending
on the category. For example, in CD usage, the four control bits from the CD’s ‘Q’ channel
subcode are inserted into the first four control bits of the channel status block (bits 1–4). Copy
protection can be implemented in consumer-interfaced equipment, according to the Serial
Copy Management System (SCMS).

The user bits of the consumer interface are often used to carry information derived from
the subcode of recordings, such as track identification and cue point data. This can be used
when copying CDs and DAT tapes, for example, to ensure that track start ID markers are
copied along with the audio data. This information is not normally carried over AES/EBU
interfaces.

6.5.4 Carrying data-reduced audio over standard digital interfaces

The increased use of data-reduced multichannel audio has resulted in methods by which
such data can be carried over standard two-channel interfaces, either for professional or
consumer purposes. This makes use of the ‘non-audio’ or ‘other uses’ mode of the inter-
face, indicated in the second bit of channel status, which tells conventional PCM audio
decoders that the information is some other form of data that should not be converted
directly to analog audio. Because data-reduced audio has a much lower rate than the
PCM audio from which it was derived, a number of audio channels can be carried in a
data stream that occupies no more space than two channels of conventional PCM. These
applications of the interface are described in SMPTE 337M (concerned with professional
applications) and IEC 61937, although the two are not identical. SMPTE 338M and 339M
specify data types to be used with this standard. The SMPTE standard packs the com-
pressed audio data into 16, 20 or 24 bits of the audio part of the AES 3 sub-frame and can
use the two sub-frames independently (e.g. one for PCM audio and the other for data-
reduced audio), whereas the IEC standard only uses 16 bits and treats both sub-frames the
same way.

Consumer use of this mode is evident on DVD players, for example, for connecting them
to home cinema decoders. Here the Dolby Digital or DTS-encoded surround sound is not
decoded in the player but in the attached receiver/decoder. IEC 61937 has parts, either
pending or published, dealing with a range of different codecs including ATRAC, Dolby
AC-3, DTS and MPEG (various flavours). An ordinary PCM convertor trying to decode
such a signal would simply reproduce it as a loud, rather unpleasant noise, which is not
advised and does not normally happen if the second bit of channel status is correctly
observed. Professional applications of the mode vary, but are likely to be increasingly
encountered in conjunction with Dolby E data reduction – a relatively recent development
involving mild data reduction for professional multichannel applications in which users
wish to continue making use of existing AES 3-compatible equipment (e.g. VTRs, switch-
ers and routers). Dolby E enables 5.1-channel surround audio to be carried over conven-
tional two-channel interfaces and through AES 3-transparent equipment at a typical rate of
about 1.92 Mbit s�1 (depending on how many bits of the audio sub-frame are employed).
It is designed so that it can be switched or edited at video frame boundaries without
disturbing the audio.

Desktop Audio Technology

194

6.5.5 Tascam digital interface (TDIF)

Tascam’s interfaces have become popular owing to the widespread use of the company’s
DA-88 multitrack recorder and more recent derivatives. The primary TDIF-1 interface uses a
25-pin D-sub connector to carry eight channels of audio information in two directions (in and
out of the device), sampling frequency and pre-emphasis information (on separate wires, two
for fs and one for emphasis) and a synchronising signal. The interface is unbalanced and uses
CMOS voltage levels. Each data connection carries two channels of audio data, odd channel
and MSB first, as shown in Figure 6.16. As can be seen, the audio data can be up to 24 bits
long, followed by 2 bits to signal the word length, 1 bit to signal emphasis and 1 bit for par-
ity. There are also four user bits per channel that are not usually used.

This resembles a modified form of the AES3 interface frame format. An accompanying
left/right clock signal is high for the odd samples and low for the even samples of the audio
data. It is difficult to find information about this interface but the output channel pairs appear
to be on pins 1–4 with the left/right clock on pin 5, while the inputs are on pins 13–10 with
the left/right clock on pin 9. Pins 7, 14–17 (these seem to be related to output signals) and
22–25 (related to the input signals) are grounded. The unbalanced, multi-conductor,
non-coaxial nature of this interface makes it only suitable for covering short distances up to
5 metres.

6.5.6 Alesis digital interface

The ADAT multichannel optical digital interface, commonly referred to as the ‘light pipe’
interface or simply ‘ADAT Optical’, is a serial, self-clocking, optical interface that carries
eight channels of audio information. It is described in US Patent 5,297,181: ‘Method and
apparatus for providing a digital audio interface protocol’. The interface is capable of carry-
ing up to 24 bits of digital audio data for each channel and the eight channels of data are com-
bined into one serial frame that is transmitted at the sampling frequency. The data is encoded
in NRZI format for transmission, with forced ones inserted every five bits (except during the
sync pattern) to provide clock content. This can be used to synchronise the sampling clock of
a receiving device if required, although some devices require the use of a separate 9-pin
ADAT sync cable for synchronisation. The sampling frequency is normally limited to 48 kHz
with varispeed up to 50.4 kHz and TOSLINK optical connectors are typically employed
(Toshiba TOCP172 or equivalent). In order to operate at 96 kHz sampling frequency some

Audio formats and data interchange

195

Figure 6.16 Format of TDIF data and LRsync signal

Odd audio (24 bits) Even audio (24 bits)

MSB

Word length

Emphasis

Parity

User

L/R
switch
signal

implementations use a ‘double-speed’ mode in which two channels are used to transmit one
channel’s audio data (naturally halving the number of channels handled by one serial inter-
face). Although 5 m lengths of optical fibre are the maximum recommended, longer distances
may be covered if all the components of the interface are of good quality and clean.
Experimentation is required.

As shown in Figure 6.17 the frame consists of an 11-bit sync pattern consisting of 10 zeros fol-
lowed by a forced one. This is followed by four user bits (not normally used and set to zero),
the first forced one, then the first audio channel sample (with forced ones every five bits), the
second audio channel sample, and so on.

6.5.7 Roland R-bus

Roland has recently introduced its own proprietary multichannel audio interface that, like TDIF
(but not directly compatible with it), uses a 25-way D-type connector to carry eight channels of
audio in two directions. Called R-bus it is increasingly used on Roland’s digital audio products
and convertor boxes are available to mediate between R-bus and other interface formats. Little
technical information about R-bus is available publicly at the time of writing.

6.5.8 Sony digital interface for DSD (SDIF-3)

Sony has recently introduced a high-resolution digital audio format known as ‘Direct Stream
Digital’ or DSD (see Chapter 2). This encodes audio using one-bit sigma-delta conversion at
a very high sampling frequency of typically 2.8224 MHz (64 times 44.1 kHz). There are no
internationally agreed interfaces for this format of data, but Sony has released some prelim-
inary details of an interface that can be used for the purpose, known as SDIF-3. Some early
DSD equipment used a data format known as ‘DSD-raw’ which was simply a stream of DSD
samples in non-return-to-zero (NRZ) form, as shown in Figure 6.18(a).

In SDIF-3 data is carried over 75 ohm unbalanced coaxial cables, terminating in BNC con-
nectors. The bit rate is twice the DSD sampling frequency (or 5.6448 Mbit s�1 at the sampling
frequency given above) because phase modulation is used for data transmission as shown in
Figure 6.18(b). A separate word clock at 44.1 kHz is used for synchronisation purposes. It is
also possible to encounter a DSD clock signal connection at the 64 times 44.1 kHz
(2.8224 MHz).

6.5.9 Sony multichannel DSD interface (MAC-DSD)

Sony has also developed a multichannel interface for DSD signals, capable of carrying 24
channels over a single physical link. The transmission method is based on the same technol-
ogy as used for the Ethernet 100BASE-TX (100 Mbit s�1) twisted-pair physical layer (PHY),

Desktop Audio Technology

196

Figure 6.17 Basic format of ADAT data

MSB

UserSync Chan. 1 Chan. 8

but it is used in this application to create a point-to-point audio interface. Category 5 cabling
is used, as for Ethernet, consisting of eight conductors. Two pairs are used for bi-directional
audio data and the other two pairs for clock signals, one in each direction.

Twenty-four channels of DSD audio require a total bit rate of 67.7 Mbit s�1, leaving an
appreciable spare capacity for additional data. In the MAC-DSD interface this is used for
error correction (parity) data, frame header and auxiliary information. Data is formed into
frames that can contain Ethernet MAC headers and optional network addresses for compat-
ibility with network systems. Audio data within the frame is formed into 352 32-bit blocks,
24 bits of each being individual channel samples, six of which are parity bits and two of
which are auxiliary bits.

In a recent enhancement of this interface, Sony has introduced ‘SuperMAC’ which is capable
of handling either DSD or PCM audio with very low latency (delay), typically less than 50 �s.
The number of channels carried depends on the sampling frequency. Twenty-four DSD chan-
nels can be handled, or 48 PCM channels at 44.1/48 kHz, reducing proportionately as the
sampling frequency increases. In conventional PCM mode the interface is transparent to
AES3 data including user and channel status information.

6.6 Networking
6.6.1 Basic principles of networking

A network carries data either on wire or optical fibre, and is normally shared between a number
of devices and users. The sharing is achieved by containing the data in packets of a limited
number of bytes (usually between 64 and 1518), each with an address attached. The packets may
share a common physical link, normally a high speed serial bus of some kind, being multiplexed
in time either using a regular slot structure synchronised to a system clock (isochronous trans-
fer) or in an asynchronous fashion whereby the time interval between packets may be varied or
transmission may not be regular, as shown in Figure 6.19. The length of packets may not be
constant, depending on the requirements of different protocols sharing the same network.
Packets for a particular file transfer between two devices may not be contiguous and may be
transferred erratically, depending on what other traffic is sharing the same physical link.

Figure 6.20 shows some common physical layouts for local area networks (LANs). LANs are
networks that operate within a limited area, such as an office building or studio centre,

Audio formats and data interchange

197

Figure 6.18 Direct Stream Digital interface data is either transmitted ‘raw’, as shown at (a) or phase modulated
as in the SDIF-3 format shown at (b)

(a)

(b)

DSD-raw

SDIF-3

Desktop Audio Technology

198

Figure 6.19 Packets for different destinations (A, B and C) multiplexed onto a common serial bus. (a) Time
division multiplexed into a regular time slot structure. (b) Asynchronous transfer showing variable time gaps and
packet lengths between transfers for different destinations

A1 B1 C1 A2 B2 C2 A3 B3

A1 A2 A3 B1 B2 C1

Time slot

(a)

(b)

Figure 6.20 Two examples of computer network topologies. (a) Devices connected by spurs to a common
hub, and (b) devices connected to a common ‘backbone’. The former is now by far the most common, typically
using CAT 5 cabling

Network
hub

Network backbone

Network
spur

(a)

(b)

within which it is common for every device to ‘see’ the same data, each picking off that which
is addressed to it and ignoring the rest. Routers and bridges can be used to break up complex
LANs into subnets. WANs (wide area networks) and MANs (metropolitan area networks)
are larger entities that link LANs within communities or regions. PANs (personal area net-
works) are typically limited to a range of a few tens of metres around the user (e.g. Firewire,
USB, Bluetooth). Wireless versions of these network types are increasingly common, as dis-
cussed in Section 6.6.8.

In order to place a packet of data on the network, devices must have a means for determin-
ing whether the network is busy and there are various protocols in existence for arbitrating
network access. Taking Ethernet as an example: in the ‘backbone’ configuration devices are
connected to spurs off a common serial bus that requires the bus to be ‘chained’ between each
successive device. Here, a break in the chain can mean disconnection for more than one
device. The star configuration involves a central hub or switch that distributes the data to
each device separately. This is more reliable because a break in any one link does not affect
the others. Bus arbitration in both these cases is normally performed by collision detection
which is a relatively crude approach, relying very much on the rules of spoken conversation
between people. Devices attempt to place packets on the bus whenever it appears to be quiet,
but a collision may take place if another device attempts to transmit before the first one has
finished. The network interface of the transmitting device detects the collision by attempting
to read the data it has just transmitted and retransmits it after transmitting a brief ‘blocking
signal’ if it has been corrupted by the collision.

A token ring configuration places each device within a ‘ring’, each device having both an ‘in’
and an ‘out’ port, with bus arbitration performed using a process of token passing from one
device to the next. This works rather like trains running on a single track line, in that a sin-
gle token is carried by the train using the line and trains can only use the line if carrying the
token. The token is passed to the next train upon leaving the single-track sector to show that
the line is clear. Network communication is divided into a number of ‘layers’, each relating
to an aspect of the communication protocol and interfacing correctly with the layers either
side. The ISO seven-layer model for open systems interconnection (OSI) shows the number
of levels at which compatibility between systems needs to exist before seamless interchange
of data can be achieved (Figure 6.21). It shows that communication begins with the applica-
tion is passed down through various stages to the layer most people understand – the phys-
ical layer, or the piece of wire over which the information is carried. Layers 3, 4 and 5 can be
grouped under the broad heading of ‘protocol’, determining the way in which data packets
are formatted and transferred. There is a strong similarity here with the exchange of data on
physical media, as discussed earlier, where a range of compatibility layers from the physical
to the application determine whether or not one device can read another’s disks.

6.6.2 Extending a network

It is common to need to extend a network to a wider area or to more machines. As the num-
ber of devices increases so does the traffic, and there comes a point when it is necessary to
divide a network into zones, separated by ‘repeaters’, ‘bridges’ or ‘routers’. Some of these
devices allow network traffic to be contained within zones, only communicating between the
zones when necessary. This is vital in large interconnected networks because otherwise data

Audio formats and data interchange

199

placed anywhere on the network would be present at every other point on the network, and
overload could quickly occur.

A repeater is a device that links two separate segments of a network so that they can talk to
each other, whereas a bridge isolates the two segments in normal use, only transferring data
across the bridge when it has a destination address on the other side. A router is very selec-
tive in that it examines data packets and decides whether or not to pass them depending on
a number of factors. A router can be programmed only to pass certain protocols and only cer-
tain source and destination addresses. It therefore acts as something of a network policeman
and can be used as a first level of ensuring security of a network from unwanted external
access. Routers can also operate between different standards of network, such as between
FDDI and Ethernet, and ensure that packets of data are transferred over the most time/cost-
effective route.

One could also use some form of router to link a local network to another that was quite some
distance away, forming a wide area network (WAN), as shown in Figure 6.22. Data can be
routed either over dialled data links such as ISDN (see below), in which the time is charged
according to usage just like a telephone call, or over leased circuits. The choice would depend
on the degree of usage and the relative costs. The Internet provides a means by which LANs
are easily interconnected, although the data rate available will depend on the route, the serv-
ice provider and the current traffic.

6.6.3 Network standards

Ethernet, FDDI (Fibre Distributed Data Interface), ATM (Asynchronous Transfer Mode) and
Fibre Channel are examples of network standards, each of which specifies a number of lay-
ers within the OSI model. FDDI, for example, specifies only the first three layers of the OSI
model (the physical, data link and network layers).

Desktop Audio Technology

200

Figure 6.21 The ISO model for Open Systems Interconnection is arranged in seven layers, as shown here

7 Application Layer

6 Presentation layer

5 Session layer

4 Transport layer

3 Network layer

2 Data link layer

1 Physical layer

Ethernet allows a number of different methods of interconnection and runs at various rates
from 10 Mbit s�1 to 1 Gbit s�1, using collision detection for network access control. Twisted-
pair (Base-T) connection using CAT 5 cabling and RJ 45 connectors is probably the most
widely encountered physical interconnect these days, usually configured in the star topology
using a central hub or switch. Devices can then be plugged and unplugged without affecting
others on the network. Interconnection can also be via either thick (Base-10) or thin (Base-2)
coaxial cable, normally working in the backbone-type configuration shown in the previous
section, using 50-ohm BNC connectors and T-pieces to chain devices on the network (see
Figure 6.23). Such a configuration requires resistive terminators at the ends of the bus to
avoid reflections, as with SCSI connections.

FDDI is a high speed optical fibre network running at 100 Mbit s�1, operating on the token
passing principle described above, allowing up to 2 km between stations. It is often used as

Audio formats and data interchange

201

Figure 6.22 A WAN is formed by linking two or more LANs using a router

Hub

Hub

Router

Router

Packets to and
from LAN 2

Packets to and
from LAN 1

LAN 1

LAN 2

Dialled telecomms link
or leased line

a high-speed backbone for large networks. There is also a copper version of FDDI called
CDDI which runs at the same rate but restricts interconnection distance.

ATM is a protocol for data communication and does not specify the physical medium for
interconnection. It is connection-oriented, in other words it sets up connections between
source and destination and can guarantee a certain quality of service, which makes it quite
suitable for audio and video data. ATM allows for either guaranteed bandwidth communi-
cations between a source and a destination (needed for AV applications), or for more con-
ventional variable bandwidth communication. It operates in a switched fashion and can
extend over wide or metropolitan areas. Switched networks involve the setting up of specific
circuits between a transmitter and one or more receivers, rather like a dialled telephone net-
work (indeed this is the infrastructure of the digital telephone network). The physical net-
work is made up of a series of interconnected switches that are reconfigured to pass the
information from sources to destinations according to the header information attached to
each data packet. A network management system handles the negotiation between different
devices that are contending for bandwidth, according to current demand. ATM typically
operates over SONET (synchronous optical network) or SDH (synchronous digital hierarchy)
networks, depending on the region of the world. Data packets on ATM networks consist of a
fixed 48 bits, typically preceded by a 5-byte header that identifies the virtual channel of the
packet.

Fibre Channel is used increasingly for the interconnection of workstations and disk storage
arrays, using so-called ‘storage area network’ structures. It uses a half-duplex interface, but
it has a separate fibre (or copper connection) for transmit and receive circuits so can operate
in full-duplex mode. The standard allows for data rates up to 4 Gbit s�1 depending on the
capabilities of the implementation.

6.6.4 Network protocols

A protocol specifies the rules of communication on a network. In other words it determines
things like the format of data packets, their header information and addressing structure, and
any handshaking and error retrieval schemes, amongst other things. One physical network
can handle a wide variety of protocols, and packets conforming to different protocols can
coexist on the same bus.

Some common examples of general purpose network protocols are TCP/IP (Transport
Control Protocol/Internet Protocol), used for communications over the Internet (see below)
and also over LANs, and UDP (User Datagram Protocol) often used for basic streaming
applications. These general-purpose protocols are not particularly efficient or reliable for
real-time audio transfer, but they can be used for non-real-time transfer of audio files

Desktop Audio Technology

202

Figure 6.23 Typical thin Ethernet interconnection arrangement (this is becoming less common now)

T-piece

Device 1 Device 2 Device 3 Device 4

Terminator (50 ohm)

50 ohm coax

between workstations or for streaming. Specially designed protocols may be needed for
audio purposes, as described below.

6.6.5 Audio network requirements

The principal application of computer networks in audio systems is in the transfer of
audio data files between workstations, or between workstations and a central ‘server’
which stores shared files. The device requesting the transfer is known as the ‘client’ and the
device providing the data is known as the ‘server’. When a file is transferred in this way
a byte-for-byte copy is reconstructed on the client machine, with the file name and any
other header data intact. There are considerable advantages in being able to perform this
operation at speeds in excess of real time for operations in which real-time feeds of audio
are not the aim. For example, in a news editing environment a user might wish to load up
a news story file from a remote disk drive in order to incorporate it into a report, this being
needed as fast as the system is capable of transferring it. Alternatively, the editor might
need access to remotely stored files, such as sound files on another person’s system, in
order to work on them separately. In audio post-production for films or video there might
be a central store of sound effects, accessible by everyone on the network, or it might be
desired to pass on a completed portion of a project to the next stage in the post-production
process.

Wired Ethernet is fast enough to transfer audio data files faster than real time, depending
on network loading and speed. For satisfactory operation it is advisable to use 100 Mbit s�1

or even 1 Gbit s�1 Ethernet as opposed to the basic 10 Mbit s�1 version. Switched Ethernet
architectures allow the bandwidth to be more effectively utilised, by creating switched con-
nections between specific source and destination devices. Approaches using FDDI or ATM
are appropriate for handling large numbers of sound file transfers simultaneously at high
speed. Unlike a real-time audio interface, the speed of transfer of a sound file over a packet-
switched network (when using conventional file transfer protocols) depends on how much
traffic is currently using it. If there is a lot of traffic then the file may be transferred more
slowly than if the network is quiet (very much like motor traffic on roads). The file might be
transferred erratically as traffic volume varies, with the file arriving at its destination in
‘spurts’. There therefore arises the need for network communication protocols designed
specifically for the transfer of real-time data, which serve the function of reserving a pro-
portion of the network bandwidth for a given period of time, as described below. This is
known as engineering a certain ‘quality of service’.

Without real-time protocols designed as indicated above, the computer network may not be
relied upon for transferring audio where an unbroken audio output is to be reconstructed at
the destination from the data concerned. The faster the network the more likely it is that one
would be able to transfer a file fast enough to feed an unbroken audio output, but this
should not be taken for granted. Even the highest speed networks can be filled up with traf-
fic! This may seem unnecessarily careful until one considers an application in which a disk
drive elsewhere on the network is being used as the source for replay by a local worksta-
tion, as illustrated in Figure 6.24. Here it must be possible to ensure guaranteed access to the
remote disk at a rate adequate for real-time transfer, otherwise gaps will be heard in the
replayed audio.

Audio formats and data interchange

203

6.6.6 ISDN

ISDN is an extension of the digital telephone network to the consumer, providing two
64 kbit s�1 digital channels (‘B’ channels) which can be connected to ISDN terminals any-
where in the world simply by dialling. Data of virtually any kind may be transferred over the
dialled-up link, and potential applications for ISDN include audio transfer. ISDN is really a
subset of ATM, and ATM has sometimes been called broadband ISDN for this reason.

The total usable capacity of a single ISDN-2 connection is only 128 kbit s�1 and so it is not
possible to carry linear PCM data at normal audio resolutions over such a link, but it is pos-
sible to carry moderately high-quality stereo digital audio at this rate using a data reduction
system such as MPEG (see Chapter 2). Higher rates can be achieved by combining more than
one ISDN link to obtain data rates of, say, 256 or 384 kbit s. Multiple ISDN lines must be syn-
chronised together using devices known as inverse multiplexers if the different delays that
may arise over different connections are to be compensated. There are also ISDN-30 lines,
providing 30 simultaneous ‘B’ channels of 64 kbit s�1 (giving roughly 2 Mbit s�1).

It is possible to use ISDN links for non-real time audio file transfer, and this can be econom-
ically viable depending on the importance of the project and the size of files. The cost of an
ISDN call is exactly the same as the equivalent duration of normal telephone call, and there-
fore it can be quite a cheap way of getting information from one place to another.

In the USA, there still remain a lot of circuits which are very similar to ISDN but not identi-
cal. These are called ‘Switched 56’ and carry data at 56 kbit s rather than 64 kbit s�1 (the
remaining 8 kbit s�1 that makes up the total of 64 kbit s�1 is used for housekeeping data in
Switched 56, whereas with ISDN the housekeeping data is transferred in a ‘D’ channel on top
of the two 64 kbit data channels). This can create some problems when trying to link ISDN

Desktop Audio Technology

204

Figure 6.24 In this example of a networked system a remote disk is accessed over the network to provide
data for real time audio playout from a workstation used for on-air broadcasting. Continuity of data flow to the
on-air workstation is of paramount importance here

High speed network

Edit station
1

Edit station
2

Edit station
3

On-air
station

Studio
recording

Central
server Disk drive

Audio out

Data path for packets

terminals, if there is a Switched 56 bridge somewhere in the way, requiring file transfer to
take place at the lower rate.

For many applications, ISDN services are being superceded by ADSL (Asymmetric Digital
Subscriber Line) technology, allowing higher data rates than offered by the normal pair of
ISDN B channels to be offered to consumers and business over conventional telephone lines.
The two technologies are somewhat different though, and ISDN may be considered superior
for real-time applications requiring switched circuits and quality of service guarantees.

6.6.7 Protocols for the Internet

The Internet is now established as a universal means for worldwide communication.
Although real-time protocols and quality of service do not sit easily with the idea of a free-
for-all networking structure, there is growing evidence of applications that allow real-time
audio and video information to be streamed with reasonable quality. The RealAudio format,
for example, developed by Real Networks, is designed for coding audio in streaming media
applications, currently at rates between 12 and 352 kbit s�1 for stereo audio, achieving
respectable quality at the higher rates. People are also increasingly using the Internet for
transferring multimedia projects between sites using FTP (file transfer protocol).

The Internet is a collection of interlinked networks with bridges and routers in various loca-
tions, which originally developed amongst the academic and research community. The band-
width (data rate) available on the Internet varies from place to place, and depends on the route
over which data is transferred. In this sense there is no easy way to guarantee a certain band-
width, nor a certain ‘time slot’, and when there is a lot of traffic it simply takes a long time for
data transfers to take place. Users access the Internet through a service provider (ISP), using
either a telephone line and a modem, ISDN or an ADSL connection. The most intensive users
will probably opt for high-speed leased lines giving direct access to the Internet.

The common protocol for communication on the Internet is called TCP/IP (Transmission
Control Protocol/Internet Protocol). This provides a connection-oriented approach to data
transfer, allowing for verification of packet integrity, packet order and retransmission in the
case of packet loss. At a more detailed level, as part of the TCP/IP structure, there are high
level protocols for transferring data in different ways. There is a file transfer protocol (FTP)
used for downloading files from remote sites, a simple mail transfer protocol (SMTP) and a
post office protocol (POP) for transferring email, and a hypertext transfer protocol (HTTP)
used for interlinking sites on the world-wide web (WWW). The WWW is a collection of file
servers connected to the Internet, each with its own unique IP address (the method by which
devices connected to the Internet are identified), upon which may be stored text, graphics,
sounds and other data.

UDP (user datagram protocol) is a relatively low-level connectionless protocol that is useful
for streaming over the Internet. Being connectionless, it does not require any handshaking
between transmitter and receiver, so the overheads are very low and packets can simply be
streamed from a transmitter without worrying about whether or not the receiver gets them.
If packets are missed by the receiver, or received in the wrong order, there is little to be done
about it except mute or replay distorted audio, but UDP can be efficient when bandwidth is
low and quality of service is not the primary issue.

Audio formats and data interchange

205

Various real-time protocols have also been developed for use on the Internet, such as RTP
(real-time transport protocol). Here packets are time-stamped and may be reassembled in the
correct order and synchronised with a receiver clock. RTP does not guarantee quality of serv-
ice or reserve bandwidth but this can be handled by a protocol known as RSVP (reservation
protocol). RTSP is the real-time streaming protocol that manages more sophisticated
functionality for streaming media servers and players, such a stream control (play, stop,
fast-forward, etc.) and multicast (streaming to numerous receivers).

6.6.8 Wireless networks

Increasing use is made of wireless networks these days, the primary advantage being the lack
of need for a physical connection between devices. There are various IEEE 802 standards for
wireless networking, including 802.11 which covers wireless Ethernet or ‘Wi-Fi’. These typi-
cally operate on either the 2.4 GHz or 5 GHz radio frequency bands, at relatively low power,
and use various interference reduction and avoidance mechanisms to enable networks to
coexist with other services. It should, however, be recognised that wireless networks will
never be as reliable as wired networks owing to the differing conditions under which they
operate, and that any critical applications in which real-time streaming is required would do
well to stick to wired networks where the chances of experiencing drop-outs owing to inter-
ference or RF fading are almost non-existent. They are however extremely convenient for
mobile applications and when people move around with computing devices, enabling rea-
sonably high data rates to be achieved with the latest technology.

Bluetooth is one example of a wireless personal area network (WPAN) designed to operate
over limited range at data rates of up to 1 Mbit s�1. Within this there is the capacity for a num-
ber of channels of voice quality audio at data rates of 64 kbit s�1 and asynchronous channels
up to 723 kbit s�1. Taking into account the overhead for communication and error protection,
the actual data rate achievable for audio communication is usually only sufficient to transfer
data-reduced audio for a few channels at a time.

6.7 Streaming audio over computer interfaces
Desktop computers and consumer equipment are increasingly equipped with general pur-
pose serial data interfaces such as USB (universal serial bus) and FireWire (IEEE 1394). These
have a high enough data rate to carry a number of channels of audio data over relatively
short distances, either over copper or optical fibre. Audio protocols exist for these, as
described below. There are also a number of protocols designed to enable audio to be
streamed in real time over general-purpose data networks such as Ethernet and ATM.

6.7.1 Audio over Firewire (IEEE 1394)

Firewire is an international standard serial data interface specified in IEEE 1394-1995. One of
its key applications has been as a replacement for SCSI (Small Computer Systems Interface)
for connecting disk drives and other peripherals to computers. It is extremely fast, running
at rates of 100, 200 and 400 Mbit s�1 in its original form, with higher rates appearing all the

Desktop Audio Technology

206

time up to 3.2 Gbit s�1. It is intended for optical fibre or copper interconnection, the copper
100 Mbit s�1 (S100) version being limited to 4.5 m between hops (a hop is the distance
between two adjacent devices). The S100 version has a maximum realistic data capacity of
65 Mbit s�1, a maximum of 16 hops between nodes and no more than 63 nodes on up to 1024
separate buses. On the copper version there are three twisted pairs – data, strobe and power –
and the interface operates in half duplex mode, which means that communications in two
directions are possible, but only one direction at a time. The ‘direction’ is determined by the
current transmitter which will have arbitrated for access to the bus. Connections are ‘hot
pluggable’ with auto-reconfiguration – in other words one can connect and disconnect
devices without turning off the power and the remaining system will reconfigure itself
accordingly. It is also relatively cheap to implement.

Unlike, for example, the AES3 audio interface, data and clock (strobe) signals are separated.
A clock signal can be derived by exlusive-or’ing the data and strobe signals, as shown in
Figure 6.25. Firewire combines features of network and point-to-point interfaces, offering
both asynchronous and isochronous communication modes, so guaranteed latency and
bandwidth are available if needed for time-critical applications. Communications are estab-
lished between logical addresses, and the end point of an isochronous stream is called a
‘plug’. Logical connections between devices can be specified as either ‘broadcast’ or ‘point-
to-point’. In the broadcast case either the transmitting or receiving plug is defined, but not
both, and broadcast connections are unprotected in that any device can start and stop it.
A primary advantage for audio applications is that point-to-point connections are protected –
only the device that initiated a transfer can interfere with that connection, so once established
the data rate is guaranteed for as long as the link remains intact. The interface can be used
for real-time multichannel audio interconnections, file transfer, MIDI and machine control,
carrying digital video, carrying any other computer data and connecting peripherals
(e.g. disk drives).

Data is transferred in packets within a cycle of defined time (125 �s) as shown in Figure 6.26.
The data is divided into 32 bit ‘quadlets’ and isochronous packets (which can be time stamped
for synchronisation purposes) consist of between 1 and 256 quadlets (1024 bytes). Packet
headers contain data from a cycle time register that allows for sample accurate timing to be

Audio formats and data interchange

207

Figure 6.25 Data and strobe signals on the 1394 interface can be exclusive-or’ed to create a clock signal

1 0 0 1 1 0 1

Data

Strobe

Data ≈ Strobe

indicated. Resolutions down to about 40 nanoseconds can be indicated. One device on the bus
acts as a bus master, initiating each cycle with a cycle start packet. Subsequently devices
having isochronous packets to transmit do so, with short gaps between the packets, followed
by a longer subaction gap after which any asynchronous information is transmitted.

Originating partly in Yamaha’s ‘m-LAN’ protocol, the 1394 Audio and Music Data
Transmission Protocol is now also available as an IEC PAS component of the IEC 61883 stan-
dard (a PAS is a publicly available specification that is not strictly defined as a standard but
is made available for information purposes by organisations operating under given proce-
dures). It offers a versatile means of transporting digital audio and MIDI control data. It spec-
ifies that devices operating this protocol should be capable of the ‘arbitrated short bus reset’
function which ensures that audio transfers are not interrupted during bus resets. Those
wishing to implement this protocol should, of course, refer directly to the standard, but a
short summary of some of the salient points is given here.

The complete model for packetising audio data so that it can be transported over the 1394
interface is complex and very hard to understand, but some applications make the overall
structure seem more transparent, particularly if the audio samples are carried in a simple
‘AM824’ format, each quadlet of which has an 8-bit label and 24 bits of data. The model is
layered as shown in Figure 6.27 in such a way that audio applications generate data that is
formed (adapted) into blocks or clusters with appropriate labels and control information
such as information about the nominal sampling frequency, channel configuration and so
forth. Each block contains the information that arrives for transmission within one audio
sample period, so in a surround sound application it could be a sample of data for each of six
channels of audio plus related control information. The blocks, each representing ‘events’, are
then ‘packetised’ for transmission over the interface. The so-called ‘CIP layer’ is the common
isochronous packet layer that is the transport stream of 1394. Each isochronous packet has a
header that is two quadlets long, defining it as an isochronous packet and indicating its
length, and a two quadlet CIP header that describes the following data as audio/music data
and indicates (among other things) the presentation time of the event for synchronisation
purposes. A packet can contain more than one audio event and this becomes obvious when
one notices that the cycle time of 1394 (the time between consecutive periods in which a
packet can be transmitted) is normally 125 �s and an audio sample period at 48 kHz is only
22 �s. 1394 can carry audio data in IEC 60958 format (see Section 6.5.3). This is based on the
AM824 data structure in which the 8-bit label serves as a substitute for the preamble and
VUCP data of the IEC subframe, as shown in Figure 6.28. The following 24 bits of data are
then simply the audio data component of the IEC subframe. The two subframes forming an

Desktop Audio Technology

208

Figure 6.26 Typical arrangement of isochronous and asynchronous packets within a 1394 cycle

etcCycle start Cycle startCh. M Ch. MCh.
N

Ch. O

A
C
K

Async
packet

D

Short gaps between
isochronous packets

Subaction
gap

Cycle period = 125 μs

IEC frame are transmitted within the same event and each has to have the 8-bit label at the
start of the relevant quadlet (indicating left or right channel).

The same AM824 structure can be used for carrying other forms of audio data including
multibit linear audio (a raw audio data format used in some DVD applications, termed
MBLA), high resolution MBLA, 1-bit audio (e.g. DSD), MIDI, SMPTE timecode and sample
count or ancillary data. These are indicated by different 8-bit labels. One-bit audio can be
either raw or DST (Direct Stream Transfer) encoded. DST is a lossless data reduction system
employed in Direct Stream Digital equipment and Super Audio CD.

Audio data quadlets in these different modes can be clustered into compound data blocks.
As a rule a compound data block contains samples from a number of related streams of audio

Audio formats and data interchange

209

Figure 6.27 Example of layered model of 1394 audio/music protocol transfer

Application layer

Adaptation layer

Packetisation layer

CIP (transport) layer

Example

Acquire 6 synchronous streams of
multichannel audio

Form data from each sample period into
compound AM824 data blocks together
with ancillary data, sample rate indication,
etc. Create event sequence at appropriate
transfer frequency.

Form sequence of events into
isochronous packets with
appropriate headers

Transfer over 1394 interface
along with data from any
other aysnchronous or
isochronous applications

Figure 6.28 AM824 data structure for IEC 60958 audio data on 1394 interface. Other AM824 data types
use a similar structure but the label values are different to that shown here

00 PAC P C U V 24-bit audio

MSB

PAC = preamble code (takes place of preamble sync pattern in conventional digital interface)
11 = Z (or B)
01 = X (or M)
00 = Y (or W)

Label Payload

and ancillary information that are based on the same sampling frequency table (see Section 6.7.2).
The parts of these blocks can be application specific or unspecific. In general, compound
blocks begin with an unspecified region (although this is not mandatory) followed by one or
more application-specific regions (see Figure 6.29). The unspecified region can contain
audio/music content data and it is recommended that this always starts with basic two-channel
stereo data in either IEC or raw audio format, followed by any other unspecified content data
in a recommended order. An example of an application-specific part is the transfer of multi-
ple synchronous channels from a DVD player. Here ancillary data quadlets indicate the starts
of blocks and control factors such as downmix values, multichannel type (e.g. different sur-
round modes), dynamic range control and channel assignment. An example of such a multi-
channel cluster is shown in Figure 6.30.

6.7.2 Audio over universal serial bus (USB)

The Universal Serial Bus is not the same as IEEE 1394, but it has some similar implications for
desktop multimedia systems, including audio peripherals. USB has been jointly supported
by a number of manufacturers including Microsoft, Digital, IBM, NEC, Intel and Compaq.
Version 1.0 of the copper interface runs at a lower speed than 1394 (typically either
1.5 or 12 Mbit s�1) and is designed to act as a low-cost connection for multiple input devices
to computers such as joysticks, keyboards, scanners and so on. USB 2.0 runs at a higher rate
up to 480 Mbit s�1 and is supposed to be backwards-compatible with 1.0.

USB 1.0 supports up to 127 devices for both isochronous and asynchronous communication
and can carry data over distances of up to 5 m per hop (similar to 1394). A hub structure is

Desktop Audio Technology

210

Figure 6.29 General structure of a compound data block

Unspecified content quadlets
(e.g. IEC 60958 stereo audio)

Application 1-specific
quadlets in standardised

order

Application 1 ancillary data to
indicate start of block

Application 2 ancillary data to
indicate start of block

Application 2-specific
quadlets in standardised

order

required for multiple connections to the host connector. Like 1394 it is hot pluggable and
reconfigures the addressing structure automatically, so when new devices are connected to a
USB setup the host device assigns a unique address. Limited power is available over the
interface and some devices are capable of being powered solely using this source – known as
‘bus-powered’ devices – which can be useful for field operation of, say, a simple A/D
convertor with a laptop computer.

Data transmissions are grouped into frames of 1 ms duration in USB 1.0 but a ‘micro-frame’
of 1/8 of 1 ms was also defined in USB 2.0. A start-of-frame packet indicates the beginning of
a cycle and the bus clock is normally at 1 kHz if such packets are transmitted every millsec-
ond. So the USB frame rate is substantially slower than the typical audio sampling rate. The
transport structure and different layers of the network protocol will not be described in detail
as they are long and complex and can be found in the USB 2.0 specification. However it is
important to be aware that transactions are set up between sources and destinations over
so-called ‘pipes’ and that numerous ‘interfaces’ can be defined and run over a single USB
cable, only dependent on the available bandwidth.

The way in which audio is handled on USB is well defined and somewhat more clearly
explained than the 1394 audio/music protocol. It defines three types of communication: audio
control, audio streaming and MIDI streaming. We are concerned primarily with audio stream-
ing applications. Audio data transmissions fall into one of three types. Type 1 transmissions
consist of channel-ordered PCM samples in consecutive sub-frames, while Type 2 transmis-
sions typically contain non-PCM audio data that does not preserve a particular channel order
in the bitstream, such as certain types of multichannel data-reduced audio stream. Type 3
transmissions are a hybrid of the two such that non-PCM data is packed into pseudo-stereo
data words in order that clock recovery can be made easier. This method is in fact very much
the same as the way data-reduced audio is packed into audio subframes within the IEC 61937
format described earlier in this chapter, and follows much the same rules.

Audio formats and data interchange

211

Figure 6.30 Specific example of an application-specific data block for multichannel audio transfer from a
DVD player

Ancillary data 1

Ancillary data 2

Label Sub-label

Label

Label

Label

Label

Label

Label

Label

Sub-label

Audio channel 1

Audio channel 2

Audio channel 3

Audio channel 4

Audio channel 5

Audio channel 6

1 AM824 quadlet

Quadlet 1

Quadlet 2

etc

Audio samples are transferred in subframes, each of which can be 1–4 bytes long (up to
24 bits resolution). An audio frame consists of one or more subframes, each of which represents
a sample of different channel in the cluster (see below). As with 1394, a USB packet can
contain a number of frames in succession, each containing a cluster of subframes. Frames are
described by a format descriptor header that contains a number of bytes describing the audio
data type, number of channels, subframe size, as well as information about the sampling fre-
quency and the way it is controlled (for Type 1 data). An example of a simple audio frame
would be one containing only two subframes of 24-bit resolution for stereo audio.

Audio of a number of different types can be transferred in Type 1 transmissions, including
PCM audio (twos complement, fixed point), PCM-8 format (compatible with original 8-bit
WAV, unsigned, fixed point), IEEE floating point, A-law and �-law (companded audio cor-
responding to relatively old telephony standards). Type 2 transmissions typically contain
data-reduced audio signals such as MPEG or AC-3 streams. Here the data stream contains an
encoded representation of a number of channels of audio, formed into encoded audio frames
that relate to a large number of original audio samples. An MPEG encoded frame, for exam-
ple, will be typically be longer than a USB packet (a typical MPEG frame might be 8 or 24 ms
long), so it is broken up into smaller packets for transmission over USB rather like the way it
is streamed over the IEC 60958 interface described in Section 6.5.4. The primary rule is that
no USB packet should contain data for more than one encoded audio frame, so a new
encoded frame should always be started in a new packet. The format descriptor for Type 2 is
similar to Type 1 except that it replaces subframe size and number of channels indication
with maximum bit rate and number of audio samples per encoded frame. Currently only
MPEG and AC-3 audio are defined for Type 2.

Rather like the compound data blocks possible in 1394 (see above), audio data for closely
related synchronous channels can be clustered for USB transmission in Type 1 format. Up to
254 streams can be clustered and there are 12 defined spatial positions for reproduction, to
simplify the relationship between channels and the loudspeaker locations to which they
relate. (This is something of a simplification of the potentially complicated formatting of
spatial audio signals and assumes that channels are tied to loudspeaker locations, but it is
potentially useful. It is related to the channel ordering of samples within a WAVE format
extensible file, described earlier.) The first six defined streams follow the internationally stan-
dardised order of surround sound channels for 5.1 surround, that is left, right, centre, LFE
(low frequency enhancement), left surround, right surround. Subsequent streams are allo-
cated to other loudspeaker locations around a notional listener. Not all the spatial location
streams have to be present but they are supposed to be presented in the defined order.
Clusters are defined in a descriptor field that includes ‘bNrChannels’ (specifying how many
logical audio channels are present in the cluster) and ‘wChannelConfig’ (a bit field that
indicates which spatial locations are present in the cluster). If the relevant bit is set then the
relevant location is present in the cluster. The bit allocations are shown in Table 6.9.

6.7.3 AES 47: Audio over ATM

AES 47 defines a method by which linear PCM data, either conforming to AES 3 format or
not, can be transferred over ATM. There are various arguments for doing this, not the
least being the increasing use of ATM-based networks for data communications within the

Desktop Audio Technology

212

broadcasting industry and the need to route audio signals over longer distances than possi-
ble using standard digital interfaces. There is also a need for low latency, guaranteed band-
width and switched circuits, all of which are features of ATM. Essentially an ATM connection
is established in a similar way to making a telephone call. A SETUP message is sent at the
start of a new ‘call’ that describes the nature of the data to be transmitted and defines its vital
statistics. The AES 47 standard describes a specific professional audio implementation of this
procedure that includes information about the audio signal and the structure of audio frames
in the SETUP at the beginning of the call.

For some reason bytes are termed octets in ATM terminology, so this section will follow that
convention. Audio data is divided into subframes and each subframe contains a sample of
audio as well as optional ancillary data and protocol overhead data, as shown in Figure 6.31.
The setup message at the start of the call determines the audio mode and whether or not this
additional data is present. The subframe should occupy a whole number of octets and the
length of the audio sample should be such that the subframe is 8, 16, 24, 32 or 48 bits long.
The ancillary data field, if it is present, is normally used for carrying the VUC bits from the
AES 3 subframe, along with a B bit to replace the P (parity) bit of the AES 3 subframe (which
has little relevance in this new application). The B bit in the ‘1’ state indicates the start of an

Audio formats and data interchange

213

Table 6.9 Channel identification in USB audio cluster descriptor

Data bit Spatial location

D0 Left Front (L)
D1 Right Front (R)
D2 Center Front (C)
D3 Low Frequency Enhancement

(LFE)
D4 Left Surround (LS)
D5 Right Surround (RS)
D6 Left of Center (LC)
D7 Right of Center (RC)
D8 Surround (S)
D9 Side Left (SL)
D10 Side Right (SR)
D11 Top (T)
D15..12 Reserved

Figure 6.31 General audio subframe format of AES 47

Audio sample word Ancillary

8, 16, 24, 32 or 48 octets

Protocol
overhead

MSB Optional

4 bits 4 bits

AES 3 channel status block, taking the place of the Z preamble that is no longer present. This
data is transmitted in the order BCUV.

Samples are packed into the ATM cell either ordered in time, in multichannel groups or by
channel, as shown in Figure 6.32. Only certain combinations of channels and data formats are
allowed and all the channels within the stream have to have the same resolution and sam-
pling frequency, as shown in Table 6.10.

Four octets in the user-defined AAL part of the SETUP message that begins a new ATM call
define aspects of the audio communication that will take place. The first byte contains
so-called ‘qualifying information’, only bit 4 of which is currently specified indicating
that the sampling frequency is locked to some global reference. The second byte indicates the
subframe format and sample length, while the third byte specifies the packing format. The
fourth byte contains information about the audio sampling frequency (32, 44.1 or 48 kHz), its

Desktop Audio Technology

214

Figure 6.32 Packing of audio subframes into ATM cells. (a) Example of temporal ordering with two channels,
left and right. ‘a’, ‘b’, ‘c’, etc., are successive samples in time for each channel. Co-temporal samples are
grouped together. (b) Example of multichannel packing whereby concurrent samples from a number of channels
are arranged sequentially. (c) Example of ordering by channel, with a number of samples from the same channel
being grouped together. (If the number of channels is the same as the number of samples per cell, all three
methods turn out to be identical.)

La Ra Lb Rb Lc Rc Ld Rd Le Re Lf Rf

1 2 3 4 5 6 7 8 9 10 11 12

1a 1b 1c 1d 1e 1f 2a 2b 2c 2d 2e 2f

(a)

(b)

1 subframe
(e.g. 4 octets)

1 ATM cell = 48 octets

(c)

Table 6.10 Audio packing within ATM cells – options in AES 47

AAL code Subframe Audio Ancillary Protocol Grouping No. of audio
(hex)* length (bytes) resolution bits bits channels

56 02 4 24 4 4 Temporal 2
56 01 4 24 4 4 N/A 1
06 02 3 24 0 0 Temporal 2
06 01 3 24 0 0 N/A 1
56 85 4 24 4 4 Multichannel 60

* This should be signalled within the second and third octets of the user-defined AAL part of the SETUP message that is an
optional part of the ATM protocol for setting up calls between sources and destinations.

scaling factor (from 0.25 up to 8 times) and multiplication factor (e.g. 1/1.001 or 1.001/1 for
‘pull-down’ or ‘pull-up’modes). It also has limited information for varispeed rates.

6.7.4 CobraNet

CobraNet is a proprietary audio networking technology developed by Peak Audio, a divi-
sion of Cirrus Logic. It is designed for carrying audio over conventional Fast Ethernet
networks (typically 100 Mbit s�1), preferably using a dedicated Ethernet for audio purposes
or using a switched Ethernet network. Switched Ethernet acts more like a telephone or ATM
network where connections are established between specific sources and destinations, with
no other data sharing that ‘pipe’. For the reasons stated earlier in this chapter, Ethernet is not
ideal for audio communications without some provisos being observed. CobraNet, however,
implements a method of arbitration, bandwidth reservation and an isochronous transport
protocol that enables it to be used successfully.

The CobraNet protocol has been allocated its own protocol identifier at the Data Link Layer of
the ISO 7-layer network model, so it does not use Internet Protocol (IP) for data transport
(this is typically inefficient for audio streaming purposes and involves too much overhead).
Because it does not use IP it is not particularly suitable for wide area network (WAN) opera-
tion and would typically be operated over a local area network (LAN). It does however enable
devices to be allocated IP addresses using the BOOTP (boot protocol) process and supports the
use of IP and UDP (user datagram protocol) for other purposes than the carrying of audio. It
is capable of transmitting packets in isochronous cycles, each packet transferring data for a
‘bundle’ of audio channels. Each bundle contains between 0 and 8 audio channels and these
can either be unicast or multicast. Unicast bundles are intended for a single destination whereas
multicast bundles are intended for ‘broadcast’ transmissions whereby a sending device broad-
casts packets no matter whether any receiving device is contracted to receive them.

6.7.5 MAGIC

MAGIC (Media-accelerated Global Information Carrier) was developed by the Gibson
Guitar Corporation, originally going under the name GMICS. It is a relatively recent audio
interface that typically uses the Ethernet physical layer for transporting audio between
devices, although it is not compatible with higher layers and does not appear to be inter-
operable with conventional Ethernet data networks. It uses its own application and data link
layers, the data link layer of which is based on the Ethernet 802.3 data link layer, using a
frame header that would be recognised by 802.3-compatible devices.

Although it is not limited to doing so, the described implementation uses 100 Mbit s�1 Fast
Ethernet over standard CAT 5 cables, using four of the wires in a conventional Ethernet
crossover implementation and the other four for power to devices capable of operating on
limited power (9 volt, 500 mA). Data is formed into frames of 55 bytes, including relevant
headers, and transmitted at a synchronous rate between devices. The frame rate is related to
the audio sampling rate and a sampling clock can be recovered from the interface. Very low
latency of 10–40 �s is claimed. MAGIC data can be daisy-chained between devices in a form
more akin to point-to-point audio interfacing than computer networking, although routing
and switching configurations are also possible using routing or switching hubs.

Audio formats and data interchange

215

6.7.6 MOST

MOST (media oriented synchronous transfer) is an alternative network protocol designed for
synchronous, asynchronous and control data over a low-cost optical fibre network. It is
claimed that the technology sits between USB and IEEE 1394 in terms of performance and
that MOST has certain advantages in the transfer of synchronous data produced by
multimedia devices that are not well catered for in other protocols. It is stated that interfaces
based on copper connections are prone to electromagnetic interference and that the optical
fibre interface of this system provides immunity to such, in addition to allowing distances of
up to 250 m between nodes in this case.

MOST specifies physical, data link and network layers in the OSI reference model for data
networks and dedicated silicon has been developed for the physical layer. Data is transferred
in 64-byteframes and the frame rate of data is dependent on the sampling rate in use by the
connected devices, being 22.5 Mbit s�1 at a 44.1 kHz audio sampling rate. The bandwidth can
be divided between synchronous and asynchronous data. Potential applications are
described including professional audio, for transferring up to 15 stereo 16-bit audio channels
or 10 stereo channels of 24-bit audio; consumer electronics, as an alternative to SPDIF at sim-
ilar cost; automotive and home multimedia networking.

There is now a detailed specification framework for MOST (see Further reading) and it is the
subject of a cooperation agreement between a number of manufacturers. It seems to have
been most widely adopted in the automotive industry where it is close to being endorsed by
a consortium of car makers.

6.6.7 BSS SoundWeb

BSS developed its own audio network interface for use with its SoundWeb products that are
typically used in large venue installations and for live sound. It uses CAT 5 cabling over dis-
tances up to 300 m, but is not based on Ethernet and behaves more like a token ring network.
Data is carried at a rate of about 12 Mbit s�1 and transports eight audio channels along with
control information.

6.8 Digital content protection
Copy protection of digital content is increasingly required by the owners of intellectual prop-
erty and data encryption is now regarded as the most appropriate way of securing such con-
tent from unwanted copying. The SCMS method used for copy protection on older interfaces
such as IEC 60958 involved the use of two bits plus category codes to indicate the copy per-
mission status of content, but no further attempt was made to make the audio content
unreadable or to scramble it in the case of non-permitted transfers. A group of manufactur-
ers known as 5C has now defined a method of digital content protection that is initially
defined for IEEE 1394 transfers (see Section 6.7.1) but which is likely to be extended to other
means of interconnection between equipment. It is written in a relatively generic sense, but
the packet header descriptions currently refer directly to 1394 implementations. 5C is the
five manufacturers Hitachi, Intel, Matsushita, Sony and Toshiba. The 1394 interface is

Desktop Audio Technology

216

increasingly used on high-end consumer digital products for content transfer, although it has
not been seen much on DVD and SACD players yet because the encryption model has only
recently been agreed. There has also been the issue of content watermarking to resolve.

Content protection is managed in this model by means of both embedded copy control
information (CCI) and by using two bits in the header of isochronous data packets (the so-called
EMI or encryption mode indicator bits). Embedded CCI is that contained within the application-
specific data stream itself. In other words it could be the SCMS bits in the channel status of IEC
60958 data or it could be the copy control information in an MPEG transport stream. This can
only be accessed once a receiving device has decrypted the data that has been transmitted to it.
In order that devices can inspect the copy status of a stream without decrypting the data, the
packet header containing the EMI bits is not encrypted. Two EMI bits allow four copy states to
be indicated as shown in Table 6.11.

The authentication requirement indicated by the copy state initiates a negotiation between
the source and receiver that sets up an encrypted transfer using an exchanged key. The full
details of this are beyond the scope of this book and require advanced understanding of cryp-
tography, but it is sufficient to explain that full authentication involves more advanced cryp-
tographic techniques than restricted authentication (which is intended for implementation
on equipment with limited or reduced computational resources, or where copy protection is
not a major concern). The negotiation process, if successful, results in an encrypted and
decrypted transfer being possible between the two devices. Embedded CCI can then be
accessed from within the content stream.

When there is a conflict between embedded CCI and EMI indications, as there might be
during a stream (for example when different songs on a CD have different CCI but where the
EMI setting remains constant throughout the stream) it is recommended that the EMI setting
is the most strict of those that will be encountered in the transfer concerned. However the
embedded CCI seems to have the final say-so when it comes to deciding whether the receiv-
ing device can record the stream. For example, even if EMI indicates ‘copy never’, the receiv-
ing device can still record it if the embedded CCI indicates that it is recordable. This ensures
that a stream is as secure as it should be, and the transfer properly authenticated, before any
decisions can be made by the receiving device about specific instances within the stream.

Certain AM824 audio applications (a specific form of 1394 Audio/Music Protocol inter-
change) have defined relationships between copy states and SCMS states, for easy translation

Audio formats and data interchange

217

Table 6.11 Copy state indication in EMI bits of 1394 header

EMI bit Copy state Authentication
states required

11 Copy never (Mode A) Full
10 Copy one generation Restricted or full

(Mode B)
01 No more copies (Mode C) Restricted or full
00 Copy free(ly) (Mode D) None (not encrypted)

when carrying data like IEC 60958 data over 1394. In this particular case the EMI ‘copy never’
state is not used and SCMS states are mapped onto the three remaining EMI states. For DVD
applications the application-specific CCI is indicated in ancillary data and there is a mapping
table specified for various relationships between this data and the indicated copy states. It
depends to some extent on the quality of the transmitted data and whether or not it matches
that indicated in the audio_quality field of ancillary data. (Typically DVD players have
allowed single generation home copies of audio material over IEC 60958 interfaces at basic
sampling rates, e.g. 48 kHz, but not at very high quality rates such as 96 kHz or 192 kHz.)
SuperAudio CD applications currently have only one copy state defined and that is ‘no more
copies’, presumably to avoid anyone duplicating the 1-bit stream that would have the same
quality as the master recording.

Further reading
1394 Trade Association (2001) TA Document 2001003: Audio and Music Data Transmission Protocol 2.0.
5C (2001) Digital transmission content protection specification, Volume 1 (informational version). Revision 1.2.

Available from: www.dtcp.com/.
AES (2002) AES 47-2002: Transmission of digital audio over asynchronous transfer mode networks.
Bailey, A. (2001) Network Technology for Digital Audio. Focal Press.
Gibson Guitar Corporation (2002) Media-accelerated Global Information Carrier. Engineering Specification

Version 2.4. Available from: www.gibsonmagic.com.
IEC (1998) IEC/PAS 61883-6. Consumer audio/video equipment – Digital interface – Part 6: Audio and music

data transmission protocol.
IEEE (1995) IEEE 1394: Standard for a high performance serial bus.
Oasis Technology (1999) MOST Specification Framework v1.1. Available from: www.oasis.com/technol-

ogy/index.htm.
Page, M., Bentall, N., Cook, G. et al. (2002) Multichannel audio connection for Direct Stream Digital.

Presented at AES 113th Convention, Los Angeles, Oct 5–8.
Philips (2002) Direct Stream Digital Interchange File Format: DSD-IFF version 1.4, revision 2. Available from:

www.superaudiocd.philips.com.
Philips (2002) Recommended usage of DSD-IFF, version 1.4. Available from: www.superaudiocd.

philips.com.
Rumsey, F. and Watkinson, J. (2004) The Digital Interface Handbook, 3rd edition. Focal Press.
USB (1998) Universal serial bus: device class definition for audio devices, v1.0.

Useful websites
Audio Engineering Society: www.aes.org
IEEE 1394: www.1394ta.org
Universal Serial Bus: www.usb.org

Desktop Audio Technology

218

7 Audio software
This chapter provides a brief introduction to some of the most widely used software application
categories, concentrating primarily on professional contexts as opposed to consumer ones. It
does not attempt to explain how to use them in detail, as there are numerous other books that
do that task very well, but it introduces the key concepts.

7.1 Sequencers
7.1.1 Introduction

Sequencers are probably the most ubiquitous of audio and MIDI applications. A sequencer
will be capable of storing a number of ‘tracks’ of MIDI and audio information, editing it and
otherwise manipulating it for musical composition purposes. It is also capable of storing
MIDI events for non-musical purposes such as studio automation. Some of the more
advanced packages are available in modular form (allowing the user to buy only the func-
tional blocks required) and in cut-down or ‘entry-level’ versions for the new user. Popular
packages such as ProTools and Logic now combine audio and MIDI manipulation in an
almost seamless fashion, and have been developed to the point where they can no longer
really be considered as simply sequencers. In fact they are full-blown audio production sys-
tems with digital mixers, synchronisation, automation, effects and optional video.

The dividing line between sequencer and music notation software is a grey one, since there
are features common to both. Music notation software is designed to allow the user control
over the detailed appearance of the printed musical page, rather as page layout packages
work for typesetters, and such software often provides facilities for MIDI input and output.
MIDI input is used for entering note pitches during setting, whilst output is used for playing
the finished score in an audible form. Most major packages will read and write standard
MIDI files, and can therefore exchange data with sequencers, allowing sequenced music to
be exported to a notation package for fine tuning of printed appearance. It is also common
for sequencer packages to offer varying degrees of music notation capability, although the

219

scores that result may not be as professional in appearance as those produced by dedicated
notation software.

7.1.2 Tracks, channels, instruments and environments

A sequencer can be presented to the user so that it emulates a multitrack tape recorder to
some extent. The example shown in Figure 7.1 illustrates this point, showing the familiar
transport controls as well as a multitrack ‘tape-like’ display.

A track can be either a MIDI track or an audio track, or it may be a virtual instrument of some
sort, perhaps running on the same computer. A project is built up by successively overlaying
more and more tracks, all of which may be replayed together. Tracks are not fixed in their
time relationship and can be slipped against each other, as they simply consist of data stored
in the memory. On older or less advanced sequencers, the replay of each MIDI track was
assigned to a particular MIDI channel, but more recent packages offer an almost unlimited
number of virtual tracks that can contain data for more than one channel (in order to drive a
multitimbral instrument, for example). Using a multiport MIDI interface (see Chapter 5) it is

Desktop Audio Technology

220

Figure 7.1 Example of a sequencer’s primary display, showing tracks and transport controls. (Logic Platinum 5
‘arrange’ window)

possible to address a much larger number of instruments than the basic 16 MIDI channels
allowed in the past.

In a typical sequencer, instruments are often defined in a separate ‘environment’ that defines
the instruments, the ports to which they are connected, any additional MIDI processing to be
applied, and so forth. An example is shown in Figure 7.2. When a track is recorded, therefore,
the user simply selects the instrument to be used and the environment takes care of manag-
ing what that instrument actually means in terms of processing and routing. Now that soft
synthesisers are used increasingly, sequencers can often address those directly via plug-in
architectures such as DirectX or VST, without recourse to MIDI. These are often selected on
pull-down menus for individual tracks, with voices selected in a similar way, often using
named voice tables.

7.1.3 Input and output filters

As MIDI information is received from the hardware interface it will be stored in memory, but
it may sometimes be helpful to filter out some information before it can be stored, using an
input filter. This will be a sub-section of the program that watches out for the presence of
certain MIDI status bytes and their associated data as they arrive, so that they can be dis-
carded before storage. The user may be able to select input filters for such data as aftertouch,

Audio software

221

Figure 7.2 Example of environment window from Logic, showing ways in which various MIDI processes can be
inserted between physical input and recording operation

pitch bend, control changes and velocity information, among others. Clearly it is only advis-
able to use input filters if it is envisaged that this data will never be needed, since although
filtering saves memory space the information is lost for ever. Output filters are often imple-
mented for similar groups of MIDI messages as for the input filters, acting on the replayed
rather than recorded information. Filtering may help to reduce MIDI delays, owing to the
reduced data flow.

7.1.4 Timing resolution

The timing resolution to which a sequencer can store MIDI events varies between systems.
This ‘record resolution’ may vary with recent systems offering resolution to many thou-
sandths of a note. Audio events are normally stored to sample accuracy. A sequencer with a
MIDI resolution of 480 ppqn (pulses per quarter note) would resolve events to 4.1 millisec-
ond steps, for example. The quoted resolution of sequencers, though, tends to be somewhat
academic, depending on the operational circumstances, since there are many other factors
influencing the time at which MIDI messages arrive and are stored. These include buffer
delays and traffic jams. Modern sequencers have sophisticated routines to minimise the
latency with which events are routed to MIDI outputs.

The record resolution of a sequencer is really nothing to do with the timing resolution avail-
able from MIDI clocks or timecode. The sequencer’s timing resolution refers to the accuracy
with which it time-stamps events and to which it can resolve events internally. Most
sequencers attempt to interpolate or ‘flywheel’ between external timing bytes during replay,
in an attempt to maintain a resolution in excess of the 24 ppqn implied by MIDI clocks
(see Chapter 4).

7.1.5 Displaying, manipulating and editing information

A sequencer is the ideal tool for manipulating MIDI and audio information and this may be
performed in a number of ways depending on the type of interface provided to the user. The
most flexible is the graphical interface employed on many desktop computers which may
provide for visual editing of the stored MIDI information either as a musical score, a table or
event list of MIDI data, or in the form of a grid of some kind. Figure 7.3 shows a number of
examples of different approaches to the display of stored MIDI information. Audio informa-
tion is manipulated using an audio sample editor display that shows the waveform and
allows various changes to be made to the signal, often including sophisticated signal pro-
cessing, as discussed further below.

Although it might be imagined that the musical score would be the best way of visualising
MIDI data, it is often not the most appropriate. This is partly because unless the input is suc-
cessfully quantised (see below) the score will represent precisely what was played when the
music was recorded and this is rarely good-looking on a score! The appearance is often messy
because some notes were just slightly out of time. Score representation is useful after careful
editing and quantisation, and can be used to produce a visually satisfactory printed output.
Alternatively, the score can be saved as a MIDI file and exported to a music notation package
for layout purposes.

Desktop Audio Technology

222

In the grid editing (called ‘Matrix’ in the example shown) display, MIDI notes may be
dragged around using a mouse or trackball and audible feedback is often available as the
note is dragged up and down, allowing the user to hear the pitch or sound as the position
changes. Note lengths can be changed and the timing position may be altered by dragging
the note left or right. In the event list form, each MIDI event is listed next to a time value.
The information in the list may then be changed by typing in new times or new data values.
Also events may be inserted and deleted. In all of these modes the familiar cut and paste
techniques used in word processors and other software can be applied, allowing events
to be used more than once in different places, repeated so many times over, and other such
operations.

A whole range of semi-automatic editing functions are also possible, such as transposition of
music, using the computer to operate on the data so as to modify it in a predetermined fash-
ion before sending it out again. Echo effects can be created by duplicating a track and offset-
ting it by a certain amount, for example. Transposition of MIDI performances is simply a
matter of raising or lowering the MIDI note numbers of every stored note by the relevant
degree. Transposition of audio is more complicated, involving pitch-shifting algorithms.
Recent pitch-shifting algorithms are so good, though, that they attempt to maintain the

Audio software

223

Figure 7.3 Examples of a selection of different editor displays from Logic, showing display of MIDI data as
a score, a graphical matrix of events and a list of events. Audio can be shown as an audio waveform display

timbral quality of the voice while transposing it, in order that it does not end up sounding
like ‘Pinky and Perky’ or ‘Old Man River’. A number of algorithms have also been developed
for converting audio melody lines to MIDI data, or using MIDI data to control the pitch of
audio, further blurring the boundary between the two types of information. Silence can also
be stripped from audio files, so that individual drum notes or vocal phrases can be turned
into events in their own right, allowing them to be manipulated, transposed or time-
quantised independently.

A sequencer’s ability to search the stored data (both music and control) based on specific cri-
teria, and to perform modifications or transformations to just the data which matches the
search criteria, is one of the most powerful features of a modern system. For example, it may
be possible to search for the highest-pitched notes of a polyphonic track so that they can be
separated off to another track as a melody line. Alternatively it may be possible to apply the
rhythm values of one track to the pitch values of another so as to create a new track, or to
apply certain algorithmic manipulations to stored durations or pitches for compositional
experimentation. The possibilities for searching, altering and transforming stored data are
almost endless once musical and control events are stored in the form of unique values, and
for those who specialise in advanced composing or experimental music these features will be
of particular importance. It is in this field that many of the high-end sequencer packages will
continue to develop.

7.1.6 Quantisation of rhythm

Rhythmic quantisation is a feature of almost all sequencers. In its simplest form it involves
the ‘pulling-in’ of events to the nearest musical time interval at the resolution specified by the
user, so that events that were ‘out of time’ can be played back ‘in time’. It is normal to be able
to program the quantising resolution to an accuracy of at least as small as a 32nd note and
the choice depends on the audible effect desired. Events can be quantised either permanently
or just for replay. Some systems allow ‘record quantisation’ which alters the timing of events
as they arrive at the input to the sequencer. This is a form of permanent quantisation. It may
also be possible to ‘quantise’ the cursor movement so that it can only drag events to prede-
fined rhythmic divisions.

More complex rhythmic quantisation is also possible, in order to maintain the ‘natural’ feel
of rhythm for example. Simple quantisation can result in music that sounds ‘mechanical’ and
electronically produced, whereas the ‘human feel’ algorithms available in many packages
attempt to quantise the rhythm strictly and then reapply some controlled randomness. The
parameters of this process may be open to adjustment until the desired effect is achieved.

7.1.7 Automation and non-note MIDI events

In addition to note and audio events, one may either have recorded or may wish to add
events for other MIDI control purposes such as program change messages, controller mes-
sages or system exclusive messages. Audio automation can also be added to control fades,
panning, effects and other mixing features. Such data may be displayed in a number of ways,
but again the graphical plot is arguably the most useful. It is common to allow automation
data to be plotted as an overlay, such as shown in Figure 7.4.

Desktop Audio Technology

224

Some automation data is often stored in a so-called ‘segment-based’ form. Because automation
usually relates to some form of audio processing or control, it usually applies to particular
segments on the time-line of the current project. If the segment is moved, often one needs to
carry the relevant automated audio processing with it. Segment-based processing or automa-
tion allows the changes in parameters that take place during a segment to be ‘anchored’ to that
segment so that they can be made to move around with it if required.

It is possible to edit automation or control events in a similar way to note events, by drag-
ging, drawing, adding and deleting points, but there are a number of other possibilities here.
For example a scaling factor may be applied to controller data in order to change the overall
effect by so many per cent, or a graphical contour may be drawn over the controller infor-
mation to scale it according to the magnitude of the contour at any point. Such a contour
could be used to introduce a gradual increase in MIDI note velocities over a section, or to
introduce any other time-varying effect. Program changes can be inserted at any point in a
sequence, usually either by inserting the message in the event list, or by drawing it at the
appropriate point in the controller chart. This has the effect of switching the receiving device
to a new voice or stored program at the point where the message is inserted. It can be used to
ensure that all tracks in a sequence use the desired voices from the outset without having to
set them up manually each time. Either the name of the program to be selected at that point

Audio software

225

Figure 7.4 Example from Logic of automation data graphically overlaid on sequencer tracks

or its number can be displayed, depending on whether the sequencer is subscribing to a
known set of voice names such as General MIDI.

System exclusive data may also be recorded or inserted into sequences in a similar way to the
message types described above. Any such data received during recording will normally be
stored and may be displayed in a list form. It is also possible to insert SysEx voice dumps into
sequences in order that a device may be loaded with new parameters whilst a song is exe-
cuting if required.

7.1.8 MIDI mixing and external control

Sequencers often combine a facility for mixing audio with one for controlling the volume
and panning of MIDI sound generators. Using MIDI volume and pan controller numbers
(decimal 7 and 10), a series of graphical faders can be used to control the audio output level
of voices on each MIDI channel, and may be able to control the pan position of the source
between the left and right outputs of the sound generator if it is a stereo source. On-screen
faders may also be available to be assigned to other functions of the software, as a means
of continuous graphical control over parameters such as tempo, or to vary certain MIDI
continuous controllers in real time.

It is also possible with some packages to control many of the functions of the sequencer using
external MIDI controllers. An external MIDI controller with a number of physical faders and
buttons could be used as a basic means of mixing, for example, with each fader assigned to
a different channel on the sequencer’s mixer.

7.1.9 Synchronisation

A sequencer’s synchronisation features are important when locking replay to external timing
information such as MIDI clock or timecode. Most sequencers are able to operate in either
beat clock or timecode sync modes and some can detect which type of clock data is being
received and switch over automatically. To lock the sequencer to another sequencer or to a
drum machine beat clock synchronisation may be adequate. If you will be using the
sequencer for applications involving the timing of events in real rather than musical time,
such as the dubbing of sounds to a film, then it is important that the sequencer is able to allow
events to be tied to timecode locations, as timecode locations will remain in the same place
even if the musical tempo is changed.

Sequencers incorporating audio tracks also need to be able to lock to sources of external audio
or video sync information (e.g. word clock or composite video sync), in order that the sampling
frequency of the system can be synchronised to that of other equipment in the studio.

7.1.10 Synchronised digital video

Digital video capability is now commonplace in desktop workstations. It is possible to store
and replay full motion video on a desktop computer, either using a separate monitor or
within a window on an existing monitor, using widely available technology such as
QuickTime or Windows Multimedia Extensions. The replay of video from disk can be

Desktop Audio Technology

226

synchronised to the replay of audio and MIDI, using timecode, and this is particularly useful
as an alternative to using video on a separate video tape recorder (which is mechanically
much slower, especially in locating distant cues). In some sequencing or editing packages the
video can simply be presented as another ‘track’ alongside audio and MIDI information.

In the applications considered here, compressed digital video is intended principally as a cue
picture that can be used for writing music or dubbing sound to picture in post-production
environments. In such cases the picture quality must be adequate to be able to see cue points
and lip sync, but it does not need to be of professional broadcast quality. What is important
is reasonably good slow motion and freeze-frame quality. Good quality digital video (DV),
though, can now be transferred to and from workstations using a Firewire interface enabling
video editing and audio post-production to be carried out in an integrated fashion, all on the
one platform.

7.2 Plug-in architectures
7.2.1 What is a plug-in?

Plug-ins are now one of the fastest-moving areas of audio development, providing audio
signal processing and effects that run either on a workstation’s CPU or on dedicated DSP. (The
hardware aspects of this were described in Chapter 5.) Audio data can be routed from a
sequencer or other audio application, via an API (application programming interface)
to another software module called a ‘plug-in’ that does something to the audio and then
returns it to the source application. In this sense it is rather like inserting an effect into an audio
signal path, but done in software rather than using physical patch cords and rack-mounted
effects units. Plug-ins can be written for the host processor in a language such as C��, using
the software development toolkits (SDK) provided by the relevant parties. Plug-in processing
introduces a delay that depends on the amount of processing and the type of plug-in archi-
tecture used. Clearly low latency architectures are highly desirable for most applications.

Many plug-ins are versions of previously external audio devices that have been modelled in
DSP, in order to bring favourite EQs or reverbs into the workstation environment. The sound
quality of these depends on the quality of the software modelling that has been done. Some
host-based (native) plug-ins do not have as good quality as dedicated DSP plug-ins as they
may have been ‘cut to fit’ the processing power available, but as hosts become ever more
powerful the quality of native plug-ins increases.

A number of proprietary architectures have been developed for plug-ins, including
Microsoft’s Direct X, Steinberg’s VST, Digidesign’s TDM, Mark of the Unicorn’s MAS, TC
Works’ PowerCore and EMagic’s host-based plug-in format. Apple’s OS X Audio Units are a
feature built in to the OS that manages plug-ins without the need for third-party middleware
solutions. The popularity of this as a plug-in architecture has yet to be determined at the time
of writing, but is likely to be used increasingly as OS X gains popularity. It is usually neces-
sary to specify for which system any software plug-in is intended, as the architectures are not
compatible. As OS-based plug-in architectures for audio become more widely used, the need
for proprietary approaches may diminish.

Audio software

227

Digidesign in fact has four different plug-in approaches that are used variously in its
products, as shown in Table 7.1.

DirectX is a suite of multimedia extensions developed by Microsoft for the Windows
platform. It includes an element called DirectShow that deals with real-time streaming of
media data, together with the insertion of so-called ‘filters’ at different points. DirectX audio
plug-ins work under DirectShow and are compatible with a wide range of Windows-based
audio software. They operate at 32-bit resolution, using floating-point arithmetic and can run
in real time or can render audio files in non-real time. They do not require dedicated signal
processing hardware, running on the host CPU, and the number of concurrent plug-ins
depends on CPU power and available memory. DirectX plug-ins are also scalable – in other
words they can adapt to the processing resource available. They have the advantage of being
compatible with the very wide range of DirectX-compatible software in the general comput-
ing marketplace but at the time of writing they can only handle two-channel audio.

DXi is a software synthesiser plug-in architecture developed by Cakewalk, running under
DirectX. It is covered further in Section 7.3.

One example of a proprietary approach used quite widely is VST, Steinberg’s Virtual Studio
Technology plug-in architecture. It runs on multiple platforms and works in a similar way to
DirectX plug-ins. On Windows machines it operates as a DLL (dynamic link library) resource,
whereas on Macs it runs as a raw Code resource. It can also run on BeOS and SGI systems,
as a Library function. VST incorporates both virtual effects and virtual instruments such as
samplers and synthesisers. There is a cross-platform GUI development tool that enables the
appearance of the user interface to be ported between platforms without the need to rewrite
it each time.

7.2.2 Plug-in examples

Some examples of plug-in user interfaces are shown in Figure 7.5. An example of a stereo
effects processor and a reverberation processor are shown. The quality of such plug-ins is
now getting to the point where it is on a par with the sound quality achievable on external
devices, depending primarily on the amount of DSP available.

Desktop Audio Technology

228

Table 7.1 Digidesign plug-in alternatives

Plug-in architecture Description

TDM Uses dedicated DSP cards for signal processing. Does not affect the
host CPU load and processing power can be expanded as required.

HTDM (Host TDM). Uses the host processor for TDM plug-ins, instead of
dedicated DSP.

RTAS (Real Time Audio Suite). Uses host processor for plug-ins.
Not as versatile as HTDM.

AudioSuite Non-real-time processing that uses the host CPU to perform operations
such as time-stretching that require the audio file to be rewritten.

7.3 Virtual instruments
Virtual instruments or ‘soft synths’ and ‘soft samplers’ are software implementations of sound
generators that can be controlled via the plug-in architecture. For example VSTi and DXi are
examples of VST or DirectX virtual instruments. Mostly they rely on the host’s CPU power to
perform the synthesis operations and there is an increasing number of software versions of
previously ‘hard’ sound generators. In many ways this can be quite convenient because it does
away with the need for cumbersome external devices, MIDI cables and audio mixing. If all

Audio software

229

Figure 7.5 Two examples of plug-in user interfaces by WAVES. (a) A reverberation processor. (b) A stereo image
processor

(a)

(b)

synthetic and sampled sound generation can be handled within the workstation, and the
audio outputs of these virtual instruments mixed internally, the studio can really begin to be
contained within a single box. External interfaces are then only required to handle acoustic
sources such as vocals, guitars and other naturally recorded material.

Desktop Audio Technology

230

Figure 7.6 Two examples of plug-in synthesiser user interfaces. (a) Logic’s ES synthesiser. (b) AnaMark VST
synthesiser

(a)

(b)

Some examples of virtual instrument user interfaces are shown in Figure 7.6. They can
usually be played either from MIDI tracks within a sequencer or by means of external MIDI
controllers as stand-alone instruments.

7.4 Librarians and editors
Librarian and editor software is used for managing large amounts of voice data for
MIDI-controlled instruments. As virtual instruments gradually take over from externally
controlled devices the nature of librarians and editors will naturally evolve accordingly. Such
packages communicate with external MIDI instruments using system exclusive messages in
order to exchange parameters relating to voice programs. The software may then allow these
voice programs or ‘patches’ to be modified using an editor, offering a rather better graphical
interface than those usually found on the front panels of most sound modules. Banks of
patches may be stored on disk by the librarian, in order that libraries of sounds can be man-
aged easily, and this is often cheaper than storing patches in the various ‘memory cards’
offered by synth manufacturers. Banks of patch information can be accessed by sequencer
software so that an operator can choose voices for particular tracks by name, rather than by
program change numbers.

Sample editors are also available, offering similar facilities, although sample dumps using
system exclusive are not really recommended, unless they are short, since the time taken can
be excessive. Sample data can be transferred to a computer using a faster interface than MIDI
(such as SCSI) and the sample waveforms can be edited graphically. A protocol known as
SMDI (‘smi-dee’), SCSI Musical Data Interchange, was developed by Matt Isaacson, based on
the MIDI sample dump format, specifically for this purpose.

7.5 Audio editing and post-production software
Although most sequencers contain some form of audio editing these days, there are some
software applications more specifically targeted at high quality audio editing and produc-
tion. These have tended to come from a professional audio background rather than a MIDI
sequencing background, although it is admitted that the two fields have met in the middle
now and it is increasingly hard to distinguish a MIDI sequencer that has had audio tacked
on from an audio editor that has had MIDI tacked on.

Audio applications such as those described here are used in contexts where MIDI is not
particularly important and where fine control over editing crossfades, dithering, mixing,
mastering and post-production functions are required. Here the editor needs tools for such
things as: previewing and trimming edits, such as might be necessary in classical music post-
production; PQ editing CD masters; preparing surround sound DVD material for encoding;
MLP or AC-3 encoding of audio material; editing of DSD material for SuperAudio CD. The
principles behind this technology were described in Chapters 2 and 3. The following two
commercial examples demonstrate some of the practical concepts.

Audio software

231

7.5.1 Sonic Studio HD

Sonic Studio HD is an example of a Mac-based product designed for preparing high quality
CD, SACD and DVD audio material. It uses an approach to audio editing that relies on source
and destination track windows, material being assembled by transferring selected takes from
source to destination, with appropriate trims and crossfades. A typical user interface is
shown in Figure 7.7. It is possible to see the audio waveform display and overlay of cross-
fade information. Very detailed control is provided for the fine-tuning of crossfades, with
numerous curve shapes and options, enabling the editor to modify edits until they sound
right, as shown in Figure 7.8. Metering of multiple channels is provided in a separate win-
dow, as is listing and control of plug-ins for HDSP processing.

Like other systems of its kind, this product is capable of up-loading source material in the
background so that takes to be edited can be copied from source tapes while one is editing in
the foreground. It also provides comprehensive options for mastering, including PQ encod-
ing for CDs and DDP list creation. Audio sampling rates up to 192 kHz are accommodated
and options for editing DSD source material (see Chapter 2) are being developed (for Super
Audio CD preparation). Audio processing is handled on a dedicated HDSP audio card,
connected to an external audio interface.

Desktop Audio Technology

232

Figure 7.7 The main display of SonicStudio HD audio editor

7.5.2 SADiE

SADiE workstations run on the PC platform and most utilise an external audio interface.
Recent Series 5 systems, however, can be constructed as an integrated rack-mounted unit
containing audio interfaces and a Pentium PC. Both PCM and DSD signal processing options
are available and the system makes provision for lossless MLP encoding for DVD-Audio, as
well as SACD mastering and encoding.

A typical user interface for SADiE is shown in Figure 7.9. It is possible to see transport con-
trols, the mixer interface and the playlist display. Audio can be arranged in the playlist by
the normal processes of placing, dragging, copying and pasting, and there is a range of
options for slipping material left or right in the list to accommodate new material (this
ensures that all previous edits remain attached in the right way when the list is slipped
backwards or forwards in time). Audio to be edited in detail can be viewed in the trim win-
dow (Figure 7.10) that shows a detailed waveform display, allowing edits to be previewed
either to or from the edit point, or across the edit, using the play controls in the top right-
hand corner (this is particularly useful for music editing). The crossfade region is clearly
visible, with different colours and shadings used to indicate the ‘live’ audio streams before
and after the edit.

The latest software allows for the use of DirectX plug-ins for audio processing. A range of
plug-ins is available, including CEDAR audio restoration software, as described below.

Audio software

233

Figure 7.8 SonicStudio HD crossfade controls

Desktop Audio Technology

234

Figure 7.10 SADiE trim window showing crossfade controls and waveform display

Figure 7.9 SADiE editor displays, showing mixer, playlist, transport controls and project elements

7.6 Mastering and restoration software
Some software applications are designed specifically for the mastering and restoration markets.
These products are designed either to enable ‘fine tuning’ of master recordings prior to com-
mercial release, involving subtle compression, equalisation and gain adjustment (mastering), or
to enable the ‘cleaning up’ of old recordings that have hiss, crackle and clicks (restoration).

CEDAR applications or plug-ins are good examples of the restoration group. Sophisticated
controls are provided for the adjustment of de-hissing and de-crackling parameters, which
often require considerable skill to master. Recently the company has introduced advanced
visualisation tools that enable restoration engineers to ‘touch up’ audio material using an
interface not dissimilar to those used for photo editing on computers. Audio anomalies
(unwanted content) can be seen in the time and frequency domains, highlighted and inter-
polated based on information either side of the anomaly. A typical display from its
RETOUCH product for the SADiE platform is shown in Figure 7.11.

CEDAR’s restoration algorithms are typically divided into ‘decrackle’, ‘declick’, ‘dethump’
and ‘denoise’, each depending on the nature of the anomaly to be corrected. Some typical
user interfaces for controlling these processes are shown in Figure 7.12.

Mastering software usually incorporates advanced dynamics control such as the TC Works
Master X series, based on its Finalizer products, a user interface of which is pictured in
Figure 7.13. Here compressor curves and frequency dependency of dynamics can be adjusted
and metered. The display also allows the user to view the number of samples at peak level
to watch for digital overloads that might be problematic.

7.7 Advanced audio processing software and development tools
High-end audio signal processing workstations, such as the Lake Huron, are designed pri-
marily for research and development purposes. There is also a range of signal processing
software for audio research and development that can run on general purpose desktop com-
puters. Although this is not the primary emphasis of this book, brief mention will be made.

Signal processing workstations such as the Huron use large amounts of dedicated DSP hard-
ware to enable the development of advanced real-time algorithms and signal analysis
processes. Systems such as this are used for tasks such as acoustical modelling and real-time
rendering of complex virtual reality scenes that require many hundreds of millions of com-
putations per second. Such operations are typically beyond the scope of the average desktop
PC, requiring some hours of off-line ‘number crunching’. Using high-end workstations such
processes may be run off-line in a fraction of the time or may be implemented in real time. A
range of applications is available for the Huron workstation, ranging from head-tracked bin-
aural simulation to virtual acoustic reality development tools. Interfaces are available
between Huron and MATLAB, the latter being a popular research tool for the analysis, visu-
alisation and manipulation of data.

MSP is a signal processing toolbox and development environment based on the Max MIDI
programming environment described below. MSP runs on the Mac or SGI platforms and is
designed to enable users to assemble signal processing ‘engines’ with a variety of components

Audio software

235

(either library or user-defined). They are linked graphically in a similar manner to the MIDI
programming objects used in Max, allowing switches, gain, equalisation, delays and other sig-
nal processing devices to be inserted in the signal chain. For the user that is not conversant
with programming DSPs directly, MSP provides an easy way in to audio signal processing, by
pre-defining the building blocks and enabling them to be manipulated and linked graphically.

Desktop Audio Technology

236

Figure 7.11 CEDAR Retouch display for SADiE, showing frequency (vertical) against time (horizontal) and
amplitude (colour/density). Problem areas of the spectrographic display can be highlighted and a new signal
synthesised using information from the surrounding region. (a) Harmonics of an interfering signal can be clearly
seen. (b) A short-term spike crosses most of the frequency range

(a)

(b)

Signal processing can be run on the host CPU, provided it is sufficiently fast. An example of
an MSP patch that acts as a variable stereo delay processor is shown in Figure 7.14.

7.8 Computer music software
There is a vast range of computer music software available for just about every platform,
much of which is free or experimental or shareware. The computer music world is often
strongly based in universities and research establishments, leading to a range of little
known (outside these fields) but interesting applications that circulate mainly among
the cognoscenti and may be downloadable free or for a reasonable price on the Internet. It is
not the intention to review this field in detail here, as this book is concerned primarily with
mainstream audio production tools. Eduardo Reck Miranda’s book Computer Sound Design:
Synthesis Techniques and Programming provides an excellent introduction to some aspects of

Audio software

237

Figure 7.12 CEDAR restoration plug-ins for SADiE, showing (a) Declick and (b) Denoise processes

(a)

(b)

this field, along with a CD-ROM containing a number of programs exemplifying the
techniques described in the book.

A good example of a MIDI programming environment used widely in computer music is
‘MAX’, named after one of the fathers of electronic music, Max Matthews. MAX is essentially
a MIDI programmer’s construction kit, with numerous pre-defined functions. It is now

Desktop Audio Technology

238

Figure 7.13 TC Works MasterX mastering dynamics plug-in interface

Figure 7.14 Example of a Max MSP patch that describes a variable stereo delay processor

handled by Cycling ‘74 although it was originally supported by Opcode. It also allows new
objects to be written in ‘C’ for those whose ambitions extend further than these. MAX allows
functional objects to be linked graphically by dragging ‘wires’ from outputs to inputs, mak-
ing it possible for the user to construct virtually any MIDI control ‘engine’ out of the build-
ing blocks. A worldwide network of MAX developers exists, and a large number of third
party objects have been authored, many of which are available for the asking. An example of
a MAX program or ‘patch’ is shown in Figure 7.15. This simple program sends MIDI clock
bytes to a predefined output port at a rate determined by the ‘tempo’ or ‘metro’ objects.

Further reading
Collins, M. (2002) ProTools 5.1 for Music Production. Focal Press.
Miranda, E. R. (2002) Computer Sound Design: Synthesis Techniques and Programming. Focal Press.

Audio software

239

Figure 7.15 A simple ‘patch’ constructed in MAX, designed to output MIDI clock bytes at a rate determined by
either the tempo or the metro objects

240

8 Operational and systems
issues

This chapter is concerned with technical, operational and systems issues that may arise when
using computer-based audio hardware and software. It is not intended as a ‘how to’ chapter,
because all software packages are different and other books are available that explain them,
but it does deal with some of the more specialised issues that may arise in high quality
professional audio environments and familiarises the reader with preparations for various
consumer release formats and media.

8.1 Level control and metering
Typical audio systems today have a very wide dynamic range that equals or exceeds that of
the human hearing system. Distortion and noise inherent in the recording or processing of
audio are at exceptionally low levels owing to the use of high resolution A/D convertors, up
to 24-bit storage, and wide range floating-point signal processing. This is not to say that qual-
ity is perfect. It is more intended to support the assertion that level control is less crucial than
it used to be in the days when a recording engineer struggled to optimise a recording’s
dynamic range between the noise floor and the distortion ceiling (see Figure 8.1).

The dynamic range of a typical digital audio system can now be well over 100 dB and there is
room for the operator to allow a reasonable degree of ‘headroom’ between the peak audio sig-
nal level and the maximum allowable level. Meters are provided to enable the signal level to
be observed, and they are usually calibrated in dB, with zero at the top and negative dBs below
this. The full dynamic range is not always shown, and there may be a peak bar that can hold
the maximum level permanently or temporarily. As explained in Chapter 2, 0 dBFS (full scale)
is the point at which all of the bits available to represent the signal have been used. Above this
level the signal clips and the effect of this is quite objectionable, except on very short transients
where it may not be noticed. It follows that signals should never be allowed to clip.

There is a tendency in modern audio production to want to master everything so that it
sounds as loud as possible, and to ensure that the signal peaks as close to 0 dBFS as possible.
This level maximising or normalising process can be done automatically in most packages,
the software searching the audio track for its highest level sample and then adjusting the
overall gain so that this just reaches 0 dBFS. In this way the recording can be made to use all
the bits available, which can be useful if it is to be released on a relatively low-resolution
consumer medium where noise might be more of a problem. (It is important to make sure
that correct redithering is used when altering the level and requantising, as explained in
Section 2.8.) This does not, of course, take into account any production decisions that might
be involved in adjusting the overall levels of individual tracks on an album or other com-
pilation, where relative levels should be adjusted according to the nature of the individual
items, their loudness and the producer’s intent.

A little-known but important fact is that even if the signal is maximised in the automatic fashion,
so that the highest sample value just does not clip, subsequent analog electronics in the signal
chain may still do so. Some equipment is designed in such a way that the maximum digital
signal level is aligned to coincide with the clipping voltage of the analog electronics in a
D/A convertor. In fact, owing to the response of the reconstruction filter in the D/A convertor

Operational and systems issues

241

Figure 8.1 Comparison of analog and digital dynamic range. (a) Analog tape has increasing distortion as the
recording level increases, with an effective maximum output level at 3% third harmonic distortion. (b) Modern
high-resolution digital systems have wider dynamic range with a noise floor fixed by dither noise and a maximum
recording level at which clipping occurs. The linearity of digital systems does not normally become poorer as
signal level increases, until 0 dBFS is reached. This makes level control a somewhat less important issue at the
initial recording stage, provided sufficient headroom is allowed for peaks

Tape noise floor

3% distortion ceiling

Reference level

Clipping level (0 dBFS)

Dither noise floor

Effective dynamic range
Effective dynamic range

(a) (b)

(which reconstructs an analog waveform from the PAM pulse train) inter-sample signal peaks
can be created that slightly exceed the analog level corresponding to 0 dBFS, thereby clipping
the analog side of the convertor. For this reason it is recommended that digital-side signals are
maximised so that they peak a few dB below 0 dBFS, in order to avoid the distortion that might
otherwise result on the analog side. Some mastering software provides detailed analysis of
the signal showing exactly how many samples occur in sequence at peak level, which can be a
useful warning of potential or previous clipping.

8.2 Spatial reproduction formats
Now that two-channel stereo is no longer the ubiquitous release format that it was, users need
to understand something about alternative multichannel reproduction formats, such as used
for surround sound. These are used widely on DVD, SACD and for television, games and
movie production. Audio applications now provide many facilities for working in these
multichannel formats. This section is a short introduction, more detailed explanation of which
can be found in my book Spatial Audio.

8.2.1 Introduction to multichannel formats

Whereas two-channel stereo normally employs two loudspeakers at �30	 in front of the lis-
tener, creating a stereophonic ‘scene’ or ‘panorama’ between the loudspeakers, multichannel
stereo or surround sound employs more loudspeakers to increase the sense of realism and
spatial complexity. A variety of formats have been tried over the years, including things like
quadraphonic sound in the 1970s, but the most common production formats at the time of
writing are formats based on movie-style surround sound. These typically employ a number
of front channels to enable accurate phantom imaging and a number of side or rear channels
that are used for ambience or effects. The centre channel (not present in two-channel stereo)
has the effect of widening the listening area and anchoring dialogue or vocals in the centre
of the image, even for off-centre listeners.

In international standards describing stereo loudspeaker configurations the nomenclature for
the configuration is often in the form ‘n-m stereo’, where n is the number of front channels and
m is the number of rear or side channels. This distinction can be helpful as it reinforces the
slightly different role of the surround channels, although many simply refer to these formats
as x-channel surround, making no distinction between front and rear channels.

Audio in these multichannel formats is often encoded for consumer release using low bit-rate
coding algorithms such as Dolby Digital, although it can be stored in linear PCM form if
sufficient space or bandwidth is available. Examples of these coding approaches were given
in Section 2.12.

8.2.2 4-channel surround (3-1 stereo)

‘3-1 stereo’, or ‘LCRS surround’, is a format used quite widely in analog cinema installations and
older home cinema systems that used Dolby matrix encoding and decoding technology. In the
3-1 approach a single ‘effects’ or ‘surround’ channel is routed to a loudspeaker or loudspeakers

Desktop Audio Technology

242

located behind (and possibly to the sides) of listeners. It was developed first for cinema
applications, enabling a greater degree of audience involvement in the viewing/listening
experience by providing a channel for ‘wrap-around’ effects. There is no specific intention in
3-1 stereo to use the effects channel as a means of enabling 360	 image localisation. In any case,
this would be virtually impossible with most configurations as there is only a single audio chan-
nel feeding a larger number of surround loudspeakers, effectively in mono.

Figure 8.2 shows the typical loudspeaker configuration for this format. In the cinema there
are usually a large number of surround loudspeakers fed from the single channel, in order to
cover a wide audience area. This has the tendency to create a relatively diffuse or distributed
reproduction of the effects signal. The surround speakers are sometimes electronically decor-
related to increase the degree of spaciousness or diffuseness of surround effects, in order that
they are not specifically localised to the nearest loudspeaker or perceived inside the head. In
consumer systems reproducing 3-1 stereo, the mono surround channel is normally fed to two
surround loudspeakers located in similar positions to the 3-2 format described below (these
are dipoles in the Home THX system, so as to create a more diffuse spatial effect). The gain

Operational and systems issues

243

Figure 8.2 3-1 format reproduction uses a single surround channel usually routed (in cinema environments) to
an array of loudspeakers to the sides and rear of the listening area. In consumer reproduction the mono surround
channel may be reproduced through only two surround loudspeakers, possibly using artificial decorrelation
and/or dipole loudspeakers to emulate the more diffused cinema experience

Listener

L C R

Surround array fed from a single channel

Perforated screen

Optional sub

of the channel is usually reduced by 3 dB so that the summation of signals from the two
speakers does not lead to a level mismatch between front and rear.

This surround format is usually matrix encoded using a Dolby Stereo encoder. This takes
the four channels and combines them in a manner that creates a two-channel compatible
signal from which the centre and surround information can subsequently be extracted if
required. The reason for this was compatibility with two-channel analog media and to
enable surround audio to be encoded on two optical film sound tracks. Matrix decoding
often involves some sort of active ‘steering’ to increase the channel separation, such as
employed in Dolby Prologic decoders. Dolby Stereo or Surround is normally monitored
and mixed through an encoder and decoder matrix, in order to hear the effect, as it is not
a perfect process.

The mono surround channel is the main limitation in this format. Despite the use of multiple
loudspeakers to reproduce the surround channel, it is still not possible to create a good sense
of envelopment or spaciousness without using surround signals that are different on both
sides of the listener. Most of the psychoacoustics research suggests that the ears need to be
provided with decorrelated signals to create the best sense of envelopment and effects can be
better spatialised using stereo surround channels.

8.2.3 5.1 channel surround (3-2 stereo)

The 3-2 configuration has been standardised for numerous surround sound applications,
including cinema, television and consumer applications. Because of its wide use in general
parlance, though, the term ‘5.1 surround’ will be used.

The mono surround limitation is removed in the 5.1-channel system, enabling the provision of
stereo effects or room ambience to accompany a primarily front-oriented sound stage.
Essentially the front three channels are intended to be used for a conventional three-channel
stereo sound image, while the rear/side channels are only intended for generating supporting
ambience, effects or ‘room impression’. In this sense, the standard does not directly support the
concept of 360	 image localisation, although it may be possible to arrive at recording techniques
or signal processing methods that achieve this to a degree.

One cannot introduce the 5.1 surround system without explaining the meaning of the ‘.1’
component. This is a dedicated low-frequency effects (LFE) channel or sub-bass channel. It is
called ‘.1’ because of its limited bandwidth (normally up to 120 Hz). It is intended for
conveying special low-frequency content that requires greater sound pressure levels and
headroom than can be handled by the main channels. It is not intended for conveying the
low-frequency component of the main channel signals, and its application is likely to be
primarily in sound-for-picture applications where explosions and other high-level rumbling
noises are commonplace, although it may be used in other circumstances. With cinema repro-
duction the in-band gain of this channel is usually 10 dB higher than that of the other indi-
vidual channels. This is achieved by a level increase of the reproduction channel, not by an
increased recording level. (This does not mean that the broadband or weighted SPL of the
LFE loudspeaker should measure 10 dB higher than any of the other channels – in fact it will
be considerably less than this as its bandwidth is narrower.)

Desktop Audio Technology

244

The loudspeaker layout and channel configuration is specified in the ITU-R BS.775 standard.
This is shown in Figure 8.3. A display screen is also shown in this diagram for sound with
picture applications, and there are recommendations concerning the relative size of the
screen and the loudspeaker base width shown in the standard. The left and right loudspeak-
ers are located at �30	 for compatibility with two channel stereo reproduction. In many ways
this need for compatibility with 2/0 is a pity, because the centre channel unavoidably nar-
rows the front sound stage in many applications, and the front stage could otherwise take

Operational and systems issues

245

Figure 8.3 3-2 format reproduction according to the ITU-R BS.775 standard uses two independent surround
channels routed to one or more loudspeakers per channel

L

C

R

+30˚–30˚

–100˚ +100˚

–120˚ +120˚LS RS

Screen 2

Screen 1

Screen 1: Listening distance = 3H (2 ß1 = 33˚) (possibly more suitable for TV screen)

Screen 2: Listening distance = 2H (2 ß2 = 48˚) (more suitable for projection screen)

H: Screen height

Loudspeaker base width B = 2–4 m

β2

β1

advantage of the wider spacing facilitated by three-channel reproduction. It was nonetheless
considered crucial for the same loudspeaker configuration to be usable for all standard forms
of stereo reproduction, for reasons most people will appreciate.

In the 5.1 standard there are normally no loudspeakers directly behind the listener, which can
make for creative difficulties. This has led to a Dolby proposal called EX (described below)
that places an additional speaker at the centre-rear location. (This is not part of the current
standard, though.) The ITU standard also allows for additional surround loudspeakers to
cover the region around listeners, similar to the 3-1 arrangement described earlier. If these are
used then they are expected to be distributed evenly in the angle between �60	 and �150	.

The limitations of the 5.1 format, particularly in some peoples’ view for music purposes, have
led to various non-standard uses of the five or six channels available on new consumer disk
formats such as DVD-A (Digital Versatile Disk – Audio) and SACD (Super Audio Compact
Disc). For example, some are using the sixth channel (that would otherwise be LFE) in its full
bandwidth form on these media to create a height channel. Others are making a pair out of
the ‘LFE’ channel and the centre channel so as to feed a pair of front-side loudspeakers,
enabling the rear loudspeakers to be further back. These are non-standard uses and should
be clearly indicated on any recordings.

8.2.4 Dolby EX

In 1998 Dolby and Lucasfilm THX joined forces to promote an enhanced surround system
that added a centre rear channel to the standard 5.1-channel setup. They introduced it,

Desktop Audio Technology

246

Figure 8.4 Dolby EX adds a centre-rear channel fed from a matrix-decoded signal that was originally encoded
between left and right surround channels in a manner similar to the conventional Dolby Stereo matrix process

L

C

R

LS
RS

Matrix derived
rear centre speaker

apparently, because of frustrations felt by sound designers for movies in not being able to
pan sounds properly to the rear of the listener – the surround effect typically being rather
diffuse. This system was christened ‘Dolby Digital – Surround EX’, and apparently uses
matrix-style centre channel encoding and decoding between the left and right surround
channels of a 5.1-channel mix. The loudspeakers at the rear of auditorium are then driven
separately from those on the left and right sides, using the feed from this new ‘rear centre’
channel, as shown in Figure 8.4.

8.2.5 7.1 channel surround

Deriving from widescreen cinema formats, the 7.1 channel configuration normally adds two
further loudspeakers to the 5.1 channel configuration, located at centre left (CL) and centre
right (CR), as shown in Figure 8.5. This is not a format primarily intended for consumer
applications, but for large cinema auditoria where the screen width is such that the addi-
tional channels are needed to cover the angles between the loudspeakers satisfactorily for all
the seats in the auditorium. Sony’s SDDS cinema system is the most common proprietary
implementation of this format.

Operational and systems issues

247

Figure 8.5 Some cinema sound formats for large auditorium reproduction enhance the front imaging accuracy
by the addition of two further loudspeakers, centre left and centre right

Listener

L CL C R

Mono or stereo surround array, depending on format

Perforated screen

CR

Optional sub

Lexicon and Meridian have also implemented a 7-channel mode in their consumer surround
decoders, but the recommended locations for the loudspeakers are not quite the same as in
the cinema application. The additional channels are used to provide a wider side-front com-
ponent and allow the rear speakers to be moved round more to the rear than in the 5.1
arrangement (see Figure 8.6).

8.2.6 Surround panning and spatial effects

Pairwise amplitude panning, although relatively crude in many ways, is the type of pan con-
trol most commonly implemented in simple surround panners, being based on an extension
of the two-channel sine/cosine panner to more loudspeakers. It involves adjusting the rela-
tive amplitudes between a pair of adjacent loudspeakers with the aim of creating a phantom
image at some point between them. Panning between widely spaced side loudspeakers is not
particularly successful at creating accurate phantom images though (see Figure 8.7).

In some applications designed for five-channel surround work, particularly in the film
domain, separate panners are provided for L-C-R, LS-RS, and front–back. Combinations of
positions of these amplitude panners enable sounds to be moved to various locations, some

Desktop Audio Technology

248

Figure 8.6 Approximate loudspeaker layout suitable for Lexicon’s Logic 7 reproduction. Notice the additional
side loudspeakers that enable a more enveloping image and may enable rear loudspeakers to be placed further
to the rear

Listener

L

C

R

Additional side
speaker

Additional side
speaker

Rear speakers

more successfully than others. For example sounds panned so that some energy is emanating
from all loudspeakers (say, panned centrally on all three pots) tend to sound diffuse for centre
listeners and in the nearest loudspeaker for those sitting off centre. Joystick panners combine
these amplitude relationships under the control of a single ‘lever’. Moving effects made possi-
ble by these joysticks are often unconvincing and need to be used with experience and care.

Other more sophisticated panners may involve psychoacoustic filtering, binaural informa-
tion or Ambisonic priniciples, and it is possible to encounter advanced spatial audio pro-
cessing plug-ins that can be used to manipulate stereo images and alter spatial characteristics
of implied environments. Distance and movement can be simulated effectively by changing
direct/reverberant ratio, level, high frequency content and reflections, as well as Doppler
shifts. These sometimes go hand in hand with reverberation processing, as this is one way of
adding spatial content to a mix.

8.3 Controlling and maintaining sound quality
The sound quality achievable with modern workstations is now exceptionally high. As men-
tioned earlier in this chapter, there are now few technical reasons why distortion, noise,
frequency response and other performance characteristics should not match the limits of
human perception. Of course there will always be those for whom improvements can be made,
but technical performance of digital audio systems is no longer really a major issue today.

If one accepts the foregoing argument, the maintenance of sound quality in computer-based
production comes down more to understanding the operational areas in which quality can

Operational and systems issues

249

Figure 8.7 Imaging accuracy in five-channel surround sound reproduction

Good phantom images
between left, centre and right

loudspeakers

Typically poor and
unstable phantom images
between front and
surround loudspeakers

Only moderately satisfactory
phantom images between rear
loudspeakers,with a tendency
towards a ‘hole in the middle’

Typically poor and
unstable phantom images

between front and
surround loudspeakers

be compromised. These include things like ensuring as few A/D and D/A conversions as
possible, maintaining audio resolution at 24 bits or more throughout the signal chain (assum-
ing this is possible), redithering appropriately at points where requantising is done, and
avoiding sampling frequency conversions. The rule of thumb should be to use the highest
sampling frequency and resolution that one can afford to use, but no higher than strictly
necessary for the purpose, otherwise storage space and signal processing power will be
squandered. The scientific merits of exceptionally high sampling frequencies are dubious,
for all but a few afficionados, although the marketing value may be considerable.

The point at which quality can be affected in a digital audio system is at A/D and D/A con-
version. In fact the quality of an analog signal is irretrievably fixed at the point of A/D con-
version, so this should be done with the best equipment available. There is very little that can
be done afterwards to improve the quality of a poorly converted signal. At conversion stages
the stability of timing of the sampling clock is crucial, because if it is unstable the audio signal
will contain modulation artefacts that give rise to increased distortions and noise of various
kinds. This so-called clock jitter is one of the biggest factors affecting sound quality in con-
vertors and high quality external convertors usually have much lower jitter than the internal
convertors used on PC sound cards.

The quality of a digital audio signal, provided it stays in the digital domain, is not altered
unless the values of the samples are altered. It follows that if a signal is recorded, replayed,
transferred or copied without altering sample values then the quality will not have been
affected, despite what anyone may say. Sound quality, once in the digital domain, there-
fore depends entirely on the signal processing algorithms used to modify the program.
There is little a user can do about this except choose high-quality plug-ins and other software,
written by manufacturers that have a good reputation for DSP that takes care of rounding
errors, truncation, phase errors and all the other nasties that can arise in signal processing.
This is really no different from the problems of choosing good-sounding analog equipment.
Certainly not all digital equaliser plug-ins sound the same, for example, because this
depends on the filter design. Storage of digital data, on the other hand, does not affect sound
quality at all, provided that no errors arise and that the signal is stored at full resolution in
its raw PCM form (in other words, not MPEG encoded or some other form of lossy coding).

The sound quality the user hears when listening to the output of a workstation is not neces-
sarily what the consumer will hear when the resulting program is issued on the release
medium. One reason for this is that the sound quality depends on the quality of the D/A con-
vertors used for monitoring. The consumer may hear better or worse, depending on the
convertors used, assuming the bit stream is delivered without modification. One hopes that
the convertors used in professional environments are better than those used by consumers,
but this is not always the case. High-resolution audio may be mastered at a lower resolution
for consumer release (e.g. 96 kHz, 24 bit recordings reduced to 44.1 kHz, 16 bits for release
on CD), and this can affect sound quality. It is very important that any down-conversion of
master recordings be done using the best dithering and/or sampling frequency conversion
possible, especially when sampling frequency conversion is of a non-integer ratio.

Low bit-rate coders (e.g. MPEG) can reduce quality in the consumer delivery chain, but it is
the content-provider’s responsibility to optimise quality depending on the intended release

Desktop Audio Technology

250

format. Where there are multiple release formats it may be necessary to master the program
differently in each case. For example, really low bit rate Internet streaming may require
some enhancement (e.g. compression and equalisation) of the audio to make it sound
reasonable under such unfavourable conditions.

When considering the authoring of interactive media such as games or virtual reality audio,
there is a greater likelihood that the engineer, author, programmer and producer will have less
control over the ultimate sound quality of what the consumer hears. This is because much of
the sound material may be represented in the form of encoded ‘objects’ that will be rendered
at the replay stage, as shown in Figure 8.8. Here the quality depends more on the quality of

Operational and systems issues

251

Figure 8.8 (a) In conventional audio production and delivery, sources are combined and delivered at a fixed
quality to the user, who simply has to replay it. The quality is limited by the resolution of the delivery link. (b) In
some virtual and synthetic approaches the audio information is coded in the form of described objects that are
rendered at the replay stage. Here the quality is strongly dependent on the capabilities of the rendering engine
and the accuracy of description

Original sources
(e.g. tape tracks)

Fixed form

Audio mixer

Composite or
mixed output
(audio signal)

Artistic/technical control by
recording engineer/producer

Encoding/description/
parameterisation

Authoring

Source objects Artistic/technical authoring and
facilitation of user options

Encoded source and
control information

Storage/transmission

Storage/transmission

Decoding/
rendering/ synthesis

User actions/controls

Replay device

Composite or
mixed output
(audio signal)

Composite or
mixed output
(audio signal)

consumer’s rendering engine, which may involve resynthesis of some elements, based on con-
trol data. This is a little like the situation when distributing a song as a MIDI sound file, using
General MIDI voices. The audible results, unless one uses downloadable sounds (and even
then there is some potential for variation), depends on the method of synthesis and the pre-
cise nature of the voices available at the consumer end of the chain.

8.4 Preparing for and understanding release media
Consumer release formats such as CD, DVD, SACD and MP3 usually require some form of
mastering and pre-release preparation. This can range from subtle tweaks to the sound qual-
ity and relative levels on tracks to PQ encoding, DVD authoring, data encoding and the addi-
tion of graphics, video and text. Some of these have already been mentioned in other places
in this book.

8.4.1 CD-Audio

PQ encoding for CD mastering can often be done in some of the application packages
designed for audio editing, such as SADiE and Sonic Solutions. In this case it may involve
little more than marking the starts and ends of the tracks in the play list and allowing the
software to work out the relevant frame advances and Red Book requirements for the assem-
bly of the PQ code that will either be written to a CD-R or included in the DDP file for
sending to the pressing plant (see Chapter 6). The CD only comes at one resolution and
sampling frequency (16 bit, 44.1 kHz) making release preparation a relatively straight-
forward matter.

8.4.2 DVD

DVD mastering is considerably more complicated than CD and requires advanced authoring
software that can deal with all the different options possible on this multi-faceted release format.
DVD-Video allows for 48 or 96 kHz sampling frequency and 16, 20 or 24 bit PCM encoding.
A two-channel downmix must be available on the disk in linear PCM form (for basic compat-
ibility), but most disks also include Dolby Digital or possibly DTS surround audio. Dolby Digital
encoding usually involves the preparation of a file or files containing the compressed data, and
a range of settings have to be made during this process, such as the bit rate, dialogue normal-
isation level, rear channel phase shift and so on. A typical control screen is shown in Figure 8.9.
Then of course there are the pictures, but they are not the topic of this book.

There are at least three DVD player types on the market (audio, universal and video), and
there are two types of DVD-Audio disc, one containing only audio objects and the other (the
DVD-AudioV) capable of holding video objects as well. The video objects on a DVD-AudioV
are just the same as DVD-Video objects and therefore can contain video clips, Dolby AC-3
compressed audio and other information. In addition, there is the standard DVD-Video disc,
as shown in Figure 8.10.

DVD-AudioV discs should play back in audio players and universal players. Any video
objects on an AudioV disk should play back on video-only players. The requirement for

Desktop Audio Technology

252

video objects on DVD-AudioV discs to contain PCM audio was dropped at the last moment
so that such objects could only contain AC-3 audio if desired. This means that an audio disc
could contain a multichannel AC-3 audio stream in a video object, enabling it to be played in
a video player. This is a good way of ensuring that a multichannel audio disc plays back in

Operational and systems issues

253

Figure 8.10 Compatibility of DVD discs and players (Courtesy of DVD working group)

Video player

Universal player

Audio player DVD-Audio disc

DVD-AudioV disc

DVD-Video disc

DVD

12 25:00

Figure 8.9 Screen display of Dolby Digital encoding software options

as many different types of player as possible, but requires that the content producer makes
sure to include the AC-3 video object in addition to MLP or PCM audio objects. The video
object can also contain a DTS audio bitstream if desired.

DVD-Audio has a number of options for choosing the sampling frequencies and resolutions
of different channel groups, it being possible to use a different resolution on the front chan-
nels from that used on the rear, for example. There are also decisions to be made about the
bit budget available on the disk, and whether or not the audio data needs to be MLP encoded
for release (see below). The format is more versatile in respect of sampling frequency than
DVD-Video, having also accommodated multiples of the CD sample frequency of 44.1 kHz
as options (the DVD-Video format allows only for multiples of 48 kHz). Consequently, the
allowed sample frequencies for DVD-Audio are 44.1, 48, 88.2, 96, 176.4, 192 kHz. The sample
frequencies are split into two groups – multiples of 44.1 and multiples of 48 kHz. While it is
possible to split frequencies from one group among the audio channels on a DVD-A (see
below), one cannot combine frequencies across the groups for reasons of simple clock rate
division. Bit resolution can be 16, 20 or 24 bits per channel, and again this can be divided
unequally between the channels, according to the channel group split described below.

Playing time depends on the way in which producers decide to use the space available on the
disc, and this requires the juggling of the available bit budget. DVD-Audio can store at least
74 minutes of stereo audio even at the highest sample rate and resolution (192/24). Other
modes are possible, with up to six channels of audio playing for at least 74 minutes, using
combinations of sample frequency and resolution, together with MLP. Six-channel audio can
only operate at the two lower sample rates of either class (44.1/88.2 or 48/96).

A downmixing technique known as SMART (System Managed Audio Resource Technique)
is mandatory in DVD-Audio players but optional for content producers. It enables a stereo
downmix of the multichannel material to be made in the player but under content producer
control, so this information has to be provided at authoring time. The gains, phases and pan-
ning of each audio channel can be controlled in the downmix. A separate two-channel mix
(L0/R0) can be included within an MLP bitstream. If a separate stereo mix is provided on the
disc then this is automatically used instead of the player downmix.

All modes other than mono or 2-channel have the option to split the channels into two
groups. Group 1 would normally contain the front channels (at least left and right) of the
multichannnel balance, while Group 2 could contain the remaining channels. This is known
as scalable audio. The resolution of Group 2 channels can be lower than that of Group 1,
enabling less important channels to be coded at appropriate resolutions to manage the over-
all bit budget. The exact point of the split between the channel groups depends on the mode,
and there are in fact 21 possible ways of splitting the channels.

It is also possible to ‘bit-shift’ channels that do not use the full dynamic range of the channel.
For example, surround channels that might typically under-record compared with the front
channels can be bit shifted upwards so as to occupy only the 16 MSBs of the channel. On
replay they are restored to their original gains.

It is not mandatory to use the centre channel on DVD-Audio. Some content producers may
prefer to omit a centre speaker feed and rely on the more conventional stereo virtual centre.
The merits or demerits of this continue to be debated.

Desktop Audio Technology

254

Meridian Lossless Packing (MLP) is licensed through Dolby Laboratories and is a lossless
coding technique designed to reduce the data rate of audio signals without compromising
sound quality. It has both a variable bit rate mode and a fixed bit rate mode. The variable
mode delivers the optimum compression for storing audio in computer data files, but the
fixed mode is important for DVD applications where one must be able to guarantee a certain
reduction in peak bit rate. The use of MLP on DVD-A discs is optional, but is an important
tool in the management of bit budget. Using MLP one would be able to store separate two-
channel and multichannel mixes on the same disc, avoiding the need to rely on the semi-
automatic downmixing features of DVD players. Owing to the so-called Lossless Matrix
technology employed, an artistically controlled L0/R0 downmix can be made at the MLP
mastering stage, taking up very little extra space on the disc owing to redundancy between
the multichannel and two-channel information. MLP is also the key to obtaining high reso-
lution multichannel audio on all channels without scaling.

DVD masters are usually transferred to the pressing plant on DLT tapes, using the Disk
Description Protocol (DDP), as described in Chapter 6, or on DVD-R(A) disks as a disk image
with a special CMF (cutting master format) header in the disk lead-in area containing the
DDP data.

8.4.3 Super Audio CD (SACD)

Version 1.0 of the SACD specification is described in the ‘Scarlet Book’, available from Philips
licensing department. SACD uses DSD (Direct Stream Digital) as a means of representing audio
signals, as described in Chapter 2, so requires audio to be sourced in or converted to this form.
SACD aims to provide a playing time of at least 74 minutes for both two-channel and six-
channel balances. The disc is divided into two regions, one for two-channel audio, the other for
multichannel, as shown in Figure 8.11. A lossless data packing method known as Direct Stream
Transfer (DST) can be used to achieve roughly 2:1 data reduction of the signal stored on disc so
as to enable high quality multichannel audio on the same disc as the two-channel mix.

SACDs can be manufactured as single or dual-layer discs, with the option of the second layer
being a Red Book CD layer (the so-called ‘hybrid disc’). SACDs, not being a formal part of
the DVD hierarchy of standards (although using some of the optical disc technology), do not
have the same options for DVD-Video objects as DVD-Audio. The disc is designed first and
foremost as a super-high-quality audio medium. Nonetheless there is provision for addi-
tional data in a separate area of the disc. The content and capacity of this is not specified but
could be video clips, text or graphics, for example. Authoring software enables the text infor-
mation to be added, as shown in Figure 8.12. SACD masters are normally submitted to the
pressing plant on AIT format data tapes (see Chapter 5).

Sony and Philips have paid considerable attention to copy protection and anti-piracy
measures on the disc itself. Comprehensive visible and invisible watermarking are standard
features of the SACD. Using a process known as PSP (Pit Signal Processing) the width of the
pits cut into the disc surface is modulated in such a fashion as to create a visible image on the
surface of the CD layer, if desired by the originator. This provides a visible means of authen-
tication. The invisible watermark is a mandatory feature of the SACD layer and is used
to authenticate the disc before it will play on an SACD player. The watermark is needed to

Operational and systems issues

255

decode the data on the disc. Discs without this watermark will simply be rejected by the
player. It is apparently not possible to copy this watermark by any known means. Encryption
of digital music content is also optional, at the request of software providers.

8.4.4 MP3

MP3, as already explained in Section 2.12, is actually MPEG-1, Layer 3 encoded audio, stored
in a data file, usually for distribution to consumers either on the Internet or on other release
media. Consumer disk players are increasingly capable of replaying MP3 files from CDs, for
example. MP3 mastering requires that the two-channel audio signal is MPEG-encoded, using
one of the many MP3 encoders available, possibly with the addition of the ID3 tag described
in Chapter 6. Some mastering software now includes MP3 encoding as an option.

Some of the choices to be made in this process concern the data rate and audio bandwidth to
be encoded, as this affects the sound quality. The lowest bit rates (e.g. below 64 kbit s�1) will
tend to sound noticeably poorer than the higher ones, particularly if full audio bandwidth is
retained. For this reason some encoders limit the bandwidth or halve the sampling frequency
for very low bit rate encoding, because this tends to minimise the unpleasant side-effects of
MPEG encoding. It is also possible to select joint stereo coding mode, as this will improve
the technical quality somewhat at low bit rates, possibly at the expense of stereo imaging
accuracy. As mentioned above, at very low bit rates some audio processing may be required
to make sound quality acceptable when squeezed down such a small pipe.

Desktop Audio Technology

256

Figure 8.11 Different regions of a Super Audio CD, showing separate two-channel and multichannel regions

Extra data area

Multichannel area

Two-channel area

File system

Master TOC

8.4.5 MPEG-4, web and interactive authoring

Commercial tools for interactive authoring and MPEG-4 encoding are only just beginning to
appear at the time of writing. Such tools enable audio scenes to be described and data
encoded in a scalable fashion so that they can be rendered at the consumer replay end of the
chain, according to the processing power available.

Interactive authoring for games is usually carried out using low-level programming and tools
for assembling the game assets, there being few universal formats or standards in this
business at the present time. It requires detailed understanding of the features of the games
console in question and these platforms differ considerably. Making the most of the resources
available is a specialised task, and a number of books have been written on the subject (see
Further reading at the end of this chapter). Multimedia programs involving multiple media
elements are often assembled using authoring software such as Director, but that will not be
covered further here. Preparing audio for web (Internet) delivery is also a highly specialised
topic covered very well in other books (see Further reading).

8.5 Synchronisation
There are many cases in which it is necessary to ensure that the recording and replay of audio
and/or MIDI data are time-synchronised to an external reference of some sort. Under the

Operational and systems issues

257

Figure 8.12 Example of SACD text authoring screen from SADiE

heading of synchronisation comes the subject of locking both recording and replay to a
source of SMPTE/EBU timecode or MIDI TimeCode (MTC) (see Chapter 4), as well as lock-
ing to an external sampling rate clock, video sync reference or digital audio sync reference.
This is needed when the audio workstation is to be integrated with other audio and video
equipment, and when operating in an all-digital environment where the sampling frequen-
cies of interconnected systems must be the same. The alternative, when the workstation is
operating in isolation, is for all operations to be performed with relation to an internal tim-
ing reference locked to the prevailing audio sampling frequency.

8.5.1 Requirements for synchronisation

The synchronisation of an audio application requires that the replay or recording speed and
sampling frequency are kept in step with an external timing reference and that there is no long-
term drift between this external reference and the passage of time in the replayed audio signal.
When lock is required to an external reference there is the possibility that this reference may drift
in speed, may have timing jitter or may ‘jump’ in time (if it is a ‘real time’ reference such as time-
code). Such situations require that the replay speed and sampling rate of the workstation be
adjusted regularly and continuously to follow any variations in the timing reference, or to
‘flywheel’ over them, or even ignore them in some cases (e.g. timecode discontiguities). Speed
variations, depending on the rate, can give rise to audible artefacts due to clock jitter, or to the
variation of the output sampling rate outside the tolerances acceptable by any other digitally
interfaced device in the system, requiring care in system design and implementation.

8.5.2 Timecode synchronisation

The most common synchronisation requirement is for replay to be locked to a source of
SMPTE/EBU timecode, because this is used universally as a timing reference in audio and
video recording. LTC (longitudinal timecode) is an audio signal that can be recorded on a
tape and VITC is contained within lines of a video signal, requiring a suitable reader in the
workstation sync interface. A number of desktop workstations that have MIDI features lock
to MIDI TimeCode (MTC), which is a representation of SMPTE/EBU timecode in the form of
MIDI messages. Details of both types of timecode were given in Chapter 4.

It is important to know what kind of synchronisation is used by your hardware and software.
One of the factors that must be considered is whether external timecode is simply used as a
timing reference against which sound file replay is triggered, or whether the system con-
tinues to slave to external timecode for the duration of replay. In some cases these modes are
switchable because they both have their uses. In the first case replay is simply ‘fired off’ when
a particular timecode is registered, and in such a mode no long-term relationship is main-
tained between the timecode and the replayed audio. This may be satisfactory for some basic
operations but is likely to result in a gradual drift between audio replay and the external ref-
erence if files longer than a few seconds are involved. It may be useful though, because replay
remains locked to the workstation’s internal clock reference, which may be more stable than
external references, potentially leading to higher audio quality from the system’s convertors.
Some cheaper systems do not ‘clean up’ external clock signals very well before using them
as the sample clock for D/A conversion, and this can seriously affect audio quality.

Desktop Audio Technology

258

In the second mode a continuous relationship is set up between timecode and audio replay,
such that long-term lock is achieved and no drift is encountered. This is more difficult to
achieve because it involves the continual comparison of timecode to the system’s internal
timing references and requires that the system follows any drift or jump in the timecode.
Jitter in the external timecode is very common, especially if this timecode derives from a
video tape recorder, and this should be minimised in any sample clock signals derived from
the external reference. This is normally achieved by the use of a high-quality phase-locked
loop, often in two stages. Wow and flutter in the external timecode can be smoothed out
using suitable time constants in the software that converts timecode to sample address codes,
such that short-term changes in speed are not always reflected in the audio output but
longer-term drifts are.

Sample frequency conversion may be employed at the digital audio outputs of a system to
ensure that changes in the internal sample rate caused by synchronisation action are not
reflected in the output sampling rate. This may be required if the system is to be interfaced
digitally to other equipment in an all-digital studio.

8.5.3 Synchronisation to external audio, film or video references

In all-digital systems it is necessary for there to be a fixed sampling frequency, to which all
devices in the system lock. This is so that digital audio from one device can be transferred
directly to others without conversion or loss of quality. In systems involving video it is often
necessary for the digital audio sampling frequency to be locked to the video frame rate and
for timecode to be locked to this as well. The reference signal is likely to be a ‘house sync’
composite video signal that does not necessarily carry time-of-day information. It would
be used to lock the internal sampling frequency clock of the workstation. An alternative to
this is a digital audio sync signal such as word clock or an AES11 standard sync reference
(a stable AES3 format signal, without any audio).

Other sync signals could include tachometer or control track pulses from tape machines or
frame rate pulses from film equipment. If a system is to be able to resolve to any or all of
these, as well as to timecode and digital audio inputs, a very versatile ‘gearbox’ will be
required to perform the relevant multiplications and divisions of synchronisation signals at
different rates, such that they can be used to derive the internal sampling rate clock of the
system. A stable voltage-controlled oscillator (VCO) and phase-locked loop are commonly
used for this purpose.

Figure 8.13 (page 260) illustrates a possible conceptual diagram of synchronised operation,
with a variety of references and a constant sampling rate output. The sampling frequency
convertor is not necessary if suitably constant external relationships can be maintained
between the different forms of sync signal and the audio sampling frequency.

8.6 System troubleshooting
8.6.1 Troubleshooting MIDI

When a MIDI system fails to perform as expected, or when devices appear not to be respond-
ing to data being transmitted from a controller, it is important to adopt logical fault-finding

Operational and systems issues

259

techniques rather than pressing every button in sight and starting to replug cables. The fault
will normally be a simple one and there are only a limited number of possible causes. It is
often worth starting at the end of the system nearest to the device that exhibits the problem
and working backwards towards the controller, asking a number of questions as you go. You
are basically trying to find out either where the control signal is getting lost or why the device
is responding in a strange way.

Look at the hints in Figure 8.14. Firstly, is MIDI data getting to the device in question? Most
devices have some means of indicating that they are receiving MIDI data, either by a flash-
ing light on the front panel or some other form of display. Alternatively it is possible to buy
small analysers which in their simplest form may do something like flashing a light if MIDI
data is received. If data is getting to the device then the problem is probably either within the
device or after its audio output. The most common mistake that people make is to think that
they have a MIDI problem when in fact they have an audio problem. Check that the audio
output is actually connected to something and that its destination is turned on and faded up.
Plug in a pair of headphones to check if the device is responding to MIDI data. If sound
comes out of the headphones then the problem most probably lies in the audio system.

If the device is receiving MIDI data but not producing an audio output, try setting the receive
mode to ‘omni on’ so that it responds on all channels. If this works then the problem must be
related to the way in which a particular channel’s data is being handled. Check that the
device is enabled to receive on the MIDI channel in question. Check that the volume is set to
something other than zero and that any external MIDI controllers assigned to volume are not
forcing the volume to zero (such as any virtual faders in the sequencer package). Check that
the voice assigned to the channel in question is actually assigned to an audio output that is
connected to the outside world. Check that the main audio output control on the unit itself
is turned up. Also try sending note messages for a number of different notes – it may be that
the voice in question is not set up to respond over the whole note range.

If no MIDI data is reaching the device then move one step further back down the MIDI sig-
nal chain. Check the MIDI cable. Swap it for another one. If the device is connected to a MIDI

Desktop Audio Technology

260

Figure 8.13 Conceptual diagram of replay synchronised to one of a number of timing sources. Blocks of data
are fetched from disk at a rate determined by the current sampling clock

Timing
source
selector

I/O control
and buffering

Sampling rate
convertor

(variable rate)

Clock
extraction

Filter
(smoothing)

Gearbox
(multiply/
divide)

Audio samples out

Variable sampling rate clock

Fixed sampling
rate clock

Timecode

AES/EBU
WCLK
Video
Frame

Store

router of some kind, check that the router input receiving the required MIDI data is routed
to the output concerned. Try connecting a MIDI keyboard directly to the input concerned to
see if the patch is working. If this works then the problem lies further up the chain, either in
the MIDI interface attached to the controller or in the controller itself. If the controller is a
computer with an external MIDI interface, it may be possible to test the MIDI port concerned.
The setup software for the MIDI interface may allow you to enter a ‘Test’ mode in which you
can send unspecified note data directly to the physical port concerned. This should test
whether or not the MIDI interface is working. Most interfaces have lights to show when a
particular port is receiving or transmitting data, and this can be used for test purposes. It may
be that the interface needs to be reconfigured to match a changed studio setup. Now go back
to the controller and make sure that you are sending data to the right output on the required
MIDI channel and that you are satisfied, from what you know about it, that the software con-
cerned should be transmitting.

If no data is getting from the computer to the interface, check the cables to the interface. Then
try resetting the interface and the computer. This sometimes re-establishes communication
between the two. Reset the interface first, then the computer, so that the computer ‘sees’ the
interface (this may involve powering down, then up). Alternatively, a soft reset may be pos-
sible using the setup software for the interface. If this does not work, check that no applica-
tions are open on the computer which might be taking over the interface ports concerned
(some applications will not give up control over particular I/O ports easily). Check the

Operational and systems issues

261

Figure 8.14 A number of suggestions to be considered when troubleshooting a MIDI system

Audio

Computer I/O

MIDI IF

Sound generator

Internal MIDI routing correct?
Studio setup document accurate?
MIDI interface driver installed?
Correct driver selected?
Incompatibility between software?

Cable correct?
Cable broken?
Plugged into wrong connector?

LEDs indicate activity on port?
Internal patches correct?
Filters blocking data?
Plugged into correct port?

Cable correct or broken?

Turned on?
Volume up?
MIDI input LED indicates data present?
Voice output routings correct?
MIDI input enabled for channel?
Works in omni on mode?
Volume setting for voice correct?
Headphone socket producing output?

MIDI cable

configuration of any software MIDI routers within the computer to make sure that MIDI data
is ‘connected’ from the controlling package to the I/O port in question.

Ask yourself the question: ‘Was it working the last time I tried it?’ If it was, it is unlikely that
the problem is due to more fundamental reasons such as the wrong port drivers being
installed in the system or a specific incompatibility between hardware and software, but it is
worth thinking through what you have done to the system configuration since the last time
it was used. It is possible that new software extensions or new applications may conflict with
your previously working configuration, and removing them will solve the problem. Try
using a different software package to control the device which is not responding. If this
works then the problem is clearly with the original package. Assuming that the device in
question had been responding correctly on a previous occasion, any change in response to
MIDI messages such as program and control changes is most likely due either to an altered
internal setup or a message getting to the device which was not intended for it.

Most of the internal setup parameters on a MIDI-controlled device are accessible either using
the front panel or using system exclusive messages. It is often quite a long-winded process
to get to the parameter in question using the limited front panel displays of many devices,
but it may be necessary to do this in order to check the intended response to particular MIDI
data. If the problem is one with unusual responses (or no response) to program change mes-
sages then it may be that the program change map has been altered and that a different stored
voice or patch is being selected from the one intended. Perhaps the program change number
in question is not assigned to a stored voice or patch at all. If the device is switching between
programs when it should not then it may be that your MIDI routeing is at fault. Perhaps the
device is receiving program changes intended for another. Check the configuration of your
MIDI patcher or multiport interface. A similar process applies to controller messages. Check
the internal mapping of controller messages to parameters, and check the external MIDI
routing to make sure that devices are receiving only the information intended for them.

When more than one person uses a MIDI-controlled studio, or when you have a lot of different
setups yourself, virtually the only way to ensure that you can reset the studio quickly to a
particular state is to store system exclusive dumps of the full configuration of each device and
to store any patcher or MIDI operating system maps. These can either be kept in separate librar-
ian files or as part of a sequence, to be downloaded to the devices before starting the session.
Once you have set up a configuration of a device that works for a particular purpose it should
be stored on the computer so that it could be dumped back down again at a later date.

8.6.2 Digital interface troubleshooting

If a digital interface between two devices appears not to be working it could be due to one or
more of the following conditions. These are covered in more detail in The Digital Interface
Handbook (see Further reading).

Asynchronous sample rates

The two devices must normally operate at the same sampling frequency, preferably locked to a
common reference. Ensure that the receiver is in external sync mode and that a synchronizing

Desktop Audio Technology

262

signal (common to the transmitter) is present at the receiver’s sync input. If the incoming signal’s
transmitter cannot be locked to the reference it must be resynchronized or sample rate
converted. Alternatively, set the receiver to lock to the clock contained in the digital audio input
(standard two-channel interfaces only).

‘Sync’ or ‘locked’ indicator flashing or out on the receiver normally means that no sync
reference exists or that it is different from that of the signal at the digital input. Check that
sync reference and input are at correct rate and locked to the same source. Decide on whether
to use internal or external sync reference, depending on application.

If problems with ‘good lock’ or drifting offset arise when locking to other machines or when
editing, check that any timecode is synchronous with video and sampling rate.

Sampling frequency mode

The transmitter may be operating in the AES3 single-channel-double-sampling-frequency
mode in which case successive sub-frames will carry adjacent samples of a single channel at
twice the normal sampling frequency. This might sound like audio pitch-shifted downwards
if decoded and converted by a standard receiver incapable of recognising this mode.
Alternatively the devices may be operating at entirely different sampling frequencies and
therefore not communicate.

Digital input

It may be that the receiver is not switched to accept a digital input.

Data format

Received data is in the wrong format. Both transmitter and receiver must operate to the same
format. Conflicts may exist in such areas as channel status, and there may be a
consumer–professional conflict. Use a format convertor to set the necessary flags.

Non-audio or ‘other uses’ set

The data transmitted over the interface may be data-reduced audio, such as AC-3 or DTS for-
mat. It can only be decoded by receivers specially designed for the task. The data will sound
like noise if it is decoded and converted by a standard linear PCM receiver, but in such
receivers it will normally be muted because of the indication in channel status and/or the
validity bit.

Cables and connectors

Cables or connectors may be damaged or incorrectly wired. Cable may be too long, of the
wrong impedance, or generally of poor quality. Digital signal may be of poor quality. Check
eye height on scope against specification and check for possible noise and interference
sources. Alternatively make use of an interface analyser.

Operational and systems issues

263

SCMS (consumer interface only)

Copy protect or SCMS flag may be set by transmitter. For professional purposes, use a format
convertor to set the necessary flags or use the professional interface which is not subject to
SCMS.

Receiver mode

Receiver is not in record or input monitor mode. Some recorders must be at least in
record–pause before they will give an audible and metered output derived from a digital
input.

8.6.3 Troubleshooting software

This could form a book in its own right and depends a lot on the operating system and
applications in question. There are, however, a few rules of thumb to be observed when
trying to get software to work.

Firstly, make sure you have all the latest updates and revisions to the current system software
and applications. Latest versions tend to be reasonably safe together. Patches and updates
can often be downloaded from the Internet. Check also that the memory and CPU require-
ments of the application are met. Begin with a basic set of system extensions and don’t load
any more software or extensions than you need onto an audio workstation. General purpose
extensions and third-party software can sometimes conflict with the smooth operation of
audio workstation packages and many people run only audio software on such platforms
rather than trying to use them as general purpose computers as well.

Make sure that you are using the correct and latest drivers for any sound cards and MIDI
interfaces in the system and that the disk interface and drivers are suitable for high speed
audio and video operation.

Further reading
Beggs, J. and Thede, D. (2001) Designing Web Audio. O’Reilly and Associates.
Boer, J. (2002) Game Audio Programming. Charles River Media.
Marks, A. (2001) The Complete Guide to Game Audio. CMP Books.
Rumsey, F. (2001) Spatial Audio. Focal Press.
Rumsey, F. and Watkinson, J. (2004) The Digital Interface Handbook, third edition. Focal Press.

Desktop Audio Technology

264

3–1 stereo format (4-channel surround), 242–4
3–2 stereo format (5.1 channel surround), 244–6
7.1 channel surround format, 247–8

A/D (analog-to-digital) conversion/converters:
about A/D converters, 6, 13
aliasing, 15, 17
clipping problems, 21
decimation, 29–30
filtering, 17–18
noise shaping, 30–2
Nyquist frequency, 16–17, 31
oversampling, 18, 29–30
and pulse code modulation (PCM), 18
quantisation, 11–12, 18–21
quantising error, 11–12, 18, 21–2
resolution versus quality, 21–2
and S/N considerations, 22
sampling, 11, 13–16
sampling rate, 12
sigma-delta convertor, 31–2
see also D/A (digital-to-analog)

conversion/converters; Dither
AAF (Advanced Authoring Format), 180, 184–5
ADAT Optical (Alesis digital interface), 195–6
ADL (Audio Decision List), 182
ADSL (Asymmetric Digital Subscriber Line), 205
Advanced Authoring Format (AAF), 180, 184–5
Advanced Intelligent Tape (AIT), 148
AES 3 interface format, 189–92
AES 31 format, 180–2
AES 47 (audio over ATM), 212–15
AIFF and AIff-C formats, 172–3
AIT (Advanced Intelligent Tape), 148
Aliasing, 15, 17

Allocation units/transfer blocks, 64
Analog information:

basics, 5–7
noise effects, 6

Analog-to-digital converters see A/D
(analog-to-digital) conversion/converters

Aperture effect, D/A converters, 32
API (application programming interface), 227
Apple Macintosh files, 169–70
ATA/IDE interface, 151

serial ATA, 151
ATM (asynchronous transfer mode), 202

with AES 47 standard, 212–15
Audio data reduction see Data reduction
Audio Decision List (ADL), 182
Audio device interconnections, 186–7
Audio file formats see File formats
Audio interface formats:

about audio interface formats, 187–9
ADAT Optical (Alesis digital interface), 195–6
AES 3 interface, 189–92
Direct Stream Digital (DSD-SDIF-3), 196
MAC-DSD, 196–7
Roland R-bus, 196
standard consumer interface

(IEC 60958–3), 192–4
standard digital interfaces with audio data, 194
Tascam digital interface (TDIF), 195

Audio quality see Sound quality
Audio signal processing see Digital signal processing

(DSP), audio signals
Audio software see Software
Audio workstations:

about audio workstations, 2–3
decline of, 2–3

265

Index

BIFS (Binary Format for Scenes), 56
Binary number systems:

binary words, 7–8
fixed/floating point representation, 10
hexadecimal notation, 8–9
logical operations, 10–11
LSB (least significant bit), 7
MSB (most significant bit), 8, 9
negative numbers, 9–10
truth tables, 11
twos complement numbers, 9–10

Bit stream conversion, D/A converters, 33
Bluetooth, 206
Broadcast WAVE format, 175–7

Broadcast audio extension chunk format, 176
BSS soundweb, 216

CDs (compact discs):
about CDs, 143
CD-R disks, 143
CD-RW disks, 144
mastering:

dither with, 39
PQ encoding, 252
pre-mastering formats, 185–6

Orange book CDs, 144–5
Program Calibration Area (PCA), 144–5
Program Memory Area (PMA), 145
Red book table of contents (TOC), 143, 145
Super Audio CD (SACD), 255–6
see also Optical disks

CEDAR restoration application software, 235–7
CIN (code index number), with MIDI, 129
Clipping problems, 21
CMX-compatible format, 180
CobraNet protocol, 215
Code index number (CIN), with MIDI, 129
Compact discs see CDs (compact discs)
Computer basics:

and audio technology, 3
MIDI interfacing, 164–5
plug-ins, 227–9
virtual instruments, 229–31
see also Software

Computer interfaces with audio:
AES 47 (audio over ATM), 212–15
BSS soundweb, 216
CobraNet protocol, 215
firewire (IEEE 1394), 189, 206–10
MAGIC (Media-accelerated Global Information

Carrier), 215
MOST (media oriented synchronous transfer), 216
troubleshooting, 262–4
USB (universal serial bus), 189, 210–12

Computer networks for audio, 187–9

Copy protection, digital content, 216–18
copy control information (CCI), 217
on DVD, 218
SCMS method, 216–18
with Super Audio CD (SACD), 255–6

Crossfading:
about crossfading, 45–6, 71–5
and automated gain changes, 73
and MIDI sound generator control, 98–9
shape considerations, 73–5

‘CV and gate’ analog instrument control, 79–80

D/A (digital-to-analog) conversion/converters:
about D/A converters, 12–13
aperture effect, 32
basic principles, 32
bit stream conversion, 33
oversampling, 33
reconstruction filters, 32
resampling, 32
and voltage-controlled amplifiers (VCAs), 12–13
see also A/D (analog-to-digital)

conversion/converters
DAT Data Storage (DDS) format, 147
Data compression, PCs, 52
Data reduction, digital audio:

about data reduction, 51–2
Dolby Digital/AC-3 recording, 56
DTS (Digital Theater Systems), 56–7
lossless and lossy coding, 52–3
MPEG example, 53–6
SDDS (Sony Dynamic Digital Sound), 57

DDP (Disk Description Protocol), 185–6
DDS (DAT Data Storage) format, 147
Decimation:

in A/D converters, 29–30
digital decimation filters, 30

Digidesign plug-ins, 228
Digital audio:

about digital audio, 1–2
and MIDI, 81–2

Digital domain copying, 186–7
Digital filters and equalisation, 46–8
Digital information, 6–7

advantages over analog, 6–7
and jitter, 6–7
noise effects, 6

Digital Linear Tape (DLT) drives, 148
Digital signal processing (DSP), audio signals:

about DSP, 44, 153–5
crossfading, 45–6
digital filters and equalisation, 46–8
digital reverberation, 48–9
DSP cards, 155–6
dynamics processing, 49–50

Index

266

FM synthesis, 156–7
gain changing (level control), 44–5
host-based audio processing, 156
integrated sound cards, 156
latency problems, 155
level control, 44–5, 240–2
mixing, 46
MSP signal processing toolbox, 235–8
pitch shifting, 49
sample rate conversion, 50–1
with sequencers, 227
synthesis engines on sound cards, 156–9
TDM-bus cards, 156
wavetable synthesis, 157–9
see also Non-linear editing; Software

Digital-to-analog converters see D/A (digital-to-analog)
conversion/converters

Direct Stream Digital (DSD) (Sony digital audio coding
system), 38–9

DSD-IFF file format, 179–80
MAC-DSD, 196–7
SDIF-3 interface, 196
with Super Audio CD (SACD), 38, 255

Direct Stream Transfer (DST), 255
DirectX multimedia extensions, 228
Disk Description Protocol (DDP), 185–6
Disk drives, general:

access time, 62, 64, 135
allocation units/transfer blocks, 64
basics, 133–4
data rates, 62–4
formatted storage capacity, 136
fragmentation, 63, 153
general structure, 133–4
instantaneous transfer rate, 135
Jaz drive (Iomega), 138–9
removable magnetic media, 138–9
space optimisation, 153
sustained transfer rate, 136
Zip disks (Iomega), 138
see also CDs (compact discs); DVDs (digital video

(versatile) discs); Magnetic hard disk drives;
Optical disks; RAID arrays

Disk pre-mastering formats, 185–6
Disk Description Protocol (DDP), 185–6

Dither:
beneficial effects, 22–7
and Gaussian noise, 28–9
level control and redithering, 241
and noise, 24–7
and quantising distortion, 23–4
rectangular probability distribution function (RPDF)

dither noise, 27–9
redithering with gain changing, 45, 241, 250
for requantisation, 39–41

triangular probability distribution function (TPDF)
dither noise, 27–9

DLT (Digital Linear Tape) drives, 148
Dolby Digital/AC-3 recording, 56
Dolby EX format, 246–7
Downloadable sounds (DLS):

about DLS, 115–16
DLS level 1 file format, 116
DLS level 2 file format, 116
with MIDI, 129
SoundFonts (Emu for Creative Labs), 116

DSD see Direct Stream Digital
DSP see Digital signal processing (DSP), audio signals
DTS (Digital Theater Systems), 56–7
DVDs (digital video (versatile) discs):

about DVDs, 145
copy protection, 218
DVD-Video, 145–7
mastering, 252–5
Meridian Lossless Packing (MLP), 255
recordable formats, 146–7
see also Optical disks

DXi software synthesiser plug-in architecture, 228
Dynamic range, hearing, 34
Dynamic range enhancement, 41–2
Dynamics processing, digital, 49–50

Ear see Hearing
EBU Tech. 3285 format description, 177
Edit decision lists (EDL), 71, 72

file formats, 180
Edit decision markup language (EDML), 181
Editing see Digital signal processing (DSP), audio

signals; Multichannel operation on workstations;
Non-linear editing

EDL see Edit decision lists
Error correction, 42–4
Ethernet, 201, 203
Exabyte tapes, 148

FAT32 file system, 180
Fault-finding see Troubleshooting
FDDI (Fibre Distributed Data Interface), 201–2
File formats:

about file formats, 168–70
Advanced Authoring Format (AAF), 180, 184–5
AES 31 format, 180–2
AIFF and AIff-C formats, 172–3
Apple Macintosh files, 169–70
Audio Decision List (ADL), 182
CMX-compatible form, 180
disk pre-mastering formats, 185–6
DSD-IFF file format, 179–80
edit decision list (EDL) files, 180
edit decision markup language (EDML), 181

Index

267

File formats: (continued)
FAT32 file system, 180
Microsoft files, 169–70
MPEG audio file formats, 177–9

ID3 tag structure, 179
MPEG audio frame header, 178

MXF (Media Exchange Format), 183
Open Media Framework Interchange (OMFI), 182–3
RIFF WAVE format, 173–5
Sound Designer I format (SD I), 171
Sound Designer II format (SD II), 171–2
WAV formats:

Broadcast WAVE format, 175–7
RIFF WAVE format, 173–5
WAVE-format extensible, 175

Filling systems and volume partitions for disk
systems, 152–3

see also Sound files
Filters/filtering:

A/D conversion, 17–18
digital decimation filters, 30
digital filters and equalisation, 46–8
finite impulse response filter (FIR)

(transversal), 47–8
frequency domain response, 46
infinite impulse response filter (IIR) (recursive), 48
reconstruction filters, D/A converters, 32
sequencer filters, 220–1
time domain response, 46

Firewire (IEEE 1394):
AM824 format, 208–9
CIP layer, 208
with MIDI, 129–30
peripheral connection, 151
for use with audio, 189, 206–10

Floating/fixed point representation, 10
FM synthesis, 156–7
Formats see Audio interface formats;

File formats; Multichannel formats;
WAV formats

Formatting media, 153
Fourier transform, 47
Fragmentation of disk drives, 63, 153
Frequency domain response (filters), 46

Gain changing, by digital processing, 44–5
Gaussian noise, and dither, 28–9
General MIDI, 108–10

dynamic voice allocation, 108–9
GM 1 (standard voice map), 108
GM 2 (extended GM 1), 110
GM Lite (GML-cut down GM 1), 109–10
with sequencers, 226
sound modules, 109

GUIs (graphical user interfaces), 159

Hard disk drives see Magnetic hard disk drives;
RAID arrays

Headroom:
and level control, 240–2
and quantising resolution, 38

Hearing:
dynamic range, 34
ear’s capabilities, 33–4
minimum audible field (MAF), 33
and sound pressure levels (SPL), 33
threshold of hearing, 33–4

Hexadecimal number system, 8–9
HFS (Hierarchical Filing System), 153
Human ear see Hearing

IDE/ATA interface, 151
EIDE (Enhanced IDE), 151

IEC 60958–3 standard consumer interface, 192–4
IEEE 1394 see Firewire
Interactive authoring, mastering, 257
Interfaces:

about interfaces, 148–9
troubleshooting, 262–4
see also Audio interface formats; Firewire

(IEEE 1394); IDE/ATA interface;
Networking; PCMCIA notebook
expansion port; RS-232 and RS-422
interfaces; SCSI (Small Computer
Systems Interface); Synchronisation;
USB (Universal Serial BUS); User interfaces

Internet protocols, 205–6
Interpolation, 43
ISDN (Integrated Services Digital Network), 204–5
ISO seven layer model, 199

Jaz drive (Iomega), 138–9
Jitter:

and digital information, 6–7
reduction with RAM buffering, 61–2

Kerr effect, 142–3

Lake Huron signal processing workstation, 235
LANs (local area networks), 197–9
Latency:

with DSP cards, 155
need to be low, 68–9

LCRS surround format, 242
Level control:

by digital processing, 44–5, 240–2
headroom and dynamic range, 240–2
and redithering, 241

Light pipe (ADAT Optical interface), 195–6
Linear timecode (LTC), 121–3
Logical operations, 10–11

Index

268

Lossless and lossy coding, 52–3
LSB (least significant bit), 7

MAGIC (Media-accelerated Global Information
Carrier), 215

Magnetic hard disk drives:
access time, 135
construction, 136
data storage arrangement, 136–8
formatted storage capacity, 138
instantaneous transfer rate, 135
RAID arrays, 138–40
sustained transfer rate, 136
typical Winchester drive, 137
see also Disk drives, general

Magneto-optical (M-O) drives, 141–3
Kerr effect, 142–3
LIMDOW drives, 141

MANs (metropolitan area networks), 199
Mastering:

CD and dither, 39
CD pre-mastering formats, 185–6
CD-Audio PQ encoding, 252
CDs with MP3 encoding, 256
DVD:

about DVD mastering, 252–4
Meridian Lossless Packing (MLP), 255
player types, 252
SMART downmixing technique, 254

interactive authoring, 257
and restoration software, 235
web applications, 257

‘MAX’ MIDI programming, 238–9
Meridian Lossless Packing (MLP), 255
Metadata, 169
Microsoft files, 169–70
MIDI basics:

about MIDI, 79–81
basic interface, 160–3
basic principles, 81
channels, 84
computer interfacing, 164–5
connectors and cables, 163–4
control message principles, 82–3
digital audio comparisons, 81–2
hardware drivers, 165
I/O hardware, 166–7
interconnection/daisy chaining instruments, 83–4
‘MAX’ MIDI programming, 238–9
message format, 84–5
messages summary, 85
troubleshooting, 259–62
see also Downloadable sounds (DLS); General MIDI;

RMID format and files; SAOL (Structured Audio
Orchestra Language); Scalable polyphonic MIDI

(SPMIDI); Sequencers; Standard MIDI files
(SMF); XMF (eXtensible Music Format) files

MIDI beat clock, 119–20
MIDI machine control (MMC), 125–8

basic transport controls, 127–8
communications procedures, 126–7
handshaking messages, 127
open- or closed-loop modes, 125–6

MIDI messages:
about MIDI messages, 85–6
active sensing messages, 96
Approved Protocols (APs), 86
channel aftertouch, 94
channel messages, 86
channel mode messages:

local on/off, 91–2
mono mode, 93
multitimbral operation, 92–3
omni off, 92
poly mode, 93

controller messages, 89–91
controller function list, 90

messages summary, 85
note on and note off messages, 86–7
note numbers, 87
‘note off’ velocity message, 88
‘note on’ velocity message, 87–8
pitch bend wheel message, 94
polyphonic key pressure (aftertouch), 88–9
program change message, 93–4
Recommended Practices (RPs), 86
reset message, 97
running status, 88
status bytes, 95
sub-IDs, 96
system exclusive message, 95
system messages, 86
system realtime messages, 119
tune request, 96
universal non-commercial messages, 95–6
universal non-realtime messages, 96
velocity information, 87–8

MIDI over IEEE 1394 (Firewire), 129–30
MIDI over USB, 128–9
MIDI sound generator control:

aftertouch data handling, 102
breath controller, 104
brightness controllers, 105
controller messages handling, 102–5
data buffering, 100–2
effects controllers, 104
functions of sound generators, 100–1
latency problems, 102
MIDI implementation charts, 100–1
note assignment in synthesisers and samplers, 97–9

Index

269

MIDI sound generator control: (continued)
pan control, 103
parameter controllers, 105–6
polyphony, voice and note assignment, 100
registered and non-registered parameter

numbers, 105–6
sound variation controller, 104–5
timbre controllers, 105
velocity crossfades, 98–9
velocity data handling, 102
voice selection, 106

MIDI synchronisation:
about MIDI synchronisation, 118
MIDI timecode (MTC), 123–5, 258
music-related timing data, 118–21
SMPTE/EBU time and control code, 121–3

linear timecode (LTC), 121–3
vertical interval timecode (VITC), 121, 123

SPPs (song pointers), 120–1
system realtime messages, 119
time code and synchronisation, 121–3
timing clock status bytes (MIDI beat clock), 119–20

MIDI TimeCode (MTC), 123–5, 258
MIDI tuning control, 106–8

individual note tuning, 107–8
Minimum audible field (MAF), hearing, 33
Mixing, with digital processing, 46
MLP (Meridian Lossless Packing), 255
MOST (media oriented synchronous transfer), 216
MP3 (MPEG-1, layer 3), 55–6, 177, 256

mastering, 256
MPEG (Moving Picture Experts Group) lossy encoding:

about MPEG audio, 53–4
audio file formats, 177–9
audio frame header, 178
ID3 tag structure, 179
MPEG-1, 54

MP3 (Layer 3), 55–6, 177, 256
MPEG-2 AAC (Advanced Audio Coupling), 55
MPEG-2 BC (Backwards Compatible), 55
MPEG-4:

mastering, 257
natural audio coding, 55–6
Structured Audio, 79, 117–18

MSB (most significant bit), 8
and twos complement numbers, 9

MSP signal processing toolbox, 235–8
MTC (MIDI TimeCode), 123–5, 258
Multichannel formats:

about multichannel formats, 242
4-channel surround (3-1 stereo or LCRS

surround), 242–4
5.1 channel surround (3-2 stereo), 244–6
7.1 channel surround, 247–8
Dolby EX, 246–7

pairwise amplitude panning, 248
surround panning and spatial effects, 248–9

Multichannel operation on workstations:
about multichannel operation, 64–5
disk assignment, 67
drop-in capability, 67–8
inputs and outputs, 65–6
with SCSI bus operation, 67
storage capacity, 66–7
track usage, 66–7
tracks and channels, 65–6

Multitrack tape recording, 64–5
MXF (Media Exchange Format), 183

Networking:
ADSL (Asymmetric Digital Subscriber Line), 205
ATM (asynchronous transfer mode), 202
audio requirements, 203–4
basic principles, 197–9
Bluetooth, 206
ethernet, 201, 203
FDDI (Fibre Distributed Data Interface), 201–2
internet protocols, 205–6
ISDN (Integrated Services Digital Network), 204–5
ISO seven layer model, 199
LANs (local area networks), 197–9
MANs (metropolitan area networks), 199
network extensions, 199–200
PANs (personal area networks), 199
protocols, 202–3, 205–6
repeaters, 200
routers, 200
servers, 203–4
TCP/IP (Transport Control Protocol/Internet

Protocol), 202–3
WANs (wide area networks), 199–200
wireless networks, 206
WPAN (wireless personal area network), 206

Noise:
and analog and digital information, 6–7
and dither, 24–7, 27–9
noise shaping, A/D converters, 30–2
noise weighting curves, 42
quantisation noise, 22, 31
S/N in A/D conversion, 22

Non-linear editing:
advantages, 69
anchoring segments, 76–7
automated gain changes, 73
butt joints, 70–1
clips/segments, 70
crossfades, 71–3
edit decision lists (EDL), 71, 72
edit points, 70–1
editing process, 73–5

Index

270

linear editing simulation, 76
music editing, 75–6
reel-rocking simulation, 76, 77–8
sound files, 69–70
see also Crossfading; Digital signal processing (DSP),

audio signals
Non-registered parameter numbers

(NRPNs), 105–6
Nyquist frequency, 16–17, 31

Open Media Framework Interchange (OMFI), 182–3
Open Sound Control (OSC), 130
Optical disks:

about optical disks, 140–1
CAV (constant angular velocity) mode, 141–2
CLV (constant linear velocity) mode, 141
filing structures, 147
magneto-optical (M-O) drives, 141–3
phase-change optical recording, 143
universal disc format (UDF), 147
WORM disks, 140–1
zoned-CAV operation, 141
see also CDs (compact discs); DVDs (digital video

(versatile) discs)
Organs, MIDI note assignment, 97–8
OSC (Open Sound Control), 130
Oversampling, 18, 29–30

in D/A converters, 33

Pairwise amplitude panning, 248
PANs (personal area networks), 199
PC data compression, 52
PCMCIA notebook expansion port, 151
Phase-change optical recording, 143
Pitch shifting, digitally, 49
Plug-ins/plug-in architectures:

about plug-ins, 227–8
API (application programming interface), 227
CEDAR plug-ins, 235–7
Digidesign plug-ins, 228
DirectX multimedia extensions, 228
DSP plug-ins, 227
DXi software synthesiser plug-in

architecture, 228
software development toolkits (SDK), 227
VST (Virtual Studio Technology) plug-in

architecture, 228
WAVES plug-in examples, 228–9

Probability distribution dither noise, 27–9
Psychoacoustic limitations to quality, 33–4

see also Hearing
Pulse amplitude modulation (PAM), 15–16

sidebands, 15–16
Pulse code modulation (PCM), 18

and quantising resolution, 37–8

QIC (quarter-inch cartridge), tape, 148
Quality see Sound quality
Quantisation, 11–12, 18–21

quantising distortion and dither, 23–4
quantising error, 18, 21–2
quantising noise, 22
quantising noise energy, 31

Quantising resolution:
and headroom, 38
PCM systems, 37
requantisation, 39–41
and sound quality, 37–8

R-bus 196 multichannel interface (Roland), 196
RAID arrays, 138–40
RAM (random access memory) buffering, 59–62

bucket analogy, 60–1
for synchronisation, 62
for timing jitter reduction, 61–2

Reconstruction filters, D/A converters, 32
Record quantisation, 224
Rectangular probability distribution function (RPDF)

dither noise, 27–9
Redithering:

with gain changing/level control, 45, 241, 250
with requantisation, 39

Reel-rocking simulation, 76, 77–8
Registered parameter numbers (RPNs), 105–6
Removable magnetic media, 138–9
Repeaters, network, 200
Requantisation, 39–41

and dither, 39–41
Resampling, D/A converters, 32
Resolution see Quantising resolution; Sampling

resolution
Reverberation, digital, 48–9
Rhythmic quantisation, in sequencers, 224
RIFF WAVE format, 173–5
RMID format and files, 111, 117
Routers, network, 200
RS-232 and RS-422 interfaces, 160

S/N (signal-to-noise) ratio, and A/D
conversion, 22

SACD see Super Audio CD
SADiE workstations, 233–4
Sample rate conversion, 50–1
Samplers, MIDI note assignment, 97–9
Sampling, 11–12, 13–16

oversampling, 18, 29–30
Sampling rates, 34–6

30 kHz rate (some PC workstations), 36
32 kHz rate (TV/broadcast), 3
44.1 kHz rate (compact disc), 35, 36
48 kHz rate (professional), 35

Index

271

Sampling rates (continued)
96 kHz rate (DVD), 36
common rates chart, 35

Sampling resolution, versus quality, 21–2
SAOL (Structured Audio Orchestra Language), 55–6,

117–18
SASL (Structured Audio Score Language), 56, 118
SBM (Super Bit Mapping) (Sony), 41
Scalable polyphonic MIDI (SPMIDI), 110
SCMS copy protection, 216–18
SCSI (Small Computer Systems Interface):

about SCSI interfaces, 149
termination, 150
troubleshooting guide, 150–1

SD I (Sound Designer I format), 171
SD II (Sound Designer II format), 171–2
SDDS (Sony Dynamic Digital Sound), 57
Sequencers:

about sequencers, 219–20
echo effects, 223
filters, input and output, 221–2
with General MIDI, 226
instrument control, 221
MIDI data manipulation, 222–3
MIDI displays, 220–1
MIDI mixing and external control, 226
MIDI non-note control events, 224–6
as multitrack tape emulator, 220
record quantisation, 224
record resolution, 222
rhythmic quantisation, 224
score representation, 222–3
semi-automatic editing functions, 223–4
synchronisation features, 226
synchronised digital video, 226–7
timing resolution, 222
track displays, 220–1
transposition facilities, 223–4

Servers, networking, 203–4
Shift registers, 8
Sidebands, 15–16
Sigma-delta convertor, 31–2
SMART downmixing technique, 254
SMF see Standard MIDI files (SMF)
SMPTE/EBU time and control code, 121–3
Software:

about audio editing and post-production software, 231
CEDAR applications, 235–7
Lake Huron signal processing workstation, 235
librarian and editor software, 231
mastering and restoration software, 235
‘MAX’ MIDI programming, 238–9
MSP signal processing toolbox, 235–8
music notation software, 219–20
music software, 237–9

SADiE workstations, 233
software development toolkits (SDK), 227
Sonic Studio HD, 232
troubleshooting, 264
virtual instruments, 229–31
see also Plug-ins/plug-in architecture; Sequencers

Sonic Studio HD, 232
Sound Designer I format (SDI), 171
Sound Designer II format (SD II), 171–2
Sound editing see Digital signal processing (DSP),

audio signals; Multichannel operation on
workstations; Non-linear editing

Sound files:
about sound files, 58–9
allocation units/transfer blocks, 64
mono sound files, 59
multichannel sound files, 59
with non-linear editing, 69–70
stereo sound files, 59

Sound pressure levels (SPL), 33
Sound quality:

with authoring, 251–2
controlling and maintaining, 249–52
with digital audio, 3–4
and dynamic range enhancement, 41–2
and low bit-rate coders, 250–1
psychoacoustic limitations, 33–4
and quantising resolution, 37–8
and redithering, 45, 241, 250
and sampling rate, 34–6
and sampling resolution, 21–2
see also Hearing

SoundFonts (Emu for Creative Labs), 116
Spatial reproduction formats see Multichannel formats
SPMIDI (scalable polyphonic MIDI), 110
SPPs (song pointers), MIDI, 120–1
Standard consumer interface (IEC 60958–3), 192–4
Standard MIDI files (SMF):

about SMF, 110–11
delta-times, 112
general structure, 111
header chunk, 111–12
meta-events, 114–15
MIDI events, 113
RMID format, 111
system exclusive (SysEx) events, 113–14
tempo mats, 115
time signature meta-events, 115
track chunks, 112–13

Storage media:
about storage media, 132
audio and video requirements, 132–3
see also CDs (compact discs); Disk drives, general;

DVDs (digital video (versatile) discs); Magnetic
hard disk drives; Optical disks; Tape storage media

Index

272

Super Audio CD (SACD) (SONY), 38, 255–6
copy protection measures, 255–6
Direct Stream Transfer (DST), 255
DSD (Direct Stream Digital), 255

Surround panning and spatial effects, 248–9
Surround systems see Multichannel formats
Synchronisation:

about synchronisation, 257–8
external interfaces, 159
MIDI TimeCode (MTC), 258
RAM assisted, 62
timecode synchronisation, 258–9
to external references, 259

Synthesis engines on sound cards, 156–9
Synthesisers, MIDI note assignment, 97–9

Tape storage media:
about tape storage, 147
AIT (Advanced Intelligent Tape), 148
DAT Data Storage format, 147
DDS drives, 147–8
Digital Linear Tape (DLT) drives, 148
Exabyte tapes, 148
QIC (quarter-inch cartridge), 148

Tascam digital interface (TDIF), 195
TCP/IP (Transport Control Protocol/Internet Protocol),

202–3
TDM-bus cards, 156
Time domain response (filters), 46
Timecode synchronisation, 258–9

MIDI TimeCode (MTC), 258
Timing jitter, 6–7, 61–2
Triangular probability distribution function (TPDF)

dither noise, 27–9
Troubleshooting:

digital interfaces, 262–4
MIDI, 259–62
software, 264

Truth tables, 11
Twos complement numbers, 9–10

UDF (universal disc format), 147
USB (Universal Serial Bus):

audio over, 189, 210–12
with MIDI, 128–9
peripheral interface, 151

User interfaces, GUIs (graphical user interfaces), 159
USI (Universal Synthesiser Interface), 80

Vertical interval timecode (VITC), 121, 123
Virtual instruments, 229–31
VITC (vertical interval timecode), 121, 123
Voltage-controlled amplifiers (VCAs), 12–13
VRML (virtual reality modelling language), 56
VST (Virtual Studio Technology) plug-in

architecture, 228

WANs (wide area networks), 199–200
WAV formats:

Broadcast WAVE format, 175–7
Broadcast audio extension chunk

format, 176
RIFF WAVE format, 173–5
WAVE-format extensible, 175

channel ordering, 176
Wavetable synthesis, 157–9
Web, mastering for, 257
Wireless networks, 206
Workstations see Multichannel operation on

workstations
WPAN (wireless personal area network), 206

XMF (eXtensible Music Format) files, 117

Zip disks (Iomega), 138
ZIPI, 130

Index

273

Join Focal Press on-line
As a member you will enjoy the following benefits:

• an email bulletin with information on new books

• a regular Focal Press Newsletter:

• featuring a selection of new titles

• keeps you informed of special offers, discounts and freebies

• alerts you to Focal Press news and events such as author signings and

seminars

• complete access to free content and reference material on the focalpress site, such as
the focalXtra articles and commentary from our authors

• a Sneak Preview of selected titles (sample chapters) *before* they publish

• a chance to have your say on our discussion boards and review books for other Focal

readers

Focal Club Members are invited to give us feedback on our products and services.
Email: worldmarketing@focalpress.com – we want to hear your views!

Membership is FREE. To join, visit our website and register. If you require any further information
regarding the on-line club please contact:

Lucy Lomas-Walker
Email: l.lomas@elsevier.com
Tel: +44 (0) 1865 314438
Fax: +44 (0)1865 314572
Address: Focal Press, Linacre House,
Jordan Hill, Oxford, UK, OX2 8DP

Catalogue
For information on all Focal Press titles, our full catalogue is available online at www.focalpress.com
and all titles can be purchased here via secure online ordering, or contact us for a free printed
version:

USA Europe and rest of world
Email: christine.degon@bhusa.com Email: j.blackford@elsevier.com
Tel: +1 781 904 2607 T Tel: +44 (0)1865 314220

Potential authors
If you have an idea for a book, please get in touch:

USA Europe and rest of world
editors@focalpress.com focal.press@elsevier.com

www.focalpress.com

Focal Press

	Front Cover
	Desktop Audio Technology
	Copyright Page
	Contents
	Series introduction
	Chapter 1. Introduction to desktop audio technology
	1.1 About this book
	1.2 Audio workstations
	1.3 Audio and the computer industry
	1.4 Audio and quality

	Chapter 2. Digital audio principles
	2.1 Analog and digital information
	2.2 Binary number systems
	2.3 Basic A/D and D/A conversion of control information
	2.4 A/D conversion of audio signals
	2.5 D/A conversion
	2.6 Sound quality versus sample rates and resolutions
	2.7 Direct Stream Digital (DSD)
	2.8 Changing the resolution of an audio signal (requantisation)
	2.9 Dynamic range enhancement
	2.10 Error correction
	2.11 Introduction to digital audio signal processing
	2.12 Audio data reduction
	Further reading

	Chapter 3. Recording, replay and editing principles
	3.1 The sound file
	3.2 RAM buffering
	3.3 Disk drive performance issues
	3.4 Allocation units or transfer blocks
	3.5 Multichannel recording and replay
	3.6 System latency
	3.7 Principles of audio editing

	Chapter 4. MIDI and synthetic audio control
	4.1 Background
	4.2 What is MIDI?
	4.3 MIDI and digital audio contrasted
	4.4 Basic MIDI principles
	4.5 MIDI messages in detail
	4.6 MIDI control of sound generators
	4.7 MIDI tuning control
	4.8 General MIDI
	4.9 Scalable polyphonic MIDI (SPMIDI)
	4.10 Standard MIDI files (SMF)
	4.11 Downloadable Sounds (DLS) and SoundFonts
	4.12 RMID and XMF files
	4.13 SAOL and SASL in MPEG 4 Structured Audio
	4.14 MIDI and synchronisation
	4.15 MIDI machine control (MMC)
	4.16 MIDI over USB
	4.17 MIDI over IEEE 1394
	4.18 After MIDI?
	Further reading
	Useful websites

	Chapter 5. Hardware and systems issues
	5.1 Storage media
	5.2 Peripheral interfaces
	5.3 Filing systems and volume partitions
	5.4 Formatting, fragmentation and optimisation of media
	5.5 Audio processing and synthesis hardware
	5.6 External synchronisation interfaces
	5.7 User interfaces
	5.8 Serial control interfaces
	5.9 Drivers and audio I/O software
	Useful websites

	Chapter 6. Audio formats and data interchange
	6.1 Audio file formats
	6.2 Disk pre-mastering formats
	6.3 Interconnecting audio devices
	6.4 Computer networks and digital audio interfaces compared
	6.5 Dedicated audio interface formats
	6.6 Networking
	6.7 Streaming audio over computer interfaces
	6.8 Digital content protection
	Further reading
	Useful websites

	Chapter 7. Audio software
	7.1 Sequencers
	7.2 Plug-in architectures
	7.3 Virtual instruments
	7.4 Librarians and editors
	7.5 Audio editing and post-production software
	7.6 Mastering and restoration software
	7.7 Advanced audio processing software and development tools
	7.8 Computer music software
	Further reading

	Chapter 8. Operational and systems issues
	8.1 Level control and metering
	8.2 Spatial reproduction formats
	8.3 Controlling and maintaining sound quality
	8.4 Preparing for and understanding release media
	8.5 Synchronisation
	8.6 System troubleshooting
	Further reading

	Index

