

978-1-491-93591-0

[FILL IN]

Modern Linux Administration
by Sam R. Alapati

Copyright © 2016 Sam Alapati. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editor: Brian Anderson
Production Editor: FILL IN PRODUCTION EDI‐
TOR
Copyeditor: FILL IN COPYEDITOR

Proofreader: FILL IN PROOFREADER
Indexer: FILL IN INDEXER
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

January -4712: First Edition

Revision History for the First Edition
2016-10-13: First Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491935910 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modern Linux Administration, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author(s) have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibil‐
ity for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491935910

Table of Contents

Preface. ix

1. Modern Linux System Administration. 19
Motivation for the new System Administration Strategies and Tools 21
Problems with Traditional Systems Administration 21

Monitoring 22
The Image Sprawl problem 22
Agile Development Methodologies and the System Administrator 22
Cloud environments 23
Impact of Big Data 23
Manual Operations without automation 23

Automated Infrastructure Management 24
Automating Redundant Configuration Work 25
Configuration Management 26

Infrastructure as Code 27
Modern Scripting Languages and Databases 28

Essential Programming Skills for the System Administrator 28
The Rise of NoSQL Databases 29
Caching 29
Content Delivery Networks 30

IT Orchestration 30
Provisioning with Vagrant 31
Vagrant and Configuration Management Tools 31
Provisioning - Automatic Server Deployment 32

Server (hardware) Virtualization 32
Containerization – the New Virtualization 33

Docker and Containerization 34
Docker Container Orchestration and Distributed Schedulers 35

iii

Cluster Management and Cluster Operating Systems 37
Version Control Systems 38
Continuous Integration and Continuous Deployment 39

Benefits Offered by CI 41
Steps involved in CI 41
Continuous Integration and Continuous Deployment 41
Continuous Application deployment 42
Tools for Implementing Continuous Integration 43

Log Management, Monitoring and Metrics 44
Effective Metrics 45
Proactive Monitoring 46
Service Metrics 46
Synthetic Monitoring 47

Cloud Computing 47
Open Stack – the Open Source Cloud Platform 48

Software Defined Networking 48
Microservices, Service Registration and Service Discovery 49

Benefits of Microservices 51
Service Discovery 51
Service Registration 52

2. Networking Essentials for a System Administrator. 19
What the internet is 54

Packets 54
Packet Switches 55
Applications and APIs 55
Network Protocols 55
Network Messages and Message Formatting 56

Networking Essentials – Theory and Practice 57
Breaking up the real work into layers – the OSI Model 57
Protocol Layering 58
The Internet Protocol Stack 60

The Network Layer and TCP/IP Networking 61
The Forwarding Function 62
Routing Essentials and Routing Management 71

The Hypertext Transfer Protocol (HTTP) 77
Using the HTTP/2 Protocol for Enhanced Performance 78

Network Load Balancing 79
Benefits of Using a Network Load Balancer 80
Load Balancing with DNS 80
Enterprise Load Balancers 81
Software Based Load Balancing 82

iv | Table of Contents

Hardware Load Balancing 84
Using a Hosted Load Balancer Service 85

Modern Networking Technologies 85
Quality of Service (QoS) 86
Quality of Experience (QoE) 86
Routing and Network Congestion Control 87
Software-Defined Networking 88
Limitations of current networks 88
The three “Planes’ in Networking 89
Defining Functions for the Network Control Plane 91
Network Functions Virtualization 93
The OpenFlow Protocol 93

3. Scalability, Web Applications, Web Services, and Microservices. 19
Scaling and Common Datacenter Infrastructures 97

The Front End Technologies 98
The Back End Technologies 98
Scalability of Applications 99
Content Delivery Networks 101
How large websites scale 102

Scaling Web Applications 102
Managing state at the front end 103
Other Types of State 105
Scaling the Web Services 107
Making Effective use of Third-party services 109

Working with Web Servers 111
Working with the Apache Web Server 111
The NGINX Web Server 111
Caching Proxies and Reverse Proxying 113

Handling Data Storage with Databases 115
Relational databases 115
Other Types of Databases 115
MongoDB as a Backend Database 116

Caching 120
HTTP-Based Caching (Browser caching) 120
Caching Objects 124

Asynchronous Processing, Messaging Applications and MOM 127
Messages and Message Queues 128
Components of a Messaging Architecture 129
Message Brokers and Message Oriented Middleware (MOM) 130
Messaging Protocols 130
Popular Message Brokers 132

Table of Contents | v

The Model-View-Controller Architecture and Single Paged Applications 133
The Problem 133
MVC to the Rescue 134
Ruby on Rails 135
Full stack JavaScript Development with MEAN 136
Single Page Applications – the new Paradigm for Web Applications 138

Web Services 141
Web Service Basics 142

Simple Object Access Protocol (SOAP) 142
Two Types of Web Services 144

Service-Based Architectures and Microservices 146
Similarities between traditional SOAs and the Microservice approach 147
Differences between SOA and Microservices 148
Service Types 149

4. Server Virtualization and Linux Containers. 19
Linux Server Virtualization 152

The Architecture of Virtual Machines 152
The Virtual Machine Monitor (Hypervisor) 153
How VMs share Resources 153
Benefits offered by Virtual Machines 155
Drawbacks of Virtualization 156
Virtualization Types 156
Type of Hypervisors 160
Xen Virtualization 161
Kernel-Based Virtual Machines (KVM) 162
Considerations in Selecting the Physical Servers for virtualization 165
Migrating Virtual Machines 166

Application Deployment and Management with Linux Containers 166
Chroot and Containers 168
Applications and their Isolation 169

Virtualization and Containerization 169
Benefits offered by Linux Containers 170
Two Types of Uses for Linux Containers 172

The Building Blocks of Linux Containers 173
Namespaces and Process Isolation 173
Control Groups (cgroups) 175
SELinux and Container Security 179
Linux Containers versus Virtualization (KVM) 181
Linux Containers and KVM Virtualization – the Differences 183
Limitations of LXC 183
Container benefits 183

vi | Table of Contents

Linux Container Adoption Issues 184
Managing Linux Containers 185

5. Working with Docker Containers. 19
Docker Basics 188

When Docker Isn’t Right for You 189
What Docker Consists of 190
The Docker Project 190
Docker Images and Docker Containers 191
What Linux Administrators should know in order to support Docker 192

Setting up the Docker Container Run-Time Environment 194
Getting Information about the Containers 195

Running Container Images 196
Managing Containers 197
Running Interactive Containers 197
Making your base Image Heftier 198
Committing a Container 198
Running Commands within a Container 199
Linking Containers 199
Running Services inside a Container 199
Running Privileged Containers 201

Building Docker Images 201
Building Images with a Dockerfile 201
Image Layers 205

Docker Image Repositories 205
Using a Private Docker Registry 205

New Operating Systems Optimized for Docker 207
Using CoreOS 208
Working with Atomic Host 208

The Docker Stack in Production 209
Provisioning Resources with Docker Machine 210
Docker Orchestration 210
Docker Orchestration and Clustering Tools 211
Distributed Schedulers for Docker Containers 211

Docker Containers, Service Discovery and Service Registration 214
Connecting Containers through Ambassadors 215
How Service Discovery Works 216
Zero-Configuration Networking 216
Service Discovery 217
Service Registration 219

Table of Contents | vii

6. Automating Server Deployment and Managing Development Environments. 19
Linux Package Management 222

Using the rpm and dpkg commands 222
Package Management with YUM and APT 222

Fully Automatic Installation (FAI) 223
How FAI Works 223
How it Works 224
Setting up the Network Server 224
Setting up the PXE Server for a Network Installation 224
Using Kickstart 225

Automatically Spinning up Virtual Environments with Vagrant 227
Some Background 229
Vagrant and its Alternatives 230
Getting Started with Vagrant 231
Spinning up a New VM 232
The Vagrantfile 234
Vagrant Box 234
Provisioning Vagrant Boxes 236
Automated Provisioning 238
Creating Vagrant Base Boxes 240
Using Packer and Atlas for creating base boxes 242

Parallel Job-Execution and Server Orchestration Systems 243
Working with Remote Command Execution Tools 243
Server Provisioning with Razor 248
Server Provisioning with Cobbler 250

viii | Table of Contents

Preface

Who Should Read This Book
The quintessential reader for this book is someone who currently works as a Linux
systems administrator, or wants to become one, having already acquired basic Linux
admin skills. However, the books will be useful for all of the following:

• Developers who need to come to terms with systems concept such as scaling, as
well as the fundamentals of important concepts that belong to the operations
world – networking, cloud architectures, site reliability engineering, web perfor‐
mance, and so on.

• Enterprise architects who are either currently handling , or are in the process of
creating new projects dealing with scaling of web services, Docker containeriza‐
tion, virtualization, big data, cloud architectures.

• Site reliability engineers (SREs), backend engineers and distributed applcition
developers who are tasked with optimizing their applications as well as scaling
their sites, in addition to managing and troubleshooting the new technologies
increasingly found in modern systems operations.

In terms of Linux administration knowledge and background, I don’t teach the basics
of Linux system administration in this book. I expect the readers to know how to
administer a basic Linux server and be able to perform tasks such as creating storage,
managing users and permissions, understand basic Linux networking, managing files
and directories, managing processes, troubleshooting server issues, taking backups,
and restoring servers.

The overarching goal of this book is to introduce the reader to the myriad tools and
technologies that a Linux administrator ought to know today to earn his or her keep.
I do provide occasional examples, but this book is by no means a “how-to” reference
for any of these technologies and software. As you can imagine, each of the technolo‐
gies I discuss over the 16 chapters in this book requires one or more books dedicated

ix

to that technology alone, for you to really learn that topic. There’s no code or step-by-
step instructions for the numerous newer Linux administration related technologies I
discuss in this book, with a handful of exceptions. My goal is to show you want you
need to know in order to understand, evaluate, and prepare to work with bleeding-
edge Linux based technologies in both development and production environments.

Why I Wrote This Book
Let’s say you want to learn all about the new containerization trend in application
deployment and want to use Docker to make your applications portable. Just trying
to come to grips with the wide range of technologies pertaining to Docker is going to
make anybody’s head spin – here’s a (partial) list of technologies associated with just
Docker containers:

• Docker project
• Docker Hub Registry
• Docker Images and Dockerfiles
• CoreOS and Atomic Host
• Cockpit
• Kubernates
• Swarm
• Compose
• Machine
• Mesos
• Zookeeper
• Consul
• Eureka
• Smartstack
• OpenShift

And all this just to learn how to work with Docker!

No wonder a lot of people are baffled as to how to get a good handle on the new tech‐
nologies, which are sometimes referred to ass DevOps (however you may define it!),
but really involves a new way of thinking and working with new cutting edge technol‐
ogies. Many of these technologies were expressly designed to cope with the newer
trends in application management such as the use of microservices, and newer ways
of doing business such as cloud based environments, and new ways of data analysis
such as the use of Big Data for example.

x | Preface

Over the past decade or so, there have been fundamental changes in how Linux sys‐
tem administrators have started approaching their work. Earlier, Linux admins were
typically heavy on esoteric knowledge about the internals of the Linux server itself,
such as rebuilding the kernel, for example. Other areas of expertise that marked one
as a good Linux administrator were things such as proficiency in shell scripting, awk
& sed, and Perl & Python.

Today, the emphasis has shifted quite a bit – you still need to know all that a Linux
admin was expected to know years ago, but the focus today is more on your under‐
standing of networking concepts such as DNS and routing, scaling of web applica‐
tions and web services, web performance and monitoring, cloud based environments,
big data and so on, all of which have become required skills for Linux administrators
over the past decade.

In addition to all the new technologies and new architectures, Linux system adminis‐
trators have to be proficient in new ways of doing business – such as using the new-
fangled configuration management tools, centralized version control depositories,
continuous development (CI) and continuous deployment (CD), just to mention a
few technologies and strategies that are part of today’s Linux environments

As a practicing administrator for many years, and someone who needs to understand
which of the technologies out of the zillion new things out there really matter to me,
it’s struck me that there’s a lack of a single book that serves as a guide for me to navi‐
gate this exciting but complex new world. If you were to walk into an interview to get
hired as a Linux administrator today, how do you prepare for it? What are you really
expected to know? How do all these new technologies related to each other? Where
do I start? I had these types of concerns for a long time, and I believe that there are
many people that understand that changes are afoot and don’t want to be left behind,
but don’t know how and where to begin.

My main goal in this book is to explain what a Linux administrator (or a developer/
architect who uses Linux systems) needs to understand about currently popular tech‐
nologies. My fundamental thesis is that traditional systems administration as we
know it won’t cut it in today’s technologically complex systems dominated by web
applications, big data, and cloud-based systems. To this end, I explain the key tech‐
nologies and trends that are in vogue today (and should hold steady for a few years at
least), and the concepts that underlie those technologies.

There’s a bewildering array of modern technologies and tools out there and you’re
expected to really know how and where to employ these tools. Often, professionals
seeking to venture out into the modern systems administration areas aren’t quite sure
where exactly they ought to start, and how the various tools and technologies are
related. This book seeks to provide sufficient background and motivation for all the
key tools and concepts that are in use today in the systems administration area, so
you can go forth and acquire those skill sets.

Preface | xi

A Word on the New Technologies that are critical for Linux
Administrators Today
In order to be able to write a book such as this, with its wide-ranged and ambitious
scope, I’ve had to make several decisions in each chapter as to which technologies I
should discuss in each of the areas I chose to cover in the book. So, how did I pick the
topics that I wanted to focus on? I chose to reverse engineer the topic selection pro‐
cess, meaning that I looked at what organizations are looking for today in a Linux
administrator when they seek to hire one. And the following is what I found.

Expertise in areas such as infrastructure automation and configuration management
(Chef, Puppet, Ansible, SaltStack), version control (Git and Perforce), big data
(Hadoop), cloud architectures (Amazon Web Services, OpenStack), monitoring and
reporting (Nagios and Ganglia), new types of web servers (Nginx), load balancing
(Keepalived and HAProxy), databases (MySQL, MongoDB, Cassandra), caching
(Memcached and Redis), Virtualization (kvm), containers (Docker), server deploy‐
ment (Cobbler, Foreman, Vagrant), source code management (Git/Perforce), version
control management (Mercurial and Subversion), Continuous integration and deliv‐
ery (Jenkins and Hudson), log management (Logstash/ElasticSearch/Kibana), metrics
management (Graphite, Cacti and Splunk) .

Look up any job advertisement for a Linux administrator (or Devops administrator)
today and you’ll find all the technologies I listed among the required skillsets. Most of
the jobs listed require you to have a sound background and experience with basic
Linux system administration – that’s always assumed - plus they need many of the
technologies I listed here.

So, the topics I cover and the technologies I introduce and explain are based on what
a Linux administrator is expected to know today to work as one. My goal is to explain
the purpose and the role of each technology, and provide a conceptual explanation of
each technology and enough background and motivation for you to get started on the
path to mastering those technologies. This book can thus serve as your “road map”
for traversing this exciting (but intimidating) new world full of new concepts and
new software, which together have already transformed the traditional role of a sys‐
tem administrator.

Navigating This Book
This book is organized roughly as follows:

• Chapter 1 explains the key trends in modern systems administration, such as vir‐
tualization, containerization, version control systems, continuous deployment
and delivery, big data, and many other newer areas that you ought to be familiar
with, to succeed as a system administrator or architect today. I strive to drive

xii | Preface

home the point that in order to survive and flourish as a system administrator in
today’s highly sophisticated Linux based application environments, you must
embrace the new ways of doing business, which includes a huge number of new
technologies, as well as new ways of thinking. No longer is the Linux system
administrator an island until himself (or herself)! In this exciting new world,
you’ll be working very closely with developers and architects – so, you must
know the language the other speaks, as well as accept that the other groups such
as developers will be increasingly performing tasks that were once upon a long
time used to be belong to the exclusive province of the Linux administrators. Tell
me, in the old days, did any developer carry a production pager? Many do so
today.

• Chapter 2 provides a quick and through introduction to several key areas of net‐
working, including the TCP/IP network protocol, DNS, DHCP, SSH and SSL,
subnetting and routing, and load balancing. The chapter concludes with a review
of newer networking concepts such as Software Defined Networking (SDN). Net‐
working is much more important now than before, due to its critical role in cloud
environments and containerization.

• Chapter 3 is a far ranging chapter dealing with the scaling of web applications
and provides an introduction to web services, modern databases, and new types
of web servers. You’ll learn about web services and microservices and the differ‐
ences between the two architectures. The chapter introduces you to concepts
such as APIs, REST, SOAP and JSON, all of which play a critical role in modern
web applications, which are a key part of any systems environment today. Service
discovery and service registration are important topics in today’s container heavy
environments and you’ll get an introduction to these topics here. The chapter
also introduces you to modern web application servers such as Nginx, caching
databases such as Redis and NoSQL databases (MongoDB).

• Chapter 4 discusses traditional virtualization and explains the different types of
hypervisors. The chapter also introduces containers and explains the key ideas
behind containerization, such as namespaces. SELinux and Cgroups (control
groups), thus helping you get ready for the next chapter, which is all about
Docker.

• Chapter 5 is one of the most important chapters in the book since it strives to
provide you a through introduction to Docker containers. You’ll learn about the
role containerization plays in supporting application deployment and portability.
You’ll learn the basics of creating and managing Docker containers. The chapter
explains the important and quite complex topic of Docker networking, both in
the context of a single container as well as networking among a bunch of con‐
tainers. The chapter discusses exciting technologies such as Kubernates, which
helps orchestrate groups of containers, as well as how to use Flannel to set up IP
address within a Kubernates cluster. I also show how to use Cockpit, a Web-based

Preface | xiii

container management tool, to manage containers running in multiple hosts in
your own cloud. New slimmed down operating systems such as CoreOs and Red
Hat Atomic Host are increasingly popular in containerized environments and
therefore, I explain these types of “container operating systems” as well in this
chapter.

• Chapter 6 shows how to automate server creation with the help of tools such as
PXE servers, and automatic provisioning with Razor, Cobbler and Foreman.
You’ll learn how Vagrant helps you easily automate the spinning up of develop‐
ment environments.

• Chapter 7 explains the principles behind modern configuration management
tools, and shows how popular tools such as Puppet and Chef work. In addition,
you’ll learn about two very popular orchestration frameworks – Ansible and Salt‐
stack.

• Chapter 8 discusses two main topics – revision control and source code manage‐
ment. You’ll learn about using Git and GitHub for revision control, as well as
other revision control tools such as Mercurial, Subversion and Perforce.

• Chapter 9 is about two key modern application development concepts – continu‐
ous integration (CI) and continuous delivery (CD). The chapter explains how to
employ tools such as Hudson, Jenkins, and Travis for CD and CI.

• Chapter 10 has two main parts. The first part is about centralized log manage‐
ment with the ELK (Elasticsearch, Logstash, and Kibana) stack. Performing trend
analyses and gathering metrics with tools such as Graphite, Cacti, Splunk, and
DataDog is the focus of the second part of the chapter.

• Chapter 11 shows how to use the popular OpenStack software to create an enter‐
prise Infrastructure-–as-a-Service. You’ll learn the architecture and concepts
relating to the OpenStack cloud, and how it integrates with PaaS (Platform-as-a-
Service) solutions such as Red Hat OpenShift and CloudFoundry.

• Chapter 12 is about using Nagios for monitoring and alerts and also explains the
concepts and architecture that underlie Ganglia, an excellent way to gather sys‐
tem performance metrics. I also introduce two related tools – Sensu for monitor‐
ing and Zabbix for log management.

• Chapter 13 provides you a quick overview of Amazon Web Services (AWS) and
the Google Cloud Platform, two very successful commercial cloud platforms.

• Chapter 14 consists of two main parts: the first part is about managing new types
of databases such as MongoDB and Cassandra. The second part of the chapter
explains the role of the Linux administrator in supporting big data environments
powered by Hadoop. Hadoop is increasingly becoming popular and you need to
know the concepts that underlie Hadoop, as well as the architecture of Hadoop 2,

xiv | Preface

the current version. The chapter shows how to install and configure Hadoop at a
high level, as well how to use various tools to manage Hadoop storage (HDFS).

• Chapter 15 deals with security and compliance concerns in a modern systems
environment. The chapter explains the unique security concerns of cloud envi‐
ronments, and how to secure big data such as Hadoop’s data. You’ll learn about
topics such as identity and access management in AWS, virtual private networks,
and security groups. The chapter closes by discussing Docker security, and how
to make concessions to traditional security best practices in a containerized envi‐
ronment, and how to use super privileged containers.

• Chapter 16 is somewhat of a mixed bag! This final chapter is mostly about soft‐
ware reliability engineering (SRE) and it does by explaining various performance
related topics such as enhancing Web Server performance, tuning databases and
JVMs (Java Virtual Machines), and tuning the network. You’ll learn about web
site performance optimization using both RUM (real user monitoring) and
through generating synthetic performance statistics.

If you’re like us, you don’t read books from front to back. If you’re really like us, you
usually don’t read the Preface at all! Here are some basic guidelines as to how you
may approach the book:

• Read Chapter 1 in order to understand the scope of the book and the lay of the
land, so to speak. This chapter provides the motivation for the discussion of all
the technologies and concepts in the remaining chapters.

• Quickly glance through Chapter 2, if you think you need a refresher course in
essential networking concepts for a Linux administrator. If your networking
chops are good, skip most of Chapter 2, except the very last part, which deals
with modern networking concepts such as software defined networks (SDN).

• You can read the rest of the chapters in any order you like, depending on your
interest and needs – there are really no linkages among the chapters of the book!

• Remember that conceptual overview of the various tools and software and
explanation of the technical architectures are the real focus of the book – if you
need to drill deep into the installation and configuration of the various tools,
you’ll need to read the documentation for that tool (or a book on that topic).

I hope you enjoy each of the chapters as much as I’ve enjoyed writing the chapters!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xv

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
PROD: Please reach out to author to find out if they will be uploading code examples to
oreilly.com or their own site (e.g., GitHub). If there is no code download, delete this
whole section. If there is, when you email digidist with the link, let them know what you
filled in for title_title (should be as close to book title as possible, i.e., learn‐
ing_python_2e). This info will determine where digidist loads the files.
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/title_title.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

xvi | Preface

https://github.com/oreillymedia/title_title

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Book Title by Some Author
(O’Reilly). Copyright 2012 Some Copyright Holder, 978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and dozens more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc. 1005 Gravenstein Highway North Sebastopol, CA 95472
800-998-9938 (in the United States or Canada) 707-829-0515 (international or local)
707-829-0104 (fax)
We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/<catalog
page>.

Don’t forget to update the link above.
To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Preface | xvii

http://www.oreilly.com/catalog/<catalog page>
http://www.oreilly.com/catalog/<catalog page>
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Fill in...

xviii | Preface

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Modern Linux System Administration

Linux (and other) system administration has changed tremendously since the advent
of internet based web applications and the proliferation of Big Data based systems,
and the rush to cloud based systems. A quick perusal of job postings will reveal that
organizations are looking for administrators who can handle the seismic changes in
IT systems over the past decade. To be successful in this milieu, you need to under‐
stand how to work with the new computing paradigms such as cloud based systems,
continuous integration and delivery, microservices, modern web application architec‐
tures, software based networks, big data, virtualization and containerization.

Old line systems administration isn’t obsolete by any means, but as organizations
keep moving to the public cloud, there’s less need for traditional system administra‐
tion skills. Today, cloud administrators will take care of the mundane system admin‐
istration tasks – one need not spend as much time tweaking the Linux kernel as the
old Linux ninjas used to, maybe you’ll never have to muck with the kernel in most
cases, since that’s all done by the teams that manage the server farms in the cloud.
“The times are a changing”, and it’s important to move along with the changing times
and learn what makes the modern system administrator tick. For example, if you
don’t know the Ruby programming language, you’re at a huge disadvantage today,
since many important tools that are in vogue today (and will be tomorrow as well!)
are scripted with Ruby.

As our goal is to understand the main concepts and tools involved in modern system
administration, this book doesn’t presume to explain the fundamentals of traditional
system administration. For new system administrators or users, this book shows you
what you need to know after you learn the basics of system administration. For the
experienced users, this book shows what you need to know to stay relevant in today’s
world of system administration.

19

The speed of innovation and the heightened competition due to the ease of starting
up new web based businesses has been the primary catalyst behind many of the
changes in system administration. In order to survive and flourish in today’s environ‐
ment, organizations need to make changes incredibly fast. The fast pace means that
new software and enhancements to existing software don’t have the luxury of time as
in the past.

The giants of Web based businesses today, such as Netflix, Facebook and the rest all
can make very swift changes to their software as part of their routine operations –
each of these companies introduces hundreds and even thousands of changes to their
software every single day.

The proliferation of cloud based computing means that most system administrators
may never even get to set foot in a data center! Traditional system administration
involved ordering hardware, and “racking and stacking” that hardware in a data cen‐
ter. Now, you increase your capacity by issuing an API call or by merely clicking a
button on the cloud provider’s web page.

Devops is a term that has come increasingly to the forefront in the past few years.
Devops is meant to be a way for operational and development teams to work together
to speed up the creation and deployment of software. While I don’t explicitly address
this book to devops professionals, many, if not all of the topics that I discuss in this
book are highly relevant to devops professionals. Sysadmins have always worked with
devops, through legend has it that the relationship was somewhat acrimonious, with
sysadmins being accused of undue zealotry in maintaining their fiefdoms. Today,
there’s absolutely no chance of such a vast schism between the two groups: either the
two groups swim together, or they both sink!

If you’re indeed a devops person who’s interested in the development side, I’d like to
clarify that while I do discuss in depth several new concepts and tools geared towards
development, the book is squarely aimed at systems administrators, or those who
want to learn about the systems admin side of the equation.

The main thrust of the book is to discuss and explain the key principles and the pro‐
cesses underlying the way modern businesses are architecting and supporting robust
highly scalable infrastructures. Sometimes I do show how to install and get going
with a tool, but the focus is really on the role the tools play, and how to integrate them
into your work as an effective Linux systems administrator.

The best way to benefit from the book is to absorb the main conceptual principles
underlying modern systems administration – any tools I discuss in the book are there
mostly to illustrate the concepts. Progress is very rapid in this area and new techni‐
ques and new tools are introduced all the time. Tools which are popular today for
performing certain tasks may be easily supplanted by better tools with short notice.
Thus, focusing on the conceptual side of things will help you in the long run, by

20 | Chapter 1: Modern Linux System Administration

showing you how to solve major problems confronted by organizations in developing
software and managing web sites, scaling and performance, etc.

Motivation for the new System Administration Strategies
and Tools
Several important goals are at the root of most of the newer developments in the soft‐
ware building process and therefore, in systems administration, such as:

• Speed to market (reduce the software cycle time)
• Better software (increase the software quality)
• Cost aware architectures (lower the costs of deploying and maintaining infra‐

structure)

Modern system administration concepts and strategies that I enumerate throughout
this book, such as rapid infrastructure deployment, continuous integration of applica‐
tions, automated testing and push–button deployments are all a means to achieving
these key goals.

Traditional IT practices are conservative and risk averse, often shying away from any
changes that might increase the volatility of their operations. Today, Companies like
Etsy and Facebook deploy to production numerous times every single day. Netflix has
its Chaos Monkey tool that lets it randomly terminate production instances or intro‐
duce latency into the application. Having realized that frequent changes bring more
benefits than pain, these and other organizations have endeavored in recent years to
make their systems antifragile.

Strong testing and QA pipelines and continuous deployment strategies are what
enable modern companies to reduce the risk of individual changes. Amazon for
example can automatically rollback the software changes in case a deployment doesn’t
quite pan out. Obviously the company’s doing something right, since less than 0.001%
of Amazon’s deployment result in an outage, although on average it deploys a new
change almost every 10 seconds.

Problems with Traditional Systems Administration
Traditional systems administration concepts date back to several decades, predating
the advent of major technological innovations such as the internet, cloud computing,
newer networking models, and many others. While the guts of administering systems
remains effectively the same as always, the job requirements and what management
expects from system administrators have slowly but irrevocably changed over the
past few years.

Motivation for the new System Administration Strategies and Tools | 21

Let’s review the changes in some areas of traditional systems administration to learn
why one ought to change their basic approach to systems administration in many
ways compared to the traditional way they administered systems, and how modern
tools and techniques are transforming the very nature of the system administrator’s
role in a modern IT environment.

Monitoring
Modern systems management requires monitoring, just as the traditional systems
administration did. However, traditional monitoring was mostly limited to tracking
the uptime of servers and whether key services were running on it. Whereas in the
past, one focused more on system metrics, today, application or service metrics have
come to play an equal or even larger role in ascertaining the health and well-being of
systems – keeping the end user happy is today’s corporate mantra in all areas of busi‐
ness, including the area of systems administration.

Faster and Frequent Deployments
In today’s fast paced web environments, deployments aren’t something that are mas‐
sive and infrequent. It’s actually the opposite - deployments are small and quite fre‐
quent. Following is a sample of the production environment for Amazon (circa 2014):
11.6 seconds: Mean time between deployments (weekday) 1,079 : Max # of deploy‐
ments in a single hour 10,000 : Mean # of hosts simultaneously receiving a deploy‐
ment 30,000 : Max # of hosts simultaneously receiving a deployment

The Image Sprawl problem
While using “golden images” is definitely a superior approach to traditional deploy‐
ments which are always done from scratch, they do tend to exacerbate the problem of
image sprawl. Image sprawl is where multiple images are in deployment, usually in
different versions. Images become unwieldy and management becomes chaotic. As
the number of images grows, you’ll find yourself performing regular manual changes,
which tend to lead to deviation from the gold standard. A gold standard in this con‐
text refers to a known set of good configuration. Configuration management, the pri‐
mary objective underlying gold standard usage, becomes hard over time.

Agile Development Methodologies and the System Administrator
Agile Operations is the counterpart to agile development practices, which involve
strategies like Kanban and scrum, along with frequent, small code rollouts. The high
frequency of code changes means that the operations teams can’t be in relative isola‐
tion from the development teams, as in the days past. The rigid barriers between the
two teams have been gradually coming down due to the high degree of cooperation

22 | Chapter 1: Modern Linux System Administration

and interaction between development and operations that the agile development
methodologies require.

Cloud environments
Systems administration practices that work well for a company’s data center aren’t
really usable in toto when you move to a cloud environment. Storage and networking
both are fundamentally different in the cloud, especially an external one. System
administrators are expected to understand how to work with both public clouds such
as AWS, Azure and Rackspace, as well as know how to set up their own private cloud
based environments using something like OpenCloud.

Impact of Big Data
Traditional warehouses can’t scale beyond a certain point, regardless of how much
hardware and processing capacity you throw at them. The advent of the Web and the
consequent deluge of data required a different paradigm, and distributed processing
turned out to be the best approach to solving problems posed by big data. Hadoop is
here to stay as a platform for storing and analyzing big data. Administrators must
know how to architect and support Hadoop and other big data environments.

Manual Operations without automation
Traditional systems are to the most extent still run with a heavy dose of manual oper‐
ations. While script based systems administration has been around for many years,
most administrators still perform their duties as they did 30 or even 40 years ago – by
hand, one operation after the other. Consequently, change management is slow and
there are plenty of opportunities to make mistakes.

New trends in system administration and application development include the fol‐
lowing:

• Infrastructure automation (infrastructure as code)
• Automated configuration management
• Virtualization and containerization
• Microservices
• Increasing use of NoSQL and caching databases
• Cloud environments– both external and internal
• Big data and distributed architectures
• Continuous deployment and continuous integration

Problems with Traditional Systems Administration | 23

In the following sections, I briefly define and explain the concepts behind the trends
in modern system administration. In the following chapters of the book, I discuss
most of these concepts and the associated tools in detail.

Automated Infrastructure Management
Configuring the environment in which applications run is just as important as config‐
uring the application itself. If any required messaging systems aren’t configured cor‐
rectly for example, an application won’t work correctly. Configuring the operating
system, the networks, database, and web application servers is critically important for
an application to function optimally.

The most common way of configuring systems is to do so as you go, That is, you first
install the software and manually edit the configuration files and settings until the
darn software works correctly. No record is made of the prior state of the configura‐
tions as you iterate through successive configuration states. This means that you can’t
revert easily to the last “good” configuration if any changes go bad.

A fully automated process offers the following benefits:

• It keeps the cost (in terms if effort and delays) of creating new environments very
low.

• Automating the infrastructure creation (or rebuilding) process means then when
someone playing a critical role in a team leaves, nothing really stops working or
stymies your attempts to fix it.

• Automating things imposes an upper bound on the time it takes to get back to a
fully functioning state of affairs.

• A fully automated system also helps you easily create test environments on the fly
– plus, these development environments will be exact replicas of the latest incar‐
nation of the production environment.

• An upgrade to your current system won’t automatically lead to an upheaval. You
can upgrade to new versions of systems with no or minimal downtime

You can use a tool such as Chef, Puppet (or Ansible) to automate the configuration of
the operating system and other components. As explained earlier, all you need to do
is to specify which users should have access to what, and which software ought to be
installed. Simply store these definitions in a VCS, from where agents will regularly
pull the updated configuration and perform the required infrastructure changes. You
gain by not having to manually do anything, plus, since everything is flowing through
the VCS, the changes are already well documented, providing an effective audit trail
for the system changes.

24 | Chapter 1: Modern Linux System Administration

Automating Redundant Configuration Work
Setting up a new infrastructure or using an existing but unwieldy infrastructure setup
isn’t a trivial task for new system administrators. While the laying out of the infra‐
structure itself is pretty straightforward, it usually involves steps that are inherently
prone to simple errors. And once you set up an infrastructure with built-in errors, a
lot of times you’re forced to live with those errors as long as that infrastructure is in
place.

Redundant work and duplication of tasks occupies the scarce time of administrators.
Manual installation and configuration of infrastructure components such as servers
and databases isn’t really practical in large scale environments that require you to
setup hundreds and even thousands of servers and databases.

Configuration management software grew out of the need to eliminate redundant
work and duplicated efforts. The configuration tools help automate infrastructure
work. Instead of manually installing and configuring applications and servers, you
can simply describe what you want to do in a text-based format. For example, to
install an Apache Web Server, you use a configuration file with the declarative state‐
ment:

All web servers must have Apache installed.

Yes, as simple as this statement is, that’s all you’d have to specify to ensure that all web
servers in a specific environment have the Apache web server installed on them.

Automating infrastructure and application deployment requires more than one sim‐
ple tool. There’s some overlap among the different types of automation tools, and I
therefore briefly define the various types of tools here:

• Configuration management tools let you specify the state description for servers
and ensure that the servers are configured according to your definition, with the
right packages, and all the configuration files correctly created.

• Deployment tools: deployment tools generate binaries for the software that an
organization creates, and copies the tested artifacts to the target servers and starts
up the requested services to support the applications.

• Orchestration tools: orchestration of deployment usually involves deploying to
remote servers where you need to deploy the infrastructure components in a spe‐
cific order.

• Provisioning tools: provisioning is the setting up of new servers, such as spinning
up new virtual machine instances in the Amazon AWS cloud.

Some tools are purely meant for one of the four purposes I listed here, such as
deployment for example, where a tool such as Jenkins or Hudson performs purely
integration and deployment related functions. Most tools perform more than one

Automating Redundant Configuration Work | 25

function. A tool such as Ansible for example, can perform all four of these things –
configuration management, deployment, orchestration, and provisioning very well.

Configuration Management
Configuration management is how you store, retrieve, identify, and modify all arti‐
facts and relationships pertaining to a project. Modern configuration management
practices are an evolution of the traditional system administration strategies to man‐
age complex infrastructures.

Until recently, scripting was the main means of automating administrative tasks,
including configuring systems. As infrastructure architectures become ever more
complex, the number and complexity of the scripts used to manage these environ‐
ments also grew complex, leading to more ways for scripted procedures to fail. In
1993, the first modern configuration management (CM) system, CFEngine, was
started to provide a way to manage UNIX workstations. In 2005 Puppet was intro‐
duced and soon become the leader in the market until Chef was introduced in 2009.
Most CM systems share the same basic features:

• Automation of the infrastructure (infrastructure as code)
• Ruby (or a similar scripting language) as the configuration language
• Extensibility, customizability, and the capability to integrate with various other

tools
• Use of modular, reusable components
• Use of thick clients and thin servers – the configuration tools perform most of

the configuration work on the node which is being configured, rather than on the
server that hosts the tools

• Use of declarative statements to describe the desired state of the systems being
configured

Good configuration management means that you:

• Can reproduce your environments (OS versions, patch levels, network configura‐
tion, software and the deployed applications) as well as the configuration of the
environment

• Easily make incremental changes to any individual environment component and
deploy those changes to your environment

• Identify any changes made to the environment and be able to track the time
when the changes were made, as well as the identity of the persons who made the
changes.

26 | Chapter 1: Modern Linux System Administration

• Easily make necessary changes and also obtain the required information, so as to
decrease the software cycle time

when you handle server configuration like software, naturally you
can take advantage of a source code management system such as
Git and Subversion to track all your infrastructure configuration
changes

Popular configuration management tools include the following:

• Chef
• Puppet
• Ansible
• Capistrano
• SaltStack

Infrastructure as Code
The term infrastructure as code is synonymous with configuration management.
Tools such as Chef transform infrastructure into code. Other CM tools such as Chef,
Puppet, Ansible and Saltstack also use the infrastructure as code approach to config‐
ure the infrastructure. All these tools are automation platforms that let you configure
and manage an infrastructure, both on-premises as well as in the cloud.

Infrastructure as code is really a simple concept that lets your infrastructure reap the
benefits of automation by making an infrastructure versionable, repeatable, and easily
testable. CM tools let you fully automate your infrastructure developments as well as
automatically scale infrastructure, besides handling infrastructure repairs automati‐
cally (self-healing capabilities).

Applications typically lock down their configuration and don’t allow untested adhoc
changes over time. Why should the administrator do any different? You must learn to
treat environmental changes as sacrosanct, and work through a structured and formal
build, deploy, and test process the same way as developers treat their application
code.

While you can’t always build expensive test systems that duplicate fancy production
systems, you do need to deploy and configure these test environments the same way
as you do the production systems.

Configuration Management | 27

Let me illustrate the dramatic difference between the old approach and the configura‐
tion tools methodology. Following is a Chef recipe that shows how to change permis‐
sions on a directory:

directory '/var/www/repo' do
mode ‘0755’
owner ‘www’
group ‘www’
end

If you were to do the same thing using a scripting language, your script would need
to incorporate logic for several things, such as checking for the existence of the direc‐
tory, and confirming that the owner and group information is correct, etc. With Chef,
you don’t need to add this logic since it knows what to do in each situation.

Site reliability engineering is a term that is increasingly becoming popular in the sys‐
tem administration world. In conventional shops, if a disaster occurs, you need to
rebuild everything from scratch. In fact, almost every company maintains an up-to-
date disaster recovery plan and even performs dry runs on a regular basis to test their
disaster recovery mechanisms. CM helps you quickly restore services following a dis‐
aster, since it automates all deployments. Same goes for scheduled upgrades as well, as
CM tools can build out the upgraded systems automatically. Bottom line: shorter out‐
ages and shorter downtimes for the end users.

Modern Scripting Languages and Databases
Often system administrators in the current milieu wonder what programming lan‐
guages they ought to learn. A good strategy would be for administrators to become
adept at a couple, or even one scripting language, say Python or Ruby. In addition,
they should learn new languages and frameworks because in today’s world you’ll be
dealing with numerous open source tools. In order to work efficiently with these tools
and adapt them to your environment and even make enhancements, you need to
know how these tools are constructed.

There’s really no one scripting language that can serve as a do-it-all language. Some
languages are better for handling text and data while others maybe be more effica‐
cious at working with cloud vendor APIs with their specialized libraries.

Essential Programming Skills for the System Administrator
Traditionally system administrators used a heavy dose of shell scripting with Bash,
Awk and Sed, to perform routine Linux administration operations such as searching
for files, removing old log files and managing users, etc. While all the traditional
scripting skills continue to be useful, in the modern Linux administration world, a
key reason for using a programming language is to create tools. Also, most of the
exciting open source tools such as Chef and Puppet are written in languages such as

28 | Chapter 1: Modern Linux System Administration

Ruby, so it’s imperative that you learn the modern languages such as Ruby and GO
(Golang), if you want to be an effective modern system administrator.

New technologies such as Linux Containers, Docker. Packer and
etcd all use GO for their internal tooling.

The Rise of NoSQL Databases
Traditional infrastructures and applications mostly relied (and a lot of them still do)
on relational databases such as Oracle, MySQL, PostgreSQL and Microsoft SQL
Server for running both online transaction processing systems as well as for data
warehouses and data marts.. In large environments, there are usually dedicated data‐
base administrators (DBAs) hired expressly to manage these databases (and these
databases do require a lot of care and feeding!), so sysadmins usually got into the pic‐
ture during installation time and when there was some kind of intractable server,
storage, or network related performance issue that was beyond the typical DBA’s skill
set.

Two of the most common relational databases that are used today on the internet are
MySQL and PostGreSQL. In addition to these traditional databases, modern system
administrators must also be comfortable working with NoSQL databases. NoSQL
databases have become common over the past decade, owing to the need for handling
document storage and fast clustered reading

Today, it’s very common for organizations, especially small and medium sized compa‐
nies, to expect their system administrators to help manage the NoSQL databases,
instead of looking up to a dedicated DBA to manage the databases. For one thing, the
new genre of NoSQL databases requires far less expert database skills (such as SQL,
relational modeling etc.). Furthermore, companies use a bunch of different databases
for specialized purposes and the size of the databases in most organizations doesn’t
call for a dedicated DBA for each of these databases. So, managing these databases, or
at the least, worrying about their uptime and performance is falling more and more
in the lap of the system administrator.

Chapter 3 explains the key concepts behind the NoSQL databases such as MongoDB.

Caching
In addition to NoSQL databases, the use of caching has come to occupy a central
place. Modern application stacks contain several points where you can use caching to
vertically scale the applications.

Modern Scripting Languages and Databases | 29

Setting up remote caching clusters using open source caching solutions such as
Memcached or Redis is pretty straightforward but scaling and managing failure
recovery scenarios isn’t. You can let Amazon Elastic Cache to set up a hosted cached
cluster with Memcached or Redis. Microsoft Azure handles your Redis replication
and automatic failover setup in a few easy clicks. Chapter 3 explains caching and the
use of external distributed caching servers such as Memcached and Redis. Se

Content Delivery Networks
Content Delivery Networks (CDNs) are a network of distributed servers that deliver
web content to users based on the geographical location of the user and the origin of
the web pages. CDNs are efficient in speeding up the delivery of content originated by
websites with a heavy traffic and a wide reach. CDNs also protect you against large
increases in the web traffic. CDNs use content delivery servers that cache the page
content of popular web pages. When users access these pages, the CDN redirects the
user to a server that’s closest to that user.

Chapter 3 explains the concepts underlying a CDN and how it works.

IT Orchestration
IT Orchestration goes beyond configuration, and enable you to reap the benefits of
configuration management at scale. Orchestration generally includes things such as
the following:

• Configuration
• Zero downtime rolling updates
• Hot fixes Let’s say you’re configuring multiple instances of a web server with a

CM tool, each of them with a slightly different configuration. You may also want
all the servers to be aware of each other following a boot up. Orchestration does
this for you. An orchestration framework lets you simultaneously execute config‐
uration management across multiple systems.

You can use a CM tool for orchestration, but a more specialized tool such as Ansible
is excellent for IT orchestration. If you were to use just a CM tool, you’d need to add
on other tools such as Fabric and Capistrano for orchestration purposes. With a dedi‐
cated orchestration tool such as Ansible, you won’t need the other tools. Ansible also
helps you manage cloud instances without modification. Note that while Ansible is
really an orchestration tool, since it permits the description of the desired state of
configuration, you can also consider it a CM tool.

Often companies use Ansible along with Puppet or Chef as the CM tool. In this case,
Ansible orchestrates the execution of configuration management across multiple sys‐

30 | Chapter 1: Modern Linux System Administration

tems. Some teams prefer to use just Ansible for both configuration and orchestration
of an infrastructure.

Provisioning with Vagrant
It’s quite hard to develop and maintain web applications. The technologies, code and
the configuration keep changing all the time, making it hard to keep your configura‐
tion consistent on all servers (prod, staging, testing, and dev). Often you learn that a
configuration for a web server or a message queue is wrong, only after a painful pro‐
duction screw up. Virtualized development environments are a great solution for
keeping things straight. You can set up separate virtualized environments for each of
your projects. This way, each project has its own customized web and database
servers, and you can set up all the dependencies it needs without jeopardizing other
projects.

A virtual environment also makes it possible to develop and test applications on a
production-like virtual environment. However, virtual environments aren’t a piece of
cake to set up and require system administrator skillsets. Vagrant to the rescue!

Vagrant is a popular open source infrastructure provisioning tool. Vagrant lets you
easily create virtualization environments and configure them using simple plain text
files to store the configuration. Vagrant makes your virtual environments portable
and shareable with all team members. With Vagrant, you can easily define and create
virtual machines that can run on your own system.

You can generate virtual machines with Oracle’s VirtualBox or VMware as the providers. Once you’ve the Vagrantfile all configured, deploying a new environment is as simple as typing in the following two word command:

 $ vagrant up

Since Vagrant integrates with various hypervisor and cloud providers, you can use it
to provision both an on premise virtual infrastructure as well as a full blown cloud
infrastructure.

Vagrant and Configuration Management Tools
Earlier, you saw how you can use CM tools such as Chef and Puppet to provision and
configure infrastructure components such as web servers and databases. You can use
Vagrant with a configuration management tool such as Chef to bring up a complete
environment, including a virtual infrastructure. Once you provision the cloud or vir‐
tual infrastructure through Vagrant, you can use Chef to deploy and configure the
necessary application servers and databases on the virtual (or cloud) servers.

A common use case for Vagrant is the fast creation of a disposable infrastructure and
environment for both developers and testers.

IT Orchestration | 31

Provisioning - Automatic Server Deployment
With the proliferation of server farms and other large scale server deployment pat‐
terns, you can rule out old-fashioned manual deployments. PXE tools such as Red
Hat Satellite for example, help perform faster deployments, but they still aren’t quite
adequate, since you need to perform more work after deploying the operating system
to make it fully functional.

You need some type of a deployment tool (different from a pure configuration tool
such as Puppet or Chef), to help you with the deployment. For virtual servers,
VMware offers CloudForms, which helps with server deployment, configuration
management (with the help of Puppet and Chef) and server lifecycle management.
There are several excellent open source server deployment tools such as the follow‐
ing:

• Cobbler
• Razor
• Crowbar
• Foreman

In Chapter 6, I show how tools such as Razor and Cobbler help with the automatic
deployment of servers.

Server (hardware) Virtualization
In the old days, all applications ran directly on an operating system, with each server
running a single OS. Application developers and vendors had to create applications
separately for each OS platform, with the attendant increase in effort and cost. Hard‐
ware virtualization provides a solution to this problem by letting a single server run
multiple operating systems or multiple instances of the same OS. This of course lets a
single server support multiple virtual machines, each of which appears as a specific
operating system, and even as a particular hardware platform.

Most application libraries and server delivery platforms usually were installed at the
system level and thus disparate applications would often find conflicts that were
resolvable only by using dedicated systems for each application. Virtual machines
solve this problem by hosting dedicated operating systems as virtual environments on
top of another OS.

Hardware virtualization separates hardware from a single operating system, by allow‐
ing multiple OS instances to run simultaneously on the same server. Hardware virtu‐
alization simulates physical systems, and is commonly used to increase system
density and hike the system utilization factor. Multiple virtual machines can share the

32 | Chapter 1: Modern Linux System Administration

resources of a single physical server, thus making fuller use of the resources you’ve
paid for.

Containerization – the New Virtualization
Virtual machine technology has been around for a good while and folks understand
how it works: virtual machines contain a complete OS and run on top of the host OS.
You can run multiple virtual machines, each with a different OS, on the same host.
Containers share some features with virtualization but aren’t the same as virtual
machines. Under containerization, both the host and the container share the same
kernel, meaning containers are based on the same OS as their host. However, since
containers share the kernel with the host, they require fewer system resources.

Container virtualization is newer than virtualization and uses software called a virtu‐
alization container that runs on top of the host OS to provide an execution environ‐
ment for applications. Containers take quite a different approach from that of regular
virtualization, which mostly use hypervisors.

The goal of container virtualization isn’t to emulate a physical server with the help of
the hypervisor. Containers are based on operating system virtualization – all contain‐
ers share the same OS kernel and their isolation is implemented within that one ker‐
nel..All containerized applications share a common OS kernel and this reduces the
resource usage since you don’t have to run a separate OS for each application that
runs inside a container on a host. Processes running inside a container have a small
hook into the underlying OS kernel.

Virtualization systems such as those supported by VMware let you run a complete OS
kernel and OS on top of a virtualization layer known as a hypervisor. Traditional vir‐
tualization provides strong isolation among the virtual machines running on a server,
with each hosted kernel in its own memory space and with separate entry points into
the host’s hardware.

Since containers execute in the same kernel as the host OS and share most of the host
OS, their footprint is much smaller than that of hypervisors and guest operating sys‐
tems under traditional virtualization. Thus, you can run a lot more containers on an
OS when compared to the number of hypervisors and guest operating systems on the
same OS.

Containers are being adopted at a fast clip since they are seen as a good solution for
the problems involved in using normal operating systems, without the inefficiencies
introduced by virtualization. New lightweight operating systems such as CoreOS have
been designed from the ground up to support the running of containers.

Containerization – the New Virtualization | 33

Containers don’t have the main advantage provided by hardware
virtualization such as the virtualization provided by VMware,
which can support disparate operating systems. This means, for
example, that you can’t run a Windows application inside a Linux
container. Containers today are really limited to the Linux operat‐
ing system only.

Docker as a solution for Image sprawl
Docker is primarily a solution for managing image sprawl. Docker is lightweight and
its images are layered, allowing you to easily iterate on the images. While Docker can
fix many of the problems inherent in the golden image strategy, it doesn’t supplant
configuration management tools such as Chef and Puppet. After all, you can use the
CM tools to install and configure Docker itself, as well as the Docker containers. Con‐
tainers require orchestration and deployment support, which the CM tools excel in.

Docker and Containerization
Docker makes it easy to overcome the headaches involved in managing containers.
Docker is an application that offers a standard format in which to create and share
containers. Docker didn’t materialize out of thin air: it extends the contributions
made by LXC, cgroups and namespaces to simply the deployment and use of contain‐
ers.

As mentioned earlier, it was Google that started developing CGroups for Linux and
also the use of containers for provisioning infrastructure. In 2008 the LXC project
was started, combining the technology behind CGroups, kernel namespaces and
chroot, as a big step forward in the development of containers. However, using LXC
to run containers meant a lot of expert knowledge and tedious manual configuration.

It was left to Docker, however, to complete the development of containers to the point
where companies started adopting them as part of their normal environment, starting
around 2012. Docker brought containers from the shadows of IT to the forefront.

Docker did two main things: it extended the LXC technology and it also wrapped it in
user friendly ways. This is how Docker became a practical solution for creating and
distributing containers. Docker makes it easy to run containers by providing a user
friendly interface. In addition, Docker helps you avoid the reinventing of the wheel,
by providing numerous prebuilt public container images you can download and get
started.

34 | Chapter 1: Modern Linux System Administration

Docker Container Orchestration and Distributed Schedulers
Managing processes on a single server is easy with the help of the Linux kernel and
the init system. Managing and deploying a large number of containers isn’t a trivial
concern. When you deploy containers on multiple hosts, you not only need to worry
about the deployment of the containers, but you also need to concern yourself with
the complexities of inter-container communications and the management of the con‐
tainer state (running, stopped. failed, etc.). Figuring out where to start up failed
servers or applications and determining the right number of containers to run, all are
complex issues.

Message Oriented Middleware (Message Buses)
The prevalence of service oriented architectures means that administrators build sys‐
tems that connect multiple services, in a loosely coupled format. These systems are
distributed by definition, and hence need a way for the individual components to
communicate efficiently at high speeds. Messaging buses (also called message brokers
or MOM (Message Oriented Middleware), are communication platforms that enable
applications and services to communicate in distributed architectures. Streams of
messages pass through the bus and are acted upon by the services (worker nodes).

Popular message buses include the following:

• RabbitMQ
• ZeroMQ
• Celery

Containers decouple processes from the servers on which the containers run. While
this offers you great freedom in assigning processes to the servers in your network, it
also brings in more complexity to your operations, since you now need to:

• Find where a certain process is running right now
• Establish network connections among the containers and assign storage to these

containers
• Identify process failures or resource exhaustion on the containers
• Determine where the newly started container processes should run

Container orchestration is the attempt to make container scheduling and manage‐
ment more manageable. Distributed schedulers are how you manage the complexity
involved in running Docket at scale. You simply define a set of policies as to how the
applications should run and let the scheduler figure out where and how many instan‐
ces of the app should be run. If a server or app fails, the scheduler takes care of

Containerization – the New Virtualization | 35

restarting them. All this means that your network becomes a single host, due to the
automatic starting and restarting of the apps and the servers by the distributed sched‐
uler.

The bottom line is to run the application somewhere without concerning yourself
with the details of how to get it to run somewhere. Zero downtime deployments are
possible by launching new application versions along the current version, and by
gradually directing work to the new application.

There are several container orchestration and distributed scheduling tools available,
as the following sections explain.

FLEET
Fleet works with the system daemon on the servers in order to perform as a dis‐
tributed init system. Thus, it’s best used in operating systems with systemd, such as
CoreOS and others. In addition, you need etcd for coordination services.

KUBERNATES
Kubernates, an open source tool initiated by Google, is fast becoming a leading con‐
tainer orchestrator tool. Kubernates helps manage containers across a set of servers.
Unlike Fleet, Kubernates demands far fewer requirements to be satisfied by the OS
and therefore you can use it across more types of operating systems than Fleet.
Kubernates contains features that help with deploying of applications, scheduling,
updating, scaling, and maintenance. You can define the desired state of applications
and use Kubernate’s powerful “auto features” such as auto-placement, auto-restart,
and auto-replication to maintain the desired state.

Apache Mesos
Apache Mesos is considered by some as the gold standard for clustered containers.
Mesos is much more powerful than Kubernates but requires you to make more deci‐
sions to implement it as well! Mesos has been around even before Docker became
popular. Mesos is a framework abstraction and lets you run different frameworks
such as Hadoop as well as Docker applications (there are projects in place to let even
Kubernates run as a Mesos framework) on top of the same cluster of servers. Meso‐
sphere’s Marathon framework and the Apache Aurora project are the two frequently
used Mesos frameworks that support Docker well.

Apache Mesos is a mature technology used by well-known internet companies to
support their large scale deployments. Kubernates and Apache Mesos provide some‐
what similar features as what the public cloud vendors themselves offer with their
proprietary technology.

36 | Chapter 1: Modern Linux System Administration

Swarm
Docker itself provides a native clustering tool named Swarm, which lets you deploy
containers across a large pool. Swarm presents a collection of Docker hosts as a single
resource. While Swarm is really lightweight and has fewer capabilities than either
Kubernates or Mesos, it’s adequate for many purposes. You can use a single Docker
Swarm container to create and coordinate container deployment across a large
Docker cluster.

Cluster Management and Cluster Operating Systems
Increasingly, distributed services are using clusters for both redundancy as well as the
scaling benefits offered by the cluster based architectures. Clusters provide numerous
benefits but also bring their own unique problems. Chief among these is the efficient
allocation and scheduling of resources to the various services running in the cluster.
Cluster operating systems are the answer to this problem, with Apache Mesos being
the most well-known of these types of systems. Here is a short list of the most impor‐
tant cluster operating systems.

• Mesos is a kernel/operating system for distributed clusters. It supports both .war
files and Docker containers.

• Marathon is a scheduler that helps schedule and run jobs in a Mesos cluster. It
also creates a private Platform –as-a-Service on top of the Mesos framework.

• Fleet is for Docker containers
• YARN (Yet Another Resource Negotiator) is the processing component of

Apache Hadoop and together with the storage component of Hadoop - HDFS
(Hadoop Distributed File System), forms the foundation of Hadoop 2.

Each framework in a cluster has different computing requirements. Companies must
therefore run these different frameworks together and share the data and resources
among them. Any cluster resource manager in a cluster should be able to support the
goals of isolation, scalability, robustness and extensibility.

Mesos, which became a top-level Apache project in 2013, is becoming increasingly
popular as a cluster manager that helps improve resource allocation by enabling the
dynamic sharing of a cluster’s resources among different frameworks. Twitter and
Airbnb are among the production users of Mesos.

Mesos does the same for the data center as what the normal operating system kernel
does for a single server. It provides a unified view and easy access to of all the cluster’s
resources. You can use Mesos as the center piece for your data center applications,
and make use of its scalable two-phase scheduler, which avoids the typical problems
you experience with a monolithic scheduler. Chapter 10 discusses Mesos in detail.

Cluster Management and Cluster Operating Systems | 37

Distributed jobs run across multiple servers. System administrators, for course, use
tools to monitor a set of servers and use configuration tools to perform the server
configuration updates etc. You can also use CI (Continuous Integration) tools such as
Jenkins to manage some general infrastructure management tasks. But the best way
to schedule both ad-hoc and scheduled jobs across multiple servers is to use a remote
command execution tool. All the following can help you execute commands across
multiple hosts:

• Fabric
• Capistrano
• Mcollective

MCollective for example, is a great tool for parallel job execution that you can use to
orchestrate changes across a set of servers in near real-time.

There are simple parallel execution tools based on the Parallel Distributed Shell
(pdsh), an open source parallel remote command execution utility, or you can even
script one yourself. However, these tools are primitive because they loop through the
system in order, leading to the time drift issue. They also can’t deal with deviations in
responses and make it hard to track fatal error messages. Finally you can’t integrate
these tools with your CM tools. A tool such as Mcollective overcomes all these draw‐
backs of the plain vanilla parallel execution tools and allows you execute commands
parallelly on thousands of servers belonging to different platforms. Chapter 6 shows
how MCollective works.

Version Control Systems
Version control is the recording of changes to files so you can recall specific versions
of the files at a later time. Although version control systems are mostly used by devel‐
opers (and increasingly by system administrators), source code isn’t the only thing
you can version – the strategy of keeping multiple versions of the same document in
case you’ll need them later on is applicable to any type of document.

Version control systems offer numerous benefits such as the following:

• Take a project (or some of its files) back to a previous state
• Find out which user made the modifications that are giving your team a head‐

ache
• Easily recover from mistakes and the loss of files NOTE: Key practices such as

continuous integration and automated deployments depend critically on the
usage of a central distributed version control repository. Really, with benefits

38 | Chapter 1: Modern Linux System Administration

such as these and very little overhead, what’s there to argue about version control
systems?

Application development teams have been using version control systems for a num‐
ber of years now, to track and maintain application code. However, it’s important to
version your infrastructure, configurations and databases, along with you application
code. You must script all your source artifacts.

Just as the application developers do with their application code, you must have a sin‐
gle source of truth for your systems, including servers, databases and web servers.
This results in letting you quickly resolve problems and easily recreate known good
states of your infrastructure components. You don’t need to waste precious time fig‐
uring out which versions of your application code should be paired with which envi‐
ronment.

The most commonly used version control tools today are the following:

• Git
• Perforce
• SVN (subversion)

Of the three tools, Git has become enormously popular, for several reasons.

When you store your configuration definitions in a version control system, you can
also set up things so that any configuration changes you commit automatically trigger
actions to test and validate changes. This is how continuous integration is triggered
for infrastructure changes, so the changes are automatically tested and validated. You
therefore integrate a CI or CD tool such as Jenkins, or TeamCity with the CVS. Since
configuration definitions are inherently modular, you can run implementation
actions on only those parts of the infrastructure code that you’ve changed.

Version control systems (VCSs) are nothing new – most of us are quite familiar with
these systems, variously referred to as source control systems, revision control sys‐
tems or source code management systems. However, early version control systems
such as CVS (Concurrent Version System) have been supplanted over the past several
years by far more powerful open source tools such as Git, Mercurial and Subversion.

Chapter 7 discusses version control systems, including Git and GitHub.

Continuous Integration and Continuous Deployment
One of the ways in which system administrators can help developers be more pro‐
ductive is by helping developers spend most of their time writing code and creating
or enhancing software, instead of running around fixing problems cause by bad

Continuous Integration and Continuous Deployment | 39

builds and merges. Broadly speaking, administrators can help developers in the fol‐
lowing two ways:

• Provide performance metrics and test results to developers so they can evaluate
their work

• Help build environments for developers to work in, ideally with the same config‐
uration as the production systems

The terms rollout, releasing, and deploying are often used synony‐
mously to refer to the process of making changes available to inter‐
nal or external end users.

In traditional application deployment, there are numerous steps between generating
code and the product into the hands of the users (internal or external). These steps
include:

• Writing new source code or modifying existing code
• Committing the source code
• Building binaries from the modified code
• Performing quality assurance (QA) testing
• Staging the application
• Deploying the application to production

Not only are there several clearly demarcated steps along this process, with different
owners and stakeholders, there’s also quite a bit of manual work involved in those
processes. This has the rather unsettling effect that while you’re fixing some bugs in
your code, the tedious manual processes you employ for testing the changes and
deploying it may introduce their own bugs into the software! Automation of course,
is the way around these potential errors and it also speeds up the entire pipeline.
Continuous integration is the broad name given to this automating of the software
build and deployment process.

the primary purpose behind a CI or CD system is to catch bugs
when they’re young, that is, fairly early in the development and
testing process.

40 | Chapter 1: Modern Linux System Administration

Benefits Offered by CI
Continuous integration offers several benefits, as summarized here:

• Enhanced reliability of the artifacts that you deploy
• Promotion of automation and reduction in the number of manual processes
• Early identification and remediation of software bugs
• More frequent software updates

Steps involved in CI
Continuous integration involves a sequence of steps that must be performed in order,
to get to the final stage of deploying the software. In a nutshell, CI involves the fol‐
lowing steps or procedures:

• Developers check in code to a common VCS on a regular basis, usually at least
once a day. Everything that an application needs to run – source code, database
migration scripts, etc. are checked in.

• CI tools such as Jenkins and TeamCity run automated builds whenever there are
changes in the VCS.

• The automated builds include the testing of the code checked in by the develop‐
ers, such as unit tests, code coverage and functional tests.

• A build is classified as a fully integrated build after it passes all tests.
• The CI server provides the tested artifacts (same as binaries or executables) for

download. You can alternatively use an external artifact repository such as Arti‐
factory, Nexus or Nuget.

• The CI server provides visibility through a dashboard into the broken builds and
test failures, and automates communications to the team members for actions to
fix the problems.

• One of the key requirements of CI is to automate deployments to test environ‐
ments, where you can run automated functional tests by deploying the previously
generated tested artifacts.

Continuous Integration and Continuous Deployment
There’s often some confusion between the two similar sounding terms Continuous
Integration (CI) and Continuous Delivery (CD). Here’s how the two terms differ:

• Continuous integration, also referred sometimes as Continuous Staging, involves
the continuous building and the acceptance testing of the new builds. The new

Continuous Integration and Continuous Deployment | 41

builds aren’t automatically deployed into production. They’re introduced into
production manually, after approval of the acceptance testing process.

• Continuous delivery is where new builds are automatically pushed into produc‐
tion after acceptance testing.

In general, organizations use CI when they first start out along the road of continuous
testing and deployment. They need to develop an extremely high degree of confi‐
dence in their build strategies and pipelines before moving to a CD approach. In any
case, since both CI and CD really use the same set of processes and tools, you often
are OK regardless of what you call the deployment approach (CI or CD).

Developers unit test the applications when they build or modify applications. Regard‐
less of whether they use Test Driven Development (TDD) strategies, unit testing help
verify small chunks of code at a time with tools such as Junit and RSpec, which speed
up the writing of unit tests. A CI tool such as Jenkins, Hudson or Travis Continuous
Integration (Travis CI) lets you create efficient build pipelines that consist of the build
steps for the individual unit tests. In order to be promoted to the staging phase, the
source code, after it’s built into a binary package, must pass all the unit tests you
define in the test pipeline. The compiled code without errors is called a build artifact
and is stored in a directory that you specify.

Continuous Application deployment
Application deployment tools let you automate releases. These tools are at the center
of continuous delivery, along with the continuous integration frameworks such as
Jenkins. Capistrano is a deployment library that’s highly popular as an application
deployment tool. You can also consider other application deployment automation
tools such as:

• Ansible
• Fabric
• Jenkins

Automating deployment speeds up the flow of software deployment. Many organiza‐
tions have automated their software deployments in a way that enables them to intro‐
duce software changes several times every day. Automated deployment reduces the
software cycle times by removing the human error component from deployments.
The end result is fast and frequent, high quality deployments. Anyone with the
appropriate permissions can deploy software as well as its environment by simply
clicking a button.

It’s quite common for project members to delay acceptance testing until the end of
the development process. Developers may be making frequent changes and even

42 | Chapter 1: Modern Linux System Administration

checking them in, and running automated unit tests. However, in most cases there’s
no end to end testing of the application until the very end of the application. Even the
unit tests are of dubious value at times, since they aren’t tested in a production-like
environment. Instead, the project managers often schedule an elaborate and time
consuming integration testing phase when all the development concludes. Developers
merge their branches and try to get the application working so the testers can put the
app through the paces of acceptance testing.

What if you can spend just a short few minutes after adding new changes to see if the
entire app works? Continuous integration (CI) makes this possible. Every time one of
the developers commits a change, the complete application is built and a suite of
automated tests is run against the updated complete application. If the change broke
the app, the development team needs to fix it right away. The end result is that at any
given time, the entire application will function as it’s designed.

So, how is the “continuous” part of CI defined? Continuous in this context simply
means that every time your team changes something and commits the change to your
version control system. A continuous integration tool such as Jenkins integrates with
a VCS such as Git, which lets you automatically submit code to Jenkins for compiling
and testing executions soon as the developers commit new code to the VCS. Later, the
developers and others can check the stages of the automated test and build cycles
using the job history provided by Jenkins as well as other console output.

Continuous Integration results in faster delivery of software as your app is in a
known functioning state at all times. When a committed change messes the app up,
you’ll know immediately and can fix it immediately as well, without having to wait
for the lengthy integration phase of testing at the very end of development. It’s always
cheaper in terms of effort and time to catch and fix bugs at an early stage.

Tools for Implementing Continuous Integration
Although CI is really more a set of practices than a specific tool, there are several
excellent open source tools such as the following:

• Hudson: has a large set of plugins that allow you to integrate it with most tools in
the build and deployment environment.

• CruiseControl: this is a simple, easy to use tool.
• Jenkins: the most popular CI tool out there today with a huge community of

users and numerous plugins for almost anything you may want to do with
respect to CI/CD.

In addition, you can check out the following commercial CI servers, some of which
have free versions for small teams.

Continuous Integration and Continuous Deployment | 43

• TeamCity (JetBrains): contains numerous out-of-the box features to let you get
started easily with CI

• Go (ThoughtWorks): Is an open source tool that descends from one of the earlier
CI server named CruiseControl. Delivery Pipelines are the strong feature of Go,
and the tools excels at visualization and configuring the pipelines.

• Bamboo (Atlassian)

In chapter 8, which deals with continuous integration, I explain the concepts behind
the popular CI tools Jenkins and Hudson.

Checking into the trunk or mainline means that you aren’t check‐
ing into branches. CI is by definition impossible if you aren’t
checking into the trunk, since any code you check into a branch
isn’t integrated with the rest of the existing application code or the
changes being made by the other developers.

Applications use both unit testing and acceptance testing on a regular basis to test
software changes. Unit tests are for testing the behavior of small portions of the appli‐
cation and don’t work their way through the entire system such as the database or the
network. Acceptance tests, on the other hand, are serious business: they test the appli‐
cation to verify its full functionality as well as its availability and capacity require‐
ments.

How did companies perform integration before they started adopting the new CI
tools? Well, most teams used the nightly build mechanism to compile and integrate
the code base every day. Over time, automated testing was added to the nightly build
processes. Further along the road cane the process of rolling builds, where the builds
were run continuously instead of scheduling a nightly batch process. Continuous
builds are just what they sound like: as each build completes, the next build starts,
using the application version stored in the VCS.

Log Management, Monitoring and Metrics
Traditional log management has involved poring over boring server logs with the
intention of divining the root cause of system failures or performance issues. How‐
ever, the advent of the web means that you now have other types of logs to deal with
as well. Companies have lots of information that’s trapped by the web logs of users,
but most users aren’t really ready to mine these humongous troves of data.

Traditional systems administrators might think it’s odd to consider logs as the fount
of business intelligence, but that’s exactly what they’ve become in today’s web based
world. Logs today don’t mean just old fashioned server and platform logs – they mean
so much more. Log management in the contemporary sense mostly refers to the

44 | Chapter 1: Modern Linux System Administration

management of logs of user actions on a company’s websites, including clickstreams
etc. These logs yield significant insights into user behavior, on which so much of a
business’s success depends. Thus, it’s the business managers and product owners that
are really the consumers of the products of the log management tools, not the system
administrators.

The term logs is defined quite broadly in the context of log man‐
agement, and not limited to server and web server logs. From the
viewpoint of Logstash, any data with a time stamp is a log.

If you want to assess the stability and performance of your system, you need the sys‐
tem logs. A distributed system can produce humongous amounts of logs. You defi‐
nitely need to use tools for collecting the logs as well as for visualizing the data.

There are great log management tools out there today that you can use to manage and
profit from logs. Although originally tools such as Logstash were meant to aggregate,
index and search server log files, they are increasingly being used for more powerful
purposes. Logstash combined with Elasticsearch and Kibana (ELK) is a very popular
open source solution for log analysis. ELK is increasingly being used as a real time
analytics platform. It implements the Collect, Ship+Transform, Store and Display pat‐
terns. Here’s what the three tools in the ELK stack do:

• ElasticSearch: a real-time distributed search and analytics engine optimized for
indexing and based on Lucene, an open source search engine known for its pow‐
erful search capabilities

• Logstash: a log collection, analyzing and storing framework, used for shipping
and cleaning logs

• Kibana: a dashboard for viewing and analyzing log data

Effective Metrics
Graphite is a popular open source tool for storing metrics. Graphite helps you build
dashboards lightening quick for just about any metric that you can think of. Graphite
is highly flexible, scalable, and is extremely easy to use.

Graphite lets you perform various types of actions with metrics, by providing a time‐
stamp and value for the metrics. You can graph the metric and set alarms for it.
Graphite offers an API that’s quite easy to use. Developers can add their self-service
metrics to the dashboards.

Log Management, Monitoring and Metrics | 45

Proactive Monitoring
You need to have two entirely different types of monitoring for your systems. The
first type of monitoring is more or less an extension of traditional server monitoring.
Here, tools such as Nagios and New Relic Server provide you visibility into key areas
bearing on system performance, such as capacity, CPU and memory usage, so you
can fix problems when they rear their ugly head.

The second and more critical type of monitoring, especially for those organizations
who are running complex web applications, are the application performance moni‐
toring tools. Tools such as New Relic APM enable code-level identification and reme‐
diation of performance issues.

The goal in both types of monitoring is to let everybody view the available application
and server performance data – so they can contribute to better decisions to
improve/fix things.

Tools for Monitoring
There are several popular monitoring tools, including Nagios, Ganglia, statsd and
Graphite. Let me briefly describe the Nagios and Ganglia tools here – I describe these
and tools in detail in Chapter 7.

Nagios is a system and networking monitoring application that helps you monitor
web applications, as well as resource utilization such as disk, memory and CPU
usage. Nagios is very popular as an open-source monitoring tool. Nagios doesn’t
include any monitoring scripts when you install it. It’s simply a plug-in scheduler and
execution program. You turn Nagios into a true monitoring system by using various
plug-ins that check and report on various resources. Nagios uses exit codes from the
various plug-ins to determine subsequent actions. When a plug-in script exits with a
non-zero exit code, Nagios generates and sends alert notifications to you.

Ganglia is a distributed monitoring system with powerful graphical capabilities to
display the data it collects. While Nagios shows you if an application or server is fail‐
ing preconfigured health checks, Ganglia shows you the current and historical picture
as to the resource usage and performance of applications and hosts. As with Nagios,
Ganglia is highly configurable and lets you add custom metrics to the Ganglia graphs.
Its ability to visualize resource usage trends helps with your capacity planning exerci‐
ses. Nagios and Ganglia work very well together. If Nagios emits alerts about a host or
application, Ganglia helps you immediately find out if CPU or resource utilization,
and system load have anything to do with the alerts sent by Nagios.

Service Metrics
System administrators regularly track system metrics such as OS and web server per‐
formance statistics. However, service metrics are very important too. Among other

46 | Chapter 1: Modern Linux System Administration

things, service metrics reveal how your customers are using your services, and which
areas of a service can benefit from enhancements. Apache Hadoop has numerous
built-in counters that help you understand how efficient MapReduce code is. Simi‐
larly, Codehale’s Metric x Library provides counters, timers or gauges to for JVM. It
also lets you send the metrics to Graphite or another aggregating and reporting sys‐
tem.

Synthetic Monitoring
While system metrics have their uses, it’s hard to figure out how a service or an appli‐
cation will react when it’s confronted by an unusual set of circumstances. Organiza‐
tions sometimes insert fake events into their job queues, called synthetic transactions,
to see how the system behaves. Synthetic monitoring often yields more meaningful
metrics than low-level traditional metrics. Often, synthetic monitoring is used to
measure availability of the applications and real-user monitoring is used to monitor
performance. Chapter 16 delves into application performance monitoring and Real
User Monitoring (RUM) and synthetic application monitoring.

Cloud Computing
In the past few years, especially over the past 5 years, there has been an explosive
increase in the outsourcing of hardware and platform services, through the adoption
of cloud computing. The reasons for the headlong rush of companies to cloud based
computing aren’t hard to figure out. When you move to the cloud, you don’t need to
spend as much to get a new infrastructure in place and hire and train the teams to
support it. Applications such as ERM (Enterprise Risk Management) that are notori‐
ously difficult to implement successfully, can be had at a moment’s notice by subscrib‐
ing to a cloud based application. Enhanced performance, scalability and reliability
and speed of implementation are some of the main drivers of the move to cloud-
based computing.

Platform-as-a-Service means that vendors can support the entire
stack required for running mission critical applications, such as the
web servers, databases, load balancers etc. You can monitor and
manage the cloud based infrastructure through web based inter‐
faces

Cloud based providers such as Amazon’s AWS and the Rackspace Cloud have wowed
both system administrators and developers with their ability to provide huge
amounts of on-demand computing power at the mere push of a button! Using tools
such as knife, you can spin up and spin down server capacity as your demand fluctu‐
ates. You can use the configuration tools not only with the public cloud providers but
also with private cloud platforms such as VMware’s vSphere.

Cloud Computing | 47

However, for many organizations, especially small to middle sized ones, it makes a lot
of sense to simply outsource the entire task of running the infrastructure and build‐
ing a new data center to a service such as Amazon Web Services (AWS). AWS (as well
as Microsoft’s Azure and Rackspace Cloud) is a highly optimized and efficient cloud
infrastructure and if the cost analysis works for you, it may be the best way to move
to a cloud-based environment. After all, if you want to go the route of something
such as AWS, all you need is a valid credit card and you could be setting up a cloud
environment and running a web application or a big data query in a matter of a few
hours!

Let me make sure and point out that cloud computing isn’t an unmixed blessing for
everybody. Cloud computing comes with its own shortcomings, chief of which are
concerns such as the inability of service providers to offer true SLAs (service level
agreements), data integration between private and public cloud based data, the inabil‐
ity to audit the provider’s systems or applications, the lack of customization, and
inherent security issues due to the multi tenancy model of public clouds.

Amazon Web Services (AWS) is a truly amazing set of services that enable you to get
on the cloud with minimal effort and pain. AWS includes several exciting compo‐
nents such as auto scaling and elastic load balancing. I discuss AWS in detail in Chap‐
ter 10.

Even when you aren’t using a cloud computing vendor such as AWS, Microsoft Azure
or Google App engine, you’re likely to be virtualizing your on premise infrastructure
through private clouds using something like OpenStack. OpenStack is hot right now,
so let me introduce you to it in the following section.

Open Stack – the Open Source Cloud Platform
OpenStack is a popular open source platform that enables you to build an IaaS cloud
(Infrastructure as a Service). OpenStack is designed to meet the needs of both private
and public cloud providers and can support small to very large sized environments.
OpenStack is free Linux based software that provides an orchestration layer for build‐
ing a cloud data center. It provides a provisioning portal that allows you to provision
and manage servers, storage and networks.

The goal of OpenStack is to provide an open standard, easy to use, highly reliable
cloud computing platform for organizations so they can build either a public or a pri‐
vate cloud.

Software Defined Networking
Traditional network administration involves administrators manually configuring
and maintaining complex physical network hardware and connectivity. Software
defined networking (SDN) is a fast evolving area in networking. SDN aims to apply

48 | Chapter 1: Modern Linux System Administration

the virtualization concepts currently used at the storage and processing areas to net‐
working. By combining virtualization and distributed architectures, SDN aims to
remove the need to manage physical network devices on an individual basis. SDN
allows administrators to manage network services in an abstract fashion and facili‐
tates the automating of network tasks.

SDN is becoming increasingly popular, and modern cloud computing platforms such
as Open Cloud rely on it. Cloud computing regards SDN as an essential and key
foundation. OpenFlow and Frenetic/Pyretic are some of the new tools associated with
SDN. Chapter 2 discusses SDN and Network Flow Virtualization (NFV) in detail.

Microservices, Service Registration and Service Discovery
Microservices are a fast growing architecture for distributed applications. Microser‐
vice architectures involve the breaking up of an application into tiny service apps,
which each of the apps performing a specialized task. You build up applications by
using microservices as your building blocks.

You can deploy microservices independent of each other since the services are loosely
coupled. Each microservice performs a single task that represents a small part of the
business capability. Since you can scale the smaller blocks per your requirements,
fast-growing sites find it extremely convenient to adopt a microservice based archi‐
tecture. Microservices help deliver software faster and also adapt to changes using
newer technologies.

Right now, many organizations use Node.js, a cross-platform runtime environment
for developing server-side web applications, to create the tiny web services that com‐
prise the heart of a microservice based architecture. Following are some of the com‐
mon tools and frameworks used as part of creating and managing microservices.

• Node.js
• Zookeeper (or etcd or consul)
• Doozer
• Serf
• Skydns/skydock

Some folks use the two-pizza rule to as a guideline for determining
if a service really qualifies as a microservice. The Two-Pizza rule
states that if you can’t feed the team that’s building the microservice
with two pizzas, the microservice is too big!

Microservices, Service Registration and Service Discovery | 49

Microservices are just what they sound like – they’re small services that are geared
towards a narrow functionality. Instead of writing one long monolithic piece of code,
in a microservice based approach, you try to create independent services that work
together to achieve specific objectives.

If you’re finding that it’s taking a very long time and a large amount of effort to main‐
tain code for an app, the app may very well be ready for breaking up into a set of
smaller services. As to how small a microservice ought to be, there’s no hard and fast
rule. Some define a microservice in terms of the time it takes to write the application
– so, for example, one may say that that any service that you can write within two
weeks qualifies as a microservice.

A PaaS such as Cloud Foundry is ideal for supporting microservice
architectures, since it includes various types of databases, message
brokers, data caches and other services that you need to manage.

The key thing is that the services are independent of each other and are completely
autonomous, and therefore, changes in the individual services won’t affect the entire
application. Each of the services collaborates with other services through an applica‐
tion programming interface (API). Microservices in general have the following fea‐
tures:

• Loosely coupled architecture: microservices are deployable on their own without
a need to coordinate the deployment of a service with other microservices

• Bounded Context: any one microservice is unaware of the underlying implemen‐
tation of the other microservices

• Language Neutrality: all microservices don’t have to be written in the same pro‐
gramming language. You write each microservice in the language that’s best for
it. Language neutral APIs such as REST are used for communications among the
microservices

• Scalability: you can scale up an application that’s bottlenecked without having to
scale the entire application

One may be wondering as to the difference between microservices and a service-
oriented architecture (SOA). Both SOA and microservices are service architectures
that deal with distributed set of services communicating over the network. The focus
of SOA is mostly on reusability and discovery, whereas the microservices focus is on
replacing a monolithic application with an agile, and more effective incremental
functionally approach. I think microservices are really the next stage up for the prin‐
ciples behind SOA. SOA hasn’t always worked well in practice due to various reasons.

50 | Chapter 1: Modern Linux System Administration

Microservices are a more practical and realistic approach to achieving the same goals
as SOA does.

Benefits of Microservices
Following is a brief list of the key benefits offered by microservice based architec‐
tures.

• Heterogeneous Technologies: you don’t have to settle for a common and medio‐
cre technology for an entire system. Microservices let you choose the best of
breed approach to technologies for various functionalities provided by an appli‐
cation.

• Speed: it’s much faster to rewrite or modify a tiny part of the application rather
than make sure that the entire application is modified, tested and approved for
production deployment.

• Resilient systems: you can easily isolate the impact of the failure of small service
components.

• Scaling: you can scale only some services that actually need scaling and leave the
other parts of the system alone.

• Easy Application Modifications and Upgrades: with microservices, you can easily
replace and remove older services since rewriting new ones is almost trivial.

Both service registration and service discovery play a key role in the management of
microservices, so let me briefly explain these two concepts in the following sections.

Service Discovery
Communication among the microservice applications is a major issue when you use
the microservice architecture. Server Registration and Service Discovery are the solu‐
tions for this issue. As the number of microservices proliferates, both you and the
users need to know where to find the services. Service discovery is the way to keep
track of microservices so you can monitor them and know where to find them.

There are multiple approaches to discovering services, the simplest strategy being the
use of the Domain Name Service (DNS) to identify services. You can simply associate
a service with the IP address of the host that runs the service. Of course this means
that you’d need to update the DNS entries when you deploy services. You could also
use a different DNS server for different environments. However, in a highly dynamic
microservice environment, hosts keep changing often, so you’ll be stuck with having
to frequently update the DNS entries.

The difficulties in handling dynamic service discovery through DNS have led to other
approaches, which involve the concept of service registration.

Microservices, Service Registration and Service Discovery | 51

Service Registration
Service registration is the identification and tracking of services by having services
register themselves with a central registry that offers a look up service to help you
find the services. There are several options for implementing service registration, as I
explain in the following sections.

Zookeeper
Zookeeper is a well-known coordination service for distributed environments, and
happens to be a critical component of highly available Hadoop driven big data sys‐
tems. Zookeeper offers a hierarchical namespace where you can store your service
information. You could set up monitors and watches so you and the clients are aler‐
ted when there are any service related changes.

Etcd
Etcd is a distributed key-value store that provides shared configuration and service
discovery for clusters. Etcd is configured to run on each node in a cluster and handles
the master election during the loss of the current master. In a CoreOS cluster, for
example, application containers running in a cluster read and write data into etcd.
The data include things such as the database connection details and cache settings.

Consul
Consul is more sophisticated than Zookeeper when it comes to service discovery
capabilities. It also exposes an HTTP interface for discovering and registering services
and also provides a DNS server. Consul also has excellent configuration management
capabilities.

Chapter 5 discusses service discovery and service registration in more detail, in the
context of using Docker containers.

52 | Chapter 1: Modern Linux System Administration

CHAPTER 2

Networking Essentials for a System
Administrator

Networking is complex – and my goal is to simplify it a bit so you can be an effective
system administrator. Networking has always been a key component of a Linux sys‐
tem administrator’s skill set. However, now more than ever, it has become really one
of the, if not the most important skill sets you need to master. The reason is that
today, with heavy internet driven workloads and the proliferation of cloud based sys‐
tems, networking has become the fulcrum of everything. When dealing with a cloud
environment such as Amazon’s AWS, you’ll find that most of the complex work
involves the setting up of the cloud DNS, internet gateways, virtual private networks
and so on.

As a system administrator, one of your key tasks is to ensure that your system is able
to accept and send data, both from within your own corporate network as well as
from anywhere on the internet. It’s therefore essential that you understand the key
components of a network and grasp how data is moved through the network. You
must also understand the important protocols that are in use today to move data
across networks.

The TCP/IP (Transmission Control Protocol/Internet Protocol) protocols are the two
key protocols that stand at the center of modern networking. This chapter builds on
basics such as packets and frames and leads up to a thorough explanation of the
TCP/IP protocol. In addition, I also talk about several key networking concepts such
as the domain naming service (DNS), dynamic host protocol (DHCP), and similar
useful networking concepts.

53

What the internet is
Before we delve into the intricacies of modern networking, it probably is a good idea
to discuss the Internet and find out how it works. This gives us the opportunity to
define various key concepts of a network, such as the following:

• Packets
• Headers
• Routers
• Protocols

The internet is the largest network in the world, and connects billions of computing
devices across the world. These devices are called hosts or end systems. The systems
are called hosts since they host applications such as web server or an E-mail server,
and they’re referred to as end system since they sit at the edge of the Internet.

End systems access the Internet via Internet Service Providers (ISPs). These end sys‐
tems are connected together via a network of communication links and packets
switches. When a host needs to send data to another host, it segments the long mes‐
sages (such as email messages, a JPEG image or a MP3 audio file) into smaller chunks
of data called packets, and adds header bytes to the segments. The resulting packages
of data (packets) are then sent through the network to the destination host, where
they are reassembled so as to get the original data.

Packets
Network packets are the smallest chunk of data transmitted by a network – each of
the packets contains the data we are transmitting across the network as well as some
control data that helps the networking software and protocols determine where the
packet should go.

A frame is synonymous with a packet in common usage, but it’s actually different
from a packet – a frame is the space in which the packet goes. Each frame has a pre‐
amble and post-amble that tells hardware where the frame begins and ends. The
packet is the data contained in a frame.

Each type of network protocol uses a header to describe the data it’s transmitting
from one host to another. Packets are much small in size compared to the actual data
– for example in a packet that’s 1500 bytes in size, the headers for TCP, IP and Ether‐
net together take up only 54 bytes, leaving 1446 bytes for the payload.

When a network card on a host gets a packet, it verifies that it’s indeed supposed to
accept it by looking up the destination address in the packet header. Next, it generates
an interrupt to the operating system. The operating system will then request the

54 | Chapter 2: Networking Essentials for a System Administrator

device driver or the NIC to process the packet. The device driver examines the packet
to find the protocol it’s using, and places the packet where the protocol’s software or
the stack can find it. Most likely, the packet will be placed in a queue and the stack
grabs the packets from the queue in the order they arrived.

As the packet passes through the network layers, the driver strips appropriate headers
at each of the layers. For example, IP strips the IP headers and TCP strips the TCP
headers. Finally, the packet will be left with just the data (payload) that it needs to
deliver to an application.

Packet Switches
A packet switch grabs the packets arriving on its incoming communication links and
forwards the packets to its outgoing communication links. The two most commonly
used packet switches are routers and link-layer switches. i Routers are more common
in the network core and the link–layer switches are usually employed in access net‐
works. An access network is one that physically connects an end system to the very
first router (also called an edge router) on a path to other end system. Access net‐
works could be a home network, a mobile network, an enterprise network, or a
regional, national, or global ISP. Thus, a company’s’ devices are linked by an Ethernet
switch which then uses the company’s routers to access the company’s ISP and
through it, to the Internet.

The path travelled by a packet through all the communication links and the packet
switches between the source and destination end systems is known a route through
the networks.

Applications and APIs
While you can look at the Internet as a set of hardware and software components that
use a set of protocols, routers and switches to move around vast amount of packets
across the world, what we’re really interested in is how the Internet helps applications
we all use, Thus, it’s probably a good idea to view the Internet as a linked infrastruc‐
ture that provides various services needed by applications that run on the end sys‐
tems. Here, by applications, I’m referring to things such as E-Mail, instant messaging,
Web surfing, social networks, video streaming, Voice-over-IP (VoIP), distributed
gaming, and so on.

Network Protocols
Network protocols are at the heart of the Internet, so let’s delve into network proto‐
cols a bit. Network protocols are similar in a way to the normal protocols we all fol‐
low in a civilized world. Protocols in the networking context are sets of rules and
procedures that allow different devices and systems to communicate with each other.
In the OSI Reference Model, a protocol is a set of rules that governs communication

What the internet is | 55

among entities at the same layer. TCP/IP is often referred to a protocol – it’s actually a
protocol suite, since it’s really a set of protocols.

A network protocol helps hardware or software components of a device such as a
computer exchange message and take actions. More formally, we can say the follow‐
ing: a protocol defines the format and order of messages exchanged between two sys‐
tems, as well as the actions taken during the transmission and the receipt (or non-
receipt) of the messages.

A hardware-implemented protocol for example, controls the flow of the actual bits on
the links (“writes’) between two network interface cards. Similarly, a software-
implemented protocol in a router specifies a packet’s route from the source to the
destination system. When a router forwards a packet that comes into its communica‐
tion link, it forwards that packet to one of its outgoing communication links. How
does the router know to which link it should forward the packet? The exact method
depends on the type of computer network you’re dealing with.

In the Internet, every end system has an IP address that identifies it. The end system
sending a packet to a destination end system includes the destination’s IP address in
the packet’s header portion. Each router has a forwarding table that contains map‐
pings of destination addresses to that router’s outbound communication links. When
packets arrive, the router examines their addresses and searches tis forwarding table,
using the packet’s destination addresses to find the correct outbound communication
link. The router then forwards the packet to this link.

The Internet uses a set of special routing protocols that are used to automatically set
the forwarding tables. The routing protocols use algorithms such as those that
employ the shortest path between the router and a destination – they then compute
the shortest path and configure the forward tables in that router.

You can use the traceroute program (www.traceroute.org) to trace a
route for accessing any host on the internet.

Network Messages and Message Formatting
So, networks represent a set of connected servers that exchange information. How
does this information actually flow through the network? Networks send and receive
data in the form of structures called messages. When information needs to be sent
through a network, it‘s sent by breaking the data into these small chunks (messages).

There are several types of network messages, some of which are the following:

56 | Chapter 2: Networking Essentials for a System Administrator

• Packets: Messages sent by protocols operating at the network layer of the OSI
model are called packets, or IP packets, to be more accurate.

• Datagrams: this is more or less synonymous with a packet and refers to the net‐
work layer as well. Often this term is used for messages sent at higher OSI levels.

• Frames: these are messages that are sent at the lower levels of the OSI model,
most commonly the data layer. Frames take higher-level packets or datagrams
and add the header information needed at the lower levels.

Each of the networking protocols uses messages and each protocol uses a different
formatting method to specify the structure of the message it carries. For example a
message connecting a web server to a browser will be different from a message that
connects Ethernet cards.

While the formatting of the message depends on the specific protocol sending the
messages, all messages contain headers and a footer, along with a data element which
represents the actual data being transmitted in a message. The OSI model refers to
the message handled by a protocol as its PDU (Protocol Data Unit) and the data part
as its SDU (Service Data Unit). A lower layer protocol’s SDU then is the PDU of a
higher-layer protocol.

With this quick introduction to the Internet, let’s move on to learn the important ele‐
ments of modern day networking.

Networking Essentials – Theory and Practice
A network is a group of connected servers that use specialized hardware and software
to exchange information. The size of a network can range from really tiny affairs such
as a home network, to massive, complex infrastructures, such as the networks man‐
aged by Google, for example. The biggest network of course, is something you’re all
familiar with – the internet itself.

Networks can be classified into classes such as Local Area Networks (LANs), Wide
Area Networks (WANs), and Metropolitan Area Networks (MANs). A subnetwork or
subnet is a portion of a network - a network that’s part of a large network. A segment
is a small section of a network and usually smaller than a subnetwork. An internet‐
work (or Internet) is a large network formed by connecting many smaller networks.

Breaking up the real work into layers – the OSI Model
Networking involves several technologies, which interact in a complex and sophisti‐
cated manner to perform their job, which is to move data along the network. To make
sense of networking, it’s essential that you start at a conceptual level, by going to the
fundamental networking model, known as the OSI Reference Model (OSI).

Networking Essentials – Theory and Practice | 57

The OSI model provides a basic framework that explains how data moves through a
network, by organizing the components of the network into several interlinked net‐
working layers. The OSI model is a great learning tool for understanding networks –
and you’ll frequently find references to the various layers of the OSI when dealing
with various aspects of networking.

Many of you may have come across the OSI model as part of a Computer Science col‐
lege course, or during a network training class, and therefore think that it’s something
theoretical, with little or no practical use. Networking models such as the OSI seem,
let’s face it, boring! What possible benefit could there be to learning about a theoreti‐
cal model such as this? After all, the OSI model was conceived a very long time ago,
when a LAN (local area network) was what a network mostly meant. The model
doesn’t adapt very well to even WAN technologies, let alone the internet.

The network layers at various network layers together are called the
protocol stack.

Protocol Layering
Networks and network protocols, including the hardware and software that supports
the protocols, are organized into multiple layers so as to provide an efficient structure
to the network design. Each of the many network protocols belongs to a specific net‐
work layer. Each layer offers a specific set of services to the layer above it and con‐
sumes services provided by the layer beneath it, and therefore we call this a service
model of layering. As an example, a layer named n will consume a service such as an
unreliable message delivery provided by a layer below it, named n-1. In its turn, layer
n will provide the service of a reliable message delivery, made possible by adding its
functionality that detects and retransmits lost messages.

As mentioned earlier, protocol layering makes it simpler to update network compo‐
nents in a specific layer. However, they do carry the drawback that several of the net‐
work layers duplicate the functionality of a lower layer.

A networking model such as OSI is a framework that shows the multitude of tasks
involved in making a network function, by splitting the work into a series of connec‐
ted layers. Each of the layers has hardware and software running on it, whose job it is
to interact with the hardware and software on other layers.

The OSI model, as mentioned earlier, consists of seven distinct layers, with the lowest
layer being where the low level software and hardware are implemented. The layers
divide up the work involved in implementing a network. The highest layer, Layer 7, is
the application layer and this layer deals with user applications and operating system

58 | Chapter 2: Networking Essentials for a System Administrator

software. As you proceed from the bottom most layer (Layer 7) to the upper most
layer (Layer 1, application), you move up along increasing levels of abstraction. The
lower layers deal with both hardware and software, and by the time you get to the top
layers, they’re dealing exclusively with software. The lower levels do all the work so
the upper level layers, especially Layer 7, can serve application users.

It’s easier to understand the layers of the model by grouping the seven layers into just
two simple parts:

• Lower layers (Layers 1,2, 3, and 4): these are the physical, data link, network and
transport layers and are responsible for formatting, packaging, addressing, rout‐
ing, and the transmitting data over the network. These layers aren’t concerned
with the meaning of the data – they just move it.

There’s no hard and fast rule of how you classify the seven OCI lay‐
ers into higher and lower layers. For example, I chose to place the
transport layer into the set of lower layers, since it primarily pro‐
vides services to the higher layers by moving data. However, this
layer is often implemented as software and so some folks may want
to group it with the higher layer.

• Upper Layers (Layers 5,6, and 7): these are the session, presentation and applica‐
tion layers – they concern themselves with software application related issues.
The upper layers interact with the users and implement the applications that run
over the network. The upper layers aren’t concerned with the low level details of
how data moves over the network, instead depending on the lower layers to do
that for them.

The TCP/IP Protocol Suite
TCP/IP (transaction communications protocol/internet protocol) is a set of network‐
ing communication protocols, and is the king of modern networking. It’s also the
underlying language of the internet, and it’s thus important that you understand this
protocol suite in some detail. In the TCP/IP protocol suite, the TCP protocol pro‐
vides network layer functionality and the IP protocol the transport layer functional‐
ity. TCP/IP is ubiquitous – if you’re using the HTTP protocol, which all of us do
when we use the internet, you’re using TCP/IP, since the HTTP protocol is part of the
TCP/IP suite of protocols. Among the many reasons for its widespread use is the fact
that the TCP/IP protocols are highly scalable, and are universally accepted and used
across the internet.

Networking Essentials – Theory and Practice | 59

There are two IP protocols – IPV4 and IPv6. IPV6 was created
because IPV4 was going to run out of IP addresses. Although IPV4
did run out of IP addresses, it’s still going to be around. IPV6 isn’t
really used for most end customers of Internet Service Providers
(ISPs).

When you send out a packet it first goes to your default gateway. Routers keep for‐
warding the packet until it reaching its destination. IP provides simplicity and effi‐
ciency to message transmission but it doesn’t offer delivery guarantees. Here’s where
TCP comes in – while IP delivers and routes packets efficiently, TCP guarantees the
delivery and the order of packet transmission.

TCP protocols are stateful, meaning that they manage the state of the connection.
UDP is a stateless protocol and this doesn’t involve any handshaking. UDP is a faster
protocol as a result, since there’s no mechanism in the form of state to control how
data is transmitted, track the data transmission, and retransmit the data if there are
any errors during the initial transmission. TCP effortlessly handles all of these aspects
of message transmission, as a result of setting up a stateful session following the ini‐
tial handshake between clients and servers.

In Chapter 3, you’ll learn about the wonderful new HTTP/2 protocol that’ll eventu‐
ally replace the current HTTP/1.1 protocol – one of its best features is that it uses a
single TCP connection to perform multiple transactions.

The Internet Protocol Stack
The Internet Protocol stack, also called the TCP/IP network protocol stack, uses just
four network layers to represent the work done by the top 6 layers of the OCI Model.
The seventh layer in the OCI model, the Physical Layer, isn’t part of TCP/IP, since the
interface between the TCP/IP protocol stack and the underlying network hardware
occurs at the Data Link Layer (Layer 2 in the OCI model).

Following is a simple description of the four TCP/IP layers and how they correspond
to the OCI layers.

• Network Interface Layer: this is the lowest layer in the TCP/IP model and where
the TCP/IP protocols from its upper layer interface with the local network. On
most TCP/IP networks there’s no Network Interface Layer since it’s not necessary
when you run TCP/IP over Ethernet.

• Internet (also called network) Layer: corresponds to the network layer in the OCI
model and is responsible for data packaging, delivery, and routing. t’s in this layer
that the well-known IP protocol, the guts of TCP/IP, works. Routing protocols
such as RIP (Routing Information Protocol) and BGP (Border Gateway Protocol)

60 | Chapter 2: Networking Essentials for a System Administrator

that determine the routes to be followed by datagrams between source and desti‐
nation end systems operate in the network layer as well.

The internet and the transport layer are the guts of the TCP/IP net‐
work layer based architecture – they contain almost all the key pro‐
tocols that implement TCP/IP networking.

• Host-to-Host Transport Layer: Usually called just the Transport Layer, this layer
provides the end-to-end communications over the internet. It allows logical con‐
nections to be made between network devices and ensures that transport-layer
packets (called segments) are sent and received, and resent when necessary. Key
transport protocols are TCP and UDP. NOTE: Real time applications such as
video conferences and Internet based phone services are slowed down by TCP’s
congestion control mechanism and hence often run their applications over UDP
rather than TCP.

• Application Layer: The application layer is where the application-layer protocols
reside. This layer encompasses layers 5-7 of the OCI model and includes well
known protocols such as HTTP, FTP, SMTP, DHCP and DNS. Over the past sev‐
eral years, the rise of the internet and the widespread use of the TCP/IP protocol
has led to an obscuring of the original seven layers of the OSI model, although
the latter is still relevant. TCP/IP protocols have basically supplanted the OCI
model.

The Network Layer and TCP/IP Networking
Of all the TCP/IP (or Internet) network layers, the network layer is probably the most
complex, so let’s spend some time learning how the network layer functions and the
services that this layer provides.

The job of the network layer is seemingly simple: it moves packets from the source
host to the destination host. The two key functions provided by the network layer for
our purposes are forwarding and routing. While forwarding deals with the transfer‐
ring of a packet from an incoming communication link to an outgoing communica‐
tions link within the same router, routing involves all routers within a network.

It’s the interactions among the routers through various routing protocols that deter‐
mine the end–to-end path that a network packet follows as it vends its way from a
source host to the destination host.

The Network Layer and TCP/IP Networking | 61

The Internet’s network layer is a minimalist network-layer service layer: it doesn’t
provide a guaranteed delivery service which is one of the many service types a net‐
work layer can provide, instead, it provides a best-effort service, where the packets
aren’t guaranteed to be received in the same order in which they’re sent, and the tim‐
ing between packets isn’t guaranteed to be preserved – even the delivery of the trans‐
mitted packets isn’t guaranteed!

Routing and forwarding are often used as synonyms, but there are
crucial differences between these two network layer functions, as
explained in this section.

The Internet’s network layer consists of three major protocols (or sets of protocols):

• The IP Protocol: You’ve learned about the IP protocol earlier in this chapter. The
IP protocol determines the datagram (a network-layer packet) format, addressing
and packet handling conventions.

• Routing protocols: these determine the best path for network packets to traverse.
Routing protocols determine the values in a router’s forwarding table.

• The Internet Control Message Protocol (ICMP): this is the network layer’s error
reporting and router signaling protocol. This protocol reports datagram errors
and responds to requests for some types of network related information.

The Forwarding Function
When a network packet arrives at a router, its input communication link receives the
packet and the router must then move the packet to the correct output link – this is
called forwarding the packet. Note that the terms forwarding and switching are often
used as synonyms. All routers use forwarding tables.

A router forwards a network packet by using the header value (such as the destina‐
tion address of the packet) of an arriving packet to look up the corresponding values
stored in the forwarding table. The corresponding values in the forwarding table for a
specific header show the router’s outgoing link interface to which the router must for‐
ward the packet.

Routing algorithms determine the values that should be added to the forwarding
tables. Routers use the routing protocol messages that they receive to configure their
forwarding tables.

A router in this case is a type of a packet switch. A packet switch transfers packets
from input link interfaces to output link interfaces. Since routers are network layer
(layer 3) devices, they base their forwarding decisions on the values in the fields per‐

62 | Chapter 2: Networking Essentials for a System Administrator

taining to the network layer. Routers are store-and-forward packet switches that for‐
ward network packets using the network layer addresses. Switches, on the other hand,
while they’re also store-and-forward packet switches, are very different from routers
since they forward packets using MAC addresses.

A router has four main components: input ports, output ports, a switching fabric that
connects the input/output ports and actually switches (forwards) packets from input
ports to output ports and finally, a routing processor. The input/output ports and the
switching fabric are usually implemented in hardware. It’s these three compoents that
perform the forwarding function, sometimes together referred to as the forwarding
data plane. This layer needs to perform very fast, and the speed (in nanoseconds) at
which it should function is too fast for a software implementation.

Forwarding and Addressing Using the IP Protocol
Forwarding and addressing in the Internet are determined by the IP protocol in the
network layer. Today, there are two IP protocols in use, the most common being IPV4
(IP protocol version 4). IPV6 (IP protocol version 6), a solution introduced to over‐
come the limited number of IP addresses made available by the IPV4 protocol, will be
the IP protocol to which everybody will be moving to over time. However, this isn’t
going to happen anytime soon, and IPV4 is going to stick around for a while.

An IPV4 address is simple, and is also called a dotted quad number, such as
192.68.1.10, for example. It’s called dotted quad because it’s made up of four decimal
numbers ranging from 0-255, with each number separated by a period.

In what follows, I explain IPv4 and the Internet’s address assignment strategy, called
Classless Interdoman Routing (CIDR).

CIDR – The IPv4 Addressing Strategy
This section deals with the details of IPv4 network addressing. Typically hosts have a
single link into the network and IP uses this link to send its datagrams. The boundary
between the physical network link and the host is called an interface. The boundary
between a router and its input/output links is also called an interface. Since IP
requires each host and router interface to have its own IP address, an IP address then
is really associated with an interface than with the actual host server or the router.

An IP address is four bytes (32 bits) long, and has a hierarchical structure. There are a
total of about 4 billion possible IP addresses. An IP address looks like the following:
121.6.104.88, where each period separates the four bytes, which are expressed in the
dotted- decimal notation from 0-255. Each byte in the address is written in the deci‐
mal form and is separated from the other bytes in the IP address by a period (dot).
Let’s say you’ve an IP address such as 192.36.224.12. In this address, 192 is the deci‐
mal equivalent of the first 8 bits of the address, and so on. An IP address is hierarchi‐
cal since as you go from the left to the right portions of the address, you get more and

The Network Layer and TCP/IP Networking | 63

more specific information about the hosts located in the Internet. That is, you’ll get a
more specific sense of the network where the host with this IP address lives.

Hosts and Networks
Each component of a network is assigned a network address. Usually the network
address is 32 bits long. The network address is always split between the network com‐
ponent and the hosts that belong to that network. In the Internet, every host and
every router must have a unique IP address. The first several bits of the network
address of a host or interface are taken up by the network component (actually, the
subnet, as you’ll see shortly) and the rest are used to enumerate the hosts in a net‐
work.

In the Internet lingo, a subnet is also called an IP network, or just a
network.

As I mentioned earlier, the first several bits in the network address are assigned to the
network. An octet is 8 bits which means the number before the dot in a dotted deci‐
mal IP address notation, as in 192.168.1.42. In this IP address, the first octet is 192
and there are three other octets following this.

Networks are organized by size into various classes. The first octet of the IP address
determines the class to which the network address belongs to. Here are the four net‐
work classes and the octet ranges they’re assigned in a network address:

 Class Octet Range
 A 0-126
 B 128-192.167
 C 192.169-223

Following is what you need to remember regarding the address ranges:

• The 127.0.01 address is special: it’s a loopback address that every host (that uses
IP) uses to refer to itself.

• The following are all private IP address blocks that you can’t allocate to anyone
on the Internet, and are meant to be used for internal networks only.

• All IP addresses in the 10.0.0 network
• The networks ranging from 172.16 to 172.31
• The network 192.168

64 | Chapter 2: Networking Essentials for a System Administrator

Subnetting and Netmasks
For performance and management reasons, it’s common to create subnetworks under
an organization’s main network. Subnetting refers to the creation of the subnetwork.
If your corporate network is 10.0.0.0, you can create smaller class C networks under it
such as 10.1.1.0, 10.1.2.0 and so on.

Each of the subnets will have a 24-bit network component and an 8-bit host compo‐
nent in its 32 bit network address. The first 8 bits are designated for the organization’s
main network and the last 8 bits are for designating the hosts in the network (the host
component of an IP address is set to all zeroes. This makes it easy for you to tell
which part of the network address corresponds to the network itself and which
addresses correspond to hosts). In this example, the 16 bits allocated to the subnet
allow you to create potentially 65,534 sub networks (calculated by raising 2 to the
power of 8).

To really grasp network addressing, you must understand binary numbering, which I
explain in the following section.

Binary Numbers
In normal counting, you use decimal numbers, where each digit ranges from 0-9. In a
number such as 1234, for example, the ones place has 4 as its value. The next number,
3, is in the tens place, the number 2 is a higher power of 10 (100) and the 1 is a yet
higher power of 100 (1000). In a binary number, on the other hand, the values can be
either 0 or 1. Thus, 1111 is a binary number, which has 1’s in all places. You start at
the right with a value of 1, and each digit to its left side is a higher power of two. Since
binary numbers have just two possible values for each digit, (0 or1), they’re also
referred as base 2 numbers.

Here’s how binary numbers correspond to decimal numbers – make sure you calcu‐
late the value of the binary numbers by computing and adding the values of the digits
from right to left.

** Decimal: 0 1 2 3 4 5 6 7 8 9 10
** Binary: 0 1 10 11 100 101 110 111 1000 1001 1010

To calculate the value of a binary number, you add the values for each binary digit
place where you see a 1 – a 0 means there’s no corresponding binary value. The
binary number 111 evaluates to 7 since it has a value for the 4, 2 and 1 places. Simi‐
larly the binary number 1101 evaluates to the decimal number 13 (8+4+0+1).

The Netmask
The netmask serves to let the IP stack know which portion of a network address
belongs to the network and which part to the hosts. Depending on this, the stack

The Network Layer and TCP/IP Networking | 65

learns whether a destination address is local (on the LAN), or it needs to be sent to a
router for forwarding outside the LAN.

According to the definition of a netmask, the bits in the network address that are zero
belong to the host. Let’s say you’re looking at the network address 192.168.1.42 with
the netmask of 255.255.255.0. For easier understanding, let’s show the binary repre‐
sentation of the IP addresses, which are in their dotted decimal form:

 Decimal Binary
 192.168.1.42 11000000 00101000 10000001 00101010
 255.255.255.0 11111111 11111111 11111111 00000000

Given the IP address (192.168.1.42) and its netmask (255.255.255.0), how do you tell
which part of the IP address is the network and which part, the host? Remember that
the bits that are zero in the netmask belong to the host. Thus, the three octets
(255.255.255) are allocated to the network and the last octet (0) represents the host.

Given an IP address and its netmask, you use the bitwise AND operation to figure
out the network address. Bitwise AND operations are simple: if both bits in the corre‐
sponding place are 1, the result of the AND is a 1. If either bit or both bits evaluate to
0, the result of the AND operations is a zero. If you then perform the bitwise AND
operations on the IP address 192.168.1.42 and its netmask of 255.255.255.0 using
their binary representation, here’s what you get:

 11000000 10101000 00000001 00101010
 11111111 11111111 11111111 00000000

 11000000 10101000 00000001 00000000

The resulting bit pattern after performing the bitwise AND operation (11000000
10101000 00000001 00000000) is the same as 192.168.1.0 in the dotted decimal for‐
mat. It’s painful to write out the complete netmask each time you want to refer to it.
Luckily, there’s a shortcut – you simply write out the network address followed by a
slash (/) and the number of bits in the netmask. Thus, the network address
192.168.`.`0 with a netmask of 255.255.255.0 will translate to 192.168.1.0/24. This is
so since there are 24 bits on the network address portion of the netmask (remember
that all bits that are non-zeros belong to the network and the zeros go to the host).

Let’s say you’re dealing with the Internet and the IP protocol. In this case, if you’ve
three host interfaces and a router interface connecting to them, the four interfaces
form a subnet, often simply called a network in the Internet terminology. The address
assigned to this subnet, say, is 224.1.1.0/24. You can have additional subnets such as
224.1.2.0/24 and 224.1.3.0/24 as well.

The /24 notation in the addressing scheme is called a subnet mask, which means that
the leftmost 24 bits (out of the total 0f 32 bits) of the network address define the sub‐
net address. In this case, the subnet 224.1.1.0/24 consists of the three host interfaces
with the addresses 224.1.1.1, 224.1.1.2, 224.1.1.3 and a router interface with the

66 | Chapter 2: Networking Essentials for a System Administrator

address 224.1.1.4. Additional hosts you attach to the subnet 224.1.1.0/24 would all be
required to have addresses of the form 224.1.1.xxx.

The Internet address assignment strategy is called Classless Interdomain Routing
(CIDR), and is a way to generalize subnet addressing that I described earlier. Under
CIDR, a 32-bit IP address has the dotted-decimal form a.b.c.d/x and is divided into
two parts, with the x showing the number of bits ion the network portion (first part)
of the IP address. The x number of leading bits are also called the network prefix (or
just prefix) of the OP address.

Routers outside your company’s network will consider only the x leading prefix bits
(remember that there are a total of 32 bits in an IP address). So, when a router in the
Internet forwards a datagram to a host inside your network, it’s concerned only with
the leading x bits of the IP address, which means that the routers need to maintain a
much shorter forwarding table than otherwise. For your company, the router has to
maintain a single entry of the form a.b.c.d/x – that’s it! Let’s say you’re dealing with
the subnet 224.1.1.0/24. Since x is 24 here, there are 8 bits left in the IP address. These
8 bits are considered when forwarding packets to routers inside your company.

How You Get Your IP Addresses
When your organization asks for IP addresses, it’s assigned a block of contiguous IP
addresses, which means a set of address with a common prefix and all your com‐
pany’s IP addresses will thus share a common prefix. All addresses are managed by
the Internet Corporation for Assigned Names and Numbers (ICANN).

The non-profit ICANN not only allocates the IP addresses but also manages the DNS
root servers and assigns domain names. To get a block of IP addresses for one of your
organization’s subnets, your network admin needs to contact your Internet Service
Provider (ISP). Let’s say the ISP was assigned the address block 200.23.16.0/20. The
ISP will break this block into chunks and assign each chunk of addresses to a different
organization. Let’s say our ISP wants to break its address block into 8 blocks for
assigning to various organizations. This is how the breakup would look like:

ISP’s block 200.23.16.0/20 11001000 00010111 00010000 00000000
Company 1 200.23.16.0/23 11001000 00010111 00010000 00000000
Company 2 200.23.18.0/23 11001000 00010111 00010000 00000000
…
Company 8 200.23.30.0/20 11001000 00010111 00010000 00000000

Note that I’ve underlined the subnet portion of each organization’s subnet.

Configuring IP Addresses with the Dynamic Host Configuration Protocol (DHCP)
Once your organization is assigned a block of IP addresses, it must assign IP
addresses out of that pool of addresses to all hosts and router interfaces in your net‐
work. If you’ve just a handful of servers for which you need to configure IP addresses,

The Network Layer and TCP/IP Networking | 67

it’s easy to do so manually. The sys admin manually configures the IP addresses with a
network management tool. However, if you need to configure IP addresses for a large
number of servers, you’re better off using the Dynamic Host Configuration Protocol
(DHCP), which allows hosts to be automatically assigned an IP address).

DNS and DHCP are related in many ways. DHCP is a way to pro‐
vide a network device with an IP address, and whereas DNS maps
IP addresses to hostnames. You can integrate DHCP and DNS,
whereby when DHCP hands a network device an IP address, DNS
automatically updated to reflect the device name.

There’s a client and a server DHCP that you need to configure for using DHCP to
handle IP address assignment. You can configure DHCP so it assigns either a tempo‐
rary IP address which is different each time a host connects to the network, or have it
assign the same IP address each time. When you start the DHCP client, it requests
the network for an IP address and the DHCP server responds to that request by issu‐
ing an IP address to help complete the client’s network configuration. NOTE: Since
DHCP automates the network related aspects of connecting the hosts, it’s called a
plug-and-play protocol.

The response that a DHCP server issues consists of the IP address that it assigns to a
host, and may also include the address of the local DNS server, the address of the
first-hop router (known as the default gateway), and a network mask. Client use this
information to configure their local settings. The IP addresses granted by the DHCP
server have a lease attached to them. Unless the clients renew the lease on the address,
the address goes back into the server’s address pool to satisfy requests from other cli‐
ents.

Internet IP addresses are network-layer addresses. Link layer
addresses, are also called physical addresses, or MAC addresses.
The Address Resolution Protocol (ARP) translates between these
two types of addresses, IP addresses are in the dotted decimal nota‐
tion, and MAC addresses are shown in the hexadecimal notation

Network Address Translation (NAT)
Network Address Translation (NAT) is a way to map your entire network to a single
IP address. You use NAT when the number of IP addresses assigned to you is fewer
than the total number of hosts that you want to provide Internet access for. Let’s say
you’ve exhausted the entire block Of IP addresses assigned to you by your ISP. You
can’t get a larger block of IP addresses allocated, because your ISP has no contiguous
portions of your current address range available. NAT comes to your rescue in situa‐
tions like this.

68 | Chapter 2: Networking Essentials for a System Administrator

Using NAT means that you take advantage of the reserved IP address blocks and set
up your internal network to use one or more of these network blocks. The reserved
network blocks are:

10.0.0.0/8 (10.0.0.0 – 10.255.255.255)
172.16.0.0/12 (172.16.0.0 – 172.31.255.255)
192.168.0.0./16 (192.168.0.0 – 192.168.255.255)

Address spaces such as 10.0.0./8 (and the other two listed here) are
portions of the IP address space reserved for private networks, or a
realm with private addresses , such as home network, for example.
A realm with private addresses on a network whose addresses have
relevance only to devices living on that network

A system requires a minimum of two network interfaces to perform NAT translation.
One of these interfaces will be to the Internet and the other to your internal network.
NAT translates all requests from the internal network so they appear to be coming
from your NAT system.

How NAT Works
NAT uses IP address and port forwarding to perform its job. When a client in your
network contacts a host on the Internet, it is required to send IP packets for that host.
These IP packets contain the address information required to enable the packet to
reach their destination hosts. NAT uses the following bits of information from this
information set:

• The IP address of the source (ex. 192.184.1.36)
• The TCP (o UDP) port of the source (2448)

When the packets from your internal host pass through the NAT gateway, NAT
modifies the packets so they appear as if they were sent by the NAT gateway, and not
the clients. In our case, NAT will make the following changes:

• Replaces the IP address of the source with the external IP address of the gateway
(ex. 198.52.100.1)

• Replaces the source port with a random unused port on the gateway (ex.52244)

The NAT gateway records the address/port changes in a “state” table so it can reverse
the changes it made for packets being returned to the internal hosts from the Inter‐
net. To the Internet, the NAT-enabled router looks as a single device with a single IP
address. All Internet traffic leaving your organization’s router to the Internet will
share the same source IP address of 192.52.100.1 and all traffic entering that router

The Network Layer and TCP/IP Networking | 69

from the Internet will have the same destination address of 192.52.100.1. So, NAT in
effect hides your internal network from the rest of the world!

It’s important to remember that neither the internal hosts, nor the Internet host are
aware that NAT is performing this “behind the scenes” address translation – the
internal host thinks the NAT system is just an Internet gateway and the Internet host
thinks the packets come directly from the NAT server. So, the Internet host sends its
replies to the packets to the NAT gateway’s external IP (198.52.100.1) at the transla‐
tion port 52244.

The NAT gateway receives a large number of these replies destined for various inter‐
nal hosts. How then does it know to which host it ought to send a specific reply
packet? That’s where the “state” table comes in. The state table is formally called a
NAT translation table, and includes the IP addresses and port numbers of the internal
hosts as entries in the table. NAT looks up the state table to see which established
connection matches the reply packets. When it finds a unique IP/port combination
match, telling it that the packets belong to a connection initiated by the internal host
192.184.1.36, it reverses the changes it made originally for the outgoing network
packets, and will forward the reply packets coming from the Internet host to the cor‐
rect host.

The New IP Protocol – Ipv6
About 20 years ago, efforts began to develop a new IP protocol to replace the IPV4
protocol, since the 32-bit IP address space (maximum of 4 billion IP addresses) was
starting to get used up fast. Why is this a big deal? If there aren’t any IPv4 addresses to
allocate, new networks can’t join the internet! The new IP protocol IPv6 that’ll even‐
tually replace IPv4 is designed with a much larger IP address space, as well as several
other operational improvements compared to IPv4.

Besides containing a larger IP address pace, theIPv6 datagram has several changes,
including the following:

• Expanded addressing capability: the size of the IP address is increased from 32 to
128 bits to ensure that we never run out of IP addresses. Earlier, you had only
unicast and multicast addresses. TPv6 adds the anycast address, which lets a
datagram be delivered to any member of a group of hosts.

• Streamline Headers: Several IPv4 header fields have been removed or made
optional, making the streamlined shorter header field (40 bytes) allow much fast
processing of an IP datagram.

• Handling fragmentation and reassembly: IPv6 removes the time consuming
operations of datagram fragmentation and reassembly from the routers and
places it on the end systems (source and destination), thus speeding up IP for‐

70 | Chapter 2: Networking Essentials for a System Administrator

warding inside the network. Other costly operations in IPv4 such as performing
header checksums have been eliminated as well.

While new IPv6 capable systems are backward compatible and can send and receive
IPv4 datagrams, currently deployed IPv4 systems can’t handle IPv6 datagrams. The
big question right now is how to migrate all the current IPv4 based systems to IPv6.
Ipv6 adoption is growing fast, but it’s still going to take a while to switch completely
over to IPv6 from IPv4. Changing a network layer protocol such as IP is much harder
than changing protocols at the applcition layer such as HTTP and P2P file sharing,
for example.

The IPsec Protocol
IPv4, as well as its replacement, IPv6, weren’t designed with security in mind. IPsec is
a popular secure network layer protocol that’s backward compatible with both IPv4
and IPv6. The IPsec protocol is commonly deployed in Virtual Private Networks
(VPNs).

You can use IPsec to perform secure private communications in the unsecure public
Internet. Many organizations use IPsec to create virtual private networks (VPNs) that
run over the basically insecure public Internet.

Routing Essentials and Routing Management
It’s quite easy for two hosts within the same LAN to talk to each other – each host
needs to send an ARP (address resolution protocol) message and get the MAC
address of the other host and that’s it. If the second host is part of a different LAN,
then you need the two LANs to talk to each other, and you use a router to make this
possible.

The router is a network device that sits between two networks and redirects the net‐
work packets to the correct destination. If a host is connected to a network with mul‐
tiple subnets, it needs a router or a gateway to communicate with the hosts on the
network. While hosts know the destination of a packet, they don’t know the best path
to the destination. Either the router knows where the packet ought to go, or it knows
of another router than can make that determination.

The router’s job is to know the topology of networks plugged into it. When you want
to communicate with a server from a different LAN, you don’t talk to the other LAN
directly. You do specify the destination IP of the host you want to send data to, but
also specify the destination MAC address for the router. So the router will get your
packets first and check the destination IP and send it to the other LAN, since it knows
that the destination IP isn’t part of your LAN. And it does the opposite for packets
coming from distant LANs to your LAN.

The Network Layer and TCP/IP Networking | 71

Earlier, I explained how the network layer consists of two major functions: forward‐
ing and routing. When a router receives a packet, it indexes a forwarding table and
finds the link interface to which it must send the packet. Routers are where packet
forwarding decisions are made in a network. Routing algorithms are used by the
router to configure the forwarding tables. Routing is the determining if the best paths
(route) from a sender to the receiver, through a network consisting of other routers.

Routing Algorithms
Most hosts are connected to a single router, which is known as the default router (or
first-hop router) of a host. The default router of the host that sends a packet is called
the source router, and the default router on the receiving host is called the destination
router. The purpose of routing algorithms is to find the most efficient path from a
source router to the destination router, It’s routing algorithms that are at the are at the
heart of routing in modern networks, While you might think that the algorithms with
lowest cost path is the best, it isn’t always so, as you’ll learn soon.

Routing algorithms use graphs to formulate a routing problem. The goal of a routing
algorithm is to find the least-cost path between a source and a destination. If all links
in a graph have the same financial costs and link speeds, then the least-cost path is the
same as the shortest path.

There are numerous routing algorithms out there, and you can classify the algo‐
rithms according to several criteria:

• Global versus decentralized routing algorithms: Global routing algorithms com‐
pute least-cost paths between routers using complete knowledge about the net‐
work, such as information pertaining to all the node connectivity between the
nodes and all the link costs. Since each node maintains a vector of estimates of
the costs of traversing to all other nodes, the decentralized routing algorithm is
called a distance-vector (DV) routing algorithm. The link-state and distance-
vector algorithms are the two major routing algorithms used in today’s Internet.

In the LS algorithm, each node in a network broadcasts to all the
other nodes, letting them only the cost of only those links that are
directly connected to it. The DV algorithm, on the other hand,
means that each node speaks to just its directly connected neigh‐
bors, to whom it provides least-cost estimates to traverse from itself
to all the nodes it knows about in the network.

• Static versus dynamic algorithms: a static routing algorithm means the routes
change mostly because you manually edit a router’s forwarding table. A dynamic

72 | Chapter 2: Networking Essentials for a System Administrator

routing algorithm changes routing paths periodically, or due to a change in the
link costs or a change in the network topology.

Currently used Internet routing algorithms such as RIP, OSPF, and
BGP are load-insensitive,

• Load-sensitive versus load-insensitive routing algorithms: In a load-sensitive
routing algorithm, the current level of congestion in a link is taken into account -
congested links may have a high cost and the algorithm will try to find routes
around these congested links. A load-insensitive algorithm doesn’t with the cur‐
rent (or past) level of congestion in a link as part of its computation of the link’s
cost.

Hierarchical Routing
Routers today all use either the LS or the DV algorithm to find the best path for rout‐
ing the datagrams. With millions of routers in the Interne, the overhead of comput‐
ing, storing and transmitting routing information among these routers quickly
becomes very expensive. There’s a different issue as well with maintaining a bunch of
routers, all independent from each other – organizations want to administer their
routers and their network as they wish, without exposing their network architecture
to the entire world. You thus need way to organize routers into a hierarchy to lower
the cost of managing the routing information, while allowing companies to maintain
autonomous groups of routers (belonging to just their own network).

An administrative system (AS) is a way to organize routers so a group of routers is under the administrative control of a single ISP or a company network. Most ISPs divide their network into several interconnected ASs. Each AS will consist of multiple subnets in most cases. However some Tier-1 ISPs use a single AS for their entire network.

An intra-AS routing protocol determines routing within an AS and
an inter-AS routing protocol determines routing behavior between
two ASs.

All routers within an AS run an identical routing algorithm such as the LS algorithm
for example, and have complete information about all the other routers in that AS.
The algorithm running in an AS is called an intra-autonomous system routing proto‐
col. The routers that belong to a specific AS use the AS’s intra-AS routing protocol to
forward packets along an optimal path to other routers within the same AS. Note that
different ASs may run different intra-AS routing protocols (LS or DV). The concept
of an administrative system (AS) of groups of related routers under the same admin‐

The Network Layer and TCP/IP Networking | 73

istrative control and using the same routing protocol among themselves is a crucial
feature of how routing works in the Internet today.

One or more routers in each AS act as a gateway router to connect an AS to another
AS. If the AS has but a single link that connects it to other ASs, the single gateway
router receives the packets from each router and forwards the packet to other AS.
However, if there are multiple links and hence multiple gateway routers, each router
needs to configure its forwarding table to manage the external AS destinations. The
inter-AS routing protocol helps get information from neighboring ASs that they’re
“reachable”, and send this information to all routers internal to an AS. An inter-AS
routing protocol is for communications between two ASs, and therefore both ASs
must run the same protocol – most commonly, the BGP4 protocol is used for this
purpose.

Now that you know what an autonomous system of routers is, IT’S time to learn
about the key Routing protocols of which there are three today: RIP, OSPF and BGP.

Common Routing Protocols
As I’d explained earlier, routing protocols determine the path taken by IP datagrams
between a source and a destination host. Let me quickly summarize the three impor‐
tant routing protocols that are used in the Internet – in the following discussion, the
RIP and the OSPF routing protocols are intra-AS routing protocols, also called inte‐
rior gateway protocols:

• Routing Information Protocol (RIP): This is the one of the oldest routing proto‐
cols, and is used extensively in the Internet, typically in lower layer ISPs and
enterprise networks. RIP is a distance-vector protocol that’s quite similar to the
DIV protocol described earlier. A hop in the RIP terminology refers to the num‐
ber of subnets traversed along the shortest-path. RIP is limited to the use of
autonomous systems that are shorter than 15 hops in diameter. Under RIP each
router maintains an RIP table, also called a routing table. The routing table con‐
tains the router’s estimates of its distance from various other routers, as well as
the router’s forwarding table. In Linux systems, RIP is implemented as an applci‐
tion layer process, and the process named routed (“route dee”) executes RIP and
maintains the routing information and works with other routed process running
on nearby routers.

• Open Shortest Path First (OSPF): OSPF was designed to replace RIP and con‐
tains several advanced features such as enhanced security through authentica‐
tion, and support for a hierarchical autonomous system within a single routing
domain. OSPF is a link-state protocol that uses a least-cost path algorithm and
also the flooding of link-state information,

• Border Gateway Protocol (BGP): Unlike RIP and OSPF, BGP is an inter-AS rout‐
ing protocol. It’s also known as BGP4. BGP provides an AS a way to obtain

74 | Chapter 2: Networking Essentials for a System Administrator

reachability information regarding neighboring ASs and determine the best route
to subnets based on reachability and AS policies. In this protocol, routers
exchange information over semi-permanent TCP connections.

Static Routing
How does a router know about the networks that are plugged into it? A routing table
contains the network information. You can manually edit the routing table, and the
routing information you configure here will stay fixed until someone edits the table
manually – this routing table is consequently called a static routing table.

A routing table consists of three things:

• Network addresses
• Netmask
• Destination interface

When a network packet gets to the router with a routing table such as this, it’ll apply
each of the netmasks in the routing table to each destination IP address. If the net‐
work address it thus computes matches any of the network addresses in the routing
table, the router will forward the packet to that network interface.

For example, let’s say the router gets a packet with the destination address of
192.168.2.233. The router finds that the first entry in the routing table doesn’t match
this destination address. However, the 2nd entry does, as the network address that
you get when you apply the netmask 255.255.255.0 to the destination address
192.168.2.233 is 192.168.2.0. The router forwards the packet to Interface 2. If a
packet’s destination address doesn’t match any of our three routes, the packet will
automatically match the default address and will be sent to the destination interface
for that address - usually this is a gateway to the internet.

A Linux host is aware of multiple standard routes, such as the following:

• The loopback route, which points to the loopback device
• A route to the local area network (LAN), which is used to direct network packets

directly to the hosts in the same LAN
• The default route, which is used for packets that are to be sent to destinations

outside the LAN.

You use the traditional route command to manage routes. The route command
modifies the routing table. Therefore, it’s a good idea to first copy the current routing
table before issuing the route command! The following command shows how to set
the default route for a host with a default gateway at 192.168.1.2:

The Network Layer and TCP/IP Networking | 75

route add default gw 192.168.1.2 eth1

This command adds a default route and sets the gateway to 192.168.1.2. It also sets
the interface to this connection through eth1 (a network adapter). Once you issue this
route command, all incoming traffic (other than any that were stipulated through
other routes) will be sent via your web server, which is 192.168.1.2. Any routes that
you add won’t survive a system restart, so if you want to make the new route perma‐
nent, add the route command with the word up preceding it, to the /etc/network/
interfaces file, as shown here:

up route add default gw 192.168.1.2 eth0

In order to see if your changes stuck, you don’t need to restart the server – just restart
the network, as shown here:

/etc/init.d/networking restart

On the other hand, if you changed your mind about the new route, you can remove it
with the route del command as shown here:

route del default gw 192.168.2 eth0

Using the newer ip command instead, you’d add a default route to a host as follows:

-# ip route add default via 192.168.1.1

You can view the routing table using one of the following commands:

• netstat
• route
• ip route

Dynamic Routing
Static routing is OK when dealing with small networks. As the network size grows
and you need to deal with a large number of subnets, the overhead involved in man‐
ually managing the routing tables becomes prohibitive. Dynamic routing is the solu‐
tion for managing routing in large networks. Under dynamic routing, each router
needs to know only about the networks close to it. It then transmits information
about these nearby networks to all the other routers connected to it.

Dynamic routing can be based on one of the three routing protocols you learned
about earlier in this chapter: the Routing Information Protocol (RIP), the Open
Shortest Path First (OSPF) protocol, and the Border Gateway Protocol (BGP) RIP is
simple and is fine for small networks due to its simplicity. This protocol chooses the
best route based on the fewest number of routers it needs to traverse – also called the
number of hops.

76 | Chapter 2: Networking Essentials for a System Administrator

The problem with RIP is that it doesn’t take into account network congestion on the
routes. OSPF, on the other hand, bases its decision not on the number of hops but
how quickly a router can communicate with another router. In doing this, it automat‐
ically takes into account any congestion along the route. OSPF is more complex and
expensive than RIP and BGP, and is suitable for larger networks.

Network Performance – Bandwidth and Latency
We usually use terms such as “network speed” and “how fast” the network is, when
talking about network efficiency. The speed or “fastness” of a network can be really
better understood through examining two related but different concepts – bandwidth
and latency. Bandwidth is the amount of data a connection can move within a specific
amount of time, and is measured in bits per second. Latency is the time it takes for a
request to receive the response it’s seeking. Latency and bandwidth are related, but
they’re quite different things – one refers to the capacity of the network and the other,
to its speed – obviously, the interaction between the two determines the ‘speed” or
“fastness” of the network.

The Hypertext Transfer Protocol (HTTP)
Of all the protocols that are supported by the application layer of the network, HTTP
is probably the most important, in light of its importance in our Internet dominated
world. Well, I do understand that everyone knows what HTTP is! However, I start
from the basics so I can explain the critical role played by it in how web applications
work. This background will be very helpful during our discussion of load balancing
web applications in the next chapter, as well as in the discussion of performance tun‐
ing of web applications in Chapter 16.

The Web is the most famous and most popular Internet application. The HyperText
Transfer Protocol (HTTP) is the Web’s application-layer protocol, and is the founda‐
tion of the Web. HTTP is implemented in a pair of client and server programs that
communicate through HTTP messages. The HTTP protocol defines the message
structure and how exactly the client and the server exchange the messages.

HTTP is a request-response protocol that enables clients and services to communi‐
cate with each other. The client can be a web browser and the server can be an appli‐
cation that runs on the server hosting a website. When a client submits a HTTP
request to a server, the server returns a response that contains the request status, and
most likely, the requested data as well.

The Hypertext Transfer Protocol (HTTP) | 77

Using the HTTP/2 Protocol for Enhanced Performance
HTTP/2, the evolving alternative to the current HTTP protocol (HTTP/1.1) lets you
create simpler, faster, and more robust web applications. If you want to provide the
same features through HTTP/1.1, you‘ll need to depend on multiple workarounds, all
of which leads to a much more complex and less robust application.

HTTP/2 offers several new optimizations without altering the application semantics
of HTTP. Familiar concepts such as HTTP methods, URIs, HTTP headers and status
codes remain the same. You can use HTTP/2 instead of HTTP/1.1 in your current
applications without having to modify the applications. The most important changes
introduced in HTTP/2 are in the framing (within the network transport layer - please
see Chapter 2 for a detailed explanation) layer. HTTP/2 provides its optimizations
through changing the way data is framed (formatted) and transported between the
requester and the responder.

To really cut through the thicket, what HTTP/2 does is to break up the traditional
HTTP protocol communications into smaller binary encoded frames. These frames
are then mapped to messages that belong to specific streams, which can be multi‐
plexed within a single TCP connection by interleaving the independent frames and
reassembling them at the other end. This ability to breakdown/interleave/reassemble
messages is the biggest optimization offered by HTTP/2.

While a developer can still deliver a working application with traditional HTTP, the
newer protocol HTTP/2 offers vastly superior performance. HTTP/2 reduces latency
by the following techniques:

• Using compression to reduce the protocol overhead: In HTTP/1.1, the HTTP
headers that contain metadata about the resources being transferred are sent as
plain text and add significant overhead (about 500-800 KB on average). HTTP/2
reduces the overhead and improves performance by compressing the request/
response metadata using the efficient JHPACK compression format.

• Enabling full request and response multiplexing: In HTTP/1.1, if clients want to
improve performance by making parallel requests, they must use multiple TCP
connections. HTTP/2 removes this limitation by allowing full request and
response multiplexing. All HTTP/2 connections are persistent and just a single
connection is required per origin. Overhead is reduced significantly compared to
HTTP/1.1, because an overwhelming majority of active connections carry just a
single HTTP transaction.

• Facilitating response prioritization: HTTP/2 breaks up the HTTP messages into
individual frames and allows each stream to have a different weight. Using these
weights, clients can construct and communicate a “prioritization tree” that shows
its preferences for receiving the response to tis web requests. Servers use the pri‐

78 | Chapter 2: Networking Essentials for a System Administrator

oritization information to prioritize the processing of streams through appropri‐
ate resource allocation.

• Facilitating server push: HTTP/2 lets a server push additional resources to clients
on top of the response to the original request. Server initiated push workflows
enhance performance since the server uses its knowledge of the resources
required by the client and sends them out to the client instead of waiting for the
client to request those resources.

Switching to HTTP2
Before the whole world can switch to HTTP/2 and partake of its superior perfor‐
mance capabilities, millions of servers need to be updated to use binary framing. All
the clients that access these web servers must also update their browsers and net‐
working libraries. While all modern browsers have enabled HTTP/2 support with
minimal intervention for most users, server upgrades to HTTP/2 aren’t really trivial
in terms of the time and effort necessary to convert them over to HTTP/2.

As of October 2015, although only 5% of all SSL certificates in Netcraft’s SSL survey
were on web servers that supported SPDY or HTTP/2, 29% of the most SSL sites in
within the top 1000 most popular sites do support SPDY/HTML/2. Also, 8% of the
top million sites do support the new protocol. This makes sense since the busiest web
sites gain the most by optimizing connections with HTTP/2. Widespread use of
HTTP/2 is still several years away since browser vendors currently support HTTP/2
only over encrypted TLS (Transport Layer Security) connections. This means that a
large proportion of non-HTTPS sites will continue using HTTP 1.1 well into (many
years) the future.

Network Load Balancing
Load balancing is the distribution of a system’s load over more than one system, so it
can be handled concurrently and faster than if just one system handled all the work.
Database servers, web servers and others use load balancing architectures all the time,
and so do networks.

A load balancer is either software or a piece of hardware that can distribute traffic
arriving at an IP address over multiple servers. Load balancers strive to spread the
load evenly among the servers and allow you to dynamically add and remove the
servers. The servers stay hidden behind the load balancer and since clients can see
just the load balancer, you can add web servers anytime, without disrupting your
services.

Network Load Balancing | 79

Benefits of Using a Network Load Balancer
A network load balancer offers the following benefits.

• Security: Routing all traffic between the users and the web servers through a load
balancer hides the data center from the users.

• Transparent server maintenance: You can take servers out the load balancer pool
without affecting clients (after making sure the active connections are comple‐
ted). This helps you perform rolling upgrades of your infrastructure without
incurring expensive downtime.

• Easily add servers to the pool: when you add new servers to the pool, the load
balancer immediately starts sending it connections without any delay, as is the
case in DNS load balancing. When we discuss auto-scaling in the context of
Amazon or Open Stack in Chapter 9, you’ll see how a load balancer can let you
scale automatically without any adverse impact on the users.

• Easily manage server failures: you can easily yank web servers with performance
issues out of the load balancer pool, to keep connections from being sent out to
that server.

• Reduce web server resource usage: if your compliance requirements allow it, you
can use Secure Sockets Layer (SSL) offloading (also called SSL termination), to
lower the web server resource usage. By doing this, you let the load balancer han‐
dle all SSL encryption/decryption. This also means that you can avoid running
the SSL based web servers, and have all the web servers processing just HTTP
connections and not HTTPS connections, which arrive over SSL.

Load Balancing with DNS
Domain Name Service (DNS) based load balancing (also called the poor person’s load
balancing) is very easy to set up – all you need to do is provide multiple IP addresses
for a domain. That is, you need to add multiple A records for the same domain.
When a client attempts a connection to the domain, DNS will hand the client a differ‐
ent IP address sequentially, in a round robin fashion.

Let me illustrate how to set up DNS load balancing with a simple example that uses
three IP addresses.

example.com IN A 126.126.126.130
example.com IN A 126.126.126.131
example.com IN A 126.126.126.132
Or you can satisfy the domain name just once:
example.com IN A 126.126.126.130
 IN A 126.126.126.131
 IN A 126.126.126.132

80 | Chapter 2: Networking Essentials for a System Administrator

You can test your DNS load balancing configuration by issuing the nslookup com‐
mand:

nslookup example.com 127.0.0.1
Server: 127.0.0.1
Address: 127.0.0.1#53
Name: example.comAddress: 126.126.126.130
Name: example.com
Address: 126.126.126.131
Name: example.com
Address: 126.126.126.132

DNS load balancing is easy to configure, simple to understand, and very easy to
debug as well. However, there are some serious drawbacks as well to DNS based load
balancing. One or more of the hosts could end up with a lopsided distribution of the
load. The load balancer also keeps sending connection requests to a server that’s no
longer up.

DNS load balancing was more common a while ago, when load balancers were much
more expensive than now. While DNS load balancing is good for a quick spin to learn
about load balancing, you need a much more mature and robust load balancing
mechanism in a real world production system with heavy internet traffic.

Enterprise Load Balancers
When a client resolves a domain name to an IP address through DNS, the client
needs to connect to that IP address to request a web page (or a web service endpoint).
To enhance the scalability of your applications, it’s a good idea to let a load balancer
act as the entry point to your data center, by letting users connect to the load balancer
directly instead of to your data center. This will help you scale up easily and be in a
position to make infrastructure changes that are transparent to your customers.

DNS load balancing, while simple and cheap (especially in the past when commercial
load balancers where much more expensive), isn’t really load balancing in the real
sense, although it does distribute traffic among a set of servers. DNS has several
issues, as summarized here:

• DNS isn’t transparent to users. If you remove a server, it may lead to problems
because the users may have cached its IP address

• Even when you add a new server, users may not use it since they may have
cached your DNS records and so, will keep connecting to the old server(s)

• DNS makes it difficult to recover from failures

For all these reasons, DNS isn’t a really viable proposition for production environ‐
ments.

Network Load Balancing | 81

There are many types of load balancers from which you can choose, with the follow‐
ing three types being the most popular options:

• Software based load balancing
• Hardware based load balancing
• Using a Hosted Sever for load balancing

In the following sections, I describe the three load balancing options.

Chapter 9 discusses AWS and ELB in detail.

Software Based Load Balancing
If you don’t want to use a load balancer service such as ELB, you can use one of the
many open-source load balancers that are available. Open source load balancers are
software based. Two of the most popular software-based load balancing options today
are HAProxy, a TCP/HHTP load balancer, and the NGINX web server. In the follow‐
ing sections, I explain these two options.

Using HAProxy for Load Balancing
Since HAProxy is session-aware, you can use it with web applications that use ses‐
sions, such as forums, for example. High Availability Proxy (HAProxy) is a pure load
balancer, and you configure it in two ways:

• You can configure HAProxy as a layer 4 (see chapter 2 for an explanation of net‐
work layers) load balancer. In this case, HAProxy uses just the TCP/IP headers to
distribute traffic across the servers in the load balancer pool. This means that
HAProxy can distribute traffic for all protocols, and not just for HTTP (or
HTTPS), which enables it to distribute traffic for services such as message queues
and databases as well, in addition to web servers.

• When configured as a layer 7 load balancer, HAProxy contains enhanced load
balancing capabilities such as SSL termination for example, but consumes more
resources to inspect HTTP related information. It’s suitable for web sites crawling
under high loads while requiring the persistence of Layer7 processing.

HAProxy offers three types of services:

• Load balancing
• High availability

82 | Chapter 2: Networking Essentials for a System Administrator

• Proxying for TCP and HTTP-based applications

The high availability part of HAProxy is possible because HAProxy, besides perform‐
ing load balancing by distributing requests among multiple web servers, can also
check the health of those servers. If a server goes down, HAProxy will automatically
redirect traffic to the other web servers. On top of this, you can use it to help the
servers monitor one another, and automatically switch a slave node to the master role
if the master node fails.

Using Nginx for Load Balancing
NGINX, the new hotshot web server, also performs load balancing functions. NGINX
is more than a pure load balancer – it also contains reverse HTTP proxy capabilities.
This means it can cache HTTP responses from the web servers. NGINX is a great
candidate when you need a reverse proxy as well as a load balancer

HAProxy versus Nginx
HAProxy offers some benefits when compared to NGINX, as a load balancer:

• HAProxy as its name indicates, provides high availability support and is more
resilient, and is easier to recover from failures.

• HAProxy is in many ways simpler to configure
• HAProxy performs better than NGINX, especially when you configure it as a

layer 4 load balancer.

NGINX’s reverse HTTP proxy capabilities enable it to offer the following benefits:

• Caching capabilities that reduce resource usage of your web services layer
• Easy scaling of the web services layer by adding more servers to the NGINX pool

Scaling the Load Balancer
For many small to medium sized applications, you can run a single HAProxy or
NGINX service to handle the workload. For high availability, you may want to config‐
ure a hot standby as well on the side. While both NGINX and HAProxy can handle
thousands of requests per second and a large number of concurrent connections (tens
of thousands), ultimately they both have a hard capacity limit.

When you do reach the capacity limit of your software based load balancer, it’s time
to scale out the load balancers horizontally, by creating multiple load balancers.
When you deploy multiple load balancers, each of them will receive some of the
arriving traffic, using a round-robin DNS to apportion the traffic among the load bal‐
ancers.

Network Load Balancing | 83

While there are several drawbacks to using round-robin DNS in assigning traffic to
web servers, it’s a harmless way to distribute work among the load balancers them‐
selves, since they are more stable entities in the sense that you don’t often replace
them, or move them around.

Note that you can use both HAProxy and NGINX even in a hosted environment, if
for any reason you want to use your own load balancing setup and not the provider’s
load balancing service.

Hardware Load Balancing
Hardware load balancers are meant for use within your own data center, and are use‐
ful when hosting heavily used websites. Hardware load balancers are the real deal:
unlike software load balancers, which you can only scale horizontally (by adding
more of them), a hardware load balancer is easier to scale vertically. Typically, a hard‐
ware load balancer can handle hundreds of thousands, or even millions of simultane‐
ous connections. These load balancers provide high throughput and a very low
latency, all of which dramatically increase the power of your network. Big-IP from F5
and Netscaler from Citrix are the leading hardware based load balancers.

A data center network connects its internal hosts with each other, and also connects
the data center to the Internet. The hosts do all the heavy lifting, by serving web
pages, storing email and performing computations, and so on. The hosts are called
blades and they resemble pizza boxes stacked in a tray, and are usually generic com‐
modity servers, Hosts are stacked in racks, with each rack containing anywhere from
20-40 blades. On top of the rack is the main switch called the Top of Rack (ToR)
switch that connects the hosts with each other as well as with other switches in that
data center. Each host has its own data center specific internal IP address. Hosts usu‐
ally use a 1 Gbps Ethernet connection to the ToR switch, although 10 Gbps connec‐
tions have become common of late.

Each application running in a data center is associated with a public IP address to
which external clients send their requests and receive their responses from. When
you use load balancing, the external requests are directed first to the load balancer. It’s
the load balancer’s job to balance the workload by distributing requests among the
hosts.

A large data center may use multiple load balancers, each dedicated to a set of cloud
based applications. A load balancer such as this is often called a “laeyr-4 switch” since
it makes its load balancing decisions based on the destination port number ad desti‐
nation IP address in the packets – both of these entities belong to the network layer
(layer 4). In addition to balancing the workload, a load balancer also provides you
security benefits, since it provides a NAT-like function by translation the public exter‐
nal IP addresses into the internal IP address of the hosts.

84 | Chapter 2: Networking Essentials for a System Administrator

Hardware load balancers are expensive and since they’re pretty sophisticated pieces of
hardware, require appropriately trained personnel to manage them. However, for
non-hosted, heavily trafficked web sites, hardware load balancing is the best
approach.

Using a Hosted Load Balancer Service
Managing load balancers gets harder as the size of your infrastructure grows. As with
other infrastructure services, it’s a good idea to consider using a hosted load balancer
service such as the Elastic Load Balancer (ELB) service offered by Amazon AWS. You
can benefit from a third-party service such as ELB regardless of whether you host
your own applications or host them on Amazon AWS (or Azure).

If you’re using a hosted service such as Amazon Web Service (AWS), it’s better to use
the host’s load balancer such as AWS’s Elastic Load Balancing (ELB) service than to
set up your own. Everything is done for you by AWS and all you have to do is to con‐
figure ELB to work with the set of instances that you choose from AWS’s dashboard.
A load balancing service such as ELB has several major advantages:

• It’s simple to set up, as everything is done for you by the service provider (you
can do the minimal configuration from your side via a console such as the AWS
console)

• Ability to automate load balancer configuration changes
• It’s easy to scale up using auto-scaling, with the click of a button, so to speak
• Connection draining features that let you take web servers out the pool without

disconnections – when you take a server out, it waits for existing users to discon‐
nect

• A load balancing service such as ELB allows SSL termination
• No upfront infrastructure expenses, and you only pay for what you use
• Easy failure management, as failed web servers are easily replaced

The load balancers I’ve been describing thus far are public facing load balancers, but
Amazon and other cloud providers also let you configure internal load balancers as
well. Internal load balancers sit between your front-end web servers and your internal
services, and let you reap all the benefits of load balancing inside your stack.

Modern Networking Technologies
The widespread use of cloud provider supported data centers as well as large enter‐
prise data centers driven by big data has led a large number of interconnected servers,
with an overwhelming portion of the network traffic occurring within the data center
network itself. Current computing trends such as the increasing popularity of big

Modern Networking Technologies | 85

data, cloud computing, and mobile network traffic have contributed to a tremendous
increase in the demand for network resources. In the following section, I briefly dis‐
cuss two important concepts that let you quantify a network’s performance: quality of
service (QoS) and quality of experience (QoE).

Quality of Service (QoS)
QoS is a set of measurable performance characteristics of a network service, which a
service provider can guarantee via a service level agreement (SLA). QoS commonly
includes the following performance properties:

• Throughput: this is measured in bytes per second or bits per second for a given
connection or traffic flow

• Delay: also called latency, this represents the average or maximum delay
• Packet Jitter: the maximum allowable network jitter (jitter is the variation in the

delay of received packets due to network congestion, improper queuing, or con‐
figuration errors)

• Error rate: usually the maximum error rate in terms of bits delivered in error
• Packet loss: defined by the fraction of packets not dropped
• Availability: expressed as a percentage of time
• Priority: a network can also assign priorities for various network traffic flows to

determine how the network handles the flows

When you move to a cloud environment, putting a QoS agreement in place means
that the business applications get some type of minimal performance guarantees. QoS
is a major determinant of resource allocation in a cloud environment.

Quality of Experience (QoE)
While QoS is a measurable set of performance properties, QoE is more intuitive and
subjective, being the impression of quality felt and reported by users. It’s how end
users perceive the network performance and the quality of service, regardless of the
actual QoS metrics. By capturing the end user’s perception of network quality, QoE
provides a different, and in many ways, a more usable measure of quality. However,
while it’s fairly easy to measure QoS, QoE is not so amenable to quantification and it’s
hard to come up with accurate measures for this component.

86 | Chapter 2: Networking Essentials for a System Administrator

Both QoS and QoE depend to a great extent on network routing and congestion con‐
trol, which I discuss in the following section.

Cloud Networking
Obviously one uses the Internet as part of a cloud setup with an external provider, but
that’s usually only a small part of the networking infrastructure needed to support
cloud based operations. Often you also need high performance, highly reliable net‐
working to be established between the cloud provider and the subscriber. Here, at
least some traffic between the organization and the provider bypasses the internet,
using dedicated private network facilities managed by the cloud service provider. In
general, cloud networking includes the network infrastructure required to access a
cloud, including connections over the internet. The linking of company data centers
to the cloud also includes the setting up of firewalls and other network security mech‐
anism to enforce security policies.

Routing and Network Congestion Control
Routing and network congestion are two key aspects of a network that have a major
bearing on how efficiently a network transmits network packets. Efficient transmis‐
sion of network traffic has a direct bearing on both QoS and QoE.

The internet’s main job is to move packets from one place to another, using alternate
paths or routes. The routing function is essential since there’s often more than one
path for a packet to travel to its destination. Routers usually employ an algorithm
based on performance, such as least cost routing, which minimizes the number of
hops through the route. Cost could be based on throughout or time delay. The
router’s job is to accept network packets and forward them to other routers or to their
final destination, using what are called forwarding tables.

Routers base their routing decisions on various routing protocols in order to forward
packets through an interconnected set of networks. An autonomous system is a set of
routers and networks managed by an organization, with the routers exchanging
information through a common networking protocol. Within an autonomous sys‐
tem, a shared routing protocol called an interior router protocol (also referred to as
an interior gateway protocol) passes the routing information between the various
routers. OSPF is one such protocol.

A protocol for passing routing information between routers belonging to different
autonomous systems is called an exterior router protocol (or an exterior gateway pro‐
tocol), with BGP (Border Gateway Protocol) being an example of this type of proto‐
col.

Modern Networking Technologies | 87

A router’s control function includes activities such as executing routing protocols and
maintaining routing tables and handling congestion control policies. Network con‐
gestion occurs when internet traffic exceeds the capacity or if the network doesn’t
manage the traffic in an efficient fashion. When a router is overwhelmed by incom‐
ing network packets, it can either discard the newly arrived packets (not good!), or
manage the traffic using flow control, which means neighboring routers will be
forced to share the excess demand. As the network load increases, the queue lengths
at various nodes get longer and nodes start dropping packets. This of course leads to
the sources retransmitting these packets, and in the extreme case, the capacity of the
network in effect eventually diminishes to almost nothing.

Two new network innovations that many service and application providers are adopt‐
ing these days to combat network congestion are software-defined networking (SDN)
and network functions virtualization (NFV).

Software-Defined Networking
Thus far in this chapter, I’ve been busy describing protocols, network layers, packets
and frames, but the buzz these days in networking is all about something called
software-define networking (SDN). Although there’s still more hype regarding SDN
than actual deployments, it’s clear that traditional data centers are slowly metamor‐
phosing into software based data centers. Software-defined networking is a way of
organizing the functionality of computer networks. With SDN, you can virtualize
your network, which enables you to exert greater control over it and also provides
support in traffic engineering.

SDN is the outcome of a search initiated around the year 2004 for a better and
modern network management paradigm, and all indications are that it’s slowly and
quietly replacing traditional networking as it provides a way to meet the increasing
demands made on networks by new trends such as cloud, big data, mobility and
social networking.

Limitations of current networks
Networking models today are the product of architectural and protocol decisions
made around 40 years ago. Networks were expected to be static entities and their top‐
ologies weren’t expected to change significantly over time. Until the advent of virtual‐
ization, each of the applications was associated with a specific physical server which
had a fixed location in the network. Virtualization has changed all of this. Applica‐
tions are now usually distributed across multiple virtual machines, all of which can be
moved around to optimize or balance the server workload.

Traditional networking uses the concept of subnetted network segments and routing,
along with addressing schemes and namespaces. The migrating of VMs across a net‐
work causes the physical end points of a network flow to change and creates chal‐

88 | Chapter 2: Networking Essentials for a System Administrator

lenges for traditional networking. In addition to the problems introduced by
virtualization, networks are used today to deliver various types of services such as
voice, video and data. Traditional legacy networks are static in nature, and can’t
dynamically keep up with the fast changing network traffic and application demands.

Networks today are built by connecting large numbers of complex network routers
which accept data packets from applications and forward them to the next router on
the path to the packet’s final destination. The router’s operating system controls the
packet forwarding function and is designed to work with the vendor’s hardware plat‐
form. Specialized routing protocols use the operating system and the proprietary
packet-forwarding hardware to send the packets along to their destinations.

There are inherent problems with the traditional networking model. In order to
change the network behavior, you need to configure each of the routers and issue
commands in the proprietary language of the router vendor. In this closed environ‐
ment, it’s difficult for routers to interact easily with the rest of the network compo‐
nents.

The three “Planes’ in Networking
Computer networks use three distinct planes to perform their tasks – the data plane,
the control plane and the management plane. Let me explain these three planes
briefly:

• Data Plane: processes the packets received by a network by using the packet
header information to determine whether the packet should be forwarded or
dropped. If it decides to forward the packets, it must determine the host and port
to which it should send the packet.

• Control plane: this plane computes the forwarding state used by the data plane to
forward network packets, by calculating the state using distributed or centralized
algorithms.

• Management plane: this plane coordinates the interactions between the data and
the control planes.

While the data plane uses abstractions such as TCP/UDP and IP, thus creating a relia‐
ble transport layer out of a set of unreliable transport layers, the control plane has no
such abstractions. There’s no unifying abstraction underlying the control plane, with
a bunch of control plane mechanisms created to achieve different goals. For example,
a routing control plane may be used to provide access control lists or firewalls, by
influencing the routing of packets through controlling the calculation of the forward‐
ing state. Each of the control planes solves a specific narrow problem, but they all
can’t be used together.

Modern Networking Technologies | 89

The limited functionality of the control planes means there’s no one solution that
contains all the control plane functionality. Why do we need to worry about the fact
that the different “small bore” control planes can’t talk to each other? Well, this type of
architecture has an impact on the bottom line.

In a legacy network, when you have a large amount of data that needs to be moved,
by default the fastest network link is employed, although it’s the most expensive.
Since the applications can’t really communicate with the network due to the way the
control plane is designed in traditional networks, it never finds out about the availa‐
bility of slower but cheaper alternate network links.

In a traditional network, it’s not just the routers that perform the data, control and
management functions in an integrated fashion – all the other network devices, such
as a network bridge, packet switch etc. perform these functions in the same fashion as
a router.

SDN constitutes the set of instructions that govern the control plane in a modern net‐
work. SDN’s approach is quite different from that of today’s distributed network rout‐
ing protocols. SDN essentially involves the simple computation of a function. It
computes functions on an abstract view of the physical network layer, ignoring the
actual physical infrastructure of the network. This allows the network engineers to
manage network traffic by ignoring the physical network design. The networking
operating system takes the SDN generated function and distributes it to all the net‐
work switches.

Server virtualization is a big reason for the advent of SDN. While virtualization
allows you to easily migrate servers across virtual machines for load balancing or for
high availability purposes, it doesn’t play too well with traditional networking. For
example, the virtual LAN (VLAN) that’s used by a virtual machine must be assigned
to the same switch port as the host server. Since you may often move virtual
machines it means you need to reconfigure the VLAN every time you move the VMs
around. Since traditional switches perform both the control and data plane functions,
it’s hard to modify network resources and profiles with these switches. The need to
provide a rapid network response to the use of virtual servers has been a big motivat‐
ing force in the move to SDN.

In traditional networks, the control plane needs to compute the forwarding state of
network packets, consistent with the low level hardware and software and the entire
network topology. In addition it must ensure that it inserts the forwarding state into
all the physical forwarding boxes in a network. A new protocol means that the con‐
trol plane has to redo all of the work, which isn’t very efficient.

Under SDN, the traditional three plane functionality of the router is broken up.
Router hardware has less work to do in this architecture: all it needs to do is provide

90 | Chapter 2: Networking Essentials for a System Administrator

the data plane functionality – that’s it! A software application running on a separate
platform and connected to the router provides the control and management planes.

Performing all the routing functions within the router itself means that all routers
must implement the same routing and control protocols. In SDN, a central controller
will perform the tasks such as routing, naming, declaration of policies and security.

The SDN control plane consists of one or more SNC controllers, which define data flows that occur in the SDN data plane. The controller configures each flow through the network and ensures that the flow is allowed by the network policies. Once it approves a flow, it figures out a route for the flow and adds entries for that flow in all the switches along the route. Switches constitute the data plane and their job is to simply manage the flow tables, which are populated by the controller.

Defining Functions for the Network Control Plane
When designing the network control plane, you need three types of functions:

• A forwarding function
• A network state function
• A configuration function

I describe the three functions briefly in the following sections.

The Forwarding Function
The packet-forwarding function needs to be implemented differently from how the
network switch is implemented. This function abstracts the details of low level hard‐
ware and software involved in the creation of the network switch. The switch should
be able to use any underlying low level mechanism and the software that runs in the
switch shouldn’t impact the forwarding function.

The OpenFlow interface, which is a set of application programming interfaces (APIs),
is one way to link the control plane software and the network switch.

The Networking Function
The goal of the network state function is the presenting of a graph-like global net‐
work view, with necessary network information such as network delay and the recent
loss rate. This global network view functionality is provided by a network operating
system (NOS), and the controlling software uses the network graph to make deci‐
sions. The global network view is continuously updated with the changes occurring
with the network switches. The NOS has the capability to update the switches to con‐
trol the packet forwarding.

In a traditional network design, network switches are responsible for routing packets
of user information among themselves. The switches use the information to update
their view of the global network, and modify how they forward the network packets.

Legacy network control planes implement peer-based distributed routing algorithms,
such as the shortest path first (SPF) algorithm. The problem is that the algorithms are

Modern Networking Technologies | 91

complex, and the distributed decisions by the switches are based on only a partial
knowledge of the network’s global state.

In an SDN based network, there’s a general purpose software algorithm that runs on
the NOS servers and determines the network topology by polling the network
switches. Based on the responses from the switches, the software creates a global net‐
work view. The global network view acts as the basis for various types of control pro‐
grams such as routing or traffic control programs. Under SDN, instead of distributed
decision making based on imperfect network information, a centralized control pro‐
gram based on the global network view is used to determine how switches ought to
forward the packets.

With the centralized decision making through the control program, redesigning the
network to route packets differently is easy – all you need to do is modify the control
program. You don’t have to create a brand new distributed routing algorithm, as is the
case in a traditional network.

The Configuration Function
The control program doesn’t concern itself about how the actual routing behavior is
implemented. That is, the control program doesn’t have to configure the routing
tables on all network nodes to implement a routing algorithm. A virtualization layer
is added to the SDN model to translate the control program’s routing instructions
into configuration commands for the switches in the physical network. This virtuali‐
zation layer updates the global network view to reflect the routing decisions made by
the control program. The layer hands the updated global network view to the NOS,
which actually configures all the switches in the underlying physical network. It maps
the packet-routing control commands and maps them to the physical switches. The
OpenFlow interface facilitates the interaction between the NOS and the switches.

Since routers are left with just the data plane functionality, they don’t need to be com‐
plex things any longer. You can now make do with basic packet-forwarding hardware
based routers to communicate with the NOS through the OpenFlow (or a similar)
protocol. Also, since under SDN the networking intelligence has been separated and
moved to the SDN layers, switches can be mere commodity hardware as well.

Probably the most important benefit of SDN is the fact that by enabling network vir‐
tualization, SDN lets you migrate easily between your current network and the cloud.
SDN makes it easy to export your virtual topology to the cloud and ignore the physi‐
cal design of the network. Network teams can create a network policy statement using
their network topology and replicate this policy statement in the cloud. Under SDN,
the control plane is not on hardware but exists in software. You can easily perform
large scale simulation of the control plane and test new network designs before mov‐
ing into production.

92 | Chapter 2: Networking Essentials for a System Administrator

In traditional networks, the control plane is part of a proprietary switch or a router
box, whereas in SDN it’s a program, with software determining how to forward net‐
work packets. Instead of designing a network, you’ll be programming networks based
on the abstracted view of the physical network. The software you use to program the
network will be independent of the hardware used by the network. Troubleshooting
SDN based networks is also simpler since you can simulate the programs once you
identify the source of a network related problem such as incorrectly forwarded net‐
work packets, for example.

Network Functions Virtualization
In today’s computing world, storage and servers have already been virtualized. Net‐
work functions virtualization (NFV) allows the virtualization of the physical net‐
works. Once it virtualizes the network, NFV enables software applications that use
the network to reconfigure the network as they see fit, thus letting the network pro‐
vide the best service possible to the applications.

NFV breaks away the set of essential network functions such as routing, firewalling,
NAT and intrusion detection from vendor controlled proprietary platforms and
implements these functions in software, using virtualization. If NFV sounds very
similar to SDN, it’s no mystery, as they share several features and objectives. Both
SDN and NFV believe in:

• Using software instead of hardware to provide network functions
• Using commodity hardware instead of proprietary network platforms
• Using standardized APIs

The key thing to remember is that both SDN and NFV decouple or break up compo‐
nents of the traditional network architecture. While SDN decouples the data and con‐
trol planes of network traffic control, NFV removes the network functions from
proprietary hardware through virtualization and implements the network functions
as software. You can use either SDN or NFV by itself, but of course, employing both
together will get you the most benefits. If you use SDN by itself, you’ll be implement‐
ing the control plane functionality on a dedicated SDN platform. If you use NFV as
well, you can implement the network data plane functionality on a VM and the con‐
trol plane functionality on either a dedicated SDN platform or an SDN VM.

The OpenFlow Protocol
The OpenFlow protocol is a new network protocol that has been created to enable
software-defined networks. The OpenFlow protocol provides structure for the mes‐
saging between the control and data planes and provides external applications access
to the forwarding plane of a network switch or router.

Modern Networking Technologies | 93

Traditional networks tend to stay static over time as a result of their complexity. In
order to move a device to a different location on the network, the network adminis‐
trators must modify multiple switches, routers, firewalls and updated ACLs, VLANs
and other protocol based mechanisms that work on the device and the link levels.
The OpenFlow protocol was designed to solve the problems posed by legacy network
protocols. In SDN architectures OpenFlow is the interface between the control and
forwarding layers and lets you directly access the network devices such as switches
and routers in the forward plane. Standard network protocols can’t offer this type of
functionality, and thus OpenFlow is a necessary ingredient to move the control part
out of networking switches and into centralized control software.

With this review of networking behind us, let’s turn to how modern web applications
are architected, and how you achieve scalability in a world of modern web applica‐
tions, web services and microservices.

94 | Chapter 2: Networking Essentials for a System Administrator

CHAPTER 3

Scalability, Web Applications, Web
Services, and Microservices

Supporting web sites and web applications is often a key function of Linux system
administrators. An overwhelming majority of the world’s web sites and web applica‐
tions run on Linux. In the old days, when it came to supporting web based applica‐
tions, all an administrator had to know was how to set up a web server such as the
Apache HTTP server, and a few things about DNS and how to connect the web front
end to the backend databases.

Over the past several years, there have been truly revolutionary changes on many
fronts, changes which require you to be conversant with a lot more technologies that
have come to play a critical role in driving web applications. The rise of web based
applications and the consequent concurrency issues it gave rise to due to massive user
bases have called for innovations in virtually all areas of the traditional web applica‐
tion architecture. In addition to newer application architectures, there are also vastly
more moving pieces in a typical web application today than in the applications from
the previous generations. This chapter has two major goals:

• Explain the concept of scalability and how you can enhance it using modern
approaches, in all areas of a web application, such as the front end and back end
web servers, databases, caching servers, etc.

• Introduce you to several modern innovations such as new application architec‐
tures, NoSQL databases, modern caching concepts, asynchronous processing
models, high availability, and newer, more efficient web servers

Scalability is the ability of applications to handle a large number of users, data, trans‐
actions or requests without a slowdown in response time. Modern application archi‐
tectures utilize several strategies to achieve scaling for each of the components of the

95

application stack. Throughout this chapter, our focus is squarely on scaling using
modern techniques.

Web applications are often deluged with large numbers of simultaneous users, mak‐
ing concurrency a tricky issue. Over the past 10 years or so, the need for higher scala‐
bility has driven several significant developments in web architectures, with the
adoption of newer concepts such as web services and microservices. This chapter
provides an introduction to these architectures.

Traditionally, web applications have used the open source database MySQL and the
open source Apache web server to power them. While the established user base of
MySQL and the Apache Web server is still very high, the pursuit of scalability and
concurrency has led to newer database and web servers that have been explicitly
designed to provide scalability.

Modern web servers designed with high concurrency in mind, such as the NGINX
web server and modern databases that are based on a non-SQL approach to data pro‐
cessing such as MongoDB and Cassandra have come to become major players in
today’s application architectures. This chapter explains the way these modern tools
work, and how they provide the benefits that make them significant components in
the modern many application architectures.

This chapter discusses several concepts that are used by developers, but administra‐
tors need to know about these crucial concepts so they can better serve their clients,
both within and outside their organization. For example, learning about popular pro‐
gramming concepts such as Model-View-Controller (MVC) architecture and the rea‐
sons for the popularity of the MEAN stack for building web applications helps
understand what the developers in your organization are doing, and why. Similarly,
understanding the basics of web performance helps you provide more efficient serv‐
ices for your external customers (Chapter 16 discusses web performance optimization
in detail)

Two of the most popular web application frameworks today are what are generally
referred to as the MEAN Stack and Ruby on rails. MEAN stands for a framework that
uses the following components together to drive web applications: Mongodb,
Express, Angular JS and Node.js. Ruby on Rails is a very popular framework for
developing web applications, and relies on the principle of “convention over configu‐
ration”.

This chapter explains the Model-View-Controller (MVC) architecture that underlies
modern web applications. Following this, it explains both the MEAN application
stack as well as Ruby on Rails, which is a highly popular modern web application
framework. You’ll also learn about the new paradigm in web applications, the Single
Page Application (SPA).

96 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

Microservices are increasingly becoming the norm, more or less supplanting the pre‐
viously popular concept of web services. You’ll learn about both web services and
microservices in this chapter, and also find out the key differences between these two
approaches.

Scaling and Common Datacenter Infrastructures
Before a client request even arrives at a company’s data center, it usually traverses
through third party entities such as a GeoDNS or a CDN service. Once it arrives at
the data center, web traffic is handled by multiple technologies, some of which fall
under the front end type and others the back end architecture components. Let’s list
the typical components of front end and back end technologies.

While managing a data center with the multiple layers shown here does add to the
complexity, it helps you scale your environment. For example, load balancers reduce
the load on the web application servers in the front. Similarly, backend web services
need to deal with a lower amount of traffic since the application level caches and the
message queues handle some the load.

While I list a fairly large number of components for a data center, by no means do
you need all of these in your environment. If your applications are simple, they may
not need all the complex layers, such as frontend cache server, message servers,
search servers and backend cache servers, for example. The objective here in listing
these components is to make you aware of the potential complexity of a data center
architecture.

Scaling web applications (and your entire computing environment for that matter)
means knowing how to scale all the components of a typical architecture, including
both the front line and backend technological components of a data center.

Front End and Back End Web Technologies
You probably are familiar with the commonly used terms “front end” and “back end”
when dealing with web applications. The front end in this context refers to the appli‐
cation code, HTTP and web servers, load balancers, reverse proxies and Content
Delivery Networks (CDNs). The backend layers include web services, object caches,
message queues and databases. I discuss how you can enhance scalability and perfor‐
mance by using several strategies at the front end as well as the back end of your
applications. Here’s a listing of the main technologies I explain in this chapter:

• Load Balancers
• Web servers (web application servers)
• Caching servers (from caching servers)
• Reverse Proxy Servers

Scaling and Common Datacenter Infrastructures | 97

• Content Delivery Networks (CDNs)
• Web services and Microservices
• Object caches
• Messaging (queuing) services

The Front End Technologies
When dealing with web applications, front-end technologies are responsible for ren‐
dering the user interface and handling the user connections. Typically, the front-end
technologies are the following:

• Reverse proxies
• Content Delivery Networks (CDNs)
• Hardware (or software) load balancers
• Domain Naming Service (DNS)
• Front cache servers (optional)
• Front-end web application servers

The web application layer is the presentation layer and its job is to simply handle user interactions and convert them into internal calls to various web services. The web services contain the main business logic. Web application servers are typically stateless and hence easy to scale – all you need to do is simply add more servers. The front-end web applications servers provide the user interface and allow communications over HTTP (including AJAX)

The Back End Technologies
Back end technologies include the following:

• Web services: Web services constitute the heart of the application and contain the
business logic. These services use either REST or SOAP (I explain both of these
in this chapter) to communicate with the front-end applications. If you keep the
web services stateless, scaling them involves adding more servers to run the web
services.

• Cache servers: these are used both by the front-end application services as well as
the backend web services to reduce latency by storing partially computed results.

• Message queues: both front end applications servers and the web service
machines can send messages to the queues. The message queues help postpone
some processing to later stages and also delegate work to worker machines which
process the message queues. The queue worker machines perform work such as
taking care of asynchronous notifications and order fulfillment which typically
require significant time to complete.

• Databases: a data center can contain both traditional relational databases such as
MySQL and several big data stores such as Hadoop, in addition to NoSQL data‐
base such as MongoDB and Cassandra. Regardless of the type of database, scala‐

98 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

bility is a running theme common to all databases, since data sizes are usually
arge, regardless of the type of data that’s stored and processed.

• Other servers: These can include batch processing servers, search servers, file
servers and lock servers.

• Third-party services: these include services from both CDN providers and the
providers of various business services such PayPal and SalesForce, for example.

Scalability of Applications
We all know in general what scalability means – it’s the ability to handle an increasing
number of users and their requests without deterioration in the performance of the
applications. Scalability contains the following two major dimensions:

• Ability to handle higher concurrency: as applications become more popular, the
number of users simultaneously accessing the web sites starts rising, bringing to
the fore a special set of problems, such as an increasing number of open connec‐
tions and active threads, not to speak of higher I/O for the storage subsystem as
well as the network, and a higher load on CPU. Latency and response time
become crucial measures of the ability of a system to handle high concurrency
usage patterns.

• Processing More Data: As a website becomes more popular, more users will be
making requests and your system will be handling increasingly larger amounts of
data. Processing data involves disk I/O as well as network I/O, and therefore the
system has to keep up with the higher data loads without slowing down the speed
of processing.

Scalability and performance are intertwined, and present two sides of the same coin.
A system that can’t process things fast enough can’t scale very well. There are two
major approaches to scaling applications – vertical scaling and horizontal scaling, as I
explain in the following sections.

Scaling Vertically
Vertical scaling is usually the first response to meeting higher scalability require‐
ments. Under vertical scaling, you seek to upgrade the processing power of your sys‐
tems without reconfiguring your applications or the components of your application
architecture. When it comes to upgrading the processing power of servers, the most
common approaches are to increase the RAM allocated to the servers, or sometimes,
even switch to different servers with more and/or faster CPUs. The following are all
ways in which you can scale up.

Scaling and Common Datacenter Infrastructures | 99

• Increase RAM to reduce the disk I/O – computations in memory are much faster
as compared to computations on disk, so for most database dependent applica‐
tions, allocating more RAM leads to dramatic improvements in performance.

• Get faster network interfaces: you can often gain throughput by upgrading your
network adapters.

• Move to more powerful servers: you can move your databases and web servers to
servers with more CPUs and virtual cores. The CPUs themselves can also be
faster than the CPUs you’re currently using.

• Improve the disk I/O: One of the first things you can do here is to see if you can
invest in speedier hard disk drives (higher RPMs). Web applications in particular
predominantly use random reads and writes, which are much faster when you
use solid-state drives (SSDs). If it makes sense from the cost point of view (while
they were extremely expensive to begin with, SSD costs have been continuously
dropping), SSDs could dramatically speed up disk I/O.

While vertical scaling can and does enhance scalability in most cases, and offer the
benefit that it doesn’t require you to make any changes to your application architec‐
tures, it has inherent limitations over the long run. Scaling up is usually extremely
expensive and not always cost effective. You’ll find that you get a smaller payoff by
spending extra money on buying these muscular infrastructure components (ultra-
fast disk drives, faster CPUs, and more powerful RAID controllers, for example) with
higher specs.

Even assuming that you can afford the increasing cost (the cost increases nonlinearly)
of the heftier hardware and other components to support vertical scaling, you’ll even‐
tually hit a performance wall due to the sheer fact that there are hard limits on how
much memory a system can handle, and how fast disk drives can spin.

Content Delivery Networks (CDNs) also help significantly improve
scalability by taking some load off your web servers for providing
static web content. I discuss CDNs in the following sections.

Scaling Horizontally
While vertical scaling takes the approach of bulking up the existing infrastructure so
it can process more things faster, horizontal scaling enhances your infrastructure’s
processing capacity by adding more servers to your infrastructure. You can add more
database servers or more web servers, for example, to support a growing volume of
business.

The principle of horizontal scaling underlies the massive infrastructures built up by
behemoths such as Amazon and Google, which run data centers with hundreds of

100 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

thousands of commodity servers, as well as the increasing popularity of big data pro‐
cessing models such as Hadoop and Mesos.

Content Delivery Networks
One of the best ways to offload some of an application’s web traffic is to employ a
third-party content delivery network (CDN) service, such as Akamai, CloudFare,
Rackspace (Rackspace Cloud Files Service), and Amazon’s Elastic Compute Cloud
(EC2). Currently Akamai is the worldwide market leader. Content delivery networks
are hosted services using a distributed network of caching servers that work some‐
what similar to the way caching proxies work, and are typically used for distributing
an application’s static files such as images, CSS, JavaScript, PDF documents and vid‐
eos.

Users that need to download the static content connect directly to the CDN provider
instead of your web server. The CDN will serve the requested static content to the
users, and if it doesn’t have the requested content, it gets that content from your web
servers and caches it, and so it can send it along to the users directly for all subse‐
quent requests.

CDNs are highly cost effective for most organizations. They do things at a fraction of
what you’d have to spend if you were to set up complex and hard to maintain network
infrastructures across the globe to cache the content in your own private infrastruc‐
ture.

While CDNs are primarily meant for providing static content, they aren’t limited to it.
CDNs can also serve dynamic content for your websites, offloading more work from
your own data center to the CDN provider to process content. As Chapter 9 explains,
you can configure Amazon’s CloudFront service to provide both static and dynamic
content. Note that in addition to simply serving static web content, CDNs can also
work as a HTTP proxy, as I explain later.

If your needs aren’t big, you can set up a simple Apache server to deliver your static
files so you can take needless load off your web application servers. You can use the
single server CDN setup until your needs require you to scale up, and that’s when you
can splurge for a third-party CDN provider. In addition to scalability, third-party
CDNs also offer faster performance since a globally distributed CDN can serve its
content from the nearest server.

Since CDNs use caching to do their work, they are similar to proxy servers for cach‐
ing purposes. In fact, CDNs use HTTP headers to cache content, in the same way as
proxy servers. Large web applications benefit immensely from a CDN since CDNs
not only reduce your network bandwidth usage, but also decrease the network
latency by serving content to users from a the nearest cache server from their dis‐
tributed network of cache servers.

Scaling and Common Datacenter Infrastructures | 101

As mentioned earlier, you can configure a CDN to cache both static and dynamic
content. For example, Amazon CloudFront can serve both static and dynamic con‐
tent for your applications. Typically, however, web applications use CDNs to cache
static files such as images, CSS, PDF documents and JavaScript.

How large websites scale
When scaling for large audiences, organizations use multiple data centers. Spreading
the date centers across the world enhances user experience and also provides higher
availability. Two of the most common strategies used to service a global audience are
the use of a GeoDNS and the use of edge-cache servers.

GEODNS
Normal DNS servers resolve domain names to IP addresses. A GeoDNS takes this
concept a bit further: they serve IP addresses (of the web servers or most commonly,
the IP addresses of the load balancers) based on the location of the client, allowing
clients to connect to web servers running closer to where they’re located. Obviously,
minimizing network latency is the goal in using a GeoDNS strategy.

Edge-cache Servers
Large companies can also reduce network latency by hosting several edge-cache
servers across the world. Edge-cache servers are HTTP cache servers that are situated
closer to the clients, enabling them to (partially) cache their HTTP content. The
edge-cache servers handle all requests from a client browser and can serve entire web
pages if they have it in the cache, or they can use cache fragments of HTTP responses
to assemble complete web pages by sending background requests to the company’s
web servers.

Both GeoDNS and edge-cache servers can be used together with CDNs. For example
a company’s Asian customers will resolve the company’s domain name to an IP
address of an Asian edge server. The customers will be served results cached by an
edge-cache server or from one of the company’s own web application servers. The
company’s CDN provider loads static files such as JavaScript files from the nearest
data center of the CDN provider in Asia. The bottom line is to keep latency low, and
cut the costs in achieving that goal.

Scaling Web Applications
Scalability of both the front end and the backend of web applications is crucially
affected by the concept of state. To understand how this is so, you need to know the
difference between stateful and stateless services:

102 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

• A stateful service holds data relating to users and their sessions. Data in this con‐
text could relate to user session data, local files or locks.

• A stateless service (or server) doesn’t hold any data. Data in this case captures the
state and stateless services let external services such as a database handle the
maintenance of a client’s state. Since they don’t have any data, all the service
instances are identical.

Stateless services don’t retain state or any knowledge relating to
users between HTTP requests made by the users. Since a stateless
service stores the state in an external shared storage (such as a
database), all stateless servers are virtually the same - there’s no dif‐
ference among them.

Having to maintain any type of state has a negative impact on your system’s ability to
scale. For example, keeping web servers (both front-end and backend web service
servers) stateless lets you scale the servers simply by adding more servers. State has
relevance both in the front-end layer as well as on the backend, as the following sec‐
tions explain.

Managing state at the front end
For front end servers such as web servers, there are two main types of state that need
to be managed – HTTP sessions and file storage. Let’s review how web applications
handle these two types of state.

HTTP Sessions and State
While the HTTP protocol itself is stateless, web applications create sessions on top of
HTTP to keep track of user activity. There are several ways to track session state, as
explained here:

• Using session cookies: Web applications usually implement their sessions with
cookies, and the web server adds new session cookie headers to each response to
a client’s HTTP request, enabling it to track requests that belong to specific users.

• Using an external data store: Using cookies is a simple and speedy approach
when data is small, but if the session’s scope gets large, cookies can slow down the
web requests. A better strategy may be to store the session data in an external
data store such as Memcached, Redis or Cassandra. If the web application is
based on a Java type JVM-based language, you can store the session data in an
object clustering technology such as Terracotta instead. The web server remains
stateless as far as the HTTP session is concerned, by not storing any session data

Scaling Web Applications | 103

between web requests. Instead, the web application grabs the session identifier
from the web requests and loads the pertinent session data from the data store.

• Implementing “sticky sessions” through a load balancer: In this strategy, the load
balancer takes over the responsibility for routing session cookies to the appropri‐
ate servers, by inspecting the request headers. The load balancer uses its own
cookies to track the assignments of the user sessions to various web servers. Note
that under this strategy the web servers do store the local state by storing session
data.

File Storage and State
In addition to the state of the applications, file storage is another important type of
web application state handled by web servers. If you’re wondering how file storage
plays a role in managing state, it’s useful to remind yourself that typically, users can
both upload content to the web servers and also download various files generated by
the web applications.

Instead of reinventing the wheel, you can set up your own file storage and delivery
system using open-source data stores and related tools to scale your file storage sys‐
tem. This lets you take advantage of scalability features such as partitioning and repli‐
cation that are built into these data stores. For example, GridFS, which is an extension
that’s part of MongoDB, can split large files and store them inside MongoDB as Mon‐
goDB documents. Similarly, Netflix’s Astyana Chunked Object Store takes advantage
of another open source data store, Cassandra, by using its partitioning, failover and
redundancy features, and by building file storage features on top of the data model.

Auto Scaling
Auto scaling is the automatic adding and removing of processing power, such as
adding or removing of web servers based on changing workloads. While scalability in
this chapter mostly deals with scaling out to efficiently address increasing workloads,
auto scaling is the automation of an infrastructure’s capacity by automatically adding
to or removing servers from the infrastructure based on the workloads. Auto scaling
is really more relevant in a hosted environment such as Amazon AWS, where, by
using Amazon’s auto scaling feature one can considerably reduce their hosting costs.
For a client that’s running a web application by hosting it on AWS, handling a holiday
rush is a breeze with auto scaling – and once the holiday rush business is taken care
of, you won’t need the beefed up infrastructure, so the system automatically scales
itself down. Just as you can use a service such as Amazon’s Elastic Load Balancer to
auto scale your front end web servers, you can also auto scale the web servers hosting
your web services.

104 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

While you may be able to manage your proprietary file storage system by leveraging
the open source data stores, a far better strategy would be to simply delegate the
whole area of distributed file storage and delivery to inexpensive third-party services
such as Amazon’s Simple Storage Service (S3). You can use these types of storage
services even if you aren’t using AWS to host your web applications.

Regardless of whether you use a service such Amazons S3 or handle the file storage
yourself, it’s a good idea to employ a content delivery network (CDN) to send files to
the users. The CDN can use Amazon S3 or public web servers to download and cache
public content. If the files that users need to download are private files, you can store
them in Amazon S3 again, but in private instead of public buckets, or use private file
servers if you’re handling the data storage yourself. The web application servers will
then fetch the private files from S3 or your own private file servers, enabling users to
download them.

Web servers can be front-end web servers or servers that host the
web services in the backend.

Other Types of State
In addition to session data and file storage, other types of state such as local server
caches, resource locks and application in-memory state negatively impact state. Cach‐
ing in particular is tricky since it does enhance performance and reduce the workload
of the database and web services, as you’ll see later in this chapter.

Resource locks synchronize access to shared resources but it’s very difficult to imple‐
ment those locks correctly in practice, and you should instead try to move the state
out of your application servers. You may want to consider a distributed locking ser‐
vice such as ZooKeeper or Consul.. As this chapter explains later on, ZooKeeper not
only is used for distributed locking (for Java based applications), but also for leader
election and managing runtime cluster membership information. For scripting lan‐
guages such as Ruby, you can use a simpler lock implementation based on operations
within a NoSQL database such as Memcached or Redis.

Regardless of whether you use ZooKeeper or Memcached or a different implementa‐
tion of a locking service, the principle here is that you remove the state related func‐
tionality from the web server and move it to a separate, independent service. This
makes it easy to scale out your web applications.

Scaling Web Applications | 105

Scaling the DNS

1. As Chapter 8 (Cloud and Amazon AWS) shows, Amazon’s Route 53 services is
integrated extremely well with Amazon AWS and lets you easily configure DNS
through your AWS web interface. Route 53 uses latency based routing to route
clients to the data center nearest to them. In some ways this is similar to GeoDNS
which I explained earlier in this chapter, and is probably even better in some
ways than GeoDNS, since it bases its routing decisions on latency instead of loca‐
tion.

If you aren’t hosting your infrastructure on Amazon, not to worry, as there are several
DNS services out there such as easydns.com and dyn.com that provide services simi‐
lar to those offered by Amazon’s Route 53 service.

A CDN is commonly used for serving static files such as images,
CSS and JavaScript files, but you can use a CDN to proxy all web
requests arriving at the web servers, if you so wish.

Scaling the Load Balancers
Amazon’s’ Elastic Load balancing (ELB) is part of Amazon’s auto scaling feature that
automatically adds servers to meet rising workloads and also replaces the web servers
automatically when the servers fail. Since ELB scales transparently and is highly avail‐
able, you don’t need to worry about managing it.

In addition to Amazon’s AWS, other cloud providers such as Microsoft’s Azure offers
the Azure Load balancer and Rackspace offers the Cloud Load Balancers and Open‐
Stack comes with LbaaS. All of these cloud providers offer similar load balancing
services as ELB. You can scale the load balancing easily with any one of these services,
regardless of whether you host your infrastructure on those providers or not.

Scaling the Web Servers
The programming language in which you implement your front end applications, as
well as the type of web servers to use, are both crucial decisions you need to make
when it comes to architecting the front–end web servers, which provide the presenta‐
tion logic as well as serve as an aggregation layer for the web service results. Although
using the same technology stack across all of a web application’s multiple layers offers
several benefits, in practice, it’s common for different layers to use different architec‐
tures to solve their unique problems.

In terms of the actual web servers, you have a choice between traditional web services
such as Apache and Tomcat (or JBoss) and the newer web servers such as NGINX,
which I discuss later in this chapter. In terms of increasing horizontal scalability, the

106 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

real concern here isn’t the language framework or the type of web server. It really is a
question of whether you’ve ensured that the front-end web servers are truly stateless.

Using Caching to scale the front-end
Caching helps you scale by reducing the workload of web services and databases in
the backend. There are multiple ways in which you can manage caching at the front
end of your web applications:

• Using a Proxy server: As you’ll learn shortly, you can use a Content Delivery Net‐
work (CDN) to cache web content. However, CDNs aren’t ideal for caching entire
web pages. You can use a reverse proxy server such as NGINX (or Varnish) to
better control both the type and the duration of the cached web content.

• Caching in the web browser (HTTP caching): Today’s web browsers can store
large amounts of data, ranging into multiple megabytes in size. Modern web
applications such as Single Page Applications (SPAs) can access the local browser
storage from the application’s (JavaScript) code, thus reducing the workload of
the web servers. You normally implement HTTP caching in the front-end layer
and in the backend web services layer in a similar fashion.

• Using an object cache: As I explained earlier in this chapter, an object cache
allows you to store fragments of a web server’s responses. Both Redis and Memc‐
ached are very powerful shared distributed object caches that can help you scale
applications to millions of users through clusters of caching servers.

Later sections in this chapter will explain the concepts of a proxy server, browser
caching, and object caching in more detail.

Scaling the Web Services
You can scale your web services using multiple strategies such as making the servers
that are hosting the web services stateless, caching the service’s HTTP responses and
through functional partitioning. The following sections explain each of these strate‐
gies.

Making the Servers Stateless
As with the rest of your architecture, keeping state out of the servers hosting your
web services plays a significant role in scaling your web services. You can keep state
off the servers by letting it store just auto expiring caches and by storing all other per‐
sistent data representing the application state in external data stores, caches and mes‐
sage queues. Keeping the servers stateless will let you employ load balancers to
distribute client work over all the servers hosting web services, and allows you to take
servers out of the load balancing pool when they crash. You can add and remove
servers, as well as perform upgrades transparently without affecting your users. Scal‐

Scaling Web Applications | 107

ing is as simple as just adding more web service hosts to the load balancer pool to
handle more connections.

Using HTTP Protocol Caching
A REST web service’s GET responses are cacheable, but in order to make the most of
this, you must ensure that all the GET method handles are read-only, since it means
that issuing GET requests would leave the state of the web service unaltered. If all
GET handles are strictly read-only in nature, you can add caching proxies in front of
the web services to handle most of the incoming web traffic.

In order to implement HTTP caching at the web service layer to promote scaling, you
add a layer of reverse proxies between the web service clients such as the front–end
servers and the web and your web services. All requests will now pass through a
reverse proxy. This layer of reverse proxy HTTP cache will distribute requests among
multiple web service servers.

Patterns such as using local object caches would make it difficult to cache the GET
responses, since the web servers can end up with different versions of the data. You
can make the resources public to ensure that you only have a single cached object per
URL and thus enhance the efficiency of HTTP caching, and make it truly lower the
workload of the web services. Making the GET handles public lets you reuse the
objects easily.

Using Microservices to Enhance Scaling
You can break up a large web service into multiple independent microservices, with
each component addressing a specific functionality. For example, you can create
microservices such as a ProductCatalogService and a RecommendationService and
other similar services, each addressing a separate subsystem, in order to break up the
work that was being handled by a single web service.

Web services help web applications scale since the web services can
use different technologies and you can scale each of the web serv‐
ices independently, by adding more web servers to host a specific
web service, for example. APIs also help you scale because you can
break up the web services layer into much smaller microservices.

Creating multiple, independent microservice based subsystems will distribute the
total work among more databases and other services, which enhances scaling. Since
different microservices can have different usage patterns, with some microservices
needing to perform more read requests, and others with mostly write requests, for
example, you can scale each of the services independently. For example, some services
may require different types of databases or a different way of caching the content –
you can employ the “best of breed” strategy for each of the microservices.

108 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

Making Effective use of Third-party services
Organizations with small to medium size operations can significantly enhance their
competitive situation by using services offered by third-party entities instead of
building everything from scratch, besides having to devote considerable expense and
effort to maintain the services. Three of the most useful such services are:

• Content Delivery Networks (CDNs)
• Site analytics
• Client logging

Let me briefly describe how outsourcing each of these services helps you develop
more effective web services and SPAs.

Site Analytics
As with traditional websites, web services and SPAs can benefit from using analytic
services such as Google Analytics and New Relic to help them understand the usage
patterns of their web sites and unearth performance bottlenecks. SPAs can be
enhanced in two different ways to take advantage of a service such as Google Analyt‐
ics:

• Use Google Events to track the hashtag changes: Google Events uses parameters
passed along at the end of requests to process the information about that event.
Developers can organize and track various events. For example, if the following
call shows up in the reports for an SPA it tells you that a chat event has occurred
and that the user sent a message on the game page.

 _trackEvent('chat', 'message', 'game');

Let’s see how Google Analytics can help you optimize your website performance. You
can use a Google Analytics report to correlate the traffic statistics for your top 10 web
pages with the average time it takes to render the web pages. This helps you create
value based rankings of the web pages such as the following:

Value Rank Page Average Seconds (Respnse Time) Requests per Hour
1 / 0.33 1000000
2 /mypage1 0.99 200000
3 /mypage2 0.60 95000
…

Ranking the web pages as shown here lets you quickly estimate the potential bang for
the back, so to speak. It lets you see, for example that improving their home page load
times by just 5 ms offers vastly greater improvement in overall performance as com‐
pared to increasing the performance of the web pages mypage1 or mypage2 by 10 ms
or 20 ms. Web optimization, as with other optimizations, requires the calculation of

Scaling Web Applications | 109

the costs and benefits of the optimization efforts, and data such as the simple set of
metrics shown here are the best way to prioritize your efforts.

Server-Side Google Analytics: You can also track the server side with something like
Node.js, to see the types of data being requested from the server. This will help during
the troubleshooting of slow server requests. However, tracking the server side isn’t as
useful as tracking the client-side actions.

CLIENT LOGGING
In single page applications (SPAs), which are increasingly becoming the norm for
web applications, unlike in traditional websites, when a client hits an error on the
server, the error isn’t recorded in a log file. While you can write code to track all
errors, it’s better to use a third-party service to collect the client errors. You of course,
can add your own enhancements or tracking features, even with a third-party service
in place.

There are many useful third-party services that collect and aggregate errors and met‐
rics generated by new applications. All client logging services work the same under‐
neath: they catch errors with an event handler (window.onerror) and trap the errors
by surrounding the code with a try/catch block.

The company NewRelic happens to be the most popular of these services, and is the
current standard for monitoring web application performance. A service such as
NewRelic provides considerable insight into the performance of the server as well the
clients. NewRelic provides not only error logging, but also performance metrics for
each step of the request and response cycle, so you can understand if the application
response is slow because the database processing is slow, or if the browser isn’t ren‐
dering the CSS styles fast enough.

Besides NewRelic, you can also check out the error logging services such as Errorcep‐
tion (for JavaScript error logging), Bugsense (good for mobile apps) and Airbrake
(specializes in Ruby on Rail applications).

CONTENT DELIVERY NETWORKS (CDNS)
You’ve already learned about CDNs earlier in this chapter. CDNs provide scalability
for static content. In a SPA context, where Node.js is commonly used as the web
server, you’re at a disadvantage when serving static content, especially large static
content files that contain images, CSS and JavaScript since they can’t take advantage
of the asynchronous nature of Node.js. Apache Web server does a far better job with
the delivery of such files due to its pre-fork capability.

In our next section, let’s review application scalability, which is the heart of most if
not all modern enhancements in web application technologies.

110 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

Working with Web Servers
Organizations of every size use web servers, some to serve simple web sites and oth‐
ers to support heavy duty work by playing the role of backend web servers. There are
several web servers out there, all open source products, of which the most popular
ones today are the Apache Web Server and NGINX, with the latter still with substan‐
tially smaller usage numbers than the former, but whose usage is growing at a much
faster rate. Let’s take a quick look at these two popular web servers and the uses for
which they’re best suited.

Working with the Apache Web Server
The Apache Web Server (Apache from here on) is the most well-known of all web
servers. It’s important to understand that although it’s quite easy to get started with
Apache out of the box, it’s not optimized for using CPU and RAM efficiently. Apache
is quite bulky, with several modules that provide various chunks of functionality.

While Apache does an admirable job in serving dynamic sites (Linux + Apache +
MySQL + PHP constitute the well-known application framework known as LAMP),
it’s really not ideal for sites that just want to serve a lot of static files at high speed. You
can remove most of the modules and streamline Apache for these types of sites, but
why do so when you can use a web server that’s been explicitly designed to do that
type of work (serve static files at high speeds)? In this type of scenario, NGINX might
be the better choice.

The NGINX Web Server
While the Apache web server is still the most common web server used in the world,
there are questions as to its scalability and performance when dealing with modern
website architectures. The NGINX (pronounced “Engine-X) web server, an open
source web server introduced in 2004, is fast becoming the go to web server for pro‐
viding high performance and high concurrency, while using a low amount of mem‐
ory. Right now, NGINX is the number two web server on the internet, behind the
Apache web server, and moving up very fast.

Note that NGINX isn’t just a high performance HTTP server – it’s also a reverse
proxy, as well as an IMAP/POP3 proxy server.

Benefits Offered by Nginx
The NGINX web server or hardware reverse proxy both offer great functionality and
performance. NGINX offers the following properties which are highly useful:

• Nginx can work as a load balancer and contains advanced features such as Web‐
Sockets and throttling.

Working with Web Servers | 111

• You can also configure NGINX to override HTTP headers, which lets you apply
HTTP caching to applications that don’t implement caching headers correctly (or
even use it to override configured caching policies).

• Since Nginx is also FastCGI server, you can run web applications on the same
web server stack as the reverse proxies.

• Nginx is highly efficient since it uses asynchronous processing always: this allows
the server to proxy tens of thousands of simultaneous web connections with an
extremely minimal connection overhead.

Nginx is getting more popular day by day when compared to other web servers, and
its’ share of the internet uses is growing at a fast clip. Netcraft reported that in Sep‐
tember 2015, while Apache and Microsoft both lost market share, NIGIX grew its
share of total web sites on the Internet to about 15%. This is a truly phenomenal
number for a web server as new as NGINX.

Why High Concurrency is Important
Web sites aren’t any longer the simple affairs they used to be a few years ago – today’s
web applications need to be up 24/7, and in addition to e-commerce, provide enter‐
tainment (movies, gaming etc) and various types of live information to users.

Concurrency has always been a challenge when architecting these complex web appli‐
cations. Increasing social web and mobile usage means that there are a large number
of simultaneously connected users using a web application. On top of this, modern
web browsers enable you to open multiple simultaneous connections to the same
website to enhance the page loading speed.

Clients often stay connected to web sites to reduce the hassles of having to open new
connections. The web server must therefore account for enough memory to support
a large number of live connections. While faster disks, more powerful CPUs, and
more memory certainly do help in providing higher concurrency levels, the choking
point for high demand web applications is going to be the web server, which should
be able to scale nonlinearly as the number of simultaneous connections and requests
per second creeps higher and higher.

The Apache web server, under its traditional architecture, doesn’t allow a website to
scale nonlinearly. Each web page request leads to Apache spawning a new process (or
thread). Thus, to scale, Apache spawns a copy of itself for every new connection,
making it a platform not easily amenable to scaling, due to the high memory and
CPU demanded by its architecture.

In 2003, Daniel Kegel came up with the C10K manifesto. The C10K manifesto was a
call to architect new types of web servers that can handle ten thousand simultaneous
connections. The NGINX server is a direct outcome of the attempts to answer the call
of the C10K manifesto, and certainly meets the challenge posed by Kegel.

112 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

The NGINX server was architected with scalability as its main focus. NGINX is event
based, so it doesn’t spawn new processes/threads for each new web page request. As
the memory and CPU usage doesn’t increase linearly with workloads, the web server
can easily support tens of thousands of concurrent connections.

I might add here that Apache has also enhanced its capabilities with the release of the
Apache 2.4x branch. New multiprocessing core modules and new proxy modules
designed to enhance scaling, performance and resource utilization have been added
to compete better with event-driven web servers such as NGINX.

Apache and NGINX have their relative strengths, so it’s not really one or to the other
in most cases. Since NGINX is great at serving static content, you can deploy it in the
front end to serve pre-compressed static data such as HTML files, image files and CSS
files, etc. You many even take advantage of its load balancing capabilities with its easy
to set up reverse proxy module. The reverse proxy module lets NGINX redirect
requests for specific MIME types of a web site to a different server. At the same time,
you can deploy one or more Apache web servers for delivering dynamic content such
as PHP pages. The reverse proxy module will redirect the request for dynamic data to
the Apache server.

Caching Proxies and Reverse Proxying
Web proxy caching is the storing of copies of frequently used web objects such as
documents and images, and serve this information to the user. The goal is to speed up
service to the clients, while saving on the Internet bandwidth usage. There are two
types of proxies – caching proxies and reverse proxies, as explained in the following
sections.

Caching Proxies
A caching proxy is a server that caches HTTP content. Local caching proxy servers sit
in the network, in between your web servers and the clients and all HTTP traffic is
routed through the caching servers so they can cache as many web requests as possi‐
ble. Caching proxies use what’s called a read-through cache to store web responses
which can be reused by sending them to multiple servers instead of generating new
web traffic for each user. More than corporate networks, it’s Internet Service Provid‐
ers (ISPs) that install caching proxies to reduce the web traffic generated by users.

Local proxy servers are much less popular these days since network bandwidth has
become way cheaper over time. Also, most websites use the Secure Sockets Layer
(SSL) exclusively to serve content. Since SSL communications are encrypted, caching
proxies can’t intercept those requests, since they can’t encrypt and decrypt messages
without the required security certificates.

Working with Web Servers | 113

Reverse Proxies
A reverse proxy doesn’t reverse anything – it does the something as a caching proxy!
These types of proxy servers are called reverse proxy servers because of their location
– you place them inside your data centers to cache the response of your web servers
and thus reduce their workload. Reverse proxies help you scale in many ways:

• You can employ a bank of reverse proxy servers since each proxy is independent
of the others, thus promoting your application’s scalability

• They can reduce the requests reaching the web servers, if you are able to cache
full pages

• A reverse proxy helps you control both the request types to be cached and the
duration for which the requests are cached.

• By placing a bank of reverse proxy servers between the front end web servers and
the web servers hosting the web services, you can make the web service layer
much faster by caching the web service responses.

As explained elsewhere in this Chapter (in the section on the NGINX web server),
NGINX has several features which make it an excellent proxy server. If you’ve chosen
to use a hardware load balancer in your data center, you can make it perform double
duty by letting it act as a reverse proxy server as well. If not, an open-source reverse
proxy technology solution such as NGINX, Varnish or Apache Traffic Server will
work very well. You can scale any of these by simply adding more instances.

High availability and Keepalived
High availability means that an application restarts or reroutes work to another sys‐
tem automatically when the first server encounters a failure. In order to setup a highly
available system, the system must be able to redirect the workload, and there also
must be a mechanism to monitor failures and automatically transition the system to a
healthy server when service interruptions are sensed.

Keepalived is a Linux –based routing software that lets you achieve high availability.
Keepalived assigns multiple nodes to a virtual IP and monitors those nodes, and fails
over when a node goes down. Keepalived uses the VRRP (Virtual Router Redundancy
Protocol) protocol, for supporting high availability.

VRRP is a network protocol that automatically assigns available IP routers to partici‐
pating hosts. This lets you increase the availability of routing paths through automatic
default gateway selections on an IP subnetwork. VRRP allows Keepalived to perform
router failover and provide resilient infrastructures. The VRRP protocol ensures that
one of the nodes in the web server infrastructure is the master, and assigns it a higher
priority than the other nodes. The others are deemed backup nodes, and listen for
multicast packets from the master.

114 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

If the backup nodes don’t receive any VRRP advertisements for a specific interval, one
of the backup nodes takes over as the master and assigns the configured IP to itself. If
there are multiple backup nodes with the same priority, the node with the highest IP
wins the election. You can set up a highly available web service with Keepalived. Basi‐
cally what you’re doing is configuring a floating IP address that’s automatically moved
between web servers. If the primary web server goes down, the floating IP is automat‐
ically assigned to the second server, allowing the service to resume. Keepalived is
often used together with HAProxy to provide redundancy, since HAProxy doesn’t
come with its own redundancy capabilities.

Handling Data Storage with Databases
Databases are ubiquitous in any IT environment and are used for storing various
types of information. There are several types of databases, based on the type of infor‐
mation they store as well as the types of data retrieval they allow, as explained in the
following sections. Most organizations today use multiple types of databases, with a
mix of relational and NoSQL databases.

Relational databases
A relational database management system (RDBMS) is the most well-known type of
database, and still remains the predominant type of database in use, even with the
advent of several newer types of databases. Most applications such as shopping, sales,
and human resources are handled best by a relational database.

Relational databases store information in the form of relationships among various
entities (such as employees and managers), and are extremely efficient for querying
and storing transactional data. Oracle, IBM’s DB2 and Microsoft SQL Server are the
leading commercial relational databases and MySQL, PostGreSQL, MariaDB (very
similar to the MySQL database) are the leading open source relational databases.

Commercial relational databases such as Oracle require full-fledged administrators
owing to their complexity. On the other hand, it’s not uncommon for organizations to
look to the Linux system administrator to help out with the administration of open
source databases such as MySQL and PostGres (and especially the newer NoSQL
databases such as MongoDB, CouchDB and Cassandra), and perform tasks such as
installing, backing up and recovering the database.

Other Types of Databases
In today’s world, while relational databases are still important, there are several new
types of databases that are increasingly becoming important, as explained in the fol‐
lowing sections.

Handling Data Storage with Databases | 115

NoSQL Databases
NoSQL databases are useful for handling unstructured data and are especially good at
handling large quantities of such data. In this chapter, I discuss MongoDB and Cas‐
sandra, two very popular NoSQL databases that you ought to be familiar with. Later
chapters discuss both of these databases in more detail. In addition, there are several
other popular NoSQL databases such as CouchDB.

Caching Databases
Memcached and Redis are two well-known caching databases. I explain the role of
both of these data stores in this chapter, and discuss them in more detail in Chapter 9.

Cloud Databases
Cloud databases are hosted by cloud providers such as Amazon and Google for their
cloud customers. Amazon offers Amazon DynamoDB, a powerful NoSQL database,
and Google, the Google Cloud Storage and Google Cloud Datastore. Chapter 9
explains Amazon’s DynamoDB and RDS Datastore. Cloud databases take the com‐
plexities of database management out of an organization’s hands, but they’ve their
own headaches, such as security issues, for example, since the data is hosted by the
cloud provider.

In addition to the types of databases listed here, there are many other less well known
database types, such as object databases (for example, db4o), and NewSQL databases
such as VoltDB and Clustrix, as well.

It’s important to understand that most organization today use several types of data‐
bases. This happens to be true not only for a large environment, where you expect
many databases of many different types, but even for smaller organizations, especially
those that deal with web applications.

MongoDB as a Backend Database
MongoDB is a highly scalable open source NoSQL database that provides high per‐
formance for document-oriented storage. The following sections explain the salient
features of MongoDB.

A Document Database
Document-oriented storage means that instead of using traditional rows and col‐
umns like a relational database, MongoDB stores data in the JSON document format.
Instead of tables, you have collections, and documents play the role of rows.

MongoDB uses collections to store all documents. Although collections are called the
counterparts of relational database tables, they are defined entirely differently since

116 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

there’s no concept of a schema in MongoDB. A collection is simply a group of docu‐
ments that share common indexes.

Dynamic Schemas
Relational databases are all about schemas – the data you store in the database must
conform to an existing schema, which describes the type of data you can store, such
as characters and integers, and their length. MongoDB doesn’t use schemas – you can
store any type of JSON document within any collection. This means that a collection
can have disparate types of documents in it, each with a different structure. You can
also change the document structure by updating it – no problems there.

Automatic Scaling
MongoDB lets you scale horizontally with commodity servers, instead of having to go
the more expensive route of vertical scaling, as is the case with a relational database.
Although you can create clusters of relational databases, that’s mostly for high availa‐
bility, and not for enhancing performance. Scaling with multiple servers in a Mon‐
goDB database, on the other hand, is expressly designed for enhanced performance.
There are two aspects to the automatic (or horizontal) scaling:

• Automatic sharding: helps distribute data across a cluster of servers
• Replica sets: provide support for low-latency high throughput deployments

High Performance
MongoDB supports high performance data storage, by supporting embedded data
models that reduce I/O activity. It also supports indexing to support faster queries –
you can include keys from embedded documents and even arrays.

High Availability
MongoDB uses a replication facility called replica sets, to provide both automatic fail‐
over and data redundancy. A replica set is defined as a set of MongoDB servers that
store replicas of the same data set, enhancing both redundancy and data availability.

For Single Page Applications(SPAs), which I discuss elsewhere in this chapter, MongoDB’s document-oriented storage works great, since JavaScript uses JSON as well and so you can easily check the database without having to transform the data from the native format of the application. If you were using a relational database instead, you’d need to first convert everything into SQL to store the data in the database and then, to read the data, change it back into JSON, which is very inefficient. The single data format (JSON) used by MEAN applications leads to better performance.

MongoDB and the CAP Theorem
As with other document databases and other databases that fall under the broad
umbrella of NoSQL Databases, MongoDB doesn’t offer support for the well-known
ACID properties provided by traditional relational databases. ACID properties are
the hallmark of all modern transactional databases (such as MySQL and Oracle), and
refer to the following set of principles expected of a database:

Handling Data Storage with Databases | 117

• Atomicity: This is the all-or-none principle which requires that if even one ele‐
ment of a transaction fails, the entire transaction fails. The transaction succeeds
only if all of its tasks are performed successfully.

• Consistency: This property ensures that transactions are always fully completed,
by requiring that the database must be in a consistent state both at the beginning
and at the end of a transaction.

• Isolation: Each transaction is considered independent of the other transactions.
No transaction has access to any other transaction that’s in an unfinished state.

• Durability: Once a transaction completes, it’s “permanent”. That is, the transac‐
tion is recorded to persistent storage and will survive a system breakdown such
as a power or disk failure.

While the ACID requirements served traditional relational databases just fine for
many years, the advent and eventual popularity of non-relational data such as
unstructured data, non-relational data, and the proliferation of distributed comput‐
ing systems led to new views about the required transaction properties that modern
databases must satisfy. The Consistency, Availability and Partition Tolerance (CAP)
theorem sought to refine the requirements to be met for implementing applications
in modern distributed computing systems. The CAP theorem actually stands for the
following three principles:

• Consistency: this is the same as the ACID consistency property. Satisfying this
requirement means that all the nodes in a cluster see all the data they’re supposed
to be able to view.

• Availability: the system must be available when requested.
• Partition Tolerance: failure of a single node in a distributed system mustn’t lead

to the failure of the entire system. The system must be available even if there’s
some data loss or a partial system failure.

The problem is, at any given time, a distributed system can usually support only two
out of the three requirements listed here. This means that tradeoffs are almost always
inevitable when using distributed data stores such as the popular NoSQL databases.

For database reliability purposes, meeting the Availability and Partition Tolerance
requirements is absolutely essential, of course. That means that the consistency
requirement is often at risk. However, leading NoSQL databases such as Cassandra
and Amazon’s DynamoDB deal with the loss of consistency just fine. How so? This is
possible due the adoption by these databases of something called the BASE system,
which is a modified set of ACID requirements to fit modern NoSQL and related non-
relational databases. Here’s what BASE stands for:

118 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

• Basically Available: the system guarantees the availability of data in the sense that
it’ll respond to any request. However, the response could be a “failure” to obtain
the request data set, or the data set returned may be in an inconsistent or chang‐
ing state.

• Soft: the state of the system is always “soft, in the sense that the “eventual consis‐
tency” (the final requirement) may be causing changes in the system state at any
given time

• Eventually Consistent: The system will eventually become consistent once it stops
receiving new data inputs. As long as the system is receiving inputs, it doesn’t
check for the consistency of each transaction before it moves to the next transac‐
tion.

Amazon’s DynamoDB, for example, which lies behind Amazon’s shopping cart tech‐
nology, stresses high availability, meaning it can afford to go easy on the consistency
angle. These types of databases eschew the complex queries necessary to support con‐
sistency in the traditional sense, settling instead for the eventual consistency goal.
Eventual consistency in this context means that in a distributed system, not all nodes
see the same version of the data – at any given time the state may diverge between
nodes – that is, it’s possible for some nodes to serve stale data. However, given suffi‐
cient time, the state will come to be the same across the system.

MongoDB, a popular NoSQL database, on the other hand, favors consistency and
partition tolerance over high availability.

The main point to take away from this discussion of CAP and BASE is that while
NoSQL databases have their advantages, particularly in the way they support hori‐
zontal scaling and the efficient processing of non-relational data, they do come with
unique drawbacks and involve crucial sacrifices in terms of simultaneous support for
traditional principles such as data consistency and availability.

Consistency, while it’s a laudable objective that a database can satisfy, has a negative
impact on cost effective horizontal scaling. If the database needs to check the consis‐
tency of every transaction continuously, a database with billions of transactions will
incur a significant cost to perform all the checks.

It’s the principle of eventual consistency that has allowed Google, Twitter and Ama‐
zon, among others, to continuously interact with millions of their global customers,
keeping their systems available and supporting partition tolerance. Without the prin‐
ciple of eventual consistency, there wouldn’t be all these systems today that deal suc‐
cessfully with the exponential rise of data volumes due to cloud computing, social
networking and related modern trends.

Handling Data Storage with Databases | 119

Caching
A cache is simply a set of data that you store for future use. Caching is a key technol‐
ogy that web applications use to increase both performance and scalability. Caching
can play a significant role in scaling your applications, since you need fewer comput‐
ing resources to serve an ever growing customer base. Caching is a common techni‐
que that’s used at almost every level of the application stack, including operating
systems, databases, HTTP browser caches, HTTP proxies and reverse proxies, as well
as application object caches.

Not everything can be cached – and should be cached! Good candidates for caching
are objects that won’t become invalidated with the passage of a short period of time. If
users are frequently updating the data, it’s not feasible to cache that data as the data
becomes quickly invalidated.

Regardless of the specific caching strategy you employ, application code that seeks to
reuse cached objects for multiple requests or several users is always going to make the
responses faster, besides saving resources such as server CPU/RAM/, and network
bandwidth. Even a design that only caches just page fragments instead of entire web
pages will provide terrific performance benefits.

For web applications, you need to be concerned about two main types of caches –
HTTP-based caches and custom object caches.

HTTP-Based Caching (Browser caching)
In a web application stack, the HTTP-based cache is the most common and predomi‐
nant component. In order to understand HTTP based caching, it’s important to first
understand something about the all-important HTTP caching headers. HTTP cach‐
ing is common, and often a web request makes use of several HTTP caches linked to
each other.

HTTP caches are read-through caches. In a read-through caching architecture, cli‐
ents connect to the cache first to request resources such as web pages or CSS files.
The cache will return a resource to the client directly if it’s in the cache, and if it’s not
there, contacts the originating server and fetches the data for the client. Read-through
caches are transparent to the client, who’s unaware as to where the resource is being
sent from, and they can’t distinguish between a cached object and an object they get
by connecting directly to the service.

Letting the browser cache the content dramatically increases performance in many
cases. You are storing the files on the client machine itself in this case. Sometimes the
client server may even store previously rendered web pages, completely bypassing the
network connection to the server (this is the reason why when you press the “back”
arrow, the previous page appears so quickly on your screen!) and HTTP caches help

120 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

lower the load on you data center and move it to external servers that are located near
the users. Not only that, but caching also results in faster responses to user requests.

HTTP headers not only help cache web pages and static resources,
but also the responses of web services. You can insert an HTTP
cache between the web services and client. In fact, REST based web
services excel at caching web service responses.

How HTTP Caching is Used
At one extreme, you can cache responses indefinitely. Static content such as images
and CSS usually is cached “forever”. You can cache static content such as this forever
and use new URLs for newer versions of the static files, thus ensuring that users are
always using the correct (that is, compatible) HTML, CSS and JavaScript files. On the
other extreme, you can ensure that a HTTP response isn’t ever cached, by using a
HTTP header such as Cache-Control: no-cache.

Types of HTTP Caching
You can configure two types of HTTP caches, as explained here:

• Browser cache: All web browsers use a browser cache based on disk storage as
well as memory, to avid resending HTTP requests for resources that have already
been cached. This caching helps load web pages faster and keeps resource usage
low.

• Caching proxies: Caching proxies (also called web proxies) are servers that sit
between the internet and the users (that is, the web browsers) and use a read-
through cache to reduce the web traffic generated by the network’s clientele.

A Web Cache is also called a proxy server, and is an entity that satisfies HTTP
requests on behalf of an origin Web server. Rather than each browser connecting
directly to the internet, they relay their requests through the proxy. The proxy server
is the only one that initiates internet connections. The clients connect to the proxy
server, which’ll forward the requests to the target web server only if it doesn’t find the
content in its cache.

Both ISPs (Internet Service Providers) and corporate networks (local proxy servers)
can use a caching proxy, with ISPs seeking to maximize the caching of web requests
to lower the web traffic generated by users.

Local proxy servers have one big advantage over the ISP proxy servers - when you use
SSL, the external caching servers can’t intercept the requests since they lack the
required security certificates to read the messages.

Caching | 121

Good proxy servers can dramatically reduce the network bandwidth usage in an
organization, as well as improve performance – so you get to run things faster, but at
a lower cost! Web caches can significantly cut down on the Web traffic, keeping you
from having to upgrade your bandwidth, and improving application performance.
Usually, an ISP purchases and installs the Web Cache. A company for example, may
install a Web cache and configure all of its user browsers to point to the Web cache,
so as to redirect all the user HTTP requests from the origin servers to the Web Cache.

Content Delivery Networks (CDN) are functionally equivalent to
the caching proxies, since they also rely on HTTP headers for cach‐
ing – the big difference is that the CDN service provider manages
all the caching.

• Reverse proxies: These are servers that work quite similar to caching proxies,
with the difference being that the caching servers are located within the data cen‐
ter itself to reduce the load on the web servers. The reverse proxy server inter‐
cepts web traffic from clients connecting to a site and forwards the requests to
the web server if they can’t serve it directly from their own cache. Reverse proxies
are great for overriding HTTP headers and manage request caching easily. They
also help you scale REST based web services by sitting between the front-end and
the web-service servers, lowering the amount of requests that your web service
web servers need to serve.

Benefits of a Web Cache
Web caches help you in two ways; they reduce the response time for client requests
and also reduce the amount of traffic e flowing through your company’s access link to
the Internet. Let’s’ use some hypothetical numbers to breakdown the total response
time of a web request to understand how caching can help you big time. Total
response time is the time it takes to satisfy a browser’s request for an object, and is
composed of the following three types of delays:

• LAN delay
• Access delay
• Internet delay

Let’s see how a Webcache can make a difference in keep Web response times very low.
Let’s assume the following:

• Your company’s network is a high speed LAN and a router in the Internet con‐
nects to a router in the Internet via a 15 Mbps link.

122 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

• The average size of an object is 1 Mbits.
• On average, about 15 requests are made by your company’s user browses to the

origin Web servers (no Webcache at this point)
• The HTTP messages are on the average quite small, and therefore, there’s negligi‐

ble traffic between your router and the Internet router.
• The Internet side router takes on average 2 seconds to forward an HTTP request

and receive the response – this is called the Internet delay.

You can measure the LAN delay by looking at the traffic density on the LAN:

(15 requests/second) * (1 Mbits/request)/(100 Mbps) = 0.15

A low traffic intensity such as 0.15 means that you can ignore the LAN delay, which
will be in tens of milliseconds duration at most.

The access delay however is significant, as the traffic density on the access link which
is from your own router to the Internet router, is:

(15 requests/second) * (1 Mbits/request)/(15 Mbps)=1

An access delay of 1 is bad – it means that the access delays are large and grow
without bound. You’re going to end up with an average response time for HTTP
requests that’ll be several minutes long, which is something you just can’t have.

One way to bring down the total response time is to upgrade your access link from 15
Mbps to 100 Mbps (quite expensive), which will lower the traffic intensity to 0.15.
Thus means that the access delay will be insignificant, just as the LAN delay is, mean‐
ing that the response time will be comprised of just the Internet delay, which is 2 sec‐
onds.

The other alternative doesn’t involve an expensive upgrade of your access links – you
just install a Web cache in your network! You can use open source software and com‐
modity software to do this.

Let’s’ say the hit ratio of the cache is 0.4. That means 40% of all web requests are satis‐
fied directly from the cache and only 60% of the requests are sent to the origin
servers. Since the access servers now handle only 60% of the traffic as compared to its
earlier traffic volume, the traffic intensity on the access link goes down to 0.6 from its
previous value of 1.0. On a 15 Mbps link, a traffic intensity that’s less than 0.8 means
the access delay is negligible (in tens of milliseconds).

The average response time now is:

0.4 * (0.01 seconds) + 0.6 * (2.00 seconds) = 1.2 seconds (approx.)

As you can see, a Web Cache leads to dramatically low response times, even when
compared to a solution that requires a faster (and much more expensive) access link.

Caching | 123

There really isn’t much for you to do if you farm out HTTP caching to a CDN. How‐
ever, since reverse proxy servers are run from your own data center, you need to
manage them yourself. A hardware load balancer, as mentioned earlier, can also pro‐
vide reverse proxying services. You can also use an open source solution such as
NGINX or Varnish. NGINX for example is famous for handling tens of thousands of
requests every second per each instance. The essential keys to effective management
of proxying then are the type and size of the cached responses and the length of time
for which you want to cache them.

A Content Distribution Network (CDN) uses distributed web
caches throughout the Internet, helping localize the web traffic.
You can use a shared CDN such as Akamai and Limelight to speed
up the response times of web requests.

Caching Objects
Caching objects is another key way to boost web application performance. Object
caching falls under the category of application caching, where the application devel‐
opers assume the responsibility for the content to be cached, as well as the time for
which the content must be cached.

Caching stores such as Memcached let you set expiry times for web documents and
also let you update Memcached when new web pages are added to your site. For
example, if you store a web page in Memcached and that content remains valid for
one minute, all your uses will be sent data directly from Memcached and your web
servers won’t have to handle that load. The web servers simply generate a new page
every minute and users get that new page when they refresh their browser. Since only
the application developer knows the application well enough to determine the con‐
tent and duration of the cached objects, object caching isn’t something that’s as simple
as browser caching.

A cache is a server or a service geared towards reducing both the
latency and the resources involved in generating responses by serv‐
ing previously generated and stored content. Caching is a critical
technique for scaling an infrastructure.

Caching application objects is done in a different way than HTTP content caching. Applications explicitly store the objects in a cache, which is usually a key-value data store. When the application receives a request for an object, the first thing the application does is to directly query and retrieve the cached object from this data store.

As with HTTP caches, there are several types of object caches: client-side caches, local
caches and distributed object caches. The first two are simple affairs, as described
here:

124 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

• Client-side Caches: Today’s web browsers, which all use JavaScript, can store
application data such as user preferences, for example, on a user’s laptop or on
mobile devices. Caching data on the user’s devices of course makes web applica‐
tions run faster and also lowers the load on your servers. JavaScript running in
the browser can retrieve the cached objects from the cache. Note that the users
can always wipe the cache clean. Single-page applications (SPAs) that we learned
about earlier in this chapter, benefit from the client-side cache since they run a
lot of code within the browser, and also rely on asynchronous web requests
(AJAX). This is especially true for SPAs explicitly designed for mobile devices.

Caching objects in local memory lets applications access resources
extremely fast, since there’s no network latency.

• Local Caches: A local cache is located on the web servers. There are a few differ‐
ent ways to cache objects locally, but all of them employ the same strategy: store
the objects on the same server where the application code is running. One way is
for the front end and back end applications to use local caches by caching appli‐
cation objects in a pool. The application incurs virtually no cost when accessing
cached objects since they’re stored right in the application’s process memory.
Some languages such as PHP (but not Java, which is multithreaded) can also use
shared memory segments that allow multiple processes to access the stored
objects in the cache. Alternately, you can deploy a local caching server with each
web server.

Memcached and Redis are two very popular caching servers and you’ll learn more
about them in the next section. When you’re just starting out, or if you have to man‐
age a small web application, you can run both the webserver and the caching server
on the same machine to cut costs and make things run faster since the network
roundtrips are very short.

Local Caching
Local caching, as you guessed, doesn’t involve an external caching database. Local
caching, regardless of how you want to implement it in practice, is very easy to set up
and doesn’t involve too much complexity. They’re also very low latency solutions and
don’t involve any issues with locking etc. however, there’s no synchronization between
the local application caches when you employ a bunch of them.

Lack of synchronization among the caches on different servers means that you run
the risk of inconsistent data because of different cached objects representing different

Caching | 125

values for the same information. The application servers don’t coordinate the storing
of the cached objects, leading to redundancy and duplication of the objects stored in
the cache. Fortunately, there’s a caching solution that addresses all of these issues with
local object caches – a distributed object cache, which I discuss next.

Distributed Object Caching – Memcached and Redis
A distributed object cache works exactly the same as a local object cache – both use a
simple key-value store where clients can store objects for a set duration of time. The
big difference is that unlike a local cache, a distributed cache is remotely hosted.
Redis and Memcached are popular open source solutions that serve a wide variety of
uses. Memcached is a fast key/value store that’s very simple and lacks too many bells
and whistles, making it very easy to implement. It’s used in several of the busiest web
sites in the world today.

Distributed caching servers are easy to work with through any programming lan‐
guage. Here’s an example showing a caching interface in PHP:

$m = new Memcached();
$m->addServer(’10.0.0.1’, 11211);
$m->set(‘UserCount’, 123, 600);

This code does the following:

• Sets Memcached as the caching server
• Sets the IP for the cache server
• Sets the caching data: the name of the object to be cached, its key value and the

TTL (duration for which it’ll stay in the cache) for that object

A cache server such as Memcached or Redis is really a database, and thus offers most
of the capabilities of a key-value store, such as replication, query optimization and
efficient use of memory.

Caching servers aren’t an alternative to the regular databases – all you’re doing is
when you generate new database content from a relational database for example, you
store the content in Memcached or Redis for future use. For subsequent requests for
that data, you first check the cache and if the data is there, you send the content back
without having to call the database.

While caching is easy to setup and manage, there are situations where it isn’t ideal.
Transactions constantly modify, or add and delete the data in the database tables. If
the user must absolutely, positively get the very latest version of the data, caching
becomes problematic, as it tends to lag behind the current state of the database.

126 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

If you’re using Amazon AWS to host your applications you can use
Amazon Elastic Cache, which is Amazon’s hosted cache cluster that
uses Memcached or Redis (you get to pick), or set up you own
caching service on your EC2 instances.

You’ve learned the basics of caching in this section, and how it helps you scale as well
as make your applications run faster. While there are several types of caching, not all
caches are equal, however! The earlier in the request process for a web page or data
an application satisfies the request by retrieving it from a cache, the more beneficial is
the cache.

Caching servers are typically deployed on dedicated machines, and you usually
deploy them in clusters, with multiple caching servers. You can implement replica‐
tion or data partitioning to scale, once you exhaust the limits of adding more mem‐
ory to the caching servers. For example, if you’re using Memcached as your object
cache, you can partition the data among multiple Memcached servers in order to
scale up.

When formulating a caching strategy it’s important to remember that you can’t (and
don’t want to) cache everything. You must choose which web pages or services you
need to cache. To do that, use some type of metrics. Refer to the metrics example I
provided earlier in this chapter (page 11), which showed how third-party services
such as Google Analytics can help you maximize the potential gains from caching.

Asynchronous Processing, Messaging Applications and
MOM
In traditional software execution, synchronous processing is the standard way to per‐
form operations. A caller such as a function, a thread, or a process sending a request
to another process, or an application making requests to a remote server won’t pro‐
ceed to the next step until it gets the response for its request. In other words, the
caller waits for a response or responses before continuing further execution. Under
an asynchronous processing model, however, a caller doesn’t wait for the responses
from the services it contacts. It sends requests and continues processing without ever
being blocked.

Let me take a simple example here to demonstrate the difference between the syn‐
chronous and asynchronous approaches. Let’s say an application’s code sends out an
e-mail to a user. Under the synchronous processing model, the code needs to wait for
the e-mail service to do what it takes to send that email out: resolve the IP addresses,
establish the network connection, and finally send the email to an SMTP server. The
email service needs to also encode and transfer the message and its attachments, all of
which takes some time (a few seconds). During this time, the execution of the appli‐

Asynchronous Processing, Messaging Applications and MOM | 127

cation code pauses, a pause that’s often referred to as blocking, since the code is wait‐
ing on an external operation to complete.

Platforms such as Node.js come with built in asynchronous pro‐
cessing capabilities, making messaging and message brokers less
useful than for other platforms such as Java and PHP, which aren’t
asynchronous.

Obviously, the synchronous processing model isn’t conducive to building responsive
applications: not only is this a slow method but it’s also highly resource intensive,
since blocked threads continue to consume resources even when they’re just waiting.
Total execution time is the sum of the time taken to perform each of the operations in
a service, and because your app is doing things serially rather than parallelly, blocking
operations slow down your application response times. The benefits that accrue from
asynchronous processing are really due to the fact that your applications and services
perform work parallelly instead of sequentially, thus bringing into play vastly higher
resources to process the workloads. Execution times are rapid and user interest is
unlikely to flag under such architectures.

Responsive applications are really what it’s all about, as asynchronous processing
helps build these types of applications since it doesn’t involve blocking operations.

Messages and Message Queues
Essentially, a message is a piece of code written in XML or JSON that contains
instructions for performing the asynchronous operation. A message queue (managed
by a message broker) allows you to reap the benefits of synchronous processing.
Asynchronous processing can be beneficial in a situation where you want to keep cli‐
ents from waiting for time consuming tasks to complete – ideally, the client should be
able to continue their execution with no blocking.

Here are some typical use cases for using asynchronous processing and message
queues:

• Any operation that requires a heavy amount of resources such as the generation
of heavy reports can be sent to a message queue.

• Anytime you need to perform operations on a remote server that takes some
time to complete, an asynchronous model of processing can speed up things.

• Any critical operations such as placing orders or processing payments can’t be
expected to wait for less critical operations to complete. You can divert the less
important parts of the operation to a message queue so they can be processed
asynchronously by a separate message consumer.

128 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

Components of a Messaging Architecture
Messaging revolves around the following three crucial constituent operations:

• Producing: this simply means the process of sending messages. A producer is a
program that creates and sends messages to a message queue. Message producers
are often also called message publishers.

• Queuing: a message queue is a location to store messages, and is part of the mes‐
sage broker. Multiple producers can send messages to a queue and multiple con‐
sumers can retrieve messages from a queue.

• Consuming: means the same as receiving messages. A message consumer is a
program that waits to receive messages sent by a producer. It’s the message con‐
sumer that actually performs the asynchronous operation for the message pro‐
ducer. It’s common for producers, consumers, and queues to reside on different
servers, and even use different technologies.

Message queues are the heart of asynchronous processing, so let’s learn more about
them in the next section.

Message Queues
The message queue stores and distributes asynchronous requests. As the producers
create new messages and send them to the queue, the queue arranges those messages
in a sequence and sends them along to the consumers. Consumers then will act on
the messages, by performing the asynchronous actions.

Message Queues and Asynchronous Processing
Message queues provide the essence of asynchronous processing – non-blocking
operations - and therefore, non-blocking I/O. The message producers and message
consumers work independently, neither of them blocking the other, nor with either
being aware of the other. One of them dedicates itself to creating messages and the
other to the processing of those message requests.

Message queues not only enable asynchronous processing, but are useful in evening
out spurts in message traffic and in isolating failures. During times of heavy traffic,
the message queues continue to accept the high traffic and keep queuing the mes‐
sages. The front end application may produce a large number of messages which the
back end component will consume, but the user isn’t affected since the front end
servers aren’t waiting for the operations to complete.

A key advantage of message queues is that they promote scalability – you can employ
banks of message producers and consumers on dedicated servers and just keep
adding additional servers to handle a growing workload.

Asynchronous Processing, Messaging Applications and MOM | 129

How Message Queues are Implemented
At its simplest, a message queue is just a thread running within the main application
process. You can also implement it by storing the messages in the file system or in a
relational database such as MySQL.

For heavy duty message processing as well as for tackling on additional features such
as high availability on to the message queue, you need a full-fledged specialized mes‐
saging application called a message broker or message oriented middleware, which is
the topic of our next section.

Message Brokers and Message Oriented Middleware (MOM)
A message broker is a dedicated application that provides not only message queuing,
but also the routing and delivery of the messages.

Message brokers relieve you from having to custom write code for providing critical
messaging functions – you simply configure the broker to get the functionality you
desire.

Message broker software is also often called message-oriented middleware (MOM) or
an enterprise service bus (ESB). However, a Message Broker is really a higher level
concept that’s built on top of MOM (or an ESB), with the MOM providing the under‐
lying services such as message persistence and guaranteed delivery.

A message broker adds others things to a MOM, such as rules
based business process integration, content based routing, data
transformation engine, etc.

What Message Brokers do
A message broker accepts and forwards messages. Just as a post office accepts your
mail and delivers it to whomever you address the mail to, a message broker such as
RabbitMQ accepts, stores, and forwards data, with the data in this context being mes‐
sages.

The message broker performs a critical function in asynchronous processing – it sep‐
arates the consumers from the producers. One of the great things that message brok‐
ers do very well is the fast queuing and dequeing of large volumes of messages, since
they’re optimized for high throughput.

Messaging Protocols
You can specify how clients connect to the broker and how messages are transmitted,
by selecting a correct messaging protocol. Messaging protocols control the transmis‐

130 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

sion of messages from producers to consumers. I briefly describe the most commonly
employed protocols here:

• Streaming Text–Oriented Messaging Protocol (STMP): This is a rudimentary
messaging protocol that has low overhead, but has no advanced features such as
those offered by other commonly used protocols.

• Advanced Message Queuing Protocol (AMQP): AMQP is a comprehensive mes‐
saging protocol that has been well accepted as an industry standard for messag‐
ing. The best thing about AMQP is that it’s a standardized protocol, and hence is
easy to integrate into your software. AMQP offers features such as guaranteed
delivery of messages, transactions and many other advanced features.

• Java Messaging Service (JMS): JMS is a powerful messaging standard but it’s con‐
fined to Java technologies such as Java or Scala.

Of the three messaging protocols listed here, AMQP is the most commonly used pro‐
tocol among enterprises.

Pull versus Push Messaging
Developers can configure message consumers to work in two different ways: pull or
push:

• The pull model, also known as a cron-like model, lets the message consumer pull
messages off the message queue. For example, in an Email service, the consumer
picks up the messages from the queue and uses SMTP to forward the emails to
the mail servers. Applications like PHP and Ruby use a pull model whereby the
consumers connect to the queue once in a while and consume the available mes‐
sages (or a set number of messages). Once they consume the messages, the con‐
sumers detach themselves from the queue.

• In the push model, the message consumer is always connected to the message
broker, and maintains an idle wait by blocking on the socket read operation. The
message broker will push new messages through the permanent connection, as
fast as the consumer can handle them. Applications such as Java and Node.js
which use persistent application containers to maintain constant connections to
the message brokers.

Subscription Methods
Message consumers can be configured to use various subscription methods to pull
messages off the message queues maintained by the message broker. Here are the two
common subscription methods:

Asynchronous Processing, Messaging Applications and MOM | 131

• Publish/subscribe (pub/sub): In the pub/sub subscription method, the broker
publishes messages not to a message queue, but to a topic. A topic in this context
is something like a channel. Consumers connect to the broker and let it know the
topic or topics they want to subscribe to. The broker transmits all messages pub‐
lished to those topics to the consumer that requested them, and the consumers
receive the messages in their private queue. Thus, in this mode, there’s a dedica‐
ted message queue for each consumer, containing just those messages that were
published on a specific topic or topics.

• Direct worker queue: Producers send all messages to a single queue, with each
message routed to a specific consumer. So, multiple consumers share the single
worker queue. Tasks that take considerable time such as sending emails and
uploading content to external services to multiple consumers benefit from this
method.

Popular Message Brokers
There are several powerful, robust and scalable open-source message brokers and two
of the most popular of these are RabbitMQ and ActiveMQ. If you are hosting your
operations in the Amazon cloud, you can also use Amazon’s Simple Queue Service
(SQS), which I discuss in Chapter 9.

Your choice of a message broker solution should be guided by your use cases and on
key criteria such as the volume of message, message size, rate of message consump‐
tion, concurrent producers/consumers. Two important factors are whether you want
to ensure that messages are safeguarded from loss by storing them, and whether you
need message acknowledgment.

RabbitMQ is an open source message broker written in the Erlang programming lan‐
guage, and is currently the leading open source messaging broker.

One of the best things that sophisticated message brokers such as RabbitMQ and
ActiveMQ offer is their ability to create custom routes. Routes determine which mes‐
sages are sent to a queue. Earlier, you learned about the publish/subscribe and direct
worker queue subscription methods. RabbitMQ lets you create flexible routing rules
by matching text patterns. For example, you can create queues that capture all the
error messages from a system and a consumer that will then consume these messages
and send notifications to appropriate teams. Alternately, a consumer could write mes‐
sages from a queue to a file.

Both RabbitMQ and ActiveMQ contain roughly the same features, and offer similar
performance benefits.

Powerful message brokers such as ActiveMQ and RabbitMQ come with out of the
box capabilities for setting up custom routing schemes and other things. Instead of

132 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

rewriting or modifying the producer/customer code, all you have to do is just config‐
ure the message broker to take advantage of these features.

As chapter 9 explains, Amazon’s SQS (Amazon Simple Queue Service), while not per‐
fect, offers benefits not available with either RabbitMQ or ActiveMQ.

The Model-View-Controller Architecture and Single Paged
Applications
Most web applications retrieve data from a data store of some type (relational data‐
base, NoSQL database or a flat file) and send it to the users. The application also
modifies stored data or adds new data or removes data according to what the user
does in the user interface.

Since on the face of it everything revolves around the interactions between the user
interface and the data store, an obvious design strategy is to link these two together
directly to minimize programming and improve performance. Not so fast! While this
seems to be “logical” approach, the fact that the user interfaces change frequently and
given the fact that applications often incorporate business logic that goes well beyond
the mere transmission of raw data from the data stores, means that one ought to look
at a much more sophisticated application design.

The Problem
By combining the presentation logic with the business logic, you lose one of the big‐
gest advantages of web based applications, which let you change the UI anytime you
want, without worrying about having to redistribute the applications. It’s well known
that in most web applications, user interface logic changes much more often than
business logic. If you combine the presentation code and business logic together, each
time you make a slight change in the UI, you’ll need to test all your business logic! It’s
very easy to introduce errors into such a web application design.

Following are the drawbacks of directly tying together the presentation and the busi‐
ness logic portions of a web application.

• Testing user interfaces is tedious and takes a much longer time, as compared to
the testing of the business logic. Therefore, the less non-UI code you link to the
UI code, the better you can test the application.

• User interface activity may include simple presentation of data by retrieving it
from the data store and displaying it to the user in an attractive fashion. When
the user modifies data, however, the control is passed to the business logic por‐
tion of the application, which contacts the data source and modifies the data.

The Model-View-Controller Architecture and Single Paged Applications | 133

• Whereas business logic is completely independent of devices, user interface code
is extremely device-dependent. Instead of requiring major changes in the UI to
make the application portable across different devices and all the testing and
related efforts that this involves, you can simply separate the UI and business
logic, both to speed up the migration to different devices, as well as to reduce the
errors inherent in such a process.

• It takes different skill sets to develop great HTML pages as compared to coming
up with ingenious business logic, thus necessitating the separation of the devel‐
opment effort for the two areas.

• A single page request tends to combine the processing of the action associated
with the link chosen by the user and the rendering of that page.

MVC to the Rescue
The Model-View-Controller architecture (formally introduced in 1988, although the
idea existed in a simpler form since the 1970’s) separates the modeling of the applica‐
tion domain, the presentation of the data, and the actions based on user input into
three separate classes:

• Model: the model manages the behavior and data of the application and responds
to requests for information and to instructions to change the state of the model
(modifying the data)

• View: manages the display of information
• Controller: interprets the user inputs and informs the model and/or the view to

modify data when necessary.

In a modern web application, the view is the browser and the controller is the set of
server side components that handles the HTTP requests from the users. In this archi‐
tecture, the view and the controller depend on the model, but the model is independ‐
ent of the two. This separation lets you build and test the model independent of how
you present the data.

All modern web applications such as those based on Node.js and the Ruby on Rails
framework follow the MVC design pattern to separate usr interface logic from busi‐
ness logic. The MVC design pattern avoids all the problems with traditional applica‐
tion design listed in the previous section. It also lets the model be tested
independently of the presentation, by separating the model from the presentation
logic.

MVC is now the well accepted architecture for web applications. Most of the popular
web application frameworks follow the MVC pattern. There’s some difference in how
different web application frameworks interpret the MVC pattern, with the difference

134 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

being how they apportion the MVC responsibilities between the client and server. In
recent years, there have been tremendous improvements in the capabilities of clients
and newer web app frameworks such as AngularJS, EmberJS and Backbone let MVC
components to partially execute on the client itself.

Ruby on Rails
Ruby on Rails (Rails from here on) is an extremely popular web application frame‐
work, created by David Heinemeier Hansson around 2004 as part of a project for his
web application software development company named 37signals (now known as
basecamp). As its name indicates, Rails is a web development framework written in
the Ruby programming language. Rails is currently the #1 tool for building dynamic
web applications.

The enormous popularity of Rails owes quite a bit to the use by Rails of the Ruby
language, which acts as a kind of domain–specific language for developing web appli‐
cations. This is what makes it so easy to perform typically complex web application
programming tasks such as generating HTML and routing URLs so effortlessly, and
in a highly compact and efficient manner.

The MVC Pattern and Rails
The standard Rails application structure contains an application directory called app/
with three subdirectories: models, views, and controllers. This isn’t a coincidence –
Rails follows the Model-View-Controller (MVC) architectural pattern. As you can
recall, MVC enforces separation between the business (domain) logic and the input
and presentation logic associated with the user interface. In the case of web applica‐
tions, the business logic is encapsulated by data models for entities such as users and
products, and the user interface is nothing but the web pages in a web browser.

When a web browser interacts with a Rails application, it sends a request that’s
received by a web server and is passed along to a rails controller. The controller con‐
trols what happens next. Sometimes the controller may immediately render a view,
which is a template that gets converted to HTML and sent to the browser as a
response.

In dynamic web applications, which most web apps are today, the controller will
interact with a model. A model is a Ruby object that represents a site entity such as a
user. The model is responsible for contacting the backend database and retrieving the
results requested through the browser. The controller invokes the model, gets the
result through the model and renders the view and returns the complete web page to
the browser as HTML.

The Model-View-Controller Architecture and Single Paged Applications | 135

Controllers, Actions, and Routes
The controllers include what are called actions inside them. The actions are actually
functions that perform specific tasks such as retrieving results from a database or
printing a message on the screen.

Rails uses a router that sits in front of the controller and determines where to send
requests that are coming from web browsers. There’s a root route that specifies the
page served on the root URL. The root URL is of the format and is often referred to
simply as / (“slash”). You specify various routes in the Rails routes file (config/
routes.rb). Each route consists of the controller name and the associated action. Each
route is an instruction to Rails as to which action to perform, and thus which web
page to create and send back to the browser.

RAILS AND REST
Earlier in this chapter, you learned about Representational State Transfer (REST),
which is an architecture for developing web applications (as well as distributed net‐
worked systems). Rails uses the REST architecture, which means that application
compoents such as users and microposts are modeled as resources which can be read
or modified, More precisely, these resources can be created, read, updated and deleted
– these operations correspond to the well-known create, select, update and delete
operations of relational databases – and to the POST, GET, PATCH (early Rails ver‐
sions used PUT for the updates) and DELETE requests of the HTTP protocol.

Full stack JavaScript Development with MEAN
Traditionally web programming required felicity with several programming lan‐
guages. For client side programming, one was expected to know HTML (markup),
CSS (styling) and JavaScript (functionality). On the server side, developers needed to
know a language such as Java, PHP, Perl, plus, of course, SQL, which is a full-fledged
language in its own right. In addition, when dealing with web applications, one had
to know data formats well too, such as XML and JSON. The range of programming
languages and the complexity involved in each of those languages (and data formats)
has led to specialization among developers, into front-end and back-end develop‐
ment teams.

JavaScript has simplified things considerably by using a single language throughout
the development stack, leading to the birth of the moniker “full stack development”.

The MEAN web application stack is a framework that uses MongoDB, Express,
Angular JS and Node.js for building modern web applications (SPAs). In the follow‐
ing sections, I briefly explain the various components that make up the MEAN stack.

136 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

MONGODB
MongoDB is highly reliable, extremely scalable and performs very well, and although
it’s a NoSQL database, contains some key features that are normally found only in a
relational database. The big thing about MongoDB in the context of building SPAs is
that it lets you use JavaScript and JSON through entire application that your develop‐
ers are building.

MongoDB’s command line interface uses JavaScript for querying data, meaning you
can use the same expression to manipulate data as in a browser environment. Fur‐
thermore, MongoDB uses JSON as its storage format, and all the data management
tools are designed with JSON in mind.

Express
Express serves as the web framework in a MEAN application. Express, built with the
Ruby language (using the Sinatra framework), describes itself as a minimalist frame‐
work for Node.js, and provides a thin layer of fundamental web application features.

AngularJS
AngularJS is an extremely popular frontend framework for creating SPAs, and uses
the MVC approach to web applications. HTML wasn’t really designed for declaring
the dynamic views that web applications require, although it’s still great for declaring
static documents. AngularJS helps extend the HTML vocabulary for web applications.

Node.js
Node.js is a server side platform for building scalable web applications. Node.js lever‐
ages Google Chrome’s V8 JavaScript engine and uses an event driven non-blocking
I/O model that helps you build real-time web applications.

Node.js isn’t something that’s totally alien – it’s simply a headless JavaScript runtime
and uses the same JavaScript engine (V8) found inside Google Chrome, with the big
difference that Node.js lets you run JavaScript from the command line instead of
from within a web browser.

Node.js is a popular framework that helps create scalable web applications, and it’s
really Node.js that has helped make JavaScript a leading alternative for server-side
programming. Node.js enables JavaScript API to move beyond the browser environ‐
ment by letting you use JavaScript to perform server side operations such as accessing
the file system and opening network sockets.

Node has been around only for about 6 years now (starting in 2009) and has been
embraced with great fervor by developers who have been able to increase throughput
by using the key features of Node.

The Model-View-Controller Architecture and Single Paged Applications | 137

Node is especially suitable when a web application keeps connections open with a
large number of users when there’s no active communication between users and the
server for long stretches of time. Or, there may an exchange of just a tiny bit of data
between the client and the server over a period of time. Node excels in these types of
environments by letting a single host running a Node.js server support a far greater
number of concurrent connections than alternative technologies.

Conciseness is a hallmark of Node.js, as can be seen from the following code, which
implements a web server with very little work on your side:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

This code does the following:

• Starts a server that listens on port 1337
• When the server receives a connection, it sends the message “Hello World”.
• The code prints a message to the console to tell you it’s running on port 1337.

The bottom line with the MEAN (or any similar framework) is that a developer is
able to create a production grade web application with just HTML5, CSS3 and Java‐
Script. You can consider the MEAN stack as a modern day alternative to the tradi‐
tional well known LAMP stack for building web applications, which consists of
Linux, Apache web server, MySQL and PHP.

Single Page Applications – the new Paradigm for Web Applications
Up until just a few years ago, all web applications were what are called multipage web
applications. Recently, single-page-applications (SPAs) have become very popular. In
addition, modern web applications sometimes come as a mix of both the traditional
multi-page and the modern single-page application paradigm. In a world where the
users are very sophisticated and expect easy communication and immediate respon‐
siveness from the websites they use, SPAs are the new standard for web applications,
replacing the old clunky websites that re-render entire pages after each user click.

Let me briefly explain how the traditional approach differs from the modern way of
building web applications.

The Traditional Approach
Originally when the web was created and people started building web based applica‐
tions, you used just HTML, a web server, and a language such as PHP to code the

138 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

application to build the application. While you can still build web applications just
fine with the traditional approach, they aren’t very scalable web sites. Single-page
applications have basically supplanted the traditional web application model for all
heavily used websites.

The Rise of the Single-Page Application
An SPA is an application delivered to the web browser that doesn’t reload the page
during its use. The applications function on just a single page in the browser and they
give the appearance and feeling of a desktop application, since they’re smoother than
traditional applications.

Like any other web application, a SPA helps users complete a specific task, say, the
reading of a document. Instead of reloading the web page, it lets you read a file from
the same web page where you are right now. Think of the SPA as a fat client loaded
from a web server. Several developments in the recent years have helped to make
single-page applications popular, the most important being the adoption of Java
Script, AJAX and HTML5.

Benefits of a SPA
SPAs offer several benefits to your users as compared to traditional websites. For one,
they deliver the best parts of both a desktop application and a website, since an SPA
can render like a desktop application. The SPA needs to draw only those parts of the
interface that change, whereas a traditional website redraws the complete page on
every single user action, which means there’s a pause and a “flash” during the retrieval
of the new page from the server by the browser, and the subsequent redrawing of the
new page.

If the web page is large or if there’s a slow connection or a busy server, the user wait
might be long, whereas the SPA renders rapidly and provides immediate feedback to
the user.

Like a desktop application, an SPA can keep the user posted of its state by dynami‐
cally rendering progress bars or busy indicators, whereas traditional websites have no
such mechanism to tell the user when the next page will be arriving.

Users can access SPAs from any web connection, with just a browser, such as smart
phones, tablets, etc. They also are cross-platform like websites, whereas desktop
applications aren’t always so.

SPAs are highly updateable, just as a website is, since all the users need to do to access
the new version of an SPA is to just refresh their browser. Some SPAs are updated
multiple times in a single day, whereas updating desktop applications is no trivial
affair – besides taking too long to deploy the new versions, often there could be long

The Model-View-Controller Architecture and Single Paged Applications | 139

intervals, sometimes as long as several years(!), between the old and the new versions
of a desktop application.

JavaScript
While older technologies such as Java applets and Flash were also SPA platforms, it’s
JavaScript SPAs that have made SPAs popular. Up until a few years ago, Flash and Java
were the most widely adopted SPA client platforms because their speed and consis‐
tency was far better than that of JavaScript and browser rendering. Even in the early
days (about 10 or so years ago), JavaScript offered the following advantages compared
to Flash and Java:

• A no-plugin architecture that reduces development and maintenance efforts
• The no-plug in architecture also means JavaScript needs fewer resources to run
• A single client language (JavaScript) is used for everything, instead of a bunch of

languages
• More fluid and interactive web pages

However, you couldn’t rely on JavaScript for consistently providing crucial capabili‐
ties on most browsers. Today, most of the early weaknesses of JavaScript have been
either removed or diminished in importance, thus bringing the advantages of Java‐
Script and browser rendering to the fore.

JavaScript has been around for a while, being the standard for client-side scripting in
its previous incarnation. On the client side, JavaScript is the only language supported
by all the popular browsers. In its early days, JavaScript provided simple page interac‐
tions by performing tasks such as changing an image’s attributes on mouse overs and
supporting collapsible menus, this providing functionality missing in HTML. Over
time, JavaScript has become more general purpose, moving beyond the client-side
usage patterns of its early days.

AJAX and SPAs
Asynchronous JavaScript and XML (AJAX) is the technology that underlies a SPA
application. AJAX is a non-blocking way for clients to communicate with a web
server without reloading the page. Static content is where the web pages don’t change
at all, and are the mainstay of simple web sites with a few web pages.

Web applications use dynamic content, where the web pages are generated on the fly
in response to search requests or button clicks by the users. AJAX lets the web
browser poll the server for new data. In an application that has a contact form that
uses AJAX to submit the form, the page won’t reload when I submit the form. Instead
it merely shows me a confirmation text on the page indicating that my response was

140 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

sent. When you don’t use AJAX during the form submission, the entire page will
reload or may bring up a completely different page with the confirmation message.

As the use of high speed internet grew several years ago, Ajax applications became
more popular. The applications made background requests instead of fully reloading
the web page, in order to make the page more responsive to requests. As Ajax
requests grew in importance, applications consequently started used fewer page loads,
culminating in the birth of the SPA, which uses just a single page load and uses Ajax
calls to request all further data.

Traditional applications use a full response (POST) to the web server each time you
send a form such as what I described earlier. An SPA makes asynchronous calls to
update bits and pieces of the content. It’s AJAX that enables the process of making
these partial requests/responses to the server. In this context, it’s important to note
that rather than polling the server for new data, newer technologies like WebSockets
make the browser maintain an open connection with the server so that the server can
send data on demand.

Almost all SPAs use AJAX to load data and for other purposes, but
AJAX has other uses as well. In fact, the majority of AJAX uses are
non-SPA related.

You can look at SPA as a paradigm for building web applications, while AJAX repre‐
sents the actual set of techniques that allows JavaScript based applications to support
SPAs.

Web Services
A web service is a software component stored on a server, which can be accessed by
an application or software component from a different server over a network. Web
services promote the reusability of software components in internet based applica‐
tions. Web services communicate through technologies such as XML, JSON and
HTTP.

Two key Java APIs facilitate web services:

• JAX-WS is based on the Simple Object Access protocol (SOAP) that allows web
services and clients to communicate even if they are written in different lan‐
guages.

• JAX-RS: uses the Representational State Transfer (REST) network architecture
based on the traditional web request and response mechanisms such as GET and
POST, which I explained earlier in this chapter.

Web Services | 141

Web services, since they are platform and language independent, allow organizations
to work together whether their hardware, software and communication technologies
are compatible or not.

Amazon, eBay, PayPal and Google and others make their server-side applications
available to their partners through web services. Using Web services, businesses can
spend less time developing everything from scratch, and focus on more innovative
services to provide enhanced shopping experiences for their customers.

An online music site for example, may have links to the websites of companies that
sell concert tickets. In this case, the online music store is said to be consuming the
concert ticket web service on its site. By consuming the concert ticket service, the
music store provides additional services to its customers, besides benefiting finan‐
cially from the web services. When an application consumes a web service, it means
that it invokes the web services running on servers running elsewhere on the internet.

In the Java programming language, a web service is a Java class that
allows its methods to be called by applications running on other
servers through common data formats and protocols, such as
XML, JSON and HTTP.

Web Service Basics
The server on which a web service lives is called the web service host. In the Java pro‐
gramming language, a web service is implemented as a class that lives in the host.

Publishing a web service is making the web service available to receive client requests.
Consuming a web service is the using of a web service from a client application. Cli‐
ent applications send requests to the web service host and receive responses from the
server. Now you can see how an application can retrieve data through a web service,
without having direct access to the data. Same is the case where an application
without massive processing power can utilize another server’s resources to perform
computations.

Web services can use one of two protocols to do their work - SOAP or REST, as
explained in the following sections.

Simple Object Access Protocol (SOAP)
Simple Object Protocol (SOAP), the original technology used to communicate with
web services, is a platform independent protocol that uses XML to interact with web
services. The SOAP protocol describes how to mark up requests and responses so
they can be sent via protocols such as HTTP. The SOAP message is XML markup that
tells the web service how to process the message. Since SOAP messages are written in

142 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

XML, they’re platform independent. Since firewalls allow HTTP traffic, SOAP based
services can easily send and receive SOAP messages over HTTP connections.

When an application invokes a SOAP based web service’s method, the request and
additional information is packaged in a SOAP message within a SOAP envelope and
sent to the web service host. The web service host processes the message contents by
calling the method the client wishes to execute with the arguments specified by the
client, and sends back the results to the client as another SOAP Message, to be parsed
by the client in order to receive the results.

Representational State Transfer (REST)
Representational State Transfer (REST) is an alternative to SOAP and provides a dif‐
ferent architectural style for implementing web services, with the web services
referred to as RESTful web services. RESTful web services adhere to web standards
and use traditional request and response mechanisms such as the GET and POST
request methods.

In a RESTful web service, each operation is identified by a distinct URL, which lets
the server know which operation to perform when it receives a request. Typically,
RESTful web services return the data in the XML or JSON format, but they can also
return it via HTML or plain text.

RESTful web services can be used directly from a web server or embedded in pro‐
grams. When used in browser based applications, the browser can locally cache the
results of REST operations when the web server in invoked via a GET request. Later
requests for the operations are faster because they can be loaded from the browser’s
cache. Amazon’s web services (aws.amazon.com) are a good example of RESTful web
services.

Understanding APIs
APIs help expose data from legacy systems and also build an application without
starting from scratch. Using APIs, a business can easily share information with its
customers and suppliers, and customers can perform tasks such as checking the avail‐
ability of a product from anywhere, and hailing a cab ride from a smartphone.

APIs are behind much of today’s online work. Around 2001 companies started shar‐
ing their Web-based APIs with external users. Today, APIs are the operating system of
the Web as well as mobile activity. By helping mash together data and services, APIs
connect systems previously isolated from each other, and help create new applica‐
tions.

APIs reduce the need to build apps from scratch – you can simply acquire APIs from
providers to provide features such as payment processing and authentication. A com‐
pany can bring in data from other entities to add services such as geographical maps

Web Service Basics | 143

and credit card processing to their applications without having to write code for all
the functionality. Thus, APIs reduce the cost of starting up a business and hence also
reduce the barriers to entering a market. Many web sites (as well as web services)
offer APIs that allow one to explicitly request data in a structured formats, thus saving
you the trouble of having to scrape those sites for that data.

In addition to powering applications that customers use, APIs enhance communica‐
tions between servers, thus helping automate processes and predicting problems, thus
making businesses run more efficiently.

API usage has increased steadily over the past several years, driven by the increasing
importance of web applications and the deluge of mobile applications. Early on, all
web applications were simple monolithic designs, and used basic HTML, JavaScript
and communicated over HTTP. In the past 10 years. APIs have proliferated, as alter‐
native ways to interact with web applications. APIs help interactions with web appli‐
cations and the need for organizations to integrate their systems on the web has led to
the widespread use of APIs. It’s mobile applications, however, that opened the flood‐
gates for APIs. APIs help mobile applications easily access the data and functions of
web applications without developers having to rewrite everything new for the mobile
platform.

Two Types of Web Services
There are two main architectural styles to building web services – function centric
services and resource centric services, as I explain here.

Function Centric Web Services
Function centric web services have been around for quite a while, since the early
1980s. Function centric web services can be thought of as services that would come
into play where the application’s code calls any function. The web service will trans‐
parently send the code and the data required for executing the function to a remote
server and retrieves the results from that server, without the application being aware
of the fact that the function was executed on the remote server.

Function centric technologies include technologies such as Common Object Request
Broker Architecture (CORBA), Distributed Component Object Model (DCOM) and
the Simple Object Access Protocol (SOAP), with SOAP being the most commonly
employed technology.

SOAP uses XML to encode messages and uses HTTP to transport the requests and
responses to and from the clients and servers. A web service provider uses two types
of XML resources – Web Service Definition language (WSDL) files and XML Schema
definition (XSD) files to describe the available methods and the definition of the data
structures to be interchanged between the provider and the web application. These

144 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

two XML resources constitute a web services contract and (assuming you’re using
Java in this case) service developers use this information from the provider to create a
Java client library and end up with a set of Java classes to implement the web service.

The SOAP server manages the SOAP libraries that perform tasks such as authentica‐
tion, and error handling. Client developers on the other hand use the native Java cli‐
ent library generated based on the web service contract and compile and deploy the
client application with the web service client code incorporated into that client appli‐
cation.

SOAP is very complex to implement and isn’t conducive for many beginning efforts
in web application development, or even for scaling web services. While the XML
documents that are used for SOAP requests contain the request parameters and
method names, the URLs don’t contain the information required for making remote
procedural calls and hence you can’t cache the responses based on the URLs. Further‐
more, the various web service specifications of SOAP (called the ws-* specifications)
such as those relating to transactions, for example, make web service protocols state‐
ful, thus preventing you from making the web servers stateless, which ought to be the
key goal in scaling web applications.

Developing SOAP web services with dynamic languages such as Ruby and Python
ran into many integration issues. Web technologies required a viable integratable
option to SOAP, and this led to the creation of JavaScript Object Notation (JSON)
based REST web services. Before we delve into the resource based web services, it
probably is a good idea to learn a bit about JSON documents.

Resource Based Web Services
REST based web services have supplanted SOAP based function-centric web services
as the leading web service architecture a few years ago, and are the current architec‐
tural standard for web services. Instead of using functions as their basis, resource
centric web services revolve around the concept of a resource, and only a limited set
of operations are allowed to be performed on the resource objects.

REST services use URLs to identify resources, and hence can use the HTTP methods
I described earlier in this chapter, such as GET, PUT, POST and DELETE. In a REST
based web service, the GET method fetches information about the resource and the
POST method updates a resource or adds an entry, while DELETE will remove an
object.

Compared to a typical SOAP web service architecture, with its many standards and
ws-* specifications, all of which make it hard to work with and also to integrate, REST
based web services are easy to set up since you deal with just four basic HTTP request
methods. The REST framework needs to support only this small amount of function‐
ality, meaning that the web stack need not be complex at all. You also don’t need to

Web Service Basics | 145

manage API contract artifacts such as the WSDL and XSD files required by SOAP
based web services.

In addition to their inherent simplicity, REST web services are stateless and their GET
method operations can be cached by HTTP caches between the client and the web
services. This allows you to offload heavy web traffic over to reverse proxy servers to
lighten the load on your web services as well as the databases.

However, it’s not all roses with REST web service architectures – they do have some
important drawbacks. Since they are so simple to implement, REST services require
clients to authenticate using a security mechanism such as OAuth2 (a popular
authorization framework that lets applications obtain limited access to user accounts
on an HYTTP service such as Facebook, for example), and use HTTP’s transport
layer security (TLS) to encrypt messages.

REST is definitely an easier architecture for a new firm to get started with compared
to SOAP based services and is much easier to integrate with other web technologies,
in any web stack you are likely to employ. If your needs don’t require a sophisticated
architecture with numerous features, using REST based web services is an easy deci‐
sion to make, due to its enormous simplicity.

Service-Based Architectures and Microservices
Starting around the year 2005, service-oriented architecture (SOA) became the most
popular architecture to promote the reuse of business functionality, and to enable
business groups to communicate and collaborate in a better fashion.

SOA is an architecture that uses loosely coupled and highly autonomous services that
each focuses on solving a specific business need. Loosely coupled in this context
means that the different compoents are independent from each other and know only
a minimal amount of other components. On the practical side, this means fewer
dependencies between the components, which means changes in once component are
less likely to adversely affect other components.

Decoupling also lets the people who work with the components specialize in those
systems and also that you can scale each component independently. The high
autonomy means individual web services act like an application themselves. For
example the following would all be web services that work together:

• Product Catalog Service
• Recommendation Service
• Payment Processing Service

146 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

Web services use functional partitioning to divide a complex system into independent
loosely coupe applications, with each service handling a small portion of the total
functionality.

In an SOA architecture, the goal is to create generic services that are highly autono‐
mous and decoupled from other services, and can be strung together to build com‐
plex applications. Service orchestration and service policies are used to build the
complex applications.

In the microservices architecture, instead of building a single monolithic architecture
based application, developers build a suite of components, which work together over
the network. Each of the components in a microservice architecture can be written in
the language that’s best suited for a task, and the components can be deployed inde‐
pendently of the others. In addition, when you need to scale a component, you can do
so independently for just that component, without worrying about the rest of the
components.

Horizontally scalable applications benefit significantly from a microservices architec‐
ture. Take the case of a financial trading firm that deals with options and futures con‐
tracts. Its application may have components such as the following:

• A user interface for the traders
• Code for setting trades that interacts with the stock exchanges and the order

management system
• A proprietary pricing system

When the company modifies its pricing algorithms, only the pricing system is
touched and the user interface and the back end interfaces are left alone. This obvi‐
ously leads to faster changes and a more agile business.

SOA architectures typically use the Simple Object Access Protocol (SOAP), which is a
set of technologies that help define, discover, and use web services. Prior to this,
humongous monolithic applications were the only way to architect applications, and
SOA seemed like a great alternative to this unwieldy way of architecting applications.
SOA implementation however turned out to be a nightmare for many folks, since it’s
a complex architecture and has resulted in numerous failed projects, thus tarnishing
its image.

Similarities between traditional SOAs and the Microservice approach
Both microservices and SOA are service based, meaning that services are at the center
of everything. Microservices architecture is quite similar to SOA in its basic premise
of breaking up inefficient monolithic applications into modular components.

Service-Based Architectures and Microservices | 147

Microservices are connected with each other through a thin layer of simple APIs and
the well-known standards of HTTP. Services are used to implement business func‐
tionality in both approaches. They both are also distributed architectures, where the
services are accessed remotely through remote access protocols such as Representa‐
tional State Transfer (REST), Simple Object Access Protocol (SOAP), Java message
Service (MS), Advanced Message Queuing Protocol (AMQP), Remote Method Invo‐
cation (RMI) and other similar protocols.

Distributed applications, while complex to implement, offer key benefits when com‐
pared to monolithic applications, such as increased scalability and a more focused
development of the applications. The use of self-contained applications is common
within a distributed architecture, helping enhance the reliability and speed of these
applications, while simultaneously making it easier to maintain them.

Modularity is at the center of distributed service based architectures. Modularity
means that the application is broken up into small self-contained services that you
design, develop, and deploy separately, with no dependence on other application
components. Whereas traditional monolithic applications usually require massive
unwieldy rewrites or refactoring to incorporate changes dictated by the business,
modular architectures let you rewrite the small self-contained services from scratch,
thus keeping the application “fresh” in terms of its design and functionality.

While some may think that microservices are just SOA in a new garb (“Microservices
are SOA done right”), there are key differences between the two architectures. Since
microservices is what everybody seems to be doing these days, I’ll focus on those
services in this chapter and won’t go into the details of traditional SOA architectures.

There are two major types of services that microservice architectures focus on: func‐
tional services that support specific business functions such as sales and marketing,
and infrastructure services that support nonfunctional tasks such as auditing, author‐
ization and logging. You can view the functional services as external facing services
and the infrastructure services as private, internal shared services. Microservices
adopt a share-as-little-as-possible approach, meaning that the services are sealed
units with little or no dependency on other compoents.

Differences between SOA and Microservices
While both SOA and microservices are based in the idea of modular services that
break up a monolithic application, there are some significant differences between the
two approaches, as explained in the following sections.

148 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

Service Types
Microservices generally have fewer service types, with functional and infrastructure
services being the two major service types. The typical microservices architecture
looks like the following:

 client requests => API layer => functional service => infrastructure service

SOA architectures are different from the microservice service types. There are more
service types in SOA, such as enterprise services and application services. The typical
SOA architecture resembles the following:

client requests => messaging middleware => enterprise services =>
application services => infrastructure services

In this architecture:

• Business services are abstract high level services that capture the core enterprise
level business functions. These functions are usually represented through XML,
Web Service Definition Language (WSDL), or Business Process Execution lan‐
guage (BPEL). Typically these services don’t involve implementation.

• The enterprise services are the actual steps that provide the implementation for
the functionality offered by the business services.

• The messaging middleware helps the business services and the corresponding
enterprise services to communicate.

• Application services are even more fine-grained than enterprise services and pro‐
vide narrow business functionality. These services can be invoked directly or
through enterprise services.

In general, SOA means that services tend to cover a large amount of business func‐
tionality, such as a claims processing service for example. Microservices typically are
very fine-grained with services that are much more narrowly focused with typical ser‐
vice names such as UpdateCustomerAddress and GetCreditRating, for example.

Need for Coordination
Since microservices involve fewer service types, usually the same application develop‐
ment team owns both the functional and the infrastructure services. However, in
SOA, the larger number of service types means that there are different service owners
for each of the service types. For example, business services are owned by the busi‐
ness users and application services by app development teams, and infrastructure
services by the infrastructure service teams. Therefore, there’s a need for coordination
among the multiple groups to satisfy the business requests. Microservices, on the
other hand, typically don’t require this coordination since only one group is involved.

Service-Based Architectures and Microservices | 149

Time to Market
The smaller number of service types and the fact that there’s no need for coordination
among multiple teams means that microservices can be developed, tested, deployed
and maintained with less effort and cost, and are also much faster to get to market.

Sharing the Components
SOA in general shares components among the services, with its share-as-much-as-
possible architecture, whereas microservices typically consist of standalone services
that are independent of each other. Microservices change and evolve independent of
other services in the enterprise. While sharing repeated service functionality among
multiple services does reduce duplication of business functionality, changes in those
shared services over time could lead to problems, since the change may not impact all
the services that share the changed service in a uniform fashion.

150 | Chapter 3: Scalability, Web Applications, Web Services, and Microservices

CHAPTER 4

Server Virtualization and Linux Containers

Server virtualization, which involves running multiple virtual servers on a single
physical machine, is ubiquitous and is one of the key foundational layers of modern
cloud computing architectures. Virtualization lets a physical server’s resources such
as CPU, RAM and storage to be shared among several virtual servers. Virtualization
helps substantially lower your costs of supporting a complex computing environ‐
ment, besides speeding up deployments, as virtual machines can be spun up in a frac‐
tion of the time it takes to order, receive and configure physical servers.

In this chapter, I discuss the basic architecture of server virtualization first, and follow
it up by explaining the concept of a hypervisor, which is the key piece of software that
serves as a resource allocation and hardware abstraction layer between the physical
server and the virtual servers you create on the physical server. I also explain the dif‐
ferent types of virtualization such as full and paravirtualization.

This chapter isn’t limited to traditional hardware virtualization. Container virtualiza‐
tion is relatively new and is quite different from hardware virtualization. Unlike hard‐
ware virtualization, container virtualization doesn’t mimic a physical server with its
own OS and resources. This type of virtualization is all about enabling applications to
execute in a common OS kernel. There’s no need for a separate OS for each applica‐
tion, and therefore the containers are lightweight, and thus impose a lower overhead
compared to hardware virtualization.

This chapter introduces the Linux Containers technology. Linux containers keep
applications together with their runtime components by combining application isola‐
tion and image-based deployment strategies. By packaging the applications with their
libraries and dependencies such as the required binaries, containers make the appli‐
cations autonomous. This frees up the applications from their dependence on various
components of the underlying operating system.

151

The fact that containers don’t include an OS kernel means that they’re faster and
much more agile than VMs (virtual machines). The big difference is that all contain‐
ers on a host must use the same OS kernel. The chapter delves into the Linux technol‐
ogy that makes possible containers – namely, namespaces, Linux Control Groups
(Cgroups) and SELinux. Chapter 5 continues the discussion of containers, and is
dedicated to container virtualization including Docker, currently the most popular
way to containerize applications.

Linux Server Virtualization
Linux server virtualization is the running of one or more virtual machines on a physi‐
cal server that’s running the Linux operating system. Normally a server runs a single
operating system (OS) at a time. As a result, application vendors had to rewrite por‐
tions of their applications so they’d work on various types of operating systems. Obvi‐
ously, this is a costly process in terms of time and effort.

Hardware virtualization, which lets a single server run multiple operating systems,
became a great solution for this problem. Servers running virtualization software are
able to host applications that run on different operating systems, using a single hard‐
ware platform as the foundation. The host operating system supports multiple virtual
machines, each of which could belong to the same, or a different OS.

Virtualization didn’t happen overnight. IBM mainframe systems from about 45 years
ago started allowing applications to use a portion of a system’s resources. Virtualiza‐
tion become mainstream technology in the early 2000’s when technology made it
possible to offer virtualization on x86 servers. The awareness that the server utiliza‐
tion rate was extremely low, as well as the rising cost of maintaining data centers with
their high power costs, has made virtualization wide spread. A majority of the servers
running across the world today are virtual – virtual servers way outnumber physical
servers.

The Architecture of Virtual Machines
As you can guess, unlike a physical machine, a virtual machine (VM) doesn’t really
exist – it’s a software artifact that imitates or mimics a physical server. That doesn’t
mean that a VM is something that’s only in our minds – it actually consists of a set of
files.

There’s a main VM configuration file that specifies how much memory and storage is
allocated to the VM. The configuration file also names the virtual NICs assigned to
the VM, as well as the I/O it’s allowed to access. One of these files is the VM configu‐
ration file, which specifies how many CPUs, how much RAM and which I/O devices
the VM can access. The configuration files show the VM storage as a set of virtual
disks, which are actually files in the underlying physical file system.

152 | Chapter 4: Server Virtualization and Linux Containers

When an administrator needs to duplicate a physical server, a lot of work is required
to acquire the new server, install the OS and application files on it, and copy the data
over. Since a VM is just a set of files, you can get one ready in literally minutes after
making just a handful of changes in the VM configuration file. Alternatively, you can
provision new VMs through VM templates. A template contains default settings for
hardware and software. Provisioning tools can simply use a VM template and cus‐
tomize it when they deploy new servers.

Virtualization in the early x86 was based purely software-based virtualization.
Although Pope and Goldberg in their seminal paper “Formal Requirements for Viru‐
talizable Third Generation Architectures” specified the three key properties for a vir‐
tual machine monitor (efficiency, resource control and equivalence), it wasn’t until
the mid-2000’s that the x86 architecture started satisfying these three requirements.
Hardware-assisted virtualization is the way that these ideal requirements started
being realized.

Software-based virtualization has inherent limitations. The x86 architecture employs
the concept of privilege levels (also called privilege reigns) for processing machine
instructions

The Virtual Machine Monitor (Hypervisor)
The key software that makes virtualization possible is the virtual machine monitor
(VMM), actually known by its other name, hypervisor. A hypervisor is the software
that does the heavy lifting in virtualized systems – it coordinates the low-level interac‐
tion between virtual machines and the underling host physical server hardware. The
hypervisor sits between the VMs and the physical server and allows the VMs to par‐
take of the physical server’s resources such as disk drives, RAM and CPU.

Virtualization lets a powerful physical server appear as several
smaller servers, thus saving you space, power and other infrastruc‐
ture expenses. A big advantage of virtualizing an environment is
resource sharing among the servers, meaning that when one of the
virtual servers is idle or almost so, other servers running on the
same physical server can use the idle resources granted to the first
server and speed up their own processing.

How VMs share Resources
Virtualization lets the resources of the host server such as CPU, RAM, physical stor‐
age and network bandwidth be shared among the virtual servers running on top of a
physical server. Often, even on a non-virtualized server shortage of any one of these
resources can slow applications down. How, then, can multiple servers share a single
set of resources without bringing the system to a halt? Let’s learn how virtualization

Linux Server Virtualization | 153

typically handles the sharing of these resources among the VMs, to avoid bottlenecks
and other performance issues.

In the context of resource allocation to the virtual machines, it’s important to under‐
stand the key concept of overcommitting. Overcommitting is the allocation of more
virtualized CPUs or memory than there’s available on the physical server, and refers
to the fact that you assume that none of the virtual servers will use their resources to
the full extent on a continuous basis. This allows you to allocate the physical server’s
resources in a way that the sum of the allocated resources often exceeds the physical
resource limit of the server. Using virtual resources in this fashion allows you to
increase guest density on a physical server.

Disk Storage
Storage is not as much virtualized as the other server resources are. You simply allo‐
cate a chunk of the host storage space to each of the VMs, and this space is exclusively
reserved for those VMs. Multiple VMs writing to the same storage disk might cause
bottlenecks, but you can avoid them through the use of high performance disks,
RAID arrays configured for speed, and network storage systems, all of which increase
the throughput of data.

When it comes to storage, virtualaizion often uses the concept of thin provisioning,
which lets you allocate storage in a flexible manner so as to optimize the storage
available to each guest VM. Thin provisioning makes it appear that there’s more phys‐
ical storage on the guest than what’s really available. Thin provisioning is different
from overprovisioning, and applies only to storage and not to CPU or RAM.

CPU
CPU sharing is done on the basis of time slicing, wherein all the processing requests
are sliced up and shared among the virtual servers. In effect, this is the same as run‐
ning multiple processes on a non-virtualized server. CPU is probably the hardest
resource to share, since CPU requests need to be satisfied in a timely fashion. You
may at times see a small waiting time for CPU, but this is to be expected, and is no big
deal. However, excessive waiting times can create havoc with the performance of
applications.

Virtualized CPUs (vCPUs) can be overcommitted. You need to be careful with over‐
committing vCPUs, as loads at or close to 100% CPU usage may lead to requests
being dropped, or slow response times. You’re likely to see performance deterioration
when running more vCPUs on a VM than are present on the physical server. Virtual
CPUs are best overcommitted when each guest VM has a small number of vCPUs
when compared to the total CPUs of the underlying host. A hypervisor such as KVM
can easily handle switches between the VMs, when you assign vCPUs at a ratio of five
CPUs (on 5 VMs) per on physical CPU on the host server.

154 | Chapter 4: Server Virtualization and Linux Containers

Network Bandwidth
Network bandwidth can be overprovisioned since it’s unlikely that all VMs will be
fully utilizing their network bandwidth at all times.

Memory
It’s possible to overcommit memory as well, since it’s not common to see the RAM
being fully used by all the VMs running on a server at any given time. Some hypervi‐
sors can perform a “memory reclamation”, whereby they reclaim RAM from the VMs
to balance the load among the VMs.

It’s important to remember that applications that use 100% of the allocated memory
or CPU on a VM can become unstable in an overcommitted virtual environment. In
a production environment, it’s crtical to test extensively before overcommitting mem‐
ory or CPU resources, as the overcommit ratios depend on the nature of the work‐
loads.

Benefits offered by Virtual Machines
Virtualization offers several benefits to an IT department, such as the following:

Lower Costs
Virtualization lowers the cost of hardware purchases and maintenance, power and
cooling, data center space and involves far lesser administrative and management
effort.

Server Consolidation
Server consolidation is probably the most common, and one of the biggest motivat‐
ing factors behind the drive to virtualize systems. Consolidation means that you
reduce the footprint of your physical servers, saving not only capital outlays but also
operating costs in terms of lower energy consumption in the data center. For exam‐
ple, you need fewer floor switches and networking capacity with virtualization when
compared to physical servers.

Isolation
Since the guest operating systems are fully isolated from the underlying host, even if
the VM is corrupted, the host is still in an operating state.

Easy Migration
You can move a running virtual machine from one physical server to another,
without disconnecting either the client or the applications. You can move a running
VM to a different physical server without impacting the users, using tools such as

Linux Server Virtualization | 155

vMotion (VMware) and Live Migration (RedHat Linux), both of which enhance the
uptime of the virtualized systems.

Dynamic Load Balancing
You can move VMs from one physical server to another for load balancing purposes,
so you can load balance your applications across the infrastructure.

Higher Availability
You can quickly restart a failed VM on a different physical server. Since virtual guests
aren’t very dependent on the hardware, and the host provides snapshot features. You
can easily restore a known running system in the case of a disaster.

To summarize, virtualization offers several compelling benefits, which led to tis wide‐
spread usage in today’s IT environments. Reduced capital outlays for purchase and
support since you need to purchase fewer physical servers, faster provisioning, the
ease of supporting legacy applications side by side with current applications, and the
fact that virtualization gets you attuned to the way things are done in modern cloud
based environments , have all been factors for its widespread use.

Drawbacks of Virtualization
Virtualization isn’t a costless solution – you do need to keep in mind the following
drawbacks of virtualization:

• There’s often a performance overhead for the abstraction layer of virtualization
• Overprovisioning is always a potential problem in a virtualized environment and

this could lead to performance degradation, especially during peak usage.
• Rewriting existing applications for a virtual environment may impose a stiff

upfront cost
• Losing a single hypervisor could means losing all the VMs based on that hypervi‐

sor
• Administrators need specialized training and expertise to successfully manage

the virtualized environments.

Virtualization Types
In addition to sharing the CPU and RAM of the parent server, VM guests share the
I/O as well. The classification of hypervisors into different types is based on two basic
criteria: the amount of hardware that’s virtualized and the extent of the modifications
required of the guest system. Modern virtualization is hardware based and doesn’t use
traditional software I/O virtualization (emulation) techniques. Software virtualization

156 | Chapter 4: Server Virtualization and Linux Containers

uses slow techniques such as binary translation to run unmodified operating systems.
By virtualizing at the hardware level, virtualization seeks to deliver native perfor‐
mance levels. The following sections explain the two popular I/O virtualization tech‐
niques – paravirtualization and full virtualization.

Paravirtualization
Paravirtualization, as the name itself indicates, isn’t really “complete virtualization”
since the guest OS needs to be modified.

The paravirtualization method presents a software interface to the VM that’s similar
to that of the host hardware. That is, instead of emulating the hardware environment,
it acts as a thin layer to enable the guest system to share the system resources.

Under paravirtualization, the kernel of the guest OS running on the host server is
modified, so it can recognize the virtualization software layer (hypervisor). Privileged
operations are replaced by calls to the hypervisor, in order to reduce the time the
guest OS will spend performing operations that are more difficult to run in the virtual
environment than in the non-virtualized environment. Costly operations are per‐
formed on the native host system instead of on the guest’s virtualized system. The
hypervisor performs tasks on behalf of the guest OS and provides interfaces for criti‐
cal kernel operations such as interrupt handling and memory management. Both Xen
and VMWare are popular examples of paravirtualization.

A big difference between fully virtualized and paravirtualized
architectures is that you can run different operating systems
between guest and host systems under full virtualization, but not
under paravirtualization.

Since paravirtualization modifies the OS, it’s also called OS-assisted virtualization,
with the guest OS being aware that it’s being virtualized. Paravirtualization offers the
following benefits:

• Under paravirtualization, the hypervisor and the virtual guests communicate
directly, with the lower overhead due to direct access to the underlying hardware
translating to higher performance. VMs that are “aware” that they’re virtualized
offer higher performance.

• Since paravirtualization doesn’t include any device driver at all, it uses the device
drivers in one of the guest operating systems, called the privileged guest. You
therefore aren’t limited to the device drivers contained in the virtualization soft‐
ware.

Paravirtualization, however, requires you to modify either the guest OS or the use of
paravirtualized drivers. It therefore imposes the following limitations:

Linux Server Virtualization | 157

• You’re limited to open source operating systems and proprietary operating sys‐
tems where the owners have consented to make the required code modifications
to work with a specific hypervisor. Paravirtualization isn’t very portable since it
doesn’t support unmodified operating systems such as Microsoft Windows.

• Support and maintainability issues in production environments due to the OS
kernel modifications needed for paravirtualization.

Paravirtualization can cover the whole kernel or just the drivers that virtualize the I/O
devices. Xen, an open source virtualization project, is a good example of a paravir‐
tualized environment. Xen virtualizes the CPU and memory by modifying the Linux
kernel and it virtualizes the I/O with custom guest OS device drivers.

In addition to full and paravirtualization, there’s also something
called software virtualization, which uses emulation techniques to
run unmodified virtual operating systems. Linux distributions such
as RedHat Linux don’t support software virtualization.

Full Virtualization
Full virtualization is a technique where the guest operating system is presented a
simulated hardware interface by a hardware emulator. In full virtualization, the virtu‐
alization software, usually referred to as a hypervisor (guest OS drivers) emulates all
hardware devices on the virtual system. The hypervisor creates an emulated hardware
device and presents it to the guest operating system. This emulated hardware envi‐
ronment is also called a Virtual Machine Monitor or VMM, as explained earlier.

Guests use the features of the underlying host physical system to create a new virtual
system called a virtual machine. All components of that the virtual machine presents
to the operating system are virtualized. The hypervisor simulates specific hardware.
For example when QEMU simulates an x86 machine, it provides a virtual Realtek
8139C+PCI as the network adapter. This means that the guest OS is unaware that it’s
running on virtual, and not on real hardware.

he VM allows the guest OS to run without any modifications and the OS behaves as if
it has exclusive access to the underlying host system. Since the physical devices on the
host server may be different from the emulated drivers, the hypervisor needs to pro‐
cess the I/O before it goes to the physical device, thus forcing the I/O operations to
move through two software layers. This means not only slower I/O performance but
also higher CPU usage.

158 | Chapter 4: Server Virtualization and Linux Containers

In paravirtualization, the virtualaizion software layer abstracts only
a portion of the host system’s resources, and in full virtualization, it
abstracts all of the host system resources.

Since the guest OS is a full emulation of the host hardware, this virtualization techni‐
que is called full virtualization.

You can run multiple unmodified guest operating systems independently on the same
box with full virtualization. It’s the hypervisor that helps run the guest operating sys‐
tems without any modification, by coordinating the CPU of the virtual machine and
the host machine’s system resources.

The hypervisor offers CPU emulation to modify privileged and protected CPU opera‐
tions performed by the guest OS. The hypervisor intercepts the system calls made by
the guest operating systems to the emulated host hardware and maps them to the
actual underlying hardware. You can have guest systems belonging to various operat‐
ing systems such as Linux and Windows running on the same host server. Once
again, the guest operating systems are completely unaware of the fact that they’re vir‐
tualized and thus don’t require any modifications.

Full virtualization requires complete emulation, which means more
resources for processing from the hypervisor.

QEMU (which underlies KVM, to be discussed later in this chapter), VMWare ESXi
and VirtualBox are popular fully virtualized hypervisors. Full virtualization offers
many benefits, as summarized here:

• The hypervisor offers a standardized environment for hardware for the guest OS.
Since the guest OS and the hypervisor are a consistent package together, you can
migrate this package across different types of physical servers.

• The guest OS doesn’t require any modification.
• It simplifies migration and portability for the virtual machines
• Applications run in truly isolated guest operating systems
• The method supports multiple operating systems which may be different in

terms of their patch level or even completely different from each other, such as
the Windows and Linux operating systems

Linux Server Virtualization | 159

The biggest drawback of full virtualization is that since the hypervisor needs to pro‐
cess data, some of the processing power of the host server is commandeered by the
hypervisor and this degrades performance somewhat.

Type of Hypervisors
The hypervisor, by presenting virtualized hardware interfaces to all the VM guests,
controls the platform resources. There are two types of Hypervisors, based on where
exactly the hypervisor sits relative to the operating system and the host, named Type
1 and Type 2 hypervisors.

Type 1 Hypervisors
A Type 1 hypervisor (also called a native or bare metal hypervisor) is software that
runs directly on the bare metal of the physical server, just as the host OS does. Once
you install and configure the hypervisor, you can start creating guest machines on the
host server.

Architecturally, the Type 1 hypervisor sits directly on the host hardware and is
responsible for allocating memory to the virtual machines, as well as providing an
interface for administration and for monitoring tools. VMWare ESX Server, Micro‐
soft Hyper-V and several variations of the open source KVM hypervisor are examples
of a Type 1 hypervisor.

Due to its direct access to the host server, the Type 1 hypervisor doesn’t require sepa‐
rate CPU cycles or memory for the VMs and thus delivers greater performance.

It’s important to understand that most implementations of a bare metal hypervisor
require virtualization support at the hardware level through hardware assisted virtu‐
alization techniques (explained later in this chapter), and VMWare and KVM are two
such hypervisors.

Type 2 Hypervisors
A Type 2 hypervisor (also called a hosted hypervisor) is deployed by loading it on top
of the underlying OS running on the physical server, such as Linux or Windows. The
virtualization layer runs like a hosted application directly in top of the host OS. The
hypervisor provides each of the virtual machines running on the host system with
resources such as a virtual BIOS, virtual devices and virtual memory. The guest oper‐
ating systems depend on the host OS for accessing the host’s resources.

A Type 2 hypervisor is useful in situations where you don’t want to dedicate an entire
server for virtualization. For example, you may want to run a Linux OS on your Win‐
dows laptop – both VMWare Workstation and Oracle VM Virtual Box are examples
of Type 2 hypervisors.

160 | Chapter 4: Server Virtualization and Linux Containers

Traditionally, a Type-1 hypervisor is defined as a “small operating system”. Since a
Type 1 hypervisor directly controls the resources of the underlying host, its perfor‐
mance is generally better than that of a Type 2 hypervisor, which depends on the OS
to handle all interactions with the hardware. Since Type 2 hypervisors need to per‐
form extra processing (‘instruction translation’), they can potentially adversely affect
the host server and the applications as well.

You can pack more VMs with a Type 1 hypervisor because this type of hypervisor
doesn’t compete with the host OS for resources.

Kernel Level Virtualization (Hardware Assisted Virtualization)
Under kernel level virtualization, the host OS contains extensions within its kernel to
manage virtual machines. The virtualization layer is embedded in the operating sys‐
tem kernel itself. Since the hypervisor is embedded in the Linux kernel, it has a very
small footprint and disk and network performance is higher in this mode. The popu‐
lar open source Kernel Virtual Machine (KVM) virtualization model uses kernel level
virtualization (hardware-assisted virtualization method).

Bare Metal versus Hosted Hypervisors
Virtualization solutions that use a Type-2 hypervisor such as VirtualBox are great for
enabling single users or small organizations to run multiple VMs on a single physical
server. VirtualBox and similar solutions run as client applications and not directly on
the host server hardware. Enterprise computing requires high performance virtuali‐
zation strategies that are closer to the host’s physical hardware. Bare metal virtualiza‐
tion involves much less overhead and also exploits the built in hardware support for
virtualization better than Type-2 hypervisors.

Most Linux systems support two types of open-source bare-metal virtualization tech‐
nologies: Xen and Kernel Virtual Machine (KVM). Both Xen and KVM support full
virtualization, and Xen also supports the paravirtualization mode. Let’s start with a
review of the older Xen technology and then move on to KVM virtualization, which
is the de facto standard for virtualization in most Linux distributions today.

Xen Virtualization
Xen was created in 2003 and acquired later on by Citrix, which announced in 2013
that the Xen Project would be a collaborative project between itself, Xen’s main con‐
tributor, and the Linux foundation. Xen is very popular in the public cloud environ‐
ment with companies such as Amazon Web Services and Rackspace Cloud using it
for their customers.

Xen is capable of running multiple types of guest operating systems. When you boot
the Xen hypervisor on the host physical hardware, it automatically starts a primary
virtual machine called Domain 0 (or dom0), or the management domain. Domain 0

Linux Server Virtualization | 161

manages the systems and by performing tasks such as creating additional virtual
machines, and managing the virtual devices for the virtual machines, as well as tasks
such as suspending, resuming, and migrating virtual machines, the primary VM will
provide the virtual management capabilities for all other VMs, called the Xen guests.
You administer Xen through the xm command-line suite.

The Xen daemon, named xend, runs in the dom0 VM and is the central controller of
virtual resources across all VMs running on the Xen hypervisor. You can manage the
VMs using an open source virtual machine manager such as OpenXenManager, or a
commercial manager such as Citrix XenCenter.

Xen Architecture
Xen is a Type 1 hypervisor and so it runs directly on the host hardware. Xen inserts a
virtualization layer between the hardware and the virtual machines, by creating pools
of system resources, and the VMs treat the virtualized resources as if they were physi‐
cal resources.

Xen uses paravirtualization, means the guest OS must be modified to support the Xen
environment. The modification of the guest OS lets Xen use the guest OS as the “most
privileged software”. Paravirtualization also enables Xen to use more efficient inter‐
faces such as virtual block devices to emulate hardware devices.

Xen’s Benefits and Drawbacks
Xen offers highly optimized performance due to its combination of paravirtualization
and hardware assisted virtualization. However, it has a fairly large footprint and inte‐
grating it isn’t easy and could overwhelm the Linux kernel over time. It also relies on
third-party products for device drivers as well as for backup and recovery and for
fault tolerance. High I/O usually slows down Xen based systems.

While Xen offers a higher performance than KVM, it’s the ease of use of KVM virtu‐
alization which has led to it’s becoming the leading virtualization solution in Linux
environments.

KVM supports native virtualization on processors that contain extensions for hard‐
ware virtualization. KVM supports several types of processers and guest operating
systems, such as Linux (many distributions), Windows, and Solaris. There’s also a
modified version of QEMU that uses KVM to run Mac OS X virtual machines.

Kernel-Based Virtual Machines (KVM)
Linux KVM (Kernel-based Virtual Machine) is the most popular open-source virtual‐
ization technology today. Over the past few years, KVM has overtaken Xen as the
default open source technology for creating virtual machines on most Linux distribu‐
tions.

162 | Chapter 4: Server Virtualization and Linux Containers

Although KVM has been part of the Linux kernel since the 2.6.20 release (2007), until
release 3.0, you had to apply several patches to integrate KVM support into the Linux
kernel. Post 3.0 Linux kernels automatically enable KVM’s integration into the kernel,
allowing it to take advantage of improvements in the Linux kernel versions. Being a
part of the Linux kernel is a big deal, since it means frequent updates and a lower
Total Cost of Operation (TCO). In addition, KVM is highly secure since it’s integrated
with SELinux in both RedHat Linux and CentOS.

KVM differs from Xen in that it uses the Linux kernel as its hypervisor. Although a
Type-1 hypervisor is supposed to be similar to a small OS, the fact that you can con‐
figure a custom lightweight Linux kernel and the availability of large amounts of
RAM on today’s powerful 64-bit servers means that the size of the Linux kernel isn’t a
hindrance.

Just as Xen has its xm toolset, KVM has an administrative infrastructure that it has
inherited from QEMU (short for Quick Emulator) a Linux emulation and virtualiza‐
tion package which achieves superior performance by using dynamic translation. By
executing the guest cod directly on the host CPU, QEMU achieves performance close
to the native OS.

QEMU supports virtualization while executing under the Xen hypervisor or by using
the Linux KVM kernel module .Red Hat has developed the libvert virtualization API
to help simplify the administration of various virtualization technologies such as
KVM, Xen, LXC containers, VirtualBox and Microsoft Hyper-V. As an administrator,
it’s great to learn libvert because you can manage multiple virtualization technologies
by learning a single set of commands (command line and graphical) based on the lib‐
vert API.

In order to support KVM virtualization, you need to install various packages, with
the required package list depending on your Linux distribution.

Using Storage Pools
When you create one or two KVM based VMs, you can use disk images that you can
create on the local disk storage of the host. Each VM will in essence be a disk image
stored in a local file. However, for creating enterprise wide virtualization environ‐
ments, this manual process of creating VMs is quite tedious and hard to manage. The
libvert package lets you create storage pools to serve as an abstraction for the actual
VM images and file systems.

The libvert package provides standard, technology independent
administrative commands to manage virtualization environments.

Linux Server Virtualization | 163

A storage pool is a specific amount of storage set aside by the administrator for use by
the guest VMs.

Storage pools are divided into storage volumes which are then assigned to guest VMs
as block devices.

A storage pool can be a local directory, physical disk, logical volume, or a network file
system (NFS) or block–level networked storage managed by libvert. Using libvert,
you manage the storage pool and create and store VM images in the pool. Note that
in order to perform a live migration of a VM to a different server, you should locate
the VM disk image in an NFS, block-level networked storage, or in HBA (SCSI Host
Bus Adapter) storage that can be accessed from multiple hosts.

Creating the Virtual Machines
The libvirt package contains the virsh command suite that provides the commands to
create and manage the virtualization objects that libvert uses, such as the domains
(VMs), storage pool, networks, devices, etc. Following is an example that shows how
to create an NFS based (netfs) storage pool:

virsh pool-create-as NFS-POOL netfs \
--source-host 192.168.6.248 \
--source-path /DATA/POOL \
--target /var/lib/libvirt/images/MY-NFS-POOL

In this command, MY-NFS-POOL is the name of the new storage pool and the local
mount point that’ll be used to access this NFS based storage pool is /var/lib/libvirt/
images/MY-NFS-POOL. Once you create the storage pool as shown here, you can
create VMs in that pool with the virt-install command, as shown here:

virt-install
--name RHEL-6.3-LAMP \
--os-type=linux \
--os-variant=rhel6 \
--cdrom /mnt/ISO/rhel63-server-x86_64.iso \
--disk pool=My-NFS-POOL,format=raw,size=100 \
--ram 4096 \
--vcpus=2 \
--network bridge=br0 \
--hvm \
--virt-type=kvm \

Here’s a summary of the key options specified with the virt-install command:

• --os-type and –os-variant: indicate that this VM will be optimized for the Linux
RedHat Enterprise Linux 6,3 release,

• --cdrom: specifies the ISP image (virtual CDROM device that will be used to per‐
form this installation)

164 | Chapter 4: Server Virtualization and Linux Containers

• --disk: specifies that the VM will be created with 100GB of storage from the stor‐
age pool named NFS-01.

• --ram and –vcpus: specify the RAM and virtual CPUs for the VM
• --hvm: indicates that this is a fully virtualized system (default)
• --virt-type: specifies kvm as the hypervisor (default)

RedHat Enterprise Virtualization (RHEV) is based on KVM.

Considerations in Selecting the Physical Servers for virtualization
The choice of the physical servers for a virtualized environment is critical, and you’ve
several choices, as explained in the following sections.

Build Your Own versus Purchasing
You can create your own servers by purchasing and putting together all the individual
components such as the disk drives, RAM and CPU. You should expect to spend less
to build your own systems, so that’s good, but the drawback is the time it takes to get
your systems together. In addition, you’re responsible for maintaining these systems
with partial or no service contracts to support you, with all the attendant headaches.

If you’re considering putting together your own systems, it may be a good idea to
check out the Open Compute project (http://opencompute.org), which creates low cost
server hardware specifications and mechanical drawings (designs). The goal of Open
Compute is to design servers that efficient, inexpensive and easy to service. Conse‐
quently these specs contain far fewer parts than traditional servers. You can try and
purchase hardware that meets these specifications to ensure you’re getting good hard‐
ware when you’re trying to keep expenses low.

Purchasing complete systems from a well-known vendor is the easiest and most relia‐
ble way to go, since you don’t need to worry about the quality of the hardware and
software, in addition to getting first class support. It also gets maintenance off your
hands. However, as you know, you’re going to pay for all the bells and whistles.

Rack and Blade Servers
Blade servers are commonly used for virtualization since they allow for a larger num‐
ber of virtual machines per chassis. Rack servers don’t let you create as many VMs per
chassis.

Linux Server Virtualization | 165

http://opencompute.org

The choice of the type of server depends on factors such as their ease of maintainabil‐
ity, power consumption, remote console access, server form factor, and so on.

Migrating Virtual Machines
Migrating virtual machines means the moving of a guest virtual machine from one
server to another. You can migrate a VM in two ways: live and offline, as explained
here:

• Live Migration: this process moves an active VM from one physical server to
another. In Red Hat Enterprise Linux, this process moves the VM’s memory and
its disk volumes as well, using what’s called live block migration.

• Offline Migration: During an offline migration, you shut down the guest VM and
move the image of the VM’s memory to the new host. You can then resume the
VM on the destination host and the memory previously used by the VM on the
original host is released back to the host.

You can migrate VMs for the following purposes:

• Load Balancing: You can migrate one or more VMs from a host to relieve it’s load
• Upgrades to the Host: When you’re upgrading the OS on a host, you can avoid

downtime for your applications by migrating the VMs on that host to other
hosts.

• Geographical Reasons: Sometimes you may want to migrate a VM to a different
host in a different geographical location, to lower the latency of the applications
hosted by the VM.

Application Deployment and Management with Linux
Containers
A Linux container (LXc) is a set of processes that are isolated from other processes
running on a server. While virtualization and its hypervisors logically abstract the
hardware, containers provide isolation, letting multiple applications share the same
OS instance.

You can use a container to encapsulate different types of application dependencies.
For example, if your application requires a particular version of a database or script‐
ing language, the containers can encapsulate those versions. This means that multiple
versions of the database or scripting language can run in the same environment,
without requiring a completely different software stack for each application, each
with its own OS. You don’t pay for all of this with a performance hit, as containerized

166 | Chapter 4: Server Virtualization and Linux Containers

applications deliver roughly the same performance as applications that you deploy on
bare metal.

Linux Containers have increasingly become an alternative to using traditional virtual‐
ization, so much so that containerization is often referred to as the “new virtualiza‐
tion”.

On the face of it both virtualization and containerization seem to perform the same
function by letting you run multiple virtual operating systems on top of a single OS
kernel. However, unlike in traditional virtualization, a container doesn’t run multiple
operating systems. Rather, it “contains” the multiple guest operating systems in their
own userspace, while running a single OS kernel.

At a simple level, containers involve less overhead since there’s no need to emulate the
hardware. The big drawback is that you can’t run multiple types of operating systems
in the same hardware. You can run 10 Linux instances in a server with container
based virtualization, but you can’t run both Linux and Microsoft Server guests side by
side.

This chapter introduces you to Linux container technology and the
principles that underlie that technology, and also compares tradi‐
tional virtualization with containerization. Chapter 5 is dedicated
to Docker containers and container orchestration technologies
such as Kubernates.

Linux Containers (LXc) allow the running of multiple isolated server installs called
containers on a single host. LXc doesn’t use offer a virtual machine – instead it offers
a virtual environment with its own process and network space.

Linux containers have analogies in other well known ‘Nix operating systems:

• FreeBSD: Jails
• SmartOS: Zones
• Oracle Solaris: Zones

Linux containers (through Docker) are radically changing the way applications are
built, deployed and instantiated. By making it easy to package the applications along
with all of their dependencies, containers accelerate application delivery. You can run
the same containerized applications in all your environments – dev, test, and produc‐
tion. Furthermore, your platform can be anything: a physical server, a virtual server,
or the public cloud.

Containers are designed to provide fast and efficient virtualization. Containerization
provides different views of the system to different processes, by compartmentalizing

Application Deployment and Management with Linux Containers | 167

the system. This compartmentalization ensures guaranteed access to resources such
as CPU and IO, while maintaining security.

Since each container shares the same hardware as well as the Linux kernel with the
host system, containerization isn’t the same as full virtualization. Although the con‐
tainers running on a host share the same host hardware and kernel, they can run dif‐
ferent Linux distributions. For example, a container can run CentOS while the host
runs on Ubuntu.

NOTE Linux Containers (LXC) constitute a container management system that
became part of the Linux Kernel 2.6.24 in August 2008. As with Docker (see Chapter
5), Linux Containers make use of several Linux kernel modules such as cgroups,
SELinux, and AppArmor.

Linux Containers combine an application and all of its dependencies into a package
which you can make a versioned artifact. Containers provide application isolation
while offering the flexibility of image-based deployment methods. Containers help
isolate applications to avoid conflicts between their runtime dependencies and their
configurations, and allow you to run different versions of the same application on the
same host. This type of deployment provides a way to roll back to an older version of
an application if a newer version doesn’t quite pan out.

Linux containers have their roots in the release of the chroot tool in 1982, which is a
filesystem specific container type virtualization tool. Let’s quickly review chroot
briefly to see how it compares to modern containerization.

Chroot and Containers
Linux containerization is often seen as an advancement of the chroot technique, with
dimensions other than just the file system. Whereas chroot offers isolation just at the
file system level, LXc offer full isolation between the host and a container and
between a container and other containers.

The Linux chroot() command (pronounced “cha-root”) lets a process (and its child
processes) redefine the root directory from their perspective. For example, If you
chroot the directory /www, and when you issue the command cd, instead of taking
you to the normal root directory (“/”), it leaves you at /www. Although /www isn’t
really the root directory, the program believes that it’s so. In essence, chroot restricts
the environment and that’s the reason the environment is also referred to as a jail or
chroot jail.

Since a process has a restricted view of the system, it can’t access files outside of its
directory, as well as libraries and files from other directories. An application must
therefore have all the files that it needs right in the chroot environment. The key prin‐

168 | Chapter 4: Server Virtualization and Linux Containers

ciple here is that the environment should be self-contained within a single directory,
with a faux root directory structure.

Linux containers are similar to chroot, but offer more isolation. Linux containers use
additional concepts beyond chroot, such as control groups. Whereas chroot is limited
to the file subsystem, control groups enable you to define groups encompassing sev‐
eral processes (such as “sshd” for example) and control resource usage for those
groups for various subsystems such as the file system, memory, CPU and network
resources and block devices.

Applications and their Isolation
Isolating applications is a key reason for using container technologies. In this context,
an application is a unit of software that provides a specific set of services. While users
are concerned just with the functionality of applications, administrators need to
worry about the external dependencies that all applications must satisfy. These exter‐
nal dependencies include system libraries, third-party packages and databases.

Each of the “dependencies” has its own configuration requirements and running mul‐
tiple versions of an application on a host is difficult due to potential conflicts among
these requirements. For example, a version of an application may require a different
set of system libraries than another version of the same application. While you can
somehow manage to run multiple versions simultaneously through elaborate work‐
arounds, the easiest solution to managing the dependencies is to isolate the applica‐
tions.

Virtualization and Containerization
Both containerization and virtualization help address the issues involved in efficient
application delivery, where applications in general are much more complex yet must
be developed with lower expense and delivered faster, so they can quickly respond to
changing business requirements.

At one level, you can view both containers and traditional virtualization as allowing
you to do the same thing: let you run multiple applications on the same physical
servers. How then, are containers a potentially better approach? Virtualization is
great for abstracting from the underlying hardware, which helps lower your costs
through consolidating servers, and make it easy to automate the provision of a com‐
plete stack that includes the OS, the application code and all of its dependencies.

However, great as the benefits of virtualization are, virtual machines have several lim‐
itations:

Applications and their Isolation | 169

• By replacing physical servers with virtual servers, you do reduce the physical
server units – yet server sprawl doesn’t go away – you’re simply replacing one
type of sprawl with another!

• Virtual technology isn’t suitable for microservices that can uses hundreds of
thousands of processes, since each OS process requires a separate VM.

• Virtual machines can’t be instantiated very quickly – they take several minutes to
spin up, with means inferior user experience. Containers on the other hand can
be spun up blazingly fast- within a few short seconds!

• Lifecycle management of VMs isn’t a trivial affair – every VM has a minimum of
two operating systems that need patching and upgrading – the hypervisor and
the guest OS inside the VM. If you have a virtualized application with 20 VMs,
you need to worry about patching 21 operating systems (20 guests systems + 1
hypervisor).

While traditional virtualization does offer complete isolation, once you secure con‐
tainers with Linux namespaces, CGroups and SELinux, you can get virtually (no pun)
the same amount of isolation. Linux containers offer a far more efficient way to build,
deploy, and execute applications in today’s modern application architectures that uses
microservices and other new application paradigms. Linux containers offer an appli‐
cation isolation mechanism for lightweight multitenancy and offer simplified applica‐
tion delivery.

Containers, as I’ve mentioned earlier, have been around for over a decade, and things
like Solaris Zones and FreeBDS Jails have been with us for even longer. The new thing
about current containerization is that it’s being used to encapsulate an application’s
components, including the application dependencies and required services. This
encapsulation makes the applications portable. Docker has contributed substantially
to the growth of containerization, by offering easy to use management tools as well as
a great repository of container images. RedHat and others have also offered smaller
footprint operating systems and frameworks for management, as well as containeriza‐
tion orchestration tools such as Kubernates (please see Chapter 5).

Benefits offered by Linux Containers
Linux containers enhance the efficiency of application building, shipping, deploying,
and execution. Here’s a summary of the benefits offered by containers.

Easier and Faster Provisioning
While VMs take several minutes to boot up, you can boot up a containerized applica‐
tion in mere seconds, due to the lack of the overhead imposed by a hypervisor and a
guest OS. If you need to scale up the environment using a public cloud service, the
ability to boot up fast is highly beneficial.

170 | Chapter 4: Server Virtualization and Linux Containers

Lower Costs
Due to their minimal footprint, many more containers fit on a physical server than
virtual machines.

Better Resource Utilization
You can monitor containers easily since they all run on a single OS instance. When
idle, the containers don’t use any server resources such as memory and CPU unlike a
virtual machine, which grabs those resources when you start it up. You can also easily
remove unused container instances and prevent a virtual machine like sprawl.

Easier Lifecycle Management
Even if you have a large number of applications running on a containerized server,
you need to patch and upgrade just a single operating system, regardless of how many
containers run on it, unlike in the case of virtual machines. Since there are fewer
operating systems to take care of, you’re more likely to upgrade than to apply incre‐
mental patches.

Greater Application Mobility
Containers make it easy to move application workload between private and public
clouds. Virtual machines are usually much larger than containers, with sizes ranging
often in the Gigabytes. Containers are invariably small (a few MBs) and so it’s easier
to transport and instantiate them.

Quicker Response to Changing Workloads
Containers speed up application development due the testing cycles being shorter,
owing to the containers including all the application dependencies. You can build an
app once and deploy it anywhere.

Easier Administration and Better Visibility
You have far fewer operating systems to manage since multiple containers share the
same OS kernel. You also have better visibility into the workload of a container from
the host environment, unlike with VMs, where you can’t peek inside the VM.

Containers aren’t a mere incremental enhancement of traditional virtualization. They
offer many ways to speed up application development and deployment, especially in
the areas of microservices, which I discussed in Chapter 3. Since microservices can
startup and shutdown far quicker than traditional applications, containers are ideal
for them. You can also scale resources such as CPU and memory independently for
microservices with a container based approach.

Applications and their Isolation | 171

Isolation of Services
Let’s say your organization has a sensitive application that makes uses of SSL to
encrypt data flowing through the public internet. If you’re using a virtualized setup,
the application image includes SSL and therefore, you’ll need to modify the applica‐
tion image whenever there are SSL security flaws. Obviously, your application is
down during this time period, which may be long, since you’ll need to perform
regression testing after making changes to SSL.

If you were using a container based architecture on the other hand, you can separate
the SSL portion of the application and place it in its own container. The application
code isn’t intertwined with SSL in this architecture. Since you don’t need to modify
the application code, there’s no need for any regression testing of the application fol‐
lowing changes in SSL. A huge difference!

Two Types of Uses for Linux Containers
There are two different ways in which you can employ Linux containers. You can use
containers for sandboxing applications, or you can utilize image-based containers to
take advantage of the whole range of features offered by containerization. I explain
the two approaches in the following sections.

Host Containers
Under the host containers use case, you use containers as lightweight application
sandboxes. All you applications running in various containers are based on the same
OS as the host, since all containers run in the same user space as the host system. For
example, you can carve a RHEL 7 host into multiple secure and identical containers,
with each container running a RHEL 7 userspace. Maintenance is easy since updates
need to be applied just to the host system. The disadvantage to this type of containeri‐
zation is that it’s limited to just one type of OS, in this example a RHEL runtime.

Image-Based Containers
Image based containers include not just the application, but also application’s runtime
stack. Thus, the container runs an application that has nothing to do with the host
OS. Both the container and application run times are packaged together and
deployed as an image. The containers can be non-identical under image based con‐
tainerization. This means you can run multiple instances of the same application on a
server, each running on a different OS platform. This is especially useful when you
need to run together application versions based on different OS versions such as
RHEL 6.6 and RHEL 7.1, for example. Docker, which we discuss extensively in Chap‐
ter 5, is based on image based containers. Docker builds on LXc and it includes the
userspace runtime of applications.

172 | Chapter 4: Server Virtualization and Linux Containers

You can deploy containers both on bare metal, and on virtualized
servers.

The Building Blocks of Linux Containers
Linux containers have become increasingly important as application packaging and
delivery technology. Containers provide application isolation along with the flexibil‐
ity of image-based deployment. Linux containers depend on several key components
offered by the Linux kernel, such as the following:

• Cgroups (Control groups) – allow you to group processes for optimizing system
resource usage by allocating resources among user-defined groups of tasks

• Namespaces – isolates processes by abstracting specific global system resources
and making them appear as a distinct instance to all the processes within a name‐
space

• SELinux – securely separates containers by applying SELinux policy and labels.

Namespaces, cgroups and SELinux are all part of the Linux kernel, and they provide
the support for containers, which run the applications. While there’s a bunch of other
technologies used by containers, namespaces, cgroups and SELinux account for most
of the benefits you see with containers.

In the following sections, let’s briefly review the key building blocks of Linux contain‐
ers:

• Process isolation – namespaces provide this
• Resource management – Cgroups provide resource management capabilities
• Security – SELinux takes care of security

Namespaces and Process Isolation
The ability to create multiple namespaces enables process isolation. It’s namespaces
that make it possible for Linux containers to provide isolation between applications,
with each namespace providing a boundary around applications. Each of these appli‐
cations is a self-contained entity with its own file system, hostname and even a net‐
work stack. It’s when it’s running within a namespace that an application is
considered to be running within a container.

A namespace makes a global system resource appear as a dedicated resource to pro‐
cesses running within that namespace. This helps different processes see different

The Building Blocks of Linux Containers | 173

views of the system, something which is similar to the concept of zones in the Solaris
operating system. This separation of the resource instances lets multiple containers
simultaneously use the same resource without conflicts. Namespaces offer lightweight
process virtualization, although without a hypervisor layer as in the case of OS virtu‐
alization architectures such as KVM.

Mount namespaces together with chroots help you create isolated
Linux installations for running non-conflicting applications.

In order to isolate multiple processes from each other, you need to isolate them at
every place they may bump into each other. For example, the file system and network
are two obvious points of conflict between two applications. Application containers
use several types of namespaces as described here, each of which helps isolate a spe‐
cific type of resource, such as the file system or the network.

Namespaces isolate processes and let you create a new environment with a subset of
the resources. Once you set up a namespace, it’s transparent to the processes. In most
Linux distributions, the following namespaces are supported, with RHEL 7 and other
distributions adding the user namespace as well.

• mnt
• net
• uts
• pid
• ipc

Let’s briefly discuss the namespaces listed here in the following sections.

Mount Namespaces
Normally, file system mount points are global, meaning that all processes see the
same set of mount points. Mount namespaces isolate the set of filesystem mount
points viewed by various processes. Processes running within different mount name‐
spaces, however, can each have different views of a file system hierarchy. Thus, a con‐
tainer can have a different /tmp directory from that of another container. The fact
that each application sees a different file system means that dependent objects can be
installed without conflicts among the applications.

174 | Chapter 4: Server Virtualization and Linux Containers

UTS Namespaces
UTS namespaces let multiple containers have separate hostnames and domain names,
thus providing isolation of these two system identifiers. UTS namespaces are useful
when you combine them with network namespaces.

PID Namespaces
PID namespaces allow processes running in various containers to use the same PID,
so each container can have its own init process, which is PID1. While you can view all
processes running inside the containers from the host operating system, you can only
see a container’s own set of processes from that container. All processes, however, are
visible within the “root” PID namespace.

Network Namespaces
Network namespaces allow containers to isolate the network stack, which includes
things such as the network controllers, firewall, iptable rules, routing tables, etc. Each
container can use separate virtual or real devices and have its own IP address. Net‐
work namespaces remove port conflicts among applications, since each application
uses its own network stack, with a dedicated network address and TCP port.

IPC Namespaces
IPC (inter process communication) namespaces allow interprocess communication
(IPC) resource isolation, which allows containers to create shared memory segments
and semaphores with identical names, although they can’t influence those resources
that belong to other containers. Inter process communication environment includes
things such as message queues, semaphores and shared memory.

Control Groups (cgroups)
Control groups (cgroups for short) let you allocate resources such as CPU time, block
IO, RAM and network bandwidth among groups of tasks that you can define, thus
providing you fine-grained control over system resources. Using cgroups, the admin‐
istrator can hierarchically group and label processes and assign specific amounts of
resources to these processes, thus making for an efficient allocation of resources.

The Linux nice command lets you set the “niceness” of a process, which influences
the scheduling of that process. The nice values can range from -20 (most favorable
scheduling) to a value of 19 (least favorable to the process). A process with a high
niceness value is accorded lower priority and less CPU time, thus freeing up resour‐
ces in favor of processes with a lower niceness value. Note that niceness doesn’t really
translate to priority – the scheduler is free to ignore the nice level you set. In tradi‐
tional systems, all processes receive the same amount of system resources, and so an
application with a larger number of processes can grab more system resources com‐

The Building Blocks of Linux Containers | 175

pared to applications with fewer running processes. The relative importance of the
application should ideally be the criterion on which resources ought to be allocated,
but it isn’t so, since resources are allocated at the process level.

Control groups let you move resource allocation from the process level to the applica‐
tion level. Control groups do this by first grouping and labeling processes into hierar‐
chies, and setting resource limits for them. These cgroup hierarchies are then bound
with the systemd unit tree, letting you manage system resources with the systemctl
commands (or by editing the system unit files).

A Cgroup is a kernel provided filesystem, and is usually mounted at /cgroup, and
contains directories similar to /proc and /sys that represent the running environment
and kernel configuration options. In the following sections, I explain how cgroups
are implemented in RedHat Enterprise Linux (and Fedora).

Cgroup Hierarchies
You organize cgroups in a tree-based hierarchy. Each process or task that runs on a
server is in one and only one of the cgroups in a hierarchy. In a cgroup a number of
tasks (same as processes) are associated with a set of subsystems. The subsystems act
as parameters than can be assigned and define the “resource controllers” for memory,
disk I/O, etc.

In RHEL 7 (and CentOS), the systemd process, which is the parent of all processes,
provides three unit types for controlling resource usage – services, scopes and slices.
Systemd automatically creates a hierarchy of slice, scope and service units that pro‐
vide the structure for the cgroup tree. All three of these unit types can be created by
the system administrator or by programs. Systemd also automatically mounts the
hierarchies for important kernel resource controllers such as devices (allows or denies
access to devices for tasks in a group), or memory (sets limits on memory usage by a
cgroup’s tasks). You can also create custom slices of your own with the systemctl com‐
mand.

Here’s a brief description of the three unit types provided by systemd:

• Service: services let systemd start and stop a process or a set of processes as a sin‐
gle unit. Services are named as name.service.

• Scope: processes such as user sessions, containers and VMs are called scopes and
represent groups of externally created processes. Scopes are named as
name.scope. For example, Apache processes and MySQL processes can belong to
the same service but to different scopes – the first to the apache scope and the
second to the Mysql scope.

• Slice: a slice is group of hierarchically organized scopes and services. Slices don’t
contain any processes – it’s the scopes and services that do. Since a slice is hier‐
archical in nature, the name of a slice unit corresponds to its path in the hierar‐

176 | Chapter 4: Server Virtualization and Linux Containers

chy. If the slice name is parent-name.slice, the slice named parent-name.slice is a
subslice of the parent slice.

The kernel creates the following four slices by default to run the system:

• -.slice – root slice
• system.slice – default location for system services (systemd automatically assigns

services to this slice)
• user.slice – default location for user sessions
• machine.slice - default location for VMs and Linux containers

Slices are assigned to scopes. Users are assigned implicit subslices and you can define
new slices and assign services and scopes to those slices. You can create permanent
services and slice units with unit files. You can also create transient service and slice
units at runtime through issuing API calls to PID 1. Transient services and slice units
don’t survive a reboot, and are released after they finish.

You can create two types of cgroups: transient and persistent. You can create transient
cgroups for a service with the systemd-run command, and set limits on resources that
the service can use. You can also assign a persistent cgroup to a service by editing its
unit configuration file. The following example shows the syntax for creating a transi‐
ent cgroup with systemd-run:

systemd-run --unit=name --scope --slice=slice_name command

Once you create the cgroup, you can start a new service with the systemd-run com‐
mand, as shown here:

systemd-run --unit=toptest --slice=test top –b

This command runs the top utility in a service unit, within a new slice named test.

You can override resources by configuring the unit file or at the command line as
shown here:

systemctl set-property httpd.service CPUShares=524 MemoryLimit=500M

Unlike in virtualized systems, containers don’t have a hypervisor to manage resource
allocation, and each container appears as a regular Linux process from the point of
view of the OS. Using cgroups helps allocate resources efficiently since you’re using
groups instead of processes. A CPU scheduler, for example, finds it easy to allocate
resources among groups rather than among a large number of processes.

Systemd stores the configuration for each persistent unit in the /usr/lib/systemd/
system directory. To change the configuration of a service unit you must modify the
configuration file either manually by editing the file, or with the systemctl set-
property command.

The Building Blocks of Linux Containers | 177

Viewing the Hierarchy of Control Groups
You can view the hierarchy of the control groups with the systemd-cgls command in
RHEL 7, as shown in the following output from the command, which also shows you
the actual processes running in the cgroups.

├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
├─user.slice
│ └─user-1000.slice
│ └─session-1.scope
│ ├─11459 gdm-session-worker [pam/gdm-password]
│ ├─11471 gnome-session --session gnome-classic
│ ...
│
└─system.slice
 ├─systemd-journald.service
 │ └─422 /usr/lib/systemd/systemd-journald
 ├─bluetooth.service
 │ │ └─5328 /usr/lib/systemd/systemd-localed
 ├─sshd.service
 │ └─1191 /usr/sbin/sshd -D
 │
 ...

As the output reveals, slices don’t contain processes – it’s the scopes and services that
contain the processes. The -.slice is implicit and identifies with the hierarchy’s root.

Cgroup Subsystems (Resource Controllers)
In older versions of Linux, administrators used the libcgroup package and the cgcon‐
fig command to build custom cgroup hierarchies. In this section, I show how RHEL 7
moves resource management from the process to the application level, by binding the
cgroup hierarchies with the systemd unit tree. This lets you manage the resources
either through systemctl commands or by editing the systemd unit files. You can still
use the libcgroup package in release 7, but it’s there only to assure backward compati‐
bility.

A cgroup subsystem is also called a resource controller and stands for specific resour‐
ces such as CPU or memory. The kernel (systemd) automatically mounts a set of
resource controllers, and you can get the list from the /proc/cgroups file (or the list‐
subsys command). Here are the key controllers in a RHEL 7 system:

• cpu: provides cgroup tasks access to the CPU
• cpuset: assigns individual CPUs to tasks in a cgroup
• freezer: suspends or resumes all tasks in a cgroup when they reach a defined

checkpoint
• memory: limits memory usage by a cgroup’s tasks

178 | Chapter 4: Server Virtualization and Linux Containers

Systemd provides a set of parameters with which you can tune the resource control‐
lers.

Optimizing Resource Usage with CGroups
Now that you have a basic idea about cgroups and resource controllers, let’s see how
you can use cgroups to optimize resource usage.

Let’s say you have two MySQL database servers, each running within its own KVM
guest. Let’s also assume that one of these is a high priority database and the other, a
low priority database. When you run the two database servers together, by default the
I/O throughput is the same for both.

Since one of the database services is a high priority database, you can prioritize the
I/O throughput by assigning the high priority database service to a cgroup with large
number of reserved I/O operations. At the same time, assign the low priority database
server to a cgroup with a lower number of reserved I/O operations.

In order to prioritize the I/O throughput, you must first turn on resource accounting
for both database servers:

systemctl set-property db1.service BlockIOAccounting=true
systemctl set-property db2.service BlockIOAccounting=true

Next, you can set the priority by setting a ratio of 5:1 between the high and low prior‐
ity database services, as shown here:

systemctl set-property db1.service BlockIOWeight=500
systemctl set-property db2.service BlockIOWeight=100

I employed the resource controller BlockIOWeight in this example to priorotize the
I/O throughput between the two database services, but you could also have config‐
ured block device I/O throttling by setting the blkio controller to achieve the same
result.

SELinux and Container Security
The two major components of the container architecture that you’ve seen thus far –
namespaces and cgroups aren’t designed for providing security. Namespaces are good
at making sure that the /dev directory in each container is isolated from changes in
the host. However, a bad process from a container can still potentially hurt the host
system. Similarly, cgroups help with the avoiding of denial of service attacks since
they limit the resources any single container can use. However, SELinux, the third
major component of modern container architectures is designed expressly to provide
security, not only for containers, but for also normal Linux environments.

RedHat has been a significant contributor to SELinux over the years, along with the
Secure Computing Corporation. The National Security Agency (NSA) developed

The Building Blocks of Linux Containers | 179

SELinux to provide the Mandatory Access Control (MAC) framework often required
by the military and similar agencies. Under SELinux, processes and files are assigned
a type and access to them is controlled through fine-grained access control polices.
This limits potential damage from well-known security vulnerabilities such as buffer
overflow attacks. SELinux significantly enhances the security of virtualized guests, in
addition to the hosts themselves.

How SELinux Works
SELinux implements the following mechanisms in the Linux kernel:

• Mandatory Access Control (MAC)
• Multi-level Security (MLS)
• Multi-category security (MCS)

The sVirt package enhances SELinux and uses Libvirt to provide a MAC system for
containers (and also for virtual machines). SELinux can then securely separate con‐
tainers by keeping a container’s root processes from affecting processes running out‐
side the container.

Enabling SELinux
SELinux can be disabled or made to run in a permissive mode. In both of these
modes, SELinux won’t provide sufficient secure separation among containers. Follow‐
ing is a brief review of SELinux modes and how you can enable it.

SELinux operates in two modes (three if you want to add the default “disabled” mode)
– enforcing and permissive. While SELinux is enabled in both the Enforcing and the
Permissive modes, SELinux security policies are enforced only in the Enforcing
mode. In the Permissive mode, the security policies are read but not applied. You can
check the current SELinux mode with the getenforce command:

getenforce
Enabled
#

There are several ways to set the SELinux mode, but the easiest way is to use the
setenforce command. Here are ways you can execute this command:

setenforce 1
setenforce Enforcing
setenforce 0
setenforce Permissive

The first two options set the mode to Enforcing and the last two to Permissive.

180 | Chapter 4: Server Virtualization and Linux Containers

sVert
RHEL 7 provides Secure Virtualization (sVirt), which integrates SELinux and virtuali‐
zation, by applying MAC (Mandatory Access Controls) when using hypervisors and
VMs. sVirt works very well with KVM, since both are part of the Linux kernel.

By implementing the MAC architecture in the Linux kernel, SELinux limits access to
all resources on the host. In order to determine which users can accept a resource,
each resource is configured with a SELinux context such as the following:

system_u:object_r:httpd_sys_content_t:s0

In this example, here’s what the various entities in the SELinux context stand for:

• system_u: is user
• object_r: role
• httpd_sys_content_t: type
• s0: level

The goal of sVirt is to protect the host server from a malicious instance, as well to
protect the virtual instances themselves from a bad instance. The way sVirt does this
by configuring each VM created under KVM virtualization to run with a different
SELinux label. By doing this, it creates a virtual fence around each of the VMs,
through the use of unique category sets for each VM.

It’s common for Linux distributions to ship with Booleans that let you enable or dis‐
able an entire set of allowances with a single command, such as the following:

• virt_use_nfs: controls the ability of the instances to use NFS mounted file sys‐
tems.

• virt_use_usb: controls the ability of the instances to use USB devices.
• virt_use_xserver: controls the ability of the instances to interact with the X Win‐

dows system

Linux Containers versus Virtualization (KVM)
Virtualization (such as KVM virtualization) and containers may seem similar, but
there are significant differences between the two technologies. The most basic of the
differences is that virtualization requires dedicated Linux kernels to operate, whereas
Linux containers share the same host system kernel.

Your choice between virtualization and containerization depends on your specific
needs, based on the features and benefits offered by the two approaches. Following is
a quick summary of the benefits/drawbacks for the two technologies.

The Building Blocks of Linux Containers | 181

Benefits and Drawbacks of Virtualization
Assuming you’re using KVM virtualization, you can run operating systems of differ‐
ent types, including both Linux and Windows, should you need it. Since you run sep‐
arate kernel instances, you can assure separation among applications, which ensures
that issues with one kernel don’t affect the other kernels running on the same host. In
addition security is enhanced due to the separation of the kernels. On top of this, you
can run multiple versions of an application on the host and the VM, besides being
able to perform virtual migrations as I explained earlier.

On the minus side, you must remember that VMs need more resources and you can
run fewer VM on a host compared to the number of containers you can run.

Benefits and Drawbacks of Containers
Containers help you isolate applications, but maintaining the applications is a lot eas‐
ier than maintaining them on virtual machines. For example, when you upgrade an
application on the host, all containers that run instances of that application will bene‐
fit from that change. You can run a very large number of containers on a host
machine, due to their light footprint. Theoretically speaking, you can run up to 6000
containers on a host, whereas you can only run a few VMs on a host.

Containers offer the following additional benefits:

• Flexibility: since an application’s runtime requirements are included with the
application in the container, you can run containers in multiple environments.

• Security: since containers typically have their own network interfaces and file
system that are isolated from other containers, you can isolate and secure appli‐
cations running in a container from the rest of the processes running on the host
server

• Performance: typically containers run much faster than applications that carry
the heavy overhead of a dedicated VM

• Sizing: since they don’t contain an entire operating system unlike VMs, contain‐
ers of course, are very compact, which makes it quite easy to share them.

• Resource allocation: LXC helps you easily manage resource allocations in real
time.

• Versatility: You can run different Linux distributions on the same host kernel
using different containers for each Linux distribution.

182 | Chapter 4: Server Virtualization and Linux Containers

Linux Containers and KVM Virtualization – the Differences
The key difference between KVM virtual machines and Linux containers is that KVM
VMs require a separate kernel of their own while containers share the same kernel
from the OS.

You can host more containers than VMs for a given hardware, since contains have a
light footprint and VMs are resource hungry.

KVM Virtualization lets you:

• Boot different operating systems, including non-Linux systems.
• Separate kernels mean that terminating a kernel doesn’t disable the whole system.
• Run multiple versions of an application on the same host since the guest VM is

isolated from changes in the host.
• Perform live migrations of the VMs

Linux Containers: Are designed to support the isolation of applications. Since sys‐
tem wide changes are visible inside all containers, any change such as an application
upgrade will automatically apply to all containers that run instances of the applica‐
tion. ** The lightweight nature of containers means that you can a very large number
of them on a host, with the maximum number running into 6000 containers or more
on some systems.

Limitations of LXC
Unlike a fully virtualized system, LXC won’t let you run other operating systems.
However, it’s possible for you to install both a virtualized (full or para) system on the
same kernel as the LXC host system and run both the virtualized guests and LXC
guests simultaneously. Virtualized management APIs such as libvert and ganeti are
helpful if you wish to implement such as hybrid system.

Container benefits
As organizations move beyond monolithic applications to microservices, new appli‐
cation workloads involve a connected matric put together to server specific business
needs, but easily rearrangeable into a different format. Containers are a key part of
this new application architecture. For developers who create applications, containers
offer these benefits:

• Better quality releases
• Easier and faster scalability of the applications
• Isolation for applications

The Building Blocks of Linux Containers | 183

• Shorter development and test cycles and fewer deployment errors

From the point of the IT operations teams, containers provide:

• Better quality releases
• Efficient replacement of full virtualization
• Easier management of applications When a container is instantiated, the pro‐

cesses execute within a new userspace created when you mount the container
image. The kernel ensures that the processes in the container are limited to exe‐
cuting system calls only from their own namespaces such as the mount name‐
space and the PID namespace. The namespaces are containerized in this case.

You can take the same containerized image and run it on a laptop or servers in your
datacenter, or on virtual machines in the cloud.

A virtual machine packages virtual hardware, a kernel and a user space. A container
packages just the userspace – there’s no kernel or virtual hardware in a container.

Linux Container Adoption Issues
Linux containers are starting to be used widely, with some large cloud service pro‐
duces already using them at scale. Following are some concerns that have led to a
slower than expected adoption of Linux containers.

• Security: security issues are a concern with enterprise adoption, due to the fact
that kernel exploits at the host OS level will mean that all contains living on that
host are at risk. Vendors are therefore fine tuning security techniques such as
mandatory access control (MAC) to tighten things up security wise. SELinux
already offers Mandatory access controls, and a different project named libsec‐
comp lets you eliminate syscalls, which prevent hacked containers from compro‐
mising the kernel supporting them.

• Management and orchestration: vendors are working on creating frameworks for
managing container images and orchestrating their lifecycle. New tools are being
created for supporting containers. Docker is a great framework that makes it very
easy to create, manage and delete containers. Docker can also limit the resource
containers can consume, as well as provide metrics on how containers are using
the resources. New tools for building and testing containers are in the wings as
well. Linux container adoption will accelerate by agreeing on a standard for inter-
container communications, using solutions such as virtual switching ng, hard‐
ware enhanced switching and routing and so on.

184 | Chapter 4: Server Virtualization and Linux Containers

Managing Linux Containers
While SELinux, Cgroups and namespaces make containerization possible, a key miss‐
ing piece of Linux containers is the ability to manage them – Docker solves this prob‐
lem very nicely, as explained in the next chapter, which is all about Docker
containers.

LXc is a userspace interface for providing containment features for the Linux kernel.
It enables you to easily create and manage both system and application containers. It
also helps you easily automate container deployment. LXC seeks to create a Linux
environment that’s close to the standard Linux installations, but without using a sepa‐
rate kernel. LXC containers are usually regarded as a midway solution between a
chroot and a full-fledged virtual machine.

LXC is free software, with most of the code releases under the terms of a GNU
license. While LXc, is quite useful, it does have some requirements such as the follow‐
ing:

• Editing of configuration files for controlling resources
• It (LXc) maybe implemented differently between distributions, or even among

different releases of the same distribution

Docker offers a much more efficient and powerful way to create and manage Linux
containers. Docker is an application that enables almost effortless management of
Linux containers through a standard format. Docker isn’t a totally new technology –
it builds on the concepts you’ve seen earlier in this chapter, such as namespaces,
cgroups and LXc to go beyond what’s possible with userspace tools such as LXc.
Besides helping you efficiently manage containers, Docker, since it is a type of image
based containerization, makes containers portable, thus making it easy to share them
across hosts.

With this useful background of Linux containers, let’s turn to a discussion of Docker
containers in the next chapter.

The Building Blocks of Linux Containers | 185

CHAPTER 5

Working with Docker Containers

Docker is the most well-known container platform that’s increasingly being deployed
for developing and running portable distributed applications. A Linux system admin‐
istrator (or a developer) can use Docker to build, ship and run applications on vari‐
ous platforms, including the cloud, both on physical as well as virtual machines.

Chapter 4 explained the foundations of generic containers, which are Cgroups, SELi‐
nux and namespaces. Where Docker comes in is that it lets you easily package, run
and maintain containers with handy tools, both from the command line and through
HTTP APIs. This is what makes it possible for you to easily package applications and
their runtime environments into self-contained images. A simple Dockerfile is what
you use to package the application and its runtime environment together.

Few technologies are affecting and disrupting established ways of running applica‐
tions as Docker, which provides a sophisticated way to package and run your applica‐
tions. As a Linux administrator, you can get Docker up and running as a service in a
few short minutes. Not only that, it’s really easy to manage and monitor the contain‐
ers that you run in a development or production environment.

At the center of modern containerization is the Open Container
Initiative launched in 2016. The initiative is managed by the Linux
Foundation, to create standards around container formats and
their runtime environment.

A key reason for the wide spread success of containerization and Docker, especially, is
that containerization lets you efficiently deploy applications in a cloud based environ‐
ment. Docker has made it extremely easy to containerize applications. However, it’s
also important to understand that a lot of things are still evolving when it comes to

187

containerization – only about 40% of Docker’s customers are actually running the
containers in production.

Containers make it possible to “overwrite’ a container that’s part of
a running application, which means less downtime when introduc‐
ing changes.

Single containers are pretty easy to run, but managing a set of related containers is a
complex affair. Fortunately, there are several tools such as Kubernates, Swarm and
others that allow you to do precisely this, and I show how you can take advantage of
these container orchestration technologies.

Containers isolate applications from other apps running on a host, but don’t offer the
same extent of isolation as VMs – since VMs are ahead of the curve in times of secu‐
rity, a lot of people run containers inside VMs, thereby getting the best of both the
worlds, so to speak.

You can run Docker in a number of Linux systems, such as Ubuntu, Fedora, RHEL,
and CentOS. Containerization means doing things in a small way and hence you
really don’t need a traditional bloated Linux system to run Docker. In addition to
stripped down versions of the standard Linux distributions, you can run Docker on
specially designed lightweight Linux systems optimized for container deployments,
such as CoreOS and Atomic Host.

Containers include both the application code and its configuration and associated
dependencies. Since the Linux operating system that supports these containers
doesn’t have to support all the app’s dependencies any longer, stripped down
container-oriented operating systems such as CoreOs Red Hat’s Atomic Host are
increasingly becoming popular as vehicles for running containers in production. I
explain the CoreOS and Atomic Host operating systems later in this chapter.

Docker Basics
Docker containers package software in a complete filesystem that includes everything
an application needs to run. This means the app will always run the same way no
matter the environment. Docker containers offer the following key benefits:

• Lightweight – the images are built from layered file systems, so multiple images
share common files, thus reducing the disk usage. They also share the same OS
kernel, thus using RAM more efficiently.

• Open Standards: The open standard model means containers run on all Linux
distributions.

188 | Chapter 5: Working with Docker Containers

• Security: Containers isolate applications from each other as well as from the
infrastructure itself.

The main use of Docker is to create and run applications designed and configured to
run within a container. Here, it’s good to pause and understand what a containerized
application is. Traditional applications run directly on a host operating system. They
use the Linux server’s file system, process table, network interfaces and ports and so
on. The problem with this set up is that you can’t run multiple versions of a software
package on the same server, as this would cause conflicts. It’s also hard to move an
application since you’d have to move the code as well as its dependencies, which isn’t
easy to do.

When you create an application container, you want to make it easy to share the con‐
tainers with others and distribute it. Docker is a container runtime engine that makes
it easy to package applications and push them to a remote registry, from where other
users can pull those applications.

Often people are a bit confused as to how Docker containers compare to traditional
virtual machines. It’s simple: a VM emulates a foreign environment while a container
is a lightweight OS designed to make self-contained applications portable. Due to
their extreme lightweight nature, applications running in containers incur very little
overhead.

A key issue in developing and deploying applications is the packaging together of all
the required dependencies for a software application, such as its code, the runtime
libraries, etc. With Docker, you simply package all the required code and dependen‐
cies into a single Docker image. As explained in Chapter 4, unlike in traditional virtu‐
alization where the VMIs (virtual machine images) run on separate guest operating
systems, all Docker images in a server run within a single OS kernel.

Docker is playing a significant role in the recent ascendency and popularity of DevOps. Administrators provide the PaaS (Platform as a Software) to developers who are responsible for ensuring that the code behaves as advertised. If the code fails, it only affects a specific container and not all containers and services running on a server. Linux administrators can better utilize their time and talent in ensuring that the servers stay up and that they remain secure. Developers can monitor the code running in containers deployed to production and troubleshoot them, which may mean some of them carry pagers to alert them of production issues.

When Docker Isn’t Right for You
Sometimes Docker isn’t right for you! Although you can run virtually anything you
want within a container, you really don’t want to run databases and any kind of state‐
ful applications within Docker containers. Docker containers are ideal for applica‐
tions such as microservices which don’t maintain state. Since resizing the CPU and
memory of a container involves restarting the container, applications that need
dynamic resizing for CPU and RAM aren’t ideal for Dockerization.

Docker is more suitable for applications such as microservices that
don’t maintain state.

Docker Basics | 189

Docker uses iptables to provide NAT between the host IP and the container’s IPs. As a
result, if your applications need high network throughput, they aren’t ideal for
Docker.

What Docker Consists of
In order to get going with Docker containers, you need to learn about the various
components that play a role in Docker containerization. The following sections
explain:

• The Docker Project
• The Docker Hub Registry
• Docker Images and Docker Containers
• The docker Command

The Docker Project
The Docker Project, of course is what developed the container format that we know
today as Docker. The project has the twin goals of simplifying application develop‐
ment and distribution. The Docker Project provides a format for software containers,
and also provides various tools to help you manage, provision and orchestrate con‐
tainers. The Docker Project also manages the central repository called the Docker
Hub Registry.

The Docker Hub Registry
The Docker Hub Registry (https://registry.hub.docker.com) acts as a store for you to
save and develop your Docker container images. When you request a Docker con‐
tainer image that’s not on your system, Docker by default checks the Docker Hub
Registry for that image.

You store containers in registries and you can make the images
available to download to systems running Docker.

The Docker Hub Registry hosts the official repositories for all Linux distributions and
several application projects. You can create a Docker user account and maintain your
own Docker repository where you can push your Docker images to. In order to store
container images privately, you can create your own Docker Registry.

190 | Chapter 5: Working with Docker Containers

https://registry.hub.docker.com

The Docker Service
The Docker service is the same as the Docker engine. It’s the Docker service that
grabs the images you pull from the Docker Hub Registry.

Docker Images and Docker Containers
Before we dive deep into Docker containerization, it’s highly useful to clarify certain
commonly used terms such as Docker images, containers, and so on.

Docker Images
A Docker image consists of all the components of an application, such as libraries,
executables and configuration files – together, these components enable an applica‐
tion to run.

You can build a Docker image through a Dockerfile, or by downloading pre-built
Docker images from the Docker Hub (https://hub.docker.com/). The Dockerfile helps
you automate the creation of a Docker container image. A Dockerfile consists of
instructions regarding the software to be downloaded, the commands to be run, net‐
works, environment variables, and the required files and directories that must be
added to the container’s filesystem.

Docker Containers
A Docker container is the running instance of a Docker image, and thus the instance
is what performs the actual work. A Docker container is an isolated environment
where the Docker image will run. Each Docker container will include its filesystem
and you can copy files from the host server to the Docker containers.

Applications can require other software, and this means that Docker containers can
be linked together, with software from one container made available to another
Docker container. A good way to manage a container with other containers is to use a
product called Kubernates to orchestrate the containers into pods.

A Docker image is a stored version of a container. A container is an
instance of an image.

You start a container with the docker run command. You can run a container in the
background (detached) mode, so the instance can keep running after the docker run
command exits.

Docker Basics | 191

https://hub.docker.com/

The Docker Command
The docker command is what you use to manage containers. You can run the com‐
mand from the command line or run it as a service daemon that handles requests to
manage containers.

There are separate commands for managing images and for managing instances. A
command such as docker images will show you all the Docker images on your sys‐
tem. To view the containers that are actually running, you use commands such as
docker ps. The docker start and docker stop commands let you start and stop a
Docker container instance.

The docker command is quite versatile, and lets you do all the following:

• Create and remove containers and images
• Manage running containers
• Manage images and work with Docker registries
• Watch Docker events and log messages, and the CPU and memory usage statis‐

tics for containers

What Linux Administrators should know in order to support Docker
Docker offers a different paradigm from what most of us are used to, in terms of how
various features of the Linux operating system are made available to Docker contain‐
ers. In order to work with Docker, you should know the following:

• Host privileges
• Networking
• Storage

Host Privileges
Containers use host privileges to directly access a limited set of OS features such as
the process table, the IPC namespace, specific CPUs, and devices. Super privileged
containers are allowed to not only access, but also change the system.

You use regular containers for running applications, and super
privileged containers to add tools to help you access the host sys‐
tem.

192 | Chapter 5: Working with Docker Containers

Docker Networking
You have to follow specific rules for managing the host network interfaces from
inside the Docker containers. You can use ambassador containers (proxies) and ser‐
vice discovery solutions (explained in detail later in this chapter) to connect services
running on different hosts. Since these solutions require you to expose ports through
the hosts and also don’t scale well. You may need to provide full cross-host network‐
ing solutions by providing IP connectivity between containers.

Following are the three commonly used Docker networking modes:

• Bridge: The Docker Bridge, called docer0 is used to connect containers. Docker
instantiates a veth pair connecting eth0 in the container to the Docker bridge
(docker0). It uses IP forwarding and iptables rules used for IP masquerading to
provide the external connectivity. The bridge networking mode is good for devel‐
opment, but it’s not very efficient, making it unsuitable for production purposes.

• Host: Under the Host networking mode, the container shares the host’s network‐
ing namespace, thus exposing it to the public network. This is much more effi‐
cient than the bridge mode.

• Container: In this mode, a container uses the networking namespace from a dif‐
ferent container. This mode allows for reuse of efficient network stacks but suf‐
fers from the drawback that all containers sharing a network stack need to use an
identical IP stack. Kubernates uses this mode.

Earlier on, Docker used links to network containers, but the current way is for net‐
works to be created and managed separately form containers. Two key objects – net‐
work and services play a key role in networking. When you launch a container, it can
be assigned to a specific network. Containers can publish services that let them be
contacted through their name, without needing the links.

For cross-host networking of clusters of containers, there are several networking sol‐
utions such as the following:

• Overlay: This is the “batteries included” Docker solution for cross-host network‐
ing, and is probably the best solution during development and for small cloud-
based environments.. Overlay uses VXLAN tunnels to connect hosts with their
IP namespace and for eternal connectivity, relies on NAT.

• Weave: This is a more complete solution for networking, and includes Wea‐
veDNS for service discovery and load balancing. Weave is easy to use and hence
good for development purposes.

• Flannel: Flannel is a networking solution meant mainly for CoreOS Docker con‐
tainers. Flannel assigns subnets to the each of the hosts and the subnets are used
to assign IPs to individual containers. In Kubernates, Flannel is used to assign

Docker Basics | 193

unique IPs to each pod. Flannel offers a good simple solution in many produc‐
tion scenarios.

Docker Storage
You can use bind mounts to connect the host storage to a Docker container. Docker
storage volumes are normal Linux directories on the host server that are bind moun‐
ted to the container. The following example shows one way to initialize a volume. You
bind mount a volume at runtime with the –v flag as shown here:

$ docker run –it –name test-container –h CONTAINER –v /data/ Debian /bin/bash

This docker command will make the directory /data (inside the container named
test-container) into a volume.

Alternatively, you can create a volume inside a container by specifying the VOLUME
instruction in the container’s Dockerfile:

FROM debian:wheezy
VOLUME /data

This does the same thing as the specifying of the –v option in the docker command I
showed earlier.

Setting up the Docker Container Run-Time Environment
Now that you’ve learned the basic terminology used in Docker environments, let’s get
started with Docker containers by learning how to get them to run on a Fedora Linux
distribution that’s sponsored by Red Hat. In order to use Docker, you need to set up
the Docker engine on a real or virtual Linux server. In order to get started with using
Docker, all you need is a software package named docker, which contains the all-
important docker command.

The best way to get started is by installing a standard Linux distribution with a desk‐
top interface so you can develop and debug the containers you create. Once you’re
ready to go to production, you can deploy them through a container oriented OS
such as CoreOS or Project Atomic.

Let’s learn how to set up the Docker environment on a Linux CentOS server. Before
you can install Docker, of course, you must download and install CentOS on either a
real host or on a virtual machine (I’m using a virtual server that I created with
Vagrant and VirtualBox). Once you do this you’re ready to perform the Docker
installation. On a RHEL based system, the Docker container’s package is named
docker. Here’s how you perform the installation:

1. Update all the installed packages to their latest versions.

194 | Chapter 5: Working with Docker Containers

 # yum update

1. Restart the server.

 # reboot

1. Install the Docker package (this contains the docker command that you’ll use to
manage Docker containers).

 # yum install docker

1. Start the Docker service. Before starting the service, you must enable the service.

systemctl enable docker.service
systemctl start docker.service

You’re done at this point and you can check the status of Docker in the following way:

$ [vagrant@localhost ~]$ systemctl status docker.service
● docker.service - Docker Application Container Engine
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor preset: disabled)
 Active: active (running) since Sun 2016-03-13 13:44:25 EDT; 19h ago
 Docs: http://docs.docker.com
 Main PID: 881 (docker)
 Memory: 2.9M
 CGroup: /system.slice/docker.service
 └─881 /usr/bin/docker daemon --selinux-enabled
[vagrant@localhost ~]$

Note the following:

• The docker service is enabled and is active
• The service name is the docker command (/usr/bin/docker)
• The –d option means that the Docker service runs as a daemon process
• The Docker service is SELinux enabled.

Now that you’ve installed Docker, you’re ready to play with it, using the docker com‐
mand.

Getting Information about the Containers
You can execute the docker info command to verify that Docker is installed, and get a
bunch of useful information, as shown here:

[root@localhost ~]# docker info
Containers: 19
Images: 73
Storage Driver: devicemapper
 Pool Name: docker-253:0-525784-pool

Setting up the Docker Container Run-Time Environment | 195

 Pool Blocksize: 65.54 kB
 Backing Filesystem: extfs
 Data file: /dev/loop0
 Metadata file: /dev/loop1
 Data Space Used: 5.878 GB
 Data Space Total: 107.4 GB
 Data Space Available: 31.66 GB
 /metadata
 Library Version: 1.02.107-RHEL7 (2015-12-01)
Kernel Version: 3.10.0-327.10.1.el7.x86_64
Operating System: CentOS Linux 7 (Core)
CPUs: 1
Total Memory: 993.3 MiB
Name: localhost.localdomain
…
[root@localhost ~]#

As with any Linux service, you can configure Docker to start on boot. On an Ubuntu
server, for example, you configure the docker daemon to start on boot, by running
the following command:

$ sudo systemctl enable docker

Running Container Images
Once you get going with Docker by starting the Docker service as shown earlier, you
can run a container without having any images on your system. This seems like sheer
magic when you actually do this on your system! When you execute the docker run
command, it goes and gets the image you are looking for from the Docker Hub (by
default). The following example shows how to get and run the fedora image on your
server.

docker run fedora cat /etc/os-release
Unable to find image 'fedora:latest' locally
00a0c78eeb6d: Pull complete
Status: Downloaded newer image...

NAME=Fedora
VERSION="22 (Twenty Two)"
ID=fedora
...

When you run the docker command, this is what happens:

• The command locates the container image (fedora in our example), and down‐
loads it to your laptop or server. The command looks in your local server first for
the fedora: latest image, and if it fails to find it there, will download the image
from the docker.io registry (same as the Docker Hub Registry).

• The command starts the container using the image.

196 | Chapter 5: Working with Docker Containers

• The docker command will finally run the cat command, which you passed as an
attribute to the docker command.

Once you run this command, Docker stores the image on your local system. A con‐
tainer, as I explain shortly, is ephemeral in nature and disappears off the face of the
earth when you stop it. When you restart the same container, Docker uses the stored
image on the local server. Thus, the very first run will take much more time since
Docker needs to download the image from the Docker Hub – subsequent runs are
quite fast, since all Docker needs to do is to spin up the container using the image
that you already have.

Managing Containers
In a previous section where I showed the first example of the docker run command,
the command started the Fedora container and executed the Linux cat command –
and then it exited. Often, a container such as one that runs a web server service, for
example, needs to run continuously. So, it’s good to learn how to run a container in
the background.

Running Interactive Containers
Use the –d (for detached) option with the docker run command, to run a container in
the background. In order to run it in the foreground in an interactive fashion, specify
the –i option and to open a terminal session, add the –t option.

A common use case for an interactive container is when you want open a shell to do
things inside the container, just as you’d log into a Linux server to view, modify and
execute various things. The following example shows how to open a shell in the
Fedora image that Docker has already downloaded on to my server.

docker run -it fedora /bin/bash
bash-4.3#
You can view the processes running inside this Fedora container by issuing the ps command:
bash-4.3# ps -e
 PID TTY TIME CMD
 1 ? 00:00:00 bash
 7 ? 00:00:00 ps
#

Wow! Instead of the usual hundreds of processes that run on a full-fledged Linux
server, this Fedora container has but two processes! The process with the ID 1 isn’t
the usual init (or systemd) process on your Linux server – instead it’s the bash com‐
mand. The only other process is the ps command you just used – that’s it! This is the
amazing thing with containerized systems – they’re lean to start with and you can
make them as lean or as fat as you want it, to suit your needs. This is the big differ‐
ence between a container and a whole virtual machine.

Running Container Images | 197

If you’re curious to see the list of installed packages on this new server, issue the
familiar rpm –qa command:

Making your base Image Heftier
In the previous section, I showed how to create a very light Fedora container using a
fedora base image. There are two ways to create a heftier container with more capa‐
bilities (more software) – you can simply download an alternative fedora base image
with more stuff already baked in. Or, you can add software to a simple base image
such as what I’ve got here. Docker lets you add software to a running container, as
shown here:

bash-4.3# yum install iproute net-tools bsd-games words \
 vsftpd httpd httpd-manual -y
Resolving Dependencies
--> Running transaction check
...
Complete!
bash-4.3# exit

This example shows how you can add any software you want to a container. Use the
yum or dnf (RHEL and Fedora) or the apt-get (Debian and Ubuntu) commands from
within a container, in order to add software.

Committing a Container
If I want to use my fedora container again, with all the software I’ve just added, of
course the container must have these software already added to it. I just exited the
running container but didn’t stop that container, so it’s still running, as you can see
here:

docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
88f6c09523b5 fedora:latest "/bin/bash" 3 hours ago
 Exited (0) 7 seconds ago trusting_heisenberg
#

You know that this running container has been fortified with additional software.
Why not save the container as a new image that you can use whenever you wish? You
can do this with the docker commit command, as shown here:

docker commit -a "Sam Alapati" 88f6c09523b5 Myfedora

The new image Myfedora is now stored as a separate image on your server, and is
part of the Docker image set:

docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

198 | Chapter 5: Working with Docker Containers

fedora latest 834629358fe2 1 month ago 422.2 MB
testrun latest 226f7543f12a 3 minutes ago 431.6 MB

Running Commands within a Container
Now that I’ve added the ip-route and the net-tools packages to the bare bones base
fedora image, I know I can run the ip and the route commands inside the container,
as shown here:

ip addr show docker0
5: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default
 link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
 inet 172.17.42.1/16 scope global docker0
 valid_lft forever preferred_lft forever
#

The ip command reveals the IP address of the host’s docker0 interface –
172.17.42.1/16. The host automatically assigns IP addresses to each container as it’s
spawned, using DHCP to do so.

Containers use a router through the host server’s docker0 interface
to access networks outside the local server.

Linking Containers
You use Docker links to enable containers on the same host to communicate with
each other. By default, communications among the containers in a Docker network
aren’t exposed to the host network, since they use an internal Docker network.

Running Services inside a Container
Earlier, you learned how to issue various commands from inside a container, depend‐
ing on the software that’s available in the container. However, simply being able to
run those types of commands (ps, route, ip, etc) isn’t going to do you a whole lot of
good, if that’s all you can do! The great power of containers comes through the ability
to run a service such as a web server from the container.

Running containerized services lets you preconfigure everything you need to run that
service and thus make the service truly portable. In addition, containerization of a
service helps you to easily scale the service – if you need more web servers to manage
the workload, simply start up more containers, that’s it - all you need to do is to make
sure that each of the container you expose as a service uses a different IP address
and/or port.

Running Container Images | 199

Creating a Containerized Web Server
Let’s learn how to run an Apache web server inside a Docker container. An Apache
web server serves web content from the /var/www directory by default. Also by
default, it listens on the TCP ports 80 and 443 (secure). In the following example, I
have my web server serve the basic content (index.html) from the /var/www/html
directory. Here are the steps to get this done:

1. Create a directory for holding the web content.

mkdir –p /var/www/html

1. Set the appropriate SELinux context (since I’m using Fedora, which is a RHEL
compatible system).

chcon –R –t httpd_sys_content_t /var/www/

3. 4. Add some content to the index.html page.

echo “ Apache is running, yeah!!” > var/www/html/index.html

Now that you’ve prepared the ground for the Apache container, run the httpd service
using a Docker image. I use the mycont image I had created in the previous section.

docker run –d –p 80:80 –p 443:443 –name=MyApahceServer \
 -v /var/www/:/var/www mycont \
 /usr/sbin/httpd –DFOREGROUND

Note the following:

• In this example, the –d option tells Docker to keep the newly created container
running in the background until I tell it to stop running it – remember that by
default the container runs a command and quits! The -DFOREGROUND option
runs the httpd daemon in the foreground.

• The –p option publishes the container ports to a host port. The port to the left of
the colon belongs to the host and the one after the colon is the container port. So,
in this example, I’m exposing both the TCP HTTP port (80) and the HTTPS
(443) port to the same port numbers on the host server.

• The important option you should know about here is the –v option. The –v
option shows the bind mounted volumes. Using this option, you mount directo‐
ries on the host system to directories on the container. In this case, I mount the
default Apache directory for web content (/var/www) on the host to an identi‐
cally named directory on the container.

• The image name is mycont – the name of the container created from this image
is specified by the –name parameter. The name parameter is optional, but quite

200 | Chapter 5: Working with Docker Containers

useful in practice. So, if you want to open a shell in the new MyApacheServer
container, you can do so by issuing the normal docker command:

docker exec –it MyApacheServer /bin/bash

Now, the web server is running in the Docker container. You can test that the ports
are configured correctly by issuing a simple curl command such as this:

curl http://localhost/index.html

I see the contents of the index.html file stored in the /var/www/html directory in the
host server, since port 80 from the container is exposed to port 80 on the host, and by
using bind volumes, the container also uses the same Apache directories as the host.

Controlling the Container Resource Usage
When you run multiple containers on a host, resource allocation becomes a signifi‐
cant issue. You can control the usage of the host resources such as RAM and CPU
with options such as –memory, --memory-swap, --cpu-shares and –cpuset-cpus.

Running Privileged Containers
By default, a container has limited access to a host’s capabilities. For example, it can’t
access namespaces such as the process table and the IPC namespace on the host.
Although, in general, you want to limit a container’s access to the host and to other
containers, the concept of a privileged container (also called a super privileged con‐
tainer) lets you grant a container greater access than what’s allowed by default.

Building Docker Images
You can build Docker images in two ways:

• A developer can build an image and push it to a repository
• You can automatically build images with a CI/CD system, following each code

push

In a production system, the best strategy would be to use a CI/CD system such as Jen‐
kins to automate the building of images following code pushes. As each container is
built, it’s uploaded to a repository from where the CI/CD system can download and
run the image

Building Images with a Dockerfile
You can automate the creation of images through a Dockerfile, which is analogous to
the Vagrant configuration file named Vagrantfile, which lets you configure VMs
easily. The Dockerfile is a text file that consists of instructions, and the Docker

Building Docker Images | 201

builder reads this file and executes the instructions one by one to create the image.
2.1.1 Let me build a simple image to show how to create and use a Dockerfile. Here
are the steps:

First, create an empty directory

$ mkdir sample_image

Next, create a file named Dockerfile and add the following to the file.

Pick up the base image
FROM fedora
Add author name
MAINTAINER Sam R. Alapati
Add the command to run at the start of container
CMD date

Finally, Build the image with the docker build command.

$ cd sample_image
$ docker build –t /fedora/test .

The –t option specifies a tag name.

As you can see, the docker build command saves the intermediate images so it can
use them in later builds to speed up the build process. After running each of the
instructions in the Dockerfile, Docker commits the intermediate state image and runs
a container with that image for executing the next instruction. It then removes the
intermediate containers from the previous step. Once the last instruction is executed,
it creates the final image.

Understanding the Dockerfile
A Dockerfile has the following format:

• INSTRUCTION arguments: It’s customary to specify the instructions in upper
case. A line with the # at the beginning is a comment. A Dockerfile usually has
the following types of instructions:

• FROM: This must be your first instruction in the file, and it sets the base image.
The default behavior is the latest tag:

FROM <image>

You can have multiple FROM instructions if you want to create multiple images. If
you just specify the image name, such as FROM fedora, the build program will down‐
load the image from the Docker Hub. If you want to use your own private images or a
third-party image, you need to specify it as shown in this example:

FROM registry-host:5000/

202 | Chapter 5: Working with Docker Containers

• MAINTAINER: sets the name of the author for the image:

MAINTAINER <name>

• RUN: you can execute the RUN instructions in the shell, or directly as an exe‐
cutable:

RUN <command> <param1>… <paramN>
Or
RUN [“executable”, “param1”, “param2”, …. “paramN”]

• LABEL: Use the LABEL instruction to tag a distribution, as in:

LABEL distro=fedora21

• CMD: when starting a container, the CMD instruction offers a default exe‐
cutable:

CMD ["executable", "param1",...,"paramN"]

• ENTRYPOINT: This instruction lets you configure the container as an exe‐
cutable:

ENTRYPOINT ["executable", "param1",...,"paramN"]
ENTRYPOINT <command> <param1> ... <pamamN>

• EXPOSE: exposes the network ports on the container on which to listen at run‐
time:

EXPOSE <port> [<port> ...]

Alternatively, you can expose ports at runtime when starting the containers.

In addition, there are additional instructions such as those that let you set the envi‐
ronment variables (ENV), ADD (copy files into the image), and COPY (lets you copy
files from source to destination). The docker build –help command shows all the pos‐
sible instructions you can use.

Building an Apache Image using a Dockerfile
Let me use a simple example to show how to build a Docker image through a Docker‐
file. You can get the Dockerfile by installing the fedora-dockerfiles package in a
Fedora system (in the /usr/share/fedora-dockerfiles directory). Or, you can get the
Dockerfile for this from the Fedora-Dockerfiles GitHub repo, as shown here:

$ git clone https://github.com/nkhare/Fedora-Dockerfiles.git

Once you clone the repo, go to the apache subdirectory and view the Dockerfile:

Building Docker Images | 203

$ cd Fedora-Dockerfiles/apache/
$ cat Dockerfile
FROM fedora:20
MAINTAINER "Scott Collier" <scollier@redhat.com>

RUN yum -y update && yum clean all
RUN yum -y install httpd && yum clean all
RUN echo "Apache" >> /var/www/html/index.html

EXPOSE 80

Simple startup script to avoid some issues observed with container restart
ADD run-apache.sh /run-apache.sh
RUN chmod -v +x /run-apache.sh

CMD ["/run-apache.sh"]

The run-apache.sh you see in the last three instructions in the Dockerfile refer to the
script that runs HTTPD in the foreground.

Now that you’ve the Dockerfile, it’s easy to build a new image:

$ docker build -t fedora/apache .
Sending build context to Docker daemon 23.55 kB
Sending build context to Docker daemon
Step 1 : MAINTAINER "Scott Collier" <scollier@redhat.com>
Removing intermediate container 2048200e6338
Step 2 : RUN yum -y update && yum clean all
.... Installing/Update packages ...
Cleaning up everything
Step 3 : RUN yum -y install httpd && yum clean all
.... Installing HTTPD ...
Step 4 : RUN echo "Apache" >> /var/www/html/index.html

Step 5 : EXPOSE 80

Step 6 : ADD run-apache.sh /run-apache.sh
Step 7 : RUN chmod -v +x /run-apache.sh

mode of '/run-apache.sh' changed from 0644 (rw-r--r--) to 0755 (rwxr-xr-x)
Step 8 : CMD /run-apache.sh

Successfully built 5f8041b6002c

The following is what our little docker build command has done for us:

• It installed the HTTPD package in our base image
• It created a HTML page
• It exposed port 80 to server the web age

204 | Chapter 5: Working with Docker Containers

• It set the instructions to start up Apache when you start a container based on this
image

You can test your new image by running a container from it:

$ ID = docker run –d –p 80 fedora/apache

Get the IP address of the container with the inspect command:

$ docker inspect –format=’{{.NetworkSettings.IPAddress}}’ $ID
172.17.0.22

Use the curl command to access the web page:

$ curl 172.17.0.22
Apache

Image Layers
Every instruction in a Dockerfile results in a new image layer. Each of these image
layers can be used to start a container. The way a new layer is created is unique – it’s
created by starting the containers based on the image of the previous layer, executing
the Dockerfile instruction, and saving the new image.

Multiple pre-built containers are layered together to build an appli‐
cation image.

Docker Image Repositories
You can store Docker images in a Docker image repository, or maintain your own
image repository in your data center. Docker’s hosted image repo hub isn’t known for
its reliability and hence, you’re better off running your own image repository. It’s
much more reliable and faster as well to go this route, since there’s very little network
latency involved in the do it yourself approach.

Using a Private Docker Registry
By default, if a container image isn’t already available on your own system, Docker
fetches it from the Docker Hub Registry (https:///hub.docker.com).

You can also set up your own private Docker registry. Maintaining a private registry
isn’t by any means mandatory – however, it offers the option of storing your images
privately without having to push them to the public Docker Hub Registry. Once you
set it up, you can push and pull images from the private registry without having to
use the public Docker Hub Registry.

Docker Image Repositories | 205

https:///hub.docker.com

In this section, I show how to setup a private Docker registry and how to use it to
manage your Docker images.

Setting up a Private Registry
Some Linux distributions such as Fedora have a docker-registry package that lets you
start up the service that runs the private registry. You can install this package and
start the docker-registry service with the systemctl command. On other Linux distri‐
butions, once you’ve a Docker service running, as explained earlier in this chapter,
you must run the Docker provided container image named registry to set up the ser‐
vice. Note that Atomic Project Fedora doesn’t include the docker registry package –
therefore, you must use the registry container for this distribution as well.

The Docker Image Namespace
In a “pure” Docker system (something that only uses the Docker Project code, with
no modifications) a command such as docker run <image_name> will always pull the
same image from the Docker Hub to your local system. Similarly, a Docker system
that you haven’t modified with any patches will search only the Docker Hub when
you issue a docker search command, assuming the image isn’t already in a private
registry on the server.

At the present time, you can’t change the default registry to something other than the
Docker Hub Registry. However, changes are afoot to modify this default behavior, as
well as several other aspects relating to the image namespace. You can certainly
change the default behavior by taking advantage of features that are already present in
various Linux distributions.

Note the following key facts about setting up a private registry:

• You can use the same registry for multiple Docker client systems
• By default, the Docker registry stores images in the /var/lib/docker-registry

directory. Since a larger number of images can consume a lot of storage space,
ensure that you’ve plenty of storage available in the host where you set up the
registry.

Managing the Private Registry
Once you pull an image from the Docker Hub, you can push that image to the local
Docker registry on a server. Before pushing it, name the image using the docker tag
command:

docker tag hello-world localhost:5000/hello-me:latest

Once you tag the image, push the image to the local Docker registry:

206 | Chapter 5: Working with Docker Containers

docker push localhost:5000/hello-me:latest
The push refers to a repository [localhost:5000/hello-me] (1 tags)
...
Pushing tag for rev [91c95931e552] on
 {http://localhost:5000/v1/repositories/hello-me/tags/latest}

You can remove the image from the local private registry with the docker rmi com‐
mand. You can retrieve an image from the private registry with the docker pull com‐
mand. The following example shows how to do this:

docker rm myhello
docker rmi hello-world localhost:5000/hello-me:latest
docker pull localhost:5000/hello-me:latest
Pulling repository localhost:5000/hello-me
91c95931e552: Download complete
a8219747be10: Download complete

The docker images command shows all the images stored in the local private registry
on a server.

[root@localhost ~]# docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
docker.io/fedora latest 7427c9af1454 9 days ago 204.7 MB
docker.io/ubuntu latest 56063ad57855 10 days ago 187.9 MB
docker.io/hello-world latest 975b84d108f1 5 months ago 960 B
docker.io/sequenceiq/hadoop-docker 2.7.0 ea842b97d1b8 10 months ago 1.76 GB
[root@localhost ~]#

In an Ubuntu system, you don’t install the Docker registry from a package – instead,
you download the registry container from the Docker Hub Registry. You can pull the
registry image from the Docker Hub with the docker pull command as shown here:

sudo docker pull registry:latest

The rest of the commands to test the creation of the registry, to pull and push images
are identical to those I described above for the Fedora system.

New Operating Systems Optimized for Docker
Earlier on, I showed how you run Docker in a traditional Linux distribution such as
Fedora or Ubuntu. The current trend however, is to use a new generation of operat‐
ing systems that have been expressly designed for Docker. Two things separate these
operating systems from traditional systems:

• Both of these operating systems are preconfigured to run Docker
• Only containers are expected to run on the server (pull an image and run a con‐

tainer)
• They use an atomic upgrade mechanism to manage the servers

New Operating Systems Optimized for Docker | 207

The three features mentioned here mean that these operating systems are lightweight
in nature – they contain just the absolute minimum capabilities to run a container.
The systems don’t have tools such as yum or apt-get to download packages separately
from the containers. In this section I explain the following lightweight container ori‐
ented operating systems:

• CoreOS – You can install CoreOS, available on most cloud providers, on bare-
metal and test it locally through Vagrant (to be explained in Chapter 6). Atomic
Hosts: These include servers such as CentOS Atomic, RHEL Atomic and Fedora
Atomic.

• Atomic Host: Red Hat Enterprise Linux Atomic host is a variation of Red Hat
Enterprise Linux 7 that’s optimized for running Linux containers in the Docker
format.

CoreOS and Atomic Host aren’t everything that’s available to you – you can also use
other operating systems and other techniques such as RancherOS, and VMWare Pho‐
ton.

Using CoreOS
CoreOS is a popular new Linux distribution that’s geared to running applications
within containers. CoreOS is highly scalable and is an easy to manage operating sys‐
tem, which provides a distinct marking off of operational and application related
functions.

Both of these lightweight operating systems let you deploy contain‐
ers on a bare metal system, or in a cloud environment such as
Amazon EC2 or the Google Cloud Platform.

CoreOS offers an ISO that lets you copy its image to a partition and boot it up with
no sweat. If you’re using CoreOS to deploy to a cloud environment, you can use a
specialized tool such as cloud-config.

You can create a cluster of CoreOS servers and launch containers in that cluster using
schedulers. Flannel is a network overlay technique that’s a part of CoreOs, and serves
as the way containers can communicate through a provider IP space across multiple
servers.

Working with Atomic Host
Atomic Host is the product of the Atomic Project and is an RPM-based Linux distri‐
bution builder expressly designed to work with Docker containers. Fedora, RHEL

208 | Chapter 5: Working with Docker Containers

and CentOS versions can run as Atomic hosts. Depending on your environment, you
can set up an Atomic Host in any one of the following ways:

• Download an Atomic qcow2 image and add configuration information to it with
the cloud-init tool.

• Use a Vagrant file to spin up a CentOS Atomic VM (for CentOS Atomic)
• RHEL Atomic offers the Atomic Installation ISO and Fedora offers the Fedora 22

installer. Once you download and install the Fedora Atomic ISO installation
image (assuming you want to setup a Fedora Atomic Host), you can start up the
ISO image and start installing it. Once you complete the installation, run the fol‐
lowing atomic command to ensure you have the latest Docker version.

atomic host upgrade

Once you do this you are ready to set up a Docker registry, or start running docker
commands.

The Docker Stack in Production
As with a virtualized environment, setting up Docker in a production system involves
several architectural components, each of which performs a specialized task, such as
building images and running the images as containers. Following are the typical tasks
involved in managing a Docker system in production:

• Building the image
• Sending the image to a repository
• Downloading the image to a new host
• Running the image as a Docker container
• Connecting the container to other containers (clusters of containers)
• Sending traffic to the containers
• Monitoring the running containers in production

In order to manage these tasks, you must set up architectural components such as the
following:

• A build system
• An image repository
• A configuration management system
• A deployment mechanism
• An orchestration system to tie multiple containers together

The Docker Stack in Production | 209

• A monitoring system

The following principles help you move containers to a production use from develop‐
ment:

• Keep production and development environments as similar as possible
• Make sure to employ a continuous integration/continuous delivery (CI/CD) sys‐

tem
• Keep the Docker setup simple
• Automate as much as possible

It’s normal to use the term deployment when you want to get something into produc‐
tion. Deployment involves the building and testing of Docker images and deploying
the official tested images to the production server(s). Once the image is on the server,
of course, you must run the containers on the server. However, in order to carry this
off on multiple servers, you must use a repeatable process that can handle the con‐
tainer configuration during each deployment.

Provisioning Resources with Docker Machine
The best way to providing new resources to run containers is to use Docker Machine.
Docker Machine can do all the following:

• Create the servers
• Install Docker on the new servers
• Configure local Docker clients to access the new containers

In order to deploy at scale, the simple Docker client won’t cut it – you need to have an
orchestration tool to manage the complexities of talking to different servers and coor‐
dinating the container configuration in different environments. While you can create
scripts to talk to the Docker daemon’s Docker Remote API, it’s somewhat like rein‐
venting the wheel. A lot of work has already been done for you as regards orchestra‐
tion, and you can take advantage of various approaches to handle your deployment
needs. Two basic approaches here would be to use orchestration tools or to use dis‐
tributed schedulers.

Docker Orchestration
Deploying large number of containers involves a lot of decisions and a lot of work.
You need to do some or most of the following as part of deployment:

• Organizing containers into clusters

210 | Chapter 5: Working with Docker Containers

• Scheduling the server resources
• Running the containers
• Determining the hosts where the containers should run
• Routing traffic to the containers
• Allowing the containers to expose and discover services

Container orchestration tools such Kubernates provide most or all of the services lis‐
ted here. Besides Kubernates, you can also use Docker Swarm, Mesos and Flannel for
orchestration. Once of the big questions you must answer is which of the orchestra‐
tion tools you must use – I shouldn’t really use the word “must” here, so, let me mod‐
ify the preceding sentence this way: which of the tools you may want to use – since
orchestration tools add to your work as well, and small teams may not really need
them.

Docker Orchestration and Clustering Tools
It’s ridiculously simple to create Docker images and run Dockerized containers for
various services. However, the real benefit and the real fun, so far as administrators
are concerned, is when you run a Docker cluster, consisting of a large number of con‐
tainers together. An easy way to jump into production with Docker containers is to
use an orchestration tool. An orchestration tool coordinates the configuration and
deployment of applications to multiple Docker containers simultaneously. Orchestra‐
tion tools require minimal modifications to your system and you can get to your goal
of zero-downtime deployments quite easily with these tools.

The most popular orchestration tools for Docker are Centurion, (New Relic), Helios
(Spotify) and a Docker tooling set from Ansible, the popular configuration manage‐
ment system.

Distributed Schedulers for Docker Containers
Distributed schedulers also allow for zero downtime deployments, by letting you run
the old and new application versions side by side until you’re ready to migrate fully to
the new versions. You simply specify policies regarding how you want to run your
applications, and the scheduler figures out where to run it, and restart failed services
on default containers.

There are several distributed schedulers you can consider, including the native
Docker clustering tool named Swarm, which lets you create and manage coordina‐
tors. Google’s Kubernates is quite popular in this area, and there are other alternatives
such as Apache Mesos and Fleet from CoreOS. Let’s take a quick look at the various
distributed schedulers in the following sections.

The Docker Stack in Production | 211

Using Docker’s Swarm as a clustering tool
Docker Swarm is much simpler than a powerful scheduling tool such as Apache
Mesos or Kubernates, but allows you to create, deploy and manage containers across
fairly large Docker clusters. Swarm doesn’t really focus on configuration of the appli‐
cation or deployments, since its main purpose is to cluster the computing resources
so Docker can use them.

When you use Swarm, the Docker client will still see a single interface, but that inter‐
face will be representing a cluster of Docker containers rather than just a lone Docker
daemon as you’ve seen earlier in this chapter. You deploy Swarm as a single Docker
container. Through this container, Swarm manages the Docker cluster. You deploy
the Swarm container as an agent to each Docker host. This will allow you to merge all
your hosts that run Docker containers into a single cluster.

You can install Docker Swarm manually or through the Docker Machine tool. When
first starting out, the recommended approach is not to install Swarm via the manual
method. It’s far easier to install Docker Swarm using Docker Machine. Docker
Machine also automatically generates he required TLS certificates to secure Swarm.

Setting up Swarm for Production Use
For production usage, administrators can manually create Swarm on a network by
first pulling the Docker Swarm image. You can then configure the Swarm manager
and all nodes to run Docker Swarm, all through using Docker. In order to do this you
must install Docker on all nodes. In a production setting, you’d need to create a
Swarm cluster by running multiple (at least two) Swarm managers in a high-
availability configuration.

You can build a Swarm cluster within your data center or on the cloud. Let’s say you
want to deploy the Swarm cluster on the Amazon Web Services (AWS) platform.
Here’s an outline of how you can build a high-availability Swarm cluster for produc‐
tion.

1. Add network security rules to the AWS security group so required network traffic
is allowed on the VPC network.

2. Create multiple Linux hosts that are part of the default security group. Let’s say
you create five hosts – of the five hosts, the Swarm primary and secondary man‐
agers would be nodes 1 and 2. The Swarm node would be on nodes 3 and 4. The
discover backend would be on node 5, and you’ll run a consul container on this
host.

3. Install the Docker Engine on all the nodes, which enables the Swarm manager to
address the nodes.

212 | Chapter 5: Working with Docker Containers

4. Set up a discovery backend, which helps the Swarm manager and nodes to
authenticate themselves as cluster members. The discovery backend also helps
the Swarm manager learn which nodes are available to run containers.

5. Create the Swarm cluster – this means you create the two Swarm managers in a
high availability configuration. The first manager you start will be the primary
manager and the second manager, a replica. When the primary manager fails, the
replica becomes the primary manager.

Interacting with the Docker Cluster
Now that you’ve set up Swarm to manage the Docker container, you can interact with
the entire Swarm–managed Docker cluster instead of a single host. Just set the
DOCKER_HOST environment variable to point to the Swarm manager so you can
run Docker commands against the Docker cluster.

Swarm has the advantage that it uses the standard Docker interface and this is easy to
use and integrate into your current workflows. It’s not designed however, to support
complex scheduling. Fleet uses etcd to enable communications between machines
and to store the cluster status.

How Fleet can help you
Fleet comes from CoreOS, the lightweight container operating system, and is
designed to form a foundation or base layer or more advanced clustering solutions
such as Kubernates.

Fleet is built upon systemd and extends the system and service initialization capabili‐
ties of systemd to a cluster of machines.

Apache Mesos and Marathon as a Cluster Manager
Apache Mesos is a cluster manager that can scale to cluster of hundreds or thousands
of nodes. Mesos is unique in that it can support diverse workloads – both Docker
containers and Hadoop jobs can coexist for example. High availability and resilience
are the main benefits offered by Mesos. Mesos is a low level scheduler and supports
various frameworks for orchestrating container, such as Marathon, Kubernates and
Swarm. Mesos can support very large systems with thousands of nodes, but may be
an overkill for small clusters of just a handful of nodes.

The Big Heavy – Kubernates
Kubernates is a Google-built container orchestration tool based on Google’s produc‐
tion experience with containers. Kubernates uses the concept of pods, which are
groups of containers that you schedule and deploy a unit. Each pod, consisting of up
to five containers, provides a service. Kubernates uses other containers besides the

The Docker Stack in Production | 213

service providing pods, to provide logging and monitoring services. Kubernates isn’t
ideal for all applications, but for microservices with little state to maintain, it offers a
scalable service with little configuration work involved.

Docker Containers, Service Discovery and Service
Registration
System architectures are changing rapidly over time, with computing environments
becoming ever more dynamic in nature to support newer architectures such as ser‐
vice–oriented architectures and microservices, which we discussed earlier in Chapter
3. If you think a really amazing infrastructure such as Amazons’ EC2 (Chapter 9) is
dynamic, wait until you learn about Mesos (Chapter 16), which is an even more
dynamic computing framework,

Docker containerization has contributed to a much more dynamic computing envi‐
ronment. Modern computing environments involve a large number of hosts and
there are many services running on these hosts. Services are taken off and brought
back online continuously, making service discovery a critical part of architecting
applications.

Ideally, regardless of the size of your environment, you should be able to automate the
service discovery process and minimize the effort involved in configuring and con‐
necting this multitude of services. Configuration management tools are designed to
solve a totally different problem altogether and they don’t scale very well when you
tack on the responsibility of service discovery to their main functions.

The fundamental idea that underlies service discovery is that new instances of appli‐
cations (clients of services) should programmatically be able to easily and automati‐
cally identify the current environment details, so they can connect of a service
without manual intervention. All service discovery tools are implemented as a global
registry that stores information about currently operating services. The registry is
usually distributed among multiple hosts to make the configuration fault tolerant and
scalable.

Service discovery lets client discover service instances and net‐
working takes care of making the connections work – that is, it
connects containers together.

Service discovery platforms are designed to service connection details, but they are
based on key/value stores, which means they can store other types of data as well.
Many deployments piggyback on the service discovery tools to write their configura‐
tion data to the service discovery tool.

214 | Chapter 5: Working with Docker Containers

In the fast proliferating container and microservice world, services are distributed in
a PaaS architecture and an infrastructure that’s supported by containers (or VM
images) is immutable. Predefined metrics determine whether services will be scaled
up or down based on the workloads and metrics. In this environment, the address of
a service is dynamically assigned of course, and isn’t available until the service is
deployed and ready for use. It’s this dynamic setting of the service endpoint address
that is at the heart of modern service registration and discovery.

Service discovery is the automatic provisioning of the connection
information of a service to the clients of that service.

Service registration and discovery works essentially in the following manner: each of
the dynamic services registers with a broker, to whom it provides various details such
as its endpoint address. Services that want to consume this service will then query the
broker to find out the service location and invoke the service. The broker’s function is
to allow registration by the services and the querying of those services. You can use
various brokers such as ZooKeeper, etcd, consul, and Kubernates (Netflix Eureka as
well).

Connecting Containers through Ambassadors
In a production network, you can connect containers across hosts through the use
ambassadors, which are proxy containers. Ambassadors just forward traffic to the
actual services. Ambassadors are simple containers that setup connections between
an application and a service (such as a database service). Ambassadors offer the bene‐
fit that you don’t need to change your development code to make it work in a produc‐
tion environment. System administrators configure the applcition to use different
clustered services without required code modifications.

In a development setup, developers use Docker links to link the application to a data
base container. In a production environment, operation teams can use an ambassador
to link the app to the production database service. Operations configure the ambassa‐
dor so the traffic flows through it and use Docker links to connect the app to the
ambassador.

Ambassadors do require extra work in configuring them and are potential points of
failure. They also tend to be complex and when you require multiple connections,
can overwhelm operations teams. In order to scale, it’s better to use networking and
service discovery solutions to discover and connect to remote services.

Docker Containers, Service Discovery and Service Registration | 215

Let’s trace the evolution of service discovery and service registration in the following
sections, starting with the concept of zero-configuration networking, which was the
initial step in the effort to automate the discovery of services.

How Service Discovery Works
Service discovery tools (to be discussed in the following sections) provide APIs that
application components use to set or retrieve data. The discovery service is imple‐
mented as a reliable, distributed key-value store accessible through HTTP methods.
Thus, the service discovery address for each component must either be hardcoded in
the application, or supplied as a runtime option.

When a service comes online, it registers itself with a service discovery tool such as
ZooKeeper, etcd or consul (all three to be introduced later). The service also provides
the information that other services and application components would require in
order to consume the services provided by the service that is registering itself. For
example, an Oracle database will register the IP address and port for the Oracle Lis‐
tener service, and optionally the user credentials to log into the database.

When another service that consumes the services provided by the first service comes
online, it queries the service discovery registry for information and goes on to estab‐
lish connections to those services. For example, a load balancer can query the service
discovery framework and modify its configuration so it knows exactly across which
set of backend servers it should distribute the workload.

Most service discovery tools provide automatic failure detection. When a component
fails, the discovery service is automatically updated to indicate that the service is
unavailable. Failure detection is usually done through regular health checks and peri‐
odic heartbeats from the components. The service discovery tools also use configura‐
tion timeouts to determine if components should be yanked out of the data store.

Zero-Configuration Networking
Zero-configuration networking uses several network technologies to create networks
consisting of connected devices based on TCP/IP without requiring administrator
intervention, or even specialized configuration servers. DNS allows resolution of host
names and the Dynamic Host Configuration Protocol (DHCP) automatically assigns
hostnames. Zeroconf takes things further: its automatically assigns network
addresses, distributes and resolves the hostnames, and locates various network devi‐
ces, all without DHCP and DNS.

Zeroconf has eventually led to the idea of service discovery, which is our next topic.

216 | Chapter 5: Working with Docker Containers

Service Discovery
Service discovery tools enable processes and services in a cluster to locate and talk to
one another. Service discovery has the following components:

• A consistent and highly available service directory that lists all services
• A mechanism to register services in the directory and also monitor the service

health
• A mechanism to locate and connect to services in a directory

Service discovery depends on identifying when processes are listening on a TCP (or
UDP) port and then identifying and connecting to that port by name.

But, Doesn’t’ DNS Already Do This?
One’s first thought might be, “but DNS already looks up hostnames, no?” That’s most
certainly true, DNS does perform name resolutions but DNS was never meant for
systems with real-time name resolution changes. DNS was primarily designed for an
environment where services are assigned standard ports such as the well-known port
80 for HTTP, port 22 for SSH, and so on.

DNS can give you the IP for a service host, and that would suffice in these environ‐
ments. In today’s modern environments, services often use non-standard ports, with
multiple services running together on a server. How do you discover these services
automatically)? This is the question that service discovery tools address.

DNS partially addresses the modern service discovery concerns through its service
records (SRV), which provide both the port and the IP address in response to queries.
Unfortunately, APIs and libraries can’t do SRV record lookups, so DNS becomes the
old simple DNS that can only resolve hostnames to IP addresses.

Distributed Lock Services
Around 2006, Google engineers created a distributed lock service named Chubby and
started using it for internal name resolution instead of DNS. Chubby implemented a
distributed consensus based on Paxos, an algorithm for ascertaining the consensus
opinion among the members of a cluster), and is a key-value store that was used for
locking resources, and coordinating leader elections. Paxos, however, isn’t easy to
implement, and eventually a more sophisticated tool named ZooKeeper (Out of the
Apache Hadoop project) took over as the standard distributed lock service.

Zookeeper
ZooKeeper is a highly available and reliable distributed lock service that coordinates
distributed systems. ZooKeeper has become the industry standard for coordinating

Docker Containers, Service Discovery and Service Registration | 217

distributed systems and many projects such as Apache Hadoop, Apache Storm,
Apache Mesos and Apache Kafka depend on ZooKeeper for distributed coordination,
which is critical to their functioning. The fact that ZooKeeper is a highly available
key/value data store as well made it a candidate for storing the cluster configuration
and for serving as a directory of services.

ZooKeeper is a centralized service that can maintain configuration information, nam‐
ing, provide group services and synchronization of distributed applications. Services
can register with ZooKeeper using a logical name and the configuration information
can include the URI endpoint and other information such as QoS (quality of service,
discussed in Chapter 2).

ZooKeeper is among the most popular service discovery mechanisms employed by
microservice architectures, so let’s get a quick overview of this service. Here are
essential concepts of ZooKeeper:

• Znodes: ZooKeeper stores data in a hierarchical namespace that consists of data
registers called znodes, which are similar to files and directories.

• Ensemble: Multiple ZooKeeper instances running on separate servers are
together known as an ensemble. The instances are aware of each other and must
be odd numbered, meaning a set such as 3, 5, or 7 servers. The odd number
requirement for the instances is to ensure there’s a quorum when decisions are
made for selecting a leader.

• Node Name: each node in a ZooKeeper namespace is identified by a path and the
node name is a sequence of path elements.

• Configuration Data; Each node in a ZooKeeper namespace stores coordination
data.

• Client and Server: Distributed clients connect to a single ZooKeeper Server
instance, of which there are several in every distributed environment managed by
ZooKeeper. The client maintains a TCP connection through which it sends heart
beats and requests and receives responses from the server instance. If the connec‐
tion to a ZooKeeper instance breaks, the client automatically connects to a differ‐
ent instance.

When you use a service such as ZooKeeper for service discovery and registration,
each service in an application (for example the Catalog and Order services in a sales
related service) registers and unregisters the service as part of its lifecycle initializa‐
tion.

ZooKeeper is the most mature of the service discovery tools, but lacks several sophis‐
ticated features offered by newer tools such as etcd and consul.

218 | Chapter 5: Working with Docker Containers

Etcd and Consul
While ZooKeeper is pretty easy to install, configure, and manage from an administra‐
tor’s perspective (it’s the only coordinator used by Apache Hadoop clusters, which use
it to support high availability), it’s quite heavyweight, and requires highly sophistica‐
ted developmental efforts to implement it so it can manage service discovery.

Recently, a much simpler consensus algorithm, Raft, has come into being as an alter‐
native to the Paxos algorithm. CoreOS engineers have used the Raft algorithm to
come up with etcd, a distributed key-value store for distributed systems similar to
ZooKeeper, written in the Go language. Etcd is a highly reliable key-value store for
storing the most critical data of a distributed system.

Consul is another new distributed service discovery and configuration tool that
makes it simple for services to register themselves and discover other services. In
addition to service discovery and registration, Consul also focuses on failure detec‐
tion through regular heath checking that prevents routing requests being made to
unhealthy hosts. Consul also provides several advanced features such as ACL func‐
tionality and HAProxy configuration. Although Consul contains a DNS server, you
can use the SkyDNS utility to provide DNS-based service discovery when you use
etcd.

Besides ZooKeeper, etcd and Consul, there are also a large number of projects that
build on basic service discovery, such as Crypt, Confd, Eureka, Marathon (mainly a
scheduler), Synapse and Nerve. One can also “roll their own”, if they require more
features than what’s offered by the available service discovery tools out there.

Service Registration
When you use SkyDNS and Consul, you need to perform registration, which is the
final step of service discovery, by explicitly writing code to register a services (such as
a Redis database service) with SkyDNS and Consul, for example. Or, the Redis con‐
tainers can have logic to automatically register upon start. You can however, use a ser‐
vice that automatically registers containers upon their start by monitoring Docker
events. The Registrator product from GliderLabs works with Consul, etcd an, or
SkyDNS to automatically register containers. It performs registration by monitoring
Docker event streams for container creation.

Docker Containers, Service Discovery and Service Registration | 219

CHAPTER 6

Automating Server Deployment and
Managing Development Environments

This chapter focus on automating server deployment and managing development
environments.

I start off by discussing Linux package management tools and then move on to Fully
Automatic Installation (FAI), which is the way to go when installing large number of
Linux servers.

Setting up consistent virtual environments is a big concern in many organizations.
Vagrant is an amazing tool that’s quite easy to use yet very powerful, and one that
helps you effortlessly spin up consistent development environments.

Managing a few servers at a time through shell scripts is fine, but when handling large
and complex environments with various services running on them, you need differ‐
ent strategies. I discuss various tools that’ll help you perform parallel command exe‐
cution such as PDSH, as well as more sophisticated parallel execution frameworks
such as Fabric and Mcollective.

Automated server provisioning tools are very helpful in installing large number of
servers and managing them with configuration tools such as Chef and Puppet (I dis‐
cuss these two well-known configuration management tools along with other popular
CM tools such as Ansible/Salt) in Chapter 7.

The chapter concludes with a brief discussion of two popular server deployment
automation tools: Razor and Cobbler.

221

Linux Package Management
Linux systems can contain thousands of software packages and adding, updating and
removing those packages is a common task for system administrators. Linux software
packet managers are essentially commands that you can run to install software binar‐
ies on a Linux server by fetching the binaries from a binary repository. Red Hat com‐
patible systems use a package format called RPM (Red Hat Package Manager), with
package installers that end in .rpm, and Debian based systems use the DEB (.db) for‐
mat.

Using the rpm and dpkg commands
You can install software packages with the rpm command in a Red Hat based system,
as shown here:

rpm –ihv nmap-6.40.4.e17.x86_64.rpm
You can remove installed RPMs with the –e option:
rpm –e nmap

On a Debian system you can add packages with the dpkg –i command and remove
them with the dpkg –r command.

Although the rpm and dpkg commands work fine and do what they’re designed for,
they’re quite problematic when installing packages that have dependencies. In such
cases, when you try to install package abc, you’re prompted to first install a required
package such as xyz, which in turn may ask you to install another required package
and so on. Package managers are utilities that handle all the dependencies for you
and make installing and removing software a breeze.

Red Hat systems use the YUM (Yellow Dog Linux Updated, Modified) utility, invoked
with the yum command. Debian systems on the other hand use the utility named
APT (Advanced Package Tool), which you invoke with the apt command. Let’s learn a
bit about these tools next.

Why use a packet management system? The big benefit is that the package manager
takes care of all software dependencies, installing any dependent packages automati‐
cally – this makes installing and upgrading packages a breeze.

In the absence of more sophisticated deployment tools, you can log into a server and
use yum or aptget commands to install or upgrade software. The yum upgrade com‐
mand for example will fetch all the latest packages from the binary repository and
install them for you.

Package Management with YUM and APT
The YUM utility is a package manager for RedHat Linux systems. It helps you check
for and automatically download and install the latest RPM packages. The YUM pack‐

222 | Chapter 6: Automating Server Deployment and Managing Development Environments

age manager also obtains and downloads the dependencies, automatically prompting
you as needed.

Here are some examples that show how to use YUM by invoking the yum and the apt
commands.

yum install puppet
yum remove puppet
Yum update # upgrades all software on a server
yum list available | grep puppet # query list of packages available through YUM
apt-get install puppet # installs Puppet
apt-get remove puppet # remove the Puppet software
apt-get update # sync the server’s softare with APT repositories
apt-get upgrade # upgrades all installed software that’s different # apt-get clean # cleans up all unucesary .db files in the
 # /var/cache/apt/archives directory

Fully Automatic Installation (FAI)
Installing Linux on dozens or hundreds of servers at a time is a task that you must
automate. Manual installs don’t scale, and are error prone to boot (no pun intended).
Fully Automatic Installation (FAI), which is probably one of the oldest such systems,
lets you install a Debian Linux OS unattended on one or more servers. FAI is non-
interactive and lets you install and customize Linux systems on physical machines as
well as virtual servers. Internally FAI uses a set of shell and Perl scripts to get the job
done.

The key to using FAI, which is a way to perform a network installation, is the PXE –
Pre-Execution Environment. The PXE server acts as a network boot server. Network
installation with an installation server lets you install Linux on a set of systems using
the network boot server. By doing this, all the systems you configured to boot using
an image provided by this serer will do so, and will automatically start the installation
program.

You don’t need physical boot media to plug into the client in order to start the Linux
installation. You can install Linux on multiple systems over the network using the
network boot server. Let’s therefore learn how to set up a PXE server first.

How FAI Works
FAI can install Linux OS not one or a very large number of machines. Here are the
key components of FAI:

• Install server (also called the faiserver): runs the necessary DHCP, TFTP and NFS
servers and provides configuration data for the clients on which you want to
install a Linux OS.

Fully Automatic Installation (FAI) | 223

• Configuration space: a subdirectory where you store the installation configura‐
tion files. The files include information about the hard disk layout (similar to the
fstab file), software packages, time zones, user accounts, printers, etc.

• NFS-Root: a file system on the faiserver that serves as the complete file system for
the target servers.

What you need for a Network Installation
You’ll need a server that runs the following:

• A DHCP server to assign IP addresses
• A TFTP server to server the boot files
• An HTTP, FTP or NFS server to host the installation image

How it Works
As mentioned earlier, under a network installation, you don’t need any physical boot
media to be plugged into the client servers on which you are installing Linux. When
you begin the installation, this is what the client servers do:

• Query the DHCP server
• Get the boot files from the TFTP server
• Download the Linux installation image from a HTTP, FTP or NFS server,

depending on which server you’re using.

In order to configure a network installation, you must configure the network server
that holds the package repositories that are needed for the installation. Next, you
need to configure the PXE server.

Setting up the Network Server
As mentioned earlier, you can choose NFS, HTTP (or HTTPS), or FTP to export the
installation ISO image or the installation tree from the network server to the clients.

Once you set up the network server, you’ll have made the ISO image accessible over
NFS for clients to use as a network based installation source. The next step would be
to configure the PXE server.

Setting up the PXE Server for a Network Installation
The PXE server contains the necessary files to boot the RHEL and start the network
installation. In addition to the PXE server, you must also configure a DHCP server

224 | Chapter 6: Automating Server Deployment and Managing Development Environments

and enable and start all necessary services. You must configure the PXE server by
performing the following tasks (on a RHEL system):

1. Install the tftp package
2. Modify the firewall so it accepts incoming connections to the tftp service:
3. Configure the DHCP server to use the boot images packaged with SYSLINUX.
4. Extract the prelinux.o file from the SYSLINUX package in the ISO image file of

the installation DVD.
5. Under the tftpboot directory, create a pxelinux/ directory and copy the prexeli‐

nux.o file into that directory. Under the prxelinux/ directory, create the pxeli‐
nux.cfg/ directory and add the configration file named default to that directory.

6. Copy the boot images under the tftp/ root directory. # cp /path/to/x86_64/os/
images/pxeboot/(vmlinuz,initrd.img) /var/lib/tftpboot/pxelinux/

7. Start (or reload if they’re running) the xinetd and dhcp services. # systemctl start
xinetd.service dhcpd.service

The PXE server is now ready to start the network install. Start the client on which you
want to install Linux and select PXE Boot as the boot source and start the network
installation. This will start the installation program from the PXE server.

Using Kickstart
For RPM-based distributions such as Red Hat Linux and Fedora, using Kickstart
rather than FAI is probably the better approach to perform automatic installations for
RHEL and CentOS7 systems without out the need for user intervention. You still use
the PXE-boot to get the servers started, but the configuration information is provided
by Kickstart files read from a local FTP server rather than FAI.

In order to perform a Kickstart installation, you configure the PXE server in the same
way as shown in the previous section – all you need to do is to add the Kickstart file
to the mix. You thus use the PXE server together with Kickstart in this case.

.Creating a Custom Kickstart File
You can deploy RHEL and CentOs simultaneously on a large number of servers by
using a Kickstart installation. The Kickstart files contain all the answers to the inter‐
active actions that are posed by the installation program, such as the disk partitioning
schemes and the packages the installer must install. Kickstart files thus help you auto‐
mate the installations when dealing with a large number of server deployments by let‐
ting you use a single Kickstart file to install RHEL on all the machines.

In the following sections, I briefly explain the steps involved in performing an auto‐
matic RHEL Kickstart installation.

Fully Automatic Installation (FAI) | 225

Creating a Kickstart File
It’s best to manually install the RHEL Linux software (in in this case RHEL 7) on one
system first. The Kickstart file is a simple text file and you can name it anything you
want. The choices you make during this manual selection are stored in the news
server in the /root/anaconda-ks.cfg file – this will serve as your Kickstart file for auto‐
matic installations.

You can modify the Kickstart file as you please. ON RHEL, there’s also a Kickstart
Configuration Tool available, that lets you walk through server configuration and cre‐
ate and download a Kickstart file – the only drawback is this file won’t support
advanced disk partitioning.

Verifying the Kickstart File
Before you can use the Kickstart file to automatically install the Linux binaries on a
whole bunch of machines, it’s a good idea to verity it’s validity using the ksvalidator
command line utility, which is part of the pyKickstart package.

Here’s how you do it:

yum install pyKickstart
ksvalidator /pth/tp/Kickstart.ks

Making the Kickstart File Available
In order to make the Kickstart file available to the client machines, you must place it
on a removable media (DVD or USB drive), or on a hard derive connected to the cli‐
ent server, or even better yet, a network share that the client machine can access.
Since normally the new systems boot using a PXE server, it’s probably a good idea to
let the clients also download the Kickstart file from a network share.

Making the Installation Source Available
The Kickstart file contains a list of software packages required for the install. The
installation process must then access an installation source such as a RHEL installa‐
tion DVD ISO image for an installation tree to install those packages. Assuming that
you’re performing a network based (NFS) installation, you must make the installation
tree available over the network, using the steps I described in the previous section.

An installation tree is a copy of the binary RHEL DVD with an
identical directory structure.

226 | Chapter 6: Automating Server Deployment and Managing Development Environments

Automating the Kickstart Installation
You can start a Kickstart installation manually with some user interaction at the sys‐
tem prompts. However, that’s no fun, since I want you to see how to automate the
whole darn thing! During the installation, you must specify a special boot option
(inst.ks=) when booting the system.

Following is a typical Kickstart file.

#version=RHEL7
System authorization information
auth --enableshadow --passalgo=sha512

Use network installation
url --url="ftp://192.168.1.25/pub/"
Run the Setup Agent on first boot
firstboot --enable
ignoredisk --only-use=sda
Keyboard layouts
keyboard --vckeymap=us --xlayouts='us'
System language
lang en_US.UTF-8

Network information
network --bootproto=dhcp --device=eno16777736 --ipv6=auto --activate
network --hostname=localhost.localdomain
Root password
rootpw --iscrypted 6RMPTNRo5P7zulbAR$ueRnuz70DX2Z8Pb2oCgfXv4qXOjkdZlaMnC.CoLheFrUF4BEjRIX8rF.

Configuring the Clients to Automatically Install the Linux Software through Kickstart
You must instruct the clients to boot from the network from the BIOS, by selecting
the Kickstart option from the PXE menu. Once the kernel and ram disk load, the cli‐
ent detects the Kickstart file and automatically installs the Linux software without any
user intervention. If you want, you can connect to the installation process with a
VNC client from another host in order to monitor the installation.

Automatically Spinning up Virtual Environments with
Vagrant
Vagrant is a powerful open source tool that simplifies the task of spinning up virtual
machines (VMs) and running them, with the help of simple command-line utilities.
Vagrant makes it easy to distribute and share a virtual environment and it supports all
major virtual platforms such as VirtualBox, VMWare and Hyper-V. It also supports
all the well-known software configuration tools such as Chef, Puppet, Ansible and
Salt.

Automatically Spinning up Virtual Environments with Vagrant | 227

Development environments can be notoriously hard to configure. Vagrant helps you,
the Linux sysadmin, to take over the responsibility for setting up the development
environment from the developers. New developers can be easily on boarded as a
result, and it also makes it easy to update the environment used by the developers.

Vagrant is a configuration tool for VMs and helps developers quickly spin up new
VMs easily. However, you can use it for other purposes. Generally, Vagrant is used to
create VMs that help develop and deploy software. When you use Vagrant to set up
development environments, it’s a piece of cake to mimic a production environment,
and also employ the same provisioning tools and strategies that you use in your pro‐
duction environment.

Developing consistent environments is the key to effective deployment of software. If
your deployment pipeline is already in place and is working well for you, you can use
Vagrant to recreate the same processes in the development environment. If your
development pipelines need to be improved, Vagrant is ideal as an environment
within which to develop the processes that make development environments consis‐
tent.

Vagrant is a big help in managing the configuration of VMs that you run out of Ora‐
cle Virtual Box, and is ideal for testing various things. Vagrant wasn’t designed for
heavy duty configuration across the data center. You can use a serious enterprise con‐
figuration system such as Ansible along with Vagrant, with Vagrant helping you test
the configuration code that you’re deploying with Ansible.

A few years ago, web applications were mostly all PHP and MySQL. Today, you have
several web application frameworks such as Ruby on Rails, various databases, web
servers, application servers and backend services. Installing all these components and
configuring them correctly is a nightmare at times when you do it locally by hand.

Vagrant works with Oracle Virtual Box, and commercial alterna‐
tives such as VMWare, and also remote environments such as
Amazon’s Elastic Compute Cloud (EC2).

Beyond the nightmare of installing locally, problems like misconfiguration, differ‐
ences between dev and prod environments, the difficulties of managing multiple
projects and syncing development environments among all team members, are all
problems that Vagrant elegantly solves. Working with multiple projects? Just create a
separate VM for each machine. New team member to be on boarded quickly? Hand
him/her a laptop and ask them to run just one command – vagrant up, to be up and
running within minutes.

If you’re an operations engineer, you can work on system automation scripts and can
test them on a full-fledged sandbox that mimics production, so you can test real-

228 | Chapter 6: Automating Server Deployment and Managing Development Environments

world scenarios. If something is gets messed up, simply destroy the VM and recreate
a fully functioning environment at the snap of your fingers.

Although Vagrant is mostly used in a web application environment, you can use it for
anything you want, as long you want to work with VMs. Vagrant is simply amazing –
no two ways about it! Regardless of the complexity of your virtual environment and
regardless of the type of virtualization you’re using, you can easily bring up the com‐
plete virtual environment with the following simple vagrant command.

$ vagrant up

With just this one command, you get all the following done:

• Create a virtual machine based on any Linux distribution you like
• Change the properties of this VM such as RAM, storage, etc
• Set up the network interfaces for this VM so you can access it from a different

server, local or remote
• Set up the shared folders
• Set the hostname for the server
• Boot up the VM – you can see in VirtualBox that there’s a new VM in the run‐

ning STATE NOW
• Provision software on the new VM via shell scripts, or CM tools such as Chef

and Puppet

All this in a New York minute – wow!

The Vagrant commands let you ssh into the new VM, start, stop and resume it, and
when you want to get rid of it, “destroy” the machine by deleting it from your hard
drive – all virtual hard drives (file folders) relating to the VM are removed. Any data
that you don’t save in a shared folder is lost for good, so be careful when you
“destroy” a Vagrant VM. You can also package the machine state and distribute it to
other developers.

he creator of Vagrant, Mitchell Hashimoto, has described Vagrant as the “Swiss army
knife for development environments” since it does everything you need to create and
manage development environments and also automates things and helps set up dev
environments that parallel production environments.

Vagrant helps you quickly spin up full-fledged but disposable working environments.

Some Background
In Chapter 4 you learned about the different types of virtualization. As you know by
now, a virtual machine runs within a software process (the hypervisor) which runs on
a host computer, and mimics a physical computer. It’s the hypervisor that provides

Automatically Spinning up Virtual Environments with Vagrant | 229

the computing infrastructure such as CPUs and RAM to the virtual machines. You
also learned about the two types of hypervisors – Type 1 and Type 2.

A Type 1 hypervisor runs on the bare metal host machine hardware and controls
access to the computing resources, and their allocation to the VMs. VMWare ESX/
ESXi and Oracle VM Server and examples of Type 1 hypervisors. Type 2 hypervisors
on the other hand, sit on top of the OS and use the OD to control the computational
resources. Vagrant environments typically use Type 2 hypervisors as the hosts for
VMs that you create with it. The two most popular Type 2 hypervisors are Oracle Vir‐
tualBox and VMWare Workstation/Fusion family.

I use the freely available Oracle Virtual Box to show how to use Vagrant to spin up
guest machines that run within the hypervisor. You can create guest machines that
run an entirely different OS from that being run by the host computer. Since Vagrant
employs the same API to run VMs on different hypervisors, sharing virtual environ‐
ments is very easy between teams that are working with different OS platforms.

If you’ve ever set up a virtual development environment, you know you’d have to do
most or all of the following to set up a new VM:

• Download the VM image
• Boot up the VM
• Configure shared folders, network connections, storage and memory
• Use a configuration tool such as Puppet/Chef, Salt or Ansible to install any

required software.

The simple vagrant up command does all these tasks for you! The command sets up
the entire development environment and a developer can also, with equal ease,
destroy and recreate the virtual environment, all within a few short minutes as well.

Vagrant and its Alternatives
You can use alternatives such as plan desktop virtualization with VMWare and Vir‐
tualBox to do some of the things you can do with Vagrant – however these virtualiza‐
tion solutions don’t have the unique workflow of Vagrant. While you can do
everything you can do with Vagrant with a regular virtualization solution, it isn’t an
automated process as with Vagrant.

Containers are somewhat of an alternative but they really don’t provide full virtualiza‐
tion – they are instead isolated environments running the same kernel. As you saw in
Chapter 5, containers do offer numerous benefits, but a big downside is that they can
run only the same OS that runs on the host. If you use containers, all members of a
team need to use the same host OS.

230 | Chapter 6: Automating Server Deployment and Managing Development Environments

Containers are great for production settings since they securely isolate resources
without a performance overhead. In a development environment the limitations
posed by containers outweigh their benefits.

The cloud is another alternative but you normally incur a higher financial cost going
that route, compared to using a local Vagrant environments to manage you develop‐
ment needs.

Getting Started with Vagrant
In order to run Vagrant on a server (or your laptop), you need to first install Oracle
VirtualBox, which is open source, and thus free. You can download Virtual Box from
http://virtualbox.org.

A virtualization system such as VirtualBox is called a provider and although I use
VirtualBox since it’s free and easy to get going, there are alternative providers such as
a VMWare provider.

Virtual Box has minimal system requirements, but since a single workstation will be
running multiple VMs at any given time, you need to ensure that the laptop or server
where you’re playing with Vagrant has sufficient RAM. There’s no hard and fast rule
here as to how many VMs you can run on a server – it depends on the software run‐
ning in each of the VMs hosted by the server.

You can run VirtualBox in a Windows or a Linux environment.

Once you’ve VirtualBox installed, you are ready to install Vagrant, which you can
download from http://vagrantup.com.

Vagrant doesn’t create and host VMs – it’s the hypervisor (VirtualBox in my case) that
does those things. Vagrant simply manages the VMs.

In a production environment, you can use hypervisors other than Oracle VirtualBox
– you can use VMWare Desktop Applications (Fusion and Workstation) if you need
to deal with a large number of VMs. If you want to simplify things, you can go with
an external hypervisor such as Amazon EC2 or DigitalOcean.

Although Vagrant supports other virtualization providers, Oracle VirtualBox is the
most popular provider for developers.

On a RedHat system such as Fedora, install Vagrant binaries as shown here:

$ yum install ‘vagrant*’

Automatically Spinning up Virtual Environments with Vagrant | 231

http://virtualbox.org
http://vagrantup.com

You can check the installation by typing the following at the command line:

$ vagrant –verison
Vagrnt version 1.1.4

You’re off to the races at this point.

Spinning up a New VM
You spin up new VMs with the vagrant up command, but first you must initialize the
image. The vagrant init command creates a Vagrant configration file from a template.
In the following example I use an Ubuntu base image, also referred to as a Vagrant
box.

The vagrant init command initializes a new Vagrant environment by creating a
Vagrantfile.

$ vagrant init hashicorp/precise64
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.
$

Start the new virtual machine with the vagrant up command:

$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'hashicorp/precise64'...
==> default: Matching MAC address for NAT networking...
==> default: Checking if box 'hashicorp/precise64' is up to date...
==> default: Setting the name of the VM: SG0221771_default_1461505264672_17333
==> default: Forwarding ports...
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 ==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
 default: Guest Additions Version: 4.2.0
 default: VirtualBox Version: 5.0
==> default: Mounting shared folders...
$

Here’s what happens when you run the vagrant up command:

• Vagrant creates a new VirtualBox machine based in the base image within the
box specified in the Vagrantfile. Vagrant does this by copying the virtual hard
disk files.

• VirtualBox randomly generates a MAC address when it creates a new machine.
Vagrant matches the MAC address for NAT networking.

232 | Chapter 6: Automating Server Deployment and Managing Development Environments

• Vagrant sets the name of the virtual machine
• Vagrant forwards port definitions (more on this later in this chapter)
• Vagrant boots the new VM
• Vagrant mounts the shared folders that you can use to share data between the

VM and your laptop or server As you know, I‘m using the Oracle VirtualBox in
this example, but the procedure for spinning up new VMs is exactly the same
when you bring up VMs using VMWare or AWS as a provider.

The vagrant up command starts and provisions the Vagrant environment. You now
have a full featured 64-bit 12.04 LTS virtual machine running in the background. The
Vagrant machine instance is up and running, although you won’t see it, since it’s
headless (that is, it has no GUI). You can connect to this machine by using the follow‐
ing command:

$ vagrant ssh
Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic x86_64)

 * Documentation: https://help.ubuntu.com/
New release '14.04.4 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Welcome to your Vagrant-built virtual machine.
Last login: Fri Sep 14 06:23:18 2012 from 10.0.2.2
vagrant@precise64:~$

When you log into the new VM, you do so as the default user vagrant:

$ vagrant@precise64:~$ whoami
vagrant
$ vagrant@precise64:~$

You really don’t need the root password but if you want to, you can do so by issuing
the command sudo passwd root as the user vagrant. You can then set the root pass‐
word to anything you like and login as the user.

The vagrant ssh command connects to the machine via ssh. It drops you unto the
SSH console within the new VM. You can do everything on this machine as you’d in a
normal server, such as installing software, creating Docker containers, etc. You log
out of the VM by typing exit:

vagrant@precise64:~$ exit
logout
Connection to 127.0.0.1 closed.
$

The exit command brings you out of the VM and puts you back into your terminal
on the host server. Run the vagrant destroy command to delete your new VM – you
can create it again, no problems, with the vagrant up command if you need it again.

Automatically Spinning up Virtual Environments with Vagrant | 233

$ vagrant destroy
 default: Are you sure you want to destroy the 'default' VM? [y/N] y
==> default: Forcing shutdown of VM...
==> default: Destroying VM and associated drives...

$ exit

The Vagrantfile
When working with Vagrant environments, you configure Vagrant per project, with
each project having its own specific work environment. Each of the vagrant projects
has a single Vagrantfile that contains its configuration. The Vagrantfile is s text file
that Vagrant reads to find out the configuration of your working environments, such
as:

• The operating system,
• The CPUs and RAM per VM
• How the VM can be accessed
• Provisioning of various software on the VM

It’s a good idea to put the Vagrantfile under version control so all members of a team
get the same software, settings and configuration environment for their work envi‐
ronment.

When I ran the vagrant init command in the previous section, it created an initial
Vagrantfile. The file is in the directory where I ran the vagrant init command. Read
the Vagrantfile since it gives a very good idea of how to configure the essentials of a
vagrant project. In my case, everything is commented out except the following:

Vagrant.configure(2) do |config|
 config.vm.box = "hashicorp/precise64"
end

In my case the file essentially contains a block of Vagrant configuration that contains
a configuration value for config.vm.box – this is all it took to create the new VM!
Since Vagrantfile are portable, you can take this file to any platform that Vagrant sup‐
ports, such as Linux, Windows and Mac OS X,

Vagrant Box
As I explained in the previous section, the simple textile named Vagrantfile contains
the configuration for spinning up your new VM. But you also need something from
which to create this VM from – and that something is called a Vagrant box, A box is
simply a base image for an OS that Vagrant will clone to quickly create a functioning
VM. You can look at the box file as a template for a Vagrant-created and managed
virtual machine. Using the box is the key strategy that makes it possible to spin up

234 | Chapter 6: Automating Server Deployment and Managing Development Environments

VMs in seconds – imagine all the work involved in creating even the simplest of VMs
from scratch.

Vagrant uses base boxes to clone new VMs

In the Vagrantfile, the value config.vm.box specifies the name of the box that Vagrant
will use to create your new VM. In our case, it was:

config..vm.box = “precise64”

Multiple environments can share the same underlying box, with each environment
using that box as the template for creating new VMs. However, you use a separate
Vagrantfile for each project.

You can view all the Vagrant boxes you have on a server with the following com‐
mand:

$ vagrant box list
centos/7 (virtualbox, 1602.02)
hashicorp/precise64 (virtualbox, 1.1.0)
rails-v1.0.0 (virtualbox, 0)

~
$

Vagrant VMs use the shared folders feature, which means that your development
teams can continue to use the development tools (IDEs etc) they’re most familiar, and
hence the most productive with.

Vagrant Networking Vagrant automatically configures networking with the VMs you
create by letting teams communicate with the VM. There are several networking
options as I explain shortly, but here’s an example that illustrates the basics of how
Vagrant handles networking.

In the example. I use a forwarded port. A forwarded port exposes a port on the VM
as a port on the host server. As you know, port 80 is the default port for web services,
so let me expose port 80 so I can access any web services. In my Vagrant file, then, I
add the following line:

config.vm.network "forwarded_port", guest: 80, host: 8080

I then issue the command vagrant reload to restart the VM with the new network
port settings:

$ vagrant reload
==> default: Attempting graceful shutdown of VM...

Automatically Spinning up Virtual Environments with Vagrant | 235

==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 80 (guest) => 8080 (host) (adapter 1)
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Booting VM...
…

You can see how Vagrant has forwarded port 80. You can test the forwarded port by
starting a simple web server from within the VM and connecting to it from a browser
on the host server:

$ vagrant ssh
vagrant@precise64:-$ cd /vagrant
vagrant@precise64:/vagrant$ sudo python –m SimpleHTTPServer 80
Servicing HTTP on 0.0.0.9 port 80…

I started a basic web server on port 80 with the command shown here. If you now
open a browser and point it to localhost:8080 on your laptop (or wherever the VM is
running) you’ll see the directory listing for the /vagrant directory, served from your
new VM.

Vagrant offers three different ways to set up networking:

• Forwarded ports: I’ve shown an example of this method, which is quite simple to
setup you need to enumerate each and every port number, which becomes oner‐
ous in a complex environment

• Host-only networking: Creates a network that’s private to your host and the VM s
running on the host. While this is a secure way to network, it limits access from
other machines outside of the host server.

• Bridged networking: Bridges the VM onto a device on the physical host, making
the VM appear as another physical machine on the network. It offers you the
benefit of having an OIP to access the VM, but you can’t specify a static IP for a
bridged network as the IP addresses are serviced via DHCP/

Provisioning Vagrant Boxes
In earlier sections, you learned how to spin up a VM with Vagrant’s help, but it was a
bare base box. You can use Vagrant boxes that already have software installed, such as
Hadoop and Ruby on Rails, for example. You can also automatically install software
as part of the creation of your development environments – this process is called pro‐
visioning.

236 | Chapter 6: Automating Server Deployment and Managing Development Environments

While you can install any software you need after booting up a new VM. It’s ineffi‐
cient to do when you’ve a bunch of machines to configure. Vagrant lets you automate
provisioning with shell scripts, or a CM tool such as Chef or Puppet.

How Automated Provisioning Helps You
Automated provisioning removes one of the biggest issues in setting up consistent
development environments – configuration drift. Automated provisioning of soft‐
ware is easy, repeatable and also helps keep development and production systems in
sync, avoiding unpleasant surprises when you move apps form development to pro‐
duction settings.

As a system administrator or an operations engineer, you can use Vagrant for quickly
testing infrastructure changes before moving the changes to production

You can use Vagrant as a good training ground for learning CM tools such as Puppet
and Chef, but if you’re a novice, with CM tools, just start with simple shell scripts to
see how to provision software with Vagrant. Once you become adept at provisioning,
it’s a simple jump to a full-fledged CM tool.

You can perform Vagrant provisioning with Chef through Chef Solo or the Chef cli‐
ent. Chef Solo is great for testing and for small environments. If you already have a
Chef Server, Chef Client is going to be what you want to use. Similarly, you can do
provisioning both with and without a master when using Puppet, and the master less
approach is simpler and better when starting out with Puppet.

Besides Puppet/Chef as build-in provisioners you can extend vagrant to use addi‐
tional provisioners through easily available plug-ins.

An Automated Provisioning Example
Let me show you how to configure a provisioner to set up an Apache web server.
Before I start automating the installation of Apache, I must first set it up manually on
a Vagrant box, to capture the correct procedure to create the web server.

In this example, I use the precise64 Ubuntu 64 bit Linux distribution, and I want to
export port 80, as explained in an example earlier on. My Vagrantfile for this box will
look as follows:

Vagrant::Config.run.do [config]
 config.vm.box = “precise64”
 config.vm.forward_port 80, 8000
end

Use SSH to log into the VM, so you can install and configure Apache on the Ubuntu
Linux server.

$ vagrant ssh

Automatically Spinning up Virtual Environments with Vagrant | 237

Install Apache on the Ubuntu server

$ sudo apt-get update
$ sudo apt-get instll apache2

Vagrant runs all commands in a provisioning shell script as the
user root, so there’s no need to use sudo. If for any reason you think
you need to be root in a Vagrant environment, do the following to
set the root password, and then login as root:

$ sudo passwd root

By default Apache servers web content from /var/www directory. To avoid having to
modify the Apache configuration files I ‘m going to modify /var/www directory to be
a symbolic link to /vagrant which is the default shared folder directory.

vagrant@precise64:/vagrant$ sudo rm -rf /var/www
vagrant@precise64:/vagrant$ sudo ln -fs /vagrant /var/www

Now, Apache will by default serve any files you placed in the shared folder. At this
point, if you go to http://localhost:8080, you’ll see the directory listing of the shared
folder:

Next, create an index.html (default file that Apache serves) file in the shared directory
(/vagrant), as shown here:

vagrant@precise64:/vagrant$ logout
Connection to 127.0.0.1 closed.
$ echo "Hello" > index.html

If you refresh your browser now, you’ll see the following:

Hello

Each time you bring up the VM with the vagrant up command, you’ll need to per‐
form all these steps, which is a waste of time. With automated provisioning, you can
work much smarter.

Automated Provisioning
You saw how to set up and configure Apache in the previous section. Let’s see how
you can automate the same through a shell script, a Chef Recipe and a Puppet mani‐
fest.

Automating Provisioning with Shell Scripts
Using a shell script simply means that you put all the commands you had to issue
manually into a single file. Here, I call the file provison.sh, but you can name it any‐

238 | Chapter 6: Automating Server Deployment and Managing Development Environments

http://localhost:8080

thing you want. Add the following lines to the provision.sh file and save it in the
Project directory.

You’ve your provisioning shell script ready – all you need to do now is to let Vagrant
know where to find it. In order to do this, stick the following line in the Vagrantfile
you created earlier:

config.vm.provision “shell”, path: “provision.sh”

I didn’t have to specify a path to the provision.sh file since relative paths are relative to
the Project root directory.

In order to test whether you’ve correctly automated the setup and configuration of
Apache as part of a new VM creation, firsts destroy the current VM and run the com‐
mand vagrant up, to start with a clean state:

$ vagrant destroy
$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'hashicorp/precise64'...
…
==> default: Running provisioner: shell...
 default: Running: C:/cygwin64/tmp/vagrant-shell20160424-6872-1xaawtl.sh
Installing Apache and setting it up…
$

As you can see, I’ve created a basic web development environment with no human
interaction at all. You can use more complex scripts to create and configure databases,
cron jobs, and whatever else you need to set up a full-fledged development environ‐
ment.

Automated Provisioning with Chef
You’ll learn a lot about Chef (and Puppet) in Chapter 7. For now, just let me say that
you can use either chef-solo or chef-client to provision Vagrant environments. Chef-
solo is easier, so I use that to show how to provision software in Vagrant VMs.

In order to provision our Apache web server using Chef, you need to create a cook‐
book and a Chef Recipe. By default Vagrant will look in the cookbooks directory rela‐
tive to the Vagrant project directory for its cookbooks. So, first create the cookbooks
directory under the Project directory and then create the following Chef recipe:

execute “apt-get update”
package “apache2”
execute “rm –rf /var/www”
link “/var/www” do
 To “/vagrant”
end

Save the recipe file to cookbooks/mydir/recipes/default.rb.

Automatically Spinning up Virtual Environments with Vagrant | 239

Once you do this, stick the following line in your Vagrantfile:

config.vm.provision “chef-solo”, run-list: [“mydir”]

Now that you’re all set up, run the vagrant destroy command to remove all traces of
the previous installation and then execute the vagrant up command to create a new
VM with automatic provisioned of the Apache server by Chef.

Automated Provisioning with Puppet
Automated provisioning with Puppet is quite similar to provisioning with Chef. I use
a simple Puppet set up without a master. Just as Chef uses cookbooks and recipes,
Puppet uses manifests. In order to let Puppet handle the provisioning of our Apache
server, you must create a manifest folder under the project root directory. Next, create
the Puppet manifest that’ll do the job for us:

exec { “apt-get update”:
 Command => “/usr/bin/apt-get update”,
}

package { “apache2”:
 Require => Exec[“apt-get update”],
}

file { “/var/www”:
 Ensure => link,
 Target => “/vagrant”,
 Force => true,
}

Remove the VM with the vagrant destroy command and run vagrant up again.

Finally, you don’t necessarily have to choose among the available provisioners, in the
sense that you can use more than one provisioner by simply specifying multiple con‐
fig.vm .provisioner directives in your Vagrantfile, as shown here:

Vagrant::Config.run.do [config]
 Config.vm.box = “precise64”
…
 Config.vm.provision “shell”, inline, “apt-get update”
Config.vm.provision “puppet”
…
End

Vagrant will provision your new M by installing and configuring the software pro‐
vided by each provisioner, in the order you specify the provisioners in the Vagrantfile.

Creating Vagrant Base Boxes
A Vagrant box that contains just the minimum software that allows Vagrant to func‐
tion, but nothing more, is called a base box. A base box, such as the Ubuntu box pro‐

240 | Chapter 6: Automating Server Deployment and Managing Development Environments

vided by the Vagrant project *”precise64”) that I used earlier on, isn’t repackaged
from any other Vagrant environment, and that’s why it’s called the “base box”.

The Vagrant project and others offer numerous base boxes. If you’re starting out, get
familiar with Vagrant by using the available base boxes. Later on, once you get really
comfortable, you can create your own base boxes to serve as a starting point for fresh
development environments.

Components of a Base Box
Vagrant base boxes include a bare set of binaries. Here’s a list of the minimum com‐
ponents in a base box:

• Vagrant package manager
• SSH
• An SSH user to allow Vagrant to connect

Note that the provider you’re going to use also determines what goes into a base box.
For example, if you’re using VirtualBox as the provider, you’ll need the highly useful
Guest Additions so that you can use the shared folders capability of the VM.

It’s quite easy to build a custom box from a preexisting Vagrant box such as ubuntu/
trust64. Just boot the predefined box and modify its configuration per your require‐
ments. Export the box to a new file (with the .box extension) by executing the vagrant
package command.

Packaging a base box into a box file differs, based on the provider. In the following
example, I’m using Virtual Box, and I need do the following to package the new base
box:

$ vagrant package –-base Ubuntu-14.04-64-Desktop

The package command creates a file named package.box.

There are no rules as to how you should distribute the base boxes
you create. However, Vagrant recommends that you add the new
box to HashiCorp’s Atlas to supporting versioning, push updates
and lots of other reasons.

You test the new base box by spinning up the new VM:

$ vagrant up

If the VM is spun up correctly, your new base box is good!

Automatically Spinning up Virtual Environments with Vagrant | 241

Using Packer and Atlas for creating base boxes
In the previous section, I showed how to create a Vagrant base box from scratch using
a manual method. Vagrant strongly recommends using HashiCorp’s Packer (and
chef/bento or boxcutter templates) to create reproducible builds for a Vagrant base
box. It also recommends that you use HashiCorp’s Atlas to automate the builds.

Packer is a command line tool that lets you automate the creation of VMS by generat‐
ing Vagrant boxes. Packer is the recommended way to create Vagrant boxes. In a nut‐
shell, here’s how Packer works:

• It downloads the ISO CD or DVD image of the OS you want to use
• It executes the installation program and sets up the server with the default con‐

figuration
• It runs provisioners such as shell, Chef, Ansible and Puppet to customize the new

system
• It exports the custom system and packages it into a .box file.

Packer not only lets you create VMs of different operating systems,
such as Ubuntu and CentOS and Windows 7, it also lets you create
boxes for various providers such as VirtualBox and VMware.

Using Packer, you can specify the configuration pf your Vagrant boxes (memory, disk
size etc) in a JSON file. Once you specify the needed automation parameters (such as
Ubuntu preseed file), Packer will do the initial OS deployment for you.

You can find details about Packer at http://www.packer.io. You can
find examples of Packer definition files by going to the repository
(called bento) maintained by Chef at Chef ’s Github account.
https://github.com/chef/bento

You can download Packer distributions from https://www.packer.io/downloads.html.
The chef/bento project contains numerous Packer definitions. You can clone the the
chef/bento project from GitHub (https://github.com/chef/bento). Once you clone the
project, in the bento/packer subdirectory, you’ll find a number of JSON files that con‐
tains definitions for building various operating systems. You can use Packer and these
JSON files to build base boxes for Ubuntu, Fedora, etc. For example, you can build an
Ubuntu 14.04 box for the VirtualBox provider by running the following packer com‐
mand:

$ packer build -only=virtualbox-iso ubuntu-14.04-i386.json

242 | Chapter 6: Automating Server Deployment and Managing Development Environments

http://www.packer.io
https://github.com/chef/bento
https://www.packer.io/downloads.html
https://github.com/chef/bento

Note that this packer command creates a new Ubuntu box without using a preexist‐
ing Vagrant box. It does this by downloading an ISO image from the Ubuntu distri‐
bution site. When the packer command finishes executing, you’ll see the following
file:

bento/builds/virtualbox/opscode_ubuntu-14.04-i386_chef-provisionerless.box

What you have here is a bare bones system with just enough software for the system
to function. You can customize this box to your heart’s content.

You can test this new Vagrant box created by Packer by using the same procedures as
in the previous section where I showed the steps for manually creating a base box.
Here’s how to do it for our example:

$ vagrant box add bento-ubuntu opscode_ubuntu-14.04-i386_chef-provisionerless.box # install the new box
$ vagrant init -m bento-ubuntu # initialize the new VM
$ vagrant up # boot the new VM
$ vagrant destroy # destroy the box

Parallel Job-Execution and Server Orchestration Systems
In a large environment especially, it’s critical that you use techniques other than old-
fashioned shell scripts to simultaneously execute tasks across a number of servers.
Remote command execution tools help significantly in performing near real-time
parallel execution of commands.

Automated server provisioning tools such as Razor and Cobbler let you automate the
installation of servers and the management of those servers with configuration tools.
Using one of these tools, it’s easy to go from a bare metal or VM server with nothing
on it and come up with a fully configured system in a very short time.

Working with Remote Command Execution Tools
When dealing with a set of servers, administrators typically write programs that can
parallelly execute their commands. It’s easier to manage these types of operations by
using tools and frameworks explicitly designed for this type of work. In this section, I
explain some of the more popular tools for server orchestration and parallel job exe‐
cution. Specifically, the following are the tools I discuss:

• Parallel Execution Processors (PDSH, DSH, CSSH)
• Fabric
• Mcollective

Parallel Job-Execution and Server Orchestration Systems | 243

Parallel (SSH) Execution Processors
If you’re handling just a handful of servers and don’t think that you need the over‐
head of a configuration management (CM) tool such as Puppet/Chef/Ansible/Salt,
you can look at other simpler tools that help you manage multiple Linux servers.
Most of these tools also work very well with Puppet and other CM tools, to help make
your life easier.

The tools I’ve in mind are all based on SSH, so you must first setup SSH key based
logins on the servers (please see Chapter 2). Let’s quickly review these remote execu‐
tion tools in the following sections.

PSSH (Parallel SSH)
Pssh is a program for executing ssh in parallel in a set of nodes. It can send input to
all processes, passwords to ssh and save output to files. Following is an example that
shows how to copy a file to my home folder on two servers.

 pscp.pss –v –H “alapati@host1 alapati@host3” test.gz /home/alapati

DSH (DISTRIBUTED SHELL)
You can install DSH (distributed shell) or pdsh (parallel distributed shell) with apt-
get or yum. In order to execute a command on multiple nodes, you add the node list
to a file such as the following example:

vi /tmp/test.list
host01
host02
host03

Once you have your server list ready in a file, pass the node list file to pdsh when
executing a command:

pdsh –aM –c uptime

This command will show you the uptime on each server in your node list file (test.list
in this example).

CSSH
CSSH (ClusterSSH) is somewhat different from the pssh and pdsh (or dsh) tools – it
opens an xterm terminal to all the hosts you specify, pus an admin console. When
you type a command in the admin console, it’s automatically replicated to all win‐
dows. You can see the command actually execute on the various windows for separate
servers. Here’s an example showing how to use the CSSH tool.

Create a cluster configuration file named clusters in /tmp and define your servers in
that file.

244 | Chapter 6: Automating Server Deployment and Managing Development Environments

vi /tmp/clusters
clusters = 1204servers
1204servers = host1 host2

Run the following command.

cssh alapati@host1 alapati@host2

You’ll now see two terminal windows and the as you type your commands in the
admin console, you’ll see the command executing in both terminals.

Fabric
Fabric is a command-line tool that uses SSH to help you orchestrate various configu‐
ration operations. Fabric automates communications with remote servers by working
on clusters of machines. It can help start and stop services on the clusters. You can
use it for both application development and systems administration. Fabric is handy
for uploading and downloading files. It can also prompt users for input and cancel
execution of the tasks.

MCollective
MCollective (Marionette Collective) is a sophisticated framework that helps you
build server orchestration and parallel job-execution systems. The purpose of Mcol‐
lective and similar orchestration frameworks is to allow you to parallelly execute con‐
figuration changes across multiple systems in a controlled fashion. MCollective is a
tool designed to orchestrate and synchronize changes across a large number of
servers simultaneously. The name Marionette alludes to a classic marionette control‐
ling puppets.

Later in this book, you’ll learn a lot about configuration management (CM) tools
such as Puppet, Chef and Salt. How does a server orchestration tool such as Mcollec‐
tive relate to those tools? Here’s the difference: CM tools are for what they say they do
– achieving consistent configuration in your data center. A tool such as MCollective
has a far narrower scope – it lets you orchestrate changes in a parallel fashion.

How Mcollective differs from traditional tools
System administrators are used to rigging up scripts to perform simultaneous updates
of a cluster of servers. However the scripting approach suffers from the following
drawbacks:

• They work through a list of servers, one at a time
• They can’t handle unexpected outcomes or responses
• They can’t handle fatal error messages output to the screen
• They don’t integrate well with or complement other management tools

Parallel Job-Execution and Server Orchestration Systems | 245

MCollective contains the following features that make it quite different from the
other parallel execution tools:

• You can use custom authentication and authorization mechanisms
• You can parallelly execute changes on thousands of servers without a master
• Make it possible to diagnose result codes because full data sets are returned as

result codes
• Actions can be taken on the responses by processors
• In addition, Mcollective integrates very well with CM tools such as Puppet and

Chef.

Often, an administrator runs something on a bunch of servers at the same time by
running code that looks like the following:

$ for host in bunch of hosts
 do
 scp config-file $host:/some/path
 ssh $host "service apache restart"
 done

When you run this code for a large number of hosts, several issues might crop up –
for example, you can’t easily keep up with the output of the commands, and errors in
the middle of the sequence can be missed. Your goal is to make sure that you do this
thing fast and know for sure that the commands worked on all the target servers.

While Puppet and Chef and similar CM tools can help you make changes in systems,
they really aren’t tools designed to perform massive simultaneous deployments. The
tools ensure eventual compliance of systems over a period of time. Something like
puppetmaster can process only a few systems at once. Mcollective is a good comple‐
mentary tool for CM tools such as Puppet (Mcollective ships as part of Puppet 4), and
helps you achieve true parallel execution with consistent results.

The key difference between Mcollective and a tool such as Puppet is that Mcollective
is a tool with a narrow focus – it lets you perform small changes across a huge num‐
ber of nodes at precisely the same time. Puppet can perform numerous changes to
ensure consistent configuration among a bunch of nodes, but it takes its time to get
this done.

How Mcollective Works
Mcollective avoids two key drawbacks of other parallel execution tools:

• First, there’s no central master, which helps you eliminate potential bottlenecks
with a master/server centralized architecture for single server managing deploy‐
ments over a bunch of servers.

246 | Chapter 6: Automating Server Deployment and Managing Development Environments

• Secondly, it avoids drift among the servers it’s updating, since it doesn’t process
the clients in an ordered loop as a shell script might, for example.

MCollective uses a unique concept of what the terms server and clients mean. A node
you want to control through Mcollective is deemed a Mcollective server and it runs
mcollectived. A node with the mco command-line client installed is deemed a MCol‐
lective client which is capable of issuing commands. You install the client software
just on those systems from where you want to send requests. You can use manage‐
ment hosts or a bastion host (or your own laptop) for this.

You can use the mco command-line client in scripts or interactively. You can also
write your own custom clients in Ruby to use as back ends for GUI applications.

The key to the scalable and fast parallel execution capability of MCollective is the
Publish-Subscribe infrastructure it uses to carry requests to the servers. The mcollec‐
tived process on each server registers with the middleware broker (ActiveMQ or Rab‐
bitMQ for example) and immediately grabs and evaluates requests sent to the
middleware broker by the clients. The mcollctived process uses an agent with which it
immediately executes the command to satisfy the client requests. It’s the agents that
you install which process the requests and perform actions. The Publish-Subscribe
mode permits simultaneous execution on hundreds or thousands of servers at the
exact same time.

Puppet Labs (it maintains both Puppet and Mcollective) recom‐
mends ActiveMQ as the best middleware for high performance and
scalability

You can control which systems execute specific commands using filters on host‐
names, operating systems, installed packages, and similar criteria. The Mcollective
agents report back with the status of the process initiated by them. MCollective
agents are available for Puppet, Chef, CFEngine, Ansible and Salt.

Mcollective and Puppet
You can use MCollective to control Puppet agents on various nodes. You can use
MCollective to:

• Start and stop the Puppet agents
• Run the Puppet agent with various command-line options
• Make changes to nodes using Puppet resources

Parallel Job-Execution and Server Orchestration Systems | 247

• Select the node to modify based on the Puppet classes or facts (key-value pairs
with information about the nodes – Puppet’s facter program is the most common
way to get the facts) on the node

Installing and Configuring Mcollective
You can manually install the various binaries that you need to make MCollective
work (including the middleware broker), but the recommended way to install and
configure MCollective is through a CM tool such as Chef, Puppet, Salt, CFengine or
Ansible. The reason for this is that it’s tedious to install MCollective manually on
numerous servers, and using a CM tool makes it easy to maintain MCollective over
time, as well as customize its settings on some servers.

Now that you’ve seen how parallel command job execution frameworks can help you,
let’s take a look at two highly useful automatic server provision tools – Razor and
Cobbler.

Server Provisioning with Razor
Razor is a popular automatic provisioning tool that lets you install servers across your
data center. Razor also integrates very well with CM tools, so you can easily go from a
bare metal server or VM with nothing on it to a fully configured server with the help
of Razor and a CM tool.

You can install Razor by itself, and Puppet Enterprise also bundles it with its installa‐
tion media. Razor’s broker component also supports Chef, and you can write plugins
for other CM tools such as Ansible and Salt as well.

How Razor Works
Razor uses TFTP, DHCP and DNS to support automated server deployment. Razor,
written in Ruby, runs as a TorqueBox web application and uses PostgreSQL as its
backend, and it has its own network. When you connect a new server that’s config‐
ured for network boot to the Razor network, Razor does the following:

• The new server does a network boot and connects to Razor and loads its micro‐
kernel

• It detects the new node and learns about its characteristics by booting up with
Razor’s microkernel and collecting information about it

• The new node gets the microkernel and registers with Razor, and will be boot‐
strapped by Razor by loading the installation files

• If the new server’s “facts” match a tag, the tag is compared to policies stored in
the Razor server and the first matching policy is applied to the new server

248 | Chapter 6: Automating Server Deployment and Managing Development Environments

• The new server is configured with an operating system, based on what the policy
specifies

• If the policy contains the relevant broker information, Razor performs a handoff
to the Chef or Puppet CM tool

Razor’s Architecture
You can look at Razor as consisting of the following components:

• The Razor server
• The Razor microkernel
• The Razor Client

The Razor Server
The Razor server is Razor’s main component. TorqueBox, which is application plat‐
form based on the JBoss application server, hosts the Razor server. You can interact
with the Razor Server through the Razor client or through RESTful APIs.

The Razor Microkernel
The microkernel is just what it sounds like – it’s a tiny Linux image that is used to
boot on the new nodes and inventory the nodes. During the discovery stage, if the
microkernel can’t find matching policies for the new server, the server will present the
microkernel’s login screen, but normally you don’t long into the microkernel.

The Razor Client
The client lets you access the Razor server and it’s probably a good idea to run it on
the same machine where you run the server, since the client provides no authentica‐
tion by itself.

Working with Razor
If you’re using Puppet Enterprise (PE), you already have Razor – however you must
still configure the required database (PostGres), DHCP server, DNS server and an
image repository.

To install Razor when you’ve Puppet running, you need to do very little:

puppet module install puppetlabs/razor
puppet apply –e ‘include razor’

There are a number of prebuilt Vagrant environments that you can download and
use. Or, you can manually install Razor yourself.

Parallel Job-Execution and Server Orchestration Systems | 249

In addition to the PostgreSQL database as a backed server, Razor needs both DHCP
and DNS servers. Razor assigns IP addresses to the new nodes that it installs through
DHCP.

If you’re dealing with a small test environment, you can use dnsmasq for both DHCP
and DNS.

Server Provisioning with Cobbler
Cobbler is a Linux installation server that helps you simplify server provisioning by
centralizing and automating tasks involved in the configuration and administration
of an installation server. Cobbler helps you quickly setup a network installation envi‐
ronment and also serves as a tool that helps you automate tasks in Linux environ‐
ments. Originally it was bundled with Fedora, but since 2011, it’s being also bundled
with Ubuntu. Cobbler glues together several related Linux tasks so you don’t have to
worry about each of them when performing a new installation or modifying an exist‐
ing installation.

Cobbler has a built-in configuration system and integrates well with other systems
such as Pallet, for example. You mostly use the commands cobbler check and cobbler
import to perform the initial setup from the command line but can use a web applica‐
tion later on.

Cobbler s ideal for network installs which you can configure for PXE, media based
network installations and virtualized installations with Xen, KVM, configuration
management orchestration, etc.

Cobbler is also helpful in managing DHCP, DNS and the yum package mirroring
infrastructure. It has its own lightweight CM system and you can integrate it with
Puppet and other systems as well.

Where Cobbler Can Help You
As I showed earlier in this chapter, when performing a network environment, for
server installations you must perform all the following tasks:

• Configure DHCP, TFTP, DNS, HTTP, FRP, NFS and other services
• Customize the DHCP and TFTO configuration files
• Create the automatic deployment files such as the Kickstart file
• Extract the installation binaries to the HTTP/FTP/NFS repositories

This sequence of steps involves a lot of manual work: you must manually register
each client machine, and any change in the provisioning of a server means a manual
change in the configurations and the automatic deployment files. The TFTP directory
and other files can get quite complex when dealing a large number of machines.

250 | Chapter 6: Automating Server Deployment and Managing Development Environments

Cobbler was designed to tackle the system related issues head on by acting as the cen‐
tral management point for all machine provisioning tasks. It lets you install machines
without manual intervention. You simply run a command such as add new repository
or change client machine operating system, and Cobbler will:

• Reconfigure services
• Create the repositories
• Extract OS media to newly created directories
• Control power management
• Restart servers

What Cobbler Offers
Cobbler sets up a PXE boot environment and controls everything related to the
installation. When you use Cobbler to create a new machine it:

• Uses a template to configure the DHCP server
• Mirrors a repository or extracts a media to register the new OS
• Creates an entry in the DHCP configuration file with the IP and MAC addresses

you specify for the new machine
• Creates necessary PXE files under the TFTP service directory
• Restarts the machine to begin the installation, if you enable power management

Cobbler knows how to extract necessary files from the distro ISO files and adjust the
network services to boot up the new machines.

Kickstart
Kickstart templates let Red Hat and Fedora based systems automate the installation
process. Cobbler works with Kickstart. You can use the Kickstart file to install
machines in different domains and with different machines, by using configuration
parameters (variables) such as $domain and $machine-name. A Cobbler profile can
then specify, for example, domain-mydomain.com and specify the names of the
machines that use this profile with the machine-name variables. All new machines in
this Cobbler configuration will be installed with the same Kickstart configuration,
and configured for the domain mydomain.com.

Parallel Job-Execution and Server Orchestration Systems | 251

Fence Scripts
Cobbler can connect to power management environments such as blade center and
ipmitool through fence scripts. When you reboot a new system, Cobbler runs the
appropriate fence script for you.

Cobbler Architecture
Cobbler uses a set of registered objects to perform its work. Each registered object
points to another object, inheriting the data of the object it points to. Cobbler uses the
following types of objects.

• Distribution: represents an OS and contains information related to the kernel
and initrd

• Profile: points to the distribution, a Kickstart file and other repositories
• System: this object represents the machine you’re provision. The system object

points to a profile or an image and includes specialized information such as the
IP and MAC addresses and power management.

• Repository: this object stores the mirroring information (mirror URL) for a
repository such as yum

• Image; this image can replace a distribution object for files that don’t fit in that
category. An example is where you can’t device the files into a kernel and intird.

Deploying an Operating System using Cobbler and PXE Boot Cobbler comes with a
great deal of functionality out of the box, although it can get complex due to the
many technologies it can manage. You need to know PXE (see in this chapter) and
the procedures for automatically installing the Linux distro you want to install. Instal‐
ling Cobbler is quite easy through the yum utility (yum install cobbler).

Installing and configuring the Cobbler web interface is a good
strategy if you need to perform regular activities with Cobbler.

252 | Chapter 6: Automating Server Deployment and Managing Development Environments

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	A Word on the New Technologies that are critical for Linux Administrators Today
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Modern Linux System Administration
	Motivation for the new System Administration Strategies and Tools
	Problems with Traditional Systems Administration
	Monitoring
	The Image Sprawl problem
	Agile Development Methodologies and the System Administrator
	Cloud environments
	Impact of Big Data
	Manual Operations without automation

	Automated Infrastructure Management
	Automating Redundant Configuration Work
	Configuration Management
	Infrastructure as Code

	Modern Scripting Languages and Databases
	Essential Programming Skills for the System Administrator
	The Rise of NoSQL Databases
	Caching
	Content Delivery Networks

	IT Orchestration
	Provisioning with Vagrant
	Vagrant and Configuration Management Tools
	Provisioning - Automatic Server Deployment

	Server (hardware) Virtualization
	Containerization – the New Virtualization
	Docker and Containerization
	Docker Container Orchestration and Distributed Schedulers

	Cluster Management and Cluster Operating Systems
	Version Control Systems
	Continuous Integration and Continuous Deployment
	Benefits Offered by CI
	Steps involved in CI
	Continuous Integration and Continuous Deployment
	Continuous Application deployment
	Tools for Implementing Continuous Integration

	Log Management, Monitoring and Metrics
	Effective Metrics
	Proactive Monitoring
	Service Metrics
	Synthetic Monitoring

	Cloud Computing
	Open Stack – the Open Source Cloud Platform

	Software Defined Networking
	Microservices, Service Registration and Service Discovery
	Benefits of Microservices
	Service Discovery
	Service Registration

	Chapter 2. Networking Essentials for a System Administrator
	What the internet is
	Packets
	Packet Switches
	Applications and APIs
	Network Protocols
	Network Messages and Message Formatting

	Networking Essentials – Theory and Practice
	Breaking up the real work into layers – the OSI Model
	Protocol Layering
	The Internet Protocol Stack

	The Network Layer and TCP/IP Networking
	The Forwarding Function
	Routing Essentials and Routing Management

	The Hypertext Transfer Protocol (HTTP)
	Using the HTTP/2 Protocol for Enhanced Performance

	Network Load Balancing
	Benefits of Using a Network Load Balancer
	Load Balancing with DNS
	Enterprise Load Balancers
	Software Based Load Balancing
	Hardware Load Balancing
	Using a Hosted Load Balancer Service

	Modern Networking Technologies
	Quality of Service (QoS)
	Quality of Experience (QoE)
	Routing and Network Congestion Control
	Software-Defined Networking
	Limitations of current networks
	The three “Planes’ in Networking
	Defining Functions for the Network Control Plane
	Network Functions Virtualization
	The OpenFlow Protocol

	Chapter 3. Scalability, Web Applications, Web Services, and Microservices
	Scaling and Common Datacenter Infrastructures
	The Front End Technologies
	The Back End Technologies
	Scalability of Applications
	Content Delivery Networks
	How large websites scale

	Scaling Web Applications
	Managing state at the front end
	Other Types of State
	Scaling the Web Services
	Making Effective use of Third-party services

	Working with Web Servers
	Working with the Apache Web Server
	The NGINX Web Server
	Caching Proxies and Reverse Proxying

	Handling Data Storage with Databases
	Relational databases
	Other Types of Databases
	MongoDB as a Backend Database

	Caching
	HTTP-Based Caching (Browser caching)
	Caching Objects

	Asynchronous Processing, Messaging Applications and MOM
	Messages and Message Queues
	Components of a Messaging Architecture
	Message Brokers and Message Oriented Middleware (MOM)
	Messaging Protocols
	Popular Message Brokers

	The Model-View-Controller Architecture and Single Paged Applications
	The Problem
	MVC to the Rescue
	Ruby on Rails
	Full stack JavaScript Development with MEAN
	Single Page Applications – the new Paradigm for Web Applications

	Web Services
	Web Service Basics
	Simple Object Access Protocol (SOAP)
	Two Types of Web Services

	Service-Based Architectures and Microservices
	Similarities between traditional SOAs and the Microservice approach
	Differences between SOA and Microservices
	Service Types

	Chapter 4. Server Virtualization and Linux Containers
	Linux Server Virtualization
	The Architecture of Virtual Machines
	The Virtual Machine Monitor (Hypervisor)
	How VMs share Resources
	Benefits offered by Virtual Machines
	Drawbacks of Virtualization
	Virtualization Types
	Type of Hypervisors
	Xen Virtualization
	Kernel-Based Virtual Machines (KVM)
	Considerations in Selecting the Physical Servers for virtualization
	Migrating Virtual Machines

	Application Deployment and Management with Linux Containers
	Chroot and Containers
	Applications and their Isolation
	Virtualization and Containerization
	Benefits offered by Linux Containers
	Two Types of Uses for Linux Containers

	The Building Blocks of Linux Containers
	Namespaces and Process Isolation
	Control Groups (cgroups)
	SELinux and Container Security
	Linux Containers versus Virtualization (KVM)
	Linux Containers and KVM Virtualization – the Differences
	Limitations of LXC
	Container benefits
	Linux Container Adoption Issues
	Managing Linux Containers

	Chapter 5. Working with Docker Containers
	Docker Basics
	When Docker Isn’t Right for You
	What Docker Consists of
	The Docker Project
	Docker Images and Docker Containers
	What Linux Administrators should know in order to support Docker

	Setting up the Docker Container Run-Time Environment
	Getting Information about the Containers

	Running Container Images
	Managing Containers
	Running Interactive Containers
	Making your base Image Heftier
	Committing a Container
	Running Commands within a Container
	Linking Containers
	Running Services inside a Container
	Running Privileged Containers

	Building Docker Images
	Building Images with a Dockerfile
	Image Layers

	Docker Image Repositories
	Using a Private Docker Registry

	New Operating Systems Optimized for Docker
	Using CoreOS
	Working with Atomic Host

	The Docker Stack in Production
	Provisioning Resources with Docker Machine
	Docker Orchestration
	Docker Orchestration and Clustering Tools
	Distributed Schedulers for Docker Containers

	Docker Containers, Service Discovery and Service Registration
	Connecting Containers through Ambassadors
	How Service Discovery Works
	Zero-Configuration Networking
	Service Discovery
	Service Registration

	Chapter 6. Automating Server Deployment and Managing Development Environments
	Linux Package Management
	Using the rpm and dpkg commands
	Package Management with YUM and APT

	Fully Automatic Installation (FAI)
	How FAI Works
	How it Works
	Setting up the Network Server
	Setting up the PXE Server for a Network Installation
	Using Kickstart

	Automatically Spinning up Virtual Environments with Vagrant
	Some Background
	Vagrant and its Alternatives
	Getting Started with Vagrant
	Spinning up a New VM
	The Vagrantfile
	Vagrant Box
	Provisioning Vagrant Boxes
	Automated Provisioning
	Creating Vagrant Base Boxes
	Using Packer and Atlas for creating base boxes

	Parallel Job-Execution and Server Orchestration Systems
	Working with Remote Command Execution Tools
	Server Provisioning with Razor
	Server Provisioning with Cobbler

