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Preface

This book describes RECTIN (Recommender System for Tinnitus)—system
supporting a physician in tinnitus patients’ diagnosis and treatment. The work
verifies a hypothesis about a possibility of building such a system for the specific
needs of medical facility following treatment protocol of Tinnitus Retraining
Therapy. It examines possibility of using information technology, in particular
methods of data mining and machine learning, in the field of medicine and practical
applications of recommendation systems in the field.

The book introduces the topic of tinnitus as a problem area, shows the basic
concepts of Recommender Systems (RS), its current state of the art and their
real-world applications in different areas, focusing on Health RS. It proposes
knowledge discovery approach for decision support system development and pre-
sents theoretical concepts and algorithms for rule-based systems, including: deci-
sion tables, classification rules, action rules extraction and meta actions. Empirical
part includes: description of a raw dataset of tinnitus patients and visits, provided by
Dr. P. Jastreboff from Emory University School of Medicine in Atlanta, applied
data preprocessing techniques and results from experiments on classification and
action rules extraction from the cleansed dataset.

Charlotte, USA Katarzyna A. Tarnowska
May 2016 Zbigniew W. Ras

Pawel J. Jastreboff
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Chapter 1
Introduction

Abstract Recently, there has been an increasing interest in business analytics and
big data tools to understand and drive industries evolution. The healthcare industry
is also interested in new methods to analyze data and provide better care. Given
the wealth of data that various institutions are accumulating, it is natural to take
advantage of data driven decision-making solutions. Recommender systems proved
to be a valuable mean to deal with the decision problems, especially in commercial
merchandising. They are of special importance nowadays, when people are facing
information overload and the growth and variety of information (products, news)
available on the Web frequently overwhelms individuals. It leads them, in turn, to
make poor decisions and decreases their well-being. Recommender systems enable
automation of some of strategies in human decision making, support their users in
various processes, providing advice that is both high-quality and high-personalized.
In the area of healthcare they provide valuable support for physicians treating their
patients, such as the one described in [Szl15]. The potential economic benefits of
applying computerized clinical decision support systems include improved efficiency
in health care delivery e.g. by reducing costs as well as improved quality of care and
improved patient safety.

1.1 Objective

The goal of this research work is to design and describe Recommender System
for Diagnosis and Treatment of Tinnitus (in short Recommender for Tinnitus, or
RECTIN)—a system supporting a doctor in a decision making process, with regard
to categorization of a patient and in choice of particular methods of treatment.

Themainmotivation for taking up the topic is to study and analyze the possibilities
of applying modern information technologies and machine learning methods in the
area of medicine and practical use of recommender systems in such settings.This

© Springer International Publishing AG 2017
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2 1 Introduction

work should verify the hypothesis that such system can be built within the chosen
methodology and successfully used for the needs of doctors dealing with tinnitus.
It should ultimately contribute to the better effectiveness and efficiency of tinnitus
treatment.

The design of a model of artificial advisor will be based on building a proto-
type of a recommender system with the use of the chosen technologies. The system
should give diagnostic recommendations, driven by classification rules, and treat-
ment recommendations, driven by action rules. The rules for the knowledge base
of the recommender system will be extracted with the use of data mining/machine
learning methods applied on the dataset of tinnitus patients and visits. The dataset is
provided by doctor Jastreboff from Emory University School ofMedicine in Atlanta,
who specializes in tinnitus and developed a successful method for its treatment called
Tinnitus Retraining Therapy.

Machine learning and data exploration methods should help in understanding re-
lationships among the treatment factors and audiological measurements along with
changing patient emotions, in order to better understand tinnitus treatment. Addi-
tionally, different preprocessing techniques will be used, including text mining and
clustering, so that to transform the tinnitus dataset into more suitable for machine
understanding.

1.2 Organization of this Book

This chapter (this introduction) presents main goals, motivation and the research
scope of this book.

Chapter2 is an introduction to the problem area, which will be solved and sup-
portedwith the recommender system—tinnitus treatment and characterization. In the
face of challenges associated with human problem solving, it postulates the need for
building such system in the given application area. It describes a process (a protocol
of the TRT treatment), which should be modeled by a computer program.

Chapter3 is a general overview and state of the art of recommender systems
technology, developed in recent years, applied in different areas, alongwith examples
in the commercial settings. It describes different approaches to build RS, discusses
benefits and disadvantages of each of them, and finally helps in motivating the choice
of an approach suitable for the problem being solved within this work.

Chapter4 presents theoretical background for building a knowledge-based rec-
ommender system in a greater detail, discussing methods of extracting and applying
rules for solving a problem of tinnitus treatment. It focuses on concepts and algo-
rithms for action rules and meta actions. The knowledge discovery approach is pre-
sented in the context of its potential to build a knowledge engine for RS (as decision
rules constitute the diagnostic module and action rules—module for recommending
treatment).

Chapter5 provides an overview and design project of the RECTIN system (Rec-
ommender for Tinnitus)—the ultimate goal of the work within this project. It lists

http://dx.doi.org/10.1007/978-3-319-51463-5_2
http://dx.doi.org/10.1007/978-3-319-51463-5_3
http://dx.doi.org/10.1007/978-3-319-51463-5_4
http://dx.doi.org/10.1007/978-3-319-51463-5_5


1.2 Organization of this Book 3

the main components of the systems and their functionalities. The functionalities are
presented in relation to the supported processes in a medical facility, with the main
use cases for the system. The chapter also describes a dataset of tinnitus patients and
their visits, which serves as a knowledge base of the system. It introduces initial pre-
processing steps performed on raw data, collected by authors. Next chapters present
methodologies of developing each of the component in a greater detail.

Chapter6 is an elaboration on classificationmodule development and presents out-
comes of the experiments on choosing the best prediction method for the cleansed
dataset. It also presents first attempts with developing features that could be rele-
vant to the tinnitus characterization. It concludes with comparison on experiments
with different preprocessing and prediction methods, suggesting the final choice for
implementation.

Chapter7 is dedicated to description of experiments on association rule extrac-
tion. It presents selectively outcome rules as hypotheses, generated from the tinnitus
dataset with the use of the chosen data mining tool. It assesses reliability of the rules
along with their viability to be implemented into RECTIN knowledge base.

Chapter8 focuses on action rule discovery. Further preprocessing techniques are
described, as well as methods in dealing with missing data. It provides analysis
(interpretation) of sample rules generated by data mining tasks.

Chapter9 is an elaboration on the previous one, providing description on further
enhancements on attribute development and designed algorithms on missing data
imputation. It concludes with final choice of most reliable rules to be implemented
within RECTIN rule engine. It also provides a summary of experiments on rules
extraction with the chosen methodology.

Chapter10 presents RECTIN prototype implementation of each system compo-
nent: application, transactional database, classification module and rule engine. The
last mentioned module is described along with algorithm on rule execution and
method for rule declaration in the system.

Chapter11 is a final conclusion of the work done within this project, discussing
the possibilities of its further extension.

http://dx.doi.org/10.1007/978-3-319-51463-5_6
http://dx.doi.org/10.1007/978-3-319-51463-5_7
http://dx.doi.org/10.1007/978-3-319-51463-5_8
http://dx.doi.org/10.1007/978-3-319-51463-5_9
http://dx.doi.org/10.1007/978-3-319-51463-5_10
http://dx.doi.org/10.1007/978-3-319-51463-5_11


Chapter 2
Tinnitus Treatment as a Problem Area

Abstract This chapter presents the decision problem area which will be supported
with a recommender system technology, that is, tinnitus diagnosis and treatment. It
will introduce the problem of tinnitus and next, the successful method of treatment
applied by doctor P. Jastreboff. At the end of this chapter major results from the
treatment will be showed, along with possible new challenges, which can be handled
with the help of information technology.

2.1 Tinnitus

2.1.1 Problem Description

Tinnitus, often described as “ringing in the ears”, is a serious problem affecting a
significant portion of population nowadays. According to our medical knowledge,
it is important to differentiate between people who “experience” tinnitus from those
who suffer because of it. According to some estimations, about 10–20% of general
population is affected—in other words—they experience tinnitus—(in the USA it
accounts to about 25–50 million people) and close to 90% had experienced from at
least temporary tinnitus. It is most common in the group age of above 65years old
(tinnitus is reported by about 30% people in this age group). Certain occupational
populations are high at risk of developing tinnitus: military personnel, police officers
and firefighters, but also patients, who are undergoing ear-related surgery. Soldiers
returning from Iraq or Afghanistan who where exposed to a blast noise, are reporting
tinnitus in 49% of cases [MLDK10]. This also has financial implications: the Amer-
ican Veteran Administration spent $ 1.1 billion in 2009 on compensation for tinnitus
alone, and it was expected to reach $2.3 billion by 2014 [MLDK10].

Only about 20% of those experiencing tinnitus, that is about 4–8% of general
population suffer because of it—has prolonged tinnitus, moderately or significantly
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annoying, causing them to seek help (they are labeled as having clinically significant
tinnitus) [JJ00]. In the UK, for example, currently, it affects around 10% of adults,
and for about 1% it is so severe so that deteriorates a quality of their life (they have
tinnitus with debilitating results [Web15]).

Causes of tinnitus are often not clear. It is associated with hearing loss, ear infec-
tions, acoustic neuroma, Menere’s syndrome, and aging. It can be also a side-effect
of some drugs. There is no cure for it and treatment methodologies prove ineffective
in many cases, accompanied by significant side-effects or fail to provide systematic
relief to patients. Also methods of treatment that work well for some patients, are
not necessary effective for the others (therapies must be highly personalized).

2.1.2 Medical Background

The common understanding of tinnitus is a noise in the ears or head, described by the
affected, as ringing, buzzing, humming, hissing, the sound of escaping steam, etc.
[JJ00]. Tinnitus is more formally defined as “a phantom auditory perception, namely
perception of sounds that results exclusively from activity within the nervous system
without any corresponding mechanical, vibratory activity within cochlea, and not
related to stimulation of any kind” [JH04]. This translates to a real perception of
sound, for which there is no corresponding physical correlate. It can be compared
to phantom limb and phantom pain phenomena. Tinnitus is often accompanied by
decreased sound tolerance, consisting of hyperacusis,1 misophonia.2 Some patients
exhibit phonophobia,which is a specific version ofmisophoniawhen fear is dominant
factor.

Tinnitus-related neuronal activity (labeled in this chapter as tinnitus signal) is
perceived as a sound. The tinnitus signal, perceived as a sound, is that of a neural
activity somewhere in the brain. It is not exactly known,where in the brain this occurs,
but some recent studies have indicated the secondary auditory cortex, as playing an
important role in this. In 2015, for the first time, tinnitus signals have been mapped
across the brain of a patient undergoing a surgery [Web15]. Previous experiments
have been conducted with fMRI technique, which is nevertheless much less precise
than recording electrical activity of the bran via electrodes inserted into the cortex.
This method is, on the other hand, much more invasive, but in this case the electrodes
were used for epilepsy monitoring, from which the patient happened to suffer, along
with tinnitus, and on which he was operated.

As Fig. 2.1 shows, the tinnitus the patient is hearing correlates not only with a
small area of auditory cortex, but throughout a huge proportion of the brain areas. It

1Commonly known as “discomfort to sounds”, defined as an abnormally high level of sound induced
activity occurring within auditory pathways, due to an abnormal amplification of sound-evoked
neural signals [JJ06].
2The phenomenon of an overall negative attitude toward sound. Reflects an abnormally strong
reaction of the limbic and autonomous system to sound without abnormally high activation of the
auditory system [JJ06].
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Fig. 2.1 The areas in the brain activity correlating with the heard tinnitus [Web15]

should, however, be taken into account that the data comes from one tinnitus patient
only and the condition can vary.

2.2 Tinnitus Retraining Therapy

Tinnitus Retraining Therapy is a method proposed by Dr. Pawel Jatreboff, which is
based on neurophysiological model of tinnitus [JJ00]. The method proved to have a
very high success rate, although TRT does not cure tinnitus (tinnitus perception is
still present). Method is based at retraining functional connections between the audi-
tory system and other system in the brain, including limbic and autonomic nervous
systems (but not only these two systems).

According to our medical experience [JJ00] this methodology is not only high-
effective, but also does not have side-effects, requires limited amount of time and
can be used on all of the patients disregarding etiology of tinnitus.

2.2.1 Neurophysiological Model

The definition of tinnitus proposed by Jastreboff stresses the involvement of a nervous
system as a key component responsible for the emergence of tinnitus [JJ00]. Tinnitus
is a result from not only neural activity in the auditory pathways, but as symptoms
include anxiety, annoyance, strong emotional reactions, also involves activation of
limbic and autonomic nervous systems as well as other systems in the brain. Thus the
focus of the problem should bemoved from the cochlea to the central nervous system.
The first mentioned system—limbic—controls emotions and mood, for example,
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fear, thirst, hunger, joy and happiness, as well as motivation behaviors. Furthermore,
it activates the second mentioned system-autonomic, which is responsible for basic
organism functions, such as breathing, heart rate and hormones (action of glands).
The Tinnitus Retraining Therapy is focused on the neurophysiology of these systems.
Its main objective is habituation of activation of sympathetic part of the autonomic
nervous system and therefore, habituation of negative reactions evoked by tinnitus
and subsequently habituation of tinnitus perception occurs, without need for any
specific treatment. It removes factors worsening the problem—negative feelings and
emotions associated with it. On the other hand, most previous approaches and treat-
ments were focused on removing, or at least decreasing tinnitus perception (tinnitus
source), but were not very successful [MLDK10]. For example, one of such methods
was based on introducing a medication directly to the cochlea. Other treatments,
aiming at suppressing tinnitus perception, included using external sound that could
“mask” tinnitus signal or making use of electrical stimulation of the cochlea, audi-
tory nerve or recently even the auditory cortex [MLDK10]. All these methods proved
either unsuccessful or only partially successful, low rate of success between 10 and
50%. Tinnitus treatments have high placebo effect which has been shown to be 40%.

Neurophysiology model, as depicted in the Fig. 2.2, was developed by
Dr. Jastreboff in the 1980s. It stresses the auditory systemas secondary only, and other
systems in the brain, as dominant in clinically significant tinnitus [JJ00]. According
to the model, the generation of tinnitus-related neuronal activity starts in the periph-
ery of the auditory system (the cochlea, auditory nerve). The detection occurs in the
subcortical auditory centers, and the perception (or interpretation)—at cortical areas.
The confirmation for that is a study presented in [Web15] (see Fig. 2.1). It shows that
different areas of brain are activated before the tinnitus signal reaches the level of
conscious perception. The process of detection is accompanied by the sustained acti-
vation of the limbic (emotional) and autonomous nervous system. The last occurs
only when a person concurrently experiences negative emotions (anxiety, psychoso-

Fig. 2.2 The neurophysiological model of tinnitus [MLDK10]
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matic reactions, annoyance) with their tinnitus. It is the factor causing distress and
consequently, clinically relevant tinnitus. The patients with abnormally activation of
limbic and autonomous systems experience stress, anxiety, loss of well-being leading
them to greater annoyance with their tinnitus. Feedback loops connecting the audi-
tory, limbic and autonomic nervous systems (see Fig. 2.2) are getting stronger, and
patients continue to get worse [JJ00]. The creation and sustaining of connections
between those systems are governed by the rules of conditioned reflexes (they link
sensory stimulus with reaction) [JJ06]. The tinnitus signal in the auditory pathways
acts as a conditioning stimulus, which via one or more reflex arc, activates the limbic
and autonomous nervous systems and thus evokes negative reactions [MLDK10].
The increase in annoyance and anxiety also depends on patient’s psychological pro-
file, their association of tinnitus with something negative and not the psychoacoustic
characteristic of the perceived sound of the tinnitus. In contrary, in case of hyperacu-
sis, the reaction depends solely on the physical characteristics of a bothersome sound
(such as its energy and frequency spectrum) [MLDK10]. In misophonia, on the other
hand, adverse reactions occur due to specific patterns of sound.Most individuals with
tinnitus experience just a sound sensation, but a part of them have negative reactions
evoked by tinnitus. In the severe cases, patients may no longer enjoy any activi-
ties previously pleasant to them, which in turn may lead to depression. Patients who
experienced “negative counseling” (that is statements such as “nothing can be done”;
“you will have to learn to live with it”; “you have a bad brain”) can further develop
negative associations of their tinnitus, which triggers the development of a vicious
cycle. “Negative counseling” is an example of reinforcement that creates conditioned
reflex, which, in turns, creates physiological and behavioral reactions. Another com-
mon scenario of creating conditioned reflex is that, when a person experiences a
strong emotionally negative stress situation, such as during retirement or divorce.

2.2.2 Habituation

According toDr. Jastreboff, the presented neurophysiologymodel offers an approach
to treat tinnitus [JJ00]. Though there is no cure for the source of tinnitus, the brain
exhibits a high level of plasticity.Doctor claims that it is possible to inducehabituation
of tinnitus by interfering with tinnitus-related neuronal activity above its source. He
proposes blocking the spread of the tinnitus signal to other than auditory regions
of the brain, particularly to the limbic and autonomous nervous systems. It means
that such successfully treated person will still perceive their tinnitus, but it will not
bother them [MLDK10]. This is what is called ‘habituation’ of reactions, and is
based on the principle that every conditioned reflex can be extinguished (retrained),
when the reinforcement is not given (i.e., passive extinction of conditioned reflexes)
or when positive reinforcement is associated with stimulus (i.e., active extinction of
conditioned reflexes) and the reaction previously evoked by sensory stimulus can
be abolished or modified [JJ06]. Habituation is a fundamental property of the brain
function resulting from the fact, that the brain cannot handlemore than one conscious
task at a time (for example listening to two people talking at the same time). It
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Fig. 2.3 The illustration of habituation of reactions (HR) and perception (HP) [MLDK10]

selects and blocks signals at a subconscious level on the basis of previous experience.
Retraining/extinction of conditioned reflexes cannot be done on the cognitive level.

Habituation of tinnitus based on neurophysiologic model (Fig. 2.3) has two main
goals: to habituate reactions of the limbic and autonomous nervous systems (to block
tinnitus-related neural activity from reaching these systems) and to habituate percep-
tion (to block tinnitus-related neural activity before reaching the level of awareness).
The first goal aims at relieving patients from negative reactions of their brain and the
body associated with tinnitus. Counseling should be performed individually (tailored
to individual needs), not as a group therapy. The final goal of the treatment, is that
tinnitus ceases to have an impact on the patient’s life.

Habituation is achieved by a variety of methods, including counseling and sound
therapy. In order to be called Tinnitus Retraining Therapy, the treatment must involve
both counseling and sound therapy (which involves providing the auditory system
with enriched stimulation to decrease the contrast between tinnitus-related and back-
ground neuronal activity and consequently decreasing the strength of tinnitus signal).
The classical approach for an extinction of conditional reflex would be to expose the
subject to the same signal (tinnitus), while removing reinforcement. As tinnitus-
related signals cannot be manipulated directly, another method is to decrease both
the tinnitus signal (by sound therapy) and reinforcement (by reclassifying tinnitus to
neutral stimuli—counseling) at the same time.

2.3 Treatment Protocol

The treatment protocol within TRT is composed of several steps:

• the initial appointment,
• audiological evaluation,
• medical evaluation,
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• diagnosis with decision as for treatment,
• counseling.

The initial contact with a patient is made through a form (see Appendix A), which is
then further expanded by an interview. The interview helps in identifying resulting
problems, determining the impact of tinnitus on the patient’s life and assessing the
level of emotional distress. The audiological evaluation is performed starting with
an otoscopic examination of the ear canal and tympanic membrane and a series of
hearing tests, from which the most important outcomes are audiogram and LDL
(loudness discomfort level). The medical evaluation of the patients aims, in the
first place, at excluding any known medical condition that has tinnitus as one of
its symptoms (the most common such conditions are: acoustic neuroma, Meniere’s
disease and otosclerosis).

2.3.1 Patient Categories

After the evaluation, a patient is placed into one of five categories, based on four
factors (Table2.1):

• the extent of impact tinnitus has on one’s life (reflecting the strength of functional
connections between the auditory system and the limbic and autonomous nervous
systems),

• patient’s subjective perception of hearing loss,
• presence or absence of hyperacusis (increased sensitivity to sounds),
• prolonged worsening of hyperacusis and/or tinnitus following exposure to mod-
erate or loud sounds.

Category 0

Denotes patients with neither hyperacusis nor significant hearing loss, andwhose tin-
nitus has little impact on their lives. In these cases, counseling sessions are sufficient
and there is no need for any instrumentation.

Category 1

Patients (the most common category) have significant tinnitus, but without hyper-
acusis and hearing loss. They are treated, besides full counseling, with the use of
sound generators set at the level close to “mixing” or “blending” point.3

3The level where partial suppression (“partial masking”) starts to occur [MLDK10].
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Table 2.1 Determining categories of tinnitus patients [JJ00]

Category Hyperacusis Prolonged
sound-induced
exacerbation

Subjective
hearing loss

Impact on life Treatment

0 – – – Low Counseling
only

1 – – – High Sound
generator set
at mixing
point

2 – – Present High Hearing aid
with stress on
enrichment of
the auditory
background

3 Present – Not relevant High Sound
generators set
above
threshold of
hearing

4 Present Present Not relevant High Sound
generators set
at threshold;
very slow
increase of
sound level

Category 2

Consists of patientswith the characteristics ofCategory 1, but additionally significant
subjective hearing loss. These are advised to wear hearing aids, while enriching
their sound environment. Currently, due to changes in hearing aids industry, the
combination instruments (hearing aid and sound generators in one shell) become
widely available and are predominant devices used for this category of patients.

Category 3

This category is used for patients with a significant hyperacusis that is not enhanced
for a prolonged period of time. Sound generators are recommended for treating these
patients. The sound level should be set below a level which would induce discomfort.
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Category 4

This category denotes patients who have tinnitus and hyperacusis that is getting
worse, when exposed to the sound. This category is the most difficult to treat. In this
case, the sound generators, used in the treatment, are set to the threshold of hearing.
As the treatment progresses, the sound level is increased slowly.

2.4 Motivation for RS Project

In summary, the TRT proves to be a very effective method, for both tinnitus and
hyperacusis, and provides many other benefits [JJ00]:

• can be used to treat all patients,
• does not require frequent visits,
• does not interfere with hearing,
• there are no negative side-effects.

For majority of patients treated with this method, tinnitus constituted no longer a
problem in their lives.

2.4.1 Treatment Results

TRT works independent of the cause of the tinnitus and can be successfully used for
any type of tinnitus. The neurophysiological model of tinnitus has been proved in
practice by results of clinical studies [MLDK10]. Many studies have been published
on the effect of TRT, including systematic clinical trials and showed improvement
in over 80% of the patients, and what is more, the improvement has proved to be
persistent.

The treatment requires a significant amount of time (from 9 to 24months) to pro-
vide steady development of plastic changes in the nervous system (habituation of
tinnitus). It still does not guarantee 100% success rate. For the treatment to be effec-
tive it is necessary to retrain the feedback loops formed between the auditory, limbic
and autonomous systems during consecutive follow-up visits. As a result, habituation
decreases the strength of those connections. Patients are asked to asses their tinnitus
awareness, annoyance and effect on life on a scale of 0–10 before and after treat-
ment, aswell as after each visit. The changes can be observed by comparing the initial
form with the follow-up forms (see Appendices A and B). According to our med-
ical expertise, the process of habituation is slow and characterized by fluctuations.
Patients experience temporary tinnitus relief (due to partial habituation), but when it
returns to its previous state, they perceive it as worsening. Initial improvement can
be seen within few months, then follows the constant, gradual improvement. Clearer
results can be seen on average after 3months of therapy, but the doctor recommends
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that the treatment lasts at least 9months. Doctor Jastreboff reported the effects of
treatment on sample of 263 patients [JJ00]. About 90% of them received instru-
ments (82.5% sound generators and 7.6% hearing aids). 9.9% received one session
of counseling (and did not typically follow TRT). Results obtained from treatment
on the patients revealed that 75% of them reported significant improvement. And
the results (80%) were even more optimistic for patients who also were prescribed
noise generators or hearing aids. On the average, the values for awareness, annoy-
ance and life impact metrics decreased by half in comparison to their pre-treatment
values. Also the patients from Categories 3 and 4 (that is those, who also suffered
from hyperacusis) showed even greater improvement than patients with tinnitus only
(categories 1 and 2). The method provided steady improvement after even after 3 or
5years from ending the treatment [JJ06].

However, we must remember, that TRT is not a cure, but a treatment that allows
patients to control their tinnitus and thus live a normal life and participate in everyday
activities. TRT has been used clinically since 1988 and underwent many modifica-
tions since its first description. The method has not a stagnant protocol, but continues
to evolve on the basis of information gathered from both treatment of patients and
animal search findings [MLDK10].

2.4.2 Patient Dataset

The progress of treatment with Tinnitus Retraining Therapy (habituation of tinnitus)
wasmonitored and collected in Tinnitus andHyperacusis Center at EmoryUniversity
School ofMedicine.Original sample of 555patients, describedby formsduring initial
or follow-up visits, collected by Dr. Jastreboff, was used. Additionally, the Tinnitus
Handicap Inventory (see Appendix C) was administered to individuals during their
visits to the Center. The second database was extended to 758 patients [Tho11] (not
made available), containing also a new form called Tinnitus Functional Index, or
TFI, in shortcut. These databases, consisting of tuples identified with patient and
visit numbers, have been developed over years by inserting patients’ information
from paper forms (developed by Dr. Jastreboff).

2.4.3 Problems with Human Approach

There remain some challenges in using themethodwith human approach. Evaluating
results of tinnitus treatment is a challenge itself, because there exists no objective
method for detecting the presence, the extent and severity of tinnitus, and there is
also a high level of “placebo effect” [JJ06]. Furthermore, the methodology has to be
highly individualized to specific patient’s profile and needs, sound generators must
generate sounds that would not cause annoyance for a particular patient. Besides,
it is often not clear, why particular technique proved to be successful in one case,



2.4 Motivation for RS Project 15

while not in another case. The evaluation of any tinnitus treatment outcome is based
on subjective evaluation of the problem. As a result of it, this treatment requires a
lot of time and involvement from the personnel side, who has to be also specifically
trained. Taking into account time restrictions in today’smedical practice and the need
for more efficient evaluation of different treatment methods, a proposal to develop
a decision support tool besides forms, seems encouraging. It could also potentially
provide more precision and objectivity, when dealing with tinnitus problem.

TRT is a complex treatment process, which generates a high volume of matrix
data over time: some attributes have relatively stable values while others may be sub-
ject to change as the doctors are tuning the treatment parameters while symptoms of
patients are altering [ZRJT10]. The medical dataset is sparse and has large volumes
of missing variables for each patient. Many important clinical conditions are also
poorly understood and associated with complex, multi-factorial conditions. Taking
into account the requirement for making personalized recommendations and care
to patients, the proposed computer-assisted treatment approach seems promising.
Modern computing techniques, including machine learning, intelligent data analy-
sis and recommender systems technologies, provide a new promising way to better
understand, further improve and support the treatment. Understanding the relation-
ships between patterns among treatment factors would help to optimize the treatment
process.



Chapter 3
Recommender Solutions Overview

Abstract This chapter aims at providing an overview of RS technology, describing
different types of RS, with emphasis on choosing the right approach for the system
supporting tinnitus treatment and justifying particular choice. Current generation of
recommendation methods is presented in division to four main categories:

• collaborative,
• content-based,
• knowledge-based,
• hybrid.

The chapter introduces basic concepts of each type, along with their mathemati-
cal/algorithmic foundations and general system architectures. The last section com-
pares these different approaches with regard to requirements for tinnitus therapy
recommendation and provides motivation to choose the rule-based approach for
building a recommender system for the given problem area.

3.1 Recommender Systems Concept

Recommender systems are software tools and techniques that aim at suggesting hope-
fully useful items to users [KRRS11]. ‘Item’ is understood as anything that systems
recommend to users, e.g., CDs, books or news, or, as in case of tinnitus—treatment
method. In their simplest, personalized recommendations are presented as ranked
list of items. This ranking is generated by applying prediction algorithms, based
on the user’s preferences and constraints. User preferences can be collected either
explicitly, by interacting with user, or implicitly, by tracking the users’ behavior.

Recommender Systems development involves expertise from different fields,
such as: Artificial intelligence, Human Computer Interaction, Information Tech-
nology, Data Mining, Statistics, Adaptive User Interfaces, Decision Support Sys-
tems, Marketing, or Consumer Behavior [JZFF10]. In comparison to other classical
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Fig. 3.1 Components of a PHR system with extension of an HRS [WP14]

information system tools and techniques, such as databases or search engines, the
study of recommender systems is relatively new. It emerged as an independent
research area in the mid-1990s, but interest in it increased dramatically over recent
time. Now they are successfully deployed as a part of many e-commerce sites, offer-
ing several important business benefits: increasing the number of items sold, selling
more diverse items, increasing user satisfaction and loyalty, helping to understand
what the user wants.

3.1.1 Health Recommender Systems

Althoughbeingmostly developed in e-commerce,RShave been also recently adapted
for medical purposes. The main goal is to assist physicians in making decisions
without directly consulting specialists.

A Health Recommender System (HRS), as proposed in [WP14], is a specialized
RS, where a recommendable item of interest is a piece of medical information, which
itself is not linked to an individual’s medical history. These suggestions are driven
by individualized health data, such as, documented in a so-called personal health
record (PHR), which can be considered a “user profile” of a recommender system.
Such HRS is implemented as an extension of an existing PHR system, where data
entries exist in a PHR database (DB) (as depicted in Fig. 3.1). When supplied with
medical facts, an HRS computes a set of potentially relevant items of interest for a
target user (for example an authorized health professional).

The paper [SK13] proposed to apply a Medical Recommender System for
Telemedicine, thus, assisting community hospitals in remote areas of Thailand that
have not only insufficient physicians, who usually have not enough abilities and
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Fig. 3.2 Conceptual diagram of evidence-based medical recommender systems for telemedicine
in Thailand [SK13]

experiences to diagnose all types of diseases, but also insufficient infrastructure. The
architecture of the proposed system is presented in Fig. 3.2.

The system [SK13] implements intelligent algorithms, such as neural network,
fuzzy theories, support vector machine, data mining techniques. It utilizes the hybrid
filtering techniques: collaborative, content-based, and knowledge-based filtering.
The collaborative filtering method is applied for medical history of patients; the
content-based filtering is used for experimental studies, and the knowledge-based
filtering is applied for the case reports and expert opinions. The physicians can access
the system anywhere the Internet is available. The recommendations are delivered to
the physicians based on their patients’ physical examination, and then the physicians
consult the patients for their diagnosis.

3.2 Collaborative Recommendation

The most common approach (used by many real online bookstores, for example) is
to consider the behavior, opinions, and tastes of a large community of other users
(or patients in HRS), for generating personalized recommendations. Collaborative
filtering technique, used in this approach, leverages recommendations produced by
a community of users to deliver recommendations to an active user (current patient).
It is sometimes referred as ‘people-to-people correlation’. It is based on the fact,
that individuals often rely on recommendations provided by their peers in making
daily decisions, and that similar people have similar tastes (or patients with similar
characteristics and symptoms are approached with similar treatment). CF techniques
require no domain knowledge and can be used on very sparse data [HS10].
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Table 3.1 Example of input database for collaborative recommendation [JZFF10]

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

The typical input for such systems is a matrix of given user-item ratings (see
Table3.1) and typical output is either a prediction indicating to what degree the
current user will like or dislike a certain item (to which degree a treatment method is
suitable for a patient) or a list of n recommended items. One of the earliest method
used for this approach is called user-based nearest neighbor recommendation. First
step in this method is identifying peer users or nearest neighbors—other users that
had similar preferences to those of the active user in the past. In the next step,
prediction for item i is computed based on the ratings for imade by other peer users.
It assumes that user preferences remain stable and consistent over time.

3.2.1 Simple Example

Table3.1 shows a database of ratings of the active user, i.e., Alice, and other users.
The items were rated on a 1-to-5 scale, with “5” indicating a strong like. The task
for recommender system, here, is to predict whether the active user—Alice will like
or dislike “Item5”, which has not been yet used or rated by Alice. To perform the
prediction, the system has to find users similar to Alice, in the first place. In the
second step, the system has to predict whether Alice will like or dislike the item
based on ratings of similar users, found in the first step.

Similarity Measures

Different measures can be used to determine the set of similar users. The most com-
mon similarity measure used in recommendation systems is Pearson’s correlation
coefficient Eq.3.1. Other similaritymeasures possible to use are: the simplestEuclid-
ean distance, the Minkowski distance (a generalization of Euclidean distance), the
Mahalanobis distance, cosine similarity or the L2 norm.

sim(a, b) = Σi (ra,i − r̄a)(rb,i − r̄b)√
Σi (ra,i − r̄a)2Σi (rb,i − r̄b)2

(3.1)

The Pearson correlation coefficient takes values in range from +1 (strong positive
correlation) to −1 (strong negative correlation). Similarity measure sim(a, b) of
users a and b, given the rating matrix R, is defined in formula Eq.3.1. ra,i denotes
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rating of user a for the item i. r̄a is average rating of user a. After computing this
coefficient between Alice and each other user it turns out, thatUser1 andUser2were
similar to Alice behavior in the past (correspondingly similarity measures of 0.85
and 0.7).

After choosing peer users of Alice, it is possible to compute a prediction for
Alice’s rating of Item5. One possible formula for prediction for the rating of user
a for item i , that factors the relative proximity of the nearest neighbors N and a’s
average rating is given by Eq.3.2.

pred(a, i) = r̄a + Σbsim(a, b) ∗ (rb,i − r̄b)

Σbsim(a, b)
(3.2)

In the given example, the prediction for Alice’s rating for Item5 based on the nearest
neighbors, User1 and User2 ratings would be:

4 + 1/(0.85 + 0.7) ∗ (0.85 ∗ (3 − 2.4) + 0.7 ∗ (5 − 3.8)) = 4.87 (3.3)

Probabilistic Recommendation Approaches

Probability theory can also be exploited as another way of making a prediction about
how a given user will rate a certain item. In this method, the prediction problem
is treated as a classification problem, which means assigning an object to one of
several predefined categories. One of standard technique in classification is based
on Bayes classifiers. On the simple example presented above, the prediction task
would be formulated as the problem of calculating the most probable rating value
for Item5, given the set of Alice’s other ratings and the ratings of the other users.
In this method, conditional probabilities will be computed for each possible rating
value, and then prediction will be selected as the one with the highest probability.
Bayes theorem is used to compute posterior probability P(Y |X) through the class-
conditional probability P(X |Y ), the probability of Y and the probability of X (see
formula Eq.3.4). In the presented example, P(Y) might be a probability of a rating
value 1 for Item5 or any other possible rating value, andX beingAlice’s other ratings.

P(Y |X) = P(X |Y ) ∗ P(Y )

P(X)
(3.4)

Under assumption that user ratings are conditionally independent, a Naive Bayes
classifier can be built to compute posterior probability for each value of Y.

3.2.2 Example Applications

A real-world example of collaborative recommendation approach is theGoogle News
personalization engine [JZFF10]. It presents news articles from thousands of sources,
in a personalized way to signed-in users. The recommendation is based on the click
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history of the active user and the history of the larger community (with click being
interpreted as a positive rating).

There have been many other collaborative systems developed in the academia
and the industry. Grundy [AT05] was the first recommender system to model users
by a mechanism called stereotypes, which are in turn used to build individual user
models and recommend relevant books.GroupLens, Video Recommender and Ringo
[AT05] were the first systems to use collaborative filtering algorithms to automate
prediction. Other examples of collaborative recommender systems include the book
recommendation system from Amazon.com and the Jester system that recommends
jokes [AT05].

Collaborative Filtering in Medicine

Although collaborative recommenders are used mostly by commercial organizations
to make predictions about user preferences for consumer items, many of the advan-
tages offered by CF for the task of predicting user preferences are also relevant to the
goal of assessing patients. Recently, studies employing collaborative techniques of
RS in medical care have been conducted. Their motivation is to advise a consulting
patient, based on the medical records of patients with similar indications. Collabo-
rative filtering requires access to user profiles to identify user preferences and make
recommendations.

To transfer the RS methodology to medical applications:

• patients are identified with users,
• patterns containing data of medical histories and physical examinations are iden-
tified with user profiles,

• a notion of similarity is employed for patients as it is for users,
• patient diagnoses are identified with user ratings.

Therefore, it is a logical development to employ recommender systems based on
collaborative filtering to solve the medical problems.

The paper [HS10] presents a CF as a framework for clinical risk stratification. As
CF finds similarities both between individual and items, the approach, presented in
the paper, matched patients, as well as patient characteristics, to adverse outcomes
(cardiovascular case). The approach translated to the following abstractions: predict-
ing user ratings for items to predicting the risk of patients for adverse outcomes (risk
to ratings; patients to users; patient characteristics as well as outcomes, to items).
The approach in [HS10] assesses risk by comparing new patients to historical cases,
and also by comparing the outcomes of interest to other outcomes or patient char-
acteristics in the dataset (using information from neighboring patients and clinical
attributes).

Though examples, as presented in the paper [HS10] exist, CF techniques are still
applied to somehow narrowed range of domains: the most popular being movies and
books, and many algorithms are improved only on such datasets.
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3.3 Content-Based Recommendation

In the content-based approach, recommendation systems can be seen as tools to cope
with information overload and stem from concepts such as information retrieval and
information filtering. In discriminating between relevant and irrelevant items, they
exploit information derived from the items’ contents. They associate the derived
content with the user profile or characteristic. The system learns to recommend
items similar to those that the user liked in the past, so prediction is based on feature
similarity between items (and not on similarity between users as in collaborative
approach). In other words, systems implementing a content-based recommendation
approach analyze a set of items’ content previously rated by a user, and build a
model or profile of user interests based on the features of the objects rated by that
user [KRRS11]. Such approach makes recommender systems a way of personalizing
their content for users or as user-modeling tools. Prediction is basically based on
matching new item content with the attributes of the user profile.

3.3.1 High-Level Architecture

The three major components of content-based systems, as depicted in Fig. 3.3, are:

• Content analyzer—includes preprocessing step to extract structured information,
feature extraction applied to data in order to shift item representation from the

Fig. 3.3 High level architecture of a Content-based Recommender [KRRS11]
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original information space to the target one, which is the input to the Profile
learner,

• Profile learner—constructs the user profile based on generalization of the user
preferences (through machine learning techniques),

• Filtering component—exploits the user profile to suggest relevant items, bymatch-
ing the profile representation against that of items to be recommended.

Besides these components, there is a Feedback repository that stores the reactions
(annotations) of a user to items, which are then used to update the profile of the
active user ua . The reactions are stored together with the related item descriptions,
in order to be exploited during the process of learning a model useful to predict the
relevance of newly presented items. User tastes usually change in time, so the up-to-
date information must be provided to the Profile Learner in order to automatically
update the user profile. The constant iteration of the feedback-learning cycle over
time allows the system to consider the dynamic nature of user preferences.

3.3.2 Content Representation and Recommender Techniques

Content Representation

Items, often referred to as documents, can be described in the simplest way by an
explicit list of features, also often called attributes, characteristics, or item profiles.
For example, books can be described by characteristics such as title, genre, author,
type, price, or keywords (and correspondingly, patients—by demographics, medical
evaluation, etc.). Users should be asked to rate a set of items, either as a whole or
along different dimensions. Based on this essential information, content-based rec-
ommendation systems evaluate how much a not-yet-seen item is “similar” to items
the active user has liked in the past. Various similarity measures are feasible, depend-
ing on the problem area. The advanced technique of content-based representation is
based on explicitly asking the user about their preferences, for instance, for a desired
price range or a set of preferred genres, to weight the importance of certain attributes.

Boolean Vectors

As content-based systems were originally developed to filter and recommend text-
based items such as e-mail messages or news, it is common to represent this type of
items as a list of words that appear within the document. Such list can be encoded in
different ways. It can be a list of all the words that appear in all documents, where “1”
indicates that a word appears in a document, and “0”—that the word does not appear
(boolean vector representation). Correspondingly, user profile can also be described
by such a list and then matching can be done by measuring the overlap of interest
and document content.



3.3 Content-Based Recommendation 25

TF-IDF

Another way of describing document content, that takes into account frequency
of words appearing in the document, is so called TF-IDF (term frequency-inverse
document frequency). It additionally considers the length of the document (so that to
prevent longer documents from getting a higher relevance weight). Inverse document
frequency also reduces theweight of keywords that appear very often in all documents
(because frequent words are not discriminating documents), so words that appear in
only a few documents are given more weight. On the other hand, TF-IDF vectors
are typically large and very sparse. Additional text preprocessing techniques can be
used to reduce the dimensionality (for example removing stop words and stemming).
Feature selection, a method of dimensionality reduction, is the process of choosing a
subset of available terms, based on some statisticalmeasures such asχ2 (chi-squared)
test.

Similarity-Based Retrieval

Similarity measures for vector-space documents are based on techniques such as:

• nearest neighbors (kNN),
• relevance feedback method, developed in the late 1960s by Rocchio for SMART
system—a technique that helps users to incrementally refine queries based on
previous search results.

Classification methods form the secondary category of the filtering component and
include:

• probabilistic methods (Bayes classifiers),
• linear classifiers (for example support vector machines),
• decision trees (for example based on ID3 or, the later,C4.5 algorithm) and random
forests,

• rule induction (similar to extracting decision rules, built, for example, on RIPPER
algorithm).

The last method, based on rule induction has two advantages over other learning
methods. First, the rules can serve as a basis for generating explanations for the
system’s recommendations. Second, existing prior domain knowledge can be incor-
porated in the models.

3.3.3 Example Applications

Considering industrial adoption, content-based systems are rarely found in commercial
environments. Most of those successfully applied were developed in academic set-
tings. In the area of Web recommenders, famous systems, in literature, are: Letizia,
Personal Web Watcher, Syskill & Webert, ifWeb, Amalthea and WebMate. Other
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examples, for news filtering, are: The Information Finder, Newsweeder, NewsRec,
NewT, PSUN, INFOrmer, NewsDude, Daily Learner, and YourNews.

Web Recommenders

Letizia is a web-browser extension that tracks the user’s behavior and based on that,
builds a personalized model. It also collects the user’s feedback to infer the user’s
preferences. Personal Web Watcher is similar solution that learns user’s behavior by
tracking pages, they visit, and documents under those links, and one link further.
Visited web-pages are processed as positive examples and non-visited as negative
examples. Amalthea is a solution, which additionally implements agent technol-
ogy, performing information filtering. Syskill & Webert system has web browsing
assistants, which use past ratings to predict, whether user would be interested in
the links on a web page. It represents documents with the most 128 words. ifWeb
represents profiles in the form of a weighted semantic network.

News Filtering

In the field of news filtering, in solutions such asNewT, there are several agents, each
for different kind of information, e.g. one for political news, one for sports, etc. It also
allows users to provide positive or negative feedback on articles, authors or sources.
Another system—NewsDude learns short- and long-term profiles. The former is
based on TF-IDF representation and cosine similarity measure, the latter—on naive
Bayes classifier. A similar approach, of such twomodels, isDaily Learner, a learning
agent for wireless information access. In this case the short-term model is learned
with nearest neighbors text classification algorithm, while the long-term collects
long-term interests of users and is based on naive Bayes classifier. More advanced
representation of documents is implemented in systems PSUN and INFOrmer. The
first represents articles so that recurring words are recorded by means of n-grams,
stored in a network of mutually attracting or repelling words. In addition, users
have multiple profiles competing via a genetic algorithm. INFOrmer uses a semantic
network for both user profile and article representation.

Books, Movies and Music Recommendation

Content-based recommendation exist also for a number of different application areas.
LIBRA recommends books, exploiting descriptions on Amazon on-line digital store,
by means of a naive Bayes text categorization. Citeseer assists users with searching
for a scientific literature. It exploits common citations in the papers. INTIMATE is a
system for movie recommendation, which uses text categorization techniques based
on information retrieved from the Internet Movie Database. The users of this system
are asked to explicitly provide ratings for movies. In the application area of music
recommendations, the most notable content-based system is Pandora that exploits
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manual descriptions. Many recommendation systems in this application area are
however collaborative-based.

Ontology-Based Systems

Besides solutions presented above, which are mainly based on keyword represen-
tation for both items and profiles, it is also possible to infuse knowledge by means
of ontologies and encyclopedic knowledge sources. Ontology-based representation
allows to add some “intelligence” and ability to interpret natural language. SiteIF,
for example, is a personal agent for multilingual news Web site, with a represen-
tation process based on external knowledge source—MultiWordNet (multilingual
lexical database, where different language senses are aligned). In ITR (ITem Recom-
mender), which provides recommendations in several domains (e.g., movies, music,
books), linguistic knowledge about items’ descriptions comes from the WordNet
lexical ontology. SEWeP (Semantic Enhancement for Web Personalization), a Web
personalization system, uses logs and the semantics of a Website’s content, and also
WordNet to “interpret” the content of an item by using word sense disambiguation.
Quickstep, a system for the recommendation of on-line academic research papers,
adopts a research paper topic ontology based on the computer science classifications.
The process of learning can also benefit from the infusion of exogenous knowledge
(externally supplied). Examples of general-purpose knowledge databases are: Open
Directory Project (ODP), Yahoo! Web Directory, and Wikipedia.

Healthcare

The paper [WP14] claims, that content-based approach is suitable for the purpose of
building Health Recommender Systems. It also argues that collaborative approach is
unsuitable, because it inspects user profiles across users, which would incur too high
security risk (personal health data has to be kept confidential). The solution proposed
in [WP14] leverages information of a graph data structure related to health concepts
derived from Wikipedia to compute individual relevance.

Another example is Personal Health Explorer, proposed by Morrell and Ker-
schberg (2012), a semantic health recommendation system that uses an agent based
framework to retrieve content from web resources related to individual’s personal
health records.

A basic form of content recommendation is also provided by consumer-centric
web portals for medical information, for example, symptoms and diseases. If a user
of such web portal has an account and a medical profile (that is, a health record)
linked to it, RS can providematching health information of high individual relevance.
However, such systems are aimed at ordinary people, so-called “laymen”, rather than
at medical personnel.
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3.4 Knowledge-Based Recommendation

When a system needs to exploit additional knowledge to generate recommendations,
a knowledge-based approach is needed. Such knowledgemaybe elicited interactively
by interacting with the user. Sometimes there is confusion in differentiating between
content- and knowledge-based systems. Content-based systems typically work on
text documents or other items, for which features can be automatically extracted,
and forwhich some learningmethod is applied. In contrast, knowledge-based systems
rely mostly on externally provided information about items.

Knowledge-based approach is advantageous, in scenarios, where collaborative fil-
tering or content-based approaches show limitations. For example, buying a house, a
car, or a computer is not a frequently made decision. Pure CF system would not per-
formwell, because of the low number of available ratings. For content-based systems
the time span between ratings would make them useless (for example five-year-old
ratings for computers would be rather inappropriate). Also, preferences evolve over
time. In the case when requirements for an item formulated by user are set explicitly,
they are not easily incorporated into collaborative- or content-based frameworks. The
main drawback of knowledge-based systems is a need for knowledge acquisition—a
common bottleneck for many artificial intelligence applications.

The most common division of knowledge-based systems is that between
constraint-based systems and case-based systems. The recommendation process in
both types looks similar: the requirements are elicited from the user and then solution
is identified by the system. If the solution is not found, however, the requirements
must be changed by the user. Optionally, explanation for the recommendation may
also be provided to the user. The difference between constraint- and cased-based sys-
tems lies in the way the provided knowledge is used: the former rely on an explicitly
defined set of recommendation rules, whereas the latter retrieve the items that are
similar, based on various measures.

3.4.1 Knowledge Representation and Reasoning

Detailed knowledge about items is pivotal for knowledge-based systems. Based on
item feature values and requirements defined by the user, which are expressed as
desired values or value ranges for an item feature, selecting the right item is the
task of recommendation problem. A constraint-based recommendation problem can
be represented as a constraint satisfaction problem, which can be solved by a con-
straint solver or as a query by a database engine. Case-based systems rely mostly
on similarity metrics to select the desired items (for example, so called distance
similarity). Constraint-based systems can exploit the mechanism of a recommender
knowledge base. If the problem is unsatisfiable, the constraints can be relaxed until
a corresponding solution is found.
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It is also important to rank recommended items according to their utility for the
user. Each item is evaluated according to a predefined set of dimensions that provide
an aggregated view on the basic item properties.

3.4.2 Example Applications

Constraint-Based

One of the commercial developed examples of constraint-based recommender sys-
tem is VITA financial services application for Hungarian financial service provider
[FISZ07]. VITA supports sales representatives in sales dialogs with customers. Such
representatives are challenged by the increased complexity of service solutions, they
do not know how to recommend such services. The goal of developing a system sup-
porting sales representatives was to increase their overall productivity and advisory
quality in sales dialogs.

Figure3.4 shows architecture of the VITA sales support environment [JZFF10].
The functionality of VITA system was deployed on a web server application

and was available for both sales representatives at office and external sales agents
preparing and conducting sales dialogs, and some functionality is provided for sales
representatives using their own laptops. Thus, new versions of sales dialogs and

Fig. 3.4 VITA sales support environment [FISZ07]
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knowledge bases are automatically installed when the sales representative is con-
nected with the intranet. Such solution helps in dealing with highly complex and
frequently changing recommendation knowledge bases. Also, automated testing and
debugging of knowledge bases was implemented into the solution.

The knowledge base of VITA system consists of the following elements:

• Customer properties—requirements articulated by each customer,
• Product properties and instances—predefined properties of each product,
• Constraints—restrictions defining which products should be recommended in
which context,

• Advisory process definition—definitions of sales dialogs.

A recommendation process in the system is divided into a number of steps
(see Fig. 3.5): requirements elicitation, creditworthiness check, product advisory/
selection, and detailed calculation/result presentation.

Fig. 3.5 Screen of sales support system—VITA [FISZ07]



3.4 Knowledge-Based Recommendation 31

Case-Based

Example of case-based knowledge system would be Entree—a system recommend-
ing restaurants in Chicago, which uses some domain knowledge about restaurants,
cuisines, and foods. User interaction is conducted via web-based interface—users
enter their preferences and requirements. The system cycles through several itera-
tions of recommendations. At each cycle, it retrieves a set of candidate items from
the item database that fulfills the criteria defined by the user, and sorts them accord-
ing to their similarity to the currently recommended item. The most similar are then
returned.

Some knowledge-based recommendation systems have been developed for appli-
cation domains where domain knowledge is readily available in some structured
machine-readable form, for example, as an ontology. Examples of such approach are
Qiuickstep and Foxtrot systems, which use research paper topic ontology to recom-
mend online research articles to the users.

3.5 Hybrid Recommender Systems

Pure content-based recommender systems proved to have some limitations, which
led to the development of hybrid systems that combine the advantages of different
recommendation techniques. As hybrid recommender system, can be understood
any combination of the above-mentioned techniques. Combination can be any of the
following [AT05]:

• combining separate recommender systems—either combining ratings obtained
from them individually or using the output that is “better” than others at a given
moment,

• adding characteristics of one approach to another model,
• developing a single unifying recommendationmodel—for example, using content-
based and collaborative characteristics in a single rule-based classifier.

3.5.1 Example Applications

Hybrid approaches demonstrated to provide more accurate recommendations than
pure approaches [AT05]. Real-world examples of systems that combine collabora-
tive and content-based methods are: Fab, WebWatcher, P-Tango, ProfBuilder, PTV,
Content-boosted Collaborative Filtering, CinemaScreen. Fab is based on traditional
collaborative techniques, but also maintains the content-based profiles for each user.
These content-based profiles are used to calculate the similarity between two users
[AT05].
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3.6 Discussion

Considering the decision problem that should be solved by a recommender system
in this work (tinnitus characterization and treatment) and the given dataset’s charac-
teristics, it is argued that neither pure collaborative approach nor pure content-based
approach would be effective to use. On the other hand, rule-based approach could be
more convenient and appropriate, as extraneous knowledge base is provided. Rules
could model the complex human expert behavior and decision-making.

Considering the first discussed approach—collaborative filtering, it would be dif-
ficult to represent patients’ data as a simple item rating matrix. The items (treatment
methods) are not explicitly specified (treatment is complex and multi-factorial) and
have to be extracted first. It is impossible to obtain item ratings (that is a recovery
rate) for each of them for each patient (resulting matrix would be very sparse). This
is because, patient is treated with one method only at a given time, alternatively other
methods are applied later, but then, the patient’s medical conditions change (tem-
poral dependencies have to be considered). In other words, the treatment process is
not repeatable, as in case of buying books or CDs. The decision process in medical
evaluation is much more complex, rather unique and highly personalized than very
frequent and common buying decisions (of books, CDs, etc.). Thus, it cannot be
expressed as easily as preference rating given by the users of an online bookstore,
for example. Furthermore, the size of dataset is not large enough (about 550 patients)
to find users similar to the one under consideration (this problem is known as startup
problem). For these reasons and given the specific knowledge domain (protocol of
TRT treatment), collaborative filtering would be less suitable approach for a RS for
tinnitus.

Secondly, as already mentioned in the section about content-based recommen-
dation, RS solutions for medicine based on this approach are developed for sup-
porting “laymen” and Internet users, seeking information about medical conditions,
rather than supporting medical professional in highly specialized decision-making.
Content-based approach, similarly to collaborative approach, has a drawback of so
called “new user problem”, that is, enough ratings have to be collected before such
RS can really understand “user preferences” and provide accurate recommendations.
This approach would not be suitable, as there are not many “item ratings”, that is
tinnitus treatment results, for a one given patient (the same as it is unsuitable for infre-
quent buying decisions—cars or house).Moreover, the solution for tinnitus treatment
of a given patient should take into account successful treatment methods applied to
other patients, while content-based approach focuses only on “preferences” (med-
ical condition) of one particular “user” (patient). Content-based approach is also
known for its tendency to suffer from overspecialization, that is, inability for finding
something unexpected, and the tendency to produce recommendations with a limited
degree of novelty.

With all these disadvantages, however, some content retrieval techniques might
be used for exploring medical documents and data from a patient’s personal health
records that are unstructured (data entries of medical records are frequently stored as
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unstructured plain text—discharge letters, descriptions of diagnoses, etc.). Content-
based approach could be used for retrieving information from textual information of
tinnitus databases, such as treatment progress descriptions.

To sum up, traditional recommendation approaches (content-based filtering and
collaborative filtering) are well-suited for the recommendation of “quality and
taste” products, such as books, movies, or news. As already indicated above, these
approaches are not the best choice in the context of products such as cars, comput-
ers, apartments, financial or medical services (where decision is rather one-off than
frequent). Knowledge-based recommender technologies help to tackle these chal-
lenges, by exploiting explicit user requirements (patient’s characteristic) and deep
knowledge about the underlying problem domain for the calculation of recommen-
dations.

Tinnitus treatment is a decision problem that requires some domain knowledge.
Therefore, approachproposedwithin this book is knowledge-based recommendation,
with the domain knowledge specified in the form of rules, automatically extracted
from the given dataset. This approach also does not require large amount of data
and there is no cold start problem (since requirements are directly elicited within
a recommendation session). It allows to specify a particular user’s (patient’s) needs
or interests (medical conditions). The alternative approach for tinnitus diagnosis
and treatment could be also a hybrid approach combining collaborative filtering
and knowledge based models, depending on dataset size, and possible extension of
information-retrieval feature to explore textual descriptions or comments on treat-
ment methods.

The next chapter describes the chosen approach, based on rules and knowledge
extraction, in greater detail.



Chapter 4
Knowledge Discovery Approach for
Recommendation

Abstract This chapter presents concepts of action rules, proposed by Ras andWiec-
zorkowska in 2000 [RW00] and meta-actions, as a proposed approach for building a
rule-based (knowledge-based) recommender system for tinnitus treatment, andmoti-
vation for using suchmethods. It also presents theoretical foundations and algorithms
for automatic action rules extraction, as methods for domain knowledge discovery.

4.1 Basic Concepts

Approach based on actions presents a new way in machine learning, which solves
problems that traditional methods, such as classification or association rules, cannot
handle. Its purpose is to analyze data to improve understanding of it and seek specific
actions (recommendations) to enhance the decision-making process. In contrast to
association rule learning (Agrawal et al. 1993), action rule approaches mine action-
able patterns that can be employed to reach a desired goal, instead of only extracting
passive relations between variables. Since its introduction in 2000, action rules have
been successfully applied in many domain areas including business [RW00]), med-
ical diagnosis and treatment (Wasyluk et al. 2008; Zhang et al. 2010), and music
automatic indexing and retrieval (Ras and Wieczorkowska 2010; Ras and Dardzin-
ska 2011).

An action rule is defined as “a rule extracted from an information system that
describes a possible transition of objects from one state to another with respect to a
distinguished attribute called a decision attribute” [Ras15]. To understand this defin-
ition, it is important to introduce some associated concepts, which will be explained
later. Action rules can be further improved by the introduction of meta-actions that
help control the actions. Meta-actions are mechanism used to acquire knowledge
about possible transitions in the information systems and their causes. This knowl-
edge is then used in triggering particular action rules, in order to move objects
fromtheir current state to a more desirable state. Meta-actions were first introduced

© Springer International Publishing AG 2017
K.A. Tarnowska et al., Decision Support System for Diagnosis and Treatment
of Hearing Disorders, Studies in Computational Intelligence 685,
DOI 10.1007/978-3-319-51463-5_4

35



36 4 Knowledge Discovery Approach for Recommendation

to mine actionable patterns, then formally defined and used to discover action rules
based on tree classifiers Ras [RD09]. They were also used to personalize action rules
based on patients’ side-effects in [TKHR13].

Action rules seem to be especially promising in the field of medical data, as a
doctor can examine the effect of treatment decisions on a patient’s improved state
[Tho11]. For example, in the tinnitus dataset, such indicator of tracking improvement
progress would be total score attribute, calculated as sum of Newman form (Tinnitus
Handicap Inventory—see Appendix C) responses. Meta-actions would, on the other
hand, represent treatments, prescribed by doctors to their patients (in tinnitus case—
counseling, instrumentation and their fitting). Meta-actions, in the context of the
healthcare, represent the patient’s state transition from an initial state to a different
state. Action rules would be used to move a patient from the sick population state to
the healthy population state.

4.1.1 Information Systems

A concept of Information System stems from the theory of rough sets, developed
by Zdzislaw Pawlak at the beginning of 1980s [PM81]. Back then, it was a novel
approach to the formal representation of knowledge description, especially of knowl-
edge that was given incompletely and/or imprecisely. Since its introduction, the the-
ory of rough sets was developing extensively all around the word, and especially in
Poland. Application of rough sets theory in machine learning, image recognition,
control of technological processes and expert systems confirmed its usefulness in
practical settings.

The rough set theory handles data analysis organized in the form of tables. The
data may come from experts, measurements or tests. The main goals of the data
analysis is a retrieval of interesting and novel patterns, associations, more precise
problem analysis, as well as designing a tool for automatic data classification.

Definition 4.1 An Information System is defined as a pair S = (U, A), whereU is a
nonempty, finite set, called the universe, and A is a nonempty, finite set of attributes
i.e. a : U → Va for a ∈ A, where Va is called the domain of a [RW00].

Elements of U are called objects. A special case of Information Systems is called a
Decision Table [Paw85].

4.1.2 Decision Tables

In a decision table, some attributes are called conditions and the others are called deci-
sions. In many practical applications, decision is a singleton set. Figure4.1 depicts a
decision table with 8 objects describing patients with 3 attributes:Headache,Muscle
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Fig. 4.1 Example of a decision table with patients’ data

Fig. 4.2 Another example of a decision table with patients’ data

pain and Temperature. Decision is a binary attribute specifying if a patient has a flu
or not.

Based on knowledge represented in a form of a decision table, it is possible to
model and simulate decision-making processes. The knowledge in a decision table
is represented by associating or identifying decision values with some values of
conditional attributes. In practical settings, decision tables are created from ordinary
tables or database, by specifying conditions and decisions. Conditional attributes
are characteristics that are easily available, for example measurements, parameters,
personal data, etc. Decision is a feature related to not commonly known knowledge,
for example given by an expert (doctor for instance) or based on later observations
(for example—stock exchange rating). Decision is known only for the objects from
the training table. The goal is to use it for establishing a decision for new objects,
based on their attributes.

In a dataset, presented in Fig. 4.2, decision attribute would be similar as in Table
in Fig. 4.1—whether a person is sick or not. In tinnitus dataset—a decision attribute
would be patient’s category, with values in the range of 0–4 (see Table2.1). This
attribute would classify objects (patients) into tinnitus treatment group, taking into
account medical/audiological evaluation and form responses.

For action rules extraction, it is also relevant to differentiate between so-called
flexible attributes, which can be changed, and stable attributes [RW00], which cannot

http://dx.doi.org/10.1007/978-3-319-51463-5_2
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be changed: A = ASt ∪ AFl , where ASt and AFl denote stable attributes and flexible
attributes respectively. Example of a stable attribute inmedical datawould beGender,
Age, while flexible might be Cholesterol level or Hearing Device.

4.1.3 Reducts

In decision systems not every attribute in the database is necessary for decision-
making process. The goal is to choose some subset of attributes essential for this.
It leads to definition of reducts, that is, minimal subsets of attributes that keep the
characteristics of the full dataset. In the context of action rule discovery an action
reduct is a minimal set of attribute values distinguishing a favorable object from
another. Before defining formally a reduct, it is necessary to introduce a discernibility
relation.

Definition 4.2 Let objects x, y ∈ U and set of attributes B ⊂ A. We say that x, y
are discernible by B when there exists a ∈ B such that a(x) �= b(y). x, y are indis-
cernible by B when they are identical on B, that is, a(x) = b(y) for each a ∈ B.
[x]B denotes a set of objects indiscernible with x by B.

Furthermore, following statements are true:

• for each objects x, y either [x]B = [y]B or [x]B ∩ [y]B = ∅,
• indiscernibility relation is an equivalence relation,
• each set of attributes A ⊂ B determines a partition of a set of objects into disjoint
subsets.

Example 4.1 In the table presented in Fig. 4.1 objects p1, p2, p3 are indiscernible for
attribute subset B = {Headache, Musclepain}, and in the Table4.2 objects p1, p2
are indiscernible for attributes B = {RestingECG, Heartrate}. Also, in the first
case, there are three disjoint indiscernibility classes:

• [p1]B = {p1, p2, p3},
• [p4]B = {p4, p6, p7},
• [p5]B = {p5, p8}.
In the second table, we can see the need to discretize some numerical values, because
the search for the same attribute values is very unlikely to succeed (that two the
same real numbers are found). The numerical values are, then, replaced by the value
representing an interval, to which an original value belongs.

Definition 4.3 A set of attributes B ⊂ A is called reduct of the decision table if and
only if:

• B keeps the discernibility of A, that is, for each x, y ∈ U , if x, y are discernible
by A, then they are also discernible by B,
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• B is irreducible, that is, none of its proper subset keeps discernibility properties
of A (that is, B is minimal in terms of discernibility).

The set of attributes appearing in every reduct of information system A (decision
table DT ) is called the core.

4.2 Decision Rules

Decision rule, for a given decision table, is a rule in the form: (φ → δ), where
φ is called antecedent (or assumption) and δ is called descendant (or thesis) of
the rule. The antecedent for an atomic rule can be a single term or a conjunction
of k elementary conditions: φ = p1 ∧ p2 ∧ · · · ∧ pn , and δ is a decision attribute.
Decision rule describing a class Kj means that objects, which satisfy (match) the
rule’s antecedent, belong to Kj .

Each rule can be characterized by the following features:

• length(r) = number of descriptors in the antecedent of the rule,
• [r ] = a set of objects from U matching the rule’s antecedent,
• support(r) = number of objects from U matching the rule’s antecedent: |[r ]| (rel-
ative support is further divided by number of objects N ),

• confidence(r) = reliability of the rule:
|[r ] ∩ DECk |

|[r ]| -number of objects matching

both rule’s antecedent and descendant, divided by absolute support.

The problem of finding a minimal set of rules that fully describes the dataset (covers
all samples from dataset) and then classifies them correctly is a NP-problem. A
transformation of such problem into a problem of minimum coverage of a set is used
for proofs.

On the grounds of rough sets theory, reducts are used in algorithms generating
all decision rules from the given decision table. The algorithm uses relative reducts
for each object belonging to the U . Boolean logic and inference are often applied in
such algorithms, based on construction of so-called discernibility matrix and trans-
formations of discernibility functions, which are derived from such matrix. A set of
prime implicants of these functions are then used for a generation of global (rela-
tive) reducts or local (relative) reducts associated with singular objects. Rules for a
given decision class are then generated from reducts. Besides such algorithms, find-
ing reducts exactly, there are methods based on approximation algorithms, genetic
algorithms, for example.
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4.3 Classification Rules

In the context of prediction problem, decision rules generated from training dataset,
are used for classifying newobjects (for example classifying a newpatient for tinnitus
category). New objects are understood as objects that were not used for the rules
induction (new patients coming to the doctor). The new objects are described by
attribute values (for instance a patient with conducted audiological evaluation and
form responses). The goal of classification is to assign a new object to one of the
decision classes. Prediction is performed by matching the object description with the
rule antecedents. Furthermore, if the original value of decision class is known for
this object, it is called a testing sample, because it can be used to compare the true
with the predicted class label.

After finding a set of decision rules, it is possible to find a description of decision
classes and classify objects based on that. Classification rules are generated from
decision rules by the following procedure:

• training phase: a set of rules RULES(A) is generated from the given decision table
A,

• selection phase: RULES(A) is searched for rules matching object x . These rules
are denoted as MatchRules(A,x),

• classification phase: decision class is allocated for x , with the use of rules from
MatchRules(A,x), according to the following schema:

– ifMatchRules(A,x) is empty, the decision for x is UNKNOWN,
– ifMatchRules(A,x) contains only objects fromdecision class k, then dec(x) = k,
– if MatchRules(A,x) contains objects from different decision classes, then deci-
sion for x is determined by some chosen voting schema amongst rules from
MatchRules(A,x).

The set of rules should be filtered in many possible ways, in order to obtain best rules
to be used by the classifier. Classification trees are also used to generate classification
rules.

4.4 Action Rules

An action is understood as a way of controlling or changing some of attribute values
in an information system to achieve desired results [IRT11]. An action rule is defined
[RW00] as a rule extracted froman information system, that describes a transition that
may occur within objects from one state to another, with respect to decision attribute,
as defined by the user. In nomenclature, action rule is defined as a term: [(ω) ∧ (α →
β) → (Φ → Ψ )], where ω denotes conjunction of fixed condition attributes, (α →
β) are proposed changes in values of flexible features, and (Φ → Ψ ) is a desired
change of decision attribute (action effect) [Ras15]. Action rule discovery applied to
tinnitus dataset could, for example, suggest a change in a flexible attribute, such as
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type of instrument, to help “reclassify” or “transit” an object (patient) to a different
category (less severe) and consequently, attain better treatment effectiveness.

4.4.1 Definitions

An action rule is built from atomic action sets.

Definition 4.4 Atomicaction term is an expression (a, a1 → a2),wherea is attribute,
and a1, a2 ∈ Va , where Va is a domain of attribute a.

If a1 = a2 then a is called stable on a1.

Definition 4.5 By action sets we mean the smallest collection of sets such that:

1. If t is an atomic action term, then t is an action set.
2. If t1, t2 are action sets, then t1 ∧ t2 is a candidate action set.
3. If t is a candidate action set and for any two atomic actions (a, a1 → a2), (b, b1 →

b2) contained in t we have a �= b, then t is an action set. Here b is another attribute
(b ∈ A), and b1, b2 ∈ Vb.

Definition 4.6 By an action rule we mean any expression r = [t1 ⇒ t2], where t1
and t2 are action sets.

The interpretation of the action rule r is, that by applying the action set t1, we would
get, as a result, the changes of states in action set t2.

Example 4.2 [KDJR14] Assuming that a, b and d are stable attribute, flexible
attribute and decision attribute respectively in S, expressions (a, a2), (b, b1 → b2),
(d, d1 → d2) are examples of atomic action sets. Expression (a, a2) means that the
value a2 of attribute a remains unchanged, (b, b1 → b2) that value of attribute b is
changed fromb1 tob2. Expression r = [{(a, a2) ∧ (b, b1 → b2)} ⇒ {(d, d1 → d2)}]
is an example of an action rule meaning that if value a2 of a remains unchanged
and value of b will change from b1 to b2, then the value of d will be expected
to transition from d1 to d2. Rule r can be also perceived as the composition
of two association rules r1 and r2, where r1 = [{a, a2) ∧ (b, b1)} ⇒ (d, d1)] and
r2 = [{a, a2) ∧ (b, b2)} ⇒ (d, d2)].
Observation from the above example is that if the goal is to move patients having
tinnitus fromhigher to lower severity group,we shouldfind characteristics ormethods
of treatment for the patients or visits that have decision attribute d belonging to the
class we aim for the treatment as a result. Therefore, using the theoretical example
above, for the treated patient we should find another object (visit or patient) that have
the same values for some stable attributes a (the same preconditions), but belong to
lower tinnitus severity group (d2 should be lower than d1), and find atomic actions
such as (b, b1 → b2) meaning that if changing the method of treatment for the first
patient from b1 to b2, the expected recovery would be from category d1 to d2.
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4.4.2 Algorithms

Action rules discovery is divided into two types [Ras15]:

• rule-based—prior extraction of classification rules is needed, actionable patterns
are built on the foundations of pre-existing rules (for example DEAR algorithm),

• object-based—action rules are extracted directly from the database (for example
ARED algorithm, similar to Apriori) [RDTW08].

In rule-based approach, action rules are built from certain pairs of classification rules.
This approach is characterized by two main steps: (1) in the first step, a standard
learning method is used to detect interesting patterns in the form of classification
rules and (2) the second step is to use an automatic or semiautomatic strategy to
inspect these rules and from their certain pairs derive possible action strategies.

In object-based approach, action rules are extracted directly from a dataset.
The interpretation of object-driven action rules was first proposed by Hajja, Wiec-
zorkowska, Ras, and Gubrynowicz in 2012. They showed that such rules can be
applied for complex datasets, for example, containing various instances for the same
object, and a temporal aspect coupled with each instance (as in case of tinnitus
dataset). As a matter of fact, datasets with such structure can be frequently found
in medical data, where for each unique patient, representing an object, multiple vis-
its are recorded, and where in each visit (representing an instance) a timestamp is
associated with the instance.

ARED—Action Rule Extraction from Decision Table
The following paragraph will present a method to construct action rules from a
decision table containing both stable and flexible attributes. PresentedARED (Action
Rule Extraction from Decision Table) algorithm [IR08] is based on Pawlak’s model
of an information system S. It uses a bottom-up approach to generate action rules
having minimal attribute involvement, without the need to find classification rules in
the first place. The goal in the algorithm, which is similar to Apriori, is to identify
certain relationships between granules, defined by the indiscernibility relation on
objects in S. Some of these relationships uniquely define action rules for S.

We assume that the decision attribute is d, stable attributes ASt = {a}, and the
flexible attributes AFl = {b, c}, given the decision table as in Table 4.1. We also
assume that the minimum support (λ1) and confidence (λ2) are given as 1 and 0.85.

The first step in the procedure is to find pessimistic interpretation in S of all
attribute values in V , called granules. The granule a∗

1 , associated with attribute value
a1 in S, is the set of objects having property a1 (that is, objects {x1, x6, x7, x8}). The
set of granules in a given S for attributes a, b, c is as follows:

a∗
1 = {x1, x6, x7, x8}

a∗
2 = {x2, x3, x4, x5}
b∗
1 = {x1, x2, x4, x6}
b∗
2 = {x7, x8}
b∗
3 = {x5}
c∗
1 = {x1, x4, x8}
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Table 4.1 Decision table S
[IR08]

a b c d

x1 a1 b1 c1 d1
x2 a2 b1 c2 d1
x3 a2 c2 d1
x4 a2 b1 c1 d1
x5 a2 b3 c2 d1
x6 a1 b1 d2
x7 a1 b2 c2 d1
x8 a1 b2 c1 d3

c∗
2 = {x2, x3, x5, x7}
and for the decision attribute:
d∗
1 = {x1, x2, x3, x4, x5, x7}
d∗
2 = {x6}
d∗
3 = {x5}
The next step in the procedure is to find possible property transitions between

objects in S. Let define two sets, τ and δ, such that:

• τ = T ∧ d1, where d1 ∈ Vd , and (∀ρ1 ∈ T ∧ d1)(sup(ρ1 ≥ λ1).
• δ = T ∧ d2, where d2 ∈ Vd , and (∀ρ2 ∈ T ∧ d2)(sup(ρ2 ≥ λ1).

T is a set of proper conjuncts built from elements in ∪{Vi , i �= d, i ∈ A}. Proper
conjunct is the one that contains maximum one element from each Vi . By T ∧ di ,
we mean {t ∧ di : t ∈ T }, i = 1, 2. The support of ρi , sup(ρi ) means the number
of objects in S supporting all attribute values listed in ρ1, i = 1, 2. This can be
easily calculated by intersecting two granules: one for a conditional attribute and the
second for the decision attribute: for example, (a1 ∧ d2)∗ = {x1, x6, x7, x8} ∩ {x6},
sup((a1 ∧ d2)∗) = 1.

Such sets represent a relationship between conditional attributes and the decision
attribute and property of a set of objects. If the property transition from τ to δ is
valid, τ to δ are interpreted as the condition and the decision of an action rule.

ARED attempts to discover the shortest action rules in terms of the number of
attributes, then iteratively generates longer action rules. Thus, firstly τ containing
two elements is constructed, but only such that fulfill support criteria (Table 4.2).

In the next step, given τ and δ as in Table 4.2, we construct action rules by
evaluating the validity of their transitions. All pairs from τ and δ are generated (if
decision is equal the pair is omitted). There should also exist different flexible attribute
values andbe from the samedomain. For example,d1 �= d2 anda1 �= a2 for (a1 ∧ d2)∗
and (a2 ∧ d1)∗, but because a is a stable attribute, no action rule is constructed. If two
sets do not meet this condition, they are put in two separate arrays and are used to
generate τ and δ for the next iteration (Table 4.4). For example, (a1 ∧ b1 ∧ d1) =⇒
(a1 ∧ b2 ∧ d3) will be an action rule produced later. While producing action rules
τi =⇒ δ1 the condition for confidence is also checked (should be grater or equal λ2
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Table 4.2 2-Element τ and δ

[IR08]
τ δ

(a1 ∧ d1) (a1 ∧ d1)

(a1 ∧ d2) (a1 ∧ d2)

(a1 ∧ d3) (a1 ∧ d3)

(a2 ∧ d1) (a2 ∧ d1)

(b1 ∧ d1) (b1 ∧ d1)

(b1 ∧ d2) (b1 ∧ d2)

(b2 ∧ d1) (b2 ∧ d1)

(b2 ∧ d3) (b2 ∧ d3)

(b3 ∧ d1) (b3 ∧ d1)

(c1 ∧ d1) (c1 ∧ d1)

(c1 ∧ d3) (c1 ∧ d3)

(c2 ∧ d1) (c2 ∧ d1)

to become an action rule). Confidence of ar = τ =⇒ δ is computed using support
of ar , which is the minimum of (sup(τ ), sup(δ)):

con f (ar) = sup(ar)

sup(τ )

Two-element action rules exacted from S are shown in Table4.3. For example,
(b1 ∧ d2) =⇒ (b2 ∧ d1) is an action rule, and it is interpreted as, “if b changes from
b1 to b2, then d changes from d1 to d2”. If the confidence of a 2-element action rule
is less than λ2 (such as in two first in Table4.4), however, the current τi and δ j are
considered in the next iteration of generating 3-element candidate sets (Table4.5).

To find the action rules of length 3, we generate τ of length 3 from τ s in
Table4.4. Two terms τ1 = t1 ∧ d1 and τ2 = t2 ∧ d2 are concatenated if d1 = d2 and
|t1 ∪ t2| − |t2 ∩ t1| = {v1 ∈ Va, v2 ∈ Vb}, where a �= b. The set {δ} is generated from
δs in Table4.4 with the use of the same method. Therefore, they are generated inde-
pendently. Table4.5 shows those 3-element candidate sets. Corresponding action rule
and invalid transitions are shown in Tables4.6 and 4.7.

In the next iteration, we build an action rule with 4 elements (Table4.8) from
corresponding τ and δ. However, the generated rule is not included in the list of
action rules, because its τ and δ are supersets of (b1 ∧ c3 ∧ d1) =⇒ (b2 ∧ c2 ∧ d3),
which is a more general action rule.

Then the process stops because there are no sets to be combined. The presented
algorithm generates a complete set of shortest action rules.

Temporal constraints and object-driven assumptions

When dealing with particular datasets, which, for example, represent patients and
visits, some constraints should be imposed on the algorithm [KP08]. For example, tin-
nitus dataset contains multiple instances that refer to one unique object (patient with
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Table 4.3 Action rules
generated from 2-element τ
and δ [IR08]

τ δ sup con f rule

(b1 ∧
d2) =⇒

(b2 ∧ d1) 1 1 y

(b1 ∧
d2) =⇒

(b2 ∧ d3) 1 1 y

(b1 ∧
d2) =⇒

(b3 ∧ d1) 1 1 y

(b2 ∧
d1) =⇒

(b1 ∧ d2) 1 1 y

(b2 ∧
d3) =⇒

(b1 ∧ d1) 1 1 y

(b2 ∧
d3) =⇒

(b1 ∧ d2) 1 1 y

(b2 ∧
d3) =⇒

(b3 ∧ d1) 1 1 y

(b3 ∧
d1) =⇒

(b1 ∧ d2) 1 1 y

(b3 ∧
d1) =⇒

(b2 ∧ d3) 1 1 y

(c1 ∧
d3) =⇒

(c2 ∧ d1) 1 1 y

Table 4.4 Invalid transitions
generated from 2-element τ
and δ [IR08]

τ δ sup con f rule

(b1 ∧
d1) =⇒

(b2 ∧ d3) 1 0.33 n

(c2 ∧
d1) =⇒

(c1 ∧ d3) 1 0.25 n

(a1 ∧ d1) (a1 ∧ d1)

(a1 ∧ d2) (a1 ∧ d2)

(a1 ∧ d3) (a1 ∧ d3)

(a2 ∧ d1) (a2 ∧ d1)
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multiple recordings of visits). The instances of data are also coupledwith timestamps.
For this reason, let assume that IS(x) denotes all instances of object x in an infor-
mation system S. We should also define relation ⊆ IS(x) x IS(x) as: ((x1, x2) ∈ ⊆)
iff (x2 occurred after x1). Next, a temporal constraint for the algorithm should be
defined: assuming that the only valid change of attribute value is the change that
happens between two instances of the same object, where we limit the transition
direction to occur from an earlier observation to a more recent one. For example, if
we have two observations x1 and x2, where x2 occurred after x1, wewill only consider
change of state from x1 to x2. Next, we also define object-driven assumption, that is,
assumption that a group of all instances for any unique object p is an independent
subsystem by itself. Consequently, the action rules that we extract from the overall
system are the result of aggregating action rules from all subsystems.

Table 4.5 3-Element τ and δ

[IR08]
τ δ

(a2 ∧ b1 ∧ d1) (a1 ∧ c2 ∧ d3)

(a2 ∧ c3 ∧ d1) (a1 ∧ b2 ∧ d3)

(a1 ∧ b1 ∧ d1) (b2 ∧ c2 ∧ d3)

(a1 ∧ c3 ∧ d1)

(b1 ∧ c3 ∧ d1)

Table 4.6 Action rules
generated from 3-element τ
and δ [IR08]

τ δ sup con f rule

(a1 ∧ b1 ∧ d1) =⇒ (a1 ∧
b2 ∧
d3)

1 1 y

(a1 ∧ c3 ∧ d1) =⇒ (a1 ∧
c2 ∧
d3)

1 1 y

(b1 ∧ c3 ∧ d1) =⇒ (b2 ∧
c2 ∧
d3)

1 1 y

Table 4.7 Invalid transitions
generated from 3-element τ
and δ [IR08]

τ δ sup con f rule

(a2 ∧ b1 ∧ d1) =⇒ (a1 ∧
b2 ∧
d3)

1 0.50 n

(a2 ∧ c3 ∧ d1) =⇒ (a1 ∧
c2 ∧
d3)

1 0.33 n
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Table 4.8 4-Element τ and δ

and corresponding action rule
[IR08]

τ δ

(a2 ∧ b1 ∧ c3 ∧ d1) =⇒ (a1 ∧ b2 ∧ c3 ∧ d3)

4.5 Meta Actions

Action rules are mined on the entire set of objects in S. Meta-actions, on the other
hand, are chosen based on the action rules. They are formally defined as higher
level concepts used to model a generalization of action rules in an information sys-
tem [RW00]. They trigger actions that cause transitions in values of some flexible
attributes in the information system. These changes, in turn, result in a change of
decision attributes’ values.

4.5.1 Definition

Definition 4.7 Let M(S) be a set of meta-actions associated with an information
system S. Let a ∈ A, x ∈ X , and M ⊂ M(S). Applying the meta-actions in the set
M on object x will result in M(a(x)) = a(y), where object x is converted to object
y by applying all meta-actions in M to x .

Example 4.3 Let M(S), where S = (X, A), be a set of meta-actions associated with
an information system S. In addition let T = {vi, j : j ∈ Ji , xi ∈ X} be the set of
ordered transactions, patient visits, such that vi, j = [(xi , A(xi ) j )], where A(xi ) j is
a set of attribute values {a(xi ) : a ∈ A} of the object xi for the visit represented
uniquely by the visit identifier j . Each visit represents the current state of the object
(patient) and current diagnosis. For each patient’s two consecutive visits (vi, j , vi, j+1),
wheremeta-actionswere applied at visit j , it is possible to extract an action set. In this
example, an action set is understood as an expression that defines a change of state for
a distinct attribute that takes several values (multivalued attribute) at any object state.
For example {a1, a2, a3} → {a1, a4} is an action set that defines a change of values
for attribute a ∈ A from the set {a1, a2, a3} to {a1, a4}, where {a1, a2, a3, a4} ⊆ Va

[TRSW14].

These action sets resulting from the application of meta-actions represent the action-
able knowledge needed by practitioners. However, not every patient reacts in the
same way to the same meta-actions, because each of them may have different pre-
conditions. In other words, some patients might be partially affected by the meta
actions and might have other side-effects. There emerges a need to introduce person-
alization on meta actions when executing action rules. The problem of personalized
meta-actions is a fairly new topic that creates room for new improvements. There
has been very minor work on the personalization of meta-actions so far [Wan14].
Action sets have to be additionally mined for the historical patterns. To evaluate
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these action set patterns some frequency measure for all patients has to be used (for
example support or confidence). There is a room for improvements in personalized
meta action mining, as well. In healthcare for instance, meta actions representing
patient’s treatments, could be mined from doctor’s prescription. In addition to action
rule mining in healthcare, meta actions present an interesting area for personalized
treatments mining and cure mining.

4.5.2 Discovery Methods

As being the actual solutions to trigger action rules and ultimately improve recov-
ery of tinnitus patients, meta actions discovery is important role for the purpose of
building recommender system for tinnitus. However, while there have been designed
many strategies for action rules discovery and they are quitemature, mining formeta-
actions still is opened to further developments and notmanymethods are known. One
of the very recent method, based on text mining and sentiment analysis, is presented
in [KDJR14] for the application of increasing customer satisfaction (so called “Net
Promoter Score”) for heavy equipment repair companies.

One approach for tinnitus treatment problemwould be to assume thatmeta actions
are already known (for example prescribing a particular sound generator asmethod of
treatment) and concentrate on selecting those that led to desired effect, the similarway
as in the [TRSW14]. Also, it is possible to perform text mining on textual attributes
describing method of treatment for visits in detail (if available), in order to discover
effective meta actions, similar way as applied in [KDJR14] for the exploration of
textual opinions of clients on a company given in a form.

4.6 Advanced Clustering Techniques

Advanced clustering methods can be used in medical dataset with visits to group
patients according to similar visits’ frequencies (similar visits patterns). The goal
would be, similar as in case of meta actions, further enhancement for treatment
personalization (assuming that patients with similar visit frequencies are comparable
in terms of improvement tracking). The approach assumes that patients should be
clustered in such a way that the visiting history of each patient is discretized into
durations, anchored from its initial visit date in terms of weeks, and serving as a seed
for grouping.

Visit Distance

Let define a visit distance, as a time difference between initial visit and a current
visit. For example, a patient p who visited a doctor on July 8th, 2009, August 14th,
2009, and October 7th, 2009, is denoted, in terms of visit distance, as in Table4.9.
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Table 4.9 An example of
calculating visit duration

Visit ID Duration(weeks)

1 6

2 14

The corresponding vector representationwill have the form vp = [6, 14]. It means
that patient p visited the doctor five full weeks after his first visit and his last visit
happened 13weeks after his first visit (or 7weeks after his second visit). In other
words, patient p visited the doctor in the 6th week and 14th week counting in relation
to his initial visit.

Distance Between Patients

Let us assume that patient p visits distances are denoted by a vector vp = [v1, v2, . . . ,
vn], and patient q visits—by a vector vq = [w1,w2, . . . ,wm]. If n < m, then the
distance ρ(p, q) between p, q and the distance ρ(q, p) between q, p is defined as
[ZRJT10]:

ρ(q, p) = ρ(p, q) = �n
i |vi − wJ (i)|

n
(4.1)

where [wJ (1),wJ (2), . . . ,wJ (n)] is a subsequence of [w1,w2, . . . ,wm] such that
�n

i |vi − wJ (i)| is minimal for all n-element subsequences of [w1,w2, . . . ,wm].
|vi − wJ (i)| means absolute value of [vi − wJ (i)].

For example, if patient p has 6 visits and patient q has 5 visits with fre-
quencies denoted correspondingly by vectors: vp = [5, 8, 12, 20, 26], and vq =
[7, 11, 13, 21], and we want to compare p with q, each of the four distances of q
should be matched with a closest visit of p and their difference should be averaged.
In the given example, we match w1 = 7 with v1 = 5 (difference = 2), w2 = 11 with
v2 = 8 (difference = 3), w3 = 13 with v3 = 12 (difference = 1), and w4 = 21 with
v4 = 20 (difference = 1). The average difference is then calculated as: 2+3+1+1

4 = 7
4 ,

that is distance ρ(q, p) is about 2.

Tolerance Classes and Threshold

It can be checked that ρ(q, p) is a tolerance relation. Threshold can be applied to
filter out patient records with large distance values to form a tolerance class, where
all group members have similar visiting patterns [ZRJT10].

For instance, let us assume thatwe have 8 patients p1, p2, p3, . . . , p8 with doctor’s
visits assigned to them which are represented by following vectors:

vp1 = [3, 8, 12, 20], vp2 = [4, 7], vp3 = [5, 12, 21, 30], vp4 = [7, 21, 29], vp5 =
[12, 22], vp6 = [13, 19, 29], vp7 = [2, 13, 19, 31, 38], vp8 = [7, 12, 20].

The threshold value ρ = 1 is set up as a minimal distance between vectors repre-
senting patients.

The following tolerance classes containing more than one element will be con-
structed:

TCρ=1(vp2) = [vp1 , vp2 ], TCρ=1(vp4) = [vp4 , vp3 ], TCρ=1(vp5) = [vp5 , vp1 , vp3 ,
vp8 ], TCρ=1(vp6) = [vp6 , vp7 ], TCρ=1(vp6) = [vp6 , vp1 ].
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We say that TCρ=1(vp2) is generated by p2, and analogously, TCρ=1(vp4) is
generated by p4.

The ultimate goal of building tolerance classes, by a procedure presented above,
is to identify groups of patients, for which temporally related features of tinnitus
indicators, can be constructed. Threshold value can be manipulated, in order to
change the size of classes (if threshold value is increased, the tolerance classes get
larger). The size of tolerance classes should not be too small so that to still be able to
retrieve useful information through the knowledge extraction process. On the other
hand, the larger the tolerance classes, the less accurate information in temporally
related features.

Dataset Clusters

The dataset associated with a tolerance class which is generated by patient p contains
records describing patients who visited the doctor at similar weeks as the patient
p. Data referring only to these visits should be stored as tuples representing all
patients in this tolerance class. For example, if patient p generates a tolerance class
TCρ=1(vp2), where vp2 = [4, 7], and another patient p1 has a vector representation
vp1 = [3, 8, 12, 20] of their doctor’s visits, then p1 has a vector representation [3, 8]
relative to TCρ=1(vp2). Thus, all patients associated with the same tolerance class
have the same number of doctor’s visits and all these visits occurred approximately
at the same time (in relation to the start of treatment).

The goal of such approach is to construct a collection of databases Dp, where p is
a patient and Dp corresponds to TCρ=1(vp2), for the purpose of knowledge discovery
(classifier construction and rules extraction).

Algorithmic Approach for Clustering

Another approach is to represent each patient as a vector of distances between con-
secutive visits. In the example above vp = [5, 8 − 5, 12 − 8, 20 − 12, 26 − 20] =
[5, 3, 4, 8, 6], and vq = [7, 11 − 7, 13 − 11, 21 − 13] = [7, 4, 2, 8]. Insteadofmatch-
ing visits, we can translate the problem to the problem of finding optimal “cut
points” so that to minimize distance between p and q. For example, we might
choose following cut points: vp = [5|3|4|8|6] and vq = [7|4|2|8]. The number of
cut point for vp is 4, and for vq − 3. The corresponding distance is calculated
as: |(7)−(5)|+|(4)−(3)|+|(2)−(4)|+|(8)−(8)|

4 = 2+1+2+0
4 = 5

4 . Or we might choose another
combination of cut points: vp = [5, 3|4|8|6] and vq = [7|4|2, 8)]. This time we cut
vp with 3 points, and vq with 2. Then the corresponding distance is calculated as:
|(5+3)−(7)|+|(4)−(4)|+|(8)−(2+8)|

4 = 1+0+2
4 = 3

4 . Aswe can see, wemight choose different
number of cuts.

The problem of “finding cuts” complicates, when an assumption is taken, that
number of cuts can be any positive integer k, such that k < n, where n is a length of
visit distance vector for a patient p, with a lower number of visits (n < m). Then,
for each such k, each combination of k cut points in vp with each combination of l
cut points in vq must be taken to calculate ρ(q, p), where l creates a subsequence
of a vector vq of the length the same as subsequence of a vector vp, created by k cut
points creates a in vp.
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Procedure for Creating Dataset Clusters with Given Threshold

CREATE_CLUSTERS(number threshold, ARRAY all_patients)

clusters_set [ARRAY][ARRAY]

for each patient p in Patients[ARRAY]:

#for each number of possible cut points in V_p

for k = 1 to len(V_p -1):

for all possible subsequences in V_p with k

cut points

#create a new cluster

create D_p_c[ARRAY]

#where p is an identifier of a patient p

#and c - of combination

add tuple(V_p_c) to D_p_c[ARRAY]

for each patient q in Patients[ARRAY]:

if len(V_q) >= len(V_p_c)

if MINIMAL_DISTANCE(V_p_c,V_q)

< threshold

add tuple(V_q) to D_p_c[ARRAY]

add D_p_c[ARRAY] to clusters_set

Procedure Finding Minimal Distance Between Two Distance Vectors

MINIMAL_DISTANCE(vector V_p_c, vector V_q)

set minDist = 9999

find l - nr of cut points in V_q

#such that len(V_q_l) = len(V_p_c)

for all possible subsequences in V_q with l cut point

choose next V_q_c subsequence

calculate distance between V_q_c ,V_p_c

if dist(V_q_c ,V_p_c) < minDist

minDist = dist(V_q_c, V_p_c)

#save tuple with associated subsequence

set tuple(V_q) = tuple(V_q_c)

return minDist

4.7 Conclusion

In this chapter, a theoretical background for knowledge discovery approach to build
recommender system, including concepts of action rules,meta actionswas presented.
Also, recent strategies in action rule discoverywere investigated, aswell as challenges
associated with the novelty of meta actions applications. Examples on application of
these concepts and strategies to the domain of tinnitus diagnosis and treatment were
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given. Approach was proposed on how to adjust temporal medical datasets to the
rule extraction algorithms, including techniques of patient clustering. We would like
to point out that a number points out, a number and time of visits as factors should
have some impact on treatment outcome, but it should not be decisive factor. As a
rule of thumb, doctor needs at least 3 visits to confirm/contradict the prediction. As
medical experience shows, not too much attention should be paid to this measure,
while other parameters could be dominant. “Distance between patients” is a useful
measure in the normal practice where time of visits is very varied. In clinical trials the
distance would be zero. The problem is that in normal clinic there is large variability
of the number of visit. Typically, the last visits are more important and they will
be ignored for patients with large number of visits. As for “tolerance classes” it is
possible to expect continuum of distances without clear subgrouping—so without
clear thresholds.

In summary the pattern of visits should not be the only factor considered. This
factor should have Yes/No type of discrimination, with likelihood of success more
probably for number of visit larger then (e.g. 3). It does not have impact on cate-
gorization of patients, while it is possible to predict some nonlinear relation with
severity of tinnitus and presence of DST.

This chapter closes theoretical part of this book.



Chapter 5
RECTIN System Design

Abstract RECTIN system (shortcut for RECommender for TINnitus) is a prototyp-
ing method proposed within this work to verify the hypothesis of possibility to apply
information technology in supporting physicians, dealing with tinnitus patients, in
the diagnosis and treatment. This chapter describes major steps in the system design:
analysis with main use cases for the system, deployment architecture, with detailed
description of each component and implementation project, including transactional
database and application. Also, knowledge engineering approach is presented, along
with detailed description of raw dataset of tinnitus patients and visits, which was
made available to the authors. This section also introduces approach taken to data
preprocessing so that to make it useful for creating a knowledge base, on which data
mining can be performed.

5.1 System Analysis

Processes in medical facility supported with RECTIN system include (Fig. 5.1):

• Collecting data about patients and their visits at medical facility. Data collected in-
cludes demographic information, medical information (on pharmaceuticals taken
and audiological measurements) and forms.

• Storing the data in the central database of medical facility.
• Performing characterization of tinnitus based on data collected from a patient at a
visit and prediction models built on historical data.

• Advising in treatment actions with the use of rule engine facility.

The basic use case for RECTIN usage is a patient’s visit at medical facility,
where a physician firstly conducts an interview with a patient and enters data about
his/her demographics, medical condition, tinnitus induction (at initial visit), or com-
ments and outcomes, as well as different indicators’ measurements for consecutive
visits.Patients should, on the other hand, fill out electronic forms (initial/follow-up
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Fig. 5.1 Use cases for
RECTIN system

forms and Newman form), based on paper version as in Appendix A, B and C.
However, when confronted with our medical practice, these forms are actually serv-
ing as a help to perform structural interviews and patients should not be doing them.
Therefore, the modification to the system can be that physician performing interview
fills out the electronic forms. The new data, entered both by a physician/medical fa-
cility assistant and by a patient/physician through electronic form, is inserted into
the central database server. Then the classification module and action rules module
should match and generate, correspondingly, diagnostic and treatment recommenda-
tion, based on the new data from patient and previously constructed models/inserted
rules. The recommendation is shown to a physician who decides on the final diag-
nosis and treatment, which ultimately applies to the patient. The system will all the
time modify itself on the base of new data.

5.2 System Architecture

Figure5.2 depicts a high-level architecture and basic data flow for RECTIN system
deployed within the medical facility treating tinnitus patients.
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Fig. 5.2 Architecture and data flow in deployment diagram of RECTIN

The system is assumed to be built as a window application storing data in a
database server. Java interface should be enabled on end terminals. Central database
would allow for concurrent transactions for many users, as it is assumed that both
physicians and patients filling out the forms can update the data simultaneously.
Central database should therefore provide data integrity and security.

5.2.1 Knowledge Base

Knowledge module consists of historical data of patients and their visits collected in
medical facility in Atlanta in years 1999–2005. It is separated from the transactional
database, as it is stored in structures convenient for data analysis, data mining and
machine learning. The raw data needs cleaning and transformation before it could be
used for building prediction models or rule extraction. It is assumed that knowledge
base should be also updated with the new data, and “relearn” its models (automatic
data acquisition functionality).

5.2.2 Classification Module

Classification module is supposed to perform diagnosis prediction (categorization)
for a new patient, based on previously learned model. Before implementing partic-
ular classifier, tests should be conducted in order to compare and choose the best
classification model, in terms of accuracy and F-score, on the given dataset. The
module’s main functionality is to suggest category of tinnitus, to which a patient
should be assigned, in an automatic and reliable way and thus support physician’s
opinion.
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5.2.3 Action Rules Module

Action rules module consists of rules and should implement rules engine (for auto-
matic inference). It is assumed that rules can be hard-coded and evoked based on
matching with the new data. Rules extraction should be tested in experiments, so that
to obtain rules with the best support and confidence. The aim is to present treatment
actions to the system user, which should lead to patient’s improvement, given his
current medical condition.

5.3 Knowledge Engineering

The given dataset on tinnitus patients and their visits has to be preprocessed, trans-
formed and cleaned, before it can be useful for data mining and machine learning
purposes. The original dataset is organized into 11 separate Access-format tables.
The dataset presents several challenges. Firstly, the original data is not in a relational
form. It means that data about a particular visit, that resides in different tables, is not
related with foreign keys. Furthermore, data is in many cases inconsistent (lacking
integrity) along different tables and there are numerous errors in visits’ dates, visits
numbering etc. (therefore it is also impossible to create foreign keys without data loss
and errors). It apparently resulted from error-prone manual data entering (entering
data from paper forms, which, handwritten, could have been not clearly visible to
the person entering the data). For example, tuples with the same patient identifier
and visit number have different Date values in different tables (by means of days,
months and even years)—which proved to be quite problematic while merging the
data. It required manual checking and fixing. Taking into account about 3000 tuples
with visits, this process turned out to be time-consuming and arduous. However, the
correctness and thus accuracy of the data had to be assured, before any knowledge
could be extracted from the dataset, as inaccurate data would yield consequently
unreliable knowledge and analytical conclusions.

In order to make data suitable for data mining, one matrix or one big table needs
to be created, by means of merging data residing in 11 separate tables (Fig. 5.3 shows
10 of them,missingVisits table). The aim is to retain the informational content (avoid
information loss while merging tuples with missing values). The preprocessing task
proved to be quite cumbersome and problematic, mainly on the grounds presented
in the paragraph above.

The Fig. 5.3 presents original table structure that groups data into areas, described
in the following subsection.
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Fig. 5.3 Tinnitus patients and visits dataset structure in original format [Tho11]

5.3.1 Raw Data

Demographics

Demographics information, such as address data, age, gender, etc. These are mostly
nominal data, but the table contains columns with textual descriptions as well (of
special interest would be those describing tinnitus onset). It is also worth mentioning
that the raw data had already been anonymized, that is, personal identifiable informa-
tion (such as name, surname, insurance number) had already been removed before
leaving the medical facility.
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Miscellaneous

Miscellaneous table—could be understood as complementary to demographics, con-
taining information about patient’s occupation, work status and some textual infor-
mation entered at discretion.

Pharmacology

Contains information about particular medications taken by a patient when the treat-
ment on tinnitus started. Information onmedications, their generic names, prescribed
doses and the underlying medical condition was mostly collected at initial visit.
Therefore, information in this table can be helpful in discovering knowledge on how
additional, independent afflictions can influence tinnitus categorization.

Instruments

Instruments table—contains details about instruments used in tinnitus treatment
along with the details as for the type, model, etc.

Audiological

Audiological information contains all the medical measurements carried out by the
doctor either at diagnosis at initial visit or at further visits when controlling the
medical condition of the patient. The details on the meaning of each measurement is
outside of scope of this work, because it is based on technical knowledge in medicine
and audiology. The values are numerical, but can be grouped or discretized as these
columns contain limited number of distinct values.

NewmanQ

NewmanQ table makes an important inventory of initial tinnitus severity and its
change during treatment allowing for monitoring treatment progress (based on Tin-
nitus Handicap Inventory form in Appendix C). The shortcuts in columns’ names
containing a letter and a number designate a particular question related to the pa-
tient’s subjective opinion on the tinnitus impact on one of the three important areas of
their life: emotional (E), functional (F) and catastrophical (C). Basically, the column
names reflect the form structure (see Appendix C). Each answer is evaluated with
numerical value interpreted as “no”, “sometimes” or “yes”. Summary points for each
area are reflected in Sc F, Sc E, Sc C columns, and in Sc T as a total score of all
of them. According to our medical expertise, subscales are not useful and that only
total score should be used. This summary value holds very important information
about subjective tinnitus severity level (described in Appendix C). Changes in Sc T
can be considered patient’s tinnitus improvement or deterioration, so can be used
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for tracking the treatment actions’ effectiveness. It also somehow correlates with the
category of tinnitus severity that is assigned by a doctor (it allows to classify patients
into Category 0, for all other categories can be the same). This measure is of key
importance, as the aim of the decision support system built within this work, is to
find actions (and action rules) in medical treatment that lead to decrease in total score
value.

Questionnaire tin, Questionnaire HL, Questionnaire DST

These tables can be interpreted analogously as the NewmanQ table—they reflect
the structure of the particular form—in this case “Tinnitus initial interview form”
(see Appendix A) or “Tinnitus follow-up interview form” (see Appendix B), de-
pending whether the visit was initial or subsequent. The interview form, both initial
and follow-up, is basically divided into three sections: tinnitus, sound tolerance and
hearing problem, which are filled, accordingly, whether a patient is affected by the
problem. These three sections of the form are reflected in the corresponding three
tables in the dataset. When paper versions of the forms (Appendices A and B) are
compared to the tables’ structures in Fig. 5.3, it becomes more apparent. The answers
on the forms’ questions are Likert scale, for example between 0 and 10. But textual
comments written on the sheets are also entered into the database and provide addi-
tional information. These tables contain the largest number of errors. Although, so
far, paper forms’ content has been entered manually into the database, the ultimate
solution would be electronic forms that could automatically update information in
the central database, avoiding the problem of human typing errors and human hand-
writing recognition errors. The alternative that could help in entering accurate data
would be to use hand-written characters recognition software, which is, nevertheless,
not that reliable as data entered electronically.

Visits

Visits table constitutes a basic inventory of visits and their outcomes. It is important
source of the data in preprocessing as often serves as the most reliable source of
temporal data (dates) and accurate visit enumeration.

REM

REM table stores sound level as set by a patient at a given visit, representing impor-
tant treatment actions. Each setting parameter is very important and has impact on
treatment outcome.
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5.3.2 Data Preprocessing

The approach taken tomerge the data fromdifferent tables into onedata table included
importing Access-format data to the Microsoft Server database management system
andperformingSQLFULLOUTERJOINoperations on consecutive tables. Example
of the join operation on the tables is shown on the listing below.

Listing 5.1 Sample SQL JOIN operation on separate data.
1 SELECT COALESCE(THC_a# , TH#) AS THC# , COALESCE( v_a # , v i #) AS v# ,
2 COALESCE(A. Date_a , Da te_ i ) AS Date , ∗
3 INTO dbo . AudInstT
4 FROM T i nn i t u s . dbo . Aud i o l og i c a l as A FULL OUTER JOIN
5 T i n n i t u s . dbo . I n s t r umen t s as I
6 ON A. THC_a# = I .TH# AND A. v_a# = I . v i #

By using OUTER JOIN a new database was created without information loss (data
was retained regardless whether it had corresponding values in another table). Each
JOIN operation had to be considered separately and different join attributes were
chosen to provide the best accuracy of the joint tuples (for example, one time, it was
only visit ID, another time visit ID along with the visit date). After such operations
of creating bigger tables, additional manual checks were performed to assure cor-
rectness of the newly created tuples. In order to reduce the number of “empty” visits,
some simplifying assumptions were made. For example, audiological measurements
and forms performed in just one day difference were merged into one tuple (as both
represent evaluation, not treatment actions). Also, most REM data contained dates
that seemed to be entered into the system with one-day delay in relation to the vis-
its’ dates (frequently initial visit lasted two days), therefore, was treated as those
visits’ attribute, rather than new visit tuple, which would be very sparse. On some
conflicting or missing data, common reasoning, as well as more detailed analysis of
the particular patient case and their visits, was applied. To be able to perform more
complicated merging of data, PLSQL procedures were developed and applied rather
than doing manual check.

As a final result, one big table was created with redundant data in columns (struc-
ture convenient for performing analytics). Each tuple represents a patient’s visit and
is characterized by the patient’s data (which therefore repeats for each visit) and
visit-specific data, such as treatment performed at a particular visit (counseling, in-
strumentation, instrument fitting),medicalmeasurements and forms completed either
at that visit or shortly before or after the visit. As practically each of the 11 merged
tables contained textual comment column (see Fig. 5.3), the single resulting table had
to be simplified, firstly, by excluding columns unsuitable for automatic classifiers.
However, it is assumed to perform some basic feature extraction from text attributes
before initial experiments on data mining.

Analyzing such a complex dataset with so many attributes is vital to further
development and enhancement of RECTIN system. The structure where data should
be stored ultimately, has to be redesigned, so that to ensure efficiency of transactional
operation in RECTIN (inserting, retrieving data, minimizing storage).
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5.4 Summary

This chapter presented RECTIN system analysis, design and deployment plan, with
most important associations and data flows between particular components and use
cases for the system. Important step in developing a knowledge base for a rule-based
recommender system is a knowledge engineering process, which includes data analy-
sis and preprocessing. Rawdata cleansing and transforming it into usable formproves
to be a time-consuming and arduous task, which should be avoided by proper struc-
turing data entry in future implementation of the method.Majority of data are ordinal
(Likert scales—e.g. subjective ranking of tinnitus loudness, annoyance) and some
are ratio, e.g., % of time of tinnitus awareness, % of time of tinnitus annoyance. All
audiometric data are on ration scale. Although many attributes are nominal (and the
numerical ones can be turned to nominal), text columns with potentially useful in-
formation also exist. There comes the need for text mining and feature extraction.
Some automatic methods of text extraction can be applied, but in order to obtain
possibly the most complete information, it rather requires to be checked and entered
manually, which however proves to be a quite time-consuming task.

Providing an overview of initial steps in working with data, the chapter introduces
us to the next one, which will present initial experiments on the prepared cleansed
dataset.



Chapter 6
Experiment 1: Classifiers

Abstract Following the dataset preprocessing, the next step in implementing
RECTIN is classification module development. The classification module will use
a model built on historical patients’ data, in order to support physicians in suggest-
ing optimal treatment approach for new patients. Categorization is rather easy and
relatively broad. However, a specific approach within each category varies. Before
implementing this module, it is necessary to extract new, useful features and conduct
experiments in order to obtain the most accurate classifier on the prepared dataset.
It is assumed to reiterate the step of feature development in order to obtain the best
combination of feature extraction/selection method and the prediction method. This
involves the calibration and tuning of prediction methods, as well as comparing them
and evaluating in terms of accuracy, F-score and confusion matrix.

6.1 Initial Feature Development

As the first goal of tinnitus data analysis is to find a reliable classifier for tinnitus
characterization, it has to be determined which attributes would be most relevant in
diagnosis decision-making process, as well as those that could form patterns, novel to
a doctor himself. There are international norms classifying tinnitus patient to specific
category. For example, a doctor may follow decision-making rules that relate forms
output to a particular tinnitus category.However having hundreds of patients, it is very
unlikely that he remembers each patients’ additional affliction, such as diabetics or
asthma, or medication taken, so that to apply this additional knowledge on patients’
characteristics, to diagnosis decision for a new patient. Therefore, from machine
learning point of view, it would be interesting to discover not only a good classifier
that is based on obvious knowledge, but also decision rules that are hidden beyond
large amounts of patients’ data. This is why some additional features were extracted
before performing initial experiments on the dataset.

© Springer International Publishing AG 2017
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6.1.1 Tinnitus Background

Important question that is asked by a doctor at the initial visit is related to the back-
groundormain cause associatedwith an onset of tinnitus symptoms.This information
was saved in the database in text columns, making it inappropriate for classification
algorithms. Therefore, new binary attributes were developed based on the textual
descriptions in T Induced and H Induced columns in the Demographics table. The
binary attributes convey information whether patient’s tinnitus was induced by a
cause given by the attribute:

• STI—Stress Tinnitus Induced—whether tinnitus was induced by stressful situ-
ations in a patient’s life. This category includes cases described as ‘divorce’,
‘excessive work’, ‘moved into new house’, ‘stress over terrorist attacks’, ‘after
graduation’, etc.

• NTI—Noise Tinnitus Induced—whether tinnitus was induced by noise. This cat-
egory includes patients described with, for example, ‘noise exposure’, ‘military
involvement, shooting practice’, ‘after playing in a band’, ‘shooting guns’.

Other binary attributes developed to indicate tinnitus/hyperacusis cause were related
to specific medical conditions:

• HLTI—Hearing Loss Tinnitus Induced—covers patients who associated their tin-
nitus with hearing loss.

• DETI—Depression Tinnitus Induced—relates tinnitus symptoms to depression.
• AATI—Auto Accident Tinnitus Induced—whether tinnitus emerged as a result of
auto accident, which involved head injuries.

• OTI—Operation Tinnitus Induced—patients after surgeries.
• OMTI—Other Medical—patients, whose tinnitus was related to medical condi-
tions other than hearing loss, depression or operation—patients with acoustic neu-
roma, Lyme’s disease, ear infections, obsessive compulsive disorder and others.

There were also patients describedwithmore than one cause, for example, the patient
described as ‘was in themilitary’wasgiven ‘True’ value in bothSTI andNTI columns.
Tinnitus of a patient who experienced gunshot could be described as induced by all
the conditions: stress, noise and medical condition (because of the injury resulted
from the shot). Also, different medical conditions could be related to each other, for
example a patient after auto accident could most probably have undergone a surgery.
Unfortunately, there is about one third of patients’ tuples whose tinnitus was not
described at all in terms of its roots (value for T induced column was NULL). This
is because idiopathic tinnitus is very common.

Another potentially interesting information that could be extracted fromT induced
column was whether tinnitus appeared suddenly or developed gradually over time.
Unfortunately most cases were not described by these terms, so these are very sparse
columns.



6.1 Initial Feature Development 65

6.1.2 Temporal Features for Tinnitus Induction

Another information that could beuseful for a doctor, for both treatment anddiagnosis
purposes, is patient’s age. Having information about patient’s date of birth, as well
as date of the first visit, a column, informing what was the age of the patient when
they started treatment, can be derived. After some data analysis, it was observed that
some patients went to doctor immediately after tinnitus onset, while the others had
been suffering from it for a long time before they came to doctor Jastreboff. However,
according our medical knowledge, in case of TRT age is irrelevant, except when it
is related to brain plasticity. Temporal information could be also extracted from T
induced column (or H induced), which often contains data about what time ago or
the date the tinnitus (or hyperacusis) appeared. This proved to be quite problematic
for an automatic extraction, as some tuples were described as “ago”, while the others
were given the specific date. It took some time, therefore, to develop new attributes:

• DTI—Date Tinnitus Induced (from column T induced), and
• DHI—Date Hyperacusis Induced (from column H induced).

Each tuple for separate patients was checked for that information, manually calcu-
lated and entered into new columns. But, having this information it was possible to
derive a number of new features: the age of a patient when tinnitus started, as well
as the time elapse between tinnitus onset and initial visit to doctor. It can potentially
lead to discovering the knowledge on an impact of patient’s age at the start of the
treatment, the age when tinnitus began, and time elapse from tinnitus symptoms’
onset to treatment start, on the effectiveness of particular treatment methods in TRT
(these are important points discussed in the literature, but results of our medical
practice argue against them). For example, it may turn out, that elderly patients need
different type of treatment protocol than the younger patient groups. It might also
be true that the longer the tinnitus was not treated with TRT the smaller chances of
success. These are just potential hypotheses, which nevertheless have to be proved
with machine learning algorithms, and then with expert knowledge.

To summarize theworkon temporal features development, followingnewcolumns
were added to the original database:

• DTI—Date Tinnitus Induced—date column derived from text columns,
• DHI—Date Hyperacusis Induced—analogous to the above, but derived from H
induced column—both these new attributes convey general information about
when “the problem” started and both were developed manually,

• AgeInd—patient’s age when the problem (tinnitus or hyperacusis) was induced—
derived from DOB and DTI/DHI columns,

• AgeBeg—patient’s age when they started TRT treatment (first visit to doctor Jas-
treboff) — derived from DOB and Date (of visit 0) columns,

• Numerical columns DAgo, WAgo, MAgo, YAgo—informing how many days,
weeks, months, and years ago the problem started,

• Binary columns calculated on the basis of columns above: Y30, Y20, Y10, Y5, Y3,
Y1, M6, M3, M1, W2, W1, D1 informing to which group of time elapse, between
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the tinnitus onset to treatment start, a patient belongs (Y—years, M—months,
W—weeks, D—days, and numerical value). For example, having “True” value in
Y5 column for the given patient, means that the problem was induced between 5
to 10 years before starting TRT treatment.

Presented approach for feature extraction provides just an example and outlook
how potentially useful information can be extracted from textual columns and sug-
gests directions for further work on the dataset. For example, similar work can be
done on Pharmacology table, with regards to medications, a patient takes (can be
developed into columns, instead of being column values), as well as accompanying
afflictions and medical conditions. Also, it may be useful to determine numerical
values of medicines’ doses taken by a patient and time duration they were taken. It
is important to have information related to brain function, e.g. Lyme disease, autism
spectrumdisorders. Still, most of such potentially interesting information is in textual
form, making it useless for machine learning algorithms in the current form.

6.2 Preliminary Experiments

Experiments on classification were conducted withWEKA technology [BFH+14]. It
offers awide choice of prediction algorithms (and datamining algorithms in general),
as well as friendly user interface and possibility to build a complete “knowledge
flow”, starting from reading thefilewith data, through feature selection, up to building
a classification model, evaluating and visualizing the results. It also allows to use
API (Java libraries containing the same classes that are available within the GUI),
which can be helpful when incorporating the classifier model into a recommender
system.

6.2.1 Assumptions

In the first experimental setup, it is assumed that each visit represents different object
(and there is no temporal dependence between particular visits). In such transformed
data representation, each patient’s data is “multiplied” by number of visits and by
number of medications they take. The decision attribute is C attribute—category of
tinnitus assigned by a doctor. Example of experimental setup, in WEKA knowledge
flow, is shown in Fig. 6.1.

The data is loaded from the prepared csv file, “CrossValidationFoldMaker”
splits the data into test and training sets, which are inputs to chosen classifiers—
RandomForest and J48 (tree-based algorithms). Constructed models are evaluated
with cross-validation method (with 10 folds) and results are shown in either textual
or visual form (tree graphs).
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Fig. 6.1 Knowledge flow for comparing two tree classifiers’ performance in WEKA

6.2.2 Feature Selection

The relevant attributes chosen for csvfile included: audiologicalmeasurement, demo-
graphics, pharmacology, forms. The visit and patient identifiers are not relevant, as
well as visit’s date column. Moreover, all attributes that could be understood as the
outcomes of the diagnosis decision, so all the actions regarding treatment meth-
ods (instruments, settings, etc.) were also omitted. Although they correlate with the
patient’s category, they would distort the prediction results, as should be considered
rather results of diagnosis or action taken in response to it, than its premises and fac-
tors influencing patient’s category. The columns with mostly (or only) NULL values
were removed from the analysis as well.

After limiting the number of attributes in the csv file manually, the next step
was to use automatic feature selector. WEKA contains feature selection algo-
rithms that enable to rank attributes and choose a subset of them for the classifi-
cation model construction. Experiment on the dataset with attribute evaluator set to
“ChiSquaredAtributeEval” (based on chi-squared measure) and search method set
to “Ranker” resulted in the attribute rank, as shown in Fig. 6.2 (only subset of best
ranked is shown). It can be concluded that the most important features in determining
patient’s category are: their age (DOB attribute), as well time elapse since the prob-
lem started (attributes DAgo, WAgo, MAgo, DTI—Date Tinnitus induced, DHI—
Date Hyperacusis Induced). It seems that age at which the problem started (attribute
AgeBeg) also affects patient’s category, although it does notmake sense clinically—it
may be linked via hearing loss which is correlated with age. Quite surprisingly place
of residence (Zip attribute) seems to be relevant to diagnosis (according to our med-
ical knowledge it does not make any sense so it may be just a result of data structure).
Other factors observed to have an impact on patient’s category include medications
prescribed to the patient and corresponding generics taken, main problem (P)—(and
according to medical knowledge it should be a dominant factor), occupation, then
audiological measurements—and it makes sense in medical terms as hearing loss
and LDLs are crucial factors for diagnosis, as subsequently the most relevant factors
in diagnosis.
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Fig. 6.2 Attributes ranked
according to chi-squared
measure

6.2.3 Results

The basic experiment inWEKA on 6991 object instances described by 161 attributes
(without feature selection) with J48 tree classifier brought cross-validated results
(with 10 folds) with 88.27% correctly classified instances. Best precision was
observed for class “4” and “0” (0.914 and 0.905 correspondingly) and the best recall
for class “1” (0.937). Consequently, the best F-measure was observed for this class
(0.911). Observation of built pruned decision tree model leads to conclusion that
classification rules are based on age of patient, age when tinnitus was induced and
audiological measures, but also onmedications. Frommedical point of view this is an
interesting outcome, while in clinical practice age and zip code are not considered as
being significant; audiology—yes; medications—not really. However, there is some
data showing difference in prevalence of tinnitus depending on localization within
the USA. This may potentially explain correlation with zip code.

Next experiment was conducted with random forest classifier (of 100 trees
each considering 8 random features), which proved to outperform J48 in terms of
accuracy—89.17% correct predictions. ROC curve, being a result from an experi-
ment depicted on diagram in Fig. 6.1, is shown in Fig. 6.3.

It compares False Positive Rate (X axis) to True Positive Rate (Y axis) between
two classifiers: Random Tree and J48 tree, for the chosen category — “2”.

Test on multilayer neural network classification model turned out to be too com-
putational intensive for the given dataset, ended up in “out of memory” error. Taking
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Fig. 6.3 ROC curve comparing classifiers based on J48 and Random Forest

into account cross-validation testing mode it would also took much more time to
obtain results.

Decision table classifier performed with about 85% accuracy. Feature set consid-
ered in the model included: physical discomfort felt by a patient, tinnitus effect on
work, patient’s main problem (T/H/L), date of birth, patient’s occupation and work
status. Naive Bayes classifier performed worse than other classifiers, with 75.8%
correctly classified instances.

Choosing discretization option in data preprocessing did not affect results signif-
icantly (mainly because most of attributes were already recognized as nominal).

Feature selection based on chi-squared measure slightly improved accuracy, but
up to some number of attributes. Further limitation of attributes worsened accuracy.
Cross correlations of the different attributes were not taken into account in this
experimental setup. The details for different classifier (on experiment setup as shown
in Fig. 6.4) are shown in Table6.1.

Naive Bayes classifier brought the best accuracy with attribute reduction to about
20. Tree- and rule-based classifiers performed best when number of attributes was
reduced by about half.
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Fig. 6.4 Knowledge flow for classifier comparison with different feature selection settings

Table 6.1 Summary of experiments on feature selection/prediction method

Feature selection J48 % Random forest % Decision table % Naive Bayes %

No filter (161) 88.37 89.3 85.03 75.8

120 88.29 84.95 75.54

100 88.43 89.14 84.95 75.24

80 88.47 89.19 84.93 75.21

60 88.2 88.94 84.02 75.68

20 87.9 87.1 84.92 81.52

6.2.4 Discussion

The results obtained with the first experiments were quite optimistic, although it can-
not be determined, whether good results come from dataset structure, which contains
many repetitive instances for one patient (repeated with each visit and medication).
It might be that in cross-validation testing, similar tuples were used for training and
testing. In order to prove classifier validity, test set with new data would have to
be delivered. However, WEKA options allow to test on data with exactly the same
structure as training data. It requires not only the same attribute contents, but also
exactly the same number of labels, as well the same order of labels for each nominal
attribute. Therefore, attempts to manually split data set into separate (in terms of
patients) train and test set proved to be too cumbersome (taking into account large
number of attributes). Classifiers’ reliability cannot be determined without new data,
whose category prediction could be compared with an expert diagnosis. Therefore,
further work on data preprocessing must be carried out (so that objects represent
patients, not visits). The initial experiment helped to gain some outlook on feature
selection and classification methodology choice and combination. Medical expertise
confirms that if the aim is classification then only data from the first visit should be
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used. The category of the patient can change during the treatment, e.g., patients with
tinnitus and hyperacusis (Category 3) can have hyperacusis removed and become
Category 1 patients, then when severity of tinnitus decreases, become Category 0. In
clinical practicemedications are not affecting classification,while somemedications,
specifically benzodiazepines, have impact on treatment outcome.

6.3 Second Experimental Setup

Following conclusions from initial experiments and addressing questionable assump-
tions related to obtained classification results (as described in Discussion subsection
of the previous section), further experiments were conducted, in order to verify clas-
sification results.

First and foremost problem associated with the previous experiments was related
to dataset structure, on which prediction model was built. Each patient’s data was
repeated not only for every visit but also for every medication they take. In other
words, a tuplewith all the same, but different pharmacology attributeswas considered
different object. As a result, about 7000 were created out of about 500 distinct
patients, andout of about 3000distinct visits. This couldhave led to results’ distortion,
as testing method was based on cross-validation, where training and test sets were
constructed in consecutive folds from the given dataset with many repetitive data. It
means that it was highly probable that similar tuples were used both for training and
for testing, which obviously overestimates accuracy (and medical expertise confirms
that).

6.3.1 Pharmacology Data Analysis

In order to address problems with dataset, mentioned in the previous paragraph,
dataset structure had to be changed. This will be particularly useful for the further
analysis of treatment outcome.

First step in revising data structure was analyzingPharmacology table, in terms of
functional dependencies between particular columns. As depicted in Fig. 6.5, there
are a number of potentially interesting columns to include for prediction model

Fig. 6.5 Functional dependency analysis of Pharmacology table
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construction. However, after closer insight, it seems that information in particular
columns is functionally dependent (the table is not in the third normal form). The
most important column isMedication, which then determines values in the Generic
column, Chemical category column and Action/Application columns. Therefore,
following functional dependencies can be established: “Medication → Generic”,
“Medication → Cat chem”, “Medication → Action”, “Medication → Application”,
“Medication → Usual” (see arrows in Fig. 6.5). Action and Application columns
contain similar informational content, the latter being more descriptive. The only
information that relates patient tomedication is given byDose andDuration columns
(they contain quantitative description and temporal information ofmedication taken).
T side column informs whether tinnitus developed as a side-effect of the medication
uptake.

6.3.2 Pivotal Features Development

As analysis in the previous subsections shows, it is not necessary to develop all
pharmacology’s column values into new features, as patient’s tuples with the same
medicationwould be described bymeans of the same set ofGeneric/Chemical/Action
attribute values.

Instead of maintaining a list of medications for each patient, they were altered
into pivotal features (concept of pivoting the input data on a column value is depicted
in Fig. 6.6).

By pivoting the data values on themedication column, the resulting setwill contain
a single row per patient. This single row lists all the medication taken by a patient,
with the medication names shown as column names, and a binary value (True/False)
for the columns. Also,Dose value could be stored, but it would be far more selective
than simple binary values. Because not every patient takes every medication, the
resulting matrix is very sparse.

Fig. 6.6 Illustration of pivoting idea applied on pharmacology attributes
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Pivot transformation was deployed with PL/SQL procedures. Each distinct value
inMedication column of Pharmacology table was developed into additional column.
Bit values in the column indicate, for each patient-visit tuple, whether the medication
denotedbya columnnamewas taken (seeFig. 6.6).As a result, 311 additional features
were developed, each for distinct medication. Alternatively, Cat chem could be used
for the purpose of pivotal feature development, as it denotes more general chemical
category of medications (there are 175 distinct chemical categories for 800 tuples in
the Pharmacology table).

Similar approach was taken to Application column in Pharmacology table. Val-
ues in this column describe patients’ medical problems that are associated with the
taken medications. Thus, the column can also serve as a source of information about
patient’s additional diseases and afflictions, which should be taken into considera-
tion, when mining for knowledge discovery on factors affecting tinnitus diagnosis
and treatment. As a result, additional 161 columns were developed for each sepa-
rate medical state (for example “anxiety”, “asthma”, “insomnia”, “ulcers”, etc.). As
Application is a text column, it was necessary to perform some text manipulation
(tokenization) with the use of PL/SQL procedures. Also, problems of misspellings
and the same diseases stated in different words, had to be addressed. Some initially
derived columns were, thus, merged into a single column, as in example shown in
the listing below.

Listing 6.1 Sample COALESCE (merge) operations for disease feature development.
1 COALESCE([ allergic conjunctivitis ] , [ allergic rhini t is ] ,
2 [ allergies ]) AS allergic ,
3 COALESCE([angina ] ,[ angina pectoris ]) AS angin ,
4 COALESCE([hypetension ] ,[hyptension ] ,[hyper tension ] ,
5 [hypertension ] , [elevated intraocular hypertension ] ,
6 [ocualr hypertension ] ,[ ocular hypertension ] , [hyertension ])
7 as hyper_tension

Reasoning behind using “application” features besides “medication” is, there are
more pharmaceuticals that can be used for the same purpose (for example, for an
application described as “depression” several medications can be prescribed, includ-
ing Prozac, Xanax, etc.). Therefore, application features providemore generalization
and less selectivity than medication features. They can also be useful for the purpose
of experiments on rule extraction.

Two other features were retained from Pharmacology table—each patient was
denoted with True/False information in T side bit column, which informs whether
tinnitus is associatedwith the pharmaceuticals. Also attributeMedNr was created that
informs how many different medication a patient was taking at the time of diagnosis
and treatment start.

Using this approach maximal informational content from pharmacology was
retained, having, at the same time, data format more suitable for building more
reliable classification model. Some information was left out, however, so that to
simplify assumptions for now. For instance, information about dosing (quantitative
use of medications), as well as the time period for which the medication had been
taken (Duration), was omitted. According to our medical expertise, there are basi-
cally two types of information in this table: (1) a drug, which can have different
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names and (2) for what it is prescribed. It is possible to extract information about
categories of drugs, e.g., SSRI, benzodiazepines, antibiotics which actually can be
more informative than analyzing individual drugs.

6.3.3 Experiment Results

The resulting dataset contained 3125 tuples described by the features (including
medication columns) or 603 features (including additionally application of medica-
tion columns). Dimension of input matrix changed, in comparison to the previous
experimental setup (of 6991 instances and 161 features). This time alsoDOB and Zip
columns were excluded from building a classifier, as they can overestimate accuracy
(by relating visits of the same patient). The model built with J48 (C4.5 tree algorithm
in WEKA) was evaluated with 69.7% accuracy (and F-measure of 0.68) for the first
mentioned dataset, and 70.2% accuracy (F-measure 0.69) for the extended dataset.
Most numerous confusions were that of patients with “1” category classified as “2”
category, and C-3 patients classified as C-1 patients. Chi-squared ranker pointed: P
(problem), AgeInd (age when problem was induced), AgeBeg (age when treatment
started), and Th R, Th L (audiological measurements) as the most relevant features.
Therefore, there is still a supposition that classification was based on patient’s iden-
tifiable information that is repeated with each visit.

6.4 One-Patient-One-Tuple Experiment

Another dataset was prepared so that to contain initial visits only (numbered as
“0” or “1”), that is, when diagnosis is performed and course of treatment decided.
Such dataset consists of 1090 tuples (the number of patients doubles approximately
because most of them have these two first visits in the database)- about one third
of the dataset with all visits, but the problem with potential information leakage
between training and testing data is alleviated. Classification results with J48 model
was 52,11% correctly classified instances (which is not that good). Nevertheless,
there was still repetitive data, as the dataset contained both “0” and “1” visits (one
patient data could be repeated twice).

When considering dataset containing visits numbered as “0” only (so that each
tuple represented distinct patient, as each patient has only one visit “0”), dataset
was reduced to 599 instances, which is reasonable from medical point of view. The
most relevant features, selected with rank method based on chi-squared measure, are
shown in Fig. 6.7. It could be observed that the most relevant features in predicting
patient’s tinnitus category are audiological measurements. According to our medical
expertise, these are the most reliable results and some of measurements are expected
to be highly correlated, e.g., average threshold of hearing with MLL and MRR and
with threshold of white noise.
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Fig. 6.7 Attributes ranking based on chi-squared measure for dataset with initial visits only
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In cross-validation process instances were predicted with 53.4% accuracy with
Random Forest, 52% with Naive Bayes and 41.4% with J48 (without feature selec-
tion, on 603 attributes). After applying feature selection the accuracy improved,
especially for theNaive Bayes classifier—the best result—57.43%was obtainedwith
about 100 features. After increasing number of features beyond 100, the accuracy
was decreasing for this algorithm. The details on class distribution in the dataset and
results for different categories are shown in Figs. 6.8 and 6.9.

The smallest number of patients was available for category 4. Consequently, the
classification results on this category were the worst. The most frequent were patient
with “1” and “2” category (177 and 136 correspondingly, out of 599), and these
categories were, therefore, predicted with best F-score (precision and recall) and
TP/FP rates.

Tree-based classifiers after calibration (using different feature selection) per-
formed: J48 about 43.2%andRandomForest about 51%correctly classified instances,
with feature selection set at about 50 attributes. These are still very low results, from
medical point of view.

Fig. 6.8 Distribution of category values in training data containing initial visits
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Fig. 6.9 Naive Bayes (with 100 selected features) prediction results for each category

6.5 Summary of Classification Experiments

The initial experiments on the dataset containing repetitive data brought optimistic
results, which were, however, not reliable (due to cross-validation method and lack
of new data for testing). Also, features selected for classification were unsuitable, as
they were based on patient’s identifiable information, such as date of birth, Zip code
of address, which should not affect decision on diagnosis. Such approach indicates
potential procedural problem.

Experiments on dataset containing only initial visits, used for categorization
only, with medications and their applications developed as pivotal features, brought
the most reliable results, because each object was represented by different patient
(although the best accuracy was about 57%). The best classifier is based on Naive
Bayes and takes only subset of features (ranked based on chi-squared measure) into
account (about 1/6 of original number of attributes). The chosen features are mostly
based on audiological measures, which is a common-sense approach for performing
tinnitus diagnosis (see Table6.2).

There is a need for further dataset preprocessing and feature development, so
that to retain ’object as a patient’ dataset model, but, on the other hand, include
information from visits other than initial (and develop them into temporal features),
which can provide more insight into tinnitus diagnosis and treatment methodology.
From medical point of view, treatment depends on classification of patients, and
results of treatment could be related to correctness of categorization.
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Table 6.2 Summary of experiments’ classification accuracy with different preprocessing (dataset
structure), feature selection and algorithm

Object
represented as

Instances Features J48 % Naive Bayes
%

Random forest
%

Patient-visit-
medication

6991 80 88.5 75.2 89.3

Patient-visit-
medication

6991 20 87.9 81.5 87.1

Patient-visit 3125 603 70.2 55.4 71

Patient-visit 3125 488 69.7

Patient-
visit0v1

1090 603 52.11 46 49.2

Patient-visit0 599 603 43.2 52 53.4

Patient-visit0 599 100 41 57.4 49.5

A general conclusion is that too many attribute values in the dataset are missing
(for example, there is no demographic information of patients from years 2004–2005
at all, and no pharmacology data for patients from 2005).

6.5.1 Final Classifier Choice

When implementing into recommender system, the prediction model built on initial
visits only (Patient-Visit0 data model) with Naive Bayes algorithm and feature selec-
tion would be considered. The classifier is based mostly on audiological measures,
but also on Newman forms answers, some demographics information and number of
medications taken. Therefore, it would be sufficient to collect this information when
using computer system in supporting diagnosis.

Based on diagnosed tinnitus category, different treatment approach is taken
(see table on TRT protocol—2.1). The classifier could be useful especially for
differentiating between 1-, 2- and 3-category patients (the best results were obtained
for these categories).

Classifiers with accuracy about 50% can be also implemented for testing purposes
on new patients’ data cases. In order to improve classification additional features
should be developed, based on temporal characteristics of consecutive visits.

http://dx.doi.org/10.1007/978-3-319-51463-5_2


Chapter 7
Experiment 2: Diagnostic Rules

Abstract Association rule tasks were defined in order to discover common patterns
in patients’ visits dataset. Before defining data mining task on rule discovery, it is
necessary to formulate an analytical problem in the first place. The main examined
associations of interest would be factors affecting patient’s category. Such discovered
association rules can be regarded as decision rules, supporting classifier developed
in the previous step.

7.1 Methodology

Process of diagnosis and determining patient’s category, in terms of data flow and
affecting factors, was examined once again. The basic protocol is shown in Fig. 7.1.
This schema is much simplified as, for example, interview is providing much more
information than demographic, which is at best secondary and basically collected
for formal reasons.

An initial visit, when a problem is determined, consists of following subprocesses
(as described in [JJ00]):

• initial contact with the patient (form is sent by mail to individuals interested to be
treated in the center),

• interview, being an expansion of form responses,
• audiological evaluation (otoscopic evaluation and series of tests, from which a
basic audiogram with LDLs is crucial),

• medical evaluation (identifying medical conditions that may cause, contribute to,
or have an impact on the treatment of tinnitus),

• diagnosis with decision regarding the treatment category (patient is placed into
one of five categories Fig. 2.1).

Analysis of the process and data flow leads to conclusion that it would be sensible
to search for relations between:

© Springer International Publishing AG 2017
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Fig. 7.1 Factors and data flow in the process of determining patient’s category and problem

• audiological measurements,
• demographics/form data,
• pharmacology (except for pharmacology which is not used for categorization),

and patient’s category. All these factors take part in the diagnosis process and help
physician to determine a problem and category of a patient and then follow a suitable
protocol of treatment. The treatment approach varies according to category; thus,
accurate placement of patients into these categories is critical to provide proper
treatment.

Experiments on diagnostic rule discovery (association rules) were carried out
with LISp-Miner system, which offers exploratory data analysis, implemented by its
own procedures, called GUHA. The LISp-Miner system is an academic system used
mainly for data mining research and teaching. It is being developed at University of
Economics in Prague since 1996. Currently LISp-Miner consists of ten data min-

Fig. 7.2 GUHA method in LISp-Miner rule discovery [Nek]
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Fig. 7.3 Bit-string approach to mine association rules [Nek]

ing analytical procedures plus thirteen other modules supporting e.g. the Business
understanding and Data preprocessing phases of the data mining process [Sim14].

4 ft-Miner module of LISp-Miner systemwas used for association rules discovery
andAc4ft-Miner for action rules. TheGUHAmethod, an original Czech data-mining
method with strong theoretical background, uses definition of the set of association
rules (or G-rules in Ac4ft-Miner) to generate and verify particular rules on the data
provided to the system (see Fig. 7.2). The algorithm is highly optimized to generate
results in a reasonable time [Sim14].

Algorithm does not use Apriori-like, but bit-string approach to mine rules. As
depicted on Fig. 7.3, input data matrix of nominal attributes is converted into boolean
attributes (literals). Antecedent and consequent of the GUHA rule (relevant pattern)
are defined in terms of boolean attributes, which are, in turn, defined as conjunction
or disjunction of boolean attributes or literals.

7.1.1 Data Source

Data input for LISp-Miner is a data matrix created by LMDataSource module. The
data matrix is created from one database table. The input matrix is transformed into
format readable by the system’s procedure, as described in the previous section.

For the purpose of the following experiments, the ODBC connection to the source
database was configured, so that SQL preprocessing operations can be performed
flexibly on the data and become available to LMDataSource module. The dataset for
preliminary experiments consists of patient’s visits, with medications and diseases
developed as pivotal features (3125 tuples described by about 600 features). Attribute
definition and data preparation step is discussed in more detail in the next section.
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Table 7.1 Tinnitus patients’ and visits’ attributes definition in LISp-Miner

Group Att name Attribute meaning Type Cat Sample

General THC Patient identifier Nom 583 00001

V Visit number Nom 36 0, 1, 2, 3, 4

P Problems in order Nom 15 H, HLT, TL

Miso Misophonia Nom 2 Yes/no

Miso treat Miso treatment protocol Nom 4 1, 2, 3, 4

FU Follow-up contact Nom 5 A, C, T, E

DP Dependency of H
presence

Nom 2 Yes/no

REM Real-ear measurements Nom 2 Yes/no

C Category assigned by
doctor

Nom 6 0, 1, 2, 3, 4

CC Category chosen by
patient

Nom 6 0,1, 2, 3, 4

Audiological R25 RE pure-tone thresh
0.25kHz

Inter 8 <−10;0)

R50 RE pure-tone thresh
0.50kHz

Inter 8 <−5;0)

... ... ... ... ...

L25 LE pure-tone thresh
0.25kHz

Inter 8 <−5;0)

... ... ... ... ...

LR50 Loudness Discomfort
Level R

Inter 8 <12;75)

LL50 Loudness Discomfort
Level L

Inter 8 <11;77)

... ... ... ... ...

T PR T pitch match Inter 40 <0.35;1)

T Rm RE match type Nom 4 NB, NBN

T LR T loudness match dB Inter 4 <4;22)

Th R RE threshold of hearing Inter 50 <−10;−2)

MRR RE minimal masking
level

Inter 8 <0;26)

... ... ... ... ...

Demographics AgeBeg Age when treatment
began

Inter 7 <8;40)

G Gender Nom 2 f/m

Occup Occupation Nom 54 Engineer

Work Work status Nom 4 h, r, s, w

MedNr Number of medications
taken

Inter 5 <1;2)

Country Country of residence Nom 9 USA, Chile

State State of residence Nom 31 AL, GA

Zip Zip code of residence Nom 181 01742

(continued)
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Table 7.1 (continued)

Group Att name Attribute meaning Type Cat Sample

Tinnitus AgeInd Age problem started Inter 7 <7;30)

AATI Tin induced by auto
accident

Nom 2 Yes/no

DETI Tin induced by
depression

Nom 2 Yes/no

HLTI Tin assoc with hearing
loss

Nom 2 Yes/no

NTI Tin induced by noise Nom 2 Yes/no

STI Tin induced by stress Nom 2 Yes/no

OTI Tin induced by
operation

Nom 2 Yes/no

OMTI Tin induced by other
medical

Nom 2 Yes/no

T side Tin as side-effect of
pharm

Nom 2 Yes/no

Gradual Gradual onset of tinnitus Nom 2 Yes/no

Sudden Sudden onset of tinnitus Nom 2 Yes/no

Condition Aches Aches present? Nom 2 Yes/no

... ... ... ...

Menieres Menieres disease
present?

Nom 2 Yes/no

... ... ... ...

Vertigo Vertigo present? Nom 2 Yes/no

Medication Accupiril Accupiril taken? Nom 2 Yes/no

... ... ... ...

Zyrtec Zyrtec taken? Nom 2 Yes/no

Instruments Ins Instrument category Nom 3 SG, HA

Type Type of instrument Nom 6 GHH

Model Model of instrument Nom 16 BTE

Ins vis Instrument (Visits table) Nom 43 BTE, GHS

Instr Instrument (Question
table)

Nom 32 SG, GHS

REM Freg RE Right-ear measurements Inter 12 <39;2000)

Th R SPL Inter 25 <22;26)

Mix R SPL Inter 25 <4;31)

Mix R SL Inter 15 <0;2)

Tol R SPL Inter 25 <7;29)

Tol R SL Inter 15 <4;8)

Max R SPL Inter 25 <43;48)

Max R SL Inter 25 <6;11)

Freg LE Left-ear measurements Inter 12 <50;2000)

... ... ... ...

(continued)
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Table 7.1 (continued)

Group Att name Attribute meaning Type Cat Sample

Interview An t % of time when annoyed Inter 10 <0;2)

Aw t % of time when aware Inter 10 <0;7.5)

Out Outcome Nom 4 B, N, S, W

T sv Severity of tinnitus Inter 5 <0;3)

T an Annoyance of tinnitus Inter 5 <0;3)

T EL Tinnitus effect on life Inter 5 <0;2)

T pr Tinnitus as a problem Inter 5 <0;2.5)

H pr Hyperacusis as a
problem

Inter 5 <0;0.5)

HL pr Hearing loss as a
problem

Inter 5 <0;0.5)

DST Oversensitivity y/n Nom 2 Y, N

Phys Physical discomfort y/n Nom 2 Y, N

Descr Descr of troublesome
sound

Nom 43 Sirens

Concert Activity prevented Nom 5 0, 2, 4

Shopp Shopping prevented Nom 5 0, 2, 4

Mov Movies prevented Nom 5 0, 2, 4

Wrk Work prevented Nom 5 0, 2, 4

Rest Restaurants prevented Nom 5 0, 2, 4

Drv Driving prevented Nom 5 0, 2, 4

Sport Sports prevented Nom 5 0, 2, 4

Church Church prevented Nom 5 0, 2, 4

House Housekeeping prevented Nom 5 0, 2, 4

Child Childcare prevented Nom 5 0, 2, 4

Soc Social activities
prevented

Nom 5 0, 2, 4

Oth Other activities
prevented

Nom 5 0, 2, 4

H sv Severity of DST Inter 5 <0;1.5)

H an Annoyance of DST Inter 5 <0;1.5)

H EL DST effect on life Inter 5 <0;1)

Pr Program assessment Nom 3 Y, N, U

Ret Returning Instruments Nom 2 Y, N

NewmanQ F1 Difficult to concentrate? Nom 3 0, 2, 4

F2 Difficult to hear people? Nom 3 0, 2, 4

E3 Tin makes you angry? Nom 3 0, 2, 4

F4 Tin makes you
confused?

Nom 3 0, 2, 4

C5 Feel desperate? Nom 3 0, 2, 4

E6 Complain about your
tin?

Nom 3 0, 2, 4

(continued)
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Table 7.1 (continued)

Group Att name Attribute meaning Type Cat Sample

F7 Sleeping problems? Nom 3 0, 2, 4

C8 Feel cannot escape your
tin?

Nom 3 0, 2, 4

F9 Tin interfere social
activities?

Nom 3 0, 2, 4

E10 Feel frustrated? Nom 3 0, 2, 4

C11 Feel have a terrible
disease?

Nom 3 0, 2, 4

F12 Difficult for you to
enjoy life?

Nom 3 0, 2, 4

F13 Job /house
responsibilities?

Nom 3 0, 2, 4

E14 Tin make you often
irritable?

Nom 3 0, 2, 4

F15 Difficult for you to read? Nom 3 0, 2, 4

E16 Tinnitus make you
upset?

Nom 3 0, 2, 4

E17 Stress on your
relationships?

Nom 3 0, 2, 4

F18 Difficult to focus
attention?

Nom 3 0, 2, 4

C19 No control over your
tinnitus?

Nom 3 0, 2, 4

F20 Tin makes you often
tired?

Nom 3 0, 2, 4

E21 Tin makes you
depressed?

Nom 3 0, 2, 4

E22 Tinnitus makes you
anxious?

Nom 3 0, 2, 4

C23 Cannot cope with your
tin?

Nom 3 0, 2, 4

F24 Tin worse when under
stress?

Nom 3 0, 2, 4

E25 Tin makes you feel
insecure?

Nom 3 0, 2, 4

Sc F Total score: Function Inter 6 <0;6)

Sc E Total score: Emotion Inter 6 <0;4)

Sc C Total score:
Catastrophic

Inter 6 <0;2)

Sc T Total score: sum of
above

Inter 5 Mild



86 7 Experiment 2: Diagnostic Rules

7.1.2 Attributes

Preliminary data preparation included creating a primary key column, setting groups
of attributes, defining attributes from table columns, and categories from the attribute
values.

Table7.1 shows tinnitus database attributes definition and groups theywere divided
into. The table presents also the category type, number of resulting categories
(attribute values) and sample category for each attribute.Attributes of tinnitus patients
and visits were defined as either nominal (each value—one category—for categori-
cal, character columns), equifrequency or equidistant intervals (discretization
method for integer, decimal or float data types). The former approach for interval con-
struction, equifrequency intervals, considers the distribution of the data and is gener-
ated automatically based on frequency calculation and number of categories specified
by user. The latter enables user to define categories with fixed interval length.

Category definition additionally allowed to double check data integrity by dis-
covering errors in data values: misspellings, out of range values etc. Such erroneous
categories were either left out or joined with the correct category, when this could
have been inferred. For example, for Instruments attribute, category value denoting
Viennatone instrument was resulting from joining V, Vivatone, RVivatone, Vivatne
attribute values.

Attributes in General Group-correspond to main features describing each visit:

• identifier of a patient (first two digits denoting year and three next—an ordering
number),

• visit number (initial-0, consecutive—1, 2, 3, etc.),
• problems in order of importance (T-tinnitus, H-hyperacusis, L-hearing loss,
M-misophonia),

• attributes related to misophonia (whether fear of sound present in patient and
protocol of misophonia treatment followed),

• typeof follow-upcontact (A-audiology andcounseling,C-counseling,T-telephone,
E-email, M-Mail),

• dependency of hyperacusis presence DP,
• REM—whether real-ear measurements were performed at the visit,
• and finally categories assigned to a patient by a doctor (C), and category of treat-
ment chosen by a patient (CC).

Audiological Attributes

Summarize the process of audiological evaluation, which is helpful in separating
issues of hearing, tinnitus, hyperacusis and misophonia [JJ00]. It consists of oto-
scopic examination of the ear canal and tympanic membrane, and series of tests.
Routine audiological testing includes an evaluation of pure tone thresholds up to
12kHz (attributes R25, R50,... R12 and, corresponding, for left ear—L25, L50,...
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L12) and word recognition scores, providing an assessment of a patient’s hearing and
a basis for subsequent tinnitus measurements [JJ00]. Specific tinnitus/hyperacusis
measurements consist of:

• pitch matching (T PR/T PL),
• loudness matching (T LR/T LL),
• the minimal masking levels (MRR, MRL, MRB for right ear and MLR, MLL, MLB
for left ear),

• LDLs (attributes denoted as LR50, LR1, LR2,..., LR12 and LL50, LL1, LL2, ...,
LL12).

Pitch and loudness matching provide information useful for counseling, but not for
diagnosis. The crucialmeasurements are those of LoudnessDiscomfort Level (LDL),
using pure tones up to 12kHz, as well as frequency that corresponds to the tinnitus
pitch [JJ00]. Measurements are performed twice, and the second set is recorded in
the database.

Demographics Attributes

Correspond to columns from the original tables: Demographics and Misc. They
describe a patient in terms of their age when treatment started, gender, occupation,
place of residence, work status, etc., but also number of medications they take for
different afflictions.

Tinnitus

Embraces attributes describing induction of tinnitus and hyperacusis problem. These
include derived from text columns, boolean features informing whether the problem,
as perceived by a patient, was a consequence of stress, noise, medical condition,
operation, auto accident injury or depression, whether the problem developed grad-
ually or suddenly, and medication uptake was associated with the onset of tinnitus
(T side). Development of these features was described in Sects. 6.2.1 and 6.2.2). The
group also consists of AgeInd attribute, which informs what was the age at the time
of tinnitus onset. Alternatively boolean attributes such as Y30, Y20, etc. can be used,
which indicate what was the time elapse between problem onset and start of the
treatment (see Sect. 6.2.2 for detailed description).

Pharmacology

Next two groups, Condition and Medication, aggregate information derived from
original Pharmacology table. These are boolean attributes, informing whether a
patient was affected by a particular disease at start of treatment and what medications
were taken for these additional afflictions (see Sects. 6.4.1 and 6.4.2 for description
of pharmacology features development).

http://dx.doi.org/10.1007/978-3-319-51463-5_6
http://dx.doi.org/10.1007/978-3-319-51463-5_6
http://dx.doi.org/10.1007/978-3-319-51463-5_6
http://dx.doi.org/10.1007/978-3-319-51463-5_6
http://dx.doi.org/10.1007/978-3-319-51463-5_6
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Instrumentation

Other two groups of attributes: Instruments and REM should be helpful in determin-
ing treatment actions that potentially can lead to tinnitus improvement. Such actions
might be, for example, changing a sound-generating instrument to a different type or
model. Type of instruments was originally registered in three different tables: Instru-
ments, Visits and Qustionnaire tin. REM denotes real-ear measurements, which is a
method of fitting the instrument, by measuring the sound level produced by sound
generators inside of ear canal. This also can be regarded an action taken to improve
the state of tinnitus perception.

Interview

Besidescausativecharacteristicsof tinnitus,asdescribedbyattributes inTinnitusgroup,
another importantsourceof information, related to tinnitus,are initial/follow-upforms.
They were designed to track the treatment progress and were filled by provider dur-
ing structured interviewwith patients at initial/follow-up visits. Forms’ structure, pre-
sented in appendix A and B, is reflected in suitable attributes, such as:

• percentage of tinnitus awareness/annoyance (Aw t, An t),
• tinnitus/ decreased sound tolerance subjective ranked loudness (T sv/H sv),
• annoyance and effect on life (on average over last month in 0–10 scale)—T an, T

EL, H an, H EL,
• activities prevented as a result of sound oversensitivity: concerts, housekeeping,
childcare, etc. (expressed in 0–4 scale, 0 meaning no problem).

The Interview group also consists of attributes related to tinnitus, hyperacusis, and
hearing loss as a problem (average over last month in 0–10 scale)—T pr, H pr, HL
pr. Besides, patients were asked whether they were glad that they had started the
program (Pr) and whether they would have considered giving back the instruments
(Ret). Other columns reflecting form structure consisted of too many missing values
to be included in the data mining tasks.

NewmanQ

Groups attributes related to form (Newman questionnaire, also namedTinnitus Hand-
icap Inventory) consisting of 25 questions, each to be answered on three levels Likur
scale, divided into three groups: functional, emotional and catastrophic. Paper ver-
sion of the form is presented in Appendix C. Each question makes an attribute with
categories 0, 2, 4, “0” denoting “yes”, “2”—“sometimes” and “4”—“no”. New form,
evaluating patients emotions in 0 – 10 scale—(Tinnitus Functional Index), was not
used as these subscales turned out to be useless and they are not used. The group
also includes total scores calculated for each of the three groups of questions, and
total score, calculated as sum of these three. Total score attribute is an important
measure of initial tinnitus severity and treatment. The attribute was defined with five
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categories, relating scores to tinnitus severity (according to scale as in Appendix
C): 0–16—slight, 18–36—mild, 38–56—moderate, 58–76—severe, and 78–100—
catastrophic handicap. The aim of action rule extraction would be to find treatment
actions that lead to changes in a patients’ tinnitus severity from higher to lower.

Preliminary experiment did not consider temporal dependencies (all data of
timestamp type was not used in the preliminary experiments). It means that each
consecutive visit was considered to be of the same time elapse from the previous
one. The same assumption applies to changes in tinnitus indicators (they were not
related temporally to previous values).

7.1.3 Tasks Definition

To define a task in 4 ft-Minermodule in LISp-Miner it is necessary to define a relevant
pattern (as depicted in Fig. 7.2), by setting up:

• antecedent,
• succedent,
• quantifier.

Optionally condition can also be specified. For antecedent part all attributes, whose
result on interesting factor in succecedent part will be examined, were chosen. For
example, it might be worth checking association between audiological measure-
ments and category of a patient. According to our medical knowledge, it has to be
related as categories are defined mainly on the basis of audiological findings, addi-
tionally with severity determined by THI. Quantifier setting enables to control rule
generation. LISp-Miner provides for different types of quantifiers and their settings
(for example—implications, equality relations). Formally, a quantifier is defined as
depicted in Table7.2.

Confidence

Con f = a
a+b

Support

Supp = a
a+b+c+d

Table 7.2 4 ft quantifier:
φ =⇒ ψ , φ antecedent, ψ
succedent, =⇒ quantifier

ψ ¬ψ

φ a b

¬φ c d
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Quantifier

φ =⇒ B ASE,p ψ , a
a+b > p ∧ a ≥ B ASE

Two, default, quantifier settings used in experiments are:

• BASE—at least BASE-number of objects is statistically relevant.
• FUI—Founded implication quantifier—assuring that at least p * 100% objects
satisfying antecedent, satisfy also succedent.

BASE and FUI p parameters were adjusted for different runs so that to obtain the
best confidence and support, but also taking into account characteristics of the pattern
checked (for example, taking into account number of missing values for particular
attributes or decision’s attribute relative frequency). Standardminimumstarting point
for the p parameter was 0.5 (it is assumed that rules with confidence lower than 50%
cannot be successfully applied in RECTIN). BASE quantifier settings ranged from
10 to 80 (when the task generated no hypotheses, BASE was lowered).

Conditional Quantifier

φ =⇒ ψ/Condition On the grounds that diagnosis is performed at an initial visit,
all rules were set with condition on Visit number attribute, defined as one category
coefficient type, set to “0”.

Minimum and Maximum Lengths

When setting up a particular task, it is also possible to define the minimum and
maximum number of cedents/literals for antecedent and succedent parts.

Cedents

The cedents are chosen from previously defined attributes (in Table7.1), and for each
attribute, following settings are chosen in the task definition:

• coefficient type—for example: subset, one category, sequence, cut, etc.,
• coefficient length—minimum and maximum length,
• gace type: positive, negative, both.

7.2 Results

After setting up a datamining task inLISp-Miner,Run option startsGUHAprocedure
(see Fig. 7.2), and after some time, depending on the task complexity, set of prime pat-
terns generated in form of hypotheses appears on the output screen. Each hypothesis
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can be then evaluated in details, with all metrics related to GUHA procedure. In the
listings below, only confidence and support values are provided for each rule.

7.2.1 Interview =⇒ Category

Considering that RECTIN system, as depicted in Fig. 5.2, assumes automation in
patients’ categorization after filling in electronic versions of initial/follow-up forms
and performing audiological measurements, it would be useful to discover rules
relating form’s responses to the corresponding categorization, decided by a doc-
tor. 4 ft-Miner task was set up so that to include attributes from Interview group in
the antecedent part of relevant pattern. Results from the experiment are shown as
examples of obtained hypotheses, in division for particular categories.

Hypotheses 1 H EL < 1 =⇒ 0.52;0.04 C(0)
H An < 1.5 ∧ H EL < 1 ∧ H Sv < 1.5 =⇒ 0.51;0.03 C(0)

Hypotheses 2 HL pr < 0.5 ∧ T EL ≥ 8 =⇒ 0.55;0.06 C(1)
H pr < 0.5 ∧ HL pr < 0.5 =⇒ 0.58;0.04 C(1)

Hypotheses 3 HL pr ≥ 5 ∧ T EL ≥ 8 =⇒ 0.57;0.07 C(2)
HL pr ≥ 5 ∧ T Sv ≥ 8 =⇒ 0.57;0.06 C(2)
HL pr ≥ 5 ∧ T An ≥ 8 =⇒ 0.55;0.07 C(2)
HL pr ≥ 5 =⇒ 0.54;0.016 C(2)
HL pr ≥ 5 ∧ T Pr ≥ 8 =⇒ 0.52;0.06 C(2)

Hypotheses 4 H An ≥ 8 ∧ H EL ≥ 8 ∧ H Sv ≥ 7.5 =⇒ 0.58;0.09 C(3)
H pr ≥ 7 ∧ H An ≥ 8 ∧ H EL ≥ 8 ∧ H Sv ≥ 7.5 =⇒ 0.58;0.08 C(3)

The obtained rules confirm the expert (medical) knowledge (compare with
Table2.1):

• patients categorized into 0 group have a problem with low impact on life (H EL is
low),

• category-1 patients have significant tinnitus problem, but without hyperacusis (H
pr is low) and there is no significant hearing loss (HL pr is low),

• category 2 is characterized on the other hand with significant hearing loss
(HL pr ≥ 5),

• category 3 is associated by the expert with significant hyperacusis problem
[MLDK10]—obtained hypotheses show association of high values of H An, H
Sv and H EL with this category.

7.2.2 Audiology =⇒ Category

Second 4 ft-Miner task was designed to find dependencies, in form of associa-
tion rules, between audiological measurements and category of a patient, deter-

http://dx.doi.org/10.1007/978-3-319-51463-5_5
http://dx.doi.org/10.1007/978-3-319-51463-5_2
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mined by a doctor. Antecedents were set to attributes from Audiological group
(defined as equifrequent intervals). Succedent part was set to each of patient cat-
egory, subsequently—0, 1, 2, 3 and 4 (coefficient type for C attribute was set as One
category). Examples of generated association rules, for each of the category, with
the corresponding confidence and support values are shown as hypotheses below.

Hypotheses 5 L SD≥100∧LL4≥999∧LR8≥999∧R SD≥100 =⇒ 0.5;0.04 C(0)
L SD ≥ 100 ∧ LL4 ≥ 999 ∧ LL8 ≥ 999 ∧ LR8 ≥ 999 ∧ R SD ≥ 100 =⇒ 0.5;0.04 C(0)

Hypotheses 6 LL12 ≥ 999 ∧ LR12 ≥ 999 ∧ R SD ≥ 100 =⇒ 0.58;0.11 C(1)
LL12 ≥ 999 ∧ R SD ≥ 100 =⇒ 0.55;0.12 C(1)

Hypotheses 7 LR8 ≥ 999 ∧ R4 ≥ 65 =⇒ 0.78;0.08 C(2)
L2 ≥ 50 =⇒ 0.7;0.1 C(2)
R4 ≥ 65 =⇒ 0.66;0.1 C(2)

Hypotheses 8 LR6 < 78 =⇒ 0.63;0.07 C(3)
LR2 < 74 =⇒ 0.62;0.07 C(3)
LR1 < 74 =⇒ 0.61;0.07 C(3)
LL4 < 76 =⇒ 0.58;0.07 C(3)

Hypotheses 9 L SD ≥ 100 ∧ L4 < 10 AND LL3 < 75 =⇒ 0.67;0.02 C(4)
L3 < 5 ∧ LL3 < 75 =⇒ 0.59;0.02 C(4)
L4 < 10 ∧ LL3 < 75 =⇒ 0.53;0.02 C(4)

Rules with best support were obtained for the most numerous categories. Gen-
erated hypotheses should be confronted with the expert knowledge, however they
seem to confirm the knowledge as described in medical papers on tinnitus [JJ00].
These say that a basic audiogramwith LDLs is the crucial test for diagnosis. The nor-
mal LDLs oscillate at about 90–110dB, 102 being the normal average. The lower the
level, the more decreased sound tolerance with 81.7dB being the average for patients
with decreased sound tolerance. Based on obtained rules, it can be concluded that
the lower the tolerance, the more severe category of tinnitus should be assigned to a
patient. Frommedical point of view, the results are interesting and strong correlation
of THI with LDL is expected to some extent in theory.

7.2.3 Demographics =⇒ Category

In the next experiment antecedent part was set to literals formed from attributes from
Demographics group, succedent—to patient’s category.

Hypotheses 10 Country(USA) ∧ MedNr(<3;4)) ∧ State(GA) =⇒ 0.56;0.02 C(0)

Hypotheses 11 AgeBeg(<50;55)) ∧ Country(USA) ∧ G(m) =⇒ 0.58;0.02 C(1)
AgeBeg(<50;55)) ∧ G(m) =⇒ 0.56;0.02 C(1)
Country(USA) ∧ G(m) ∧ M6(yes) =⇒ 0.5;0.02 C(1)
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Hypotheses 12 AgeBeg ≥ 68 =⇒ 0.58;0.03 C(2)
AgeBeg ≥ 68 ∧ Country(USA) =⇒ 0.58;0.03 C(2)
G(m) ∧ MedNr ≥ 5 =⇒ 0.55;0.03 C(2)
G(m) ∧ MedNr ≥ 5 ∧ T side(yes) =⇒ 0.53;0.03 C(2)

Hypotheses 13 Work(h) =⇒ 0.69;0.02 C(3)
Work(h) ∧ T side(yes) =⇒ 0.67;0.01 C(3)
Country(USA) ∧ G(f) ∧ M1(yes) =⇒ 0.83;0.01 C(3)
AgeBeg ≥ 40 ∧ Country(USA) ∧ AgeInd(<30;38)) =⇒ 0.71;0.01 C(3)
Occup(homemaker) =⇒ 0.71;0.01 C(3)
G(f) ∧ STI(yes) =⇒ 0.5;0.01 C(3)

Hypotheses 14 Country(USA) ∧ G(m) ∧ MedNr(3) ∧ Y10(yes) =⇒ 0.8;0.01 C(4)

Some relevant patterns of patients’ demographics in particular categories were
found out. For example, as a rule, patients with tinnitus of low effect on life (that is
0-category) came from Georgia state in the USA (that is nearby the clinic) and were
affected with 3 other afflictions (took 3 medications for treating them). Confronting
these results with medical expertise, it might just reflect the fact that long distance
patients with low level of severity did not bother to come as it would involve cost
and effort; coming was much easier for people from Georgia.

Common pattern for patients in category 1 was: a male aged 50–55 from the USA,
whose tinnitus had started 6–12 months before he began TRT.

It could be also observed that category-2 patients are typically older (age when
began treatment typically higher than 68years old as a rule), they had taken more
medication (5 and more) and their tinnitus was associated with taking these med-
ications (T side(yes)). Medical experience shows that older patients are taking more
medications. Also, hearing loss, which has to be present for Category 2, is strongly
correlated with age.

Relevant patterns for category 3 included:

• patients who worked at home (and also they tinnitus was induced by medications),
• patients occupied with homemaking,
• patients who were females with tinnitus induced 1–3 months before they went to
a doctor,

• females whose tinnitus was associated with stressful situations,
• patients relatively young (younger than 40years old, whose problem started at
30–38 years old), living in the USA.

Pattern found for patients with most severe, fourth category, included males curing
three other afflictions with medications, whose tinnitus is 10–20 years old.

It should be noted that these rulesmust not be primarily used in diagnosis. Patient’s
category should not be based on their age, place of residence, occupation, etc., but
rather on more objective factors, from medical point of view, such as, audiological
measures or interview.Nevertheless, they reveal some commondemographic patterns
in categories of patients treated in the past, which may bring additional knowledge,
used as heuristics or hints.
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7.2.4 Pharmacology =⇒ Category

Next experiments were focused on discovering patterns relating additional patients’
afflictions and medication taken in order to cure them, to the category of tinnitus
treatment. Preliminary results have shown that patients with accompanying depres-
sion, anxiety or panic disorders were assigned to category 1, while patients with
hypertension, for example, belonged to category 2.

Hypotheses 15 Ativan(yes) ∧ Anxiety disorder(yes) =⇒ 0.58;0.01 C(1)
Klonopin(yes) ∧ Panic disorder(yes) ∧ Seizures(yes) =⇒ 0.53;0.01 C(1)
Depression disorder(yes) ∧ Panic disorder(yes) ∧ Seizures(yes) =⇒ 0.5;0.02 C(1)

Relevant group of patients treated for anxiety, panic/seizures or depression disorders
(with Ativan/Klonopin) was diagnosed with the first category of tinnitus. These
drugs are routinely prescribed by physicians in case of tinnitus, to decrease anxiety
or depression.

Hypotheses 16 Angin(yes) ∧ Hypertension(yes) =⇒ 0.69;0.02 C(2)

Patients with hypertension and angina can be hypothetically classified into second
category of tinnitus (with 69% confidence). According tomedical expertise, typically
these conditions are associated with aging which in turn is strongly associated with
hearing loss.

Hypotheses 17 Premarin(yes) ∧ Menopause(yes) ∧ Vulval anthropy(yes) =⇒
0.55;0.01 C(3)

Patients (females) with menopause, treated with Premarin, are associated with tin-
nitus category 3 (with 55% confidence). These results are interesting from medical
point of view, as there are physiological mechanisms linking tinnitus and hyperacusis
with sex hormones.

7.2.5 Age =⇒ Diseases

To provide more insightful conclusions on association between age, medical condi-
tion and tinnitus category, relation between age and diseases was examined.

Hypotheses 18 AgeBeg(<40;45)) =⇒ 0.63;0.03 Depression disorder(yes)
AgeBeg ≥ 68 =⇒ 0.48;0.03 Hypertension(yes)

It seems that depression as a rule existed in tinnitus patients at age between 40 and 45
with 63% confidence, while hypertension in patients older than 68 years. The latter
age groupwas also,most often, associatedwith category 2 of tinnitus (seeHypotheses
12), and this category was also, hypothetically, associated with hypertension (see
Hypotheses 16). Therefore, both experiments are consistent in their results.
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This additional insight into medical condition of patients, beside their demo-
graphics, confirms that category 1 was more typical for middle-aged patients and
associated with depression, anxiety disorders and their tinnitus could have had more
psychological background. On the other hand, patients from category 2, that is, more
elderly patients (as previous experiments have shown), were treated for old-age-
related diseases such as hypertension, diabetes, arthritis, which are also associated
with category 2. Some of these patients also took medications for their angina. Cate-
gory 3 included significant number of women treated for menopause, which could be
also perceived as a stressful situation in life (females and stress was associated with
this category in previous experiments—see Hypotheses 13). When confronted with
medical knowledge, however, it might be more direct physiological link, as stress is
prevalent in all categories and patients.

7.2.6 Pharmacology =⇒ Tinnitus

The following experiment was conducted to discover pharmaceuticals that may most
commonly contribute to the tinnitus onset. The corresponding task was defined in
such a way, so that partial cedent on T side attribute (tinnitus as a side-effect of
medications) was defined with coefficient as One category set to “yes”. The results
are shown as hypotheses below.

Hypotheses 19 Norvasc(yes) ∧ T side(yes) =⇒ 0.67;0.01 C(2)
Prozac(yes) ∧ T side(yes) =⇒ 0.6;0.01 C(1)
Synthroid(yes) ∧ T side(yes) =⇒ 0.6;0.01 C(2)
Atenolol(yes) ∧ T side(yes) =⇒ 0.56;0.01 C(2)
Celebrex(yes) ∧ T side(yes) =⇒ 0.56;0.01 C(2)
Klonopin(yes) ∧ T side(yes) =⇒ 0.56;0.01 C(1)

The first medication is applied for hypertension and angina, the second for depres-
sion, bulimia nervosa, OCD. Synthroid is used in thyroid hormone therapy, Atenolol
reduces blood pressure (treats hypertension). Celebrex acts anti-inflammatory and
Klonopin—anti-panic and anti-seizure.

The conclusion from the experiment is that these medications should be further
investigated on their side-effects. Patients taking them and seeking help for their
tinnitus might recover simply after stop taking them or switching to another com-
plementary pharmaceuticals, with no such side-effects. It might also save time on
complex tinnitus therapy, avoiding unnecessary actions. As for depression, however,
it is not clear, whether this disorder is cause or effect of tinnitus. From medical point
of view, it can be both.
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7.2.7 Comprehensive Decision Rules

Last experiment on association rules combines all factors influencing tinnitus diag-
nosis decision at an initial visit (as depicted in Fig. 7.1), so that to obtain the best
decision rules for each category. The sets of rules were divided into the best, in terms
of confidence, and the best, in terms of support. These obtained from experiments
targeting the best confidence can be interpreted as being more accurate, but less gen-
eral. On the other hand, rules extracted with settings, so that to obtain best support,
held true more generally (in greater populations). It can be noticed that rules with
greater confidence, but relatively lower support, are more specific, in terms of their
antecedents (have more literals in the antecedent part), while rules with relatively
greater support need less premises to arrive at their conclusions. The latter fact might
be useful, when new patient’s data is incomplete or only partial information, about
them, is available.

Most General

Hypotheses 20 H EL < 1 =⇒ 0.52;0.04 C(0)
L SD ≥ 100 ∧ LL4 ≥ 999 ∧ LR8 ≥ 999 ∧ R SD ≥ 100 =⇒ 0.5;0.04 C(0)
L SD ≥ 100 ∧ LL4 ≥ 999 ∧ LL8 ≥ 999 ∧ LR8 ≥ 999 ∧ R SD ≥ 100 =⇒ 0.5;0.04
C(0)

Hypotheses 21 LL12 ≥ 999 ∧ LR12 ≥ 999 ∧ R SD ≥ 100 =⇒ 0.58;0.11 C(1)
LR12 ≥ 999 ∧ T EL ≥ 8 =⇒ 0.57;0.09 C(1)
T An ≥ 8 ∧ R SD ≥ 100 =⇒ 0.56;0.09 C(1)

Hypotheses 22 L4 ≥ 65 =⇒ 0.62;0.1 C(2)
HL pr ≥ 5 =⇒ 0.54;0.14 C(2)

Hypotheses 23 H An ≥ 8 ∧ H Sv ≥ 7.5 =⇒ 0.55;0.1 C(3)
H Sv ≥ 7.5 =⇒ 0.5;0.11 C(3)
H EL ≥ 8 =⇒ 0.5;0.11 C(3)

Hypotheses 24 L SD ≥ 100 ∧ L4 < 10 ∧ LL3 < 75 =⇒ 0.67;0.02 C(4)
L3 < 5 ∧ LL3 < 75 =⇒ 0.59;0.02 C(4)
L4 < 10 ∧ LL3 < 75 =⇒ 0.53;0.02 C(4)

Most Accurate

Hypotheses 25 DST(N) =⇒ 0.78;0.01 C(0)
Concert(0) =⇒ 0.75;0.01 C(0)
Rest(0) =⇒ 0.75;0.01 C(0)
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Hypotheses 26 R3(<15;20)) ∧ T An ≥ 8 =⇒ 0.94;0.03 C(1)
LL2 ≥ 999 ∧ LR12 ≥ 999 ∧ R4(<15;20)) ∧ T EL ≥ 8 =⇒ 0.94;0.03 C(1)
LR12 ≥ 999 ∧ R4(<15;20)) ∧ T EL ≥ 8 =⇒ 0.94;0.03 C(1)
R4(<15;20)) ∧ T Sv ≥ 8 =⇒ 0.94;0.03 C(1)

Hypotheses 27 LR8 ≥ 999 ∧ R6 ≥ 75 ∧ T Sv ≥ 8 =⇒ 0.96;0.04 C(2)
LL8 ≥ 999 ∧ LR8 ≥ 999 ∧ R6 ≥ 75 ∧ T Sv ≥ 8 =⇒ 0.96;0.04 C(2)
LR6 ≥ 999 ∧ LR8 ≥ 999 ∧ R2 ≥ 45 ∧ R3 ≥ 60 ∧ R6 ≥ 75 =⇒ 0.95;0.03 C(2)
LR6 ≥ 999 ∧ LR8 ≥ 999 ∧ R2 ≥ 45 ∧ R4 ≥ 65 ∧ R6 ≥ 75 =⇒ 0.95;0.03 C(2)
LR6 ≥ 999 ∧ LR8 ≥ 999 ∧ R2 ≥ 45 ∧ R4 ≥ 65 ∧ R8 ≥ 75 =⇒ 0.95;0.03 C(2)
L2 ≥ 50 ∧ L3 ≥ 60 ∧ LR8 ≥ 999 ∧ R6 ≥ 75 =⇒ 0.95;0.03 C(2)

Hypotheses 28 LL3(<85;91)) ∧ H pr ≥ 7 ∧ H Sv ≥ 7.5 =⇒ 1;0.03 C(3)
LL3(<85;91)) ∧ H An ≥ 8 ∧ H EL ≥ 8 ∧ H Sv ≥ 7.5 =⇒ 1;0.03 C(3)
LL3(<85;91)) ∧ H EL ≥ 8 ∧ H Sv ≥ 7.5 =⇒ 1;0.03 C(3)
LR1 < 74 ∧ LR2 < 74 ∧ LR6 < 78 ∧ H pr ≥ 7 ∧ H An ≥ 8 =⇒ 0.94;0.03 C(3)

7.3 Conclusions

The most relevant features for automatic categorization are audiological measure-
ments and interview form responses, as the rules associating them to patient’s cate-
gory were evaluated with the best confidence and support. This observation seems
to confirm the validity of classifier constructed in experiments described in the pre-
vious chapter (based on Naive Bayes—see Fig. 6.9), as well as features selection
method (based chi-squared measure, with its results as shown in Fig. 6.7). Resulting
knowledge, in the form of decision rules, might complement WEKA classifier in
supporting diagnosis decision.

Although relations between other factors and category are more tenuous, demo-
graphic patterns of patients in different categories, can provide a novel insight and
help to analyze tinnitus/hyperacusis problem from various perspectives. Such rules
can be implemented into RECTIN Rule Engine Module and serve as additional hints
(but no decision rules). General conclusions from the experiments on demographics,
age groups and pharmacology in relation to tinnitus category and to each other, are:

• Category 1 of tinnitus (that is, tinnitus being the main problem but neither hearing
loss nor hyperacusis present) was characterized by middle-aged patients and their
tinnitus seems to have its background in psychological disorders: depression, anx-
iety, panic. Therefore, it can be hypothesized that this category should be treated
the same way depression (or another psychological disorder) is treated—with per-
sonalized counseling. Presumably, after treating a psychological disorder tinnitus
perception might decrease.

• Elderly patients (68 and higher), on the other hand, affected in many cases by
hypertension and other age-related afflictions, have tinnitus with hearing loss

http://dx.doi.org/10.1007/978-3-319-51463-5_6
http://dx.doi.org/10.1007/978-3-319-51463-5_6
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present (category 2). Therefore, it allows to hypothesize that more effective treat-
ment would be based on treating hearing loss problem, for example, with hearing
aids instrumentation with instrument fitting. Confronting the results with medical
knowledge, the treatment for this category always involves amplification.

• Category 3 of tinnitus provides far less insight than the two categories, mentioned
above. On one hand, it seems to exist in the youngest patients group (30–38 years
old), but its background is not very easily seen. Some rules indicate patterns related
to occupation, type of work, and gender (female), as well as stress as tinnitus
background. This category of patients seemnot to shownoticeable associationwith
medical conditions (except pattern found for some female, age-related afflictions).

• The least knowledgewas retrieved for the least common categories: 0 (tinnituswith
low impact on life) and 4 (long-term sound exacerbation). As a matter of fact, not
many common patterns were found for the patients in these categories, except for
individual patterns: of male patients, whose tinnitus was induced between 10–20
years before starting treatment (for category 4), and of patients residing in the state
of Georgia (for category 0).

Number of analytical questions, possible to formulate within 4 ft-Miner task, is
unlimited and depends on the requirements of RECTIN system user or needs of
physician dealing with tinnitus. Experiments presented in this section show only
examples of task definition and their corresponding results, in order to introduce fur-
ther possibilities of applying association rulesmining to tinnitus database. Analogous
experiments could be conducted with decision attribute (succedent) set as Problem
attribute, Total score, or any other indicator of tinnitus (such as Aw t, An t, T sv, T EL)
or audiological measurements, which also can serve as indicators of tinnitus severity.

Relatively low support of the obtained rules results from dataset sparsity and
correspondingly,manymissingvalues.Missingvalues inmanypotentially interesting
attributes were problematic for task definition. Quantifier parameters, such as BASE
or p for FUI, had to be set accordingly low. Consequently, confidence and support
of generated hypotheses were relatively lower.



Chapter 8
Experiment 3: Treatment Rules

Abstract Action rules should help in choosing treatment actions in the course of
TinnitusRetrainingTherapy in subsequent visits. In order to understand the process of
treatment and formulate appropriate data mining tasks in LISp-Miner, it is necessary
to identify treatments actions taken by the doctor to improve tinnitus/hyperacusis
patient’s condition.

8.1 Methodology

Figure8.1 presents a summary of the TRT treatment process and data flow, with
indicators for progress tracking.

Treatment actions, in terms of data source attributes, can be understood as:

• Treatment protocol—after doctor’s diagnosis, it is left to patient’s decision, which
treatment protocol will be followed. Each treatment protocol is tight to a particular
tinnitus category.

• Type of follow-up contact—this can be sound therapy and counseling.
• Instrument—instrument type, i.e., hearing aid, sound generator (further divided
into GHI soft, GH hard, Viennatone, etc.) or combined, and particular model of
the instrument.

• REM—real-ear measurements, which is assisting instrument fitting.

On the other side, it is important to indicate attributes that would be suitable for
tracking treatment progress and changes. One of such attributes, naturally, could
be Total score from NewmanQ group. Problem with the attribute is that it is not
complete, with about 48.3% values missing. Another candidate for decision attribute
would be Problem attribute, which is registered separately for each visit and indi-
cates patient’s problem in order of importance (“T”-tinnitus, “L”-Hearing loss, “H”-
Hyperacusis).There are only about 4.6%missing values of this attribute. It is possible

© Springer International Publishing AG 2017
K.A. Tarnowska et al., Decision Support System for Diagnosis and Treatment
of Hearing Disorders, Studies in Computational Intelligence 685,
DOI 10.1007/978-3-319-51463-5_8
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Fig. 8.1 Process and data flow of treatment actions and TRT tracking

to track changes in tinnitus subjective awareness (42.3%missing values), annoyance,
tinnitus as a problem (44.6% missing), treatment outcome (“better”, “worse”, “the
same”) or other, similar, indicators from the follow-up form. Also, audiological
measurements changes can be tracked towards their normal values, as the treatment
progresses.

Ac4ftmodule of LISp-Miner “mines for rules that expresswhich actions should be
performed to improve the defined state” [Nek]. The procedure is an implementation
of the GUHA method, which mines for G-rules.

To remind, action rule, as defined by Ras and Wieczorkowska [RW00], suggests
a change in behavior that can bring an advantage. It consists of two sets of attributes:
stable (denoted below as A) and flexible (B):

R: (A1=ω1) ∧ ... ∧ (Aq = ωq) ∧ (B1, (α1 → β1)) ∧ ... ∧ (Bp, (αp → βp)) =⇒
(D, k1 → k2)

Decision attribute is denoted as D, and a desirable change as k1 → k2. Support
and confidence for action rules are calculated in the following way:

• n—the total number of objects in the database
• CPL(R)—the number of objects matching (ω1, ..., ωq , α1, ..., αp, k1)
• CPR(R)—the number of objects matching (ω1, ..., ωq , β1, ..., βp, k2)
• CV R(R)—the number of objects matching (ω1, ..., ωq , α1, ..., αp)

• CV R(R)—the number of objects matching (ω1, ..., ωq , β1, ..., βp)

• Le f t Sup(R) = CPL(R)

n , Right Sup(R) = CPR(R)

n

• Sup(R) = Le f t Sup(R) = CPL(R)

n
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• Con f (R) = CPL(R)

CV L(R)
∗ CPR(R)

CV R(R)

8.1.1 Task Definition

In order to set up a task in Ac4ft module, it is necessary to indicate not only attributes
for the antecedent and succedent part, but also for their stable and flexible parts.
Moreover, the quantifiers are defined in a different way. Formally, G-rule is defined
in Ac4ft module as: φSt ∧ ΦChg =⇒ ∗ψSt ∧ ΨChg , where:

• φSt—the stable antecedent (or antecedent stable part),
• ΦChg—the change of antecedent (or antecedent flexible part),
• ψSt—the stable succedent (or succedent stable part),
• ΨChg—the change of succedent (or succedent flexible part),
• =⇒ ∗—Ac4ft quantifier.

G-rule can be expressed by two 4ft-association rules: rule describing an initial state
and rule describing a final state. Rule describing initial state is denoted as:

RI : φSt ∧ I (ΦChg) →I ψSt ∧ I (ΨChg), then
RI : φI →I ψI

ψI ¬ψI

φI a I bI
¬φI cI dI

Analogously, rule describing final state:
RF : φSt ∧ F(ΦChg) →F ψSt ∧ F(ΨChg), then
RF : φF →F ψF

ψF ¬ψF

φF aF bF
¬φF cF dF

Ac4ft quantifier used in the experiments is Founded implication: =⇒ F>I
q,BI ,BF

,
defined as:

aF
aF+bF

− aI
aI+bI

≥ q ∧ aI ≥ BI ∧ aF ≥ BF , where 1 ≥ g ≥ 0, BI ≥ 0, BF ≥ 0.
BI and BF are set as parameters to the task: a (BASE) before and a (BASE) after.
There are also other possibilities for Ac4ft quantifier’s definition (for example

equity instead of implication). Example of A4ft task definition in LISp-Miner is
depicted in Fig. 8.2.

Similarly, as in 4 ft module, a rule is composed of cedents (antecedent, succedent,
condition), which are understood as a conjunction or disjunction of literals. Literal
is a basic boolean attribute or negation of a basic boolean attribute. For each attribute
we should define:

• minimum and maximum length of literal,
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Fig. 8.2 Example definition of a set of relevant rules in Ac4ft mining task

• the type of coefficient—subsets, intervals, left cuts, right cuts, particular value,
• one of the following options: generate only positive literals, only negative, or both.

8.1.2 Decision Attribute Analysis

In approach for action rule extraction, absolute values of total score cannot be used in
the succedent flexible part. Such rules would be of low reliability, due to procedure
generating them, as simply comparing relative frequency of particular, changeable,
features in patients of different tinnitus severity. LISp-Miner algorithm scores action
rules based on confidence difference between final and initial state of action. Initial
and final state can be satisfied by different patient, who, although can share some
features, might be in different stages of treatment (temporal features and dependen-
cies are not considered), their initial tinnitus severity might be different. In summary,
such assumptions are too simplified. Consequently, such approach does not consider
following contingencies:

• frequency of particular feature can be biased by a total number of a patient’s visits
and favors patients with higher number of total visits (some features are repeatable
with each of the visit),

• approach does not consider changes in a particular patient, instead compares char-
acteristics of patients with different tinnitus severity.
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In order to address problems mentioned above, it was decided to implement some
additional preprocessing—feature development and missing values imputation. In
order to detect actions that in fact brought improvement, another experiment is
planned to discover meta-actions, as meta-actions provide the greatest possible treat-
ment personalization. In order to increase efficiency of rule generation, relevant pat-
tern definition should be limited to succedents considering only desirable changes,
that is from higher to lower total score category. Thus, additional attribute indicating
attribute change was developed, so that to include positive changes only.

8.1.3 Temporal Feature Development

One criterion that is defined by doctor Jastreboff as a “significant improvement” in a
patient is [JJ00]: tinnitus awareness decreased by at least 20%, the impact of tinnitus
on life decreased by at least 20% and tinnitus annoyance decreased by at least 20%.
According to our current medical knowledge, this is an old approach which was used
at ’90s and which is not used since 2000. The primary criterion is significant change
of THI. It has been published that change of 20 points on THI indicated clinically
significant improvement.

In order to pursue human approach, additional, derived columns were added to the
data source table, so that to relate the current visit’s indicator value to the previous
value, and therefore, to be able to estimate improvement (or deterioration).

First such derived column—ChTsc—indicates a change in Total score attribute
(fromNewmanQuestionnaire/TinnitusHandicap Inventory). Secondderived column-
ChTaw—indicates a change in tinnitus awareness (Aw T attribute), as registered in
an interview form. These changes are calculated as a difference between current
value and value registered from the previous form of the given patient. Besides
absolute changes, additional columns, denoting percentage changes (indicator’s
change related to the previous value) were developed—PerChTsc and PerChTaw
(when previous value was 0, the change is 0). Next, changes were categorized, based
on the frequency of change magnitude, as computed for the dataset.

8.1.4 Imputation of Missing Features

As already indicated, Total score attribute is missing for about half of visits regis-
tered in the tinnitus database. In other words, not every patient’s visit was scored
with Newman form’s responses. The same applies to the second indicator—Tinnitus
awareness. Also, when those two indicators are considered together (either T sc or
Aw t value available), still, there is about 40% of the values missing. Adding further
indicators does not ameliorate this situation significantly (as they are taken from the
same form as Aw t—their availability is not greater than that of Aw t value).
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Nevertheless, visits with no registered values of Total score nor Tinnitus aware-
ness should not be omitted from the analysis. Corresponding tuplesmay contain treat-
ment actions, which potentially contributed to a change, but were applied in between
two scorings. Therefore, following approach was taken for imputation of missing
values of score changes: each tuple of a visit that has no indicator value registered (and
corresponding NULL value of a score change), is imputed with a change value from
the next closest visit, when scoringwas performed. It is a common-sense approach, as
in this way, each potential treatment action is labeled with an effect it brings, in terms
of score change. This assumption simplifies the fact that several actions might have
been taken from the last to the next scoring, and the corresponding changemight result
from only one of such an action or, for example, of synergistic effect of all actions
taken in between each total score measurement.

Imputation Algorithm Illustration

Let us consider an example of a patient, with visit history as illustrated in Table8.1,
who had only four measurements of total score Sc t. Therefore, only four tuples (of
visits 1, 6, 7, 8) out of his 8 visits in total, would, normally, be considered in action
rule extraction (half of his visits and all the information associated with them would
be omitted).

The proposed approach assumes that all treatment actions performed after one
total score measurement and preceding next total score measurement contribute to
the registered change between the previous and the next measurements. Therefore,
in the presented example, treatment actions taken at visits 2, 3, 4 and 5, whose
direct effectiveness was not measured with the form, are assumed to contribute
to a change in total score registered at next, 6th visit. In other words, treatment
actions that took place between neighboring total score measurements (for example,
between visits 1 and 6), are labeled with the change in score between these two mea-
surements. ChTsc denotes absolute change in total score between two consecutive

Table 8.1 Illustration of approach to missing value imputation on a real example of patient’s visits
(THC = 00004)

V Treatment action Sc t ChTsc PerChTsc

0 Instr—GHS NULL 0 0

1 Instr—GHS TRI-COE 38 0 0

2 Instr—GHS, Tel contact NULL −26 −68

3 Tel contact NULL −26 −68

4 Tel contact NULL −26 −68

5 Tel contact NULL −26 −68

6 Instr—GHH, tel contact 12 −26 −68

7 Instr—GHH, REM, audiol and counsel 18 6 50

8 Instr—GHH, REM, audiol and counsel 16 −2 −11
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forms (for example, between visits 6 and 1: 12 − 38 = −26) and PerChTsc—
percentage change—is calculated in relation to the previous value of score (for the
same visits: [(12 − 38)/38] ∗ 100% = −68%). Negative changes denote ameliora-
tion of patient’s condition, while positive changes (that is, increase in total score)—
worsening. Such approach allows to retain information about effectiveness of some
treatments measures, such as, in this case, instrumentation with GHS and telephone
contact (after applying them, the largest improvement was observed in this patient,
lowering his total score from 38 to 12).

As an effect of missing values imputation, percentage of tuples with missing Total
score value decreases down to about 20%, and corresponding percentage for Tinnitus
awareness attribute values—down to about 16%. Tuples that have neither change for
Total score nor Tinnitus awareness account to about 14%, and therefore, will be left
out from the analysis. These can be understood as visits when treatment actions were
performed, but whose effect is not known in terms of registered data. For example,
treatment might have been applied after initial forms, but no follow-up forms have
been taken to assess its effectiveness.

8.1.5 Experimental Setup with New Attributes

Newly developed columns were read into LISp-Miner data source and defined
as attributes under Temporal group of attributes (see Table8.2, as continuation of
Table7.1).

They were discretized according to the magnitude of change. The discretization
was performed by using equifrequent intervals option for the definition of change
attributes. Table8.3 depicts resulting mapping of the absolute change values to the
generated equifrequent intervals, for both attributes, ChTsc and ChTaw.

Negative values indicate decrease in scores’ values, thus, lower tinnitus percep-
tion. Zero value means no change and positive values worsening of tinnitus percep-
tion.

Table 8.2 Temporal attributes definition in LispMiner

Group Att name Attribute meaning Type Cat Sample

Temporal ChTsc Change in Sc T from
last value

Inter 4 Better

ChTaw Change in Aw T from
last value

Inter 4 Worse

PerChTsc Percentage change
in total score

Inter 4 The same

PerChTaw Percentage change in tin
awareness

Inter 4 Better

http://dx.doi.org/10.1007/978-3-319-51463-5_7
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Table 8.3 Category names and corresponding intervals of absolute change values for Total score
and Tinnitus awareness

Category name ChTsc ChTaw

Much better < − 92; −12) < − 100; −19)

Better < − 12; 0) < − 19; 0)
About the same < 0; 2) < 0; 1)
Worse < 2; 78) < 1; 90)

Figures8.3 and 8.4 show frequency distribution, correspondingly, for Total score
and Tinnitus awareness change attributes.

As change attributes will be used for decision attribute, there is no need to use suc-
ceddent flexible part. Desirable changes are already expressed by attributes’ values.

Fig. 8.3 Frequency distribution of total score changes’ categories in tinnitus patients’ visits

Fig. 8.4 Frequency distribution of categories in ChTaw attribute
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Therefore, for the following experiments,ChTsc andChTaw attributes (or PerChTsc,
PerChTaw) were set as succedent stable part. Rule generation procedure checks, in
this case, for which changes in flexible antecedent part, the frequency of change
being “better” or “much better” increases in the given dataset.

8.2 Results

After analyzing attributes in Table7.1 and process of treatment within TRT (Fig. 8.1),
it was possible to determine stable attributes, as gender and patient’s age. All other
attributes are assumed to be changeable. However, if the aim of the task is to discover
action rules for one particular patient, then THC attribute should also be set as a
stable. For the purpose of other tasks’ formulation, it can also be assumed that all
the attributes recorded once, at the beginning of the therapy (tinnitus background,
medical condition, medications taken, assigned category) are also stable, as they do
not change in the course of therapy (in other words they are repeated for each visit
of a given patient in the data set).

Chosen hypotheses of actions with best Df-Conf that lead to improvement
(absolute or percentage) in either Total score or Tinnitus awareness are shown below,
in groups related to one data mining task setting.

8.2.1 Treatment Protocol

Sample Ac4ft task was set up so that category assigned by doctor (Cat) was a stable
attribute, while category chosen by a patient CC—flexible attribute. It is because
categoryof treatment chosenbyadoctor—assigned category—isdetermined at initial
visit and correspondingCat attribute does not change for consecutive visits for a given
patient in the database.However, a patientmight decide to follow a treatment protocol
for the other category, and change it in the course of treatment. ThereforeCC attribute
is flexible. Succedent attributes were defined for the stable part to detect increase in
relative frequency of one, positive category of change (for example, change with
category “much better”). Interpretation of sample generated rule is shown below.

R:

Cat(1) : CC(1) → CC(3) =⇒ 0.85;158;6 ChTsc(much better)

Initial rule:

Cat(1)∧ CC(1) =⇒ F>I0.148;158 ChTsc(much better)

http://dx.doi.org/10.1007/978-3-319-51463-5_7
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ChTsc(muchbetter) ¬ChTsc(muchbetter)
Cat(1) ∧ CC(1) 158 912

¬Cat(1) ∧ CC(1) 293 1762

p = 158
158+912 = 0.148, B = 158

Final rule:

Cat(1)∧ CC(3) =⇒ F>I1;6 ChTsc(much better)

ChTsc(muchbetter) ¬ChTsc(muchbetter)
Cat(1) ∧ CC(3) 6 0

¬Cat(1) ∧ CC(3) 445 2674

p = 6
6+0 = 1, B = 6

Interpretation

Cat(1) : CC(1) → CC(3) =⇒ 0.85;158;6 ChTsc(much better)
q = pF − pI = 1 − 0.148 = 0.852
If the treatment protocol is changed from 1 to 3 in patients diagnosed with category
1, the probability of successful treatment increases by 85% points.

Hypotheses 29 Cat(1) : CC(1)→CC(3) =⇒ 0.85;158;6 ChTsc(much better)∧ Per-
ChTsc(much better)

Cat(1) : Freq LE(<2670;2800)) ∧ CC(1) → Freq LE(<3000;3150)) ∧ CC(3)
=⇒ 0.89;3;3 ChTsc(much better) ∧ PerChTsc(much better)

Cat(1) : FU(T) ∧ CC(1) → FU(A) ∧ CC(3) =⇒ 0.82;82;4 ChTsc(much better) ∧
PerChTsc(much better)

Cat(1) : CC(0) → CC(2) =⇒ 0.36;4;4 ChTaw(much better)

Cat(1) : CC(2) → CC(3) =⇒ 0.33;4;5 ChTaw(much better)

Cat(1) : CC(1) → CC(2) =⇒ 0.33;4;5 ChTaw(much better) ∧ ChTsc(better) ∧
PerChTsc(better)

Cat(1) : CC(1) → CC(0) =⇒ 0.079;30;3 ChTaw(much better) ∧ ChTsc(about the
same) ∧ PerChTsc(about the same)
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8.2.2 Instrument Fitting

According to our medical expertise, in theory, all patients who do not have hyper-
acusis (that is categories 0, 1, 2) can be treated without instrumentation. However,
it is recommended to use some form of instrumentation to most of the patients
(except category 0). One type of instruments, sound generator (SG) provides for a
well-controlled, stable sound source that should lessen hyperacusis (and tinnitus) per-
ception. Other type of instrument—hearing aid (HA) provides for additional benefit
in improved hearing in patients with significant subjective hearing loss. From about
18 models of sound generators evaluated by doctor Jastreboff, he recommends to his
patients most typically following devices: Viennatone, General Hearing Instrument
(GHI), and sound generator from Audifon [JJ00].

The following experiment looks for desirable changes in a particular instrument
fitting, that is changes in REM parameters, that can change tinnitus severity, as
denoted by change in total score/tinnitus awareness category.

Hypotheses 30 Instr(GHI):Th R SPL(< 37;38)) → Th R SPL(< 39;40)) =⇒
0.48;5;5 ChTaw(much better)

Instr(GHI):Freq RE(< 3000;3150)) → Freq RE(< 2500;2670)) =⇒ 0.43;17;5
ChTsc(much better)

Instr(GHI):Freq RE(< 3000;3150)) → Freq RE(≥4000) =⇒ 0.34;18;6
ChTsc(much better)

Instr(GHI):Mix R SL(< 12;13)) → Mix R SL(< 4;5)) =⇒ 0.2;5;5 ChTaw(much
better)

Instr(GHI):Mix R SL(< 9;10)) → Mix R SL(< 4;5)) =⇒ 0.16;6;5 ChTsc(much
better)

Action rules with best confidence difference between final and initial state, were
obtained for REM performed on GHI instrument. For example, the first hypothesis
informs that, when threshold Th R SPL is increased from <37;38) to <39;40), the
probability of observing changes in tinnitus awareness to be “much better” increases
by 48 perc. points. The second hypothesis says that changing Freq RE setting from
value in <3000;3150) to value in <2500;2670) increases probability of much better
improvement, as indicated by total score, by 43 perc. points. Similar change of
this setting to above 4000 also should increase probability of patient’s condition
significant amelioration (by 34 pp.). Analogous interpretation can be applied to two
other action rules. ChangingGHI instrumentMix R SL setting from<12;13),<9;10)
to <4;5) should decrease tinnitus perception. These hypotheses should be further
checked with some additional conditions on which they hold true. For example,
checking for which conditions, increasing Freq RE from <3000;3150) improves
tinnitus, and for which conditions, decreasing Freq RE from <3000;3150) is better.
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8.2.3 Treatment Personalized for Tinnitus Induction

Following experiments in Ac4ft-Miner, with results presented below, were defined
so that to obtain action rules indicating personalized treatment, taking into account
individual demographic characteristics (gender and age), but also medical condition
and additional diseases in a patient. They should also consider elapse of time between
tinnitus/hyperacusis problem induction and treatment start, background of tinnitus
induction, etc.

In the first setup, two default partial cedents were chosen for antecedent stable
part: one for demographics information, and the second for boolean attributes: M1,
M3, M6, Y1, Y10, etc. Examined actions included type of contact, instrumentation,
REM, but also some demographics attributes.

Rules for Patients with Recently Induced Tinnitus (between 1–3 Months)

Hypotheses 31 G(m)∧M1(yes): Country(USA)∧FU(A)→Country(Paraguay)∧
FU(T) =⇒ 0.79;9;6 PerChTaw(much better)

G(m)∧ T side(yes)∧M1(yes): Country(USA)∧ FU(A)→Country(Paraguay)∧
FU(T) =⇒ 0.71;6;6 PerChTaw(much better)

G(m) ∧ T side(yes) ∧ M1(yes): Instr(HA) ∧ Country(USA) → Instr(GHH) ∧
Country(Paraguay) =⇒ 0.32;5;7 PerChTaw(much better)

G(f) ∧ Cat(3) ∧ M1(yes): FU(A) → FU(T) =⇒ 0.21;6;5 PerChTaw(much better)

First three rules consider male patients residing in the USA, in the “initial state of
rule”. Discovered knowledge quite surprisingly recommends to change country of
residence to Paraguay, along with other changes, such as changing follow-up contact
from “Audiological and counseling” to “Telephone”, and also instrumentation treat-
ment from “Hearing Aids” to “GH Hard”. These rules were among most promising
action rules found in this experiment (expected increase in “much better” change
magnitude is correspondingly—79%, 71% and 32% for the first three rules). The
last rule from the chosen group of hypotheses is relevant for females diagnosed
with category 3, whose tinnitus started 1–3 months before therapy, and recommends
changing follow-up contact from “Audiological and counseling” to “Telephone” to
increase chances of relative change of tinnitus awareness to be “much better” by 21
pp.
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Rules for patients with 3–12-months problem

Hypotheses 32 T side(yes) ∧ M3(yes): Instr(GHS) → Instr(HA) =⇒ 0.7;5;8
ChTaw(much better)

Cat(3) ∧ M3(yes): FU(A) → FU(T) =⇒ 0.5;5;8 PerChTsc(much better)

G(m) ∧ M6(yes): Instr(GHS) → Instr(TCIC) =⇒ 0.43;6;8 ChTsc(much better)

AgeBeg(<50;55)) ∧ M6(yes): FU(A) → FU(T) =⇒ 0.34;5;10 ChTaw(better) ∧
PerChTaw(better)

First two hypotheses consider patients, whose tinnitus started between 3 to 6 months
before starting treatment, and two next—between 6 months–1 year before. First
rule recommends changing instrument from “GH soft” to “Hearing aid”—then, it
is expected to observe much better changes in tinnitus awareness with frequency
higher by 70 pp. For category-3 patients, it recommends changing “Audiological
and counseling” contact to that of “Telephone”. Two next rules recommend, accord-
ingly, changing instrumentation from instrument of “GH soft” type to “TCIC”model
(which is combined instrument), and changing follow-up contact.

Rules for patients with tinnitus induced long time ago (1 year ago and before)

Hypotheses 33 G(m)∧ Y30(yes): FU(A)→ FU(T) =⇒ 0.45;6;10 PerChTsc(better)

Cat(1) ∧ Y20(yes): FU(A) → FU(T) =⇒ 0.37;6;5 ChTsc(better)

AgeBeg(≥68)∧Y1(yes): Instr(BTE)→ Instr(GHS) =⇒ 0.33;6;6 PerChTaw(much
better)

G(m) ∧ Y10(yes): FU(A) → FU(T) =⇒ 0.2;13;19 PerChTaw(much better)

These rules were generated for patients, whose problem started accordingly 30 years
and earlier, 20–30 years ago, 1–3 years ago and 10–20 years ago. Most of them
require, already well-known treatment action, of switching to “Telephone” type of
contact, in order to register better change with higher probability. The third rule is
valid for patients aged 68 andmore,whose tinnitus started between 1–3years ago, and
recommends changing instrumentation from “BTE” model (combined instrument)
to “GHS” (sound generator).

Besides time of tinnitus induction, patients should be treated individually based
on the background of their tinnitus. For example, a tinnitus perception resulting from
sudden exposure to noise should be approached differently than tinnitus developed
gradually and associated with stressful situations in life. Examples of such action
rules are presented in selected hypotheses below.
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Patients with depression-induced tinnitus

Hypotheses 34 Cat(1) ∧ DETI(yes): Instr(GHS) → Instr(GHH) =⇒ 0.1;5;6 Per-
ChTsc(better)

Above hypothesis matches patients, whose subjective perception of tinnitus onset
was associated with depression, and were diagnosed with category 1 of tinnitus. It
suggests, as a treatment action, switching from “GH soft” to “GH hard”. Probability
of change in total score to be “better” increases, then, by about 10 pp.

Patients with noise-induced tinnitus

Hypotheses 35 G(m) ∧ NTI(yes): Instr(GHS) ∧ FU(T) → Instr(HA) ∧ FU(A)
=⇒ 0.55;5;5 ChTaw(much better) ∧ PerChTaw(much better)

G(m)∧ T side(yes)∧NTI(yes): Occup(air traffic controller)→Occup(jazz musi-
cian) =⇒ 0.47;5;6 PerChTaw(better)

G(m)∧NTI(yes): Instr(GHS)→ Instr(Viennatone) =⇒ 0.42;8;5 PerChTaw(much
better)

G(m) ∧ NTI(yes): Instr(GHS) → Instr(GHH) =⇒ 0.41;11;6 PerChTsc(better)

Cat(1) ∧ NTI(yes): Occup(sound engineer) → Occup(electrician) =⇒ 0.3;5;5
ChTaw(much better)

G(m)∧Tside(yes)∧NTI(yes):Occup(air traffic controller)→Occup(pathologist)
=⇒ 0.32;5;7 ChTsc(much better) ∧ PerChTsc(much better)

There were quite many hypotheses generated for noise-induced tinnitus patients with
significant confidencedifference betweenfinal and initial states, and change attributes
belonging to categories “much better” or “better”. Generally, recommended actions
included switching from “GH soft” to other instruments (“HA”, “GHH”, “Vienna-
tone”), changing telephone contact, but also, quite surprisingly, changing occupation.
For example, hypotheses listed as second and the last one, recommendchangingoccu-
pation from “air traffic controller” to either a “jazz musician” or “pathologist”. The
fifth rule’s variable antecedent part is:Occup(sound engineer)→Occup(electrician).
The explanation, for this quite surprising change suggestion, can be that in case of
tinnitus associated with exposure to noise, some occupations might be adversely
affecting patient’s improvement during therapy. Certainly, occupations such as air
traffic controller or sound engineer are related to exposure to loud sounds, which
might hinder effectiveness of the whole therapy.
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Patients with stress-induced tinnitus

Hypotheses 36 G(m) ∧ Cat(1) ∧ STI(yes): Instr(GHS) → Instr(GHH) =⇒ 0.4;5;6
ChTsc(much better) / PerChTsc(much better)

Relevant hypotheses for patients with stress-induced tinnitus, who were additionally
males belonging to category 1 of tinnitus, suggests changing from “GH soft” to “GH
hard”, in order to register more significant improvement (absolute or percentage).

Patients with tinnitus related to some medical condition

Hypotheses 37 G(m)∧Cat(1)∧OMTI(yes)∧Tside(yes): Instr(GHS)→ Instr(GHH)
=⇒ 0.3;10;7 PerChTaw(much better)

G(m) ∧ Cat(1) ∧ OMTI(yes) ∧ T side(yes): FU(T) → FU(A) =⇒ 0.062;7;8 Per-
ChTsc(much better)

In case of patients, whose tinnitus was registered as having background in a medical
condition, recommended treatment actions also included change from “GH soft” to
“GH hard”, and secondly “Telephone” to “Audiology/counseling” contact (although
the observable improvement is expected to be less than with the first action).

8.2.4 Treatment Personalized for Medical Condition

For the purpose of experiments considering patient’s medical condition, a stable
antecedent part for relevant rules was set as two partial cedents. One partial cedent
involved all demographics and tinnitus-induction related attributes, and at least 2
of them had to be included in the generated pattern (minimum length of the partial
cedent set to 2). The second partial cedent for stable antecedent was any attribute
fromMedical condition group set withminimum length of 1 (at least one literal had to
be chosen from diseases). The flexible antecedent part was set up as conjunction of at
least two attributes, understood as treatment action: instrument type and model, type
of counseling, but also other changeable attributes, involving demographics: country,
state of residence, work status, occupation and number of medications taken.

The most significant rules were obtained for male patients with depression disor-
der, arthritis, cholesterol problems, and hypertension, whose tinnitus was associated
with taking medications. Possible explanation for rules considering these afflictions
is that patientswith themweremost numerous in the population of patients. Examples
of generated hypotheses along with significance values are shown below.
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Patients with psychological disorders

Hypotheses 38 G(m)∧T side(yes)∧Depression disorder(yes): State(GA)∧FU(A)
→ State(WI) ∧ FU(T) =⇒ 0.84;8;9 ChTsc(much better) /PerChTsc(much better)

G(m) ∧ T side(yes) ∧ Depression disorder(yes): Instr(GHS) ∧ State(NY) →
Instr(HA) ∧ State(WI) =⇒ 0.45;11;8 ChTaw(much better)

G(m) ∧ T side(yes) ∧ seizures(yes): Instr(BCIC) ∧ FU(A) → Instr(HA) ∧ FU(T)
=⇒ 0.3;8;10 ChTsc(much better)

Cat(1) ∧ T side(yes) ∧ Depression disorder(yes): MedNr(≥5) ∧ Work(h) →
MedNr(<3;4)) ∧ Work(w) =⇒ 0.24;11;8 ChTaw(better)

Cat(1) ∧ T side(yes) ∧ Depression disorder(yes): Instr(Viennatone) ∧ Work(h)
→ Instr(GHH) ∧

Work(w) =⇒ 0.22;8;9 PerChTsc(better)

Obtained action rules are relevant for patients with depression disorder and seizures,
whose tinnitus was associated with taking medicines (for these disorders). Examples
of hypotheses above, show only chosen subset of the most interesting rules with the
greatest promise, as for the condition’s improvement. These rules are characterized
by considerable DConf and support in both initial and final state.

Some of the hypotheses, shown above, suggest changing state of residence (for
example from Georgia, New York to Wisconsin), and additionally changing either
contact from “Audiological/counseling” to “Telephone” (first hypothesis) or instru-
mentation, from “GH soft” to “hearing aids” (second hypothesis). In case of seizures
(third hypothesis) it should be beneficial to switch from “BCIC” model to “hearing
aid” (the probability of success in treatment increases by 30 pp.). When treating
patients from category 1 with depression disorder (hypotheses fourth and fifth), rec-
ommended actions include: changing employment status from “staying at home” to
“actively working”, changing sound-generator from “Viennatone” to “GH hard”.

Patients with arthritis

Hypotheses 39 G(m) ∧ T side(yes) ∧ arthisis(yes): Instr(BTE) ∧ FU(A) →
Instr(GHH) ∧ FU(T) =⇒ 0.39;8;9 PerChTaw(much better)

For male patients with arthritis, whose tinnitus is associated with medications, desir-
able treatment action comprises of: changing from “audiology/counseling” contact
to “telephone” and instrumentation from “BTE” model to “GHH”. The expected
probability of treatment success increases then by almost 40 pp.
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Patients with hypertension

Hypotheses 40 G(m)∧Tside(yes)∧ cholesterol problems(yes)∧hypertension(yes):
Med(≥5) ∧ FU(A) → Med(<3;4)) ∧ FU(T) =⇒ 0.21;19;10 PerChTaw(much better)

G(m) ∧ T side(yes) ∧ hypertension(yes): Instr(GHH) ∧ FU(T) → Instr(BTE) ∧
FU(A) =⇒ 0.19;10;8 PerChTaw(much better)

For male patients with hypertension should work either: reducing medications from
“5 and higher” to “3” and contact change from “audiological/counseling” to “tele-
phone” (when they also have cholesterol problems) or changing from “GH hard”
sound generator to “BTE” model. It is expected that observable relative change in
tinnitus will be “much better” with, correspondingly, 21 and 19 pp. greater proba-
bility.

8.3 Meta Actions Discovery Experiment

Doctor Jastreboff states, that the main disadvantage of the Tinnitus Retraining Ther-
apy is that the protocol has to focus on the individual needs and profile of a patient,
and consequently takes significant time of involvement of the personnel providing
the treatment, who has to be also specifically trained [JJ00]. In order to pursue greater
personalization in treatment, another approach for data mining in LISp-Miner on a
given dataset of visits and patients was proposed. The experiment was designed to
consider changes only within one course of therapy treatment (one patient’s visit
history) and later, in the RS, check if the pattern is also valid for a new patient under
treatment. Therefore, analytical problem changes from finding action rules to finding
meta actions (finding set of actions for particular patients that indeed contributed to
changing tinnitus severity).After obtaining effective actions that lead to improvement
in a particular patient, characteristics of this particular patient have to be determined,
along with checking whether they are similar to a new patient under treatment. This
approach presents another way of possible mechanism to be implemented within
RECTIN system. Discovered sets of treatment actions would be fitted to a patient
profile.

8.3.1 Output

Ac4ft task within LISp-Miner was defined so that to discover meta actions, that is,
set of actions that lead to improvement (see Definition 4.6.1). The assumption is that
the actions are searched within one particular patient’s visit dataset (THC attribute
is defined as stable). Example of generated meta actions, for particular patients in
given categories, are shown as hypotheses below:

http://dx.doi.org/10.1007/978-3-319-51463-5_4
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Effective meta actions

Hypotheses 41 THC(01053)∧Cat(3): CC(3)→CC(2) =⇒ 0.67;3;3 ChTsc(better)
→ ChTsc(much better)

THC(00061) ∧ Cat(3): FU(T) → FU(A) =⇒ 0.58;3;3 ChTsc(worse) →
ChTsc(much better)

THC(99021) ∧ Cat(1): Instr(GHS) → Instr(Viennatone) =⇒ 0.56;3;3
ChTsc(about the same) → ChTsc(better)

THC(03085) ∧ Cat(3): CC(2) → CC(3) =⇒ 0.33;4;3 ChTsc(about the same) →
ChTsc(much better)

THC(01054) ∧ Cat(1): FU(T) → FU(A) =⇒ 0.25;3;3 ChTsc(the same) →
ChTsc(much better)

THC(03060) ∧ Cat(3): CC(2) → CC(3) =⇒ 0.17;3;4 ChTsc(about the same) →
ChTsc(much better)

THC(00045) ∧ Cat(1): Instr(GHS) → Instr(Viennatone) =⇒ 0.09;5;4
ChTsc(worse) → ChTsc(much better)

For some patients from category 3, it seemed to be more effective to follow treatment
protocol typical for category 2 (first hypothesis), while for the others from this cate-
gory, protocol suitable for category 3 is more effective. Hypotheses fourth and sixth
say that changing treatment protocol from 3 to 2 in patients with ordering number
03085 and 03060, brings change in THI total score from better to much better, by 33
and 17 pp., correspondingly.

It is interesting to see, that although the rules were extracted for one particular
case of patient, there are more than one tuples that support initial and final state of
an action rule (BASE parameters BEFORE and AFTER were set at 3). It means that
the treatment actions were continued for at least 3 visits of a given patient. When
BASE parameter is decreased to 2, even more meta actions with higher confidence
difference, are generated for particular patients. As a matter of fact, it is possible to
extract all effective actions for each single patient (with BASE set to 1). Examples,
generated for patients in different categories, with BASE = 2, are shown below.

Effective meta actions with lower support

Hypotheses 42 THC(00061) ∧ Cat(3): Instr(GHS) → Instr(GHH) =⇒ 0.71;2;3
ChTaw(the same) → ChTaw(much better)
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THC(00022) ∧ Cat(2): FU(A) → FU(T) =⇒ 0.64;5;2 ChTaw(worse) →
ChTaw(much better)

THC(99062) ∧ Cat(4): Instr(TCIC) → Instr(Viennatone) =⇒ 0.5;2;4
ChTaw(worse) → ChTaw(much better)

THC(03066) ∧ Cat(1): Freg LE(<3000;3150)) → Freg LE(<2000;2120)) =⇒
0.33;2;3 ChTsc(worse) → ChTsc(about the same)

THC(04055)∧Cat(2): Instr(BTE)→ Instr(TCIC) =⇒ 0.33;2;4 ChTsc(worse)→
ChTsc(better)

Aggravating Meta Actions

On the other hand, it is also possible to extract set of actions that are expected
not to be successful. They also can be potentially implemented in the RS so that to
“suggest” which actions not to take in a particular case.

Hypotheses 43 THC(99021) ∧ Cat(1): Instr(GHS) → Instr(GHH) =⇒ 0.56;4;3
ChTaw(much better) → ChTaw(better)

THC(99004) ∧ Cat(2): FU(T) → FU(A) =⇒ 0.57;3;3 ChTsc(much better) →
ChTsc(better)

THC(00052) ∧ Cat(1): Instr(GHS) → Instr(GHH) =⇒ 0.5;3;3 ChTsc(much bet-
ter) → ChTsc(better)

THC(03068) ∧ Cat(0): CC(0) → CC(2) =⇒ 0.4;3;4 ChTsc(better) →
ChTsc(worse)

THC(04032) ∧ Cat(3): CC(3) → CC(1) =⇒ 0.3;4;4 ChTsc(better) →
ChTsc(worse)

8.4 Discussion

8.4.1 Advantages

Experiments with the use of imputed decision attribute values of total score/tinnitus
awareness changes, generated results with significant confidence difference between
final and initial states. Some of them seem especially promising with an increase in
treatment success bymore than 80%points. Also, found ruleswere characterized by a
considerable support,whichmight be contributed to the imputation ofmissing values.
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It was possible to find relevant rules for almost each defined case of treated patient.
In comparison to experiments described in the previous chapter, new interesting and
potentially useful knowledge was discovered.

Also, approach todiscovermeta actionswasproposed.Extracted sets of actions are
relevant for particular patients, whose profile can serve for matching with a new case
of patient under treatment. The problem, then, translates to calculating similarity
measures between patients, or matching patients based on similar features, while
knowing what kind of actions actually worked for a particular “class” of a patient.
This approach can, potentially, be the most reliable. On the other hand, tinnitus
requires such an individual treatment dependent on many factors, that even such
approach does not guarantee 100% success.

8.4.2 Flaws

Action rules discovered in the above experiments provide some insight into treat-
ment actions that have potential to improve patient’s tinnitus. Actions are personal-
ized because are detected for patients who share some features, such as age, gender,
tinnitus cause, or medical condition. However, results obtained within these experi-
ments should be takenwith caution. Despite many advantages the proposed approach
brings, due to some questionable assumptions made at an experimental setup, fol-
lowing flaws are noticed:

• change attributes are not related temporarily, that is, approach does not consider
length of particular treatment action—point in timewhen the actionwas introduced
and point in time when the change was observed,

• established definition of a change in score (as difference from the last measure-
ment) labels actions, performed at a visit when first measurement was taken, as
having no effect (0 value of change)—see tuple with visit 1 in Table8.4,

• consequently, approach assumes that actions taken at a time when measurement
with forms was performed, have immediate effect, reflecting their effect on forms
taken at the same time—which in reality happens very rarely, taking into account
time taken to habituate tinnitus,

• despite having change attributes on two indicators—Total score and Tinnitus
awareness—rules are generated independently for each of the change attribute.
Therefore, advantage of minimizing number of missing values with both indica-
tors at a time is not realized.

8.4.3 Algorithm Reexamined

Let us analyze table of sample patient’s visit history in Table8.4 once again.
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Table 8.4 Flaws associated with algorithm on missing values imputation

V Treatment action Sc t ChTsc PerChTsc

0 Instr—GHS NULL 0 0

1 Instr—GHS TRI-COE 38 0 0

2 Instr—GHS, Tel contact NULL −26 −68

3 Tel contact NULL −26 −68

4 Tel contact NULL −26 −68

5 Tel contact NULL −26 −68

6 Instr—GHH, tel contact 12 −26 −68

7 Instr—GHH, REM, audiol and counsel 18 6 50

8 Instr—GHH, REM, audiol and counsel 16 −2 −11

First total score was obtained at a visit number 1, when also treatment action,
in the form of instrumentation—“GHS” sound generator, was applied. This action
was labeled by the algorithm as having “0” effect on tinnitus change. Nevertheless,
intuitively, observing the history of actions taken, something quite opposite would
be true. It seems that all that time that elapsed up to the next measurement at the 6th
visit, should be considered as time of therapy with GHS instrumentation (no sooner
than at the 6th visit instrumentation was changed to “GH hard”). Therefore, this
action should be actually labeled as having attenuating effect on tinnitus perception.

On the other hand, we can see that at the 6th visit, when a different instrumentation
was prescribed (doctor decided to switch to GH hard), this action was labeled by the
algorithm as having an instant effect of decreasing tinnitus onerousness. According
to medical practice, GH soft were breaking down frequently and it turned out that
they could not be used. By looking at the history, we would rather conclude that
this action was not effective and even increased score measuring tinnitus severity
(at least with the first fitting). We can also see that while observing deterioration of
patient’s condition, doctor decided to take additional action of instrumentation fitting
(with REM method) and also changed contact from “Telephone” to “Audiology and
counseling”. So, finally “GHH” with the right fitting improved patient’s condition
(it can be explained from medical point of view that patient finally started getting
consistent and not interrupted by broken device sound stimulation). Nevertheless,
at the beginning, when it was not fitted, it deteriorated tinnitus, while algorithm
inadequately labeled the action as bringing “much better” change (−26).

Also, the treatment actions at the last visit were labeled as having “−2” effect, but,
as a matter of fact, its effectiveness, in a time elapse was not measured (it was the last
visit). It should be also asked, if labeling treatment action at visit 0, as having change
of “0” is adequate. Value of “0” conveys specific information that the action taken
brought no result: neither positive nor negative. However, in case of initial visits, we
actually have no information of the action effect (because we have no starting value,
or reference value), so we might think if “NULL” or “UNKNOWN” value would not
be more suitable, for this algorithm. If yes, then probably the percentage of imputed
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missing values was overestimated, as the algorithm irrelevantly labeled action as “0”
instead of “NULL”.

Another question is, if actions taken at different points of time (and correspond-
ingly different length of treatment), can be labeled with the same effectiveness
(expressed as a change in score). Tinnitus treatment actions, as each treatment, have
to take some time to bring effect. So, can we really compare an action, whose effec-
tivenesswasmeasured aweek after its introduction, to an actionwith the same change
value, but registered after 3 months? It can be also undermined, if a change from 38
to 12 is of the same relevance as change from 12 to 38 points of total score. Can we
really use absolute change values, without relating it to previous level? Should be a
percentage change used as more adequate?

To sum up, the reexamination of the algorithm brings conclusion that some
assumptions onwhich it is based, are not acceptable, and not adequate for the dataset.
Therefore, a new change attribute should be proposed, defined differently, in a man-
ner suitable for the problem and the dataset. One final attribute is needed so that to
address all the questionable assumptions discussed above, and generate final action
rules for RECTIN system.



Chapter 9
Experiment 4: Treatment Rules
Enhancement

Abstract Experiments on action rules, described in the previous section, did not
consider temporal dependencies between patient’s visits (that is, at what relative
point in timeline particular actions were taken). On the other hand, it would be
effective to search for temporal dependencies between particular treatment actions
and their observable results in the form of changed score denoting tinnitus severity.
New approach should allow to assess treatment action effectiveness in temporal terms
and consider their sequence. For example, some actions might take effect after some
time elapse and not be effective in the short-term.

9.1 Methodology

In order to address issues, as mentioned in discussion of the previous chapter, a
new attribute, suitable for the succedent part of relevant patterns for action rule, was
developed, so that to label particular treatment actions, in terms of their effectiveness,
in an adequate way.

9.1.1 New Temporal Feature Development

Let us define a new change attribute for X indicator at visit v of a given patient, in a
following way:
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Definition 9.1 CHX,v =
• NULL, for Xn = NULL or Xn+1 = NULL
• 0, for Xn = 0 and Xn+1 = 0
• −100

distn+1,n
, for Xn = 0 and Xn+1 > 0

• (100% ∗ Xn+1−Xn

Xn
)/(distn+1,n), for Xn �= 0

where:

• X = T sc or X = Taw
• Xn is measurement of X at v, or the closest previous measurement of X from v:
DATE(v) ≥ DATE(Xn)

• Xn+1 is the closest next measurement of X from visit v:DATE(v) < DATE(Xn+1)

• dist is a distance defined as below:

Definition 9.2 distn+1,n =
• NULL, for CHXn ,v = NULL
• DATEDIFF(weeks,DATE(Xn+1),DATE(Xn)), for DATE(Xn+1) > DATE(Xn)

Algorithm

Algorithm calculates change and distance values for each visit based on the defini-
tions presented above:

• “change” column for a particular visit tuple, associated with some treatment ac-
tions, is generally understood as difference between next measurement of total
score and measurement taken at the time of introducing the treatment action (be-
tween current Sc T value and next closest Sc T value), if, however, there is no
next value to compare with, we assume that effects of the measurement cannot be
assessed, and the change attribute is assigned NULL,

• for visits with treatment actions introduced at the time, when no reference mea-
surementwas taken (visit tupleswithout Sc T ), the difference is calculated between
closest preceding measurement and closest next measurement (between previous
Sc T value and next closest Sc T value), if, however, there is either no next or no
previous value to compare with, we assume that effects of the treatment measure
cannot be assessed, and the corresponding change attribute is assigned NULL,

• the calculated difference is related to the current (or the previous) value of
indicator—change is expressed as apercentage change (dividedbycurrent/previous
value and multiplied by 100). In this way, relative changes of different indicators,
such as total score or tinnitus awareness, can be compared,

• if the current/previous value is 0, we cannot divide as above: if the next value is
0, then change is 0, if the next value is greater than 0, it means than the patient’s
condition aggravated, and the relative difference is set to −100%.
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• in order to calculate treatment action effectiveness for a time unit, the relative
change is further divided by a distance, where distance is defined as a time dif-
ference in weeks between current visit date and date of the next visit when mea-
surement was taken—this way distance informs how long the treatment action
continued until it was assessed,

• the resulting change attribute is a small decimal number and expresses percentage
improvement per week of treatment with a given method,

• two change and distance attributes are defined separately for two indicators: Sc T
and Aw T—resulting in 4 new features: ChTsc, distTsc, ChTaw, distTaw,

• as a result of algorithm, some tuples (visits with associated treatment) have change
attributes calculated for both of these indicators (ChTsc is not NULL andChTaw is
not NULL), the others have change attribute just for one of these, and the rest have
attribute for none of them (see example in Table9.1). In order to take advantage
from both of them combined (consider both at a time) there is a need to merge
these two change features into one, final change attribute Ch and distance (length
of treatment) associated with this change distCh.

One final change attribute

Let us define a final, combined change attribute as follows:

Definition 9.3 CH = ChT sc and distCh = distT sc in the following cases (in
order of priority):

• ChTsc is not NULL and ChTaw is NULL—this is the most obvious case—we
choose a change in indicator that is available,

• ScT is not NULL and AwT is NULL—the case when both of change features are
available for the tuple, but change for Sc t is accurate,whileChTaw is approximated
by “neighboring” previous and next measurements,

• ChTsc is not NULL and ChTaw is not NULL and distT sc < distT aw—there
are values for change attributes for both indicators, as well as current values of
indicators themselves (Sc t and Aw T )—a change value associated with lower
distance is chosen (it is assumed that treatment effectiveness measured in shorter
time distance is more accurate).

Analogously:

CH = ChTaw and distCh = distTaw

when:

• ChTsc is NULL and ChTaw is not NULL,
• ScT is NULL and AwT is not NULL
• ChTsc is not NULL and ChTaw is not NULL and distTsc > distTaw.

The last case, not resolved by the two above, is when ChTsc is not NULL and ChTaw

is not NULL and distT sc = distT aw. Then a “combined” change is calculated as
an average of both:
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Table 9.1 Illustration of algorithm determiningCh and distCh on a chosen example of patient with
ordering number (THC) 04014

V Treatment
action(s)

Date Sc t Aw t ChTsc ChTaw dTsc dTaw Ch dCh

0 Aud, TRICOE,
FU(A)

2004-02-09 N 20 N 0 N 8 0 8

1 CO, TCIC,
FU(A)

2004-02-23 N N N 0 N 6 0 6

2 TCIC, FU(A) 2004-04-05 0 20 0 −11 7 7 −5 7

3 TCIC, REM,
FU(A)

2004-05-24 0 5 −5 0 22 8 0 8

4 TCIC, FU(T) 2004-07-22 N 5 −7 9 14 7 9 7

5 TCIC, REM,
FU(A)

2004-09-07 N 8 −14 21 7 7 21 7

5 TCIC, REM,
FU(A)

2004-09-07 N 8 −14 21 7 7 21 7

6 TCIC, FU(T) 2004-10-27 2 20 0 −2 6 28 0 6

7 Aud, HA, REM,
FU(A)

2004-12-07 2 N −8 −3 12 22 −8 12

8 TCIC, REM,
FU(A)

2005-03-02 0 N 0 −6 10 10 0 10

9 TCIC 2005-05-10 0 8 N N N N N N

CH = ChTsc+ChTaw
2 and distCh = distTaw = distTsc.

Algorithm illustration

Let us track the algorithm of feature development and imputation on the real example
of a single patients’ visit history (with THC = 04014), as presented in Table9.1.

Patient with THC=04014 (that is, 14th registered patient in year ’04) has 10 vis-
its registered. Visit 5 has two tuples, as there were two different instrument fittings
(REM) at the same day. It can be seen that for some of his/her visits, a measurement
of Sc t (total score fromNeumann form) is missing. On the other hand, there is quite a
good inventory of tinnitus awareness measurements Aw t (taken from initial/follow-
up interview forms). Treatment actions undertaken for this patient include instru-
mentation, REM fitting and counseling. It can be noticed that throughout the ther-
apy, treatment was changing, in terms of different types of instruments, subsequent
fittings, and follow-up contacts (audiology/counseling, telephone). For example, at
visit 1, doctor changed instrumentation from sound generator of “TRI-COE” model
to combined instrument of “TCIC” model. He changed instrumentation at visit 7
once again (to “HA”—hearing aid), but returned to combined instrument (“TCIC”)
at visit 8. At visits 4 and 6, doctor switched contact from “Audiology/counseling” to
“Telephone”, and reverse changes were introduced at visits 5 and 7.
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Presented in the table ChTsc, ChTaw, dTsc, dTaw columns are derived attributes,
calculated by algorithm based on definitions presented in the previous sections. Al-
though they are calculated and stored in the database as 4 digit-scale decimals, the
table shows calculated values of ChTsc and ChTaw as integers, to simplify an exam-
ple. Distance is calculated as time difference between current visit date and date of
the next visit when measurement was taken (they express length of treatment that is
measurable in terms of effectiveness). Based on these four additional attributes and
established definitions, a final change attribute—Ch, with corresponding distance
dCh—is determined (bold values in the table). It can be noticed that finally only one
value for Ch is missing.

Detailed tracking of measures taken and their corresponding effects as changes
in Sc t and Aw t, helps to drive some conclusions. For example, treatment actions
taken at visit 0 and 1, brought no effect (Aw t of the next visit—2, has not changed in
relation to the previous value). Change ChTaw for treatment undertaken at visit 0 is
calculated as 100% ∗ 20−20

20 /8 = 0, and the same way for visit 1 (as there was no Aw
t for this visit, for difference calculation the closest previous value was taken—20
from visit 0). As for these two visits, we do not know effects, in terms of total score
(there are no corresponding ChTsc values), the final change for Ch is taken from
ChTaw attribute.

For the visit 2 we have current values for both total score and tinnitus awareness.
ChTsc for visit 2 is 0, as the current and the next value of Sc t are 0. ChTaw is
calculated as: 100% ∗ 5−20

20 /7 = −10, 7142%. As distances for dTsc and dTaw are
equal (both are 7weeks), the final change attribute is calculated as an average between
ChTsc and ChTaw: Ch = 100% ∗ 0+(−10,7142)

2 = −5.
ChTsc for visits 4 and 5 can be calculated based on Sc t from visits 3 and 6. The

change is from 0 to 2 and, according to the definition established (and based on the
fact that we cannot divide by 0 - which happens to be the previous value in this case),
is calculated as 100%/dT sc, which equals to 100%/14 and 100%/7 correspondingly
for the 4th and 5th visit. ChTaw for these visits is calculated with the use of standard
equation for a change in values from 5 to 8, and from 8 to 20. In both cases the
tinnitus awareness increased, that is patient’s condition worsened. It is expressed by
corresponding 9 and 21 values of ChTaw for visits 4 and 5. It can also be observed
that according to ChTsc value, treatment undertaken at visits 4 and 5 was effective,
while according to ChTaw—worsened tinnitus. Algorithm decides which values are
more reliable—as Aw t was taken directly at the time of introducing the treatment
and directly at the next visit, while Sc t was taken some time before the treatment and
was measured only after some other treatment was applied—more reliable measure
for change would be ChTaw (according to the definition, this attribute is chosen for
Ch, because Sc t for these visits are NULL).

For visit 6 there is a reverse situation: ChTsc is calculated directly between the
current and the very next value, while ChTaw was approximated, as difference be-
tween current measure and the one taken three visits later (at visit 9). Therefore
according to the analogous assumption, the final Ch and dCh are taken as ChTsc
and dTsc values. The same logic is relevant to visit 7, with ChTsc calculated as
100% ∗ 0−2

2 /12 = −8, 3333%, and to visit 8 (with change from 0 to 0 defined as



126 9 Experiment 4: Treatment Rules Enhancement

0). For the last visits we can never calculate effectiveness of treatment actions in-
troduced at them, as there are no corresponding “next” values. But, looking at the
sample history of a patient’s visit, some labels assessing effectiveness of treatment
with TCIC instrument were developed. As a matter of fact, most visits for this patient
included treatment with this model of combined instrumentation.

Concluding this example, there are some treatment actions labeled as having no
effect (Ch = 0), for example, instrumentation treatment with “TRICOE”, some that
have positive effect (instrumentation with “HA”, instrument fitting, counseling) and
most of visit’s actions are labeled as deteriorating patient’s condition (by 6–12%)—
for example, treatment with “TCIC” and its fitting proved not very successful.

9.1.2 Experimental Setup

A new attribute Ch (with corresponding distCh attribute) was introduced to LISp-
Miner environment under Temporal group of attributes (see Table9.2).

Figure9.1 shows categories defined for Ch attribute, as intervals, along with their
balanced frequency (absolute, relative and cumulated).

There are 5 categories for change value: “worse” for positive values ofCh, “about
the same” for no change, and three categories for different magnitudes of negative

Table 9.2 Ch and treat len attributes definition in LISp-Miner

Group Att Name Attribute meaning Type Cat Sample

Temporal Ch Percentage change per week Inter 5 Better

treatlen Length of treatment in weeks Inter 10 <1;4)

Fig. 9.1 Frequency distribution of Ch attribute categories in tinnitus visits’ dataset
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values: “slightly better”, “better” and “much better”. Corresponding values intervals
for each category are shown in Table9.3.

Distance features

Additional column, indicating length of treatment of a given measure (distCh), was
defined as an interval attribute—treat len. In order to relate particular patient’s visits
temporally, following columns were also developed:

• distPrev—time difference (in weeks) between a given and the previous visit of the
patient (for initial visit the distance is 0),

• dist0—for each visit: time elapse (in weeks) from initial visit, the last visit’s dist0
informs about total time of a patient’s treatment,

Task setting

After additional attributes’ definition in LISp-Miner, they were used for defining
relevant patterns in Ac4ft tasks. Succedent part was set as disjunction of three lit-
erals: Ch(slightly better), Ch(better), Ch(much better). Therefore, each treatment
action increasing probability of improvement (no matter of the magnitude of the
improvement), was taken into account. It is assumed that actions that generally lead
to “better” condition are interesting (for now, no matter if improvement is slight,
moderate or significant). Therefore, it is possible to obtain rules with succedent, as
following disjunction: Ch(better) ∨ Ch(muchbetter) ∨ Ch(slightlybetter). The
procedure is enforced to generate only interesting action rules (from treatment point
of view) and recommend only effective treatment actions, under conditions specified
by stable antecedent literals.

Antecedent part definition was similar as in experiments described in the previous
chapter, with one exception:when the goal of the taskwas to find changes in treatment
length leading to improvement, treatment measures (such as instrumentation, fitting,
contact) were defined in stable antecedent part. It is because, for such a scenario, the
goal is to find changes of treatment length for a given method of treatment, set as
fixed in this case.

Table 9.3 Category names
and corresponding intervals
for Ch attribute

Category name Ch

Much better <−99; −4.9107)

Better <−4.9107; −2)

Slightly better <−2; 0, 4348)
About the same <−0.4348; 0.8418)
Worse <0.8418; 1944.7369)



128 9 Experiment 4: Treatment Rules Enhancement

9.2 Results

With a new, accurate change attribute Ch for succedent part, developed as described
above, final choice of the most reliable rules for RECTIN Rule Engine can be made.
Generated results were obtained faster in relation to experiments described in the
previous chapters, as succedent part of relevant rule consisted of one cedent (defined
as disjunction of three literals, each defined as “One category” coefficient of Ch-
“slightly better”, “better” or “much better”).

Besides considering Ch attribute in the experimental setup, also temporal de-
pendencies between actions and their effects were considered, suggesting changing
length of treatment with a particular method (treat attribute).

9.2.1 Instrument Fitting

Hypotheses 44 Instr(GHI):Freq LE(<3000; 3150)) → Freq LE ≥ 3775) =⇒
0.32;37;8 Ch(better/much better/slightly better)

Instr(SG): Mix R SL(<9; 10)) → Mix R SL(<11; 12)) =⇒ 0.27;8;11 Ch(better/
much better/slightly better)

Instr(SG): Mix R SL(<9; 10)) → Mix R SL(<15; 17)) =⇒ 0.27;8;8 Ch(better/
much better/slightly better)

Instr(GHI): Mix L SL(<7; 8)) →Mix L SL<2 =⇒ 0.27;8;8 Ch(better/much
better/slightly better)

Instr(GHI): Mix L SL(<7; 8)) → Mix L SL(<11; 12)) =⇒ 0.27;8;8 Ch(better/
much better/slightly better)

Instr(SG):FreqLE(<2670; 2800))∧FreqRE(<2670; 2800))→FreqLE(<2500;
2670))∧FreqRE(<2500; 2670)) =⇒ 0.23;6;7Ch(better/muchbetter/slightlybetter)

Instr(GHI): Th L SPL(<36; 37))→ Th L SPL(<37; 38)) =⇒ 0.17;8;9 Ch(better/
much better/slightly better)

Instr(GHI):MixRSL(<6; 7))→MixRSL(<9; 10)) =⇒ 0.17;9;8Ch(better/much
better/slightly better)

Instr(SG): Freq RE(<3000; 3150)) → Freq RE(<2500; 2670)) =⇒ 0.11;9;12
Ch(better/much better)
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Instr(SG): Freq RE(<3000; 3150)) → Freq RE(<2500; 2670)) =⇒ 0.03;5;6
Ch(slightly better) → Ch(better/much better)

Instr(SG): Freq LE(<2670; 2800)) → Freq LE(<2500; 2670)) =⇒ 0.1;12;9
Ch(better/much better/slightly better)

Instr(SG): Freq LE(<2670; 2800)) → Freq LE(<3000; 3150)) =⇒ 0.1;8;11
Ch(better/much better)

Instr(SG) ∧ Model(TR COE): Freq RE(<2500; 2670)) → Freq RE(<2670;
2800)) =⇒ 0.09;10;10 Ch(better/much better/slightly better)

Instr(SG) ∧ Model(TR COE): Freq RE(<2500; 2670)) → Freq RE(<3000;
3150)) =⇒ 0.08;10;12 Ch(better/much better/slightly better)

Instr(SG): Freq RE(<2670; 2800)) → Freq RE(<2500; 2670)) =⇒ 0.08;11;12
Ch(better/much better/slightly better)

Instr(GHS): Freq RE(<2800; 3000)) → Freq RE(<2670; 2800)) =⇒ 0.07;11;12
Ch(better/much better/slightly better)

Instr(SG): Th R SPL(<33; 34)) → Th R SPL(<36; 37)) =⇒ 0.02;8;9 Ch(better/
much better/slightly better)

Type(GHH): Freq RE(<2670; 2800)) → Freq RE(<3000; 3150)) =⇒ 0.02;8;13
Ch(better/much better/slightly better)

FU(A) ∧ Instr(GHI) ∧ Freq RE(<3000; 3150)): treat(<6; 8)) → treat(<5; 6))
=⇒ 0.1;9;8 Ch(better/much better/slightly better)

Above action rules, related to instruments fitting with REM, include rules for the
following type of instruments: “SG” (sound generators generally), “GHI” (general
type of sound generator that includes both GHI hard and GHI soft models), particular
types: “GHS” (GHI soft) and “GHH” (GHI hard), up to specific model, such as
“TRI-COE”. Therefore, these results on REM action rules, provide better insight,
in comparison to the previous experimental setup, for which relevant rules were
obtained only for “GHI” instrument fitting (comparewithHypotheses 30). Following
settings of the instruments were considered in variable antecedent parts of rules:Freq
RE, Freq LE, Mix R SL, Mix L SL, Th R SPL, Th L SPL. These constitute quite a
significant subset of settings for instrumentation fitting. Some of the obtained results
confirmed action rules from the previous experimental setup, but some of them
provide a new insight into effective treatment actions.

As it was already explained, in the previous chapter, how to interpret action rules,
interpretation of the single action rule from above will be omitted. In this chapter,
focus will be set on action rules that suggest change in length of treatment of a
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particular method. For example, the last action rule from Hypotheses 44 informs
that probability of successful treatment increases by 10% points, when the “Audio-
logical/counseling” treatment combined with “GHI” instrumentation with setting of
Freq RE in <3000; 3150) shortens from 6–8 weeks to 5–6 weeks.

9.2.2 Treatment Protocol

Action rules, related to the change of treatment protocol, as presented below, are
more diverse, than corresponding Hypotheses 29 (which were discovered only for
category-1 patients). The second rule from the below listing informs, for example,
that changing treatment of category-0 patient from treatment protocol “0” lasting
12–16 weeks to treatment protocol “1” for more than 32weeks, should increase
improvement by 61 pp.

Hypotheses 45 Cat(0): CC(0) → CC(1) =⇒ 0.33;42;9 Ch(better/slightly better)

Cat(0): CC(0)∧ treat(<12; 16)) → CC(1)∧ treat≥ 32 =⇒ 0.61;42;9 Ch(better/
slightly better)

Cat(3): Instr(GHH) ∧ FU(T) ∧ CC(3) → Instr(TCI-C) ∧ FU(A) ∧ CC(2)
=⇒ 0.33;8;9 Ch(better/much better/slightly better)

Cat(3): Instr(Viennatone) ∧ CC(3) → Instr(TCI-C) ∧ CC(2) =⇒ 0.25;8;8
Ch(slightly better/better/much better)

Cat(3): CC(0) → CC(2) =⇒ 0.18;8;22 Ch(slightly better/better/much better)

Cat(1): CC(0) → CC(1) =⇒ 0.14;9;491 Ch(slightly better/better/much better)

Cat(3): CC(0) → CC(3) =⇒ 0.08;8;239 Ch(slightly better/better/much better)

9.2.3 Treatment Personalized for Demographics

The following hypotheses were generated for the tasks defined so that to maximize
treatment personalization. For the antecedent part, four groups of partials cedents
were defined:

• demographics attributes (age, gender, occupation, work status),
• problem induction background (noise, stress, auto-accident, operation, medical,
depression),

• relative time of induction (W2, M1, M3, M6, Y3, Y5, Y10, Y20, Y30),
• category of tinnitus diagnosed by a doctor.



9.2 Results 131

Each of these partial cedents was defined with a minimum length of 1 (that is at least
one attribute from each group had to be included in rule’s antecedent literals).

Hypotheses 46 AgeBeg(<50; 55))∧ G(m) ∧ Cat(1) ∧ T side(yes): MedNr ≥ 5 →
MedNr(<2; 3)) =⇒ 0.55;14;8 Ch(slightly better/better)

G(m) ∧ Cat(1) ∧ OMTI(yes) ∧ T side(yes): MedNr(<3; 4)) → MedNr(<4; 5))
=⇒ 0.41;9;18 Ch(slightly better/better/much better)

AgeBeg(<50; 55))∧ G(m) ∧ AgeInd(<50; 56))∧ T side(yes): CC(2) → CC(1)
=⇒ 0.55;14;11 Ch(slightly better/better/ much better)

G(m)∧Cat(1)∧OMTI(yes)∧T side(yes): F(T)→F(A) =⇒ 0.23;9;16 Ch(slightly
better/much better)

AgeBeg(<55; 60))∧ G(m) ∧ Cat(1) ∧ T side(yes): Instr(GHS) → Instr(GHH)
=⇒ 0.19;8;8 Ch(better/much better)

9.2.4 Treatment Personalized for Tinnitus Background

Hypotheses 47 OMTI(yes)∧Tside(yes): Instr(Viennatone)∧FU(T)→ Instr(GHH)
∧ FU(A) =⇒ 0.56;8;8 Ch(slightly better/better)

NTI(yes) ∧ G(m): Instr(GHS) → Instr(GHH) =⇒ 0.33;28;8 Ch(slightly bet-
ter/better/much better)

G(m)∧OMTI(yes)∧M6(yes)∧Cat(1):FU(T)→FU(A) =⇒ 0.3;5;10Ch(slightly
better/better/much better)

OMTI(yes) ∧ T side(yes): Work(h) → Work(w) =⇒ 0.3;13;11 Ch(slightly bet-
ter/better)

OMTI(yes) ∧ G(f): Instr(GHS) → Instr(GHH) =⇒ 0.28;10;8 Ch(slightly bet-
ter/better)

OMTI(yes) ∧ T side(yes) ∧ Cat(1): Instr(GHS) → Instr(GHH) =⇒ 0.3;13;11
Ch(slightly better/better)

OMTI(yes) ∧ G(f): Instr(Viennatone) → Instr(GHH) =⇒ 0.25;8;8 Ch(slightly
better/better/much better)
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OMTI(yes) ∧ T side(yes) ∧ Cat(1): Instr(Viennatone) ∧ FU(T) → Instr(GHS) ∧
FU(A) =⇒ 0.24;8;8 Ch(slightly better/better)

G(m) ∧ NTI(yes) ∧ M3(yes) ∧ Cat(3): FU(A) → FU(T) =⇒ 0.18;6;8 Ch(slightly
better/better/much better)

OMTI(yes) ∧ Instr(GHS): treat≥32 → treat(<5; 6)) =⇒ 0.06;9;6 Ch(slightly
better/better/much better)

OMTI(yes) ∧ FU(T): treat(<21; 32)) → treat(<8; 10)) =⇒ 0.01;11;14
Ch(slightly better/better/much better)

The two last rules hypothesize that in case of medical-induced tinnitus
(OMTI(yes)), it should be advantageous to shorten treatment with “GHS” instrumen-
tation from “above 32weeks” to 5–6 weeks, as well as shorten telephone treatment
from 21–32 weeks to 8–10 weeks.

9.2.5 Treatment Personalized for Medical Condition

Relevant action rules, which consider other diseases in a patient, include: patient with
ulcers, hypertension, seizures, depression/anxiety disorders, and treatment actions,
such as: reducing number of medications (which are also associated with tinnitus as
a side-effect), changing instrumentation (for example from “GHS” to “HA”, or from
“Viennatone” to “GHS”), but also changing place of residence (for example, state
“NY” to “WI”, “A” to “IL”).

Hypotheses 48 G(m) ∧ T side(yes) ∧ Ulcers(yes): Med(≥5) ∧ State(GA) →
Med(<2; 3))∧ State(IL) =⇒ 0.73;10;8 Ch(slightly better/better)

G(m)∧T side(yes)∧Ulcers(yes)∧Erosive arthritis(yes)∧GERD(yes):Med(≥5)
∧ State(GA) → Med(<2; 3))∧ State(IL) =⇒ 0.71;10;8 Ch(slightly better/better)

Cat(1) ∧ T side(yes) ∧ Hypertension(yes): Med(≥5) ∧ FU(T) → Med(<4; 5)) ∧
FU(A) =⇒ 0.56;12;11 Ch(slightly better/better/much better)

G(m) ∧ T side(yes) ∧ Seizures(yes): Instr(GHS) ∧ State(NY) → Instr(HA) ∧
State(WI) =⇒ 0.53;9;8 Ch(slightly better/much better)

G(m)∧ T side(yes)∧Depression(yes)∧ Panic disorder (yes)∧ Seizures(yes): In-
str(GHS)∧State(NY)→ Instr(HA)∧State(WI) =⇒ 0.53;9;8Ch(slightly better/much
better)
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Cat(1) ∧ T side(yes) ∧ Depression(yes) ∧ Anxiety disorder (yes): Instr(GHH)
∧ Med(≥5) → Instr(GHS) ∧ Med(<4; 5)) =⇒ 0.48;9;12 Ch(slightly better/better/
much better)

G(m)∧ T side(yes)∧Depression(yes): Med(≥5)∧ State(GA)→Med(<2; 3)))∧
State(WI) =⇒ 0.47;14;10 Ch(slightly better/much better)

G(m) ∧ T side(yes) ∧ Seizures(yes): Med(≥5) ∧ FU(A) → Med(<2; 3))∧ FU(T)
=⇒ 0.47;9;8 Ch(slightly better/better/much better)

OMTI(yes) ∧ T side(yes) ∧ Depression(yes): Instr(Viennatone) ∧ Med(≥5) →
Instr(GHS) ∧ Med(<4; 5)) =⇒ 0.42;21;12 Ch(slightly better/much better)

9.2.6 Meta Actions

Following hypotheses show examples of meta actions generated for patient 01054
(that is, set of effective actions, for this particular patient).

Hypotheses 49 THC(01054)∧Cat(1): Instr(VSS)∧ F(T)→ Instr(V-AMTI)∧ F(A)
=⇒ 0.67;1;4 Ch(slightly better/better/much better)

THC(01054)∧Cat(1): Freg LE(<2500; 2670))∧ Freg RE(<2500; 2670))∧Mix
R SPL(<51; 52)) → Freg LE(<2120; 2380))∧ Freg RE(<2380; 2500))∧ Mix R
SPL(<53; 55)) =⇒ 0.5;1;1 Ch(better/much better)

THC(01054) ∧ Cat(1): Freg LE(<3000; 3150))∧ Freg RE(<3000; 3150))∧
Mix R SL(<9; 10)) → Freg LE(<2500; 2670))∧ Freg RE(<2500; 2670))∧ Mix R
SL(<14; 15)) =⇒ 0.5;1;1 Ch(slightly better/much better)

THC(01054) ∧ Cat(1): Freg LE(<3000; 3150))∧ Freg RE(<3000; 3150))∧
Mix R SL(<9; 10)) → Freg LE(<2120; 2380))∧ Freg RE(<2380; 2500))∧ Mix R
SL(<11; 12)) =⇒ 0.5;1;1 Ch(slightly better/better/much better)

THC(01054) ∧ Cat(1): Mix R SL(<13; 14))∧ Mix R SPL(<51; 52))∧ Th R
SPL(<38; 39)) →MixRSL(<11; 12))∧MixRSPL(<53; 54))∧ThRSPL(<42; 43))
=⇒ 0;1;1 Ch(better/much better)

The above set of actions for this particular patient (meta-actions) are examples
of effective treatment undertaken for this case (profile) of a patient. It can be also
observed that the last set of actions (last hypothesis) brought no effect.
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9.3 Summary of Experiments on Rules Extraction

Experiments described in three previous chapters were conducted in order to extract
knowledge on tinnitus diagnosis and treatment, in the form of rules—decision rules
and action rules, whose theoretical background was presented in Chap.4. While the
former should help to understand relations between different diagnosis factors, the
latter suggest a course of treatment action leading to improvement of a patient’s
condition. Experiments on finding association rules can also help in analyzing the
collected data in terms of patient’s characteristics and discover patterns that are not
obvious from medical point of view.

However, the main advantage of the proposed approach based on rule extraction,
is a possibility to automatically retrieve knowledge in the form of rules, without a
medical expert engagement. It seems promising, as experts are usually not widely
available and knowledge engineering based on interviewing experts is quite time-
consuming. Often, it is also cumbersome for experts to formulate their knowledge
in the form of specific rules, as they often make decisions intuitively, based on
experience heuristics. This knowledge is, on the other hand, hidden in the database
in the form of large sets of data, which can be mined for rules that imitate human
behavior. This methodology is particularly interesting and useful for building a rule-
based recommender system.

The discovered rules can be either exploited in a qualitative way by an expert, or
used to perform classification (scoring) of incoming objects. Ultimately, automati-
cally extracted rules should be built into the Rule Module of RECTIN system (see
Fig. 5.2). Proper mechanism of automatic rule execution (or alternatively inference
engine) should be implemented. Relevant rules could be then evokedwith newpatient
data matching rules’ premises and their outcome (conclusions) could be presented
to the RECTIN system user.

One of the problem in discovering knowledge on treatment actions is quite limited
information on the details of treatment provided by doctor. In particular, important
information on type of counseling (or what the counseling consisted of), provided
to the patients is missing. On the other hand, counseling, besides instrumentation, is
vital for Tinnitus Retraining Therapy. Although there are descriptive columns with
comments that can potentially provide some insight, they are sporadically entered
in the database and written in shortcuts, which sometimes seem difficult to entangle
for a medical novice.

Another problem of automatic rule extraction is that in case of large number of
generated rules, it is difficult to assure that obtained rules are not contradictory (that
is, the same antecedents lead to different, contradictory succedents). Therefore some
automatic mechanism for truth maintenance system should be applied in RECTIN,
as well. LISp-Miner experiments proved to result in many similar rules (in terms
of literals selected for antecedent part, but different variations and combinations of
them).Therefore, although therewas generally a large number of themgenerated at an
experiment,manyof the subsequent hypotheses did not provide additional knowledge

http://dx.doi.org/10.1007/978-3-319-51463-5_4
http://dx.doi.org/10.1007/978-3-319-51463-5_5
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content. Also, at each experiment, different settings on antecedents’ attributes and
quantifiers should be adjusted.

Rule extraction, in contrary to classifier construction method, as described in
Chap.6, provides better insight into different diagnosis and treatment factors and
allows customization of associations, which are aimed to be discovered. Also, when
implemented into RECTIN, they can potentially provide explanatory mechanism. It
means, decision the system arrives at, can be explained bymeans of rules’ antecedent
parts, that were matched. It can also potentially provide educational facility, as the
untrained, in tinnitus treatment, personnel can learn tinnitus diagnosis and treatment
using the system and its explanatory facilities, which imitate human expert behavior
and decisions.

The main obstacle preventing from detecting diagnostic/treatment action rules
with high confidence and support was the problem of missing attributes, which could
help assess change of tinnitus perception and patient’s condition. Some approximat-
ing approaches have been proposed so that to impute missing values with a sensible
approach—therefore, retaining as much information as possible from a given data
content.

To sum up experiments, discovered rules confronted with expert knowledge can
confirm the correctness of the approach and methodology, while new unknown pat-
terns provide additional knowledge to the expert he could not easily see in a large
and complex dataset. It is important to note that the discovered knowledge should be
treated as hypotheses, which nevertheless, have to be either confirmed by an expert
or by a controlled study, designed to validate the hypothetical claims. In particular,
rules generated and presented in this work should not be basis for any diagnosis
or treatment decision, or suggest any particular course of treatment, as this work is
purely experimental and aimed at showing possible application of action rules and
meta action in medicine. Final check of the validity of approach can be obtained by
comparison with clinical results and knowledge.

http://dx.doi.org/10.1007/978-3-319-51463-5_6


Chapter 10
RECTIN Implementation

Abstract This chapter describes prototype RECTIN implementation with regard
to each component. For classification module and rule engine module, the most
interesting code parts are listed.

10.1 Application

Diagram in Fig. 10.1 depicts application architecture in general environment of
RECTIN system. Two yellow areas denote: analytics part (left) and transactional
part (right).

Application consists of forms for patient and visit data entry, as well as for fill-
ing in the electronic forms: Initial/Follow-up Interview form and Tinnitus Handicap
Inventory form. The system user should also be able to generate reports: on patient
category prediction, with relevant metrics (such as accuracy), and second, on treat-
ment action recommendation with detailed explanation section (based on matched
rules). These two reports are generated by, accordingly, Classification Component
and Rule Engine Component. The data is stored in the central database, whose struc-
ture will be described in the next section. It registers transactions from application.
Based on the data, suitable predictions/rules are executed and results are presented in
reports. Database also serves for relearning models for classification and rule extrac-
tion. Accordingly defined ETL jobs should periodically extract data from database,
transform it properly for data mining tasks, and load into files, on which data min-
ing/machine learning tasks can be performed. After “relearning” the models, the
recommender facility is improved with new data.

© Springer International Publishing AG 2017
K.A. Tarnowska et al., Decision Support System for Diagnosis and Treatment
of Hearing Disorders, Studies in Computational Intelligence 685,
DOI 10.1007/978-3-319-51463-5_10
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Fig. 10.1 RECTIN Application architecture diagram

10.2 Transactional Database

The original database was redesigned, so that to improve transaction efficiency,
ensure data consistency, eliminate redundant data and relate datawith keys. Resulting
model of transactional database for RECTIN system is shown in Fig. 10.2.

In comparison to original data structure (see diagram in Fig. 5.3), data related
to patients and visits was normalized (3NF) to ensure that no redundant data is
stored, and enable at the same time quick retrieval of related data with simple queries
(based on foreign keys). Reference tables were developed to avoid misspellings with
manual data entry and ensure integrity of data, and once again—avoid repeating
data. Reference tables, sometimes called “Dictionaries” should be provided with
the system (the reference data should be uploaded before the use of system). Some
values are expected to be automatically inserted, for example, calculation of scores in
THI table. Additional Counseling table was developed so that to store details about
counseling sessions, which are oftenmissing or entered in textual form, inappropriate
for knowledge discovery, but on the other hand can provide important source of
information from data and rule mining point of view.

The central table is Visit, which can be joined with any tables storing details
of treatment actions undertaken at the visit: Instrumentation, REM, Counseling, or
any medical evaluation performed at it (Audiological, Pharmacology). Last but not
least, the given visit can be associated with forms for tracking treatment progress:
THI (Tinnitus Handicap Inventory, also called Newman Form), Interview. The latter
stores all other information a physician could include when conducting personal
interview. There are two views based on this table: Initial interview and Follow up
interview, which should serve for developing suitable forms in theRECTIN interface.

http://dx.doi.org/10.1007/978-3-319-51463-5_5
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Fig. 10.2 Physical model of transactional database for RECTIN

10.3 Classification Module

Prototype classification module of RECTIN system, implemented in Java, with
WEKA API is shown in Listing 10.1. The module consists of two most important
functions: learn() and predict(). The former constructs the classification model, the
latter performs classification on new data with built and dumped model. Themodule
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uses WEKA API for classification and feature selection algorithms. Example listed
uses Bayes package with NaiveBayes algorithm and attribute selection based on
ChiSquaredAttributeEval. Dataset, on which classifier is built, is retrieved from .csv
file, which is periodically refreshed by ETL jobs (retrieving up-to-date data from
central database—see application architecture in Fig. 10.1). The classifier is imple-
mented as FilteredClassifier, that is, built with the use of filter on attributes. Filter is
an AttributeSelection object, which uses ChiSquared attribute evaluator with Ranker
method. The built model is dumped on disc, and used for performing prediction
with new data (model is dumped with saveModel() and retrieved with loadModel()
functions of the module, which are not shown in the listing). The new data, on which
classification should be performed, is retrieved from database, where data is inserted
by system user filling a suitable New patient form through the application interface
(see Fig. 10.1). Predicted category is returned by predict() function and presented to
the user, as Prediction report.

Listing 10.1 Prototype classification module for RECTIN system.
1 package c la s s i f i ca t ion ;
2

3 import weka . c l a s s i f i e r s . bayes .NaiveBayes ;
4 import weka . c l a s s i f i e r s .meta . F i l t e redClass i f i e r ;
5 import weka . a t t r ibuteSelec t ion . Attr ibuteSelection ;
6 import weka . a t t r ibuteSelec t ion . ChiSquaredAttributeEval ;
7 import weka . a t t r ibuteSelec t ion .Ranker ;
8 import weka . core . converters . ConverterUtils . DataSource ;
9 import weka . experiment . InstanceQuery ;
10 import weka . f i l t e r s . F i l t e r ;
11 import weka . f i l t e r s . unsupervised . a t t r i bu t e .Remove;
12 import weka . core . Instances ;
13 /∗∗
14 ∗ Module implementing c la s s i f i ca t ion model learning
15 ∗ and prediction on new data .
16 ∗/
17 public class Class i f ica t ion{
18 /∗
19 ∗ Main class ca l l s learn and predict method .
20 ∗/
21 public s t a t i c void main( String [ ] args ) throws Exception{
22 F i l t e r f i l t e r = learn ( ) ;
23 System . out . pr in t ln ( predict ( f i l t e r ) ) ;
24 }
25 /∗∗
26 ∗ Learns prediction model based on data in csv f i l e .
27 ∗ Saves model to f i l e .
28 ∗ @return F i l t e r that se lec ts a t t r i bu t e s
29 ∗/
30 public s t a t i c F i l t e r learn ( ) throws Exception{
31

32 DataSource source =
33 new DataSource ( " c l a s s i f i ca t ion / data / pred_vis0 . csv" ) ;
34 Instances data = source . getDataSet ( ) ;
35

36 i f ( data . classIndex ( ) == −1)
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37 data . setClassIndex ( data . numAttributes ( ) − 1);
38

39 F i l t e redClass i f i e r c l a s s i f i e r = new Fi l t e redClass i f i e r ( ) ;
40 / / se t a t t r i bu t e f i l t e r to use on new data
41 Attr ibuteSelection f i l t e r = new AttributeSelection ( ) ;
42 / / package weka . f i l t e r s . supervised . a t t r i bu t e !
43 ChiSquaredAttributeEval eval =
44 new ChiSquaredAttributeEval ( ) ;
45 Ranker search = new Ranker ( ) ;
46 search . setNumToSelect (80);
47 f i l t e r . setEvaluator ( eval ) ;
48 f i l t e r . setSearch ( search ) ;
49 f i l t e r . SelectAttr ibutes ( data ) ;
50

51 in t [ ] retArr = f i l t e r . selectedAttr ibutes ( ) ;
52

53 / / se t up the f i l t e r for removing a t t r i bu t e s
54 F i l t e r remove = new Remove( ) ;
55 ( (Remove) remove ) . setAttributeIndicesArray ( retArr ) ;
56 ( (Remove) remove ) . setInvertSelect ion ( true ) ;
57 / / re ta in the selected , remove a l l others
58 remove . setInputFormat ( data ) ;
59 Instances newData = F i l t e r . useFi l ter ( data , remove ) ;
60

61 NaiveBayes nB = new NaiveBayes ( ) ;
62 c l a s s i f i e r . se tClass i f i e r (nB) ;
63 c l a s s i f i e r . bui ldClass i f ier (newData ) ;
64

65 / /dump meta−c l a s s i f i e r
66 saveModel( c l a s s i f i e r , "NB80" , " c l a s s i f i ca t ion /models / " ) ;
67 /∗
68 ∗ Evaluation
69 Evaluation evaluation = new Evaluation ( data ) ;
70 evaluation . crossValidateModel (nB, newData , 10 , new Random(1 ) ) ;
71 System . out . pr in t ln ( evaluation . toSummaryString ( ) ) ;
72 ∗/
73 return remove ;
74 }
75 /∗∗
76 ∗ Performs prediction based on saved model .
77 ∗ Returns predicted category .
78 ∗ @param Fi l t e r se lector for a t t r i bu t e s on new data
79 ∗ @return predicted category
80 ∗/
81 public s t a t i c double predict ( F i l t e r se lector ) throws Exception{
82 /∗
83 ∗ Load prediction model
84 ∗/
85 F i l t e redClass i f i e r c l a s s i f i e r =
86 loadModel( " c l a s s i f i ca t ion /models / " , "NB80" ) ;
87 /∗
88 ∗ Perform prediction on new data
89 ∗/
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90 InstanceQuery queryNewData = new InstanceQuery ( ) ;
91 queryNewData . setQuery
92 ( " se lec t top 2 ∗ from Tinnitus . dbo . finalPred6" ) ;
93 Instances unlabeled = queryNewData . re t r ieveInstances ( ) ;
94 Instances newData = F i l t e r . useFi l ter ( unlabeled , se lector ) ;
95 / / set class a t t r i bu t e
96 newData . setClassIndex (newData . numAttributes ( ) − 1);
97 newData . instance (0 ) . setClassMissing ( ) ;
98

99 double label =
100 c l a s s i f i e r . c lass i fyInstance (newData . instance (0 ) ) ;
101 System . out . pr in t
102 ( " predicted category : "+
103 newData . c lassAttr ibute ( ) . value ( ( in t ) label ) ) ;
104

105 return ( label ) ;
106 }
107 }

10.4 Rule Engine

Rule Engine module prototype, as a component of application architecture depicted
in Fig. 10.1, is implemented in the Java Platform with the use of Jess library (the
Rule Engine for the Java Platform) [FH+08].

Touse the library for diagnostic and treatment recommendation purposes, decision
and action rules obtained in experiments have to be specified in the form of rules
using either XML format or the Jess rule language. Examples of diagnostic and
treatment rules specified in the former format are presented in Listings 10.2 and 10.3.
Whenever new rules are extracted, they can be easily added to the system logic. This
is done by writing explicit “diagnosis” and “treatment” libraries (diagnosis.clp and
treatment.clp files), which then can be invoked from a Web application or from Java
code.

Listing 10.2 Sample diagnostic rules declaration (diagnosis.clp) for Rule Engine Module in
RECTIN System.
1 ; ; F i r s t def ine templa tes fo r the model c l a s s e s so we can use them
2 ; ; in our d i agnos t i c r u l e s . This doesn ’ t c r ea t e any model objects−−
3 ; ; i t j u s t t e l l s Jess to examine the c l a s s e s and se t up templa tes
4 ; ; using t h e i r p r ope r t i e s
5

6 ( import ruleEngine . d iagnos i s . model .∗ )
7 ( def templa te V i s i t ( dec la re ( from−class V i s i t ) ) )
8 ( def templa te Vis i t I t em ( dec la re ( from−class Vis i t I t em ) ) )
9 ( def templa te Diagnosis ( dec la re ( from−class DiagnosisItem ) ) )
10 ( def templa te Pa t i en t ( dec la re ( from−class Pa t i en t ) ) )
11

12 ; ; Now def ine the d iagnos is r u l e s themselves . Each ru l e matches a s e t
13 ; ; of cond i t ions and then c r e a t e s an Diagnosis ob jec t to r ep re sen t a
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14 ; ; d iagnos i s recommendation to a pa t i e n t . The ru l e s assume t h a t
15 ; ; t he re wi l l be j u s t one Vis i t , i t s Vis i t s I tems , and i t s Pa t i en t in
16 ; ; working memory , along with a l l the Diagnosis ob j ec t s .
17

18

19 ( de f ru l e C0−LSD_LL4_LR8_RSD
20 ’Diagnose with Category 0 i f aud io log ica l eva lua t ion of L SD >=100,
21 LL4 >=999, LR8 >=999,R SD >=100’
22 ( Vis i t I t em {LSD >= 100})
23 ( Vis i t I t em {LL4 >= 999})
24 ( Vis i t I t em {LR8 >= 999})
25 ( Vis i t I t em {R SD >=100})
26 =>
27 ( add (new Diagnosis ’ Category 0 , 50% conf . ’ 0 50) ) )
28

29 ( de f ru l e C1−R3−TAn
30 ’Diagnose with Category 1 i f aud io log ica l eva lua t ion of 20 > R3 >=15,
31 t i n n i t u s annoyance as ind i ca t ed in Interv iew Quest ionnaire >=8. ’
32 ( Vis i t I t em {R3 >= 15 && R3 < 20})
33 ( Vis i t I t em {T_An >=8})
34 =>
35 ( add (new Diagnosis ’ Category 1 , 94% conf . ’ 1 94) ) )
36

37 ( de f ru l e C2−HLpr
38 ’Diagnose with Category 2 i f hear ing lo s s problem ,
39 as ind i ca t ed in Interv iew Quest ionnaire , >=5. ’
40 ( Vis i t I t em {HL_pr >= 5})
41 =>
42 ( add (new Diagnosis ’ Category 2 , 54% conf . ’ 2 54) ) )
43

44 ( de f ru l e C3−LL3−Hpr_HSv
45 ’Diagnose with Category 3 i f aud io log ica l eva lua t ion of 91>LL3 >=85,
46 hyperacus is problem as ind i ca t ed in Interv iew Quest ionnaire >=7,
47 hyperacus is s eve r i t y as ind i ca t ed in Interv iew Quest ionnaire >=7.5 ’
48 ( Vis i t I t em {LL3 >= 85 && LL3 < 91})
49 ( Vis i t I t em {H_pr >=7})
50 ( Vis i t I t em {H_Sv >=7.5})
51 =>
52 ( add (new Diagnosis ’ Category 3 , 100% conf . ’ 3 100)) )
53

54 ( de f ru l e C4−LSD_L4_LL3
55 ’Diagnose with Category 4 i f aud io log ica l eva lua t ion of L SD >=100,
56 L4 <10, LL3 <75’
57 ( Vis i t I t em {LSD >= 100})
58 ( Vis i t I t em {L4 < 10})
59 ( Vis i t I t em {LL3 <75})
60 =>
61 ( add (new Diagnosis ’ Category 4 , 67% conf . ’ 4 67) ) )

Listing 10.3 Sample treatment rules declaration (treatment.clp) for Rule Engine Module in
RECTIN System.
1 ( import ruleEngine . t rea tment . model .∗ )
2 ( def templa te V i s i t ( dec la re ( from−class V i s i t ) ) )
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3 ( def templa te Vis i t I t em ( dec la re ( from−class Vis i t I t em ) ) )
4 ( def templa te Treatment ( dec la re ( from−class TreatmentItem ) ) )
5 ( def templa te Pa t i en t ( dec la re ( from−class Pa t i en t ) ) )
6

7 ( de f ru l e Instr_GHI_Freq_LE
8 ’Change Freq LE s e t t i n g of GHI ins t rument from 3000−3150
9 to higher than 3775 ,
10 to inc rease improvement by 32\% points ’
11 ( Vis i t I t em { I n s t r GHI})
12 ( Vis i t I t em {Freq_LE >= 3000 && Freq_LE < 3150))
13 =>
14 ( add (new Treatment ’GHI Freq LE −> >=3775, impr . 32 pp . ’ 32 ) ) )
15

16 ( de f ru l e CC0_CC1
17 ’Change t rea tment pro toco l in p a t i e n t diagnosed with C0
18 from CC0 to CC1
19 to inc rease improvement by 33\% points ’
20 ( Vis i t I t em {Cat 0})
21 ( Vis i t I t em {CC 0})
22 =>
23 ( add (new Treatment ’CC −> 1 , impr . 33 pp . ’ 33 ) ) )
24

25 ( de f ru l e Age_G_Cat_Tside_MendNr
26 ’For a male p a t i e n t diagnosed with C1
27 whose t i n n t i u s began a t age 50−55 as outcome of medicaments ,
28 decrease number of medicat ions p a t i e n t takes from 5 to a t most 2
29 to inc rease improvement by 55\% points ’
30 ( Vis i t I t em {AgeBeg>=50 && AgeBeg<55})
31 ( Vis i t I t em {G m})
32 ( Vis i t I t em {Cat 1})
33 ( Vis i t I t em {T_side 1})
34 ( Vis i t I t em {Med_nr >= 5})
35 =>
36 ( add (new Treatment ’MedNr −> 2 , impr . 55 pp . ’ 55 ) ) )
37

38 ( de f ru l e NTI_G_Instr
39 ’ For a male p a t i e n t whose t i n n i t u s onset a s soc i a t ed with noise
40 change ins t rumen ta t ion from GH so f t to GH hard
41 to inc rease improvement by 33\% points ’
42 ( Vis i t I t em {NTI 1})
43 ( Vis i t I t em {G m})
44 ( Vis i t I t em { I n s t r GHS})
45 =>
46 ( add (new Treatment ’ I n s t r −> GHH, impr .33pp . ’ 33 ) ) )
47

48 ( de f ru l e G_Tside_Ulcers
49 ’ For male pa t i e n t s with u l ce r s l i v i ng in Georgia s t a t e
50 whose t i n n i t u s onset a s soc i a t ed with medicat ions
51 decrease number of medication , recommend moving to I l l i n o i s
52 to inc rease improvement by 73\% points ’
53 ( Vis i t I t em {T_side 1})
54 ( Vis i t I t em {G m})
55 ( Vis i t I t em {Ulcers 1})
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56 ( Vis i t I t em {Med_nr >= 5})
57 =>
58 ( add (new Treatment ’MedNr −> 2 , S ta t e −> IL , impr . 73 pp . ’ 73 ) ) )

10.4.1 Rete Algorithm for Rule Execution

The Rete algorithm described in [For82] became the basis for a whole generation
of fast rule engines. The algorithm is implemented by building a network of nodes,
each of which represents one or more tests found on a rule LHS. Facts that are being
added to or removed from the working memory are processed by this network of
nodes. At the bottom of the network there are nodes representing individual rules.
When a set of facts filters all the way down to the bottom of the network, it has passed
all the tests on the LHS of a particular rule and this set becomes an activation. The
associated rule may have its RHS executed (fired) if the activation is not invalidated
first by the removal of one or more facts from its activation set.

Example rules, as depicted below

(defrule example-2 (defrule example-3

(x) (x)

(y) (y)

(z) => )

=> )

are compiled into the network as depicted in Fig. 10.3.
The nodes marked x?, etc., test if a fact contains the given data, while the nodes

marked + remember all facts and fire whenever they have received data from both
their left and right inputs. To run the network, Jess presents new facts to each node
at the top of the network as they are added to the working memory. Each node takes
input from the top and sends its output downwards. A single input node generally

Fig. 10.3 Illustration of
RETE algorithm used in
RECTIN Rule Engine
[FH+08]
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receives a fact from above, applies a test to it, and, if the test passes, sends the fact
downward to the next node. If the test fails, the one-input nodes simply do nothing.
The two-input nodes have to integrate facts from their left and right inputs. The two
input nodes must remember all facts that are presented to them, and attempt to group
facts arriving on their left inputs with facts arriving on their right inputs to make up
complete activation sets. A two-input node therefore has a left memory and a right
memory [FH+08].

Rule execution procedure for Rule Engine module in RECTIN is implemented
with the Rete Algorithm (see Listing 10.4). The Java code presented in the listing
creates an instance of the Jess rule engine, loads in the visit data, then loads in the
rules. This one instance of Jess can be reused to process each patient/visit. The engine
is supposed to look at each visit data (with audiological evaluation, form responses,
etc.), together with a patient’s data (demographics, tinnitus induction, visit history),
and apply diagnosis and different treatment actions to the recommendation given
to a physician. The diagnosis engine’s decision method takes a visit identifier and
returns an Iterator over all applicable decisions (diagnoses). Rules are matched
against simple Java model objects (Patient, Visit, VisitItem, Diagnosis, Treatment).
With the use of Jess’s predefined Filter implementations, only one Diagnosis object
is selected from working memory.

Listing 10.4 Prototype rule engine for RECTIN system.
1 package ruleEngine . diagnosis ;
2

3 import ruleEngine . diagnosis .model . Diagnosis ;
4 import ruleEngine . diagnosis .model . Visi t ;
5 import jess .∗ ;
6

7 import java . u t i l . I t e r a to r ;
8

9 public class DiagnosisEngine {
10 private Rete engine ;
11 private WorkingMemoryMarker marker ;
12 private Database database ;
13

14 public DiagnosisEngine (Database aDatabase ) throws JessException {
15 / / Create a Jess rule engine
16 engine = new Rete ( ) ;
17 engine . rese t ( ) ;
18

19 / / Load the diagnosis rules
20 engine . batch ( "diagnosis . clp" ) ;
21

22 / / Load the Diagnosis data into working memory
23 database = aDatabase ;
24 engine . addAll ( database . getDiagnosisItems ( ) ) ;
25

26 / / Mark end of diagnosis data for l a t e r
27 marker = engine .mark ( ) ;
28 }
29
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30 private void loadVisitData ( in t v i s i t I d ) throws JessException {
31 / / Retrieve the v i s i t from the database
32 Visi t v i s i t = database . getVisi t ( v i s i t I d ) ;
33

34 i f ( v i s i t != null ) {
35 / / Add the visi tand i t s contents to working memory
36 engine . add( v i s i t ) ;
37 engine . add( v i s i t . getPat ient ( ) ) ;
38 engine . addAll ( v i s i t . getItems ( ) ) ;
39 }
40 }
41

42 public I t e r a to r run ( in t v i s i t I d ) throws JessException {
43 / / Remove any previous v i s i t data , leaving only diagnosis data
44 engine . resetToMark (marker ) ;
45

46 / / Load data for th i s v i s i t
47 loadVisitData ( v i s i t I d ) ;
48

49 / / Fire the rules that apply to th i s v i s i t
50 engine . run ( ) ;
51

52 / / Return the l i s t of diagnoses created by the rules
53 return engine . getObjects (new Fi l t e r . ByClass (Diagnosis . class ) ) ;
54 }
55 }

10.5 Conclusion

Prototype implementation described in this chapter serves as a basis for full RECTIN
implementation. It illustrates basic mechanisms on which system functionalities
should be based. It must be taken into account that programming the whole appli-
cation and database part, as well as defining knowledge base consisting of relevant
rules is a project of few months work. It should involve cooperation with poten-
tial users and organization where the system should be deployed so that to tailor
it to their specific needs. The proposed system is scalable and flexible. Knowledge
base and prediction models are assumed to relearn with the new medical knowledge
entered into the RECTIN database. New rules and better prediction models should
be developed with new available data.



Chapter 11
Final Conclusions and Future Work

Abstract This book presented a process of analysis, design and prototype imple-
mentation of RECTIN recommender system, as a solution to the problem of sup-
porting tinnitus treatment based on Tinnitus Retraining Therapy in a medical facil-
ity. Proposed approach in supporting physicians’ diagnosis and treatment decisions
addresses scarcity of expert knowledge, time restrictions in today’s medical practice
and the need for more efficient evaluation of different treatment methods. Such sys-
tem can provide accurate support at any time, with full consideration of individual
patient profiles, including: demographics, medical history, and tinnitus background.

11.1 Objective Verification

This book presented a process of analysis, design and prototype implementation of
RECTIN recommender system, as a solution to the problem of supporting tinni-
tus treatment based on Tinnitus Retraining Therapy in a medical facility. Proposed
approach in supporting physicians’ diagnosis and treatment decisions addresses
scarcity of expert knowledge, time restrictions in today’s medical practice and the
need for more efficient evaluation of different treatment methods. Such system can
provide accurate support at any time, with full consideration of individual patient
profiles, including: demographics, medical history, and tinnitus background.

Theworkwithin this book verifies a hypothesis about possibility to apply theory of
traditional machine learning techniques, such as classification and association rules,
as well as novel data mining methods, including action rules and meta actions, to a
practical decision problem in the area of medicine. In particular, authors investigated
knowledge discovery approach in order to build rule-based recommender system for
tinnitus treatment and diagnosis.
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The work started with analysis of medical and social aspects of tinnitus problem,
focusing on the successful treatment method—Tinnitus Retraining Therapy devel-
oped by doctor Jastreboff from Emory University School of Medicine in Atlanta.
The effectiveness of the method and availability of the dataset of patients treated
with it, provided major motivation for taking up the project for developing decision
support system with knowledge base in this area.

After introduction to the problem area and preliminary analysis of available
dataset, an overview of available methods for recommender system’s development
was discussed.Different approaches have been described and compared.Major appli-
cation areas of RS were also presented, in the context of their technical deployments
and practical usage. This helped in initial choice of a method and design of RS for
a given problem area. Chosen methodology of knowledge-based recommendation
was expanded with elaboration on theoretical background of knowledge discov-
ery methods, including concepts, such as: Information System, Decision Tables,
Reducts, Action Rules and Meta Actions, with their possible application to the med-
ical dataset. Techniques of dealing with temporal visit data were also described,
including advanced clustering techniques.

Based on the given problem area, researched solutions for recommendation sys-
tems and detailed theoretical algorithms for knowledge discovery, an architecture
of Recommender System for Tinnitus Treatment and Diagnosis (RECTIN) was pro-
posed and described. Each component of the system was presented in deployment
details, but the main focus was knowledge engineering phase in the system develop-
ment. This step included a series of data preprocessing steps, new feature develop-
ment and empirical tests on data mining with the chosen methodologies and tools.
Tests on knowledge discovery were divided into: classifier testing, decision rule
extraction and action rules/meta action generation. New flexible temporal features
were developed to describe the sparse visiting records of patients for the purpose of
classification model construction and action rule discovery. Interesting and poten-
tially novel action rules about the relationship among treatment factors and symptoms
were revealed. The experiment’s outcomes provided basis for prototype RECTIN
system implementation with further possibilities of its extension.

11.2 Further Work

Further work in this project includes: full implementation of RECTIN system and
validity tests on unseen cases of new patients willing to treat their tinnitus with TRT
methodology, which is definitely needed, from medical point of view. The system
would apply rules discovered in this study to input data on the patient during each
visit. The recommendation for the patient treatment would be based on the placement
of the current patient state to the action rules suggesting treatment patterns to the
physician.Verification and testing of a built prototype performedwith experiments on
new cases of patients data would make a base for further analysis and description of
research results, as well as, assessing the quality of the solution. Hybrid techniques of



11.2 Further Work 151

recommender system technology can be also used to enhance the proposed approach,
including collaborative filtering and content-based recommendation.

Experiments on datamining should be continued so that to improve the knowledge
domain for the recommender system. It is expected that as database grows and more
examples are collected, the confidence and support of the decision/action rules will
increase. Experiments on the new extended database, which could help in discovering
relations between emotional changes in patients and their tinnitus symptoms, would
be of particular interest. Further work on text mining can be performed, as well as
clustering techniques, which introduce homogeneity to the dataset based on time
between visits and number of visits.

Finally, approach presented in thiswork should not be limited to the decision prob-
lems related with tinnitus diagnosis and treatment, and health care area, in general.
As presented in Chap.3, recommender systems are currently implemented in prac-
tically every aspect of people’s life, worldwide, on the grounds of the competitive
advantage resulting from their implementation and usage. Action rules present a
promising approach for building recommender systems. Since its introduction in
2000, they have been successfully applied in many domain areas. Strategic impor-
tance of recommender systems based on action rules results from their potential to
increase efficiency and effectiveness of decision-making processes. Action rules help
to analyze data to improve understanding of it and seek specific actions (recommen-
dations) to enhance the decision-making process. In the long-term, improvement of
decision-making processes leads to growth of the whole organization and its prof-
itability. On the other hand, organizations that do not implementmodern technologies
based on intelligent systems will face difficulties in further growth or even survival in
the knowledge-based economy. Technology of recommender systems is developing
very quickly as a modern method of machine reasoning and learning, infiltrating
from academics and research to practical applications. Recommendation approach
based on actions presents a new way in machine learning, which solves problems
that traditional methods cannot handle.

http://dx.doi.org/10.1007/978-3-319-51463-5_3
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